Sample records for content live cell

  1. A system and methodology for high-content visual screening of individual intact living cells in suspension

    NASA Astrophysics Data System (ADS)

    Renaud, Olivier; Heintzmann, Rainer; Sáez-Cirión, Asier; Schnelle, Thomas; Mueller, Torsten; Shorte, Spencer

    2007-02-01

    Three dimensional imaging provides high-content information from living intact biology, and can serve as a visual screening cue. In the case of single cell imaging the current state of the art uses so-called "axial through-stacking". However, three-dimensional axial through-stacking requires that the object (i.e. a living cell) be adherently stabilized on an optically transparent surface, usually glass; evidently precluding use of cells in suspension. Aiming to overcome this limitation we present here the utility of dielectric field trapping of single cells in three-dimensional electrode cages. Our approach allows gentle and precise spatial orientation and vectored rotation of living, non-adherent cells in fluid suspension. Using various modes of widefield, and confocal microscope imaging we show how so-called "microrotation" can provide a unique and powerful method for multiple point-of-view (three-dimensional) interrogation of intact living biological micro-objects (e.g. single-cells, cell aggregates, and embryos). Further, we show how visual screening by micro-rotation imaging can be combined with micro-fluidic sorting, allowing selection of rare phenotype targets from small populations of cells in suspension, and subsequent one-step single cell cloning (with high-viability). Our methodology combining high-content 3D visual screening with one-step single cell cloning, will impact diverse paradigms, for example cytological and cytogenetic analysis on haematopoietic stem cells, blood cells including lymphocytes, and cancer cells.

  2. A High-Content Live-Cell Viability Assay and Its Validation on a Diverse 12K Compound Screen.

    PubMed

    Chiaravalli, Jeanne; Glickman, J Fraser

    2017-08-01

    We have developed a new high-content cytotoxicity assay using live cells, called "ImageTOX." We used a high-throughput fluorescence microscope system, image segmentation software, and the combination of Hoechst 33342 and SYTO 17 to simultaneously score the relative size and the intensity of the nuclei, the nuclear membrane permeability, and the cell number in a 384-well microplate format. We then performed a screen of 12,668 diverse compounds and compared the results to a standard cytotoxicity assay. The ImageTOX assay identified similar sets of compounds to the standard cytotoxicity assay, while identifying more compounds having adverse effects on cell structure, earlier in treatment time. The ImageTOX assay uses inexpensive commercially available reagents and facilitates the use of live cells in toxicity screens. Furthermore, we show that we can measure the kinetic profile of compound toxicity in a high-content, high-throughput format, following the same set of cells over an extended period of time.

  3. Compartmental genomics in living cells revealed by single-cell nanobiopsy.

    PubMed

    Actis, Paolo; Maalouf, Michelle M; Kim, Hyunsung John; Lohith, Akshar; Vilozny, Boaz; Seger, R Adam; Pourmand, Nader

    2014-01-28

    The ability to study the molecular biology of living single cells in heterogeneous cell populations is essential for next generation analysis of cellular circuitry and function. Here, we developed a single-cell nanobiopsy platform based on scanning ion conductance microscopy (SICM) for continuous sampling of intracellular content from individual cells. The nanobiopsy platform uses electrowetting within a nanopipette to extract cellular material from living cells with minimal disruption of the cellular milieu. We demonstrate the subcellular resolution of the nanobiopsy platform by isolating small subpopulations of mitochondria from single living cells, and quantify mutant mitochondrial genomes in those single cells with high throughput sequencing technology. These findings may provide the foundation for dynamic subcellular genomic analysis.

  4. A multiplexed method for kinetic measurements of apoptosis and proliferation using live-content imaging.

    PubMed

    Artymovich, Katherine; Appledorn, Daniel M

    2015-01-01

    In vitro cell proliferation and apoptosis assays are widely used to study cancer cell biology. Commonly used methodologies are however performed at a single, user-defined endpoint. We describe a kinetic multiplex assay incorporating the CellPlayer(TM) NucLight Red reagent to measure proliferation and the CellPlayer(TM) Caspase-3/7 reagent to measure apoptosis using the two-color, live-content imaging platform, IncuCyte(TM) ZOOM. High-definition phase-contrast images provide an additional qualitative validation of cell death based on morphological characteristics. The kinetic data generated using this strategy can be used to derive informed pharmacology measurements to screen potential cancer therapeutics.

  5. Compartmental Genomics in Living Cells Revealed by Single-Cell Nanobiopsy

    PubMed Central

    Actis, Paolo; Maalouf, Michelle; Kim, Hyunsung John; Lohith, Akshar; Vilozny, Boaz; Seger, R. Adam; Pourmand, Nader

    2014-01-01

    The ability to study the molecular biology of living single cells in heterogeneous cell populations is essential for next generation analysis of cellular circuitry and function. Here, we developed a single-cell nanobiopsy platform based on scanning ion conductance microscopy (SICM) for continuous sampling of intracellular content from individual cells. The nanobiopsy platform uses electrowetting within a nanopipette to extract cellular material from living cells with minimal disruption of the cellular milieu. We demonstrate the subcellular resolution of the nanobiopsy platform by isolating small subpopulations of mitochondria from single living cells, and quantify mutant mitochondrial genomes in those single cells with high throughput sequencing technology. These findings may provide the foundation for dynamic subcellular genomic analysis. PMID:24279711

  6. Interspecific correlation between red blood cell mitochondrial ROS production, cardiolipin content and longevity in birds.

    PubMed

    Delhaye, Jessica; Salamin, Nicolas; Roulin, Alexandre; Criscuolo, François; Bize, Pierre; Christe, Philippe

    2016-12-01

    Mitochondrial respiration releases reactive oxygen species (ROS) as by-products that can damage the soma and may in turn accelerate ageing. Hence, according to "the oxidative stress theory of ageing", longer-lived organisms may have evolved mechanisms that improve mitochondrial function, reduce ROS production and/or increase cell resistance to oxidative damage. Cardiolipin, an important mitochondrial inner-membrane phospholipid, has these properties by binding and stabilizing mitochondrial inner-membrane proteins. Here, we investigated whether ROS production, cardiolipin content and cell membrane resistance to oxidative attack in freshly collected red blood cells (RBCs) are associated with longevity (range 5-35 years) in 21 bird species belonging to seven Orders. After controlling for phylogeny, body size and oxygen consumption, variation in maximum longevity was significantly explained by mitochondrial ROS production and cardiolipin content, but not by membrane resistance to oxidative attack. RBCs of longer-lived species produced less ROS and contained more cardiolipin than RBCs of shorter-lived species did. These results support the oxidative stress theory of ageing and shed light on mitochondrial cardiolipin as an important factor linking ROS production to longevity.

  7. Automated live cell screening system based on a 24-well-microplate with integrated micro fluidics.

    PubMed

    Lob, V; Geisler, T; Brischwein, M; Uhl, R; Wolf, B

    2007-11-01

    In research, pharmacologic drug-screening and medical diagnostics, the trend towards the utilization of functional assays using living cells is persisting. Research groups working with living cells are confronted with the problem, that common endpoint measurement methods are not able to map dynamic changes. With consideration of time as a further dimension, the dynamic and networked molecular processes of cells in culture can be monitored. These processes can be investigated by measuring several extracellular parameters. This paper describes a high-content system that provides real-time monitoring data of cell parameters (metabolic and morphological alterations), e.g., upon treatment with drug compounds. Accessible are acidification rates, the oxygen consumption and changes in adhesion forces within 24 cell cultures in parallel. Addressing the rising interest in biomedical and pharmacological high-content screening assays, a concept has been developed, which integrates multi-parametric sensor readout, automated imaging and probe handling into a single embedded platform. A life-maintenance system keeps important environmental parameters (gas, humidity, sterility, temperature) constant.

  8. Invitations to Cells: Life's Building Blocks. Teacher-Friendly Science Activities with Reproducible Handouts in English and Spanish. Grades 3-5. Living Things Science Series.

    ERIC Educational Resources Information Center

    Camp, Carole Ann, Ed.

    This booklet, one of six in the Living Things Science series, presents activities about cells which address basic "Benchmarks" suggested by the American Association for the Advancement of Science for the Living Environment for grades 3-5. Contents include background information, vocabulary (in English and Spanish), materials, procedures,…

  9. Teachable, high-content analytics for live-cell, phase contrast movies.

    PubMed

    Alworth, Samuel V; Watanabe, Hirotada; Lee, James S J

    2010-09-01

    CL-Quant is a new solution platform for broad, high-content, live-cell image analysis. Powered by novel machine learning technologies and teach-by-example interfaces, CL-Quant provides a platform for the rapid development and application of scalable, high-performance, and fully automated analytics for a broad range of live-cell microscopy imaging applications, including label-free phase contrast imaging. The authors used CL-Quant to teach off-the-shelf universal analytics, called standard recipes, for cell proliferation, wound healing, cell counting, and cell motility assays using phase contrast movies collected on the BioStation CT and BioStation IM platforms. Similar to application modules, standard recipes are intended to work robustly across a wide range of imaging conditions without requiring customization by the end user. The authors validated the performance of the standard recipes by comparing their performance with truth created manually, or by custom analytics optimized for each individual movie (and therefore yielding the best possible result for the image), and validated by independent review. The validation data show that the standard recipes' performance is comparable with the validated truth with low variation. The data validate that the CL-Quant standard recipes can provide robust results without customization for live-cell assays in broad cell types and laboratory settings.

  10. High content live cell imaging for the discovery of new antimalarial marine natural products

    PubMed Central

    2012-01-01

    Background The human malaria parasite remains a burden in developing nations. It is responsible for up to one million deaths a year, a number that could rise due to increasing multi-drug resistance to all antimalarial drugs currently available. Therefore, there is an urgent need for the discovery of new drug therapies. Recently, our laboratory developed a simple one-step fluorescence-based live cell-imaging assay to integrate the complex biology of the human malaria parasite into drug discovery. Here we used our newly developed live cell-imaging platform to discover novel marine natural products and their cellular phenotypic effects against the most lethal malaria parasite, Plasmodium falciparum. Methods A high content live cell imaging platform was used to screen marine extracts effects on malaria. Parasites were grown in vitro in the presence of extracts, stained with RNA sensitive dye, and imaged at timed intervals with the BD Pathway HT automated confocal microscope. Results Image analysis validated our new methodology at a larger scale level and revealed potential antimalarial activity of selected extracts with a minimal cytotoxic effect on host red blood cells. To further validate our assay, we investigated parasite's phenotypes when incubated with the purified bioactive natural product bromophycolide A. We show that bromophycolide A has a strong and specific morphological effect on parasites, similar to the ones observed from the initial extracts. Conclusion Collectively, our results show that high-content live cell-imaging (HCLCI) can be used to screen chemical libraries and identify parasite specific inhibitors with limited host cytotoxic effects. All together we provide new leads for the discovery of novel antimalarials. PMID:22214291

  11. High content live cell imaging for the discovery of new antimalarial marine natural products.

    PubMed

    Cervantes, Serena; Stout, Paige E; Prudhomme, Jacques; Engel, Sebastian; Bruton, Matthew; Cervantes, Michael; Carter, David; Tae-Chang, Young; Hay, Mark E; Aalbersberg, William; Kubanek, Julia; Le Roch, Karine G

    2012-01-03

    The human malaria parasite remains a burden in developing nations. It is responsible for up to one million deaths a year, a number that could rise due to increasing multi-drug resistance to all antimalarial drugs currently available. Therefore, there is an urgent need for the discovery of new drug therapies. Recently, our laboratory developed a simple one-step fluorescence-based live cell-imaging assay to integrate the complex biology of the human malaria parasite into drug discovery. Here we used our newly developed live cell-imaging platform to discover novel marine natural products and their cellular phenotypic effects against the most lethal malaria parasite, Plasmodium falciparum. A high content live cell imaging platform was used to screen marine extracts effects on malaria. Parasites were grown in vitro in the presence of extracts, stained with RNA sensitive dye, and imaged at timed intervals with the BD Pathway HT automated confocal microscope. Image analysis validated our new methodology at a larger scale level and revealed potential antimalarial activity of selected extracts with a minimal cytotoxic effect on host red blood cells. To further validate our assay, we investigated parasite's phenotypes when incubated with the purified bioactive natural product bromophycolide A. We show that bromophycolide A has a strong and specific morphological effect on parasites, similar to the ones observed from the initial extracts. Collectively, our results show that high-content live cell-imaging (HCLCI) can be used to screen chemical libraries and identify parasite specific inhibitors with limited host cytotoxic effects. All together we provide new leads for the discovery of novel antimalarials. © 2011 Cervantes et al; licensee BioMed Central Ltd.

  12. Analysis of Cellular DNA Content by Flow Cytometry.

    PubMed

    Darzynkiewicz, Zbigniew; Huang, Xuan; Zhao, Hong

    2017-10-02

    Cellular DNA content can be measured by flow cytometry with the aim of : (1) revealing cell distribution within the major phases of the cell cycle, (2) estimating frequency of apoptotic cells with fractional DNA content, and/or (3) disclosing DNA ploidy of the measured cell population. In this unit, simple and universally applicable methods for staining fixed cells are presented, as are methods that utilize detergents and/or proteolytic treatment to permeabilize cells and make DNA accessible to fluorochrome. Additionally, supravital cell staining with Hoechst 33342, which is primarily used for sorting live cells based on DNA-content differences for their subsequent culturing, is described. Also presented are methods for staining cell nuclei isolated from paraffin-embedded tissues. Available algorithms are listed for deconvolution of DNA-content-frequency histograms to estimate percentage of cells in major phases of the cell cycle and frequency of apoptotic cells with fractional DNA content. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley and Sons, Inc.

  13. Analysis of Cellular DNA Content by Flow Cytometry.

    PubMed

    Darzynkiewicz, Zbigniew; Huang, Xuan; Zhao, Hong

    2017-11-01

    Cellular DNA content can be measured by flow cytometry with the aim of : (1) revealing cell distribution within the major phases of the cell cycle, (2) estimating frequency of apoptotic cells with fractional DNA content, and/or (3) disclosing DNA ploidy of the measured cell population. In this unit, simple and universally applicable methods for staining fixed cells are presented, as are methods that utilize detergents and/or proteolytic treatment to permeabilize cells and make DNA accessible to fluorochrome. Additionally, supravital cell staining with Hoechst 33342, which is primarily used for sorting live cells based on DNA-content differences for their subsequent culturing, is described. Also presented are methods for staining cell nuclei isolated from paraffin-embedded tissues. Available algorithms are listed for deconvolution of DNA-content-frequency histograms to estimate percentage of cells in major phases of the cell cycle and frequency of apoptotic cells with fractional DNA content. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley and Sons, Inc.

  14. Ethidium bromide as a marker of mtDNA replication in living cells

    NASA Astrophysics Data System (ADS)

    Villa, Anna Maria; Fusi, Paola; Pastori, Valentina; Amicarelli, Giulia; Pozzi, Chiara; Adlerstein, Daniel; Doglia, Silvia Maria

    2012-04-01

    Mitochondrial DNA (mtDNA) in tumor cells was found to play an important role in maintaining the malignant phenotype. Using laser scanning confocal fluorescence microscopy (LSCFM) in a recent work, we reported a variable fluorescence intensity of ethidium bromide (EB) in mitochondria nucleoids of living carcinoma cells. Since when EB is bound to nucleic acids its fluorescence is intensified; a higher EB fluorescence intensity could reflect a higher DNA accessibility to EB, suggesting a higher mtDNA replication activity. To prove this hypothesis, in the present work we studied, by LSCFM, the EB fluorescence in mitochondria nucleoids of living neuroblastoma cells, a model system in which differentiation affects the level of mtDNA replication. A drastic decrease of fluorescence was observed after differentiation. To correlate EB fluorescence intensity to the mtDNA replication state, we evaluated the mtDNA nascent strands content by ligation-mediated real-time PCR, and we found a halved amount of replicating mtDNA molecules in differentiating cells. A similar result was obtained by BrdU incorporation. These results indicate that the low EB fluorescence of nucleoids in differentiated cells is correlated to a low content of replicating mtDNA, suggesting that EB may be used as a marker of mtDNA replication in living cells.

  15. Examining live cell cultures during apoptosis by digital holographic phase imaging and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Khmaladze, Alexander

    2017-11-01

    Cellular apoptosis is a unique, organized series of events, leading to programmed cell death. In this work, we present a combined digital holography/Raman spectroscopy technique to study live cell cultures during apoptosis. Digital holographic microscopy measurements of live cell cultures yield information about cell shape and volume, changes to which are indicative of alterations in cell cycle and initiation of cell death mechanisms. Raman spectroscopic measurements provide complementary information about cells, such as protein, lipid and nucleic acid content, and the spectral signatures associated with structural changes in molecules. Our work indicates that the chemical changes in proteins, which were detected by Raman measurements, preceded morphological changes, which were seen with digital holographic microscopy.

  16. Quantitative measurement of permeabilization of living cells by terahertz attenuated total reflection

    NASA Astrophysics Data System (ADS)

    Grognot, Marianne; Gallot, Guilhem

    2015-09-01

    Using Attenuated Total Reflection imaging technique in the terahertz domain, we demonstrate non-invasive, non-staining real time measurements of cytoplasm leakage during permeabilization of epithelial cells by saponin. The terahertz signal is mostly sensitive to the intracellular protein concentration in the cells, in a very good agreement with standard bicinchoninic acid protein measurements. It opens the way to in situ real time dynamics of protein content and permeabilization in live cells.

  17. A Carbon Nanotube Optical Reporter Maps Endolysosomal Lipid Flux

    PubMed Central

    2017-01-01

    Lipid accumulation within the lumen of endolysosomal vesicles is observed in various pathologies including atherosclerosis, liver disease, neurological disorders, lysosomal storage disorders, and cancer. Current methods cannot measure lipid flux specifically within the lysosomal lumen of live cells. We developed an optical reporter, composed of a photoluminescent carbon nanotube of a single chirality, that responds to lipid accumulation via modulation of the nanotube’s optical band gap. The engineered nanomaterial, composed of short, single-stranded DNA and a single nanotube chirality, localizes exclusively to the lumen of endolysosomal organelles without adversely affecting cell viability or proliferation or organelle morphology, integrity, or function. The emission wavelength of the reporter can be spatially resolved from within the endolysosomal lumen to generate quantitative maps of lipid content in live cells. Endolysosomal lipid accumulation in cell lines, an example of drug-induced phospholipidosis, was observed for multiple drugs in macrophages, and measurements of patient-derived Niemann–Pick type C fibroblasts identified lipid accumulation and phenotypic reversal of this lysosomal storage disease. Single-cell measurements using the reporter discerned subcellular differences in equilibrium lipid content, illuminating significant intracellular heterogeneity among endolysosomal organelles of differentiating bone-marrow-derived monocytes. Single-cell kinetics of lipoprotein-derived cholesterol accumulation within macrophages revealed rates that differed among cells by an order of magnitude. This carbon nanotube optical reporter of endolysosomal lipid content in live cells confers additional capabilities for drug development processes and the investigation of lipid-linked diseases. PMID:28898055

  18. Holographic intravital microscopy for 2-D and 3-D imaging intact circulating blood cells in microcapillaries of live mice

    NASA Astrophysics Data System (ADS)

    Kim, Kyoohyun; Choe, Kibaek; Park, Inwon; Kim, Pilhan; Park, Yongkeun

    2016-09-01

    Intravital microscopy is an essential tool that reveals behaviours of live cells under conditions close to natural physiological states. So far, although various approaches for imaging cells in vivo have been proposed, most require the use of labelling and also provide only qualitative imaging information. Holographic imaging approach based on measuring the refractive index distributions of cells, however, circumvent these problems and offer quantitative and label-free imaging capability. Here, we demonstrate in vivo two- and three-dimensional holographic imaging of circulating blood cells in intact microcapillaries of live mice. The measured refractive index distributions of blood cells provide morphological and biochemical properties including three-dimensional cell shape, haemoglobin concentration, and haemoglobin contents at the individual cell level. With the present method, alterations in blood flow dynamics in live healthy and sepsis-model mice were also investigated.

  19. A Multiplexed High-Content Screening Approach Using the Chromobody Technology to Identify Cell Cycle Modulators in Living Cells.

    PubMed

    Schorpp, Kenji; Rothenaigner, Ina; Maier, Julia; Traenkle, Bjoern; Rothbauer, Ulrich; Hadian, Kamyar

    2016-10-01

    Many screening hits show relatively poor quality regarding later efficacy and safety. Therefore, small-molecule screening efforts shift toward high-content analysis providing more detailed information. Here, we describe a novel screening approach to identify cell cycle modulators with low toxicity by combining the Cell Cycle Chromobody (CCC) technology with the CytoTox-Glo (CTG) cytotoxicity assay. The CCC technology employs intracellularly functional single-domain antibodies coupled to a fluorescent protein (chromobodies) to visualize the cell cycle-dependent redistribution of the proliferating cell nuclear antigen (PCNA) in living cells. This image-based cell cycle analysis was combined with determination of dead-cell protease activity in cell culture supernatants by the CTG assay. We adopted this multiplex approach to high-throughput format and screened 960 Food and Drug Administration (FDA)-approved drugs. By this, we identified nontoxic compounds, which modulate different cell cycle stages, and validated selected hits in diverse cell lines stably expressing CCC. Additionally, we independently validated these hits by flow cytometry as the current state-of-the-art format for cell cycle analysis. This study demonstrates that CCC imaging is a versatile high-content screening approach to identify cell cycle modulators, which can be multiplexed with cytotoxicity assays for early elimination of toxic compounds during screening. © 2016 Society for Laboratory Automation and Screening.

  20. A high content, high throughput cellular thermal stability assay for measuring drug-target engagement in living cells.

    PubMed

    Massey, Andrew J

    2018-01-01

    Determining and understanding drug target engagement is critical for drug discovery. This can be challenging within living cells as selective readouts are often unavailable. Here we describe a novel method for measuring target engagement in living cells based on the principle of altered protein thermal stabilization / destabilization in response to ligand binding. This assay (HCIF-CETSA) utilizes high content, high throughput single cell immunofluorescent detection to determine target protein levels following heating of adherent cells in a 96 well plate format. We have used target engagement of Chk1 by potent small molecule inhibitors to validate the assay. Target engagement measured by this method was subsequently compared to target engagement measured by two alternative methods (autophosphorylation and CETSA). The HCIF-CETSA method appeared robust and a good correlation in target engagement measured by this method and CETSA for the selective Chk1 inhibitor V158411 was observed. However, these EC50 values were 23- and 12-fold greater than the autophosphorylation IC50. The described method is therefore a valuable advance in the CETSA method allowing the high throughput determination of target engagement in adherent cells.

  1. FLIM FRET Technology for Drug Discovery: Automated Multiwell-Plate High-Content Analysis, Multiplexed Readouts and Application in Situ**

    PubMed Central

    Kumar, Sunil; Alibhai, Dominic; Margineanu, Anca; Laine, Romain; Kennedy, Gordon; McGinty, James; Warren, Sean; Kelly, Douglas; Alexandrov, Yuriy; Munro, Ian; Talbot, Clifford; Stuckey, Daniel W; Kimberly, Christopher; Viellerobe, Bertrand; Lacombe, Francois; Lam, Eric W-F; Taylor, Harriet; Dallman, Margaret J; Stamp, Gordon; Murray, Edward J; Stuhmeier, Frank; Sardini, Alessandro; Katan, Matilda; Elson, Daniel S; Neil, Mark A A; Dunsby, Chris; French, Paul M W

    2011-01-01

    A fluorescence lifetime imaging (FLIM) technology platform intended to read out changes in Förster resonance energy transfer (FRET) efficiency is presented for the study of protein interactions across the drug-discovery pipeline. FLIM provides a robust, inherently ratiometric imaging modality for drug discovery that could allow the same sensor constructs to be translated from automated cell-based assays through small transparent organisms such as zebrafish to mammals. To this end, an automated FLIM multiwell-plate reader is described for high content analysis of fixed and live cells, tomographic FLIM in zebrafish and FLIM FRET of live cells via confocal endomicroscopy. For cell-based assays, an exemplar application reading out protein aggregation using FLIM FRET is presented, and the potential for multiple simultaneous FLIM (FRET) readouts in microscopy is illustrated. PMID:21337485

  2. Live Cell in Vitro and in Vivo Imaging Applications: Accelerating Drug Discovery

    PubMed Central

    Isherwood, Beverley; Timpson, Paul; McGhee, Ewan J; Anderson, Kurt I; Canel, Marta; Serrels, Alan; Brunton, Valerie G; Carragher, Neil O

    2011-01-01

    Dynamic regulation of specific molecular processes and cellular phenotypes in live cell systems reveal unique insights into cell fate and drug pharmacology that are not gained from traditional fixed endpoint assays. Recent advances in microscopic imaging platform technology combined with the development of novel optical biosensors and sophisticated image analysis solutions have increased the scope of live cell imaging applications in drug discovery. We highlight recent literature examples where live cell imaging has uncovered novel insight into biological mechanism or drug mode-of-action. We survey distinct types of optical biosensors and associated analytical methods for monitoring molecular dynamics, in vitro and in vivo. We describe the recent expansion of live cell imaging into automated target validation and drug screening activities through the development of dedicated brightfield and fluorescence kinetic imaging platforms. We provide specific examples of how temporal profiling of phenotypic response signatures using such kinetic imaging platforms can increase the value of in vitro high-content screening. Finally, we offer a prospective view of how further application and development of live cell imaging technology and reagents can accelerate preclinical lead optimization cycles and enhance the in vitro to in vivo translation of drug candidates. PMID:24310493

  3. Endocytotic potential governs magnetic particle loading in dividing neural cells: studying modes of particle inheritance

    PubMed Central

    Tickle, Jacqueline A; Jenkins, Stuart I; Polyak, Boris; Pickard, Mark R; Chari, Divya M

    2016-01-01

    Aim: To achieve high and sustained magnetic particle loading in a proliferative and endocytotically active neural transplant population (astrocytes) through tailored magnetite content in polymeric iron oxide particles. Materials & methods: MPs of varying magnetite content were applied to primary-derived rat cortical astrocytes ± static/oscillating magnetic fields to assess labeling efficiency and safety. Results: Higher magnetite content particles display high but safe accumulation in astrocytes, with longer-term label retention versus lower/no magnetite content particles. Magnetic fields enhanced loading extent. Dynamic live cell imaging of dividing labeled astrocytes demonstrated that particle distribution into daughter cells is predominantly ‘asymmetric’. Conclusion: These findings could inform protocols to achieve efficient MP loading into neural transplant cells, with significant implications for post-transplantation tracking/localization. PMID:26785794

  4. Trans-cis isomerization of lipophilic dyes probing membrane microviscosity in biological membranes and in live cells.

    PubMed

    Chmyrov, Volodymyr; Spielmann, Thiemo; Hevekerl, Heike; Widengren, Jerker

    2015-06-02

    Membrane environment and fluidity can modulate the dynamics and interactions of membrane proteins and can thereby strongly influence the function of cells and organisms in general. In this work, we demonstrate that trans-cis isomerization of lipophilic dyes is a useful parameter to monitor packaging and fluidity of biomembranes. Fluorescence fluctuations, generated by trans-cis isomerization of the thiocarbocyanine dye Merocyanine 540 (MC540), were first analyzed by fluorescence correlation spectroscopy (FCS) in different alcohol solutions. Similar isomerization kinetics of MC540 in lipid vesicles could then also be monitored, and the influence of lipid polarity, membrane curvature, and cholesterol content was investigated. While no influence of membrane curvature and lipid polarity could be observed, a clear decrease in the isomerization rates could be observed with increasing cholesterol contents in the vesicle membranes. Finally, procedures to spatially map photoinduced and thermal isomerization rates on live cells by transient state (TRAST) imaging were established. On the basis of these procedures, MC540 isomerization was studied on live MCF7 cells, and TRAST images of the cells at different temperatures were found to reliably detect differences in the isomerization parameters. Our studies indicate that trans-cis isomerization is a useful parameter for probing membrane dynamics and that the TRAST imaging technique can provide spatial maps of photoinduced isomerization as well as both photoinduced and thermal back-isomerization, resolving differences in local membrane microviscosity in live cells.

  5. Self-organization and entropy reduction in a living cell.

    PubMed

    Davies, Paul C W; Rieper, Elisabeth; Tuszynski, Jack A

    2013-01-01

    In this paper we discuss the entropy and information aspects of a living cell. Particular attention is paid to the information gain on assembling and maintaining a living state. Numerical estimates of the information and entropy reduction are given and discussed in the context of the cell's metabolic activity. We discuss a solution to an apparent paradox that there is less information content in DNA than in the proteins that are assembled based on the genetic code encrypted in DNA. When energy input required for protein synthesis is accounted for, the paradox is clearly resolved. Finally, differences between biological information and instruction are discussed. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Ultraviolet microscopy aids in cytological and biomedical research

    NASA Technical Reports Server (NTRS)

    Schlenk, F.; Svihla, B.

    1967-01-01

    Ultraviolet microscopy is used by cytologists and biochemists to study the morphological and physiological changes in the living cell under varied culture conditions. The yeast cell is used because of its content of ultraviolet absorbing materials and its lack of motility.

  7. Automatic analysis of dividing cells in live cell movies to detect mitotic delays and correlate phenotypes in time.

    PubMed

    Harder, Nathalie; Mora-Bermúdez, Felipe; Godinez, William J; Wünsche, Annelie; Eils, Roland; Ellenberg, Jan; Rohr, Karl

    2009-11-01

    Live-cell imaging allows detailed dynamic cellular phenotyping for cell biology and, in combination with small molecule or drug libraries, for high-content screening. Fully automated analysis of live cell movies has been hampered by the lack of computational approaches that allow tracking and recognition of individual cell fates over time in a precise manner. Here, we present a fully automated approach to analyze time-lapse movies of dividing cells. Our method dynamically categorizes cells into seven phases of the cell cycle and five aberrant morphological phenotypes over time. It reliably tracks cells and their progeny and can thus measure the length of mitotic phases and detect cause and effect if mitosis goes awry. We applied our computational scheme to annotate mitotic phenotypes induced by RNAi gene knockdown of CKAP5 (also known as ch-TOG) or by treatment with the drug nocodazole. Our approach can be readily applied to comparable assays aiming at uncovering the dynamic cause of cell division phenotypes.

  8. An automated wide-field time-gated optically sectioning fluorescence lifetime imaging multiwell plate reader for high-content analysis of protein-protein interactions

    NASA Astrophysics Data System (ADS)

    Alibhai, Dominic; Kumar, Sunil; Kelly, Douglas; Warren, Sean; Alexandrov, Yuriy; Munro, Ian; McGinty, James; Talbot, Clifford; Murray, Edward J.; Stuhmeier, Frank; Neil, Mark A. A.; Dunsby, Chris; French, Paul M. W.

    2011-03-01

    We describe an optically-sectioned FLIM multiwell plate reader that combines Nipkow microscopy with wide-field time-gated FLIM, and its application to high content analysis of FRET. The system acquires sectioned FLIM images in <10 s/well, requiring only ~11 minutes to read a 96 well plate of live cells expressing fluorescent protein. It has been applied to study the formation of immature HIV virus like particles (VLPs) in live cells by monitoring Gag-Gag protein interactions using FLIM FRET of HIV-1 Gag transfected with CFP or YFP. VLP formation results in FRET between closely packed Gag proteins, as confirmed by our FLIM analysis that includes automatic image segmentation.

  9. Open Source High Content Analysis Utilizing Automated Fluorescence Lifetime Imaging Microscopy.

    PubMed

    Görlitz, Frederik; Kelly, Douglas J; Warren, Sean C; Alibhai, Dominic; West, Lucien; Kumar, Sunil; Alexandrov, Yuriy; Munro, Ian; Garcia, Edwin; McGinty, James; Talbot, Clifford; Serwa, Remigiusz A; Thinon, Emmanuelle; da Paola, Vincenzo; Murray, Edward J; Stuhmeier, Frank; Neil, Mark A A; Tate, Edward W; Dunsby, Christopher; French, Paul M W

    2017-01-18

    We present an open source high content analysis instrument utilizing automated fluorescence lifetime imaging (FLIM) for assaying protein interactions using Förster resonance energy transfer (FRET) based readouts of fixed or live cells in multiwell plates. This provides a means to screen for cell signaling processes read out using intramolecular FRET biosensors or intermolecular FRET of protein interactions such as oligomerization or heterodimerization, which can be used to identify binding partners. We describe here the functionality of this automated multiwell plate FLIM instrumentation and present exemplar data from our studies of HIV Gag protein oligomerization and a time course of a FRET biosensor in live cells. A detailed description of the practical implementation is then provided with reference to a list of hardware components and a description of the open source data acquisition software written in µManager. The application of FLIMfit, an open source MATLAB-based client for the OMERO platform, to analyze arrays of multiwell plate FLIM data is also presented. The protocols for imaging fixed and live cells are outlined and a demonstration of an automated multiwell plate FLIM experiment using cells expressing fluorescent protein-based FRET constructs is presented. This is complemented by a walk-through of the data analysis for this specific FLIM FRET data set.

  10. Open Source High Content Analysis Utilizing Automated Fluorescence Lifetime Imaging Microscopy

    PubMed Central

    Warren, Sean C.; Alibhai, Dominic; West, Lucien; Kumar, Sunil; Alexandrov, Yuriy; Munro, Ian; Garcia, Edwin; McGinty, James; Talbot, Clifford; Serwa, Remigiusz A.; Thinon, Emmanuelle; da Paola, Vincenzo; Murray, Edward J.; Stuhmeier, Frank; Neil, Mark A. A.; Tate, Edward W.; Dunsby, Christopher; French, Paul M. W.

    2017-01-01

    We present an open source high content analysis instrument utilizing automated fluorescence lifetime imaging (FLIM) for assaying protein interactions using Förster resonance energy transfer (FRET) based readouts of fixed or live cells in multiwell plates. This provides a means to screen for cell signaling processes read out using intramolecular FRET biosensors or intermolecular FRET of protein interactions such as oligomerization or heterodimerization, which can be used to identify binding partners. We describe here the functionality of this automated multiwell plate FLIM instrumentation and present exemplar data from our studies of HIV Gag protein oligomerization and a time course of a FRET biosensor in live cells. A detailed description of the practical implementation is then provided with reference to a list of hardware components and a description of the open source data acquisition software written in µManager. The application of FLIMfit, an open source MATLAB-based client for the OMERO platform, to analyze arrays of multiwell plate FLIM data is also presented. The protocols for imaging fixed and live cells are outlined and a demonstration of an automated multiwell plate FLIM experiment using cells expressing fluorescent protein-based FRET constructs is presented. This is complemented by a walk-through of the data analysis for this specific FLIM FRET data set. PMID:28190060

  11. Association of polychlorinated biphenyls (PCBs) with live algae and total lipids in rivers - A field-based approach

    USGS Publications Warehouse

    Fitzgerald, S.A.; Steuer, J.J.

    2006-01-01

    The association of PCBs and live algal cells in rivers was studied at four locations during four seasons in two Wisconsin rivers. Positive relations between particle-associated PCBs and both chlorophyll-a and algal carbon concentrations indicated that live algal cells were a significant sorption phase for dissolved PCBs. Large Pennate diatoms (Navicula, Synedra, Pinnularia, Diatoma, and Cocconeis), or more rarely, Euglenoids (Trachelomonas sp.), dominated most sample assemblages on an algal carbon basis. These assemblages made up the highest percentage of total SOC during spring (average=50%) and lowest during summer (average=15%). At the three impounded sites, most individual PCB congeners were relatively enriched in samples characterized by: (1) high concentrations of algal carbon (as a percent of SOC), (2) algal assemblages dominated (or co-dominated) by Euglenoids, and (3) high concentrations of total lipids. Despite relatively higher masses of sorbed PCBs in the most lipid-rich samples, there was no robust correlation between total lipid content and particle-associated PCBs when aggregating all samples from the study. A possible explanation is that PCBs are associated with other structural components in live algae and (or) departure from chemical equilibrium in the river due to algal growth kinetics. A kinetic uptake model was used to calculate the mass of PCBs associated with the total organic carbon content of live algae. Based on this model, PCBs were enriched in algal cells during bloom seasons (spring and fall) compared to non-bloom seasons (summer and winter). Further, although individual PCB congener partition coefficients (log) to live algal cells (range=5.3-6.4) overlapped to those for detritus (range=3.6-7.4), PCBs tended to be enriched in detrital carbon pools during non-bloom conditions. The larger range of estimated PCB partition coefficients for detritus likely reflects the more heterogeneous nature of this material compared to live algal cells.

  12. Live cell imaging of in vitro human trophoblast syncytialization.

    PubMed

    Wang, Rui; Dang, Yan-Li; Zheng, Ru; Li, Yue; Li, Weiwei; Lu, Xiaoyin; Wang, Li-Juan; Zhu, Cheng; Lin, Hai-Yan; Wang, Hongmei

    2014-06-01

    Human trophoblast syncytialization, a process of cell-cell fusion, is one of the most important yet least understood events during placental development. Investigating the fusion process in a placenta in vivo is very challenging given the complexity of this process. Application of primary cultured cytotrophoblast cells isolated from term placentas and BeWo cells derived from human choriocarcinoma formulates a biphasic strategy to achieve the mechanism of trophoblast cell fusion, as the former can spontaneously fuse to form the multinucleated syncytium and the latter is capable of fusing under the treatment of forskolin (FSK). Live-cell imaging is a powerful tool that is widely used to investigate many physiological or pathological processes in various animal models or humans; however, to our knowledge, the mechanism of trophoblast cell fusion has not been reported using a live- cell imaging manner. In this study, a live-cell imaging system was used to delineate the fusion process of primary term cytotrophoblast cells and BeWo cells. By using live staining with Hoechst 33342 or cytoplasmic dyes or by stably transfecting enhanced green fluorescent protein (EGFP) and DsRed2-Nuc reporter plasmids, we observed finger-like protrusions on the cell membranes of fusion partners before fusion and the exchange of cytoplasmic contents during fusion. In summary, this study provides the first video recording of the process of trophoblast syncytialization. Furthermore, the various live-cell imaging systems used in this study will help to yield molecular insights into the syncytialization process during placental development. © 2014 by the Society for the Study of Reproduction, Inc.

  13. Raman and coherent anti-Stokes Raman scattering microscopy studies of changes in lipid content and composition in hormone-treated breast and prostate cancer cells

    NASA Astrophysics Data System (ADS)

    Potcoava, Mariana C.; Futia, Gregory L.; Aughenbaugh, Jessica; Schlaepfer, Isabel R.; Gibson, Emily A.

    2014-11-01

    Increasing interest in the role of lipids in cancer cell proliferation and resistance to drug therapies has motivated the need to develop better tools for cellular lipid analysis. Quantification of lipids in cells is typically done by destructive chromatography protocols that do not provide spatial information on lipid distribution and prevent dynamic live cell studies. Methods that allow the analysis of lipid content in live cells are therefore of great importance. Using micro-Raman spectroscopy and coherent anti-Stokes Raman scattering (CARS) microscopy, we generated a lipid profile for breast (T47D, MDA-MB-231) and prostate (LNCaP, PC3) cancer cells upon exposure to medroxyprogesterone acetate (MPA) and synthetic androgen R1881. Combining Raman spectra with CARS imaging, we can study the process of hormone-mediated lipogenesis. Our results show that hormone-treated cancer cells T47D and LNCaP have an increased number and size of intracellular lipid droplets and higher degree of saturation than untreated cells. MDA-MB-231 and PC3 cancer cells showed no significant changes upon treatment. Principal component analysis with linear discriminant analysis of the Raman spectra was able to differentiate between cancer cells that were treated with MPA, R1881, and untreated.

  14. Monitoring of live cell cultures during apoptosis by phase imaging and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Sharikova, Anna; Saide, George; Sfakis, Lauren; Park, Jun Yong; Desta, Habben; Maloney, Maxwell C.; Castracane, James; Mahajan, Supriya D.; Khmaladze, Alexander

    2017-02-01

    Non-invasive live cell measurements are an important tool in biomedical research. We present a combined digital holography/Raman spectroscopy technique to study live cell cultures during apoptosis. Digital holographic microscopy records an interference pattern between object and reference waves, so that the computationally reconstructed holographic image contains both amplitude and phase information about the sample. When the phase is mapped across the sample and converted into height information for each pixel, a three dimensional image is obtained. The measurement of live cell cultures by digital holographic microscopy yields information about cell shape and volume, changes to which are reflective of alterations in cell cycle and initiation of cell death mechanisms. Raman spectroscopy, on the other hand, is sensitive to rotational and vibrational molecular transitions, as well as intermolecular vibrations. Therefore, Raman spectroscopy provides complementary information about cells, such as protein, lipid and nucleic acid content, and, particularly, the spectral signatures associated with structural changes in molecules. The cell cultures are kept in the temperature-controlled environmental chamber during the experiment, which allows monitoring over multiple cell cycles. The DHM system combines a visible (red) laser source with conventional microscope base, and LabVIEW-run data processing. We analyzed and compared cell culture information obtained by these two methods.

  15. Beta cells transfer vesicles containing insulin to phagocytes for presentation to T cells.

    PubMed

    Vomund, Anthony N; Zinselmeyer, Bernd H; Hughes, Jing; Calderon, Boris; Valderrama, Carolina; Ferris, Stephen T; Wan, Xiaoxiao; Kanekura, Kohsuke; Carrero, Javier A; Urano, Fumihiko; Unanue, Emil R

    2015-10-06

    Beta cells from nondiabetic mice transfer secretory vesicles to phagocytic cells. The passage was shown in culture studies where the transfer was probed with CD4 T cells reactive to insulin peptides. Two sets of vesicles were transferred, one containing insulin and another containing catabolites of insulin. The passage required live beta cells in a close cell contact interaction with the phagocytes. It was increased by high glucose concentration and required mobilization of intracellular Ca2+. Live images of beta cell-phagocyte interactions documented the intimacy of the membrane contact and the passage of the granules. The passage was found in beta cells isolated from islets of young nonobese diabetic (NOD) mice and nondiabetic mice as well as from nondiabetic humans. Ultrastructural analysis showed intraislet phagocytes containing vesicles having the distinct morphology of dense-core granules. These findings document a process whereby the contents of secretory granules become available to the immune system.

  16. Actin Cytoskeletal Disruption following Cryopreservation Alters the Biodistribution of Human Mesenchymal Stromal Cells In Vivo

    PubMed Central

    Chinnadurai, Raghavan; Garcia, Marco A.; Sakurai, Yumiko; Lam, Wilbur A.; Kirk, Allan D.; Galipeau, Jacques; Copland, Ian B.

    2014-01-01

    Summary Mesenchymal stromal cells have shown clinical promise; however, variations in treatment responses are an ongoing concern. We previously demonstrated that MSCs are functionally stunned after thawing. Here, we investigated whether this cryopreservation/thawing defect also impacts the postinfusion biodistribution properties of MSCs. Under both static and physiologic flow, compared with live MSCs in active culture, MSCs thawed from cryopreservation bound poorly to fibronectin (40% reduction) and human endothelial cells (80% reduction), respectively. This reduction correlated with a reduced cytoskeletal F-actin content in post-thaw MSCs (60% reduction). In vivo, live human MSCs could be detected in murine lung tissues for up to 24 hr, whereas thawed MSCs were undetectable. Similarly, live MSCs whose actin cytoskeleton was chemically disrupted were undetectable at 24 hr postinfusion. Our data suggest that post-thaw cryopreserved MSCs are distinct from live MSCs. This distinction could significantly affect the utility of MSCs as a cellular therapeutic. PMID:25068122

  17. General Staining and Segmentation Procedures for High Content Imaging and Analysis.

    PubMed

    Chambers, Kevin M; Mandavilli, Bhaskar S; Dolman, Nick J; Janes, Michael S

    2018-01-01

    Automated quantitative fluorescence microscopy, also known as high content imaging (HCI), is a rapidly growing analytical approach in cell biology. Because automated image analysis relies heavily on robust demarcation of cells and subcellular regions, reliable methods for labeling cells is a critical component of the HCI workflow. Labeling of cells for image segmentation is typically performed with fluorescent probes that bind DNA for nuclear-based cell demarcation or with those which react with proteins for image analysis based on whole cell staining. These reagents, along with instrument and software settings, play an important role in the successful segmentation of cells in a population for automated and quantitative image analysis. In this chapter, we describe standard procedures for labeling and image segmentation in both live and fixed cell samples. The chapter will also provide troubleshooting guidelines for some of the common problems associated with these aspects of HCI.

  18. A Critical and Comparative Review of Fluorescent Tools for Live-Cell Imaging.

    PubMed

    Specht, Elizabeth A; Braselmann, Esther; Palmer, Amy E

    2017-02-10

    Fluorescent tools have revolutionized our ability to probe biological dynamics, particularly at the cellular level. Fluorescent sensors have been developed on several platforms, utilizing either small-molecule dyes or fluorescent proteins, to monitor proteins, RNA, DNA, small molecules, and even cellular properties, such as pH and membrane potential. We briefly summarize the impressive history of tool development for these various applications and then discuss the most recent noteworthy developments in more detail. Particular emphasis is placed on tools suitable for single-cell analysis and especially live-cell imaging applications. Finally, we discuss prominent areas of need in future fluorescent tool development-specifically, advancing our capability to analyze and integrate the plethora of high-content data generated by fluorescence imaging.

  19. Study the oxidative injury of yeast cells by NADH autofluorescence

    NASA Astrophysics Data System (ADS)

    Liang, Ju; Wu, Wen-Lan; Liu, Zhi-Hong; Mei, Yun-Jun; Cai, Ru-Xiu; Shen, Ping

    2007-06-01

    Autofluorescence has an advantage over the extrinsic fluorescence of an unperturbed environment during investigation, especially in complex system such as biological cells and tissues. NADH is an important fluorescent substance in living cells. The time courses of intracellular NADH autofluorescence in the process of yeast cells exposed to H 2O 2 and ONOO - have been recorded in detail in this work. In the presence of different amounts of H 2O 2 and ONOO -, necrosis, apoptosis and reversible injury are initiated in yeast cells, which are confirmed by acridine orange/ethidum bromide and Annexin V/propidium iodide staining. It is found that intracellular NADH content increases momently in the beginning of the apoptotic process and then decreases continually till the cell dies. The most remarkable difference between the apoptotic and the necrotic process is that the NADH content in the latter case changes much more sharply. Further in the case of reversible injury, the time course of intracellular NADH content is completely different from the above two pathways of cell death. It just decreases to some degree firstly and then resumes to the original level. Based on the role of NADH in mitochondrial respiratory chain, the time course of intracellular NADH content is believed to have reflected the response of mitochondrial redox state to oxidative stress. Thus, it is found that the mitochondrial redox state changes differently in different pathways of oxidative injury in yeast cells.

  20. Effect of nitrogen on the seasonal course of growth and maintenance respiration in stems of Norway spruce trees.

    PubMed

    Stockfors, Jan; Linder, Sune

    1998-03-01

    To determine effects of stem nitrogen concentration ([N]) on the seasonal course of respiration, rates of stem respiration of ten control and ten irrigated-fertilized (IL), 30-year-old Norway spruce trees (Picea abies (L.) Karst.), growing in northern Sweden, were measured on seven occasions from June 1993 to April 1994. To explore sources of seasonal variation and mechanisms of fertilization effects on respiration, we separated total respiration into growth and maintenance respiration for both xylem and phloem bark. Stem respiration increased in response to the IL treatment and was positively correlated with growth rate, volume of living cells and stem nitrogen content. However, no significant effect of IL treatment or [N] in the living cells was found for respiration per unit volume of live cells. Total stem respiration during the growing season (June to September) was estimated to be 16.7 and 29.7 mol CO(2) m(-2) for control and IL-treated trees, respectively. Respiration during the growing season accounted for approximately 64% of total annual respiration. Depending on the method, estimated growth respiration varied between 40 and 60% of total respiration during the growing season. Between 75 and 80% of the live cell volume in the stems was in the phloem, and phloem maintenance accounted for about 70% of maintenance respiration. Because most of the living cells were found in the phloem, and the living xylem cells were concentrated in the outer growth rings, we concluded that the best base for expressing rates of stem growth and maintenance respiration in young Norway spruce trees is stem surface area.

  1. Spectro-microscopy of living plant cells.

    PubMed

    Harter, Klaus; Meixner, Alfred J; Schleifenbaum, Frank

    2012-01-01

    Spectro-microscopy, a combination of fluorescence microscopy with spatially resolved spectroscopic techniques, provides new and exciting tools for functional cell biology in living organisms. This review focuses on recent developments in spectro-microscopic applications for the investigation of living plant cells in their native tissue context. The application of spectro-microscopic methods led to the recent discovery of a fast signal response pathway for the brassinosteroide receptor BRI1 in the plasma membrane of living plant cells. Moreover, the competence of different plant cell types to respond to environmental or endogenous stimuli was determined in vivo by correlation analysis of different optical and spectroscopic readouts such as fluorescence lifetime (FLT). Furthermore, a new spectro-microscopic technique, fluorescence intensity decay shape analysis microscopy (FIDSAM), has been developed. FIDSAM is capable of imaging low-expressed fluorophore-tagged proteins at high spatial resolution and precludes the misinterpretation of autofluorescence artifacts. In addition, FIDSAM provides a very effective and sensitive tool on the basis of Förster resonance energy transfer (FRET) for the qualitative and quantitative determination of protein-protein interaction. Finally, we report on the quantitative analysis of the photosystem I and II (PSI/PSII) ratio in the chloroplasts of living Arabidopsis plants at room temperature, using high-resolution, spatially resolved fluorescence spectroscopy. With this technique, it was not only possible to measure PSI/PSII ratios, but also to demonstrate the differential competence of wild-type and carbohydrate-deficient plants to adapt the PSI/PSII ratio to different light conditions. In summary, the information content of standard microscopic images is extended by several dimensions by the use of spectro-microscopic approaches. Therefore, novel cell physiological and molecular topics can be addressed and valuable insights into molecular and subcellular processes can be obtained in living plants.

  2. Atomic force microscopy stiffness tomography on living Arabidopsis thaliana cells reveals the mechanical properties of surface and deep cell-wall layers during growth.

    PubMed

    Radotić, Ksenija; Roduit, Charles; Simonović, Jasna; Hornitschek, Patricia; Fankhauser, Christian; Mutavdžić, Dragosav; Steinbach, Gabor; Dietler, Giovanni; Kasas, Sandor

    2012-08-08

    Cell-wall mechanical properties play a key role in the growth and the protection of plants. However, little is known about genuine wall mechanical properties and their growth-related dynamics at subcellular resolution and in living cells. Here, we used atomic force microscopy (AFM) stiffness tomography to explore stiffness distribution in the cell wall of suspension-cultured Arabidopsis thaliana as a model of primary, growing cell wall. For the first time that we know of, this new imaging technique was performed on living single cells of a higher plant, permitting monitoring of the stiffness distribution in cell-wall layers as a function of the depth and its evolution during the different growth phases. The mechanical measurements were correlated with changes in the composition of the cell wall, which were revealed by Fourier-transform infrared (FTIR) spectroscopy. In the beginning and end of cell growth, the average stiffness of the cell wall was low and the wall was mechanically homogenous, whereas in the exponential growth phase, the average wall stiffness increased, with increasing heterogeneity. In this phase, the difference between the superficial and deep wall stiffness was highest. FTIR spectra revealed a relative increase in the polysaccharide/lignin content. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Cell phone radiations affect early growth of Vigna radiata (mung bean) through biochemical alterations.

    PubMed

    Sharma, Ved Parkash; Singh, Harminder Pal; Batish, Daizy Rani; Kohli, Ravinder Kumar

    2010-01-01

    The indiscriminate use of wireless technologies, particularly of cell phones, has increased the health risks among living organisms including plants. We investigated the impact of cell phone electromagentic field (EMF) radiations (power density, 8.55 microW cm(-2)) on germination, early growth, proteins and carbohydrate contents, and activities of some enzymes in Vigna radiata. Cell phone EMF radiations significantly reduced the seedling length and dry weight of V radiata after exposure for 0.5, 1, 2, and 4 h. Furthermore, the contents of proteins and carbohydrates were reduced in EMF-exposed plants. However, the activities of proteases, alpha-amylases, beta-amylases, polyphenol oxidases, and peroxidases were enhanced in EMF-exposed radicles indicating their role in providing protection against EMF-induced stress. The study concludes that cell phone EMFs impair early growth of V radiata seedlings by inducing biochemical changes.

  4. Unravel lipid accumulation mechanism in oleaginous yeast through single cell systems biology study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Xiaoliang; Ding, Shiyou

    Searching for alternative and clean energy is one of the most important tasks today. Our research aimed at finding the best living condition for certain types of oleaginous yeasts for efficient lipid production. We found that R. glutinis yeast cells has great variability in lipid production among cells while Y. lipolytica cells has similar oil production ability. We found some individual cells shows much higher level of oil production. In order to further study these cases, we employed a label-free chemical sensitive microscopy method call stimulated Raman scattering (SRS). With SRS, we could measure the lipid content in each cell.more » We combined SRS microscopy with microfluidic device so that we can isolate cells with high fat content. We also developed SRS imaging technique that has higher imaging speed, which is highly desirable for high throughput cell screening and sorting. Since these cells has similar genome, it must be the transcriptome caused their difference in oil production. We developed a single cell transcriptome sequencing method to study which genes are responsible for elevated oil production. These methods that are developed for this project can easily be applied for many other areas of research. For example, the single transcriptome can be used to study the transcriptomes of other cell types. The high-speed SRS microscopy techniques can be used to speed up chemical imaging for lablefree histology or imaging distribution of chemicals in tissues of live mice or in humans. The developed microfluidic platform can be used to sort other type of cells, e.g., white blood cells for diagnosis of cancer or other blood diseases.« less

  5. Imaging optical sensor arrays.

    PubMed

    Walt, David R

    2002-10-01

    Imaging optical fibres have been etched to prepare microwell arrays. These microwells have been loaded with sensing materials such as bead-based sensors and living cells to create high-density sensor arrays. The extremely small sizes and volumes of the wells enable high sensitivity and high information content sensing capabilities.

  6. Genetic programs can be compressed and autonomously decompressed in live cells

    NASA Astrophysics Data System (ADS)

    Lapique, Nicolas; Benenson, Yaakov

    2018-04-01

    Fundamental computer science concepts have inspired novel information-processing molecular systems in test tubes1-13 and genetically encoded circuits in live cells14-21. Recent research has shown that digital information storage in DNA, implemented using deep sequencing and conventional software, can approach the maximum Shannon information capacity22 of two bits per nucleotide23. In nature, DNA is used to store genetic programs, but the information content of the encoding rarely approaches this maximum24. We hypothesize that the biological function of a genetic program can be preserved while reducing the length of its DNA encoding and increasing the information content per nucleotide. Here we support this hypothesis by describing an experimental procedure for compressing a genetic program and its subsequent autonomous decompression and execution in human cells. As a test-bed we choose an RNAi cell classifier circuit25 that comprises redundant DNA sequences and is therefore amenable for compression, as are many other complex gene circuits15,18,26-28. In one example, we implement a compressed encoding of a ten-gene four-input AND gate circuit using only four genetic constructs. The compression principles applied to gene circuits can enable fitting complex genetic programs into DNA delivery vehicles with limited cargo capacity, and storing compressed and biologically inert programs in vivo for on-demand activation.

  7. Cell-Like Entities: On the Boundary Between Non-Living and Living

    DTIC Science & Technology

    2006-04-01

    organisms can reproduce. Their physical structure and information content are passed on from generation to generation and in theory the lineage of any ...a basic CLE is not very useful on its own as it lacks any input-output systems and cannot perform useful work apart from its own repair. The next...34always on " module that will not require any sensing or signal transduction but will only have an output function. For example, a genetic oscillator

  8. Fibroblasts Cultured on Nanowires Exhibit Low Motility, Impaired Cell Division, and DNA Damage

    PubMed Central

    Persson, Henrik; Købler, Carsten; Mølhave, Kristian; Samuelson, Lars; Tegenfeldt, Jonas O; Oredsson, Stina; Prinz, Christelle N

    2013-01-01

    Nanowires are commonly used as tools for interfacing living cells, acting as biomolecule-delivery vectors or electrodes. It is generally assumed that the small size of the nanowires ensures a minimal cellular perturbation, yet the effects of nanowires on cell migration and proliferation remain largely unknown. Fibroblast behaviour on vertical nanowire arrays is investigated, and it is shown that cell motility and proliferation rate are reduced on nanowires. Fibroblasts cultured on long nanowires exhibit failed cell division, DNA damage, increased ROS content and respiration. Using focused ion beam milling and scanning electron microscopy, highly curved but intact nuclear membranes are observed, showing no direct contact between the nanowires and the DNA. The nanowires possibly induce cellular stress and high respiration rates, which trigger the formation of ROS, which in turn results in DNA damage. These results are important guidelines to the design and interpretation of experiments involving nanowire-based transfection and electrical characterization of living cells. PMID:23813871

  9. High-Content Analysis of CRISPR-Cas9 Gene-Edited Human Embryonic Stem Cells.

    PubMed

    Carlson-Stevermer, Jared; Goedland, Madelyn; Steyer, Benjamin; Movaghar, Arezoo; Lou, Meng; Kohlenberg, Lucille; Prestil, Ryan; Saha, Krishanu

    2016-01-12

    CRISPR-Cas9 gene editing of human cells and tissues holds much promise to advance medicine and biology, but standard editing methods require weeks to months of reagent preparation and selection where much or all of the initial edited samples are destroyed during analysis. ArrayEdit, a simple approach utilizing surface-modified multiwell plates containing one-pot transcribed single-guide RNAs, separates thousands of edited cell populations for automated, live, high-content imaging and analysis. The approach lowers the time and cost of gene editing and produces edited human embryonic stem cells at high efficiencies. Edited genes can be expressed in both pluripotent stem cells and differentiated cells. This preclinical platform adds important capabilities to observe editing and selection in situ within complex structures generated by human cells, ultimately enabling optical and other molecular perturbations in the editing workflow that could refine the specificity and versatility of gene editing. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Live microbial cells adsorb Mg2+ more effectively than lifeless organic matter

    NASA Astrophysics Data System (ADS)

    Qiu, Xuan; Yao, Yanchen; Wang, Hongmei; Duan, Yong

    2018-03-01

    The Mg2+ content is essential in determining different Mg-CaCO3 minerals. It has been demonstrated that both microbes and the organic matter secreted by microbes are capable of allocating Mg2+ and Ca2+ during the formation of Mg-CaCO3, yet detailed scenarios remain unclear. To investigate the mechanism that microbes and microbial organic matter potentially use to mediate the allocation of Mg2+ and Ca2+ in inoculating systems, microbial mats and four marine bacterial strains ( Synechococcus elongatus, Staphylococcus sp., Bacillus sp., and Desulfovibrio vulgaris) were incubated in artificial seawater media with Mg/Ca ratios ranging from 0.5 to 10.0. At the end of the incubation, the morphology of the microbial mats and the elements adsorbed on them were analyzed using scanning electronic microscopy (SEM) and energy diffraction spectra (EDS), respectively. The content of Mg2+ and Ca2+ adsorbed by the extracellular polysaccharide substances (EPS) and cells of the bacterial strains were analyzed with atomic adsorption spectroscopy (AAS). The functional groups on the surface of the cells and EPS of S. elongatus were estimated using automatic potentiometric titration combined with a chemical equilibrium model. The results show that live microbial mats generally adsorb larger amounts of Mg2+ than Ca2+, while this rarely is the case for autoclaved microbial mats. A similar phenomenon was also observed for the bacterial strains. The living cells adsorb more Mg2+ than Ca2+, yet a reversed trend was observed for EPS. The functional group analysis indicates that the cell surface of S. elongatus contains more basic functional groups (87.24%), while the EPS has more acidic and neutral functional groups (83.08%). These features may be responsible for the different adsorption behavior of Mg2+ and Ca2+ by microbial cells and EPS. Our work confirms the differential Mg2+ and Ca2+ mediation by microbial cells and EPS, which may provide insight into the processes that microbes use to induce Mg-carbonate formation.

  11. Sorption isotherm studies of Cd(II) ions using living cells of the marine microalga Tetraselmis suecica (Kylin) Butch.

    PubMed

    Pérez-Rama, M; Torres, E; Suárez, C; Herrero, C; Abalde, J

    2010-10-01

    The present work reports the use of living cells of the marine microalga Tetraselmis suecica for the biosorption of cadmium ions. For a better understanding of the biosorption characteristics, three fractions of removed cadmium (total, bioadsorbed and intracellular) were measured in the cells after 24 and 72 h of exposure to different initial cadmium concentrations (0.6-45 mg L(-1)). Both the Langmuir and Freundlich models were suitable for describing the sorption of cadmium ions by this microalga. The maximum sorption capacity was estimated to be 40.22 mg Cd g(-1) after 72 h using the Langmuir sorption model. In the lower cadmium concentrations, metal removed intracellularly was higher than that removed on the microalgal cell surface. Therefore, the intracellular fraction contributed more to the total removed cadmium than the fraction bioadsorbed to the cellular surface. The results showed that the cadmium removal capacity using living biomass could be much more effective than with non-living biomass due to the intracellular bioaccumulation. According to the microorganism selected and its tolerance to the toxic effect of the metal, the cadmium content in the intracellular fraction can become very significant, just like it happened with Tetraselmis. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  12. Synthesis and Live-Cell Imaging of Fluorescent Sterols for Analysis of Intracellular Cholesterol Transport.

    PubMed

    Modzel, Maciej; Lund, Frederik W; Wüstner, Daniel

    2017-01-01

    Cellular cholesterol homeostasis relies on precise control of the sterol content of organelle membranes. Obtaining insight into cholesterol trafficking pathways and kinetics by live-cell imaging relies on two conditions. First, one needs to develop suitable analogs that resemble cholesterol as closely as possible with respect to their biophysical and biochemical properties. Second, the cholesterol analogs should have good fluorescence properties. This interferes, however, often with the first requirement, such that the imaging instrumentation must be optimized to collect photons from suboptimal fluorophores, but good cholesterol mimics, such as the intrinsically fluorescent sterols, cholestatrienol (CTL) or dehydroergosterol (DHE). CTL differs from cholesterol only in having two additional double bonds in the ring system, which is why it is slightly fluorescent in the ultraviolet (UV). In the first part of this protocol, we describe how to synthesize and image CTL in living cells relative to caveolin, a structural component of caveolae. In the second part, we explain in detail how to perform time-lapse experiments of commercially available BODIPY-tagged cholesterol (TopFluor-cholesterol ® ; TF-Chol) in comparison to DHE. Finally, using two-photon time-lapse imaging data of TF-Chol, we demonstrate how to use our imaging toolbox SpatTrack for tracking sterol rich vesicles in living cells over time.

  13. Improved light-induced cell detachment on rutile TiO₂ nanodot films.

    PubMed

    Cheng, Kui; Sun, Yu; Wan, Hongping; Wang, Xiaozhao; Weng, Wenjian; Lin, Jun; Wang, Huiming

    2015-10-01

    Anatase TiO2 nanodot films have been found to be able to release cells under light illumination with excellent efficiency and safety. In the present study, we investigated the effects of rutile contents in TiO2 nanodot films on such light induced cell detachment behavior. The results showed that TiO2 nanodot films with different contents of rutile phase have been prepared successfully. The content of rutile phase increased with the increase in calcination temperature. All films possessed good cell adhesion but there was a decrease in cell proliferation with the increasing content of rutile phase. Single cell detachment assay showed that the films with high rutile contents (calcined at 900°C and 1100°C) showed better cell detachment performance. That was ascribed to the changes of the secondary structure of extracellular proteins adsorbed on the nanodot surface after ultraviolet (365 nm, UV365) illumination. In addition, cell sheets detached through UV365 illumination maintained high activity and could be further used in tissue engineering. The present work showed that the existence of rutile phase is helpful in cell detachment behavior and it could be utilized to optimize light-induced cell detachment behavior. This work discovers that the presence of rutile phase in TiO2 nanodot films could improve the light-induced cell detachment behavior, although rutile phase is inferior to anatase phase on light induced superhydrophilicity. That strongly supported that the behaviors of adsorbed proteins are crucial in acquiring cell sheet with light illumination. In fact, the state and behavior of adsorbed protein greatly affect the interaction between biomaterials and living cells. Therefore, we consider this work is not only important in harvesting cells or cell sheets through light illumination, but also helpful in further understanding of interaction between biomaterials and cells. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Effect of jet injection on infectivity of measles, mumps, and rubella vaccine in a bench model.

    PubMed

    Coughlin, Melissa M; Collins, Marcus; Saxon, Gene; Jarrahian, Courtney; Zehrung, Darin; Cappello, Chris; Dhere, Rajeev; Royals, Michael; Papania, Mark; Rota, Paul A

    2015-08-26

    Disposable-syringe jet injectors (DSJIs) with single-use, auto disable, needle-free syringes offer the opportunity to avoid hazards associated with injection using a needle and syringe. Clinical studies have evaluated DSJIs for vaccine delivery, but most studies have focused on inactivated, subunit, or DNA vaccines. Questions have been raised about possible damage to live attenuated viral vaccines by forces generated during the jet injection process. This study examines the effect of jet injection on the integrity of measles, mumps, and rubella vaccine (MMR), measured by viral RNA content and infectivity. Three models of DSJIs were evaluated, each generating a different ejection force. Following jet injection, the RNA content for each of the vaccine components was measured using RT-qPCR immediately after injection and following passage in Vero cells. Jet injection was performed with and without pig skin as a simulation of human skin. There was little to no reduction of RNA content immediately following jet injection with any of the three DSJIs. Samples passaged in Vero cells showed no loss in infectivity of the measles vaccine following jet injection. Mumps vaccine consistently showed increased replication following jet injection. Rubella vaccine showed no loss after jet injection alone but some infectivity loss following injection through pig skin with two of the devices. Overall, these data demonstrated that forces exerted on a live attenuated MMR vaccine did not compromise vaccine infectivity. The bench model and protocol used in this study can be applied to evaluate the impact of jet injection on other live virus vaccines. Published by Elsevier Ltd.

  15. A detection method in living plant cells for rapidly monitoring the response of plants to exogenous lanthanum.

    PubMed

    Cheng, Mengzhu; Wang, Lihong; Yang, Qing; Huang, Xiaohua

    2018-08-30

    The pollution of rare earth elements (REEs) in ecosystem is becoming more and more serious, so it is urgent to establish methods for monitoring the pollution of REEs. Monitoring environmental pollution via the response of plants to pollutants has become the most stable and accurate method compared with traditional methods, but scientists still need to find the primary response of plants to pollutants to improve the sensitivity and speed of this method. Based on the facts that the initiation of endocytosis is the primary cellular response of the plant leaf cells to REEs and the detection of endocytosis is complex and expensive, we constructed a detection method in living plant cells for rapidly monitoring the response of plants to exogenous lanthanum [La(III), a representative of REEs] by designing a new immuno-electrochemical method for detecting the content change in extracellular vitronectin-like protein (VN) that are closely related to endocytosis. Results showed that when 30 μM La(III) initiated a small amount of endocytosis, the content of extracellular VN increased by 5.46 times, but the structure and function of plasma membrane were not interfered by La(III); when 80 μM La(III) strongly initiated a large amount of endocytosis, the content of extracellular VN increased by 119 times, meanwhile, the structure and function of plasma membrane were damaged. In summary, the detection method can reflect the response of plants to La(III) via detecting the content change in extracellular VN, which provides an effective and convenient way to monitor the response of plants to exogenous REEs. Copyright © 2018. Published by Elsevier Inc.

  16. Using live algae at the anode of a microbial fuel cell to generate electricity.

    PubMed

    Xu, Chang; Poon, Karen; Choi, Martin M F; Wang, Ruihua

    2015-10-01

    Live green microalgae Chlorella pyrenoidosa was introduced in the anode of a microbial fuel cell (MFC) to act as an electron donor. By controlling the oxygen content, light intensity, and algal cell density at the anode, microalgae would generate electricity without requiring externally added substrates. Two models of algal microbial fuel cells (MFCs) were constructed with graphite/carbon electrodes and no mediator. Model 1 algal MFC has live microalgae grown at the anode and potassium ferricyanide at the cathode, while model 2 algal MFC had live microalgae in both the anode and cathode in different growth conditions. Results indicated that a higher current produced in model 1 algal MFC was obtained at low light intensity of 2500 lx and algal cell density of 5 × 10(6) cells/ml, in which high algal density would limit the electricity generation, probably by increasing oxygen level and mass transfer problem. The maximum power density per unit anode volume obtained in model 1 algal MFC was relatively high at 6030 mW/m(2), while the maximum power density at 30.15 mW/m(2) was comparable with that of previous reported bacteria-driven MFC with graphite/carbon electrodes. A much smaller power density at 2.5 mW/m(2) was observed in model 2 algal MFC. Increasing the algal cell permeability by 4-nitroaniline would increase the open circuit voltage, while the mitochondrial acting and proton leak promoting agents resveratrol and 2,4-dinitrophenol would increase the electric current production in algal MFC.

  17. Cupriavidus taiwanensis bacteroids in Mimosa pudica Indeterminate nodules are not terminally differentiated.

    PubMed

    Marchetti, Marta; Catrice, Olivier; Batut, Jacques; Masson-Boivin, Catherine

    2011-03-01

    The beta-rhizobium Cupriavidus taiwanensis forms indeterminate nodules on Mimosa pudica. C. taiwanensis bacteroids resemble free-living bacteria in terms of genomic DNA content, cell size, membrane permeability, and viability, in contrast to bacteroids in indeterminate nodules of the galegoid clade. Bacteroid differentiation is thus unrelated to nodule ontogeny.

  18. Membrane order in the plasma membrane and endocytic recycling compartment.

    PubMed

    Iaea, David B; Maxfield, Frederick R

    2017-01-01

    The cholesterol content of membranes plays an important role in organizing membranes for signal transduction and protein trafficking as well as in modulating the biophysical properties of membranes. While the properties of model or isolated membranes have been extensively studied, there has been little evaluation of internal membranes in living cells. Here, we use a Nile Red based probe, NR12S, and ratiometric live cell imaging, to analyze the membrane order of the plasma membrane and endocytic recycling compartment. We find that after a brief incubation to allow endocytosis, NR12S is distributed between the plasma membrane and the endocytic recycling compartment. The NR12S reports that the endocytic recycling compartment is more highly ordered than the plasma membrane. We also find that the plasma membrane and the endocytic recycling compartment are differentially affected by altering cellular cholesterol levels. The membrane order of the plasma membrane, but not the endocytic recycling compartment, is altered significantly when cellular cholesterol content is increased or decreased by 20%. These results demonstrate that changes in cellular cholesterol differentially alter membrane order within different organelles.

  19. Membrane order in the plasma membrane and endocytic recycling compartment

    PubMed Central

    Iaea, David B.; Maxfield, Frederick R.

    2017-01-01

    The cholesterol content of membranes plays an important role in organizing membranes for signal transduction and protein trafficking as well as in modulating the biophysical properties of membranes. While the properties of model or isolated membranes have been extensively studied, there has been little evaluation of internal membranes in living cells. Here, we use a Nile Red based probe, NR12S, and ratiometric live cell imaging, to analyze the membrane order of the plasma membrane and endocytic recycling compartment. We find that after a brief incubation to allow endocytosis, NR12S is distributed between the plasma membrane and the endocytic recycling compartment. The NR12S reports that the endocytic recycling compartment is more highly ordered than the plasma membrane. We also find that the plasma membrane and the endocytic recycling compartment are differentially affected by altering cellular cholesterol levels. The membrane order of the plasma membrane, but not the endocytic recycling compartment, is altered significantly when cellular cholesterol content is increased or decreased by 20%. These results demonstrate that changes in cellular cholesterol differentially alter membrane order within different organelles. PMID:29125865

  20. Alveolar epithelial cell processing of nanoparticles activates autophagy and lysosomal exocytosis.

    PubMed

    Sipos, Arnold; Kim, Kwang-Jin; Chow, Robert H; Flodby, Per; Borok, Zea; Crandall, Edward D

    2018-05-03

    Utilizing confocal microscopy, we quantitatively assessed uptake, processing and egress of near infrared (NIR)-labeled carboxylated polystyrene nanoparticles (PNP) in live alveolar epithelial cells (AEC) during interactions with primary rat AEC monolayers (RAECM). PNP fluorescence intensity (content) and colocalization with intracellular vesicles in a cell were determined over the entire cell volume via z-stacking. Isotropic cuvette-based microfluorimetry was used to determine PNP concentration ([PNP]) from anisotropic measurements of PNP content assessed by confocal microscopy. Results showed that PNP uptake kinetics and steady state intracellular content decreased as diameter increased from 20 to 200 nm. For 20 nm PNP, uptake rate and steady state intracellular content increased with increased apical [PNP], but were unaffected by inhibition of endocytic pathways. Intracellular PNP increasingly co-localized with autophagosomes and/or lysosomes over time. PNP egress exhibited fast [Ca2+]-dependent release and a slower diffusion-like process. Inhibition of microtubule polymerization curtailed rapid PNP egress, resulting in elevated vesicular and intracellular PNP content. Interference with autophagosome formation led to slower PNP uptake and markedly decreased steady state intracellular content. At steady state, cytosolic [PNP] was higher than apical [PNP] and vesicular [PNP] (~80% of intracellular PNP content) exceeded both cytosolic [PNP] and intracellular [PNP]. These data are consistent with the hypotheses that (1) autophagic processing of nanoparticles is essential for maintenance of AEC integrity, (2) altered autophagy and/or lysosomal exocytosis may lead to AEC injury and (3) intracellular [PNP] in AEC is regulable, suggesting strategies for enhancement of nanoparticle-driven AEC gene/drug delivery and/or amelioration of AEC nanoparticle-related cellular toxicity.

  1. Assessment of Cell Line Models of Primary Human Cells by Raman Spectral Phenotyping

    PubMed Central

    Swain, Robin J.; Kemp, Sarah J.; Goldstraw, Peter; Tetley, Teresa D.; Stevens, Molly M.

    2010-01-01

    Abstract Researchers have previously questioned the suitability of cell lines as models for primary cells. In this study, we used Raman microspectroscopy to characterize live A549 cells from a unique molecular biochemical perspective to shed light on their suitability as a model for primary human pulmonary alveolar type II (ATII) cells. We also investigated a recently developed transduced type I (TT1) cell line as a model for alveolar type I (ATI) cells. Single-cell Raman spectra provide unique biomolecular fingerprints that can be used to characterize cellular phenotypes. A multivariate statistical analysis of Raman spectra indicated that the spectra of A549 and TT1 cells are characterized by significantly lower phospholipid content compared to ATII and ATI spectra because their cytoplasm contains fewer surfactant lamellar bodies. Furthermore, we found that A549 spectra are statistically more similar to ATI spectra than to ATII spectra. The spectral variation permitted phenotypic classification of cells based on Raman spectral signatures with >99% accuracy. These results suggest that A549 cells are not a good model for ATII cells, but TT1 cells do provide a reasonable model for ATI cells. The findings have far-reaching implications for the assessment of cell lines as suitable primary cellular models in live cultures. PMID:20409492

  2. Automated analysis of time-lapse fluorescence microscopy images: from live cell images to intracellular foci.

    PubMed

    Dzyubachyk, Oleh; Essers, Jeroen; van Cappellen, Wiggert A; Baldeyron, Céline; Inagaki, Akiko; Niessen, Wiro J; Meijering, Erik

    2010-10-01

    Complete, accurate and reproducible analysis of intracellular foci from fluorescence microscopy image sequences of live cells requires full automation of all processing steps involved: cell segmentation and tracking followed by foci segmentation and pattern analysis. Integrated systems for this purpose are lacking. Extending our previous work in cell segmentation and tracking, we developed a new system for performing fully automated analysis of fluorescent foci in single cells. The system was validated by applying it to two common tasks: intracellular foci counting (in DNA damage repair experiments) and cell-phase identification based on foci pattern analysis (in DNA replication experiments). Experimental results show that the system performs comparably to expert human observers. Thus, it may replace tedious manual analyses for the considered tasks, and enables high-content screening. The described system was implemented in MATLAB (The MathWorks, Inc., USA) and compiled to run within the MATLAB environment. The routines together with four sample datasets are available at http://celmia.bigr.nl/. The software is planned for public release, free of charge for non-commercial use, after publication of this article.

  3. Synthesis and biological evaluation of several dephosphonated analogues of CMP-Neu5Ac as inhibitors of GM3-synthase.

    PubMed

    Rota, Paola; Cirillo, Federica; Piccoli, Marco; Gregorio, Antonio; Tettamanti, Guido; Allevi, Pietro; Anastasia, Luigi

    2015-10-05

    Previous studies demonstrated that reducing the GM3 content in myoblasts increased the cell resistance to hypoxic stress, suggesting that a pharmacological inhibition of the GM3 synthesis could be instrumental for the development of new treatments for ischemic diseases. Herein, the synthesis of several dephosphonated CMP-Neu5Ac congeners and their anti-GM3-synthase activity is reported. Biological activity testes revealed that some inhibitors almost completely blocked the GM3-synthase activity in vitro and reduced the GM3 content in living embryonic kidney 293A cells, eventually activating the epidermal growth factor receptor (EGFR) signaling cascade. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Microencapsulation for the Therapeutic Delivery of Drugs, Live Mammalian and Bacterial Cells, and Other Biopharmaceutics: Current Status and Future Directions

    PubMed Central

    Saha, Shyamali; Malhotra, Meenakshi; Kahouli, Imen; Prakash, Satya

    2013-01-01

    Microencapsulation is a technology that has shown significant promise in biotherapeutics, and other applications. It has been proven useful in the immobilization of drugs, live mammalian and bacterial cells and other cells, and other biopharmaceutics molecules, as it can provide material structuration, protection of the enclosed product, and controlled release of the encapsulated contents, all of which can ensure efficient and safe therapeutic effects. This paper is a comprehensive review of microencapsulation and its latest developments in the field. It provides a comprehensive overview of the technology and primary goals of microencapsulation and discusses various processes and techniques involved in microencapsulation including physical, chemical, physicochemical, and other methods involved. It also summarizes the state-of-the-art successes of microencapsulation, specifically with regard to the encapsulation of microorganisms, mammalian cells, drugs, and other biopharmaceutics in various diseases. The limitations and future directions of microencapsulation technologies are also discussed. PMID:26555963

  5. In Situ Target Engagement Studies in Adherent Cells.

    PubMed

    Axelsson, Hanna; Almqvist, Helena; Otrocka, Magdalena; Vallin, Michaela; Lundqvist, Sara; Hansson, Pia; Karlsson, Ulla; Lundbäck, Thomas; Seashore-Ludlow, Brinton

    2018-04-20

    A prerequisite for successful drugs is effective binding of the desired target protein in the complex environment of a living system. Drug-target engagement has typically been difficult to monitor in physiologically relevant models, and with current methods, especially, while maintaining spatial information. One recent technique for quantifying drug-target engagement is the cellular thermal shift assay (CETSA), in which ligand-induced protein stabilization is measured after a heat challenge. Here, we describe a CETSA protocol in live A431 cells for p38α (MAPK14), where remaining soluble protein is detected in situ, using high-content imaging in 384-well, microtiter plates. We validate this assay concept using a number of known p38α inhibitors and further demonstrate the potential of this technology for chemical probe and drug discovery purposes by performing a small pilot screen for novel p38α binders. Importantly, this protocol creates a workflow that is amenable to adherent cells in their native state and yields spatially resolved target engagement information measurable at the single-cell level.

