James W. Evans; Jane K. Evans; David W. Green
1990-01-01
This paper presents computer programs for adjusting the mechanical properties of 2-in. dimension lumber for changes in moisture content. Mechanical properties adjusted are modulus of rupture, ultimate tensile stress parallel to the grain, ultimate compressive stress parallel to the gain, and flexural modulus of elasticity. The models are valid for moisture contents...
Müller, Péter; Kapin, Éva; Fekete, Erika
2014-11-26
TPS/Na-montmorillonite nanocomposite films were prepared by solution and melt blending. Clay content changed between 0 and 25 wt% based on the amount of dry starch. Structure, tensile properties, and water content of wet conditioned films were determined as a function of clay content. Intercalated structure and VH-type crystallinity of starch were found for all the nanocomposites independently of clay and plasticizer content or preparation method, but at larger than 10 wt% clay content nanocomposites prepared by melt intercalation contained aggregated particles as well. In spite of the incomplete exfoliation clay reinforces TPS considerably. Preparation method has a strong influence on mechanical properties of wet conditioned films. Mechanical properties of the conditioned samples prepared by solution homogenization are much better than those of nanocomposites prepared by melt blending. Water, which was either adsorbed or bonded in the composites in conditioning or solution mixing process, respectively, has different effect on mechanical properties. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wang, Xin; Zhao, Ping; Li, Yi; Yi, Qiying; Ma, Sanyuan; Xie, Kang; Chen, Huifang; Xia, Qingyou
2015-10-12
Silks are widely used biomaterials, but there are still weaknesses in their mechanical properties. Here we report a method for improving the silk fiber mechanical properties by genetic disruption of the ionic environment for silk fiber formation. An anterior silk gland (ASG) specific promoter was identified and used for overexpressing ion-transporting protein in the ASG of silkworm. After isolation of the transgenic silkworms, we found that the metal ion content, conformation and mechanical properties of transgenic silk fibers changed accordingly. Notably, overexpressing endoplasmic reticulum Ca2+-ATPase in ASG decreased the calcium content of silks. As a consequence, silk fibers had more α-helix and β-sheet conformations, and their tenacity and extension increased significantly. These findings represent the in vivo demonstration of a correlation between metal ion content in the spinning duct and the mechanical properties of silk fibers, thus providing a novel method for modifying silk fiber properties.
Microstructure and mechanical properties of horns derived from three domestic bovines.
Zhang, Quan-bin; Li, Chun; Pan, Yan-ting; Shan, Guang-hua; Cao, Ping; He, Jia; Lin, Zhong-shi; Ao, Ning-jian; Huang, Yao-xiong
2013-12-01
The microstructure and mechanical properties of horns derived from three domestic bovines (buffalo, cattle and sheep) were examined. The effects of water content, sampling position and orientation of three bovid horns on mechanical properties were systematically investigated by uniaxial tension and micron indentation tests. Meanwhile, the material composition and metal element contents were determined by Raman spectroscopy and elemental analysis respectively, and the microstructures of the horns were measured by scanning electron microscopy (SEM). Results show that the mechanical properties of horns have negative correlation with water contents and depend on sampling position and orientation. The spatial variations of the mechanical properties in horns are attributed to the different keratinization degrees in the proximal, middle and distal parts. And the mechanical properties of horns in the longitudinal direction are better than those in transverse. Among the three kinds of horns, the mechanical properties of buffalo horn are the best, followed by cattle horn, and those in sheep horn are the worst. This is due to the differences in material composition, metal element, and the microstructures of the horns. But the mechanical properties of buffalo horns are not dependent on the source of the buffalo. Therefore, regular engineered buffalo keratinous materials with standard mechanical properties can be obtained from different buffalo horns by using proper preparation methods. © 2013.
Chen, Mian; Zhang, Erlin; Zhang, Lan
2016-05-01
In this research, Ag element was selected as an antibacterial agent to develop an antibacterial Ti-Ag alloy by a powder metallurgy. The microstructure, phase constitution, mechanical properties, corrosion resistance and antibacterial properties of the Ti-Ag sintered alloys have been systematically studied by X-ray diffraction (XRD), scanning electron microscope (SEM), compressive test, electrochemical measurements and antibacterial test. The effects of the Ag powder size and the Ag content on the antibacterial property and mechanical property as well as the anticorrosion property have been investigated. The microstructure results have shown that Ti-Ag phase, residual pure Ag and Ti were the mainly phases in Ti-Ag(S75) sintered alloy while Ti2Ag was synthesized in Ti-Ag(S10) sintered alloy. The mechanical test indicated that Ti-Ag sintered alloy showed a much higher hardness and the compressive yield strength than cp-Ti but the mechanical properties were slightly reduced with the increase of Ag content. Electrochemical results showed that Ag powder size had a significant effect on the corrosion resistance of Ti-Ag sintered alloy. Ag content increased the corrosion resistance in a dose dependent way under a homogeneous microstructure. Antibacterial tests have demonstrated that antibacterial Ti-Ag alloy was successfully prepared. It was also shown that the Ag powder particle size and the Ag content influenced the antibacterial activity seriously. The reduction in the Ag powder size was benefit to the improvement in the antibacterial property and the Ag content has to be at least 3wt.% in order to obtain a strong and stable antibacterial activity against Staphylococcus aureus bacteria. The bacterial mechanism was thought to be related to the Ti2Ag and its distribution. Copyright © 2016 Elsevier B.V. All rights reserved.
Study on preparation and mechanical performance of TPU/nonwoven composites
NASA Astrophysics Data System (ADS)
Sun, X. C.; Xi, B. J.
2016-07-01
In order to study the influence of resin content and layer sequence parameters on the mechanical properties of TPU/non-woven composite materials synthesized by moulding pressing technology. The effects of the resin content and layer sequence on composites were discussed. Through experiments and theoretical analysis, it was revealed how resin content, layer sequence impact on mechanical properties of composite. The mechanics properties of TPU/non-woven composite materials are improved. The process is pressure 0.5 MPa, temperature 110 °C and time 120s min. The melting of the TPU infiltrated into the fabric and filled the space between the fibers.
NASA Astrophysics Data System (ADS)
Özdemir, Tonguç
2008-06-01
In this study, the radiation degradation/modification of the vulcanized EPDM and the effects of dose rate, peroxide type/content in vulcanization system and ENB content of EPDM were studied to investigate the change in the extend of the modification/degradation of the mechanical properties of vulcanized EPDM via gamma irradiation. In addition, thermal, dynamic mechanical, ATR-FTIR, TGA, TGA-FTIR tests were carried out to understand the change of properties of vulcanized EPDM via irradiation. Samples were irradiated with two different dose rates of 1280 and 64.6 Gy/h. Total dose of irradiation was up to 184 kGy. The FTIR spectral analysis showed structural changes of EPDM via irradiation. It was observed that the dose rate changed the mechanical properties with different extends. The change of ENB content of EPDM and peroxide type and content in vulcanization system affect extend of the modification/degradation of the EPDM's properties.
Nadir Ayrilmis; Turgay Akbulut; Turker Dundar; Robert H. White; Fatih Mengeloglu; Umit Buyuksari; Zeki Candan; Erkan Avci
2012-01-01
Physical, mechanical, and fire properties of the injection-molded wood flour/polypropylene composites incorporated with different contents of boron compounds; borax/boric acid and zinc borate, and phosphate compounds; mono and diammonium phosphates were investigated. The effect of the coupling agent content, maleic anhydride-grafted polypropylene, on the properties of...
Mehdi Behzad; Medhi Tajvidi; Ghanbar Ehrahimi; Robert H. Falk
2004-01-01
In this study, effect of MAPE (maleic anhydride polyethylene) as the compatibilizer on the mechanical properties of wood-flour polyethylene composites has been investigated by using Dynamic Mechanical Analysis (DMA). Composites were made at 25% and 50% by weight fiber contents and 1% and 2% compatibilizer respectively. Controls were also made at the same fiber contents...
Cytotoxicity and mechanical behavior of chitin-bentonite clay based polyurethane bio-nanocomposites.
Zia, Khalid Mahmood; Zuber, Mohammad; Barikani, Mehdi; Hussain, Rizwan; Jamil, Tahir; Anjum, Sohail
2011-12-01
Chitin based polyurethane bio-nanocomposites (PUBNC) were prepared using chitin, Delite HPS bentonite nanoclay enriched in montmorillonite (MMT), 4,4'-diphenylmethane diisocyanate (MDI) and polycaprolactone polyol CAPA 231 (3000 g/mol(-1)). The prepolymers having different concentration of Delite HPS bentonite nanoclay were extended with 2 moles of chitin. The structures of the resulted polymers were determined by FT-IR technique. The effect of nanoclay contents on mechanical properties and in vitro biocompatibility was investigated. The mechanical properties of the synthesized materials were improved with increase in the Delite HPS bentonite nanoclay contents. Optimum mechanical properties were obtained from the PU bio-nanocomposite samples having 4% Delite HPS bentonite nanoclay. The results revealed that the final PU bio-nanocomposite having 2% Delite HPS bentonite nanoclay contents is ideal contenders for surgical threads with on going investigations into their in vitro biocompatibility, non-toxicity, and mechanical properties. Copyright © 2011 Elsevier B.V. All rights reserved.
Influence of Water Content on Mechanical Properties of Rock in Both Saturation and Drying Processes
NASA Astrophysics Data System (ADS)
Zhou, Zilong; Cai, Xin; Cao, Wenzhuo; Li, Xibing; Xiong, Cheng
2016-08-01
Water content has a pronounced influence on the properties of rock materials, which is responsible for many rock engineering hazards, such as landslides and karst collapse. Meanwhile, water injection is also used for the prevention of some engineering disasters like rock-bursts. To comprehensively investigate the effect of water content on mechanical properties of rocks, laboratory tests were carried out on sandstone specimens with different water contents in both saturation and drying processes. The Nuclear Magnetic Resonance technique was applied to study the water distribution in specimens with variation of water contents. The servo-controlled rock mechanics testing machine and Split Hopkinson Pressure Bar technique were used to conduct both compressive and tensile tests on sandstone specimens with different water contents. From the laboratory tests, reductions of the compressive and tensile strength of sandstone under static and dynamic states in different saturation processes were observed. In the drying process, all of the saturated specimens could basically regain their mechanical properties and recover its strength as in the dry state. However, for partially saturated specimens in the saturation and drying processes, the tensile strength of specimens with the same water content was different, which could be related to different water distributions in specimens.
NASA Astrophysics Data System (ADS)
Sun, Xingdong; Li, Lijia; Guo, Yue; Zhao, Hongwei; Zhang, Shizhong; Yu, Yang; Wu, Di; Liu, Hang; Yu, Miao; Shi, Dong; Liu, Zeyang; Zhou, Mingxing; Ren, Luquan; Fu, Lu
2018-03-01
The phenomenon that water in bone has important influences on mechanical properties of cortical bone has been known. However, the detail of the influence mechanism is not clear, especially in the component hierarchy. The main objective of this paper is to investigate the mechanical properties of deproteinization bone and cortical bone with different water content by nanoindentation experiments. The deproteinization bone is cortical bone removed organic component, and demineralization bone is cortical bone removed inorganic component. The experiments results showed that the elastic modulus and hardness all increased with the decreasing of water content in both cortical bone and deproteinization bone. However, variations of deproteinization bone were more significant than the normal one. Without organic component, the shape and size of inorganic component (hydroxyapatite particles) turned to irregular. The plastic energy of both cortical bone and deproteinization bone all decreased with the decreasing of water content and the variations range of deproteinization bone was wider than cortical bone. This research may give some deeply understanding for the studies of influence of water on mechanical properties of cortical bone.
NASA Astrophysics Data System (ADS)
Cai, Huisheng; Guo, Feng; Su, Juan
2018-01-01
The specimens of AZ91-xCe(x = 0, 0.3, 0.6, 0.9, 1.2, mass fraction wt%) with different thicknesses were prepared by die casting process, their as-cast microstructure and room temperature mechanical properties were investigated to analyze the change rule of microstructure and mechanical properties of AZ91 magnesium alloy under combined effects of cooling rate and cerium content. The results show that, the microstructure and mechanical properties of AZ91 magnesium alloy were twofold influenced by cooling rate and cerium content. With the increase of cooling rate and Ce content, the average as-cast grain size is evidently refined; the amount of β-Mg17Al12 decreases and distribution becomes discrete. While decreasing cooling rate or increasing Ce content, Al4Ce phase is more and the morphology tends to strip and needle from granular and short rod-like. The tensile strength and elongation of AZ91-xCe magnesium alloy are improved with increasing cooling rate. With the increase of Ce content, the tensile strength and elongation of AZ91-xCe magnesium alloy increased first and decreased afterwards, besides the action of Ce to improve tensile strength and elongation is more evident under faster cooling rate. Mechanical properties of samples are optimal in this work, when Ce content is 0.96% and cooling rate is 39.6 K s-1, tensile strength (259.7 MPa) and elongation (5.5%) are reached maximum, respectively.
NASA Astrophysics Data System (ADS)
Biswas, Abhijit; Ovaert, Timothy C.; Slaboch, Constance; Zhao, He; Bayer, Ilker S.; Biris, Alexandru S.; Wang, Tao
2011-07-01
We demonstrate tunable mechanical properties of bone-inspired bionanocomposite scaffolds while maintaining the required viscoelasticity. Mechanical properties such as hardness and elastic modulus of the bionanocomposite scaffolds were controlled by varying mineral concentrations of the bioscaffold. In particular, higher calcium and oxygen contents in the bioscaffold resulted in a significant enhancement in hardness and modulus of the bionanocomposite. Moreover, the phosphorous content appeared to be a determining factor in the hardness and mechanical properties of the bionanocomposites. These results open up the possibility of designing new engineered biocompatible nanoscaffolds with desired and tunable biomimetic functions and biomechanical properties with significant potential for advanced bone tissue engineering platforms and bone substitutes.
The influence of CF and TLCP co-reinforced on the mechanical properties of PA6-based composites
NASA Astrophysics Data System (ADS)
Zhang, Jing; Yin, Hong-Feng; Tang, Yun; Yuan, Hu-Die; Wei, Ying
2018-05-01
The purpose of this study was to investigate the effects of carbon fiber (CF) and thermotropic liquid crystal polymer (TLCP) as co-reinforcements on the mechanical properties of composites. The TLCP fibers were produced by melt exclusion. CF and TLCP co-reinforced PA6 composites (CF/TLCP/PA6) were prepared by the lamination molding method. The influence of molding temperature, TLCP content, compatibilizer, and pre-impregnation process on microstructure and mechanical properties of the CF/TLCP/PA6 composites were investigated with Electronic Microscopy and Mechanical tests (flexure and interlaminar shear) by Scanning Electron Microscope (SEM) and Universal Test Machine. It was found that the optimum molding temperature was 240 °C. The mechanical properties of the composites first increased and then decreased with an increase of TLCP content. The introduction of a compatibilizer obviously improved the mechanical properties of the composites. When the TLCP content was 15 wt%, the molding temperature was 240 °C, and 5 wt% compatibilizer was added, the comprehensive mechanical properties of the composites in terms of the flexural and interlaminar shear strengths were the best, which were 363.5 ± 4.4 MPa and 44.9 ± 2.9 MPa, respectively. The addition of TLCP fibers could prevent the propagation of microcracks in the composites, which further improved their mechanical properties due to the synergistic effect with CFs.
Tungsten nanoparticles influence on radiation protection properties of polymers
NASA Astrophysics Data System (ADS)
Gavrish, V. M.; Baranov, G. A.; Chayka, T. V.; Derbasova, N. M.; Lvov, A. V.; Matsuk, Y. M.
2016-02-01
In the presented article the results of the study of metal-polymer composites based on the ultra-high molecular weight polyethylene GUR 4122 with the addition of superdispersed tungsten nanopowders with 5, 10, 20, 40, and 50 mass percent content levels are given, their thermophysical, radiation-shielding, and mechanical properties are shown, and the influence of content levels of tungsten superdispersed nanopowders on these properties is analyzed. The conducted studies have shown the increase in the listed properties depending on the content level of tungsten superdispersed and nanopowders in the ultra-high molecular weight polyethylene GUR 4122. Owing to their properties, the obtained materials may be used in various fields, such as aviation, space technologies, mechanical engineering, etc.
NASA Astrophysics Data System (ADS)
Mardiyati, Steven, Rizkiansyah, Raden Reza; Senoaji, A.; Suratman, R.
2016-04-01
In this study, Sansevieria trifasciata fibers were treated by NaOH with concentration 1%,3%, and 5wt% at 100°C for 2 hours. Chesson-Datta methods was used to determine the lignocellulose content of raw sansevieria fibers and to investigate effect of alkali treatment on lignin content of the fiber. Mechanical properties and thermal properties of treated and untreated fibers were measured by means of tensile testing machine and thermogravimetric analysis (TGA).The cellulose and lignin contents of raw sansevieria fiber obtained from Chesson-Datta method were 56% and 6% respectively. Mechanical testing of fibers showed the increase of tensile strength from 647 MPa for raw fibers to 902 MPa for 5wt% NaOH treated fibers. TGA result showed the alkali treatment increase the thermal resistance of fibers from 288°C for raw fibers to 307°C for 5% NaOH treated fiber. It was found that alkali treatment affect the mechanical properties and thermal properties of sansevieria fibers.
Olguin, Cesar A; Landete-Castillejos, Tomas; Ceacero, Francisco; García, Andrés J; Gallego, Laureano
2013-01-01
Few studies in wild animals have assessed changes in mineral profile in long bones and their implications for mechanical properties. We examined the effect of two diets differing in mineral content on the composition and mechanical properties of femora from two groups each with 13 free-ranging red deer hinds. Contents of Ca, P, Mg, K, Na, S, Cu, Fe, Mn, Se, Zn, B and Sr, Young's modulus of elasticity (E), bending strength and work of fracture were assessed in the proximal part of the diaphysis (PD) and the mid-diaphysis (MD). Whole body measures were also recorded on the hinds. Compared to animals on control diets, those on supplemented diets increased live weight by 6.5 kg and their kidney fat index (KFI), but not carcass weight, body or organ size, femur size or cortical thickness. Supplemental feeding increased Mn content of bone by 23%, Cu by 9% and Zn by 6%. These differences showed a mean fourfold greater content of these minerals in supplemental diet, whereas femora did not reflect a 5.4 times greater content of major minerals (Na and P) in the diet. Lower content of B and Sr in supplemented diet also reduced femur B by 14% and Sr by 5%. There was a subtle effect of diet only on E and none on other mechanical properties. Thus, greater availability of microminerals but not major minerals in the diet is reflected in bone composition even before marked body effects, bone macro-structure or its mechanical properties are affected.
Olguin, Cesar A.; Landete-Castillejos, Tomas; Ceacero, Francisco; García, Andrés J.; Gallego, Laureano
2013-01-01
Few studies in wild animals have assessed changes in mineral profile in long bones and their implications for mechanical properties. We examined the effect of two diets differing in mineral content on the composition and mechanical properties of femora from two groups each with 13 free-ranging red deer hinds. Contents of Ca, P, Mg, K, Na, S, Cu, Fe, Mn, Se, Zn, B and Sr, Young’s modulus of elasticity (E), bending strength and work of fracture were assessed in the proximal part of the diaphysis (PD) and the mid-diaphysis (MD). Whole body measures were also recorded on the hinds. Compared to animals on control diets, those on supplemented diets increased live weight by 6.5 kg and their kidney fat index (KFI), but not carcass weight, body or organ size, femur size or cortical thickness. Supplemental feeding increased Mn content of bone by 23%, Cu by 9% and Zn by 6%. These differences showed a mean fourfold greater content of these minerals in supplemental diet, whereas femora did not reflect a 5.4 times greater content of major minerals (Na and P) in the diet. Lower content of B and Sr in supplemented diet also reduced femur B by 14% and Sr by 5%. There was a subtle effect of diet only on E and none on other mechanical properties. Thus, greater availability of microminerals but not major minerals in the diet is reflected in bone composition even before marked body effects, bone macro-structure or its mechanical properties are affected. PMID:23750262
Mechanical and microwave absorbing properties of carbon-filled polyurethane.
Kucerová, Z; Zajícková, L; Bursíková, V; Kudrle, V; Eliás, M; Jasek, O; Synek, P; Matejková, J; Bursík, J
2009-01-01
Polyurethane (PU) matrix composites were prepared with various carbon fillers at different filler contents in order to investigate their structure, mechanical and microwave absorbing properties. As fillers, flat carbon microparticles, carbon microfibers and multiwalled carbon nanotubes (MWNT) were used. The microstructure of the composite was examined by scanning electron microscopy and transmission electron microscopy. Mechanical properties, namely universal hardness, plastic hardness, elastic modulus and creep were assessed by means of depth sensing indentation test. Mechanical properties of PU composite filled with different fillers were investigated and the composite always exhibited higher hardness, elastic modulus and creep resistance than un-filled PU. Influence of filler shape, content and dispersion was also investigated.
Application of laboratory fungal resistance tests to solid wood and wood-plastic composite
Craig Merrill Clemons; Rebecca E. Ibach
2003-01-01
The fungal resistance of high density polyethylene filled with 50% wood flour was investigated using laboratory soil block tests. Modifications to standard test methods were made to increase initial moisture content, increase exposure surface area, and track moisture content, mechanical properties, and weight loss over the exposure period. Mechanical properties...
USDA-ARS?s Scientific Manuscript database
Visible and near-infrared spectroscopy, coupled with partial least squares regression, was used to predict the moisture, soluble solids and sucrose content and mechanical properties of sugar beet. Interactance spectra were acquired from both intact and sliced beets, using two portable spectrometers ...
Some physical and mechanical properties of recycled polyurethane foam blends
NASA Astrophysics Data System (ADS)
Bledzki, A. K.; Zicans, J.; Merijs Meri, R.; Kardasz, D.
2008-09-01
Blends of secondary rigid polyurethane foams (RPUFs) with soft polyurethane foams (SPUFs) were investigated. The effect of SPUF content and its chemical nature on some physical and mechanical properties of the blends was evaluated. Owing to the stronger intermolecular interaction and higher values of cohesion energy, the blends of RPUFs with polyester SPUFs showed higher mechanical properties than those with polyether SPUFs. The density, hardness, ultimate strength, and the tensile, shear, and flexural moduli increased, while the impact toughness, ultimate elongation, and damping characteristics decreased with increasing RPUF content in the blends.
NASA Astrophysics Data System (ADS)
Yakushin, V. A.; Stirna, U. K.; Zhmud', N. P.
1999-07-01
The dependence of physical and mechanical properties of oligoether-based foam polyurethanes on the molecular mass (Mc) of polymer chains between the nodes of the polymer network and on the content of rigid segments in the polymer is investigated at 293 and 98K. The values of Mc at which the foam plastics have the best mechanical properties at low temperatures are determined. The content of rigid segments in the polymer at which foam polyurethanes have the best combination of the linear thermal expansion coefficient and mechanical properties in tension at a temperature of 98K is found.
Wood plastic composites from agro-waste materials: Analysis of mechanical properties.
Nourbakhsh, Amir; Ashori, Alireza
2010-04-01
This article presents the application of agro-waste materials (i.e., corn stalk, reed stalk, and oilseed stalk) in order to evaluate and compare their suitability as reinforcement for thermoplastics as an alternative to wood fibers. The effects of fiber loading and CaCO(3) content on the mechanical properties were also studied. Overall trend shows that with addition of agro-waste materials, tensile and flexural properties of the composites are significantly enhanced. Oilseed fibers showed superior mechanical properties due to their high aspect ratio and chemical characteristics. The order of increment in the mechanical properties of the composites is oilseed stalk >corn stalk>reed stalk at all fiber loadings. The tensile and flexural properties of the composite significantly decreased with increasing CaCO(3) content, due to the reduction of interface bond between the fiber and matrix. It can be concluded from this study that the used agro-waste materials are attractive reinforcements from the standpoint of their mechanical properties. Copyright 2009 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ma, Wen; Liu, Fushun
Voids are inevitable in the fabrication of fiber reinforced composites and have a detrimental impact on mechanical properties of composites. Different void contents were acquired by applying different vacuum bag pressures. Ultrasonic inspection and ablation density method were adopted to measure the ultrasonic characteristic parameters and average porosity, the characterization of voids' distribution, shape and size were carried out through metallographic analysis. Effects of void content on the tensile, flexural and interlaminar shear properties and the ultrasonic characteristic parameters were discussed. The results showed that, as vacuum bag pressure went from -50kPa to -98kPa, the voids content decreased from 4.36 to 0.34, the ultrasonic attenuation coefficient decreased, but the mechanical strengths all increased.
Wu, Yankai; Li, Yanbin; Niu, Bin
2014-01-01
Fiber reinforcement is widely used in construction engineering to improve the mechanical properties of soil because it increases the soil's strength and improves the soil's mechanical properties. However, the mechanical properties of fiber-reinforced soils remain controversial. The present study investigated the mechanical properties of silty clay reinforced with discrete, randomly distributed sisal fibers using triaxial shear tests. The sisal fibers were cut to different lengths, randomly mixed with silty clay in varying percentages, and compacted to the maximum dry density at the optimum moisture content. The results indicate that with a fiber length of 10 mm and content of 1.0%, sisal fiber-reinforced silty clay is 20% stronger than nonreinforced silty clay. The fiber-reinforced silty clay exhibited crack fracture and surface shear fracture failure modes, implying that sisal fiber is a good earth reinforcement material with potential applications in civil engineering, dam foundation, roadbed engineering, and ground treatment.
NASA Astrophysics Data System (ADS)
Entezam, Mehdi; Aghjeh, Mir Karim Razavi; Ghaffari, Mehdi
2017-02-01
Gel content, mechanical properties and morphology of immiscible PE/EVA blends irradiated by high energy electron beam were studied. The results of gel content measurements showed that the capability of cross-linking of the blend samples increased with an increase of the EVA composition. Also, the gel content for most compositions of the blends displayed a positive deviation from the additive rule. The results of mechanical properties showed that the tensile strength and elongation at break of the samples increased and decreased, respectively, with irradiation dose. On the other hand, the mechanical properties of the irradiated blends also depicted a positive deviation from additive rule contrary to the un-irradiated blends. A synergistic effect observed for the mechanical properties improvement of the irradiated blends and it was attributed to the probable formation of the PE-graft-EVA copolymers at the interface of the blends during the irradiation process. A theoretical analysis revealed that irradiation induced synergistic effect was more significant for EVA-rich blends with weaker interfacial interaction as compared to PE-rich blends. The morphological analysis indicated that the blend morphology was not affected obviously, whereas it was stabilized by irradiation.
Influence of Cu Content on the Microstructure and Mechanical Properties of Cr-Cu-N Coatings
Ding, Ji Cheng; Zhang, Teng Fei; Wan, Zhi Xin; Mei, Hai Juan; Kang, Myung Chang
2018-01-01
The Cr-Cu-N coatings with various Cu contents (0–25.18 (±0.17) at.%) were deposited on Si wafer and stainless steel (SUS 304) substrates in reactive Ar+N2 gas mixture by a hybrid coating system combining pulsed DC and RF magnetron sputtering techniques. The influence of Cu content on the coating composition, microstructure, and mechanical properties was investigated. The microstructure of the coatings was significantly altered by the introduction of Cu. The deposited coatings exhibit solid solution structure with different compositions in all of the samples. Addition of Cu is intensively favored for preferred orientation growth along (200) direction by restricting in (111) direction. With increasing Cu content, the surface and cross-sectional morphology of coatings were changed from triangle cone-shaped, columnar feature to broccoli-like and compact glassy microstructure, respectively. The mechanical properties including the residual stress, nanohardness, and toughness of the coatings were explored on the basis of Cu content. The highest hardness was obtained at the Cu content of 1.49 (±0.10) at.%. PMID:29552269
Influence of Cu Content on the Microstructure and Mechanical Properties of Cr-Cu-N Coatings.
Ding, Ji Cheng; Zhang, Teng Fei; Wan, Zhi Xin; Mei, Hai Juan; Kang, Myung Chang; Wang, Qi Min; Kim, Kwang Ho
2018-01-01
The Cr-Cu-N coatings with various Cu contents (0-25.18 (±0.17) at.%) were deposited on Si wafer and stainless steel (SUS 304) substrates in reactive Ar+N 2 gas mixture by a hybrid coating system combining pulsed DC and RF magnetron sputtering techniques. The influence of Cu content on the coating composition, microstructure, and mechanical properties was investigated. The microstructure of the coatings was significantly altered by the introduction of Cu. The deposited coatings exhibit solid solution structure with different compositions in all of the samples. Addition of Cu is intensively favored for preferred orientation growth along (200) direction by restricting in (111) direction. With increasing Cu content, the surface and cross-sectional morphology of coatings were changed from triangle cone-shaped, columnar feature to broccoli-like and compact glassy microstructure, respectively. The mechanical properties including the residual stress, nanohardness, and toughness of the coatings were explored on the basis of Cu content. The highest hardness was obtained at the Cu content of 1.49 (±0.10) at.%.
Özparpucu, Merve; Gierlinger, Notburga; Burgert, Ingo; Van Acker, Rebecca; Vanholme, Ruben; Boerjan, Wout; Pilate, Gilles; Déjardin, Annabelle; Rüggeberg, Markus
2018-04-01
CAD-deficient poplars enabled studying the influence of altered lignin composition on mechanical properties. Severe alterations in lignin composition did not influence the mechanical properties. Wood represents a hierarchical fiber-composite material with excellent mechanical properties. Despite its wide use and versatility, its mechanical behavior has not been entirely understood. It has especially been challenging to unravel the mechanical function of the cell wall matrix. Lignin engineering has been a useful tool to increase the knowledge on the mechanical function of lignin as it allows for modifications of lignin content and composition and the subsequent studying of the mechanical properties of these transgenics. Hereby, in most cases, both lignin composition and content are altered and the specific influence of lignin composition has hardly been revealed. Here, we have performed a comprehensive micromechanical, structural, and spectroscopic analysis on xylem strips of transgenic poplar plants, which are downregulated for cinnamyl alcohol dehydrogenase (CAD) by a hairpin-RNA-mediated silencing approach. All parameters were evaluated on the same samples. Raman microscopy revealed that the lignin of the hpCAD poplars was significantly enriched in aldehydes and reduced in the (relative) amount of G-units. FTIR spectra indicated pronounced changes in lignin composition, whereas lignin content was not significantly changed between WT and the hpCAD poplars. Microfibril angles were in the range of 18°-24° and were not significantly different between WT and transgenics. No significant changes were observed in mechanical properties, such as tensile stiffness, ultimate stress, and yield stress. The specific findings on hpCAD poplar allowed studying the specific influence of lignin composition on mechanics. It can be concluded that the changes in lignin composition in hpCAD poplars did not affect the micromechanical tensile properties.
Zhao, Chaoyong; Pan, Fusheng; Zhang, Lei; Pan, Hucheng; Song, Kai; Tang, Aitao
2017-01-01
In this study, as-extruded Mg-Sr alloys were studied for orthopedic application, and the microstructure, mechanical properties, bio-corrosion properties and cytotoxicity of as-extruded Mg-Sr alloys were investigated by optical microscopy, scanning electron microscopy with an energy dispersive X-ray spectroscopy, X-ray diffraction, tensile and compressive tests, immersion test, electrochemical test and cytotoxicity test. The results showed that as-extruded Mg-Sr alloys were composed of α-Mg and Mg 17 Sr 2 phases, and the content of Mg 17 Sr 2 phases increased with increasing Sr content. As-extruded Mg-Sr alloy with 0.5wt.% Sr was equiaxed grains, while the one with a higher Sr content was long elongated grains and the grain size of the long elongated grains decreased with increasing Sr content. Tensile and compressive tests showed an increase of both tensile and compressive strength and a decrease of elongation with increasing Sr content. Immersion and electrochemical tests showed that as-extruded Mg-0.5Sr alloy exhibited the best anti-corrosion property, and the anti-corrosion property of as-extruded Mg-Sr alloys deteriorated with increasing Sr content, which was greatly associated with galvanic couple effect. The cytotoxicity test revealed that as-extruded Mg-0.5Sr alloy did not induce toxicity to cells. These results indicated that as-extruded Mg-0.5Sr alloy with suitable mechanical properties, corrosion resistance and good cytocompatibility was potential as a biodegradable implant for orthopedic application. Copyright © 2016 Elsevier B.V. All rights reserved.
Changes in Mechanics and Composition of Human Talar Cartilage Anlagen During Fetal Development
Mahmoodian, Roza; Leasure, Jeremi; Philip, Phitha; Pleshko, Nancy; Capaldi, Franco; Siegler, Sorin
2011-01-01
Objective Fetal cartilage anlage provides a framework for endochondral ossification and organization into articular cartilage. We previously reported differences between mechanical properties of talar cartilage anlagen and adult articular cartilage. However, the underlying development-associated changes remain to be established. Delineation of the normal evolvement of mechanical properties and its associated compositional basis provides insight into the natural mechanisms of cartilage maturation. Our goal was to address this issue. Materials and methods Human fetal cartilage anlagen were harvested from the tali of normal stillborn fetuses from 20 to 36 weeks of gestational age. Data obtained from stress relaxation experiments conducted under confined and unconfined compression configurations were processed to derive the compressive mechanical properties. The compressive mechanical properties were extracted from a linear fit to the equilibrium response in unconfined compression, and by using the nonlinear biphasic theory to fit to the experimental data from the confined compression experiment, both in stress-relaxation. The molecular composition was obtained using FTIR, and spatial maps of tissue contents per dry weight were created using FTIR imaging. Correlative and regression analyses were performed to identify relationships between the mechanical properties and age, compositional properties and age, and mechanical versus compositional parameters. Results All of the compositional quantities and the mechanical properties excluding the Poisson’s ratio changed with maturation. Stiffness increased by a factor of ~2.5 and permeability decreased by 20% over the period studied. Collagen content and degree of collagen integrity increased with age by ~3-fold, while the proteoglycan content decreased by 18%. Significant relations were found between the mechanical and compositional properties. Conclusion The mechanics of fetal talar cartilage is related to its composition, where the collagen and proteoglycan network play a prominent role. An understanding of the mechanisms of early cartilage maturation could provide a framework to guide tissue-engineering strategies. PMID:21843650
Effect of processing method on the mechanical and thermal of Silvergrass/HDPE composites
NASA Astrophysics Data System (ADS)
Liu, Bing; Jin, Yueqiang; Wang, Shuying
2017-05-01
This paper investigates the effect of compression and injection molding methods on properties of Silvergrass-HDPE (High Density Polyethylene) composites, with respect to mechanical behaviors. Maleated polyethylene (MAPE) was added in the composite and improved the mechanical property of the composite. The research founds MAPE can improve the mechanical property because it improved the interfacial compatibility as a coupling agent. When added a content of 8% of MAPE, Silvergrass-HDPE composites made from compression molding shows a better mechanical performance in tensile strength and flexural strength than that made from injection molding, with increasing Silvergrass fiber content from 30% to 50%. However, the WPCs (wood plastics composites) made from injection molding had a lower degree of crystallinity with or without MAPE treatment.
NASA Astrophysics Data System (ADS)
Seo, Joo-Young; Park, Soo-Keun; Kwon, Hoon; Cho, Ki-Sub
2017-10-01
The mechanical properties of ultra-high-strength secondary hardened stainless steels with varying Co, V, and C contents have been studied. A reduced-Co alloy based on the chemical composition of Ferrium S53 was made by increasing the V and C content. This changed the M2C-strengthened microstructure to a MC plus M2C-strengthened microstructure, and no deteriorative effects were observed for peak-aged and over-aged samples despite the large reduction in Co content from 14 to 7 wt pct. The mechanical properties according to alloying modification were associated with carbide precipitation kinetics, which was clearly outlined by combining analytical tools including small-angle neutron scattering (SANS) as well as an analytical TEM with computational simulation.
Yang, Peng-Fei; Huang, Ling-Wei; Nie, Xiao-Tong; Yang, Yue; Wang, Zhe; Ren, Li; Xu, Hui-Yun; Shang, Peng
2018-06-01
The purpose of the present study was to characterize the dynamic alterations of bone composition parameters and mechanical properties to disuse and mechanical intervention. A tail suspension hindlimb unloading model and an in vivo axial tibia loading model in rats were used. A moderate mechanical loading that was capable of engendering 800 µε tibia strain was applied to the right tibia of rats in both control and hindlimb unloading group across 28 days of the experimental period. The contralateral tibia served as control. Hindlimb unloading led to bone loss in tibia from day 14. Bone mineral density, mineral content and mechanical properties responded differently with microstructure to disuse in timing course. Mechanical loading of 800 µε tibia strain failed to alter the bone of the control group, but minimized the detrimental effects of unloading by completely prohibiting the decrease of bone mineral content and main mechanical properties after 28 days. Less obvious influence of mechanical loading on bone microstructure was found. The moderate mechanical loading is not able to stimulate the mechanical response of healthy tibia, but indeed lead to discordant recovery of bone composition parameters and mechanical properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liuyun, Jiang, E-mail: jlytxg@163.com; Chengdong, Xiong; Lixin, Jiang
Graphical abstract: Effect of n-HA content on the isothermal crystallization, morphology and mechanical property of n-HA/PLGA composites was studied in details. The results showed that the addition of higher content of g-n-HA was favorable to promote the crystallization better in g-n-HA/PLGA composites, but it could also cause more agglomeration in PLGA matrix, as a result of worse mechanical properties, and the addition content of 3 wt% g-n-HA to PLGA matrix was an appropriate proportion, which had the highest bending strength among these g-n-HA/PLGA composites, and it might be potential to be used in biomedical fields in future. Highlights: ► Themore » effect of n-HA content on the n-HA/PLGA composites was studied in detail. ► Isothermal crystallization, microstructure and mechanical property were studied. ► The relation between n-HA content and properties of n-HA/PLGA composite was found. ► An appropriate proportion of n-HA in n-HA/PLGA composite was obtained. - Abstract: A serials of g-n-HA/PLGA composites with surface-modified g-n-HA of 1%, 3%, 6%, 10% and 15% in weight were prepared by solution mixing. The isothermal crystallization, morphology and mechanical property of g-n-HA/PLGA composites were investigated by differential scanning calorimeter (DSC), scanning electron microscope (SEM) and electromechanical universal tester. The results showed that Avrami equation was suitable for describing the isothermal crystallization process in this system, and the crystallization rate of g-n-HA/PLGA composites containing more than 3 wt% g-n-HA was basically accord with the relational expression of T{sub 110} {sub °C} > T{sub 105°C} > T{sub 115°C} > T{sub 120°C}. Moreover, at the same Tc, crystallization rate was greatly enhanced with the increasing of g-n-HA acting as nucleate. However, the addition of higher content of g-n-HA would cause more agglomeration in PLGA matrix, so that the mechanical properties of g-n-HA/PLGA composites would gradually decrease. In conclusion, the addition of higher content of g-n-HA was favorable to promote the crystallization better in g-n-HA/PLGA composites, but it could also cause more agglomeration in PLGA matrix, result in worse mechanical properties, and the addition content of 3 wt% g-n-HA to PLGA matrix was an appropriate proportion, which had the highest bending strength among these g-n-HA/PLGA composites, and it might be potential to be used in biomedical fields in future.« less
Effect of starch type on the physico-chemical properties of edible films.
Basiak, Ewelina; Lenart, Andrzej; Debeaufort, Frédéric
2017-05-01
Food preservation is mostly related to packaging in oil-based plastics, inducing environmental problems, but this drawback could be limited by using edible/biodegradable films and coatings. Physical and chemical properties were assessed and reflect the role of the starch type (wheat, corn or potato) and thus that of the amylose/amylopectin ratio, which influences thickness, colour, moisture, wettability, thermal, surface and mechanical properties. Higher amylose content in films induces higher moisture sensitivity, and thus affects the mechanical and barrier properties. Films made from potato starch constitute a greater barrier for oxygen and water vapour though they have weaker mechanical properties than wheat and corn starch films. Starch species with higher amylose content have lower wettability properties, and better mechanical resistance, which strongly depends on the water content due to the hydrophilic nature of starch films, so they could be used for products with higher water activity, such as cheese, fruits and vegetables. It especially concerns wheat starch systems, and the contact angle indicates less hydrophilic surfaces (above 90°) than those of corn and potato starch films (below 90°). The starch origin influences optical properties and thickness: with more amylose, films are opalescent and thicker; with less, they are transparent and thinner. Copyright © 2017 Elsevier B.V. All rights reserved.
Effect of C content on the mechanical properties of solution treated as-cast ASTM F-75 alloys.
Herrera, M; Espinoza, A; Méndez, J; Castro, M; López, J; Rendón, J
2005-07-01
The mechanical properties of solution treated ASTM F-75 alloys with various carbon contents have been studied. Alloys cast under the same conditions were subjected to solution treatment for several periods and then their tensile properties were evaluated. In the as-cast conditions, the alloys exhibited higher strength values with increasing carbon content whereas their ductility was not significantly affected. For the solution treated alloys, the variation of the strength was characterized by a progressive increase for short treatment times until a maximum value was achieved, which was followed by a diminution in this property for longer treatment times. This behavior was more accentuated for the case of the alloys with medium carbon contents, which also exhibited the highest values of strength. Furthermore, the alloy's ductility was enhanced progressively with increasing solution treatment time. This improvement in ductility was significantly higher for the medium carbon alloys compared with the rest of the studied alloys. Thus, high and low carbon contents in solution treated ASTM F-75 alloys did not produced sufficiently high tensile properties.
NASA Astrophysics Data System (ADS)
Ye, Bin; Dai, Shixun; Wang, Rongping; Tao, Guangming; Zhang, Peiqing; Wang, Xunsi; Shen, Xiang
2016-07-01
A number of Ge17Ga4Sb10S69-xSex (x = 0, 15, 30, 45, 60, and 69) chalcogenide glasses have been synthesized by a melt-quenching method to investigate the effect of the Se content on thermo-mechanical and optical properties of these glasses. While it was found that the glass transition temperature (Tg) decreases from 261 to 174 °C with increasing Se contents, crystallization temperature (Tc) peak only be observed in glasses with Se content of x = 45. It was evident from the measurements of structural and physical properties that changes of the glass network bring an apparent impact on the glass properties. Also, the substitution of Se for S in Ge-Ga-Sb glasses can significantly improve the thermal stability against crystallization and broaden the infrared transmission region.
The influence of Cr content on the mechanical properties of ODS ferritic steels
NASA Astrophysics Data System (ADS)
Li, Shaofu; Zhou, Zhangjian; Jang, Jinsung; Wang, Man; Hu, Helong; Sun, Hongying; Zou, Lei; Zhang, Guangming; Zhang, Liwei
2014-12-01
The present investigation aimed at researching the mechanical properties of the oxide dispersion strengthened (ODS) ferritic steels with different Cr content, which were fabricated through a consolidation of mechanical alloyed (MA) powders of 0.35 wt.% nano Y2O3 dispersed Fe-12.0Cr-0.5Ti-1.0W (alloy A), Fe-16.0Cr-0.5Ti-1.0W (alloy B), and Fe-18.0Cr-0.5Ti-1.0W (alloy C) alloys (all in wt.%) by hot isostatic pressing (HIP) with 100 MPa pressure at 1150 °C for 3 h. The mechanical properties, including the tensile strength, hardness, and impact fracture toughness were tested by universal testers, while Young's modulus was determined by ultrasonic wave non-destructive tester. It was found that the relationship between Cr content and the strength of ODS ferritic steels was not a proportional relationship. However, too high a Cr content will cause the precipitation of Cr-enriched segregation phase, which is detrimental to the ductility of ODS ferritic steels.
Wu, Yankai; Li, Yanbin; Niu, Bin
2014-01-01
Fiber reinforcement is widely used in construction engineering to improve the mechanical properties of soil because it increases the soil's strength and improves the soil's mechanical properties. However, the mechanical properties of fiber-reinforced soils remain controversial. The present study investigated the mechanical properties of silty clay reinforced with discrete, randomly distributed sisal fibers using triaxial shear tests. The sisal fibers were cut to different lengths, randomly mixed with silty clay in varying percentages, and compacted to the maximum dry density at the optimum moisture content. The results indicate that with a fiber length of 10 mm and content of 1.0%, sisal fiber-reinforced silty clay is 20% stronger than nonreinforced silty clay. The fiber-reinforced silty clay exhibited crack fracture and surface shear fracture failure modes, implying that sisal fiber is a good earth reinforcement material with potential applications in civil engineering, dam foundation, roadbed engineering, and ground treatment. PMID:24982951
Zhao, Qian; Liang, Yunhong; Zhang, Zhihui; Li, Xiujuan; Ren, Luquan
2016-12-01
Reaction behavior, mechanical property and impact resistance of TiC-TiB 2 /Al composite reacted from Al-Ti-B 4 C system with various Al content via combination method of combustion synthesis and hot pressed sintering under air was investigated. Al content was the key point to the variation of mechanical property and impact resistance. Increasing Al content could increase the density, strength and toughness of the composite. Due to exorbitant ceramic content, 10wt.% and 20wt.% Al-Ti-B 4 C composites exhibited poor molding ability and machinability. Flexural strength, fracture toughness, compressive strength and impact toughness of 30-50wt.% Al-Ti-B 4 C composite were higher than those of Al matrix. The intergranular fracture dispersed and defused impact load and restricted crack extension, enhancing the impact resistance of the composite. The composite with 50wt.% Al content owned highest mechanical properties and impact resistance. The results were useful for the application of TiC-TiB 2 /Al composite in impact resistance field of ceramic reinforced Al matrix composite. Copyright © 2016 Elsevier Ltd. All rights reserved.
Influence of molybdenum on the creep properties of nickel-base superalloy single crystals
NASA Technical Reports Server (NTRS)
Mackay, R. A.; Nathal, M. V.; Pearson, D. D.
1990-01-01
The Mo content of an alloy series based on Ni-6 wt pct Al-6 wt pct Ta was systematically varied from 9.8 to 14.6 wt pct, in order to ascertain the influence of Mo on the creep properties of single crystals. The optimum initial gamma-gamma prime microstructure for raft development and creep strength was established in each alloy before testing. It was found that, as the Mo content increased from 9.8 to 14.0 percent, the magnitude of the lattice mismatch increased; upon reaching 14.6 percent, a degradation of mechanical properties occurred due to the precipitation of a third phase. These results suggest that small refractory metal content and initial gamma-prime variations can profoundly affect mechanical properties.
Microstructure and Mechanical Properties of Zn-Ni-Al₂O₃ Composite Coatings.
Bai, Yang; Wang, Zhenhua; Li, Xiangbo; Huang, Guosheng; Li, Caixia; Li, Yan
2018-05-21
Zn-Ni-Al₂O₃ composite coatings with different Ni contents were fabricated by low-pressure cold spray (LPCS) technology. The effects of the Ni content on the microstructural and mechanical properties of the coatings were investigated. According to X-ray diffraction patterns, the composite coatings were primarily composed of metallic-phase Zn and Ni and ceramic-phase Al₂O₃. The energy-dispersive spectroscopy results show that the Al₂O₃ content of the composite coatings gradually decreased with increasing of Ni content. The cross-sectional morphology revealed thick, dense coatings with a wave-like stacking structure. The process of depositing Zn and Ni particles and Al₂O₃ particles by the LPCS method was examined, and the deposition mechanism was demonstrated to be mechanical interlocking. The bond strength, micro hardness and friction coefficient of the coatings did not obviously change when the Ni content varied. The presence of Al₂O₃ and Ni increased the wear resistance of the composite coatings, which was higher than that of pure Zn coatings, and the wear mechanism was abrasive and adhesive wear.
Tendon and ligament as novel cell sources for engineering the knee meniscus.
Hadidi, P; Paschos, N K; Huang, B J; Aryaei, A; Hu, J C; Athanasiou, K A
2016-12-01
The application of cell-based therapies in regenerative medicine is hindered by the difficulty of acquiring adequate numbers of competent cells. For the knee meniscus in particular, this may be solved by harvesting tissue from neighboring tendons and ligaments. In this study, we have investigated the potential of cells from tendon and ligament, as compared to meniscus cells, to engineer scaffold-free self-assembling fibrocartilage. Self-assembling meniscus-shaped constructs engineered from a co-culture of articular chondrocytes and either meniscus, tendon, or ligament cells were cultured for 4 weeks with TGF-β1 in serum-free media. After culture, constructs were assessed for their mechanical properties, histological staining, gross appearance, and biochemical composition including cross-link content. Correlations were performed to evaluate relationships between biochemical content and mechanical properties. In terms of mechanical properties as well as biochemical content, constructs engineered using tenocytes and ligament fibrocytes were found to be equivalent or superior to constructs engineered using meniscus cells. Furthermore, cross-link content was found to be correlated with engineered tissue tensile properties. Tenocytes and ligament fibrocytes represent viable cell sources for engineering meniscus fibrocartilage using the self-assembling process. Due to greater cross-link content, fibrocartilage engineered with tenocytes and ligament fibrocytes may maintain greater tensile properties than fibrocartilage engineered with meniscus cells. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Tendon and ligament as novel cell sources for engineering the knee meniscus
Hadidi, Pasha; Paschos, Nikolaos K.; Huang, Brian J.; Aryaei, Ashkan; Hu, Jerry C.; Athanasiou, Kyriacos A.
2016-01-01
Objective The application of cell-based therapies in regenerative medicine is hindered by the difficulty of acquiring adequate numbers of competent cells. For the knee meniscus in particular, this may be solved by harvesting tissue from neighboring tendons and ligaments. In this study, we have investigated the potential of cells from tendon and ligament, as compared to meniscus cells, to engineer scaffold-free self-assembling fibrocartilage. Method Self-assembling meniscus-shaped constructs engineered from a co-culture of articular chondrocytes and either meniscus, tendon, or ligament cells were cultured for 4 weeks with TGF-β1 in serum-free media. After culture, constructs were assessed for their mechanical properties, histological staining, gross appearance, and biochemical composition including cross-link content. Correlations were performed to evaluate relationships between biochemical content and mechanical properties. Results In terms of mechanical properties as well as biochemical content, constructs engineered using tenocytes and ligament fibrocytes were found to be equivalent or superior to constructs engineered using meniscus cells. Furthermore, cross-link content was found to be correlated with engineered tissue tensile properties. Conclusion Tenocytes and ligament fibrocytes represent viable cell sources for engineering meniscus fibrocartilage using the self-assembling process. Due to greater cross-link content, fibrocartilage engineered with tenocytes and ligament fibrocytes may maintain greater tensile properties than fibrocartilage engineered with meniscus cells. PMID:27473559
Kumar, P; Sandeep, K P; Alavi, S; Truong, V D; Gorga, R E
2010-06-01
The nonbiodegradable and nonrenewable nature of plastic packaging has led to a renewed interest in packaging materials based on bio-nanocomposites (biopolymer matrix reinforced with nanoparticles such as layered silicates). Bio-nanocomposite films based on soy protein isolate (SPI) and modified montmorillonite (MMT) were prepared using melt extrusion. The effect of different type (Cloisite 20A and Cloisite 30B) and content (0% to 15%) of modified MMT on the structure (degree of intercalation and exfoliation) and properties (color, mechanical, dynamic mechanical, thermal stability, and water vapor permeability) of SPI-MMT bio-nanocomposite films were investigated. Extrusion of SPI and modified MMTs resulted in bio-nanocomposites with exfoliated structures at lower MMT content (5%). At higher MMT content (15%), the structure of bio-nanocomposites ranged from intercalated for Cloisite 20A to disordered intercalated for Cloisite 30B. At an MMT content of 5%, bio-nanocomposite films based on modified MMTs (Cloisite 20A and Cloisite 30B) had better mechanical (tensile strength and percent elongation at break), dynamic mechanical (glass transition temperature and storage modulus), and water barrier properties as compared to those based on natural MMT (Cloisite Na(+)). Bio-nanocomposite films based on 10% Cloisite 30B had mechanical properties comparable to those of some of the plastics that are currently used in food packaging applications. However, much higher WVP values of these films as compared to those of existing plastics might limit the application of these films to packaging of high moisture foods such as fresh fruits and vegetables.
Advanced glycation products' levels and mechanical properties of vaginal tissue in pregnancy.
Weli, Homayemem K; Akhtar, Riaz; Chang, Zhuo; Li, Wen-Wu; Cooper, Jason; Yang, Ying
2017-07-01
Non-enzymatic glycation is closely associated with altered mechanical properties of connective tissue. Pregnancy, marked with high levels of female hormones, confers unique alteration to the mechanical properties of pelvic connective tissues in order to meet their physiological demands. However, there are few studies on glycation content and its influence on the mechanical properties of pelvic connective tissues during pregnancy. We hypothesise that the glycation content in pelvic tissues will change with a corresponding alteration in their mechanical properties, and that these changes are influenced by hormone levels. This study aims to investigate the correlation of vaginal tissue glycation content and mechanical property changes during pregnancy in association with the expression of a key pregnancy hormone (oestrogen) receptor, and an antioxidant enzyme, glyoxalase I. A rat vaginal tissue model (tissues from non-pregnant and E15-E18 (last trimester) pregnant rats) was used in this study. Mechanical characteristics of vaginal tissues were analysed by a ball-indentation technique while modulus and morphology of the collagen fibrils within the tissues were measured with atomic force microscopy. A glycation marker, pentosidine, was quantified by a high performance liquid chromatography. The expression of oestrogen receptor and glyoxalase I in the tissue was qualified by immunochemical staining. The glycosaminoglycan (GAG) concentration difference in the tissues were quantified by a biochemical assay. Pregnant rat vaginal tissue was characterised by significantly lower amounts of pentosidine, higher oestrogen receptor and glyoxalase I expression with larger creep, lower elastic modulus, larger fibril diameter and higher GAG content than their non-pregnant counterpart. There was a negative correlation between pentosidine and vaginal tissue creep. There was a reduction in vaginal tissue pentosidine in pregnancy with an associated increase in oestrogen receptor and glyoxalase I immunoexpression. Reduced glycation was associated with increased creeping of vaginal tissue. Oestrogen may therefore play a role in the increase of the vaginal wall's capacity to stretch through glyoxalase I up-regulation and subsequent glycation reduction. The new insight of the correlation of women's oestrogen level, glycation reaction and pelvic tissue mechanical property from this study may enhance our understanding of some pelvic organ diseases. Copyright © 2017 Elsevier B.V. All rights reserved.
Mechanical and electrical properties of low density polyethylene filled with carbon nanotubes
NASA Astrophysics Data System (ADS)
Sabet, Maziyar; Soleimani, Hassan
2014-08-01
Carbon nanotubes (CNTs) reveal outstanding electrical and mechanical properties in addition to nanometer scale diameter and high aspect ratio, consequently, making it an ideal reinforcing agent for high strength polymer composites. Low density polyethylene (LDPE)/CNT composites were prepared via melt compounding. Mechanical and electrical properties of (LDPE)/CNT composites with different CNT contents were studied in this research.
Fracture Properties of Polystyrene Aggregate Concrete after Exposure to High Temperatures
Tang, Waiching; Cui, Hongzhi; Tahmasbi, Soheil
2016-01-01
This paper mainly reports an experimental investigation on the residual mechanical and fracture properties of polystyrene aggregate concrete (PAC) after exposure to high temperatures up to 800 degrees Celsius. The fracture properties namely, the critical stress intensity factor (KICS), the critical crack tip opening displacement (CTODC) for the Two-Parameter Model, and the fracture energy (GF) for the Fictitious Crack Model were examined using the three-point bending notched beam test, according to the RILEM recommendations. The effects of polystyrene aggregate (PA) content and temperature levels on the fracture and mechanical properties of concrete were investigated. The results showed that the mechanical properties of PAC significantly decreased with increase in temperature level and the extent of which depended on the PA content in the mixture. However, at a very high temperature of 800 °C, all samples showed 80 percent reduction in modulus of elasticity compared to room temperature, regardless of the level of PA content. Fracture properties of control concrete (C) and PAC were influenced by temperature in a similar manner. Increasing temperature from 25 °C to 500 °C caused almost 50% reduction of the fracture energy for all samples while 30% increase in fracture energy was occurred when the temperature increased from 500 °C to 800 °C. It was found that adding more PA content in the mixture lead to a more ductile behaviour of concrete. PMID:28773752
Silk scaffolds with tunable mechanical capability for cell differentiation
Bai, Shumeng; Han, Hongyan; Huang, Xiaowei; Xu, Weian; Kaplan, David L.; Zhu, Hesun; Lu, Qiang
2015-01-01
Bombyx mori silk fibroin is a promising biomaterial for tissue regeneration and is usually considered an “inert” material with respect to actively regulating cell differentiation due to few specific cell signaling peptide domains in the primary sequence and the generally stiffer mechanical properties due to crystalline content formed in processing. In the present study, silk fibroin porous 3D scaffolds with nanostructures and tunable stiffness were generated via a silk fibroin nanofiber-assisted lyophilization process. The silk fibroin nanofibers with high β-sheet content were added into the silk fibroin solutions to modulate the self-assembly, and to directly induce water-insoluble scaffold formation after lyophilization. Unlike previously reported silk fibroin scaffold formation processes, these new scaffolds had lower overall β-sheet content and softer mechanical properties for improved cell compatibility. The scaffold stiffness could be further tuned to match soft tissue mechanical properties, which resulted in different differentiation outcomes with rat bone marrow-derived mesenchymal stem cells towards myogenic and endothelial cells, respectively. Therefore, these silk fibroin scaffolds regulate cell differentiation outcomes due to their mechanical features. PMID:25858557
NASA Astrophysics Data System (ADS)
Zhu, J.; Zheng, W. Z.; Qin, C. Z.; Xu, Z. Z.; Wu, Y. Q.
2018-01-01
The effect of different fibers on mechanical properties and ductility of alkali-activated slag cementitious material (AASCM) is studied. The research contents include: fiber type (plant fiber, polypropylene fiber), fiber content, mechanical property index, tensile stress-strain relationship curve, treating time. The test results showed that the compressive strength of two fibers reinforced AASCM was about 90 ~ 110MPa, and the tensile strength was about 3 ~ 5MPa. The reinforcement effect of polypropylene fiber is superior to that of plant fiber, and the mechanical properties of polypropylene fiber reinforced AASCM are superior to those of plant fiber, According to the comparison of SEM pictures, the plant fiber and polypropylene fiber are both closely bound with the matrix, and the transition zones are complete and close. Thus, it is proved that plant fiber and polypropylene fiber delay the crack extension and enhance the ductility of AASCM.
NASA Astrophysics Data System (ADS)
Shen, Liguo; Li, Jianxi; Li, Renjie; Lin, Hongjun; Chen, Jianrong; Liao, Bao-Qiang
2018-04-01
In this study, a new strategy which blends low-density polyethylene (LDPE), magnesium hydroxide (MH) and lauryl acrylate by electron-beam radiation for production of LDPE-based composites with high performance was proposed. It was found that, MH played main roles in flame retardancy but reduced processing flow and mechanical properties of the composites. Meanwhile, melt flow rate (MFR) increased while viscosity of the composites decreased with lauryl acrylate content increased, facilitating LDPE composites processing. Electron beam radiation could prompt crosslinking of lauryl acrylate, which significantly enhanced the mechanical properties of LDPE composites. Meanwhile, lauryl acrylate addition only slightly decreased the flame retardancy, suggesting that LDPE composites could remain high flame retardancy even when lauryl acrylate content was high. The study highly demonstrated the feasibility to produce LDPE-based composites simultaneously with high flame retardancy and high mechanical properties by the blending strategy provided in this study.
Song, Ho-Jun; Han, Mi-Kyung; Jeong, Hyeon-Gyeong; Lee, Yong-Tai; Park, Yeong-Joon
2014-01-01
The microstructure, mechanical properties, and corrosion behavior of binary Ti-xPt alloys containing 5, 10, 15 and 20 wt% Pt were investigated in order to develop new Ti-based dental materials possessing superior properties than those of commercially pure titanium (cp-Ti). All of the Ti-xPt (x = 5, 10, 15, 20) alloys showed hexagonal α-Ti structure with cubic Ti3Pt intermetallic phase. The mechanical properties and corrosion behavior of Ti-xPt alloys were sensitive to the Pt content. The addition of Pt contributed to hardening of cp-Ti and to improving its oxidation resistance. Electrochemical results showed that the Ti-xPt alloys exhibited superior corrosion resistance than that of cp-Ti. PMID:28788660
NASA Astrophysics Data System (ADS)
Gyansah, L.; Tariq, N. H.; Tang, J. R.; Qiu, X.; Feng, B.; Huang, J.; Du, H.; Wang, J. Q.; Xiong, T. Y.
2018-02-01
In this paper, cold spray was used as an additive manufacturing method to fabricate 5 mm thick SiC/Al metal matrix composites with various SiC contents. The effects of SiC contents and heat treatment on the microstructure, thermophysical and flexural properties were investigated. Additionally, the composites were characterized for retention of SiC particulates, splat size, surface roughness and the progressive understanding of strengthening, toughening and cracking mechanisms. Mechanical properties were investigated via three-point bending test, thermophysical analysis, and hardness test. In the as-sprayed state, flexural strength increased from 95.3 MPa to 133.5 MPa, an appreciation of 40% as the SiC contents increased, and the main toughening and strengthening mechanisms were zigzag crack propagation and high retention of SiC particulates respectively. In the heat treatment conditions, flexural strength appreciated significantly compared to the as-sprayed condition and this was as a result of coarsening of pure Al splat. Crack branching, crack deflection and interface delamination were considered as the main toughening mechanisms at the heat treatment conditions. Experimental results were consistent with the measured CTE, hardness, porosity and flexural modulus.
Facile Fabrication of 100% Bio-Based and Degradable Ternary Cellulose/PHBV/PLA Composites
Wang, Jinwu
2018-01-01
Modifying bio-based degradable polymers such as polylactide (PLA) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) with non-degradable agents will compromise the 100% degradability of their resultant composites. This work developed a facile and solvent-free route in order to fabricate 100% bio-based and degradable ternary cellulose/PHBV/PLA composite materials. The effects of ball milling on the physicochemical properties of pulp cellulose fibers, and the ball-milled cellulose particles on the morphology and mechanical properties of PHBV/PLA blends, were investigated experimentally and statistically. The results showed that more ball-milling time resulted in a smaller particle size and lower crystallinity by way of mechanical disintegration. Filling PHBV/PLA blends with the ball-milled celluloses dramatically increased the stiffness at all of the levels of particle size and filling content, and improved their elongation at the break and fracture work at certain levels of particle size and filling content. It was also found that the high filling content of the ball-milled cellulose particles was detrimental to the mechanical properties for the resultant composite materials. The ternary cellulose/PHBV/PLA composite materials have some potential applications, such as in packaging materials and automobile inner decoration parts. Furthermore, filling content contributes more to the variations of their mechanical properties than particle size does. Statistical analysis combined with experimental tests provide a new pathway to quantitatively evaluate the effects of multiple variables on a specific property, and figure out the dominant one for the resultant composite materials. PMID:29495315
Lin-Gibson, Sheng; Sung, Lipiin; Forster, Aaron M; Hu, Haiqing; Cheng, Yajun; Lin, Nancy J
2009-07-01
Multicomponent formulations coupled with complex processing conditions govern the final properties of photopolymerizable dental composites. In this study, a single test substrate was fabricated to support multiple formulations with a gradient in degree of conversion (DC), allowing the evaluation of multiple processing conditions and formulations on one specimen. Mechanical properties and damage response were evaluated as a function of filler type/content and irradiation. DC, surface roughness, modulus, hardness, scratch deformation and cytotoxicity were quantified using techniques including near-infrared spectroscopy, laser confocal scanning microscopy, depth-sensing indentation, scratch testing and cell viability. Scratch parameters (depth, width, percent recovery) were correlated to composite modulus and hardness. Total filler content, nanofiller and irradiation time/intensity all affected the final properties, with the dominant factor for improved properties being a higher DC. This combinatorial platform accelerates the screening of dental composites through the direct comparison of properties and processing conditions across the same sample.
Li, Feng; Shao, Zhenyi; Zhu, Degui; Zhu, Minhao
2018-01-01
Biomaterial composites made of titanium and hydroxyapatite (HA) powder are among the most important biomedicalmaterials due to their good mechanical properties and biocompatibility. In this work, graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites were prepared by vacuum hot-pressing sintering. The microstructure and mechanical properties of graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites with different graphene content were systematically investigated. Microstructures of the nanocomposites were examined by X-ray diffraction (XRD), back scattered electron imaging (BSE), scanning electron microscope (SEM) equipped with energy dispersive spectrometer (EDS), electron probe microanalyzer (EPMA), and transmission electron microscope (TEM). The mechanical properties were determined from microhardness, shear strength, and compressive strength. Results showed that during the high-temperature sintering process, complex chemical reactions occurred, resulting in new phases of nucleation such as Ca3(PO4)2, TixPy, and Ti3O.The new phases, which easily dropped off under the action of external force, could hinder the densification of sintering and increase the brittleness of the nanocomposites. Results demonstrated that graphene had an impact on the microstructure and mechanical properties of the nanocomposites. Based on the mechanical properties and microstructure of the nanocomposites, the strengthening and fracture mechanisms of the graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites with different graphene content were analyzed. PMID:29659504
Li, Feng; Jiang, Xiaosong; Shao, Zhenyi; Zhu, Degui; Zhu, Minhao
2018-04-16
Biomaterial composites made of titanium and hydroxyapatite (HA) powder are among the most important biomedicalmaterials due to their good mechanical properties and biocompatibility. In this work, graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites were prepared by vacuum hot-pressing sintering. The microstructure and mechanical properties of graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites with different graphene content were systematically investigated. Microstructures of the nanocomposites were examined by X-ray diffraction (XRD), back scattered electron imaging (BSE), scanning electron microscope (SEM) equipped with energy dispersive spectrometer (EDS), electron probe microanalyzer (EPMA), and transmission electron microscope (TEM). The mechanical properties were determined from microhardness, shear strength, and compressive strength. Results showed that during the high-temperature sintering process, complex chemical reactions occurred, resulting in new phases of nucleation such as Ca₃(PO₄)₂, Ti x P y , and Ti₃O.The new phases, which easily dropped off under the action of external force, could hinder the densification of sintering and increase the brittleness of the nanocomposites. Results demonstrated that graphene had an impact on the microstructure and mechanical properties of the nanocomposites. Based on the mechanical properties and microstructure of the nanocomposites, the strengthening and fracture mechanisms of the graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites with different graphene content were analyzed.
Mechanical Properties of Epoxy Resin Mortar with Sand Washing Waste as Filler.
Yemam, Dinberu Molla; Kim, Baek-Joong; Moon, Ji-Yeon; Yi, Chongku
2017-02-28
The objective of this study was to investigate the potential use of sand washing waste as filler for epoxy resin mortar. The mechanical properties of four series of mortars containing epoxy binder at 10, 15, 20, and 25 wt. % mixed with sand blended with sand washing waste filler in the range of 0-20 wt. % were examined. The compressive and flexural strength increased with the increase in epoxy and filler content; however, above epoxy 20 wt. %, slight change was seen in strength due to increase in epoxy and filler content. Modulus of elasticity also linearly increased with the increase in filler content, but the use of epoxy content beyond 20 wt. % decreased the modulus of elasticity of the mortar. For epoxy content at 10 wt. %, poor bond strength lower than 0.8 MPa was observed, and adding filler at 20 wt. % adversely affected the bond strength, in contrast to the mortars containing epoxy at 15, 20, 25 wt. %. The results indicate that the sand washing waste can be used as potential filler for epoxy resin mortar to obtain better mechanical properties by adding the optimum level of sand washing waste filler.
Mechanical Properties of Epoxy Resin Mortar with Sand Washing Waste as Filler
Yemam, Dinberu Molla; Kim, Baek-Joong; Moon, Ji-Yeon; Yi, Chongku
2017-01-01
The objective of this study was to investigate the potential use of sand washing waste as filler for epoxy resin mortar. The mechanical properties of four series of mortars containing epoxy binder at 10, 15, 20, and 25 wt. % mixed with sand blended with sand washing waste filler in the range of 0–20 wt. % were examined. The compressive and flexural strength increased with the increase in epoxy and filler content; however, above epoxy 20 wt. %, slight change was seen in strength due to increase in epoxy and filler content. Modulus of elasticity also linearly increased with the increase in filler content, but the use of epoxy content beyond 20 wt. % decreased the modulus of elasticity of the mortar. For epoxy content at 10 wt. %, poor bond strength lower than 0.8 MPa was observed, and adding filler at 20 wt. % adversely affected the bond strength, in contrast to the mortars containing epoxy at 15, 20, 25 wt. %. The results indicate that the sand washing waste can be used as potential filler for epoxy resin mortar to obtain better mechanical properties by adding the optimum level of sand washing waste filler. PMID:28772603
Randolph, Luc D; Palin, William M; Leloup, Gaëtane; Leprince, Julian G
2016-12-01
The mechanical properties of dental resin-based composites (RBCs) are highly dependent on filler characteristics (size, content, geometry, composition). Most current commercial materials are marketed as "nanohybrids" (i.e. filler size <1μm). In the present study, filler characteristics of a selection of RBCs were described, aiming at identifying correlations with physico-mechanical properties and testing the relevance of the current classification. Micron/sub-micron particles (> or <500nm) were isolated from 17 commercial RBCs and analyzed by laser diffractrometry and/or electron microscopy. Filler and silane content were evaluated by thermogravimetric analysis and a sedimentation technique. The flexural modulus (E flex ) and strength (σ flex ) and micro-hardness were determined by three-point bending or with a Vickers indenter, respectively. Sorption was also determined. All experiments were carried out after one week of incubation in water or 75/25 ethanol/water. Average size for micron-sized fillers was almost always higher than 1μm. Ranges for mechanical properties were: 3.7
Experimental Investigation of the Mechanical and Durability Properties of Crumb Rubber Concrete.
Liu, Hanbing; Wang, Xianqiang; Jiao, Yubo; Sha, Tao
2016-03-07
Recycling waste tire rubber by incorporating it into concrete has become the preferred solution to dispose of waste tires. In this study, the effect of the volume content of crumb rubber and pretreatment methods on the performances of concrete was evaluated. Firstly, the fine aggregate and mixture were partly replaced by crumb rubber to produce crumb rubber concrete. Secondly, the mechanical and durability properties of crumb rubber concrete with different replacement forms and volume contents had been investigated. Finally, the crumb rubber after pretreatment by six modifiers was introduced into the concrete mixture. Corresponding tests were conducted to verify the effectiveness of pretreatment methods as compared to the concrete containing untreated crumb rubber. It was observed that the mechanical strength of crumb rubber concrete was reduced, while durability was improved with the increasing of crumb rubber content. 20% replacement of fine aggregate and 5% replacement of the total mixture exhibited acceptable properties for practical applications. In addition, the results indicated that the modifiers had a positive impact on the mechanical and durability properties of crumb rubber concrete. It avoided the disadvantage of crumb rubber concrete having lower strength and provides a reference for the production of modified crumb rubber concrete.
Experimental Investigation of the Mechanical and Durability Properties of Crumb Rubber Concrete
Liu, Hanbing; Wang, Xianqiang; Jiao, Yubo; Sha, Tao
2016-01-01
Recycling waste tire rubber by incorporating it into concrete has become the preferred solution to dispose of waste tires. In this study, the effect of the volume content of crumb rubber and pretreatment methods on the performances of concrete was evaluated. Firstly, the fine aggregate and mixture were partly replaced by crumb rubber to produce crumb rubber concrete. Secondly, the mechanical and durability properties of crumb rubber concrete with different replacement forms and volume contents had been investigated. Finally, the crumb rubber after pretreatment by six modifiers was introduced into the concrete mixture. Corresponding tests were conducted to verify the effectiveness of pretreatment methods as compared to the concrete containing untreated crumb rubber. It was observed that the mechanical strength of crumb rubber concrete was reduced, while durability was improved with the increasing of crumb rubber content. 20% replacement of fine aggregate and 5% replacement of the total mixture exhibited acceptable properties for practical applications. In addition, the results indicated that the modifiers had a positive impact on the mechanical and durability properties of crumb rubber concrete. It avoided the disadvantage of crumb rubber concrete having lower strength and provides a reference for the production of modified crumb rubber concrete. PMID:28773298
Microstructure and Mechanical Properties of Zn-Ni-Al2O3 Composite Coatings
Bai, Yang; Wang, Zhenhua; Li, Xiangbo; Huang, Guosheng; Li, Caixia
2018-01-01
Zn-Ni-Al2O3 composite coatings with different Ni contents were fabricated by low-pressure cold spray (LPCS) technology. The effects of the Ni content on the microstructural and mechanical properties of the coatings were investigated. According to X-ray diffraction patterns, the composite coatings were primarily composed of metallic-phase Zn and Ni and ceramic-phase Al2O3. The energy-dispersive spectroscopy results show that the Al2O3 content of the composite coatings gradually decreased with increasing of Ni content. The cross-sectional morphology revealed thick, dense coatings with a wave-like stacking structure. The process of depositing Zn and Ni particles and Al2O3 particles by the LPCS method was examined, and the deposition mechanism was demonstrated to be mechanical interlocking. The bond strength, micro hardness and friction coefficient of the coatings did not obviously change when the Ni content varied. The presence of Al2O3 and Ni increased the wear resistance of the composite coatings, which was higher than that of pure Zn coatings, and the wear mechanism was abrasive and adhesive wear. PMID:29883391
Effect of Ag and Pb Addition on Microstructural and Mechanical Properties of SAC 105 Solders
NASA Astrophysics Data System (ADS)
Molnar, Aliz; Janovszky, Dora; Kardos, Ibolya; Molnar, Istvan; Gacsi, Zoltan
2015-10-01
Melting and crystallization processes of lead-free and lead-contaminated alloys in near-equilibrium state were investigated. In addition, the effect of silver content up to 4 wt.% on the microstructure of Sn-Ag-Cu alloys was studied. The volume fraction of β-Sn decreased by half owing to 4 wt.% Ag content. Furthermore, contamination by lead strongly influences the properties of the solidified microstructure. The Pb grains appear as a result of two processes when the Pb content is equal to 0.5 wt.% or higher: Pb phase solidifies in the quaternary eutectic at 176°C, and Pb grains precipitate from the primary β-Sn solid solution grain during a solid state reaction. The freezing range enlarges to 51°C due to 2 wt.% Pb content owing to quaternary eutectic. Above 1 wt.% Pb content, the mechanical properties also improve due to grains of quaternary eutectic Pb and precipitated Pb grains with a size <1 μm.
NASA Astrophysics Data System (ADS)
Liu, Longfei; Yang, Jun
2017-12-01
Zr55Cu30Al10Ni5 bulk metallic glass and its composites were prepared by suction casting into a copper mold. The effect of MoSi2 content on the tribological behavior of Zr55Cu30Al10Ni5 BMG was studied by using a high-speed reciprocating friction and wear tester. The results indicate that the friction coefficient and wear resistance of the BMGs can be improved by a certain amount of crystalline phase induced by MoSi2 content from 1 to 3% and deteriorated with MoSi2 content of 4%. The wear mechanism of both the metallic glass and its composite is abrasive wear. The mechanism of crystalline phase-dependent tribological properties of the composite was discussed based on the wear track and mechanical properties in the present work. The wear behavior of Zr55Cu30Al10Ni5 BMG and its composite indicates that a good combination of the toughness and the hardness can make the composite be well wear resistant.
Shankar, Shiv; Reddy, Jeevan Prasad; Rhim, Jong-Whan
2015-11-01
Biodegradable composite films were prepared using two renewable resources based biopolymers, agar and lignin alkali. The lignin was used as a reinforcing material and agar as a biopolymer matrix. The effect of lignin concentration (1, 3, 5, and 10wt%) on the performance of the composite films was studied. In addition, the mechanical, water vapor barrier, UV light barrier properties, FE-SEM, and TGA of the films were analyzed. The agar/lignin films exhibited higher mechanical and UV barrier properties along with lower water vapor permeability compared to the neat agar film. The FTIR and SEM results showed the compatibility of lignin with agar polymer. The swelling ratio and moisture content of agar/lignin composite films were decreased with increase in lignin content. The thermostability and char content of agar/lignin composite films increased with increased lignin content. The results suggested that agar/lignin films have a potential to be used as a UV barrier food packaging material for maintaining food safety and extending the shelf-life of the packaged food. Copyright © 2015 Elsevier B.V. All rights reserved.
Establishment of gel materials with different mechanical properties by 3D gel printer SWIM-ER
NASA Astrophysics Data System (ADS)
Ota, Takafumi; Tase, Taishi; Okada, Koji; Saito, Azusa; Takamatsu, Kyuuichiro; Kawakami, Masaru; Furukawa, Hidemitsu
2016-04-01
A 3D printer is a device which can directly produce objects whose shape is the same as the original 3D digital data. Hydrogels have unique properties such as high water content, low frictional properties, biocompatibility, material permeability and high transparency, which are rare in hard and dry materials. These superior characteristics of gels promise useful medical applications. We have been working on the development of a 3D gel printer, SWIM-ER (Soft and Wet Industrial - Easy Realizer), which can make models of organs and artificial blood vessels with gel material. However, 3D printing has a problem: the mechanical properties of the printed object vary depending on printing conditions, and this matter was investigated with SWIM-ER. In the past, we found that mechanical properties of 3D gel objects depend on the deposition orientation in SWIM-ER. In this study, gels were printed with different laser scanning speeds. The mechanical properties of these gels were investigated by compression tests, water content measurements and SMILS (Scanning Microscopic Light Scattering).
Resource Letter MPF-1: Mechanical Properties of Fluids
ERIC Educational Resources Information Center
Stanley, R. C.
1974-01-01
Presents an annotated bibliography concerning the mechanical properties of fluids, including topics for use at elementary, secondary, undergraduate, and graduate levels. Indicates that the material can particularly help college physicists in improving course contents in specified fields of physics. (CC)
NASA Astrophysics Data System (ADS)
Kosarev, V. F.; Polukhin, A. A.; Ryashin, N. S.; Fomin, V. M.; Shikalov, V. S.
2017-07-01
The cold gas dynamic spray (CGDS) method used to form composite Ni+B4C coatings from mechanical powder mixture with various content of abrasive components is investigated, and the surface and microstructure of these coatings are considered. An experimental dependence of the deposition coefficient on the abrasive content in the mechanical powder mixture is obtained. The coatings are studied by interference profilometry, optical microscopy, and microindentation methods. The dependence of the bulk and mass B4C content in the sprayed material on the abrasive content in the sprayed powder mixture is obtained. The bulk B4C content in the coating c V ≈ 0.27 is attained. The dependence of the microhardness of composite CGDS coatings on the boron carbide content in them is investigated. The results of this paper demonstrate that the powder mixture composition significantly affects the CGDS coating growth and the properties of these coatings and can be used to control the properties of the CGDS cermet materials.
Study on the mechanical properties of Cu/LDPE composite IUDs.
Tang, Ying; Xia, Xianping; Wang, Yun; Xie, Changsheng
2011-03-01
The copper/low-density polyethylene composite (Cu/LDPE composite) intrauterine devices (IUDs), which can eliminate or lessen the side effects of existing IUDs, have been developed in our laboratory. As a novel type of copper-containing IUDs, it is not clear whether the mechanical properties of the Cu/LDPE composite IUDs can meet the need of clinical use or not. Therefore, the mechanical properties of the Cu/LDPE composite IUDs have been studied in the present article. The influence of copper particle content and size on the mechanical properties of the Cu/LDPE composite IUDs was analyzed firstly to provide guidance for the material composition design of the Cu/LDPE composite IUDs, and then the BaSO(4)/LDPE composite, which has been applied as a framework of the existing copper-containing IUDs in clinical use for decades, has been used as reference to judge whether the mechanical properties of the Cu/LDPE composite IUDs can meet the need of clinical use or not. However, the mechanical properties of IUDs cannot be characterized directly. Therefore, the mechanical properties of both the Cu/LDPE composite IUDs and the framework of the existing copper-containing IUDs were investigated by means of tensile test using standard tensile samples, and the fracture surface morphology of the tensile samples was characterized by scanning electron microscopy (SEM). Both the elongation at break and the tensile strength decrease with increasing of copper particle content and increase with increasing of the copper particle size, while the elastic modulus shows an opposite tendency. The tensile strength and elastic modulus of both the Cu/LDPE microcomposite IUDs and the Cu/LDPE nanocomposite IUDs with 25 wt.% of copper particles are higher than those of existing copper-containing IUDs (TCu220C; its framework is made of the BaSO(4)/LDPE composite with 20 wt.% of BaSO(4)). The content and size of the copper particles have significant effect on the mechanical properties of Cu/LDPE composite IUDs. The mechanical properties of both the Cu/LDPE microcomposite IUDs and the Cu/LDPE nanocomposite IUDs with 25 wt.% of copper particles were superior to that of existing copper-containing IUDs, indicating that the novel Cu/LDPE composite IUDs can satisfy the requirement of mechanical properties in clinical application. Copyright © 2011 Elsevier Inc. All rights reserved.