  6. Cupriavidus taiwanensis Bacteroids in Mimosa pudica Indeterminate Nodules Are Not Terminally Differentiated ▿

    PubMed Central

    Marchetti, Marta; Catrice, Olivier; Batut, Jacques; Masson-Boivin, Catherine

    2011-01-01

    The beta-rhizobium Cupriavidus taiwanensis forms indeterminate nodules on Mimosa pudica. C. taiwanensis bacteroids resemble free-living bacteria in terms of genomic DNA content, cell size, membrane permeability, and viability, in contrast to bacteroids in indeterminate nodules of the galegoid clade. Bacteroid differentiation is thus unrelated to nodule ontogeny. PMID:21257807

  7. Immune Cells and Microbiota Response to Iron Starvation.

    PubMed

    Chieppa, Marcello; Giannelli, Gianluigi

    2018-01-01

    Metal ions are essential for life on Earth, mostly as crucial components of all living organisms; indeed, they are necessary for bioenergetics functions as crucial redox catalysts. Due to the essential role of iron in biological processes, body iron content is finely regulated and is the battlefield of a tug-of-war between the host and the microbiota.

  8. Digital Media in Today's Classrooms: The Potential for Meaningful Teaching, Learning, and Assessment

    ERIC Educational Resources Information Center

    Wilson, Dawn; Alaniz, Katie; Sikora, Joshua

    2016-01-01

    Educators who engage with today's students appreciate the impact digital media has on the lives of our younger generations. Learners of today consume, create, and publish multimedia content continuously, using a variety of devices such as cell phones, tablets, and computers. They generate original and innovative products through programs, apps,…

  9. Effect of caffeine on radiation-induced apoptosis in TK6 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhen, W.; Vaughan, A.T.M.

    1995-02-01

    Apoptosis has been measured in cells of the human TK6 lymphoblastoid cell line by recording the release of endonuclease-digested DNA from affected cells using flow cytometry. In asynchronously dividing cells, DNA degradation characteristic of apoptosis was first seen 12 h after irradiation as a defined DNA fluorescent peak of sub-G{sub 1}-phase content, reaching a maximum of 30-50% of the population by 24-72 h. Treating cells with 2 mM caffeine either before or up to 3 h after irradiation eliminated the degradation of DNA entirely. In addition, the percentage of cells in which apoptosis could be detected microscopically decreased from 62.4more » {+-} 0.95% to 16.7 {+-} 1.5% 72 h after caffeine treatment. Delaying caffeine treatment for 12 h after irradiation reduced DNA degradation by approximately 50% compared to cells receiving radiation alone. DNA degradation induced by serum deprivation was unaffected by caffeine treatment. These data support the contention that irradiation of TK6 cells produces a long-lived cellular signal which triggers apoptosis. Apoptosis produced by serum deprivation does not operate through the same pathway. 36 refs., 5 figs.« less

  10. Membrane Cholesterol Modulates Superwarfarin Toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marangoni, M. Natalia; Martynowycz, Michael W.; Kuzmenko, Ivan

    Superwarfarins are modified analogs of warfarin with additional lipophilic aromatic rings, up to 100-fold greater potency, and longer biological half-lives. We hypothesized that increased hydrophobicity allowed interactions with amphiphilic membranes and modulation of biological responses. We find that superwarfarins brodifacoum and difenacoum increase lactate production and cell death in neuroblastoma cells. In contrast, neither causes changes in glioma cells that have higher cholesterol content. After choleterol depletion, lactate production was increased and cell viability was reduced. Drug-membrane interactions were examined by surface X-ray scattering using Langmuir monolayers of dipalmitoylphosphatidylcholine and/or cholesterol. Specular X-ray reflectivity data revealed that superwarfarins, but notmore » warfarin, intercalate between dipalmitoylphosphatidylcholine molecules, whereas grazing incidence X-ray diffraction demonstrated changes in lateral crystalline order of the film. Neither agent showed significant interactions with monolayers containing >20% cholesterol. These findings demonstrate an affinity of superwarfarins to biomembranes and suggest that cellular responses to these agents are regulated by cholesterol content.« less

  11. High Content Analysis technology for evaluating the joint toxicity of sunset yellow and sodium sulfite in vitro.

    PubMed

    Qu, Daofeng; Gu, Yanpei; Feng, Lifang; Han, Jianzhong

    2017-10-15

    Foods contain various additives that affect our daily lives. At present, food additive safety evaluation standards are based on the toxicity of single additives, but food additives are often used in combination and may have additive, synergistic or antagonistic actions. The current study investigated the toxicity of food additives and mechanisms of damage in HepG2 cells using High Content Analysis (HCA). We used the CCK-8 assay to determine cell viability, providing an experimental basis for determining the safety of food additives. All of the food additives tested were observed to decrease the growth of HepG2 cells in a dose-dependent manner. Sunset yellow and sodium sulfite had IC50 values of 1.06, and 0.30g/L at 24h, respectively. HCA showed that both sunset yellow and sodium sulfite had synergistic effects on cell number, membrane permeability, mitochondrial membrane potential, intracellular calcium level, oxidative stress, and high dose group DNA damage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Cytology of long-term desiccation in the desert cyanobacterium Chroococcidiopsis (Chroococcales)

    NASA Technical Reports Server (NTRS)

    Caiola, M. G.; Ocampo-Friedmann, R.; Friedmann, E. I.

    1993-01-01

    Young and old cultures (up to 66 months) of two Chroococcidiopsis sp. strains isolated from the Negev desert, Israel, were examined by epifluorescence and electron microscopy. In old cultures, cell viability and autofluorescence were lower than in young cultures. An increase was seen with age in the polysaccharide content of the sheaths of nanocytes and nanocyte mother cells, and a decrease of phycobiliproteins was also seen. In the oldest cultures most of the cells were dead and in various stages of degeneration. Single living cells were scattered among the dead ones. No resting cells were formed in the oldest cultures, but many cell groups showed highly electron-dense sheaths and, in the cytoplasm, ribosomes and glycogen. These changes in cell structure may have a role in preventing water loss from the cell.

  13. A Ratiometric Two-Photon Fluorescent Probe for Tracking the Lysosomal ATP Level: Direct in cellulo Observation of Lysosomal Membrane Fusion Processes.

    PubMed

    Jun, Yong Woong; Wang, Taejun; Hwang, Sekyu; Kim, Dokyoung; Ma, Donghee; Kim, Ki Hean; Kim, Sungjee; Jung, Junyang; Ahn, Kyo Han

    2018-06-05

    Vesicles exchange its contents through membrane fusion processes-kiss-and-run and full-collapse fusion. Indirect observation of these fusion processes using artificial vesicles enhanced our understanding on the molecular mechanisms involved. Direct observation of the fusion processes in a real biological system, however, remains a challenge owing to many technical obstacles. We disclose a ratiometric two-photon probe offering real-time tracking of lysosomal ATP with quantitative information for the first time. By applying the probe to two-photon live-cell imaging technique, lysosomal membrane fusion process in cells has been directly observed along with the concentration of its content-lysosomal ATP. Results show that the kiss-and-run process between lysosomes proceeds through repeating transient interactions with gradual content mixing, whereas the full-fusion process occurs at once. Furthermore, it is confirmed that both the fusion processes proceed with conservation of the content. Such a small-molecule probe exerts minimal disturbance and hence has potential for studying various biological processes associated with lysosomal ATP. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Probiotics and Probiotic Metabolic Product Improved Intestinal Function and Ameliorated LPS-Induced Injury in Rats.

    PubMed

    Deng, Bo; Wu, Jie; Li, Xiaohui; Men, Xiaoming; Xu, Ziwei

    2017-11-01

    In the present study, we sought to determine the effects of Bacillus subtilis (BAS) and Bacillus licheniformis (BAL) in rats after lipopolysaccharide (LPS)-induced acute intestinal inflammation. We also determined whether the B. subtilis metabolic product (BASM) is as effective as the live-cell probiotic. 60 male SD rats were randomly assigned to five groups and administered a diet containing 0.05% B. licheniformis (BAL group), 0.05% B. subtilis (BAS group), 0.5% B. subtilis metabolic product (BASM group), or a basic diet (PC group and NC group) for 40 days. On day 40, BAL, BAS, BASM, and NC groups were injected with 4 mg/kg body weight LPS. 4 h later, all rats were anesthetized and sacrificed. The results showed that the administration of B. licheniformis and B. subtilis improved intestinal function as evidenced by histology, increased enzyme activity, and mucosal thickness. They also increased the number of intraepithelial lymphocytes and decreased mucosal myeloperoxidase activity and plasma TNF-α. In addition, the cecal content of B. subtilis-treated rats had significantly increased microbial diversity, decreased numbers of Firmicutes, and increased numbers of Bacteroidetes as compared to rats fed basic diets. Similar to BAS group, the cecal content of B. licheniformis-treated rats decreased the number of Firmicutes. Administration of B. subtilis metabolic product had similar effects on intestinal function, inflammation response, and microbial diversity as B. subtilis but these effects were attenuated. In conclusion, administration of probiotic strains B. licheniformis or B. subtilis improved intestinal function, ameliorated the inflammation response, and modulated microflora after LPS-induced acute inflammation in rats. Non-living cells also exerted probiotic properties but live cells tended to function better.

  15. Visualization of Content Release from Cell Surface-Attached Single HIV-1 Particles Carrying an Extra-Viral Fluorescent pH-Sensor.

    PubMed

    Sood, Chetan; Marin, Mariana; Mason, Caleb S; Melikyan, Gregory B

    2016-01-01

    HIV-1 fusion leading to productive entry has long been thought to occur at the plasma membrane. However, our previous single virus imaging data imply that, after Env engagement of CD4 and coreceptors at the cell surface, the virus enters into and fuses with intracellular compartments. We were unable to reliably detect viral fusion at the plasma membrane. Here, we implement a novel virus labeling strategy that biases towards detection of virus fusion that occurs in a pH-neutral environment-at the plasma membrane or, possibly, in early pH-neutral vesicles. Virus particles are co-labeled with an intra-viral content marker, which is released upon fusion, and an extra-viral pH sensor consisting of ecliptic pHluorin fused to the transmembrane domain of ICAM-1. This sensor fully quenches upon virus trafficking to a mildly acidic compartment, thus precluding subsequent detection of viral content release. As an interesting secondary observation, the incorporation of the pH-sensor revealed that HIV-1 particles occasionally shuttle between neutral and acidic compartments in target cells expressing CD4, suggesting a small fraction of viral particles is recycled to the plasma membrane and re-internalized. By imaging viruses bound to living cells, we found that HIV-1 content release in neutral-pH environment was a rare event (~0.4% particles). Surprisingly, viral content release was not significantly reduced by fusion inhibitors, implying that content release was due to spontaneous formation of viral membrane defects occurring at the cell surface. We did not measure a significant occurrence of HIV-1 fusion at neutral pH above this defect-mediated background loss of content, suggesting that the pH sensor may destabilize the membrane of the HIV-1 pseudovirus and, thus, preclude reliable detection of single virus fusion events at neutral pH.

  16. Characterization of the Population of the Sulfur-Oxidizing Symbiont of Codakia orbicularis (Bivalvia, Lucinidae) by Single-Cell Analyses▿ †

    PubMed Central

    Caro, Audrey; Gros, Olivier; Got, Patrice; De Wit, Rutger; Troussellier, Marc

    2007-01-01

    We investigated the characteristics of the sulfur-oxidizing symbiont hosted in the gills of Codakia orbicularis, a bivalve living in shallow marine tropical environments. Special attention was paid to describing the heterogeneity of the population by using single-cell approaches including flow cytometry (FCM) and different microscopic techniques and by analyzing a cell size fractionation experiment. Up to seven different subpopulations were distinguished by FCM based on nucleic acid content and light side scattering of the cells. The cell size analysis of symbionts showed that the symbiotic population was very heterogeneous in size, i.e., ranging from 0.5 to 5 μm in length, with variable amounts of intracellular sulfur. The side-scatter signal analyzed by FCM, which is often taken as a proxy of cell size, was greatly influenced by the sulfur content of the symbionts. FCM revealed an important heterogeneity in the relative nucleic acid content among the subclasses. The larger cells contained exceptionally high levels of nucleic acids, suggesting that these cells contained multiple copies of their genome, i.e., ranging from one copy for the smaller cells to more than four copies for the larger cells. The proportion of respiring symbionts (5-cyano-2,3-ditolyl-terazolium chloride positive) in the bacteriocytes of Codakia revealed that around 80% of the symbionts hosted by Codakia maintain respiratory activity throughout the year. These data allowed us to gain insight into the functioning of the symbionts within the host and to propose some hypotheses on how the growth of the symbionts is controlled by the host. PMID:17259363

  17. An Unprecedented High Content of the Bioactive Flavone Tricin in Huperzia Medicinal Species Used by the Saraguro in Ecuador.

    PubMed

    Armijos, Chabaco; Ponce, Jorge; Ramírez, Jorge; Gozzini, Davide; Finzi, Paola Vita; Vidari, Giovanni

    2016-03-01

    The flavone tricin (5,7,4'-trihydroxy-3',5'-dimethoxyflavone) is considered to be a selective potent inhibitor of different cancer cell lines and a potential colorectal cancer chemopreventive agent. In this paper we describe a reliable UHPLC-UV-ESIMS method for the determination of tricin in Huperzia plants used in the traditional medicine of the Saraguro community living in Southern Ecuador. An unusually high amount of tricin was found in H. brevifolia and H. compacta, which exceeded the content of this flavone determined so far in other plants.

  18. Rumen ciliate protozoa of domestic sheep (Ovis aries) and goat (Capra aegagrus hircus) in Kyrgyzstan.

    PubMed

    Gürelli, Gözde; Canbulat, Savaş; Aldayarov, Nurbek; Dehority, Burk A

    2016-03-01

    Species composition and concentration of rumen ciliate protozoa were investigated in the rumen contents of 14 domestic sheep and 1 goat living in Bishkek, Kyrgyzstan. This is the first report on rumen ciliates from ruminants living in Kyrgyzstan. In sheep 12 genera, 28 species and 12 morphotypes were detected, whereas in goat 8 genera, 12 species and 4 morphotypes were detected. The density of ciliates in sheep was (28.1 ± 20.0) × 10(4) cells mL(-1) and in goat was 37.0 × 10(4) cells mL(-1). Dasytricha ruminantium, Isotricha prostoma, Entodinium simulans and Ophryoscolex caudatus were major species (100%) in sheep, and for the first time, Diplodinium rangiferi was detected in a domestic goat. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Paracrine Effects of Bone Marrow Soup Restore Organ Function, Regeneration, and Repair in Salivary Glands Damaged by Irradiation

    PubMed Central

    Tran, Simon D.; Liu, Younan; Xia, Dengsheng; Maria, Ola M.; Khalili, Saeed; Wang, Renee Wan-Jou; Quan, Vu-Hung; Hu, Shen; Seuntjens, Jan

    2013-01-01

    Background There are reports that bone marrow cell (BM) transplants repaired irradiated salivary glands (SGs) and re-established saliva secretion. However, the mechanisms of action behind these reports have not been elucidated. Methods To test if a paracrine mechanism was the main effect behind this reported improvement in salivary organ function, whole BM cells were lysed and its soluble intracellular contents (termed as “BM Soup”) injected into mice with irradiation-injured SGs. The hypothesis was that BM Soup would protect salivary cells, increase tissue neovascularization, function, and regeneration. Two minor aims were also tested a) comparing two routes of delivering BM Soup, intravenous (I.V.) versus intra-glandular injections, and b) comparing the age of the BM Soup’s donors. The treatment-comparison group consisted of irradiated mice receiving injections of living whole BM cells. Control mice received irradiation and injections of saline or sham-irradiation. All mice were followed for 8 weeks post-irradiation. Results BM Soup restored salivary flow rates to normal levels, protected salivary acinar, ductal, myoepithelial, and progenitor cells, increased cell proliferation and blood vessels, and up-regulated expression of tissue remodeling/repair/regenerative genes (MMP2, CyclinD1, BMP7, EGF, NGF). BM Soup was as an efficient therapeutic agent as injections of live BM cells. Both intra-glandular or I.V. injections of BM Soup, and from both young and older mouse donors were as effective in repairing irradiated SGs. The intra-glandular route reduced injection frequency/dosage by four-fold. Conclusion BM Soup, which contains only the cell by-products, can be advantageously used to repair irradiation-damaged SGs rather than transplanting whole live BM cells which carry the risk of differentiating into unwanted/tumorigenic cell types in SGs. PMID:23637870

  20. Paracrine effects of bone marrow soup restore organ function, regeneration, and repair in salivary glands damaged by irradiation.

    PubMed

    Tran, Simon D; Liu, Younan; Xia, Dengsheng; Maria, Ola M; Khalili, Saeed; Wang, Renee Wan-Jou; Quan, Vu-Hung; Hu, Shen; Seuntjens, Jan

    2013-01-01

    There are reports that bone marrow cell (BM) transplants repaired irradiated salivary glands (SGs) and re-established saliva secretion. However, the mechanisms of action behind these reports have not been elucidated. To test if a paracrine mechanism was the main effect behind this reported improvement in salivary organ function, whole BM cells were lysed and its soluble intracellular contents (termed as "BM Soup") injected into mice with irradiation-injured SGs. The hypothesis was that BM Soup would protect salivary cells, increase tissue neovascularization, function, and regeneration. Two minor aims were also tested a) comparing two routes of delivering BM Soup, intravenous (I.V.) versus intra-glandular injections, and b) comparing the age of the BM Soup's donors. The treatment-comparison group consisted of irradiated mice receiving injections of living whole BM cells. Control mice received irradiation and injections of saline or sham-irradiation. All mice were followed for 8 weeks post-irradiation. BM Soup restored salivary flow rates to normal levels, protected salivary acinar, ductal, myoepithelial, and progenitor cells, increased cell proliferation and blood vessels, and up-regulated expression of tissue remodeling/repair/regenerative genes (MMP2, CyclinD1, BMP7, EGF, NGF). BM Soup was as an efficient therapeutic agent as injections of live BM cells. Both intra-glandular or I.V. injections of BM Soup, and from both young and older mouse donors were as effective in repairing irradiated SGs. The intra-glandular route reduced injection frequency/dosage by four-fold. BM Soup, which contains only the cell by-products, can be advantageously used to repair irradiation-damaged SGs rather than transplanting whole live BM cells which carry the risk of differentiating into unwanted/tumorigenic cell types in SGs.

  1. CRISPR-Cas encoding of a digital movie into the genomes of a population of living bacteria.

    PubMed

    Shipman, Seth L; Nivala, Jeff; Macklis, Jeffrey D; Church, George M

    2017-07-20

    DNA is an excellent medium for archiving data. Recent efforts have illustrated the potential for information storage in DNA using synthesized oligonucleotides assembled in vitro. A relatively unexplored avenue of information storage in DNA is the ability to write information into the genome of a living cell by the addition of nucleotides over time. Using the Cas1-Cas2 integrase, the CRISPR-Cas microbial immune system stores the nucleotide content of invading viruses to confer adaptive immunity. When harnessed, this system has the potential to write arbitrary information into the genome. Here we use the CRISPR-Cas system to encode the pixel values of black and white images and a short movie into the genomes of a population of living bacteria. In doing so, we push the technical limits of this information storage system and optimize strategies to minimize those limitations. We also uncover underlying principles of the CRISPR-Cas adaptation system, including sequence determinants of spacer acquisition that are relevant for understanding both the basic biology of bacterial adaptation and its technological applications. This work demonstrates that this system can capture and stably store practical amounts of real data within the genomes of populations of living cells.

  2. Observation of the immune response of cells and tissue through multimodal label-free microscopy

    NASA Astrophysics Data System (ADS)

    Pavillon, Nicolas; Smith, Nicholas I.

    2017-02-01

    We present applications of a label-free approach to assess the immune response based on the combination of interferometric microscopy and Raman spectroscopy, which makes it possible to simultaneously acquire morphological and molecular information of live cells. We employ this approach to derive statistical models for predicting the activation state of macrophage cells based both on morphological parameters extracted from the high-throughput full-field quantitative phase imaging, and on the molecular content information acquired through Raman spectroscopy. We also employ a system for 3D imaging based on coherence gating, enabling specific targeting of the Raman channel to structures of interest within tissue.

  3. Development of a Kinetic Assay for Late Endosome Movement.

    PubMed

    Esner, Milan; Meyenhofer, Felix; Kuhn, Michael; Thomas, Melissa; Kalaidzidis, Yannis; Bickle, Marc

    2014-08-01

    Automated imaging screens are performed mostly on fixed and stained samples to simplify the workflow and increase throughput. Some processes, such as the movement of cells and organelles or measuring membrane integrity and potential, can be measured only in living cells. Developing such assays to screen large compound or RNAi collections is challenging in many respects. Here, we develop a live-cell high-content assay for tracking endocytic organelles in medium throughput. We evaluate the added value of measuring kinetic parameters compared with measuring static parameters solely. We screened 2000 compounds in U-2 OS cells expressing Lamp1-GFP to label late endosomes. All hits have phenotypes in both static and kinetic parameters. However, we show that the kinetic parameters enable better discrimination of the mechanisms of action. Most of the compounds cause a decrease of motility of endosomes, but we identify several compounds that increase endosomal motility. In summary, we show that kinetic data help to better discriminate phenotypes and thereby obtain more subtle phenotypic clustering. © 2014 Society for Laboratory Automation and Screening.

  4. Tunable Single-Cell Extraction for Molecular Analyses.

    PubMed

    Guillaume-Gentil, Orane; Grindberg, Rashel V; Kooger, Romain; Dorwling-Carter, Livie; Martinez, Vincent; Ossola, Dario; Pilhofer, Martin; Zambelli, Tomaso; Vorholt, Julia A

    2016-07-14

    Because of cellular heterogeneity, the analysis of endogenous molecules from single cells is of significant interest and has major implications. While micromanipulation or cell sorting followed by cell lysis is already used for subsequent molecular examinations, approaches to directly extract the content of living cells remain a challenging but promising alternative to achieving non-destructive sampling and cell-context preservation. Here, we demonstrate the quantitative extraction from single cells with spatiotemporal control using fluidic force microscopy. We further present a comprehensive analysis of the soluble molecules withdrawn from the cytoplasm or the nucleus, including the detection of enzyme activities and transcript abundances. This approach has uncovered the ability of cells to withstand extraction of up to several picoliters and opens opportunities to study cellular dynamics and cell-cell communication under physiological conditions at the single-cell level. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Sampling the light-organ microenvironment of Euprymna scolopes: description of a population of host cells in association with the bacterial symbiont Vibrio fischeri.

    PubMed

    Nyholm, S V; McFall-Ngai, M J

    1998-10-01

    The symbiosis between the squid Euprymna scolopes and the luminous bacterium Vibrio fischeri has a pronounced diel rhythm, one component of which is the venting of the contents of the light organ into the surrounding seawater each day at dawn. In this study, we explored the use of this behavior to sample the microenvironment of the light-organ crypts. Intact crypt contents, which emerge from the lateral pores of the organ as a thick paste-like exudate, were collected from anesthetized host animals that had been exposed to a light cue. Microscopy revealed that the expelled material is composed of a conspicuous population of host cells in association with the bacterial symbionts, all of which are embedded in a dense acellular matrix that strongly resembles the bacteria-based biofilms described in other systems. Assays of the viability of expelled crypt cells revealed no dead bacterial symbionts and a mixture of live and dead host cells. Analyses of the ultrastructure, biochemistry, and phagocytic activity of a subset of the host cell population suggested that some of these cells are macrophage-like molluscan hemocytes.

  6. Monitoring Interactions and Dynamics of Endogenous Beta-catenin With Intracellular Nanobodies in Living Cells*

    PubMed Central

    Traenkle, Bjoern; Emele, Felix; Anton, Roman; Poetz, Oliver; Haeussler, Ragna S.; Maier, Julia; Kaiser, Philipp D.; Scholz, Armin M.; Nueske, Stefan; Buchfellner, Andrea; Romer, Tina; Rothbauer, Ulrich

    2015-01-01

    β-catenin is the key component of the canonical Wnt pathway and plays a crucial role in a multitude of developmental and homeostatic processes. The different tasks of β-catenin are orchestrated by its subcellular localization and participation in multiprotein complexes. To gain a better understanding of β-catenin's role in living cells we have generated a new set of single domain antibodies, referred to as nanobodies, derived from heavy chain antibodies of camelids. We selected nanobodies recognizing the N-terminal, core or C-terminal domain of β-catenin and applied these new high-affinity binders as capture molecules in sandwich immunoassays and co-immunoprecipitations of endogenous β-catenin complexes. In addition, we engineered intracellularly functional anti-β-catenin chromobodies by combining the binding moieties of the nanobodies with fluorescent proteins. For the first time, we were able to visualize the subcellular localization and nuclear translocation of endogenous β-catenin in living cells using these chromobodies. Moreover, the chromobody signal allowed us to trace the accumulation of diffusible, hypo-phosphorylated β-catenin in response to compound treatment in real time using High Content Imaging. The anti-β-catenin nanobodies and chromobodies characterized in this study are versatile tools that enable a novel and unique approach to monitor the dynamics of subcellular β-catenin in biochemical and cell biological assays. PMID:25595278

  7. Life in Limbo: Experiences of Iranian Hematopoietic Stem Cell Transplantation Recipient Patients and Nurses in a Qualitative Study

    PubMed Central

    Zamanzadeh, Vahid; Valizadeh, Leila; Sayadi, Leila; Taleghani, Fariba; Jeddian, Alireza

    2013-01-01

    Background This study explored the state of hematopoietic stem cell transplantation (HSCT) recipient patients and problems experienced by them and nurse about these state and problems, in Iran. Methods Qualitative content analysis was used for analyzing semi-structured interviews with 12 HSCT recipient patients and 18 nurses. Results Three main categories described the HSCT state and problems: shadow of death, living with uncertainty, and immersion in problems. Patients treated with risk variety in continuity with probability of death. The patients lived with uncertainty. Consequently these resulted immersion in problems with four sub-categories including: (a) Physical problems, (b) money worries, (c) life disturbances, and (d) emotional strain. Conclusion HSCT patients live in a state of limbo between life and death with multidimensional problems. Establish centers for supporting and educating of patients and their families, education of health care providers, enhancement of public knowledge about HSCT along with allocating more budgets to take care of these patients can help patients for passing from this limbo. PMID:24505532

  8. A comparison of two methods for estimating conifer live foliar moisture content

    Treesearch

    W. Matt Jolly; Ann M. Hadlow

    2012-01-01

    Foliar moisture content is an important factor regulating how wildland fires ignite in and spread through live fuels but moisture content determination methods are rarely standardised between studies. One such difference lies between the uses of rapid moisture analysers or drying ovens. Both of these methods are commonly used in live fuel research but they have never...

  9. Single-cell vs. bulk activity properties of coastal bacterioplankton over an annual cycle in a temperate ecosystem.

    PubMed

    Morán, Xosé Anxelu G; Calvo-Díaz, Alejandra

    2009-01-01

    The connections between single-cell activity properties of heterotrophic planktonic bacteria and whole community metabolism are still poorly understood. Here, we show flow cytometry single-cell analysis of membrane-intact (live), high nucleic acid (HNA) content and actively respiring (CTC+) bacteria with samples collected monthly during 2006 in northern Spain coastal waters. Bulk activity was assessed by measuring 3H-Leucine incorporation and specific growth rates. Consistently, different single-cell relative abundances were found, with 60-100% for live, 30-84% for HNA and 0.2-12% for CTC+ cells. Leucine incorporation rates (2-153 pmol L(-1) h(-1)), specific growth rates (0.01-0.29 day(-1)) and the total and relative abundances of the three single-cell groups showed marked seasonal patterns. Distinct depth distributions during summer stratification and different relations with temperature, chlorophyll and bacterial biovolume suggest the existence of different controlling factors on each single-cell property. Pooled leucine incorporation rates were similarly correlated with the abundance of all physiological groups, while specific growth rates were only substantially explained by the percentage of CTC+ cells. However, the ability to reduce CTC proved notably better than the other two single-cell properties at predicting bacterial bulk rates within seasons, suggesting a tight linkage between bacterial individual respiration and biomass production at the community level.

  10. Straight talk with... Carolyn Bertozzi. Interview by Roxanne Palmer.

    PubMed

    Bertozzi, Carolyn

    2010-07-01

    Last month, Carolyn Bertozzi became the first woman to win the prestigious Massachusetts Institute of Technology (MIT)-Lemelson Prize, a $500,000 award that honors midcareer inventors. Bertozzi, a chemical biologist, works to understand how sugars mediate cell-to-cell communication. But she isn't content with just observing the process; her lab at the University of California-Berkeley has pioneered tools for labeling molecules inside living cells. Her biomedical inventions have contributed to the development of noninvasive methods for identifying disease tissue within the body-advances that could revolutionize both the diagnosis and the treatment of a host of diseases ranging from arthritis to cancer. Roxanne Palmer recently caught up with her by phone to discuss Bertozzi's sweet success with cell surface sugars.

  11. To be or not to be alive: How recent discoveries challenge the traditional definitions of viruses and life.

    PubMed

    Forterre, Patrick

    2016-10-01

    Three major discoveries have recently profoundly modified our perception of the viral world: molecular ecologists have shown that viral particles are more abundant than cells in natural environments; structural biologists have shown that some viruses from the three domains of life, Bacteria, Eukarya and Archaea, are evolutionarily related, and microbiologists have discovered giant viruses that rival with cells in terms of size and gene content. I discuss here the scientific and philosophical impact of these discoveries on the debates over the definition, nature (living or not), and origin of viruses. I suggest that viruses have often been considered non-living, because they are traditionally assimilated to their virions. However, the term virus describes a biological process and should integrate all aspects of the viral reproduction cycle. It is especially important to focus on the intracellular part of this cycle, the virocell, when viral information is actively expressed and reproduced, allowing the emergence of new viral genes. The virocell concept theoretically removes roadblocks that prevent defining viruses as living organisms. However, defining a "living organism" remains challenging, as indicated by the case of organelles that evolved from intracellular bacteria. To bypass this problem, I suggest considering that all biological entities that actively participate in the process of life are living. Copyright © 2016. Published by Elsevier Ltd.

  12. Efficient selective breeding of live oil-rich Euglena gracilis with fluorescence-activated cell sorting

    PubMed Central

    Yamada, Koji; Suzuki, Hideyuki; Takeuchi, Takuto; Kazama, Yusuke; Mitra, Sharbanee; Abe, Tomoko; Goda, Keisuke; Suzuki, Kengo; Iwata, Osamu

    2016-01-01

    Euglena gracilis, a microalgal species of unicellular flagellate protists, has attracted much attention in both the industrial and academic sectors due to recent advances in the mass cultivation of E. gracilis that have enabled the cost-effective production of nutritional food and cosmetic commodities. In addition, it is known to produce paramylon (β-1,3-glucan in a crystalline form) as reserve polysaccharide and convert it to wax ester in hypoxic and anaerobic conditions–a promising feedstock for biodiesel and aviation biofuel. However, there remain a number of technical challenges to be solved before it can be deployed in the competitive fuel market. Here we present a method for efficient selective breeding of live oil-rich E. gracilis with fluorescence-activated cell sorting (FACS). Specifically, the selective breeding method is a repetitive procedure for one-week heterotrophic cultivation, staining intracellular lipids with BODIPY505/515, and FACS-based isolation of top 0.5% lipid-rich E. gracilis cells with high viability, after inducing mutation with Fe-ion irradiation to the wild type (WT). Consequently, we acquire a live, stable, lipid-rich E. gracilis mutant strain, named B1ZFeL, with 40% more lipid content on average than the WT. Our method paves the way for rapid, cost-effective, energy-efficient production of biofuel. PMID:27212384

  13. Osmotic Shock Induced Protein Destabilization in Living Cells and Its Reversal by Glycine Betaine.

    PubMed

    Stadmiller, Samantha S; Gorensek-Benitez, Annelise H; Guseman, Alex J; Pielak, Gary J

    2017-04-21

    Many organisms can adapt to changes in the solute content of their surroundings (i.e., the osmolarity). Hyperosmotic shock causes water efflux and a concomitant reduction in cell volume, which is countered by the accumulation of osmolytes. This volume reduction increases the crowded nature of the cytoplasm, which is expected to affect protein stability. In contrast to traditional theory, which predicts that more crowded conditions can only increase protein stability, recent work shows that crowding can destabilize proteins through transient attractive interactions. Here, we quantify protein stability in living Escherichia coli cells before and after hyperosmotic shock in the presence and absence of the osmolyte, glycine betaine. The 7-kDa N-terminal src-homology 3 domain of Drosophila signal transduction protein drk is used as the test protein. We find that hyperosmotic shock decreases SH3 stability in cells, consistent with the idea that transient attractive interactions are important under physiologically relevant crowded conditions. The subsequent uptake of glycine betaine returns SH3 to the stability observed without osmotic shock. These results highlight the effect of transient attractive interactions on protein stability in cells and provide a new explanation for why stressed cells accumulate osmolytes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Segmentation and classification of cell cycle phases in fluorescence imaging.

    PubMed

    Ersoy, Ilker; Bunyak, Filiz; Chagin, Vadim; Cardoso, M Christina; Palaniappan, Kannappan

    2009-01-01

    Current chemical biology methods for studying spatiotemporal correlation between biochemical networks and cell cycle phase progression in live-cells typically use fluorescence-based imaging of fusion proteins. Stable cell lines expressing fluorescently tagged protein GFP-PCNA produce rich, dynamically varying sub-cellular foci patterns characterizing the cell cycle phases, including the progress during the S-phase. Variable fluorescence patterns, drastic changes in SNR, shape and position changes and abundance of touching cells require sophisticated algorithms for reliable automatic segmentation and cell cycle classification. We extend the recently proposed graph partitioning active contours (GPAC) for fluorescence-based nucleus segmentation using regional density functions and dramatically improve its efficiency, making it scalable for high content microscopy imaging. We utilize surface shape properties of GFP-PCNA intensity field to obtain descriptors of foci patterns and perform automated cell cycle phase classification, and give quantitative performance by comparing our results to manually labeled data.

  15. High-content tripartite split-GFP cell-based assays to screen for modulators of small GTPase activation

    PubMed Central

    Gence, Rémi; Bouchenot, Catherine; Lajoie-Mazenc, Isabelle

    2018-01-01

    ABSTRACT The human Ras superfamily of small GTPases controls essential cellular processes such as gene expression and cell proliferation. As their deregulation is widely associated with human cancer, small GTPases and their regulatory proteins have become increasingly attractive for the development of novel therapeutics. Classical methods to monitor GTPase activation include pulldown assays that limit the analysis of GTP-bound form of proteins from cell lysates. Alternatively, live-cell FRET biosensors may be used to study GTPase activation dynamics in response to stimuli, but these sensors often require further optimization for high-throughput applications. Here, we describe a cell-based approach that is suitable to monitor the modulation of small GTPase activity in a high-content analysis. The assay relies on a genetically encoded tripartite split-GFP (triSFP) system that we integrated in an optimized cellular model to monitor modulation of RhoA and RhoB GTPases. Our results indicate the robust response of the reporter, allowing the interrogation of inhibition and stimulation of Rho activity, and highlight potential applications of this method to discover novel modulators and regulators of small GTPases and related protein-binding domains. PMID:29192060

  16. Deconstructing autofluorescence: non-invasive detection and monitoring of biochemistry in cells and tissues (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Goldys, Ewa M.; Gosnell, Martin E.; Anwer, Ayad G.; Cassano, Juan C.; Sue, Carolyn M.; Mahbub, Saabah B.; Pernichery, Sandeep M.; Inglis, David W.; Adhikary, Partho P.; Jazayeri, Jalal A.; Cahill, Michael A.; Saad, Sonia; Pollock, Carol; Sutton-Mcdowall, Melanie L.; Thompson, Jeremy G.

    2016-03-01

    Automated and unbiased methods of non-invasive cell monitoring able to deal with complex biological heterogeneity are fundamentally important for biology and medicine. Label-free cell imaging provides information about endogenous fluorescent metabolites, enzymes and cofactors in cells. However extracting high content information from imaging of native fluorescence has been hitherto impossible. Here, we quantitatively characterise cell populations in different tissue types, live or fixed, by using novel image processing and a simple multispectral upgrade of a wide-field fluorescence microscope. Multispectral intrinsic fluorescence imaging was applied to patient olfactory neurosphere-derived cells, cell model of a human metabolic disease MELAS (mitochondrial myopathy, encephalomyopathy, lactic acidosis, stroke-like syndrome). By using an endogenous source of contrast, subtle metabolic variations have been detected between living cells in their full morphological context which made it possible to distinguish healthy from diseased cells before and after therapy. Cellular maps of native fluorophores, flavins, bound and free NADH and retinoids unveiled subtle metabolic signatures and helped uncover significant cell subpopulations, in particular a subpopulation with compromised mitochondrial function. The versatility of our method is further illustrated by detecting genetic mutations in cancer, non-invasive monitoring of CD90 expression, label-free tracking of stem cell differentiation, identifying stem cell subpopulations with varying functional characteristics, tissue diagnostics in diabetes, and assessing the condition of preimplantation embryos. Our optimal discrimination approach enables statistical hypothesis testing and intuitive visualisations where previously undetectable differences become clearly apparent.

  17. In vivo observation of tree drought response with low-field NMR and neutron imaging

    DOE PAGES

    Malone, Michael W.; Yoder, Jacob; Hunter, James F.; ...

    2016-05-06

    Using a simple low-field NMR system, we monitored water content in a living tree in a greenhouse over 2 months. By continuously running the system, we observed changes in tree water content on a scale of half an hour. The data showed a diurnal change in water content consistent both with previous NMR and biological observations. Neutron imaging experiments show that our NMR signal is primarily due to water being rapidly transported through the plant, and not to other sources of hydrogen, such as water in cytoplasm, or water in cell walls. After accounting for the role of temperature inmore » the observed NMR signal, we demonstrate a change in the diurnal signal behavior due to simulated drought conditions for the tree. Lastly, these results illustrate the utility of our system to perform noninvasive measurements of tree water content outside of a temperature controlled environment.« less

  18. In vivo observation of tree drought response with low-field NMR and neutron imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malone, Michael W.; Yoder, Jacob; Hunter, James F.

    Using a simple low-field NMR system, we monitored water content in a living tree in a greenhouse over 2 months. By continuously running the system, we observed changes in tree water content on a scale of half an hour. The data showed a diurnal change in water content consistent both with previous NMR and biological observations. Neutron imaging experiments show that our NMR signal is primarily due to water being rapidly transported through the plant, and not to other sources of hydrogen, such as water in cytoplasm, or water in cell walls. After accounting for the role of temperature inmore » the observed NMR signal, we demonstrate a change in the diurnal signal behavior due to simulated drought conditions for the tree. Lastly, these results illustrate the utility of our system to perform noninvasive measurements of tree water content outside of a temperature controlled environment.« less

  19. Use of erythrocyte indicators of health and condition in vertebrate ecophysiology: a review and appraisal.

    PubMed

    Johnstone, Christopher P; Lill, Alan; Reina, Richard D

    2017-02-01

    We review evidence for and against the use of erythrocyte indicators of health status and condition, parasite infection level and physiological stress in free-living vertebrates. The use of indicators that are measured directly from the blood, such as haemoglobin concentration, haematocrit and erythrocyte sedimentation rate, and parameters that are calculated from multiple measured metrics, such as mean cell volume, mean cell haemoglobin content or mean cell haemoglobin concentration is evaluated. The evidence for or against the use of any given metric is equivocal when the relevant research is considered in total, although there is sometimes strong support for using a particular metric in a particular taxon. Possibly the usefulness of these metrics is taxon, environment or condition specific. Alternatively, in an uncontrolled environment where multiple factors are influencing a metric, its response to environmental change will sometimes, but not always, be predictable. We suggest that (i) researchers should validate a metricfres utility before use, (ii) multiple metrics should be used to construct an overall erythrocyte profile for an individual or population, (iii) there is a need for researchers to compile reference ranges for free-living species, and (iv) some metrics which are useful under controlled, clinical conditions may not have the same utility or applicability for free-living vertebrates. Erythrocyte metrics provide useful information about health and condition that can be meaningfully interpreted in free-living vertebrates, but their use requires careful forethought about confounding factors. © 2015 Cambridge Philosophical Society.

  20. Quantitative phase-digital holographic microscopy: a new imaging modality to identify original cellular biomarkers of diseases

    NASA Astrophysics Data System (ADS)

    Marquet, P.; Rothenfusser, K.; Rappaz, B.; Depeursinge, C.; Jourdain, P.; Magistretti, P. J.

    2016-03-01

    Quantitative phase microscopy (QPM) has recently emerged as a powerful label-free technique in the field of living cell imaging allowing to non-invasively measure with a nanometric axial sensitivity cell structure and dynamics. Since the phase retardation of a light wave when transmitted through the observed cells, namely the quantitative phase signal (QPS), is sensitive to both cellular thickness and intracellular refractive index related to the cellular content, its accurate analysis allows to derive various cell parameters and monitor specific cell processes, which are very likely to identify new cell biomarkers. Specifically, quantitative phase-digital holographic microscopy (QP-DHM), thanks to its numerical flexibility facilitating parallelization and automation processes, represents an appealing imaging modality to both identify original cellular biomarkers of diseases as well to explore the underlying pathophysiological processes.

  1. Denhaminols A-H, dihydro-β-agarofurans from the endemic Australian rainforest plant Denhamia celastroides.

    PubMed

    Levrier, Claire; Sadowski, Martin C; Nelson, Colleen C; Healy, Peter C; Davis, Rohan A

    2015-01-23

    Eight new dihydro-β-agarofurans, denhaminols A-H (1-8), were isolated from the leaves of the Australian rainforest tree Denhamia celastroides. The chemical structures of 1-8 were elucidated following analysis of 1D/2D NMR and MS data. The absolute configuration of denhaminol A (1) was determined by single-crystal X-ray crystallography. All compounds were evaluated for cytotoxic activity against the human prostate cancer cell line LNCaP, using live-cell imaging and metabolic assays. Denhaminols A (1) and G (7) were also tested for their effects on the lipid content of LNCaP cells. This is the first report of secondary metabolites from D. celastroides.

  2. Click Chemistry for Analysis of Cell Proliferation in Flow Cytometry.

    PubMed

    Clarke, Scott T; Calderon, Veronica; Bradford, Jolene A

    2017-10-02

    The measurement of cellular proliferation is fundamental to the assessment of cellular health, genotoxicity, and the evaluation of drug efficacy. Labeling, detection, and quantification of cells in the synthesis phase of cell cycle progression are not only important for characterizing basic biology, but also in defining cellular responses to drug treatments. Changes in DNA replication during S-phase can provide valuable insights into mechanisms of cell growth, cell cycle kinetics, and cytotoxicity. A common method for detection of cell proliferation is the incorporation of a thymidine analog during DNA synthesis. This chapter presents a pulse labeling method using the thymidine analog, 5-ethynyl-2'-deoxyuridine (EdU), with subsequent detection by click chemistry. EdU detection using click chemistry is bio-orthogonal to most living systems and does not non-specifically label other biomolecules. Live cells are first pulsed with EdU. After antibody labeling cell surface markers, fixation, and permeabilization, the incorporated EdU is covalently labeled using click chemistry thereby identifying proliferating cells. Improvements in click chemistry allow for labeling in the presence of fluorescent proteins and phycobiliproteins without quenching due to copper. Measuring DNA replication during cell cycle progression has cell health applications in flow cytometry, fluorescence microscopy, and high content imaging. This protocol has been developed and optimized for research use only and is not suitable for use in diagnostic procedures. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  3. Time to ignition is influenced by both moisture content and soluble carbohydrates in live Douglas fir and Lodgepole pine needles

    Treesearch

    Matt Jolly; Sara McAllister; Mark Finney; Ann Hadlow

    2010-01-01

    Living plants are often the primary fuels burning in wildland fire but little is known about the factors that govern their ignition behavior. Moisture content has long been hypothesized to determine the characteristics of fires spreading in live fuels but moisture content alone fails to explain observed differences in the ignition of various species at different times...

  4. The impact of changing technologies on instruction

    NASA Astrophysics Data System (ADS)

    Beichner, Robert

    2011-04-01

    Over the past decade technology has changed enormously. Google has made access to information nearly instantaneous while cell phones, which provide connections to both people and data, are now ubiquitous. This has led to large-scale changes in how students live their everyday lives and therefore impacts their expectations of higher education. Professors no longer need to serve as the main sources of content, but students need more guidance than ever to find the ``pearls of truth'' in the great sea of data now before them. This should impact how we do our jobs as instructors. This talk will discuss the impact of technology on students, how they learn, and how our roles as instructors will change.

  5. Relation between clinical mature and immature lymphocyte cells in human peripheral blood and their spatial label free scattering patterns

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Zhao, Xin; Zhang, Zhenxi; Zhao, Hong; Chen, Wei; Yuan, Li

    2016-07-01

    A single living cell's light scattering pattern (LSP) in the horizontal plane, which has been denoted as the cell's "2D fingerprint," may provide a powerful label-free detection tool in clinical applications. We have recently studied the LSP in spatial scattering planes, denoted as the cell's "3D fingerprint," for mature and immature lymphocyte cells in human peripheral blood. The effects of membrane size, morphology, and the existence of the nucleus on the spatial LSP are discussed. In order to distinguish clinical label-free mature and immature lymphocytes, the special features of the spatial LSP are studied by statistical method in both the spatial and frequency domains. Spatial LSP provides rich information on the cell's morphology and contents, which can distinguish mature from immature lymphocyte cells and hence ultimately it may be a useful label-free technique for clinical leukemia diagnosis.

  6. Corrosion behavior and cytocompatibility of fluoride-incorporated plasma electrolytic oxidation coating on biodegradable AZ31 alloy.

    PubMed

    Tian, Peng; Peng, Feng; Wang, Donghui; Liu, Xuanyong

    2017-02-01

    Fluoride-incorporated plasma electrolytic oxidation (PEO) coating was fabricated on biodegradable AZ31 alloy. The surface morphologies and phases were investigated by scanning electron microscopy and X-ray diffraction. The effect of fluoride incorporation in coatings on corrosion behaviour was investigated in simulated body fluid and in vitro cytocompatibility of the coatings was also studied by evaluating cytotoxicity, adhesion, proliferation and live-dead stain of osteoblast cells (MC3T3-E1). Furthermore, the corrosion morphologies in vivo were examined. The results showed that the fluoride could be incorporated into the coating to form MgF 2 phase. In vitro and in vivo degradation tests revealed that the corrosion resistance of the coating could be improved by the incorporation of fluoride, which may attribute to the chemical stability of MgF 2 phase. Moreover, good cytocompatibility of fluoride-incorporated coating was confirmed with no obvious cytotoxicity, enhanced cell adhesion and proliferation. However, when the fluoride content was high, a slight inhibition of cell growth was observed. The results indicate that although fluoride incorporation can enhance the corrosion resistance of the coatings, thus resulting a more suitable environment for cells, the high content of fluoride in the coating also kill cells ascribed to the high released of fluorine. If the content of fluoride is well controlled, the PEO coating with MgF 2 phase is a promising surface modification of Mg alloys.

  7. Intracellular Doppler Signatures of Platinum Sensitivity Captured by Biodynamic Profiling in Ovarian Xenografts

    NASA Astrophysics Data System (ADS)

    Merrill, Daniel; An, Ran; Sun, Hao; Yakubov, Bakhtiyor; Matei, Daniela; Turek, John; Nolte, David

    2016-01-01

    Three-dimensional (3D) tissue cultures are replacing conventional two-dimensional (2D) cultures for applications in cancer drug development. However, direct comparisons of in vitro 3D models relative to in vivo models derived from the same cell lines have not been reported because of the lack of sensitive optical probes that can extract high-content information from deep inside living tissue. Here we report the use of biodynamic imaging (BDI) to measure response to platinum in 3D living tissue. BDI combines low-coherence digital holography with intracellular Doppler spectroscopy to study tumor drug response. Human ovarian cancer cell lines were grown either in vitro as 3D multicellular monoculture spheroids or as xenografts in nude mice. Fragments of xenografts grown in vivo in nude mice from a platinum-sensitive human ovarian cell line showed rapid and dramatic signatures of induced cell death when exposed to platinum ex vivo, while the corresponding 3D multicellular spheroids grown in vitro showed negligible response. The differences in drug response between in vivo and in vitro growth have important implications for predicting chemotherapeutic response using tumor biopsies from patients or patient-derived xenografts.

  8. Online quantitative monitoring of live cell engineered cartilage growth using diffuse fiber-optic Raman spectroscopy.

    PubMed

    Bergholt, Mads S; Albro, Michael B; Stevens, Molly M

    2017-09-01

    Tissue engineering (TE) has the potential to improve the outcome for patients with osteoarthritis (OA). The successful clinical translation of this technique as part of a therapy requires the ability to measure extracellular matrix (ECM) production of engineered tissues in vitro, in order to ensure quality control and improve the likelihood of tissue survival upon implantation. Conventional techniques for assessing the ECM content of engineered cartilage, such as biochemical assays and histological staining are inherently destructive. Raman spectroscopy, on the other hand, represents a non-invasive technique for in situ biochemical characterization. Here, we outline current roadblocks in translational Raman spectroscopy in TE and introduce a comprehensive workflow designed to non-destructively monitor and quantify ECM biomolecules in large (>3 mm), live cell TE constructs online. Diffuse near-infrared fiber-optic Raman spectra were measured from live cell cartilaginous TE constructs over a 56-day culturing period. We developed a multivariate curve resolution model that enabled quantitative biochemical analysis of the TE constructs. Raman spectroscopy was able to non-invasively quantify the ECM components and showed an excellent correlation with biochemical assays for measurement of collagen (R 2  = 0.84) and glycosaminoglycans (GAGs) (R 2  = 0.86). We further demonstrated the robustness of this technique for online prospective analysis of live cell TE constructs. The fiber-optic Raman spectroscopy strategy developed in this work offers the ability to non-destructively monitor construct growth online and can be adapted to a broad range of TE applications in regenerative medicine toward controlled clinical translation. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Rapid one-step purification of single-cells encapsulated in alginate microcapsules from oil to aqueous phase using a hydrophobic filter paper: implications for single-cell experiments.

    PubMed

    Lee, Do-Hyun; Jang, Miran; Park, Je-Kyun

    2014-10-01

    By virtue of the biocompatibility and physical properties of hydrogel, picoliter-sized hydrogel microcapsules have been considered to be a biometric signature containing several features similar to that of encapsulated single cells, including phenotype, viability, and intracellular content. To maximize the experimental potential of encapsulating cells in hydrogel microcapsules, a method that enables efficient hydrogel microcapsule purification from oil is necessary. Current methods based on centrifugation for the conventional stepwise rinsing of oil, are slow and laborious and decrease the monodispersity and yield of the recovered hydrogel microcapsules. To remedy these shortcomings we have developed a simple one-step method to purify alginate microcapsules, containing a single live cell, from oil to aqueous phase. This method employs oil impregnation using a commercially available hydrophobic filter paper without multistep centrifugal purification and complicated microchannel networks. The oil-suspended alginate microcapsules encapsulating single cells from mammalian cancer cell lines (MCF-7, HepG2, and U937) and microorganisms (Chlorella vulgaris) were successfully exchanged to cell culture media by quick (~10 min) depletion of the surrounding oil phase without coalescence of neighboring microcapsules. Cell proliferation and high integrity of the microcapsules were also demonstrated by long-term incubation of microcapsules containing a single live cell. We expect that this method for the simple and rapid purification of encapsulated single-cell microcapsules will attain widespread adoption, assisting cell biologists and clinicians in the development of single-cell experiments. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Membrane tension regulates clathrin-coated pit dynamics

    NASA Astrophysics Data System (ADS)

    Liu, Allen

    2014-03-01

    Intracellular organization depends on close communication between the extracellular environment and a network of cytoskeleton filaments. The interactions between cytoskeletal filaments and the plasma membrane lead to changes in membrane tension that in turns help regulate biological processes. Endocytosis is thought to be stimulated by low membrane tension and the removal of membrane increases membrane tension. While it is appreciated that the opposing effects of exocytosis and endocytosis have on keeping plasma membrane tension to a set point, it is not clear how membrane tension affects the dynamics of clathrin-coated pits (CCPs), the individual functional units of clathrin-mediated endocytosis. Furthermore, although it was recently shown that actin dynamics counteracts membrane tension during CCP formation, it is not clear what roles plasma membrane tension plays during CCP initiation. Based on the notion that plasma membrane tension is increased when the membrane area increases during cell spreading, we designed micro-patterned surfaces of different sizes to control the cell spreading sizes. Total internal reflection fluorescence microscopy of living cells and high content image analysis were used to quantify the dynamics of CCPs. We found that there is an increased proportion of CCPs with short (<20s) lifetime for cells on larger patterns. Interestingly, cells on larger patterns have higher CCP initiation density, an effect unexpected based on the conventional view of decreasing endocytosis with increasing membrane tension. Furthermore, by analyzing the intensity profiles of CCPs that were longer-lived, we found CCP intensity decreases with increasing cell size, indicating that the CCPs are smaller with increasing membrane tension. Finally, disruption of actin dynamics significantly increased the number of short-lived CCPs, but also decreased CCP initiation rate. Together, our study reveals new mechanistic insights into how plasma membrane tension regulates the dynamics of CCPs.

  11. Spatial and temporal evolution of organic foulant layers on reverse osmosis membranes in wastewater reuse applications.

    PubMed

    Farias, Elizabeth L; Howe, Kerry J; Thomson, Bruce M

    2014-07-01

    Advanced treatment to remove trace constituents and emerging contaminants is an important consideration for wastewater treatment for potable reuse, and reverse osmosis (RO) can be a suitable technology to provide the necessary level of treatment. However, membrane fouling by biological and organic matter is a concern. This research examined the development of the RO membrane fouling layer using a bench-scale membrane bioreactor operating at different solids retention times (SRTs), followed by a custom-designed RO test cell. The RO test cell contained stacked plates that sandwich five sheets of RO membrane material, which can be extracted for autopsy at separate times over the course of an experiment without disturbing the remaining membranes. The MBR-RO system was run continuously for 2 weeks at each SRT. The RO membranes were stained for live and dead cells, protein, and carbohydrate-like materials, and visualized using confocal laser scanning microscopy. Images of the stained foulant layers were obtained at different depths within the foulant layer at each time point for all SRT conditions. As the RO foulant layer developed, changes occurred in the distribution and morphology of the live cells and carbohydrates, but not the proteins. These trends were similar for all three SRT conditions tested. RO membrane fouling increased with increased MBR SRT, and the highest SRT had the highest ratios of live to dead cells and carbohydrate-like material to dead cells. The autopsied membranes were also analyzed for protein and carbohydrate content, and it was found that the carbohydrate concentration on the membranes after 14 days increased as the SRT increased. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Report of prochloron research, IPE-7 (Palau, February 1982)

    NASA Technical Reports Server (NTRS)

    Lewin, R. A.; Cheng, L.

    1983-01-01

    Various aspects of Prochloron research are discussed. At suitable low-tide periods about 5-6 new sites were surveyed as possible convenient sources of symbiotic didemnids. The Kanori Channel site peviously surveyed during IPE-VI remains by far the best, in terms of species, quantities and accessibility. Prochloron from the six major species of symbiotic didemnids was compared serum, cell size and vacuolation, etc. Tadpoles from Lissoclinum patella colonies were observed emerging from cloacal apertures; about 400 were collected. All but 4 carried a girdle of symbiotic Prochloron cells (about 40,000 per larva). Observations were made on cell viability indicated that a marked increase in protoplasm viscosity of the cell contents was associated with cell death. Living cells, in 5 microlitres of buffered sea water under a coverslip, when pressed with a 2 kg weight for 10 seconds, attempts made to culture Prochloron in sea-water media.

  13. Optical diffusion property of cerumen from ear canal and correlation to metal content measured by synchrotron x-ray absorption

    NASA Astrophysics Data System (ADS)

    Holden, Todd; Dehipawala, Sumudu; Cheung, E.; Golebiewska, U.; Schneider, P.; Tremberger, G., Jr.; Kokkinos, D.; Lieberman, D.; Dehipawala, Sunil; Cheung, T.

    2012-03-01

    Human (and other mammals) would secrete cerumen (ear wax) to protect the skin of the ear canal against pathogens and insects. The studies of biodiversity of pathogen in human include intestine microbe colony, belly button microbe colony, etc. Metals such as zinc and iron are essentials to bio-molecular pathways and would be related to the underlying pathogen vitality. This project studies the biodiversity of cerumen via its metal content and aims to develop an optical probe for metal content characterization. The optical diffusion mean free path and absorption of human cerumen samples dissolved in solvent have been measured in standard transmission measurements. EXFAS and XANES have been measured at Brookhaven Synchrotron Light Source for the determination of metal contents, presumably embedded within microbes/insects/skin cells. The results show that a calibration procedure can be used to correlate the optical diffusion parameters to the metal content, thus expanding the diagnostic of cerumen in the study of human pathogen biodiversity without the regular use of a synchrotron light source. Although biodiversity measurements would not be seriously affected by dead microbes and absorption based method would do well, the scattering mean free path method would have potential to further study the cell based scattering centers (dead or live) via the information embedded in the speckle pattern in the deep-Fresnel zone.

  14. Effect of whole yeast cell product supplementation (CitriStim®) on immune responses and cecal microflora species in pullet and layer chickens during an experimental coccidial challenge.

    PubMed

    Markazi, Ashley D; Perez, Victor; Sifri, Mamduh; Shanmugasundaram, Revathi; Selvaraj, Ramesh K

    2017-07-01

    Three separate experiments were conducted to study the effects of whole yeast cell product supplementation in pullets and layer hens. Body weight gain, fecal and intestinal coccidial oocyst counts, cecal microflora species, cytokine mRNA amounts, and CD4+ and CD8+ T-cell populations in the cecal tonsils were analyzed following an experimental coccidial infection. In Experiment I, day-old Leghorn layer chicks were fed 3 experimental diets with 0, 0.1, or 0.2% whole yeast cell product (CitriStim®, ADM, Decatur, IL). At 21 d of age, birds were challenged with 1 × 105 live coccidial oocysts. Supplementation with whole yeast cell product decreased the fecal coccidial oocyst count at 7 (P = 0.05) and 8 (P < 0.01) d post-challenge. In Experiment II, 27-week old Leghorn layer hens were fed 3 experimental diets with 0, 0.05 or 0.1% whole yeast cell product and challenged with 1 × 105 live coccidial oocysts on d 25 of whole yeast cell product feeding. Supplementation with whole yeast cell product decreased the coccidial oocyst count in the intestinal content (P < 0.01) at 5, 13, and 38 d post-coccidial challenge. Supplementation with whole yeast cell product increased relative proportion of Lactobacillus (P < 0.01) in the cecal tonsils 13 d post-coccidial challenge. Supplementation with whole yeast cell product decreased CD8+ T cell percentages (P < 0.05) in the cecal tonsils at 5 d post-coccidial challenge. In Experiment III, 32-week-old Leghorn layer hens were fed 3 experimental diets with 0, 0.1, or 0.2% whole yeast cell product and challenged with 1 × 105 live coccidial oocysts on d 66 of whole yeast cell product feeding. At 5 d post-coccidial challenge, whole yeast cell product supplementation down-regulated (P = 0.01) IL-10 mRNA amount. It could be concluded that supplementing whole yeast cell product can help minimize coccidial infection in both growing pullets and layer chickens. © 2017 Poultry Science Association Inc.

  15. Hemoglobin degradation in malaria-infected erythrocytes determined from live cell magnetophoresis

    PubMed Central

    Moore, Lee R.; Fujioka, Hisashi; Williams, P. Stephen; Chalmers, Jeffrey J.; Grimberg, Brian; Zimmerman, Peter; Zborowski, Maciej

    2013-01-01

    During intra-erythrocytic development, malaria trophozoites digest hemoglobin, which leads to parasite growth and asexual replication while accumulating toxic heme. To avoid death, the parasite synthesizes insoluble hemozoin crystals in the digestive vacuole through polymerization of β-hematin dimers. In the process, the heme is converted to a high-spin ferriheme whose magnetic properties were studied as early as 1936 by Pauling et al. Here, by magnetophoretic cell motion analysis, we provide evidence for a graduated increase of live cell magnetic susceptibility with developing blood-stage parasites, compatible with the increase in hemozoin content and the mechanism used by P. falciparum to avoid heme toxicity. The measured magnetophoretic mobility of the erythrocyte infected with a late-stage schizont form was m = 2.94 × 10−6 mm3 s/kg, corresponding to the net volume magnetic susceptibility (relative to water) of Δχ = 1.80 × 10−6, significantly higher than that of the oxygenated erythrocyte (−0.18×10−6) but lower than that of the fully deoxygenated erythrocyte (3.33×10−6). The corresponding fraction of hemoglobin converted to hemozoin, calculated based on the known magnetic susceptibilities of hemoglobin heme and hemozoin ferriheme, was 0.50, in agreement with the published biochemical and crystallography data. Magnetophoretic analysis of live erythrocytes could become significant for antimalarial drug susceptibility and resistance determination. PMID:16461330

  16. Responses of benthic bacteria to experimental drying in sediments from Mediterranean temporary rivers.

    PubMed

    Amalfitano, Stefano; Fazi, Stefano; Zoppini, Annamaria; Barra Caracciolo, Anna; Grenni, Paola; Puddu, Alberto

    2008-02-01

    In the semiarid Mediterranean regions, water scarcity represents a common physiological stress for microbial communities residing in river sediments. However, the effect of drying has not yet adequately been evaluated when analyzing riverine microbiological processes. The bacterial community structure (abundance, biomass, composition) and functioning (carbon production, live cell percentage) were assessed during experimental desiccation in microcosms with sediments from different Mediterranean temporary rivers (Tagliamento, Krathis, Mulargia, Pardiela). Our results showed that the overall responses to drying of the bacterial community were independent from sediment origin and strictly related to water content. During desiccation, a prompt decline (up to 100%) of the initial bacterial carbon production was followed by a slower decrease in abundance and biomass, with an overall reduction of 74% and 78%, respectively. By the end of the experiment, live cells were still abundant but depressed in their main metabolic functions, thus resulting in a drastic increase in the community turnover time. Only 14% of the initial live cell biomass was available in dry sediments to immediately start the reactivation of the aquatic microbial food web after the arrival of new water. Community composition analysis showed a relative increase in alpha- and beta-Proteobacteria, when passing from wet to dry conditions. Our results suggest that the occurrence of drought events could affect carbon cycling through the freshwater microbial compartment, by temporarily limiting microbial mineralization and altering bacterial community structure.

  17. Probing GFP-actin diffusion in living cells using fluorescence correlation spectroscopy.

    PubMed

    Engelke, Hanna; Heinrich, Doris; Rädler, Joachim O

    2010-12-22

    The cytoskeleton of eukaryotic cells is continuously remodeled by polymerization and depolymerization of actin. Consequently, the relative content of polymerized filamentous actin (F-actin) and monomeric globular actin (G-actin) is subject to temporal and spatial fluctuations. Since fluorescence correlation spectroscopy (FCS) can measure the diffusion of fluorescently labeled actin it seems likely that FCS allows us to determine the dynamics and hence indirectly the structural properties of the cytoskeleton components with high spatial resolution. To this end we investigate the FCS signal of GFP-actin in living Dictyostelium discoideum cells and explore the inherent spatial and temporal signatures of the actin cytoskeleton. Using the free green fluorescent protein (GFP) as a reference, we find that actin diffusion inside cells is dominated by G-actin and slower than diffusion in diluted cell extract. The FCS signal in the dense cortical F-actin network near the cell membrane is probed using the cytoskeleton protein LIM and is found to be slower than cytosolic G-actin diffusion. Furthermore, we show that polymerization of the cytoskeleton induced by Jasplakinolide leads to a substantial decrease of G-actin diffusion. Pronounced fluctuations in the distribution of the FCS correlation curves can be induced by latrunculin, which is known to induce actin waves. Our work suggests that the FCS signal of GFP-actin in combination with scanning or spatial correlation techniques yield valuable information about the local dynamics and concomitant cytoskeletal properties.

  18. Measuring moisture content in living chaparral: a field user's manual

    Treesearch

    Clive M. Countryman; William A. Dean

    1979-01-01

    This manual standardizes procedures for determining the moisture content of living chaparral for use in a proposed statewide system of monitoring living fuel moisture. The manual includes a comprehensive examination of fuel moisture variations in California chaparral, and describes techniques for sampling these variations. Equipment needed to sample and determine...

  19. Discrimination of bladder cancer cells from normal urothelial cells with high specificity and sensitivity: combined application of atomic force microscopy and modulated Raman spectroscopy.

    PubMed

    Canetta, Elisabetta; Riches, Andrew; Borger, Eva; Herrington, Simon; Dholakia, Kishan; Adya, Ashok K

    2014-05-01

    Atomic force microscopy (AFM) and modulated Raman spectroscopy (MRS) were used to discriminate between living normal human urothelial cells (SV-HUC-1) and bladder tumour cells (MGH-U1) with high specificity and sensitivity. MGH-U1 cells were 1.5-fold smaller, 1.7-fold thicker and 1.4-fold rougher than normal SV-HUC-1 cells. The adhesion energy was 2.6-fold higher in the MGH-U1 cells compared to normal SV-HUC-1 cells, which possibly indicates that bladder tumour cells are more deformable than normal cells. The elastic modulus of MGH-U1 cells was 12-fold lower than SV-HUC-1 cells, suggesting a higher elasticity of the bladder cancer cell membranes. The biochemical fingerprints of cancer cells displayed a higher DNA and lipid content, probably due to an increase in the nuclear to cytoplasm ratio. Normal cells were characterized by higher protein contents. AFM studies revealed a decrease in the lateral dimensions and an increase in thickness of cancer cells compared to normal cells; these studies authenticate the observations from MRS. Nanostructural, nanomechanical and biochemical profiles of bladder cells provide qualitative and quantitative markers to differentiate between normal and cancerous cells at the single cellular level. AFM and MRS allow discrimination between adhesion energy, elasticity and Raman spectra of SV-HUC-1 and MGH-U1 cells with high specificity (83, 98 and 95%) and sensitivity (97, 93 and 98%). Such single-cell-level studies could have a pivotal impact on the development of AFM-Raman combined methodologies for cancer profiling and screening with translational significance. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Single-Cell Western Blotting after Whole-Cell Imaging to Assess Cancer Chemotherapeutic Response

    PubMed Central

    2015-01-01

    Intratumor heterogeneity remains a major obstacle to effective cancer therapy and personalized medicine. Current understanding points to differential therapeutic response among subpopulations of tumor cells as a key challenge to successful treatment. To advance our understanding of how this heterogeneity is reflected in cell-to-cell variations in chemosensitivity and expression of drug-resistance proteins, we optimize and apply a new targeted proteomics modality, single-cell western blotting (scWestern), to a human glioblastoma cell line. To acquire both phenotypic and proteomic data on the same, single glioblastoma cells, we integrate high-content imaging prior to the scWestern assays. The scWestern technique supports thousands of concurrent single-cell western blots, with each assay comprised of chemical lysis of single cells seated in microwells, protein electrophoresis from those microwells into a supporting polyacrylamide (PA) gel layer, and in-gel antibody probing. We systematically optimize chemical lysis and subsequent polyacrylamide gel electrophoresis (PAGE) of the single-cell lysate. The scWestern slides are stored for months then reprobed, thus allowing archiving and later analysis as relevant to sparingly limited, longitudinal cell specimens. Imaging and scWestern analysis of single glioblastoma cells dosed with the chemotherapeutic daunomycin showed both apoptotic (cleaved caspase 8- and annexin V-positive) and living cells. Intriguingly, living glioblastoma subpopulations show up-regulation of a multidrug resistant protein, P-glycoprotein (P-gp), suggesting an active drug efflux pump as a potential mechanism of drug resistance. Accordingly, linking of phenotype with targeted protein analysis with single-cell resolution may advance our understanding of drug response in inherently heterogeneous cell populations, such as those anticipated in tumors. PMID:25226230

  1. Reconciling species-level vs plastic responses of evergreen leaf structure to light gradients: shade leaves punch above their weight.

    PubMed

    Lusk, Christopher H; Onoda, Yusuke; Kooyman, Robert; Gutiérrez-Girón, Alba

    2010-04-01

    *When grown in a common light environment, the leaves of shade-tolerant evergreen trees have a larger leaf mass per unit area (LMA) than their light-demanding counterparts, associated with differences in lifespan. Yet plastic responses of LMA run counter to this pattern: shade leaves have smaller LMA than sun leaves, despite often living longer. *We measured LMA and cell wall content, and conducted punch and shear tests, on sun and shade leaves of 13 rainforest evergreens of differing shade tolerance, in order to understand adaptation vs plastic responses of leaf structure and biomechanics to shade. *Species shade tolerance and leaf mechanical properties correlated better with cell wall mass per unit area than with LMA. Growth light environment had less effect on leaf mechanics than on LMA: shade leaves had, on average, 40% lower LMA than sun leaves, but differences in work-to-shear, and especially force-to-punch, were smaller. This was associated with a slightly larger cell wall fraction in shade leaves. *The persistence of shade leaves might reflect unattractiveness to herbivores because they yield smaller benefits (cell contents per area) per unit fracture force than sun leaves. In forest trees, cell wall fraction and force-to-punch are more robust correlates of species light requirements than LMA.

  2. Perceptions of young adults with sickle cell disease concerning their disease experience.

    PubMed

    Matthie, Nadine; Hamilton, Jill; Wells, Diana; Jenerette, Coretta

    2016-06-01

    To describe the perceptions of young adults with sickle cell disease concerning their disease experience. Sickle cell disease is a lifelong, genetic condition with both acute and chronic painful exacerbations. Little is known of the experiences of young adults with sickle cell disease. This study used a qualitative, descriptive design with semi-structured, life review interviews. Between August 2010-September 2012, purposive sampling was used to recruit participants with a known sickle cell disease diagnosis who were ages 18-35 years, were being seen in an outpatient sickle cell clinic and were English speaking. Participants provided demographic information and responded to two interviews. A content analysis was then used to interpret participants' narratives of their experiences of living with sickle cell disease. A sample of 29 young adults with sickle cell disease consisted of 79·3% females, 35·6% employed full-time or part-time, 71·6% single/never married and 57·8% with sickle cell anaemia. Their mean age was 25·8 with 13·2 years of education. Four major interview themes were identified: (1) struggles to maintain or achieve good quality of life or life satisfactions; (2) strategies to maintain self-care; (3) interruptions to family, work and social roles; and (4) difficulties accessing needed health care. Young adults face many challenges while living with sickle cell disease. With a better understanding of their disease experience and how it influences their quality of life, researchers can begin tailoring appropriate interventions to improve health outcomes in this vulnerable, minority population. © 2015 John Wiley & Sons Ltd.

  3. Anticancer drug-based multifunctional nanogels through self-assembly of dextran-curcumin conjugates toward cancer theranostics.

    PubMed

    Nagahama, Koji; Sano, Yoshinori; Kumano, Takayuki

    2015-06-15

    Curcumin (CCM) has been received much attention in cancer theranostics because CCM exhibits both anticancer activity and strong fluorescence available for bio-imaging. However, CCM has never been utilized in clinical mainly due to its extremely low water solubility and its low cellular uptake into cancer cells. We fabricated novel CCM-based biodegradable nanoparticles through self-assembly of amphiphilic dextran-CCM conjugates. Significantly high CCM loading contents in the nanoparticles and the high water solubility were achieved. Importantly, the dextran-CCMs nanoparticles were effectively delivered into HeLa cells and exhibited strong fluorescence available for live-cell imaging, although the nanoparticles were not delivered into normal cells. Thus, the dextran-CCMs nanoparticles could be a promising for creation of novel CCM-based cancer theranostics with high efficacy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences

    PubMed Central

    Zhu, Xiao-Hong; Lu, Ming; Lee, Byeong-Yeul; Ugurbil, Kamil; Chen, Wei

    2015-01-01

    NAD is an essential metabolite that exists in NAD+ or NADH form in all living cells. Despite its critical roles in regulating mitochondrial energy production through the NAD+/NADH redox state and modulating cellular signaling processes through the activity of the NAD+-dependent enzymes, the method for quantifying intracellular NAD contents and redox state is limited to a few in vitro or ex vivo assays, which are not suitable for studying a living brain or organ. Here, we present a magnetic resonance (MR) -based in vivo NAD assay that uses the high-field MR scanner and is capable of noninvasively assessing NAD+ and NADH contents and the NAD+/NADH redox state in intact human brain. The results of this study provide the first insight, to our knowledge, into the cellular NAD concentrations and redox state in the brains of healthy volunteers. Furthermore, an age-dependent increase of intracellular NADH and age-dependent reductions in NAD+, total NAD contents, and NAD+/NADH redox potential of the healthy human brain were revealed in this study. The overall findings not only provide direct evidence of declined mitochondrial functions and altered NAD homeostasis that accompany the normal aging process but also, elucidate the merits and potentials of this new NAD assay for noninvasively studying the intracellular NAD metabolism and redox state in normal and diseased human brain or other organs in situ. PMID:25730862

  5. The natural product peiminine represses colorectal carcinoma tumor growth by inducing autophagic cell death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyu, Qing; Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055; Tou, Fangfang

    Autophagy is evolutionarily conservative in eukaryotic cells that engulf cellular long-lived proteins and organelles, and it degrades the contents through fusion with lysosomes, via which the cell acquires recycled building blocks for the synthesis of new molecules. In this study, we revealed that peiminine induces cell death and enhances autophagic flux in colorectal carcinoma HCT-116 cells. We determined that peiminine enhances the autophagic flux by repressing the phosphorylation of mTOR through inhibiting upstream signals. Knocking down ATG5 greatly reduced the peiminine-induced cell death in wild-type HCT-116 cells, while treating Bax/Bak-deficient cells with peiminine resulted in significant cell death. In summary,more » our discoveries demonstrated that peiminine represses colorectal carcinoma cell proliferation and cell growth by inducing autophagic cell death. - Highlights: • Peiminine induces autophagy and upregulates autophagic flux. • Peiminine represses colorectal carcinoma tumor growth. • Peiminine induces autophagic cell death. • Peiminine represses mTOR phosphorylation by influencing PI3K/Akt and AMPK pathway.« less

  6. HU content and dynamics in Escherichia coli during the cell cycle and at different growth rates.

    PubMed

    Abebe, Anteneh Hailu; Aranovich, Alexander; Fishov, Itzhak

    2017-10-16

    DNA-binding proteins play an important role in maintaining bacterial chromosome structure and functions. Heat-unstable (HU) histone-like protein is one of the most abundant of these proteins and participates in all major chromosome-related activities. Owing to its low sequence specificity, HU fusions with fluorescent proteins were used for general staining of the nucleoid, aiming to reveal its morphology and dynamics. We have exploited a single chromosomal copy of hupA-egfp fusion under the native promoter and used quantitative microscopy imaging to investigate the amount and dynamics of HUα in Escherichia coli cells. We found that in steady-state growing populations the cellular HUα content is proportional to the cell size, whereas its concentration is size independent. Single-cell live microscopy imaging confirmed that the amount of HUα exponentially increases during the cell cycle, but its concentration is maintained constant. This supports the existence of an auto-regulatory mechanism underlying the HUα cellular level, in addition to reflecting the gene copy number. Both the HUα amount and concentration strongly increase with the cell growth rate in different culture media. Unexpectedly, the HU/DNA stoichiometry also remarkably increases with the growth rate. This last finding may be attributed to a higher requirement for maintaining the chromosome structure in nucleoids with higher complexity. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Localization-based super-resolution imaging meets high-content screening.

    PubMed

    Beghin, Anne; Kechkar, Adel; Butler, Corey; Levet, Florian; Cabillic, Marine; Rossier, Olivier; Giannone, Gregory; Galland, Rémi; Choquet, Daniel; Sibarita, Jean-Baptiste

    2017-12-01

    Single-molecule localization microscopy techniques have proven to be essential tools for quantitatively monitoring biological processes at unprecedented spatial resolution. However, these techniques are very low throughput and are not yet compatible with fully automated, multiparametric cellular assays. This shortcoming is primarily due to the huge amount of data generated during imaging and the lack of software for automation and dedicated data mining. We describe an automated quantitative single-molecule-based super-resolution methodology that operates in standard multiwell plates and uses analysis based on high-content screening and data-mining software. The workflow is compatible with fixed- and live-cell imaging and allows extraction of quantitative data like fluorophore photophysics, protein clustering or dynamic behavior of biomolecules. We demonstrate that the method is compatible with high-content screening using 3D dSTORM and DNA-PAINT based super-resolution microscopy as well as single-particle tracking.

  8. Remotely controlled fusion of selected vesicles and living cells: a key issue review

    NASA Astrophysics Data System (ADS)

    Bahadori, Azra; Moreno-Pescador, Guillermo; Oddershede, Lene B.; Bendix, Poul M.

    2018-03-01

    Remote control over fusion of single cells and vesicles has a great potential in biological and chemical research allowing both transfer of genetic material between cells and transfer of molecular content between vesicles. Membrane fusion is a critical process in biology that facilitates molecular transport and mixing of cellular cytoplasms with potential formation of hybrid cells. Cells precisely regulate internal membrane fusions with the aid of specialized fusion complexes that physically provide the energy necessary for mediating fusion. Physical factors like membrane curvature, tension and temperature, affect biological membrane fusion by lowering the associated energy barrier. This has inspired the development of physical approaches to harness the fusion process at a single cell level by using remotely controlled electromagnetic fields to trigger membrane fusion. Here, we critically review various approaches, based on lasers or electric pulses, to control fusion between individual cells or between individual lipid vesicles and discuss their potential and limitations for present and future applications within biochemistry, biology and soft matter.