Wan, Chao; Hao, Zhixiu; Wen, Shizhu; Leng, Huijie
2014-01-01
The mechanical properties of ligaments are key contributors to the stability and function of musculoskeletal joints. Ligaments are generally composed of ground substance, collagen (mainly type I and III collagen), and minimal elastin fibers. However, no consensus has been reached about whether the distribution of different types of collagen correlates with the mechanical behaviors of ligaments. The main objective of this study was to determine whether the collagen type distribution is correlated with the mechanical properties of ligaments. Using axial tensile tests and picrosirius red staining-polarization observations, the mechanical behaviors and the ratios of the various types of collagen were investigated for twenty-four rabbit medial collateral ligaments from twenty-four rabbits of different ages, respectively. One-way analysis of variance was used in the comparison of the Young's modulus in the linear region of the stress-strain curves and the ratios of type I and III collagen for the specimens (the mid-substance specimens of the ligaments) with different ages. A multiple linear regression was performed using the collagen contents (the ratios of type I and III collagen) and the Young's modulus of the specimens. During the maturation of the ligaments, the type I collagen content increased, and the type III collagen content decreased. A significant and strong correlation () was identified by multiple linear regression between the collagen contents (i.e., the ratios of type I and type III collagen) and the mechanical properties of the specimens. The collagen content of ligaments might provide a new perspective for evaluating the linear modulus of global stress-strain curves for ligaments and open a new door for studying the mechanical behaviors and functions of connective tissues. PMID:25062068
Wan, Chao; Hao, Zhixiu; Wen, Shizhu; Leng, Huijie
2014-01-01
The mechanical properties of ligaments are key contributors to the stability and function of musculoskeletal joints. Ligaments are generally composed of ground substance, collagen (mainly type I and III collagen), and minimal elastin fibers. However, no consensus has been reached about whether the distribution of different types of collagen correlates with the mechanical behaviors of ligaments. The main objective of this study was to determine whether the collagen type distribution is correlated with the mechanical properties of ligaments. Using axial tensile tests and picrosirius red staining-polarization observations, the mechanical behaviors and the ratios of the various types of collagen were investigated for twenty-four rabbit medial collateral ligaments from twenty-four rabbits of different ages, respectively. One-way analysis of variance was used in the comparison of the Young's modulus in the linear region of the stress-strain curves and the ratios of type I and III collagen for the specimens (the mid-substance specimens of the ligaments) with different ages. A multiple linear regression was performed using the collagen contents (the ratios of type I and III collagen) and the Young's modulus of the specimens. During the maturation of the ligaments, the type I collagen content increased, and the type III collagen content decreased. A significant and strong correlation (R2 = 0.839, P < 0.05) was identified by multiple linear regression between the collagen contents (i.e., the ratios of type I and type III collagen) and the mechanical properties of the specimens. The collagen content of ligaments might provide a new perspective for evaluating the linear modulus of global stress-strain curves for ligaments and open a new door for studying the mechanical behaviors and functions of connective tissues.
Fracture Properties of Polystyrene Aggregate Concrete after Exposure to High Temperatures.
Tang, Waiching; Cui, Hongzhi; Tahmasbi, Soheil
2016-07-28
This paper mainly reports an experimental investigation on the residual mechanical and fracture properties of polystyrene aggregate concrete (PAC) after exposure to high temperatures up to 800 degrees Celsius. The fracture properties namely, the critical stress intensity factor ( K I C S ), the critical crack tip opening displacement ( CTOD C ) for the Two-Parameter Model, and the fracture energy ( G F ) for the Fictitious Crack Model were examined using the three-point bending notched beam test, according to the RILEM recommendations. The effects of polystyrene aggregate (PA) content and temperature levels on the fracture and mechanical properties of concrete were investigated. The results showed that the mechanical properties of PAC significantly decreased with increase in temperature level and the extent of which depended on the PA content in the mixture. However, at a very high temperature of 800 °C, all samples showed 80 percent reduction in modulus of elasticity compared to room temperature, regardless of the level of PA content. Fracture properties of control concrete (C) and PAC were influenced by temperature in a similar manner. Increasing temperature from 25 °C to 500 °C caused almost 50% reduction of the fracture energy for all samples while 30% increase in fracture energy was occurred when the temperature increased from 500 °C to 800 °C. It was found that adding more PA content in the mixture lead to a more ductile behaviour of concrete.
Influence of Ti content on synthesis and characteristics of W-Ti ODS alloy
NASA Astrophysics Data System (ADS)
Chen, Chun-Liang; Zeng, Yong
2016-02-01
Tungsten-titanium alloys are considered as promising materials for the future fusion devices, in particular for the divertor and other first wall components. The microstructure and the mechanical properties of the material are dependent on the amount of Ti present in the alloy. In this study, W-Ti-Y2O3 alloys with varied Ti contents between 1 wt.% and 10 wt.% fabricated by mechanical alloying were investigated. The effect of Ti on the phase formation and mechanical properties of W-Ti-Y2O3 alloys has been examined. The results suggest that the alloys containing low Ti content exhibit homogeneous microstructure with a uniform distribution of fine titanium oxide particles and tungsten carbides, leading to a significant increase in hardness and elastic modulus of alloys. In addition, high-energy ball milling can facilitate a solid-state reaction between Y2O3 particles and the tungsten-titanium matrix and the subsequent sintering processing promotes the formation of stable nano Ti2Y2O7 oxide particles, which greatly increase the mechanical properties at elevated temperature and enhance irradiation resistance.
NASA Astrophysics Data System (ADS)
Zappa, Sebastián; Svoboda, Hernán; Surian, Estela
2017-02-01
Supermartensitic stainless steels have good weldability and adequate tensile property, toughness and corrosion resistance. They have been developed as an alternative technology, mainly for oil and gas industries. The final properties of a supermartensitic stainless steel deposit depend on its chemical composition and microstructure: martensite, tempered martensite, ferrite, retained austenite and carbides and/or nitrides. In these steels, the post-weld heat treatments (PWHTs) are usually double tempering ones, to ensure both complete tempering of martensite and high austenite content, to increase toughness and decrease hardness. The aim of this work was to study the effect of post-weld heat treatments (solution treatment with single and double tempering) on the mechanical properties of a supermartensitic stainless steel deposit. An all-weld metal test coupon was welded according to standard ANSI/AWS A5.22-95 using a GMAW supermartensitic stainless steel metal cored wire, under gas shielding. PWHTs were carried out varying the temperature of the first tempering treatment with and without a second tempering one, after solution treatment. All-weld metal chemical composition analysis, metallurgical characterization, hardness and tensile property measurements and Charpy-V tests were carried out. There are several factors which can be affected by the PWHTs, among them austenite content is a significant one. Different austenite contents (0-42%) were found. Microhardness, tensile property and toughness were affected with up to 15% of austenite content, by martensite tempering and carbide precipitation. The second tempering treatment seemed not to have had an important effect on the mechanical properties measured in this work.
NASA Astrophysics Data System (ADS)
Destyorini, Fredina; Indriyati; Indayaningsih, Nanik; Prihandoko, Bambang; Zulfia Syahrial, Anne
2018-03-01
The carbon composite papers were produced by utilizing carbon materials from coconut coir. In the present work, carbon composite papers (CCP) were prepared by mixing carbon materials in the form of powder and fibre with polymer (ethylene vinyl acetate and polyethylene glycol) in xylene at 100°C. Then, polytetrafluoroethylene (PTFE) with different content was used to treat the surface of CCP. The properties of PTFE-coated CCP were analysed by means of contact angle measurement, tensile testing, porosity, density, and electrical conductivity measurements. As expected, all CCP’s surfaces treated with PTFE were found to be hydrophobic with contact angle >120° and relatively constant during 60 minutes measurement. Furthermore, water contact angle, density, and mechanical properties of CCP generally increase with increasing PTFE content. However, the porosity and electrical conductivity of CCP decrease slightly as the PTFE content increased from 0 wt% to 30 wt%. Based on the observation and analysis, the optimum PTFE content on CCP was 20 %, in which the mechanical properties and hydrophobicity behaviour were improved significantly, but it was only caused a very small drop in porosity and electrical conductivity
Hadidi, Pasha; Cissell, Derek D; Hu, Jerry C; Athanasiou, Kyriacos A
2017-12-01
Advances in cartilage tissue engineering have led to constructs with mechanical integrity and biochemical composition increasingly resembling that of native tissues. In particular, collagen cross-linking with lysyl oxidase has been used to significantly enhance the mechanical properties of engineered neotissues. In this study, development of collagen cross-links over time, and correlations with tensile properties, were examined in self-assembling neotissues. Additionally, quantitative MRI metrics were examined in relation to construct mechanical properties as well as pyridinoline cross-link content and other engineered tissue components. Scaffold-free meniscus fibrocartilage was cultured in the presence of exogenous lysyl oxidase, and assessed at multiple time points over 8weeks starting from the first week of culture. Engineered constructs demonstrated a 9.9-fold increase in pyridinoline content, reaching 77% of native tissue values, after 8weeks of culture. Additionally, engineered tissues reached 66% of the Young's modulus in the radial direction of native tissues. Further, collagen cross-links were found to correlate with tensile properties, contributing 67% of the tensile strength of engineered neocartilages. Finally, examination of quantitative MRI metrics revealed several correlations with mechanical and biochemical properties of engineered constructs. This study displays the importance of culture duration for collagen cross-link formation, and demonstrates the potential of quantitative MRI in investigating properties of engineered cartilages. This is the first study to demonstrate near-native cross-link content in an engineered tissue, and the first study to quantify pyridinoline cross-link development over time in a self-assembling tissue. Additionally, this work shows the relative contributions of collagen and pyridinoline to the tensile properties of collagenous tissue for the first time. Furthermore, this is the first investigation to identify a relationship between qMRI metrics and the pyridinoline cross-link content of an engineered collagenous tissue. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Gambín, P; Serrano, M P; Gallego, L; García, A; Cappelli, J; Ceacero, F; Landete-Castillejos, T
2017-08-01
The main factors affecting the mechanical (and other) properties of bone, including antler, are the proportions of ash (especially Ca and P) and collagen content. However, some trace minerals may also play more important roles than would be expected, given their low levels in bone and antler. One such trace mineral is Cu. Here, we studied the effects of Cu supplementation on the mechanical and structural characteristics, and mineral content of antlers from yearling and adult (4 years of age) red deer fed a balanced diet. Deer (n=35) of different ages (21 yearlings and 14 adults) were studied. A total of 18 stags (11 yearlings and 7 adults) were injected with Cu (0.83 mg Cu/kg BW) every 42 days, whereas the remaining 17 (10 yearlings and 7 adults) were injected with physiological saline solution (control group). The Cu content of serum was analysed at the beginning of the trial and 84 days after the first injection to assess whether the injected Cu was mobilized in blood. Also, the mechanical and structural properties of antlers and the mineral content in their cortical walls were examined at three (yearlings) or four (adults) points along the antler beam. The effect of Cu supplementation was different in yearlings and adults. In yearlings, supplementation increased the Cu content of serum by 28%, but did not affect antler properties. However, in adults, Cu supplementation increased the Cu content of serum by 38% and tended to increase the cortical thickness of antlers (P=0.06). Therefore, we conclude that, even in animals receiving balanced diets, supplementation with Cu could increase antler cortical thickness in adult deer, although not in yearlings. This may improve the trophy value of antlers, as well as having potential implications for bones in elderly humans, should Cu supplementation have similar effects on bones as those observed in antlers.
Production and mechanical properties of Ti-5Al-2.5Fe-xCu alloys for biomedical applications.
Yamanoglu, Ridvan; Efendi, Erdinc; Kolayli, Fetiye; Uzuner, Huseyin; Daoud, Ismail
2018-01-30
In this study, the mechanical, antibacterial properties and cell toxicity response of Ti-5Al2.5Fe alloy with different copper contents were investigated. The alloys were prepared by high-energy ball milling using elemental Ti, Al, Fe, and Cu powders and consolidated by a uniaxial vacuum hot press. Staphylococcus aureus strain ATCC 29213 and Escherichia coli strain ATCC 25922 were used to determine the antibacterial properties of the sintered alloys. The in vitro cytotoxicity of the samples was evaluated with HeLa (ATTC, CCL-2) cells using thiazolyl blue tetrazolium bromide. The mechanical behavior of the samples was determined as a function of hardness and bending tests and analyzed by scanning electron microscopy, energy dispersive x-ray spectroscopy, optical microscopy and x-ray diffraction (XRD). The results showed that the Cu content significantly improved the antibacterial properties. Cu addition prevented the formation of E. coli and S. aureus colonies on the surface of the samples. All samples exhibited very good cell biocompatibility. The alloys with different copper contents showed different mechanical properties, and the results were correlated by microstructural and XRD analyses in detail. Our results showed that Cu has a great effect on the Ti5Al2.5Fe alloy and the alloy is suitable for biomedical applications with enhanced antibacterial activity.
Zhang, Erlin; Ren, Jing; Li, Shengyi; Yang, Lei; Qin, Gaowu
2016-10-21
Ti-Cu sintered alloys have shown good antibacterial abilities. However, the sintered method (powder metallurgy) is not convenient to produce devices with a complex structure. In this paper, Ti-Cu alloys with 2.0, 3.0 and 4.0 wt.% Cu were prepared in an arc melting furnace and subjected to different heat treatments: solid solution and ageing, to explore the possibility of preparing an antibacterial Ti-Cu alloy by a casting method and to examine the effect of Cu content. Phase identification was conducted on an XRD diffraction meter, and the microstructure was observed by a metallographic microscope, a scanning electron microscope (SEM) with energy disperse spectroscopy (EDS) and transmission electron microscopy (TEM). Microhardness and the compressive property of Ti-Cu alloys were tested, and the corrosion resistance and antibacterial activity were assessed in order to investigate the effect of the Cu content. Results showed that the as-cast Ti-Cu alloys exhibited a very low antibacterial rate against Staphylococcus aureus (S. aureus). Heat treatment improved the antibacterial rate significantly, especially after a solid and ageing treatment (T6). Antibacterial rates as high as 90.33% and 92.57% were observed on Ti-3Cu alloy and Ti-4Cu alloy, respectively. The hardness, the compressive yield strength, the anticorrosion resistance and the antibacterial rate of Ti-Cu alloys increased with an increase of Cu content in all conditions. It was demonstrated that homogeneous distribution and a fine Ti 2 Cu phase played a very important role in the mechanical property, anticorrosion and antibacterial properties. Furthermore, it should be pointed out that the Cu content should be at least 3 wt.% to obtain good antibacterial properties (>90% antibacterial rate) as well as satisfactory mechanical properties.
NASA Astrophysics Data System (ADS)
Bordeasu, I.; Popoviciu, M. O.; Mitelea, I.; Ghiban, B.; Ghiban, N.; Sava, M.; Duma, S. T.; Badarau, R.
2014-03-01
The running time of hydraulic machineries in cavitation conditions, especially blades and runners, depend on both chemical composition and mechanical properties of the used steels. The researches of the present paper have as goal to obtain new materials with improved behavior and reduced costs. There are given cavitation erosion results upon eight cast steels with martensite as principal structural constituent. The chromium content was maintained constant at approximate 12% but the nickel content was largely modified. The change of chemical content resulted in various proportions of austenite, martensite and ferrite and also in different cavitation erosion behavior. From the eight tested steels four have greater carbon content (approximately 0.1%) and the other four less carbon content (approximate 0.036%). All steels were tested separately in two laboratory facilities: T1 with magnetostrictive nickel tube (vibration amplitude 94 μm, vibration frequency 7000 ± 3% Hz, specimen diameter 14 mm and generator power 500 W) and T2 is respecting the ASTM G32-2010 Standard (vibration amplitude 50μm, vibration frequency 20000 ± 1% Hz, specimen diameter 15.8 mm and generator power 500 W). Analyzing the results it can be seen that the cavitation erosion is correlated with the mechanical properties in the way shown in 1960 by Hammitt and Garcia but is influenced by the structural constituents.
Exposure to buffer solution alters tendon hydration and mechanics.
Safa, Babak N; Meadows, Kyle D; Szczesny, Spencer E; Elliott, Dawn M
2017-08-16
A buffer solution is often used to maintain tissue hydration during mechanical testing. The most commonly used buffer solution is a physiological concentration of phosphate buffered saline (PBS); however, PBS increases the tissue's water content and decreases its tensile stiffness. In addition, solutes from the buffer can diffuse into the tissue and interact with its structure and mechanics. These bathing solution effects can confound the outcome and interpretation of mechanical tests. Potential bathing solution artifacts, including solute diffusion, and their effect on mechanical properties, are not well understood. The objective of this study was to measure the effects of long-term exposure of rat tail tendon fascicles to several concentrations (0.9-25%) of NaCl, sucrose, polyethylene glycol (PEG), and SPEG (NaCl+PEG) solutions on water content, solute diffusion, and mechanical properties. We found that with an increase in solute concentration the apparent water content decreased for all solution types. Solutes diffused into the tissue for NaCl and sucrose, however, no solute diffusion was observed for PEG or SPEG. The mechanical properties changed for both NaCl solutions, in particular after long-term (8h) incubation the modulus and equilibrium stress decreased compared to short-term (15min) for 25% NaCl, and the cross sectional area increased for 0.9% NaCl. However, the mechanical properties were unchanged for both PEG and SPEG except for minor alterations in stress relaxation parameters. This study shows that NaCl and sucrose buffer solutions are not suitable for long-term mechanical tests. We therefore propose using PEG or SPEG as alternative buffer solutions that after long-term incubation can maintain tissue hydration without solute diffusion and produce a consistent mechanical response. Copyright © 2017 Elsevier Ltd. All rights reserved.
Morphology and viscoelastic properties of sealing materials based on EPDM rubber.
Milić, J; Aroguz, A; Budinski-Simendić, J; Radicević, R; Prendzov, S
2008-12-01
In this applicative study, the ratio of active and inactive filler loadings was the prime factor for determining the dynamic-mechanical behaviour of ethylene-propylene-diene monomer rubbers. Scanning electron microscopy was used to study the structure of reinforced dense and microcellular elastomeric materials. The effects of filler and blowing agent content on the morphology of composites were investigated. Microcellular samples cured in salt bath show smaller cells and uniform cell size compared with samples cured in hot air. Dynamic-mechanical thermal analysis showed appreciable changes in the viscoelastic properties by increasing active filler content, which could enable tailoring the material properties to suit sealing applications.
NASA Astrophysics Data System (ADS)
Yan, Yang; Kang, Yijun; Li, Ding; Yu, Kun; Xiao, Tao; Wang, Qiyuan; Deng, Youwen; Fang, Hongjie; Jiang, Dayue; Zhang, Yu
2018-03-01
Porous Mg-based scaffolds have been extensively researched as biodegradable implants due to their attractive biological and excellent mechanical properties. In this study, porous Mg-6 wt.% Zn scaffolds were prepared by powder metallurgy using ammonium bicarbonate particles as space-holder particles. The effects of space-holder particle content on the microstructure, mechanical properties and corrosion resistance of the Mg-6 wt.% Zn scaffolds were studied. The mean porosity and pore size of the open-cellular scaffolds were within the range 6.7-52.2% and 32.3-384.2 µm, respectively. Slight oxidation was observed at the grain boundaries and on the pore walls. The Mg-6 wt.% Zn scaffolds were shown to possess mechanical properties comparable with those of natural bone and had variable in vitro degradation rates. Increased content of space-holder particles negatively affected the mechanical behavior and corrosion resistance of the Mg-6 wt.% Zn scaffolds, especially when higher than 20%. These results suggest that porous Mg-6 wt.% Zn scaffolds are promising materials for application in bone tissue engineering.
NASA Technical Reports Server (NTRS)
Rothman, M. F.; Tawancy, H. M.
1980-01-01
The effects of oxide content level and variations in thermomechanical processing upon the final structure and properties of HDA 8077 sheet have been systematically examined. It was found that creep strength and formability are substantially influenced by both oxide content and TMP schedule. Variations in creep properties obtained appear to correlate with observed microstructures.
Effect of Exposure on the Mechanical Properties of Gamma MET PX
NASA Technical Reports Server (NTRS)
Draper, S. L.; Lerch, B. A.; Locci, I. E.; Shazly, M.; Prakash, V.
2004-01-01
The effect of a service environment exposure on the mechanical properties of a high Nb content TiAl alloy, Gamma MET PX , was assessed. Gamma MET PX, like other TiAl alloys, experiences a reduction of ductility following high temperature exposure. Exposure in Ar, air, and high-purity oxygen all resulted in a loss of ductility with the ductility reduction increasing with oxygen content in the exposure atmosphere. Embrittling mechanisms, including bulk microstructural changes, moisture induced environmental embrittlement, and near surface effects were investigated. The embrittlement has been shown to be a near-surface effect, most likely due to the diffusion of oxygen into the alloy.
Processing and Characterization of Cellulose Nanocrystals/Polylactic Acid Nanocomposite Films
Sullivan, Erin M.; Moon, Robert J.; Kalaitzidou, Kyriaki
2015-01-01
The focus of this study is to examine the effect of cellulose nanocrystals (CNC) on the properties of polylactic acid (PLA) films. The films are fabricated via melt compounding and melt fiber spinning followed by compression molding. Film fracture morphology, thermal properties, crystallization behavior, thermo-mechanical behavior, and mechanical behavior were determined as a function of CNC content using scanning electron microscopy, differential scanning calorimetry, X-ray diffraction, dynamic mechanical analysis, and tensile testing. Film crystallinity increases with increasing CNC content indicating CNC act as nucleating agents, promoting crystallization. Furthermore, the addition of CNC increased the film storage modulus and slightly broadened the glass transition region. PMID:28793701
Composition effects on mechanical properties of tungsten-rhenium-hafnium-carbon alloys
NASA Technical Reports Server (NTRS)
Witzke, W. R.
1973-01-01
The mechanical properties of rod and sheet fabricated from arc melted W-4Re-Hf-C alloys containing up to about 0.8 mol percent hafnium carbide (HfC) were evaluated in the as-worked condition. The DBTT's of electropolished bend and tensile specimens were independent of HfC content in this range but dependent on excess Hf or C above that required for stoichiometric HfC. Low temperature ductility was a maximum at Hf contents slightly in excess of stoichiometric. Variations in high temperature strength were also dependent on excess Hf and C. Maximum creep strengthening also occurred at Hf contents in excess of stoichiometric. Analysis of extracted second phase particles indicated that creep strength was reduced by increasing WC content in the HfC particles.
NASA Astrophysics Data System (ADS)
Wang, Yonghong; Zhang, Xinru; Chung, Kyungho; Liu, Chengcen; Choi, Seung-Bok; Choi, Hyoung Jin
2016-11-01
To improve mechanical and magnetorheological properties of magnetorheological elastomers (MREs), a facile method was used to fabricate high-performance MREs which consisted of the core-shell complex microparticles with an organic-inorganic network structure dispersed in an ethylene propylene diene rubber. In this work, the proposed magnetic complex microparticles were in situ formed during MREs fabrication as a result of strong interaction between matrix and CIPs using carbon black as a connecting point. The morphology of both isotropic (i-MREs) and anisotropic MREs (a-MREs) was observed by scanning electron microscope (SEM). The effects of carbonyl iron particle (CIP) volume content on mechanical properties and hysteresis loss of MREs were investigated. The effects of CIP volume content on the shear storage modulus, MR effect and loss tangent were studied using a modified dynamic mechanical analyzer under applied magnetic field strengths. The results showed that the orientation effect became more pronounced with increasing CIPs in the a-MREs, whereas CIPs distributed uniformly in the i-MREs. The tensile strength, tear strength and elongation at break decreased with increasing CIP content up to 40 vol.%, while the hardness increased. It is worth noting that the tensile strength of i-MREs and a-MREs containing 40 vol.% CIPs still had high mechanical properties as a result of good compatibility between complex microparticles and rubber matrix. The MR performance of shear storage modulus and damping properties of MREs increased remarkably with CIP content due to strong dipole-dipole interaction of complex microparticles. Besides, the hysteresis loss increased with increasing CIP content as a result of magnetic field induced interfacial sliding between complex microparticles.
NASA Technical Reports Server (NTRS)
Hart, F. H.
1984-01-01
Because almost the entire U.S. consumption of cobalt depends on imports, this metal has been designated "strategic'. The role and effectiveness of cobalt is being evaluated in commercial nickel-base superalloys. Udiment 700 type alloys in which the cobalt content was reduced from the normal 17% down to 12.7%, 8.5%, 4.3%, and 0% were prepared by standard powder metallurgy techniques and hot isostatically pressed into billets. Mechanical testing and microstructural investigations were performed. The mechanical properties of alloys with reduced cobalt contents which were heat-treated identically were equal or better than those of the standard alloy, except that creep rates tended to increase as cobalt was reduced. The effects of long time exposures at 760 C on mechanical properties and at 760 C and 845 C on microstructures were determined. Decreased tensile properties and shorter rupture lives with increased creep rates were observed in alloy modifications. The exposures caused gamma prime particle coarsening and formation of sigma phase in the alloys with higher cobalt contents. Exposure at 845 C also reduced the amount of MC carbides.
The Effect of Water Molecules on Mechanical Properties of Cell Walls
NASA Astrophysics Data System (ADS)
Rahbar, Nima; Youssefian, Sina
The unique properties of bamboo fibers come from their natural composite structures that comprise mainly cellulose nanofibrils in a matrix of intertwined hemicellulose and lignin called lignin-carbohydrate complex (LCC). Here, we have utilized atomistic simulations to investigate the mechanical properties and mechanisms of interactions between these materials, in the presence of water molecules. The role of hemicellulose found to be enhancing the mechanical properties and lignin found to be providing the strength of bamboo fibers. The abundance of Hbonds in hemicellulose chains is responsible for improving the mechanical behavior of LCC. The strong van der Waals forces between lignin molecules and cellulose nanofibrils are responsible for higher adhesion energy between LCC/cellulose nanofibrils. We also found out that the amorphous regions of cellulose nanofibrils is the weakest interface in bamboo Microfibrils. In presence of water, the elastic modulus of lignin increases at low water content and decreases in higher water content, whereas the hemicellulose elastic modulus constantly decreases. The variations of Radial Distribution Function and Free Fractional Volume of these materials with water suggest that water molecules enhance the mechanical properties of lignin by filling voids in the system and creating Hbond bridges between polymer chains. For hemicellulose, however, the effect is always regressive due to the destructive effect of water molecules on the Hbond of its dense structure.
Innovative thermoplastic chitosan obtained by thermo-mechanical mixing with polyol plasticizers.
Matet, Marie; Heuzey, Marie-Claude; Pollet, Eric; Ajji, Abdellah; Avérous, Luc
2013-06-05
Chitosan shows a degradation temperature lower than its melting point, which prevents its development in several applications. One way to overcome this issue is the plasticization of the carbohydrate. In this work plasticized chitosan was prepared by a thermo-mechanical kneading approach. The effects of different non-volatile polyol plasticizers (glycerol, xylitol and sorbitol) were investigated. The microstructure and morphology were determined using FTIR, XRD, TEM and SEM in order to understand the plasticization mechanism. Sorbitol, which is the highest molecular weight polyol used, resulted in plasticized chitosan with the highest thermal, mechanical and rheological properties. On the other hand, the sample plasticized with glycerol, the lowest molecular weight polyol, had the most important amorphous phase content and the lowest thermal, mechanical and rheological properties. Also, when the polyol content increased in the formulation, the plasticized chitosan was more amorphous and consequently its processability easier, while its properties decreased. Copyright © 2013 Elsevier Ltd. All rights reserved.
Luangtana-Anan, Manee; Soradech, Sitthiphong; Saengsod, Suthep; Nunthanid, Jurairat; Limmatvapirat, Sontaya
2017-12-01
The aim of this investigation was to develop the high moisture protective ability and stable pectin through the design of composite films based on varying shellac concentrations. A film casting method was applied to prepare a free film. The moisture protective properties and mechanical properties were investigated. The findings was the composite films exhibited the reductions in the hydrophilicity, water vapor permeability, and the moisture content compared with pectin films. The single and composite films were then study for their stability at 40 °C and 75% RH for 90 d. Among the concentrations of shellac, 50% (w/w) could improve stability in terms of moisture protection after 90 d of storage, whereas lower concentrations of shellac (10% to 40%) could not achieve this. However, the higher shellac content also contributed to weaker mechanical properties. The mechanical improvement and stability of composite films with the incorporation of plasticizers were further investigated. Polyethylene glycol 400 and diethyl phthalate at a concentration of 10% were used. The results indicated that both plasticizers could enhance the mechanical characteristics and had a slight effect on moisture protection. The stability of pectin in terms of moisture protective properties could, therefore, be modified through the fabrication of composite films with hydrophobic polymers, that is, shellac and the addition of proper plasticizers to enhance mechanical properties, which could offer wide applications for edible film in food, agro, and pharmaceutical industries. The composite film with 50% shellac could improve moisture protective properties of pectin film. Adding a plasticizer could build up the higher mechanical characteristics of composite film. Stability of pectin could be modified by fabrication of composite films with proper content of shellac and plasticizer. © 2017 Institute of Food Technologists®.
Study on the Tribological Properties of MC Nylon Composites Filled with Hydraulic Oil
NASA Astrophysics Data System (ADS)
Yuan, S.; Li, Y.; Wen, J.; Yin, L.; Zhang, Q.
2018-03-01
Mechanical parts utilized in machinery, such as nylon slider and pulley, should have certain mechanical properties and good tribological properties, so that equipments’ stability and smoothness can be assured. A kind of MC nylon (monomer cast nylon) composites filled with hydraulic oil was studied in this paper. The addition of hydraulic oil changed nylon’s mechanical properties and tribological properties significantly, and improved the material’s toughness and coefficient of friction. The composites have excellent strength, toughness and relatively low coefficient of friction when the content of the hydraulic oil is 4wt%.
Properties enhancement of cassava starch based bioplastics with addition of graphene oxide
NASA Astrophysics Data System (ADS)
Amri, A.; Ekawati, L.; Herman, S.; Yenti, S. R.; Zultiniar; Aziz, Y.; Utami, S. P.; Bahruddin
2018-04-01
The properties of cassava starch based bioplastic have been successfully enhanced by additioning of graphene oxide (GO) filler. The composite was synthesized via starch intercalation method using glycerol plasticizer with variation of 5 – 15 % v/v GO filler and mixing time of 30 and 60 minutes. The effects of GO content and the mixing time to the mechanical, water uptake and biodegradation were studied. The synthesis of GO and its integration in the bioplastic composite were also elucidated. The increasing of the GO content and mixing time improved the mechanical properties of composite mainly due to of good homogeneity among the constituents in the composite as indicated by scanning electron microscopy (SEM) and Fourier Transfom Infrared (FTIR) spectroscopy. The bioplastic produced using 15% of GO and 60 minutes mixing time had the highest mechanical properties with tensile strenght of 3,92 Mpa, elongation of 13,22% and modulus young of 29,66 MPa. The water uptake and biodegradation increased as the increase of GO content and decreased as the increase of the mixing time. Graphene oxide is the promissing filler for further development of cassava starch based bioplastics.
Tran, Chieu D.; Prosenc, Franja; Franko, Mladen; Benzi, Gerald
2016-01-01
Novel composites between cellulose (CEL) and keratin (KER) from three different sources (wool, hair and chicken feather) were successfully synthesized in a simple one-step process in which butylmethylimidazolium chloride (BMIm+Cl−), an ionic liquid, was used as the sole solvent. The method is green and recyclable because [BMIm+Cl−] used was recovered for reuse. Spectroscopy (FTIR, XRD) and imaging (SEM) results confirm that CEL and KER remain chemically intact and homogeneously distributed in the composites. KER retains some of its secondary structure in the composites. Interestingly, the minor differences in the structure of KER in wool, hair and feather produced pronounced differences in the conformation of their corresponding composites with wool has the highest α-helix content and feather has the lowest content. These results correlate well with mechanical and antimicrobial properties of the composites. Specifically, adding CEL into KER substantially improves mechanical strength of [CEL+KER] composites made from all three different sources, wool, hair and chicken feathers (i.e., [CEL+wool], [CEL+hair] and [CEL+feather]. Since mechanical strength is due to CEL, and CEL has only random structure, [CEL+feather] has, expectedly, the strongest mechanical property because feather has the lowest content of α-helix. Conversely, [CEL+wool] composite has the weakest mechanical strength because wool has the highest α-helix content. All three composites exhibit antibacterial activity against methicillin resistant S. aureus (MRSA). The antibacterial property is due not to CEL but to the protein and strongly depends on the type of the keratin, namely, the bactericidal effect is strongest for feather and weakest for wool. These results together with our previous finding that [CEL+KER] composites can control release of drug such as ciprofloxacin clearly indicate that these composites can potentially be used as wound dressing PMID:27474680
Gadjanski, Ivana; Yodmuang, Supansa; Spiller, Kara; Bhumiratana, Sarindr; Vunjak-Novakovic, Gordana
2013-10-01
Formation of tissue-engineered cartilage is greatly enhanced by mechanical stimulation. However, direct mechanical stimulation is not always a suitable method, and the utilization of mechanisms underlying mechanotransduction might allow for a highly effective and less aggressive alternate means of stimulation. In particular, the purinergic, adenosine 5'-triphosphate (ATP)-mediated signaling pathway is strongly implicated in mechanotransduction within the articular cartilage. We investigated the effects of transient and continuous exogenous ATP supplementation on mechanical properties of cartilaginous constructs engineered using bovine chondrocytes and human mesenchymal stem cells (hMSCs) encapsulated in an agarose hydrogel. For both cell types, we have observed significant increases in equilibrium and dynamic compressive moduli after transient ATP treatment applied in the fourth week of cultivation. Continuous ATP treatment over 4 weeks of culture only slightly improved the mechanical properties of the constructs, without major changes in the total glycosaminoglycan (GAG) and collagen content. Structure-function analyses showed that transiently ATP-treated constructs, and in particular those based on hMSCs, had the highest level of correlation between compositional and mechanical properties. Transiently treated groups showed intense staining of the territorial matrix for GAGs and collagen type II. These results indicate that transient ATP treatment can improve functional mechanical properties of cartilaginous constructs based on chondrogenic cells and agarose hydrogels, possibly by improving the structural organization of the bulk phase and territorial extracellular matrix (ECM), that is, by increasing correlation slopes between the content of the ECM components (GAG, collagen) and mechanical properties of the construct.
Lei, Guangping; Zhang, Yayun; Liu, Hantao; Song, Fenhong
2018-05-11
By performing molecular dynamics simulations, a GNT/CNT hybrid structure constructed via combing (6, 6) graphyne nanotube (GNT) with (6, 6) carbon nanotube (CNT) has been designed and investigated. The mechanical properties induced by the percentage of GNT, water content and electric field were examined. Calculation results reveal that the fracture strain and strength of hollow hybrid structure are remarkably smaller than that of perfect (6, 6) CNT. In addition, the Young's modulus decreases monotonously with the increase of percentage of GNT. More importantly, the tunable mechanical properties of hybrid structure can be achieved through filling with water molecules and applying an electric field along tensile direction. Specifically, increasing water content from 0.0 to 8.70 mmol g -1 in the absence of electric field could result in fracture strain and strength reducing by 15.09% and 12.87%, respectively. Besides, enhancing fracture strain and strength of water-filled hybrid structure with water content of 8.70 mmol g -1 can also be obtained with rising electric field intensity. These findings would provide a valuable theoretical basis for designing and fabricating a nanodevice with controllable mechanical performances.
NASA Astrophysics Data System (ADS)
Lei, Guangping; Zhang, Yayun; Liu, Hantao; Song, Fenhong
2018-05-01
By performing molecular dynamics simulations, a GNT/CNT hybrid structure constructed via combing (6, 6) graphyne nanotube (GNT) with (6, 6) carbon nanotube (CNT) has been designed and investigated. The mechanical properties induced by the percentage of GNT, water content and electric field were examined. Calculation results reveal that the fracture strain and strength of hollow hybrid structure are remarkably smaller than that of perfect (6, 6) CNT. In addition, the Young’s modulus decreases monotonously with the increase of percentage of GNT. More importantly, the tunable mechanical properties of hybrid structure can be achieved through filling with water molecules and applying an electric field along tensile direction. Specifically, increasing water content from 0.0 to 8.70 mmol g-1 in the absence of electric field could result in fracture strain and strength reducing by 15.09% and 12.87%, respectively. Besides, enhancing fracture strain and strength of water-filled hybrid structure with water content of 8.70 mmol g-1 can also be obtained with rising electric field intensity. These findings would provide a valuable theoretical basis for designing and fabricating a nanodevice with controllable mechanical performances.
Duan, Yipin; Wang, Chao; Zhao, Mengmeng; Vogt, Bryan D; Zacharia, Nicole S
2018-05-30
Ternary complexes formed in a single pot process through the mixing of cationic (branched polyethylenimine, BPEI) and anionic (graphene oxide, GO, and poly(acrylic acid), PAA) aqueous solutions exhibit superior mechanical performance in comparison to their binary analogs. The composition of the ternary complex can be simply tuned through the composition of the anionic solution, which influences the water content and mechanical properties of the complex. Increasing the PAA content in the complex decreases the overall water content due to improved charge compensation with the BPEI, but this change also significantly improves the toughness of the complex. Ternary complexes containing ≤32 wt% PAA were too brittle to generate samples for tensile measurements, while extension in excess of 250% could be reached with 57 wt% PAA. From this work, the influence of GO and PAA on the mechanical properties of GO/PAA/BPEI complexes were elucidated with GO sheets acting to restrain the viscous flow and improve the mechanical strength at low loading (<12.6 wt%) and PAA more efficiently complexes with BPEI than GO to generate a less swollen and stronger network. This combination overcomes the brittle nature of GO-BPEI complexes and viscous creep of PAA-BPEI complexes. Ternary nanocomposite complexes appear to provide an effective route to toughen and strengthen bulk polyelectrolyte complexes.
Laboratory Characterization of White Masonry Concrete
2006-09-01
procedures given in American Society for Testing and Materials (ASTM) D 2216 (ASTM 2002e). Based on the appropriate values of posttest water content...properties of the material. All of the mechanical property tests were conducted quasi -statically with axial strain rates on the order of 10-4 to 10...mechanical property tests, nondestructive pulse-velocity measurements were performed on each specimen. The TXC tests exhibited a continuous increase
Evaluation of tensile properties and water absortion of cassava starch film
NASA Astrophysics Data System (ADS)
Walster, R. Justin; Rozyanty, A. R.; Kahar, A. W. M.; Musa, L.; Shahnaz, S. B. S.
2017-09-01
Casava Starch film was prepared by casting method with different percentage of glycerol (0%, 0.5%, 1.0%, 1.5%, 2.0% and 2.5%) as plasticizer. The effect of glycerol content in starch film on mechanical and water absorption properties was studied. Results shows that the increase of glycerol content in cassava starch film had decrease the tensile strength, tensile modulus and increase the elongation of break properties. The result of water absorbency tended to increase for starch film with higher percentage of glycerol content. The incorporation of glycerol in cassava starch film had increase the water absorption ability due to increase of hydroxyl content contributed by glycerol.
Guo, Wenmin; Zhang, Yihe; Zhang, Wei
2013-09-01
Biodegradable synthetic polymers have attracted much attention nowadays, and more and more researches have been done on biodegradable polymers due to their excellent mechanical properties, biocompatibility, and biodegradability. In this work, hydroxyapatite (HA) particles were melt-mixing with poly (butylenes succinate) (PBS) to prepare the material, which could be used in the biomedical industry. To develop high-performance PBS for cryogenic engineering applications, it is necessary to investigate the cryogenic mechanical properties and crystallization behavior of HA/PBS composites. Cryogenic mechanical behaviors of the composites were studied in terms of tensile and impact strength at the glass transition temperature (-30°C) and compared to their corresponding behaviors at room temperature. With the increase of HA content, the crystallization of HA/PBS composites decreased and crystallization onset temperature shifted to a lower temperature. The diameter of spherulites increased at first and decreased with a further HA content. At the same time, the crystallization rate became slow when the HA content was no more than 15wt% and increased when HA content reached 20wt%. In all, the results we obtained demonstrate that HA/PBS composites reveal a better tensile strength at -30°C in contrast to the strength at room temperature. HA particles with different amount affect the crystallization of PBS in different ways. Copyright © 2013 Wiley Periodicals, Inc.