  9. Synthetic biology approaches in cancer immunotherapy, genetic network engineering, and genome editing.

    PubMed

    Chakravarti, Deboki; Cho, Jang Hwan; Weinberg, Benjamin H; Wong, Nicole M; Wong, Wilson W

    2016-04-18

    Investigations into cells and their contents have provided evolving insight into the emergence of complex biological behaviors. Capitalizing on this knowledge, synthetic biology seeks to manipulate the cellular machinery towards novel purposes, extending discoveries from basic science to new applications. While these developments have demonstrated the potential of building with biological parts, the complexity of cells can pose numerous challenges. In this review, we will highlight the broad and vital role that the synthetic biology approach has played in applying fundamental biological discoveries in receptors, genetic circuits, and genome-editing systems towards translation in the fields of immunotherapy, biosensors, disease models and gene therapy. These examples are evidence of the strength of synthetic approaches, while also illustrating considerations that must be addressed when developing systems around living cells.

  10. Histology of 8 atypical femoral fractures: remodeling but no healing.

    PubMed

    Schilcher, Jörg; Sandberg, Olof; Isaksson, Hanna; Aspenberg, Per

    2014-06-01

    The pathophysiology behind bisphosphonate-associated atypical femoral fractures remains unclear. Histological findings at the fracture site itself may provide clues. Between 2008 and 2013, we collected bone biopsies including the fracture line from 4 complete and 4 incomplete atypical femoral fractures. 7 female patients reported continuous bisphosphonate use for 10 years on average. 1 patient was a man who was not using bisphosphonates. Dual-energy X-ray absorptiometry of the hip and spine showed no osteoporosis in 6 cases. The bone biopsies were evaluated by micro-computed tomography, infrared spectroscopy, and qualitative histology. Incomplete fractures involved the whole cortical thickness and showed a continuous gap with a mean width of 180 µm. The gap contained amorphous material and was devoid of living cells. In contrast, the adjacent bone contained living cells, including active osteoclasts. The fracture surfaces sometimes consisted of woven bone, which may have formed in localized defects caused by surface fragmentation or resorption. Atypical femoral fractures show signs of attempted healing at the fracture site. The narrow width of the fracture gap and its necrotic contents are compatible with the idea that micromotion prevents healing because it leads to strains within the fracture gap that preclude cell survival.

  11. Extending the Rorschach trauma content index and aggression indexes to dream narratives of children exposed to enduring violence: an exploratory study.

    PubMed

    Kamphuis, Jan H; Tuin, Nynke; Timmermans, Marieke; Punamäki, Raija-Leena

    2008-11-01

    In this study, we compared dream narratives of children and adolescents living under conditions of enduring interpersonal violence (n = 220) versus those living in peaceful surroundings (n = 99) on content variables that have been associated with traumatic experiences in Rorschach (Exner, 1995) imagery. As predicted, children and adolescents living in circumstances of enduring violence reported a higher proportion of content scorable by Armstrong and Loewenstein's (1990) Trauma Content Index and a much higher proportion of aggressive objects in their dreams (AgC; Gacono & Meloy, 1994). In support of discriminant validity, no consistent group differences were observed for the relative frequencies of Animal (A), Clothing (Cg), or Cooperative movement (COP) content. The modest association between manifest dream content and psychological symptom scales suggests that the former may alternatively reflect adaptive or psychopathological processes. Our findings suggest that content analysis of dreams may be a valuable adjunct in tapping the psychological state of children traumatized by violence.

  12. Effects of drought season length on live moisture content dynamic in Mediterranean shrubs: 8 years of data

    NASA Astrophysics Data System (ADS)

    Pellizzaro, Grazia; Ventura, Andrea; Bortolu, Sara; Duce, Pierpaolo

    2017-04-01

    Mediterranean shrubs are an important component of Mediterranean vegetation communities. In this kind of vegetation, live fuel is a relevant component of the available fuel which catches fire and, consequently, its water content plays an important role in determining fire occurrence and spread. In live plant, water content patterns are related to both environmental conditions (e.g. meteorological variables, soil water availability) and ecophysiological characteristics of the plant species. According to projections on future climate, an increase in risk of summer droughts is likely to take place in Southern Europe. More prolonged drought seasons induced by climatic changes are likely to influence general flammability characteristics of fuel. In addition, variations in precipitation and mean temperature could directly affect fuel water status and length of critical periods of high ignition danger for Mediterranean ecosystems. The aims of this work were to analyse the influence of both weather seasonality and inter-annual weather variability on live fuel moisture content within and among some common Mediterranean species, and to investigate the effects of prolonged drought season on live moisture content dynamic. The study was carried out in North Sardinia (Italy). Measurements of LFMC seasonal pattern of two really common and flammable Mediterranean shrub species (Cistus monspeliensis and Rosmarinus officinalis) were performed periodically for 8 years. Meteorological variables were also recorded. Relationships between live fuel moisture content and environmental conditions (i.e. rainfall, air temperature and soil moisture) were investigated and effects of different lengths of drought season on LFMC pattern were analysed. Results showed that distribution and amount of rainfall affected seasonal variation of live fuel moisture content. In particular more prolonged drought seasons caused a longer period in which LFMC was below 95 -100% that is commonly considered as critical threshold for fire ignition and spread. This impact was particular evident at the begin of the autumn whereas a limited water availability in spring seemed to have less strongly influenced moisture content in the Mediterranean shrubs that we studied.

  13. A High-Content Small Molecule Screen Identifies Sensitivity of Glioblastoma Stem Cells to Inhibition of Polo-Like Kinase 1

    PubMed Central

    Danovi, Davide; Folarin, Amos; Gogolok, Sabine; Ender, Christine; Elbatsh, Ahmed M. O.; Engström, Pär G.; Stricker, Stefan H.; Gagrica, Sladjana; Georgian, Ana; Yu, Ding; U, Kin Pong; Harvey, Kevin J.; Ferretti, Patrizia; Paddison, Patrick J.; Preston, Jane E.; Abbott, N. Joan; Bertone, Paul; Smith, Austin; Pollard, Steven M.

    2013-01-01

    Glioblastoma multiforme (GBM) is the most common primary brain cancer in adults and there are few effective treatments. GBMs contain cells with molecular and cellular characteristics of neural stem cells that drive tumour growth. Here we compare responses of human glioblastoma-derived neural stem (GNS) cells and genetically normal neural stem (NS) cells to a panel of 160 small molecule kinase inhibitors. We used live-cell imaging and high content image analysis tools and identified JNJ-10198409 (J101) as an agent that induces mitotic arrest at prometaphase in GNS cells but not NS cells. Antibody microarrays and kinase profiling suggested that J101 responses are triggered by suppression of the active phosphorylated form of polo-like kinase 1 (Plk1) (phospho T210), with resultant spindle defects and arrest at prometaphase. We found that potent and specific Plk1 inhibitors already in clinical development (BI 2536, BI 6727 and GSK 461364) phenocopied J101 and were selective against GNS cells. Using a porcine brain endothelial cell blood-brain barrier model we also observed that these compounds exhibited greater blood-brain barrier permeability in vitro than J101. Our analysis of mouse mutant NS cells (INK4a/ARF−/−, or p53−/−), as well as the acute genetic deletion of p53 from a conditional p53 floxed NS cell line, suggests that the sensitivity of GNS cells to BI 2536 or J101 may be explained by the lack of a p53-mediated compensatory pathway. Together these data indicate that GBM stem cells are acutely susceptible to proliferative disruption by Plk1 inhibitors and that such agents may have immediate therapeutic value. PMID:24204733

  14. Adaptive optical imaging through complex living plant cells

    NASA Astrophysics Data System (ADS)

    Tamada, Yosuke; Hayano, Yutaka; Murata, Takashi; Oya, Shin; Honma, Yusuke; Kanazawa, Minoru; Miura, Noriaki; Hasebe, Mitsuyasu; Kamei, Yasuhiro; Hattori, Masayuki

    2017-04-01

    Live-cell imaging using fluorescent molecules is now essential for biological researches. However, images of living cells are accompanied with blur, which becomes stronger according to the depth inside the cells and tissues. This image blur is caused by the disturbance on light that goes through optically inhomogeneous living cells and tissues. Here, we show adaptive optics (AO) imaging of living plant cells. AO has been developed in astronomy to correct the disturbance on light caused by atmospheric turbulence. We developed AO microscope effective for the observation of living plant cells with strong disturbance by chloroplasts, and successfully obtained clear images inside plant cells.

  15. Spectroscopic analysis of seasonal changes in live fuel moisture content and leaf dry mass

    Treesearch

    Yi Qi; Philip E. Dennison; W. Matt Jolly; Rachael C. Kropp; Simon C. Brewer

    2014-01-01

    Live fuel moisture content (LFMC), the ratio of water mass to dry mass contained in live plant material, is an important fuel property for determining fire danger and for modeling fire behavior. Remote sensing estimation of LFMC often relies on an assumption of changing water and stable dry mass over time. Fundamental understanding of seasonal variation in plant water...

  16. Effect of Drying Methods on Protein and DNA Conformation Changes in Lactobacillus rhamnosus GG Cells by Fourier Transform Infrared Spectroscopy.

    PubMed

    Hlaing, Mya M; Wood, Bayden R; McNaughton, Don; Ying, DanYang; Dumsday, Geoff; Augustin, Mary Ann

    2017-03-01

    Microencapsulation protects cells against environmental stress encountered during the production of probiotics, which are used as live microbial food ingredients. Freeze-drying and spray-drying are used in the preparation of powdered microencapsulated probiotics. This study examines the ability of Fourier transform infrared (FTIR) spectroscopy to detect differences in cells exposed to freeze-drying and spray-drying of encapsulated Lactobacillus rhamnosus GG cells. The FTIR analysis clearly demonstrated there were more significant molecular changes in lipid, fatty acid content, protein, and DNA conformation of nonencapsulated compared to encapsulated bacterial cells. The technique was also able to differentiate between spray-dried and freeze-dried cells. The results also revealed the extent of protection from a protein-carbohydrate-based encapsulant matrix on the cells depending on the type drying process. The extent of this protection to the dehydration stress was shown to be less in spray-dried cells than in freeze-dried cells. This suggests that FTIR could be used as a rapid, noninvasive, and real-time measurement technique to detect detrimental drying effects on cells.

  17. Quantitative fluorescence correlation spectroscopy on DNA in living cells

    NASA Astrophysics Data System (ADS)

    Hodges, Cameron; Kafle, Rudra P.; Meiners, Jens-Christian

    2017-02-01

    FCS is a fluorescence technique conventionally used to study the kinetics of fluorescent molecules in a dilute solution. Being a non-invasive technique, it is now drawing increasing interest for the study of more complex systems like the dynamics of DNA or proteins in living cells. Unlike an ordinary dye solution, the dynamics of macromolecules like proteins or entangled DNA in crowded environments is often slow and subdiffusive in nature. This in turn leads to longer residence times of the attached fluorophores in the excitation volume of the microscope and artifacts from photobleaching abound that can easily obscure the signature of the molecular dynamics of interest and make quantitative analysis challenging.We discuss methods and procedures to make FCS applicable to quantitative studies of the dynamics of DNA in live prokaryotic and eukaryotic cells. The intensity autocorrelation is computed function from weighted arrival times of the photons on the detector that maximizes the information content while simultaneously correcting for the effect of photobleaching to yield an autocorrelation function that reflects only the underlying dynamics of the sample. This autocorrelation function in turn is used to calculate the mean square displacement of the fluorophores attached to DNA. The displacement data is more amenable to further quantitative analysis than the raw correlation functions. By using a suitable integral transform of the mean square displacement, we can then determine the viscoelastic moduli of the DNA in its cellular environment. The entire analysis procedure is extensively calibrated and validated using model systems and computational simulations.

  18. System dynamics of subcellular transport.

    PubMed

    Chen, Vivien Y; Khersonsky, Sonya M; Shedden, Kerby; Chang, Young Tae; Rosania, Gus R

    2004-01-01

    In pharmacokinetic experiments, interpretations often hinge on treating cells as a "black box": a single, lumped compartment or boundary. Here, a combinatorial library of fluorescent small molecules was used to visualize subcellular transport pathways in living cells, using a kinetic, high content imaging system to monitor spatiotemporal variations of intracellular probe distribution. Most probes accumulate in cytoplasmic vesicles and probe kinetics conform to a nested, two-compartment dynamical system. At steady state, probes preferentially partition from the extracellular medium to the cytosol, and from the cytosol to cytoplasmic vesicles, with hydrophobic molecules favoring sequestration. Altogether, these results point to a general organizing principle underlying the system dynamics of subcellular, small molecule transport. In addition to plasma membrane permeability, subcellular transport phenomena can determine the active concentration of small molecules in the cytosol and the efflux of small molecules from cells. Fundamentally, direct observation of intracellular probe distribution challenges the simple boundary model of classical pharmacokinetics, which considers cells as static permeability barriers.

  19. Rapid Estimation of Astaxanthin and the Carotenoid-to-Chlorophyll Ratio in the Green Microalga Chromochloris zofingiensis Using Flow Cytometry.

    PubMed

    Chen, Junhui; Wei, Dong; Pohnert, Georg

    2017-07-19

    The green microalga Chromochloris zofingiensis can accumulate significant amounts of valuable carotenoids, mainly natural astaxanthin, a product with applications in functional food, cosmetics, nutraceuticals, and with potential therapeutic value in cardiovascular and neurological diseases. To optimize the production of astaxanthin, it is essential to monitor the content of astaxanthin in algal cells during cultivation. The widely used HPLC (high-performance liquid chromatography) method for quantitative astaxanthin determination is time-consuming and laborious. In the present work, we present a method using flow cytometry (FCM) for in vivo determination of the astaxanthin content and the carotenoid-to-chlorophyll ratio (Car/Chl) in mixotrophic C. zofingiensis . The method is based on the assessment of fluorescent characteristics of cellular pigments. The mean fluorescence intensity (MFI) of living cells was determined by FCM to monitor pigment formation based on the correlation between MFI detected in particular channels (FL1: 533 ± 15 nm; FL2: 585 ± 20 nm; FL3: >670 nm) and pigment content in algal cells. Through correlation and regression analysis, a linear relationship was observed between MFI in FL2 (band-pass filter, emission at 585 nm in FCM) and astaxanthin content (in HPLC) and applied for predicting astaxanthin content. With similar procedures, the relationships between MFI in different channels and Car/Chl ratio in mixotrophic C. zofingiensis were also determined. Car/Chl ratios could be estimated by the ratios of MFI (FL1/FL3, FL2/FL3). FCM is thus a highly efficient and feasible method for rapid estimation of astaxanthin content in the green microalga C. zofingiensis . The rapid FCM method is complementary to the current HPLC method, especially for rapid evaluation and prediction of astaxanthin formation as it is required during the high-throughput culture in the laboratory and mass cultivation in industry.

  20. Rapid Estimation of Astaxanthin and the Carotenoid-to-Chlorophyll Ratio in the Green Microalga Chromochloris zofingiensis Using Flow Cytometry

    PubMed Central

    Chen, Junhui; Pohnert, Georg

    2017-01-01

    The green microalga Chromochloris zofingiensis can accumulate significant amounts of valuable carotenoids, mainly natural astaxanthin, a product with applications in functional food, cosmetics, nutraceuticals, and with potential therapeutic value in cardiovascular and neurological diseases. To optimize the production of astaxanthin, it is essential to monitor the content of astaxanthin in algal cells during cultivation. The widely used HPLC (high-performance liquid chromatography) method for quantitative astaxanthin determination is time-consuming and laborious. In the present work, we present a method using flow cytometry (FCM) for in vivo determination of the astaxanthin content and the carotenoid-to-chlorophyll ratio (Car/Chl) in mixotrophic C. zofingiensis. The method is based on the assessment of fluorescent characteristics of cellular pigments. The mean fluorescence intensity (MFI) of living cells was determined by FCM to monitor pigment formation based on the correlation between MFI detected in particular channels (FL1: 533 ± 15 nm; FL2: 585 ± 20 nm; FL3: >670 nm) and pigment content in algal cells. Through correlation and regression analysis, a linear relationship was observed between MFI in FL2 (band-pass filter, emission at 585 nm in FCM) and astaxanthin content (in HPLC) and applied for predicting astaxanthin content. With similar procedures, the relationships between MFI in different channels and Car/Chl ratio in mixotrophic C. zofingiensis were also determined. Car/Chl ratios could be estimated by the ratios of MFI (FL1/FL3, FL2/FL3). FCM is thus a highly efficient and feasible method for rapid estimation of astaxanthin content in the green microalga C. zofingiensis. The rapid FCM method is complementary to the current HPLC method, especially for rapid evaluation and prediction of astaxanthin formation as it is required during the high-throughput culture in the laboratory and mass cultivation in industry. PMID:28753934

  1. De-coupling seasonal changes in water content and dry matter to predict live conifer foliar moisture content

    Treesearch

    W. Matt Jolly; Ann M. Hadlow; Kathleen Huguet

    2014-01-01

    Live foliar moisture content (LFMC) significantly influences wildland fire behaviour. However, characterising variations in LFMC is difficult because both foliar mass and dry mass can change throughout the season. Here we quantify the seasonal changes in both plant water status and dry matter partitioning. We collected new and old foliar samples from Pinus contorta for...

  2. The Multifaceted Role of SNARE Proteins in Membrane Fusion

    PubMed Central

    Han, Jing; Pluhackova, Kristyna; Böckmann, Rainer A.

    2017-01-01

    Membrane fusion is a key process in all living organisms that contributes to a variety of biological processes including viral infection, cell fertilization, as well as intracellular transport, and neurotransmitter release. In particular, the various membrane-enclosed compartments in eukaryotic cells need to exchange their contents and communicate across membranes. Efficient and controllable fusion of biological membranes is known to be driven by cooperative action of SNARE proteins, which constitute the central components of the eukaryotic fusion machinery responsible for fusion of synaptic vesicles with the plasma membrane. During exocytosis, vesicle-associated v-SNARE (synaptobrevin) and target cell-associated t-SNAREs (syntaxin and SNAP-25) assemble into a core trans-SNARE complex. This complex plays a versatile role at various stages of exocytosis ranging from the priming to fusion pore formation and expansion, finally resulting in the release or exchange of the vesicle content. This review summarizes current knowledge on the intricate molecular mechanisms underlying exocytosis triggered and catalyzed by SNARE proteins. Particular attention is given to the function of the peptidic SNARE membrane anchors and the role of SNARE-lipid interactions in fusion. Moreover, the regulatory mechanisms by synaptic auxiliary proteins in SNARE-driven membrane fusion are briefly outlined. PMID:28163686

  3. Designs and concept reliance of a fully automated high-content screening platform.

    PubMed

    Radu, Constantin; Adrar, Hosna Sana; Alamir, Ab; Hatherley, Ian; Trinh, Trung; Djaballah, Hakim

    2012-10-01

    High-content screening (HCS) is becoming an accepted platform in academic and industry screening labs and does require slightly different logistics for execution. To automate our stand-alone HCS microscopes, namely, an alpha IN Cell Analyzer 3000 (INCA3000), originally a Praelux unit hooked to a Hudson Plate Crane with a maximum capacity of 50 plates per run, and the IN Cell Analyzer 2000 (INCA2000), in which up to 320 plates could be fed per run using the Thermo Fisher Scientific Orbitor, we opted for a 4 m linear track system harboring both microscopes, plate washer, bulk dispensers, and a high-capacity incubator allowing us to perform both live and fixed cell-based assays while accessing both microscopes on deck. Considerations in design were given to the integration of the alpha INCA3000, a new gripper concept to access the onboard nest, and peripheral locations on deck to ensure a self-reliant system capable of achieving higher throughput. The resulting system, referred to as Hestia, has been fully operational since the new year, has an onboard capacity of 504 plates, and harbors the only fully automated alpha INCA3000 unit in the world.

  4. Designs and Concept-Reliance of a Fully Automated High Content Screening Platform

    PubMed Central

    Radu, Constantin; Adrar, Hosna Sana; Alamir, Ab; Hatherley, Ian; Trinh, Trung; Djaballah, Hakim

    2013-01-01

    High content screening (HCS) is becoming an accepted platform in academic and industry screening labs and does require slightly different logistics for execution. To automate our stand alone HCS microscopes, namely an alpha IN Cell Analyzer 3000 (INCA3000) originally a Praelux unit hooked to a Hudson Plate Crane with a maximum capacity of 50 plates per run; and the IN Cell Analyzer 2000 (INCA2000) where up to 320 plates could be fed per run using the Thermo Fisher Scientific Orbitor, we opted for a 4 meter linear track system harboring both microscopes, plate washer, bulk dispensers, and a high capacity incubator allowing us to perform both live and fixed cell based assays while accessing both microscopes on deck. Considerations in design were given to the integration of the alpha INCA3000, a new gripper concept to access the onboard nest, and peripheral locations on deck to ensure a self reliant system capable of achieving higher throughput. The resulting system, referred to as Hestia, has been fully operational since the New Year, has an onboard capacity of 504 plates, and harbors the only fully automated alpha INCA3000 unit in the World. PMID:22797489

  5. The Multifaceted Role of SNARE Proteins in Membrane Fusion.

    PubMed

    Han, Jing; Pluhackova, Kristyna; Böckmann, Rainer A

    2017-01-01

    Membrane fusion is a key process in all living organisms that contributes to a variety of biological processes including viral infection, cell fertilization, as well as intracellular transport, and neurotransmitter release. In particular, the various membrane-enclosed compartments in eukaryotic cells need to exchange their contents and communicate across membranes. Efficient and controllable fusion of biological membranes is known to be driven by cooperative action of SNARE proteins, which constitute the central components of the eukaryotic fusion machinery responsible for fusion of synaptic vesicles with the plasma membrane. During exocytosis, vesicle-associated v-SNARE (synaptobrevin) and target cell-associated t-SNAREs (syntaxin and SNAP-25) assemble into a core trans-SNARE complex. This complex plays a versatile role at various stages of exocytosis ranging from the priming to fusion pore formation and expansion, finally resulting in the release or exchange of the vesicle content. This review summarizes current knowledge on the intricate molecular mechanisms underlying exocytosis triggered and catalyzed by SNARE proteins. Particular attention is given to the function of the peptidic SNARE membrane anchors and the role of SNARE-lipid interactions in fusion. Moreover, the regulatory mechanisms by synaptic auxiliary proteins in SNARE-driven membrane fusion are briefly outlined.

  6. Myo19 ensures symmetric partitioning of mitochondria and coupling of mitochondrial segregation to cell division.

    PubMed

    Rohn, Jennifer L; Patel, Jigna V; Neumann, Beate; Bulkescher, Jutta; Mchedlishvili, Nunu; McMullan, Rachel C; Quintero, Omar A; Ellenberg, Jan; Baum, Buzz

    2014-11-03

    During animal cell division, an actin-based ring cleaves the cell into two. Problems with this process can cause chromosome missegregation and defects in cytoplasmic inheritance and the partitioning of organelles, which in turn are associated with human diseases. Although much is known about how chromosome segregation is coupled to cell division, the way organelles coordinate their inheritance during partitioning to daughter cells is less well understood. Here, using a high-content live-imaging small interfering RNA screen, we identify Myosin-XIX (Myo19) as a novel regulator of cell division. Previously, this actin-based motor was shown to control the interphase movement of mitochondria. Our analysis shows that Myo19 is indeed localized to mitochondria and that its silencing leads to defects in the distribution of mitochondria within cells and in mitochondrial partitioning at division. Furthermore, many Myo19 RNAi cells undergo stochastic division failure--a phenotype that can be mimicked using a treatment that blocks mitochondrial fission and rescued by decreasing mitochondrial fusion, implying that mitochondria can physically interfere with cytokinesis. Strikingly, using live imaging we also observe the inappropriate movement of mitochondria to the poles of spindles in cells depleted for Myo19 as they enter anaphase. Since this phenocopies the results of an acute loss of actin filaments in anaphase, these data support a model whereby the Myo19 actin-based motor helps to control mitochondrial movement to ensure their faithful segregation during division. The presence of DNA within mitochondria makes their inheritance an especially important aspect of symmetrical cell division. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Integration of living values into physics learning based on local potentials

    NASA Astrophysics Data System (ADS)

    Sarah, S.; Prasetyo, Z. K.; Wilujeng, I.

    2018-05-01

    Living values are the principles and beliefs that influence the way of life and behavior of people in society. These values are defined to determine the individuals’ characteristics in the physical, intellectual, social-emotional, and spiritual dimensions. Such values could be acquired through physics learning. Therefore, the study concerned here was aimed at determining the difference in the living values acquired between students of the grade officially termed Grade X at a state senior high school referred to as SMAN 1 Selomerto, Central Java, Indonesia, who learned physics by using content based on local potentials and those who learned physics without using that content. A quasi-experiment with the control group pre-test post-test design was conducted to collect the data. The data were analyzed by using tests of normality, homogeneity, and different. The results indicate no difference in the living values acquired between students learning physics by using local-potential content and those learning physics without using that content.

  8. ReAsH/FlAsH labeling and image analysis of tetracysteine sensor proteins in cells.

    PubMed

    Irtegun, Sevgi; Ramdzan, Yasmin M; Mulhern, Terrence D; Hatters, Danny M

    2011-08-31

    Fluorescent proteins and dyes are essential tools for the study of protein trafficking, localization and function in cells. While fluorescent proteins such as green fluorescence protein (GFP) have been extensively used as fusion partners to proteins to track the properties of a protein of interest, recent developments with smaller tags enable new functionalities of proteins to be examined in cells such as conformational change and protein-association. One small tag system involves a tetracysteine motif (CCXXCC) genetically inserted into a target protein, which binds to biarsenical dyes, ReAsH (red fluorescent) and FlAsH (green fluorescent), with high specificity even in live cells. The TC/biarsenical dye system offers far less steric constraints to the host protein than fluorescent proteins which has enabled several new approaches to measure conformational change and protein-protein interactions. We recently developed a novel application of TC tags as sensors of oligomerization in cells expressing mutant huntingtin, which when mutated aggregates in neurons in Huntington disease. Huntingtin was tagged with two fluorescent dyes, one a fluorescent protein to track protein location, and the second a TC tag which only binds biarsenical dyes in monomers. Hence, changes in colocalization between protein and biarsenical dye reactivity enabled submicroscopic oligomer content to be spatially mapped within cells. Here, we describe how to label TC-tagged proteins fused to a fluorescent protein (Cherry, GFP or CFP) with FlAsH or ReAsH in live mammalian cells and how to quantify the two color fluorescence (Cherry/FlAsH, CFP/FlAsH or GFP/ReAsH combinations).

  9. Addressing the systems-based practice requirement with health policy content and educational technology.

    PubMed

    Nagler, Alisa; Andolsek, Kathryn; Dossary, Kristin; Schlueter, Joanne; Schulman, Kevin

    2010-01-01

    Duke University Hospital Office of Graduate Medical Education and Duke University's Fuqua School of Business collaborated to offer a Health Policy lecture series to residents and fellows across the institution, addressing the "Systems-based Practice" competency.During the first year, content was offered in two formats: live lecture and web/podcast. Participants could elect the modality which was most convenient for them. In Year Two, the format was changed so that all content was web/podcast and a quarterly live panel discussion was led by module presenters or content experts. Lecture evaluations, qualitative focus group feedback, and post-test data were analyzed.A total of 77 residents and fellows from 8 (of 12) Duke Graduate Medical Education departments participated. In the first year, post-test results were the same for those who attended the live lectures and those who participated via web/podcast. A greater number of individuals participated in Year Two. Participants from both years expressed the need for health policy content in their training programs. Participants in both years valued a hybrid format for content delivery, recognizing a desire for live interaction with the convenience of accessing web/podcasts at times and locations convenient for them. A positive unintended consequence of the project was participant networking with residents and fellows from other specialties.

  10. [Cytochemical parameters of myeloperoxidase activity and catecholamine level in blood of postpartum women living in areas near the Semipalatinsk nuclear test site].

    PubMed

    Kokabaeva, A E; Bazeliuk, L T

    2002-01-01

    The activity of neitrophil myeloperoxidase and content of blood etyrhrocyte cathecholamines in the blood of women in early postpartum period in dependence on distance of their living area from Semipalatinsk nuclear testing were studied. It was found that women who live closer to Semipalatinsk were characterised by significantly lower neitrophil myeloperoxidase activity and content of cathecholamines in erythrocytes than in control.

  11. Toxicity of tungsten carbide and cobalt-doped tungsten carbide nanoparticles in mammalian cells in vitro.

    PubMed

    Bastian, Susanne; Busch, Wibke; Kühnel, Dana; Springer, Armin; Meissner, Tobias; Holke, Roland; Scholz, Stefan; Iwe, Maria; Pompe, Wolfgang; Gelinsky, Michael; Potthoff, Annegret; Richter, Volkmar; Ikonomidou, Chrysanthy; Schirmer, Kristin

    2009-04-01

    Tungsten carbide nanoparticles are being explored for their use in the manufacture of hard metals. To develop nanoparticles for broad applications, potential risks to human health and the environment should be evaluated and taken into consideration. We aimed to assess the toxicity of well-characterized tungsten carbide (WC) and cobalt-doped tungsten carbide (WC-Co) nanoparticle suspensions in an array of mammalian cells. We examined acute toxicity of WC and of WC-Co (10% weight content Co) nanoparticles in different human cell lines (lung, skin, and colon) as well as in rat neuronal and glial cells (i.e., primary neuronal and astroglial cultures and the oligodendrocyte precursor cell line OLN-93). Furthermore, using electron microscopy, we assessed whether nanoparticles can be taken up by living cells. We chose these in vitro systems in order to evaluate for potential toxicity of the nanoparticles in different mammalian organs (i.e., lung, skin, intestine, and brain). Chemical-physical characterization confirmed that WC as well as WC-Co nanoparticles with a mean particle size of 145 nm form stable suspensions in serum-containing cell culture media. WC nanoparticles were not acutely toxic to the studied cell lines. However, cytotoxicity became apparent when particles were doped with Co. The most sensitive were astrocytes and colon epithelial cells. Cytotoxicity of WC-Co nanoparticles was higher than expected based on the ionic Co content of the particles. Analysis by electron microscopy demonstrated presence of WC nanoparticles within mammalian cells. Our findings demonstrate that doping of WC nanoparticles with Co markedly increases their cytotoxic effect and that the presence of WC-Co in particulate form is essential to elicit this combinatorial effect.

  12. Toxicity of Tungsten Carbide and Cobalt-Doped Tungsten Carbide Nanoparticles in Mammalian Cells in Vitro

    PubMed Central

    Bastian, Susanne; Busch, Wibke; Kühnel, Dana; Springer, Armin; Meißner, Tobias; Holke, Roland; Scholz, Stefan; Iwe, Maria; Pompe, Wolfgang; Gelinsky, Michael; Potthoff, Annegret; Richter, Volkmar; Ikonomidou, Chrysanthy; Schirmer, Kristin

    2009-01-01

    Background Tungsten carbide nanoparticles are being explored for their use in the manufacture of hard metals. To develop nanoparticles for broad applications, potential risks to human health and the environment should be evaluated and taken into consideration. Objective We aimed to assess the toxicity of well-characterized tungsten carbide (WC) and cobaltdoped tungsten carbide (WC-Co) nanoparticle suspensions in an array of mammalian cells. Methods We examined acute toxicity of WC and of WC-Co (10% weight content Co) nanoparticles in different human cell lines (lung, skin, and colon) as well as in rat neuronal and glial cells (i.e., primary neuronal and astroglial cultures and the oligodendro cyte precursor cell line OLN-93). Furthermore, using electron microscopy, we assessed whether nanoparticles can be taken up by living cells. We chose these in vitro systems in order to evaluate for potential toxicity of the nanoparticles in different mammalian organs (i.e., lung, skin, intestine, and brain). Results Chemical–physical characterization confirmed that WC as well as WC-Co nanoparticles with a mean particle size of 145 nm form stable suspensions in serum-containing cell culture media. WC nanoparticles were not acutely toxic to the studied cell lines. However, cytotoxicity became apparent when particles were doped with Co. The most sensitive were astrocytes and colon epithelial cells. Cytotoxicity of WC-Co nanoparticles was higher than expected based on the ionic Co content of the particles. Analysis by electron microscopy demonstrated presence of WC nanoparticles within mammalian cells. Conclusions Our findings demonstrate that doping of WC nanoparticles with Co markedly increases their cytotoxic effect and that the presence of WC-Co in particulate form is essential to elicit this combinatorial effect. PMID:19440490

  13. Cell Separations in Microgravity and Development of a Space Bioreactor

    NASA Technical Reports Server (NTRS)

    Morrison, D. R.

    1985-01-01

    A bioreactor optimized for operations in space is now being developed. The current research is focused on determining the optimum cell-bead ratios, medium content and proper maintenance conditions required to keep living cell specimens alive and healthy for the entire flight. The bioreactor development project has recently added a microprocessor/computer to the JSC prototype for control and data analysis. Appropriate new technology is being combined with the current bioreactor designs and tested to determine what specific features must be included in the fabrication of a bioreactor designed to operate for STS demonstration tests. Considerations include: (1) circulation and resupply of culture media; (2) sensors required to monitor temperature, cell growth, mass transport, and oxygen consumption; and (3) inflight control of shear stress on cells, gas transfer in microgravity, diffusion, and intracellular transport. These data and results from the JSC prototype bioreactor test will be used for the design and construction of a small space bioreactor for the Orbiter middeck.

  14. Linguistic and content validation of a German-language PRO-CTCAE-based patient-reported outcomes instrument to evaluate the late effect symptom experience after allogeneic hematopoietic stem cell transplantation.

    PubMed

    Kirsch, Monika; Mitchell, Sandra A; Dobbels, Fabienne; Stussi, Georg; Basch, Ethan; Halter, Jorg P; De Geest, Sabina

    2015-02-01

    The aim of this sequential mixed methods study was to develop a PRO-CTCAE (Patient-Reported Outcomes version of the Common Terminology Criteria for Adverse Events)-based measure of the symptom experience of late effects in German speaking long-term survivors of allogeneic stem cell transplantation (SCT), and to examine its content validity. The US National Cancer Institute's PRO-CTAE item library was translated into German and linguistically validated. PRO-CTCAE symptoms prevalent in ≥50% of survivors (n = 15) and recognized in its importance by SCT experts (n = 9) were identified. Additional concepts relevant to the symptom experience and its consequences were elicited. Content validity of the PROVIVO (Patient-Reported Outcomes of long-term survivors after allogeneic SCT) instrument was assessed through an additional round of cognitive debriefing in 15 patients, and item and scale content validity indices by 9 experts. PROVIVO is comprised of a total of 49 items capturing the experience of physical, emotional and cognitive symptoms. To improve the instrument's utility for clinical decision-making, questions soliciting limitations in activities of daily living, frequent infections, and overall well-being were added. Cognitive debriefings demonstrated that items were well understood and relevant to the SCT survivor experience. Scale Content Validity Index (CVI) (0.94) and item CVI (median = 1; range 0.75-1) were very high. Qualitative and quantitative data provide preliminary evidence supporting the content validity of PROVIVO and identify a PRO-CTCAE item bundle for use in SCT survivors. A study to evaluate the measurement properties of PROVIVO and to examine its capacity to improve survivorship care planning is underway. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. 78 FR 49528 - Consolidation of Wound Care Products Containing Live Cells

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-14

    ...] Consolidation of Wound Care Products Containing Live Cells AGENCY: Food and Drug Administration, HHS. ACTION... certain wound care products containing live cells from the Center for Devices and Radiological Health... CDRH and CBER. FDA believes that as more wound care products containing live cells are developed such...

  16. Colon-targeted delivery of live bacterial cell biotherapeutics including microencapsulated live bacterial cells

    PubMed Central

    Prakash, Satya; Malgorzata Urbanska, Aleksandra

    2008-01-01

    There has been an ample interest in delivery of therapeutic molecules using live cells. Oral delivery has been stipulated as best way to deliver live cells to humans for therapy. Colon, in particular, is a part of gastrointestinal (GI) tract that has been proposed to be an oral targeted site. The main objective of these oral therapy procedures is to deliver live cells not only to treat diseases like colorectal cancer, inflammatory bowel disease, and other GI tract diseases like intestinal obstruction and gastritis, but also to deliver therapeutic molecules for overall therapy in various diseases such as renal failure, coronary heart disease, hypertension, and others. This review provides a comprehensive summary of recent advancement in colon targeted live bacterial cell biotherapeutics. Current status of bacterial cell therapy, principles of artificial cells and its potentials in oral delivery of live bacterial cell biotherapeutics for clinical applications as well as biotherapeutic future perspectives are also discussed in our review. PMID:19707368

  17. IR spectroscopic characteristics of cell cycle and cell death probed by synchrotron radiation based Fourier transform IR spectromicroscopy

    NASA Technical Reports Server (NTRS)

    Holman, H. Y.; Martin, M. C.; Blakely, E. A.; Bjornstad, K.; McKinney, W. R.

    2000-01-01

    Synchrotron radiation based Fourier transform IR (SR-FTIR) spectromicroscopy allows the study of individual living cells with a high signal to noise ratio. Here we report the use of the SR-FTIR technique to investigate changes in IR spectral features from individual human lung fibroblast (IMR-90) cells in vitro at different points in their cell cycle. Clear changes are observed in the spectral regions corresponding to proteins, DNA, and RNA as a cell changes from the G(1)-phase to the S-phase and finally into mitosis. These spectral changes include markers for the changing secondary structure of proteins in the cell, as well as variations in DNA/RNA content and packing as the cell cycle progresses. We also observe spectral features that indicate that occasional cells are undergoing various steps in the process of cell death. The dying or dead cell has a shift in the protein amide I and II bands corresponding to changing protein morphologies, and a significant increase in the intensity of an ester carbonyl C===O peak at 1743 cm(-1) is observed. Copyright John Wiley & Sons, Inc. Biopolymers (Biospectroscopy) 57: 329-335, 2000.

  18. Flow cytofluorometric assay of human whole blood leukocyte DNA degradation in response to Yersinia pestis and Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Kravtsov, Alexander L.; Grebenyukova, Tatyana P.; Bobyleva, Elena V.; Golovko, Elena M.; Malyukova, Tatyana A.; Lyapin, Mikhail N.; Kostyukova, Tatyana A.; Yezhov, Igor N.; Kuznetsov, Oleg S.

    2001-05-01

    Human leukocytes containing less than 2C DNA per cell (damaged or dead cells) were detected and quantified by flow cytometry and DNA-specific staining with ethidium bromide and mithramycin in whole blood infected with Staphylococcus aureus or Yersinia pestis. Addition of live S. aureus to the blood (100 microbe cells per one leukocyte) resulted in rapid degradation of leukocyte DNA within 3 to 6 hours of incubation at 37 degree(s)C. However, only about 50 percent cells were damaged and the leukocytes with the intact genetic apparatus could be found in the blood for a period up to 24 hours. The leukocyte injury was preceded by an increase of DNA per cell content (as compared to the normal one) that was likely to be connected with the active phagocytosis of S. aureus by granulocytes (2C DNA of diploid phagocytes plus the all bacterial DNA absorbed). In response to the same dose of actively growing (at 37 degree(s)C) virulent Y. pestis cells, no increase in DNA content per cell could be observed in the human blood leukocytes. The process of the leukocyte DNA degradation started after a 6-hour incubation, and between 18 to 24 hours of incubation about 90 percent leukocytes (phagocytes and lymphocytes) lost their specific DNA fluorescence. These results demonstrated a high potential of flow cytometry in comparative analysis in vitro of the leukocyte DNA degradation process in human blood in response to bacteria with various pathogenic properties. They agree with the modern idea of an apoptotic mechanism of immunosuppression in plague.

  19. A pyrene-benzthiazolium conjugate portraying aggregation induced emission, a ratiometric detection and live cell visualization of HSO3(.).

    PubMed

    Diwan, Uzra; Kumar, Virendra; Mishra, Rakesh K; Rana, Nishant Kumar; Koch, Biplob; Singh, Manish Kumar; Upadhyay, K K

    2016-07-27

    The present study deals with the photophysical property of a pyrene-benzthiazolium conjugate R1, as a strong intramolecular charge transfer (ICT) probe exhibiting long wavelength emission in the red region. Unlike traditional planar polyaromatic hydrocarbons whose aggregation generally quenches the light emission, the pyrene based R1 was found to display aggregation-induced emission (AIE) property along with simultaneous increase in its quantum yield upon increasing the water content of the medium. The R1 exhibits high specificity towards HSO3(-)/SO3(2-) by interrupting its own ICT producing there upon a large ratiometric blue shift of ∼220 nm in its emission spectrum. The lowest detection limit for the above measurement was found to be 8.90 × 10(-8) M. The fluorescent detection of HSO3(-) was also demonstrated excellently by test paper strip and silica coated TLC plate incorporating R1. The live cell imaging of HSO3(─) through R1 in HeLa cells was studied using fluorescence microscopic studies. The particle size and morphological features of R1 and R1-HSO3(-) aggregates in aqueous solution were characterized by DLS along with SEM analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Live single cell functional phenotyping in droplet nano-liter reactors

    NASA Astrophysics Data System (ADS)

    Konry, Tania; Golberg, Alexander; Yarmush, Martin

    2013-11-01

    While single cell heterogeneity is present in all biological systems, most studies cannot address it due to technical limitations. Here we describe a nano-liter droplet microfluidic-based approach for stimulation and monitoring of surfaceand secreted markers of live single immune dendritic cells (DCs) as well as monitoring the live T cell/DC interaction. This nano-liter in vivo simulating microenvironment allows delivering various stimuli reagents to each cell and appropriate gas exchanges which are necessary to ensure functionality and viability of encapsulated cells. Labeling bioassay and microsphere sensors were integrated into nano-liter reaction volume of the droplet to monitor live single cell surface markers and secretion analysis in the time-dependent fashion. Thus live cell stimulation, secretion and surface monitoring can be obtained simultaneously in distinct microenvironment, which previously was possible using complicated and multi-step in vitro and in vivo live-cell microscopy, together with immunological studies of the outcome secretion of cellular function.

  1. Long-term Live-cell Imaging to Assess Cell Fate in Response to Paclitaxel.

    PubMed

    Bolgioni, Amanda F; Vittoria, Marc A; Ganem, Neil J

    2018-05-14

    Live-cell imaging is a powerful technique that can be used to directly visualize biological phenomena in single cells over extended periods of time. Over the past decade, new and innovative technologies have greatly enhanced the practicality of live-cell imaging. Cells can now be kept in focus and continuously imaged over several days while maintained under 37 °C and 5% CO2 cell culture conditions. Moreover, multiple fields of view representing different experimental conditions can be acquired simultaneously, thus providing high-throughput experimental data. Live-cell imaging provides a significant advantage over fixed-cell imaging by allowing for the direct visualization and temporal quantitation of dynamic cellular events. Live-cell imaging can also identify variation in the behavior of single cells that would otherwise have been missed using population-based assays. Here, we describe live-cell imaging protocols to assess cell fate decisions following treatment with the anti-mitotic drug paclitaxel. We demonstrate methods to visualize whether mitotically arrested cells die directly from mitosis or slip back into interphase. We also describe how the fluorescent ubiquitination-based cell cycle indicator (FUCCI) system can be used to assess the fraction of interphase cells born from mitotic slippage that are capable of re-entering the cell cycle. Finally, we describe a live-cell imaging method to identify nuclear envelope rupture events.

  2. Biodynamic profiling of three-dimensional tissue growth techniques

    NASA Astrophysics Data System (ADS)

    Sun, Hao; Merrill, Dan; Turek, John; Nolte, David

    2016-03-01

    Three-dimensional tissue culture presents a more biologically relevant environment in which to perform drug development than conventional two-dimensional cell culture. However, obtaining high-content information from inside three dimensional tissue has presented an obstacle to rapid adoption of 3D tissue culture for pharmaceutical applications. Biodynamic imaging is a high-content three-dimensional optical imaging technology based on low-coherence interferometry and digital holography that uses intracellular dynamics as high-content image contrast. In this paper, we use biodynamic imaging to compare pharmaceutical responses to Taxol of three-dimensional multicellular spheroids grown by three different growth techniques: rotating bioreactor, hanging-drop and plate-grown spheroids. The three growth techniques have systematic variations among tissue cohesiveness and intracellular activity and consequently display different pharmacodynamics under identical drug dose conditions. The in vitro tissue cultures are also compared to ex vivo living biopsies. These results demonstrate that three-dimensional tissue cultures are not equivalent, and that drug-response studies must take into account the growth method.

  3. Development of fluorescent glucose bioprobes and their application on real-time and quantitative monitoring of glucose uptake in living cells.

    PubMed

    Lee, Hyang Yeon; Lee, Jae Jeong; Park, Jongmin; Park, Seung Bum

    2011-01-03

    We developed a novel fluorescent glucose bioprobe, GB2-Cy3, for the real-time and quantitative monitoring of glucose uptake in living cells. We synthesized a series of fluorescent glucose analogues by adding Cy3 fluorophores to the α-anomeric position of D-glucose through various linkers. Systematic and quantitative analysis of these Cy3-labeled glucose analogues revealed that GB2-Cy3 was the ideal fluorescent glucose bioprobe. The cellular uptake of this probe competed with the cellular uptake of D-glucose in the media and was mediated by a glucose-specific transport system, and not by passive diffusion. Flow cytometry and fluorescence microscopy analyses revealed that GB2-Cy3 is ten times more sensitive than 2-NBDG, a leading fluorescent glucose bioprobe. GB2-Cy3 can also be utilized for the quantitative flow cytometry monitoring of glucose uptake in metabolically active C2C12 myocytes under various treatment conditions. As opposed to a glucose uptake assay performed by using radioisotope-labeled deoxy-D-glucose and a scintillation counter, GB2-Cy3 allows the real-time monitoring of glucose uptake in living cells under various experimental conditions by using fluorescence microscopy or confocal laser scanning microscopy (CLSM). Therefore, we believe that GB2-Cy3 can be utilized in high-content screening (HCS) for the discovery of novel therapeutic agents and for making significant advances in biomedical studies and diagnosis of various diseases, especially metabolic diseases. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. [Analysis of pigments from Rhodotorula glutinis by Raman spectroscopy and thin layer chromatography].

    PubMed

    Yuan, Yu-feng; Tao, Zhan-hua; Wang, Xue; Li, Yong-qing; Liu, Jun-xian

    2012-03-01

    The pigments from Rhodotorula glutinis were separated by using thin layer chromatography, and the result showed that Rhodotorula glutinis cells could synthesize at least three kinds of pigments, which were beta-carotene, torulene, and torularhodin. The Raman spectra based on the three pigments were acquired, and original spectra were preprocessed by background elimination, baseline correction, and three-point-smoothing, then the averaged spectra from different pigments were investigated, and the result indicated that Raman shift which represents C-C bond was different, and the wave number of beta-carotene demonstrated the largest deviation, finally torulene and torularhodin in Rhodotorula glutinis had more content than beta-carotene. Quantitative analysis of Raman peak height ratio revealed that peak height ratio of pigments showed little difference, which could be used as parameters for further research on living cells, providing reference content of pigments. The above results suggest that Raman spectroscopy combined with thin layer chromatography can be applied to analyze pigments from Rhodotorula glutinis, provides abundant information about pigments, and serves as an effective method to study pigments.

  5. Mesoscale eddies: hotspots of prokaryotic activity and differential community structure in the ocean.

    PubMed

    Baltar, Federico; Arístegui, Javier; Gasol, Josep M; Lekunberri, Itziar; Herndl, Gerhard J

    2010-08-01

    To investigate the effects of mesoscale eddies on prokaryotic assemblage structure and activity, we sampled two cyclonic eddies (CEs) and two anticyclonic eddies (AEs) in the permanent eddy-field downstream the Canary Islands. The eddy stations were compared with two far-field (FF) stations located also in the Canary Current, but outside the influence of the eddy field. The distribution of prokaryotic abundance (PA), bulk prokaryotic heterotrophic activity (PHA), various indicators of single-cell activity (such as nucleic acid content, proportion of live cells, and fraction of cells actively incorporating leucine), as well as bacterial and archaeal community structure were determined from the surface to 2000 m depth. In the upper epipelagic layer (0-200 m), the effect of eddies on the prokaryotic community was more apparent, as indicated by the higher PA, PHA, fraction of living cells, and percentage of active cells incorporating leucine within eddies than at FF stations. Prokaryotic community composition differed also between eddy and FF stations in the epipelagic layer. In the mesopelagic layer (200-1000 m), there were also significant differences in PA and PHA between eddy and FF stations, although in general, there were no clear differences in community composition or single-cell activity. The effects on prokaryotic activity and community structure were stronger in AE than CE, decreasing with depth in both types of eddies. Overall, both types of eddies show distinct community compositions (as compared with FF in the epipelagic), and represent oceanic 'hotspots' of prokaryotic activity (in the epi- and mesopelagic realms).

  6. The Positive Regulatory Roles of the TIFY10 Proteins in Plant Responses to Alkaline Stress

    PubMed Central

    Zhu, Dan; Li, Rongtian; Liu, Xin; Sun, Mingzhe; Wu, Jing; Zhang, Ning; Zhu, Yanming

    2014-01-01

    The TIFY family is a novel plant-specific protein family, and is characterized by a conserved TIFY motif (TIFF/YXG). Our previous studies indicated the potential roles of TIFY10/11 proteins in plant responses to alkaline stress. In the current study, we focused on the regulatory roles and possible physiological and molecular basis of the TIFY10 proteins in plant responses to alkaline stress. We demonstrated the positive function of TIFY10s in alkaline responses by using the AtTIFY10a and AtTIFY10b knockout Arabidopsis, as evidenced by the relatively lower germination rates of attify10a and attify10b mutant seeds under alkaline stress. We also revealed that ectopic expression of GsTIFY10a in Medicago sativa promoted plant growth, and increased the NADP-ME activity, citric acid content and free proline content but decreased the MDA content of transgenic plants under alkaline stress. Furthermore, expression levels of the stress responsive genes including NADP-ME, CS, H+-ppase and P5CS were also up-regulated in GsTIFY10a transgenic plants under alkaline stress. Interestingly, GsTIFY10a overexpression increased the jasmonate content of the transgenic alfalfa. In addition, we showed that neither GsTIFY10a nor GsTIFY10e exhibited transcriptional activity in yeast cells. However, through Y2H and BiFc assays, we demonstrated that GsTIFY10a, not GsTIFY10e, could form homodimers in yeast cells and in living plant cells. As expected, we also demonstrated that GsTIFY10a and GsTIFY10e could heterodimerize with each other in both yeast and plant cells. Taken together, our results provided direct evidence supporting the positive regulatory roles of the TIFY10 proteins in plant responses to alkaline stress. PMID:25375909

  7. Biodynamic Doppler imaging of subcellular motion inside 3D living tissue culture and biopsies (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nolte, David D.

    2016-03-01

    Biodynamic imaging is an emerging 3D optical imaging technology that probes up to 1 mm deep inside three-dimensional living tissue using short-coherence dynamic light scattering to measure the intracellular motions of cells inside their natural microenvironments. Biodynamic imaging is label-free and non-invasive. The information content of biodynamic imaging is captured through tissue dynamics spectroscopy that displays the changes in the Doppler signatures from intracellular constituents in response to applied compounds. The affected dynamic intracellular mechanisms include organelle transport, membrane undulations, cytoskeletal restructuring, strain at cellular adhesions, cytokinesis, mitosis, exo- and endo-cytosis among others. The development of 3D high-content assays such as biodynamic profiling can become a critical new tool for assessing efficacy of drugs and the suitability of specific types of tissue growth for drug discovery and development. The use of biodynamic profiling to predict clinical outcome of living biopsies to cancer therapeutics can be developed into a phenotypic companion diagnostic, as well as a new tool for therapy selection in personalized medicine. This invited talk will present an overview of the optical, physical and physiological processes involved in biodynamic imaging. Several different biodynamic imaging modalities include motility contrast imaging (MCI), tissue-dynamics spectroscopy (TDS) and tissue-dynamics imaging (TDI). A wide range of potential applications will be described that include process monitoring for 3D tissue culture, drug discovery and development, cancer therapy selection, embryo assessment for in-vitro fertilization and artificial reproductive technologies, among others.

  8. Autologus or allogenic uses of umbilical cord blood whole or RBC transfusion - a review.

    PubMed

    Chakrabarty, P; Rudra, S

    2013-01-01

    Once Umbilical Cord with Placenta considered a biological waste product and generally discarded after delivery but now cord blood has emerged as a viable source of hematopoietic stem cell transplantation. High-risk premature infants require red cell transfusions for anemia. A unique property of cord blood (CB) for its high content of immature hematopoietic progenitor cells (HPCs). Placental blood for autologous transfusions can be collected with aseptic precaution/sterilely into citrate-phosphate-dextrose and stored at 4°C. During storage for 8 days, the placental red cell content of adenosine triphosphate remained normal. The 2,3,-diphosphoglycerate concentration of cells stored beyond 8 days declined sharply. So we have to store umbilical cord blood (UCB) within 7 days for its best result. During storage, placental blood underwent an exchange of extra-cellular Na+ and K+, but no change in glutathione content. Hemolysis was less than 1 percent. Bacteriologic and fungal cultures remained sterile. These suggest that human placental blood can be collected safely and preserved effectively for autologous/allogenic transfusion therapy. In neonatal transfusion practice, efforts have been made to provide premature infants with autologous red blood cell (RBC), especially those born before 32 gestational weeks. In India no adverse transfusion effects were seen in a wide variety of patients that received (pooled) allogeneic fresh whole blood / UCB transfusions. The use of UCB for small volume allogeneic transfusions in anaemic children in Africa or in malaria endemic areas has also been proposed. A preclinical study showed that donation and transfusion of UCB would be acceptable to women living in Mombasa, Kenya. In view of the small volumes RBC per unit that can be collected, it is most likely that anaemic children need of a small volume of transfusions. In resource-restricted countries would benefit most from this easily available transfusion product.

  9. Live-cell imaging combined with immunofluorescence, RNA, or DNA FISH to study the nuclear dynamics and expression of the X-inactivation center.

    PubMed

    Pollex, Tim; Piolot, Tristan; Heard, Edith

    2013-01-01

    Differentiation of embryonic stem cells is accompanied by changes of gene expression and chromatin and chromosome dynamics. One of the most impressive examples for these changes is inactivation of one of the two X chromosomes occurring upon differentiation of mouse female embryonic stem cells. With a few exceptions, these events have been mainly studied in fixed cells. In order to better understand the dynamics, kinetics, and order of events during differentiation, one needs to employ live-cell imaging techniques. Here, we describe a combination of live-cell imaging with techniques that can be used in fixed cells (e.g., RNA FISH) to correlate locus dynamics or subnuclear localization with, e.g., gene expression. To study locus dynamics in female ES cells, we generated cell lines containing TetO arrays in the X-inactivation center, the locus on the X chromosome regulating X-inactivation, which can be visualized upon expression of TetR fused to fluorescent proteins. We will use this system to elaborate on how to generate ES cell lines for live-cell imaging of locus dynamics, how to culture ES cells prior to live-cell imaging, and to describe typical live-cell imaging conditions for ES cells using different microscopes. Furthermore, we will explain how RNA, DNA FISH, or immunofluorescence can be applied following live-cell imaging to correlate gene expression with locus dynamics.

  10. Comparison between PCL/hydroxyapatite (HA) and PCL/halloysite nanotube (HNT) composite scaffolds prepared by co-extrusion and gas foaming.

    PubMed

    Jing, Xin; Mi, Hao-Yang; Turng, Lih-Sheng

    2017-03-01

    In this work, three-dimensional poly(caprolactone) (PCL) tissue engineering scaffolds were prepared by co-extrusion and gas foaming. Biocompatible hydroxyapatite (HA) and halloysite nanotubes (HNT) were added to the polymer matrix to enhance the mechanical properties and bioactivity of the composite scaffolds. The effects of HA and HNT on the rheological behavior, microstructure, and mechanical properties of the composite scaffolds were systematically compared. It was found that the HNT improved viscosity more significantly than HA, and reduced the pore size of scaffolds, while the mechanical performance of PCL/HNT scaffolds was higher than PCL/HA scaffolds with the same filler content. Human mesenchymal stem cells (hMSCs) were used as the cell model to compare the biological properties of two composite scaffolds. The results demonstrated that cells could survive on all scaffolds, and showed a more flourishing living state on the composite scaffolds. The cell differentiation for 5% HA and 1% HNT scaffolds were significantly higher than other scaffolds, while the differentiation of 5% HNT scaffolds was lower than that of 1% HNT scaffolds mainly because of the reduced pore size and pore interconnectivity. Therefore, this study suggested that, with proper filler content and control of microstructure through processing, HNT could be a suitable substitute for HA for bone tissue engineering to reduce the cost and improve mechanical performance. Copyright © 2016. Published by Elsevier B.V.

  11. Binding and Conversion of Selenium in Candida utilis ATCC 9950 Yeasts in Bioreactor Culture.

    PubMed

    Kieliszek, Marek; Błażejak, Stanisław; Kurek, Eliza

    2017-02-25

    Selenium is considered an essential component of all living organisms. The use of yeasts as a selenium supplement in human nutrition has gained much interest over the last decade. The accumulation and biochemical transformation of selenium in yeast cells is particularly interesting to many researchers. In this article, we present the results of the determination of selenium and selenomethionine content in the biomass of feed yeast Candida utilis ATCC 9950 obtained from the culture grown in a bioreactor. The results indicated that C. utilis cells performed the biotransformation of inorganic selenium(IV) to organic derivatives (e.g., selenomethionine). Selenium introduced (20-30 mg Se 4+ ∙L -1 ) to the experimental media in the form of sodium(IV) selenite (Na₂SeO₃) salt caused a significant increase in selenium content in the biomass of C. utilis ,irrespective of the concentration. The highest amount of selenium (1841 μg∙g d.w. -1 ) was obtained after a 48-h culture in media containing 30 mg Se 4+ ∙L -1 . The highest content of selenomethionine (238.8 μg∙g d.w. -1 ) was found after 48-h culture from the experimental medium that was supplemented with selenium at a concentration of 20 mg Se 4+ ∙L -1 . Biomass cell in the cultures supplemented with selenium ranged from 1.5 to 14.1 g∙L -1 . The results of this study indicate that yeast cell biomass of C. utilis enriched mainly with the organic forms of selenium can be a valuable source of protein. It creates the possibility of obtaining selenium biocomplexes that can be used in the production of protein-selenium dietary supplements for animals and humans.

  12. X-ray dense cellular inclusions in the cells of the green alga Chlamydomonas reinhardtii as seen by soft-x-ray microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stead, A.D.; Ford, T.W.; Page, A.M.

    1997-04-01

    Soft x-rays, having a greater ability to penetrate biological material than electrons, have the potential for producing images of intact, living cells. In addition, by using the so-called {open_quotes}water window{close_quotes} area of the soft x-ray spectrum, a degree of natural contrast is introduced into the image due to differential absorption of the wavelengths by compounds with a high carbon content compared to those with a greater oxygen content. The variation in carbon concentration throughout a cell therefore generates an image which is dependent upon the carbon density within the specimen. Using soft x-ray contact microscopy the authors have previously examinedmore » the green alga Chlamydomonas reinhardtii, and the most prominent feature of the cells are the numerous x-ray absorbing spheres, But they were not seen by conventional transmission electron microscopy. Similar structures have also been reported by the Goettingen group using their cryo transmission x-ray microscope at BESSY. Despite the fact that these spheres appear to occupy up to 20% or more of the cell volume when seen by x-ray microscopy, they are not visible by transmission electron microscopy. Given the difficulties and criticisms associated with soft x-ray contact microscopy, the present study was aimed at confirming the existence of these cellular inclusions and learning more of their possible chemical composition.« less

  13. [Living wills under close scrutiny: Medical consultation is indispensable].

    PubMed

    Schöffner, M; Schmidt, K W; Benzenhöfer, U; Sahm, S

    2012-03-01

    Since September 2009 the handling of living wills has been regulated by law. Even though a medical consultation is not imperative for the drawing up of a living will, first surveys have shown that medical information about clinical pictures and treatment options lead to an important specification of living wills. For the first time in Germany, a questionnaire has been developed to investigate the impact of medical consultations on the content of living wills. It revealed that nearly all the people surveyed who had already drawn up a living will wished to change the content of their completed will after attending the seminar because the previous version was no longer in accordance with their wishes. In the light of the frequent difficulties in hospitals concerning how to apply a living will to an actual clinical situation, we believe structured medical consultations to be indispensable. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Divergent discourse between protests and counter-protests: #BlackLivesMatter and #AllLivesMatter.

    PubMed

    Gallagher, Ryan J; Reagan, Andrew J; Danforth, Christopher M; Dodds, Peter Sheridan

    2018-01-01

    Since the shooting of Black teenager Michael Brown by White police officer Darren Wilson in Ferguson, Missouri, the protest hashtag #BlackLivesMatter has amplified critiques of extrajudicial killings of Black Americans. In response to #BlackLivesMatter, other Twitter users have adopted #AllLivesMatter, a counter-protest hashtag whose content argues that equal attention should be given to all lives regardless of race. Through a multi-level analysis of over 860,000 tweets, we study how these protests and counter-protests diverge by quantifying aspects of their discourse. We find that #AllLivesMatter facilitates opposition between #BlackLivesMatter and hashtags such as #PoliceLivesMatter and #BlueLivesMatter in such a way that historically echoes the tension between Black protesters and law enforcement. In addition, we show that a significant portion of #AllLivesMatter use stems from hijacking by #BlackLivesMatter advocates. Beyond simply injecting #AllLivesMatter with #BlackLivesMatter content, these hijackers use the hashtag to directly confront the counter-protest notion of "All lives matter." Our findings suggest that Black Lives Matter movement was able to grow, exhibit diverse conversations, and avoid derailment on social media by making discussion of counter-protest opinions a central topic of #AllLivesMatter, rather than the movement itself.

  15. Question 7: Comparative Genomics and Early Cell Evolution: A Cautionary Methodological Note

    NASA Astrophysics Data System (ADS)

    Islas, Sara; Hernández-Morales, Ricardo; Lazcano, Antonio

    2007-10-01

    Inventories of the gene content of the last common ancestor (LCA), i.e., the cenancestor, include sequences that may have undergone horizontal transfer events, as well as sequences that have originated in different pre-cenancestral epochs. However, the universal distribution of highly conserved genes involved in RNA metabolism provide insights into early stages of cell evolution during which RNA played a much more conspicuous biological role, and is consistent with the hypothesis that extant living systems were preceded by an RNA/protein world. Insights into the traits of primitive entities from which the LCA evolved may be derived from the analysis of paralogous gene families, including those formed by sequences that resulted from internal elongation events. Three major types of paralogous gene families can be recognized. The importance of this grouping for understanding the traits of early cells is discussed.

  16. Intracellular pressure is a motive force for cell motion in Amoeba proteus.

    PubMed

    Yanai, M; Kenyon, C M; Butler, J P; Macklem, P T; Kelly, S M

    1996-01-01

    The cortical filament layer of free-living amoebae contains concentrated actomyosin, suggesting that it can contract and produce an internal hydrostatic pressure. We report here on direct and dynamic intracellular pressure (P(ic)) measurements in Amoeba proteus made using the servo-null technique. In resting apolar A. proteus, P(ic) increased while the cells remained immobile and at apparently constant volume. P(ic) then decreased approximately coincident with pseudopod formation. There was a positive correlation between P(ic) at the onset of movement and the rate of pseudopod formation. These results are the first direct evidence that hydrostatic pressure may be a motive force for cell motion. We postulate that contractile elements in the amoeba's cortical layer contract and increase P(ic) and that this P(ic) is utilized to overcome the viscous flow resistance of the intracellular contents during pseudopod formation.

  17. Live Cell Imaging and Measurements of Molecular Dynamics

    PubMed Central

    Frigault, M.; Lacoste, J.; Swift, J.; Brown, C.

    2010-01-01

    w3-2 Live cell microscopy is becoming widespread across all fields of the life sciences, as well as, many areas of the physical sciences. In order to accurately obtain live cell microscopy data, the live specimens must be properly maintained on the imaging platform. In addition, the fluorescence light path must be optimized for efficient light transmission in order to reduce the intensity of excitation light impacting the living sample. With low incident light intensities the processes under study should not be altered due to phototoxic effects from the light allowing for the long term visualization of viable living samples. Aspects for maintaining a suitable environment for the living sample, minimizing incident light and maximizing detection efficiency will be presented for various fluorescence based live cell instruments. Raster Image Correlation Spectroscopy (RICS) is a technique that uses the intensity fluctuations within laser scanning confocal images, as well as the well characterized scanning dynamics of the laser beam, to extract the dynamics, concentrations and clustering of fluorescent molecules within the cell. In addition, two color cross-correlation RICS can be used to determine protein-protein interactions in living cells without the many technical difficulties encountered in FRET based measurements. RICS is an ideal live cell technique for measuring cellular dynamics because the potentially damaging high intensity laser bursts required for photobleaching recovery measurements are not required, rather low laser powers, suitable for imaging, can be used. The RICS theory will be presented along with examples of live cell applications.

  18. Photoacoustic imaging of mesenchymal stem cells in living mice via silica-coated gold nanorods

    NASA Astrophysics Data System (ADS)

    Jokerst, Jesse V.; Thangaraj, Mridhula; Gambhir, Sanjiv S.

    2014-03-01

    Imaging is crucial for stem cell therapy to monitor the location(s), numbers, and state of the implanted cells. Real-time imaging in particular can ensure proper cell delivery for best engraftment. However, established imaging tools such as MRI are limited by their temporal resolution for guidance during delivery. In contrast, photoacoustic imaging is ideally suited for real time, image-guided therapy. Here, we use silica-coated gold nanorods as photoacoustic contrast agents and deploy them to image and quantitate mesenchymal stem cells during implant into the muscle tissue of live mice. Silica-coated gold nanorods (SiGNRs) were created with standard methods and loaded into mesenchymal stem cells (MSCs) without transfection agents. There was no significant (p<0.05) toxicity or changes to cell proliferation after incubating MSCs with 0.05 nM SiGNRs for 3 hours. A panel of cytokines should only minor upregulation of inflammatory markers including interleukin-6. We used electron microscopy to illustrate vacuole-bound SiGNRs inside the cells. This cell staining increased photoacoustic signal 175% relative to MSCs without contrast agent—the silica coat itself increased signal 55% relative to uncoated GNRs. Using inductively coupled plasma spectroscopy, we found that there were 100,000 SiGNRs per MSC. This value was 5-fold higher than a MSC population stained with GNRs in the absence of silica coat. After labeling, cells were washed and injected into murine muscle tissue to simulate a muscular dystrophy patient. Mice (N=5) treated with these SiGNRlabeled MSCs exhibited no adverse events and implants up to 5 mm deep were easily visualized. The in vivo detection limit was 90,000 cells in a 100 uL bolus in mouse thigh muscle. Here, the B-mode signal is useful for orienting the treatment area and visualizing the delivery catheter while the photoacoustic mode offers cell-specific content. The photoacoustic signal was validated with histology a long-term fluorescent tracking dye after MSC transplant.

  19. Negotiating the integration of new literacies in math and science content: The lived experience of classroom teachers

    NASA Astrophysics Data System (ADS)

    Wimmer, Jennifer Joy

    The purpose of this phenomenological study was to investigate the lived experience of integrating new literacies in math and science content by upper elementary and middle school teachers. This study highlights the lived experience of six teachers including two elementary math teachers, two middle school math teachers, and two middle school science teachers. Data sources included five in-depth interviews, teachers' weekly reflection journals, weekly classroom observations, and one principal interview at each of the three high-needs schools. Data were analyzed through an analytic and thematic approach. A reconstructed story was created for each teacher which provides insight into the teacher as an individual. Additionally, a thematic analysis resulted in the identification of five essential themes across all six stories which included: technology exclusively, rethinking who they are as teachers, stabilizing rather than challenging content, rethinking student learning, circumstances, and futures, and serving official context and discourse. The findings indicate that the teachers' lived experience of integrating new literacies in math and science content was filled with uncertainty and a search for stability. A key implication of this study is the need for quality professional development that provides teachers with the opportunity to learn about, question, and rethink the intersection of new literacies, content area literacy, and teacher knowledge.

  20. ReAsH/FlAsH Labeling and Image Analysis of Tetracysteine Sensor Proteins in Cells

    PubMed Central

    Irtegun, Sevgi; Ramdzan, Yasmin M.; Mulhern, Terrence D.; Hatters, Danny M.

    2011-01-01

    Fluorescent proteins and dyes are essential tools for the study of protein trafficking, localization and function in cells. While fluorescent proteins such as green fluorescence protein (GFP) have been extensively used as fusion partners to proteins to track the properties of a protein of interest1, recent developments with smaller tags enable new functionalities of proteins to be examined in cells such as conformational change and protein-association 2, 3. One small tag system involves a tetracysteine motif (CCXXCC) genetically inserted into a target protein, which binds to biarsenical dyes, ReAsH (red fluorescent) and FlAsH (green fluorescent), with high specificity even in live cells 2. The TC/biarsenical dye system offers far less steric constraints to the host protein than fluorescent proteins which has enabled several new approaches to measure conformational change and protein-protein interactions 4-7. We recently developed a novel application of TC tags as sensors of oligomerization in cells expressing mutant huntingtin, which when mutated aggregates in neurons in Huntington disease 7. Huntingtin was tagged with two fluorescent dyes, one a fluorescent protein to track protein location, and the second a TC tag which only binds biarsenical dyes in monomers. Hence, changes in colocalization between protein and biarsenical dye reactivity enabled submicroscopic oligomer content to be spatially mapped within cells. Here, we describe how to label TC-tagged proteins fused to a fluorescent protein (Cherry, GFP or CFP) with FlAsH or ReAsH in live mammalian cells and how to quantify the two color fluorescence (Cherry/FlAsH, CFP/FlAsH or GFP/ReAsH combinations). PMID:21897361

  1. Micro-Raman spectroscopy studies of changes in lipid composition in breast and prostate cancer cells treated with MPA and R1881 hormones

    NASA Astrophysics Data System (ADS)

    Potcoava, Mariana C.; Futia, Gregory L.; Aughenbaugh, Jessica; Schlaepfer, Isabel; Gibson, Emily A.

    2014-03-01

    Increasing interest in the role of lipids in cancer cell proliferation or resistance to drug therapies has motivated the need to develop better tools for cellular lipid analysis. Quantification of lipids in cells is typically done by destructive chromatography protocols that do not provide spatial information on lipid distribution and prevent dynamic live cell studies. Methods that allow the analysis of lipid content in live cells is therefore of great importance for research. Using Raman micro-spectroscopy we investigated whether the female hormone medroxyprogesterone acetate (MPA) and the synthetic androgen R1881 affect the lipid expression in breast (T47D) and prostate (LNCaP) cancer cells. Differences were noted in the spectral regions at 830-1800 cm-1 and 2800-3000 cm-1 when comparing different drug treatments. Significant changes were noticed for saturated (1063 - 1125 cm-1, 1295 cm-1 and 1439 cm-1), unsaturated (1262 cm-1 and 1656 cm-1, and 1720 - 1748 cm-1) chemical bonds, suggesting that the composition of the lipid droplets was changed by the hormone treatments. Also, significant differences were observed in the high frequency regions of lipids and proteins at 2851 cm-1 and around 2890 cm-1. Principal component analysis with Linear Discriminant Analysis (PCA-LDA) of the Raman spectra was able to differentiate between cancer cells that were treated with MPA, R1881 or vehicle (P < 0.05). Future work includes analysis to determine exact lipid composition and concentrations as well as development of clinical techniques to characterize differences in patient tumor lipid profiles to determine response to drug treatment and prognosis.

  2. The emerging roles and therapeutic potential of exosomes in epithelial ovarian cancer.

    PubMed

    Li, Xiaoduan; Wang, Xipeng

    2017-05-15

    Ovarian cancer (OC) is one of the three types of malignant tumors in the female reproductive system, and epithelial ovarian cancer (EOC) is its most typical form. Due to the asymptomatic nature of the early stages and resistance to chemotherapy, EOC has both a poor prognosis and a high fatality rate. Current treatments for OC are very limited, and the 5-years survival rate is approximately 30%. Exosomes, which are microvesicles ranging from approximately 30-100 nm in size that are secreted by living cells, can be produced from different cell types and detected in various body fluids. Cancer cells can secrete more exosomes than healthy cells, and more importantly, the content of cancer cell-derived exosomes is distinct. The exosomes shedding from tumor cells are considered to be involved in tumor progression and metastasis. As such, exosomes are expected to be potential tools for tumor diagnosis and treatment. In this review, we briefly present the emerging roles of exosomes in OC and summarize related articles about their roles as diagnostic or prognostic biomarkers and in the treatment and drug resistance of OC.

  3. Cell-permeable nanobodies for targeted immunolabelling and antigen manipulation in living cells

    NASA Astrophysics Data System (ADS)

    Herce, Henry D.; Schumacher, Dominik; Schneider, Anselm F. L.; Ludwig, Anne K.; Mann, Florian A.; Fillies, Marion; Kasper, Marc-André; Reinke, Stefan; Krause, Eberhard; Leonhardt, Heinrich; Cardoso, M. Cristina; Hackenberger, Christian P. R.

    2017-08-01

    Functional antibody delivery in living cells would enable the labelling and manipulation of intracellular antigens, which constitutes a long-thought goal in cell biology and medicine. Here we present a modular strategy to create functional cell-permeable nanobodies capable of targeted labelling and manipulation of intracellular antigens in living cells. The cell-permeable nanobodies are formed by the site-specific attachment of intracellularly stable (or cleavable) cyclic arginine-rich cell-penetrating peptides to camelid-derived single-chain VHH antibody fragments. We used this strategy for the non-endocytic delivery of two recombinant nanobodies into living cells, which enabled the relocalization of the polymerase clamp PCNA (proliferating cell nuclear antigen) and tumour suppressor p53 to the nucleolus, and thereby allowed the detection of protein-protein interactions that involve these two proteins in living cells. Furthermore, cell-permeable nanobodies permitted the co-transport of therapeutically relevant proteins, such as Mecp2, into the cells. This technology constitutes a major step in the labelling, delivery and targeted manipulation of intracellular antigens. Ultimately, this approach opens the door towards immunostaining in living cells and the expansion of immunotherapies to intracellular antigen targets.

  4. Quantitative imaging of glutathione in live cells using a reversible reaction-based ratiometric fluorescent probe

    USDA-ARS?s Scientific Manuscript database

    Glutathione (GSH) plays an important role in maintaining redox homeostasis inside cells. Currently, there are no methods available to quantitatively assess the GSH concentration in live cells. Live cell fluorescence imaging revolutionized the understanding of cell biology and has become an indispens...

  5. Live single cell functional phenotyping in droplet nano-liter reactors.

    PubMed

    Konry, Tania; Golberg, Alexander; Yarmush, Martin

    2013-11-11

    While single cell heterogeneity is present in all biological systems, most studies cannot address it due to technical limitations. Here we describe a nano-liter droplet microfluidic-based approach for stimulation and monitoring of surface and secreted markers of live single immune dendritic cells (DCs) as well as monitoring the live T cell/DC interaction. This nano-liter in vivo simulating microenvironment allows delivering various stimuli reagents to each cell and appropriate gas exchanges which are necessary to ensure functionality and viability of encapsulated cells. Labeling bioassay and microsphere sensors were integrated into nano-liter reaction volume of the droplet to monitor live single cell surface markers and secretion analysis in the time-dependent fashion. Thus live cell stimulation, secretion and surface monitoring can be obtained simultaneously in distinct microenvironment, which previously was possible using complicated and multi-step in vitro and in vivo live-cell microscopy, together with immunological studies of the outcome secretion of cellular function.

  6. Fluorescence Live Cell Imaging

    PubMed Central

    Ettinger, Andreas

    2014-01-01

    Fluorescence microscopy of live cells has become an integral part of modern cell biology. Fluorescent protein tags, live cell dyes, and other methods to fluorescently label proteins of interest provide a range of tools to investigate virtually any cellular process under the microscope. The two main experimental challenges in collecting meaningful live cell microscopy data are to minimize photodamage while retaining a useful signal-to-noise ratio, and to provide a suitable environment for cells or tissues to replicate physiological cell dynamics. This chapter aims to give a general overview on microscope design choices critical for fluorescence live cell imaging that apply to most fluorescence microscopy modalities, and on environmental control with a focus on mammalian tissue culture cells. In addition, we provide guidance on how to design and evaluate fluorescent protein constructs by spinning disk confocal microscopy. PMID:24974023

  7. Cortactin promotes exosome secretion by controlling branched actin dynamics

    PubMed Central

    Sinha, Seema; Hoshino, Daisuke; Hong, Nan Hyung; Seiki, Motoharu; Tyska, Matthew J.

    2016-01-01

    Exosomes are extracellular vesicles that influence cellular behavior and enhance cancer aggressiveness by carrying bioactive molecules. The mechanisms that regulate exosome secretion are poorly understood. Here, we show that the actin cytoskeletal regulatory protein cortactin promotes exosome secretion. Knockdown or overexpression of cortactin in cancer cells leads to a respective decrease or increase in exosome secretion, without altering exosome cargo content. Live-cell imaging revealed that cortactin controls both trafficking and plasma membrane docking of multivesicular late endosomes (MVEs). Regulation of exosome secretion by cortactin requires binding to the branched actin nucleating Arp2/3 complex and to actin filaments. Furthermore, cortactin, Rab27a, and coronin 1b coordinately control stability of cortical actin MVE docking sites and exosome secretion. Functionally, the addition of purified exosomes to cortactin-knockdown cells rescued defects of those cells in serum-independent growth and invasion. These data suggest a model in which cortactin promotes exosome secretion by stabilizing cortical actin-rich MVE docking sites. PMID:27402952

  8. Cortactin promotes exosome secretion by controlling branched actin dynamics.

    PubMed

    Sinha, Seema; Hoshino, Daisuke; Hong, Nan Hyung; Kirkbride, Kellye C; Grega-Larson, Nathan E; Seiki, Motoharu; Tyska, Matthew J; Weaver, Alissa M

    2016-07-18

    Exosomes are extracellular vesicles that influence cellular behavior and enhance cancer aggressiveness by carrying bioactive molecules. The mechanisms that regulate exosome secretion are poorly understood. Here, we show that the actin cytoskeletal regulatory protein cortactin promotes exosome secretion. Knockdown or overexpression of cortactin in cancer cells leads to a respective decrease or increase in exosome secretion, without altering exosome cargo content. Live-cell imaging revealed that cortactin controls both trafficking and plasma membrane docking of multivesicular late endosomes (MVEs). Regulation of exosome secretion by cortactin requires binding to the branched actin nucleating Arp2/3 complex and to actin filaments. Furthermore, cortactin, Rab27a, and coronin 1b coordinately control stability of cortical actin MVE docking sites and exosome secretion. Functionally, the addition of purified exosomes to cortactin-knockdown cells rescued defects of those cells in serum-independent growth and invasion. These data suggest a model in which cortactin promotes exosome secretion by stabilizing cortical actin-rich MVE docking sites. © 2016 Sinha et al.

  9. Tunneling nanotube (TNT) formation is downregulated by cytarabine and NF-κB inhibition in acute myeloid leukemia (AML)

    PubMed Central

    Omsland, Maria; Bruserud, Øystein; Gjertsen, Bjørn T; Andresen, Vibeke

    2017-01-01

    Acute myeloid leukemia (AML) is a bone marrow derived blood cancer where intercellular communication in the leukemic bone marrow participates in disease development, progression and chemoresistance. Tunneling nanotubes (TNTs) are intercellular communication structures involved in transport of cellular contents and pathogens, also demonstrated to play a role in both cell death modulation and chemoresistance. Here we investigated the presence of TNTs by live fluorescent microscopy and identified TNT formation between primary AML cells and in AML cell lines. We found that NF-κB activity was involved in TNT regulation and formation. Cytarabine downregulated TNTs and inhibited NF-κB alone and in combination with daunorubicin, providing additional support for involvement of the NF-κB pathway in TNT formation. Interestingly, daunorubicin was found to localize to lysosomes in TNTs connecting AML cells indicating a novel function of TNTs as drug transporting devices. We conclude that TNT communication could reflect important biological features of AML that may be explored in future therapy development. PMID:27974700

  10. Microbial Burden Approach : New Monitoring Approach for Measuring Microbial Burden

    NASA Technical Reports Server (NTRS)

    Venkateswaran, Kasthuri; Vaishampayan, Parag; Barmatz, Martin

    2013-01-01

    Advantages of new approach for differentiating live cells/ spores from dead cells/spores. Four examples of Salmonella outbreaks leading to costly destruction of dairy products. List of possible collaboration activities between JPL and other industries (for future discussion). Limitations of traditional microbial monitoring approaches. Introduction to new approach for rapid measurement of viable (live) bacterial cells/spores and its areas of application. Detailed example for determining live spores using new approach (similar procedure for determining live cells). JPL has developed a patented approach for measuring amount of live and dead cells/spores. This novel "molecular" method takes less than 5 to 7 hrs. compared to the seven days required using conventional techniques. Conventional "molecular" techniques can not discriminate live cells/spores among dead cells/spores. The JPL-developed novel method eliminates false positive results obtained from conventional "molecular" techniques that lead to unnecessary delay in the processing and to unnecessary destruction of food products.

  11. Analyzing the dynamics of cell cycle processes from fixed samples through ergodic principles

    PubMed Central

    Wheeler, Richard John

    2015-01-01

    Tools to analyze cyclical cellular processes, particularly the cell cycle, are of broad value for cell biology. Cell cycle synchronization and live-cell time-lapse observation are widely used to analyze these processes but are not available for many systems. Simple mathematical methods built on the ergodic principle are a well-established, widely applicable, and powerful alternative analysis approach, although they are less widely used. These methods extract data about the dynamics of a cyclical process from a single time-point “snapshot” of a population of cells progressing through the cycle asynchronously. Here, I demonstrate application of these simple mathematical methods to analysis of basic cyclical processes—cycles including a division event, cell populations undergoing unicellular aging, and cell cycles with multiple fission (schizogony)—as well as recent advances that allow detailed mapping of the cell cycle from continuously changing properties of the cell such as size and DNA content. This includes examples using existing data from mammalian, yeast, and unicellular eukaryotic parasite cell biology. Through the ongoing advances in high-throughput cell analysis by light microscopy, electron microscopy, and flow cytometry, these mathematical methods are becoming ever more important and are a powerful complementary method to traditional synchronization and time-lapse cell cycle analysis methods. PMID:26543196

  12. Molecular Medicine II: Hormone Dependent Cancers

    DTIC Science & Technology

    2005-04-01

    multimode, live-cell videomicroscopy - we are analyzing the cycles of centrosome amplification in living S-phase arrested cells. Finally, we will directly...living cells by time-lapse multi-mode videomicroscopy . The key construct for our work is the generation of a mammalian somatic cell line stably expressing

  13. Live imaging of apoptotic cells in zebrafish

    PubMed Central

    van Ham, Tjakko J.; Mapes, James; Kokel, David; Peterson, Randall T.

    2010-01-01

    Many debilitating diseases, including neurodegenerative diseases, involve apoptosis. Several methods have been developed for visualizing apoptotic cells in vitro or in fixed tissues, but few tools are available for visualizing apoptotic cells in live animals. Here we describe a genetically encoded fluorescent reporter protein that labels apoptotic cells in live zebrafish embryos. During apoptosis, the phospholipid phosphatidylserine (PS) is exposed on the outer leaflet of the plasma membrane. The calcium-dependent protein Annexin V (A5) binds PS with high affinity, and biochemically purified, fluorescently labeled A5 probes have been widely used to detect apoptosis in vitro. Here we show that secreted A5 fused to yellow fluorescent protein specifically labels apoptotic cells in living zebrafish. We use this fluorescent probe to characterize patterns of apoptosis in living zebrafish larvae and to visualize neuronal cell death at single-cell resolution in vivo.—Van Ham, T. J., Mapes, J., Kokel, D., Peterson, R. T. Live imaging of apoptotic cells in zebrafish. PMID:20601526

  14. High-resolution Identification and Separation of Living Cell Types by Multiple microRNA-responsive Synthetic mRNAs.

    PubMed

    Endo, Kei; Hayashi, Karin; Saito, Hirohide

    2016-02-23

    The precise identification and separation of living cell types is critical to both study cell function and prepare cells for medical applications. However, intracellular information to distinguish live cells remains largely inaccessible. Here, we develop a method for high-resolution identification and separation of cell types by quantifying multiple microRNA (miRNA) activities in live cell populations. We found that a set of miRNA-responsive, in vitro synthesized mRNAs identify a specific cell population as a sharp peak and clearly separate different cell types based on less than two-fold differences in miRNA activities. Increasing the number of miRNA-responsive mRNAs enhanced the capability for cell identification and separation, as we precisely and simultaneously distinguished different cell types with similar miRNA profiles. In addition, the set of synthetic mRNAs separated HeLa cells into subgroups, uncovering heterogeneity of the cells and the level of resolution achievable. Our method could identify target live cells and improve the efficiency of cell purification from heterogeneous populations.

  15. Microarray hybridization for assessment of the genetic stability of chimeric West Nile/dengue 4 virus.

    PubMed

    Laassri, Majid; Bidzhieva, Bella; Speicher, James; Pletnev, Alexander G; Chumakov, Konstantin

    2011-05-01

    Genetic stability is an important characteristic of live viral vaccines because an accumulation of mutants can cause reversion to a virulent phenotype as well as a loss of immunogenic properties. This study was aimed at evaluating the genetic stability of a live attenuated West Nile (WN) virus vaccine candidate that was generated by replacing the pre-membrane and envelope protein genes of dengue 4 virus with those from WN. Chimeric virus was serially propagated in Vero, SH-SY5Y human neuroblastoma and HeLa cells and screened for point mutations using hybridization with microarrays of overlapping oligonucleotide probes covering the entire genome. The analysis revealed several spontaneous mutations that led to amino acid changes, most of which were located in the envelope (E) and non-structural NS4A, NS4B, and NS5 proteins. Viruses passaged in Vero and SH-SY5Y cells shared two common mutations: G(2337) C (Met(457) Ile) in the E gene and A(6751) G (Lys(125) Arg) in the NS4A gene. Quantitative assessment of the contents of these mutants in viral stocks indicated that they accumulated independently with different kinetics during propagation in cell cultures. Mutant viruses grew better in Vero cells compared to the parental virus, suggesting that they have a higher fitness. When tested in newborn mice, the cell culture-passaged viruses did not exhibit increased neurovirulence. The approach described in this article could be useful for monitoring the molecular consistency and quality control of vaccine strains. Copyright © 2011 Wiley-Liss, Inc.

  16. Microarray Hybridization for Assessment of the Genetic Stability of Chimeric West Nile/Dengue 4 Virus

    PubMed Central

    Laassri, Majid; Bidzhieva, Bella; Speicher, James; Pletnev, Alexander G.; Chumakov, Konstantin

    2012-01-01

    Genetic stability is an important characteristic of live viral vaccines because an accumulation of mutants can cause reversion to a virulent phenotype as well as a loss of immunogenic properties. This study was aimed at evaluating the genetic stability of a live attenuated West Nile (WN) virus vaccine candidate that was generated by replacing the pre-membrane and envelope protein genes of dengue 4 virus with those from WN. Chimeric virus was serially propagated in Vero, SH-SY5Y human neuroblastoma and HeLa cells and screened for point mutations using hybridization with microarrays of overlapping oligonucleotide probes covering the entire genome. The analysis revealed several spontaneous mutations that led to amino acid changes, most of which were located in the envelope (E) and non-structural NS4A, NS4B, and NS5 proteins. Viruses passaged in Vero and SH-SY5Y cells shared two common mutations: G2337C (Met457Ile) in the E gene and A6751G (Lys125Arg) in the NS4A gene. Quantitative assessment of the contents of these mutants in viral stocks indicated that they accumulated independently with different kinetics during propagation in cell cultures. Mutant viruses grew better in Vero cells compared to the parental virus, suggesting that they have a higher fitness. When tested in newborn mice, the cell culture-passaged viruses did not exhibit increased neurovirulence. The approach described in this paper could be useful for monitoring the molecular consistency and quality control of vaccine strains. PMID:21360544

  17. A Structural Framework for a Near-Minimal Form of Life: Mass and Compositional Analysis of the Helical Mollicute Spiroplasma melliferum BC3

    PubMed Central

    Trachtenberg, Shlomo; Schuck, Peter; Phillips, Terry M.; Andrews, S. Brian; Leapman, Richard D.

    2014-01-01

    Spiroplasma melliferum is a wall-less bacterium with dynamic helical geometry. This organism is geometrically well defined and internally well ordered, and has an exceedingly small genome. Individual cells are chemotactic, polar, and swim actively. Their dynamic helicity can be traced at the molecular level to a highly ordered linear motor (composed essentially of the proteins fib and MreB) that is positioned on a defined helical line along the internal face of the cell’s membrane. Using an array of complementary, informationally overlapping approaches, we have taken advantage of this uniquely simple, near-minimal life-form and its helical geometry to analyze the copy numbers of Spiroplasma’s essential parts, as well as to elucidate how these components are spatially organized to subserve the whole living cell. Scanning transmission electron microscopy (STEM) was used to measure the mass-per-length and mass-per-area of whole cells, membrane fractions, intact cytoskeletons and cytoskeletal components. These local data were fit into whole-cell geometric parameters determined by a variety of light microscopy modalities. Hydrodynamic data obtained by analytical ultracentrifugation allowed computation of the hydration state of whole living cells, for which the relative amounts of protein, lipid, carbohydrate, DNA, and RNA were also estimated analytically. Finally, ribosome and RNA content, genome size and gene expression were also estimated (using stereology, spectroscopy and 2D-gel analysis, respectively). Taken together, the results provide a general framework for a minimal inventory and arrangement of the major cellular components needed to support life. PMID:24586297

  18. Automation of 3D cell culture using chemically defined hydrogels.

    PubMed

    Rimann, Markus; Angres, Brigitte; Patocchi-Tenzer, Isabel; Braum, Susanne; Graf-Hausner, Ursula

    2014-04-01

    Drug development relies on high-throughput screening involving cell-based assays. Most of the assays are still based on cells grown in monolayer rather than in three-dimensional (3D) formats, although cells behave more in vivo-like in 3D. To exemplify the adoption of 3D techniques in drug development, this project investigated the automation of a hydrogel-based 3D cell culture system using a liquid-handling robot. The hydrogel technology used offers high flexibility of gel design due to a modular composition of a polymer network and bioactive components. The cell inert degradation of the gel at the end of the culture period guaranteed the harmless isolation of live cells for further downstream processing. Human colon carcinoma cells HCT-116 were encapsulated and grown in these dextran-based hydrogels, thereby forming 3D multicellular spheroids. Viability and DNA content of the cells were shown to be similar in automated and manually produced hydrogels. Furthermore, cell treatment with toxic Taxol concentrations (100 nM) had the same effect on HCT-116 cell viability in manually and automated hydrogel preparations. Finally, a fully automated dose-response curve with the reference compound Taxol showed the potential of this hydrogel-based 3D cell culture system in advanced drug development.

  19. Divergent discourse between protests and counter-protests: #BlackLivesMatter and #AllLivesMatter

    PubMed Central

    Reagan, Andrew J.; Danforth, Christopher M.; Dodds, Peter Sheridan

    2018-01-01

    Since the shooting of Black teenager Michael Brown by White police officer Darren Wilson in Ferguson, Missouri, the protest hashtag #BlackLivesMatter has amplified critiques of extrajudicial killings of Black Americans. In response to #BlackLivesMatter, other Twitter users have adopted #AllLivesMatter, a counter-protest hashtag whose content argues that equal attention should be given to all lives regardless of race. Through a multi-level analysis of over 860,000 tweets, we study how these protests and counter-protests diverge by quantifying aspects of their discourse. We find that #AllLivesMatter facilitates opposition between #BlackLivesMatter and hashtags such as #PoliceLivesMatter and #BlueLivesMatter in such a way that historically echoes the tension between Black protesters and law enforcement. In addition, we show that a significant portion of #AllLivesMatter use stems from hijacking by #BlackLivesMatter advocates. Beyond simply injecting #AllLivesMatter with #BlackLivesMatter content, these hijackers use the hashtag to directly confront the counter-protest notion of “All lives matter.” Our findings suggest that Black Lives Matter movement was able to grow, exhibit diverse conversations, and avoid derailment on social media by making discussion of counter-protest opinions a central topic of #AllLivesMatter, rather than the movement itself. PMID:29668754

  20. Mentha piperita as a pivotal neuro-protective agent against gamma irradiation induced DNA fragmentation and apoptosis : Mentha extract as a neuroprotective against gamma irradiation.

    PubMed

    Hassan, Hanaa A; Hafez, Hani S; Goda, Mona S

    2013-01-01

    Ionizing radiation is classified as a potent carcinogen, and its injury to living cells, in particular to DNA, is due to oxidative stress enhancing apoptotic cell death. Our present study aimed to characterize and semi-quantify the radiation-induced apoptosis in CNS and the activity of Mentha extracts as neuron-protective agent. Our results through flow cytometry exhibited the significant disturbance and arrest in cell cycle in % of M1: SubG1 phase, M2: G0/1 phase of diploid cycle, M3: S phase and M4: G2/M phase of cell cycle in brain tissue (p < 0.05). Significant increase in % of apoptosis and P53 protein expression as apoptotic biomarkers were coincided with significant decrease in Bcl(2) as an anti-apoptotic marker. The biochemical analysis recorded a significant decrease in the levels of reduced glutathione, superoxide dismutase, deoxyribonucleic acid (DNA) and ribonucleic acid contents. Moreover, numerous histopathological alterations were detected in brain tissues of gamma irradiated mice such as signs of chromatolysis in pyramidal cells of cortex, nuclear vacuolation, numerous apoptotic cell, and neural degeneration. On the other hand, gamma irradiated mice pretreated with Mentha extract showed largely an improvement in all the above tested parameters through a homeostatic state for the content of brain apoptosis and stabilization of DNA cycle with a distinct improvement in cell cycle analysis and antioxidant defense system. Furthermore, the aforementioned effects of Mentha extracts through down-regulation of P53 expression and up-regulation of Bcl(2) domain protected brain structure from extensive damage. Therefore, Mentha extract seems to have a significant role to ameliorate the neuronal injury induced by gamma irradiation.

  1. Direct Force Measurements of Receptor-Ligand Interactions on Living Cells

    NASA Astrophysics Data System (ADS)

    Eibl, Robert H.

    The characterization of cell adhesion between two living cells at the level of single receptor-ligand bonds is an experimental challenge. This chapter describes how the extremely sensitive method of atomic force microscopy (AFM) based force spectroscopy can be applied to living cells in order to probe for cell-to-cell or cell-to-substrate interactions mediated by single pairs of adhesion receptors. In addition, it is outlined how single-molecule AFM force spectroscopy can be used to detect physiologic changes of an adhesion receptor in a living cell. This force spectroscopy allows us to detect in living cells rapidly changing, chemokine SDF-1 triggered activation states of single VLA-4 receptors. This recently developed AFM application will allow for the detailed investigation of the integrin-chemokine crosstalk of integrin activation mechanisms and on how other adhesion receptors are modulated in health and disease. As adhesion molecules, living cells and even bacteria can be studied by single-molecule AFM force spectroscopy, this method is set to become a powerful tool that can not only be used in biophysics, but in cell biology as well as in immunology and cancer research.

  2. Insertion of Vertically Aligned Nanowires into Living Cells by Inkjet Printing of Cells.

    PubMed

    Lee, Donggyu; Lee, Daehee; Won, Yulim; Hong, Hyeonaug; Kim, Yongjae; Song, Hyunwoo; Pyun, Jae-Chul; Cho, Yong Soo; Ryu, Wonhyoung; Moon, Jooho

    2016-03-01

    Effective insertion of vertically aligned nanowires (NWs) into cells is critical for bioelectrical and biochemical devices, biological delivery systems, and photosynthetic bioenergy harvesting. However, accurate insertion of NWs into living cells using scalable processes has not yet been achieved. Here, NWs are inserted into living Chlamydomonas reinhardtii cells (Chlamy cells) via inkjet printing of the Chlamy cells, representing a low-cost and large-scale method for inserting NWs into living cells. Jetting conditions and printable bioink composed of living Chlamy cells are optimized to achieve stable jetting and precise ink deposition of bioink for indentation of NWs into Chlamy cells. Fluorescence confocal microscopy is used to verify the viability of Chlamy cells after inkjet printing. Simple mechanical considerations of the cell membrane and droplet kinetics are developed to control the jetting force to allow penetration of the NWs into cells. The results suggest that inkjet printing is an effective, controllable tool for stable insertion of NWs into cells with economic and scale-related advantages. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A review of satellite-based methods of estimating live fuel moisture content for fire danger assessment: moving towards operational products

    USDA-ARS?s Scientific Manuscript database

    One of the primary variables affecting ignition and spread of wildfire is fuel moisture content (FMC), which is the ratio of water mass to dry mass in living and dead plant material. Because dead FMC may be estimated from available weather data, remote sensing is needed to monitor the spatial distr...

  4. Imprinting the Fate of Antigen-Reactive B Cells through the Affinity of the B Cell Receptor

    PubMed Central

    O'Connor, Brian P.; Vogel, Laura A.; Zhang, Weijun; Loo, William; Shnider, Danielle; Lind, Evan F.; Ratliff, Michelle; Noelle, Randolph J.; Erickson, Loren D.

    2010-01-01

    Long-lived plasma cells (PCs) and memory B cells (Bmem) constitute the cellular components of enduring humoral immunity, whereas short-lived PCs that rapidly produce Ig correspond to the host's need for immediate protection against pathogens. In this study we show that the innate affinity of the BCR for Ag imprints upon naive B cells their differentiation fate to become short-or long-lived PCs and Bmem. Using BCR transgenic mice with varying affinities for Ag, naive B cells with high affinity lose their capacity to form germinal centers (GCs), develop neither Bmem nor long-lived PCs, and are destined to a short-lived PC fate. Moderate affinity interactions result in hastened GC responses, and differentiation to long-lived PCs, but Bmem remain extinct. In contrast, lower affinity interactions show tempered GCs, producing Bmem and affinity-matured, long-lived PCs. Thus, a continuum of elementary to comprehensive humoral immune responses exists that is controlled by inherent BCR affinity. PMID:17114443

  5. Next-Generation Theranostic Agents Based on Polyelectrolyte Microcapsules Encoded with Semiconductor Nanocrystals: Development and Functional Characterization

    NASA Astrophysics Data System (ADS)

    Nifontova, Galina; Zvaigzne, Maria; Baryshnikova, Maria; Korostylev, Evgeny; Ramos-Gomes, Fernanda; Alves, Frauke; Nabiev, Igor; Sukhanova, Alyona

    2018-01-01

    Fabrication of polyelectrolyte microcapsules and their use as carriers of drugs, fluorescent labels, and metal nanoparticles is a promising approach to designing theranostic agents. Semiconductor quantum dots (QDs) are characterized by extremely high brightness and photostability that make them attractive fluorescent labels for visualization of intracellular penetration and delivery of such microcapsules. Here, we describe an approach to design, fabricate, and characterize physico-chemical and functional properties of polyelectrolyte microcapsules encoded with water-solubilized and stabilized with three-functional polyethylene glycol derivatives core/shell QDs. Developed microcapsules were characterized by dynamic light scattering, electrophoretic mobility, scanning electronic microscopy, and fluorescence and confocal microscopy approaches, providing exact data on their size distribution, surface charge, morphological, and optical characteristics. The fluorescence lifetimes of the QD-encoded microcapsules were also measured, and their dependence on time after preparation of the microcapsules was evaluated. The optimal content of QDs used for encoding procedure providing the optimal fluorescence properties of the encoded microcapsules was determined. Finally, the intracellular microcapsule uptake by murine macrophages was demonstrated, thus confirming the possibility of efficient use of developed system for live cell imaging and visualization of microcapsule transportation and delivery within the living cells.

  6. Intelligent data analysis to model and understand live cell time-lapse sequences.

    PubMed

    Paterson, Allan; Ashtari, M; Ribé, D; Stenbeck, G; Tucker, A

    2012-01-01

    One important aspect of cellular function, which is at the basis of tissue homeostasis, is the delivery of proteins to their correct destinations. Significant advances in live cell microscopy have allowed tracking of these pathways by following the dynamics of fluorescently labelled proteins in living cells. This paper explores intelligent data analysis techniques to model the dynamic behavior of proteins in living cells as well as to classify different experimental conditions. We use a combination of decision tree classification and hidden Markov models. In particular, we introduce a novel approach to "align" hidden Markov models so that hidden states from different models can be cross-compared. Our models capture the dynamics of two experimental conditions accurately with a stable hidden state for control data and multiple (less stable) states for the experimental data recapitulating the behaviour of particle trajectories within live cell time-lapse data. In addition to having successfully developed an automated framework for the classification of protein transport dynamics from live cell time-lapse data our model allows us to understand the dynamics of a complex trafficking pathway in living cells in culture.

  7. qSR: a quantitative super-resolution analysis tool reveals the cell-cycle dependent organization of RNA Polymerase I in live human cells.

    PubMed

    Andrews, J O; Conway, W; Cho, W -K; Narayanan, A; Spille, J -H; Jayanth, N; Inoue, T; Mullen, S; Thaler, J; Cissé, I I

    2018-05-09

    We present qSR, an analytical tool for the quantitative analysis of single molecule based super-resolution data. The software is created as an open-source platform integrating multiple algorithms for rigorous spatial and temporal characterizations of protein clusters in super-resolution data of living cells. First, we illustrate qSR using a sample live cell data of RNA Polymerase II (Pol II) as an example of highly dynamic sub-diffractive clusters. Then we utilize qSR to investigate the organization and dynamics of endogenous RNA Polymerase I (Pol I) in live human cells, throughout the cell cycle. Our analysis reveals a previously uncharacterized transient clustering of Pol I. Both stable and transient populations of Pol I clusters co-exist in individual living cells, and their relative fraction vary during cell cycle, in a manner correlating with global gene expression. Thus, qSR serves to facilitate the study of protein organization and dynamics with very high spatial and temporal resolutions directly in live cell.

  8. Quantitative imaging of lipids in live mouse oocytes and early embryos using CARS microscopy

    PubMed Central

    Bradley, Josephine; Pope, Iestyn; Masia, Francesco; Sanusi, Randa; Langbein, Wolfgang; Borri, Paola

    2016-01-01

    Mammalian oocytes contain lipid droplets that are a store of fatty acids, whose metabolism plays a substantial role in pre-implantation development. Fluorescent staining has previously been used to image lipid droplets in mammalian oocytes and embryos, but this method is not quantitative and often incompatible with live cell imaging and subsequent development. Here we have applied chemically specific, label-free coherent anti-Stokes Raman scattering (CARS) microscopy to mouse oocytes and pre-implantation embryos. We show that CARS imaging can quantify the size, number and spatial distribution of lipid droplets in living mouse oocytes and embryos up to the blastocyst stage. Notably, it can be used in a way that does not compromise oocyte maturation or embryo development. We have also correlated CARS with two-photon fluorescence microscopy simultaneously acquired using fluorescent lipid probes on fixed samples, and found only a partial degree of correlation, depending on the lipid probe, clearly exemplifying the limitation of lipid labelling. In addition, we show that differences in the chemical composition of lipid droplets in living oocytes matured in media supplemented with different saturated and unsaturated fatty acids can be detected using CARS hyperspectral imaging. These results demonstrate that CARS microscopy provides a novel non-invasive method of quantifying lipid content, type and spatial distribution with sub-micron resolution in living mammalian oocytes and embryos. PMID:27151947

  9. Quantitative imaging of lipids in live mouse oocytes and early embryos using CARS microscopy.

    PubMed

    Bradley, Josephine; Pope, Iestyn; Masia, Francesco; Sanusi, Randa; Langbein, Wolfgang; Swann, Karl; Borri, Paola

    2016-06-15

    Mammalian oocytes contain lipid droplets that are a store of fatty acids, whose metabolism plays a substantial role in pre-implantation development. Fluorescent staining has previously been used to image lipid droplets in mammalian oocytes and embryos, but this method is not quantitative and often incompatible with live cell imaging and subsequent development. Here we have applied chemically specific, label-free coherent anti-Stokes Raman scattering (CARS) microscopy to mouse oocytes and pre-implantation embryos. We show that CARS imaging can quantify the size, number and spatial distribution of lipid droplets in living mouse oocytes and embryos up to the blastocyst stage. Notably, it can be used in a way that does not compromise oocyte maturation or embryo development. We have also correlated CARS with two-photon fluorescence microscopy simultaneously acquired using fluorescent lipid probes on fixed samples, and found only a partial degree of correlation, depending on the lipid probe, clearly exemplifying the limitation of lipid labelling. In addition, we show that differences in the chemical composition of lipid droplets in living oocytes matured in media supplemented with different saturated and unsaturated fatty acids can be detected using CARS hyperspectral imaging. These results demonstrate that CARS microscopy provides a novel non-invasive method of quantifying lipid content, type and spatial distribution with sub-micron resolution in living mammalian oocytes and embryos. © 2016. Published by The Company of Biologists Ltd.

  10. Plasma membrane cholesterol level and agonist-induced internalization of δ-opioid receptors; colocalization study with intracellular membrane markers of Rab family.

    PubMed

    Brejchova, Jana; Vosahlikova, Miroslava; Roubalova, Lenka; Parenti, Marco; Mauri, Mario; Chernyavskiy, Oleksandr; Svoboda, Petr

    2016-08-01

    Decrease of cholesterol level in plasma membrane of living HEK293 cells transiently expressing FLAG-δ-OR by β-cyclodextrin (β-CDX) resulted in a slight internalization of δ-OR. Massive internalization of δ-OR induced by specific agonist DADLE was diminished in cholesterol-depleted cells. These results suggest that agonist-induced internalization of δ-OR, which has been traditionally attributed exclusively to clathrin-mediated pathway, proceeds at least partially via membrane domains. Identification of internalized pools of FLAG-δ-OR by colocalization studies with proteins of Rab family indicated the decreased presence of receptors in early endosomes (Rab5), late endosomes and lysosomes (Rab7) and fast recycling vesicles (Rab4). Slow type of recycling (Rab11) was unchanged by cholesterol depletion. As expected, agonist-induced internalization of oxytocin receptors was totally suppressed in β-CDX-treated cells. Determination of average fluorescence lifetime of TMA-DPH, the polar derivative of hydrophobic membrane probe diphenylhexatriene, in live cells by FLIM indicated a significant alteration of the overall PM structure which may be interpreted as an increased "water-accessible space" within PM area. Data obtained by studies of HEK293 cells transiently expressing FLAG-δ-OR by "antibody feeding" method were extended by analysis of the effect of cholesterol depletion on distribution of FLAG-δ-OR in sucrose density gradients prepared from HEK293 cells stably expressing FLAG-δ-OR. Major part of FLAG-δ-OR was co-localized with plasma membrane marker Na,K-ATPase and β-CDX treatment resulted in shift of PM fragments containing both FLAG-δ-OR and Na,K-ATPase to higher density. Thus, the decrease in content of the major lipid constituent of PM resulted in increased density of resulting PM fragments.

  11. Quantitative Analysis, Design, and Fabrication of Biosensing and Bioprocessing Devices in Living Cells

    DTIC Science & Technology

    2015-03-10

    AFRL-OSR-VA-TR-2015-0080 Biosensing and Bioprocessing Devices in Living Cells Domitilla Del Vecchio MASSACHUSETTS INSTITUTE OF TECHNOLOGY Final...Of Biosensing And Bioprocessing Devices In Living Cells FA9550-12-1-0129 D. Del Vecchio Massachusetts Institute of Technology -- 77 Massachusetts...research is to develop quantitative techniques for the de novo design and fabrication of biosensing devices in living cells . Such devices will be entirely

  12. Changes in carbohydrate content and membrane stability of two ecotypes of Calamagrostis arundinacea growing at different elevations in the drawdown zone of the Three Gorges Reservoir.

    PubMed

    Lei, Shutong; Zeng, Bo; Yuan, Zhi; Su, Xiaolei

    2014-01-01

    The Three Gorges project has caused many ecosystem problems. Ecological restoration using readily-available plants is an effective way of mitigating environmental impacts. Two perennial submergence-tolerant ecotypes of Calamagrostis arundinacea were planted in an experimental field in the drawdown zone. Responses of the two plant ecotypes to flooding stress in the drawdown zone were unknown. Carbohydrate content and membrane stability, two key factors for survival of plants under flooding stress, of two ecotypes (designated "dwarf" and "green") of C. arundinacea growing at different elevations of the drawdown zone were investigated. Live stems (LS) and dead stems (DS) of the two plant ecotypes at eight elevations (175, 170, 162, 160, 158, 155, 152 m and 149 m) were sampled. Contents of soluble sugar, starch and malondialdehyde (MDA), as well as plasma membrane permeability of live stems were measured. The lowest elevations for survival of dwarf and green C. arundinacea were 160 m and 158 m, respectively. Soluble sugar content of live stems of both ecotypes decreased with elevation, with amounts from an elevation of 170 m being lower than from an elevation of 175 m. MDA content and plasma membrane permeability in live stems of green C. arundinacea did not increase with the decrease in elevation, while these measures in dwarf C. arundinacea from an elevation of 162 m were significantly higher than from an elevation of 175 m. Carbohydrate content, especially soluble sugar content, in both ecotypes was more sensitive to flooding stress than membrane stability. Green C. arundinacea had a higher tolerance to submergence than dwarf C. arundinacea, and thus green C. arundinacea can be planted at lower elevations than dwarf C. arundinacea.

  13. Mast cell, the peculiar member of the immune system: A homeostatic aspect.

    PubMed

    Csaba, György

    2015-09-01

    The mast cell is a member of the immune system having a basic role in allergic (anaphylactic) reactions. However, it contains, synthesizes, stores and secretes lots of substances, which initiates other reactions or participates in them. These are in connection with the deterioration of tissue correlation, as malignant tumors, angiogenesis, wound healing, pregnancy and different pathological conditions. In addition - as other members of the immune system - mast cells can synthesize, store and secrete hormones characteristic to the endocrine glands and can transport them to the site of requirement (packed transport), or produce and employ them locally. The effect of mast cells is controversial and frequently dual, stimulatory or inhibitory to the same organ or process. This is likely due to the heterogeneity of the mast cells, in morphology and cell content alike and dependent on the actual condition of the targeted tissue. The cells are transported in an unmatured form by the blood circulation and are exposed to microenvironmental effects, which influence their maturation. Their enrichment around tumors suggested using them as targets for tumor therapy more than fifty years ago (by the author), however, this idea lives its renaissance now. The review discusses the facts and ideas critically.

  14. Real-time Raman spectroscopy of optically trapped living cells and organelles

    NASA Astrophysics Data System (ADS)

    Xie, Changan; Goodman, Charles; Dinno, Mumtaz A.; Li, Yong-Qing

    2004-12-01

    We report on real-time Raman spectroscopic studies of optically trapped living cells and organelles using an inverted confocal laser-tweezers-Raman-spectroscopy (LTRS) system. The LTRS system was used to hold a single living cell in a physiological solution or to hold a functional organelle within a living cell and consequently measured its Raman spectra. We have measured the changes in Raman spectra of a trapped yeast cell as the function of the temperature of the bathing solution and studied the irreversible cell degeneration during the heat denaturation. In addition, we measured the in-vitro Raman spectra of the nuclei within living pine cells and B. sporeformer, Strep. salivarius, and E. coli bacteria suspended in solution and showed the possibility of using LTRS system as a sensor for rapid identification of microbes in a fluid.

  15. Morphological Analysis of Live Undifferentiated Cells Derived from Induced Pluripotent Stem Cells.

    PubMed

    Osawa, Yukihiko; Miyamoto, Tomoyuki; Ohno, Setsuyo; Ohno, Eiji

    2018-01-01

    Induced pluripotent stem (iPS) cells possess pluripotency and self-renewal ability. Therefore, iPS cells are expected to be useful in regenerative medicine. However, iPS cells form malignant immature teratomas after transplantation into animals, even after differentiation induction. It has been suggested that undifferentiated cells expressing Nanog that remain after differentiation induction are responsible for teratoma formation. Various methods of removing these undifferentiated cells have therefore been investigated, but few methods involve morphological approaches, which may induce less cell damage. In addition, for cells derived from iPS cells to be applied in regenerative medicine, they must be alive. However, detailed morphological analysis of live undifferentiated cells has not been performed. For the above reasons, we assessed the morphological features of live undifferentiated cells remaining after differentiation induction as a basic investigation into the clinical application of iPS cells. As a result, live undifferentiated cells remaining after differentiation induction exhibited a round or oval cytoplasm about 12 μm in diameter and a nucleus. They exhibited nucleo-cytoplasmic (N/C) ratio of about 60% and eccentric nuclei, and they possessed partially granule-like structures in the cytoplasm and prominent nucleoli. Although they were similar to iPS cells, they were smaller than live iPS cells. Furthermore, very small cells were present among undifferentiated cells after differentiation induction. These results suggest that the removal of undifferentiated cells may be possible using the morphological features of live iPS cells and undifferentiated cells after differentiation induction. In addition, this study supports safe regenerative medicine using iPS cells.

  16. Evaluating the efficacy of subcellular fractionation of blast cells using live cell labeling and 2D DIGE.

    PubMed

    Ho, Yin Ying; Penno, Megan; Perugini, Michelle; Lewis, Ian; Hoffmann, Peter

    2012-01-01

    Labeling of exposed cell surface proteins of live cells using CyDye DIGE fluor minimal dyes is an efficient strategy for cell surface proteome profiling and quantifying differentially expressed proteins in diseases. Here we describe a strategy to evaluate a two-step detergent-based protein fractionation method using live cell labeling followed by visualization of the fluorescently labeled cell surface proteins and fractionated proteins within a single 2D gel.

  17. Kinase Activity Studied in Living Cells Using an Immunoassay

    ERIC Educational Resources Information Center

    Bavec, Aljos?a

    2014-01-01

    This laboratory exercise demonstrates the use of an immunoassay for studying kinase enzyme activity in living cells. The advantage over the classical method, in which students have to isolate the enzyme from cell material and measure its activity in vitro, is that enzyme activity is modulated and measured in living cells, providing a more…

  18. Contribution of microorganisms to non-extractable residue formation during biodegradation of ibuprofen in soil.

    PubMed

    Nowak, Karolina M; Girardi, Cristobal; Miltner, Anja; Gehre, Matthias; Schäffer, Andreas; Kästner, Matthias

    2013-02-15

    Non-extractable residues (NER) formed during biodegradation of organic contaminants in soil are considered to be mainly composed of parent compounds or their primary metabolites with hazardous potential. However, in the case of biodegradable organic compounds, the soil NER may also contain microbial biomass components, for example fatty acids (FA) and amino acids (AA). After cell death, these biomolecules are subsequently incorporated into non-living soil organic matter (SOM) and are stabilised ultimately forming hardly extractable residues of biogenic origin. We investigated biodegradation of (13)C(6)-ibuprofen, in particular the metabolic incorporation of the (13)C-label into FA and AA and their fate in soil over 90 days. (13)C-FA and (13)C-AA amounts in the living microbial biomass fraction initially increased, then decreased over time and were continuously incorporated into the non-living SOM pool. The (13)C-FA in the non-living SOM remained stable from day 59 whereas the contents of (13)C-AA slightly increased until the end. After 90 days, nearly all NER were biogenic as they were made up almost completely by natural biomass compounds. The presented data demonstrated that the potential environmental risks related to the ibuprofen-derived NER are overestimated. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Encapsulation in lipid-core nanocapsules overcomes lung cancer cell resistance to tretinoin.

    PubMed

    Schultze, Eduarda; Ourique, Aline; Yurgel, Virginia Campello; Begnini, Karine Rech; Thurow, Helena; de Leon, Priscila Marques Moura; Campos, Vinicius Farias; Dellagostin, Odir Antônio; Guterres, Silvia R; Pohlmann, Adriana R; Seixas, Fabiana Kömmling; Beck, Ruy Carlos Ruver; Collares, Tiago

    2014-05-01

    Tretinoin is a retinoid derivative that has an antiproliferative effect on several kinds of tumours. Human lung adenocarcinoma epithelial cell lines (A549) exhibit a profound resistance to the effects of tretinoin. Nanocarriers seem to be a good alternative to overcomecellular resistance to drugs. The aim of this study was to test whether tretinoin-loaded lipid-core nanocapsules exert anantitumor effect on A549 cells. A549 cells were incubated with free tretinoin (TTN), blank nanocapsules (LNC) and tretinoin-loaded lipid-core nanocapsules (TTN-LNC). Data from evaluation of DNA content and Annexin V binding assay by flow cytometry showed that TTN-LNC induced apoptosis and cell cycle arrest at the G1-phase while TTN did not. TTN-LNC showed higher cytotoxic effects than TTN on A549 cells evaluated by MTT and LIVE/DEAD cell viability assay. Gene expression profiling identified up-regulated expression of gene p21 by TTN-LNC, supporting the cell cycle arrest effect. These results showed for the first time that TTN-LNC are able to overcome the resistance of adenocarcinoma cell line A549 to treatment with TTN by inducing apoptosis and cell cycle arrest, providing support for their use in applications in lung cancer therapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. New pH-sensitive liposomes containing phosphatidylethanolamine and a bacterial dirhamnolipid.

    PubMed

    Sánchez, Marina; Aranda, Francisco J; Teruel, José A; Ortiz, Antonio

    2011-01-01

    Phosphatidylethanolamine-based pH-sensitive liposomes of various compositions have been described as efficient systems for cytoplasmic delivery of molecules into cells. Incorporation of an amphiphile of appropriate structure is needed for the stabilization and performance of these vesicles. Among the wide variety of interesting activities displayed by Pseudomonas aeruginosa dirhamnolipids (diRL), is their capacity to stabilize bilayer structures in phosphatidylethanolamine systems. In this work, X-ray scattering, dynamic light scattering, fluorescence spectroscopy and fluorescence microscopy have been used to study the structure and pH-dependent behaviour of phosphatidylethanolamine/diRL liposomes. We show that diRL, in combination with dioleoylphosphatidylethanolamine (DOPE), forms stable multilamellar and unilamellar liposomes. Acidification of DOPE/diRL vesicles leads to membrane destabilization, fusion, and release of entrapped aqueous vesicle contents. Finally, DOPE/diRL pH-sensitive liposomes act as efficient vehicles for the cytoplasmic delivery of fluorescent probes into cultured cells. It is concluded that DOPE/diRL form stable pH-sensitive liposomes, and that these liposomes are incorporated into cultured cells through the endocytic pathway, delivering its contents into the cytoplasm, which means a potential use of these liposomes for the delivery of foreign substances into living cells. Our results establish a new application of diRL as a bilayer stabilizer in phospholipid vesicles, and the use of diRL-containing pH-sensitive liposomes as delivery vehicles. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  1. Infection Structure–Specific Expression of β-1,3-Glucan Synthase Is Essential for Pathogenicity of Colletotrichum graminicola and Evasion of β-Glucan–Triggered Immunity in Maize[W

    PubMed Central

    Oliveira-Garcia, Ely; Deising, Holger B.

    2013-01-01

    β-1,3-Glucan and chitin are the most prominent polysaccharides of the fungal cell wall. Covalently linked, these polymers form a scaffold that determines the form and properties of vegetative and pathogenic hyphae. While the role of chitin in plant infection is well understood, the role of β-1,3-glucan is unknown. We functionally characterized the β-1,3-glucan synthase gene GLS1 of the maize (Zea mays) pathogen Colletotrichum graminicola, employing RNA interference (RNAi), GLS1 overexpression, live-cell imaging, and aniline blue fluorochrome staining. This hemibiotroph sequentially differentiates a melanized appressorium on the cuticle and biotrophic and necrotrophic hyphae in its host. Massive β-1,3-glucan contents were detected in cell walls of appressoria and necrotrophic hyphae. Unexpectedly, GLS1 expression and β-1,3-glucan contents were drastically reduced during biotrophic development. In appressoria of RNAi strains, downregulation of β-1,3-glucan synthesis increased cell wall elasticity, and the appressoria exploded. While the shape of biotrophic hyphae was unaffected in RNAi strains, necrotrophic hyphae showed severe distortions. Constitutive expression of GLS1 led to exposure of β-1,3-glucan on biotrophic hyphae, massive induction of broad-spectrum defense responses, and significantly reduced disease symptom severity. Thus, while β-1,3-glucan synthesis is required for cell wall rigidity in appressoria and fast-growing necrotrophic hyphae, its rigorous downregulation during biotrophic development represents a strategy for evading β-glucan–triggered immunity. PMID:23898035

  2. IFITM3 Restricts Influenza A Virus Entry by Blocking the Formation of Fusion Pores following Virus-Endosome Hemifusion

    PubMed Central

    Chin, Christopher R.; Savidis, George; Brass, Abraham L.; Melikyan, Gregory B.

    2014-01-01

    Interferon-induced transmembrane proteins (IFITMs) inhibit infection of diverse enveloped viruses, including the influenza A virus (IAV) which is thought to enter from late endosomes. Recent evidence suggests that IFITMs block virus hemifusion (lipid mixing in the absence of viral content release) by altering the properties of cell membranes. Consistent with this mechanism, excess cholesterol in late endosomes of IFITM-expressing cells has been reported to inhibit IAV entry. Here, we examined IAV restriction by IFITM3 protein using direct virus-cell fusion assay and single virus imaging in live cells. IFITM3 over-expression did not inhibit lipid mixing, but abrogated the release of viral content into the cytoplasm. Although late endosomes of IFITM3-expressing cells accumulated cholesterol, other interventions leading to aberrantly high levels of this lipid did not inhibit virus fusion. These results imply that excess cholesterol in late endosomes is not the mechanism by which IFITM3 inhibits the transition from hemifusion to full fusion. The IFITM3's ability to block fusion pore formation at a post-hemifusion stage shows that this protein stabilizes the cytoplasmic leaflet of endosomal membranes without adversely affecting the lumenal leaflet. We propose that IFITM3 interferes with pore formation either directly, through partitioning into the cytoplasmic leaflet of a hemifusion intermediate, or indirectly, by modulating the lipid/protein composition of this leaflet. Alternatively, IFITM3 may redirect IAV fusion to a non-productive pathway, perhaps by promoting fusion with intralumenal vesicles within multivesicular bodies/late endosomes. PMID:24699674

  3. I Live with Psoriasis | NIH MedlinePlus the Magazine

    MedlinePlus

    ... page please turn Javascript on. Feature: Living with Psoriasis I Live with Psoriasis Past Issues / Fall 2013 Table of Contents Kristin ... equally. "Know as much as you can about psoriasis..." —Kristin Donahue Psoriasis first flared into Kristin Donahue's ...

  4. Curative potential of GM-CSF-secreting tumor cell vaccines on established orthotopic liver tumors: mechanisms for the superior antitumor activity of live tumor cell vaccines.

    PubMed

    Tai, Kuo-Feng; Chen, Ding-Shinn; Hwang, Lih-Hwa

    2004-01-01

    In preclinical studies, tumor cells genetically engineered to secrete cytokines, hereafter referred to as tumor cell vaccines, can often generate systemic antitumor immunity. This study investigated the therapeutic effects of live or irradiated tumor cell vaccines that secrete granulocyte-macrophage colony-stimulating factor (GM-CSF) on established orthotopic liver tumors. Experimental results indicated that two doses (3 x 10(7) cells per dose) of irradiated tumor cell vaccines were therapeutically ineffective, whereas one dose (3 x 10(6) cells) of live tumor cell vaccines caused complete tumor regression. In vivo depletion of CD8+ T cells, but not natural killer cells, restored tumor formation in the live vaccine-treated animals. Additionally, the treatment of cells with live vaccine induced markedly higher levels of cytotoxic T lymphocyte activity than the irradiated vaccines in the draining lymph nodes. The higher levels of cytokine and antigen loads could partly explain the superior antitumor activity of live tumor cell vaccines, but other unidentified mechanisms could also play a role in the early T cell activation in the lymph nodes. A protocol using multiple and higher dosages of irradiated tumor cell vaccines also caused significant regression of liver tumors. These results suggest that the GM-CSF-secreting tumor cell vaccines are highly promising for orthotopic liver tumors if higher levels of immune responses are elicited during early tumor development. Copyright 2004 National Science Council, ROC and S. Karger AG, Basel

  5. Site-Specific Bioorthogonal Labeling for Fluorescence Imaging of Intracellular Proteins in Living Cells.

    PubMed

    Peng, Tao; Hang, Howard C

    2016-11-02

    Over the past years, fluorescent proteins (e.g., green fluorescent proteins) have been widely utilized to visualize recombinant protein expression and localization in live cells. Although powerful, fluorescent protein tags are limited by their relatively large sizes and potential perturbation to protein function. Alternatively, site-specific labeling of proteins with small-molecule organic fluorophores using bioorthogonal chemistry may provide a more precise and less perturbing method. This approach involves site-specific incorporation of unnatural amino acids (UAAs) into proteins via genetic code expansion, followed by bioorthogonal chemical labeling with small organic fluorophores in living cells. While this approach has been used to label extracellular proteins for live cell imaging studies, site-specific bioorthogonal labeling and fluorescence imaging of intracellular proteins in live cells is still challenging. Herein, we systematically evaluate site-specific incorporation of diastereomerically pure bioorthogonal UAAs bearing stained alkynes or alkenes into intracellular proteins for inverse-electron-demand Diels-Alder cycloaddition reactions with tetrazine-functionalized fluorophores for live cell labeling and imaging in mammalian cells. Our studies show that site-specific incorporation of axial diastereomer of trans-cyclooct-2-ene-lysine robustly affords highly efficient and specific bioorthogonal labeling with monosubstituted tetrazine fluorophores in live mammalian cells, which enabled us to image the intracellular localization and real-time dynamic trafficking of IFITM3, a small membrane-associated protein with only 137 amino acids, for the first time. Our optimized UAA incorporation and bioorthogonal labeling conditions also enabled efficient site-specific fluorescence labeling of other intracellular proteins for live cell imaging studies in mammalian cells.

  6. Technical Insights into Highly Sensitive Isolation and Molecular Characterization of Fixed and Live Circulating Tumor Cells for Early Detection of Tumor Invasion.

    PubMed

    Laget, Sophie; Broncy, Lucile; Hormigos, Katia; Dhingra, Dalia M; BenMohamed, Fatima; Capiod, Thierry; Osteras, Magne; Farinelli, Laurent; Jackson, Stephen; Paterlini-Bréchot, Patrizia

    2017-01-01

    Circulating Tumor Cells (CTC) and Circulating Tumor Microemboli (CTM) are Circulating Rare Cells (CRC) which herald tumor invasion and are expected to provide an opportunity to improve the management of cancer patients. An unsolved technical issue in the CTC field is how to obtain highly sensitive and unbiased collection of these fragile and heterogeneous cells, in both live and fixed form, for their molecular study when they are extremely rare, particularly at the beginning of the invasion process. We report on a new protocol to enrich from blood live CTC using ISET® (Isolation by SizE of Tumor/Trophoblastic Cells), an open system originally developed for marker-independent isolation of fixed tumor cells. We have assessed the impact of our new enrichment method on live tumor cells antigen expression, cytoskeleton structure, cell viability and ability to expand in culture. We have also explored the ISET® in vitro performance to collect intact fixed and live cancer cells by using spiking analyses with extremely low number of fluorescent cultured cells. We describe results consistently showing the feasibility of isolating fixed and live tumor cells with a Lower Limit of Detection (LLOD) of one cancer cell per 10 mL of blood and a sensitivity at LLOD ranging from 83 to 100%. This very high sensitivity threshold can be maintained when plasma is collected before tumor cells isolation. Finally, we have performed a comparative next generation sequencing (NGS) analysis of tumor cells before and after isolation from blood and culture. We established the feasibility of NGS analysis of single live and fixed tumor cells enriched from blood by our system. This study provides new protocols for detection and characterization of CTC collected from blood at the very early steps of tumor invasion.

  7. Photo- and electropatterning of hydrogel-encapsulated living cell arrays.

    PubMed

    Albrecht, Dirk R; Tsang, Valerie Liu; Sah, Robert L; Bhatia, Sangeeta N

    2005-01-01

    Living cells have the potential to serve as sensors, naturally integrating the response to stimuli to generate predictions about cell fate (e.g., differentiation, migration, proliferation, apoptosis). Miniaturized arrays of living cells further offer the capability to interrogate many cells in parallel and thereby enable high-throughput and/or combinatorial assays. However, the interface between living cells and synthetic chip platforms is a critical one wherein the cellular phenotype must be preserved to generate useful signals. While some cell types retain tissue-specific features on a flat (2-D) surface, it has become increasingly apparent that a 3-D physical environment will be required for others. In this paper, we present two independent methods for creating living cell arrays that are encapsulated within a poly(ethylene glycol)-based hydrogel to create a local 3-D microenvironment. First, 'photopatterning' selectively crosslinks hydrogel microstructures containing living cells with approximately 100 microm feature size. Second, 'electropatterning' utilizes dielectrophoretic forces to position cells within a prepolymer solution prior to crosslinking, forming cell patterns with micron resolution. We further combine these methods to obtain hierarchical control of cell positioning over length scales ranging from microns to centimeters. This level of microenvironmental control should enable the fabrication of next-generation cellular microarrays in which robust 3-D cultures of cells are presented with appropriate physical and chemical cues and, consequently, report on cellular responses that resemble in vivo behavior.

  8. Polyvalent Display of Biomolecules on Live Cells.

    PubMed

    Shi, Peng; Zhao, Nan; Lai, Jinping; Coyne, James; Gaddes, Erin R; Wang, Yong

    2018-06-04

    Surface display of biomolecules on live cells offers new opportunities to treat human diseases and perform basic studies. Existing methods are primarily focused on monovalent functionalization, that is, the display of single biomolecules across the cell surface. Here we show that the surface of live cells can be functionalized to display polyvalent biomolecular structures through two-step reactions under physiological conditions. This polyvalent functionalization enables the cell surface to recognize the microenvironment one order of magnitude more effectively than with monovalent functionalization. Thus, polyvalent display of biomolecules on live cells holds great potential for various biological and biomedical applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Engineering a collagen matrix that replicates the biological properties of native extracellular matrix.

    PubMed

    Nam, Kwangwoo; Sakai, Yuuki; Funamoto, Seiichi; Kimura, Tsuyoshi; Kishida, Akio

    2011-01-01

    In this study, we aimed to replicate the function of native tissues that can be used in tissue engineering and regenerative medicine. The key to such replication is the preparation of an artificial collagen matrix that possesses a structure resembling that of the extracellular matrix. We, therefore, prepared a collagen matrix by fibrillogenesis in a NaCl/Na(2)HPO(4) aqueous solution using a dialysis cassette and investigated its biological behavior in vitro and in vivo. The in vitro cell adhesion and proliferation did not show any significant differences. The degradation rate in the living body could be controlled according to the preparation condition, where the collagen matrix with high water content (F-collagen matrix, >98%) showed fast degradation and collagen matrix with lower water content (T-collagen matrix, >80%) showed no degradation for 8 weeks. The degradation did not affect the inflammatory response at all and relatively faster wound healing response was observed. Comparing this result with that of collagen gel and decellularized cornea, it can be concluded that the structural factor is very important and no cell abnormal behavior would be observed for quaternary structured collagen matrix.

  10. Chemistry and Biology in Femtoliter and Picoliter Volume Droplets

    PubMed Central

    Chiu, Daniel T.; Lorenz, Robert M.

    2009-01-01

    Conspectus The basic unit of any biological system is the cell, and malfunctions at the single-cell level can result in devastating diseases; in cancer metastasis, for example, a single cell seeds the formation of a distant tumor. Although tiny, a cell is a highly heterogeneous and compartmentalized structure: proteins, lipids, RNA, and small-molecule metabolites constantly traffic among intracellular organelles. Gaining detailed information about the spatiotemporal distribution of these biomolecules is crucial to our understanding of cellular function and dysfunction. To access this information, we need sensitive tools that are capable of extracting comprehensive biochemical information from single cells and subcellular organelles. In this Account, we outline our approach and highlight our progress towards mapping the spatiotemporal organization of information flow in single cells. Our technique is centered on the use of femtoliter- and picoliter-sized droplets as nanolabs for manipulating single cells and subcellular compartments. We have developed a single-cell nanosurgical technique for isolating select subcellular structures from live cells, a capability that is needed for the high-resolution manipulation and chemical analysis of single cells. Our microfluidic approaches for generating single femtoliter-sized droplets on demand include both pressure and electric field methods; we have also explored a design for the on-demand generation of multiple aqueous droplets to increase throughput. Droplet formation is only the first step in a sequence that requires manipulation, fusion, transport, and analysis. Optical approaches provide the most convenient and precise control over the formed droplets with our technology platform; we describe aqueous droplet manipulation with optical vortex traps, which enable the remarkable ability to dynamically “tune” the concentration of the contents. Integration of thermoelectric manipulations with these techniques affords further control. The amount of chemical information that can be gleaned from single cells and organelles is critically dependent on the methods available for analyzing droplet contents. We describe three techniques we have developed: (i) droplet encapsulation, rapid cell lysis, and fluorescence-based single-cell assays, (ii) physical sizing of the subcellular organelles and nanoparticles in droplets, and (iii) capillary electrophoresis (CE) analysis of droplet contents. For biological studies, we are working to integrate the different components of our technology into a robust, automated device; we are also addressing an anticipated need for higher throughput. With progress in these areas, we hope to cement our technique as a new tool for studying single cells and organelles with unprecedented molecular detail. PMID:19260732

  11. A Novel Technique to Follow Consequences of Exogenous Factors, Including Therapeutic Drugs, on Living Human Breast Epithelial Cells

    DTIC Science & Technology

    1999-07-01

    and lipid vectors, are being tested. Concurrent with the development of procedures for live - cell imaging , we are examining the distribution of proteins...dimensional matrix. These studies have not yet begun. There are a number of procedures that must be developed and perfected in the live - cell imaging , as...components of the Wnt signaling pathway are too preliminary and require additional research prior to publication. (9) CONCLUSIONS Live cell imaging of

  12. Scavenging of long-lived radicals by (-)-epigallocatechin-3- O-gallate and simultaneous suppression of mutation in irradiated mammalian cells

    NASA Astrophysics Data System (ADS)

    Kumagai, Jun; Nakama, Mitsuo; Miyazaki, Tetsuo; Ise, Tamaki; Kodama, Seiji; Watanabe, Masami

    2002-07-01

    Effect of (-)-epigallocatechin-3- O-gallate (EGCg) on scavenging long-lived radicals and its biological significance were investigated using electron-spin-resonance spectroscopy and mutation assay in cultured human embryo cells. EGCg scavenged long-lived radicals in irradiated golden hamster embryo cells and albumin solution, and simultaneously reduced mutation frequency in the irradiated human embryo cells. These results indicate that long-lived radials are involved in the induction of mutation by radiation.

  13. Pinpointing retrovirus entry sites in cells expressing alternatively spliced receptor isoforms by single virus imaging.

    PubMed

    Padilla-Parra, Sergi; Marin, Mariana; Kondo, Naoyuki; Melikyan, Gregory B

    2014-06-16

    The majority of viruses enter host cells via endocytosis. Current knowledge of viral entry pathways is largely based upon infectivity measurements following genetic and/or pharmacological interventions that disrupt vesicular trafficking and maturation. Imaging of single virus entry in living cells provides a powerful means to delineate viral trafficking pathways and entry sites under physiological conditions. Here, we visualized single avian retrovirus co-trafficking with markers for early (Rab5) and late (Rab7) endosomes, acidification of endosomal lumen and the resulting viral fusion measured by the viral content release into the cytoplasm. Virus-carrying vesicles either merged with the existing Rab5-positive early endosomes or slowly accumulated Rab5. The Rab5 recruitment to virus-carrying endosomes correlated with acidification of their lumen. Viral fusion occurred either in early (Rab5-positive) or intermediate (Rab5- and Rab7-positive) compartments. Interestingly, different isoforms of the cognate receptor directed virus entry from distinct endosomes. In cells expressing the transmembrane receptor, viruses preferentially entered and fused with slowly maturing early endosomes prior to accumulation of Rab7. By comparison, in cells expressing the GPI-anchored receptor, viruses entered both slowly and quickly maturing endosomes and fused with early (Rab5-positive) and intermediate (Rab5- and Rab7-positive) compartments. Since the rate of low pH-triggered fusion was independent of the receptor isoform, we concluded that the sites of virus entry are determined by the kinetic competition between endosome maturation and viral fusion. Our findings demonstrate the ability of this retrovirus to enter cells via alternative endocytic pathways and establish infection by releasing its content from distinct endosomal compartments.

  14. [Preparation of acellular matrix from antler cartilage and its biological compatibility].

    PubMed

    Fu, Jing; Zhang, Wei; Zhang, Aiwu; Ma, Lijuan; Chu, Wenhui; Li, Chunyi

    2017-06-01

    To study the feasibility of acellular matrix materials prepared from deer antler cartilage and its biological compatibility so as to search for a new member of the extracellular matrix family for cartilage regeneration. The deer antler mesenchymal (M) layer tissue was harvested and treated through decellular process to prepare M layer acellular matrix; histologic observation and detection of M layer acellular matrix DNA content were carried out. The antler stem cells [antlerogenic periosteum (AP) cells] at 2nd passage were labelled by fluorescent stains and by PKH26. Subsequently, the M layer acellular matrix and the AP cells at 2nd passage were co-cultured for 7 days; then the samples were transplanted into nude mice to study the tissue compatibility of M layer acellular matrix in the living animals. HE and DAPI staining confirmed that the M layer acellular matrix did not contain nucleus; the DNA content of the M layer acellular matrix was (19.367±5.254) ng/mg, which was significantly lower than that of the normal M layer tissue [(3 805.500±519.119) ng/mg]( t =12.630, P =0.000). In vitro co-culture experiments showed that AP cells could adhere to or even embedded in the M layer acellular matrix. Nude mice transplantation experiments showed that the introduced AP cells could proliferate and induce angiogenesis in the M layer acellular matrix. The deer antler cartilage acellular matrix is successfully prepared. The M layer acellular matrix is suitable for adhesion and proliferation of AP cells in vitro and in vivo , and it has the function of stimulating angiogenesis. This model for deer antler cartilage acellular matrix can be applied in cartilage tissue engineering in the future.

  15. Classification of phytoplankton cells as live or dead using the vital stains fluorescein diacetate and 5-chloromethylfluorescein diacetate.

    PubMed

    MacIntyre, Hugh L; Cullen, John J

    2016-08-01

    Regulations for ballast water treatment specify limits on the concentrations of living cells in discharge water. The vital stains fluorescein diacetate (FDA) and 5-chloromethylfluorescein diacetate (CMFDA) in combination have been recommended for use in verification of ballast water treatment technology. We tested the effectiveness of FDA and CMFDA, singly and in combination, in discriminating between living and heat-killed populations of 24 species of phytoplankton from seven divisions, verifying with quantitative growth assays that uniformly live and dead populations were compared. The diagnostic signal, per-cell fluorescence intensity, was measured by flow cytometry and alternate discriminatory thresholds were defined statistically from the frequency distributions of the dead or living cells. Species were clustered by staining patterns: for four species, the staining of live versus dead cells was distinct, and live-dead classification was essentially error free. But overlap between the frequency distributions of living and heat-killed cells in the other taxa led to unavoidable errors, well in excess of 20% in many. In 4 very weakly staining taxa, the mean fluorescence intensity in the heat-killed cells was higher than that of the living cells, which is inconsistent with the assumptions of the method. Applying the criteria of ≤5% false negative plus ≤5% false positive errors, and no significant loss of cells due to staining, FDA and FDA+CMFDA gave acceptably accurate results for only 8-10 of 24 species (i.e., 33%-42%). CMFDA was the least effective stain and its addition to FDA did not improve the performance of FDA alone. © 2016 The Authors. Journal of Phycology published by Wiley Periodicals, Inc. on behalf of Phycological Society of America.

  16. Antiproliferative activity, antioxidant capacity and tannin content in plants of semi-arid northeastern Brazil.

    PubMed

    Gomes de Melo, Joabe; de Sousa Araújo, Thiago Antônio; Thijan Nobre de Almeida e Castro, Valérium; Lyra de Vasconcelos Cabral, Daniela; do Desterro Rodrigues, Maria; Carneiro do Nascimento, Silene; Cavalcanti de Amorim, Elba Lúcia; de Albuquerque, Ulysses Paulino

    2010-11-24

    The objective of this study was to evaluate antiproliferative activity, antioxidant capacity and tannin content in plants from semi-arid northeastern Brazil (Caatinga). For this study, we selected 14 species and we assayed the methanol extracts for antiproliferative activity against the HEp-2 (laryngeal cancer) and NCI-H292 (lung cancer) cell lines using the (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazole) (MTT) method. In addition, the antioxidant activity was evaluated with the DPPH (2,2-diphenyl-2-picrylhydrazyl) assay, and the tannin content was determined by the radial diffusion method. Plants with better antioxidant activity (expressed in a dose able to decrease the initial DPPH concentration by 50%, or IC50) and with higher levels of tannins were: Poincianella pyramidalis (42.95±1.77 µg/mL IC50 and 8.17±0.64 tannin content), Jatropha mollissima (54.09±4.36µg/mL IC50 and 2.35±0.08 tannin content) and Anadenanthera colubrina (73.24±1.47 µg/mL IC50 and 4.41±0.47 tannin content). Plants with enhanced antiproliferative activity (% living cells) were Annona muricata (24.94±0.74 in NCI-H292), Lantana camara (25.8±0.19 in NCI-H292), Handroanthus impetiginosus (41.8±0.47 in NCI-H292) and Mentzelia aspera (45.61±1.94 in HEp-2). For species with better antioxidant and antiproliferative activities, we suggest future in vitro and in vivo comparative studies with other pharmacological models, and to start a process of purification and identification of the possible molecule(s) responsible for the observed pharmacological activity. We believe that the flora of Brazilian semi-arid areas can be a valuable source of plants rich in tannins, cytotoxic compounds and antioxidant agents.

  17. Affinity of antigen encounter and other early B-cell signals determine B-cell fate

    PubMed Central

    Benson, Micah J; Erickson, Loren D; Gleeson, Michael W; Noelle, Randolph J

    2010-01-01

    Three possible effector fates await the naïve follicular B cell following antigen stimulation in thymus-dependent reactions. Short-lived plasma cells produce an initial burst of germline-encoded protective antibodies, and long-lived plasma cells and memory B cells arise from the germinal center and function to enhance and sustain the humoral immune response. The inherent B-cell receptor affinity of naïve follicular B cells and the contribution of other early B-cell signals pre-determines the pattern of transcription factor expression and the differentiation path taken by these cells. High initial B-cell receptor affinity shunts naïve follicular B-cell clones towards the short-lived plasma cell fate, whereas modest-affinity clones are skewed towards a plasma cell fate and low-affinity clones are recruited into the germinal center and are selected for both long-lived plasma cells and memory B cell pathways. In the germinal center reaction, increased levels of the transcription factor interferon regulatory factor-4 drive the molecular program that dictates differentiation into the long-lived plasma cell phenotype but has no impact on the memory B cell compartment. We hypothesize that graded interferon regulatory factor-4 levels driven by signals to B cells, including B-cell receptor signal strength, are responsible for this branch point in the B-cell terminal differentiation pathway. PMID:17433651

  18. Investigating the Functional Role of Prostate-Specific Membrane Antigen and its Enzymatic Activity in Prostate Cancer Metastasis

    DTIC Science & Technology

    2008-02-01

    fluorescent probes for live cell imaging . PSMA distribution of cells grown on different extracellular matrices will be characterized to provide guidance...PCa migration, using in vitro cell model systems and live - cell imaging methods, we characterized the role of PSMA in cell motility and adhesion. Using...Generated fluorescently conjugated anti-PSMA antibodies for live cell imaging . 2. Optimized the siRNA-PSMA transfection and achieved an approximately

  19. Plant development. Arabidopsis NAC45/86 direct sieve element morphogenesis culminating in enucleation.

    PubMed

    Furuta, Kaori Miyashima; Yadav, Shri Ram; Lehesranta, Satu; Belevich, Ilya; Miyashima, Shunsuke; Heo, Jung-ok; Vatén, Anne; Lindgren, Ove; De Rybel, Bert; Van Isterdael, Gert; Somervuo, Panu; Lichtenberger, Raffael; Rocha, Raquel; Thitamadee, Siripong; Tähtiharju, Sari; Auvinen, Petri; Beeckman, Tom; Jokitalo, Eija; Helariutta, Ykä

    2014-08-22

    Photoassimilates such as sugars are transported through phloem sieve element cells in plants. Adapted for effective transport, sieve elements develop as enucleated living cells. We used electron microscope imaging and three-dimensional reconstruction to follow sieve element morphogenesis in Arabidopsis. We show that sieve element differentiation involves enucleation, in which the nuclear contents are released and degraded in the cytoplasm at the same time as other organelles are rearranged and the cytosol is degraded. These cellular reorganizations are orchestrated by the genetically redundant NAC domain-containing transcription factors, NAC45 and NAC86 (NAC45/86). Among the NAC45/86 targets, we identified a family of genes required for enucleation that encode proteins with nuclease domains. Thus, sieve elements differentiate through a specialized autolysis mechanism. Copyright © 2014, American Association for the Advancement of Science.

  20. Magnetization of individual yeast cells by in situ formation of iron oxide on cell surfaces

    NASA Astrophysics Data System (ADS)

    Choi, Jinsu; Lee, Hojae; Choi, Insung S.; Yang, Sung Ho

    2017-09-01

    Magnetic functionalization of living cells has intensively been investigated with the aim of various bioapplications such as selective separation, targeting, and localization of the cells by using an external magnetic field. However, the magnetism has not been introduced to individual living cells through the in situ chemical reactions because of harsh conditions required for synthesis of magnetic materials. In this work, magnetic iron oxide was formed on the surface of living cells by optimizing reactions conditions to be mild sufficiently enough to sustain cell viability. Specifically, the reactive LbL strategy led to formation of magnetically responsive yeast cells with iron oxide shells. This facile and direct post-magnetization method would be a useful tool for remote manipulation of living cells with magnetic interactions, which is an important technique for the integration of cell-based circuits and the isolation of cell in microfluidic devices.

  1. Live-Cell Imaging of Filoviruses.

    PubMed

    Schudt, Gordian; Dolnik, Olga; Becker, Stephan

    2017-01-01

    Observation of molecular processes inside living cells is fundamental to a deeper understanding of virus-host interactions in filoviral-infected cells. These observations can provide spatiotemporal insights into protein synthesis, protein-protein interaction dynamics, and transport processes of these highly pathogenic viruses. Thus, live-cell imaging provides the possibility for antiviral screening in real time and gives mechanistic insights into understanding filovirus assembly steps that are dependent on cellular factors, which then represent potential targets against this highly fatal disease. Here we describe analysis of living filovirus-infected cells under maximum biosafety (i.e., BSL4) conditions using plasmid-driven expression of fluorescently labeled viral and cellular proteins and/or viral genome-encoded expression of fluorescently labeled proteins. Such multiple-color and multidimensional time-lapse live-cell imaging analyses are a powerful method to gain a better understanding of the filovirus infection cycle.

  2. High-speed atomic force microscopy imaging of live mammalian cells

    PubMed Central

    Shibata, Mikihiro; Watanabe, Hiroki; Uchihashi, Takayuki; Ando, Toshio; Yasuda, Ryohei

    2017-01-01

    Direct imaging of morphological dynamics of live mammalian cells with nanometer resolution under physiological conditions is highly expected, but yet challenging. High-speed atomic force microscopy (HS-AFM) is a unique technique for capturing biomolecules at work under near physiological conditions. However, application of HS-AFM for imaging of live mammalian cells was hard to be accomplished because of collision between a huge mammalian cell and a cantilever during AFM scanning. Here, we review our recent improvements of HS-AFM for imaging of activities of live mammalian cells without significant damage to the cell. The improvement of an extremely long (~3 μm) AFM tip attached to a cantilever enables us to reduce severe damage to soft mammalian cells. In addition, a combination of HS-AFM with simple fluorescence microscopy allows us to quickly locate the cell in the AFM scanning area. After these improvements, we demonstrate that developed HS-AFM for live mammalian cells is possible to image morphogenesis of filopodia, membrane ruffles, pits open-close formations, and endocytosis in COS-7, HeLa cells as well as hippocampal neurons. PMID:28900590

  3. Intracellular haemolytic agents of Heterocapsa circularisquama exhibit toxic effects on H. circularisquama cells themselves and suppress both cell-mediated haemolytic activity and toxicity to rotifers (Brachionus plicatilis).

    PubMed

    Nishiguchi, Tomoki; Cho, Kichul; Yasutomi, Masumi; Ueno, Mikinori; Yamaguchi, Kenichi; Basti, Leila; Yamasaki, Yasuhiro; Takeshita, Satoshi; Kim, Daekyung; Oda, Tatsuya

    2016-10-01

    A harmful dinoflagellate, Heterocapsa circularisquama, is highly toxic to shellfish and the zooplankton rotifer Brachionus plicatilis. A previous study found that H. circularisquama has both light-dependent and -independent haemolytic agents, which might be responsible for its toxicity. Detailed analysis of the haemolytic activity of H. circularisquama suggested that light-independent haemolytic activity was mediated mainly through intact cells, whereas light-dependent haemolytic activity was mediated by intracellular agents which can be discharged from ruptured cells. Because H. circularisquama showed similar toxicity to rotifers regardless of the light conditions, and because ultrasonic ruptured H. circularisquama cells showed no significant toxicity to rotifers, it was suggested that live cell-mediated light-independent haemolytic activity is a major factor responsible for the observed toxicity to rotifers. Interestingly, the ultrasonic-ruptured cells of H. circularisquama suppressed their own lethal effect on the rotifers. Analysis of samples of the cell contents (supernatant) and cell fragments (precipitate) prepared from the ruptured H. circularisquama cells indicated that the cell contents contain inhibitors for the light-independent cell-mediated haemolytic activity, toxins affecting H. circularisquama cells themselves, as well as light-dependent haemolytic agents. Ethanol extract prepared from H. circularisquama, which is supposed to contain a porphyrin derivative that displays photosensitising haemolytic activity, showed potent toxicity to Chattonella marina, Chattonella antiqua, and Karenia mikimotoi, as well as to H. circularisquama at the concentration range at which no significant toxicity to rotifers was observed. Analysis on a column of Sephadex LH-20 revealed that light-dependent haemolytic activity and inhibitory activity on cell-mediated light-independent haemolytic activity existed in two separate fractions (f-2 and f-3), suggesting that both activities might be derived from common compounds. Our results suggest that the photosensitising haemolytic toxin discharged from ruptured H. circularisquama cells has a relatively broad spectrum of phytoplankton toxicity, and that physical collapse of H. circularisquama cells can lead not only to the disappearance of its own toxicity, but also to mitigation of the effects of other HABs. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. The influence of calcium and magnesium in drinking water and diet on cardiovascular risk factors in individuals living in hard and soft water areas with differences in cardiovascular mortality

    PubMed Central

    Nerbrand, Christina; Agréus, Lars; Lenner, Ragnhild Arvidsson; Nyberg, Per; Svärdsudd, Kurt

    2003-01-01

    Background The role of water hardness as a risk factor for cardiovascular disease has been widely investigated and evaluated as regards regional differences in cardiovascular disease. This study was performed to evaluate the relation between calcium and magnesium in drinking water and diet and risk factors for cardiovascular disease in individuals living in hard and soft water areas with considerable differences in cardiovascular mortality. Methods A random sample of 207 individuals living in two municipalities characterised by differences in cardiovascular mortality and water hardness was invited for an examination including a questionnaire about health, social and living conditions and diet. Intake of magnesium and calcium was calculated from the diet questionnaire with special consideration to the use of local water. Household water samples were delivered by each individual and were analysed for magnesium and calcium. Results In the total sample, there were positive correlations between the calcium content in household water and systolic blood pressure (SBP) and negative correlations with s-cholesterol and s-LDL-cholesterol. No correlation was seen with magnesium content in household water to any of the risk factors. Calcium content in diet showed no correlation to cardiovascular risk factors. Magnesium in diet was positively correlated to diastolic blood pressure (DBP). In regression analyses controlled for age and sex 18.5% of the variation in SBP was explained by the variation in BMI, HbA1c and calcium content in water. Some 27.9% of the variation in s-cholesterol could be explained by the variation in s-triglycerides (TG), and calcium content in water. Conclusions This study of individuals living in soft and hard water areas showed significant correlations between the content of calcium in water and major cardiovascular risk factors. This was not found for magnesium in water or calcium or magnesium in diet. Regression analyses indicated that calcium content in water could be a factor in the complexity of relationships and importance of cardiovascular risk factors. From these results it is not possible to conclude any definite causal relation and further research is needed. PMID:12814520

  5. Using Live Dual Modeling to Help Preservice Teachers Develop TPACK

    ERIC Educational Resources Information Center

    Lu, Liangyue; Lei, Jing

    2012-01-01

    To help preservice teachers learn about teaching with technology--specifically, technological pedagogical content knowledge (TPACK)--the researchers designed and implemented a Live Dual Modeling strategy involving both live behavior modeling and cognitive modeling in this study. Using qualitative research methods, the researchers investigated…

  6. The content of trace elements in the diet of adolescents in Warsaw.

    PubMed

    Dybkowska, Ewa; Swiderski, Franciszek; Waszkiewicz-Robak, Bozena

    2011-01-01

    The aim of the study is to assess the contents of iron, zinc and copper in the diet among of adolescents living in Warsaw. The intake ofselected trace elements was estimated on the basis of three-day dietary records. Microelement contents in the diet were calculated using Food Composition Tables. The percentage of the RDA realization for the safe level was calculated on the basis of standards for Polish population, developed by National Food and Nutrition Institute. It was demonstrated that adolescents living in Warsaw had 50-60% copper-deficient diets. The content of iron and zinc in the diet of adolescents was about 10-40% lower than recommended. Deficiency of iron in the body causes anaemia and influences learning process, therefore the content of this element in the diet of young people is especially important.

  7. Discovery of a New Cellular Motion and Its Relevance to Breast Cancer and Involution

    DTIC Science & Technology

    2014-02-01

    motion (CAMo), live cell imaging , confocal microscopy Overall Project Summary: During this first year of funding we have concentrated our work to...cell types in 3D cultures and in vivo. Subtask 1.1a: Real time live cell imaging using confocal microscopy will be used to image cellular movement...exciting as they are important steps in understanding behavior of normal myoepithelial cells using live cell imaging in physiologically

  8. Direct interaction of Plin2 with lipids on the surface of lipid droplets: a live cell FRET analysis

    PubMed Central

    McIntosh, Avery L.; Senthivinayagam, Subramanian; Moon, Kenneth C.; Gupta, Shipra; Lwande, Joel S.; Murphy, Cameron C.; Storey, Stephen M.

    2012-01-01

    Despite increasing awareness of the health risks associated with excess lipid storage in cells and tissues, knowledge of events governing lipid exchange at the surface of lipid droplets remains unclear. To address this issue, fluorescence resonance energy transfer (FRET) was performed to examine live cell interactions of Plin2 with lipids involved in maintaining lipid droplet structure and function. FRET efficiencies (E) between CFP-labeled Plin2 and fluorescently labeled phosphatidylcholine, sphingomyelin, stearic acid, and cholesterol were quantitated on a pixel-by-pixel basis to generate FRET image maps that specified areas with high E (>60%) in lipid droplets. The mean E and the distance R between the probes indicated a high yield of energy transfer and demonstrated molecular distances on the order of 44–57 Å, in keeping with direct molecular contact. In contrast, FRET between CFP-Plin2 and Nile red was not detected, indicating that the CFP-Plin2/Nile red interaction was beyond FRET proximity (>100 Å). An examination of the effect of Plin2 on cellular metabolism revealed that triacylglycerol, fatty acid, and cholesteryl ester content increased while diacylglycerol remained constant in CFP-Plin2-overexpressing cells. Total phospholipids also increased, reflecting increased phosphatidylcholine and sphingomyelin. Consistent with these results, expression levels of enzymes involved in triacylglycerol, cholesteryl ester, and phospholipid synthesis were significantly upregulated in CFP-Plin2-expressing cells while those associated with lipolysis either decreased or were unaffected. Taken together, these data show for the first time that Plin2 interacts directly with lipids on the surface of lipid droplets and influences levels of key enzymes and lipids involved in maintaining lipid droplet structure and function. PMID:22744009

  9. Effects of antibacterial mineral leachates on the cellular ultrastructure, morphology, and membrane integrity of Escherichia coli and methicillin-resistant Staphylococcus aureus

    PubMed Central

    2010-01-01

    Background We have previously identified two mineral mixtures, CB07 and BY07, and their respective aqueous leachates that exhibit in vitro antibacterial activity against a broad spectrum of pathogens. The present study assesses cellular ultrastructure and membrane integrity of methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli after exposure to CB07 and BY07 aqueous leachates. Methods We used scanning and transmission electron microscopy to evaluate E. coli and MRSA ultrastructure and morphology following exposure to antibacterial leachates. Additionally, we employed Baclight LIVE/DEAD staining and flow cytometry to investigate the cellular membrane as a possible target for antibacterial activity. Results Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) imaging of E. coli and MRSA revealed intact cells following exposure to antibacterial mineral leachates. TEM images of MRSA showed disruption of the cytoplasmic contents, distorted cell shape, irregular membranes, and distorted septa of dividing cells. TEM images of E. coli exposed to leachates exhibited different patterns of cytoplasmic condensation with respect to the controls and no apparent change in cell envelope structure. Although bactericidal activity of the leachates occurs more rapidly in E. coli than in MRSA, LIVE/DEAD staining demonstrated that the membrane of E. coli remains intact, while the MRSA membrane is permeabilized following exposure to the leachates. Conclusions These data suggest that the leachate antibacterial mechanism of action differs for Gram-positive and Gram-negative organisms. Upon antibacterial mineral leachate exposure, structural integrity is retained, however, compromised membrane integrity accounts for bactericidal activity in Gram-positive, but not in Gram-negative cells. PMID:20846374

  10. Investigation of cadmium contamination using hair of the Japanese macaque, Macaca fuscata, from Shimokita Peninsula, Aomori Prefecture in Japan.