Mechanical properties of amyloid-like fibrils defined by secondary structures
NASA Astrophysics Data System (ADS)
Bortolini, C.; Jones, N. C.; Hoffmann, S. V.; Wang, C.; Besenbacher, F.; Dong, M.
2015-04-01
Amyloid and amyloid-like fibrils represent a generic class of highly ordered nanostructures that are implicated in some of the most fatal neurodegenerative diseases. On the other hand, amyloids, by possessing outstanding mechanical robustness, have also been successfully employed as functional biomaterials. For these reasons, physical and chemical factors driving fibril self-assembly and morphology are extensively studied - among these parameters, the secondary structures and the pH have been revealed to be crucial, since a variation in pH changes the fibril morphology and net chirality during protein aggregation. It is important to quantify the mechanical properties of these fibrils in order to help the design of effective strategies for treating diseases related to the presence of amyloid fibrils. In this work, we show that by changing pH the mechanical properties of amyloid-like fibrils vary as well. In particular, we reveal that these mechanical properties are strongly related to the content of secondary structures. We analysed and estimated the Young's modulus (E) by comparing the persistence length (Lp) - measured from the observation of TEM images by using statistical mechanics arguments - with the mechanical information provided by peak force quantitative nanomechanical property mapping (PF-QNM). The secondary structure content and the chirality are investigated by means of synchrotron radiation circular dichroism (SR-CD). Results arising from this study could be fruitfully used as a protocol to investigate other medical or engineering relevant peptide fibrils.Amyloid and amyloid-like fibrils represent a generic class of highly ordered nanostructures that are implicated in some of the most fatal neurodegenerative diseases. On the other hand, amyloids, by possessing outstanding mechanical robustness, have also been successfully employed as functional biomaterials. For these reasons, physical and chemical factors driving fibril self-assembly and morphology are extensively studied - among these parameters, the secondary structures and the pH have been revealed to be crucial, since a variation in pH changes the fibril morphology and net chirality during protein aggregation. It is important to quantify the mechanical properties of these fibrils in order to help the design of effective strategies for treating diseases related to the presence of amyloid fibrils. In this work, we show that by changing pH the mechanical properties of amyloid-like fibrils vary as well. In particular, we reveal that these mechanical properties are strongly related to the content of secondary structures. We analysed and estimated the Young's modulus (E) by comparing the persistence length (Lp) - measured from the observation of TEM images by using statistical mechanics arguments - with the mechanical information provided by peak force quantitative nanomechanical property mapping (PF-QNM). The secondary structure content and the chirality are investigated by means of synchrotron radiation circular dichroism (SR-CD). Results arising from this study could be fruitfully used as a protocol to investigate other medical or engineering relevant peptide fibrils. Electronic supplementary information (ESI) available: A molecular model for the peptide studied and the charge chart associated to it. In addition, an AFM image of pH 4 fibrils is presented. See DOI: 10.1039/c4nr05109b
NASA Astrophysics Data System (ADS)
Mohamad Syahmie, MR; Pei Leng, T.; Nurul Najwa, Zabidi
2018-03-01
The main purpose of incorporating Nypa fruticans husks (NFH) into Polylactic acid (PLA)/Polymethylmethacrylate (PMMA) is to decrease the costs and enhanced the properties of the biocomposites. 3-Aminopropyl Triethoxysilane (3-APE) was used as coupling agent. The effect of NFH content and 3-APE on the mechanical properties and morphology of the biocomposites were investigated. Results show that the effect of NFH content increased Young’s modulus but decreased the tensile strength and elongation at break of PLA/PMMA/NFH biocomposites. However, silanized biocomposites using 3-APE) was found to enhanced the tensile strength and Young’s modulus but decreased the elongation at break of the silanized biocomposites. Scanning electron microscopy (SEM) study of the tensile fracture surface of the biocomposites indicated that the used of 3-APE as couling agent improved the interfacial interaction netween NFH and PLA/PMMA blends.
NASA Technical Reports Server (NTRS)
Schuon, S. R.
1985-01-01
The effects of chromium and aluminum on the mechanical and oxidation properties of a series of gamma-prime-strengthened alloys based on CG-27 were studied. Gamma-prime dispersion and solid-solution strengthening were the principal modes of alloy strengthening. The oxidation attack parameter K sub a decreased with increasing Cr and Al contents for each alloy group based on Al content. As a group, alloys with 3 wt % Al had the lowest attack parameters. Therefore, 3 wt % is the optimum level of Al for parabolic oxidation behavior. Spalling, due to diffusion-induced grain growth, was controlled by the overall Cr and Al levels. The alloy with 4 wt % Cr and 3 wt % Al had stress-rupture properties superior to those of the base alloy, CG-27, and maintained parabolic oxidation behavior while the Cr content was reduced by two-thirds of its value in cast CG-27.
Molecular Modeling for Calculation of Mechanical Properties of Epoxies with Moisture Ingress
NASA Technical Reports Server (NTRS)
Clancy, Thomas C.; Frankland, Sarah J.; Hinkley, J. A.; Gates, T. S.
2009-01-01
Atomistic models of epoxy structures were built in order to assess the effect of crosslink degree, moisture content and temperature on the calculated properties of a typical representative generic epoxy. Each atomistic model had approximately 7000 atoms and was contained within a periodic boundary condition cell with edge lengths of about 4 nm. Four atomistic models were built with a range of crosslink degree and moisture content. Each of these structures was simulated at three temperatures: 300 K, 350 K, and 400 K. Elastic constants were calculated for these structures by monitoring the stress tensor as a function of applied strain deformations to the periodic boundary conditions. The mechanical properties showed reasonably consistent behavior with respect to these parameters. The moduli decreased with decreasing crosslink degree with increasing temperature. The moduli generally decreased with increasing moisture content, although this effect was not as consistent as that seen for temperature and crosslink degree.
NASA Astrophysics Data System (ADS)
Ma, Jingling; Li, Wuhui; Wang, Guangxin; Li, Yaqiong; Guo, Hongbo; Zhao, Zeliang; Li, Wei
2017-10-01
In order to study the effects of La2O3 content and rolling on microstructure and mechanical properties of Mo-La2O3 alloys, Mo-0.5% (1%) La2O3 alloys were prepared by liquid-solid doping technique, subsequently rolled either by a single-direction rolling or a cross-rolling. As a result, three different materials were prepared for this study. After being annealed at 1800 °C, the single-directionally rolled Mo-1% La2O3 alloy shows the best mechanical properties in terms of strength, hardness, and sagging deformation among the three materials. This is attributed to the observation that the alloy is only recovered with a microstructure of subgrains and dislocations. The single-directionally rolled Mo-0.5% La2O3 exhibits the worst mechanical property among the three materials. In this material, coarse grains, but no subgrains and dislocations, can be observed after annealing, indicating that it is fully recrystallized. For the cross-rolled Mo-1% La2O3 alloy, grains of dispersed sizes, but no dislocations, are visible after annealing, implying that this alloy is partially recrystallized. Accordingly, the mechanical property of this material is in between the other two materials. Thus, the mechanical properties of the three materials can be well understood based on OM, SEM, and TEM results. Overall, the single-directionally rolled Mo-1% La2O3 alloy possesses good mechanical properties and is more suitable for high-temperature applications.
Martinez, Adam W; Caves, Jeffrey M; Ravi, Swathi; Li, Wehnsheng; Chaikof, Elliot L
2014-01-01
Recombinant elastin-like protein polymers are increasingly being investigated as component materials of a variety of implantable medical devices. This is chiefly a result of their favorable biological properties and the ability to tailor their physical and mechanical properties. In this report, we explore the potential of modulating the water content, mechanical properties, and drug release profiles of protein films through the selection of different crosslinking schemes and processing strategies. We find that the selection of crosslinking scheme and processing strategy has a significant influence on all aspects of protein polymer films. Significantly, utilization of a confined, fixed volume, as well as vapor-phase crosslinking strategies, decreased protein polymer equilibrium water content. Specifically, as compared to uncrosslinked protein gels, water content was reduced for genipin (15.5%), glutaraldehyde (GTA, 24.5%), GTA vapor crosslinking (31.6%), disulfide (SS, 18.2%) and SS vapor crosslinking (25.5%) (P<0.05). Distinct crosslinking strategies modulated protein polymer stiffness, strain at failure and ultimate tensile strength (UTS). In all cases, vapor-phase crosslinking produced the stiffest films with the highest UTS. Moreover, both confined, fixed volume and vapor-phase approaches influenced drug delivery rates, resulting in decreased initial drug burst and release rates as compared to solution phase crosslinking. Tailored crosslinking strategies provide an important option for modulating the physical, mechanical and drug delivery properties of protein polymers. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
The Influence of Liquids on the Mechanical Properties of Allografts in Bone Impaction Grafting.
Putzer, David; Ammann, Christoph Gert; Coraça-Huber, Débora; Lechner, Ricarda; Schmölz, Werner; Nogler, Michael
2017-10-01
Allografts are used to compensate for bone defects resulting from revision surgery, tumor surgery, and reconstructive bone surgery. Although it is well known that the reduction of fat content of allografts increases mechanical properties, the content of liquids with a known grain size distribution has not been assessed so far. The aim of the study was to compare the mechanical properties of dried allografts (DA) with allografts mixed with a saline solution (ASS) and with allografts mixed with blood (AB) having a similar grain size distribution. Fresh-frozen morselized bone chips were cleaned chemically, sieved, and reassembled in specific portions with a known grain size distribution. A uniaxial compression was used to assess the yield limit, initial density, density at yield limit, and flowability of the three groups before and after compaction with a fall hammer apparatus. No statistically significant difference could be found for the yield limit between DA and ASS (p = 0.339) and between ASS and AB (p = 0.554). DA showed a statistically significant higher yield limit than AB (p = 0.022). Excluding the effect of the grain size distribution on the mechanical properties, it was shown that allografts have a lower yield limit when lipids are present. The liquid content of allografts seems to play an inferior role as no statistically significant difference could be found between DA and ASS. It is suggested, in accordance with other studies, to chemically clean allografts before implantation to reduce the contamination risk and the fat content.
Pramanik, Sumit; Shirazi, Seyed Farid Seyed; Mehrali, Mehdi; Yau, Yat-Huang; Abu Osman, Noor Azuan
2014-01-01
This study investigated the impact of calcium silicate (CS) content on composition, compressive mechanical properties, and hardness of CS cermets with Ti-55Ni and Ti-6Al-4V alloys sintered at 1200°C. The powder metallurgy route was exploited to prepare the cermets. New phases of materials of Ni16Ti6Si7, CaTiO3, and Ni31Si12 appeared in cermet of Ti-55Ni with CS and in cermet of Ti-6Al-4V with CS, the new phases Ti5Si3, Ti2O, and CaTiO3, which were emerged during sintering at different CS content (wt%). The minimum shrinkage and density were observed in both groups of cermets for the 50 and 100 wt% CS content, respectively. The cermets with 40 wt% of CS had minimum compressive Young's modulus. The minimum of compressive strength and strain percentage at maximum load were revealed in cermets with 50 and 40 wt% of CS with Ti-55Ni and Ti-6Al-4V cermets, respectively. The cermets with 80 and 90 wt% of CS showed more plasticity than the pure CS. It concluded that the composition and mechanical properties of sintered cermets of Ti-55Ni and Ti-6Al-4V with CS significantly depend on the CS content in raw cermet materials. Thus, the different mechanical properties of the cermets can be used as potential materials for different hard tissues replacements. PMID:25538954
NASA Astrophysics Data System (ADS)
Tokumitsu, Katuhisa; Nakajima, Yuki; Aoki, Kenji
2016-03-01
The mechanical properties and morphological changes of PP/PA6/PP-g-MAH blends were investigated. In particular, various kinds of PP-g-MAH, which have a series of different Mw of PP and MAH content, were investigated. From the tensile test results of PP/PA6 blends, although the elongation at break and yield stress can be improved by adding PP-g-MAH, modulus slightly decreased. In particular, elongation at break of PP/PA in addition with PP-g-MAH increased twentyfold from 27.0% (without PP-g-MAH) to 570%. On the basis of Charpy impact test results, the impact strength can also be improved by adding PP-g-MAH. From SEM observation, it was found that the diameter of the dispersed PA6 phase in PP matrix was getting much smaller with PP-g-MAH content. From the TEM observation, the boundary of the PA phase in PP/PA blends without PP-g-MAH compatibilizer can be observed clearly, but it becomes hard to see the boundary part of the PA phase in PP/PA blend with compatibilizer. Furthermore, when comparing the inside of the PA phase, small amount of PP phase can be observed in the PA phase of PP/PA blend with compatibilizer. Here, we defined a parameter, Comprehensive Mechanical Property Factor (CMPF), which can be calculated by multiple each mechanical property (elongation at break, yield stress, modulus and impact strength) against each maximum value, and it was found that CMPF has a good correlation with the diameter of PA6 phase. In conclusion, an optimum mechanical property of PP/PA6 can be obtained by using PP-g-MAH with Mw around 35,000 ˜ 50,000 g mol-1 and MAH content around 2.0 ˜ 3.5 %.
NASA Astrophysics Data System (ADS)
Yubing, Pei; Tianjian, Wang; Zhenhuan, Gao; Hua, Fan; Gongxian, Yang
This paper introduces the effects of Mo content on microstructure and mechanical property of PH13-8Mo martensitic precipitation-hardened stainless steel which is used for LP last stage blade in steam turbine. Thermodynamic software Thermo-Calc has been used to calculate precipitation temperature and the mass fraction of precipitated phases in PH13-8Mo steel with different Mo content. The result shows that when the mass of Mo is below 0.6wt.%, chi-phase mu-phase and sigma-phase could disappear. The microstructure and mechanical property of high Mo PH13-8Mo (Mo=0.57wt.%) and low Mo PH13-8Mo (Mo=2.15wt.%)have been investigated in different heat treatments. The investigations reveal that austenitizing temperature decrease with the reduce of Mo content, so the optimum solution temperature for low Mo PH13-8Mo is lower than that for high Mo PH13-8Mo.The influence of solution temperature on grain size is weakened with the increase of Mo content, Mo rich carbides could retard coarsening of grain. An enormous amount of nano-size uniformly distributed β-NiAl particles are found in both kinds of steels using transmission electron microscopy, they are the most important strengthening phase in PH13-8Mo.
Organic-inorganic hybrid foams with diatomite addition: Effect on functional properties
NASA Astrophysics Data System (ADS)
Verdolotti, L.; D'Auria, M.; Lavorgna, M.; Vollaro, P.; Iannace, S.; Capasso, I.; Galzerano, B.; Caputo, D.; Liguori, B.
2016-05-01
Organic-inorganic hybrid foams were prepared by using metakaolin, diatomite as a partial (or total) replacement of metakaolin, as matrix, silicon and whipped protein as pore forming. The foamed systems were hardened at defined temperature and time and then characterized by mechanical point of view through compression tests and by functional point of view through fire reaction and acoustic tests. The experimental findings highlighted that the replacement of diatomite in the formulation affected the morphological structure of the foams and consequently their mechanical properties. In particular, the consolidation mechanism in the diatomite based-hybrid foams changed from geopolymerization to a silicate polycondensation mechanism. Therefore, mechanical performances enhanced with increasing of the diatomite content. Fire reaction tests, such as non-combustibility and cone calorimeter tests, showed positive thermal inertia of samples regardless of the content of diatomite.
NASA Astrophysics Data System (ADS)
Trivedi, Shefali; Ravi Kumar, D.; Aravindan, S.
2016-10-01
Phosphorus in steel is known to increase strength and hardness and decrease ductility. Higher phosphorus content (more than 0.05%), however, promotes brittle behavior due to segregation of Fe3P along the grain boundaries which makes further mechanical working of these alloys difficult. In this work, thin sheets of Fe-P alloys (with phosphorus in range of 0.1-0.35%) have been developed through processing by powder metallurgy followed by hot rolling and cold rolling. The effect of phosphorus content and annealing parameters (temperature and time) on microstructure, mechanical properties, formability in biaxial stretching and fracture behavior of the cold rolled and annealed sheets has been studied. A comparison has also been made between the properties of the sheets made through P/M route and the conventional cast route with similar phosphorus content. It has been shown that thin sheets of Fe-P alloys with phosphorous up to 0.35% possessing a good combination of strength and formability can be produced through rolling of billets of these alloys made through powder metallurgy technique without the problem of segregation.
The Mechanical Properties and Modeling of Creep Behavior of UHMWPE/Nano-HA Composites
NASA Astrophysics Data System (ADS)
Li, Fan; Gao, Lilan; Gao, Hong; Cui, Yun
2017-09-01
Composites with different levels of hydroxyapatite (HA) content and ultra-high molecular weight polyethylene (UHMWPE) were prepared in this work. Mechanical properties of the composites were examined here, and to evaluate the effect of HA particles on the time-dependent behavior of the pure matrix, the creep and recovery performance of composites at various stress levels were also researched. As expected, the addition of HA influenced the time-dependent response of the UHMWPE and the effect had a strong dependence on the HA content. The creep and recovery strain of the composites significantly decreased with increasing HA content, and tensile properties were also impaired, which was due to the concentration of HA fillers. The mechanism and effect of HA dispersed into the UHMWPE matrix were examined by scanning electron microscopy. Additionally, since variations in the adjusted parameters revealed the impact of HA on the creep behavior of the UHMWPE matrix, Findley's model was employed. The results indicated that the analytical model was accurate for the prediction of creep of the pure matrix and its composites.
Mechanical and thermal properties of waterborne epoxy composites containing cellulose nanocrystals
Shanhong Xu; Natalie Girouard; Gregory Schueneman; Meisha L. Shofner; J. Carson Meredith
2013-01-01
Cellulose nanocrystals (CNCs) are reinforcing fillers of emerging interest for polymers due to their high modulus and potential for sustainable production. In this study, CNC-based composites with a waterborne epoxy resin matrix were prepared and characterized to determine morphology, water content, and thermal and mechanical properties. While some CNC aggregation was...
Improving of Mechanical and Shape-Memory Properties in Hyperbranched Epoxy Shape-Memory Polymers
NASA Astrophysics Data System (ADS)
Santiago, David; Fabregat-Sanjuan, Albert; Ferrando, Francesc; De la Flor, Silvia
2016-09-01
A series of shape-memory epoxy polymers were synthesized using an aliphatic amine and two different commercial hyperbranched poly(ethyleneimine)s with different molecular weights as crosslinking agents. Thermal, mechanical, and shape-memory properties in materials modified with different hyperbranched polymers were analyzed and compared in order to establish the effect of the structure and the molecular weight of the hyperbranched polymers used. The presence of hyperbranched polymers led to more heterogeneous networks, and the crosslinking densities of which increase as the hyperbranched polymer content increases. The transition temperatures can be tailored from 56 to 117 °C depending on the molecular weight and content of the hyperbranched polymer. The mechanical properties showed excellent values in all formulations at room temperature and, specially, at T_{{g}}^{{E^' with stress at break as high as 15 MPa and strain at break as high as 60 %. The shape-memory performances revealed recovery ratios around 95 %, fixity ratios around 97 %, and shape-recovery velocities as high as 22 %/min. The results obtained in this study reveal that hyperbranched polymers with different molecular weights can be used to enhance the thermal and mechanical properties of epoxy-based SMPs while keeping excellent shape-memory properties.
Mechanical characterization and modeling for anodes and cathodes in lithium-ion batteries
NASA Astrophysics Data System (ADS)
Wang, Lubing; Yin, Sha; Zhang, Chao; Huan, Yong; Xu, Jun
2018-07-01
Mechanical properties of electrode materials have significant influence over electrochemical properties as well as mechanical integrity of lithium-ion battery cells. Here, anode and cathode in a commercially available 18650 NCA (Nickel Cobalt Aluminum Oxide)/graphite cell were comprehensively studied by tensile tests considering material anisotropy, SOC (state of charge), strain rate and electrolyte content. Results showed that the mechanical properties of both electrodes were highly dependent on strain rate and electrolyte content; however, anode was SOC dependent while cathode was not. Besides, coupled effects of strain rate and SOC of anodes were also discussed. SEM (scanning electron microscope) images of surfaces and cross-sections of electrodes showed the fracture morphology. In addition, mechanical behavior of Cu foil separated from anode with different SOC values were studied and compared. Finally, constitutive models of electrodes considering both strain rate and anisotropy effects were established. This study reveals the relationship between electrochemical dependent mechanical behavior of the electrodes. The established mechanical models of electrodes can be applied to the numerical computation of battery cells. Results are essential to predict the mechanical responses as well as the deformation of battery cell under various loading conditions, facilitating safer battery design and manufacturing.
NASA Astrophysics Data System (ADS)
Wang, X. F.; Guo, M. X.; Chen, Y.; Zhu, J.; Zhang, J. S.; Zhuang, L. Z.
2017-07-01
The effect of thermomechanical processing on microstructure, texture evolution, and mechanical properties of Al-Mg-Si-Cu alloys with different Zn contents was studied by mechanical properties, microstructure, and texture characterization in the present study. The results show that thermomechanical processing has a significant influence on the evolution of microstructure and texture and on the final mechanical properties, independently of Zn contents. Compared with the T4P-treated (first preaged at 353 K (80 °C) for 12 hours and then naturally aged for 14 days) sheets with high final cold rolling reduction, the T4P-treated sheets with low final cold rolling reduction possess almost identical strength and elongation and higher average r values. Compared with the intermediate annealed sheets with high final cold rolling reduction, the intermediate annealed sheets with low final cold rolling reduction contain a higher number of particles with a smaller size. After solution treatment, in contrast to the sheets with high final cold rolling reduction, the sheets with low final cold rolling reduction possess finer grain structure and tend to form a weaker recrystallization texture. The recrystallization texture may be affected by particle distribution, grain size, and final cold rolling texture. Finally, the visco-plastic self-consistent (VPSC) model was used to predict r values.
Wang, Guang-Kui; Kang, Hong; Bao, Guang-Jie; Lv, Jin-Jun; Gao, Fei
2006-10-01
To investigate the mechanical properties and microstructure of nano -zirconia toughened alumina ceramics with variety of nano-zirconia content in centrifugal infiltrate casting processing of dental all-ceramic. Composite powder with different ethanol-water ratio, obtained serosity from ball milling and centrifugal infiltrate cast processing of green, then sintered at 1 450 degrees C for 8 h. The physical and mechanical properties of the sintered sample after milling and polishing were tested. Microstructures of the surface and fracture of the sintered sample were investigated by SEM. The experimental results showed that there had statistical significience (P < 0.01) on static three-point flexure strength and Vickers Hardness in three kinds of different nano-zirconia content sintered sample. Fracture toughness of 20% group was different from other two groups, while 10% group had not difference from 30% group (P < 0.05). The mechanical properties of this ceramic with 20% nano-zirconia was the best of the three, the static three-point flexure strength was (433 +/- 19) MPa and fracture toughness was (7.50 +/- 0.56) MPa x min 1/2. The intra/inter structure, fracture of intragranular and intergranular on the surface and fracture of sintered sample in microstrucre was also found. Intra/inter structure has strengthen toughness in ceramics. It has better toughness with 20% nano-zirconia, is suitable dental all-ceramic restoratives.
Evaluation of mechanical properties and durability performance of HDPE-wood composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tazi, M.; Erchiqui, F.; Kaddami, H.
The objective of this work is to evaluate the mechanical properties and durability performance of bio-composite materials made from sawdust and thermoplastic polymer (HDPE). For the preparation of the composites, sawdust in different proportions with Maleic Anhydride grafted Polyethylene (MAPE) as the coupling agent was used. The thermal and mechanical properties were successively characterized. The results indicate that adding wood fillers to a polymer matrix increases the degree of crystallinity and improves the tensile strength and ductility of composites. On the contrary, resistance to water absorption decreases as a function of the wood fillers. Scanning electron microscopy (SEM) was usedmore » to analyze morphological structure alteration when exposed to intense weathering. The biodegradability of bio-composites up to 97 days was also investigated; the results indicate that, by increasing the filler content, the amount of weight loss increased as well. In other words, even though the addition of sawdust to thermoplastic polymer improves the mechanical performance of a composite material, it also accelerates the biodegradation rate of the composite. An optimum amount of filler content might compromise the effect of biodegradation and mechanical properties of composite materials.« less
NASA Astrophysics Data System (ADS)
Alcinkaya, Burak; Sel, Kivanc
2018-01-01
The properties of phosphorus doped hydrogenated amorphous silicon carbide (a-SiCx:H) thin films, that were deposited by plasma enhanced chemical vapor deposition technique with four different carbon contents (x), were analyzed and compared with those of the intrinsic a-SiCx:H thin films. The carbon contents of the films were determined by X-ray photoelectron spectroscopy. The thickness and optical energies, such as Tauc, E04 and Urbach energies, of the thin films were determined by UV-Visible transmittance spectroscopy. The electrical properties of the films, such as conductivities and activation energies were analyzed by temperature dependent current-voltage measurements. Finally, the conduction mechanisms of the films were investigated by numerical analysis, in which the standard transport mechanism in the extended states and the nearest neighbor hopping mechanism in the band tail states were taken into consideration. It was determined that, by the effect of phosphorus doping the dominant conduction mechanism was the standard transport mechanism for all carbon contents.
Influence of Content of Al2O3 on Structure and Properties of Nanocomposite Nb-B-Al-O films
NASA Astrophysics Data System (ADS)
Liu, Na; Dong, Lei; Dong, Lei; Yu, Jiangang; Pan, Yupeng; Wan, Rongxin; Gu, Hanqing; Li, Dejun
2015-11-01
Nb-B-Al-O nanocomposite films with different power of Al2O3 were successfully deposited on the Si substrate via multi-target magnetron co-sputtering method. The influences of Al2O3's content on structure and properties of obtained nanocomposite films through controlling Al2O3's power were investigated. Increasing the power of Al2O3 can influence the bombarding energy and cause the momentum transfer of NbB2. This can lead to the decreasing content of Al2O3. Furthermore, the whole films showed monocrystalline NbB2's (100) phase, and Al2O3 shaded from amorphous to weak cubic-crystalline when decreasing content of Al2O3. This structure and content changes were proof by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). When NbB2 grains were far from each other in lower power of Al2O3, the whole films showed a typical nanocomposite microstructure with crystalline NbB2 grains embedded in a matrix of an amorphous Al2O3 phase. Continuing increasing the power of Al2O3, the less content of Al2O3 tended to cause crystalline of cubic-Al2O3 between the close distances of different crystalline NbB2 grains. The appearance of cubic-crystallization Al2O3 can help to raise the nanocomposite films' mechanical properties to some extent. The maximum hardness and elastic modulus were up to 21.60 and 332.78 GPa, which were higher than the NbB2 and amorphous Al2O3 monolithic films. Furthermore, this structure change made the chemistry bond of O atom change from the existence of O-Nb, O-B, and O-Al bonds to single O-Al bond and increased the specific value of Al and O. It also influenced the hardness in higher temperature, which made the hardness variation of different Al2O3 content reduced. These results revealed that it can enhance the films' oxidation resistance properties and keep the mechanical properties at high temperature. The study highlighted the importance of controlling the Al2O3's content to prepare well-defined films with high mechanical properties and thermal stability.
Control of polymerization shrinkage and stress in nanogel-modified monomer and composite materials
Moraes, Rafael R.; Garcia, Jeffrey W.; Barros, Matthew D.; Lewis, Steven H.; Pfeifer, Carmem S.; Liu, JianCheng; Stansbury, Jeffrey W.
2011-01-01
Objectives This study demonstrates the effects of nano-scale prepolymer particles as additives to model dental monomer and composite formulations. Methods Discrete nanogel particles were prepared by solution photopolymerization of isobornyl methacrylate and urethane dimethacrylate in the presence of a chain transfer agent, which also provided a means to attach reactive groups to the prepolymer. Nanogel was added to triethylene glycol dimethacrylate (TEGDMA) in increments between 5 and 40 wt% with resin viscosity, reaction kinetics, shrinkage, mechanical properties, stress and optical properties evaluated. Maximum loading of barium glass filler was determined as a function of nanogel content and composites with varied nanogel content but uniform filler loading were compared in terms of consistency, conversion, shrinkage and mechanical properties. Results High conversion, high molecular weight internally crosslinked and cyclized nanogel prepolymer was efficiently prepared and redispersed into TEGDMA with an exponential rise in viscosity accompanying nanogel content. Nanogel addition at any level produced no deleterious effects on reaction kinetics, conversion or mechanical properties, as long as reactive nanogels were used. A reduction in polymerization shrinkage and stress was achieved in proportion to nanogel content. Even at high nanogel concentrations, the maximum loading of glass filler was only marginally reduced relative to the control and high strength composite materials with low shrinkage were obtained. Significance The use of reactive nanogels offers a versatile platform from which resin and composite handling properties can be adjusted while the polymerization shrinkage and stress development that challenge the adhesive bonding of dental restoratives are controllably reduced. PMID:21388669
Control of polymerization shrinkage and stress in nanogel-modified monomer and composite materials.
Moraes, Rafael R; Garcia, Jeffrey W; Barros, Matthew D; Lewis, Steven H; Pfeifer, Carmem S; Liu, JianCheng; Stansbury, Jeffrey W
2011-06-01
This study demonstrates the effects of nano-scale prepolymer particles as additives to model dental monomer and composite formulations. Discrete nanogel particles were prepared by solution photopolymerization of isobornyl methacrylate and urethane dimethacrylate in the presence of a chain transfer agent, which also provided a means to attach reactive groups to the prepolymer. Nanogel was added to triethylene glycol dimethacrylate (TEGDMA) in increments between 5 and 40 wt% with resin viscosity, reaction kinetics, shrinkage, mechanical properties, stress and optical properties evaluated. Maximum loading of barium glass filler was determined as a function of nanogel content and composites with varied nanogel content but uniform filler loading were compared in terms of consistency, conversion, shrinkage and mechanical properties. High conversion, high molecular weight internally crosslinked and cyclized nanogel prepolymer was efficiently prepared and redispersed into TEGDMA with an exponential rise in viscosity accompanying nanogel content. Nanogel addition at any level produced no deleterious effects on reaction kinetics, conversion or mechanical properties, as long as reactive nanogels were used. A reduction in polymerization shrinkage and stress was achieved in proportion to nanogel content. Even at high nanogel concentrations, the maximum loading of glass filler was only marginally reduced relative to the control and high strength composite materials with low shrinkage were obtained. The use of reactive nanogels offers a versatile platform from which resin and composite handling properties can be adjusted while the polymerization shrinkage and stress development that challenge the adhesive bonding of dental restoratives are controllably reduced. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kryukov, R. E.; Kozyrev, N. A.; Usoltsev, A. A.; Kozyreva, O. E.
2017-09-01
The paper considers the possibility of efficient use of silicomanganese slag for the production of welding fluxes. The results of studying the use of metallurgical wastes as components of welding fluxes are given. Analysis of the results of mechanical properties of the samples made it possible to determine the optimum content of the pulverized fraction less than 0.45 mm in the flux. The composition and technology of manufacturing a new welding flux using slag of silicomanganese production was developed. The effect of fractional composition on the welding-technological properties of fluxes was studied. The optimal content of liquid glass in the flux, which allows a favorable complex of mechanical properties to be obtained, is 20-30%. To reduce the level of contamination of the weld metal with non-metallic oxide inclusions and to increase the mechanical properties of the welded joint, it is proposed to introduce a carbon-fluorine-containing additive FD-UFS into fluxes based on the slag.
NASA Astrophysics Data System (ADS)
Cao, R.; Deng, Z. L.; Ma, Y. H.; Chen, X. L.
2017-06-01
In this work, ethylene vinyl acetate (EVA) is introduced to improve the properties of high-density polyethylene (HDPE)/magnesium hydroxide (MH) composites. The thermal stability, flame retardancy and mechanical properties of HDPE/EVA/MH composites are investigated and discussed. With increasing content of EVA, the limiting oxygen index (LOI) of the composites increases. The thermal stability analysis shows that the initial decomposition temperature begins at a low temperature; however, the residues of the composites at 600°C increase when HDPE is replaced by small amounts of EVA. The early degradation absorbs heat, dilute oxygen and residue. During this process, it protects the matrix inside. Compared with the HDPE/MH and EVA/MH composites, the ternary HDPE/EVA/MH composites exhibit better flame retardancy by increasing the LOI values, and reducing the heat release rate (HRR) and total heat release (THR). With increasing content of EVA, the mechanical properties can also be improved, which is attributed to the good affinity between EVA and MH particles.
Wood of Giant Sequoia: properties and unique characteristics
Douglas D. Piirto
1986-01-01
Wood properties of giant sequoia (Sequoia gigantea [Lindl.] Decne.) were compared with those for other coniferous tree species. Wood properties such as specific gravity, various mechanical properties, extractive content, and decay resistance of young-growth giant sequoia are comparable to or more favorable than those of coast redwood (...
Semi-Degradable Scaffold for Articular Cartilage Replacement
Charlton, DC; Peterson, MGE; Spiller, K; Lowman, A; Torzilli, PA; Maher, SA
2009-01-01
The challenge of designing a construct for the repair of focal cartilage defects such that it mimics the mechanical properties of and can integrate with native cartilage has not been met by existing technologies. Herein we describe a novel construct consisting of a non-degradable poly-vinyl alcohol scaffold to provide long-term mechanical stability, interconnected pores to allow for the infiltration of chondrocytes and poly-lactic glycolic acid microspheres for the incorporation of growth factors to enhance cellular migration. The objective of this study was to characterize the morphological features and mechanical properties of our porous PVA-PLGA construct as a function of PLGA content. Varying the PLGA content was found to have a significant effect on the morphological features of the construct. As PLGA content increased from 10 – 75%, samples exhibited a six-fold increase in average percent porosity, an increase in average microsphere diameter from 8 – 34 µm, and an increase in average pore diameter from 29 – 111 µm. The effect of PLGA content on Aggregate Modulus and Permeability was less profound. Our findings suggest that that morphology of the construct can be tailored to optimize cellular infiltration and the dynamic mechanical response. PMID:18333818
Mechanical properties and shape memory effect of thermal-responsive polymer based on PVA
NASA Astrophysics Data System (ADS)
Lin, Liulan; Zhang, Lingfeng; Guo, Yanwei
2018-01-01
In this study, the effect of content of glutaraldehyde (GA) on the shape memory behavior of a shape memory polymer based on polyvinyl alcohol chemically cross-linked with GA was investigated. Thermal-responsive shape memory composites with three different GA levels, GA-PVA (3 wt%, 5 wt%, 7 wt%), were prepared by particle melting, mold forming and freeze-drying technique. The mechanical properties, thermal properties and shape memory behavior were measured by differential scanning calorimeter, physical bending test and cyclic thermo-mechanical test. The addition of GA to PVA led to a steady shape memory transition temperature and an improved mechanical compressive strength. The composite with 5 wt% of GA exhibited the best shape recoverability. Further increase in the crosslinking agent content of GA would reduce the recovery force and prolong the recovery time due to restriction in the movement of the soft PVA chain segments. These results provide important information for the study on materials in 4D printing.
NASA Astrophysics Data System (ADS)
Cherneva, S.; Iankov, R.; Stoychev, D.
2015-10-01
Mechanical properties of thin CuSn alloy films containing different content of Sn (0.06 - 67.5 wt.%) were investigated by means of nanoindentation experiments, using Nanoindenter G200 (Agilent Technologies), equipped with Berkovich indenter tip. The films were electrochemically deposited on screen-intermediate Ni film with thickness about 3 µm electrodeposited on Cu or brass (Cu66Zn34) substrates with thickness respectively 300 µm and 500 µm. The thicknesses of investigated CuSn films varied from 0.138 to 5.47 µm. Mechanical properties of the Cu and brass substrates were investigated too. As a result of nanoindentation experiments, load-displacement curves were obtained and two mechanical characteristics of the substrate and investigated films - indentation hardness (HIT) and indentation modulus (EIT) - were calculated using Oliver & Pharr approximation method. Dependence of indentation modulus and indentation hardness on the depth of indentation, content of Sn, structure and phase composition of the alloy films was investigated and discussed.
Mechanical Properties of Mg2Si/Mg Composites via Powder Metallurgy Process
NASA Astrophysics Data System (ADS)
Muramatsu, Hiroshi; Kondoh, Katsuyoshi; Yuasa, Eiji; Aizawa, Tatsuhiko
The mechanical properties of the Mg2Si/Mg composites solid-state synthesized from the mixed Mg-Si powders have been investigated. The macro-hardness (HRE) and the tensile strength of the composites increase with increasing the Si content and decreasing the Si size. The particle size of the synthesized Mg2Si depends on the initial Si size; the mechanical properties of the Mg2Si/Mg composite are remarkably improved by using fine Si particles or by decreasing the grain size of Mg matrix grains when the powder mixture was prepared via bulk mechanical alloying process.
NASA Astrophysics Data System (ADS)
Bai, Xuebing; Li, Jinlong; Zhu, Lihui; Wang, Liping
2018-01-01
The copper-doped TiSiN coatings were deposited on 316L stainless steel by reactive co-sputtering in multi-arc ion plating. The surface morphology and structure of the coating were analyzed by scanning electron microcopies, X-ray diffraction and X-ray photoelectron spectroscopy. The hardness was tested using Nano-indentation. The influence of the copper content in the coatings on the structure and mechanical properties of TiSiN-Cu coatings was investigated. Antifouling behaviors of the coatings were evaluated by analyzing adhesion and propagation of P. tricornutum, N. closterium, and Chlorella sp. The TiSiN-Cu coatings had a unique structure of amorphous Si3N4 and nanocrystalline nc-TiN/nc-Cu. The Cu-TiSiN coatings can inhibit effectively attachment and colonization of the algae on the surface. When the copper content increases from 6.75 at.% to 25.15 at.%, the coatings show an obvious decrease in hardness, significantly increase in the surface roughness and greatly weaken in antifouling properties. When the copper content is 6.75 at.%, the coating has the highest hardness with 30 GPa, and the best reduction ratio with 89%, 93% and 57% attachment of P. triceratium, N. closterium and Chlorella sp., respectively. The TiSiN-Cu coating with a copper dosage of 6.75 at.% has the excellent mechanical properties and capability of killing effectively microalgae.
Laboratory tests on fungal resistance of wood filled polyethylene composites
Craig M. Clemons; Rebecca E. Ibach
2002-01-01
A standard method for determining the durability of structural wood was modified for testing the fungal resistance of composites made from high density polyethylene filled with 50% wood flour. Moisture content, mechanical properties, and weight loss were measured over 12 weeks exposure to brown-and white-rot fungi. Mechanical properties were decreased, but irreversible...
Research of Mechanical Property Gradient Distribution of Al-Cu Alloy in Centrifugal Casting
NASA Astrophysics Data System (ADS)
Sun, Zhi; Sui, Yanwei; Liu, Aihui; Li, Bangsheng; Guo, Jingjie
Al-Cu alloy castings are obtained using centrifugal casting. The regularity of mechanical property gradient distribution of Al-Cu alloy castings with the same centrifugal radius at different positions is investigated. The result shows that the tensile strength, yield strength, elongation and microscope hardness exhibit the following gradient distribution characteristic — high on both sides and low on the center. The trend of mechanical property gradient distribution of Al-Cu alloy increases with the increase in the rotation speed. Moreover, the mechanical properties of casting centerline two sides have asymmetry. The reason is that the grain size of casting centerline two sides and Al2Cu phase and Cu content change correspondingly.