    PubMed

    Mochizuki, Mariko; Anahara, Reiko; Mano, Tomoki; Nakayama, Yuri; Kobori, Mutsumi; Omi, Toshinori; Matsuoka, Shiro; Ueda, Fukiko

    2012-09-01

    The cadmium (Cd) contents in hair of macaques (n = 45, Macaca fuscata) living on the Shimokita Peninsula were investigated. The mean Cd contents in the hair of Japanese (n = 34, 5.01 μg/g) and macaques (3.05 μg/g) tendency to be higher than those of animals living other areas. The Cd contents of hair of wild macaques were significantly (p < 0.01) lower than that of humans, although three were no significant difference between Cd contents of humans and that of the macaque in captivity. The hair of the macaque was suggested as a useful sample for measurement of Cd contamination in the environment.

  11. Stability and morphological and molecular-genetic identification of algae in buried soils

    NASA Astrophysics Data System (ADS)

    Temraleeva, A. D.; Moskalenko, S. V.; El'tsov, M. V.; Vagapov, I. M.; Ovchinnikov, A. Yu.; Gugalinskaya, L. A.; Alifanov, V. M.; Pinskii, D. L.

    2017-08-01

    Living cultural strains of the green algae `Chlorella' mirabilis and Muriella terrestris have been isolated from buried soils, and their identification has been confirmed by morphological and molecular-genetic analysis. It has been shown that the retention of their viability could be related to their small size and the presence of sporopollenin in cell walls. The effect of methods for the reactivation of dormant microbial forms on the growth of algae in paleosols has been estimated. The total DNA content has been determined in buried and recent background soils, and relationship between DNA and the presence and age of burial has been established.

  12. Noncontact Measurement of the Local Mechanical Properties of Living Cells Using Pressure Applied via a Pipette

    PubMed Central

    Sánchez, Daniel; Johnson, Nick; Li, Chao; Novak, Pavel; Rheinlaender, Johannes; Zhang, Yanjun; Anand, Uma; Anand, Praveen; Gorelik, Julia; Frolenkov, Gregory I.; Benham, Christopher; Lab, Max; Ostanin, Victor P.; Schäffer, Tilman E.; Klenerman, David; Korchev, Yuri E.

    2008-01-01

    Mechanosensitivity in living biological tissue is a study area of increasing importance, but investigative tools are often inadequate. We have developed a noncontact nanoscale method to apply quantified positive and negative force at defined positions to the soft responsive surface of living cells. The method uses applied hydrostatic pressure (0.1–150 kPa) through a pipette, while the pipette-sample separation is kept constant above the cell surface using ion conductance based distance feedback. This prevents any surface contact, or contamination of the pipette, allowing repeated measurements. We show that we can probe the local mechanical properties of living cells using increasing pressure, and hence measure the nanomechanical properties of the cell membrane and the underlying cytoskeleton in a variety of cells (erythrocytes, epithelium, cardiomyocytes and neurons). Because the cell surface can first be imaged without pressure, it is possible to relate the mechanical properties to the local cell topography. This method is well suited to probe the nanomechanical properties and mechanosensitivity of living cells. PMID:18515369

  13. Opportunities for Live Cell FT-Infrared Imaging: Macromolecule Identification with 2D and 3D Localization

    PubMed Central

    Mattson, Eric C.; Aboualizadeh, Ebrahim; Barabas, Marie E.; Stucky, Cheryl L.; Hirschmugl, Carol J.

    2013-01-01

    Infrared (IR) spectromicroscopy, or chemical imaging, is an evolving technique that is poised to make significant contributions in the fields of biology and medicine. Recent developments in sources, detectors, measurement techniques and speciman holders have now made diffraction-limited Fourier transform infrared (FTIR) imaging of cellular chemistry in living cells a reality. The availability of bright, broadband IR sources and large area, pixelated detectors facilitate live cell imaging, which requires rapid measurements using non-destructive probes. In this work, we review advances in the field of FTIR spectromicroscopy that have contributed to live-cell two and three-dimensional IR imaging, and discuss several key examples that highlight the utility of this technique for studying the structure and chemistry of living cells. PMID:24256815

  14. Enteric coated spheres produced by extrusion/spheronization provide effective gastric protection and efficient release of live therapeutic bacteria.

    PubMed

    de Barros, João M S; Lechner, Tabea; Charalampopoulos, Dimitrios; Khutoryanskiy, Vitaliy V; Edwards, Alexander D

    2015-09-30

    We present a novel but simple enteric coated sphere formulation containing probiotic bacteria (Lactobacillus casei). Oral delivery of live bacterial cells (LBC) requires live cells to survive firstly manufacturing processes and secondly GI microbicidal defenses including gastric acid. We incorporated live L. casei directly in the granulation liquid, followed by granulation, extrusion, spheronization, drying and spray coating to produce dried live probiotic spheres. A blend of MCC, calcium-crosslinked alginate, and lactose was developed that gave improved live cell survival during manufacturing, and gave excellent protection from gastric acid plus rapid release in intestinal conditions. No significant loss of viability was observed in all steps except drying, which resulted in approximately 1 log loss of viable cells. Eudragit coating was used to protect dried live cells from acid, and microcrystalline cellulose (MCC) was combined with sodium alginate to achieve efficient sphere disintegration leading to rapid and complete bacterial cell release in intestinal conditions. Viability and release of L. casei was evaluated in vitro in simulated GI conditions. Uncoated spheres gave partial acid protection, but enteric coated spheres effectively protected dried probiotic LBC from acid for 2h, and subsequently released all viable cells within 1h of transfer into simulated intestinal fluid. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Adaptive aneuploidy protects against thiol peroxidase deficiency by increasing respiration via key mitochondrial proteins.

    PubMed

    Kaya, Alaattin; Gerashchenko, Maxim V; Seim, Inge; Labarre, Jean; Toledano, Michel B; Gladyshev, Vadim N

    2015-08-25

    Aerobic respiration is a fundamental energy-generating process; however, there is cost associated with living in an oxygen-rich environment, because partially reduced oxygen species can damage cellular components. Organisms evolved enzymes that alleviate this damage and protect the intracellular milieu, most notably thiol peroxidases, which are abundant and conserved enzymes that mediate hydrogen peroxide signaling and act as the first line of defense against oxidants in nearly all living organisms. Deletion of all eight thiol peroxidase genes in yeast (∆8 strain) is not lethal, but results in slow growth and a high mutation rate. Here we characterized mechanisms that allow yeast cells to survive under conditions of thiol peroxidase deficiency. Two independent ∆8 strains increased mitochondrial content, altered mitochondrial distribution, and became dependent on respiration for growth but they were not hypersensitive to H2O2. In addition, both strains independently acquired a second copy of chromosome XI and increased expression of genes encoded by it. Survival of ∆8 cells was dependent on mitochondrial cytochrome-c peroxidase (CCP1) and UTH1, present on chromosome XI. Coexpression of these genes in ∆8 cells led to the elimination of the extra copy of chromosome XI and improved cell growth, whereas deletion of either gene was lethal. Thus, thiol peroxidase deficiency requires dosage compensation of CCP1 and UTH1 via chromosome XI aneuploidy, wherein these proteins support hydroperoxide removal with the reducing equivalents generated by the electron transport chain. To our knowledge, this is the first evidence of adaptive aneuploidy counteracting oxidative stress.

  16. Live cell isolation by laser microdissection with gravity transfer

    NASA Astrophysics Data System (ADS)

    Podgorny, Oleg V.

    2013-05-01

    Laser microdissection by pulsing ultraviolet laser allows the isolation and recultivation of live cells based on morphological features or/and fluorescent labelling from adherent cell cultures. Previous investigations described only the use of the laser microdissection and pressure catapulting (LMPC) for live cell isolation. But LMPC requires complex manipulations and some skill. Furthermore, single-cell cloning using laser microdissection has not yet been demonstrated. The first evidence of successful application of laser microdissection with gravity transfer (LMDGT) for capturing and recultivation of live cells is presented. A new strategy for LMDGT is presented because of the failure to reproduce the manufacturer's protocol. Using the new strategy, successful capturing and recultivation of circle-shaped samples from confluent monolayer of HeLa cells was demonstrated. It was found that LMDGT is easier than LMPC because it doesn't require personal participation of investigator in transferring of isolated samples to final culture dishes. Moreover, for the first time, the generation of clonal colonies from single live cells isolated by laser microdissection was demonstrated. Data obtained in this study confirm that LMDGT is a reliable and high-yield method allowing isolation and expansion of both cell clusters and single cells from adherent cell cultures.

  17. Single-cell manipulation and DNA delivery technology using atomic force microscopy and nanoneedle.

    PubMed

    Han, Sung-Woong; Nakamura, Chikashi; Miyake, Jun; Chang, Sang-Mok; Adachi, Taiji

    2014-01-01

    The recent single-cell manipulation technology using atomic force microscopy (AFM) not only allows high-resolution visualization and probing of biomolecules and cells but also provides spatial and temporal access to the interior of living cells via the nanoneedle technology. Here we review the development and application of single-cell manipulations and the DNA delivery technology using a nanoneedle. We briefly describe various DNA delivery methods and discuss their advantages and disadvantages. Fabrication of the nanoneedle, visualization of nanoneedle insertion into living cells, DNA modification on the nanoneedle surface, and the invasiveness of nanoneedle insertion into living cells are described. Different methods of DNA delivery into a living cell, such as lipofection, microinjection, and nanoneedles, are then compared. Finally, single-cell diagnostics using the nanoneedle and the perspectives of the nanoneedle technology are outlined. The nanoneedle-based DNA delivery technology provides new opportunities for efficient and specific introduction of DNA and other biomolecules into precious living cells with a high spatial resolution within a desired time frame. This technology has the potential to be applied for many basic cellular studies and for clinical studies such as single-cell diagnostics.

  18. Mutagenic activity of heavy metals in soils of wayside slopes

    NASA Astrophysics Data System (ADS)

    Fedorova, A. I.; Kalaev, V. N.; Prosvirina, Yu. G.; Goryainova, S. A.

    2007-08-01

    The genotoxic properties of soils polluted with heavy metals were studied on two wayside slopes covered with trees in the city of Voronezh. The nucleolar test in cells of the apical meristem of Zebrina pendula Schnizl. roots was used. The genotoxic effect of the soils was revealed according to the increased number of 2-and 3-nucleolar cells (from 41 to 54% and from 19 to 23% in the upper part of the first and second slopes, respectively; in the control, their number was 18 and 7%). The mean number of nucleoli per cell increased from 1.7 to 1.95 in the experiment and 1.31 in the control. The increased vehicle emissions, especially when cars go up the slopes (mainly in the upper and middle parts), correlated with the elevated heavy metal (Pb, Cu, Cd, and Zn) contents in the soil. The mutagenic substances may be removed to the Voronezh Reservoir, where they may be accumulated in some living organisms.

  19. Metagenomics uncovers a new group of low GC and ultra-small marine Actinobacteria

    PubMed Central

    Ghai, Rohit; Mizuno, Carolina Megumi; Picazo, Antonio; Camacho, Antonio; Rodriguez-Valera, Francisco

    2013-01-01

    We describe a deep-branching lineage of marine Actinobacteria with very low GC content (33%) and the smallest free living cells described yet (cell volume ca. 0.013 μm3), even smaller than the cosmopolitan marine photoheterotroph, ‘Candidatus Pelagibacter ubique'. These microbes are highly related to 16S rRNA sequences retrieved by PCR from the Pacific and Atlantic oceans 20 years ago. Metagenomic fosmids allowed a virtual genome reconstruction that also indicated very small genomes below 1 Mb. A new kind of rhodopsin was detected indicating a photoheterotrophic lifestyle. They are estimated to be ~4% of the total numbers of cells found at the site studied (the Mediterranean deep chlorophyll maximum) and similar numbers were estimated in all tropical and temperate photic zone metagenomes available. Their geographic distribution mirrors that of picocyanobacteria and there appears to be an association between these microbial groups. A new sub-class, ‘Candidatus Actinomarinidae' is proposed to designate these microbes. PMID:23959135

  20. Synthesis and Characterization of Functional Nanofilm-Coated Live Immune Cells.

    PubMed

    Hwang, Jangsun; Choi, Daheui; Choi, Moonhyun; Seo, Youngmin; Son, Jaewoo; Hong, Jinkee; Choi, Jonghoon

    2018-05-30

    Layer-by-layer (LbL) assembly techniques have been extensively studied in cell biology because of their simplicity of preparation and versatility. The applications of the LbL platform technology using polysaccharides, silicon, and graphene have been investigated. However, the applications of the above-mentioned technology using living cells remain to be fully understood. This study demonstrates a living cell-based LbL platform using various types of living cells. In addition, it confirms that the surplus charge on the outer surface of the coated cells can be used to bind the target protein. We develop a living cell-based LbL platform technology by stacking layers of hyaluronic acid (HA) and poly-l-lysine (PLL). The HA/PLL stacking results in three bilayers with a thickness of 4 ± 1 nm on the cell surface. Furthermore, the multilayer nanofilms on the cells are completely degraded after 3 days of the application of the LbL method. We also evaluate and visualize three bilayers of the nanofilm on adherent (AML-12 cells)-, nonadherent (trypsin-treated AML-12 cells)-, and circulation type [peripheral blood mononuclear cells (PBMCs)] cells by analyzing the zeta potential, cell viability, and imaging via scanning electron microscopy and confocal microscopy. Finally, we study the cytotoxicity of the nanofilm and characteristic functions of the immune cells after the nanofilm coating. The multilayer nanofilms are not acutely cytotoxic and did not inhibit the immune response of the PBMCs against stimulant. We conclude that a two bilayer nanofilm would be ideal for further study in any cell type. The living cell-based LbL platform is expected to be useful for a variety of applications in cell biology.

  1. Far-field photostable optical nanoscopy (PHOTON) for real-time super-resolution single-molecular imaging of signaling pathways of single live cells

    NASA Astrophysics Data System (ADS)

    Huang, Tao; Browning, Lauren M.; Xu, Xiao-Hong Nancy

    2012-04-01

    Cellular signaling pathways play crucial roles in cellular functions and design of effective therapies. Unfortunately, study of cellular signaling pathways remains formidably challenging because sophisticated cascades are involved, and a few molecules are sufficient to trigger signaling responses of a single cell. Here we report the development of far-field photostable-optical-nanoscopy (PHOTON) with photostable single-molecule-nanoparticle-optical-biosensors (SMNOBS) for mapping dynamic cascades of apoptotic signaling pathways of single live cells in real-time at single-molecule (SM) and nanometer (nm) resolutions. We have quantitatively imaged single ligand molecules (tumor necrosis factor α, TNFα) and their binding kinetics with their receptors (TNFR1) on single live cells; tracked formation and internalization of their clusters and their initiation of intracellular signaling pathways in real-time; and studied apoptotic signaling dynamics and mechanisms of single live cells with sufficient temporal and spatial resolutions. This study provides new insights into complex real-time dynamic cascades and molecular mechanisms of apoptotic signaling pathways of single live cells. PHOTON provides superior imaging and sensing capabilities and SMNOBS offer unrivaled biocompatibility and photostability, which enable probing of signaling pathways of single live cells in real-time at SM and nm resolutions.Cellular signaling pathways play crucial roles in cellular functions and design of effective therapies. Unfortunately, study of cellular signaling pathways remains formidably challenging because sophisticated cascades are involved, and a few molecules are sufficient to trigger signaling responses of a single cell. Here we report the development of far-field photostable-optical-nanoscopy (PHOTON) with photostable single-molecule-nanoparticle-optical-biosensors (SMNOBS) for mapping dynamic cascades of apoptotic signaling pathways of single live cells in real-time at single-molecule (SM) and nanometer (nm) resolutions. We have quantitatively imaged single ligand molecules (tumor necrosis factor α, TNFα) and their binding kinetics with their receptors (TNFR1) on single live cells; tracked formation and internalization of their clusters and their initiation of intracellular signaling pathways in real-time; and studied apoptotic signaling dynamics and mechanisms of single live cells with sufficient temporal and spatial resolutions. This study provides new insights into complex real-time dynamic cascades and molecular mechanisms of apoptotic signaling pathways of single live cells. PHOTON provides superior imaging and sensing capabilities and SMNOBS offer unrivaled biocompatibility and photostability, which enable probing of signaling pathways of single live cells in real-time at SM and nm resolutions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11739h

  2. Study of biocompatibility of medical grade high nitrogen nickel-free austenitic stainless steel in vitro.

    PubMed

    Li, Menghua; Yin, Tieying; Wang, Yazhou; Du, Feifei; Zou, Xingzheng; Gregersen, Hans; Wang, Guixue

    2014-10-01

    Adverse effects of nickel ions being released into the living organism have resulted in development of high nitrogen nickel-free austenitic stainless steels for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also improves steel properties. The cell cytocompatibility, blood compatibility and cell response of high nitrogen nickel-free austenitic stainless steel were studied in vitro. The mechanical properties and microstructure of this stainless steel were compared to the currently used 316L stainless steel. It was shown that the new steel material had comparable basic mechanical properties to 316L stainless steel and preserved the single austenite organization. The cell toxicity test showed no significant toxic side effects for MC3T3-E1 cells compared to nitinol alloy. Cell adhesion testing showed that the number of MC3T3-E1 cells was more than that on nitinol alloy and the cells grew in good condition. The hemolysis rate was lower than the national standard of 5% without influence on platelets. The total intracellular protein content and ALP activity and quantification of mineralization showed good cell response. We conclude that the high nitrogen nickel-free austenitic stainless steel is a promising new biomedical material for coronary stent development. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Living-Cell Microarrays

    PubMed Central

    Yarmush, Martin L.; King, Kevin R.

    2011-01-01

    Living cells are remarkably complex. To unravel this complexity, living-cell assays have been developed that allow delivery of experimental stimuli and measurement of the resulting cellular responses. High-throughput adaptations of these assays, known as living-cell microarrays, which are based on microtiter plates, high-density spotting, microfabrication, and microfluidics technologies, are being developed for two general applications: (a) to screen large-scale chemical and genomic libraries and (b) to systematically investigate the local cellular microenvironment. These emerging experimental platforms offer exciting opportunities to rapidly identify genetic determinants of disease, to discover modulators of cellular function, and to probe the complex and dynamic relationships between cells and their local environment. PMID:19413510

  4. Collaborative development of an educational resource on rehabilitation for people living with HIV.

    PubMed

    Solomon, Patricia; Salbach, Nancy M; O'Brien, Kelly K; Nixon, Stephanie; Worthington, Catherine; Baxter, Larry; Tattle, Stephen; Gervais, Nicole

    2017-07-12

    The objective of this study is to describe the collaborative development of a rehabilitation guide for people living with human immunodeficiency virus (HIV) which was adapted from an online resource for clinicians. We adapted a comprehensive evidence-informed online clinical resource for people living with HIV using a three-phase participatory process. In Phase 1, we interviewed 26 clinicians and 16 people living with HIV to gather recommendations on how to adapt and format the content to benefit people living with HIV. In Phase 2, we adapted the patient education resource using the recommendations that emerged from Phase 1. Phase 3 consisted of comprehensive stakeholder review of the revised resource on the adaptability, usability, communicability, and relevance of the information. Stakeholders participated in an interview to obtain in-depth information on their perspectives. Transcribed interviews underwent qualitative content analysis. Stakeholders indicated that the e-guide had utility for people living with HIV, community HIV service organizations, and care providers. Engaging people living with HIV resulted in a more relevant and meaningful resource that incorporated patients' values, needs, and preferences. Involving multiple stakeholders and user groups in the adaptation and evaluation of online patient education resources can assist in meeting patients' needs through increasing the relevance, organization and presentation of the content, and incorporating patients' values and needs. Implications for Rehabilitation Online patient education resources should be adapted in order to maximize relevance and meaningfulness to patients. Involving multiple stakeholders in the adaptation and evaluation of online patient education resources can assist in meeting patients' needs. Involving multiple stakeholders increases the relevance, organization and presentation of the content and allows the incorporation of patient values and needs. This collaborative approach with an emphasis on meaningful participation of patients and community may be of interest to others interested in promoting knowledge translation.

  5. Combining bio-electrospraying with gene therapy: a novel biotechnique for the delivery of genetic material via living cells.

    PubMed

    Ward, Eliot; Chan, Emma; Gustafsson, Kenth; Jayasinghe, Suwan N

    2010-05-01

    The investigations reported in this article demonstrate the ability of bio-electrosprays and cell electrospinning to deliver a genetic construct in association with living cells. Previous studies on both bio-electrosprays and cell electrospinning demonstrated great promise for tissue engineering and regenerative biology/medicine. The investigations described herein widen the applicability of these biotechniques by combining gene therapy protocols, resulting in a novel drug delivery methodology previously unexplored. In these studies a human cell line was transduced with recombinant self-inactivating lentiviral particles. These particles incorporated a green fluorescent protein fused to an endosomal targeting construct. This construct encodes a peptide, which can subsequently be detected on the surface of cells by specific T-cells. The transduced cell line was subsequently manipulated in association with either bio-electrospraying or cell electrospinning. Hence this demonstrates (i) the ability to safely handle genetically modified living cells and (ii) the ability to directly form pre-determined architectures bearing living therapeutic cells. This merged technology demonstrates a unique approach for directly forming living therapeutic architectures for controlled and targeted release of experimental cells/genes, as well as medical cell/gene therapeutics for a plethora of biological and medical applications. Hence, such developments could be applied to personalised medicine.

  6. ‘Living cantilever arrays’ for characterization of mass of single live cells in fluids†

    PubMed Central

    Park, Kidong; Jang, Jaesung; Irimia, Daniel; Sturgis, Jennifer; Lee, James; Robinson, J. Paul; Toner, Mehmet; Bashir, Rashid

    2013-01-01

    The size of a cell is a fundamental physiological property and is closely regulated by various environmental and genetic factors. Optical or confocal microscopy can be used to measure the dimensions of adherent cells, and Coulter counter or flow cytometry (forward scattering light intensity) can be used to estimate the volume of single cells in a flow. Although these methods could be used to obtain the mass of single live cells, no method suitable for directly measuring the mass of single adherent cells without detaching them from the surface is currently available. We report the design, fabrication, and testing of ‘living cantilever arrays’, an approach to measure the mass of single adherent live cells in fluid using silicon cantilever mass sensor. HeLa cells were injected into microfluidic channels with a linear array of functionalized silicon cantilevers and the cells were subsequently captured on the cantilevers with positive dielectrophoresis. The captured cells were then cultured on the cantilevers in a microfluidic environment and the resonant frequencies of the cantilevers were measured. The mass of a single HeLa cell was extracted from the resonance frequency shift of the cantilever and was found to be close to the mass value calculated from the cell density from the literature and the cell volume obtained from confocal microscopy. This approach can provide a new method for mass measurement of a single adherent cell in its physiological condition in a non-invasive manner, as well as optical observations of the same cell. We believe this technology would be very valuable for single cell time-course studies of adherent live cells. PMID:18584076

  7. Fixed-Cell Imaging of Schizosaccharomyces pombe.

    PubMed

    Hagan, Iain M; Bagley, Steven

    2016-07-01

    The acknowledged genetic malleability of fission yeast has been matched by impressive cytology to drive major advances in our understanding of basic molecular cell biological processes. In many of the more recent studies, traditional approaches of fixation followed by processing to accommodate classical staining procedures have been superseded by live-cell imaging approaches that monitor the distribution of fusion proteins between a molecule of interest and a fluorescent protein. Although such live-cell imaging is uniquely informative for many questions, fixed-cell imaging remains the better option for others and is an important-sometimes critical-complement to the analysis of fluorescent fusion proteins by live-cell imaging. Here, we discuss the merits of fixed- and live-cell imaging as well as specific issues for fluorescence microscopy imaging of fission yeast. © 2016 Cold Spring Harbor Laboratory Press.

  8. Label-Free, High Resolution, Multi-Modal Light Microscopy for Discrimination of Live Stem Cell Differentiation Status.

    PubMed

    Zhang, Jing; Moradi, Emilia; Somekh, Michael G; Mather, Melissa L

    2018-01-15

    A label-free microscopy method for assessing the differentiation status of stem cells is presented with potential application for characterization of therapeutic stem cell populations. The microscopy system is capable of characterizing live cells based on the use of evanescent wave microscopy and quantitative phase contrast (QPC) microscopy. The capability of the microscopy system is demonstrated by studying the differentiation of live immortalised neonatal mouse neural stem cells over a 15 day time course. Metrics extracted from microscope images are assessed and images compared with results from endpoint immuno-staining studies to illustrate the system's performance. Results demonstrate the potential of the microscopy system as a valuable tool for cell biologists to readily identify the differentiation status of unlabelled live cells.

  9. A cancer cell-specific fluorescent probe for imaging Cu2 + in living cancer cells

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Dong, Baoli; Kong, Xiuqi; Song, Xuezhen; Zhang, Nan; Lin, Weiying

    2017-07-01

    Monitoring copper level in cancer cells is important for the further understanding of its roles in the cell proliferation, and also could afford novel copper-based strategy for the cancer therapy. Herein, we have developed a novel cancer cell-specific fluorescent probe for the detecting Cu2 + in living cancer cells. The probe employed biotin as the cancer cell-specific group. Before the treatment of Cu2 +, the probe showed nearly no fluorescence. However, the probe can display strong fluorescence at 581 nm in response to Cu2 +. The probe exhibited excellent sensitivity and high selectivity for Cu2 + over the other relative species. Under the guidance of biotin group, could be successfully used for detecting Cu2 + in living cancer cells. We expect that this design strategy could be further applied for detection of the other important biomolecules in living cancer cells.

  10. Artificial Cell Therapy: New Strategies for the Therapeutic Delivery of Live Bacteria

    PubMed Central

    2005-01-01

    There has been rapid growth in research regarding the use of live bacterial cells for therapeutic purposes. The recognition that these cells can be genetically engineered to synthesize products that have therapeutic potential has generated considerable interest and excitement among clinicians and health professionals. It is expected that a wide range of disease modifying substrates such as enzymes, hormones, antibodies, vaccines, and other genetic products will be used successfully and will impact upon health care substantially. However, a major limitation in the use of these bacterial cells is the complexity of delivering them to the correct target tissues. Oral delivery of live cells, lyophilized cells, and immobilized cells has been attempted but with limited success. Primarily, this is because bacterial cells are incapable of surviving passage through the gastrointestinal tract. In many occasions, when given orally, these cells have been found to provoke immunogenic responses that are undesirable. Recent studies show that these problems can be overcome by delivering live bacterial cells, such as genetically engineered cells, using artificial cell microcapsules. This review summarizes recent advances in the therapeutic use of live bacterial cells for therapy, discusses the principles of using artificial cells for the oral delivery of bacterial cells, outlines methods for preparing suitable artificial cells for this purpose, addresses potentials and limitations for their application in therapy, and provides insight for the future direction of this emergent and highly prospective technology. PMID:15689638

  11. Learner-Generated Content and Engagement in Second Language Task Performance

    ERIC Educational Resources Information Center

    Lambert, Craig; Philp, Jenefer; Nakamura, Sachiko

    2017-01-01

    This study investigates the benefits of designing second language (L2) learning tasks to operate on learner-generated content (related to actual content in their lives and experiences) as opposed to teacher-generated content typical of current approaches to L2 task design (fictitious ideas and events created to provide an opportunity for…

  12. Aberration-free FTIR spectroscopic imaging of live cells in microfluidic devices.

    PubMed

    Chan, K L Andrew; Kazarian, Sergei G

    2013-07-21

    The label-free, non-destructive chemical analysis offered by FTIR spectroscopic imaging is a very attractive and potentially powerful tool for studies of live biological cells. FTIR imaging of live cells is a challenging task, due to the fact that cells are cultured in an aqueous environment. While the synchrotron facility has proven to be a valuable tool for FTIR microspectroscopic studies of single live cells, we have demonstrated that high quality infrared spectra of single live cells using an ordinary Globar source can also be obtained by adding a pair of lenses to a common transmission liquid cell. The lenses, when placed on the transmission cell window, form pseudo hemispheres which removes the refraction of light and hence improve the imaging and spectral quality of the obtained data. This study demonstrates that infrared spectra of single live cells can be obtained without the focus shifting effect at different wavenumbers, caused by the chromatic aberration. Spectra of the single cells have confirmed that the measured spectral region remains in focus across the whole range, while spectra of the single cells measured without the lenses have shown some erroneous features as a result of the shift of focus. It has also been demonstrated that the addition of lenses can be applied to the imaging of cells in microfabricated devices. We have shown that it was not possible to obtain a focused image of an isolated cell in a droplet of DPBS in oil unless the lenses are applied. The use of the approach described herein allows for well focused images of single cells in DPBS droplets to be obtained.

  13. Invitations to Life's Diversity. Teacher-Friendly Science Activities with Reproducible Handouts in English and Spanish. Grades 3-5. Living Things Science Series.

    ERIC Educational Resources Information Center

    Camp, Carole Ann, Ed.

    This booklet, one of six in the Living Things Science series, presents activities about diversity and classification of living things which address basic "Benchmarks" suggested by the American Association for the Advancement of Science for the Living Environment for grades 3-5. Contents include background information, vocabulary (in…

  14. Technical Insights into Highly Sensitive Isolation and Molecular Characterization of Fixed and Live Circulating Tumor Cells for Early Detection of Tumor Invasion

    PubMed Central

    Laget, Sophie; Dhingra, Dalia M.; BenMohamed, Fatima; Capiod, Thierry; Osteras, Magne; Farinelli, Laurent; Jackson, Stephen; Paterlini-Bréchot, Patrizia

    2017-01-01

    Circulating Tumor Cells (CTC) and Circulating Tumor Microemboli (CTM) are Circulating Rare Cells (CRC) which herald tumor invasion and are expected to provide an opportunity to improve the management of cancer patients. An unsolved technical issue in the CTC field is how to obtain highly sensitive and unbiased collection of these fragile and heterogeneous cells, in both live and fixed form, for their molecular study when they are extremely rare, particularly at the beginning of the invasion process. We report on a new protocol to enrich from blood live CTC using ISET® (Isolation by SizE of Tumor/Trophoblastic Cells), an open system originally developed for marker-independent isolation of fixed tumor cells. We have assessed the impact of our new enrichment method on live tumor cells antigen expression, cytoskeleton structure, cell viability and ability to expand in culture. We have also explored the ISET® in vitro performance to collect intact fixed and live cancer cells by using spiking analyses with extremely low number of fluorescent cultured cells. We describe results consistently showing the feasibility of isolating fixed and live tumor cells with a Lower Limit of Detection (LLOD) of one cancer cell per 10 mL of blood and a sensitivity at LLOD ranging from 83 to 100%. This very high sensitivity threshold can be maintained when plasma is collected before tumor cells isolation. Finally, we have performed a comparative next generation sequencing (NGS) analysis of tumor cells before and after isolation from blood and culture. We established the feasibility of NGS analysis of single live and fixed tumor cells enriched from blood by our system. This study provides new protocols for detection and characterization of CTC collected from blood at the very early steps of tumor invasion. PMID:28060956

  15. Analysis of live cell images: Methods, tools and opportunities.

    PubMed

    Nketia, Thomas A; Sailem, Heba; Rohde, Gustavo; Machiraju, Raghu; Rittscher, Jens

    2017-02-15

    Advances in optical microscopy, biosensors and cell culturing technologies have transformed live cell imaging. Thanks to these advances live cell imaging plays an increasingly important role in basic biology research as well as at all stages of drug development. Image analysis methods are needed to extract quantitative information from these vast and complex data sets. The aim of this review is to provide an overview of available image analysis methods for live cell imaging, in particular required preprocessing image segmentation, cell tracking and data visualisation methods. The potential opportunities recent advances in machine learning, especially deep learning, and computer vision provide are being discussed. This review includes overview of the different available software packages and toolkits. Copyright © 2017. Published by Elsevier Inc.

  16. [Oxidative damage and immunotoxicity effect of people who exposed to electronic waste].

    PubMed

    Zhang, Ronghua; Xu, Caiju; Shen, Haitao; Tang, Yun; Meng, Jia; Lu, Wei; Wang, Xiaofeng; Lou, Xiaoming; Song, Yanhua; Han, Guangen; Cai, Delei; Ding, Gangqiang

    2012-03-01

    To investigate the relationship between risk factors and the effects of antioxidation and immune function in adults who exposed to electronic waste( e-waste). The exposed group was chosen from the people who lived in the e-waste disposing areas of Zhejiang province. The control group was chosen from people who lived in unpolluted area. Anticoagulation and coagulation peripheral venous blood samples were collected from 40 exposed persons (22 employees, 18 non-employees) and 36 exposed persons respectively. The oxidative, immune, Cd, Pb, Cr, Hg, and PCB indexes were detected. The contents of Cd, total PCB, MDA statistically increased in exposed group comparing with the control group (P < 0.05). The activity of SOD, GSH-Px, the percentage of helper/inducer T lymphocytes (CD4+) and the content of Cr in exposed group were less than those in the controlgroup (P < 0.05). Oxidative damage and immunotoxicity were observed in the group that lived in e-waste disposing areas. These effects were mainly related to the increase of Cd content or Cd and Pb contents in peripheral venous blood.

  17. Standards and guidelines for biopolymers in tissue-engineered medical products: ASTM alginate and chitosan standard guides. American Society for Testing and Materials.

    PubMed

    Dornish, M; Kaplan, D; Skaugrud, O

    2001-11-01

    The American Society for Testing and Materials (ASTM) is making a concerted effort to establish standards and guidelines for the entire field of tissue-engineered medical products (TEMPS). Safety, consistency, and functionality of biomaterials used as matrices, scaffolds, and immobilizing agents in TEMPS are a concern. Therefore, the ASTM has established a number of task groups to produce standards and guidelines for such biomaterials. Alginate is a naturally occurring biomaterial used for immobilizing living cells to form an artificial organ, such as encapsulated pancreatic islets. In order to aid in successful clinical applications and to help expedite regulatory approval, the alginate used must be fully documented. The ASTM alginate guide gives information on selection of testing methodologies and safety criteria. Critical parameters such as monomer content, molecular weight, and viscosity, in addition to more general parameters, such as dry matter content, heavy metal content, bioburden, and endotoxin content are described in the ASTM document. In a like manner, the characterization parameters for chitosan, a bioadhesive polycationic polysaccharide, are described in a separate guide. For chitosan, the degree of deacetylation is of critical importance. Control of protein content and, hence, potential for hypersensitivity, endotoxin content, and total bioburden are important in chitosan preparations for TEMPS. Together these two guides represent part of the effort on behalf of the ASTM and other interested parties to ensure quality and standardization in TEMPS.

  18. Direct detection of RNAs in living cells using peptide-inserted Renilla luciferase.

    PubMed

    Andou, Takashi; Endoh, Tamaki; Mie, Masayasu; Kobatake, Eiry

    2011-06-21

    In this study, non-engineered RNAs were detected in living cells using bioluminescence. Two types of probe were utilized: a peptide inserted RLuc (PI-RLuc) probe and a split-RNA probe. Incorporation of the PI-RLuc and split-RNA probes enabled the direct detection of RNA introduced into living cells.

  19. Glucagon-Secreting Alpha Cell Selective Two-Photon Fluorescent Probe TP-α: For Live Pancreatic Islet Imaging.

    PubMed

    Agrawalla, Bikram Keshari; Chandran, Yogeswari; Phue, Wut-Hmone; Lee, Sung-Chan; Jeong, Yun-Mi; Wan, Si Yan Diana; Kang, Nam-Young; Chang, Young-Tae

    2015-04-29

    Two-photon (TP) microscopy has an advantage for live tissue imaging which allows a deeper tissue penetration up to 1 mm comparing to one-photon (OP) microscopy. While there are several OP fluorescence probes in use for pancreatic islet imaging, TP imaging of selective cells in live islet still remains a challenge. Herein, we report the discovery of first TP live pancreatic islet imaging probe; TP-α (Two Photon-alpha) which can selectively stain glucagon secreting alpha cells. Through fluorescent image based screening using three pancreatic cell lines, we discovered TP-α from a TP fluorescent dye library TPG (TP-Green). In vitro fluorescence test showed that TP-α have direct interaction and appear glucagon with a significant fluorescence increase, but not with insulin or other hormones/analytes. Finally, TP-α was successfully applied for 3D imaging of live islets by staining alpha cell directly. The newly developed TP-α can be a practical tool to evaluate and identify live alpha cells in terms of localization, distribution and availability in the intact islets.

  20. Incomplete inhibition of HIV infection results in more HIV infected lymph node cells by reducing cell death

    PubMed Central

    Cele, Sandile; Ferreira, Isabella Markham; Young, Andrew C; Karim, Farina; Madansein, Rajhmun; Dullabh, Kaylesh J; Chen, Chih-Yuan; Buckels, Noel J; Ganga, Yashica; Khan, Khadija; Boulle, Mikael; Lustig, Gila; Neher, Richard A

    2018-01-01

    HIV has been reported to be cytotoxic in vitro and in lymph node infection models. Using a computational approach, we found that partial inhibition of transmissions of multiple virions per cell could lead to increased numbers of live infected cells. If the number of viral DNA copies remains above one after inhibition, then eliminating the surplus viral copies reduces cell death. Using a cell line, we observed increased numbers of live infected cells when infection was partially inhibited with the antiretroviral efavirenz or neutralizing antibody. We then used efavirenz at concentrations reported in lymph nodes to inhibit lymph node infection by partially resistant HIV mutants. We observed more live infected lymph node cells, but with fewer HIV DNA copies per cell, relative to no drug. Hence, counterintuitively, limited attenuation of HIV transmission per cell may increase live infected cell numbers in environments where the force of infection is high. PMID:29555018

  1. Cell fixation and preservation for droplet-based single-cell transcriptomics.

    PubMed

    Alles, Jonathan; Karaiskos, Nikos; Praktiknjo, Samantha D; Grosswendt, Stefanie; Wahle, Philipp; Ruffault, Pierre-Louis; Ayoub, Salah; Schreyer, Luisa; Boltengagen, Anastasiya; Birchmeier, Carmen; Zinzen, Robert; Kocks, Christine; Rajewsky, Nikolaus

    2017-05-19

    Recent developments in droplet-based microfluidics allow the transcriptional profiling of thousands of individual cells in a quantitative, highly parallel and cost-effective way. A critical, often limiting step is the preparation of cells in an unperturbed state, not altered by stress or ageing. Other challenges are rare cells that need to be collected over several days or samples prepared at different times or locations. Here, we used chemical fixation to address these problems. Methanol fixation allowed us to stabilise and preserve dissociated cells for weeks without compromising single-cell RNA sequencing data. By using mixtures of fixed, cultured human and mouse cells, we first showed that individual transcriptomes could be confidently assigned to one of the two species. Single-cell gene expression from live and fixed samples correlated well with bulk mRNA-seq data. We then applied methanol fixation to transcriptionally profile primary cells from dissociated, complex tissues. Low RNA content cells from Drosophila embryos, as well as mouse hindbrain and cerebellum cells prepared by fluorescence-activated cell sorting, were successfully analysed after fixation, storage and single-cell droplet RNA-seq. We were able to identify diverse cell populations, including neuronal subtypes. As an additional resource, we provide 'dropbead', an R package for exploratory data analysis, visualization and filtering of Drop-seq data. We expect that the availability of a simple cell fixation method will open up many new opportunities in diverse biological contexts to analyse transcriptional dynamics at single-cell resolution.

  2. A biomechanical perspective on the role of large stem volume and high water content in baobab trees (Adansonia spp.; Bombacaceae).

    PubMed

    Chapotin, Saharah Moon; Razanameharizaka, Juvet H; Holbrook, N Michele

    2006-09-01

    The stems of large trees serve in transport, storage, and support; however, the degree to which these roles are reflected in their morphology is not always apparent. The large, water-filled stems of baobab trees (Adansonia spp.) are generally assumed to serve a water storage function, yet recent studies indicate limited use of stored water. Through an analysis of wood structure and composition, we examined whether baobab morphology reflects biomechanical constraints rather than water storage capacity in the six Madagascar baobab species. Baobab wood has a high water content (up to 79%), low wood density (0.09-0.17 g · cm(-3)), high parenchyma content (69-88%), and living cells beyond 35 cm into the xylem from the cambium. Volumetric construction cost of the wood is several times lower than in more typical trees, and the elastic modulus approaches that of parenchyma tissue. Safety factors calculated from estimated elastic buckling heights were low, indicating that baobabs are not more overbuilt than other temperate and tropical trees, yet the energy investment in stem material is comparable to that in temperate deciduous trees. Furthermore, the elastic modulus of the wood decreases with water content, such that excessive water withdrawal from the stem could affect mechanical stability.

  3. Optical computed tomography for spatially isotropic four-dimensional imaging of live single cells

    PubMed Central

    Kelbauskas, Laimonas; Shetty, Rishabh; Cao, Bin; Wang, Kuo-Chen; Smith, Dean; Wang, Hong; Chao, Shi-Hui; Gangaraju, Sandhya; Ashcroft, Brian; Kritzer, Margaret; Glenn, Honor; Johnson, Roger H.; Meldrum, Deirdre R.

    2017-01-01

    Quantitative three-dimensional (3D) computed tomography (CT) imaging of living single cells enables orientation-independent morphometric analysis of the intricacies of cellular physiology. Since its invention, x-ray CT has become indispensable in the clinic for diagnostic and prognostic purposes due to its quantitative absorption-based imaging in true 3D that allows objects of interest to be viewed and measured from any orientation. However, x-ray CT has not been useful at the level of single cells because there is insufficient contrast to form an image. Recently, optical CT has been developed successfully for fixed cells, but this technology called Cell-CT is incompatible with live-cell imaging due to the use of stains, such as hematoxylin, that are not compatible with cell viability. We present a novel development of optical CT for quantitative, multispectral functional 4D (three spatial + one spectral dimension) imaging of living single cells. The method applied to immune system cells offers truly isotropic 3D spatial resolution and enables time-resolved imaging studies of cells suspended in aqueous medium. Using live-cell optical CT, we found a heterogeneous response to mitochondrial fission inhibition in mouse macrophages and differential basal remodeling of small (0.1 to 1 fl) and large (1 to 20 fl) nuclear and mitochondrial structures on a 20- to 30-s time scale in human myelogenous leukemia cells. Because of its robust 3D measurement capabilities, live-cell optical CT represents a powerful new tool in the biomedical research field. PMID:29226240

  4. Basics for the preparation of quantum dots and their interactions with living cells.

    PubMed

    Jiang, Xiue; Bai, Jing; Wang, Tiantian

    2014-01-01

    A study of the interactions between nanoparticles and living cells is invaluable in understanding the nano-biological effect and the mechanism of cellular endocytosis. Here we describe two methods for the preparation of semiconductor quantum dots with different physiochemical properties. Furthermore, we describe how to study the interaction of the two quantum dots with living HeLa cells and red blood cells with confocal microscopy.

  5. Dual-color dual-focus line-scanning FCS for quantitative analysis of receptor-ligand interactions in living specimens.

    PubMed

    Dörlich, René M; Chen, Qing; Niklas Hedde, Per; Schuster, Vittoria; Hippler, Marc; Wesslowski, Janine; Davidson, Gary; Nienhaus, G Ulrich

    2015-05-07

    Cellular communication in multi-cellular organisms is mediated to a large extent by a multitude of cell-surface receptors that bind specific ligands. An in-depth understanding of cell signaling networks requires quantitative information on ligand-receptor interactions within living systems. In principle, fluorescence correlation spectroscopy (FCS) based methods can provide such data, but live-cell applications have proven extremely challenging. Here, we have developed an integrated dual-color dual-focus line-scanning fluorescence correlation spectroscopy (2c2f lsFCS) technique that greatly facilitates live-cell and tissue experiments. Absolute ligand and receptor concentrations and their diffusion coefficients within the cell membrane can be quantified without the need to perform additional calibration experiments. We also determine the concentration of ligands diffusing in the medium outside the cell within the same experiment by using a raster image correlation spectroscopy (RICS) based analysis. We have applied this robust technique to study the interactions of two Wnt antagonists, Dickkopf1 and Dickkopf2 (Dkk1/2), to their cognate receptor, low-density-lipoprotein-receptor related protein 6 (LRP6), in the plasma membrane of living HEK293T cells. We obtained significantly lower affinities than previously reported using in vitro studies, underscoring the need to measure such data on living cells or tissues.

  6. Using cancer to make cellular reproduction rigorous and relevant

    NASA Astrophysics Data System (ADS)

    Duncan, Cynthia F.

    The 1983 report Nation at Risk highlighted the fact that test scores of American students were far below that of competing nations and educational standards were being lowered. This trend has continued and studies have also shown that students are not entering college ready for success. This trend can be reversed. Students can better understand and retain biology content expectations if they are taught in a way that is both rigorous and relevant. In the past, students have learned the details of cellular reproduction with little knowledge of why it is important to their everyday lives. This material is learned only for the test. Knowing the details of cellular reproduction is crucial for understanding cancer. Cancer is a topic that will likely affect all of my students at some point in their lives. Students used hands on activities, including simulations, labs, and models to learn about cellular reproduction with cancer as a theme throughout. Students were challenged to learn how to use the rigorous biology content expectations to think about cancer, including stem cell research. Students that will some day be college students, voting citizens, and parents, will become better learners. Students were assessed before and after the completion of the unit to determine if learning occurs. Students did learn the material and became more critical thinkers. Statistical analysis was completed to insure confidence in the results.

  7. In vivo quantification of plant starch reserves at micrometer resolution using X-ray microCT imaging and machine learning.

    PubMed

    Earles, J Mason; Knipfer, Thorsten; Tixier, Aude; Orozco, Jessica; Reyes, Clarissa; Zwieniecki, Maciej A; Brodersen, Craig R; McElrone, Andrew J

    2018-03-08

    Starch is the primary energy storage molecule used by most terrestrial plants to fuel respiration and growth during periods of limited to no photosynthesis, and its depletion can drive plant mortality. Destructive techniques at coarse spatial scales exist to quantify starch, but these techniques face methodological challenges that can lead to uncertainty about the lability of tissue-specific starch pools and their role in plant survival. Here, we demonstrate how X-ray microcomputed tomography (microCT) and a machine learning algorithm can be coupled to quantify plant starch content in vivo, repeatedly and nondestructively over time in grapevine stems (Vitis spp.). Starch content estimated for xylem axial and ray parenchyma cells from microCT images was correlated strongly with enzymatically measured bulk-tissue starch concentration on the same stems. After validating our machine learning algorithm, we then characterized the spatial distribution of starch concentration in living stems at micrometer resolution, and identified starch depletion in live plants under experimental conditions designed to halt photosynthesis and starch production, initiating the drawdown of stored starch pools. Using X-ray microCT technology for in vivo starch monitoring should enable novel research directed at resolving the spatial and temporal patterns of starch accumulation and depletion in woody plant species. No claim to original US Government works New Phytologist © 2018 New Phytologist Trust.

  8. In Vitro Analysis of Virus Particle Subpopulations in Candidate Live-Attenuated Influenza Vaccines Distinguishes Effective from Ineffective Vaccines▿

    PubMed Central

    Marcus, Philip I.; Ngunjiri, John M.; Sekellick, Margaret J.; Wang, Leyi; Lee, Chang-Won

    2010-01-01

    Two effective (vac+) and two ineffective (vac−) candidate live-attenuated influenza vaccines (LAIVs) derived from naturally selected genetically stable variants of A/TK/OR/71-delNS1[1-124] (H7N3) that differed only in the length and kind of amino acid residues at the C terminus of the nonstructural NS1 protein were analyzed for their content of particle subpopulations. These subpopulations included total physical particles (measured as hemagglutinating particles [HAPs]) with their subsumed biologically active particles of infectious virus (plaque-forming particles [PFPs]) and different classes of noninfectious virus, namely, interferon-inducing particles (IFPs), noninfectious cell-killing particles (niCKPs), and defective interfering particles (DIPs). The vac+ variants were distinguished from the vac− variants on the basis of their content of viral subpopulations by (i) the capacity to induce higher quantum yields of interferon (IFN), (ii) the generation of an unusual type of IFN-induction dose-response curve, (iii) the presence of IFPs that induce IFN more efficiently, (iv) reduced sensitivity to IFN action, and (v) elevated rates of PFP replication that resulted in larger plaques and higher PFP and HAP titers. These in vitro analyses provide a benchmark for the screening of candidate LAIVs and their potential as effective vaccines. Vaccine design may be improved by enhancement of attributes that are dominant in the effective (vac+) vaccines. PMID:20739541

  9. In vitro analysis of virus particle subpopulations in candidate live-attenuated influenza vaccines distinguishes effective from ineffective vaccines.

    PubMed

    Marcus, Philip I; Ngunjiri, John M; Sekellick, Margaret J; Wang, Leyi; Lee, Chang-Won

    2010-11-01

    Two effective (vac+) and two ineffective (vac-) candidate live-attenuated influenza vaccines (LAIVs) derived from naturally selected genetically stable variants of A/TK/OR/71-delNS1[1-124] (H7N3) that differed only in the length and kind of amino acid residues at the C terminus of the nonstructural NS1 protein were analyzed for their content of particle subpopulations. These subpopulations included total physical particles (measured as hemagglutinating particles [HAPs]) with their subsumed biologically active particles of infectious virus (plaque-forming particles [PFPs]) and different classes of noninfectious virus, namely, interferon-inducing particles (IFPs), noninfectious cell-killing particles (niCKPs), and defective interfering particles (DIPs). The vac+ variants were distinguished from the vac- variants on the basis of their content of viral subpopulations by (i) the capacity to induce higher quantum yields of interferon (IFN), (ii) the generation of an unusual type of IFN-induction dose-response curve, (iii) the presence of IFPs that induce IFN more efficiently, (iv) reduced sensitivity to IFN action, and (v) elevated rates of PFP replication that resulted in larger plaques and higher PFP and HAP titers. These in vitro analyses provide a benchmark for the screening of candidate LAIVs and their potential as effective vaccines. Vaccine design may be improved by enhancement of attributes that are dominant in the effective (vac+) vaccines.

  10. Longitudinal, label-free, quantitative tracking of cell death and viability in a 3D tumor model with OCT

    NASA Astrophysics Data System (ADS)

    Jung, Yookyung; Klein, Oliver J.; Wang, Hequn; Evans, Conor L.

    2016-06-01

    Three-dimensional in vitro tumor models are highly useful tools for studying tumor growth and treatment response of malignancies such as ovarian cancer. Existing viability and treatment assessment assays, however, face shortcomings when applied to these large, complex, and heterogeneous culture systems. Optical coherence tomography (OCT) is a noninvasive, label-free, optical imaging technique that can visualize live cells and tissues over time with subcellular resolution and millimeters of optical penetration depth. Here, we show that OCT is capable of carrying out high-content, longitudinal assays of 3D culture treatment response. We demonstrate the usage and capability of OCT for the dynamic monitoring of individual and combination therapeutic regimens in vitro, including both chemotherapy drugs and photodynamic therapy (PDT) for ovarian cancer. OCT was validated against the standard LIVE/DEAD Viability/Cytotoxicity Assay in small tumor spheroid cultures, showing excellent correlation with existing standards. Importantly, OCT was shown to be capable of evaluating 3D spheroid treatment response even when traditional viability assays failed. OCT 3D viability imaging revealed synergy between PDT and the standard-of-care chemotherapeutic carboplatin that evolved over time. We believe the efficacy and accuracy of OCT in vitro drug screening will greatly contribute to the field of cancer treatment and therapy evaluation.

  11. Reduced Insulin/Insulin-like Growth Factor-1 Signaling and Dietary Restriction Inhibit Translation but Preserve Muscle Mass in Caenorhabditis elegans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Depuydt, Geert; Xie, Fang; Petyuk, Vladislav A.

    Reduced signaling through the C. elegans insulin/IGF1 like tyrosine kinase receptor daf2 and dietary restriction via bacterial dilution are two well-characterized lifespan-extending interventions that operate in parallel or through (partially) independent mechanisms. Using accurate mass and time tag LCMS/MS quantitative proteomics we detected that the abundance of a large number of ribosomal subunits is decreased in response to dietary restriction as well as in the daf2(e1370) insulin/IGF1 receptor mutant. In addition, general protein synthesis levels in these long-lived worms are repressed. Surprisingly, ribosomal transcript levels were not correlated to actual protein abundance, suggesting that posttranscriptional regulation determines ribosome content. Proteomicsmore » also revealed increased presence of many structural muscle cell components in long-lived worms, which appears to result from prioritized preservation of muscle cell volume in nutrient-poor conditions or low insulin-like signaling. Activation of DAF16, but not diet-restriction, stimulates mRNA expression of muscle-related genes to prevent muscle atrophy. Important daf2 specific proteome changes include overexpression of aerobic metabolism enzymes and a general activation of stress responsive and immune defense systems, while increased abundance of many protein subunits of the proteasome core complex is a DR-specific characteristic.« less

  12. Phase separation between nucleoid and cytoplasm in Escherichia coli as defined by immersive refractometry.

    PubMed Central

    Valkenburg, J A; Woldringh, C L

    1984-01-01

    The refractive indices of nucleoid and cytoplasm in Escherichia coli were derived theoretically and experimentally. For the theoretical estimates, we made use of the known macromolecular composition of E. coli B/r (G. Churchward and H. Bremer, J. Theor. Biol. 94:651-670, 1982) and of estimates of cell and nucleoid volumes. These were obtained from micrographs of living bacteria made with a confocal scanning light microscope. The theoretical values were calculated, assuming that all DNA occurred in the nucleoid and that all protein and RNA occurred in the cytoplasm. Comparison with experimental refractive index values directly obtained by immersive refractometry showed that, besides its DNA, the nucleoid must contain an additional amount of solids equivalent to 8.6% (wt/vol) protein. With the nucleoid containing 6.8% (wt/vol) DNA and 8.6% (wt/vol) protein and the cytoplasm containing 21% (wt/vol) protein and 4% (wt/vol) RNA, a mass difference is obtained, which accounts for the phase separation observed between the nucleoid and cytoplasm in living cells by phase-contrast microscopy. The decrease in the refractive index of the nucleoid relative to that of the cytoplasm observed upon, for instance, OsO4 fixation was interpreted as being indicative of the loss of protein content in the nucleoid. Images PMID:6389508

  13. Mycobacterial Cultures Contain Cell Size and Density Specific Sub-populations of Cells with Significant Differential Susceptibility to Antibiotics, Oxidative and Nitrite Stress

    PubMed Central

    Vijay, Srinivasan; Nair, Rashmi Ravindran; Sharan, Deepti; Jakkala, Kishor; Mukkayyan, Nagaraja; Swaminath, Sharmada; Pradhan, Atul; Joshi, Niranjan V.; Ajitkumar, Parthasarathi

    2017-01-01

    The present study shows the existence of two specific sub-populations of Mycobacterium smegmatis and Mycobacterium tuberculosis cells differing in size and density, in the mid-log phase (MLP) cultures, with significant differential susceptibility to antibiotic, oxidative, and nitrite stress. One of these sub-populations (~10% of the total population), contained short-sized cells (SCs) generated through highly-deviated asymmetric cell division (ACD) of normal/long-sized mother cells and symmetric cell divisions (SCD) of short-sized mother cells. The other sub-population (~90% of the total population) contained normal/long-sized cells (NCs). The SCs were acid-fast stainable and heat-susceptible, and contained high density of membrane vesicles (MVs, known to be lipid-rich) on their surface, while the NCs possessed negligible density of MVs on the surface, as revealed by scanning and transmission electron microscopy. Percoll density gradient fractionation of MLP cultures showed the SCs-enriched fraction (SCF) at lower density (probably indicating lipid-richness) and the NCs-enriched fraction (NCF) at higher density of percoll fractions. While live cell imaging showed that the SCs and the NCs could grow and divide to form colony on agarose pads, the SCF, and NCF cells could independently regenerate MLP populations in liquid and solid media, indicating their full genomic content and population regeneration potential. CFU based assays showed the SCF cells to be significantly more susceptible than NCF cells to a range of concentrations of rifampicin and isoniazid (antibiotic stress), H2O2 (oxidative stress),and acidified NaNO2 (nitrite stress). Live cell imaging showed significantly higher susceptibility of the SCs of SC-NC sister daughter cell pairs, formed from highly-deviated ACD of normal/long-sized mother cells, to rifampicin and H2O2, as compared to the sister daughter NCs, irrespective of their comparable growth rates. The SC-SC sister daughter cell pairs, formed from the SCDs of short-sized mother cells and having comparable growth rates, always showed comparable stress-susceptibility. These observations and the presence of M. tuberculosis SCs and NCs in pulmonary tuberculosis patients' sputum earlier reported by us imply a physiological role for the SCs and the NCs under the stress conditions. The plausible reasons for the higher stress susceptibility of SCs and lower stress susceptibility of NCs are discussed. PMID:28377757

  14. The effect of macromolecular crowding on mobility of biomolecules, association kinetics and gene expression in living cells

    NASA Astrophysics Data System (ADS)

    Tabaka, Marcin; Kalwarczyk, Tomasz; Szymanski, Jedrzej; Hou, Sen; Hołyst, Robert

    2014-09-01

    We discuss a quantitative influence of macromolecular crowding on biological processes: motion, bimolecular reactions, and gene expression in prokaryotic and eukaryotic cells. We present scaling laws relating diffusion coefficient of an object moving in a cytoplasm of cells to a size of this object and degree of crowding. Such description leads to the notion of the length scale dependent viscosity characteristic for all living cells. We present an application of the length-scale dependent viscosity model to the description of motion in the cytoplasm of both eukaryotic and prokaryotic living cells. We compare the model with all recent data on diffusion of nanoscopic objects in HeLa, and E. coli cells. Additionally a description of the mobility of molecules in cell nucleus is presented. Finally we discuss the influence of crowding on the bimolecular association rates and gene expression in living cells.

  15. Interactions between semiconductor nanowires and living cells.

    PubMed

    Prinz, Christelle N

    2015-06-17

    Semiconductor nanowires are increasingly used for biological applications and their small dimensions make them a promising tool for sensing and manipulating cells with minimal perturbation. In order to interface cells with nanowires in a controlled fashion, it is essential to understand the interactions between nanowires and living cells. The present paper reviews current progress in the understanding of these interactions, with knowledge gathered from studies where living cells were interfaced with vertical nanowire arrays. The effect of nanowires on cells is reported in terms of viability, cell-nanowire interface morphology, cell behavior, changes in gene expression as well as cellular stress markers. Unexplored issues and unanswered questions are discussed.

  16. mRNA destabilization improves glycemic responsiveness of transcriptionally regulated hepatic insulin gene therapy in vitro and in vivo.

    PubMed

    Thulé, Peter M; Lin, Yulin; Jia, Dingwu; Olson, Darin E; Tang, Shiue-Cheng; Sambanis, Athanassios

    2017-03-01

    Hepatic insulin gene therapy (HIGT) employing a glucose and insulin sensitive promoter to direct insulin transcription can lower blood sugars within 2 h of an intraperitoneal glucose challenge. However, post-challenge blood sugars frequently decline to below baseline. We hypothesize that this 'over-shoot' hypoglycemia results from sustained translation of long-lived transgene message, and that reducing pro-insulin message half-life will ameliorate post-challenge hypoglycemia. We compared pro-insulin message content and insulin secretion from primary rat hepatocytes expressing insulin from either a standard construct (2xfur), or a construct producing a destabilized pro-insulin message (InsTail), following exposure to stimulating or inhibitory conditions. Hepatocytes transduced with a 2xfur construct accumulated pro-insulin message, and exhibited increased insulin secretion, under conditions that both inhibit or stimulate transcription. By contrast, pro-insulin message content remained stable in InsTail expressing cells, and insulin secretion increased less than 2xfur during prolonged stimulation. During transitions from stimulatory to inhibitory conditions, or vice versa, amounts of pro-insulin message changed more rapidly in InsTail expressing cells than 2xfur expressing cells. Importantly, insulin secretion increased during the transition from stimulation to inhibition in 2xfur expressing cells, although it remained unchanged in InsTail expressing cells. Use of the InsTail destabilized insulin message tended to more rapidly reduce glucose induced glycemic excursions, and limit post-load hypoglycemia in STZ-diabetic mice in vivo. The data obtained in the present study suggest that combining transcriptional and post-transcriptional regulatory strategies may reduce undesirable glycemic excursion in models of HIGT. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Imaging of Lipids in Microalgae with Coherent Anti-Stokes Raman Scattering Microscopy1[OPEN

    PubMed Central

    Cavonius, Lillie; Fink, Helen; Kiskis, Juris; Albers, Eva; Undeland, Ingrid; Enejder, Annika

    2015-01-01

    Microalgae have great prospects as a sustainable resource of lipids for refinement into nutraceuticals and biodiesel, which increases the need for detailed insights into their intracellular lipid synthesis/storage mechanisms. As an alternative strategy to solvent- and label-based lipid quantification techniques, we introduce time-gated coherent anti-Stokes Raman scattering (CARS) microscopy for monitoring lipid contents in living algae, despite strong autofluorescence from the chloroplasts, at approximately picogram and subcellular levels by probing inherent molecular vibrations. Intracellular lipid droplet synthesis was followed in Phaeodactylum tricornutum algae grown under (1) light/nutrient-replete (control [Ctrl]), (2) light-limited (LL), and (3) nitrogen-starved (NS) conditions. Good correlation (r2 = 0.924) was found between lipid volume data yielded by CARS microscopy and total fatty acid content obtained from gas chromatography-mass spectrometry analysis. In Ctrl and LL cells, micron-sized lipid droplets were found to increase in number throughout the growth phases, particularly in the stationary phase. During more excessive lipid accumulation, as observed in NS cells, promising commercial harvest as biofuels and nutritional lipids, several micron-sized droplets were present already initially during cultivation, which then fused into a single giant droplet toward stationary phase alongside with new droplets emerging. CARS microspectroscopy further indicated lower lipid fluidity in NS cells than in Ctrl and LL cells, potentially due to higher fatty acid saturation. This agreed with the fatty acid profiles gathered by gas chromatography-mass spectrometry. CARS microscopy could thus provide quantitative and semiqualitative data at the single-cell level along with important insights into lipid-accumulating mechanisms, here revealing two different modes for normal and excessive lipid accumulation. PMID:25583924

  18. Determination of dissociation constant of the NFκB p50/p65 heterodimer using fluorescence cross-correlation spectroscopy in the living cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiwari, Manisha; Mikuni, Shintaro; Muto, Hideki

    Highlights: •We used two-laser-beam FCCS to determine the dissociation constant (K{sub d}) of IPT domain of p50/p65 heterodimer in living cell. •Interaction of p50 and p65 was analyzed in the cytoplasm and nucleus of single living cell. •Binding affinity of p50/p65 heterodimer is higher in cytoplasm than that of nucleus. -- Abstract: Two-laser-beam fluorescence cross-correlation spectroscopy (FCCS) is promising technique that provides quantitative information about the interactions of biomolecules. The p50/p65 heterodimer is the most abundant and well understood of the NFκB dimers in most cells. However, the quantitative value of affinity, namely the K{sub d}, for the heterodimer inmore » living cells is not known yet. To quantify the heterodimerization of the IPT domain of p50/p65 in the living cell, we used two-laser-beam FCCS. The K{sub d} values of mCherry{sub 2}- and EGFP-fused p50 and p65 were determined to be 0.46 μM in the cytoplasm and 1.06 μM in the nucleus of the living cell. These results suggest the different binding affinities of the p50/p65 heterodimer in the cytoplasm and nucleus of the living cell and different complex formation in each region.« less

  19. Microfluidics microFACS for Life Detection

    NASA Technical Reports Server (NTRS)

    Platt, Donald W.; Hoover, Richard B.

    2010-01-01

    A prototype micro-scale Fluorescent Activated Cell Sorter (microFACS) for life detection has been built and is undergoing testing. A functional miniature microfluidics instrument with the ability to remotely distinguish live or dead bacterial cells from abiotic particulates in ice or permafrost of icy bodies of the solar system would be of fundamental value to NASA. The use of molecular probes to obtain the bio-signature of living or dead cells could answer the most fundamental question of Astrobiology: Does life exist beyond Earth? The live-dead fluorescent stains to be used in the microFACS instrument function only with biological cell walls. The detection of the cell membranes of living or dead bacteria (unlike PAH's and many other Biomarkers) would provide convincing evidence of present or past life. This miniature device rapidly examine large numbers of particulates from a polar ice or permafrost sample and distinguish living from dead bacteria cells and biological cells from mineral grains and abiotic particulates and sort the cells and particulates based on a staining system. Any sample found to exhibit fluorescence consistent with living cells could then be used in conjunction with a chiral labeled release experiment or video microscopy system to seek addition evidence for cellular metabolism or motility. Results of preliminary testing and calibration of the microFACS prototype instrument system with pure cultures and enrichment assemblages of microbial extremophiles will be reported.

  20. Non-rigid multi-frame registration of cell nuclei in live cell fluorescence microscopy image data.

    PubMed

    Tektonidis, Marco; Kim, Il-Han; Chen, Yi-Chun M; Eils, Roland; Spector, David L; Rohr, Karl

    2015-01-01

    The analysis of the motion of subcellular particles in live cell microscopy images is essential for understanding biological processes within cells. For accurate quantification of the particle motion, compensation of the motion and deformation of the cell nucleus is required. We introduce a non-rigid multi-frame registration approach for live cell fluorescence microscopy image data. Compared to existing approaches using pairwise registration, our approach exploits information from multiple consecutive images simultaneously to improve the registration accuracy. We present three intensity-based variants of the multi-frame registration approach and we investigate two different temporal weighting schemes. The approach has been successfully applied to synthetic and live cell microscopy image sequences, and an experimental comparison with non-rigid pairwise registration has been carried out. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Silk sericin-alginate-chitosan microcapsules: hepatocytes encapsulation for enhanced cellular functions.

    PubMed

    Nayak, Sunita; Dey, Sanchareeka; Kundu, Subhas C

    2014-04-01

    The encapsulation based technology permits long-term delivery of desired therapeutic products in local regions of body without the need of immunosuppressant drugs. In this study microcapsules composed of sericin and alginate micro bead as inner core and with an outer chitosan shell are prepared. This work is proposed for live cell encapsulation for potential therapeutic applications. The sericin protein is obtained from cocoons of non-mulberry silkworm Antheraea mylitta. The sericin-alginate micro beads are prepared via ionotropic gelation under high applied voltage. The beads further coated with chitosan and crosslinked with genipin. The microcapsules developed are nearly spherical in shape with smooth surface morphology. Alamar blue assay and confocal microscopy indicate high cell viability and uniform encapsulated cell distribution within the sericin-alginate-chitosan microcapsules indicating that the microcapsules maintain favourable microenvironment for the cells. The functional analysis of encapsulated cells demonstrates that the glucose consumption, urea secretion rate and intracellular albumin content increased in the microcapsules. The study suggests that the developed sericin-alginate-chitosan microcapsule contributes towards the development of cell encapsulation model. It also offers to generate enriched population of metabolically and functionally active cells for the future therapeutics especially for hepatocytes transplantation in acute liver failure. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Mechanical characteristics of mesenchymal stem cells under impact of silica-based nanoparticles

    NASA Astrophysics Data System (ADS)

    Ogneva, Irina V.; Buravkov, Sergey V.; Shubenkov, Alexander N.; Buravkova, Ludmila B.

    2014-06-01

    Silica-based nanoparticles (NPs) pose great potential for medical and biological applications; however, their interactions with living cells have not been investigated in full. The objective of this study was to analyze the mechanical characteristics of mesenchymal stem cells when cultured in the presence of silica (Si) and silica-boron (SiB) nanoparticles. Cell stiffness was measured using atomic force microscopy; F-actin structure was evaluated using TRITC-phalloidin by confocal microscopy. The obtained data suggested that the cell stiffness increased within the following line: `Control' - `Si' - `SiB' (either after 1-h cultivation or 24-h incubation). Moreover, the cell stiffness was found to be higher after 1-h cultivation as compared to 24-h cultivation. This result shows that there is a two-phase process of particle diffusion into cells and that the particles interact directly with the membrane and, further, with the submembranous cytoskeleton. Conversely, the intensity of phalloidin fluorescence dropped within the same line: Control - Si - SiB. It could be suggested that the effects of silica-based particles may result in structural reorganization of cortical cytoskeleton with subsequent stiffness increase and concomitant F-actin content decrease (for example, in recruitment of additional actin-binding proteins within membrane and regrouping of actin filaments).

  3. RNA turnover and protein synthesis in fish cells.

    PubMed

    Smith, R W; Palmer, R M; Houlihan, D F

    2000-03-01

    Protein synthesis in fish has been previously correlated with RNA content. The present study investigates whether protein and RNA synthesis rates are similarly related. Protein and RNA synthesis rates were determined from 3H-phenylalanine and 3H-uridine incorporation, respectively, and expressed as % x day(-1) and half-lives, respectively. Three fibroblast cell lines were used: BF-2, RTP, CHSE 214, which are derived from the bluegill, rainbow trout and Chinook salmon, respectively. These cells contained similar RNA concentrations (approximately 175 microg RNA x mg(-1) cell protein). Therefore differences in protein synthesis rates, BF-2 (31.3 +/- 1.8)>RTP (25.1 +/- 1.7)>CHSE 214 (17.6 +/-1.1), were attributable to RNA translational efficiency. The most translationally efficient RNA (BF-2 cells), 1.8 mg protein synthesised x microg(-1) RNA x day(-1), corresponded to the lowest RNA half-life, 75.4 +/- 6.4 h. Translationally efficient RNA was also energetically efficient with BF-2 cells exploiting the least costly route of nucleotide supply (i.e. exogenous salvage) 3.5-6.0 times more than the least translationally efficient RNA (CHSE 214 cells). These data suggest that differential nucleotide supply, between intracellular synthesis and exogenous salvage, constitutes the area of pre-translational flexibility exploited to maintain RNA synthesis as a fixed energetic cost component of protein synthesis.

  4. Mechanical characteristics of mesenchymal stem cells under impact of silica-based nanoparticles.

    PubMed

    Ogneva, Irina V; Buravkov, Sergey V; Shubenkov, Alexander N; Buravkova, Ludmila B

    2014-01-01

    Silica-based nanoparticles (NPs) pose great potential for medical and biological applications; however, their interactions with living cells have not been investigated in full. The objective of this study was to analyze the mechanical characteristics of mesenchymal stem cells when cultured in the presence of silica (Si) and silica-boron (SiB) nanoparticles. Cell stiffness was measured using atomic force microscopy; F-actin structure was evaluated using TRITC-phalloidin by confocal microscopy. The obtained data suggested that the cell stiffness increased within the following line: 'Control' - 'Si' - 'SiB' (either after 1-h cultivation or 24-h incubation). Moreover, the cell stiffness was found to be higher after 1-h cultivation as compared to 24-h cultivation. This result shows that there is a two-phase process of particle diffusion into cells and that the particles interact directly with the membrane and, further, with the submembranous cytoskeleton. Conversely, the intensity of phalloidin fluorescence dropped within the same line: Control - Si - SiB. It could be suggested that the effects of silica-based particles may result in structural reorganization of cortical cytoskeleton with subsequent stiffness increase and concomitant F-actin content decrease (for example, in recruitment of additional actin-binding proteins within membrane and regrouping of actin filaments).

  5. Strong is the new skinny: A content analysis of fitspiration websites.

    PubMed

    Boepple, Leah; Ata, Rheanna N; Rum, Ruba; Thompson, J Kevin

    2016-06-01

    "Fitspiration" websites are media that aim to inspire people to live healthy and fit lifestyles through motivating images and text related to exercise and diet. Given the link between similar Internet content (i.e., healthy living blogs) and problematic messages, we hypothesized that content on these sites would over-emphasize appearance and promote problematic messages regarding exercise and diet. Keywords "fitspo" and "fitspiration" were entered into search engines. The first 10 images and text from 51 individual websites were rated on a variety of characteristics. Results indicated that a majority of messages found on fitspiration websites focused on appearance. Other common themes included content promoting exercise for appearance-motivated reasons and content promoting dietary restraint. "Fitspiration" websites are a source of messages that reinforce over-valuation of physical appearance, eating concerns, and excessive exercise. Further research is needed to examine the impact viewing such content has on participants' psychological health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Fluorescence-Activated Cell Sorting of Live Versus Dead Bacterial Cells and Spores

    NASA Technical Reports Server (NTRS)

    Bernardini, James N.; LaDuc, Myron T.; Diamond, Rochelle; Verceles, Josh

    2012-01-01

    This innovation is a coupled fluorescence-activated cell sorting (FACS) and fluorescent staining technology for purifying (removing cells from sampling matrices), separating (based on size, density, morphology, and live versus dead), and concentrating cells (spores, prokaryotic, eukaryotic) from an environmental sample.

  7. Centers for Disease Control and Prevention

    MedlinePlus

    ... site content En español Centers for Disease Control and Prevention CDC 24/7: Saving Lives. Protecting People.™ Centers for Disease Control and Prevention. CDC twenty four seven. Saving Lives, ...

  8. A new cell morphotype among methane oxidizers: a spiral-shaped obligately microaerophilic methanotroph from northern low-oxygen environments.

    PubMed

    Danilova, Olga V; Suzina, Natalia E; Van De Kamp, Jodie; Svenning, Mette M; Bodrossy, Levente; Dedysh, Svetlana N

    2016-11-01

    Although representatives with spiral-shaped cells are described for many functional groups of bacteria, this cell morphotype has never been observed among methanotrophs. Here, we show that spiral-shaped methanotrophic bacteria do exist in nature but elude isolation by conventional approaches due to the preference for growth under micro-oxic conditions. The helical cell shape may enable rapid motility of these bacteria in water-saturated, heterogeneous environments with high microbial biofilm content, therefore offering an advantage of fast cell positioning under desired high methane/low oxygen conditions. The pmoA genes encoding a subunit of particulate methane monooxygenase from these methanotrophs form a new genus-level lineage within the family Methylococcaceae, type Ib methanotrophs. Application of a pmoA-based microarray detected these bacteria in a variety of high-latitude freshwater environments including wetlands and lake sediments. As revealed by the environmental pmoA distribution analysis, type Ib methanotrophs tend to live very near the methane source, where oxygen is scarce. The former perception of type Ib methanotrophs as being typical for thermal habitats appears to be incorrect because only a minor proportion of pmoA sequences from these bacteria originated from environments with elevated temperatures.

  9. The coordinating role of IQGAP1 in the regulation of local, endosome-specific actin networks

    PubMed Central

    Samson, Edward B.; Tsao, David S.; Zimak, Jan; McLaughlin, R. Tyler; Trenton, Nicholaus J.; Mace, Emily M.; Orange, Jordan S.; Schweikhard, Volker

    2017-01-01

    ABSTRACT IQGAP1 is a large, multi-domain scaffold that helps orchestrate cell signaling and cytoskeletal mechanics by controlling interactions among a spectrum of receptors, signaling intermediates, and cytoskeletal proteins. While this coordination is known to impact cell morphology, motility, cell adhesion, and vesicular traffic, among other functions, the spatiotemporal properties and regulatory mechanisms of IQGAP1 have not been fully resolved. Herein, we describe a series of super-resolution and live-cell imaging analyses that identified a role for IQGAP1 in the regulation of an actin cytoskeletal shell surrounding a novel membranous compartment that localizes selectively to the basal cortex of polarized epithelial cells (MCF-10A). We also show that IQGAP1 appears to both stabilize the actin coating and constrain its growth. Loss of compartmental IQGAP1 initiates a disassembly mechanism involving rapid and unconstrained actin polymerization around the compartment and dispersal of its vesicle contents. Together, these findings suggest IQGAP1 achieves this control by harnessing both stabilizing and antagonistic interactions with actin. They also demonstrate the utility of these compartments for image-based investigations of the spatial and temporal dynamics of IQGAP1 within endosome-specific actin networks. PMID:28455356

  10. Understanding dynamic changes in live cell adhesion with neutron reflectometry

    PubMed Central

    JUNGHANS, ANN; WALTMAN, MARY JO; SMITH, HILLARY L.; POCIVAVSEK, LUKA; ZEBDA, NOUREDDINE; BIRUKOV, KONSTANTIN; VIAPIANO, MARIANO; MAJEWSKI, JAROSLAW

    2015-01-01

    Neutron reflectometry (NR) was used to examine various live cells adhesion to quartz substrates under different environmental conditions, including flow stress. To the best of our knowledge, these measurements represent the first successful visualization and quantization of the interface between live cells and a substrate with sub-nanometer resolution. In our first experiments, we examined live mouse fibroblast cells as opposed to past experiments using supported lipids, proteins, or peptide layers with no associated cells. We continued the NR studies of cell adhesion by investigating endothelial monolayers and glioblastoma cells under dynamic flow conditions. We demonstrated that neutron reflectometry is a powerful tool to study the strength of cellular layer adhesion in living tissues, which is a key factor in understanding the physiology of cell interactions and conditions leading to abnormal or disease circumstances. Continuative measurements, such as investigating changes in tumor cell – surface contact of various glioblastomas, could impact advancements in tumor treatments. In principle, this can help us to identify changes that correlate with tumor invasiveness. Pursuit of these studies can have significant medical impact on the understanding of complex biological problems and their effective treatment, e.g. for the development of targeted anti-invasive therapies. PMID:25705067

  11. Cell tracking using iron oxide fails to distinguish dead from living transplanted cells in the infarcted heart.

    PubMed

    Winter, E M; Hogers, B; van der Graaf, L M; Gittenberger-de Groot, A C; Poelmann, R E; van der Weerd, L

    2010-03-01

    Recently, debate has arisen about the usefulness of cell tracking using iron oxide-labeled cells. Two important issues in determining the usefulness of cell tracking with MRI are generally overlooked; first, the effect of graft rejection in immunocompetent models, and second, the necessity for careful histological confirmation of the fate of the labeled cells in the presence of iron oxide. Therefore, both iron oxide-labeled living as well as dead epicardium-derived cells (EPDCs) were investigated in ischemic myocardium of immunodeficient non-obese diabetic (NOD)/acid: non-obese diabetic severe combined immunodeficient (NOD/scid) mice with 9.4T MRI until 6 weeks after surgery, at which time immunohistochemical analysis was performed. In both groups, voids on MRI scans were observed that did not change in number, size, or localization over time. Based on MRI, no distinction could be made between living and dead injected cells. Prussian blue staining confirmed that the hypointense spots on MRI corresponded to iron-loaded cells. However, in the dead-EPDC recipients, all iron-positive cells appeared to be macrophages, while the living-EPDC recipients also contained engrafted iron-loaded EPDCs. Iron labeling is inadequate for determining the fate of transplanted cells in the immunodeficient host, since dead cells produce an MRI signal indistinguishable from incorporated living cells. (c) 2010 Wiley-Liss, Inc.

  12. Nanoscale live cell imaging using hopping probe ion conductance microscopy

    PubMed Central

    Novak, Pavel; Li, Chao; Shevchuk, Andrew I.; Stepanyan, Ruben; Caldwell, Matthew; Hughes, Simon; Smart, Trevor G.; Gorelik, Julia; Ostanin, Victor P.; Lab, Max J.; Moss, Guy W. J.; Frolenkov, Gregory I.; Klenerman, David; Korchev, Yuri E.

    2009-01-01

    We describe a major advance in scanning ion conductance microscopy: a new hopping mode that allows non-contact imaging of the complex surfaces of live cells with resolution better than 20 nm. The effectiveness of this novel technique was demonstrated by imaging networks of cultured rat hippocampal neurons and mechanosensory stereocilia of mouse cochlear hair cells. The technique allows studying nanoscale phenomena on the surface of live cells under physiological conditions. PMID:19252505

  13. Parkinson's Disease: Diagnosis and Treatment

    MedlinePlus

    ... of this page please turn JavaScript on. Feature: Parkinson's Disease Parkinson's Disease: Diagnosis and Treatment Past Issues / Winter 2014 Table of Contents Medications for Parkinson's disease can help many patients live productive lives and ...

  14. Exploring the Leishmania Hydrophilic Acylated Surface Protein B (HASPB) Export Pathway by Live Cell Imaging Methods.

    PubMed

    MacLean, Lorna; Price, Helen; O'Toole, Peter

    2016-01-01

    Leishmania major is a human-infective protozoan parasite transmitted by the bite of the female phlebotomine sand fly. The L. major hydrophilic acylated surface protein B (HASPB) is only expressed in infective parasite stages suggesting a role in parasite virulence. HASPB is a "nonclassically" secreted protein that lacks a conventional signal peptide, reaching the cell surface by an alternative route to the classical ER-Golgi pathway. Instead HASPB trafficking to and exposure on the parasite plasma membrane requires dual N-terminal acylation. Here, we use live cell imaging methods to further explore this pathway allowing visualization of key events in real time at the individual cell level. These methods include live cell imaging using fluorescent reporters to determine the subcellular localization of wild type and acylation site mutation HASPB18-GFP fusion proteins, fluorescence recovery after photobleaching (FRAP) to analyze the dynamics of HASPB in live cells, and live antibody staining to detect surface exposure of HASPB by confocal microscopy.

  15. Using In Vitro Live-cell Imaging to Explore Chemotherapeutics Delivered by Lipid-based Nanoparticles.

    PubMed

    Seynhaeve, Ann L B; Ten Hagen, Timo L M

    2017-11-01

    Conventional imaging techniques can provide detailed information about cellular processes. However, this information is based on static images in an otherwise dynamic system, and successive phases are easily overlooked or misinterpreted. Live-cell imaging and time-lapse microscopy, in which living cells can be followed for hours or even days in a more or less continuous fashion, are therefore very informative. The protocol described here allows for the investigation of the fate of chemotherapeutic nanoparticles after the delivery of doxorubicin (dox) in living cells. Dox is an intercalating agent that must be released from its nanocarrier to become biologically active. In spite of its clinical registration for more than two decades, its uptake, breakdown, and drug release are still not fully understood. This article explores the hypothesis that lipid-based nanoparticles are taken up by the tumor cells and are slowly degraded. Released dox is then translocated to the nucleus. To prevent fixation artifacts, live-cell imaging and time-lapse microscopy, described in this experimental procedure, can be applied.

  16. Synthetic-Molecule/Protein Hybrid Probe with Fluorogenic Switch for Live-Cell Imaging of DNA Methylation.

    PubMed

    Hori, Yuichiro; Otomura, Norimichi; Nishida, Ayuko; Nishiura, Miyako; Umeno, Maho; Suetake, Isao; Kikuchi, Kazuya

    2018-02-07

    Hybrid probes consisting of synthetic molecules and proteins are powerful tools for detecting biological molecules and signals in living cells. To date, most targets of the hybrid probes have been limited to pH and small analytes. Although biomacromolecules are essential to the physiological function of cells, the hybrid-probe-based approach has been scarcely employed for live-cell detection of biomacromolecules. Here, we developed a hybrid probe with a chemical switch for live-cell imaging of methylated DNA, an important macromolecule in the repression of gene expression. Using a protein labeling technique, we created a hybrid probe containing a DNA-binding fluorogen and a methylated-DNA-binding domain. The hybrid probe enhanced fluorescence intensity upon binding to methylated DNA and successfully monitored methylated DNA during mitosis. The hybrid probe offers notable advantages absent from probes based on small molecules or fluorescent proteins and is useful for live-cell analyses of epigenetic phenomena and diseases related to DNA methylation.

  17. Fourier-transform infrared spectroscopy for rapid screening and live-cell monitoring: application to nanotoxicology.

    PubMed

    Sundaram, S K; Sacksteder, Colette A; Weber, Thomas J; Riley, Brian J; Addleman, R Shane; Harrer, Bruce J; Peterman, John W

    2013-01-01

    A significant challenge to realize the full potential of nanotechnology for therapeutic and diagnostic applications is to understand and evaluate how live cells interact with an external stimulus, such as a nanosized particle, and the toxicity and broad risk associated with these stimuli. It is difficult to capture the complexity and dynamics of these interactions by following omics-based approaches exclusively, which can be expensive and time-consuming. Attenuated total reflectance-Fourier transform infrared spectroscopy is well suited to provide noninvasive live-cell monitoring of cellular responses to potentially toxic nanosized particles or other stimuli. This alternative approach provides the ability to carry out rapid toxicity screenings and nondisruptive monitoring of live-cell cultures. We review the technical basis of the approach, the instrument configuration and interface with the biological media, the various effects that impact the data, subsequent data analysis and toxicity, and present some preliminary results on live-cell monitoring.

  18. Long Time-lapse Nanoscopy with Spontaneously Blinking Membrane Probes

    PubMed Central

    Takakura, Hideo; Zhang, Yongdeng; Erdmann, Roman S.; Thompson, Alexander D.; Lin, Yu; McNellis, Brian; Rivera-Molina, Felix; Uno, Shin-nosuke; Kamiya, Mako; Urano, Yasuteru; Rothman, James E.; Bewersdorf, Joerg; Schepartz, Alanna; Toomre, Derek

    2017-01-01

    Long time-lapse, diffraction-unlimited super-resolution imaging of cellular structures and organelles in living cells is highly challenging, as it requires dense labeling, bright, highly photostable dyes, and non-toxic conditions. We developed a set of high-density, environment-sensitive (HIDE) membrane probes based on HMSiR that assemble in situ and enable long time-lapse, live cell nanoscopy of discrete cellular structures and organelles with high spatio-temporal resolution. HIDE-enabled nanoscopy movies are up to 50x longer than movies obtained with labeled proteins, reveal the 2D dynamics of the mitochondria, plasma membrane, and filopodia, and the 2D and 3D dynamics of the endoplasmic reticulum in living cells. These new HIDE probes also facilitate the acquisition of live cell, two-color, super-resolution images, greatly expanding the utility of nanoscopy to visualize processes and structures in living cells. PMID:28671662

  19. Biofilms and planktonic cells of Deinococcus geothermalis in extreme environments

    NASA Astrophysics Data System (ADS)

    Panitz, Corinna; Reitz, Guenther; Rabbow, Elke; Rettberg, Petra; Flemming, Hans-Curt; Wingender, Jost; Froesler, Jan

    In addition to the several extreme environments on Earth, Space can be considered as just another exceptional environment with a unique mixture of stress factors comprising UV radiation, vacuum, desiccation, temperature, ionizing radiation and microgravity. Life that processes in these environments can depend on the life forms and their state of living. The question is whether there are different strategies for individual microorganisms compared to communities of the same organisms to cope with the different factors of their surroundings. Comparative studies of the survi-val of these communities called biofilms and planktonic cell samples of Deinococcus geothermalis stand at the focal point of the presented investigations. A biofilm is a structured community of microorganisms that live encapsulated in a matrix of extracellular polymeric substances on a surface. Microorganisms living in a biofilm usually have significantly different properties to cooperate than individually living microorganisms of the same species. An advantage of the biofilm is increased resistance to various chemical and physical effects, while the dense extracellular matrix and the outer layer of the cells protect the interior of the microbial consortium. The space experiment BOSS (Biofilm organisms surfing Space) as part the ESA experimental unit EXPOSE R-2 with a planned launch date in July 2014 will be subsequently mounted on the Russian Svesda module outside the ISS. An international team of scientists coordinated by Dr. P. Rettberg will investigate the hypothesis whether microorganisms organized as biofilm outmatch the same microorganisms exposed individually in the long-term survival of the harsh environmental conditions as they occur in space and on Mars. Another protective function in the samples could be dust par-ticles for instance Mars regolith simulant contained inside the biofilms or mixed with the planktonic cells, as additional shelter especially against the extraterrestrial UV radiation. D. geothermalis besides others, like co-cultures of Halomonas muralis and Halococcus morrhuae, Bacillus horneckiae, Chroococcidiopsis CCMEE 029 and Streptomyces + Polaromonas and Arthrobacter strains from volcanic rocks, was involved in the several preparatory test runs at the Planetary and Space Simulation facilities at the German Aerospace Center in Cologne. Results of the already carried out EVTs (Experiment Verification Test) and the SVT (Science verification test) as EXPOSE-R2 mission pre-paration tests, where investigated parameters like dehydration, temperature extremes, extraterrestrial UV radiation, simulated Martian atmosphere, and a Mars-like UV climate were tested individually as well as in combination will be presented. Following exposure to the parameters listed above, the survival of both biofilms and planktonic cells of D. geothermalis was assessed in terms of (i) culturability by colony counts on R2A medium, (ii) membrane integrity by using the Live/Dead differential staining kit, (iii) ATP content by using a commercial luminometric assay, and (iv) the presence of 16S rRNA by fluorescence in situ hybridization. So far, the results suggest that Deinococcus geothermalis remains viable in the desiccated state over weeks to months, whereas culturability, intracellular ATP levels, and membrane integrity were preserved in biofilm cells at a significantly higher level than in planktonic cells. Furthermore, cells of both sample types were able to survive simulated space and Martian conditions and showed high resistance after irradiation with monochromatic and polychromatic UV. The results will contribute to the fundamental understanding of the opportunities and limitations of viability of microorganisms organized in biofilms or as planktonic cells under the extreme environ-mental conditions of space or other planets.

  20. Label-free imaging of the native, living cellular nanoarchitecture using partial-wave spectroscopic microscopy

    PubMed Central

    Almassalha, Luay M.; Bauer, Greta M.; Chandler, John E.; Gladstein, Scott; Cherkezyan, Lusik; Stypula-Cyrus, Yolanda; Weinberg, Samuel; Zhang, Di; Thusgaard Ruhoff, Peder; Roy, Hemant K.; Subramanian, Hariharan; Chandel, Navdeep S.; Szleifer, Igal; Backman, Vadim

    2016-01-01

    The organization of chromatin is a regulator of molecular processes including transcription, replication, and DNA repair. The structures within chromatin that regulate these processes span from the nucleosomal (10-nm) to the chromosomal (>200-nm) levels, with little known about the dynamics of chromatin structure between these scales due to a lack of quantitative imaging technique in live cells. Previous work using partial-wave spectroscopic (PWS) microscopy, a quantitative imaging technique with sensitivity to macromolecular organization between 20 and 200 nm, has shown that transformation of chromatin at these length scales is a fundamental event during carcinogenesis. As the dynamics of chromatin likely play a critical regulatory role in cellular function, it is critical to develop live-cell imaging techniques that can probe the real-time temporal behavior of the chromatin nanoarchitecture. Therefore, we developed a live-cell PWS technique that allows high-throughput, label-free study of the causal relationship between nanoscale organization and molecular function in real time. In this work, we use live-cell PWS to study the change in chromatin structure due to DNA damage and expand on the link between metabolic function and the structure of higher-order chromatin. In particular, we studied the temporal changes to chromatin during UV light exposure, show that live-cell DNA-binding dyes induce damage to chromatin within seconds, and demonstrate a direct link between higher-order chromatin structure and mitochondrial membrane potential. Because biological function is tightly paired with structure, live-cell PWS is a powerful tool to study the nanoscale structure–function relationship in live cells. PMID:27702891

  1. Development of a High-Throughput Ultrasound Technique for the Analysis of Tissue Engineering Constructs

    PubMed Central

    Stukel, Jessica; Goss, Monika; Zhou, Haoyan; Zhou, Wenda; Willits, Rebecca; Exner, Agata A.

    2015-01-01

    Development of hydrogel-based tissue engineering constructs is growing at a rapid rate, yet translation to patient use has been sluggish. Years of costly preclinical tests are required to predict clinical performance and safety of these devices. The tests are invasive, destructive to the samples and, in many cases, are not representative of the ultimate in vivo scenario. Biomedical imaging has the potential to facilitate biomaterial development by enabling longitudinal noninvasive device characterization directly in situ. Among the various available imaging modalities, ultrasound stands out as an excellent candidate due to low cost, wide availability, and a favorable safety profile. The overall goal of this work was to demonstrate the utility of clinical ultrasound in longitudinal characterization of 3D hydrogel matrices supporting cell growth. Specifically, we developed a quantitative technique using clinical B-mode ultrasound to differentiate collagen content and fibroblast density within poly(ethylene glycol) (PEG) hydrogels and validated it in an in vitro phantom environment. By manipulating the hydrogel gelation, differences in ultrasound signal intensity were found between gels with collagen fibers and those with non-fiber forming collagen, indicating that the technique was sensitive to the configuration of the protein. At a collagen density of 2.5 mg/mL collagen, fiber forming collagen had a significantly increased signal intensity of 14.90± 2.58*10−5 a.u. compared to non-fiber forming intensity at 2.74± 0.36*10−5 a.u. Additionally, differences in intensity were found between living and fixed fibroblasts, with an increased signal intensity detected in living cells (5 ± 0.8*10−5 a.u. in 1 day live cells compared to 2.26 ± 0.39*10−5 a.u. in fixed cells at a concentration of 1*106 cells/mL in gels containing collagen). Overall, there was a linear correlation >0.90 for ultrasound intensity with increasing cell density. Results demonstrate the feasibility of using clinical ultrasound for characterization of PEG-based hydrogels in a tissue-mimicking phantom. The approach is clinically-relevant and could, with further validation, be utilized to nondestructively monitor in vivo performance of implanted tissue engineering scaffolds over time in preclinical and clinical settings. PMID:26577255

  2. Development of a High-Throughput Ultrasound Technique for the Analysis of Tissue Engineering Constructs.

    PubMed

    Stukel, Jessica M; Goss, Monika; Zhou, Haoyan; Zhou, Wenda; Willits, Rebecca Kuntz; Exner, Agata A

    2016-03-01

    Development of hydrogel-based tissue engineering constructs is growing at a rapid rate, yet translation to patient use has been sluggish. Years of costly preclinical tests are required to predict clinical performance and safety of these devices. The tests are invasive, destructive to the samples and, in many cases, are not representative of the ultimate in vivo scenario. Biomedical imaging has the potential to facilitate biomaterial development by enabling longitudinal noninvasive device characterization directly in situ. Among the various available imaging modalities, ultrasound stands out as an excellent candidate due to low cost, wide availability, and a favorable safety profile. The overall goal of this work was to demonstrate the utility of clinical ultrasound in longitudinal characterization of 3D hydrogel matrices supporting cell growth. Specifically, we developed a quantitative technique using clinical B-mode ultrasound to differentiate collagen content and fibroblast density within poly(ethylene glycol) (PEG) hydrogels and validated it in an in vitro phantom environment. By manipulating the hydrogel gelation, differences in ultrasound signal intensity were found between gels with collagen fibers and those with non-fiber forming collagen, indicating that the technique was sensitive to the configuration of the protein. At a collagen density of 2.5 mg/mL collagen, fiber forming collagen had a significantly increased signal intensity of 14.90 ± 2.58 × 10(-5) a.u. compared to non-fiber forming intensity at 2.74 ± 0.36 × 10(-5) a.u. Additionally, differences in intensity were found between living and fixed fibroblasts, with an increased signal intensity detected in living cells (5.00 ± 0.80 × 10(-5) a.u. in 1 day live cells compared to 2.26 ± 0.39 × 10(-5) a.u.in fixed cells at a concentration of 1 × 10(6) cells/mL in gels containing collagen). Overall, there was a linear correlation >0.90 for ultrasound intensity with increasing cell density. Results demonstrate the feasibility of using clinical ultrasound for characterization of PEG-based hydrogels in a tissue-mimicking phantom. The approach is clinically-relevant and could, with further validation, be utilized to nondestructively monitor in vivo performance of implanted tissue engineering scaffolds over time in preclinical and clinical settings.

  3. Single-molecule microscopy reveals membrane microdomain organization of cells in a living vertebrate.

    PubMed

    Schaaf, Marcel J M; Koopmans, Wiepke J A; Meckel, Tobias; van Noort, John; Snaar-Jagalska, B Ewa; Schmidt, Thomas S; Spaink, Herman P

    2009-08-19

    It has been possible for several years to study the dynamics of fluorescently labeled proteins by single-molecule microscopy, but until now this technology has been applied only to individual cells in culture. In this study, it was extended to stem cells and living vertebrate organisms. As a molecule of interest we used yellow fluorescent protein fused to the human H-Ras membrane anchor, which has been shown to serve as a model for proteins anchored in the plasma membrane. We used a wide-field fluorescence microscopy setup to visualize individual molecules in a zebrafish cell line (ZF4) and in primary embryonic stem cells. A total-internal-reflection microscopy setup was used for imaging in living organisms, in particular in epidermal cells in the skin of 2-day-old zebrafish embryos. Our results demonstrate the occurrence of membrane microdomains in which the diffusion of membrane proteins in a living organism is confined. This membrane organization differed significantly from that observed in cultured cells, illustrating the relevance of performing single-molecule microscopy in living organisms.

  4. Provider training to screen and initiate evidence-based pediatric obesity treatment in routine practice settings: A randomized pilot trial

    PubMed Central

    Kolko, Rachel P.; Kass, Andrea E.; Hayes, Jacqueline F.; Levine, Michele D.; Garbutt, Jane M.; Proctor, Enola K.; Wilfley, Denise E.

    2016-01-01

    Introduction This randomized pilot trial evaluated two training modalities for first-line, evidence-based pediatric obesity services (screening and goal-setting) among nursing students. Method Participants (N=63) were randomized to Live Interactive Training (Live) or Web-facilitated Self-study Training (Web). Pre-training, post-training, and one-month follow-up assessments evaluated training feasibility, acceptability, and impact (knowledge, and skill via simulation). Moderator (previous experience) and predictor (content engagement) analyses were conducted. Results Nearly-all (98%) participants completed assessments. Both trainings were acceptable, with higher ratings for Live and participants with previous experience (p’s<.05). Knowledge and skill improved from pre-training to post-training and follow-up in both conditions (p’s<.001). Live demonstrated greater content engagement (p’s<.01). Conclusions The training package was feasible, acceptable, and efficacious among nursing students. Given that Live had higher acceptability and engagement, and online training offers greater scalability, integrating interactive Live components within Web-based training may optimize outcomes, which may enhance practitioners’ delivery of pediatric obesity services. PMID:26873293

  5. Long term imaging of living brain cancer cells

    NASA Astrophysics Data System (ADS)

    Farias, Patricia M. A.; Galembeck, André; Milani, Raquel; Andrade, Arnaldo C. D. S.; Stingl, Andreas

    2018-02-01

    QDs synthesized in aqueous medium and functionalized with polyethylene glycol were used as fluorescent probes. They label and monitor living healthy and cancer brain glial cells in culture. Physical-chemical characterization was performed. Toxicological studies were performed by in vivo short and long-term inhalation in animal models. Healthy and cancer glial living cells were incubated in culture media with highly controlled QDs. Specific features of glial cancer cells were enhanced by QD labelling. Cytoplasmic labelling pattern was clearly distinct for healthy and cancer cells. Labelled cells kept their normal activity for same period as non-labelled control samples.

  6. Decorating an individual living cell with a shell of controllable thickness by cytocompatible surface initiated graft polymerization.

    PubMed

    Wang, Guan; Zhang, Kai; Wang, Yindian; Zhao, Changwen; He, Bin; Ma, Yuhong; Yang, Wantai

    2018-05-03

    Surface engineering of individual living cells is a promising field for cell-based applications. However, engineering individual cells with controllable thickness by chemical methods has been rarely studied. This article describes the development of a new cytocompatible chemical strategy to decorate individual living cells. The thicknesses of the crosslinked shells could be conveniently controlled by the irradiation time, visible light intensity, or monomer concentration. Moreover, the lag phase of the yeast cell division was extended and their stability against lysis was improved, which could also be tuned by controlling the shell thickness.

  7. Acid base activity of live bacteria: Implications for quantifying cell wall charge

    NASA Astrophysics Data System (ADS)

    Claessens, Jacqueline; van Lith, Yvonne; Laverman, Anniet M.; Van Cappellen, Philippe

    2006-01-01

    To distinguish the buffering capacity associated with functional groups in the cell wall from that resulting from metabolic processes, base or acid consumption by live and dead cells of the Gram-negative bacterium Shewanella putrefaciens was measured in a pH stat system. Live cells exhibited fast consumption of acid (pH 4) or base (pH 7, 8, 9, and 10) during the first few minutes of the experiments. At pH 5.5, no acid or base was required to maintain the initial pH constant. The initial amounts of acid or base consumed by the live cells at pH 4, 8, and 10 were of comparable magnitudes as those neutralized at the same pHs by intact cells killed by exposure to gamma radiation or ethanol. Cells disrupted in a French press required higher amounts of acid or base, due to additional buffering by intracellular constituents. At pH 4, acid neutralization by suspensions of live cells stopped after 50 min, because of loss of viability. In contrast, under neutral and alkaline conditions, base consumption continued for the entire duration of the experiments (5 h). This long-term base neutralization was, at least partly, due to active respiration by the cells, as indicated by the build-up of succinate in solution. Qualitatively, the acid-base activity of live cells of the Gram-positive bacterium Bacillus subtilis resembled that of S. putrefaciens. The pH-dependent charging of ionizable functional groups in the cell walls of the live bacteria was estimated from the initial amounts of acid or base consumed in the pH stat experiments. From pH 4 to 10, the cell wall charge increased from near-zero values to about -4 × 10 -16 mol cell -1 and -6.5 × 10 -16 mol cell -1 for S. putrefaciens and B. subtilis, respectively. The similar cell wall charging of the two bacterial strains is consistent with the inferred low contribution of lipopolysaccharides to the buffering capacity of the Gram-negative cell wall (of the order of 10%).

  8. Live Well

    MedlinePlus

    ... talkHIV Act Against AIDS Get Email Updates on AAA Anonymous Feedback HIV/AIDS Media Infographics Syndicated Content ... talkHIV Act Against AIDS Get Email Updates on AAA Anonymous Feedback HIV/AIDS Media Infographics Syndicated Content ...

  9. FRET and BRET-based biosensors in live cell compound screens.

    PubMed

    Robinson, Katie Herbst; Yang, Jessica R; Zhang, Jin

    2014-01-01

    Live cell compound screening with genetically encoded fluorescence or bioluminescence-based biosensors offers a potentially powerful approach to identify novel regulators of a signaling event of interest. In particular, compound screening in living cells has the added benefit that the entire signaling network remains intact, and thus the screen is not just against a single molecule of interest but against any molecule within the signaling network that may modulate the distinct signaling event reported by the biosensor in use. Furthermore, only molecules that are cell permeable or act at cell surface receptors will be identified as "hits," thus reducing further optimization of the compound in terms of cell penetration. Here we discuss a detailed protocol for using genetically encoded biosensors in living cells in a 96-well format for the execution of high throughput compound screens and the identification of small molecules which modulate a signaling event of interest.

  10. Live-cell imaging of cyanobacteria.

    PubMed

    Yokoo, Rayka; Hood, Rachel D; Savage, David F

    2015-10-01

    Cyanobacteria are a diverse bacterial phylum whose members possess a high degree of ultrastructural organization and unique gene regulatory mechanisms. Unraveling this complexity will require the use of live-cell fluorescence microscopy, but is impeded by the inherent fluorescent background associated with light-harvesting pigments and the need to feed photosynthetic cells light. Here, we outline a roadmap for overcoming these challenges. Specifically, we show that although basic cyanobacterial biology creates challenging experimental constraints, these restrictions can be mitigated by the careful choice of fluorophores and microscope instrumentation. Many of these choices are motivated by recent successful live-cell studies. We therefore also highlight how live-cell imaging has advanced our understanding of bacterial microcompartments, circadian rhythm, and the organization and segregation of the bacterial nucleoid.

  11. A study of the diffusion dynamics and concentration distribution of gold nanospheres (GNSs) without fluorescent labeling inside live cells using fluorescence single particle spectroscopy.

    PubMed

    Liu, Fangchao; Dong, Chaoqing; Ren, Jicun

    2018-03-15

    Colloidal gold nanospheres (GNSs) have become important nanomaterials in biomedical applications due to their special optical properties, good chemical stability, and biocompatibility. However, measuring the diffusion coefficients or concentration distribution of GNSs within live cells accurately without any extra fluorescent labeling in situ has still not been resolved. In this work, a single particle method is developed to study the concentration distribution of folic acid-modified GNSs (FA-GNSs) internalized via folate receptors, and investigates their diffusion dynamics within live cells using single particle fluorescence correlation spectroscopy (FCS). We optimized the experimental conditions and verified the feasibility of 30 nm GNSs without extra fluorescence labeling being used for single particle detection inside live cells. Then, the FCS characterization strategy was used to measure the concentration and diffusion coefficient distributions of GNSs inside live cells and the obtained results were basically in agreement with those obtained by TEM. The results demonstrate that our strategy is characterized as an in situ, nondestructive, rapid and dynamic method for the assay of live cells, and it may be widely used in the further design of GNP-based drug delivery and therapeutics.

  12. Orai1 as New Therapeutic Target for Inhibiting Breast Tumor Metastasis

    DTIC Science & Technology

    2009-09-01

    includes focal adhesion assembly (formation of focal complex) and focal adhesion disassembly, we used live - cell imaging to quantify the rates of assembly...A and B) Live cell imaging of paxillin-GFP transfected MEF cells in the absence (A) or presence (B) of SKF96365. Scale bar: 10 µm. (C and D...includes focal adhesion assembly (formation of focal complexes) and focal adhesion disassembly, we used live - cell imaging to quantify the rates of focal

  13. Live-cell imaging of cell signaling using genetically encoded fluorescent reporters.

    PubMed

    Ni, Qiang; Mehta, Sohum; Zhang, Jin

    2018-01-01

    Synergistic advances in fluorescent protein engineering and live-cell imaging techniques in recent years have fueled the concurrent development and application of genetically encoded fluorescent reporters that are tailored for tracking signaling dynamics in living systems over multiple length and time scales. These biosensors are uniquely suited for this challenging task, owing to their specificity, sensitivity, and versatility, as well as to the noninvasive and nondestructive nature of fluorescence and the power of genetic encoding. Over the past 10 years, a growing number of fluorescent reporters have been developed for tracking a wide range of biological signals in living cells and animals, including second messenger and metabolite dynamics, enzyme activation and activity, and cell cycle progression and neuronal activity. Many of these biosensors are gaining wide use and are proving to be indispensable for unraveling the complex biological functions of individual signaling molecules in their native environment, the living cell, shedding new light on the structural and molecular underpinnings of cell signaling. In this review, we highlight recent advances in protein engineering that are likely to help expand and improve the design and application of these valuable tools. We then turn our focus to specific examples of live-cell imaging using genetically encoded fluorescent reporters as an important platform for advancing our understanding of G protein-coupled receptor signaling and neuronal activity. © 2017 Federation of European Biochemical Societies.

  14. Origin and Function of Circulating Plasmablasts during Acute Viral Infections.

    PubMed

    Fink, Katja

    2012-01-01

    Activated B cells proliferate and differentiate into antibody-producing cells, long-lived plasma cells, and memory B cells after immunization or infection. Repeated encounter of the same antigen triggers the rapid re-activation of pre-existing specific memory B cells, which then potentially enter new germinal center reactions and differentiate into short-lived plasmablasts or remain in the system as memory B cells. Short-lived class-switched IgG and IgA plasmablasts appear in the circulation transiently and the frequency of these cells can be remarkably high. The specificities and affinities of single plasmablasts in humans have been reported for several viral infections, so far most extensively for influenza and HIV. In general, the immunoglobulin variable regions of plasmablasts are highly mutated and diverse, suggesting that plasmablasts are derived from memory B cells, yet it is unclear which memory B cell subsets are activated and whether activated memory B cells adapt or mature before differentiation. This review summarizes what is known about the phenotype and the origin of human plasmablasts in the context of viral infections and whether these cells can be predictors of long-lived immunity.

  15. Mechanical behavior in living cells consistent with the tensegrity model

    NASA Technical Reports Server (NTRS)

    Wang, N.; Naruse, K.; Stamenovic, D.; Fredberg, J. J.; Mijailovich, S. M.; Tolic-Norrelykke, I. M.; Polte, T.; Mannix, R.; Ingber, D. E.

    2001-01-01

    Alternative models of cell mechanics depict the living cell as a simple mechanical continuum, porous filament gel, tensed cortical membrane, or tensegrity network that maintains a stabilizing prestress through incorporation of discrete structural elements that bear compression. Real-time microscopic analysis of cells containing GFP-labeled microtubules and associated mitochondria revealed that living cells behave like discrete structures composed of an interconnected network of actin microfilaments and microtubules when mechanical stresses are applied to cell surface integrin receptors. Quantitation of cell tractional forces and cellular prestress by using traction force microscopy confirmed that microtubules bear compression and are responsible for a significant portion of the cytoskeletal prestress that determines cell shape stability under conditions in which myosin light chain phosphorylation and intracellular calcium remained unchanged. Quantitative measurements of both static and dynamic mechanical behaviors in cells also were consistent with specific a priori predictions of the tensegrity model. These findings suggest that tensegrity represents a unified model of cell mechanics that may help to explain how mechanical behaviors emerge through collective interactions among different cytoskeletal filaments and extracellular adhesions in living cells.

  16. Symbiotic interaction between dinoflagellates and the demosponge Lubomirskia baicalensis: aquaporin-mediated glycerol transport.

    PubMed

    Müller, Werner E G; Belikov, Sergey I; Kaluzhnaya, Oxana V; Chernogor, L; Krasko, Anatoli; Schröder, Heinz C

    2009-01-01

    Lake Baikal is rich in endemic sponge species, among them the arborescently growing species Lubomirskia baicalensis. During winter when the lake is covered by ice, this species reproduces sexually, reflecting a high metabolic activity. Throughout the year, L. baicalensis lives in association with dinoflagellates, which - according to the data presented herein - are symbiotic. The dinoflagellates have been determined on the basis of their rDNA/ITS characteristics and were found to display high sequence similarity to Gymnodinium sanguineum. The dinoflagellates give the sponge its characteristic green color, reflecting the high chlorophyll content (chlorophyll-a content in March and September of 3.2 +/- 0.6 microg/g and 1.9 +/- 0.5 microg/g of protein, respectively). With the in vitro cell culture system for sponges, the primmorphs, it could be demonstrated that [(14)C] glycerol is readily taken up by sponge cells; this process can be inhibited by phloretin, an aquaporin channel blocker. In order to prove the effect of cholesterol on the intermediate metabolism of the sponge cells, molecule probes, cDNAs for key enzymes in gluconeogenesis, glycolysis, and citric acid, have been applied in Northern blot studies. The data revealed that the genes coding for the enzymes citrate synthase and fructose-1,6-bisphosphatase are strongly upregulated after exposure of primmorphs to glycerol. This effect is abolished by phloretin. The genes encoding the phosphoglucose isomerase and pyruvate dehydrogenase do not respond to glycerol supply, suggesting that their expression is not under genetic control in L. baicalensis. To prove the assumption that the aquaporin channel is involved in the influx of glycerol in sponge cells, this cDNA was cloned and applied for in situ hybridization studies. The results obtained show that cells surrounding the dinoflagellates become brightly stained after hybridization with the aquaporin this probe. This demonstrates that L. baicalensis cells respond to glycerol, a metabolite which might be supplied by the dinoflagellates and imported via the aquaporin channel into the sponge cells.

  17. Changes in gene expression, cell physiology and toxicity of the harmful cyanobacterium Microcystis aeruginosa at elevated CO2

    PubMed Central

    Sandrini, Giovanni; Cunsolo, Serena; Schuurmans, J. Merijn; Matthijs, Hans C. P.; Huisman, Jef

    2015-01-01

    Rising CO2 concentrations may have large effects on aquatic microorganisms. In this study, we investigated how elevated pCO2 affects the harmful freshwater cyanobacterium Microcystis aeruginosa. This species is capable of producing dense blooms and hepatotoxins called microcystins. Strain PCC 7806 was cultured in chemostats that were shifted from low to high pCO2 conditions. This resulted in a transition from a C-limited to a light-limited steady state, with a ~2.7-fold increase of the cyanobacterial biomass and ~2.5-fold more microcystin per cell. Cells increased their chlorophyll a and phycocyanin content, and raised their PSI/PSII ratio at high pCO2. Surprisingly, cells had a lower dry weight and contained less carbohydrates, which might be an adaptation to improve the buoyancy of Microcystis when light becomes more limiting at high pCO2. Only 234 of the 4691 genes responded to elevated pCO2. For instance, expression of the carboxysome, RuBisCO, photosystem and C metabolism genes did not change significantly, and only a few N assimilation genes were expressed differently. The lack of large-scale changes in the transcriptome could suit a buoyant species that lives in eutrophic lakes with strong CO2 fluctuations very well. However, we found major responses in inorganic carbon uptake. At low pCO2, cells were mainly dependent on bicarbonate uptake, whereas at high pCO2 gene expression of the bicarbonate uptake systems was down-regulated and cells shifted to CO2 and low-affinity bicarbonate uptake. These results show that the need for high-affinity bicarbonate uptake systems ceases at elevated CO2. Moreover, the combination of an increased cyanobacterial abundance, improved buoyancy, and higher toxin content per cell indicates that rising atmospheric CO2 levels may increase the problems associated with the harmful cyanobacterium Microcystis in eutrophic lakes. PMID:25999931

  18. Live-cell Imaging of Pol II Promoter Activity to Monitor Gene expression with RNA IMAGEtag reporters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Ilchung; Ray, Judhajeet; Gupta, Vinayak

    2014-04-20

    We describe a ribonucleic acid (RNA) reporter system for live-cell imaging of gene expression to detect changes in polymerase II activity on individual promoters in individual cells. The reporters use strings of RNA aptamers that constitute IMAGEtags (Intracellular MultiAptamer GEnetic tags) that can be expressed from a promoter of choice. For imaging, the cells are incubated with their ligands that are separately conjugated with one of the FRET pair, Cy3 and Cy5. The IMAGEtags were expressed in yeast from the GAL1, ADH1 or ACT1 promoters. Transcription from all three promoters was imaged in live cells and transcriptional increases from themore » GAL1 promoter were observed with time after adding galactose. Expression of the IMAGEtags did not affect cell proliferation or endogenous gene expression. Advantages of this method are that no foreign proteins are produced in the cells that could be toxic or otherwise influence the cellular response as they accumulate, the IMAGEtags are short lived and oxygen is not required to generate their signals. The IMAGEtag RNA reporter system provides a means of tracking changes in transcriptional activity in live cells and in real time.« less

  19. Dream Robber: Living with Parkinson's disease

    MedlinePlus

    ... Current Issue Past Issues Dream Robber: Living with Parkinson's disease Past Issues / Summer 2006 Table of Contents For ... Now 65, he has been permanently grounded by Parkinson's disease, unable, due to the loss of motor control ...

  20. Living Organisms Author Their Read-Write Genomes in Evolution

    PubMed Central

    2017-01-01

    Evolutionary variations generating phenotypic adaptations and novel taxa resulted from complex cellular activities altering genome content and expression: (i) Symbiogenetic cell mergers producing the mitochondrion-bearing ancestor of eukaryotes and chloroplast-bearing ancestors of photosynthetic eukaryotes; (ii) interspecific hybridizations and genome doublings generating new species and adaptive radiations of higher plants and animals; and, (iii) interspecific horizontal DNA transfer encoding virtually all of the cellular functions between organisms and their viruses in all domains of life. Consequently, assuming that evolutionary processes occur in isolated genomes of individual species has become an unrealistic abstraction. Adaptive variations also involved natural genetic engineering of mobile DNA elements to rewire regulatory networks. In the most highly evolved organisms, biological complexity scales with “non-coding” DNA content more closely than with protein-coding capacity. Coincidentally, we have learned how so-called “non-coding” RNAs that are rich in repetitive mobile DNA sequences are key regulators of complex phenotypes. Both biotic and abiotic ecological challenges serve as triggers for episodes of elevated genome change. The intersections of cell activities, biosphere interactions, horizontal DNA transfers, and non-random Read-Write genome modifications by natural genetic engineering provide a rich molecular and biological foundation for understanding how ecological disruptions can stimulate productive, often abrupt, evolutionary transformations. PMID:29211049

  1. Living Organisms Author Their Read-Write Genomes in Evolution.

    PubMed

    Shapiro, James A

    2017-12-06

    Evolutionary variations generating phenotypic adaptations and novel taxa resulted from complex cellular activities altering genome content and expression: (i) Symbiogenetic cell mergers producing the mitochondrion-bearing ancestor of eukaryotes and chloroplast-bearing ancestors of photosynthetic eukaryotes; (ii) interspecific hybridizations and genome doublings generating new species and adaptive radiations of higher plants and animals; and, (iii) interspecific horizontal DNA transfer encoding virtually all of the cellular functions between organisms and their viruses in all domains of life. Consequently, assuming that evolutionary processes occur in isolated genomes of individual species has become an unrealistic abstraction. Adaptive variations also involved natural genetic engineering of mobile DNA elements to rewire regulatory networks. In the most highly evolved organisms, biological complexity scales with "non-coding" DNA content more closely than with protein-coding capacity. Coincidentally, we have learned how so-called "non-coding" RNAs that are rich in repetitive mobile DNA sequences are key regulators of complex phenotypes. Both biotic and abiotic ecological challenges serve as triggers for episodes of elevated genome change. The intersections of cell activities, biosphere interactions, horizontal DNA transfers, and non-random Read-Write genome modifications by natural genetic engineering provide a rich molecular and biological foundation for understanding how ecological disruptions can stimulate productive, often abrupt, evolutionary transformations.

  2. Visualization of Live Cochlear Stereocilia at a Nanoscale Resolution Using Hopping Probe Ion Conductance Microscopy

    PubMed Central

    Vélez-Ortega, A. Catalina; Frolenkov, Gregory I.

    2016-01-01

    The mechanosensory apparatus that detects sound-induced vibrations in the cochlea is located on the apex of the auditory sensory hair cells and it is made up of actin-filled projections, called stereocilia. In young rodents, stereocilia bundles of auditory hair cells consist of 3 to 4 rows of stereocilia of decreasing height and varying thickness. Morphological studies of the auditory stereocilia bundles in live hair cells have been challenging because the diameter of each stereocilium is near or below the resolution limit of optical microscopy. In theory, scanning probe microscopy techniques, such as atomic force microscopy, could visualize the surface of a living cell at a nanoscale resolution. However, their implementations for hair cell imaging have been largely unsuccessful because the probe usually damages the bundle and disrupts the bundle cohesiveness during imaging. We overcome these limitations by using hopping probe ion conductance microscopy (HPICM), a non-contact scanning probe technique that is ideally suited for the imaging of live cells with a complex topography. Organ of Corti explants are placed in a physiological solution and then a glass nanopipette –which is connected to a 3D-positioning piezoelectric system and to a patch clamp amplifier– is used to scan the surface of the live hair cells at nanometer resolution without ever touching the cell surface. Here we provide a detailed protocol for the imaging of mouse or rat stereocilia bundles in live auditory hair cells using HPICM. We provide information about the fabrication of the nanopipettes, the calibration of the HPICM setup, the parameters we have optimized for the imaging of live stereocilia bundles and, lastly, a few basic image post-processing manipulations. PMID:27259929

  3. Visualization of Live Cochlear Stereocilia at a Nanoscale Resolution Using Hopping Probe Ion Conductance Microscopy.

    PubMed

    Vélez-Ortega, A Catalina; Frolenkov, Gregory I

    2016-01-01

    The mechanosensory apparatus that detects sound-induced vibrations in the cochlea is located on the apex of the auditory sensory hair cells and it is made up of actin-filled projections, called stereocilia. In young rodents, stereocilia bundles of auditory hair cells consist of 3-4 rows of stereocilia of decreasing height and varying thickness. Morphological studies of the auditory stereocilia bundles in live hair cells have been challenging because the diameter of each stereocilium is near or below the resolution limit of optical microscopy. In theory, scanning probe microscopy techniques, such as atomic force microscopy, could visualize the surface of a living cell at a nanoscale resolution. However, their implementations for hair cell imaging have been largely unsuccessful because the probe usually damages the bundle and disrupts the bundle cohesiveness during imaging. We overcome these limitations by using hopping probe ion conductance microscopy (HPICM), a non-contact scanning probe technique that is ideally suited for the imaging of live cells with a complex topography. Organ of Corti explants are placed in a physiological solution and then a glass nanopipette-which is connected to a 3D-positioning piezoelectric system and to a patch clamp amplifier-is used to scan the surface of the live hair cells at nanometer resolution without ever touching the cell surface.Here, we provide a detailed protocol for the imaging of mouse or rat stereocilia bundles in live auditory hair cells using HPICM. We provide information about the fabrication of the nanopipettes, the calibration of the HPICM setup, the parameters we have optimized for the imaging of live stereocilia bundles and, lastly, a few basic image post-processing manipulations.

  4. Non-protein thiol imaging and quantification in live cells with a novel benzofurazan sulfide triphenylphosphonium fluorogenic compound.

    PubMed

    Yang, Yang; Guan, Xiangming

    2017-05-01

    Thiols (-SH) play various roles in biological systems. They are divided into protein thiols (PSH) and non-protein thiols (NPSH). Due to the significant roles thiols play in various physiological/pathological functions, numerous analytical methods have been developed for thiol assays. Most of these methods are developed for glutathione, the major form of NPSH. Majority of these methods require tissue/cell homogenization before analysis. Due to a lack of effective thiol-specific fluorescent/fluorogenic reagents, methods for imaging and quantifying thiols in live cells are limited. Determination of an analyte in live cells can reveal information that cannot be revealed by analysis of cell homogenates. Previously, we reported a thiol-specific thiol-sulfide exchange reaction. Based on this reaction, a benzofurazan sulfide thiol-specific fluorogenic reagent was developed. The reagent was able to effectively image and quantify total thiols (PSH+NPSH) in live cells through fluorescence microscopy. The reagent was later named as GUALY's reagent. Here we would like to report an extension of the work by synthesizing a novel benzofurazan sulfide triphenylphosphonium derivative [(((7,7'-thiobis(benzo[c][1,2,5]oxadiazole-4,4'-sulfonyl))bis(methylazanediyl))bis(butane-4,1-diyl))bis(triphenylphosphonium) (TBOP)]. Like GUALY's reagent, TBOP is a thiol-specific fluorogenic agent that is non-fluorescent but forms fluorescent thiol adducts in a thiol-specific fashion. Different than GUALY's reagent, TBOP reacts only with NPSH but not with PSH. TBOP was effectively used to image and quantify NPSH in live cells using fluorescence microscopy. TBOP is a complementary reagent to GUALY's reagent in determining the roles of PSH, NPSH, and total thiols in thiol-related physiological/pathological functions in live cells through fluorescence microscopy. Graphical Abstract Live cell imaging and quantification of non-protein thiols by TBOP.

  5. Non-interferometric quantitative phase imaging of yeast cells

    NASA Astrophysics Data System (ADS)

    Poola, Praveen K.; Pandiyan, Vimal Prabhu; John, Renu

    2015-12-01

    Real-time imaging of live cells is quite difficult without the addition of external contrast agents. Various methods for quantitative phase imaging of living cells have been proposed like digital holographic microscopy and diffraction phase microscopy. In this paper, we report theoretical and experimental results of quantitative phase imaging of live yeast cells with nanometric precision using transport of intensity equations (TIE). We demonstrate nanometric depth sensitivity in imaging live yeast cells using this technique. This technique being noninterferometric, does not need any coherent light sources and images can be captured through a regular bright-field microscope. This real-time imaging technique would deliver the depth or 3-D volume information of cells and is highly promising in real-time digital pathology applications, screening of pathogens and staging of diseases like malaria as it does not need any preprocessing of samples.

  6. The missing link: do cortical microtubules define plasma membrane nanodomains that modulate cellulose biosynthesis?

    PubMed

    Fujita, Miki; Lechner, Bettina; Barton, Deborah A; Overall, Robyn L; Wasteneys, Geoffrey O

    2012-02-01

    Cellulose production is a crucial aspect of plant growth and development. It is functionally linked to cortical microtubules, which self-organize into highly ordered arrays often situated in close proximity to plasma membrane-bound cellulose synthase complexes (CSCs). Although most models put forward to explain the microtubule-cellulose relationship have considered mechanisms by which cortical microtubule arrays influence the orientation of cellulose microfibrils, little attention has been paid to how microtubules affect the physicochemical properties of cellulose. A recent study using the model system Arabidopsis, however, indicates that microtubules can modulate the crystalline and amorphous content of cellulose microfibrils. Microtubules are required during rapid growth for reducing crystalline content, which is predicted to increase the degree to which cellulose is tethered by hemicellulosic polysaccharides. Such tethering is, in turn, critical for maintaining unidirectional cell expansion. In this article, we hypothesize that cortical microtubules influence the crystalline content of cellulose either by controlling plasma membrane fluidity or by modulating the deposition of noncellulosic wall components in the vicinity of the CSCs. We discuss the current limitations of imaging technology to address these hypotheses and identify the image acquisition and processing strategies that will integrate live imaging with super resolution three-dimensional information.

  7. Nanomanipulation-Coupled Matrix-Assisted Laser Desorption/ Ionization-Direct Organelle Mass Spectrometry: A Technique for the Detailed Analysis of Single Organelles

    NASA Astrophysics Data System (ADS)

    Phelps, Mandy S.; Sturtevant, Drew; Chapman, Kent D.; Verbeck, Guido F.

    2016-02-01

    We describe a novel technique combining precise organelle microextraction with deposition and matrix-assisted laser desorption/ionization (MALDI) for a rapid, minimally invasive mass spectrometry (MS) analysis of single organelles from living cells. A dual-positioner nanomanipulator workstation was utilized for both extraction of organelle content and precise co-deposition of analyte and matrix solution for MALDI-direct organelle mass spectrometry (DOMS) analysis. Here, the triacylglycerol (TAG) profiles of single lipid droplets from 3T3-L1 adipocytes were acquired and results validated with nanoelectrospray ionization (NSI) MS. The results demonstrate the utility of the MALDI-DOMS technique as it enabled longer mass analysis time, higher ionization efficiency, MS imaging of the co-deposited spot, and subsequent MS/MS capabilities of localized lipid content in comparison to NSI-DOMS. This method provides selective organellar resolution, which complements current biochemical analyses and prompts for subsequent subcellular studies to be performed where limited samples and analyte volume are of concern.

  8. Sharing Personal Reflections on Health Locally

    NASA Astrophysics Data System (ADS)

    Grimes, Andrea

    Researchers are becoming increasingly interested in developing systems that help people live healthier lifestyles. Little attention has been paid, however, to how technology can address the significant health disparities in populations such as low-income African Americans. To address this research gap, I designed EatWell specifically for residents in low-income African American communities in Atlanta, GA. EatWell is a system for cell phones that lets people share how they have tried to eat healthfully with individuals in their local neighborhoods. In this chapter, I discuss the characteristics of the community that was created as people shared their personal stories and reflections in EatWell. Specifically, I describe the users themselves (the who), the context of use (the where), the kind of content people created (the what), and the way in which they interacted with the content (the how). Finally, I discuss the implications of designing health applications for people in local contexts, a class of systems that I call deeply local health applications.

  9. Seed Structure Characteristics to Form Ultrahigh Oil Content in Rapeseed

    PubMed Central

    Zhang, Liang; Deng, Lin-Bin; Wang, Xin-Fa; Liu, Gui-Hua; Hao, Wan-Jun; Wang, Han-Zhong

    2013-01-01

    Background Rapeseed (Brassica napus L.) is an important oil crop in the world, and increasing its oil content is a major breeding goal. The studies on seed structure and characteristics of different oil content rapeseed could help us to understand the biological mechanism of lipid accumulation, and be helpful for rapeseed breeding. Methodology/Principal Findings Here we report on the seed ultrastructure of an ultrahigh oil content rapeseed line YN171, whose oil content is 64.8%, and compared with other high and low oil content rapeseed lines. The results indicated that the cytoplasms of cotyledon, radicle, and aleuronic cells were completely filled with oil and protein bodies, and YN171 had a high oil body organelle to cell area ratio for all cell types. In the cotyledon cells, oil body organelles comprised 81% of the total cell area in YN171, but only 53 to 58% in three high oil content lines and 33 to 38% in three low oil content lines. The high oil body organelle to cotyledon cell area ratio and the cotyledon ratio in seed were the main reasons for the ultrahigh oil content of YN171. The correlation analysis indicated that oil content is significantly negatively correlated with protein content, but is not correlated with fatty acid composition. Conclusions/Significance Our results indicate that the oil content of YN171 could be enhanced by increasing the oil body organelle to cell ratio for some cell types. The oil body organelle to seed ratio significantly highly positively correlates with oil content, and could be used to predict seed oil content. Based on the structural analysis of different oil content rapeseed lines, we estimate the maximum of rapeseed oil content could reach 75%. Our results will help us to screen and identify high oil content lines in rapeseed breeding. PMID:23637973

  10. Live cell imaging of actin dynamics in dexamethasone-treated porcine trabecular meshwork cells.

    PubMed

    Fujimoto, Tomokazu; Inoue, Toshihiro; Inoue-Mochita, Miyuki; Tanihara, Hidenobu

    2016-04-01

    The regulation of the actin cytoskeleton in trabecular meshwork (TM) cells is important for controlling outflow of the aqueous humor. In some reports, dexamethasone (DEX) increased the aqueous humor outflow resistance and induced unusual actin structures, such as cross-linked actin networks (CLAN), in TM cells. However, the functions and dynamics of CLAN in TM cells are not completely known, partly because actin stress fibers have been observed only in fixed cells. We conducted live-cell imaging of the actin dynamics in TM cells with or without DEX treatment. An actin-green fluorescent protein (GFP) fusion construct with a modified insect virus was transfected into porcine TM cells. Time-lapse imaging of live TM cells treated with 25 μM Y-27632 and 100 nM DEX was performed using an inverted fluorescence microscope. Fluorescent images were recorded every 15 s for 30 min after Y-27632 treatment or every 30 min for 72 h after DEX treatment. The GFP-actin was expressed in 22.7 ± 10.9% of the transfected TM cells. In live TM cells, many actin stress fibers were observed before the Y-27632 treatment. Y-27632 changed the cell shape and decreased stress fibers in a time-dependent manner. In fixed cells, CLAN-like structures were seen in 26.5 ± 1.7% of the actin-GFP expressed PTM cells treated with DEX for 72 h. In live imaging, there was 28% CLAN-like structure formation at 72 h after DEX treatment, and the lifetime of CLAN-like structures increased after DEX treatment. The DEX-treated cells with CLAN-like structures showed less migration than DEX-treated cells without CLAN-like structures. Furthermore, the control cells (without DEX treatment) with CLAN-like structures also showed less migration than the control cells without CLAN-like structures. These results suggested that CLAN-like structure formation was correlated with cell migration in TM cells. Live cell imaging of the actin cytoskeleton provides valuable information on the actin dynamics in TM cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. A Fluorescent Live Imaging Screening Assay Based on Translocation Criteria Identifies Novel Cytoplasmic Proteins Implicated in G Protein-coupled Receptor Signaling Pathways*

    PubMed Central

    Lecat, Sandra; Matthes, Hans W.D.; Pepperkok, Rainer; Simpson, Jeremy C.; Galzi, Jean-Luc

    2015-01-01

    Several cytoplasmic proteins that are involved in G protein-coupled receptor signaling cascades are known to translocate to the plasma membrane upon receptor activation, such as beta-arrestin2. Based on this example and in order to identify new cytoplasmic proteins implicated in the ON-and-OFF cycle of G protein-coupled receptor, a live-imaging screen of fluorescently labeled cytoplasmic proteins was performed using translocation criteria. The screening of 193 fluorescently tagged human proteins identified eight proteins that responded to activation of the tachykinin NK2 receptor by a change in their intracellular localization. Previously we have presented the functional characterization of one of these proteins, REDD1, that translocates to the plasma membrane. Here we report the results of the entire screening. The process of cell activation was recorded on videos at different time points and all the videos can be visualized on a dedicated website. The proteins BAIAP3 and BIN1, partially translocated to the plasma membrane upon activation of NK2 receptors. Proteins ARHGAP12 and PKM2 translocated toward membrane blebs. Three proteins that associate with the cytoskeleton were of particular interest : PLEKHH2 rearranged from individual dots located near the cell-substrate adhesion surface into lines of dots. The speriolin-like protein, SPATC1L, redistributed to cell-cell junctions. The Chloride intracellular Channel protein, CLIC2, translocated from actin-enriched plasma membrane bundles to cell-cell junctions upon activation of NK2 receptors. CLIC2, and one of its close paralogs, CLIC4, were further shown to respond with the same translocation pattern to muscarinic M3 and lysophosphatidic LPA receptors. This screen allowed us to identify potential actors in signaling pathways downstream of G protein-coupled receptors and could be scaled-up for high-content screening. PMID:25759509

  12. A Fluorescent Live Imaging Screening Assay Based on Translocation Criteria Identifies Novel Cytoplasmic Proteins Implicated in G Protein-coupled Receptor Signaling Pathways.

    PubMed

    Lecat, Sandra; Matthes, Hans W D; Pepperkok, Rainer; Simpson, Jeremy C; Galzi, Jean-Luc

    2015-05-01

    Several cytoplasmic proteins that are involved in G protein-coupled receptor signaling cascades are known to translocate to the plasma membrane upon receptor activation, such as beta-arrestin2. Based on this example and in order to identify new cytoplasmic proteins implicated in the ON-and-OFF cycle of G protein-coupled receptor, a live-imaging screen of fluorescently labeled cytoplasmic proteins was performed using translocation criteria. The screening of 193 fluorescently tagged human proteins identified eight proteins that responded to activation of the tachykinin NK2 receptor by a change in their intracellular localization. Previously we have presented the functional characterization of one of these proteins, REDD1, that translocates to the plasma membrane. Here we report the results of the entire screening. The process of cell activation was recorded on videos at different time points and all the videos can be visualized on a dedicated website. The proteins BAIAP3 and BIN1, partially translocated to the plasma membrane upon activation of NK2 receptors. Proteins ARHGAP12 and PKM2 translocated toward membrane blebs. Three proteins that associate with the cytoskeleton were of particular interest : PLEKHH2 rearranged from individual dots located near the cell-substrate adhesion surface into lines of dots. The speriolin-like protein, SPATC1L, redistributed to cell-cell junctions. The Chloride intracellular Channel protein, CLIC2, translocated from actin-enriched plasma membrane bundles to cell-cell junctions upon activation of NK2 receptors. CLIC2, and one of its close paralogs, CLIC4, were further shown to respond with the same translocation pattern to muscarinic M3 and lysophosphatidic LPA receptors. This screen allowed us to identify potential actors in signaling pathways downstream of G protein-coupled receptors and could be scaled-up for high-content screening. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Understanding dynamic changes in live cell adhesion with neutron reflectometry

    DOE PAGES

    Junghans, Ann; Waltman, Mary Jo; Smith, Hillary L.; ...

    2014-12-10

    In this study, neutron reflectometry (NR) was used to examine various live cells' adhesion to quartz substrates under different environmental conditions, including flow stress. To the best of our knowledge, these measurements represent the first successful visualization and quantization of the interface between live cells and a substrate with sub-nanometer resolution. In our first experiments, we examined live mouse fibroblast cells as opposed to past experiments using supported lipids, proteins, or peptide layers with no associated cells. We continued the NR studies of cell adhesion by investigating endothelial monolayers and glioblastoma cells under dynamic flow conditions. We demonstrated that neutronmore » reflectometry is a powerful tool to study the strength of cellular layer adhesion in living tissues, which is a key factor in understanding the physiology of cell interactions and conditions leading to abnormal or disease circumstances. Continuative measurements, such as investigating changes in tumor cell — surface contact of various glioblastomas, could impact advancements in tumor treatments. In principle, this can help us to identify changes that correlate with tumor invasiveness. Pursuit of these studies can have significant medical impact on the understanding of complex biological problems and their effective treatment, e.g. for the development of targeted anti-invasive therapies.« less

  14. Nanofiber Nerve Guide for Peripheral Nerve Repair and Regeneration

    DTIC Science & Technology

    2014-01-01

    observing cell migration using live - cell imaging microscopy, and analyzing cell migration with our MATLAB-based programs. Our studies...are then pipetted into the chamber and their path of migration is observed using a live - cell imaging microscope (Fig. 6d). Utilizing this migration

  15. Potential of Staphylococcus xylosus strain for recovering nickel ions from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Al-Gheethi, A.; Efaq, A. N.; Mohamed, R. M.; Abdel-Monem, M.; Amir Hashim, M.

    2017-10-01

    The potential of bacterial biomass for the biosorption of heavy metals has investigated extensively. However, the bacterial species exhibited different affinities toward the heavy metals ions based on their differences in cell wall characteristics, structure and physiological status (living or dead cells). In this study, the potential of living and dead cells of Staphylococcus xylosus 222W for removal nickel ions from aqueous solution as a function for physiological status, nickel and biomass concentrations, time, pH and temperature was investigated. The pre-treatment of bacterial cells was performed by the heating at 100 °C for 15 min. The removal experiments were conducted in the lab scale. The results revealed that the dead cells exhibited more efficiency in removing nickel ions than living cells at all investigated concentrations (2 to 10 mM). The biosorption efficiency (E %) increased with increasing in biomass cells to limit concentrations (0.1 to 1 g dry wt L-1). The maximum removal of nickel was 81.41 vs. 77.10 % by living and dead cells, respectively achieved after 9 and 10 hrs of the incubation period, respectively. The acidic conditions decrease the efficiency of metal removal, while the optimal removal was recorded at pH 8 for both biomass (living and dead cells). The maximum uptake capacity of S. xylosus 222W (living and dead cells) was recorded at 37oC, the percentage removed being 75.90 vs. 84.92 %, respectively. It can be concluded that S. xylosus 222W exhibited high potential and affinity to remove of nickel ions from aqueous solution.

  16. NanoFlares for the detection, isolation, and culture of live tumor cells from human blood.

    PubMed

    Halo, Tiffany L; McMahon, Kaylin M; Angeloni, Nicholas L; Xu, Yilin; Wang, Wei; Chinen, Alyssa B; Malin, Dmitry; Strekalova, Elena; Cryns, Vincent L; Cheng, Chonghui; Mirkin, Chad A; Thaxton, C Shad

    2014-12-02

    Metastasis portends a poor prognosis for cancer patients. Primary tumor cells disseminate through the bloodstream before the appearance of detectable metastatic lesions. The analysis of cancer cells in blood—so-called circulating tumor cells (CTCs)—may provide unprecedented opportunities for metastatic risk assessment and investigation. NanoFlares are nanoconstructs that enable live-cell detection of intracellular mRNA. NanoFlares, when coupled with flow cytometry, can be used to fluorescently detect genetic markers of CTCs in the context of whole blood. They allow one to detect as few as 100 live cancer cells per mL of blood and subsequently culture those cells. This technique can also be used to detect CTCs in a murine model of metastatic breast cancer. As such, NanoFlares provide, to our knowledge, the first genetic-based approach for detecting, isolating, and characterizing live cancer cells from blood and may provide new opportunities for cancer diagnosis, prognosis, and personalized therapy.

  17. NanoFlares for the detection, isolation, and culture of live tumor cells from human blood

    PubMed Central

    Halo, Tiffany L.; McMahon, Kaylin M.; Angeloni, Nicholas L.; Xu, Yilin; Wang, Wei; Chinen, Alyssa B.; Malin, Dmitry; Strekalova, Elena; Cryns, Vincent L.; Cheng, Chonghui; Mirkin, Chad A.; Thaxton, C. Shad

    2014-01-01

    Metastasis portends a poor prognosis for cancer patients. Primary tumor cells disseminate through the bloodstream before the appearance of detectable metastatic lesions. The analysis of cancer cells in blood—so-called circulating tumor cells (CTCs)—may provide unprecedented opportunities for metastatic risk assessment and investigation. NanoFlares are nanoconstructs that enable live-cell detection of intracellular mRNA. NanoFlares, when coupled with flow cytometry, can be used to fluorescently detect genetic markers of CTCs in the context of whole blood. They allow one to detect as few as 100 live cancer cells per mL of blood and subsequently culture those cells. This technique can also be used to detect CTCs in a murine model of metastatic breast cancer. As such, NanoFlares provide, to our knowledge, the first genetic-based approach for detecting, isolating, and characterizing live cancer cells from blood and may provide new opportunities for cancer diagnosis, prognosis, and personalized therapy. PMID:25404304

  18. Live cell refractometry using microfluidic devices.

    PubMed

    Lue, Niyom; Popescu, Gabriel; Ikeda, Takahiro; Dasari, Ramachandra R; Badizadegan, Kamran; Feld, Michael S

    2006-09-15

    Using Hilbert phase microscopy for extracting quantitative phase images, we measured the average refractive index associated with live cells in culture. To decouple the contributions to the phase signal from the cell refractive index and thickness, we confined the cells in microchannels. The results are confirmed by comparison with measurements of spherical cells in suspension.

  19. Cell lineage and cell cycling analyses of the 4d micromere using live imaging in the marine annelid Platynereis dumerilii

    PubMed Central

    Handberg-Thorsager, Mette; Vervoort, Michel

    2017-01-01

    Cell lineage, cell cycle, and cell fate are tightly associated in developmental processes, but in vivo studies at single-cell resolution showing the intricacies of these associations are rare due to technical limitations. In this study on the marine annelid Platynereis dumerilii, we investigated the lineage of the 4d micromere, using high-resolution long-term live imaging complemented with a live-cell cycle reporter. 4d is the origin of mesodermal lineages and the germline in many spiralians. We traced lineages at single-cell resolution within 4d and demonstrate that embryonic segmental mesoderm forms via teloblastic divisions, as in clitellate annelids. We also identified the precise cellular origins of the larval mesodermal posterior growth zone. We found that differentially-fated progeny of 4d (germline, segmental mesoderm, growth zone) display significantly different cell cycling. This work has evolutionary implications, sets up the foundation for functional studies in annelid stem cells, and presents newly established techniques for live imaging marine embryos. PMID:29231816

  20. Urban fifth graders' connections-making between formal earth science content and their lived experiences

    NASA Astrophysics Data System (ADS)

    Brkich, Katie Lynn

    2014-03-01

    Earth science education, as it is traditionally taught, involves presenting concepts such as weathering, erosion, and deposition using relatively well-known examples—the Grand Canyon, beach erosion, and others. However, these examples—which resonate well with middle- and upper-class students—ill-serve students of poverty attending urban schools who may have never traveled farther from home than the corner store. In this paper, I explore the use of a place-based educational framework in teaching earth science concepts to urban fifth graders and explore the connections they make between formal earth science content and their lived experiences using participant-driven photo elicitation techniques. I argue that students are able to gain a sounder understanding of earth science concepts when they are able to make direct observations between the content and their lived experiences and that when such direct observations are impossible they make analogies of appearance, structure, and response to make sense of the content. I discuss additionally the importance of expanding earth science instruction to include man-made materials, as these materials are excluded traditionally from the curriculum yet are most immediately available to urban students for examination.

  1. Calcium phosphate coupled Newcastle disease vaccine elicits humoral and cell mediated immune responses in chickens.

    PubMed

    Koppad, Sanganagouda; Raj, G Dhinakar; Gopinath, V P; Kirubaharan, J John; Thangavelu, A; Thiagarajan, V

    2011-12-01

    Calcium phosphate (CaP) particles were coupled with inactivated Newcastle disease virus (NDV) vaccine. The surface morphology of CaP particles coupled to NDV was found to be spherical, smooth and with a tendency to agglomerate. The mean (± SE) size of CaP particles was found 557.44 ± 18.62 nm. The mean percent encapsulation efficiency of CaP particles coupled to NDV assessed based on total protein content and haemagglutination (HA) activity in eluate was found to be 10.72 ± 0.89 and 12.50 ± 2.09, respectively. The humoral and cell mediated immune responses induced by CaP coupled NDV vaccine were assessed in comparison to a commercial live vaccine (RDV 'F'). CaP coupled NDV vaccine elicited prolonged haemagglutination inhibition (HI) and enzyme linked immunosorbent assay (ELISA) titres in the serum even at fourth and fifth week post-vaccination (PV), unlike RDV 'F' inoculated chickens whose titres declined to insignificant levels by this time. CaP coupled NDV vaccine could stimulate HI antibodies in tracheal washings and tears from second and first week PV, respectively. IgA ELISA antibodies were also seen in tracheal washings of these birds from third week PV and in tears from second week PV. CaP coupled NDV vaccine elicited cell mediated immune responses (CMI) from two to four weeks PV. The stimulation indices obtained after stimulation with specific antigen was not significantly different between CaP coupled antigen and live NDV virus except on first week PV. However, CaP coupled antigen did not cause suppression of lympo proliferation as indicated by statistically similar responses to mitogen, concanavalin A between the two groups. Overall, CaP coupled NDV vaccine elicited stronger and prolonged immune responses in comparison to the commercial live vaccine. No increase in the serum calcium and phosphorous levels were seen in CaP coupled NDV vaccine inoculated chickens. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Decision Trajectories in Dementia Care Networks: Decisions and Related Key Events.

    PubMed

    Groen-van de Ven, Leontine; Smits, Carolien; Oldewarris, Karen; Span, Marijke; Jukema, Jan; Eefsting, Jan; Vernooij-Dassen, Myrra

    2017-10-01

    This prospective multiperspective study provides insight into the decision trajectories of people with dementia by studying the decisions made and related key events. This study includes three waves of interviews, conducted between July 2010 and July 2012, with 113 purposefully selected respondents (people with beginning to advanced stages of dementia and their informal and professional caregivers) completed in 12 months (285 interviews). Our multilayered qualitative analysis consists of content analysis, timeline methods, and constant comparison. Four decision themes emerged-managing daily life, arranging support, community living, and preparing for the future. Eight key events delineate the decision trajectories of people with dementia. Decisions and key events differ between people with dementia living alone and living with a caregiver. Our study clarifies that decisions relate not only to the disease but to living with the dementia. Individual differences in decision content and sequence may effect shared decision-making and advance care planning.

  3. Semantic Relevance, Domain Specificity and the Sensory/Functional Theory of Category-Specificity

    ERIC Educational Resources Information Center

    Sartori, Giuseppe; Gnoato, Francesca; Mariani, Ilenia; Prioni, Sara; Lombardi, Luigi

    2007-01-01

    According to the sensory/functional theory of semantic memory, Living items rely more on Sensory knowledge than Non-living ones. The sensory/functional explanation of category-specificity assumes that semantic features are organised on the basis of their content. We report here a study on DAT patients with impaired performance on Living items and…

  4. Assessing Live Fuel Moisture For Fire Management Applications

    Treesearch

    David R. Weise; Roberta A. Hartford; Larry Mahaffey

    1998-01-01

    The variation associated with sampling live fuel moisture was examined for several shrub and canopy fuels in southern California, Arizona, and Colorado. Ninety-five % confidence intervals ranged from 5 to % . Estimated sample sizes varied greatly. The value of knowing the live fuel moisture content in fire decision making is unknown. If the fuel moisture is highly...

  5. Dynamics of the DNA damage response: insights from live-cell imaging

    PubMed Central

    Karanam, Ketki; Loewer, Alexander

    2013-01-01

    All organisms have to safeguard the integrity of their genome to prevent malfunctioning and oncogenic transformation. Sophisticated DNA damage response mechanisms have evolved to detect and repair genomic lesions. With the emergence of live-cell microscopy of individual cells, we now begin to appreciate the complex spatiotemporal kinetics of the DNA damage response and can address the causes and consequences of the heterogeneity in the responses of genetically identical cells. Here, we highlight key discoveries where live-cell imaging has provided unprecedented insights into how cells respond to DNA double-strand breaks and discuss the main challenges and promises in using this technique. PMID:23292635

  6. Stretchable living materials and devices with hydrogel–elastomer hybrids hosting programmed cells

    PubMed Central

    Liu, Xinyue; Tang, Tzu-Chieh; Tham, Eléonore; Yuk, Hyunwoo; Lin, Shaoting; Lu, Timothy K.; Zhao, Xuanhe

    2017-01-01

    Living systems, such as bacteria, yeasts, and mammalian cells, can be genetically programmed with synthetic circuits that execute sensing, computing, memory, and response functions. Integrating these functional living components into materials and devices will provide powerful tools for scientific research and enable new technological applications. However, it has been a grand challenge to maintain the viability, functionality, and safety of living components in freestanding materials and devices, which frequently undergo deformations during applications. Here, we report the design of a set of living materials and devices based on stretchable, robust, and biocompatible hydrogel–elastomer hybrids that host various types of genetically engineered bacterial cells. The hydrogel provides sustainable supplies of water and nutrients, and the elastomer is air-permeable, maintaining long-term viability and functionality of the encapsulated cells. Communication between different bacterial strains and with the environment is achieved via diffusion of molecules in the hydrogel. The high stretchability and robustness of the hydrogel–elastomer hybrids prevent leakage of cells from the living materials and devices, even under large deformations. We show functions and applications of stretchable living sensors that are responsive to multiple chemicals in a variety of form factors, including skin patches and gloves-based sensors. We further develop a quantitative model that couples transportation of signaling molecules and cellular response to aid the design of future living materials and devices. PMID:28202725

  7. Live-cell imaging of budding yeast telomerase RNA and TERRA.

    PubMed

    Laprade, Hadrien; Lalonde, Maxime; Guérit, David; Chartrand, Pascal

    2017-02-01

    In most eukaryotes, the ribonucleoprotein complex telomerase is responsible for maintaining telomere length. In recent years, single-cell microscopy techniques such as fluorescent in situ hybridization and live-cell imaging have been developed to image the RNA subunit of the telomerase holoenzyme. These techniques are now becoming important tools for the study of telomerase biogenesis, its association with telomeres and its regulation. Here, we present detailed protocols for live-cell imaging of the Saccharomyces cerevisiae telomerase RNA subunit, called TLC1, and also of the non-coding telomeric repeat-containing RNA TERRA. We describe the approach used for genomic integration of MS2 stem-loops in these transcripts, and provide information for optimal live-cell imaging of these non-coding RNAs. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Live-cell imaging of mammalian RNAs with Spinach2.

    PubMed

    Strack, Rita L; Jaffrey, Samie R

    2015-01-01

    The ability to monitor RNAs of interest in living cells is crucial to understanding the function, dynamics, and regulation of this important class of molecules. In recent years, numerous strategies have been developed with the goal of imaging individual RNAs of interest in living cells, each with their own advantages and limitations. This chapter provides an overview of current methods of live-cell RNA imaging, including a detailed discussion of genetically encoded strategies for labeling RNAs in mammalian cells. This chapter then focuses on the development and use of "RNA mimics of GFP" or Spinach technology for tagging mammalian RNAs and includes a detailed protocol for imaging 5S and CGG60 RNA with the recently described Spinach2 tag. © 2015 Elsevier Inc. All rights reserved.

  9. 4Pi-confocal microscopy of live cells

    NASA Astrophysics Data System (ADS)

    Bahlmann, Karsten; Jakobs, Stefan; Hell, Stefan W.

    2002-06-01

    By coherently adding the spherical wavefronts of two opposing lenses, two-photon excitation 4Pi-confocal fluorescence microscopy has achieved three-dimensional imaging with an axial resolution 3-7 times better than confocal microscopy. So far this improvement was possible only in glycerol-mounted, fixed cells. Here we report 4Pi-confocal microscopy of watery objects and its application to the imaging of live cells. Water immersion 4Pi-confocal microscopy of membrane stained live Escherichia coli bacteria attains a 4.3 fold better axial resolution as compared to the best water immersion confocal microscope. The resolution enhancement results into a vastly improved three-dimensional representation of the bacteria. The first images of live biological samples with an all-directional resolution in the 190-280 nm range are presented here, thus establishing a new resolution benchmark in live cell microscopy.

  10. Brownian Motion and the Temperament of Living Cells

    NASA Astrophysics Data System (ADS)

    Tsekov, Roumen; Lensen, Marga C.

    2013-07-01

    The migration of living cells usually obeys the laws of Brownian motion. While the latter is due to the thermal motion of the surrounding matter, the locomotion of cells is generally associated with their vitality. We study what drives cell migration and how to model memory effects in the Brownian motion of cells. The concept of temperament is introduced as an effective biophysical parameter driving the motion of living biological entities in analogy with the physical parameter of temperature, which dictates the movement of lifeless physical objects. The locomemory of cells is also studied via the generalized Langevin equation. We explore the possibility of describing cell locomemory via the Brownian self-similarity concept. An heuristic expression for the diffusion coefficient of cells on structured surfaces is derived.

  11. Long-lived keratin 15+ esophageal progenitor cells contribute to homeostasis and regeneration

    PubMed Central

    Giroux, Véronique; Lento, Ashley A.; Islam, Mirazul; Pitarresi, Jason R.; Kharbanda, Akriti; Hamilton, Kathryn E.; Whelan, Kelly A.; Long, Apple; Rhoades, Ben; Tang, Qiaosi; Nakagawa, Hiroshi; Lengner, Christopher J.; Bass, Adam J.; Wileyto, E. Paul; Klein-Szanto, Andres J.; Wang, Timothy C.; Rustgi, Anil K.

    2017-01-01

    The esophageal lumen is lined by a stratified squamous epithelium comprised of proliferative basal cells that differentiate while migrating toward the luminal surface and eventually desquamate. Rapid epithelial renewal occurs, but the specific cell of origin that supports this high proliferative demand remains unknown. Herein, we have described a long-lived progenitor cell population in the mouse esophageal epithelium that is characterized by expression of keratin 15 (Krt15). Genetic in vivo lineage tracing revealed that the Krt15 promoter marks a long-lived basal cell population able to self-renew, proliferate, and generate differentiated cells, consistent with a progenitor/stem cell population. Transcriptional profiling demonstrated that Krt15+ basal cells are molecularly distinct from Krt15– basal cells. Depletion of Krt15-derived cells resulted in decreased proliferation, thereby leading to atrophy of the esophageal epithelium. Further, Krt15+ cells were radioresistant and contributed to esophageal epithelial regeneration following radiation-induced injury. These results establish the presence of a long-lived and indispensable Krt15+ progenitor cell population that provides additional perspective on esophageal epithelial biology and the widely prevalent diseases that afflict this epithelium. PMID:28481227

  12. Living Cell Microarrays: An Overview of Concepts

    PubMed Central

    Jonczyk, Rebecca; Kurth, Tracy; Lavrentieva, Antonina; Walter, Johanna-Gabriela; Scheper, Thomas; Stahl, Frank

    2016-01-01

    Living cell microarrays are a highly efficient cellular screening system. Due to the low number of cells required per spot, cell microarrays enable the use of primary and stem cells and provide resolution close to the single-cell level. Apart from a variety of conventional static designs, microfluidic microarray systems have also been established. An alternative format is a microarray consisting of three-dimensional cell constructs ranging from cell spheroids to cells encapsulated in hydrogel. These systems provide an in vivo-like microenvironment and are preferably used for the investigation of cellular physiology, cytotoxicity, and drug screening. Thus, many different high-tech microarray platforms are currently available. Disadvantages of many systems include their high cost, the requirement of specialized equipment for their manufacture, and the poor comparability of results between different platforms. In this article, we provide an overview of static, microfluidic, and 3D cell microarrays. In addition, we describe a simple method for the printing of living cell microarrays on modified microscope glass slides using standard DNA microarray equipment available in most laboratories. Applications in research and diagnostics are discussed, e.g., the selective and sensitive detection of biomarkers. Finally, we highlight current limitations and the future prospects of living cell microarrays. PMID:27600077

  13. Affimer proteins for F-actin: novel affinity reagents that label F-actin in live and fixed cells.

    PubMed

    Lopata, Anna; Hughes, Ruth; Tiede, Christian; Heissler, Sarah M; Sellers, James R; Knight, Peter J; Tomlinson, Darren; Peckham, Michelle

    2018-04-26

    Imaging the actin cytoskeleton in cells uses a wide range of approaches. Typically, a fluorescent derivative of the small cyclic peptide phalloidin is used to image F-actin in fixed cells. Lifeact and F-tractin are popular for imaging the cytoskeleton in live cells. Here we characterised novel affinity reagents called Affimers that specifically bind to F-actin in vitro to determine if they are suitable alternatives as eGFP-fusion proteins, to label actin in live cells, or for labeling F-actin in fixed cells. In vitro experiments showed that 3 out of the 4 Affimers (Affimers 6, 14 and 24) tested bind tightly to purified F-actin, and appear to have overlapping binding sites. As eGFP-fusion proteins, the same 3 Affimers label F-actin in live cells. FRAP experiments suggest that eGFP-Affimer 6 behaves most similarly to F-tractin and Lifeact. However, it does not colocalise with mCherry-actin in dynamic ruffles, and may preferentially bind stable actin filaments. All 4 Affimers label F-actin in methanol fixed cells, while only Affimer 14 labels F-actin after paraformaldehyde fixation. eGFP-Affimer 6 has potential for use in selectively imaging the stable actin cytoskeleton in live cells, while all 4 Affimers are strong alternatives to phalloidin for labelling F-actin in fixed cells.