Microstructure and Properties of Polypropylene/Carbon Nanotube Nanocomposites
Bikiaris, Dimitrios
2010-01-01
In the last few years, great attention has been paid to the preparation of polypropylene (PP) nanocomposites using carbon nanotubes (CNTs) due to the tremendous enhancement of the mechanical, thermal, electrical, optical and structural properties of the pristine material. This is due to the unique combination of structural, mechanical, electrical, and thermal transport properties of CNTs. However, it is well-known that the properties of polymer-based nanocomposites strongly depend on the dispersion of nanofillers and almost all the discussed properties of PP/CNTs nanocomposites are strongly related to their microstructure. PP/CNTs nanocomposites were, mainly, prepared by melt mixing and in situ polymerization. Young’s modulus, tensile strength and storage modulus of the PP/CNTs nanocomposites can be increased with increasing CNTs content due to the reinforcement effect of CNTs inside the polymer matrix. However, above a certain CNTs content the mechanical properties are reduced due to the CNTs agglomeration. The microstructure of nanocomposites has been studied mainly by SEM and TEM techniques. Furthermore, it was found that CNTs can act as nucleating agents promoting the crystallization rates of PP and the addition of CNTs enhances all other physical properties of PP. The aim of this paper is to provide a comprehensive review of the existing literature related to PP/CNTs nanocomposite preparation methods and properties studies.
Properties of Wheat-Straw Boards with Frw Based on Interface Treatment
NASA Astrophysics Data System (ADS)
Zhu, X. D.; Wang, F. H.; Liu, Y.
This paper explored the effect of MDI, UF and FRW content on the mechanical and fire retardant property of straw based panels with surface alkali liquor processing. In order to manufacture the straw based panel with high quality, low toxic and fire retardant, the interface of wheat-straw was treated with alkaline liquid, and the orthogonal test was carried out to optimize the technical parameters. The conductivity and diffusion coefficient K of the straw material after alkaline liquid treatment increased obviously. This indicated that alkaline liquid treatment improved the surface wet ability of straw, which is helpful for the infiltration of resin. The results of orthogonal test showed that the optimized treating condition was alkaline liquid concentration as 0.4-0.8%, alkaline dosage as 1:2.5-1:4.5, alkalinetreated time as 12h-48 h.The physical and mechanical properties of wheat-straw boards after treated increased remarkably and it could satisfy the national standard. The improvement of the straw surface wet ability is helpful to the forming of chemical bond. Whereas the variance analysis of the fire retardant property of straw based panel showed that TTI, pkHRR and peak value appearance time were not affected by the MDI, UF and FRW content significantly. The results of orthogonal test showed that the optimized processing condition was MDI content as 3%, UF resin content as 6% and the FRW content as 10%.
NASA Astrophysics Data System (ADS)
Sheng, Chan Kok; Amin, Khairul Anuar Mat; Kee, Kwa Bee; Hassan, Mohd Faiz; Ali, E. Ghapur E.
2018-05-01
In this study, effect of wood flour content on the color, surface chemistry, mechanical properties and surface morphology of wood-plastic composite (WPC) on different mixture ratios of recycled high density polyethylene (rHDPE) and wood flour were investigated in detail. The presence of wood flour in the composite indicates a significant total color change and a decrease of lightness. Functional groups of wood flour in WPC can be seen clearer from the Fourier transform infrared (FTIR) spectra as the wood flour content increases. The mechanical tensile testing shows that the tensile strength of Young's modulus is improved, whereas the strain and elongation at break were reduced by the addition of wood flour. The gap between the wood flour microvoid fibre and rHDPE matrix becomes closer when the wood flour content is increased as observed by scanning electron microscope (SEM) image. This finding implies a significant improvement on the interaction of interfacial adhesion between the rHDPE matrix and wood flour filler in the present WPC.
Study of the changes in the magnetic properties of stainless steels under mechanical treatment
NASA Astrophysics Data System (ADS)
Iankov, R.; Rusanov, V.; Paneva, D.; Mitov, I.; Trautwein, A. X.
2016-12-01
Six types of stainless steels (SS) were studied for changes in its structure and magnetic properties under mechanical treatment. Depending on intensity and duration of the process of plastic deformation and the SS type the paramagnetic austenite structure transforms partially to completely into ferrite structure with ferromagnetic behaviour. Some of the SS tested were found slightly modified yet in the process of its manufacturing. Only one SS type with high Ni content preserved its structure and paramagnetic properties even after very intense mechanical treatment.
Durability Characteristics Analysis of Plastic Worm Wheel with Glass Fiber Reinforced Polyamide.
Kim, Gun-Hee; Lee, Jeong-Won; Seo, Tae-Il
2013-05-10
Plastic worm wheel is widely used in the vehicle manufacturing field because it is favorable for weight lightening, vibration and noise reduction, as well as corrosion resistance. However, it is very difficult for general plastics to secure the mechanical properties that are required for vehicle gears. If the plastic resin is reinforced by glass fiber in the fabrication process of plastic worm wheel, it is possible to achieve the mechanical properties of metallic material levels. In this study, the mechanical characteristic analysis of the glass-reinforced plastic worm wheel, according to the contents of glass fiber, is performed by analytic and experimental methods. In the case of the glass fiber-reinforced resin, the orientation and contents of glass fibers can influence the mechanical properties. For the characteristic prediction of plastic worm wheel, computer-aided engineering (CAE) analysis processes such as structural and injection molding analysis were executed with the polyamide resin reinforcement glass fiber (25 wt %, 50 wt %). The injection mold for fabricating the prototype plastic worm wheel was designed and made to reflect the CAE analysis results. Finally, the durability of prototype plastic worm wheel fabricated by the injection molding process was evaluated by the experimental method and the characteristics according to the glass fiber contents.
Durability Characteristics Analysis of Plastic Worm Wheel with Glass Fiber Reinforced Polyamide
Kim, Gun-Hee; Lee, Jeong-Won; Seo, Tae-Il
2013-01-01
Plastic worm wheel is widely used in the vehicle manufacturing field because it is favorable for weight lightening, vibration and noise reduction, as well as corrosion resistance. However, it is very difficult for general plastics to secure the mechanical properties that are required for vehicle gears. If the plastic resin is reinforced by glass fiber in the fabrication process of plastic worm wheel, it is possible to achieve the mechanical properties of metallic material levels. In this study, the mechanical characteristic analysis of the glass-reinforced plastic worm wheel, according to the contents of glass fiber, is performed by analytic and experimental methods. In the case of the glass fiber-reinforced resin, the orientation and contents of glass fibers can influence the mechanical properties. For the characteristic prediction of plastic worm wheel, computer-aided engineering (CAE) analysis processes such as structural and injection molding analysis were executed with the polyamide resin reinforcement glass fiber (25 wt %, 50 wt %). The injection mold for fabricating the prototype plastic worm wheel was designed and made to reflect the CAE analysis results. Finally, the durability of prototype plastic worm wheel fabricated by the injection molding process was evaluated by the experimental method and the characteristics according to the glass fiber contents. PMID:28809248
NASA Astrophysics Data System (ADS)
Pardo, A.; Buijnsters, J. G.; Endrino, J. L.; Gómez-Aleixandre, C.; Abrasonis, G.; Bonet, R.; Caro, J.
2013-09-01
The influence of the metal content (Cu: 0-28 at.%) on the structural, mechanical and tribological properties of amorphous carbon films grown by pulsed filtered cathodic vacuum arc deposition is investigated. Silicon and AISI 301 stainless steel have been used as substrate materials. The microstructure, composition and bonding structure have been determined by scanning electron microscopy, combined Rutherford backscattered spectroscopy-nuclear reaction analysis, and Raman spectroscopy, respectively. The mechanical and tribological properties have been assessed using nanoindentation and reciprocating sliding (fretting tests) and these have been correlated with the elemental composition of the films. A self-organized multilayered structure consisting of alternating carbon and copper metal nanolayers (thickness in the 25-50 nm range), whose formation is enhanced by the Cu content, is detected. The nanohardness and Young’s modulus decrease monotonically with increasing Cu content. A maximum value of the Young’s modulus of about 255 GPa is obtained for the metal-free film, whereas it drops to about 174 GPa for the film with a Cu content of 28 at.%. In parallel, a 50% drop in the nanohardness from about 28 GPa towards 14 GPa is observed for these coatings. An increase in the Cu content also produces an increment of the coefficient of friction in reciprocating sliding tests performed against a corundum ball counterbody. As compared to the metal free film, a nearly four times higher coefficient of friction value is detected in the case of a Cu content of 28 at.%. Nevertheless, the carbon-copper composite coatings produced a clear surface protection of the substrate despite an overall increase in wear loss with increasing Cu content in the range 3-28 at.%.
Sharmin, Nusrat; Parsons, Andrew J; Rudd, Chris D
2014-01-01
Previous studies investigating manufacture of phosphate-based glass fibres from glasses fixed with P2O5 content less than 50 mol% showed that continuous manufacture without breakage was very difficult. In this study, nine phosphate-based glass formulations from the system P2O5-CaO-Na2O-MgO-B2O3 were prepared with P2O5 contents fixed at 40, 45 and 50 mol%, where Na2O was replaced by 5 and 10 mol% B2O3 and MgO and CaO were fixed to 24 and 16 mol%, respectively. The effect of B2O3 addition on the fibre drawing, fibre mechanical properties and dissolution behaviour was investigated. It was found that addition of 5 and 10 mol% B2O3 enabled successful drawing of continuous fibres from glasses with phosphate (P2O5) contents fixed at 40, 45 and 50 mol%. The mechanical properties of the fibres were found to significantly increase with increasing B2O3 content. The highest tensile strength (1200 ± 130 MPa) was recorded for 45P2O5-16CaO-5Na2O-24MgO-10B2O3 glass fibres. The fibres were annealed, and a comparison of the mechanical properties and mode of degradation of annealed and non-annealed fibres were investigated. A decrease in tensile strength and an increase in tensile modulus were observed for the annealed fibres. An assessment of the change in mechanical properties of both the annealed and non-annealed fibres was performed in phosphate-buffered saline (PBS) at 37℃ for 28 and 60 days, respectively. Initial loss of mechanical properties due to annealing was found to be recovered with degradation. The B2O3-containing glass fibres were found to degrade at a much slower rate as compared to the non-B2O3-containing fibres. Both annealed and non-annealed fibres exhibited a peeling effect of the fibre's outer layer during degradation. PMID:24939962
Sharmin, Nusrat; Parsons, Andrew J; Rudd, Chris D; Ahmed, Ifty
2014-11-01
Previous studies investigating manufacture of phosphate-based glass fibres from glasses fixed with P2O5 content less than 50 mol% showed that continuous manufacture without breakage was very difficult. In this study, nine phosphate-based glass formulations from the system P2O5-CaO-Na2O-MgO-B2O3 were prepared with P2O5 contents fixed at 40, 45 and 50 mol%, where Na2O was replaced by 5 and 10 mol% B2O3 and MgO and CaO were fixed to 24 and 16 mol%, respectively. The effect of B2O3 addition on the fibre drawing, fibre mechanical properties and dissolution behaviour was investigated. It was found that addition of 5 and 10 mol% B2O3 enabled successful drawing of continuous fibres from glasses with phosphate (P2O5) contents fixed at 40, 45 and 50 mol%. The mechanical properties of the fibres were found to significantly increase with increasing B2O3 content. The highest tensile strength (1200 ± 130 MPa) was recorded for 45P2O5-16CaO-5Na2O-24MgO-10B2O3 glass fibres. The fibres were annealed, and a comparison of the mechanical properties and mode of degradation of annealed and non-annealed fibres were investigated. A decrease in tensile strength and an increase in tensile modulus were observed for the annealed fibres. An assessment of the change in mechanical properties of both the annealed and non-annealed fibres was performed in phosphate-buffered saline (PBS) at 37℃ for 28 and 60 days, respectively. Initial loss of mechanical properties due to annealing was found to be recovered with degradation. The B2O3-containing glass fibres were found to degrade at a much slower rate as compared to the non-B2O3-containing fibres. Both annealed and non-annealed fibres exhibited a peeling effect of the fibre's outer layer during degradation. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Properties of boride-added powder metallurgy magnesium alloys
NASA Astrophysics Data System (ADS)
Tanaka, Atsushi; Yoshimura, Syota; Fujima, Takuya; Takagi, Ken-ichi
2009-06-01
Magnesium alloys with metallic borides, magnesium diboride (MgB2) or aluminum diboride (AlB2), were investigated regarding their mechanical properties, transverse rupture strength (TRS) and micro Vickers hardness (HV). The alloys were made from pure Mg, Al and B powders by mechanical alloying and hot pressing to have boride content of between 2.0 and 20 vol%. The alloy with AlB2 exhibited an obvious improvement of HV around a boride content of 6 vol% though the other alloy, with MgB2, did not. TRS showed moderate maxima around the same boride content region for the both alloys. X-ray diffraction measurements indicated an intermetallic compound, Mg17Al12, formed in the alloy with AlB2, which was consistent with its higher hardness.
Lee, Ji Hye; Song, Dae Woong; Park, Young Hwan; Um, In Chul
2016-08-01
Regenerated silk film has been increasingly attracting the research community's attention for biomedical applications due to its good biocompatibility and excellent cyto-compatibility. However, some limitations regarding its mechanical properties, such as brittleness, have restricted the use of silk films for industrial biomedical applications. In this study, regenerated silk films with different residual sericin content were prepared applying controlled degumming conditions to evaluate the effect of sericin content on the structure and properties of the films generated. When the residual sericin content increased to 0.6%, crystallinity index and breaking strength of silk films were increased. Above this value, these parameters then decreased. A 1.5 fold increase of silk film elongation properties was obtained when incorporating 16% sericin. Regardless of sericin content, all regenerated silk films showed excellent cyto-compatibility, comparable to the one obtained with tissue culture plates. Copyright © 2016 Elsevier B.V. All rights reserved.
Irradiation effect on mechanical properties in structural materials of fast breeder reactor plant
NASA Astrophysics Data System (ADS)
Nagae, Yuji; Takaya, Shigeru; Wakai, Eiichi; Aoto, Kazumi
2011-07-01
The effects of displacement per atom (dpa) level, helium content, and the ratio of helium content to dpa level on the tensile and creep properties have been investigated in the assumed irradiation damage range of FBR structural materials. The assumed irradiation damage range is up to about 1 dpa and about 30 appm for helium content. Austenitic stainless steel and high-chromium martensitic steel are considered as FBR structural materials. As a result, it is shown that the dpa level is a promising index for evaluating neutron irradiation damage.
NASA Astrophysics Data System (ADS)
Yakushin, V. A.; Stirna, U. K.; Zhmud', N. P.
1999-09-01
The dependence of physical and mechanical properties of monolithic and foamed rigid polyurethanes on the content of flame retardants was investigated at 293 and 98 K. The character of the influence of the content of trichloroethyl phosphate on the ultimate tensile elongation and the coefficient of linear thermal expansion for monolithic and foamed polyurethanes at a temperature of 98 K was established.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Futao, E-mail: dongft@sina.com; Du, Linxiu; Liu, Xianghua
2013-10-15
The influence of Mn,S and B contents on microstructural characteristics, mechanical properties and hydrogen trapping ability of low-carbon Al-killed enamel steel was investigated. The materials were produced and processed in a laboratory and the ultra-fast continuous annealing processing was performed using a continuous annealing simulator. It was found that increasing Mn,S contents in steel can improve its hydrogen trapping ability which is attributed by refined ferrite grains, more dispersed cementite and added MnS inclusions. Nevertheless, it deteriorates mechanical properties of steel sheet. Addition of trace boron results in both good mechanical properties and significantly improved hydrogen trapping ability. The boronmore » combined with nitrogen segregating at grain boundaries, cementite and MnS inclusions, provides higher amount of attractive hydrogen trapping sites and raises the activation energy for hydrogen desorption from them. - Highlights: • We study microstructures and properties in low-carbon Al-killed enamel steel. • Hydrogen diffusion coefficients are measured to reflect fish-scale resistance. • Manganese improves hydrogen trapping ability but decrease deep-drawing ability. • Boron improves both hydrogen trapping ability and deep-drawing ability. • Both excellent mechanical properties and fish-scale resistance can be matched.« less
Fracture toughness and sliding properties of magnetron sputtered CrBC and CrBCN coatings
NASA Astrophysics Data System (ADS)
Wang, Qianzhi; Zhou, Fei; Ma, Qiang; Callisti, Mauro; Polcar, Tomas; Yan, Jiwang
2018-06-01
CrBC and CrBCN coatings with low and high B contents were deposited on 316L steel and Si wafers using an unbalanced magnetron sputtering system. Mechanical properties including hardness (H), elastic modulus (E) and fracture toughness (KIc) as well as residual stresses (σ) were quantified. A clear correlation between structural, mechanical and tribological properties of coatings was found. In particular, structural analyses indicated that N incorporation in CrBC coatings with high B content caused a significant structural evolution of the nanocomposite structure (crystalline grains embedded into an amorphous matrix) from nc-CrB2/(a-CrBx, a-BCx) to nc-CrN/(a-BCx, a-BN). As a result, the hardness of CrBC coating with high B content decreased from 23.4 to 16.3 GPa but the fracture toughness was enhanced. Consequently, less cracks initiated on CrBCN coatings during tribological tests, which combined with the shielding effect of a-BN on wear debris, led to a low friction coefficient and wear rate.
Enhanced wear performance of ultra high molecular weight polyethylene crosslinked by organosilane.
Tang, C Y; Xie, X L; Wu, X C; Li, R K Y; Mai, Y W
2002-11-01
Ultra high molecular weight polyethylene (UHMWPE) crosslinked by organosilane was thermal compression molded. The organosilane used was the tri-ethyloxyl vinyl silane. Its gelation, melting behavior, crystallinity, mechanical and wear-resisting properties were systematically investigated. The results showed that the gel ratio of UHMWPE increases with the incorporation of organosilane. At a low content of organosilane, the melting point and crystallinity of the crosslinked UHMWPE increase, and hence the mechanical and wear-resisting properties are improved. However, at a high content of organosilane, these performances of the crosslinked UHMWPE become worse. At 0.4 phr silane, the wear resistance of crosslinked UHMWPE reaches its optimum value.
Mechanical properties of kenaf bast and core fibre reinforced unsaturated polyester composites
NASA Astrophysics Data System (ADS)
Ishak, M. R.; Leman, Z.; Sapuan, S. M.; Edeerozey, A. M. M.; Othman, I. S.
2010-05-01
Kenaf fibre has high potential to be used for composite reinforcement in biocomposite material. It is made up of an inner woody core and an outer fibrous bark surrounding the core. The aim of this study was to compare the mechanical properties of short kenaf bast and core fibre reinforced unsaturated polyester composites with varying fibre weight fraction i.e. 0%, 5%, 10%, 20%, 30% and 40%. The compression moulding technique was used to prepare the composite specimens for tensile, flexural and impact tests in accordance to the ASTM D5083, ASTM D790 and ASTM D256 respectively. The overall results showed that the composites reinforced with kenaf bast fibre had higher mechanical properties than kenaf core fibre composites. The results also showed that the optimum fibre content for achieving highest tensile strength for both bast and core fibre composites was 20%wt. It was also observed that the elongation at break for both composites decreased as the fibre content increased. For the flexural strength, the optimum fibre content for both composites was 10%wt while for impact strength, it was at 10%wt and 5%wt for bast and core fibre composites respectively.
Tran, Chieu D; Prosenc, Franja; Franko, Mladen; Benzi, Gerald
2016-10-20
Novel composites between cellulose (CEL) and keratin (KER) from three different sources (wool, hair and chicken feather) were successfully synthesized in a simple one-step process in which butylmethylimidazolium chloride (BMIm(+)Cl(-)), an ionic liquid, was used as the sole solvent. The method is green and recyclable because [BMIm(+)Cl(-)] used was recovered for reuse. Spectroscopy (FTIR, XRD) and imaging (SEM) results confirm that CEL and KER remain chemically intact and homogeneously distributed in the composites. KER retains some of its secondary structure in the composites. Interestingly, the minor differences in the structure of KER in wool, hair and feather produced pronounced differences in the conformation of their corresponding composites with wool has the highest α-helix content and feather has the lowest content. These results correlate well with mechanical and antimicrobial properties of the composites. Specifically, adding CEL into KER substantially improves mechanical strength of [CEL+KER] composites made from all three different sources, wool, hair and chicken feathers i.e., [CEL+wool], [CEL+hair] and [CEL+feather]. Since mechanical strength is due to CEL, and CEL has only random structure, [CEL+feather] has, expectedly, the strongest mechanical property because feather has the lowest content of α-helix. Conversely, [CEL+wool] composite has the weakest mechanical strength because wool has the highest α-helix content. All three composites exhibit antibacterial activity against methicillin resistant Staphylococcus aureus (MRSA). The antibacterial property is due not to CEL but to the protein and strongly depends on the type of the keratin, namely, the bactericidal effect is strongest for feather and weakest for wool. These results together with our previous finding that [CEL+KER] composites can control release of drug such as ciprofloxacin clearly indicate that these composites can potentially be used as wound dressing. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effect of Root Moisture Content and Diameter on Root Tensile Properties.
Yang, Yuanjun; Chen, Lihua; Li, Ning; Zhang, Qiufen
2016-01-01
The stabilization of slopes by vegetation has been a topical issue for many years. Root mechanical characteristics significantly influence soil reinforcement; therefore it is necessary to research into the indicators of root tensile properties. In this study, we explored the influence of root moisture content on tensile resistance and strength with different root diameters and for different tree species. Betula platyphylla, Quercus mongolica, Pinus tabulaeformis, and Larix gmelinii, the most popular tree species used for slope stabilization in the rocky mountainous areas of northern China, were used in this study. A tensile test was conducted after root samples were grouped by diameter and moisture content. The results showedthat:1) root moisture content had a significant influence on tensile properties; 2) slightly loss of root moisture content could enhance tensile strength, but too much loss of water resulted in weaker capacity for root elongation, and consequently reduced tensile strength; 3) root diameter had a strong positive correlation with tensile resistance; and4) the roots of Betula platyphylla had the best tensile properties when both diameter and moisture content being controlled. These findings improve our understanding of root tensile properties with root size and moisture, and could be useful for slope stabilization using vegetation.
Effect of Root Moisture Content and Diameter on Root Tensile Properties
Yang, Yuanjun; Chen, Lihua; Li, Ning; Zhang, Qiufen
2016-01-01
The stabilization of slopes by vegetation has been a topical issue for many years. Root mechanical characteristics significantly influence soil reinforcement; therefore it is necessary to research into the indicators of root tensile properties. In this study, we explored the influence of root moisture content on tensile resistance and strength with different root diameters and for different tree species. Betula platyphylla, Quercus mongolica, Pinus tabulaeformis, and Larix gmelinii, the most popular tree species used for slope stabilization in the rocky mountainous areas of northern China, were used in this study. A tensile test was conducted after root samples were grouped by diameter and moisture content. The results showedthat:1) root moisture content had a significant influence on tensile properties; 2) slightly loss of root moisture content could enhance tensile strength, but too much loss of water resulted in weaker capacity for root elongation, and consequently reduced tensile strength; 3) root diameter had a strong positive correlation with tensile resistance; and4) the roots of Betula platyphylla had the best tensile properties when both diameter and moisture content being controlled. These findings improve our understanding of root tensile properties with root size and moisture, and could be useful for slope stabilization using vegetation. PMID:27003872
Enriquez, Erik; Chen, Aiping; Harrell, Zach; ...
2017-04-18
Controlling oxygen content in perovskite oxides with ABO 3 structure is one of most critical steps for tuning their functionality. Notably, there have been tremendous efforts to understand the effect of changes in oxygen content on the properties of perovskite thin films that are not composed of cations with multiple valance states. Here, we study the effect of oxygen vacancies on structural and electrical properties in epitaxial thin films of SrFeO 3-δ (SFO), where SFO is a compound with multiple valance states at the B site. Various annealing treatments are used to produce different oxygen contents in the films, whichmore » has resulted in significant structural changes in the fully strained SFO films. The out-of-plane lattice parameter and tetragonality increase with decreasing oxygen concentration, indicating the crystal structure is closely related to the oxygen content. Importantly, variation of the oxygen content in the films significantly affects the dielectric properties, leakage conduction mechanisms, and the resistive hysteresis of the materials. These results establish the relationship between oxygen content and structural and functional properties for a range of multivalent transition metal oxides.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enriquez, Erik; Chen, Aiping; Harrell, Zach
Controlling oxygen content in perovskite oxides with ABO 3 structure is one of most critical steps for tuning their functionality. Notably, there have been tremendous efforts to understand the effect of changes in oxygen content on the properties of perovskite thin films that are not composed of cations with multiple valance states. Here, we study the effect of oxygen vacancies on structural and electrical properties in epitaxial thin films of SrFeO 3-δ (SFO), where SFO is a compound with multiple valance states at the B site. Various annealing treatments are used to produce different oxygen contents in the films, whichmore » has resulted in significant structural changes in the fully strained SFO films. The out-of-plane lattice parameter and tetragonality increase with decreasing oxygen concentration, indicating the crystal structure is closely related to the oxygen content. Importantly, variation of the oxygen content in the films significantly affects the dielectric properties, leakage conduction mechanisms, and the resistive hysteresis of the materials. These results establish the relationship between oxygen content and structural and functional properties for a range of multivalent transition metal oxides.« less
Processing, Properties and Arc Jet Testing of HfB2/SiC
NASA Technical Reports Server (NTRS)
Johnson, Sylvia M.; Beckman, Sarah; Irby, Edward; Ellerby, Don; Gasch, Matt; Gusman, Michael
2004-01-01
Contents include the following: Background on Ultra High Temperature Ceramics - UHTCs. Summary UNTC processing: power processing, scale-up. Preliminary material properties: mechanical, thermal. Arc jet testing: flat face models, cone models. Summary.
Cyclic fatigue of a high-strength corrosion-resistant sheet TRIP steel
NASA Astrophysics Data System (ADS)
Terent'ev, V. F.; Alekseeva, L. E.; Korableva, S. A.; Prosvirnin, D. V.; Pankova, M. N.; Filippov, G. A.
2014-04-01
The mechanical properties of 0.3- and 0.8-mm-thick high-strength corrosion-resistant TRIP steel having various levels of strength properties are studied during static and cyclic loading in the high-cycle fatigue range. The fatigue fracture surface is analyzed by fractography, and the obtained results demonstrate ductile and quasi-brittle fracture mechanisms of this steel depending on the strength properties of the steel and the content of deformation martensite in it.
Research on mechanical properties of carbon fiber /polyamide reinforced PP composites
NASA Astrophysics Data System (ADS)
Chen, Xinghui; Yu, Qiang; Liu, Lixia; Ji, Wenhua; Yang, Li; Fan, Dongli
2017-10-01
The polyamide composites reinforced by carbon fiber/polypropylene are produced by injection molding processing. The flow abilities and mechanical properties of the CF/PA/PP composite materials are studied by the fusion index instrument and the universal testing machine. The results show that with the content of carbon fiber/polyamide increase, the impact breaking strength and the tensile property of the composite materials increase, which is instructive to the actual injection production of polypropylene products.
Production of Selected Key Ductile Iron Castings Used in Large-Scale Windmills
NASA Astrophysics Data System (ADS)
Pan, Yung-Ning; Lin, Hsuan-Te; Lin, Chi-Chia; Chang, Re-Mo
Both the optimal alloy design and microstructures that conform to the mechanical properties requirements of selected key components used in large-scale windmills have been established in this study. The target specifications in this study are EN-GJS-350-22U-LT, EN-GJS-350-22U-LT and EN-GJS-700-2U. In order to meet the impact requirement of spec. EN-GJS-350-22U-LT, the Si content should be kept below 1.97%, and also the maximum pearlite content shouldn't exceed 7.8%. On the other hand, Si content below 2.15% and pearlite content below 12.5% were registered for specification EN-GJS-400-18U-LT. On the other hand, the optimal alloy designs that can comply with specification EN-GJS-700-2U include 0.25%Mn+0.6%Cu+0.05%Sn, 0.25%Mn+0.8%Cu+0.01%Sn and 0.45%Mn+0.6%Cu+0.01%Sn. Furthermore, based upon the experimental results, multiple regression analyses have been performed to correlate the mechanical properties with chemical compositions and microstructures. The derived regression equations can be used to attain the optimal alloy design for castings with target specifications. Furthermore, by employing these regression equations, the mechanical properties can be predicted based upon the chemical compositions and microstructures of cast irons.
Yang, Manli; Shi, Jinsheng; Xia, Yanzhi
2018-02-01
Sodium alginate (SA)/polyvinyl alcohol (PVA)/SiO 2 nanocomposite films were prepared by in situ polymerization through solution casting and solvent evaporation. The effect of different SA/PVA ratios, SiO 2 , and glycerol content on the mechanical properties, water content, water solubility, and water vapor permeability were studied. The nanocomposite films were characterized by Fourier transform infrared, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and thermal stability (thermogravimetric analysis/differential thermogravimetry) analyses. The nanocomposites showed the highest values of mechanical properties, such as SA/PVA ratio, SiO 2 , and glycerol content was 7:3, 6wt.%, and 0.25g/g SA, respectively. The tensile strength and elongation at break (E%) of the nanocomposites increased by 525.7% and 90.7%, respectively, compared with those of the pure alginate film. The Fourier transform infrared spectra showed a new SiOC band formed in the SA/PVA/SiO 2 nanocomposite film. The scanning electron microscopy image revealed good adhesion between SiO 2 and SA/PVA matrix. After the incorporation of PVA and SiO 2 , the water resistance of the SA/PVA/SiO 2 nanocomposite film was markedly improved. Transparency decreased with increasing PVA content but was enhanced by adding SiO 2 . Copyright © 2017. Published by Elsevier B.V.
Development and characterisation of composite films made of kefiran and starch.
Motedayen, Ali Akbar; Khodaiyan, Faramarz; Salehi, Esmail Atai
2013-02-15
In this study, new edible composite films were prepared by blending kefiran with corn starch. Film-forming solutions of different ratios of kefiran to corn starch (100/0, 70/30, 50/50, 30/70) were cast at room temperature. The effects of starch addition on the resulting films' physical, mechanical and water-vapor permeability (WVP) properties were investigated. Increasing starch content from 0% to 50% (v/v) decreased the WVP of films; however, with further starch addition the WVP increased. Also, this increase in starch content increased the tensile strength and extensibility of the composite films. However, these mechanical properties decreased at higher starch contents. Dynamic mechanical thermal analysis (DMTA) curves showed that addition of starch at all levels increased the glass transition temperature of films. The electron scanning micrograph for the composite film was homogeneous, without signs of phase separation between the components. Thus, it was observed that these two film-forming components were compatible, and that an interaction existed between them. Copyright © 2012 Elsevier Ltd. All rights reserved.
Properties of rigid polyurethane foams filled with glass microspheres
NASA Astrophysics Data System (ADS)
Yakushin, V.; Bel'kova, L.; Sevastyanova, I.
2012-11-01
The effect of hollow glass microspheres with a density of 125 kg/m3 on the properties of low-density (54-90 kg/m3) rigid polyurethane foams is investigated. The thermal expansion coefficient of the foams and their properties in tension and compression in relation to the content of the microspheres (0.5-5 wt.%) are determined. An increase in the characteristics of the material in compression in the foam rise direction with increasing content of filler is revealed. The limiting content of the microspheres above which the mechanical characteristics of the filled foams begin to decrease is found. The distribution of the microspheres in elements of the cellular structure of the polyurethane foams is examined.
Wang, Kun; Wang, Wenhang; Ye, Ran; Xiao, Jingdong; Liu, Yaowei; Ding, Junsheng; Zhang, Shaojing; Liu, Anjun
2017-08-01
In order to obtain new reinforcing bio-fillers to improve the physicochemical properties of gelatin-based films, three types of maize starch, waxy maize starch (Ap), normal starch (Ns) and high-amylose starch (Al), were incorporated into gelatin film and the resulting film properties were investigated, focusing on the impact of amylose content. The thickness, opacity and roughness of gelatin film increased depending on the amylose content along with the starch concentration. The effects of the three starches on the mechanical properties of gelatin film were governed by amylose content, starch concentration as well as environmental relative humidity (RH). At 75% RH, the presence of Al and Ns in the gelatin matrix increased the film strength but decreased its elongation, while Ap exhibited an inverse effect. Starch addition decreased the oxygen permeability of the film, with the lowest value at 20% Al and Ns. All starches, notably at 30% content, led to a decrease in the water vapor permeability of the film at 90% RH, especially Ns starch. Furthermore, the starches improved the thermal stability of the film to some extent. Fourier transform infrared spectra indicated that some weak intermolecular interactions such as hydrogen bonding occurred between gelatin and starch. Moreover, a high degree of B-type crystallinity of starch was characterized in Gel-Al film by X-ray diffraction. Tailoring the properties of gelatin film by the incorporation of different types of maize starch provides the potential to extend its applications in edible food packaging. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Wheeler, Jason B; Mukherjee, Rupak; Stroud, Robert E; Jones, Jeffrey A; Ikonomidis, John S
2015-02-25
Maintenance of the structure and mechanical properties of the thoracic aorta contributes to aortic function and is dependent on the composition of the extracellular matrix and the cellular content within the aortic wall. Age-related alterations in the aorta include changes in cellular content and composition of the extracellular matrix; however, the precise roles of these age-related changes in altering aortic mechanical function are not well understood. Thoracic aortic rings from the descending segment were harvested from C57BL/6 mice aged 6 and 21 months. Thoracic aortic diameter and wall thickness were higher in the old mice. Cellular density was reduced in the medial layer of aortas from the old mice; concomitantly, collagen content was higher in old mice, but elastin content was similar between young and old mice. Stress relaxation, an index of compliance, was reduced in aortas from old mice and correlated with collagen fraction. Contractility of the aortic rings following potassium stimulation was reduced in old versus young mice. Furthermore, collagen gel contraction by aortic smooth muscle cells was reduced with age. These results demonstrate that numerous age-related structural changes occurred in the thoracic aorta and were related to alterations in mechanical properties. Aortic contractility decreased with age, likely because of a reduction in medial cell number in addition to a smooth muscle contractile deficit. Together, these unique findings provide evidence that the age-related changes in structure and mechanical function coalesce to provide an aortic substrate that may be predisposed to aortopathies. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Effect of Al on Grain Refinement and Mechanical Properties of Mg-3Nd Casting Alloy
NASA Astrophysics Data System (ADS)
Wang, Lei; Feng, Yicheng; Wang, Liping; Chen, Yanhong; Guo, Erjun
2018-05-01
The effect of Al on the grain refinement and mechanical properties of as-cast Mg-3Nd alloy was investigated systematically by a series of microstructural analysis, solidification analysis and tensile tests. The results show that Al has an obvious refining effect on the as-cast Mg-3Nd alloy. With increasing Al content, the grain size of the as-cast Mg-3Nd alloy decreases firstly, then increases slightly after the Al content reaching 3 wt.%, and the minimum grain size of the Mg-3Nd alloy is 48 ± 4.0 μm. The refining mechanism can be attributed to the formation of Al2Nd particles, which play an important role in the heterogeneous nucleation. The strength and elongation of the Mg-3Nd alloy refined by Al also increase with increasing Al content and slightly decrease when the Al content is more than 3 wt.%, and the strengthening mechanism is attributed to the grain refinement as well as dispersed intermetallic particles. Furthermore, the microstructural thermal stability of the Mg-3Nd-3Al alloy is higher than that of the Mg-3Nd-0.5Zr alloy. Overall, the Mg-3Nd alloy with Al addition is a novel alloy with wide and potential application prospects.
Gholizadeh, Shayan; Moztarzadeh, Fathollah; Haghighipour, Nooshin; Ghazizadeh, Leila; Baghbani, Fatemeh; Shokrgozar, Mohammad Ali; Allahyari, Zahra
2017-04-01
A major limitation in current tissue engineering scaffolds is that some of the most important characteristics of the intended tissue are ignored. As piezoelectricity and high mechanical strength are two of the most important characteristics of the bone tissue, carbon nanotubes are getting a lot of attention as a bone tissue scaffold component in recent years. In the present study, composite scaffolds comprised of functionalized Multiwalled Carbon Nanotubes (f-MWCNT), medium molecular weight chitosan and β-Glycerophosphate were fabricated and characterized. Biodegradability and mechanical tests indicate that while increasing f-MWCNT content can improve electrical conductivity and mechanical properties, there are some limitations for these increases, such as a decrease in mechanical properties and biodegradability in 1w/v% content of f-MWCNTs. Also, MTT cytotoxicity assay was conducted for the scaffolds and no significant cytotoxicity was observed. Increasing f-MWCNT content led to higher alkaline Phosphatase activity. The overall results show that composites with f-MWCNT content between 0.1w/v% and 0.5w/v% are the most suitable for bone tissue engineering application. Additionally, Preliminary cell electrical tests proved the efficiency of the prepared scaffolds for cell electrical applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Method for predicting dry mechanical properties from wet wood and standing trees
Meglen, Robert R.; Kelley, Stephen S.
2003-08-12
A method for determining the dry mechanical strength for a green wood comprising: illuminating a surface of the wood to be determined with light between 350-2,500 nm, the wood having a green moisture content; analyzing the surface using a spectrometric method, the method generating a first spectral data, and using a multivariate analysis to predict the dry mechanical strength of green wood when dry by comparing the first spectral data with a calibration model, the calibration model comprising a second spectrometric method of spectral data obtained from a reference wood having a green moisture content, the second spectral data correlated with a known mechanical strength analytical result obtained from a reference wood when dried and having a dry moisture content.
Tunable mechanical properties of green solid films based on deoxyribonucleic acids
NASA Astrophysics Data System (ADS)
Matsuno, Hisao; Morimitsu, Yuma; Ohta, Noboru; Sekiguchi, Hiroshi; Takahara, Atsushi; Tanaka, Keiji
Promoting green innovation to establish a worldwide low-carbon society is an urgent priority. We here show that solid films made from deoxyribonucleic acid (DNA) can be used as a structural material. The great advantage of DNA films over the ones made from synthetic polymers is that the mechanical properties are controllable, from glassy to rubbery, via semicrystalline by simply regulating the water content in the film. Why such unique mechanical properties can be manifested by the DNA films is determined from structural analyses using Fourier-transform infrared spectroscopy and wide-angle X-ray diffraction measurements. With increasing water content, the conformation of DNA was changed from A-form in an amorphous state to B-form in a partially packed one. DNA in the B-form became densely packed as the film was stretched. Also, DNAs were intermolecularly cross-linked using 2,5-hexanedione based on reductive amination induced by 2-picoline borane in aqueous phase. Cross-linking points were directly observed by atomic force microscopy. The tensile properties of cross-linked films were much better than those of non-cross-linked DNA films.
Opdahl, Aric; Kim, Seong H; Koffas, Telly S; Marmo, Chris; Somorjai, Gabor A
2003-10-01
The surface mechanical properties of poly(hydroxyethyl)methacrylate (pHEMA)-based contact lenses were monitored as a function of humidity by atomic force microscopy (AFM). Surface viscoelastic and adhesion values were extracted from AFM force versus distance interaction curves and were found to be strongly dependent on the bulk water content of the lens and on the relative humidity. At low relative humidity, 40-50%, the dehydration rate from the surface is faster than the hydration rate from the bulk, leading to a rigid surface region that has mechanical properties similar to those measured on totally dehydrated lenses. At relative humidity values > 60%, the dehydration rate from the lens surface rapidly decreases, leading to higher surface water content and a softer surface region. The results indicate that, in an ocular environment, although the bulk of the pHEMA contact lens is hydrated, the surface region may be in a transition between a dehydrated glassy state and a hydrated rubbery state. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 67A: 350-356, 2003
Anisotropic thermal property of magnetically oriented carbon nanotube polymer composites
NASA Astrophysics Data System (ADS)
Li, Bin; Dong, Shuai; Wang, Caiping; Wang, Xiaojie; Fang, Jun
2016-04-01
This paper proposes a method for preparing multi-walled carbon nanotubea/polydimethylsiloxane (MWCNTs/PDMS) composites with enhanced thermal properties by using a high magnetic field (up to 10T). The MWCNT are oriented magnetically inside a silicone by in-situ polymerization method. The anisotropic structure would be expected to produce directional thermal conductivity. This study will provide a new approach to the development of anisotropic thermal-conductive polymer composites. Systematic studies with the preparation of silicone/graphene composites corresponding to their thermal and mechanical properties are carried out under various conditions: intensity of magnetic field, time, temperature, fillings. The effect of MWCNT/graphene content and preparation procedures on thermal conductivity of composites is investigated. Dynamic mechanical analysis (DMA) is used to reveal the mechanical properties of the composites in terms of the filling contents and magnetic field strength. The scanning electron microscope (SEM) is used to observe the micro-structure of the MWCNT composites. The alignment of MWCNTs in PDMS matrix is also studied by Raman spectroscopy. The thermal conductivity measurements show that the magnetically aligned CNT-composites feature high anisotropy in thermal conductivity.