  14. Live Cell Imaging and 3D Analysis of Angiotensin Receptor Type 1a Trafficking in Transfected Human Embryonic Kidney Cells Using Confocal Microscopy.

    PubMed

    Kadam, Parnika; McAllister, Ryan; Urbach, Jeffrey S; Sandberg, Kathryn; Mueller, Susette C

    2017-03-27

    Live-cell imaging is used to simultaneously capture time-lapse images of angiotensin type 1a receptors (AT1aR) and intracellular compartments in transfected human embryonic kidney-293 (HEK) cells following stimulation with angiotensin II (Ang II). HEK cells are transiently transfected with plasmid DNA containing AT1aR tagged with enhanced green fluorescent protein (EGFP). Lysosomes are identified with a red fluorescent dye. Live-cell images are captured on a laser scanning confocal microscope after Ang II stimulation and analyzed by software in three dimensions (3D, voxels) over time. Live-cell imaging enables investigations into receptor trafficking and avoids confounds associated with fixation, and in particular, the loss or artefactual displacement of EGFP-tagged membrane receptors. Thus, as individual cells are tracked through time, the subcellular localization of receptors can be imaged and measured. Images must be acquired sufficiently rapidly to capture rapid vesicle movement. Yet, at faster imaging speeds, the number of photons collected is reduced. Compromises must also be made in the selection of imaging parameters like voxel size in order to gain imaging speed. Significant applications of live-cell imaging are to study protein trafficking, migration, proliferation, cell cycle, apoptosis, autophagy and protein-protein interaction and dynamics, to name but a few.

  15. Different biosorption mechanisms of Uranium(VI) by live and heat-killed Saccharomyces cerevisiae under environmentally relevant conditions.

    PubMed

    Wang, Tieshan; Zheng, Xinyan; Wang, Xiaoyu; Lu, Xia; Shen, Yanghao

    2017-02-01

    Uranium adsorption mechanisms of live and heat-killed Saccharomyces cerevisiae in different pH values and biomass concentrations were studied under environmentally relevant conditions. Compared with live cells, the adsorption capacity of heat-killed cells is almost one order of magnitude higher in low biomass concentration and highly acidic pH conditions. To explore the mesoscopic surface interactions between uranium and cells, the characteristic of uranium deposition was investigated by SEM-EDX, XPS and FTIR. Biosorption process of live cells was considered to be metabolism-dependent. Under stimulation by uranyl ions, live cells could gradually release phosphorus and reduce uranium from U(VI) to U(IV) to alleviate uranium toxicity. The uranyl-phosphate complexes were formed in scale-like shapes on cell surface. The metabolic detoxification mechanisms such as reduction and "self-protection" are of significance to the migration of radionuclides. In the metabolism-independent biosorption process of heat-killed cells: the cells cytomembrane was damaged by autoclaving which led to the free diffusion of phosphorous from intracellular, and the rough surface and nano-holes indicated that the dead cells provided larger contact area to precipitate U(VI) as spherical nano-particles. The high biosorption capacity of heat-killed cells makes it become a suitable biological adsorbent for uranium removal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. A cell transportation solution that preserves live circulating tumor cells in patient blood samples.

    PubMed

    Stefansson, Steingrimur; Adams, Daniel L; Ershler, William B; Le, Huyen; Ho, David H

    2016-05-06

    Circulating tumor cells (CTCs) are typically collected into CellSave fixative tubes, which kills the cells, but preserves their morphology. Currently, the clinical utility of CTCs is mostly limited to their enumeration. More detailed investigation of CTC biology can be performed on live cells, but obtaining live CTCs is technically challenging, requiring blood collection into biocompatible solutions and rapid isolation which limits transportation options. To overcome the instability of CTCs, we formulated a sugar based cell transportation solution (SBTS) that stabilizes cell viability at ambient temperature. In this study we examined the long term viability of human cancer cell lines, primary cells and CTCs in human blood samples in the SBTS for transportation purposes. Four cell lines, 5 primary human cells and purified human PBMCs were tested to determine the viability of cells stored in the transportation solution at ambient temperature for up to 7 days. We then demonstrated viability of MCF-7 cells spiked into normal blood with SBTS and stored for up to 7 days. A pilot study was then run on blood samples from 3 patients with metastatic malignancies stored with or without SBTS for 6 days. CTCs were then purified by Ficoll separation/microfilter isolation and identified using CTC markers. Cell viability was assessed using trypan blue or CellTracker™ live cell stain. Our results suggest that primary/immortalized cell lines stored in SBTS remain ~90% viable for > 72 h. Further, MCF-7 cells spiked into whole blood remain viable when stored with SBTS for up to 7 days. Finally, live CTCs were isolated from cancer patient blood samples kept in SBTS at ambient temperature for 6 days. No CTCs were isolated from blood samples stored without SBTS. In this proof of principle pilot study we show that viability of cell lines is preserved for days using SBTS. Further, this solution can be used to store patient derived blood samples for eventual isolation of viable CTCs after days of storage. Therefore, we suggest an effective and economical transportation of cancer patient blood samples containing live CTCs can be achieved.

  17. Live CLEM imaging to analyze nuclear structures at high resolution.

    PubMed

    Haraguchi, Tokuko; Osakada, Hiroko; Koujin, Takako

    2015-01-01

    Fluorescence microscopy (FM) and electron microscopy (EM) are powerful tools for observing molecular components in cells. FM can provide temporal information about cellular proteins and structures in living cells. EM provides nanometer resolution images of cellular structures in fixed cells. We have combined FM and EM to develop a new method of correlative light and electron microscopy (CLEM), called "Live CLEM." In this method, the dynamic behavior of specific molecules of interest is first observed in living cells using fluorescence microscopy (FM) and then cellular structures in the same cell are observed using electron microscopy (EM). Following image acquisition, FM and EM images are compared to enable the fluorescent images to be correlated with the high-resolution images of cellular structures obtained using EM. As this method enables analysis of dynamic events involving specific molecules of interest in the context of specific cellular structures at high resolution, it is useful for the study of nuclear structures including nuclear bodies. Here we describe Live CLEM that can be applied to the study of nuclear structures in mammalian cells.

  18. The effect of moisture content on the thermal conductivity of moss and organic soil horizons from black spruce ecosystems in interior alaska

    USGS Publications Warehouse

    O'Donnell, J. A.; Romanovsky, V.E.; Harden, J.W.; McGuire, A.D.

    2009-01-01

    Organic soil horizons function as important controls on the thermal state of near-surface soil and permafrost in high-latitude ecosystems. The thermal conductivity of organic horizons is typically lower than mineral soils and is closely linked to moisture content, bulk density, and water phase. In this study, we examined the relationship between thermal conductivity and soil moisture for different moss and organic horizon types in black spruce ecosystems of interior Alaska. We sampled organic horizons from feather moss-dominated and Sphagnum-dominated stands and divided horizons into live moss and fibrous and amorphous organic matter. Thermal conductivity measurements were made across a range of moisture contents using the transient line heat source method. Our findings indicate a strong positive and linear relationship between thawed thermal conductivity (Kt) and volumetric water content. We observed similar regression parameters (?? or slope) across moss types and organic horizons types and small differences in ??0 (y intercept) across organic horizon types. Live Sphagnum spp. had a higher range of Kt than did live feather moss because of the field capacity (laboratory based) of live Sphagnum spp. In northern regions, the thermal properties of organic soil horizons play a critical role in mediating the effects of climate warming on permafrost conditions. Findings from this study could improve model parameterization of thermal properties in organic horizons and enhance our understanding of future permafrost and ecosystem dynamics. ?? 2009 by Lippincott Williams & Wilkins, Inc.

  19. Live Cell Characterization of DNA Aggregation Delivered through Lipofection

    PubMed Central

    Mieruszynski, Stephen; Briggs, Candida; Digman, Michelle A.; Gratton, Enrico; Jones, Mark R

    2015-01-01

    DNA trafficking phenomena, such as information on where and to what extent DNA aggregation occurs, have yet to be fully characterised in the live cell. Here we characterise the aggregation of DNA when delivered through lipofection by applying the Number and Brightness (N&B) approach. The N&B analysis demonstrates extensive aggregation throughout the live cell with DNA clusters in the extremity of the cell and peri-nuclear areas. Once within the nucleus aggregation had decreased 3-fold. In addition, we show that increasing serum concentration of cell media results in greater cytoplasmic aggregation. Further, the effects of the DNA fragment size on aggregation was explored, where larger DNA constructs exhibited less aggregation. This study demonstrates the first quantification of DNA aggregation when delivered through lipofection in live cells. In addition, this study has presents a model for alternative uses of this imaging approach, which was originally developed to study protein oligomerization and aggregation. PMID:26013547

  20. Optical method for high magnification imaging and video recording of live cells at sub-micron resolution

    NASA Astrophysics Data System (ADS)

    Romo, Jaime E., Jr.

    Optical microscopy, the most common technique for viewing living microorganisms, is limited in resolution by Abbe's criterion. Recent microscopy techniques focus on circumnavigating the light diffraction limit by using different methods to obtain the topography of the sample. Systems like the AFM and SEM provide images with fields of view in the nanometer range with high resolvable detail, however these techniques are expensive, and limited in their ability to document live cells. The Dino-Lite digital microscope coupled with the Zeiss Axiovert 25 CFL microscope delivers a cost-effective method for recording live cells. Fields of view ranging from 8 microns to 300 microns with fair resolution provide a reliable method for discovering native cell structures at the nanoscale. In this report, cultured HeLa cells are recorded using different optical configurations resulting in documentation of cell dynamics at high magnification and resolution.

  1. Correlation of live-cell imaging with volume scanning electron microscopy.

    PubMed

    Lucas, Miriam S; Günthert, Maja; Bittermann, Anne Greet; de Marco, Alex; Wepf, Roger

    2017-01-01

    Live-cell imaging is one of the most widely applied methods in live science. Here we describe two setups for live-cell imaging, which can easily be combined with volume SEM for correlative studies. The first procedure applies cell culture dishes with a gridded glass support, which can be used for any light microscopy modality. The second approach is a flow-chamber setup based on Ibidi μ-slides. Both live-cell imaging strategies can be followed up with serial blockface- or focused ion beam-scanning electron microscopy. Two types of resin embedding after heavy metal staining and dehydration are presented making best use of the particular advantages of each imaging modality: classical en-bloc embedding and thin-layer plastification. The latter can be used only for focused ion beam-scanning electron microscopy, but is advantageous for studying cell-interactions with specific substrates, or when the substrate cannot be removed. En-bloc embedding has diverse applications and can be applied for both described volume scanning electron microscopy techniques. Finally, strategies for relocating the cell of interest are discussed for both embedding approaches and in respect to the applied light and scanning electron microscopy methods. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Systematic Evaluation of Bioorthogonal Reactions in Live Cells with Clickable HaloTag Ligands: Implications for Intracellular Imaging

    PubMed Central

    2015-01-01

    Bioorthogonal reactions, including the strain-promoted azide–alkyne cycloaddition (SPAAC) and inverse electron demand Diels–Alder (iEDDA) reactions, have become increasingly popular for live-cell imaging applications. However, the stability and reactivity of reagents has never been systematically explored in the context of a living cell. Here we report a universal, organelle-targetable system based on HaloTag protein technology for directly comparing bioorthogonal reagent reactivity, specificity, and stability using clickable HaloTag ligands in various subcellular compartments. This system enabled a detailed comparison of the bioorthogonal reactions in live cells and informed the selection of optimal reagents and conditions for live-cell imaging studies. We found that the reaction of sTCO with monosubstituted tetrazines is the fastest reaction in cells; however, both reagents have stability issues. To address this, we introduced a new variant of sTCO, Ag-sTCO, which has much improved stability and can be used directly in cells for rapid bioorthogonal reactions with tetrazines. Utilization of Ag complexes of conformationally strained trans-cyclooctenes should greatly expand their usefulness especially when paired with less reactive, more stable tetrazines. PMID:26270632

  3. Systematic Evaluation of Bioorthogonal Reactions in Live Cells with Clickable HaloTag Ligands: Implications for Intracellular Imaging.

    PubMed

    Murrey, Heather E; Judkins, Joshua C; Am Ende, Christopher W; Ballard, T Eric; Fang, Yinzhi; Riccardi, Keith; Di, Li; Guilmette, Edward R; Schwartz, Joel W; Fox, Joseph M; Johnson, Douglas S

    2015-09-09

    Bioorthogonal reactions, including the strain-promoted azide-alkyne cycloaddition (SPAAC) and inverse electron demand Diels-Alder (iEDDA) reactions, have become increasingly popular for live-cell imaging applications. However, the stability and reactivity of reagents has never been systematically explored in the context of a living cell. Here we report a universal, organelle-targetable system based on HaloTag protein technology for directly comparing bioorthogonal reagent reactivity, specificity, and stability using clickable HaloTag ligands in various subcellular compartments. This system enabled a detailed comparison of the bioorthogonal reactions in live cells and informed the selection of optimal reagents and conditions for live-cell imaging studies. We found that the reaction of sTCO with monosubstituted tetrazines is the fastest reaction in cells; however, both reagents have stability issues. To address this, we introduced a new variant of sTCO, Ag-sTCO, which has much improved stability and can be used directly in cells for rapid bioorthogonal reactions with tetrazines. Utilization of Ag complexes of conformationally strained trans-cyclooctenes should greatly expand their usefulness especially when paired with less reactive, more stable tetrazines.

  4. Live Imaging of Glial Cell Migration in the Drosophila Eye Imaginal Disc

    PubMed Central

    Cafferty, Patrick; Xie, Xiaojun; Browne, Kristen; Auld, Vanessa J.

    2009-01-01

    Glial cells of both vertebrate and invertebrate organisms must migrate to final target regions in order to ensheath and support associated neurons. While recent progress has been made to describe the live migration of glial cells in the developing pupal wing (1), studies of Drosophila glial cell migration have typically involved the examination of fixed tissue. Live microscopic analysis of motile cells offers the ability to examine cellular behavior throughout the migratory process, including determining the rate of and changes in direction of growth. Paired with use of genetic tools, live imaging can be used to determine more precise roles for specific genes in the process of development. Previous work by Silies et al. (2) has described the migration of glia originating from the optic stalk, a structure that connects the developing eye and brain, into the eye imaginal disc in fixed tissue. Here we outline a protocol for examining the live migration of glial cells into the Drosophila eye imaginal disc. We take advantage of a Drosophila line that expresses GFP in developing glia to follow glial cell progression in wild type and in mutant animals. PMID:19590493

  5. A Surface Energy Transfer Nanoruler for Measuring Binding Site Distances on Live Cell Surfaces

    PubMed Central

    Chen, Yan; O’Donoghue, Meghan B.; Huang, Yu-Fen; Kang, Huaizhi; Phillips, Joseph A.; Chen, Xiaolan; Estevez, M.-Carmen; Tan, Weihong

    2010-01-01

    Measuring distances at molecular length scales in living systems is a significant challenge. Methods like FRET have limitations due to short detection distances and strict orientations. Recently, surface energy transfer (SET) has been used in bulk solutions; however, it cannot be applied to living systems. Here, we have developed an SET nanoruler, using aptamer-gold-nanoparticle conjugates with different diameters, to monitor the distance between binding sites of a receptor on living cells. The nanoruler can measure separation distances well beyond the detection limit of FRET. Thus, for the first time, we have developed an effective SET nanoruler for live cells with long distance, easy construction, fast detection and low background. This is also the first time that the distance between the aptamer and antibody binding sites in the membrane protein PTK7 was measured accurately. The SET nanoruler represents the next leap forward to monitor structural components within living cell membranes. PMID:21038856

  6. FORMING SELF-ASSEMBLED CELL ARRAYS AND MEASURING THE OXYGEN CONSUMPTION RATE OF A SINGLE LIVE CELL.

    PubMed

    Etzkorn, James R; McQuaide, Sarah C; Anderson, Judy B; Meldrum, Deirdre R; Parviz, Babak A

    2009-06-01

    We report a method for forming arrays of live single cells on a chip using polymer micro-traps made of SU8. We have studied the toxicity of the microfabricated structures and the associated environment for two cell lines. We also report a method for measuring the oxygen consumption rate of a single cell using optical interrogation of molecular oxygen sensors placed in micromachined micro-wells by temporarily sealing the cells in the micro-traps. The new techniques presented here add to the collection of tools available for performing "single-cell" biology. A single-cell self-assembly yield of 61% was achieved with oxygen draw down rates of 0.83, 0.82, and 0.71 fmol/minute on three isolated live A549 cells.

  7. Detection and Classification of Live and Dead Escherichia coli by Laser-Induced Breakdown Spectroscopy

    PubMed Central

    Sivakumar, P.; Fernández-Bravo, A.; Taleh, L.; Biddle, J.F.

    2015-01-01

    Abstract A common goal for astrobiology is to detect organic materials that may indicate the presence of life. However, organic materials alone may not be representative of currently living systems. Thus, it would be valuable to have a method with which to determine the health of living materials. Here, we present progress toward this goal by reporting on the application of laser-induced breakdown spectroscopy (LIBS) to study characteristics of live and dead cells using Escherichia coli (E. coli) strain K12 cells as a model organism since its growth and death in the laboratory are well understood. Our goal is to determine whether LIBS, in its femto- and/or nanosecond forms, could ascertain the state of a living organism. E. coli strain K12 cells were grown, collected, and exposed to one of two types of inactivation treatments: autoclaving and sonication. Cells were also kept alive as a control. We found that LIBS yields key information that allows for the discrimination of live and dead E. coli bacteria based on ionic shifts reflective of cell membrane integrity. Key Words: E. coli—Trace elements—Live and dead cells—Laser-induced breakdown spectroscopy—Atomic force microscopy. Astrobiology 15, 144–153. PMID:25683088

  8. From surface to intracellular non-invasive nanoscale study of living cells impairments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewald, Dr. Maxime; Tetard, Laurene; Elie-Caille, Dr. Cecile

    Among the enduring challenges in nanoscience, subsurface characterization of live cells holds major stakes. Developments in nanometrology for soft matter thriving on the sensitivity and high resolution benefits of atomic force microscopy have enabled detection of subsurface structures at the nanoscale (1,2,3). However, measurements in liquid environments remain complex (4,5,6,7), in particular in the subsurface domain. Here we introduce liquid-Mode Synthesizing Atomic Force Microscopy (l-MSAFM) to study both the inner structures and the chemically induced intracellular impairments of living cells. Specifically, we visualize the intracellular stress effects of glyphosate on living keratinocytes skin cells. This new approach for living cellmore » nanoscale imaging, l-MSAFM, in their physiological environment or in presence of a chemical stress agent confirmed the loss of inner structures induced by glyphosate. The ability to monitor the cell's inner response to external stimuli, non-destructively and in real time, has the potential to unveil critical nanoscale mechanisms of life science.« less

  9. Tracking the Dynamic Folding and Unfolding of RNA G-Quadruplexes in Live Cells.

    PubMed

    Chen, Xiu-Cai; Chen, Shuo-Bin; Dai, Jing; Yuan, Jia-Hao; Ou, Tian-Miao; Huang, Zhi-Shu; Tan, Jia-Heng

    2018-04-16

    Because of the absence of methods for tracking RNA G-quadruplex dynamics, especially the folding and unfolding of this attractive structure in live cells, understanding of the biological roles of RNA G-quadruplexes is so far limited. Herein, we report a new red-emitting fluorescent probe, QUMA-1, for the selective, continuous, and real-time visualization of RNA G-quadruplexes in live cells. The applications of QUMA-1 in several previously intractable applications, including live-cell imaging of the dynamic folding, unfolding, and movement of RNA G-quadruplexes and the visualization of the unwinding of RNA G-quadruplexes by RNA helicase have been demonstrated. Notably, our real-time results revealed the complexity of the dynamics of RNA G-quadruplexes in live cells. We anticipate that the further application of QUMA-1 in combination with appropriate biological and imaging methods to explore the dynamics of RNA G-quadruplexes will uncover more information about the biological roles of RNA G-quadruplexes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. High-speed AFM for scanning the architecture of living cells

    NASA Astrophysics Data System (ADS)

    Li, Jing; Deng, Zhifeng; Chen, Daixie; Ao, Zhuo; Sun, Quanmei; Feng, Jiantao; Yin, Bohua; Han, Li; Han, Dong

    2013-08-01

    We address the modelling of tip-cell membrane interactions under high speed atomic force microscopy. Using a home-made device with a scanning area of 100 × 100 μm2, in situ imaging of living cells is successfully performed under loading rates from 1 to 50 Hz, intending to enable detailed descriptions of physiological processes in living samples.We address the modelling of tip-cell membrane interactions under high speed atomic force microscopy. Using a home-made device with a scanning area of 100 × 100 μm2, in situ imaging of living cells is successfully performed under loading rates from 1 to 50 Hz, intending to enable detailed descriptions of physiological processes in living samples. Electronic supplementary information (ESI) available: Movie of the real-time change of inner surface within fresh blood vessel. The movie was captured at a speed of 30 Hz in the range of 80 μm × 80 μm. See DOI: 10.1039/c3nr01464a

  11. From surface to intracellular non-invasive nanoscale study of living cells impairments

    NASA Astrophysics Data System (ADS)

    Ewald, M.; Tetard, L.; Elie-Caille, C.; Nicod, L.; Passian, A.; Bourillot, E.; Lesniewska, E.

    2014-07-01

    Among the enduring challenges in nanoscience, subsurface characterization of living cells holds major stakes. Developments in nanometrology for soft matter thriving on the sensitivity and high resolution benefits of atomic force microscopy have enabled detection of subsurface structures at the nanoscale. However, measurements in liquid environments remain complex, in particular in the subsurface domain. Here we introduce liquid-mode synthesizing atomic force microscopy (l-MSAFM) to study both the inner structures and the chemically induced intracellular impairments of living cells. Specifically, we visualize the intracellular stress effects of glyphosate on living keratinocytes skin cells. This new approach, l-MSAFM, for nanoscale imaging of living cell in their physiological environment or in presence of a chemical stress agent could resolve the loss of inner structures induced by glyphosate, the main component of a well-known pesticide (RoundUp™). This firsthand ability to monitor the cell’s inner response to external stimuli non-destructively and in liquid, has the potential to unveil critical nanoscale mechanisms of life science.

  12. Fluorescence-tunable Ag-DNA biosensor with tailored cytotoxicity for live-cell applications

    NASA Astrophysics Data System (ADS)

    Bossert, Nelli; de Bruin, Donny; Götz, Maria; Bouwmeester, Dirk; Heinrich, Doris

    2016-11-01

    DNA-stabilized silver clusters (Ag-DNA) show excellent promise as a multi-functional nanoagent for molecular investigations in living cells. The unique properties of these fluorescent nanomaterials allow for intracellular optical sensors with tunable cytotoxicity based on simple modifications of the DNA sequences. Three Ag-DNA nanoagent designs are investigated, exhibiting optical responses to the intracellular environments and sensing-capability of ions, functional inside living cells. Their sequence-dependent fluorescence responses inside living cells include (1) a strong splitting of the fluorescence peak for a DNA hairpin construct, (2) an excitation and emission shift of up to 120 nm for a single-stranded DNA construct, and (3) a sequence robust in fluorescence properties. Additionally, the cytotoxicity of these Ag-DNA constructs is tunable, ranging from highly cytotoxic to biocompatible Ag-DNA, independent of their optical sensing capability. Thus, Ag-DNA represents a versatile live-cell nanoagent addressable towards anti-cancer, patient-specific and anti-bacterial applications.

  13. A portable low-cost long-term live-cell imaging platform for biomedical research and education.

    PubMed

    Walzik, Maria P; Vollmar, Verena; Lachnit, Theresa; Dietz, Helmut; Haug, Susanne; Bachmann, Holger; Fath, Moritz; Aschenbrenner, Daniel; Abolpour Mofrad, Sepideh; Friedrich, Oliver; Gilbert, Daniel F

    2015-02-15

    Time-resolved visualization and analysis of slow dynamic processes in living cells has revolutionized many aspects of in vitro cellular studies. However, existing technology applied to time-resolved live-cell microscopy is often immobile, costly and requires a high level of skill to use and maintain. These factors limit its utility to field research and educational purposes. The recent availability of rapid prototyping technology makes it possible to quickly and easily engineer purpose-built alternatives to conventional research infrastructure which are low-cost and user-friendly. In this paper we describe the prototype of a fully automated low-cost, portable live-cell imaging system for time-resolved label-free visualization of dynamic processes in living cells. The device is light-weight (3.6 kg), small (22 × 22 × 22 cm) and extremely low-cost (<€1250). We demonstrate its potential for biomedical use by long-term imaging of recombinant HEK293 cells at varying culture conditions and validate its ability to generate time-resolved data of high quality allowing for analysis of time-dependent processes in living cells. While this work focuses on long-term imaging of mammalian cells, the presented technology could also be adapted for use with other biological specimen and provides a general example of rapidly prototyped low-cost biosensor technology for application in life sciences and education. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Application of propidium monoazide quantitative real-time PCR to quantify the viability of Lactobacillus delbrueckii ssp. bulgaricus.

    PubMed

    Shao, Yuyu; Wang, Zhaoxia; Bao, Qiuhua; Zhang, Heping

    2016-12-01

    In this study, a combination of propidium monoazide (PMA) and quantitative real-time PCR (qPCR) was used to develop a method to determine the viability of cells of Lactobacillus delbrueckii ssp. bulgaricus ND02 (L. bulgaricus) that may have entered into a viable but nonculturable state. This can happen due to its susceptibility to cold shock during lyophilization and storage. Propidium monoazide concentration, PMA incubation time, and light exposure time were optimized to fully exploit the PMA-qPCR approach to accurately assess the total number of living L. bulgaricus ND02. Although PMA has little influence on living cells, when concentrations of PMA were higher than 30μg/mL the number of PCR-positive living bacteria decreased from 10 6 to 10 5 cfu/mL in comparison with qPCR enumeration. Mixtures of living and dead cells were used as method verification samples for enumeration by PMA-qPCR, demonstrating that this method was feasible and effective for distinguishing living cells of L. bulgaricus when mixed with a known number of dead cells. We suggest that several conditions need to be studied further before PMA-qPCR methods can be accurately used to distinguish living from dead cells for enumeration under more realistic sampling situations. However, this research provides a rapid way to enumerate living cells of L. bulgaricus and could be used to optimize selection of cryoprotectants in the lyophilization process and develop technologies for high cell density cultivation and optimal freeze-drying processes. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. A general strategy for developing cell-permeable photo-modulatable organic fluorescent probes for live-cell super-resolution imaging.

    PubMed

    Pan, Deng; Hu, Zhe; Qiu, Fengwu; Huang, Zhen-Li; Ma, Yilong; Wang, Yina; Qin, Lingsong; Zhang, Zhihong; Zeng, Shaoqun; Zhang, Yu-Hui

    2014-11-20

    Single-molecule localization microscopy (SMLM) achieves super-resolution imaging beyond the diffraction limit but critically relies on the use of photo-modulatable fluorescent probes. Here we report a general strategy for constructing cell-permeable photo-modulatable organic fluorescent probes for live-cell SMLM by exploiting the remarkable cytosolic delivery ability of a cell-penetrating peptide (rR)3R2. We develop photo-modulatable organic fluorescent probes consisting of a (rR)3R2 peptide coupled to a cell-impermeable organic fluorophore and a recognition unit. Our results indicate that these organic probes are not only cell permeable but can also specifically and directly label endogenous targeted proteins. Using the probes, we obtain super-resolution images of lysosomes and endogenous F-actin under physiological conditions. We resolve the dynamics of F-actin with 10 s temporal resolution in live cells and discern fine F-actin structures with diameters of ~80 nm. These results open up new avenues in the design of fluorescent probes for live-cell super-resolution imaging.

  16. A Label-Free Microfluidic Biosensor for Activity Detection of Single Microalgae Cells Based on Chlorophyll Fluorescence

    PubMed Central

    Wang, Junsheng; Sun, Jinyang; Song, Yongxin; Xu, Yongyi; Pan, Xinxiang; Sun, Yeqing; Li, Dongqing

    2013-01-01

    Detection of living microalgae cells is very important for ballast water treatment and analysis. Chlorophyll fluorescence is an indicator of photosynthetic activity and hence the living status of plant cells. In this paper, we developed a novel microfluidic biosensor system that can quickly and accurately detect the viability of single microalgae cells based on chlorophyll fluorescence. The system is composed of a laser diode as an excitation light source, a photodiode detector, a signal analysis circuit, and a microfluidic chip as a microalgae cell transportation platform. To demonstrate the utility of this system, six different living and dead algae samples (Karenia mikimotoi Hansen, Chlorella vulgaris, Nitzschia closterium, Platymonas subcordiformis, Pyramidomonas delicatula and Dunaliella salina) were tested. The developed biosensor can distinguish clearly between the living microalgae cells and the dead microalgae cells. The smallest microalgae cells that can be detected by using this biosensor are 3 μm ones. Even smaller microalgae cells could be detected by increasing the excitation light power. The developed microfluidic biosensor has great potential for in situ ballast water analysis. PMID:24287532

  17. Long-Term Live Cell Imaging of Cell Migration: Effects of Pathogenic Fungi on Human Epithelial Cell Migration.

    PubMed

    Wöllert, Torsten; Langford, George M

    2016-01-01

    Long-term live cell imaging was used in this study to determine the responses of human epithelial cells to pathogenic biofilms formed by Candida albicans. Epithelial cells of the skin represent the front line of defense against invasive pathogens such as C. albicans but under certain circumstances, especially when the host's immune system is compromised, the skin barrier is breached. The mechanisms by which the fungal pathogen penetrates the skin and invade the deeper layers are not fully understood. In this study we used keratinocytes grown in culture as an in vitro model system to determine changes in host cell migration and the actin cytoskeleton in response to virulence factors produced by biofilms of pathogenic C. albicans. It is clear that changes in epithelial cell migration are part of the response to virulence factors secreted by biofilms of C. albicans and the actin cytoskeleton is the downstream effector that mediates cell migration. Our goal is to understand the mechanism by which virulence factors hijack the signaling pathways of the actin cytoskeleton to alter cell migration and thereby invade host tissues. To understand the dynamic changes of the actin cytoskeleton during infection, we used long-term live cell imaging to obtain spatial and temporal information of actin filament dynamics and to identify signal transduction pathways that regulate the actin cytoskeleton and its associated proteins. Long-term live cell imaging was achieved using a high resolution, multi-mode epifluorescence microscope equipped with specialized light sources, high-speed cameras with high sensitivity detectors, and specific biocompatible fluorescent markers. In addition to the multi-mode epifluorescence microscope, a spinning disk confocal long-term live cell imaging system (Olympus CV1000) equipped with a stage incubator to create a stable in vitro environment for long-term real-time and time-lapse microscopy was used. Detailed descriptions of these two long-term live cell imaging systems are provided.

  18. Remnant living cells that escape cell loss in late-stage tumors exhibit cancer stem cell-like characteristics

    PubMed Central

    Chen, Y-L; Wang, S-Y; Liu, R-S; Wang, H-E; Chen, J-C; Chiou, S-H; Chang, C A; Lin, L-T; Tan, D T W; Lee, Y-J

    2012-01-01

    A balance between cell proliferation and cell loss is essential for tumor progression. Although up to 90% of cells are lost in late-stage carcinomas, the progression and characteristics of remnant living cells in tumor mass are unclear. Here we used molecular imaging to track the progression of living cells in a syngeneic tumor model, and ex vivo investigated the properties of this population at late-stage tumor. The piggyBac transposon system was used to stably introduce the dual reporter genes, including monomeric red fluorescent protein (mRFP) and herpes simplex virus type-1 thymidine kinase (HSV1-tk) genes for fluorescence-based and radionuclide-based imaging of tumor growth in small animals, respectively. Iodine-123-labeled 5-iodo-2′-fluoro-1-beta-𝒟-arabinofuranosyluracil was used as a radiotracer for HSV1-tk gene expression in tumors. The fluorescence- and radionuclide-based imaging using the single-photon emission computed tomography/computed tomography revealed that the number of living cells reached the maximum at 1 week after implantation of 4T1 tumors, and gradually decreased and clustered near the side of the body until 4 weeks accompanied by enlargement of tumor mass. The remnant living cells at late-stage tumor were isolated and investigated ex vivo. The results showed that these living cells could form mammospheres and express cancer stem cell (CSC)-related biomarkers, including octamer-binding transcription factor 4, SRY (sex-determining region Y)-box 2, and CD133 genes compared with those cultured in vitro. Furthermore, this HSV1-tk-expressing CSC-like population was sensitive to ganciclovir applied for the suicide therapy. Taken together, the current data suggested that cells escaping from cell loss in late-stage tumors exhibit CSC-like characteristics, and HSV1-tk may be considered a theranostic agent for targeting this population in vivo. PMID:23034334

  19. An instrument for rapid, accurate, determination of fuel moisture content

    Treesearch

    Stephen S. Sackett

    1980-01-01

    Moisture contents of dead and living fuels are key variables in fire behavior. Accurate, real-time fuel moisture data are required for prescribed burning and wildfire behavior predictions. The convection oven method has become the standard for direct fuel moisture content determination. Efforts to quantify fuel moisture through indirect methods have not been...

  20. Connecting Content, Context, and Communication in a Sixth-Grade Social Studies Class through Political Cartoons

    ERIC Educational Resources Information Center

    Gallavan, Nancy P.; Webster-Smith, Angela; Dean, Sheila S.

    2012-01-01

    Sixth-grade students are challenged in understanding social studies content relevant to particular contexts, then connecting the content and context to their contemporary lives while communicating new knowledge to peers and teachers. Using political cartoons published after September 11, 2001, one sixth-grade social studies teacher designed…

  1. Regulation of Cell Migration in Breast Cancer

    DTIC Science & Technology

    2011-04-01

    the wound healing, assay by scarring and Oris plate migration assay, transwell migration assay and live - cell imaging studies. Cell migration capacity...evaluated by the use of techniques that include the wound healing assay by scarring and Oris plate migration assay, transwell migration assay and live - cell imaging studies

  2. Adult somatic stem cells in the human parasite Schistosoma mansoni.

    PubMed

    Collins, James J; Wang, Bo; Lambrus, Bramwell G; Tharp, Marla E; Iyer, Harini; Newmark, Phillip A

    2013-02-28

    Schistosomiasis is among the most prevalent human parasitic diseases, affecting more than 200 million people worldwide. The aetiological agents of this disease are trematode flatworms (Schistosoma) that live and lay eggs within the vasculature of the host. These eggs lodge in host tissues, causing inflammatory responses that are the primary cause of morbidity. Because these parasites can live and reproduce within human hosts for decades, elucidating the mechanisms that promote their longevity is of fundamental importance. Although adult pluripotent stem cells, called neoblasts, drive long-term homeostatic tissue maintenance in long-lived free-living flatworms (for example, planarians), and neoblast-like cells have been described in some parasitic tapeworms, little is known about whether similar cell types exist in any trematode species. Here we describe a population of neoblast-like cells in the trematode Schistosoma mansoni. These cells resemble planarian neoblasts morphologically and share their ability to proliferate and differentiate into derivatives of multiple germ layers. Capitalizing on available genomic resources and RNA-seq-based gene expression profiling, we find that these schistosome neoblast-like cells express a fibroblast growth factor receptor orthologue. Using RNA interference we demonstrate that this gene is required for the maintenance of these neoblast-like cells. Our observations indicate that adaptation of developmental strategies shared by free-living ancestors to modern-day schistosomes probably contributed to the success of these animals as long-lived obligate parasites. We expect that future studies deciphering the function of these neoblast-like cells will have important implications for understanding the biology of these devastating parasites.

  3. Accurate live and dead bacterial cell enumeration using flow cytometry (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ou, Fang; McGoverin, Cushla; Swift, Simon; Vanholsbeeck, Frédérique

    2017-03-01

    Flow cytometry (FCM) is based on the detection of scattered light and fluorescence to identify cells with particular characteristics of interest. However most FCM cannot precisely control the flow through its interrogation point and hence the volume and concentration of the sample cannot be immediately obtained. The easiest, most reliable and inexpensive way of obtaining absolute counts with FCM is by using reference beads. We investigated a method of using FCM with reference beads to measure live and dead bacterial concentration over the range of 106 to 108 cells/mL and ratio varying from 0 to 100%. We believe we are the first to use this method for such a large cell concentration range while also establishing the effect of varying the live/dead bacteria ratios. Escherichia coli solutions with differing ratios of live:dead cells were stained with fluorescent dyes SYTO 9 and propidium iodide (PI), which label live and dead cells, respectively. Samples were measured using a LSR II Flow Cytometer (BD Biosciences); using 488 nm excitation with 20 mW power. Both SYTO 9 and PI fluorescence were collected and threshold was set to side scatter. Traditional culture-based plate count was done in parallel to the FCM analysis. The concentration of live bacteria from FCM was compared to that obtained by plate counts. Preliminary results show that the concentration of live bacteria obtained by FCM and plate counts correlate well with each other and indicates this may be extended to a wider concentration range or for studying other cell characteristics.

  4. A genetically encoded fluorescent tRNA is active in live-cell protein synthesis

    PubMed Central

    Masuda, Isao; Igarashi, Takao; Sakaguchi, Reiko; Nitharwal, Ram G.; Takase, Ryuichi; Han, Kyu Young; Leslie, Benjamin J.; Liu, Cuiping; Gamper, Howard; Ha, Taekjip; Sanyal, Suparna

    2017-01-01

    Abstract Transfer RNAs (tRNAs) perform essential tasks for all living cells. They are major components of the ribosomal machinery for protein synthesis and they also serve in non-ribosomal pathways for regulation and signaling metabolism. We describe the development of a genetically encoded fluorescent tRNA fusion with the potential for imaging in live Escherichia coli cells. This tRNA fusion carries a Spinach aptamer that becomes fluorescent upon binding of a cell-permeable and non-toxic fluorophore. We show that, despite having a structural framework significantly larger than any natural tRNA species, this fusion is a viable probe for monitoring tRNA stability in a cellular quality control mechanism that degrades structurally damaged tRNA. Importantly, this fusion is active in E. coli live-cell protein synthesis allowing peptidyl transfer at a rate sufficient to support cell growth, indicating that it is accommodated by translating ribosomes. Imaging analysis shows that this fusion and ribosomes are both excluded from the nucleoid, indicating that the fusion and ribosomes are in the cytosol together possibly engaged in protein synthesis. This fusion methodology has the potential for developing new tools for live-cell imaging of tRNA with the unique advantage of both stoichiometric labeling and broader application to all cells amenable to genetic engineering. PMID:27956502

  5. Measuring the Viscosity of the Escherichia coli Plasma Membrane Using Molecular Rotors.

    PubMed

    Mika, Jacek T; Thompson, Alexander J; Dent, Michael R; Brooks, Nicholas J; Michiels, Jan; Hofkens, Johan; Kuimova, Marina K

    2016-10-04

    The viscosity is a highly important parameter within the cell membrane, affecting the diffusion of small molecules and, hence, controlling the rates of intracellular reactions. There is significant interest in the direct, quantitative assessment of membrane viscosity. Here we report the use of fluorescence lifetime imaging microscopy of the molecular rotor BODIPY C10 in the membranes of live Escherichia coli bacteria to permit direct quantification of the viscosity. Using this approach, we investigated the viscosity in live E. coli cells, spheroplasts, and liposomes made from E. coli membrane extracts. For live cells and spheroplasts, the viscosity was measured at both room temperature (23°C) and the E. coli growth temperature (37°C), while the membrane extract liposomes were studied over a range of measurement temperatures (5-40°C). At 37°C, we recorded a membrane viscosity in live E. coli cells of 950 cP, which is considerably higher than that previously observed in other live cell membranes (e.g., eukaryotic cells, membranes of Bacillus vegetative cells). Interestingly, this indicates that E. coli cells exhibit a high degree of lipid ordering within their liquid-phase plasma membranes. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Engineering and exploitation of a fluorescent HIV-1 gp120 for live cell CD4 binding assays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costantini, Lindsey M.; Irvin, Susan C.; Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461

    The HIV-1 envelope glycoprotein, gp120, binds the host cell receptor, CD4, in the initial step of HIV viral entry and infection. This process is an appealing target for the development of inhibitory drugs and neutralizing antibodies. To study gp120 binding and intracellular trafficking, we engineered a fluorescent fusion of the humanized gp120 JRFL HIV-1 variant and GFP. Gp120-sfGFP is glycosylated with human sugars, robustly expressed, and secreted from cultured human cells. Protein dynamics, quality control, and trafficking can be visualized in live cells. The fusion protein can be readily modified with different gp120 variants or fluorescent proteins. Finally, secreted gp120-sfGFPmore » enables a sensitive and easy binding assay that can quantitatively screen potential inhibitors of gp120-CD4 binding on live cells via fluorescence imaging or laser scanning cytometry. This adaptable research tool should aid in studies of gp120 cell biology and the development of novel anti-HIV drugs. - Highlights: • Development of fluorescent protein labeled HIV-1 envelope gp120. • Imaging of gp120 dynamics and trafficking in live cells. • Quantitative visual assay of antibody-mediated inhibition of gp120 binding to CD4 on live cells.« less

  7. Understanding coping strategies during pregnancy and the postpartum period: a qualitative study of women living with HIV in rural Uganda.

    PubMed

    Ashaba, Scholastic; Kaida, Angela; Burns, Bridget Frances; O'Neil, Kasey; Dunkley, Emma; Psaros, Christina; Kastner, Jasmine; Tsai, Alexander C; Bangsberg, David R; Matthews, Lynn T

    2017-05-08

    In sub-Saharan Africa, 58% of adults living with HIV are women. In Uganda, HIV prevalence is 8.3% for women compared to 6.1% for men. Access to antiretroviral therapy (ART) and prevention of mother to child transmission (PMTCT) programs have enabled women living with HIV (WLWH) to have children with minimal risk of perinatal transmission. Nevertheless, pregnant WLWH face many challenges. We explored women's perceptions of how they cope with the challenges of pregnancy and the postpartum period as HIV-infected women. We conducted semi-structured interviews with postpartum WLWH accessing ART who had a pregnancy within 2 years prior to recruitment between February-August, 2014. Childbearing associated stressors and coping strategies were discussed. We used content analysis to identify major themes and NVivo 10 software facilitated data analysis. Twenty women were interviewed with median age 33 (IQR: 28-35) years, CD4 cell count 677 cells/mm 3 (IQR: 440-767), number of live births 4 (IQR: 2-6), and number of living children 3 (IQR: 2-4.3). We summarize five identified coping strategies within a socio-ecological framework according to Bronfenbrenner's Ecological Model. Coping strategies on the individual level included acceptance of self and HIV status, and self-reliance. On the interpersonal level, participants reported coping through support from partners, family, and friends. On the organizational level, participants reported coping through HIV-related healthcare delivery and system supports. At the community level, women reported coping through support from church and spirituality. The results highlight coping strategies used by WLWH to manage the myriad challenges faced during pregnancy and the postpartum period. Intervention programs for WLWH must emphasize psychosocial care and incorporate strategies that address psychosocial challenges in the HIV care package in order to optimize well-being. Additionally policies that support networks of WLWH should be put in place and funding support should be provided through existing funding mechanisms in order to respond to the needs and challenges of WLWH. Programmes that support WLWH for economic empowerment and improved livelihoods should be strengthened across all regions in the country.

  8. Live Cell Imaging of Alphaherpes Virus Anterograde Transport and Spread

    PubMed Central

    Taylor, Matthew P.; Kratchmarov, Radomir; Enquist, Lynn W.

    2013-01-01

    Advances in live cell fluorescence microscopy techniques, as well as the construction of recombinant viral strains that express fluorescent fusion proteins have enabled real-time visualization of transport and spread of alphaherpes virus infection of neurons. The utility of novel fluorescent fusion proteins to viral membrane, tegument, and capsids, in conjunction with live cell imaging, identified viral particle assemblies undergoing transport within axons. Similar tools have been successfully employed for analyses of cell-cell spread of viral particles to quantify the number and diversity of virions transmitted between cells. Importantly, the techniques of live cell imaging of anterograde transport and spread produce a wealth of information including particle transport velocities, distributions of particles, and temporal analyses of protein localization. Alongside classical viral genetic techniques, these methodologies have provided critical insights into important mechanistic questions. In this article we describe in detail the imaging methods that were developed to answer basic questions of alphaherpes virus transport and spread. PMID:23978901

  9. Exploring dynamics in living cells by tracking single particles.

    PubMed

    Levi, Valeria; Gratton, Enrico

    2007-01-01

    In the last years, significant advances in microscopy techniques and the introduction of a novel technology to label living cells with genetically encoded fluorescent proteins revolutionized the field of Cell Biology. Our understanding on cell dynamics built from snapshots on fixed specimens has evolved thanks to our actual capability to monitor in real time the evolution of processes in living cells. Among these new tools, single particle tracking techniques were developed to observe and follow individual particles. Hence, we are starting to unravel the mechanisms driving the motion of a wide variety of cellular components ranging from organelles to protein molecules by following their way through the cell. In this review, we introduce the single particle tracking technology to new users. We briefly describe the instrumentation and explain some of the algorithms commonly used to locate and track particles. Also, we present some common tools used to analyze trajectories and illustrate with some examples the applications of single particle tracking to study dynamics in living cells.

  10. Tracking chemical changes in a live cell: Biomedical applications of SR-FTIR spectromicroscopy

    DOE PAGES

    Holman, Hoi-Ying N.; Martin, Michael C.; McKinney, Wayne R.

    2003-01-01

    Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy is a newly emerging bioanalytical and imaging tool. This unique technique provides mid-infrared (IR) spectra, hence chemical information, with high signal-to-noise at spatial resolutions as fine as 3 to 10 microns. Thus it enables researchers to locate, identify, and track specific chemical events within an individual living mammalian cell. Mid-IR photons are too low in energy (0.05-0.5 eV) to either break bonds or to cause ionization. In this review, we show that the synchrotron IR beam has no detectable effects on the short- and long-term viability, reproductive integrity, cell-cycle progression, and mitochondrial metabolismmore » in living human cells, and produces only minimal sample heating (<0.5°C). We will then present several examples demonstrating the application potentials of SR-FTIR spectromicroscopy in biomedical research. These will include monitoring living cells progressing through the cell cycle, including death, and cells reacting to dilute concentrations of toxins.« less

  11. Engineering live cell surfaces with functional polymers via cytocompatible controlled radical polymerization

    NASA Astrophysics Data System (ADS)

    Niu, Jia; Lunn, David J.; Pusuluri, Anusha; Yoo, Justin I.; O'Malley, Michelle A.; Mitragotri, Samir; Soh, H. Tom; Hawker, Craig J.

    2017-06-01

    The capability to graft synthetic polymers onto the surfaces of live cells offers the potential to manipulate and control their phenotype and underlying cellular processes. Conventional grafting-to strategies for conjugating preformed polymers to cell surfaces are limited by low polymer grafting efficiency. Here we report an alternative grafting-from strategy for directly engineering the surfaces of live yeast and mammalian cells through cell surface-initiated controlled radical polymerization. By developing cytocompatible PET-RAFT (photoinduced electron transfer-reversible addition-fragmentation chain-transfer polymerization), synthetic polymers with narrow polydispersity (Mw/Mn < 1.3) could be obtained at room temperature in 5 minutes. This polymerization strategy enables chain growth to be initiated directly from chain-transfer agents anchored on the surface of live cells using either covalent attachment or non-covalent insertion, while maintaining high cell viability. Compared with conventional grafting-to approaches, these methods significantly improve the efficiency of grafting polymer chains and enable the active manipulation of cellular phenotypes.

  12. Cell longevity and sustained primary growth in palm stems.

    PubMed

    Tomlinson, P Barry; Huggett, Brett A

    2012-12-01

    Longevity, or organismal life span, is determined largely by the period over which constituent cells can function metabolically. Plants, with modular organization (the ability continually to develop new organs and tissues) differ from animals, with unitary organization (a fixed body plan), and this difference is reflected in their respective life spans, potentially much longer in plants than animals. We draw attention to the observation that palm trees, as a group of monocotyledons without secondary growth comparable to that of lignophytes (plants with secondary growth from a bifacial cambium), retain by means of sustained primary growth living cells in their trunks throughout their organismal life span. Does this make palms the longest-lived trees because they can grow as individuals for several centuries? No conventional lignophyte retains living metabolically active differentiated cell types in its trunk for this length of time, even though the tree as a whole can exist for millennia. Does this contrast also imply that the long-lived cells in a palm trunk have exceptional properties, which allows this seeming immortality? We document the long-life of many tall palm species and their inherent long-lived stem cell properties, comparing such plants to conventional trees. We provide a summary of aspects of cell age and life span in animals and plants. Cell replacement is a feature of animal function, whereas conventional trees rely on active growth centers (meristems) to sustain organismal development. However, the long persistence of living cells in palm trunks is seen not as evidence for unique metabolic processes that sustain longevity, but is a consequence of unique constructional features. This conclusion suggests that the life span of plant cells is not necessarily genetically determined.

  13. ExTzBox: A Glowing Cyclophane for Live-Cell Imaging.

    PubMed

    Roy, Indranil; Bobbala, Sharan; Zhou, Jiawang; Nguyen, Minh T; Nalluri, Siva Krishna Mohan; Wu, Yilei; Ferris, Daniel P; Scott, Evan Alexander; Wasielewski, Michael R; Stoddart, J Fraser

    2018-06-13

    The ideal fluorescent probe for live-cell imaging is bright and non-cytotoxic and can be delivered easily into the living cells in an efficient manner. The design of synthetic fluorophores having all three of these properties, however, has proved to be challenging. Here, we introduce a simple, yet effective, strategy based on well-established chemistry for designing a new class of fluorescent probes for live-cell imaging. A box-like hybrid cyclophane, namely ExTzBox·4X (6·4X, X = PF 6 - , Cl - ), has been synthesized by connecting an extended viologen (ExBIPY) and a dipyridyl thiazolothiazole (TzBIPY) unit in an end-to-end fashion with two p-xylylene linkers. Photophysical studies show that 6·4Cl has a quantum yield Φ F = 1.00. Furthermore, unlike its ExBIPY 2+ and TzBIPY 2+ building units, 6·4Cl is non-cytotoxic to RAW 264.7 macrophages, even with a loading concentration as high as 100 μM, presumably on account of its rigid box-like structure which prevents its intercalation into DNA and may inhibit other interactions with it. After gaining an understanding of the toxicity profile of 6·4Cl, we employed it in live-cell imaging. Confocal microscopy has demonstrated that 6 4+ is taken up by the RAW 264.7 macrophages, allowing the cells to glow brightly with blue laser excitation, without any hint of photobleaching or disruption of normal cell behavior under the imaging conditions. By contrast, the acyclic reference compound Me 2 TzBIPY·2Cl (4·2Cl) shows very little fluorescence inside the cells, which is quenched completely under the same imaging conditions. In vitro cell investigations underscore the significance of using highly fluorescent box-like rigid cyclophanes for live-cell imaging.

  14. Force Generation via β-Cardiac Myosin, Titin, and α-Actinin Drives Cardiac Sarcomere Assembly from Cell-Matrix Adhesions.

    PubMed

    Chopra, Anant; Kutys, Matthew L; Zhang, Kehan; Polacheck, William J; Sheng, Calvin C; Luu, Rebeccah J; Eyckmans, Jeroen; Hinson, J Travis; Seidman, Jonathan G; Seidman, Christine E; Chen, Christopher S

    2018-01-08

    Truncating mutations in the sarcomere protein titin cause dilated cardiomyopathy due to sarcomere insufficiency. However, it remains mechanistically unclear how these mutations decrease sarcomere content in cardiomyocytes. Utilizing human induced pluripotent stem cell-derived cardiomyocytes, CRISPR/Cas9, and live microscopy, we characterize the fundamental mechanisms of human cardiac sarcomere formation. We observe that sarcomerogenesis initiates at protocostameres, sites of cell-extracellular matrix adhesion, where nucleation and centripetal assembly of α-actinin-2-containing fibers provide a template for the fusion of Z-disk precursors, Z bodies, and subsequent striation. We identify that β-cardiac myosin-titin-protocostamere form an essential mechanical connection that transmits forces required to direct α-actinin-2 centripetal fiber assembly and sarcomere formation. Titin propagates diastolic traction stresses from β-cardiac myosin, but not α-cardiac myosin or non-muscle myosin II, to protocostameres during sarcomerogenesis. Ablating protocostameres or decoupling titin from protocostameres abolishes sarcomere assembly. Together these results identify the mechanical and molecular components critical for human cardiac sarcomerogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Histochemical detection of lead in plant tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tung, G.; Temple, P.J.

    1996-06-01

    A histochemical staining technique using sodium rhodizonate was developed for detecting lead in living or preserved plant tissues. Sodium rhodizonate formed a bright scarlet-red precipitate with lead at pH 3.0, but showed no significant color responses with other metals. The precipitation of lead by this staining technique was confirmed by detection of lead in the red-stained precipitate with electron microscopy X-ray analysis. This histochemical technique for lead provided rapid, quantifiable, and unambiguous evidence for the accumulation and localization of lead in plant tissues. Soil-borne lead accumulated primarily in the roots, although at high concentrations, lead also accumulated at the endsmore » of transpirational streams, particularly at hydathodes, trichomes, and the termini of xylem streams. Lead deposited from the atmosphere accumulated on the surface of conifer foliage and also appeared in or on cell walls of various internal cells and tissues. Lead concentrations in foliage and the color intensity of the stained deposits in spruce foliage decreased with distance from the lead source and increased with age of needles. No evidence of lead deposition inside cell contents was observed by this stain.« less

  16. Acoustic propulsion of nanorod motors inside living cells.

    PubMed

    Wang, Wei; Li, Sixing; Mair, Lamar; Ahmed, Suzanne; Huang, Tony Jun; Mallouk, Thomas E

    2014-03-17

    The ultrasonic propulsion of rod-shaped nanomotors inside living HeLa cells is demonstrated. These nanomotors (gold rods about 300 nm in diameter and about 3 mm long) attach strongly to the external surface of the cells, and are readily internalized by incubation with the cells for periods longer than 24 h. Once inside the cells, the nanorod motors can be activated by resonant ultrasound operating at 4 MHz, and show axial propulsion as well as spinning. The intracellular propulsion does not involve chemical fuels or high-power ultrasound and the HeLa cells remain viable. Ultrasonic propulsion of nanomotors may thus provide a new tool for probing the response of living cells to internal mechanical excitation, for controllably manipulating intracellular organelles, and for biomedical applications.

  17. Acoustic Propulsion of Nanorod Motors Inside Living Cells**

    PubMed Central

    Wang, Wei; Li, Sixing; Mair, Lamar; Ahmed, Suzanne

    2014-01-01

    We demonstrate the ultrasonic propulsion of rod-shaped nanomotors inside living HeLa cells. These nanomotors (gold rods ~ 300 nm in diameter and ~ 3 μm long) attach strongly to the external surface of the cells, and are readily internalized by incubation with the cells for periods longer than 24 h. Once inside the cells, the nanorod motors can be activated by resonant ultrasound operating at ~ 4 MHz, and show axial propulsion as well as spinning. The intracellular propulsion does not involve chemical fuels or high power ultrasound and the HeLa cells remain viable. Ultrasonic propulsion of nanomotors may thus provide a new tool for probing the response of living cells to internal mechanical excitation, for controllably manipulating intracellular organelles, and for biomedical applications. PMID:24677393

  18. Live-cell imaging for the assessment of the dynamics of autophagosome formation: focus on early steps.

    PubMed

    Karanasios, Eleftherios; Ktistakis, Nicholas T

    2015-03-01

    Autophagy is a cytosolic degradative pathway, which through a series of complicated membrane rearrangements leads to the formation of a unique double membrane vesicle, the autophagosome. The use of fluorescent proteins has allowed visualizing the autophagosome formation in live cells and in real time, almost 40 years after electron microscopy studies observed these structures for the first time. In the last decade, live-cell imaging has been extensively used to study the dynamics of autophagosome formation in cultured mammalian cells. Hereby we will discuss how the live-cell imaging studies have tried to settle the debate about the origin of the autophagosome membrane and how they have described the way different autophagy proteins coordinate in space and time in order to drive autophagosome formation. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Live cell refractometry using Hilbert phase microscopy and confocal reflectance microscopy.

    PubMed

    Lue, Niyom; Choi, Wonshik; Popescu, Gabriel; Yaqoob, Zahid; Badizadegan, Kamran; Dasari, Ramachandra R; Feld, Michael S

    2009-11-26

    Quantitative chemical analysis has served as a useful tool for understanding cellular metabolisms in biology. Among many physical properties used in chemical analysis, refractive index in particular has provided molecular concentration that is an important indicator for biological activities. In this report, we present a method of extracting full-field refractive index maps of live cells in their native states. We first record full-field optical thickness maps of living cells by Hilbert phase microscopy and then acquire physical thickness maps of the same cells using a custom-built confocal reflectance microscope. Full-field and axially averaged refractive index maps are acquired from the ratio of optical thickness to physical thickness. The accuracy of the axially averaged index measurement is 0.002. This approach can provide novel biological assays of label-free living cells in situ.

  20. Live Cell Refractometry Using Hilbert Phase Microscopy and Confocal Reflectance Microscopy†

    PubMed Central

    Lue, Niyom; Choi, Wonshik; Popescu, Gabriel; Yaqoob, Zahid; Badizadegan, Kamran; Dasari, Ramachandra R.; Feld, Michael S.

    2010-01-01

    Quantitative chemical analysis has served as a useful tool for understanding cellular metabolisms in biology. Among many physical properties used in chemical analysis, refractive index in particular has provided molecular concentration that is an important indicator for biological activities. In this report, we present a method of extracting full-field refractive index maps of live cells in their native states. We first record full-field optical thickness maps of living cells by Hilbert phase microscopy and then acquire physical thickness maps of the same cells using a custom-built confocal reflectance microscope. Full-field and axially averaged refractive index maps are acquired from the ratio of optical thickness to physical thickness. The accuracy of the axially averaged index measurement is 0.002. This approach can provide novel biological assays of label-free living cells in situ. PMID:19803506

  1. Three-Dimensional Unstained Live-Cell Imaging Using Stimulated Parametric Emission Microscopy

    NASA Astrophysics Data System (ADS)

    Dang, Hieu M.; Kawasumi, Takehito; Omura, Gen; Umano, Toshiyuki; Kajiyama, Shin'ichiro; Ozeki, Yasuyuki; Itoh, Kazuyoshi; Fukui, Kiichi

    2009-09-01

    The ability to perform high-resolution unstained live imaging is very important to in vivo study of cell structures and functions. Stimulated parametric emission (SPE) microscopy is a nonlinear-optical microscopy based on ultra-fast electronic nonlinear-optical responses. For the first time, we have successfully applied this technique to archive three-dimensional (3D) images of unstained sub-cellular structures, such as, microtubules, nuclei, nucleoli, etc. in live cells. Observation of a complete cell division confirms the ability of SPE microscopy for long time-scale imaging.

  2. Nanoscale Label-free Bioprobes to Detect Intracellular Proteins in Single Living Cells

    PubMed Central

    Hong, Wooyoung; Liang, Feng; Schaak, Diane; Loncar, Marko; Quan, Qimin

    2014-01-01

    Fluorescent labeling techniques have been widely used in live cell studies; however, the labeling processes can be laborious and challenging for use in non-transfectable cells, and labels can interfere with protein functions. While label-free biosensors have been realized by nanofabrication, a method to track intracellular protein dynamics in real-time, in situ and in living cells has not been found. Here we present the first demonstration of label-free detection of intracellular p53 protein dynamics through a nanoscale surface plasmon-polariton fiber-tip-probe (FTP). PMID:25154394

  3. Live Cell Imaging of a Fluorescent Gentamicin Conjugate

    PubMed Central

    Escobedo, Jorge O.; Chu, Yu-Hsuan; Wang, Qi; Steyger, Peter S.; Strongin, Robert M.

    2012-01-01

    Understanding cellular mechanisms of ototoxic and nephrotoxic drug uptake, intracellular distribution, and molecular trafficking across cellular barrier systems aids the study of potential uptake blockers that preserve sensory and renal function during critical life-saving therapy. Herein we report the design, synthesis characterization and evaluation of a fluorescent conjugate of the aminoglycoside antibiotic gentamicin. Live cell imaging results show the potential utility of this new material. Related gentamicin conjugates studied to date quench in live kindney cells, and have been largely restricted to use in fixed (delipidated) cells. PMID:22545403

  4. Skill Activities for Independent Living (SAIL). A Curriculum for Developmentally Disabled Adolescents and Adults.

    ERIC Educational Resources Information Center

    California State Univ., Los Angeles. Center for Mental Retardation.

    This curriculum for developmentally disabled adolescents and adults contains assessment conditions and performance criteria for evaluating client acquisition of a total of 646 independent living skills in five areas. While the content of the curriculum is in an area known as independent living, it is also prevocational in as much as it covers a…

  5. Invitations to Evolving. Teacher-Friendly Science Activities with Reproducible Handouts in English and Spanish. Grades 3-5. Living Things Science Series.

    ERIC Educational Resources Information Center

    Camp, Carole Ann, Ed.

    This booklet, one of six in the Living Things Science series, presents activities about evolution which address basic "Benchmarks" suggested by the American Association for the Advancement of Science for the Living Environment for grades 3-5. Contents include background information, vocabulary (in English and Spanish), materials,…

  6. Developing a Livebinder as Teaching Resource in Family & Consumer Sciences

    ERIC Educational Resources Information Center

    Miller, Cynthia L.

    2015-01-01

    The primary purpose of this paper is to explain how a digital tool, "LiveBinder," can be used for organizing online content and learning. The article explains why this digital tool should be utilized as a teaching resource and describes common uses. It also addresses how LiveBinders can be organized using shelves. A model LiveBinder of…

  7. The impact of fabrication parameters and substrate stiffness in direct writing of living constructs.

    PubMed

    Tirella, Annalisa; Ahluwalia, Arti

    2012-01-01

    Biomolecules and living cells can be printed in high-resolution patterns to fabricate living constructs for tissue engineering. To evaluate the impact of processing cells with rapid prototyping (RP) methods, we modeled the printing phase of two RP systems that use biomaterial inks containing living cells: a high-resolution inkjet system (BioJet) and a lower-resolution nozzle-based contact printing system (PAM(2)). In the first fabrication method, we reasoned that cell damage occurs principally during drop collision on the printing surface, in the second we hypothesize that shear stresses act on cells during extrusion (within the printing nozzle). The two cases were modeled changing the printing conditions: biomaterial substrate stiffness and volumetric flow rate, respectively, in BioJet and PAM(2). Results show that during inkjet printing impact energies of about 10(-8) J are transmitted to cells, whereas extrusion energies of the order of 10(-11) J are exerted in direct printing. Viability tests of printed cells can be related to those numerical simulations, suggesting a threshold energy of 10(-9) J to avoid permanent cell damage. To obtain well-defined living constructs, a combination of these methods is proposed for the fabrication of scaffolds with controlled 3D architecture and spatial distribution of biomolecules and cells. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  8. Instant live-cell super-resolution imaging of cellular structures by nanoinjection of fluorescent probes.

    PubMed

    Hennig, Simon; van de Linde, Sebastian; Lummer, Martina; Simonis, Matthias; Huser, Thomas; Sauer, Markus

    2015-02-11

    Labeling internal structures within living cells with standard fluorescent probes is a challenging problem. Here, we introduce a novel intracellular staining method that enables us to carefully control the labeling process and provides instant access to the inner structures of living cells. Using a hollow glass capillary with a diameter of <100 nm, we deliver functionalized fluorescent probes directly into the cells by (di)electrophoretic forces. The label density can be adjusted and traced directly during the staining process by fluorescence microscopy. We demonstrate the potential of this technique by delivering and imaging a range of commercially available cell-permeable and nonpermeable fluorescent probes to cells.

  9. High-frequency microrheology reveals cytoskeleton dynamics in living cells

    NASA Astrophysics Data System (ADS)

    Rigato, Annafrancesca; Miyagi, Atsushi; Scheuring, Simon; Rico, Felix

    2017-08-01

    Living cells are viscoelastic materials, dominated by an elastic response on timescales longer than a millisecond. On shorter timescales, the dynamics of individual cytoskeleton filaments are expected to emerge, but active microrheology measurements on cells accessing this regime are scarce. Here, we develop high-frequency microrheology experiments to probe the viscoelastic response of living cells from 1 Hz to 100 kHz. We report the viscoelasticity of different cell types under cytoskeletal drug treatments. On previously inaccessible short timescales, cells exhibit rich viscoelastic responses that depend on the state of the cytoskeleton. Benign and malignant cancer cells revealed remarkably different scaling laws at high frequencies, providing a unique mechanical fingerprint. Microrheology over a wide dynamic range--up to the frequency characterizing the molecular components--provides a mechanistic understanding of cell mechanics.

  10. FORMING SELF-ASSEMBLED CELL ARRAYS AND MEASURING THE OXYGEN CONSUMPTION RATE OF A SINGLE LIVE CELL

    PubMed Central

    Etzkorn, James R.; McQuaide, Sarah C.; Anderson, Judy B.; Meldrum, Deirdre R.; Parviz, Babak A.

    2010-01-01

    We report a method for forming arrays of live single cells on a chip using polymer micro-traps made of SU8. We have studied the toxicity of the microfabricated structures and the associated environment for two cell lines. We also report a method for measuring the oxygen consumption rate of a single cell using optical interrogation of molecular oxygen sensors placed in micromachined micro-wells by temporarily sealing the cells in the micro-traps. The new techniques presented here add to the collection of tools available for performing “single-cell” biology. A single-cell self-assembly yield of 61% was achieved with oxygen draw down rates of 0.83, 0.82, and 0.71 fmol/minute on three isolated live A549 cells. PMID:20694048

  11. D:L-AMINO Acids and the Turnover of Microbial Biomass

    NASA Astrophysics Data System (ADS)

    Lomstein, B. A.; Braun, S.; Mhatre, S. S.; Jørgensen, B. B.

    2015-12-01

    Decades of ocean drilling have demonstrated wide spread microbial life in deep sub-seafloor sediment, and surprisingly high microbial cell numbers. Despite the ubiquity of life in the deep biosphere, the large community sizes and the low energy fluxes in the vast buried ecosystem are still poorly understood. It is not know whether organisms of the deep biosphere are specifically adapted to extremely low energy fluxes or whether most of the observed cells are in a maintenance state. Recently we developed and applied a new culture independent approach - the D:L-amino acid model - to quantify the turnover times of living microbial biomass, microbial necromass and mean metabolic rates. This approach is based on the built-in molecular clock in amino acids that very slowly undergo chemical racemization until they reach an even mixture of L- and D- forms, unless microorganisms spend energy to keep them in the L-form that dominates in living organisms. The approach combines sensitive analyses of amino acids, the unique bacterial endospore marker (dipicolinic acid) with racemization dynamics of stereo-isomeric amino acids. Based on a heating experiment, we recently reported kinetic parameters for racemization of aspartic acid, glutamic acid, serine and alanine in bulk sediment from Aarhus Bay, Denmark. The obtained racemization rate constants were faster than the racemization rate constants of free amino acids, which we have previously applied in Holocene sediment from Aarhus Bay and in up to 10 mio yr old sediment from ODP Leg 201. Another important input parameter for the D:L-amino acid model is the cellular carbon content. It has recently been suggested that the cellular carbon content most likely is lower than previously thought. In recognition of these new findings, previously published data based on the D:L-amino acid model were recalculated and will be presented together with new data from an Arctic Holocene setting with constant sub-zero temperatures.

  12. The oxidative stress and antioxidant responses of Litopenaeus vannamei to low temperature and air exposure.

    PubMed

    Xu, Zihan; Regenstein, Joe M; Xie, Dandan; Lu, Wenjing; Ren, Xingchen; Yuan, Jiajia; Mao, Linchun

    2018-01-01

    Low temperature and air exposure were the key attributes for waterless transportation of fish and shrimp. In order to investigate the oxidative stress and antioxidant responses of the live shrimp Litopenaeus vannamei in the mimic waterless transportation, live shrimp were cooled at 13 °C for 3 min, stored in oxygen at 15 °C for 12 h, and then revived in water at 25 °C. The survival rate of shrimp under this waterless transportation system was over 86.67%. The ultrastructure of hepatopancreas cells were observed while activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutathione peroxidase (GSH-Px), antisuperoxide anion free radicals (ASAFR), total antioxidant capacity (TAOC), reactive oxygen species (ROS) production, content of malondialdehyde (MDA) and relative mRNA expressions of CAT and GSH-Px in the hemolymph and hepatopancreas were determined. Slight distortions of some organelles in hepatopancreas cells was reversible upon the shrimp revived from the cold shock. The activities of SOD, POD, CAT, GSH-Px, TAOC, ROS production and relative mRNA expressions of CAT and GSH-Px increased following the cold shock and reached peak levels after 3 or 6 h of storage, and then decreased gradually. There was no significant difference between the fresh and the revived shrimp in SOD, POD, GSH-Px, TAOC, ROS, MDA and relative mRNA expressions of CAT and GSH-Px. The oxidative stress and antioxidant responses were tissue-specific because hepatopancreas seemed to have a greater ability to defend against organelle damage and was more sensitive to stress than hemolymph based on the results of SOD activity, MDA content and GSH-Px mRNA expression. These results revealed that low temperature and air exposure caused significant oxidative and antioxidant responses, but did not lead to irreversible damages in this waterless system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Hyperforin changes the zinc-storage capacities of brain cells.

    PubMed

    Gibon, Julien; Richaud, Pierre; Bouron, Alexandre

    2011-12-01

    In vitro and in vivo experiments were carried out to investigate the consequences on brain cells of a chronic treatment with hyperforin, a plant extract known to dissipate the mitochondrial membrane potential and to release Zn(2+) and Ca(2+) from these organelles. Dissociated cortical neurons were grown in a culture medium supplemented with 1 μM hyperforin. Live-cell imaging experiments with the fluorescent probes FluoZin-3 and Fluo-4 show that a 3 day-hyperforin treatment diminishes the size of the hyperforin-sensitive pools of Ca(2+) and Zn(2+) whereas it increases the size of the DTDP-sensitive pool of Zn(2+) without affecting the ionomycin-sensitive pool of Ca(2+). When assayed by quantitative PCR the levels of mRNA coding for metallothioneins (MTs) I, II and III were increased in cortical neurons after a 3 day-hyperforin treatment. This was prevented by the zinc chelator TPEN, indicating that the plant extract controls the expression of MTs in a zinc-dependent manner. Brains of adult mice who received a daily injection (i.p.) of hyperforin (4 mg/kg/day) for 4 weeks had a higher sulphur content than control animals. They also exhibited an enhanced expression of the genes coding for MTs. However, the long-term treatment did not affect the brain levels of calcium and zinc. Based on these results showing that hyperforin influences the size of the internal pools of Zn(2+), the expression of MTs and the brain cellular sulphur content, it is proposed that hyperforin changes the Zn-storage capacity of brain cells and interferes with their thiol status. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Impacts of environmental factors on arsenate biotransformation and release in Microcystis aeruginosa using the Taguchi experimental design approach.

    PubMed

    Wang, Zhenhong; Luo, Zhuanxi; Yan, Changzhou; Xing, Baoshan

    2017-07-01

    Very limited information is available on how and to what extent environmental factors influence arsenic (As) biotransformation and release in freshwater algae. These factors include concentrations of arsenate (As(V)), dissolved inorganic nitrogen (N), phosphate (P), and ambient pH. This study conducted a series of experiments using Taguchi methods to determine optimum conditions for As biotransformation. We assessed principal effective factors of As(V), N, P, and pH and determined that As biotransformation and release actuate at 10.0 μM As(V) in dead alga cells, the As efflux ratio and organic As efflux content actuate at 1.0 mg/L P, algal growth and intracellular arsenite (As(III)) content actuate at 10.0 mg/L N, and the total sum of As(III) efflux from dead alga cells actuates at a pH level of 10. Moreover, N is the critical component for As(V) biotransformation in M. aeruginosa, specifically for As(III) transformation, because N can accelerate algal growth, subsequently improving As(III) accumulation and its efflux, which results in an As(V) to As(III) reduction. Furthermore, low P concentrations in combination with high N concentrations promote As accumulation. Following As(V), P was the primary impacting factor for As accumulation. In addition, small amounts of As accumulation under low concentrations of As and high P were securely stored in living algal cells and were easily released after cell death. Results from this study will help to assess practical applications and the overall control of key environmental factors, particularly those associated with algal bioremediation in As polluted water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Evaluation of efficacy and effectiveness of live attenuated zoster vaccine.

    PubMed

    Gabutti, G; Valente, N; Sulcaj, N; Stefanati, A

    2014-12-01

    Herpes zoster (HZ) is a viral disease characterized by a dermatologic and neurologic involvement caused by the reactivation of the latent varicella zoster virus (VZV) acquired during primary infection (varicella). HZ incidence increases with age and is related to waning specific cell-mediated immunity (CMI). The most frequent complication of HZ is post-herpetic neuralgia (PHN) characterized by chronic pain lasting at least 30 days, with impact on patients' quality of life. Available treatments are quite unsatisfactory in reducing pain and length of the disease. The evaluation of the epidemiology, the debilitating complications (PHN), the suboptimal available treatments and the costs related to the diagnosis and clinical/therapeutic management of HZ patients have been the rationale for the search of an adequate preventive measure against this disease. The target of this intervention is to reduce the frequency and severity of HZ and related complications by stimulating CMI. Prevention has recently become possible with the live attenuated vaccine Oka/Merck, with an antigen content at least 10-fold higher than the antigen content of pediatric varicella vaccines. Clinical studies show a good level of efficacy and effectiveness, particularly against the burden of illness and PHN in all age classes. Accordingly to the summary of the characteristics of the product the zoster vaccine is indicated for the prevention of HZ and PHN in individuals 50 years of age or older and is effective and safe in subjects with a positive history of HZ.

  16. Multimodality imaging of reporter gene expression using a novel fusion vector in living cells and animals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gambhir, Sanjiv; Pritha, Ray

    Novel double and triple fusion reporter gene constructs harboring distinct imagable reporter genes are provided, as well as applications for the use of such double and triple fusion constructs in living cells and in living animals using distinct imaging technologies.

  17. Multimodality imaging of reporter gene expression using a novel fusion vector in living cells and animals

    DOEpatents

    Gambhir, Sanjiv; Pritha, Ray

    2015-07-14

    Novel double and triple fusion reporter gene constructs harboring distinct imagable reporter genes are provided, as well as applications for the use of such double and triple fusion constructs in living cells and in living animals using distinct imaging technologies.

  18. Genomic insights into the evolutionary origin of Myxozoa within Cnidaria.

    PubMed

    Chang, E Sally; Neuhof, Moran; Rubinstein, Nimrod D; Diamant, Arik; Philippe, Hervé; Huchon, Dorothée; Cartwright, Paulyn

    2015-12-01

    The Myxozoa comprise over 2,000 species of microscopic obligate parasites that use both invertebrate and vertebrate hosts as part of their life cycle. Although the evolutionary origin of myxozoans has been elusive, a close relationship with cnidarians, a group that includes corals, sea anemones, jellyfish, and hydroids, is supported by some phylogenetic studies and the observation that the distinctive myxozoan structure, the polar capsule, is remarkably similar to the stinging structures (nematocysts) in cnidarians. To gain insight into the extreme evolutionary transition from a free-living cnidarian to a microscopic endoparasite, we analyzed genomic and transcriptomic assemblies from two distantly related myxozoan species, Kudoa iwatai and Myxobolus cerebralis, and compared these to the transcriptome and genome of the less reduced cnidarian parasite, Polypodium hydriforme. A phylogenomic analysis, using for the first time to our knowledge, a taxonomic sampling that represents the breadth of myxozoan diversity, including four newly generated myxozoan assemblies, confirms that myxozoans are cnidarians and are a sister taxon to P. hydriforme. Estimations of genome size reveal that myxozoans have one of the smallest reported animal genomes. Gene enrichment analyses show depletion of expressed genes in categories related to development, cell differentiation, and cell-cell communication. In addition, a search for candidate genes indicates that myxozoans lack key elements of signaling pathways and transcriptional factors important for multicellular development. Our results suggest that the degeneration of the myxozoan body plan from a free-living cnidarian to a microscopic parasitic cnidarian was accompanied by extreme reduction in genome size and gene content.

  19. Alterations of DNA content in human endometrial stromal cells transfected with a temperature-sensitive SV40: tetraploidization and physiological consequences.

    PubMed

    Rinehart, C A; Mayben, J P; Butler, T D; Haskill, J S; Kaufman, D G

    1992-01-01

    The normal genomic stability of human cells is reversed during neoplastic transformation. The SV40 large T antigen alters the DNA content in human endometrial stromal cells in a manner that relates to neoplastic progression. Human endometrial stromal cells were transfected with a plasmid containing the A209 temperature-sensitive mutant of SV40 (tsSV40), which is also defective in the viral origin of replication. Ninety-seven clonal transfectants from seven different primary cell strains were isolated. Initial analysis revealed that 20% of the clonal populations (19/97) had an apparent diploid DNA content, 35% (34/97) had an apparent tetraploid DNA content, and the remainder were mixed populations of diploid and tetraploid cells. No aneuploid populations were observed. Diploid tsSV40 transformed cells always give rise to a population of cells with a tetraploid DNA content when continuously cultured at the permissive temperature. The doubling of DNA content can be vastly accelerated by the sudden reintroduction of large T antigen activity following a shift from non-permissive to permissive temperature. Tetraploid tsSV40 transfected cells have a lower capacity for anchorage-independent growth and earlier entry into 'crisis' than diploid cells. These results indicate that during the pre-crisis, extended lifespan phase of growth, the SV40 large T antigen causes a doubling of DNA content. This apparent doubling of DNA content does not confer growth advantage during the extended lifespan that precedes 'crisis'.

  20. The response of single human cells to zero gravity

    NASA Technical Reports Server (NTRS)

    Montgomery, P. O., Jr.; Cook, J. E.; Reynolds, R. C.; Paul, J. S.; Hayflick, L.; Stock, D.; Schulz, W. W.; Kimzey, S. L.; Thirolf, R. G.; Rogers, T.

    1974-01-01

    The SO15 experiment was designed to extend observations of the effects of zero-gravity to living human cells during and subsequent to a 59-day flight on Skylab 3. A strain of diploid human embryonic lung cells, WI-38, was chosen for this purpose. The studies were concerned with observations designed to detect the effects of zero-gravity on cell growth rates and on cell structure as observed by light microscopy, transmission and scanning electron microscopy and histochemistry. Studies of the effects of zero-gravity on the cell function and the cell cycle were performed by time lapse motion picture photography and microspectrophotometry. Subsequent study of the returned living cells included karotyping, G- and C-banding, and analyses of the culture media used. Some of the living cells returned were banked by deep freeze techniques for possible future experiments.