Maciel, Alfredo; Presbítero, Gerardo; Piña, Cristina; del Pilar Gutiérrez, María; Guzmán, José; Munguía, Nadia
2015-01-01
A clear understanding of the dependence of mechanical properties of bone remains a task not fully achieved. In order to estimate the mechanical properties in bones for implants, pore cross-section area, calcium content, and apparent density were measured in trabecular bone samples for human implants. Samples of fresh and defatted bone tissue, extracted from one year old bovines, were cut in longitudinal and transversal orientation of the trabeculae. Pore cross-section area was measured with an image analyzer. Compression tests were conducted into rectangular prisms. Elastic modulus presents a linear tendency as a function of pore cross-section area, calcium content and apparent density regardless of the trabecular orientation. The best variable to estimate elastic modulus of trabecular bone for implants was pore cross-section area, and affirmations to consider Nukbone process appropriated for marrow extraction in trabecular bone for implantation purposes are proposed, according to bone mechanical properties. Considering stress-strain curves, defatted bone is stiffer than fresh bone. Number of pores against pore cross-section area present an exponential decay, consistent for all the samples. These graphs also are useful to predict elastic properties of trabecular samples of young bovines for implants.
Structural and magnetic properties of FeCoC system obtained by mechanical alloying
NASA Astrophysics Data System (ADS)
Rincón Soler, A. I.; Rodríguez Jacobo, R. R.; Medina Barreto, M. H.; Cruz-Muñoz, B.
2017-11-01
Fe96-XCoXC4 (x = 0, 10, 20, 30, 40 at. %) alloys were obtained by mechanical alloying of Fe, C and Co powders using high-energy milling. The structural and magnetic properties of the alloy system were analyzed by X-ray diffraction, Scanning Electron Microscopy (SEM), Vibrating Sample Magnetometer (VSM) and Mössbauer Spectrometry at room temperature. The X-ray diffraction patterns showed a BCC-FeCoC structure phase for all samples, as well as a lattice parameter that slightly decreases with Co content. The saturation magnetization and coercive field were analyzed as a function of Co content. The Mössbauer spectra were fitted with a hyperfine magnetic field distribution showing the ferromagnetic behavior and the disordered character of the samples. The mean hyperfine magnetic field remained nearly constant (358 T) with Co content.
NMR study on mechanisms of ionic polymer-metal composites deformation with water content
NASA Astrophysics Data System (ADS)
Zhu, Zicai; Chen, Hualing; Wang, Yongquan; Luo, Bin; Chang, Longfei; Li, Bo; Chen, Luping
2011-10-01
Ionic polymer-metal composites (IPMCs) exhibit a large dynamic bending deformation under exterior electric field. The states and proportions of water within the IPMCs have great effect on the IPMCs deformation properties. This letter investigates the influence of the proportion changes of different types of water on the deformation, which may disclose the working mechanisms of the IPMCs. We give a deformation trend of IPMCs with the reduction of water content firstly. Then by the method of nuclear magnetic resonance, various water types (water bonded to sulfonates, loosely bound water and free water) of IPMCs and their proportions are investigated in the drying process which corresponds to their different deformation states. It is obtained that the deformation properties of IPMCs depend strongly on their water content and the excess free water is responsible for the relaxation deformation.
NASA Astrophysics Data System (ADS)
Yuhazri, M. Y.; Amirhafizan, M. H.; Abdullah, A.; Sihombing, H.; Saarah, A. B.; Fadzol, O. M.
2016-11-01
The development of lamina intraply composite is a novel approach that can be adopted to address the challenges of balance mechanical properties of polymer composite. This research will focuses on the effects of weave designs on the mechanical behavior of a single ply or also known as lamina intraply composite. The six (6) specimens of lamina intraply composites were made by kenaf fiber as a reinforcement and unsaturated polyester resin as a matrix in various weave designs which were plain, twill, satin, basket, mock leno and leno weave. The vacuum infusion technique was adopted due to advantages over hand lay-up. It was found that the plain, twill and satin weave exhibited better mechanical properties on tensile strength. The fiber content of the specimen was 40% and the result of the resin content of the specimen was 60% due to the higher permeability of natural fiber.
McGee-Lawrence, Meghan E.; Wojda, Samantha J.; Barlow, Lindsay N.; Drummer, Thomas D.; Bunnell, Kevin; Auger, Janene; Black, Hal L.; Donahue, Seth W.
2009-01-01
Disuse typically uncouples bone formation from resorption, leading to bone loss which compromises bone mechanical properties and increases the risk of bone fracture. Previous studies suggest that bears can prevent bone loss during long periods of disuse (hibernation), but small sample sizes have limited the conclusions that can be drawn regarding the effects of hibernation on bone structure and strength in bears. Here we quantified the effects of hibernation on structural, mineral, and mechanical properties of black bear (Ursus americanus) cortical bone by studying femurs from large groups of male and female bears (with wide age ranges) killed during pre-hibernation (fall) and post-hibernation (spring) periods. Bone properties that are affected by body mass (e.g. bone geometrical properties) tended to be larger in male compared to female bears. There were no differences (p > 0.226) in bone structure, mineral content, or mechanical properties between fall and spring bears. Bone geometrical properties differed by less than 5% and bone mechanical properties differed by less than 10% between fall and spring bears. Porosity (fall: 5.5 ± 2.2%, spring: 4.8 ± 1.6%) and ash fraction (fall: 0.694 ± 0.011, spring: 0.696 ± 0.010) also showed no change (p > 0.304) between seasons. Statistical power was high (>72%) for these analyses. Furthermore, bone geometrical properties and ash fraction (a measure of mineral content) increased with age and porosity decreased with age. These results support the idea that bears possess a biological mechanism to prevent disuse and age-related osteoporoses. PMID:19450804
Study of aluminum content in a welding metal by thermoelectric measurements
NASA Astrophysics Data System (ADS)
Carreón, H.; Ramirez, S.; Coronado, C.; Salazar, M.
2018-03-01
This work investigates the effect caused by the aluminum content in a welding metal and its variation in mechanical properties through the use of a non-destructive thermoelectric technique. It is known that aluminum has positive effects as deoxidizer in low percentages and alloying element together with Niobium and Vanadium. Aluminum has a positive and negative effect, initially improves the mechanical properties of the metal, as it acts as a grain refiner, increasing the yield strength, but in larger quantities, important mechanical properties such as hardness and toughness are seriously affected. For this purpose, HSLA ASTM 572 Gr. 50 steel was used as the base metal, where the weld metal was deposited, after which the specimens were fabricated and the mechanical tests and non-destructive tests were carried out. The sensitivity of the thermoelectric potential technique to microstructural and chemical composition changes was confirmed. The evolution of absolute thermoelectric potential (TEP) values with respect to the percentage of aluminum added to the weld was observed, being also quite sensitive to defects such as micro-cracks.
The effect of C content on the mechanical properties of Ti-Zr coatings.
Rodríguez-Hernández, M G; Jiménez, O; Alvarado-Hernández, F; Flores, M; Andrade, E; Canto, C E; Ávila, C; Espinoza-Beltrán, F
2015-09-01
In this study, Ti-Zr and Ti-Zr-C coatings were deposited at room temperature via pulsed-DC magnetron sputtering. A 70Ti-30Zr at% target and a 99.99% graphite plate were used to deposit samples. In order to modify C content, coatings were deposited at different target powers such as 50, 75 and 100 W. Changes on the structure, microstructure and mechanical properties due to C addition were studied. Results indicate that the as-deposited coatings were partly crystalline and that an increment on C content stabilized α' phase and inhibited the appearance of ω precipitates. Therefore, Ti-Zr-C alloys with C>1.9 at% showed only α' phase whereas the others alloys exhibited α'+ω structures. Hardness values from 12.94 to 34.31 GPa were obtained, whereas the elastic modulus was found between 181.84 and 298 GPa. Finally, a high elastic recovery ratio (0.69-0.87) was observed as a function of composition. The overall properties of these coatings were improved due to C content increment, martensitic α' phase and nanocrystalline grain size (10-16 nm). Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Troncoso, Omar P.; Gigos, Florian; Torres, Fernando G.
2017-11-01
Arapaima gigas scales are natural laminated composite materials made of individual layers with different degrees of mineralization, accompanied of varying mechanical properties. This natural design provides scales with hardness and flexibility, and can serve as a source of inspiration for the development of new layered composites with a hard surface and flexible base. In this paper, we have carried out cyclic micro-indentation tests on both; the internal and the highly mineralized external surface of air dried and wet scales, in order to assess the variation of their local micromechanical properties with regard to the mineral and water content. The load-penetration (P-h) curves showed that creep takes place throughout the application of a constant force during the micro-indentation tests, confirming the time dependent response of A. gigas scales. A model that accounted for the elastic, plastic and viscous responses of the samples was used to fit the experimental results. The penetration depth during loading and creep, as well as the energy dissipated are dependent on the water content. The used model suggests that the viscous response of the internal layer increases with the water content.
Cui, Hongzhi; Liao, Wenyu; Memon, Shazim Ali; Dong, Biqin; Tang, Waiching
2014-12-16
In this research, structural-functional integrated cement-based materials were prepared by employing cement paste and a microencapsulated phase change material (MPCM) manufactured using urea-formaldehyde resin as the shell and paraffin as the core material. The encapsulation ratio of the MPCM could reach up to 91.21 wt%. Thermal energy storage cement pastes (TESCPs) incorporated with different MPCM contents (5%, 10%, 15%, 20% and 25% by weight of cement) were developed, and their thermal and mechanical properties were studied. The results showed that the total energy storage capacity of the hardened cement specimens with MPCM increased by up to 3.9-times compared with that of the control cement paste. The thermal conductivity at different temperature levels (35-36 °C, 55-56 °C and 72-74 °C) decreased with the increase of MPCM content, and the decrease was the highest when the temperature level was 55-56 °C. Moreover, the compressive strength, flexural strength and density of hardened cement paste decreased with the increase in MPCM content linearly. Among the evaluated properties, the compressive strength of TESCPs had a larger and faster degradation with the increase of MPCM content.
Macione, J; Depaula, C A; Guzelsu, N; Kotha, S P
2010-07-01
Previous studies indicate that changes in the longitudinal elastic properties of bone due to changes in mineral content are related to the longitudinal strength of bone tissue. Changes in mineral content are expected to affect bone tissue mechanical properties along all directions, albeit to different extents. However, changes in tissue mechanical properties along the different directions are expected to be correlated to one another. In this study, we investigate if radial, circumferential, and longitudinal moduli are related in bone tissue with varying mineral content. Plexiform bovine femoral bone samples were treated in fluoride ion solutions for a period of 3 and 12 days to obtain bones with 20% and 32% lower effective mineral contents. Transmission ultrasound velocities were obtained in the radial, circumferential, and longitudinal axes of bone and combined with measured densities to obtain corresponding tensorial moduli. Results indicate that moduli decreased with fluoride ion treatments and were significantly correlated to one another (r(2) radial vs. longitudinal = 0.80, r(2) circumferential vs. longitudinal = 0.90, r(2) radial vs. circumferential = 0.85). Densities calculated from using ultrasound parameters, acoustic impedance and transmission velocities, were moderately correlated to those measured by the Archimedes principle (r(2)=0.54, p<0.01). These results suggest that radial and circumferential ultrasound measurements could be used to determine the longitudinal properties of bone and that ultrasound may not be able to predict in vitro densities of bones containing unbonded mineral. Published by Elsevier Ltd.
Effects of extrusion variables on the properties of waxy hulless barley extrudates.
Köksel, Hamit; Ryu, Gy-Hyung; Başman, Arzu; Demiralp, Hande; Ng, Perry K W
2004-02-01
The objective of this research was to investigate the extrudability of waxy hulless barley flour under various extrusion conditions. Waxy hulless barley flour was processed in a laboratory-scale corotating twin-screw extruder with different levels of feed moisture content (22.3, 26.8, and 30.7%) and die temperature (130, 150, and 170 degrees C) to develop a snack food with high beta-glucan content. The effects of extrusion condition variables (screw configuration, moisture, and temperature) on the system variables (pressure and specific mechanical energy), the extrudate physical properties (sectional expansion index, bulk density), starch gelatinization, pasting properties (cold peak viscosity, trough viscosity, and final viscosity), and beta-glucan contents were determined. Results were evaluated by using response surface methodology. Increased extrusion temperature and feed moisture content resulted in decreases in exit die pressure and specific mechanical energy values. For extrudates extruded under low shear screw configuration (LS), increased barrel temperature decreased sectional expansion index (SEI) values at both low and high moisture contents. The feed moisture seems to have an inverse relationship with SEI over the range studied. Bulk density was higher at higher moisture contents, for both low and high barrel temperatures, for samples extruded under high shear screw configuration (HS) and LS. Cold peak viscosities (CV) were observed in all samples. The CV increased with the increase in extrusion temperature and feed moisture content. Although beta-glucan contents of the LS extrudates were comparable to that of barley flour sample, HS samples had generally lower beta-glucan contents. The extrusion cooking technique seems to be promising for the production of snack foods with high beta-glucan content, especially using LS conditions.
Characterization of interaction between natural rubber and silica by FTIR
NASA Astrophysics Data System (ADS)
Jarnthong, Methakarn; Liao, Lusheng; Zhang, Fuquan; Wang, Yueqiong; Li, Puwang; Peng, Zheng; Malawet, Chutarat; Intharapat, Punyanich
2017-05-01
Blending of natural rubber (NR) and nanosilica (SiO2) was performed in latex state. The mechanical properties of NR/SiO2 nanocomposites at various filler contents were investigated. The interactions of unvulcanized natural rubber and nanosilica filler were characterized using Fourier Transform Infrared (FTIR)-Attenuated Total Reflectance (ATR) spectroscopy. The relationship between mechanical properties and rubber-filler interaction was discussed.
Effects of fire retardants on physical, mechanical, and fire properties of flat-pressed WPCs
Nadir Ayrilmis; Jan T. Benthien; Heiko Thoemen; Robert H. White
2012-01-01
Physical, mechanical, and fire properties of the flat-pressed wood plastic composites (WPCs) incorporated with various fire retardants (10% by weight) at different levels of wood flour (WF) content, 40, 50, or 60 wt%, were investigated. The WPC panels were made from dry-blended WF, polypropylene (PP), and fire retardant (FR) powders with maleic anhydride-grafted PP (2...
Effect of the oxygen content in solution on the static and cyclic deformation of titanium foams.
Lefebvre, L P; Baril, E; Bureau, M N
2009-11-01
It is well known that interstitials affect the mechanical properties of titanium and titanium alloys. Their effects on the fatigue properties of titanium foams have not, however, been documented in the literature. This paper presents the effect of the oxygen content on the static and dynamic compression properties of titanium foams. Increasing the oxygen content from 0.24 to 0.51 wt% O in solution significantly increases the yield strength and reduces the ductility of the foams. However, the fatigue limit is not significantly affected by the oxygen content and falls within the 92 MPa +/- 12 MPa range for all specimens investigated in this study. During cyclic loading, deformation is initially coming from cumulative creep followed by the formation of microcracks. The coalescence of these microcracks is responsible for the rupture of the specimens. Fracture surfaces of the specimens having lower oxygen content show a more ductile aspect than the specimens having higher oxygen content.
NASA Astrophysics Data System (ADS)
Anuar, N. I. S.; Zakaria, S.; Harun, J.; Wang, C.
2017-07-01
Kenaf and empty fruit bunch (EFB) fibre which are the important natural fibres in Malaysia were studied as nonwoven polymer composites. The effect of fibre loading on kenaf polypropylene and EFB polypropylene nonwoven composite was studied at different mixture ratio. Kenaf polypropylene nonwoven composite (KPNC) and EFB polypropylene nonwoven composite (EPNC) were prepared by carding and needle-punching techniques, followed by a compression moulding at 6 mm thickness. This study was conducted to identify the optimum fibre loading of nonwoven polypropylene composite and their effect on the mechanical strength. The study was designed at 40%, 50%, 60% and 70% of fibre content in nonwoven mat and composite. The tensile strength, flexural strength and compression strength were tested to evaluate the composite mechanical properties. It was found that the mechanical properties for both kenaf and EFB nonwoven composites were influenced by the fibre content. KPNC showed higher mechanical strength than EPNC. The highest flexural strength was obtained at 60% KPNC and the lowest value was showed by 40% EPNC. The tensile and flexural strength for both KPNC and EPNC decreased after the fibre loading of 60%.
NASA Technical Reports Server (NTRS)
Wagner, John A.; Shenoy, R. N.
1991-01-01
The present study evaluates the effect of the systematic variation of copper, chromium, and zirconium contents on the microstructure and mechanical properties of a 7000-type aluminum alloy. Fracture toughness and tensile properties are evaluated for each alloy in both the peak aging, T8, and the overaging, T73, conditions. Results show that dimpled rupture essentially characterize the fracture process in these alloys. In the T8 condition, a significant loss of toughness is observed for alloys containing 2.5 pct Cu due to the increase in the quantity of Al-Cu-Mg-rich S-phase particles. An examination of T8 alloys at constant Cu levels shows that Zr-bearing alloys exhibit higher strength and toughness than the Cr-bearing alloys. In the T73 condition, Cr-bearing alloys are inherently tougher than Zr-bearing alloys. A void nucleation and growth mechanism accounts for the loss of toughness in these alloys with increasing copper content.
Electrodeposited silk coatings for bone implants.
Elia, Roberto; Michelson, Courtney D; Perera, Austin L; Brunner, Teresa F; Harsono, Masly; Leisk, Gray G; Kugel, Gerard; Kaplan, David L
2015-11-01
The aim of this study was to characterize the mechanical properties and drug elution features of silk protein-based electrodeposited dental implant coatings. Silk processing conditions were modified to obtain coatings with a range of mechanical properties on titanium studs. These coatings were assessed for adhesive strength and dissolution, with properties tuned using water vapor annealing or glycerol incorporation to modulate crystalline content. Coating reproducibility was demonstrated over a range of silk concentrations from 1% to 10%. Surface roughness of titanium substrates was altered using industry relevant acid etching and grit blasting, and the effect of surface topography on silk coating adhesion was assessed. Florescent compounds were incorporated into the silk coatings, which were modulated for crystalline content, to achieve four days of sustained release of the compounds. This silk electrogelation technique offers a safe and relatively simple approach to generate mechanically robust, biocompatible, and degradable implant coatings that can also be functionalized with bioactive compounds to modulate the local regenerative tissue environment. © 2014 Wiley Periodicals, Inc.
Electrodeposited silk coatings for bone implants
Elia, Roberto; Michelson, Courtney D.; Perera, Austin L.; Brunner, Teresa F.; Harsono, Masly; Leisk, Gray G.; Kugel, Gerard; Kaplan, David L.
2014-01-01
The aim of this study was to characterize the mechanical properties and drug elution features of silk protein-based electrodeposited dental implant coatings. Silk processing conditions were modified to obtain coatings with a range of mechanical properties on titanium studs. These coatings were assessed for adhesive strength and dissolution, with properties tuned using water vapor annealing or glycerol incorporation to modulate crystalline content. Coating reproducibility was demonstrated over a range of silk concentrations from 1 to 10%. Surface roughness of titanium substrates was altered using industry relevant acid etching and grit blasting, and the effect of surface topography on silk coating adhesion was assessed. Florescent compounds were incorporated into the silk coatings, which were modulated for crystalline content, to achieve four days of sustained release of the compounds. This silk electrogelation technique offers a safe and relatively simple approach to generate mechanically robust, biocompatible and degradable implant coatings that can also be functionalized with bioactive compounds to modulate the local regenerative tissue environment. PMID:25545462
Effect of scandium on the phase composition and mechanical properties of ABM alloys
NASA Astrophysics Data System (ADS)
Molchanova, L. V.
2010-09-01
The effect of scandium on the composition and mechanical properties of ABM-1 alloys (Al-30% Be-5% Mg) is studied. The scandium content is varied from 0.1 to 0.5 wt %. It is established that, in the studied part of the Al-Be-Mg-Sc system, an aluminum solid solution (Al) and the ScBe13 compound are in equilibrium with a beryllium solid solution (Be). Magnesium dissolves in both the aluminum component and the ScBe13 compound. The strengthening effect related to the decomposition of the solid solution and the precipitation of Al3Sc cannot be extended to the strengthening of ABM-type alloys. Additions of 0.1-0.15 wt % Sc only weakly improve the mechanical properties of the alloys due to the refinement of beryllium-component grains. At high scandium contents, the strength increases insignificantly due to primary precipitation of ScBe13 and the plasticity decreases simultaneously.
Jun, Du; Guomin, Zhao; Mingzhu, Pan; Leilei, Zhuang; Dagang, Li; Rui, Zhang
2017-07-15
Nanocellulose reinforced poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) composites were prepared using melt compounding. The effects of nanocellulose types (CNCs and CNFs) and nanocellulose content (1, 2, 3, 4, 5, 6 and 7wt%) on the crystallization, thermal and mechanical properties of PHBV composites were systematically compared in this study. The thermal stability of PHBV composites was improved by both CNCs and CNFs. CNFs with a higher thermal stability leaded to a higher thermal stability of PHBV composites. Both CNCs and CNFs induced a reduction in the crystalline size of PHBV spherulites. Furthermore, CNCs could act as a better nucleating agent for PHBV than did CNFs. CNCs and CNFs showed reinforcing effects in PHBV composites. At the equivalent content of nanocellulose, CNCs led to a higher tensile modulus of PHBV composites than did CNFs. 1wt% CNCs/PHBV composites exhibited the most optimum mechanical properties. Copyright © 2017 Elsevier Ltd. All rights reserved.
Assessment of Blend PVDF Membranes, and the Effect of Polymer Concentration and Blend Composition
Bamaga, Omar A.; Abdel-Aziz, M. H.
2018-01-01
In this work, PVDF homopolymer was blended with PVDF-co-HFP copolymer and studied in terms of morphology, porosity, pore size, hydrophobicity, permeability, and mechanical properties. Different solvents, namely N-Methyl-2 pyrrolidone (NMP), Tetrahydrofuran (THF), and Dimethylformamide (DMF) solvents, were used to fabricate blended PVDF flat sheet membranes without the introduction of any pore forming agent, through a non-solvent induced phase separation (NIPS) technique. Furthermore, the performance of the fabricated membranes was investigated for pressure and thermal driven applications. The porosity of the membranes was slightly increased with the increase in the overall content of PVDF and by the inclusion of PVDF copolymer. Total PVDF content, copolymer content, and mixed-solvent have a positive effect on mechanical properties. The addition of copolymer increased the hydrophobicity when the total PVDF content was 20%. At 25% and with the inclusion of mixed-solvent, the hydrophobicity was adversely affected. The permeability of the membranes increased with the increase in the overall content of PVDF. Mixed-solvents significantly improved permeability. PMID:29510555
Ylä-Soininmäki, Anne; Moritz, Niko; Lassila, Lippo V J; Peltola, Matti; Aro, Hannu T; Vallittu, Pekka K
2013-12-01
The aim of this study was to characterize the microstructure and mechanical properties of porous fiber-reinforced composites (FRC). Implants made of the FRC structures are intended for cranial applications. The FRC specimens were prepared by impregnating E-glass fiber sheet with non-resorbable bifunctional bis-phenyl glycidyl dimethacrylate and triethylene glycol dimethacrylate resin matrix. Four groups of porous FRC specimens were prepared with a different amount of resin matrix. Control group contained specimens of fibers, which were bound together with sizing only. Microstructure of the specimens was analyzed using a micro computed tomography (micro-CT) based method. Mechanical properties of the specimens were measured with a tensile test. The amount of resin matrix in the specimens had an effect on the microstructure. Total porosity was 59.5 % (median) in the group with the lowest resin content and 11.2 % (median) in the group with the highest resin content. In control group, total porosity was 94.2 % (median). Correlations with resin content were obtained for all micro-CT based parameters except TbPf. The tensile strength of the composites was 21.3 MPa (median) in the group with the highest resin content and 43.4 MPa (median) in the group with the highest resin content. The tensile strength in control group was 18.9 MPa (median). There were strong correlations between the tensile strength of the specimens and most of the micro-CT based parameters. This experiment suggests that porous FRC structures may have the potential for use in implants for cranial bone reconstructions, provided further relevant in vitro and in vivo tests are performed.
Effect of MUF/Epoxy Microcapsules on Mechanical Properties and Fractography of Epoxy Materials
NASA Astrophysics Data System (ADS)
Ni, Zhuo; Lin, Yuhao; Du, Xuexiao
2017-12-01
Melamine-urea-formaldehyde (MUF) microcapsules were synthesized, morphology, shell thickness, average diameter and interface morphology were studied by scanning electron microscope (SEM). The spherical MUF microcapsules are size normal distribution without adhesion and accumulation, being compact, rough and uneven with a thickness of 3.2μm and a core contents is approximate 70%. A latent imidazoleas the curing agent for a cross-linking chemical reaction for cracking repairing. A good dispersion of MUF microcapsules and a good interfacial bonding are obtained. Effects of MUF microcapsule size and content on bending property and dynamic mechanical propertywere investigated. Both bending strength and storage modulus of the composite are considerably reduced with an increasing addition of the microcapsules whereas the glass transition temperatures are almost not influenced. Significant toughening effects of MUF microcapsules on the epoxy composites are observed at the conditions of different content and size of microcapsule especially at low microcapsule contents and small microcapsule sizes.
NASA Astrophysics Data System (ADS)
Tejado, E.; Müller, A. v.; You, J.-H.; Pastor, J. Y.
2018-01-01
Copper and its alloys are used as heat sink materials for next generation fusion devices and will be joined to tungsten as an armour material. However, the joint of W and Cu experiences high thermal stresses when exposed to high heat loads so an interlayer material could effectively ensure the lifetime of the component by reducing the thermal mismatch. Many researchers have published results on the production of W-Cu composites aiming attention at its thermal conductivity; nevertheless, the mechanical performance of these composites remains poor. This paper reports the characterization of the thermo-mechanical behaviour of W-Cu composites produced via a liquid Cu melt infiltration of porous W preform. This technique was applied to produce composites with 15, 30 and 40 wt% Cu. The microstructure, thermal properties, and mechanical performance were investigated and measured from RT to 800 °C. The results demonstrated that high densification and superior mechanical properties can indeed be achieved via this manufacturing route. The mechanical properties (elastic modulus, fracture toughness, and strength) of the composites show a certain dependency on the Cu content; fracture mode shifts from the dominantly brittle fracture of W particles with constrained deformation of the Cu phase at low Cu content to the predominance of the ductile fracture of Cu when its ratio is higher. Though strong degradation is observed at 800 °C, the mechanical properties at operational temperatures, i.e. below 350 °C, remain rather high-even better than W/Cu materials reported previously. In addition, we demonstrated that the elastic modulus, and therefore the coefficient of thermal expansion, can be tailored via control of the W skeleton's porosity. As a result, the W-Cu composites presented here would successfully drive away heat produced in the fusion chamber avoiding the mismatch between materials while contributing to the structural support of the system.
Soil Penetration Rates by Earthworms and Plant Roots- Mechanical and Energetic Considerations
NASA Astrophysics Data System (ADS)
Ruiz, Siul; Schymanski, Stan; Or, Dani
2016-04-01
We analyze the implications of different soil burrowing rates by earthworms and growing plant roots using mechanical models that consider soil rheological properties. We estimate the energetic requirements for soil elasto-viscoplastic displacement at different rates for similar burrows and water contents. In the core of the mechanical model is a transient cavity expansion into viscoplastic wet soil that mimic an earthworm or root tip cone-like penetration and subsequent cavity expansion due to pressurized earthworm hydrostatic skeleton or root radial growth. Soil matrix viscoplatic considerations enable separation of the respective energetic requirements for earthworms penetrating at 2 μm/s relative to plant roots growing at 0.2 μm/s . Typical mechanical and viscous parameters are obtained inversely for soils under different fixed water contents utilizing custom miniaturized cone penetrometers at different fixed penetration rates (1 to 1000 μm/s). Experimental results determine critical water contents where soil exhibits pronounced viscoplatic behavior (close to saturation), bellow which the soil strength limits earthworms activity and fracture propagation by expanding plant roots becomes the favorable mechanical mode. The soil mechanical parameters in conjunction with earthworm and plant root physiological pressure limitations (200 kPa and 2000 kPa respectively) enable delineation of the role of soil saturation in regulating biotic penetration rates for different soil types under different moisture contents. Furthermore, this study provides a quantitative framework for estimating rates of energy expenditure for soil penetration, which allowed us to determine maximum earthworm population densities considering soil mechanical properties and the energy stored in soil organic matter.
Study on mechanical and ablative properties of EPDM/OMMT thermal insulating nanocomposites.
Gao, Guoxin; Zhang, Zhicheng; Li, Xuefei; Meng, Qingjie; Zheng, Yuansuo; Jin, Zhihao
2010-11-01
In order to enhance the elongation at break, the ablation resistant properties as well as the tensile strength of the thermal insulating materials, organo-montmorillonite (OMMT) was introduced into the short aramid fibers reinforced Ethylene-Propylene-Diene Monomer (EPDM) based nanocomposites. The effects of OMMT content on the mechanical and ablative properties of the nanocomposites were investigated systematically. X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirm that EPDM-matrix has been intercalated into OMMT interlayers after a mixing process on a two-roll mill. The brittle fracture of nanocomposites also indicates that OMMT can lubricate aramid fiber to weaken the interfacial adhesive strength between the fibers and the matrix. As a result, the tensile strength and elongation at break are both improved sharply with OMMT content increasing from 1 phr to 7 phr. However, thanks to the inevitable agglomeration of OMMT with high loading inside the nanocomposites, the tensile strength and elongation at break reduce gently once OMMT is over 7 phr. Furthermore, the ablation resistant properties are improved greatly by increasing OMMT from 1 phr to 11 phr. Therefore, the optimal content of OMMT is 7-11 phr for the thermal insulating nanocomposites with big elongation and excellent ablation resistant properties.
NASA Astrophysics Data System (ADS)
Reinholds, I.; Kalkis, V.; Zicans, J.; Merijs Meri, R.; Bockovs, I.; Grigalovica, A.; Muizzemnieks, G.
2013-12-01
Poly(ethylene-1-octene) copolymer (POE) composites filled with nickel-zinc ferrite nanoparticles have been modified by exposure to an electron beam at doses up to 500 kGy. The influence of radiation dose and ferrite content on mechanical properties has been investigated. Thermomechanical properties - thermorelaxation stresses formed in thermal heating and thermo residual stresses resulting in the process of full setting and cooling of materials have been investigated for radiation cross-linked oriented (extended up to 100%) composite samples. Increase of concentration of ferrite particles and increase of radiation dose affects a notable increase of elastic modulus and reduces the deformability in comparison to entire elastomer. Improvement of thermomechanical properties especially at low irradiation doses (100-150 kGy) have been detected for composites with increase of ferrite filler content up to 5 wt. %. It was found that gel content of POE increased up to 85% for pristine POE material with increase of irradiation dose up to 500 kGy due to the formation of cross-linked structure, increase of filler concentration up to 5 wt. % affect reduction in gel fraction due to uniform dispersion in amorphous (ethylene and substituted with hexyl branches) POE phases.
Properties of ternary Sn-Ag-Bi solder alloys. Part 2: Wettability and mechanical properties analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vianco, P.T.; Rejent, J.A.
1999-10-01
Bismuth additions of 1% to 10% were made to the 96.5Sn-3.5Ag (wt.%) alloy in a study to develop a Sn-Ag-Bi ternary composition. Thermal properties and microstructural analyses of selected alloy compositions were reported in Part 1. Wettability and mechanical properties are described in this paper. Contact angle measurements demonstrated that Bi additions improved wetting/spreading performance on Cu; a minimum contact angle of 31 {+-} 4{degree} was observed with 4.83 wt.% Bi addition. Increasing the Bi content of the ternary alloy raised the Cu/solder/Cu solder joint shear strength to 81 MPa as determined by the ring-and-plug tests. TEM analysis of themore » 91.84Sn-3.33Ag-4.83Bi composition presented in Part 1 indicated that the strength improvement was attributed to solid-solution and precipitation strengthening effects by the Bi addition residing in the Sn-rich phase. Microhardness measurements of the Sn-Ag-Bi alloy, as a function of Bi content, reached maximum values of 30 (Knoop, 50 g) and 110 (Knoop, 5g) for Bi contents greater than approximately 4--5 wt.%.« less
Lu, Yongshang; Larock, Richard C
2008-11-01
The environmentally friendly vegetable-oil-based waterborne polyurethane dispersions with very promising properties have been successfully synthesized without difficulty from a series of methoxylated soybean oil polyols (MSOLs) with different hydroxyl functionalities ranging from 2.4 to as high as 4.0. The resulting soybean-oil-based waterborne polyurethane (SPU) dispersions exhibit a uniform particle size, which increases from about 12 to 130 nm diameter with an increase in the OH functionality of the MSOL from 2.4 to 4.0 and decreases with increasing content of the hard segments. The structure and thermophysical and mechanical properties of the resulting SPU films, which contain 50-60 wt % MSOL as renewable resources, have been studied by Fourier transform infrared spectroscopy, differential scanning calorimetry, dynamic mechanical analysis, thermogravimetric analysis, transmission electron microscopy, and mechanical testing. The experimental results reveal that the functionality of the MSOLs and the hard segment content play a key role in controlling the structure and the thermophysical and mechanical properties of the SPU films. These novel films exhibit tensile stress-strain behavior ranging from elastomeric polymers to rigid plastics and possess Young's moduli ranging from 8 to 720 MPa, ultimate tensile strengths ranging from 4.2 to 21.5 MPa, and percent elongation at break values ranging from 16 to 280%. This work has addressed concerns regarding gelation and higher cross-linking caused by the high functionality of vegetable-oil-based polyols. This article reports novel environmentally friendly biobased SPU materials with promising applications as decorative and protective coatings.
Feng, Pei; Wei, Pingpin; Shuai, Cijun; Peng, Shuping
2014-01-01
A scaffold for bone tissue engineering should have highly interconnected porous structure, appropriate mechanical and biological properties. In this work, we fabricated well-interconnected porous β-tricalcium phosphate (β-TCP) scaffolds via selective laser sintering (SLS). We found that the mechanical and biological properties of the scaffolds were improved by doping of zinc oxide (ZnO). Our data showed that the fracture toughness increased from 1.09 to 1.40 MPam(1/2), and the compressive strength increased from 3.01 to 17.89 MPa when the content of ZnO increased from 0 to 2.5 wt%. It is hypothesized that the increase of ZnO would lead to a reduction in grain size and an increase in density of the strut. However, the fracture toughness and compressive strength decreased with further increasing of ZnO content, which may be due to the sharp increase in grain size. The biocompatibility of the scaffolds was investigated by analyzing the adhesion and the morphology of human osteoblast-like MG-63 cells cultured on the surfaces of the scaffolds. The scaffolds exhibited better and better ability to support cell attachment and proliferation when the content of ZnO increased from 0 to 2.5 wt%. Moreover, a bone like apatite layer formed on the surfaces of the scaffolds after incubation in simulated body fluid (SBF), indicating an ability of osteoinduction and osteoconduction. In summary, interconnected porous β-TCP scaffolds doped with ZnO were successfully fabricated and revealed good mechanical and biological properties, which may be used for bone repair and replacement potentially.
Li, Xin; Li, Yonghui; Zhong, Zhikai; Wang, Donghai; Ratto, Jo A; Sheng, Kuichuan; Sun, Xiuzhi Susan
2009-07-01
Soybean protein is a renewable and abundant material that offers an alternative to formaldehyde-based resins. In this study, soybean protein was modified with sodium dodecyl sulfate (SDS) as an adhesive for wood fiber medium density fiberboard (MDF) preparation. Second-order response surface regression models were used to study the effects and interactions of initial moisture content (IMC) of coated wood fiber, press time (PT) and temperature on mechanical and water soaking properties of MDF. Results showed that IMC of coated fiber was the dominant influencing factor. Mechanical and soaking properties improved as IMC increased and reached their highest point at an IMC of 35%. Press time and temperature also had a significant effect on mechanical and water soaking properties of MDF. Second-order regression results showed that there were strong relationships between mechanical and soaking properties of MDF and processing parameters. Properties of MDF made using soybean protein adhesive are similar to those of commercial board.
Zhang, Erlin; Wang, Xiaoyan; Chen, Mian; Hou, Bing
2016-12-01
Ti-Cu alloys have exhibited strong antibacterial ability, but Ti-Cu alloys prepared by different processes showed different antibacterial ability. In order to reveal the controlling mechanism, Ti-Cu alloys with different existing forms of Cu element were prepared in this paper. The effects of the Cu existing form on the microstructure, mechanical, corrosion and antibacterial properties of Ti-Cu alloys have been systematically investigated. Results have shown that the as-cast Ti-Cu alloys showed a higher hardness and mechanical strength as well as a higher antibacterial rate (51-64%) but a relatively lower corrosion resistance than pure titanium. Treatment at 900°C/2h (T4) significantly increased the hardness and the strength, improved the corrosion resistance but had little effect on the antibacterial property. Treatment at 900°C/2h+400°C/12h (T6) increased further the hardness and the mechanical strength, improved the corrosion resistance and but also enhanced the antibacterial rate (>90%) significantly. It was demonstrated that the Cu element in solid solution state showed high strengthening ability but low antibacterial property while Cu element in Ti2Cu phase exhibited strong strengthening ability and strong antibacterial property. Ti2Cu phase played a key role in the antibacterial mechanism. The antibacterial ability of Ti-Cu alloy was strongly proportional to the Cu content and the surface area of Ti2Cu phase. High Cu content and fine Ti2Cu phase would contribute to a high strength and a strong antibacterial ability. Copyright © 2016 Elsevier B.V. All rights reserved.
Structure and Mechanical Properties of Al-Cu-Fe-X Alloys with Excellent Thermal Stability.
Školáková, Andrea; Novák, Pavel; Mejzlíková, Lucie; Průša, Filip; Salvetr, Pavel; Vojtěch, Dalibor
2017-11-05
In this work, the structure and mechanical properties of innovative Al-Cu-Fe based alloys were studied. We focused on preparation and characterization of rapidly solidified and hot extruded Al-Cu-Fe, Al-Cu-Fe-Ni and Al-Cu-Fe-Cr alloys. The content of transition metals affects mechanical properties and structure. For this reason, microstructure, phase composition, hardness and thermal stability have been investigated in this study. The results showed exceptional thermal stability of these alloys and very good values of mechanical properties. Alloying by chromium ensured the highest thermal stability, while nickel addition refined the structure of the consolidated alloy. High thermal stability of all tested alloys was described in context with the transformation of the quasicrystalline phases to other types of intermetallics.
Structure and Mechanical Properties of Al-Cu-Fe-X Alloys with Excellent Thermal Stability
Školáková, Andrea; Novák, Pavel; Mejzlíková, Lucie; Průša, Filip; Salvetr, Pavel; Vojtěch, Dalibor
2017-01-01
In this work, the structure and mechanical properties of innovative Al-Cu-Fe based alloys were studied. We focused on preparation and characterization of rapidly solidified and hot extruded Al-Cu-Fe, Al-Cu-Fe-Ni and Al-Cu-Fe-Cr alloys. The content of transition metals affects mechanical properties and structure. For this reason, microstructure, phase composition, hardness and thermal stability have been investigated in this study. The results showed exceptional thermal stability of these alloys and very good values of mechanical properties. Alloying by chromium ensured the highest thermal stability, while nickel addition refined the structure of the consolidated alloy. High thermal stability of all tested alloys was described in context with the transformation of the quasicrystalline phases to other types of intermetallics. PMID:29113096
Gaaz, Tayser Sumer; Sulong, Abu Bakar; Ansari, M. N. M.; Kadhum, Abdul Amir H.; Nassir, Mohamed H.
2017-01-01
The advancements in material science and technology have made polyurethane (PU) one of the most important renewable polymers. Enhancing the physio-chemical and mechanical properties of PU has become the theme of this and many other studies. One of these enhancements was carried out by adding starch to PU to form new renewable materials called polyurethane-starch composites (PUS). In this study, PUS composites are prepared by adding starch at 0.5, 1.0, 1.5, and 2.0 wt.% to a PU matrix. The mechanical, thermal, and morphological properties of PU and PUS composites were investigated. Scanning electron microscope (SEM) images of PU and PUS fractured surfaces show cracks and agglomeration in PUS at 1.5 wt.% starch. The thermo-mechanical properties of the PUS composites were improved as starch content increased to 1.5 wt.% and declined by more starch loading. Despite this reduction, the mechanical properties were still better than that of neat PU. The mechanical strength increased as starch content increased to 1.5 wt.%. The tensile, flexural, and impact strengths of the PUS composites were found to be 9.62 MPa, 126.04 MPa, and 12.87 × 10−3 J/mm2, respectively, at 1.5 wt.% starch. Thermal studies showed that the thermal stability and crystallization temperature of the PUS composites increased compared to that of PU. The loss modulus curves showed that neat PU crystallizes at 124 °C and at 127 °C for PUS-0.5 wt.% and rises with increasing loading from 0.5 to 2 wt.%. PMID:28773134
Gaaz, Tayser Sumer; Sulong, Abu Bakar; Ansari, M N M; Kadhum, Abdul Amir H; Al-Amiery, Ahmed A; Nassir, Mohamed H
2017-07-10
The advancements in material science and technology have made polyurethane (PU) one of the most important renewable polymers. Enhancing the physio-chemical and mechanical properties of PU has become the theme of this and many other studies. One of these enhancements was carried out by adding starch to PU to form new renewable materials called polyurethane-starch composites (PUS). In this study, PUS composites are prepared by adding starch at 0.5, 1.0, 1.5, and 2.0 wt.% to a PU matrix. The mechanical, thermal, and morphological properties of PU and PUS composites were investigated. Scanning electron microscope (SEM) images of PU and PUS fractured surfaces show cracks and agglomeration in PUS at 1.5 wt.% starch. The thermo-mechanical properties of the PUS composites were improved as starch content increased to 1.5 wt.% and declined by more starch loading. Despite this reduction, the mechanical properties were still better than that of neat PU. The mechanical strength increased as starch content increased to 1.5 wt.%. The tensile, flexural, and impact strengths of the PUS composites were found to be 9.62 MPa, 126.04 MPa, and 12.87 × 10 -3 J/mm², respectively, at 1.5 wt.% starch. Thermal studies showed that the thermal stability and crystallization temperature of the PUS composites increased compared to that of PU. The loss modulus curves showed that neat PU crystallizes at 124 °C and at 127 °C for PUS-0.5 wt.% and rises with increasing loading from 0.5 to 2 wt.%.
Fabrication and mechanical evaluation of hydroxyapatite/oxide nano-composite materials.
Mohamed, Khaled R; Beherei, Hanan H; El Bassyouni, Gehan T; El Mahallawy, Nahed
2013-10-01
In the current study, the semiconducting metal oxides such as nano-ZnO and SiO2 powders were prepared via sol-gel technique and conducted on nano-hydroxyapatite (nHA) which was synthesized by chemical precipitation. The properties of fabricated nano-structured composites containing different ratios of HA, ZnO and SiO2 were examined using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscope (SEM) and transmission electron microscope (TEM) techniques. The effect of the variation of ratios between the three components on mechanical, microstructure and in-vitro properties was assessed to explore the possibility of enhancing these properties. The results proved that the mechanical properties exhibited an increment with increasing the ZnO content at the extent of HA. In-vitro study proved the formation and nucleation of apatite onto the surface of the fabricated composites after one week of immersion. It is concluded that HA composites containing SiO2 or SiO2/ZnO content had a suitable mechanical properties and ability to form apatite particles onto the composite surface. Based on bioactivity behavior, Si-HA is more bioactive than pure hydroxyapatite and nano-arrangements will provide an interface for better bone formation. Therefore, these nano-composites will be promising as bone substitutes especially in load bearing sites. Copyright © 2013 Elsevier B.V. All rights reserved.
Middendorf, Jill M; Griffin, Darvin J; Shortkroff, Sonya; Dugopolski, Caroline; Kennedy, Stephen; Siemiatkoski, Joseph; Cohen, Itai; Bonassar, Lawrence J
2017-10-01
Autologous Chondrocyte Implantation (ACI) is a widely recognized method for the repair of focal cartilage defects. Despite the accepted use, problems with this technique still exist, including graft hypertrophy, damage to surrounding tissue by sutures, uneven cell distribution, and delamination. Modified ACI techniques overcome these challenges by seeding autologous chondrocytes onto a 3D scaffold and securing the graft into the defect. Many studies on these tissue engineered grafts have identified the compressive properties, but few have examined frictional and shear properties as suggested by FDA guidance. This study is the first to perform three mechanical tests (compressive, frictional, and shear) on human tissue engineered cartilage. The objective was to understand the complex mechanical behavior, function, and changes that occur with time in these constructs grown in vitro using compression, friction, and shear tests. Safranin-O histology and a DMMB assay both revealed increased sulfated glycosaminoglycan (sGAG) content in the scaffolds with increased maturity. Similarly, immunohistochemistry revealed increased lubricin localization on the construct surface. Confined compression and friction tests both revealed improved properties with increased construct maturity. Compressive properties correlated with the sGAG content, while improved friction coefficients were attributed to increased lubricin localization on the construct surfaces. In contrast, shear properties did not improve with increased culture time. This study suggests the various mechanical and biological properties of tissue engineered cartilage improve at different rates, indicating thorough mechanical evaluation of tissue engineered cartilage is critical to understanding the performance of repaired cartilage. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2298-2306, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Alston, William B.
1988-01-01
PMR (polymerization of monomeric reactants) methodology was used to prepare 70 different polyimide oligomeric resins and 30 different unidirectional graphite fiber/polyimide composites. Monomeric composition as well as chain length between sites of crosslinks were varied to examine their effects on resin thermo-oxidative stability and glass transition temperature (Tg) of the cured/postcured resins. A linear correlation of decreasing 316 C resin weight loss/surface area versus (1) decreasing aliphatic content, or (2) increasing benzylic/aliphatic content stoichiometry ratio over a wide range of resin compositions was observed. An almost linear correlation of Tg versus molecular distance between the crosslinks was also observed. An attempt was made to correlate Tg with initial composite mechanical properties (flexural strength and interlaminar shear strength). However, the scatter in mechanical strength data prevented obtaining a clear correlation. Instead, only a range of composite mechanical properties was obtained at 25, 288, and 316 C. Perhaps more importantly, what did become apparent during the correlation study was (1) the PMR methodology could be used to prepare composites from resins containing a wide variety of monomer modifications, (2) that these composites almost invariably provided satisfactory initial mechanical properties as long as the resins formulated exhibited satisfactory processing flow, and (3) that PMR resins exhibited predictable rates of 316 C weight loss/surface area based on their benzylic/aliphatic stoichiometery ratio.
Effect of tooth bleaching agents on protein content and mechanical properties of dental enamel.
Elfallah, Hunida M; Bertassoni, Luiz E; Charadram, Nattida; Rathsam, Catherine; Swain, Michael V
2015-07-01
This study investigated the effect of two bleaching agents, 16% carbamide peroxide (CP) and 35% hydrogen peroxide (HP), on the mechanical properties and protein content of human enamel from freshly extracted teeth. The protein components of control and treated enamel were extracted and examined on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Marked reduction of the protein matrix and random fragmentation of the enamel proteins after bleaching treatments was found. The mechanical properties were analyzed with Vickers indentations to characterize fracture toughness, and nanoindentation to establish enamel hardness, elastic modulus and creep deformation. Results indicate that the hardness and elastic modulus of enamel were significantly reduced after treatment with CP and HP. After bleaching, the creep deformation at maximum load increased and the recovery upon unloading reduced. Crack lengths of CP and HP treated enamel were increased, while fracture toughness decreased. Additionally, the microstructures of fractured and indented samples were examined with field emission gun scanning electron microscopy (FEG-SEM) showing distinct differences in the fracture surface morphology between pre- and post-bleached enamel. In conclusion, tooth bleaching agents can produce detrimental effects on the mechanical properties of enamel, possibly as a consequence of damaging or denaturing of its protein components. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Mechanical Properties of Calcium Fluoride-Based Composite Materials
Kleczewska, Joanna; Pryliński, Mariusz; Podlewska, Magdalena; Sokołowski, Jerzy; Łapińska, Barbara
2016-01-01
Aim of the study was to evaluate mechanical properties of light-curing composite materials modified with the addition of calcium fluoride. The study used one experimental light-curing composite material (ECM) and one commercially available flowable light-curing composite material (FA) that were modified with 0.5–5.0 wt% anhydrous calcium fluoride. Morphology of the samples and uniformity of CaF2 distribution were analyzed using Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). Mechanical properties were tested after 24-hour storage of specimens in dry or wet conditions. Stored dry ECM enriched with 0.5–1.0 wt% CaF2 showed higher tensile strength values, while water storage of all modified ECM specimens decreased their tensile strength. The highest Vickers hardness tested after dry storage was observed for 2.5 wt% CaF2 content in ECM. The addition of 2.0–5.0 wt% CaF2 to FA caused significant decrease in tensile strength after dry storage and overall tensile strength decrease of modified FA specimens after water storage. The content of 2.0 wt% CaF2 in FA resulted in the highest Vickers hardness tested after wet storage. Commercially available composite material (FA), unmodified with fluoride addition, demonstrated overall significantly higher mechanical properties. PMID:28004001
Optimisation of mechanical properties of bamboo fibre reinforced-PLA biocomposites
NASA Astrophysics Data System (ADS)
Nurnadia M., J.; Fazita, M. R. Nurul; Abdul Khalil H. P., S.; Mohamad Haafiz M., K.
2017-12-01
The majority of the raw materials that have been widely used in industries are petroleum-based. Growing environmental awareness, the depletion of fossil fuels, and climate change are the key drivers to seek more ecologically friendly materials, such as natural fibres to replace synthetic fibres in polymeric composite. Among the natural fibres available, bamboo fibre has relatively high strength. Poly (lactic) acid (PLA), one of the well-known biopolymers, has been used as a matrix in order to produce totally biodegradable biocomposites. In this study, bamboo fibres were compounded with PLA by a twin screw extruder. The bamboo fibre reinforced PLA composites were then manufactured via the compression moulding method. The influences of screw speed and die temperature during extrusion on the mechanical properties, the tensile and flexural of the biocomposites, were studied. The effects of fibre content and fibre length were also investigated. Taguchi experimental design approach was adopted to determine the optimum set of conditions to achieve the "best" mechanical properties of the composites. Tensile and flexural properties were characterised based on the D638-10 and D790-10 standards, respectively. It was observed that the fibre aspect ratio and fibre content significantly affected the mechanical performance of bamboo fibres reinforced PLA composites.
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.
1996-01-01
Unidirectional CVD SiC(f)(SCS-6) fiber-reinforced strontium aluminosilicate (SAS) glass-ceramic matrix composites containing various volume fractions, approximately 16 to 40 volume %, of fibers were fabricated by hot pressing at 1400 C for 2 h under 27.6 MPa. Monoclinic celsian, SrAl2Si2O8, was the only crystalline phase formed, with complete absence of the undesired hexacelsian phase, in the matrix. Room temperature mechanical properties were measured in 3-point flexure. The matrix microcracking stress and the ultimate strength increased with increase in fiber volume fraction, reached maximum values for V(sub f) approximately equal to 0.35, and degraded at higher fiber loadings. This degradation in mechanical properties is related to the change in failure mode, from tensile at lower V(sub f) to interlaminar shear at higher fiber contents. The extent of fiber loading did not have noticeable effect on either fiber-matrix debonding stress, or frictional sliding stress at the interface. The applicability of micromechanical models in predicting the mechanical properties of the composites was also examined. The currently available theoretical models do not appear to be useful in predicting the values of the first matrix cracking stress, and the ultimate strength of the SCS-6/SAS composites.
Effect of Lime on Mechanical and Durability Properties of Blended Cement Based Concrete
NASA Astrophysics Data System (ADS)
Acharya, Prasanna Kumar; Patro, Sanjaya Kumar; Moharana, Narayana C.
2016-06-01
This work presents the results of experimental investigations performed to evaluate the effect of lime on mechanical and durability properties of concrete mixtures made with blended cement like Portland Slag Cement (PSC) and Portland Pozzolana Cement (PPC) with lime content of 0, 5, 7 and 10 %. Test result indicated that inclusion of hydraulic lime on replacement of cement up to 7 % increases compressive strength of concrete made with both PSC and PPC. Flexural strength increased with lime content. Highest flexural strength is reported at 7 % lime content for both PSC and PPC. Workability is observed to decrease with lime addition which could be compensated with introduction of super plasticizer. Acid and sulphate resistance increase slightly up to 7 % of lime addition and is found to decrease with further addition of lime. Lime addition up to 10 % does not affect the soundness of blended cements like PSC and PPC.
Xi, Tong; Shahzad, M Babar; Xu, Dake; Sun, Ziqing; Zhao, Jinlong; Yang, Chunguang; Qi, Min; Yang, Ke
2017-02-01
The effects of addition of different Cu content (0, 2.5 and 3.5wt%) on mechanical properties, corrosion resistance and antibacterial performance of 316L austenitic stainless steel (SS) after solution and aging treatment were investigated by mechanical test, transmission electron microscope (TEM), X-ray diffraction (XRD), electrochemical corrosion, X-ray photoelectron spectroscopy (XPS) and antibacterial test. The results showed that the Cu addition and heat treatment had no obvious influence on the microstructure with complete austenite features. The yield strength (YS) after solution treatment was almost similar, whereas the aging treatment obviously increased the YS due to formation of tiny Cu-rich precipitates. The pitting and protective potential of the solution treated Cu-bearing 316L SS in 0.9wt% NaCl solution increased with increasing Cu content, while gradually declined after aging, owing to the high density Cu-rich precipitation. The antibacterial test proved that higher Cu content and aging were two compulsory processes to exert good antibacterial performance. The XPS results further indicated that aging enhanced the Cu enrichment in passive film, which could effectively stimulate the Cu ions release from the surface of passive film. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Hu; Wei-qing, Chen; Huai-bin, Han; Rui-juan, Bai
2017-02-01
The hot rolled 60Si2MnA spring steel was transformed to obtain different proeutectoid ferrite morphologies by different cooling rates after finish rolling through dynamic thermal simulation test. The coexistence relationship between proeutectoid ferrite and pearlite, and the effect of proeutectoid ferrite morphology on mechanical properties were systematically investigated. Results showed that the reticular proeutectoid ferrite could be formed by the cooling rates of 0.5-2 °C/s; the small, dispersed and blocky proeutectoid ferrite could be formed by the increased cooling rates of 3-5 °C/s; and the bulk content of proeutectoid ferrite decreased. The pearlitic colony and interlamellar spacing also decreased, the reciprocal of them both followed a linear relationship with the reciprocal of proeutectoid ferrite bulk content. Besides, the tensile strength, percentage of area reduction, impact energy and microhardness increased, which all follow a Hall-Petch-type relationship with the inverse of square root of proeutectoid ferrite bulk content. The fracture morphologies of tensile and impact tests transformed from intergranular fracture to cleavage and dimple fracture, and the strength and plasticity of spring steel were both improved. The results have been explained on the basis of proeutectoid ferrite morphologies-microstructures-mechanical properties relationship effectively.
Ataollahi Oshkour, Azim; Pramanik, Sumit; Mehrali, Mehdi; Yau, Yat Huang; Tarlochan, Faris; Abu Osman, Noor Azuan
2015-09-01
This study aimed to investigate the structural, physical and mechanical behavior of composites and functionally graded materials (FGMs) made of stainless steel (SS-316L)/hydroxyapatite (HA) and SS-316L/calcium silicate (CS) employing powder metallurgical solid state sintering. The structural analysis using X-ray diffraction showed that the sintering at high temperature led to the reaction between compounds of the SS-316L and HA, while SS-316L and CS remained intact during the sintering process in composites of SS-316L/CS. A dimensional expansion was found in the composites made of 40 and 50 wt% HA. The minimum shrinkage was emerged in 50 wt% CS composite, while the maximum shrinkage was revealed in samples with pure SS-316L, HA and CS. Compressive mechanical properties of SS-316L/HA decreased sharply with increasing of HA content up to 20 wt% and gradually with CS content up to 50 wt% for SS-316L/CS composites. The mechanical properties of the FGM of SS-316L/HA dropped with increase in temperature, while it was improved for the FGM of SS-316L/CS with temperature enhancement. It has been found that the FGMs emerged a better compressive mechanical properties compared to both the composite systems. Therefore, the SS-316L/CS composites and their FGMs have superior compressive mechanical properties to the SS-316L/HA composites and their FGMs and also the newly developed FGMs of SS-316L/CS with improved mechanical and enhanced gradation in physical and structural properties can potentially be utilized in the components with load-bearing application. Copyright © 2015 Elsevier Ltd. All rights reserved.
Strength and flexibility properties of advanced ceramic fabrics
NASA Technical Reports Server (NTRS)
Sawko, P. M.; Tran, H. K.
1985-01-01
The mechanical properties of four advanced ceramic fabrics were measured at a temperature range of 23C to 1200C. The fabrics evaluated were silica, high and low-boria content aluminoborosilicate, and silicon carbide. Properties studied included fabric break strengths from room temperature to 1200C, and bending durability after temperature conditioning at 1200C and 1400C. The interaction of the fabric and ceramic insulation was also studied for shrinkage, appearance, bend resistance, and fabric-to-insulation bonding. Based on these tests, the low-boria content aluminoborosilicate fabric retained more strength and fabric durability than the other fabrics studied at high temperature.
Strength and flexibility properties of advanced ceramic fabrics
NASA Technical Reports Server (NTRS)
Sawko, P. M.; Tran, H. K.
1985-01-01
The mechanical properties of four advanced ceramic fabrics are measured at a temperature range of 23 C to 1200 C. The fabrics evaluated are silica, high-and low-boria content aluminoborosilicate, and silicon carbide. Properties studied include fabric break strengths from room temperature to 1200 C, and bending durability after temperature conditioning at 1200 C and 1400 C. The interaction of the fabric and ceramic insulation is also studied for shrinkage, appearance, bend resistance, and fabric-to-insulation bonding. Based on these tests, the low-boria content aluminoborosilicate fabric retains more strength and fabric durability than the other fabrics studied at high temperature.
Characteristics of starch-based biodegradable composites reinforced with date palm and flax fibers.
Ibrahim, Hamdy; Farag, Mahmoud; Megahed, Hassan; Mehanny, Sherif
2014-01-30
The aim of this work is to study the behavior of completely biodegradable starch-based composites containing date palm fibers in the range from 20 to 80 wt%. Hybrid composites containing date palm and flax fibers, 25 wt% each, were also examined. The composites were preheated and then hot pressed at 5 MPa and 160°C for 30 min. SEM investigation showed strong adhesion between fibers and matrix. Density measurements showed very small void fraction (less than 0.142%) for composites containing up to 50 wt% fiber content. Increasing fiber weight fraction up to 50 wt% increased the composite static tensile and flexural mechanical properties (stiffness and strength). Composite thermal stability, water uptake and biodegradation improved with increasing fiber content. The present work shows that starch-based composites with 50 wt% fibers content have the optimum mechanical properties. The hybrid composite of flax and date palm fibers, 25 wt% each, has good properties and provides a competitive eco-friendly candidate for various applications. Copyright © 2013 Elsevier Ltd. All rights reserved.
Porcine bladder acellular matrix (ACM): protein expression, mechanical properties.
Farhat, Walid A; Chen, Jun; Haig, Jennifer; Antoon, Roula; Litman, Jessica; Sherman, Christopher; Derwin, Kathleen; Yeger, Herman
2008-06-01
Experimentally, porcine bladder acellular matrix (ACM) that mimics extracellular matrix has excellent potential as a bladder substitute. Herein we investigated the spatial localization and expression of different key cellular and extracellular proteins in the ACM; furthermore, we evaluated the inherent mechanical properties of the resultant ACM prior to implantation. Using a proprietary decellularization method, the DNA contents in both ACM and normal bladder were measured; in addition we used immunohistochemistry and western blots to quantify and localize the different cellular and extracellular components, and finally the mechanical testing was performed using a uniaxial mechanical testing machine. The mean DNA content in the ACM was significantly lower in the ACM compared to the bladder. Furthermore, the immunohistochemical and western blot analyses showed that collagen I and IV were preserved in the ACM, but possibly denatured collagen III in the ACM. Furthermore, elastin, laminin and fibronectin were mildly reduced in the ACM. Although the ACM did not exhibit nucleated cells, residual cellular components (actin, myosin, vimentin and others) were still present. There was, on the other hand, no significant difference in the mean stiffness between the ACM and the bladder. Although our decellularization method is effective in removing nuclear material from the bladder while maintaining its inherent mechanical properties, further work is mandatory to determine whether these residual DNA and cellular remnants would lead to any immune reaction, or if the mechanical properties of the ACM are preserved upon implantation and cellularization.
NASA Astrophysics Data System (ADS)
Feng, Changjie; Hu, Shuilian; Jiang, Yuanfei; Wu, Namei; Li, Mingsheng; Xin, Li; Zhu, Shenglong; Wang, Fuhui
2014-11-01
TiAlN/Si3N4-Cu nanocomposite coatings of various Si content (0-5.09 at.%) were deposited on AISI-304 stainless steel by DC reactive magnetron sputtering technique. The chemical composition, microstructure, mechanical and tribological properties of these coatings were systematically investigated by means of X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), nanoindentation tester, a home-made indentation system, a scratch tester and a wear tester. Results indicated that with increasing Si content in these coatings, a reduction of grain size and surface roughness, a transformation of the (1 1 1) preferred orientation was detected by XRD and FESEM. Furthermore the hardness of these coatings increase from 9.672 GPa to 18.628 GPa, and the elastic modulus reveal the rising trend that increase from 224.654 GPa to 251.933 GPa. However, the elastic modulus of TiAlN/Si3N4-Cu coating containing 3.39 at.% Si content dropped rapidly and changed to about 180.775 GPa. The H3/E2 ratio is proportional to the film resistance to plastic deformation. The H3/E2 ratio of the TiAlN/Si3N4-Cu coating containing 3.39 at.% Si content possess of the maximum of 0.11 GPa, and the indentation test indicate that few and fine cracks were observed from its indentation morphologies. The growth pattern of cracks is mainly bending growing. The present results show that the best toughness is obtained for TiAlN/Si3N4-Cu nanocomposite coating containing 3.39 at.% Si content. In addition, the TiAlN/Si3N4-Cu coating containing 3.39 at.% Si content also has good adhesion property and superior wear resistance, and the wear mechanism is mainly adhesion wear.
Study on process and characterization of high-temperature resistance polyimide composite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Ling-Ying; Zhao, Wei-Dong; Liu, Han-Yang
2016-05-18
A novel polyimide composite with upper-use temperature of 420°C was prepared by autoclave process. The thermogravimetic analysis and rheological properties of uncured polyimide resin powders were analyzed. The influences of process parameters and post-treatment process on the properties of composites were also investigated. The morphologies of polyimide composites after shear fracture were observed by scanning electron microscope (SEM). The high-temperature resistance of composite was characterized by dynamic mechanical thermal analyzer (DMTA). Results showed that the imidization reaction mainly occurred in the temperature range of 100°C~220°C, and the largest weight loss rate appearing at 145°C indicated a drastic imidization reaction occurred.more » The melt viscosity of polyimide resin decreased with increasing the temperature between 220°C ∼305°C, and then increased with the increase of temperature due to the molecular crosslinking reactions. The fiber volume contents and void contents could be effectively controlled by applying the pressure step by step. The fiber volume content was sensitive to the initial pressure (P{sub i}) during the imidization. The second-stage pressure (P{sub 2}) and the temperature for applying the P{sub 2} (T{sub 2}) during the imidization had a great effect on the void content of composite. Good mechanical properties and interfacial adhesion of polyimide composite could obtain by optimized process. The post-treatment process can obviously increase the high-temperature resistance of polyimide composite. The polyimide composite treated at 420°C exhibited good retention of mechanical properties at 420°C and had a glass transition temperature (Tg) of 456°C. The retentions of flexible strength, flexible modulus and short beam shear strength of polyimide composite at 420°C were 65%, 84% and 62% respectively.« less
NASA Technical Reports Server (NTRS)
Mcdanels, D. L.; Hoffman, C. A.
1984-01-01
Composite panels containing up to 40 vol % discontinuous silicon carbide SiC whisker, nodule, or particulate reinforcement in several aluminum matrices are commercially fabricated and the mechanical properties and microstructual characteristics are evaluated. The yield and tensile strengths and the ductility are controlled primarily by the matrix alloy, the temper condition, and the reinforcement content. Particulate and nodule reinforcements are as effective as whisker reinforcement. Increased ductility is attributed to purer, more uniform starting materials and to more mechanical working during fabrication. Comparing mechanical properties with those of other aluminum alloys shows that these low cost, lightweight composites demonstrate very good potential for application to aerospace structures.
NASA Astrophysics Data System (ADS)
Lee, Eunkyung
Two types (CN66, CN71) of high interstitial stainless steels (HISSs) were investigated for down-hole application in sour gas well environments. Experiments were designed to identify factors that have a significant effect on mechanical properties. The three factors examined in the study were carbon + nitrogen content (0.66 or 0.71 mass %), cooling rate in quenching (air or water), and heat treatment time (2 or 4 hours). The results showed that the cooling rate, C+N content, and the two-factor interaction of these variables have a significant effect on the mechanical properties of HISSs. Based on the statistical analysis results on mechanical properties, extensive analyses were undertaken to understand the strengthening mechanisms of HISSs. Microstructure analysis revealed that a pearlite phase with a high carbide and/or nitride content is dissolved in the matrix by heat treatment at 1,200 ºC which is considered the dissolution to increase the concentration of interstitial elements in steels. The distribution of elements in HISSs was investigated by quantitative mapping using EPMA, which showed that the high carbon concentration (carbide/cementite) area was decreased by increases in both the cooling rate and C+N content. The ferrite volume fraction of each specimen is increased by an increase in cooling rate, because there is insufficient time to form austenite from retained ferrite. The lattice expansion of HISS was investigated by the calculation of lattice parameters under various conditions, and these investigations confirm the solid solution strengthening effect on HISSs. CN66 with heat treatment at fast cooling has the highest wear resistance; a finding that was consistent with hardening mechanisms that occur due to an increased ferrite volume fraction. In addition, precipitates on the surface and the chemical bonding of chromium were investigated. As the amount of CrN bonding increased, the wear resistance also increased. This study also assessed the corrosion resistance properties of HISSs and shows that the alloys developed in the present study effectively resist attack by sour acid gas and salt water by immersion tests using sour-brine environment and salt water. In addition, electrochemical polarization tests show that the corrosion pitting potential of the heat treated HISSs in sodium chloride solution is the highest among the benchmark alloys. This result shows that this alloy resists corrosion well under the high temperature and high pressure conditions in the presence of high-pressure H2S and CO 2 sour gas well environments.
Torchio, Fabrizio; Cagnasso, Enzo; Gerbi, Vincenzo; Rolle, Luca
2010-02-15
Phenolic compounds, extractable from grape skins and seeds, have a notable influence on the quality of red wines. Many studies have clearly demonstrated the relationship between the phenolic composition of the grape at harvest time and its influence on the phenolic composition of the red wine produced. In many previous works the evolution of phenolic composition and relative extractability was normally studied on grapes sampled at different times during ripening, but at the same date the physiological characteristics of grape berries in a vineyard are often very heterogeneous. Therefore, the main goal of the study is to investigate the differences among mechanical properties, phenolic composition and relative extractability of Vitis vinifera L. cv Barbera grape berries, harvested at the same date from several vineyards, and calibrated according to their density at three levels of soluble solids (A=235+/-8, B=252+/-8 and C=269+/-8 g L(-1) sugar) with the aim of studying the influence of ripeness stages and growing locations on these parameters. Results on mechanical properties showed that the thickness of the berry skin (Sp(sk)) was the parameter most affected by the different level of sugars in the pulp, while different skin hardnesses, evaluated by the break skin force (F(sk)), were related to the cultivation sites. The latter were also observed to influence the mechanical characteristics of seeds. Generally, the anthocyanin content increased with the level of soluble solids, while the increase in the tannin content of the berry skin and seeds was less marked. However, significant changes in flavanols reactive to vanillin in the seeds were found. The cellular maturity index (EA%) was little influenced by the soluble solids content of grapes. Copyright 2009 Elsevier B.V. All rights reserved.
Development of oxidised and heat-moisture treated potato starch film.
Zavareze, Elessandra da Rosa; Pinto, Vânia Zanella; Klein, Bruna; El Halal, Shanise Lisie Mello; Elias, Moacir Cardoso; Prentice-Hernández, Carlos; Dias, Alvaro Renato Guerra
2012-05-01
This study investigated the effects of sodium hypochlorite oxidation and a heat-moisture treatment of potato starch on the physicochemical, pasting and textural properties of potato starches in addition to the water vapour permeability (WVP) and mechanical properties of potato starch films produced from these starches. The carbonyl contents, carboxyl contents, swelling power, solubility, pasting properties and gel texture of the native, oxidised and heat-moisture treated (HMT) starches were evaluated. The films made of native, oxidised and HMT starches were characterised by thickness, water solubility, colour, opacity, mechanical properties and WVP. The oxidised and HMT starches had lower viscosity and swelling power compared to the native starch. The films produced from oxidised potato starch had decreased solubility, elongation and WVP values in addition to increased tensile strength compared to the native starch films. The HMT starch increased the tensile strength and WVP of the starch films compared to the native starch. Copyright © 2011 Elsevier Ltd. All rights reserved.
Microstructure, Properties and Weldability of Duplex Stainless Steel 2101
NASA Astrophysics Data System (ADS)
Ma, Li; Hu, Shengsun; Shen, Junqi
2017-01-01
The continuous development of duplex stainless steels (DSSs) is due to their excellent corrosion resistance in aggressive environments and their mechanical strength, which is usually twice of conventional austenitic stainless steels (ASSs). In this paper, a designed lean duplex stainless steel 2101, with the alloy design of reduced nickel content and increased additions of manganese and nitrogen, is studied by being partly compared with typical ASS 304L steels. The microstructure, mechanical properties, impact toughness, corrosion resistance and weldability of the designed DSS 2101 were conducted. The results demonstrated that both 2101 steel and its weldment show excellent mechanical properties, impact toughness and corrosion resistance, so DSS 2101 exhibits good comprehensive properties and can be used to replace 304L in numerous applications.
Basalt Fiber for Volcanic Slag Lightweight Aggregate Concrete Research on the Impact of Performance
NASA Astrophysics Data System (ADS)
Xiao, Li-guang; Li, Gen-zhuang
2018-03-01
In order to study the effect of basalt fiber on the mechanical properties and durability of volcanic slag lightweight aggregate concrete, the experimental study on the flexural strength, compressive strength and freeze-thaw resistance of volcanic slag concrete with different basalt fiber content were carried out, the basalt fiber was surface treated with NaOH and water glass, the results show that the surface treatment of basalt fiber can significantly improve the mechanical properties, durability and other properties of volcanic slag lightweight aggregate concrete.
Roller compaction of moist pharmaceutical powders.
Wu, C-Y; Hung, W-L; Miguélez-Morán, A M; Gururajan, B; Seville, J P K
2010-05-31
The compression behaviour of powders during roller compaction is dominated by a number of factors, such as process conditions (roll speed, roll gap, feeding mechanisms and feeding speed) and powder properties (particle size, shape, moisture content). The moisture content affects the powder properties, such as the flowability and cohesion, but it is not clear how the moisture content will influence the powder compression behaviour during roller compaction. In this study, the effect of moisture contents on roller compaction behaviour of microcrystalline cellulose (MCC, Avicel PH102) was investigated experimentally. MCC samples of different moisture contents were prepared by mixing as-received MCC powder with different amount of water that was sprayed onto the powder bed being agitated in a rotary mixer. The flowability of these samples were evaluated in terms of the poured angle of repose and flow functions. The moist powders were then compacted using the instrumented roller compactor developed at the University of Birmingham. The flow and compression behaviour during roller compaction and the properties of produced ribbons were examined. It has been found that, as the moisture content increases, the flowability of moist MCC powders decreases and the powder becomes more cohesive. As a consequence of non-uniform flow of powder into the compaction zone induced by the friction between powder and side cheek plates, all produced ribbons have a higher density in the middle and lower densities at the edges. For the ribbons made of powders with high moisture contents, different hydration states across the ribbon width were also identified from SEM images. Moreover, it was interesting to find that these ribbons were split into two halves. This is attributed to the reduction in the mechanical strength of moist powder compacts with high moisture contents produced at high compression pressures. Copyright (c) 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
García-Huete, N.; Laza, J. M.; Cuevas, J. M.; Vilas, J. L.; Bilbao, E.; León, L. M.
2014-09-01
A gamma radiation process for modification of commercial polymers is a widely applied technique to promote new physical, chemical and mechanical properties. Gamma irradiation originates free radicals able to induce chain scission or recombination of radicals, which induces annihilation, branching or crosslinking processes. The aim of this work is to research the structural, thermal and mechanical changes induced on a commercial polycyclooctene (PCO) when it is irradiated with a gamma source of 60Co at different doses (25-200 kGy). After gamma irradiation, gel content was determined by Soxhlet extraction in cyclohexane. Furthermore, thermal properties were evaluated before and after Soxhlet extraction by means of Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC), as well as mechanical properties were measured by Dynamic Mechanical Thermal Analysis (DMTA). The results showed the variations of the properties depending on the irradiation dose. Finally, a first approach to evaluate qualitatively the shape memory behaviour of all irradiated PCO samples was performed by a visually monitoring shape recovery process.
Cui, Hongzhi; Liao, Wenyu; Memon, Shazim Ali; Dong, Biqin; Tang, Waiching
2014-01-01
In this research, structural-functional integrated cement-based materials were prepared by employing cement paste and a microencapsulated phase change material (MPCM) manufactured using urea-formaldehyde resin as the shell and paraffin as the core material. The encapsulation ratio of the MPCM could reach up to 91.21 wt%. Thermal energy storage cement pastes (TESCPs) incorporated with different MPCM contents (5%, 10%, 15%, 20% and 25% by weight of cement) were developed, and their thermal and mechanical properties were studied. The results showed that the total energy storage capacity of the hardened cement specimens with MPCM increased by up to 3.9-times compared with that of the control cement paste. The thermal conductivity at different temperature levels (35–36 °C, 55–56 °C and 72–74 °C) decreased with the increase of MPCM content, and the decrease was the highest when the temperature level was 55–56 °C. Moreover, the compressive strength, flexural strength and density of hardened cement paste decreased with the increase in MPCM content linearly. Among the evaluated properties, the compressive strength of TESCPs had a larger and faster degradation with the increase of MPCM content. PMID:28788291
A. Asadi; M. Miller; Robert Moon; K. Kalaitzidou
2016-01-01
In this study, the interfacial and mechanical properties of cellulose nanocrystals (CNC) coated glass fiber/epoxy composites were investigated as a function of the CNC content on the surface of glass fibers (GF). Chopped GF rovings were coated with CNC by immersing the GF in CNC (0â5 wt%) aqueous suspensions. Single fiber fragmentation (SFF) tests showed that the...
Thacker, Bryan E.; Tomiya, Akihito; Hulst, Jonah B.; Suzuki, Kentaro P.; Bremner, Shannon N.; Gastwirt, Randy F.; Greaser, Marion L.; Lieber, Richard L.; Ward, Samuel R.
2011-01-01
Summary The effects of botulinum neurotoxin A on the passive mechanical properties of skeletal muscle have not been investigated, but may have significant impact in the treatment of neuromuscular disorders including spasticity. Single fiber and fiber bundle passive mechanical testing was performed on rat muscles treated with botulinum neurotoxin A. Myosin heavy chain and titin composition of single fibers was determined by gel electrophoresis. Muscle collagen content was determined using a hydroxyproline assay. Neurotoxin-treated single fiber passive elastic modulus was reduced compared to control fibers (53.00 kPa versus 63.43 kPa). Fiber stiffness and slack sarcomere length were also reduced compared to control fibers and myosin heavy chain composition shifted from faster to slower isoforms. Average titin molecular weight increased 1.77% after treatment. Fiber bundle passive elastic modulus increased following treatment (168.83 kPa versus 75.14 kPa). Bundle stiffness also increased while collagen content per mass of muscle tissue increased 38%. Injection of botulinum neurotoxin A produces an effect on the passive mechanical properties of normal muscle that is opposite to the changes observed in spastic muscles. PMID:21853457
Thacker, Bryan E; Tomiya, Akihito; Hulst, Jonah B; Suzuki, Kentaro P; Bremner, Shannon N; Gastwirt, Randy F; Greaser, Marion L; Lieber, Richard L; Ward, Samuel R
2012-03-01
The effects of botulinum neurotoxin A on the passive mechanical properties of skeletal muscle have not been investigated, but may have significant impact in the treatment of neuromuscular disorders including spasticity. Single fiber and fiber bundle passive mechanical testing was performed on rat muscles treated with botulinum neurotoxin A. Myosin heavy chain and titin composition of single fibers was determined by gel electrophoresis. Muscle collagen content was determined using a hydroxyproline assay. Neurotoxin-treated single fiber passive elastic modulus was reduced compared to control fibers (53.00 kPa vs. 63.43 kPa). Fiber stiffness and slack sarcomere length were also reduced compared to control fibers and myosin heavy chain composition shifted from faster to slower isoforms. Average titin molecular weight increased 1.77% after treatment. Fiber bundle passive elastic modulus increased following treatment (168.83 kPa vs. 75.14 kPa). Bundle stiffness also increased while collagen content per mass of muscle tissue increased 38%. Injection of botulinum neurotoxin A produces an effect on the passive mechanical properties of normal muscle that is opposite to the changes observed in spastic muscles. Copyright © 2011 Orthopaedic Research Society.
Properties of nanocomposite PP fibres
NASA Astrophysics Data System (ADS)
Smole, Majda S.; Stakne, Kristina; Svetec, Diana G.; Kleinschek, Karin S.; Ribitsch, Volker
2005-06-01
PP-based nanocomposite fibres were prepared by direct polymer melt intercalation. With the intention to determine the size and dispersion of nanoparticles in the polymer matrix, fibres were plasma etched and SEM observations were performed. The influence of nanofiller content and coupling agent on electrokinetic properties was studied. PP monofilament fibres exhibit hydrophobe character with negative zeta potential value. The zeta potential value of co-polymer PP fibre decreases with increasing PPAA content and the isoelectric point IEP of co-polymer samples shifts towards acid region. Addition of modified montmorillonite due to the particles electropositive character, affects the reduction of zeta potential value and a slight shift of IEP towards neutral region is observed. Nano-particles content influences electrokinetic fibres properties, i.e. ZP value is changed, however IE point is not significantly changed by different concentrations of nanofiller. In addition to, mechanical properties of nanocomposite fibres were determined.
A Comparative Study of Some Properties of Cassava and Tree Cassava Starch Films
NASA Astrophysics Data System (ADS)
Belibi, P. C.; Daou, T. J.; Ndjaka, J. M. B.; Nsom, B.; Michelin, L.; Durand, B.
Cassava and tree cassava starch films plasticized with glycerol were produced by casting method. Different glycerol contents (30, 35, 40 and 45 wt. % on starch dry basis) were used and the resulting films were fully characterized. Their water barrier and mechanical properties were compared. While increasing glycerol concentration, moisture content, water solubility, water vapour permeability, tensile strength, percent elongation at break and Young's modulus decreased for both cassava and tree cassava films. Tree cassava films presented better values of water vapour permeability, water solubility and percent elongation at break compared to those of cassava films, regardless of the glycerol content.