  1. Analyzing the dynamics of cell cycle processes from fixed samples through ergodic principles.

    PubMed

    Wheeler, Richard John

    2015-11-05

    Tools to analyze cyclical cellular processes, particularly the cell cycle, are of broad value for cell biology. Cell cycle synchronization and live-cell time-lapse observation are widely used to analyze these processes but are not available for many systems. Simple mathematical methods built on the ergodic principle are a well-established, widely applicable, and powerful alternative analysis approach, although they are less widely used. These methods extract data about the dynamics of a cyclical process from a single time-point "snapshot" of a population of cells progressing through the cycle asynchronously. Here, I demonstrate application of these simple mathematical methods to analysis of basic cyclical processes--cycles including a division event, cell populations undergoing unicellular aging, and cell cycles with multiple fission (schizogony)--as well as recent advances that allow detailed mapping of the cell cycle from continuously changing properties of the cell such as size and DNA content. This includes examples using existing data from mammalian, yeast, and unicellular eukaryotic parasite cell biology. Through the ongoing advances in high-throughput cell analysis by light microscopy, electron microscopy, and flow cytometry, these mathematical methods are becoming ever more important and are a powerful complementary method to traditional synchronization and time-lapse cell cycle analysis methods. © 2015 Wheeler. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  2. The effect of polyploidization on tree hydraulic functioning.

    PubMed

    De Baerdemaeker, Niels J F; Hias, Niek; Van den Bulcke, Jan; Keulemans, Wannes; Steppe, Kathy

    2018-02-01

    Recent research has highlighted the importance of living tissue in wood. Polyploidization can impact amounts and arrangements of living cells in wood, potentially leading to increased drought tolerance. Tetraploid variants were created from the apple cultivar Malus ×domestica 'Gala' (Gala-4x), and their vulnerability to drought-induced cavitation and their hydraulic capacitance were compared to those of their diploid predecessors (Gala-2x). Assuming a positive correlation between polyploidy and drought tolerance, we hypothesized lower vulnerability and higher capacitance for the tetraploid. Vulnerability to drought-induced cavitation and the hydraulic capacitance were quantified through acoustic emission and continuous weighing of shoots during a bench-top dehydration experiment. To underpin the hydraulic trait results, anatomical variables such as vessel area, conduit diameter, cell wall reinforcement, and ray and vessel-associated parenchyma were measured. Vulnerability to drought-induced cavitation was intrinsically equal for both ploidy variants, but Gala-4x proved to be more vulnerable than Gala-2x during the early phase of desiccation as was indicated by its significantly lower air entry value. Higher change in water content of the leafy shoot, higher amount of parenchyma, and larger vessel area and size resulted in a significantly higher hydraulic capacitance and efficiency for Gala-4x compared to Gala-2x. Both ploidy variants were typified as highly sensitive to drought-induced cavitation, with no significant difference in their overall drought vulnerability. But, when water deficit is short and moderate, Gala-4x may delay a drought-induced decrease in performance by trading hydraulic safety for increased release of capacitively stored water from living tissue. © 2018 Botanical Society of America.

  3. Green light for quantitative live-cell imaging in plants.

    PubMed

    Grossmann, Guido; Krebs, Melanie; Maizel, Alexis; Stahl, Yvonne; Vermeer, Joop E M; Ott, Thomas

    2018-01-29

    Plants exhibit an intriguing morphological and physiological plasticity that enables them to thrive in a wide range of environments. To understand the cell biological basis of this unparalleled competence, a number of methodologies have been adapted or developed over the last decades that allow minimal or non-invasive live-cell imaging in the context of tissues. Combined with the ease to generate transgenic reporter lines in specific genetic backgrounds or accessions, we are witnessing a blooming in plant cell biology. However, the imaging of plant cells entails a number of specific challenges, such as high levels of autofluorescence, light scattering that is caused by cell walls and their sensitivity to environmental conditions. Quantitative live-cell imaging in plants therefore requires adapting or developing imaging techniques, as well as mounting and incubation systems, such as micro-fluidics. Here, we discuss some of these obstacles, and review a number of selected state-of-the-art techniques, such as two-photon imaging, light sheet microscopy and variable angle epifluorescence microscopy that allow high performance and minimal invasive live-cell imaging in plants. © 2018. Published by The Company of Biologists Ltd.

  4. Intracellular imaging of docosanol in living cells by coherent anti-Stokes Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    You, Sixian; Liu, Yuan; Arp, Zane; Zhao, Youbo; Chaney, Eric J.; Marjanovic, Marina; Boppart, Stephen A.

    2017-07-01

    Docosanol is an over-the-counter topical agent that has proved to be one of the most effective therapies for treating herpes simplex labialis. However, the mechanism by which docosanol suppresses lesion formation remains poorly understood. To elucidate its mechanism of action, we investigated the uptake of docosanol in living cells using coherent anti-Stokes Raman scattering microscopy. Based on direct visualization of the deuterated docosanol, we observed highly concentrated docosanol inside living cells 24 h after drug treatment. In addition, different spatial patterns of drug accumulation were observed in different cell lines. In keratinocytes, which are the targeted cells of docosanol, the drug molecules appeared to be docking at the periphery of the cell membrane. In contrast, the drug molecules in fibroblasts appeared to accumulate in densely packed punctate regions throughout the cytoplasm. These results suggest that this molecular imaging approach is suitable for the longitudinal tracking of drug molecules in living cells to identify cell-specific trafficking and may also have implications for elucidating the mechanism by which docosanol suppresses lesion formation.

  5. Seasonal relationships between foliar moisture content, heat content and biochemistry of lodge pole pine and big sagebrush foliage

    Treesearch

    Yi Qi; Matt Jolly; Philip E. Dennison; Rachael C. Kropp

    2016-01-01

    Wildland fires propagate by liberating energy contained within living and senescent plant biomass. The maximum amount of energy that can be generated by burning a given plant part can be quantified and is generally referred to as its heat content (HC). Many studies have examined heat content of wildland fuels but studies examining the seasonal variation in foliar HC...

  6. Comparative study and evaluation of further attenuated, live measles vaccines alone and in combination with mumps and rubella vaccines.

    PubMed

    Wegmann, A; Glück, R; Just, M; Mischler, R; Paroz, P; Germanier, R

    1986-01-01

    The further attenuated Enders (FAE) measles vaccine strain and the Edmonston B-Zagreb (EZ) measles vaccine strain were compared. In VERO-cells plaque sizes of FAE varied between 0.5 and 1 mm, those of EZ between 1 and 2 mm in diameter. The lots available in Switzerland during a 2 year period showed virus titers of 10(3.1) to 10(4.0) TCID50 per dose in the one vaccine (FAE) and of 10(3.1) to 10(4.5) TCID50 per dose in the other (EZ). Clinical investigations were performed with FAE and EZ monovalent and trivalent (measles + mumps + rubella) vaccine preparations. The virus titers of the vaccine lots used were 10(3.1) to 10(4.0) TCID50 per dose. The overall seroconversion rates of 96% to 100% indicate that both types of vaccine have comparable immunization properties. Stability tests demonstrated good stability of both the FAE and the EZ vaccines. Thus conservation at 37 degrees C was possible for 2 and 4 weeks, respectively, and at 41 degrees C for 6 and 6 days, respectively, without undue loss of live virus content (less than 1 log 10). Since the EZ vaccine is derived from human diploid cells, it is particularly suitable for the vaccination of persons with a history of allergy to avian proteins.

  7. Numerical simulation of dielectrophoretic separation of live/dead cells using a three-dimensional nonuniform AC electric field in micro-fabricated devices.

    PubMed

    Tada, Shigeru

    2015-01-01

    The analysis of cell separation has many important biological and medical applications. Dielectrophoresis (DEP) is one of the most effective and widely used techniques for separating and identifying biological species. In the present study, a DEP flow channel, a device that exploits the differences in the dielectric properties of cells in cell separation, was numerically simulated and its cell-separation performance examined. The samples of cells used in the simulation were modeled as human leukocyte (B cell) live and dead cells. The cell-separation analysis was carried out for a flow channel equipped with a planar electrode on the channel's top face and a pair of interdigitated counter electrodes on the bottom. This yielded a three-dimensional (3D) nonuniform AC electric field in the entire space of the flow channel. To investigate the optimal separation conditions for mixtures of live and dead cells, the strength of the applied electric field was varied. With appropriately selected conditions, the device was predicted to be very effective at separating dead cells from live cells. The major advantage of the proposed method is that a large volume of sample can be processed rapidly because of a large spacing of the channel height.

  8. Evaluation of royal jelly as an alternative to fetal bovine serum in cell culture using cell proliferation assays and live cell imaging.

    PubMed

    Musa, Marahaini; Nasir, Nurul Fatihah Mohamad; Thirumulu, Kannan Ponnuraj

    2014-01-01

    Royal jelly is a nutritious substance produced by the young nurse bees and contains significant amounts of proteins which are important for cell growth and proliferation. The aim of this study was to evaluate the effect of royal jelly as an alternative to fetal bovine serum (FBS) in cell culture using cell proliferation assays and live cell imaging. MRC-5 cells were treated with various concentrations of royal jelly extract in MTT assay. The control groups were comprised of Alpha-Minimal Essential Medium (α-MEM) alone and α-MEM with 10% FBS. Subsequently, the cell proliferation was studied for 10 days using Alamar Blue assay and live cell imaging from 48 to 72 h. The population doubling time (PDT) was determined using trypan blue assay after live cell imaging. In MTT assay, 0.156 and 0.078 mg/ml of royal jelly produced higher cell viability compared to positive control group but were not significantly different (P > 0.05). In the Alamar Blue assay, 0.156 and 0.078 mg/ml of royal jelly produced greater percentage of reduction at day 3 even though no significant difference was found (P > 0.05). Based on live cell imaging, the PDT for positive, negative, 0.156 and 0.078 mg/ml of royal jelly groups were 29.09, 62.50, 41.67 and 41.67 h respectively. No significant difference was found in the PDT between all the groups (P > 0.05). Royal jelly does not exhibit similar ability like FBS to facilitate cell growth under the present test conditions.

  9. A Novel Ex Vivo Method for Visualizing Live-Cell Calcium Response Behavior in Intact Human Tumors.

    PubMed

    Koh, James; Hogue, Joyce A; Sosa, Julie A

    2016-01-01

    The functional impact of intratumoral heterogeneity has been difficult to assess in the absence of a means to interrogate dynamic, live-cell biochemical events in the native tissue context of a human tumor. Conventional histological methods can reveal morphology and static biomarker expression patterns but do not provide a means to probe and evaluate tumor functional behavior and live-cell responsiveness to experimentally controlled stimuli. Here, we describe an approach that couples vibratome-mediated viable tissue sectioning with live-cell confocal microscopy imaging to visualize human parathyroid adenoma tumor cell responsiveness to extracellular calcium challenge. Tumor sections prepared as 300 micron-thick tissue slices retain viability throughout a >24 hour observation period and retain the native architecture of the parental tumor. Live-cell observation of biochemical signaling in response to extracellular calcium challenge in the intact tissue slices reveals discrete, heterogeneous kinetic waveform categories of calcium agonist reactivity within each tumor. Plotting the proportion of maximally responsive tumor cells as a function of calcium concentration yields a sigmoid dose-response curve with a calculated calcium EC50 value significantly elevated above published reference values for wild-type calcium-sensing receptor (CASR) sensitivity. Subsequent fixation and immunofluorescence analysis of the functionally evaluated tissue specimens allows alignment and mapping of the physical characteristics of individual cells within the tumor to specific calcium response behaviors. Evaluation of the relative abundance of intracellular PTH in tissue slices challenged with variable calcium concentrations demonstrates that production of the hormone can be dynamically manipulated ex vivo. The capability of visualizing live human tumor tissue behavior in response to experimentally controlled conditions opens a wide range of possibilities for personalized ex vivo therapeutic testing. This highly adaptable system provides a unique platform for live-cell ex vivo provocative testing of human tumor responsiveness to a range of physiological agonists or candidate therapeutic compounds.

  10. Long-working-distance fluorescence microscope with high-numerical-aperture objectives for variable-magnification imaging in live mice from macro- to subcellular

    NASA Astrophysics Data System (ADS)

    Kimura, Hiroaki; Momiyama, Masashi; Tomita, Katsuro; Tsuchiya, Hiroyuki; Hoffman, Robert M.

    2010-11-01

    We demonstrate the development of a long-working-distance fluorescence microscope with high-numerical-aperture objectives for variable-magnification imaging in live mice from macro- to subcellular. To observe cytoplasmic and nuclear dynamics of cancer cells in the living mouse, 143B human osteosarcoma cells are labeled with green fluorescent protein in the nucleus and red fluorescent protein in the cytoplasm. These dual-color cells are injected by a vascular route in an abdominal skin flap in nude mice. The mice are then imaged with the Olympus MVX10 macroview fluorescence microscope. With the MVX10, the nuclear and cytoplasmic behavior of cancer cells trafficking in blood vessels of live mice is observed. We also image lung metastases in live mice from the macro- to the subcellular level by opening the chest wall and imaging the exposed lung in live mice. Injected splenocytes, expressing cyan fluorescent protein, could also be imaged on the lung of live mice. We demonstrate that the MVX10 microscope offers the possibility of full-range in vivo fluorescence imaging from macro- to subcellular and should enable widespread use of powerful imaging technologies enabled by genetic reporters and other fluorophores.

  11. Heteronormativity in the University Classroom: Novelty Attachment and Content Substitution among Gay-Friendly Students

    ERIC Educational Resources Information Center

    Ripley, Matthew; Anderson, Eric; McCormack, Mark; Rockett, Ben

    2012-01-01

    This article explores the complex relationship between an openly gay instructor, homophobia, and heteronormativity in a university classroom. The authors first tabulated the frequency with which the instructor used the lives of heterosexuals and homosexuals as examples of content or as content itself, and then they interviewed 32 students about…

  12. Transfronterizo Literacies and Content in a Dual Language Classroom

    ERIC Educational Resources Information Center

    de la Piedra, Maria Teresa; Araujo, Blanca

    2012-01-01

    The purpose of this article is to discuss the ways in which young transfronterizo students who live between the two worlds of El Paso (USA) and Ciudad Juarez (Mexico) bring their literacy practices and content to the classroom. Drawing on the data gathered during a 3-year ethnographic study, we illustrate how transfronterizo texts and content are…

  13. The Assessment of Halogenating Stress in Population by the Environmental and Health Monitoring

    ERIC Educational Resources Information Center

    Namazbaeva, Zulkiya I.; Dosybaeva, Gulzhan N.; Sabirov, Zhanbol B.; Bazelyuk, Ludmila T.; Asanov, Galiya K.; Baidaulet, Imanali O.

    2016-01-01

    This study aimed to find out the dependence of myeloperoxidase content in patients living in the environmentally unfriendly region of Kazakhstan (Taraz), on the PCBs content in the air. During this study, 324 patients were examined to solve the clinical problem. The content of myeloperoxidase fluctuated significantly depending on the age of the…

  14. The Synergy of Poetry and Content Areas: Reading Poetry across the Curriculum

    ERIC Educational Resources Information Center

    Salas, Laura Purdie; Wong, Janet; Bentley-Flannery, Paige; Hahn, Mary Lee; Jules, Jacqueline; Mordhorst, Heidi; Vardell, Sylvia

    2015-01-01

    Poetry can enhance all content areas. This article shares highlights from the 2014 CLA Master Class focused on using poetry in math, science, social studies, the arts, and physical education/movement. Presenters and participants read poems, asked questions, and engaged in lively discussions about using poetry to enhance all content areas. Chair…

  15. Measurement of Lipid Accumulation in Chlorella vulgaris via Flow Cytometry and Liquid-State ¹H NMR Spectroscopy for Development of an NMR-Traceable Flow Cytometry Protocol

    PubMed Central

    Bono Jr., Michael S.; Garcia, Ravi D.; Sri-Jayantha, Dylan V.; Ahner, Beth A.; Kirby, Brian J.

    2015-01-01

    In this study, we cultured Chlorella vulgaris cells with a range of lipid contents, induced via nitrogen starvation, and characterized them via flow cytometry, with BODIPY 505/515 as a fluorescent lipid label, and liquid-state 1H NMR spectroscopy. In doing so, we demonstrate the utility of calibrating flow cytometric measurements of algal lipid content using triacylglyceride (TAG, also known as triacylglycerol or triglyceride) content per cell as measured via quantitative 1H NMR. Ensemble-averaged fluorescence of BODIPY-labeled cells was highly correlated with average TAG content per cell measured by bulk NMR, with a linear regression yielding a linear fit with r 2 = 0.9974. This correlation compares favorably to previous calibrations of flow cytometry protocols to lipid content measured via extraction, and calibration by NMR avoids the time and complexity that is generally required for lipid quantitation via extraction. Flow cytometry calibrated to a direct measurement of TAG content can be used to investigate the distribution of lipid contents for cells within a culture. Our flow cytometry measurements showed that Chlorella vulgaris cells subjected to nitrogen limitation exhibited higher mean lipid content but a wider distribution of lipid content that overlapped the relatively narrow distribution of lipid content for replete cells, suggesting that nitrogen limitation induces lipid accumulation in only a subset of cells. Calibration of flow cytometry protocols using direct in situ measurement of TAG content via NMR will facilitate rapid development of more precise flow cytometry protocols, enabling investigation of algal lipid accumulation for development of more productive algal biofuel feedstocks and cultivation protocols. PMID:26267664

  16. Measurement of lipid accumulation in Chlorella vulgaris via flow cytometry and liquid-state ¹H NMR spectroscopy for development of an NMR-traceable flow cytometry protocol.

    PubMed

    Bono, Michael S; Garcia, Ravi D; Sri-Jayantha, Dylan V; Ahner, Beth A; Kirby, Brian J

    2015-01-01

    In this study, we cultured Chlorella vulgaris cells with a range of lipid contents, induced via nitrogen starvation, and characterized them via flow cytometry, with BODIPY 505/515 as a fluorescent lipid label, and liquid-state 1H NMR spectroscopy. In doing so, we demonstrate the utility of calibrating flow cytometric measurements of algal lipid content using triacylglyceride (TAG, also known as triacylglycerol or triglyceride) content per cell as measured via quantitative 1H NMR. Ensemble-averaged fluorescence of BODIPY-labeled cells was highly correlated with average TAG content per cell measured by bulk NMR, with a linear regression yielding a linear fit with r2 = 0.9974. This correlation compares favorably to previous calibrations of flow cytometry protocols to lipid content measured via extraction, and calibration by NMR avoids the time and complexity that is generally required for lipid quantitation via extraction. Flow cytometry calibrated to a direct measurement of TAG content can be used to investigate the distribution of lipid contents for cells within a culture. Our flow cytometry measurements showed that Chlorella vulgaris cells subjected to nitrogen limitation exhibited higher mean lipid content but a wider distribution of lipid content that overlapped the relatively narrow distribution of lipid content for replete cells, suggesting that nitrogen limitation induces lipid accumulation in only a subset of cells. Calibration of flow cytometry protocols using direct in situ measurement of TAG content via NMR will facilitate rapid development of more precise flow cytometry protocols, enabling investigation of algal lipid accumulation for development of more productive algal biofuel feedstocks and cultivation protocols.

  17. Direct visualization of nucleolar G-quadruplexes in live cells by using a fluorescent light-up probe.

    PubMed

    Zhang, Suge; Sun, Hongxia; Chen, Hongbo; Li, Qian; Guan, Aijiao; Wang, Lixia; Shi, Yunhua; Xu, Shujuan; Liu, Meirong; Tang, Yalin

    2018-05-01

    Direct detection of G-quadruplexes in human cells has become an important issue due to the vital role of G-quadruplex related to biological functions. Despite several probes have been developed for detection of the G-quadruplexes in cytoplasm or whole cells, the probe being used to monitor the nucleolar G-quadruplexes is still lacking. Formation of the nucleolar G-quadruplex structures was confirmed by using circular dichroism (CD) spectroscopy. The binding affinity and selectivity of Thioflavin T (ThT) towards various DNA/RNA motifs in solution and gel system were measured by using fluorescence spectroscopy and polyacrylamide gel electrophoresis (PAGE), respectively. G-quadruplex imaging in live cells was directly captured by using confocal laser scanning microscopy (CLSM). Formation of the rDNA and rRNA G-quadruplex structures is demonstrated in vitro. ThT is found to show much higher affinity and selectivity towards these G-quadruplex structures versus other nucleic acid motifs either in solution or in gel system. The nucleolar G-quadruplexes in living cells are visualized by using ThT as a fluorescent probe. G-quadruplex-ligand treatments in live cells lead to sharp decrease of ThT signal. The natural existence of the G-quadruplexes structure in the nucleoli of living cells is directly visualized by using ThT as an indicator. The research provides substantive evidence for formation of the rRNA G-quadruplex structures, and also offers an effective probe for direct visualization of the nucleolar G-quadruplexes in living cells. Copyright © 2018. Published by Elsevier B.V.

  18. Cell-cycle progress in obligate predatory bacteria is dependent upon sequential sensing of prey recognition and prey quality cues.

    PubMed

    Rotem, Or; Pasternak, Zohar; Shimoni, Eyal; Belausov, Eduard; Porat, Ziv; Pietrokovski, Shmuel; Jurkevitch, Edouard

    2015-11-03

    Predators feed on prey to acquire the nutrients necessary to sustain their survival, growth, and replication. In Bdellovibrio bacteriovorus, an obligate predator of Gram-negative bacteria, cell growth and replication are tied to a shift from a motile, free-living phase of search and attack to a sessile, intracellular phase of growth and replication during which a single prey cell is consumed. Engagement and sustenance of growth are achieved through the sensing of two unidentified prey-derived cues. We developed a novel ex vivo cultivation system for B. bacteriovorus composed of prey ghost cells that are recognized and invaded by the predator. By manipulating their content, we demonstrated that an early cue is located in the prey envelope and a late cue is found within the prey soluble fraction. These spatially and temporally separated cues elicit discrete and combinatory regulatory effects on gene transcription. Together, they delimit a poorly characterized transitory phase between the attack phase and the growth phase, during which the bdelloplast (the invaded prey cell) is constructed. This transitory phase constitutes a checkpoint in which the late cue presumably acts as a determinant of the prey's nutritional value before the predator commits. These regulatory adaptations to a unique bacterial lifestyle have not been reported previously.

  19. Generation of novel covalent RNA-protein complexes in cells by ultraviolet B irradiation: implications for autoimmunity.

    PubMed

    Andrade, Felipe; Casciola-Rosen, Livia A; Rosen, Antony

    2005-04-01

    To determine whether ultraviolet B (UVB) irradiation induces novel modifications in autoantigens targeted during experimental photoinduced epidermal damage. To search for novel UVB-induced autoantigen modifications, lysates made from UVB-irradiated human keratinocytes or HeLa cells were immunoblotted using human autoantibodies that recognize ribonucleoprotein autoantigens. Novel autoantigen structures identified were further characterized using nucleases and RNA hybridization. Human sera that recognize U1-70 kd (U1-70K) and La by immunoblotting also recognized multiple novel species when they were used to immunoblot lysates of UVB-irradiated keratinocytes or HeLa cells. These species were not present in control cells and were not observed when apoptosis was induced by Fas ligation or cytotoxic lymphocyte granule contents. Biochemical analysis using multiple assays revealed that these novel UVB-induced molecular species result from the covalent crosslinking between the U1 RNA and the hYRNA molecules with their associated proteins, including U1-70K, La, and likely components of the Sm particle. These data demonstrate that UVB irradiation of live cells can directly induce covalent RNA-protein complexes, which are recognized by human autoantibodies. As previously described for other autoantigens, these covalent complexes of RNA and proteins may have important consequences in terms of antigen capture and processing.

  20. Super-Resolution Imaging Strategies for Cell Biologists Using a Spinning Disk Microscope

    PubMed Central

    Hosny, Neveen A.; Song, Mingying; Connelly, John T.; Ameer-Beg, Simon; Knight, Martin M.; Wheeler, Ann P.

    2013-01-01

    In this study we use a spinning disk confocal microscope (SD) to generate super-resolution images of multiple cellular features from any plane in the cell. We obtain super-resolution images by using stochastic intensity fluctuations of biological probes, combining Photoactivation Light-Microscopy (PALM)/Stochastic Optical Reconstruction Microscopy (STORM) methodologies. We compared different image analysis algorithms for processing super-resolution data to identify the most suitable for analysis of particular cell structures. SOFI was chosen for X and Y and was able to achieve a resolution of ca. 80 nm; however higher resolution was possible >30 nm, dependant on the super-resolution image analysis algorithm used. Our method uses low laser power and fluorescent probes which are available either commercially or through the scientific community, and therefore it is gentle enough for biological imaging. Through comparative studies with structured illumination microscopy (SIM) and widefield epifluorescence imaging we identified that our methodology was advantageous for imaging cellular structures which are not immediately at the cell-substrate interface, which include the nuclear architecture and mitochondria. We have shown that it was possible to obtain two coloured images, which highlights the potential this technique has for high-content screening, imaging of multiple epitopes and live cell imaging. PMID:24130668

  1. Characterizing the interactions between prolyl isomerase pin1 and phosphatase inhibitor-2 in living cells with FRET and FCS

    NASA Astrophysics Data System (ADS)

    Sun, Yuansheng; Wang, Lifu; Jyothikumar, Vinod; Brautigan, David L.; Periasamy, Ammasi

    2012-03-01

    Phosphatase inhibitor-2 (I2) was discovered as a regulator of protein Ser/Thr phosphatase-1 and is conserved from yeast to human. Binding between purified recombinant I2 from different species and the prolyl isomerase Pin1 has been demonstrated with pull-down assays, size exclusion chromatography and nuclear magnetic resonance spectroscopy. Despite this, questions persist as to whether these proteins associate together in living cells. In this study, we prepared fluorescent protein (FP) fusions of I2 and Pin1 and employed both Förster Resonance Energy Transfer (FRET) and Fluorescence Correlation Spectroscopy (FCS) imaging techniques to characterize their interactions in living cells. In both intensity-based and time-resolved FRET studies, we observed FRET uniformly across whole cells co-expressing I2-Cerulean and Pin1-Venus that was significantly higher than in negative controls expressing Cerulean FP (without fusing to I2) as the FRET donor and Pin1-Venus, showing a specific interaction between I2-Cerulean and Pin1-Venus in living cells. We also observed the co-diffusion of I2-Cerulean and Pin1-mCherry in Fluorescence Cross Correlation Spectroscopy (FCCS) measurements. We further showed that I2 itself as well as I2-Pin1 formed complexes in living cells (predicted from in vitro studies) via a quantitative FRET assay, and demonstrated from FCS measurements that both I2 and Pin1 (fused to Cerulean) are highly mobile in living cells.

  2. Traceless affinity labeling of endogenous proteins for functional analysis in living cells.

    PubMed

    Hayashi, Takahiro; Hamachi, Itaru

    2012-09-18

    Protein labeling and imaging techniques have provided tremendous opportunities to study the structure, function, dynamics, and localization of individual proteins in the complex environment of living cells. Molecular biology-based approaches, such as GFP-fusion tags and monoclonal antibodies, have served as important tools for the visualization of individual proteins in cells. Although these techniques continue to be valuable for live cell imaging, they have a number of limitations that have only been addressed by recent progress in chemistry-based approaches. These chemical approaches benefit greatly from the smaller probe sizes that should result in fewer perturbations to proteins and to biological systems as a whole. Despite the research in this area, so far none of these labeling techniques permit labeling and imaging of selected endogenous proteins in living cells. Researchers have widely used affinity labeling, in which the protein of interest is labeled by a reactive group attached to a ligand, to identify and characterize proteins. Since the first report of affinity labeling in the early 1960s, efforts to fine-tune the chemical structures of both the reactive group and ligand have led to protein labeling with excellent target selectivity in the whole proteome of living cells. Although the chemical probes used for affinity labeling generally inactivate target proteins, this strategy holds promise as a valuable tool for the labeling and imaging of endogenous proteins in living cells and by extension in living animals. In this Account, we summarize traceless affinity labeling, a technique explored mainly in our laboratory. In our overview of the different labeling techniques, we emphasize the challenge of designing chemical probes that allow for dissociation of the affinity module (often a ligand) after the labeling reaction so that the labeled protein retains its native function. This feature distinguishes the traceless labeling approach from the traditional affinity labeling method and allows for real-time monitoring of protein activity. With the high target specificity and biocompatibility of this technique, we have achieved individual labeling and imaging of endogenously expressed proteins in samples of high biological complexity. We also highlight applications in which our current approach enabled the monitoring of important biological events, such as ligand binding, in living cells. These novel chemical labeling techniques are expected to provide a molecular toolbox for studying a wide variety of proteins and beyond in living cells.

  3. Characterizing the DNA Damage Response by Cell Tracking Algorithms and Cell Features Classification Using High-Content Time-Lapse Analysis

    PubMed Central

    Georgescu, Walter; Osseiran, Alma; Rojec, Maria; Liu, Yueyong; Bombrun, Maxime; Tang, Jonathan; Costes, Sylvain V.

    2015-01-01

    Traditionally, the kinetics of DNA repair have been estimated using immunocytochemistry by labeling proteins involved in the DNA damage response (DDR) with fluorescent markers in a fixed cell assay. However, detailed knowledge of DDR dynamics across multiple cell generations cannot be obtained using a limited number of fixed cell time-points. Here we report on the dynamics of 53BP1 radiation induced foci (RIF) across multiple cell generations using live cell imaging of non-malignant human mammary epithelial cells (MCF10A) expressing histone H2B-GFP and the DNA repair protein 53BP1-mCherry. Using automatic extraction of RIF imaging features and linear programming techniques, we were able to characterize detailed RIF kinetics for 24 hours before and 24 hours after exposure to low and high doses of ionizing radiation. High-content-analysis at the single cell level over hundreds of cells allows us to quantify precisely the dose dependence of 53BP1 protein production, RIF nuclear localization and RIF movement after exposure to X-ray. Using elastic registration techniques based on the nuclear pattern of individual cells, we could describe the motion of individual RIF precisely within the nucleus. We show that DNA repair occurs in a limited number of large domains, within which multiple small RIFs form, merge and/or resolve with random motion following normal diffusion law. Large foci formation is shown to be mainly happening through the merging of smaller RIF rather than through growth of an individual focus. We estimate repair domain sizes of 7.5 to 11 µm2 with a maximum number of ~15 domains per MCF10A cell. This work also highlights DDR which are specific to doses larger than 1 Gy such as rapid 53BP1 protein increase in the nucleus and foci diffusion rates that are significantly faster than for spontaneous foci movement. We hypothesize that RIF merging reflects a "stressed" DNA repair process that has been taken outside physiological conditions when too many DSB occur at once. High doses of ionizing radiation lead to RIF merging into repair domains which in turn increases DSB proximity and misrepair. Such finding may therefore be critical to explain the supralinear dose dependence for chromosomal rearrangement and cell death measured after exposure to ionizing radiation. PMID:26107175

  4. Characterizing the DNA damage response by cell tracking algorithms and cell features classification using high-content time-lapse analysis

    DOE PAGES

    Georgescu, Walter; Osseiran, Alma; Rojec, Maria; ...

    2015-06-24

    Traditionally, the kinetics of DNA repair have been estimated using immunocytochemistry by labeling proteins involved in the DNA damage response (DDR) with fluorescent markers in a fixed cell assay. However, detailed knowledge of DDR dynamics across multiple cell generations cannot be obtained using a limited number of fixed cell time-points. Here we report on the dynamics of 53BP1 radiation induced foci (RIF) across multiple cell generations using live cell imaging of non-malignant human mammary epithelial cells (MCF10A) expressing histone H2B-GFP and the DNA repair protein 53BP1-mCherry. Using automatic extraction of RIF imaging features and linear programming techniques, we were ablemore » to characterize detailed RIF kinetics for 24 hours before and 24 hours after exposure to low and high doses of ionizing radiation. High-content-analysis at the single cell level over hundreds of cells allows us to quantify precisely the dose dependence of 53BP1 protein production, RIF nuclear localization and RIF movement after exposure to X-ray. Using elastic registration techniques based on the nuclear pattern of individual cells, we could describe the motion of individual RIF precisely within the nucleus. We show that DNA repair occurs in a limited number of large domains, within which multiple small RIFs form, merge and/or resolve with random motion following normal diffusion law. Large foci formation is shown to be mainly happening through the merging of smaller RIF rather than through growth of an individual focus. We estimate repair domain sizes of 7.5 to 11 µm 2 with a maximum number of ~15 domains per MCF10A cell. This work also highlights DDR which are specific to doses larger than 1 Gy such as rapid 53BP1 protein increase in the nucleus and foci diffusion rates that are significantly faster than for spontaneous foci movement. We hypothesize that RIF merging reflects a "stressed" DNA repair process that has been taken outside physiological conditions when too many DSB occur at once. High doses of ionizing radiation lead to RIF merging into repair domains which in turn increases DSB proximity and misrepair. Furthermore, such finding may therefore be critical to explain the supralinear dose dependence for chromosomal rearrangement and cell death measured after exposure to ionizing radiation.« less

  5. Modeling Bacteria Surface Acid-Base Properties: The Overprint Of Biology

    NASA Astrophysics Data System (ADS)

    Amores, D. R.; Smith, S.; Warren, L. A.

    2009-05-01

    Bacteria are ubiquitous in the environment and are important repositories for metals as well as nucleation templates for a myriad of secondary minerals due to an abundance of reactive surface binding sites. Model elucidation of whole cell surface reactivity simplifies bacteria as viable but static, i.e., no metabolic activity, to enable fits of microbial data sets from models derived from mineral surfaces. Here we investigate the surface proton charging behavior of live and dead whole cell cyanobacteria (Synechococcus sp.) harvested from a single parent culture by acid-base titration using a Fully Optimized ContinUouS (FOCUS) pKa spectrum method. Viability of live cells was verified by successful recultivation post experimentation, whereas dead cells were consistently non-recultivable. Surface site identities derived from binding constants determined for both the live and dead cells are consistent with molecular analogs for organic functional groups known to occur on microbial surfaces: carboxylic (pKa = 2.87-3.11), phosphoryl (pKa = 6.01-6.92) and amine/hydroxyl groups (pKa = 9.56-9.99). However, variability in total ligand concentration among the live cells is greater than those between the live and dead. The total ligand concentrations (LT, mol- mg-1 dry solid) derived from the live cell titrations (n=12) clustered into two sub-populations: high (LT = 24.4) and low (LT = 5.8), compared to the single concentration for the dead cell titrations (LT = 18.8; n=5). We infer from these results that metabolic activity can substantively impact surface reactivity of morphologically identical cells. These results and their modeling implications for bacteria surface reactivities will be discussed.

  6. PeakForce Tapping resolves individual microvilli on living cells.

    PubMed

    Schillers, Hermann; Medalsy, Izhar; Hu, Shuiqing; Slade, Andrea L; Shaw, James E

    2016-02-01

    Microvilli are a common structure found on epithelial cells that increase the apical surface thus enhancing the transmembrane transport capacity and also serve as one of the cell's mechanosensors. These structures are composed of microfilaments and cytoplasm, covered by plasma membrane. Epithelial cell function is usually coupled to the density of microvilli and its individual size illustrated by diseases, in which microvilli degradation causes malabsorption and diarrhea. Atomic force microscopy (AFM) has been widely used to study the topography and morphology of living cells. Visualizing soft and flexible structures such as microvilli on the apical surface of a live cell has been very challenging because the native microvilli structures are displaced and deformed by the interaction with the probe. PeakForce Tapping® is an AFM imaging mode, which allows reducing tip-sample interactions in time (microseconds) and controlling force in the low pico-Newton range. Data acquisition of this mode was optimized by using a newly developed PeakForce QNM-Live Cell probe, having a short cantilever with a 17-µm-long tip that minimizes hydrodynamic effects between the cantilever and the sample surface. In this paper, we have demonstrated for the first time the visualization of the microvilli on living kidney cells with AFM using PeakForce Tapping. The structures observed display a force dependence representing either the whole microvilli or just the tips of the microvilli layer. Together, PeakForce Tapping allows force control in the low pico-Newton range and enables the visualization of very soft and flexible structures on living cells under physiological conditions. © 2015 The Authors Journal of Molecular Recognition Published by John Wiley & Sons Ltd.

  7. The use of fluorescent intrabodies to detect endogenous gankyrin in living cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinaldi, Anne-Sophie; Freund, Guillaume; Desplancq, Dominique

    2013-04-01

    Expression of antibody fragments in mammalian cells (intrabodies) is used to probe the target protein or interfere with its biological function. We previously described the in vitro characterisation of a single-chain Fv (scFv) antibody fragment (F5) isolated from an intrabody library that binds to the oncoprotein gankyrin (GK) in solution. Here, we have isolated several other scFvs that interact with GK in the presence of F5 and tested whether they allow, when fused to fluorescent proteins, to detect by FRET endogenous GK in living cells. The binding of pairs of scFvs to GK was analysed by gel filtration and themore » ability of each scFv to mediate nuclear import/export of GK was determined. Binding between scFv-EGFP and RFP-labelled GK in living cells was detected by fluorescence lifetime imaging microscopy (FLIM). After co-transfection of two scFvs fused to EGFP and RFP, respectively, which form a tri-molecular complex with GK in vitro, FRET signal was measured. This system allowed us to observe that GK is monomeric and distributed throughout the cytoplasm and nucleus of several cancer cell lines. Our results show that pairs of fluorescently labelled intrabodies can be monitored by FLIM–FRET microscopy and that this technique allows the detection of lowly expressed endogenous proteins in single living cells. Highlights: ► Endogenous GK in living cells was targeted with pairs of fluorescently-tagged scFvs. ► Tri-molecular complexes containing two scFvs and one molecule GK were formed. ► GK was detected using fluorescence lifetime-based FRET imaging. ► GK is monomeric and homogeneously distributed in several cancer cell lines. ► This technique may have many applications in live-cell imaging of endogenous proteins.« less

  8. Modular fluorescence complementation sensors for live cell detection of epigenetic signals at endogenous genomic sites.

    PubMed

    Lungu, Cristiana; Pinter, Sabine; Broche, Julian; Rathert, Philipp; Jeltsch, Albert

    2017-09-21

    Investigation of the fundamental role of epigenetic processes requires methods for the locus-specific detection of epigenetic modifications in living cells. Here, we address this urgent demand by developing four modular fluorescence complementation-based epigenetic biosensors for live-cell microscopy applications. These tools combine engineered DNA-binding proteins with domains recognizing defined epigenetic marks, both fused to non-fluorescent fragments of a fluorescent protein. The presence of the epigenetic mark at the target DNA sequence leads to the reconstitution of a functional fluorophore. With this approach, we could for the first time directly detect DNA methylation and histone 3 lysine 9 trimethylation at endogenous genomic sites in live cells and follow dynamic changes in these marks upon drug treatment, induction of epigenetic enzymes and during the cell cycle. We anticipate that this versatile technology will improve our understanding of how specific epigenetic signatures are set, erased and maintained during embryonic development or disease onset.Tools for imaging epigenetic modifications can shed light on the regulation of epigenetic processes. Here, the authors present a fluorescence complementation approach for detection of DNA and histone methylation at endogenous genomic sites allowing following of dynamic changes of these marks by live-cell microscopy.

  9. A Graphene-enhanced imaging of microRNA with enzyme-free signal amplification of catalyzed hairpin assembly in living cells.

    PubMed

    Liu, Haiyun; Tian, Tian; Ji, Dandan; Ren, Na; Ge, Shenguang; Yan, Mei; Yu, Jinghua

    2016-11-15

    In situ imaging of miRNA in living cells could help us to monitor the miRNA expression in real time and obtain accurate information for studying miRNA related bioprocesses and disease. Given the low-level expression of miRNA, amplification strategies for intracellular miRNA are imperative. Here, we propose an amplification strategy with a non-destructive enzyme-free manner in living cells using catalyzed hairpin assembly (CHA) based on graphene oxide (GO) for cellular miRNA imaging. The enzyme-free CHA exhibits stringent recognition and excellent signal amplification of miRNA in the living cells. GO is a good candidate as a fluorescence quencher and cellular carrier. Taking the advantages of the CHA and GO, we can monitor the miRNA at low level in living cells with a simple, sensitive and real-time manner. Finally, imaging of miRNAs in the different expression cells is realized. The novel method could supply an effective tool to visualize intracellular low-level miRNAs and help us to further understand the role of miRNAs in cellular processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Generation of HIV-1 based bi-cistronic lentiviral vectors for stable gene expression and live cell imaging.

    PubMed

    Sehgal, Lalit; Budnar, Srikanth; Bhatt, Khyati; Sansare, Sneha; Mukhopadhaya, Amitabha; Kalraiya, Rajiv D; Dalal, Sorab N

    2012-10-01

    The study of protein-protein interactions, protein localization, protein organization into higher order structures and organelle dynamics in live cells, has greatly enhanced the understanding of various cellular processes. Live cell imaging experiments employ plasmid or viral vectors to express the protein/proteins of interest fused to a fluorescent protein. Unlike plasmid vectors, lentiviral vectors can be introduced into both dividing and non dividing cells, can be pseudotyped to infect a broad or narrow range of cells, and can be used to generate transgenic animals. However, the currently available lentiviral vectors are limited by the choice of fluorescent protein tag, choice of restriction enzyme sites in the Multiple Cloning Sites (MCS) and promoter choice for gene expression. In this report, HIV-1 based bi-cistronic lentiviral vectors have been generated that drive the expression of multiple fluorescent tags (EGFP, mCherry, ECFP, EYFP and dsRed), using two different promoters. The presence of a unique MCS with multiple restriction sites allows the generation of fusion proteins with the fluorescent tag of choice, allowing analysis of multiple fusion proteins in live cell imaging experiments. These novel lentiviral vectors are improved delivery vehicles for gene transfer applications and are important tools for live cell imaging in vivo.

  11. Anaerobic Copper Toxicity and Iron-Sulfur Cluster Biogenesis in Escherichia coli.

    PubMed

    Tan, Guoqiang; Yang, Jing; Li, Tang; Zhao, Jin; Sun, Shujuan; Li, Xiaokang; Lin, Chuxian; Li, Jianghui; Zhou, Huaibin; Lyu, Jianxin; Ding, Huangen

    2017-08-15

    While copper is an essential trace element in biology, pollution of groundwater from copper has become a threat to all living organisms. Cellular mechanisms underlying copper toxicity, however, are still not fully understood. Previous studies have shown that iron-sulfur proteins are among the primary targets of copper toxicity in Escherichia coli under aerobic conditions. Here, we report that, under anaerobic conditions, iron-sulfur proteins in E. coli cells are even more susceptible to copper in medium. Whereas addition of 0.2 mM copper(II) chloride to LB (Luria-Bertani) medium has very little or no effect on iron-sulfur proteins in wild-type E. coli cells under aerobic conditions, the same copper treatment largely inactivates iron-sulfur proteins by blocking iron-sulfur cluster biogenesis in the cells under anaerobic conditions. Importantly, proteins that do not have iron-sulfur clusters (e.g., fumarase C and cysteine desulfurase) in E. coli cells are not significantly affected by copper treatment under aerobic or anaerobic conditions, indicating that copper may specifically target iron-sulfur proteins in cells. Additional studies revealed that E. coli cells accumulate more intracellular copper under anaerobic conditions than under aerobic conditions and that the elevated copper content binds to the iron-sulfur cluster assembly proteins IscU and IscA, which effectively inhibits iron-sulfur cluster biogenesis. The results suggest that the copper-mediated inhibition of iron-sulfur proteins does not require oxygen and that iron-sulfur cluster biogenesis is the primary target of anaerobic copper toxicity in cells. IMPORTANCE Copper contamination in groundwater has become a threat to all living organisms. However, cellular mechanisms underlying copper toxicity have not been fully understood up to now. The work described here reveals that iron-sulfur proteins in Escherichia coli cells are much more susceptible to copper in medium under anaerobic conditions than they are under aerobic conditions. Under anaerobic conditions, E. coli cells accumulate excess intracellular copper, which specifically targets iron-sulfur proteins by blocking iron-sulfur cluster biogenesis. Since iron-sulfur proteins are involved in diverse and vital physiological processes, inhibition of iron-sulfur cluster biogenesis by copper disrupts multiple cellular functions and ultimately inhibits cell growth. The results from this study illustrate a new interplay between intracellular copper toxicity and iron-sulfur cluster biogenesis in bacterial cells under anaerobic conditions. Copyright © 2017 American Society for Microbiology.

  12. Anaerobic Copper Toxicity and Iron-Sulfur Cluster Biogenesis in Escherichia coli

    PubMed Central

    Tan, Guoqiang; Yang, Jing; Li, Tang; Zhao, Jin; Sun, Shujuan; Li, Xiaokang; Lin, Chuxian; Li, Jianghui; Zhou, Huaibin

    2017-01-01

    ABSTRACT While copper is an essential trace element in biology, pollution of groundwater from copper has become a threat to all living organisms. Cellular mechanisms underlying copper toxicity, however, are still not fully understood. Previous studies have shown that iron-sulfur proteins are among the primary targets of copper toxicity in Escherichia coli under aerobic conditions. Here, we report that, under anaerobic conditions, iron-sulfur proteins in E. coli cells are even more susceptible to copper in medium. Whereas addition of 0.2 mM copper(II) chloride to LB (Luria-Bertani) medium has very little or no effect on iron-sulfur proteins in wild-type E. coli cells under aerobic conditions, the same copper treatment largely inactivates iron-sulfur proteins by blocking iron-sulfur cluster biogenesis in the cells under anaerobic conditions. Importantly, proteins that do not have iron-sulfur clusters (e.g., fumarase C and cysteine desulfurase) in E. coli cells are not significantly affected by copper treatment under aerobic or anaerobic conditions, indicating that copper may specifically target iron-sulfur proteins in cells. Additional studies revealed that E. coli cells accumulate more intracellular copper under anaerobic conditions than under aerobic conditions and that the elevated copper content binds to the iron-sulfur cluster assembly proteins IscU and IscA, which effectively inhibits iron-sulfur cluster biogenesis. The results suggest that the copper-mediated inhibition of iron-sulfur proteins does not require oxygen and that iron-sulfur cluster biogenesis is the primary target of anaerobic copper toxicity in cells. IMPORTANCE Copper contamination in groundwater has become a threat to all living organisms. However, cellular mechanisms underlying copper toxicity have not been fully understood up to now. The work described here reveals that iron-sulfur proteins in Escherichia coli cells are much more susceptible to copper in medium under anaerobic conditions than they are under aerobic conditions. Under anaerobic conditions, E. coli cells accumulate excess intracellular copper, which specifically targets iron-sulfur proteins by blocking iron-sulfur cluster biogenesis. Since iron-sulfur proteins are involved in diverse and vital physiological processes, inhibition of iron-sulfur cluster biogenesis by copper disrupts multiple cellular functions and ultimately inhibits cell growth. The results from this study illustrate a new interplay between intracellular copper toxicity and iron-sulfur cluster biogenesis in bacterial cells under anaerobic conditions. PMID:28576762

  13. Fatty Acids Suppress Autophagic Turnover in β-Cells*

    PubMed Central

    Las, Guy; Serada, Sam B.; Wikstrom, Jakob D.; Twig, Gilad; Shirihai, Orian S.

    2011-01-01

    Recent studies have shown that autophagy is essential for proper β-cell function and survival. However, it is yet unclear under what pathogenic conditions autophagy is inhibited in β-cells. Here, we report that long term exposure to fatty acids and glucose block autophagic flux in β-cells, contributing to their toxic effect. INS1 cells expressing GFP-LC3 (an autophagosome marker) were treated with 0.4 mm palmitate, 0.4 mm oleate, and various concentrations of glucose for 22 h. Kinetics of the effect of fatty acids on autophagy showed a biphasic response. During the second phase of autophagy, the size of autophagosomes and the content of autophagosome substrates (GFP-LC3, p62) and endogenous LC3 was increased. During the same phase, fatty acids suppressed autophagic degradation of long lived protein in both INS1 cells and islets. In INS1 cells, palmitate induced a 3-fold decrease in the number and the acidity of Acidic Vesicular Organelles. This decrease was associated with a suppression of hydrolase activity, suppression of endocytosis, and suppression of oxidative phosphorylation. The combination of fatty acids with glucose synergistically suppressed autophagic turnover, concomitantly suppressing insulin secretion. Rapamycin treatment resulted in partial reversal of the inhibition of autophagic flux, the inhibition of insulin secretion, and the increase in cell death. Our results indicate that excess nutrient could impair autophagy in the long term, hence contributing to nutrient-induced β-cell dysfunction. This may provide a novel mechanism that connects diet-induced obesity and diabetes. PMID:21859708

  14. Primary Cell Culture of Live Neurosurgically Resected Aged Adult Human Brain Cells and Single Cell Transcriptomics.

    PubMed

    Spaethling, Jennifer M; Na, Young-Ji; Lee, Jaehee; Ulyanova, Alexandra V; Baltuch, Gordon H; Bell, Thomas J; Brem, Steven; Chen, H Isaac; Dueck, Hannah; Fisher, Stephen A; Garcia, Marcela P; Khaladkar, Mugdha; Kung, David K; Lucas, Timothy H; O'Rourke, Donald M; Stefanik, Derek; Wang, Jinhui; Wolf, John A; Bartfai, Tamas; Grady, M Sean; Sul, Jai-Yoon; Kim, Junhyong; Eberwine, James H

    2017-01-17

    Investigation of human CNS disease and drug effects has been hampered by the lack of a system that enables single-cell analysis of live adult patient brain cells. We developed a culturing system, based on a papain-aided procedure, for resected adult human brain tissue removed during neurosurgery. We performed single-cell transcriptomics on over 300 cells, permitting identification of oligodendrocytes, microglia, neurons, endothelial cells, and astrocytes after 3 weeks in culture. Using deep sequencing, we detected over 12,000 expressed genes, including hundreds of cell-type-enriched mRNAs, lncRNAs and pri-miRNAs. We describe cell-type- and patient-specific transcriptional hierarchies. Single-cell transcriptomics on cultured live adult patient derived cells is a prime example of the promise of personalized precision medicine. Because these cells derive from subjects ranging in age into their sixties, this system permits human aging studies previously possible only in rodent systems. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Cytosolic delivery of materials with endosome-disrupting colloids

    DOEpatents

    Helms, Brett A.; Bayles, Andrea R.

    2016-03-15

    A facile procedure to deliver nanocrystals to the cytosol of live cells that is both rapid and general. The technique employs a unique cationic core-shell polymer colloid that directs nanocrystals to the cytosol of living cells within a few hours of incubation. The present methods and compositions enable a host of advanced applications arising from efficient cytosolic delivery of nanocrystal imaging probes: from single particle tracking experiments to monitoring protein-protein interactions in live cells for extended periods.

  16. Live-Cell Imaging of Early Steps of Single HIV-1 Infection.

    PubMed

    Francis, Ashwanth C; Melikyan, Gregory B

    2018-05-19

    Live-cell imaging of single HIV-1 entry offers a unique opportunity to delineate the spatio-temporal regulation of infection. Novel virus labeling and imaging approaches enable the visualization of key steps of HIV-1 entry leading to nuclear import, integration into the host genome, and viral protein expression. Here, we discuss single virus imaging strategies, focusing on live-cell imaging of single virus fusion and productive uncoating that culminates in HIV-1 infection.

  17. Planar Optical Nanoantennas Resolve Cholesterol-Dependent Nanoscale Heterogeneities in the Plasma Membrane of Living Cells.

    PubMed

    Regmi, Raju; Winkler, Pamina M; Flauraud, Valentin; Borgman, Kyra J E; Manzo, Carlo; Brugger, Jürgen; Rigneault, Hervé; Wenger, Jérôme; García-Parajo, María F

    2017-10-11

    Optical nanoantennas can efficiently confine light into nanoscopic hotspots, enabling single-molecule detection sensitivity at biological relevant conditions. This innovative approach to breach the diffraction limit offers a versatile platform to investigate the dynamics of individual biomolecules in living cell membranes and their partitioning into cholesterol-dependent lipid nanodomains. Here, we present optical nanoantenna arrays with accessible surface hotspots to study the characteristic diffusion dynamics of phosphoethanolamine (PE) and sphingomyelin (SM) in the plasma membrane of living cells at the nanoscale. Fluorescence burst analysis and fluorescence correlation spectroscopy performed on nanoantennas of different gap sizes show that, unlike PE, SM is transiently trapped in cholesterol-enriched nanodomains of 10 nm diameter with short characteristic times around 100 μs. The removal of cholesterol led to the free diffusion of SM, consistent with the dispersion of nanodomains. Our results are consistent with the existence of highly transient and fluctuating nanoscale assemblies enriched by cholesterol and sphingolipids in living cell membranes, also known as lipid rafts. Quantitative data on sphingolipids partitioning into lipid rafts is crucial to understand the spatiotemporal heterogeneous organization of transient molecular complexes on the membrane of living cells at the nanoscale. The proposed technique is fully biocompatible and thus provides various opportunities for biophysics and live cell research to reveal details that remain hidden in confocal diffraction-limited measurements.

  18. Planar Optical Nanoantennas Resolve Cholesterol-Dependent Nanoscale Heterogeneities in the Plasma Membrane of Living Cells

    NASA Astrophysics Data System (ADS)

    Regmi, Raju; Winkler, Pamina M.; Flauraud, Valentin; Borgman, Kyra J. E.; Manzo, Carlo; Brugger, Jürgen; Rigneault, Hervé; Wenger, Jérôme; García-Parajo, María F.

    2017-10-01

    Optical nanoantennas can efficiently confine light into nanoscopic hotspots, enabling single-molecule detection sensitivity at biological relevant conditions. This innovative approach to breach the diffraction limit offers a versatile platform to investigate the dynamics of individual biomolecules in living cell membranes and their partitioning into cholesterol-dependent lipid nanodomains. Here, we present optical nanoantenna arrays with accessible surface hotspots to study the characteristic diffusion dynamics of phosphoethanolamine (PE) and sphingomyelin (SM) in the plasma membrane of living cells at the nanoscale. Fluorescence burst analysis and fluorescence correlation spectroscopy performed on nanoantennas of different gap sizes show that, unlike PE, SM is transiently trapped in cholesterol-enriched nanodomains of 10 nm diameter with short characteristic times around 100 {\\mu}s. The removal of cholesterol led to the free diffusion of SM, consistent with the dispersion of nanodomains. Our results are consistent with the existence of highly transient and fluctuating nanoscale assemblies enriched by cholesterol and sphingolipids in living cell membranes, also known as lipid rafts. Quantitative data on sphingolipids partitioning into lipid rafts is crucial to understand the spatiotemporal heterogeneous organization of transient molecular complexes on the membrane of living cells at the nanoscale. The proposed technique is fully biocompatible and thus provides various opportunities for biophysics and live cell research to reveal details that remain hidden in confocal diffraction-limited measurements.

  19. The lived experiences of adolescents with sickle cell disease in Kingston, Jamaica.

    PubMed

    Forrester, Andrea Brown; Barton-Gooden, Antoinette; Pitter, Cynthia; Lindo, Jascinth L M

    2015-01-01

    To explore the lived experiences of adolescents with sickle cell disease, in Kingston, Jamaica. A descriptive qualitative design was used for this research. In-depth interviews were conducted with six adolescents with sickle cell disease at a Sickle Cell Unit operated by the University of the West Indies. Interviews were audiotaped, transcribed, and thematically analyzed. The majority of the adolescents demonstrated a positive self-concept. They reported strong family, school, and peer support which made them feel accepted. All were actively engaged in social activities such as parties, but had challenges participating in sporting activities. Various coping strategies were utilized to address challenges of the disease including praying, watching television, and surfing the Internet. Sickle cell disease can be very challenging for the adolescent, but with positive self-concept and increased social support, especially from family and peers, these adolescents were able to effectively cope with their condition and live productive lives.

  20. Live-cell imaging of endogenous mRNAs with a small molecule.

    PubMed

    Sato, Shin-ichi; Watanabe, Mizuki; Katsuda, Yousuke; Murata, Asako; Wang, Dan Ohtan; Uesugi, Motonari

    2015-02-02

    Determination of subcellular localization and dynamics of mRNA is increasingly important to understanding gene expression. A new convenient and versatile method is reported that permits spatiotemporal imaging of specific non-engineered RNAs in living cells. The method uses transfection of a plasmid encoding a gene-specific RNA aptamer, combined with a cell-permeable synthetic small molecule, the fluorescence of which is restored only when the RNA aptamer hybridizes with its cognitive mRNA. The method was validated by live-cell imaging of the endogenous mRNA of β-actin. Application of the technology to mRNAs of a total of 84 human cytoskeletal genes allowed us to observe cellular dynamics of several endogenous mRNAs including arfaptin-2, cortactin, and cytoplasmic FMR1-interacting protein 2. The RNA-imaging technology and its further optimization might permit live-cell imaging of any RNA molecules. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Influence of the environment and phototoxicity of the live cell imaging system at IMP microbeam facility

    NASA Astrophysics Data System (ADS)

    Liu, Wenjing; Du, Guanghua; Guo, Jinlong; Wu, Ruqun; Wei, Junzhe; Chen, Hao; Li, Yaning; Zhao, Jing; Li, Xiaoyue

    2017-08-01

    To investigate the spatiotemporal dynamics of DNA damage and repair after the ion irradiation, an online live cell imaging system has been established based on the microbeam facility at Institute of Modern Physics (IMP). The system could provide a sterile and physiological environment by making use of heating plate and live cell imaging solution. The phototoxicity was investigated through the evaluation of DNA repair protein XRCC1 foci formed in HT1080-RFP cells during the imaging exposure. The intensity of the foci induced by phototoxicity was much lower compared with that of the foci induced by heavy ion hits. The results showed that although spontaneous foci were formed due to RFP exposure during live cell imaging, they had little impact on the analysis of the recruitment kinetics of XRCC1 in the foci induced by the ion irradiation.

  2. Live-cell imaging of G-actin dynamics using sequential FDAP

    PubMed Central

    Kiuchi, Tai; Nagai, Tomoaki; Ohashi, Kazumasa; Watanabe, Naoki; Mizuno, Kensaku

    2011-01-01

    Various microscopic techniques have been developed to understand the mechanisms that spatiotemporally control actin filament dynamics in live cells. Kinetic data on the processes of actin assembly and disassembly on F-actin have been accumulated. However, the kinetics of cytoplasmic G-actin, a key determinant for actin polymerization, has remained unclear because of a lack of appropriate methods to measure the G-actin concentration quantitatively. We have developed two new microscopic techniques based on the fluorescence decay after photoactivation (FDAP) time-lapse imaging of photoswitchable Dronpa-labeled actin. These techniques, sequential FDAP (s-FDAP) and multipoint FDAP, were used to measure the time-dependent changes in and spatial distribution of the G-actin concentration in live cells. Use of s-FDAP provided data on changes in the G-actin concentration with high temporal resolution; these data were useful for the model analysis of actin assembly processes in live cells. The s-FDAP analysis also provided evidence that the cytoplasmic G-actin concentration substantially decreases after cell stimulation and that the extent of stimulus-induced actin assembly and cell size extension are linearly correlated with the G-actin concentration before cell stimulation. The advantages of using s-FDAP and multipoint FDAP to measure spatiotemporal G-actin dynamics and the roles of G-actin concentration and ADF/cofilin in stimulus-induced actin assembly and lamellipodium extension in live cells are discussed. PMID:22754616

  3. Visualization of Membrane Pore in Live Cells Reveals a Dynamic-Pore Theory Governing Fusion and Endocytosis.

    PubMed

    Shin, Wonchul; Ge, Lihao; Arpino, Gianvito; Villarreal, Seth A; Hamid, Edaeni; Liu, Huisheng; Zhao, Wei-Dong; Wen, Peter J; Chiang, Hsueh-Cheng; Wu, Ling-Gang

    2018-05-03

    Fusion is thought to open a pore to release vesicular cargoes vital for many biological processes, including exocytosis, intracellular trafficking, fertilization, and viral entry. However, fusion pores have not been observed and thus proved in live cells. Its regulatory mechanisms and functions remain poorly understood. With super-resolution STED microscopy, we observed dynamic fusion pore behaviors in live (neuroendocrine) cells, including opening, expansion, constriction, and closure, where pore size may vary between 0 and 490 nm within 26 milliseconds to seconds (vesicle size: 180-720 nm). These pore dynamics crucially determine the efficiency of vesicular cargo release and vesicle retrieval. They are generated by competition between pore expansion and constriction. Pharmacology and mutation experiments suggest that expansion and constriction are mediated by F-actin-dependent membrane tension and calcium/dynamin, respectively. These findings provide the missing live-cell evidence, proving the fusion-pore hypothesis, and establish a live-cell dynamic-pore theory accounting for fusion, fission, and their regulation. Published by Elsevier Inc.

  4. In situ synthesis of alkenyl tetrazines for highly fluorogenic bioorthogonal live-cell imaging probes.

    PubMed

    Wu, Haoxing; Yang, Jun; Šečkutė, Jolita; Devaraj, Neal K

    2014-06-02

    In spite of the wide application potential of 1,2,4,5-tetrazines, particularly in live-cell and in vivo imaging, a major limitation has been the lack of practical synthetic methods. Here we report the in situ synthesis of (E)-3-substituted 6-alkenyl-1,2,4,5-tetrazine derivatives through an elimination-Heck cascade reaction. By using this strategy, we provide 24 examples of π-conjugated tetrazine derivatives that can be conveniently prepared from tetrazine building blocks and related halides. These include tetrazine analogs of biological small molecules, highly conjugated buta-1,3-diene-substituted tetrazines, and a diverse array of fluorescent probes suitable for live-cell imaging. These highly conjugated probes show very strong fluorescence turn-on (up to 400-fold) when reacted with dienophiles such as cyclopropenes and trans-cyclooctenes, and we demonstrate their application for live-cell imaging. This work provides an efficient and practical synthetic methodology for tetrazine derivatives and will facilitate the application of conjugated tetrazines, particularly as fluorogenic probes for live-cell imaging. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Binding of the immunomodulatory drug Bz-423 to mitochondrial FoF1-ATP synthase in living cells by FRET acceptor photobleaching

    NASA Astrophysics Data System (ADS)

    Starke, Ilka; Johnson, Kathryn M.; Petersen, Jan; Gräber, Peter; Opipari, Anthony W.; Glick, Gary D.; Börsch, Michael

    2016-03-01

    Bz-423 is a promising new drug for treatment of autoimmune diseases. This small molecule binds to subunit OSCP of the mitochondrial enzyme FoF1-ATP synthase and modulates its catalytic activities. We investigate the binding of Bz-423 to mitochondria in living cells and how subunit rotation in FoF1-ATP synthase, i.e. the mechanochemical mechanism of this enzyme, is affected by Bz-423. Therefore, the enzyme was marked selectively by genetic fusion with the fluorescent protein EGFP to the C terminus of subunit γ. Imaging the threedimensional arrangement of mitochondria in living yeast cells was possible at superresolution using structured illumination microscopy, SIM. We measured uptake and binding of a Cy5-labeled Bz-423 derivative to mitochondrial FoF1-ATP synthase in living yeast cells using FRET acceptor photobleaching microscopy. Our data confirmed the binding of Cy5-labeled Bz-423 to the top of the F1 domain of the enzyme in mitochondria of living Saccharomyces cerevisiae cells.

  6. Assembly of live micro-organisms on microstructured PDMS stamps by convective/capillary deposition for AFM bio-experiments

    NASA Astrophysics Data System (ADS)

    Dague, E.; Jauvert, E.; Laplatine, L.; Viallet, B.; Thibault, C.; Ressier, L.

    2011-09-01

    Immobilization of live micro-organisms on solid substrates is an important prerequisite for atomic force microscopy (AFM) bio-experiments. The method employed must immobilize the cells firmly enough to enable them to withstand the lateral friction forces exerted by the tip during scanning but without denaturing the cell interface. In this work, a generic method for the assembly of living cells on specific areas of substrates is proposed. It consists in assembling the living cells within the patterns of microstructured, functionalized poly-dimethylsiloxane (PDMS) stamps using convective/capillary deposition. This versatile approach is validated by applying it to two systems of foremost importance in biotechnology and medicine: Saccharomyces cerevisiae yeasts and Aspergillus fumigatus fungal spores. We show that this method allows multiplexing AFM nanomechanical measurements by force spectroscopy on S. cerevisiae yeasts and high-resolution AFM imaging of germinated Aspergillus conidia in buffer medium. These two examples clearly demonstrate the immense potential of micro-organism assembly on functionalized, microstructured PDMS stamps by convective/capillary deposition for performing rigorous AFM bio-experiments on living cells.

  7. Development of bimolecular fluorescence complementation using rsEGFP2 for detection and super-resolution imaging of protein-protein interactions in live cells

    PubMed Central

    Wang, Sheng; Ding, Miao; Chen, Xuanze; Chang, Lei; Sun, Yujie

    2017-01-01

    Direct visualization of protein-protein interactions (PPIs) at high spatial and temporal resolution in live cells is crucial for understanding the intricate and dynamic behaviors of signaling protein complexes. Recently, bimolecular fluorescence complementation (BiFC) assays have been combined with super-resolution imaging techniques including PALM and SOFI to visualize PPIs at the nanometer spatial resolution. RESOLFT nanoscopy has been proven as a powerful live-cell super-resolution imaging technique. With regard to the detection and visualization of PPIs in live cells with high temporal and spatial resolution, here we developed a BiFC assay using split rsEGFP2, a highly photostable and reversibly photoswitchable fluorescent protein previously developed for RESOLFT nanoscopy. Combined with parallelized RESOLFT microscopy, we demonstrated the high spatiotemporal resolving capability of a rsEGFP2-based BiFC assay by detecting and visualizing specifically the heterodimerization interactions between Bcl-xL and Bak as well as the dynamics of the complex on mitochondria membrane in live cells. PMID:28663931

  8. Prokaryotic Abundance and Activity in Permafrost of the Northern Victoria Land and Upper Victoria Valley (Antarctica).

    PubMed

    La Ferla, Rosabruna; Azzaro, Maurizio; Michaud, Luigi; Caruso, Gabriella; Lo Giudice, Angelina; Paranhos, Rodolfo; Cabral, Anderson S; Conte, Antonella; Cosenza, Alessandro; Maimone, Giovanna; Papale, Maria; Rappazzo, Alessandro Ciro; Guglielmin, Mauro

    2017-08-01

    Victoria Land permafrost harbours a potentially large pool of cold-affected microorganisms whose metabolic potential still remains underestimated. Three cores (BC-1, BC-2 and BC-3) drilled at different depths in Boulder Clay (Northern Victoria Land) and one sample (DY) collected from a core in the Dry Valleys (Upper Victoria Valley) were analysed to assess the prokaryotic abundance, viability, physiological profiles and potential metabolic rates. The cores drilled at Boulder Clay were a template of different ecological conditions (different temperature regime, ice content, exchanges with atmosphere and with liquid water) in the same small basin while the Dry Valleys site was very similar to BC-2 conditions but with a complete different geological history and ground ice type. Image analysis was adopted to determine cell abundance, size and shape as well as to quantify the potential viable and respiring cells by live/dead and 5-cyano-2,3-ditolyl-tetrazolium chloride staining, respectively. Subpopulation recognition by apparent nucleic acid contents was obtained by flow cytometry. Moreover, the physiological profiles at community level by Biolog-Ecoplate™ as well as the ectoenzymatic potential rates on proteinaceous (leucine-aminopeptidase) and glucidic (ß-glucosidase) organic matter and on organic phosphates (alkaline-phosphatase) by fluorogenic substrates were tested. The adopted methodological approach gave useful information regarding viability and metabolic performances of microbial community in permafrost. The occurrence of a multifaceted prokaryotic community in the Victoria Land permafrost and a large number of potentially viable and respiring cells (in the order of 10 4 -10 5 ) were recognised. Subpopulations with a different apparent DNA content within the different samples were observed. The physiological profiles stressed various potential metabolic pathways among the samples and intense utilisation rates of polymeric carbon compounds and carbohydrates, mainly in deep samples. The measured enzymatic activity rates suggested the potential capability of the microbial community to decompose proteins and polysaccharides. The microbial community seems to be appropriate to contribute to biogeochemical cycling in this extreme environment.

  9. Cellular telephone use during free-living walking significantly reduces average walking speed.

    PubMed

    Barkley, Jacob E; Lepp, Andrew

    2016-03-31

    Cellular telephone (cell phone) use decreases walking speed in controlled laboratory experiments and there is an inverse relationship between free-living walking speed and heart failure risk. The purpose of this study was to examine the impact of cell phone use on walking speed in a free-living environment. Subjects (n = 1142) were randomly observed walking on a 50 m University campus walkway. The time it took each subject to walk 50 m was recorded and subjects were coded into categories: cell phone held to the ear (talking, n = 95), holding and looking at the cell phone (texting, n = 118), not visibly using the cell phone (no use, n = 929). Subjects took significantly (p < 0.001) longer traversing the walkway when talking (39.3 s) and texting (37.9 s) versus no use (35.3 s). As was the case with the previous laboratory experiments, cell phone use significantly reduces average speed during free-living walking.

  10. Daily Living Skills at Your Fingertips. Daily Living Skills for 0-4 Level Adult Basic Education Students. Curriculum and Teacher Guide.

    ERIC Educational Resources Information Center

    Greene, Margret

    A curriculum and teacher guide are provided for a program to teach daily living skills to 0-4 level adult basic education students. The guide presents a method of instruction and lists the materials provided. Teaching plans (content outlines) are provided for these areas: cooking, housekeeping, laundry, leisure skills, and medication awareness. A…

  11. Invitations to Interdependence: Caught in the Web. Teacher-Friendly Science Activities with Reproducible Handouts in English and Spanish. Grades 3-5. Living Things Science Series.

    ERIC Educational Resources Information Center

    Camp, Carole Ann, Ed.

    This booklet, one of six in the Living Things Science series, presents activities about ecosystems which address basic "Benchmarks" suggested by the American Association for the Advancement of Science for the Living Environment for grades 3-5. Contents include background information, vocabulary (in English and Spanish), materials,…

  12. Invitations to the Matter-Energy Cycle. Teacher-Friendly Science Activities with Reproducible Handouts in English and Spanish. Grades 3-5. Living Things Science Series.

    ERIC Educational Resources Information Center

    Camp, Carole Ann, Ed.

    This booklet, one of six in the Living Things Science series, presents activities about matter and energy which address basic "Benchmarks" suggested by the American Association for the Advancement of Science for the Living Environment for grades 3-5. Contents include background information, vocabulary (in English and Spanish), materials,…

  13. Invitations to Heredity: Generation to Generation. Teacher-Friendly Science Activities with Reproducible Handouts in English and Spanish. Grades 3-5. Living Things Science Series.

    ERIC Educational Resources Information Center

    Camp, Carole Ann, Ed.

    This booklet, one of six in the Living Things Science series, presents activities about heredity and genetics which address basic "Benchmarks" suggested by the American Association for the Advancement of Science for the Living Environment for grades 3-5. Contents include background information, vocabulary (in English and Spanish),…

  14. Managing medications for individuals living with a dementia: Evaluating a web-based information resource for informal carers.

    PubMed

    Horne, Frances; Burns, Pippa; Traynor, Victoria; Gillespie, Robyn; Mullan, Judy; Baker, Amanda; Harrison, Lindsey; Win, Khin Than

    2018-05-10

    The purpose of the study was to evaluate the usefulness of the "Managing Medicines for People with Dementia" (www.dementiameds.com) website for informal carers. The management of medications for individuals living with a dementia by informal carers is a neglected area of care. We know that informal carers find it difficult accessing reliable and comprehensive information about medications. We also know that the Internet is a contemporary and growing medium through which consumers access health information. This study was unique in that it brought these two elements together through an interdisciplinary study about the usefulness of a new website providing information on medication management. Data collection consisted of focus groups with informal carers of individuals living with a dementia. Data were analysed through content analysis. Four themes were generated from the data to explain the evaluation of the website by informal carers: (1) Suitability of the website; (2) Presentation of the website; (3) Unexpected benefits of the website content; (4) Future enhancements for website. Participants overwhelmingly agreed the content of the website filled a gap in information needs about medication management for individuals living with a dementia. This qualitative evaluation demonstrated the value of the website as a resource for informal carers of individuals living with a dementia. The resource could also be used by community nurses and other healthcare practitioners to help informal carers better manage the medication regimes of individuals living with a dementia. The resource has the potential to reduce complications associated with mismanagement of medications and contribute to new policies for implementing safe medication practices. © 2018 John Wiley & Sons Ltd.

  15. The measurement of disability in the elderly: a systematic review of self-reported questionnaires.

    PubMed

    Yang, Ming; Ding, Xiang; Dong, Birong

    2014-02-01

    To analyze the contents and formats of general self-reported questionnaires on disability that are designed for and/or are widely applied in the elderly population to depict a complete picture of this field and help researchers to choose proper tools more efficiently. A broad systematic literature search was performed in September 2013 and included the following databases: MEDLINE, EMBASE, CINAHL, PsycINFO, and PROQOLID. The publication language was limited to English and Chinese. Two review authors independently performed the study selection and data extraction. All of the included instruments were extracted and classified using the International Classification of Functioning, Disability, and Health framework. Of 5569 articles retrieved from the searches and 156 articles retrieved from the pearling, 22 studies (including 24 questionnaires) fulfilled the inclusion criteria. From these, 42 different domains and 458 items were extracted. The most frequently used questionnaire was the Barthel Index followed by the Lawton and Brody Instrumental Activities of Daily Living Scale and the Katz Index of Activities of Daily Living, respectively. The contents and formats of the questionnaires varied considerably. Activities and participation were the most commonly assessed dimensions. In addition, the Activities of Daily Living, mobility and the Instrumental Activities of Daily Living Scale were the most common domains assessed among the included questionnaires. Among the 24 included questionnaires, the most frequently used questionnaires were the Barthel Index, Lawton and Brody Instrumental Activities of Daily Living Scale, and Katz Index of Activities of Daily Living. The content and format of the questionnaires varied considerably, but none of the questionnaires covered all essential dimensions of the International Classification of Functioning, Disability, and Health framework. Copyright © 2014 American Medical Directors Association, Inc. Published by Elsevier Inc. All rights reserved.

  16. A Cell Size Theory of Aging.

    PubMed

    Patra, Krushna C; Bardeesy, Nabeel

    2018-06-18

    The factors determining longevity of different animals are incompletely defined. In this issue of Developmental Cell, Anzi et al. (2018) show that distinct strategies for postnatal pancreatic growth operate in different mammals and correlate with lifespan, with short-lived species exhibiting increasing pancreatic cell size and long-lived animals increasing cell number. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Photoelectrocyclization as an activation mechanism for organelle-specific live-cell imaging probes.

    PubMed

    Tran, Mai N; Chenoweth, David M

    2015-05-26

    Photoactivatable fluorophores are useful tools in live-cell imaging owing to their potential for precise spatial and temporal control. In this report, a new photoactivatable organelle-specific live-cell imaging probe based on a 6π electrocyclization/oxidation mechanism is described. It is shown that this new probe is water-soluble, non-cytotoxic, cell-permeable, and useful for mitochondrial imaging. The probe displays large Stokes shifts in both pre-activated and activated forms, allowing simultaneous use with common dyes and fluorescent proteins. Sequential single-cell activation experiments in dense cellular environments demonstrate high spatial precision and utility in single- or multi-cell labeling experiments. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A new xanthene-based two-photon fluorescent probe for the imaging of 1,4-dithiothreitol (DTT) in living cells.

    PubMed

    Wang, Chao; Dong, Baoli; Kong, Xiuqi; Zhang, Nan; Song, Wenhui; Lin, Weiying

    2018-06-21

    1,4-Dithiothreitol (DTT) has wide applications in cell biology and biochemistry. Development of effective methods for monitoring DTT in biological systems is important for the safe handling and study of toxicity to humans. Herein, we describe a two-photon fluorescence probe (Rh-DTT) to detect DTT in living systems for the first time. Rh-DTT showed high selectivity and sensitivity to DTT. Rh-DTT can be successfully used for the two-photon imaging of DTT in living cells, and also can detect DTT in living tissues and mice. © 2018 John Wiley & Sons, Ltd.

  19. Watch Out for the "Living Dead": Cell-Free Enzymes and Their Fate.

    PubMed

    Baltar, Federico

    2017-01-01

    Microbes are the engines driving biogeochemical cycles. Microbial extracellular enzymatic activities (EEAs) are the "gatekeepers" of the carbon cycle. The total EEA is the sum of cell-bound (i.e., cell-attached), and dissolved (i.e., cell-free) enzyme activities. Cell-free enzymes make up a substantial proportion (up to 100%) of the total marine EEA. Although we are learning more about how microbial diversity and function (including total EEA) will be affected by environmental changes, little is known about what factors control the importance of the abundant cell-free enzymes. Since cell-attached EEAs are linked to the cell, their fate will likely be linked to the factors controlling the cell's fate. In contrast, cell-free enzymes belong to a kind of "living dead" realm because they are not attached to a living cell but still are able to perform their function away from the cell; and as such, the factors controlling their activity and fate might differ from those affecting cell-attached enzymes. This article aims to place cell-free EEA into the wider context of hydrolysis of organic matter, deal with recent studies assessing what controls the production, activity and lifetime of cell-free EEA, and what their fate might be in response to environmental stressors. This perspective article advocates the need to go "beyond the living things," studying the response of cells/organisms to different stressors, but also to study cell-free enzymes, in order to fully constrain the future and evolution of marine biogeochemical cycles.

  20. Biological interaction of living cells with COSAN-based synthetic vesicles

    PubMed Central

    Tarrés, Màrius; Canetta, Elisabetta; Paul, Eleanor; Forbes, Jordan; Azzouni, Karima; Viñas, Clara; Teixidor, Francesc; Harwood, Adrian J.

    2015-01-01

    Cobaltabisdicarbollide (COSAN) [3,3′-Co(1,2-C2B9H11)2]−, is a complex boron-based anion that has the unusual property of self-assembly into membranes and vesicles. These membranes have similar dimensions to biological membranes found in cells, and previously COSAN has been shown to pass through synthetic lipid membranes and those of living cells without causing breakdown of membrane barrier properties. Here, we investigate the interaction of this inorganic membrane system with living cells. We show that COSAN has no immediate effect on cell viability, and cells fully recover when COSAN is removed following exposure for hours to days. COSAN elicits a range of cell biological effects, including altered cell morphology, inhibition of cell growth and, in some cases, apoptosis. These observations reveal a new biology at the interface between inorganic, synthetic COSAN membranes and naturally occurring biological membranes. PMID:25588708

Top