The Effects of Carbon Nanotubes on the Mechanical and Wear Properties of AZ31 Alloy
Zhou, Mingyang; Qu, Xiaoni; Ren, Lingbao; Fan, Lingling; Zhang, Yuwenxi; Guo, Yangyang; Quan, Gaofeng; Liu, Bin; Sun, Hao
2017-01-01
Carbon nanotube (CNT)-reinforced AZ31 matrix nanocomposites were successfully fabricated using a powder metallurgy method followed by hot extrusion. The influence of CNTs on microstructures, mechanical properties, and wear properties were systematically investigated by optical microscope (OM), scanning electron microscope (SEM), X-ray diffraction (XRD), hardness test, tensile test, and wear test. The results revealed that the nanocomposites showed a slightly smaller grain size compared with the matrix and uniform distribution that CNTs could achieve at proper content. As a result, the addition of CNTs could weaken basal plane texture. However, the yield strength and ultimate tensile strength of the composites were enhanced as the amount of CNTs increased up to 2.0 wt. %, reaching maximum values of 241 MPa (+28.2%) and 297 MPa (+6.1%), respectively. The load transfer mechanism, Orowan mechanism, and thermal mismatch mechanism played important roles in the enhancement of the yield strength, and several classical models were employed to predict the theoretical values. The effect of CNT content on the friction coefficient and weight loss of the nanocomposites was also studied. The relationships between the amount of CNTs, the friction coefficient, and weight loss could be described by the exponential decay model and the Boltzmann model, respectively. PMID:29207543
Nonthrombogenic, biodegradable elastomeric polyurethanes with variable sulfobetaine content.
Ye, Sang-Ho; Hong, Yi; Sakaguchi, Hirokazu; Shankarraman, Venkat; Luketich, Samuel K; D'Amore, Antonio; Wagner, William R
2014-12-24
For applications where degradable polymers are likely to have extended blood contact, it is often important for these materials to exhibit high levels of thromboresistance. This can be achieved with surface modification approaches, but such modifications may be transient with degradation. Alternatively, polymer design can be altered such that the bulk polymer is thromboresistant and this is maintained with degradation. Toward this end a series of biodegradable, elastic polyurethanes (PESBUUs) containing different zwitterionic sulfobetaine (SB) content were synthesized from a polycaprolactone-diol (PCL-diol):SB-diol mixture (100:0, 75:25, 50:50, 25:75 and 0:100) reacted with diisocyanatobutane and chain extended with putrescine. The chemical structure, tensile mechanical properties, thermal properties, hydrophilicity, biodegradability, fibrinogen adsorption and thrombogenicity of the resulting polymers was characterized. With increased SB content some weakening in tensile properties occurred in wet conditions and enzymatic degradation also decreased. However, at higher zwitterionic molar ratios (50% and 75%) wet tensile strength exceeded 15 MPa and breaking strain was >500%. Markedly reduced thrombotic deposition was observed both before and after substantial degradation for both of these PESBUUs and they could be processed by electrospinning into a vascular conduit format with appropriate compliance properties. The mechanical and degradation properties as well as the acute in vitro thrombogenicity assessment suggest that these tunable polyurethanes could provide options appropriate for use in blood contacting applications where a degradable, elastomeric component with enduring thromboresistance is desired.
NASA Astrophysics Data System (ADS)
Hernández, Marianella; Mar Bernal, M.; Grande, Antonio M.; Zhong, Nan; van der Zwaag, Sybrand; García, Santiago J.
2017-08-01
In the present work we show the effect of graphene loading on the restoration of the mechanical properties and thermal and electrical conductivity of a self-healing natural rubber nanocomposite. The graphene loading led to a minimal enhancement of mechanical properties and yielded a modest increase in thermal and electrical conduction. The polymer nanocomposites were macroscopically damaged (cut) and thermally healed for 7 h in a healing cell. Different healing trends as function of the graphene content were found for each of the functionalities: (i) thermal conductivity was fully restored independently of the graphene filler loading; (ii) electrical conductivity was only restored to a high degree above the percolation threshold; and (iii) tensile strength restoration increased more or less linearly with graphene content but was never complete. A dedicated molecular dynamics analysis by dielectric spectroscopy of the pristine and healed samples highlighted the role of graphene-polymer interactions at the healed interphase on the overall restoration of the different functionalities. Based on these results it is suggested that the dependence of the various healing efficiencies with graphene content is due to a combination of the graphene induced lower crosslinking density, as well as the presence of strong polymer-graphene interactions at the healed interphase.
Showalter, Brent L; Beckstein, Jesse C; Martin, John T; Beattie, Elizabeth E; Espinoza Orías, Alejandro A; Schaer, Thomas P; Vresilovic, Edward J; Elliott, Dawn M
2012-07-01
Experimental measurement and normalization of in vitro disc torsion mechanics and collagen content for several animal species used in intervertebral disc research and comparing these with the human disc. To aid in the selection of appropriate animal models for disc research by measuring torsional mechanical properties and collagen content. There is lack of data and variability in testing protocols for comparing animal and human disc torsion mechanics and collagen content. Intervertebral disc torsion mechanics were measured and normalized by disc height and polar moment of inertia for 11 disc types in 8 mammalian species: the calf, pig, baboon, goat, sheep, rabbit, rat, and mouse lumbar discs, and cow, rat, and mouse caudal discs. Collagen content was measured and normalized by dry weight for the same discs except the rat and the mouse. Collagen fiber stretch in torsion was calculated using an analytical model. Measured torsion parameters varied by several orders of magnitude across the different species. After geometric normalization, only the sheep and pig discs were statistically different from human discs. Fiber stretch was found to be highly dependent on the assumed initial fiber angle. The collagen content of the discs was similar, especially in the outer annulus where only the calf and goat discs were statistically different from human. Disc collagen content did not correlate with torsion mechanics. Disc torsion mechanics are comparable with human lumbar discs in 9 of 11 disc types after normalization by geometry. The normalized torsion mechanics and collagen content of the multiple animal discs presented are useful for selecting and interpreting results for animal disc models. Structural organization of the fiber angle may explain the differences that were noted between species after geometric normalization.
Showalter, Brent L.; Beckstein, Jesse C.; Martin, John T.; Beattie, Elizabeth E.; Orías, Alejandro A. Espinoza; Schaer, Thomas P.; Vresilovic, Edward J.; Elliott, Dawn M.
2012-01-01
Study Design Experimental measurement and normalization of in vitro disc torsion mechanics and collagen content for several animal species used in intervertebral disc research and comparing these to the human disc. Objective To aid in the selection of appropriate animal models for disc research by measuring torsional mechanical properties and collagen content. Summary of Background Data There is lack of data and variability in testing protocols for comparing animal and human disc torsion mechanics and collagen content. Methods Intervertebral disc torsion mechanics were measured and normalized by disc height and polar moment of inertia for 11 disc types in 8 mammalian species: the calf, pig, baboon, goat, sheep, rabbit, rat, and mouse lumbar, and cow, rat, and mouse caudal. Collagen content was measured and normalized by dry weight for the same discs except the rat and mouse. Collagen fiber stretch in torsion was calculated using an analytical model. Results Measured torsion parameters varied by several orders of magnitude across the different species. After geometric normalization, only the sheep and pig discs were statistically different from human. Fiber stretch was found to be highly dependent on the assumed initial fiber angle. The collagen content of the discs was similar, especially in the outer annulus where only the calf and goat discs were statistically different from human. Disc collagen content did not correlate with torsion mechanics. Conclusion Disc torsion mechanics are comparable to human lumbar discs in 9 of 11 disc types after normalization by geometry. The normalized torsion mechanics and collagen content of the multiple animal discs presented is useful for selecting and interpreting results for animal models of the disc. Structural composition of the disc, such as initial fiber angle, may explain the differences that were noted between species after geometric normalization. PMID:22333953
Mechanical properties of functionalised CNT filled kenaf reinforced epoxy composites
NASA Astrophysics Data System (ADS)
Sapiai, Napisah; Jumahat, Aidah; Mahmud, Jamaluddin
2018-04-01
This paper aims to study the effect of functionalised carbon nanotubes (CNT) on mechanical properties of kenaf fibre reinforced polymer composites. The CNT was functionalised using acid mixtures of H2SO4:HNO3 and 3-Aminopropyl Triethoxysilane before it was incorporated into epoxy resin. Three different types of CNT were used, i.e. pristine (PCNT), acid-treated (ACNT) and acid-silane treated (SCNT), to fabricate kenaf composite. Three different filler contents were mixed in each composite system, i.e. 0.5, 0.75 and 1.0 wt%. The functionalised CNT was characterized using x-ray Diffraction (XRD), Fourier Transform Infrared (FTIR) and Transmission Electron Microscopy (TEM). Tensile, flexural and Izod impact tests were conducted in order to evaluate the effect of CNT contents and surface treatment of mechanical properties of kenaf composites. It was observed that the inclusion of 1 wt% acid-silane treated CNT improved the tensile, flexural and impact strengths of kenaf/epoxy composite by 43.30%, 21.10%, and 130%, respectively. Silane modification had been proven to be beneficial in enhancing the dispersibility and reducing agglomeration of CNT in the epoxy matrix.
Ng, Kenneth W; Lima, Eric G; Bian, Liming; O'Conor, Christopher J; Jayabalan, Prakash S; Stoker, Aaron M; Kuroki, Keiichi; Cook, Cristi R; Ateshian, Gerard A; Cook, James L; Hung, Clark T
2010-03-01
It was hypothesized that previously optimized serum-free culture conditions for juvenile bovine chondrocytes could be adapted to generate engineered cartilage with physiologic mechanical properties in a preclinical, adult canine model. Primary or passaged (using growth factors) adult chondrocytes from three adult dogs were encapsulated in agarose, and cultured in serum-free media with transforming growth factor-beta3. After 28 days in culture, engineered cartilage formed by primary chondrocytes exhibited only small increases in glycosaminoglycan content. However, all passaged chondrocytes on day 28 elaborated a cartilage matrix with compressive properties and glycosaminoglycan content in the range of native adult canine cartilage values. A preliminary biocompatibility study utilizing chondral and osteochondral constructs showed no gross or histological signs of rejection, with all implanted constructs showing excellent integration with surrounding cartilage and subchondral bone. This study demonstrates that adult canine chondrocytes can form a mechanically functional, biocompatible engineered cartilage tissue under optimized culture conditions. The encouraging findings of this work highlight the potential for tissue engineering strategies using adult chondrocytes in the clinical treatment of cartilage defects.
Jody D. Gray; Shawn T. Grushecky; James P. Armstrong
2008-01-01
Moisture content has a significant impact on mechanical properties of wood. In recent years, stress wave velocity has been used as an in situ and non-destructive method for determining the stiffness of wooden elements. The objective of this study was to determine what effect moisture content has on stress wave velocity and dynamic modulus of elasticity. Results...
Lim, Ho-Nam; Kim, Seong-Hwan; Yu, Bin; Lee, Yong-Keun
2009-01-01
The purpose of this study was to determine the influence of incrementally added uncured HEMA in experimental HEMA-added glass ionomer cement (HAGICs) on the mechanical and shear bond strength (SBS) of these materials. Increasing contents of uncured HEMA (10-50 wt.%) were added to a commercial glass ionomer cement liquid (Fuji II, GC, Japan), and the compressive and diametral tensile strengths of the resulting HAGICs were measured. The SBS to non-precious alloy, precious alloy, enamel and dentin was also determined after these surfaces were subjected to either airborne-particle abrasion (Aa) or SiC abrasive paper grinding (Sp). Both strength properties of the HAGICs first increased and then decreased as the HEMA content increased, with a maximum value obtained when the HEMA content was 20% for the compressive strength and 40% for the tensile strength. The SBS was influenced by the HEMA content, the surface treatment, and the type of bonding surface (p<0.05). These results suggest that addition of an appropriate amount of HEMA to glass ionomer cement would increase diametral tensile strength as well as bond strength to alloys and teeth. These results also confirm that the optimal HEMA content ranged from 20 to 40% within the limitations of this experimental condition. PMID:19668995
Preparation, optimization and property of PVA-HA/PAA composite hydrogel.
Chen, Kai; Liu, Jinlong; Yang, Xuehui; Zhang, Dekun
2017-09-01
PVA-HA/PAA composite hydrogel is prepared by freezing-thawing, PEG dehydration and annealing method. Orthogonal design method is used to choose the optimization combination. Results showed that HA and PVA have the maximum effect on water content. PVA and freezing-thawing cycles have the maximum effect on creep resistance and stress relaxation rate of hydrogel. Annealing temperature and freezing-thawing cycles have the maximum effect on compressive elastic modulus of hydrogel. Comparing with the water content and mechanical properties of 16 kinds of combination, PVA-HA/PAA composite hydrogel with freezing-thawing cycles of 3, annealing temperature of 120°C, PVA of 16%, HA of 2%, PAA of 4% has the optimization comprehensive properties. PVA-HA/PAA composite hydrogel has a porous network structure. There are some interactions between PVA, HA and PAA in hydrogel and the properties of hydrogel are strengthened. The annealing treatment improves the crystalline and crosslinking of hydrogel. Therefore, the annealing PVA-HA/PAA composite hydrogel has good thermostability, strength and mechanical properties. It also has good lubrication property and its friction coefficient is relative low. Copyright © 2017 Elsevier B.V. All rights reserved.
The Effect of Water Molecules on Mechanical Properties of Bamboo Microfibrils
NASA Astrophysics Data System (ADS)
Rahbar, Nima
Bamboo fibers have higher strength-to-weight ratios than steel and concrete. The unique properties of bamboo fibers come from their natural composite structures that comprise mainly cellulose nanofibrils in a matrix of intertwined hemicellulose and lignin called lignin-carbohydrate complex (LCC). Here, we have utilized atomistic simulations to investigate the mechanical properties and mechanisms of interactions between these materials, in the presence of water molecules. Our results suggest that hemicellulose exhibits better mechanical properties and lignin shows greater tendency to adhere to cellulose nanofibrils. Consequently, the role of hemicellulose found to be enhancing the mechanical properties and lignin found to be providing the strength of bamboo fibers. The abundance of Hbonds in hemicellulose chains is responsible for improving the mechanical behavior of LCC. The strong van der Waals forces between lignin molecules and cellulose nanofibrils is responsible for higher adhesion energy between LCC/cellulose nanofibrils. We also found out that the amorphous regions of cellulose nanofibrils is the weakest interface in bamboo Microfibrils. In presence of water, the elastic modulus of lignin increases at low water content (less than 10 NSF CAREER Grant No. 1261284.
Preparation and properties of recycled HDPE/clay hybrids
Yong Lei; Qinglin Wu; Craig M. Clemons
2007-01-01
Hybrids based on recycled high density polyethylene (RHDPE) and organic clay were made by melt compounding. The influence of blending method, compatibilizers, and clay content on clay intercalation and exfoliation, RHDPE crystallization behavior, and the mechanical properties of RHDPE/clay hybrids were investigated. Both maleated polyethylene (MAPE) and titanate could...
NASA Astrophysics Data System (ADS)
Fan, Linfeng; Lehmann, Peter; Or, Dani
2015-04-01
Naturally-occurring spatial variations in soil properties (e.g., soil depth, moisture, and texture) affect key hydrological processes and potentially the mechanical response of soil to hydromechanical loading (relative to the commonly-assumed uniform soil mantle). We quantified the effects of soil spatial variability on the triggering of rainfall-induced shallow landslides at the hillslope- and catchment-scales, using a physically-based landslide triggering model that considers interacting soil columns with mechanical strength thresholds (represented by the Fiber Bundle Model). The spatial variations in soil properties are represented as Gaussian random distributions and the level of variation is characterized by the coefficient of variation and correlation lengths of soil properties (i.e., soil depth, soil texture and initial water content in this study). The impacts of these spatial variations on landslide triggering characteristics were measured by comparing the times to triggering and landslide volumes for heterogeneous soil properties and homogeneous cases. Results at hillslope scale indicate that for spatial variations of an individual property (without cross correlation), the increasing of coefficient of variation introduces weak spots where mechanical damage is accelerated and leads to earlier onset of landslide triggering and smaller volumes. Increasing spatial correlation length of soil texture and initial water content also induces early landslide triggering and small released volumes due to the transition of failure mode from brittle to ductile failure. In contrast, increasing spatial correlation length of soil depth "reduces" local steepness and postpones landslide triggering. Cross-correlated soil properties generally promote landslide initiation, but depending on the internal structure of spatial distribution of each soil property, landslide triggering may be reduced. The effects of cross-correlation between initial water content and soil texture were investigated in detail at the catchment scale by incorporating correlations of both variables with topography. Results indicate that the internal structure of the spatial distribution of each soil property together with their interplays determine the overall performance of the coupled spatial variability. This study emphasizes the importance of both the randomness and spatial structure of soil properties on landslide triggering and characteristics.
Cappelli, Jamil; Garcia, Andrés; Ceacero, Francisco; Gomez, Santiago; Luna, Salvador; Gallego, Laureano; Gambin, Pablo; Landete-Castillejos, Tomás
2015-01-01
Bone ash, collagen, Ca and P composition, are considered the main factors affecting mechanical properties in bones. However, a series of studies in bone and antler have shown that some trace minerals, such as manganese, may play a role whose importance exceeds what may be expected considering their low content. A previous study showed that a reduction in manganese in antlers during a year of late winter frosts led to generalized antler breakage in Spain, which included a reduction of 30% of cortical thickness, 27% reduction in impact energy, and 10% reduction in work to peak force. Starting for this observation, we experimentally studied the effects of manganese supplementation in adults and yearling (yearlings) red deer under a balanced diet. Subjects were 29 deer of different age classes (adult n = 19, yearlings n = 10) that were divided in a manganese injected group (n = 14) and a control group (n = 15). Antler content in ashes and minerals, intrinsic mechanical properties and cross section structure were examined at 4 points along the antler beam. A one way ANOVA (mean per antler) showed that in yearlings, manganese supplementation only increased its content and that of Fe. However, in adults, Mn supplementation increased the mean content per antler of Ca, Na, P, B, Co, Cu, K, Mn, Ni, Se (while Si content was reduced), and impact work but not Young's modulus of elasticity, bending strength or work to peak force. A GLM series on characteristics in the uppermost part examined in the antler, often showing physiological exhaustion and depletion of body stores, showed also a 16% increase in work to peak force in the antlers of the treated group. Thus, manganese supplementation altered mineral composition of antler and improved structure and some mechanical properties despite animals having a balanced diet.
Cappelli, Jamil; Garcia, Andrés; Ceacero, Francisco; Gomez, Santiago; Luna, Salvador; Gallego, Laureano; Gambin, Pablo; Landete-Castillejos, Tomás
2015-01-01
Bone ash, collagen, Ca and P composition, are considered the main factors affecting mechanical properties in bones. However, a series of studies in bone and antler have shown that some trace minerals, such as manganese, may play a role whose importance exceeds what may be expected considering their low content. A previous study showed that a reduction in manganese in antlers during a year of late winter frosts led to generalized antler breakage in Spain, which included a reduction of 30% of cortical thickness, 27% reduction in impact energy, and 10% reduction in work to peak force. Starting for this observation, we experimentally studied the effects of manganese supplementation in adults and yearling (yearlings) red deer under a balanced diet. Subjects were 29 deer of different age classes (adult n = 19, yearlings n = 10) that were divided in a manganese injected group (n = 14) and a control group (n = 15). Antler content in ashes and minerals, intrinsic mechanical properties and cross section structure were examined at 4 points along the antler beam. A one way ANOVA (mean per antler) showed that in yearlings, manganese supplementation only increased its content and that of Fe. However, in adults, Mn supplementation increased the mean content per antler of Ca, Na, P, B, Co, Cu, K, Mn, Ni, Se (while Si content was reduced), and impact work but not Young’s modulus of elasticity, bending strength or work to peak force. A GLM series on characteristics in the uppermost part examined in the antler, often showing physiological exhaustion and depletion of body stores, showed also a 16% increase in work to peak force in the antlers of the treated group. Thus, manganese supplementation altered mineral composition of antler and improved structure and some mechanical properties despite animals having a balanced diet. PMID:26177083
Jiang, Li; Zhao, Yong-qi; Zhang, Jing-chao; Liao, Yun-mao; Li, Wei
2010-06-01
To study the effects of alumina content on sintered density, mechanical property and translucency of zirconia nanocomposite all-ceramics. Specimens of zirconia nanocomposite all-ceramics were divided into five groups based on their alumina content which are 0% (control group), 2.5%, 5.0%, 7.5% and 10.0% respectively. The sintered densities were measured using Archimedes' method. Specimens' bending strengths were measured with three-point bending test (ISO 6872). The visible light transmittances were measured with spectrophotometric arrangements and the fractured surfaces were observed using scanning electron microscope (SEM). The control group of pure zirconia could be sintered to the theoretical density under pressure-less sintering condition. The bending strength was (1100.27 ± 54.82) MPa, the fracture toughness was (4.96 ± 0.35) MPa×m(1/2) and the transmittance could reach 17.03%. The sintered density and transmittance decreased as alumina content increased from 2.5% to 10%. However, the fracture toughness only increased slightly. In all four alumina groups, the additions of alumina had no significant effect on samples' bending strengths (P > 0.05). When the content of alumina was 10%, fracture toughness of specimens reached (6.13 ± 0.44) MPa×m(1/2) while samples' transmittance declined to 6.21%. SEM results showed that alumina particles had no significant effect on the grain size and distribution of tetragonal zirconia polycrystals. Additions of alumina to yttria-tetragonal zirconia polycrystals could influence its mechanical property and translucency. Additions of the other phase to zirconia ceramics should meet the clinical demands of strength and esthetics.
Mechanical properties of green composites based on thermoplastic starch
NASA Astrophysics Data System (ADS)
Fornes, F.; Sánchez-Nácher, L.; Fenollar, O.; Boronat, T.; Garcia-Sanoguera, D.
2010-06-01
The present work is focused on study of "green composites" elaborated from thermoplastic starch (TPS) as polymer matrix and a fiber from natural origin (rush) as reinforced fiber. The effect of the fiber content has been studied by means of the mechanical properties. The composite resulting presents a lack of interaction between matrix and fiber that represents a performance decrease. However the biodegradability behavior of the resulting composite raise this composite as useful an industrial level.
Corrosion behavior and mechanical properties of bioactive sol-gel coatings on titanium implants.
Catauro, M; Bollino, F; Papale, F; Giovanardi, R; Veronesi, P
2014-10-01
Organic-inorganic hybrid coatings based on zirconia and poly (ε-caprolactone) (PCL) were prepared by means of sol-gel dip-coating technique and used to coat titanium grade 4 implants (Ti-4) in order to improve their wear and corrosion resistance. The coating chemical composition has been analysed by ATR-FTIR. The influence of the PCL amount has been investigated on the microstructure, mechanical properties of the coatings and their ability to inhibit the corrosion of titanium. SEM analysis has shown that all coatings have a nanostructured nature and that the films with high PCL content are crack-free. Mechanical properties of the coatings have been studied using scratch and nano-indentation tests. The results have shown that the Young's modulus of the coatings decreases in presence of large amounts of the organic phase, and that PCL content affects also the adhesion of the coatings to the underlying Ti-4 substrate. However, the presence of cracks on the PCL-free coatings affects severely the mechanical response of the samples at high loads. The electrochemical behavior and corrosion resistance of the coated and uncoated substrate has been investigated by polarization tests. The results have shown that both the coatings with or without PCL don't affect significantly the already excellent passivation properties of titanium. Copyright © 2014. Published by Elsevier B.V.
Hersche, Sepp; Sifakakis, Iosif; Zinelis, Spiros; Eliades, Theodore
2017-02-01
The purpose of the present study was to investigate the elemental composition, the microstructure, and the selected mechanical properties of high gold orthodontic brackets after intraoral aging. Thirty Incognito™ (3M Unitek, Bad Essen, Germany) lingual brackets were studied, 15 brackets as received (control group) and 15 brackets retrieved from different patients after orthodontic treatment. The surface of the wing area was examined by scanning electron microscopy (SEM). Backscattered electron imaging (BEI) was performed, and the elemental composition was determined by X-ray EDS analysis (EDX). After appropriate metallographic preparation, the mechanical properties tested were Martens hardness (HM), indentation modulus (EIT), elastic index (ηIT), and Vickers hardness (HV). These properties were determined employing instrumented indentation testing (IIT) with a Vickers indenter. The results were statistically analyzed by unpaired t-test (α=0.05). There were no statistically significant differences evidenced in surface morphology and elemental content between the control and the experimental group. These two groups of brackets showed no statistically significant difference in surface morphology. Moreover, the mean values of HM, EIT, ηIT, and HV did not reach statistical significance between the groups (p>0.05). Under the limitations of this study, it may be concluded that the surface elemental content and microstructure as well as the evaluated mechanical properties of the Incognito™ lingual brackets remain unaffected by intraoral aging.
Nikiforov, Leonid A; Okhlopkova, Tatinana A; Kapitonova, Iullia V; Sleptsova, Sardana A; Okhlopkova, Aitalina A; Shim, Ee Le; Cho, Jin-Ho
2017-12-05
In this study, the reinforcement of ultrahigh-molecular-weight polyethylene (UHMWPE) with biotite was investigated. The biotite filler was mechanically activated with different dry surfactants to improve its compatibility with UHMWPE and decrease agglomeration among biotite particles. Alkyldimethylbenzylammonium chloride (ADBAC) and cetyltrimethylammonium bromide (CTAB) were selected as cationic surfactants. The tensile strength of composites containing 1 wt % of CTAB-treated biotite was increased by 30% relative to those with untreated biotite, but was unchanged with ADBAC treatment of the same biotite content. The stereochemistry of the surfactant may be critical to the composite structure and mechanical properties of the material. The stereochemistry of CTAB was preferable to that of ADBAC in enhancing mechanical properties because the stereochemistry of ADBAC impedes favorable interactions with the biotite surface during mechanical activation.
NASA Astrophysics Data System (ADS)
Shashikumar, C.; Pradhan, R. C.; Mishra, S.
2018-06-01
Shorea robusta (Sal) is mainly harvested and processed for its seed oil, which has diverse application in commercial food and non-food based industries. Before extraction of its oil, seeds undergo into various post-harvest unit operations. Physical and mechanical properties play an important role in the handling and other processing activity. In this study influence of moisture content and compression axis of sal seed on physico-mechanical properties were studied and their application are highlighted. The experiments were conducted at five different moisture levels of 6.38, 10.49, 13.63, 17.64, and 21.95% (d.b) at two different orientations. The first orientation is on major axis (LEN) of the seed, and the other orientation is on intermediate or minor axis (WID), which is right angle to the major axis. It was observed that 68% of sal seeds were of medium size group at initial moisture content of 10.49% (d.b). The mean length and width of sal seed was found to be 26.7 mm and 12.8 mm, respectively. It was found that values of hardness, deformation at hardness, deformation at hardness percentage and energy for rupture were higher in minor axis (WID) as compared to the major axis (LEN). The results provide necessary data that may be useful to engineers, scientists, industries in the design of a suitable post-harvest processing machine.
NASA Astrophysics Data System (ADS)
Li, Longfei; Ji, Shouxun; Zhu, Qiang; Wang, Yun; Dong, Xixi; Yang, Wenchao; Midson, Stephen; Kang, Yonglin
2018-06-01
The microstructure and mechanical properties of Al-8.1Mg-2.6Si-(0.08 to 4.62)Zn alloys (in wt pct) have been investigated by the permanent mold casting process. X-ray diffraction analysis shows that the τ-Mg32(Al, Zn)49 phase forms when the Zn content is 1.01 wt pct. With higher Zn contents of 2.37 and 3.59 wt pct, the η-MgZn2 and τ-Mg32(Al, Zn)49 phases precipitate in the microstructure, and the η-MgZn2 phase forms when the Zn content is 4.62 wt pct. Metallurgical analysis shows that the η-MgZn2 and τ-Mg32(Al, Zn)49 phases strengthen the Al-8.1Mg-2.6Si-(0.08 to 4.62)Zn alloys. After solutionizing at 510 °C for 180 minutes and aging at 180 °C for 90 minutes, the η'-MgZn2 phase precipitates in the α-Al matrix, which significantly enhances the mechanical properties. Addition of 3.59 wt pct Zn to the Al-8.1Mg-2.6Si alloy with heat treatment increases the yield strength from 96 to 280 MPa, increases the ultimate tensile strength from 267 to 310 MPa, and decreases the elongation from 9.97 to 1.74 pct.
NASA Astrophysics Data System (ADS)
Shashikumar, C.; Pradhan, R. C.; Mishra, S.
2018-02-01
Shorea robusta (Sal) is mainly harvested and processed for its seed oil, which has diverse application in commercial food and non-food based industries. Before extraction of its oil, seeds undergo into various post-harvest unit operations. Physical and mechanical properties play an important role in the handling and other processing activity. In this study influence of moisture content and compression axis of sal seed on physico-mechanical properties were studied and their application are highlighted. The experiments were conducted at five different moisture levels of 6.38, 10.49, 13.63, 17.64, and 21.95% (d.b) at two different orientations. The first orientation is on major axis (LEN) of the seed, and the other orientation is on intermediate or minor axis (WID), which is right angle to the major axis. It was observed that 68% of sal seeds were of medium size group at initial moisture content of 10.49% (d.b). The mean length and width of sal seed was found to be 26.7 mm and 12.8 mm, respectively. It was found that values of hardness, deformation at hardness, deformation at hardness percentage and energy for rupture were higher in minor axis (WID) as compared to the major axis (LEN). The results provide necessary data that may be useful to engineers, scientists, industries in the design of a suitable post-harvest processing machine.
Kaczmarczyk-Sedlak, Ilona; Wojnar, Weronika; Zych, Maria; Ozimina-Kamińska, Ewa; Taranowicz, Joanna; Siwek, Agata
2013-01-01
Formononetin is a naturally occurring isoflavone, which can be found in low concentrations in many dietary products, but the greatest sources of this substance are Astragalus membranaceus, Trifolium pratense, Glycyrrhiza glabra, and Pueraria lobata, which all belong to Fabaceae family. Due to its structural similarity to 17 β -estradiol, it can mimic estradiol's effect and therefore is considered as a "phytoestrogen." The aim of this study was to examine the effect of formononetin on mechanical properties and chemical composition of bones in rats with ovariectomy-induced osteoporosis. 12-week-old female rats were divided into 4 groups: sham-operated, ovariectomized, ovariectomized treated with estradiol (0.2 mg/kg) and ovariectomized treated with formononetin (10 mg/kg). Analyzed substances were administered orally for 4 weeks. Ovariectomy caused osteoporotic changes, which can be observed in bone biomechanical features (decrease of maximum load and fracture load and increase of displacements for maximum and fracture loads) and bone chemical composition (increase of water and organic fraction content, while a decrease of minerals takes place). Supplementation with formononetin resulted in slightly enhanced bone mechanical properties and bone chemistry improvement (significantly lower water content and insignificantly higher mineral fraction content). To summarize, administration of formononetin to ovariectomized rats shows beneficial effect on bone biomechanical features and chemistry; thus, it can prevent osteoporosis development.
Kaczmarczyk-Sedlak, Ilona; Wojnar, Weronika; Zych, Maria; Ozimina-Kamińska, Ewa; Taranowicz, Joanna; Siwek, Agata
2013-01-01
Formononetin is a naturally occurring isoflavone, which can be found in low concentrations in many dietary products, but the greatest sources of this substance are Astragalus membranaceus, Trifolium pratense, Glycyrrhiza glabra, and Pueraria lobata, which all belong to Fabaceae family. Due to its structural similarity to 17β-estradiol, it can mimic estradiol's effect and therefore is considered as a “phytoestrogen.” The aim of this study was to examine the effect of formononetin on mechanical properties and chemical composition of bones in rats with ovariectomy-induced osteoporosis. 12-week-old female rats were divided into 4 groups: sham-operated, ovariectomized, ovariectomized treated with estradiol (0.2 mg/kg) and ovariectomized treated with formononetin (10 mg/kg). Analyzed substances were administered orally for 4 weeks. Ovariectomy caused osteoporotic changes, which can be observed in bone biomechanical features (decrease of maximum load and fracture load and increase of displacements for maximum and fracture loads) and bone chemical composition (increase of water and organic fraction content, while a decrease of minerals takes place). Supplementation with formononetin resulted in slightly enhanced bone mechanical properties and bone chemistry improvement (significantly lower water content and insignificantly higher mineral fraction content). To summarize, administration of formononetin to ovariectomized rats shows beneficial effect on bone biomechanical features and chemistry; thus, it can prevent osteoporosis development. PMID:23762138
Bi, Xiaohong; Grafe, Ingo; Ding, Hao; Flores, Rene; Munivez, Elda; Jiang, Ming Ming; Dawson, Brian; Lee, Brendan; Ambrose, Catherine G
2017-02-01
Osteogenesis imperfecta (OI) is a group of genetic disorders characterized by brittle bones that are prone to fracture. Although previous studies in animal models investigated the mechanical properties and material composition of OI bone, little work has been conducted to statistically correlate these parameters to identify key compositional contributors to the impaired bone mechanical behaviors in OI. Further, although increased TGF-β signaling has been demonstrated as a contributing mechanism to the bone pathology in OI models, the relationship between mechanical properties and bone composition after anti-TGF-β treatment in OI has not been studied. Here, we performed follow-up analyses of femurs collected in an earlier study from OI mice with and without anti-TGF-β treatment from both recessive (Crtap -/- ) and dominant (Col1a2 +/P.G610C ) OI mouse models and WT mice. Mechanical properties were determined using three-point bending tests and evaluated for statistical correlation with molecular composition in bone tissue assessed by Raman spectroscopy. Statistical regression analysis was conducted to determine significant compositional determinants of mechanical integrity. Interestingly, we found differences in the relationships between bone composition and mechanical properties and in the response to anti-TGF-β treatment. Femurs of both OI models exhibited increased brittleness, which was associated with reduced collagen content and carbonate substitution. In the Col1a2 +/P.G610C femurs, reduced hydroxyapatite crystallinity was also found to be associated with increased brittleness, and increased mineral-to-collagen ratio was correlated with increased ultimate strength, elastic modulus, and bone brittleness. In both models of OI, regression analysis demonstrated that collagen content was an important predictor of the increased brittleness. In summary, this work provides new insights into the relationships between bone composition and material properties in models of OI, identifies key bone compositional parameters that correlate with the impaired mechanical integrity of OI bone, and explores the effects of anti-TGF-β treatment on bone-quality parameters in these models. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.
The Effects of Obesity on Murine Cortical Bone
NASA Astrophysics Data System (ADS)
Martin, Sophi
This dissertation details the effects of obesity on the mechanical properties and structure of cortical bone. Obesity is associated with greater bone mineral content that might be expected to protect against fracture, which has been observed in adults. Paradoxically however, the incidence of bone fractures has been found to increase in overweight and obese children and adolescents. Femora from adolescent and adult mice fed a high-fat diet are investigated for changes in shape, tissue structure, as well as tissue-level and whole-bone mechanical properties. Results indicate increased bone size, reduced size-independent mechanical properties, but maintained size-dependent mechanical properties. Other changes in cortical bone response to obesity are observed with advancing age. This study indicates that bone quantity and bone quality play important compensatory roles in determining fracture risk, and that fracture risk may not be lessened for adults as previously thought.
NASA Astrophysics Data System (ADS)
Conrad, Timothy L.
The overall objective of this study was to investigate the mechanical and biological properties of HA whisker reinforced polyaryletherketone (PAEK) composites and scaffolds which are key to clinical translation for orthopedic and spinal implants. The fatigue behavior of polyetherketoneketone (PEKK) reinforced with 0, 20, and 40 vol% hydroxyapatite (HA) was investigated in four-point bending fatigue. The fatigue life decreased with increasing HA reinforcement. However, PEKK reinforced with 40 vol% HA whiskers exhibited a fatigue life greater than 2.106 cycles at 40 MPa. Moreover, HA whisker reinforcement resulted in decreased creep deformation and minimal modulus degradation. The effects of the mold temperature and polyetheretherketone (PEEK) powder were investigated on the mechanical properties and crystallinity of HA whisker reinforced PEEK scaffolds prepared using compression molding and porogen leaching. The mechanical properties of the scaffolds increased while the PEEK crystallinity decreased, with increasing mold temperature and suggested an optimal mold temperature of 370--375°C for PEEK scaffolds comprising of 75% porosity and 20 vol% HA whisker reinforcement, regardless of the PEEK powder size. The effects of the porogen morphology on the architecture, mechanical properties, and permeability of HA whisker reinforced PEEK scaffolds were investigated in 75--90% porous scaffolds. HA whisker reinforced PEEK scaffolds prepared with an ellipsoidal porogen exhibited a greater permeability than scaffolds prepared with a cubic porogen. The compressive modulus, yield strength, and yield strain were not affected by the porogen morphology. The effects of HA reinforcement morphology and content was investigated on the behavior of primary osteoblasts on dense HA reinforced PEEK substrates in vitro. At day 7, the number of osteoblasts attached to PEEK substrate surfaces increased with increasing HA content and for HA whiskers compared to equiaxed HA powder reinforcement. This suggests that the HA reinforcement content morphology can promote cellular attachment and proliferation at early time points.
Carbon Nanotube Composites from Modified Plant Oils
NASA Astrophysics Data System (ADS)
McAninch, Ian; Wool, Richard
2006-03-01
Carbon nanotubes (CNTs) with their impressive mechanical properties are ideal reinforcement material. Acrylated epoxidized soy oil (AESO) has been previously shown to have favorable interactions with carbon nanotubes. CNTs mixed into AESO, both with and without styrene as a co-monomer, using mechanical shear mixing showed dispersion only on the micron level, resulting in modest mechanical property improvements. Greater improvements were seen, especially in the rubbery modulus, when the resin's viscosity was kept high, either through a reduction of the styrene content, or by curing at a lower temperature. CNTs were also dispersed via sonication in methyl methacrylate. The resulting dispersion was then mixed with AESO. The resulting composites showed better CNT dispersion, with no micron-sized aggregates, as verified using SEM and optical microscopy. The mechanical properties also showed greater improvement.
Reduction of hydrogen content in pure Ti
NASA Astrophysics Data System (ADS)
Ogiwara, N.; Suganuma, K.; Hikichi, Y.; Kamiya, J.; Kinsho, M.; Sukenobu, S.
2008-03-01
Pure Ti is adopted as a material for ducts and bellows at the proton accelerator 3 GeV-RCS in J-PARC project, because of its small residual radioactivity. In the particle accelerator, the H2 outgassing due to ion impact is often the dominant source of gas release. As the reduction of hydrogen content will probably suppress ion induced desorption, we attempted to reduce the hydrogen content in the Ti by in-situ vacuum baking. First, thermal desorption behavior and the change in hydrogen content after the heat treatment were investigated. Vacuum firing at temperatures higher than 550°C was effective in reducing the hydrogen content in the Ti. At the same time, the mechanical properties were monitored because grain growth leads to decrease in mechanical strength. Even after treatment at 750°C for 12 hr, the decreases in tensile and yield strength were so small (~10%) that we have no anxiety about the reduction of mechanical strength. Based upon the results of this study, vacuum firing has been applied to reduce the hydrogen content in the Ti bellows and ducts of the RCS machine.
Smith, Lucas R.
2014-01-01
Many skeletal muscle diseases are associated with progressive fibrosis leading to impaired muscle function. Collagen within the extracellular matrix is the primary structural protein providing a mechanical scaffold for cells within tissues. During fibrosis collagen not only increases in amount but also undergoes posttranslational changes that alter its organization that is thought to contribute to tissue stiffness. Little, however, is known about collagen organization in fibrotic muscle and its consequences for function. To investigate the relationship between collagen content and organization with muscle mechanical properties, we studied mdx mice, a model for Duchenne muscular dystrophy (DMD) that undergoes skeletal muscle fibrosis, and age-matched control mice. We determined collagen content both histologically, with picosirius red staining, and biochemically, with hydroxyproline quantification. Collagen content increased in the mdx soleus and diaphragm muscles, which was exacerbated by age in the diaphragm. Collagen packing density, a parameter of collagen organization, was determined using circularly polarized light microscopy of picosirius red-stained sections. Extensor digitorum longus (EDL) and soleus muscle had proportionally less dense collagen in mdx muscle, while the diaphragm did not change packing density. The mdx muscles had compromised strength as expected, yet only the EDL had a significantly increased elastic stiffness. The EDL and diaphragm had increased dynamic stiffness and a change in relative viscosity. Unexpectedly, passive stiffness did not correlate with collagen content and only weakly correlated with collagen organization. We conclude that muscle fibrosis does not lead to increased passive stiffness and that collagen content is not predictive of muscle stiffness. PMID:24598364
NASA Astrophysics Data System (ADS)
Tyurin, Alexander I.; Zhigachev, Andrey O.; Umrikhin, Alexey V.; Rodaev, Vyacheslav V.; Korenkov, Viktor V.; Pirozhkova, Tatyana S.
2017-12-01
A method for the preparation of novel nanostructured zirconia ceramics from natural zirconia mineral—baddeleyite—using CaO as the stabilizer is described in the present work. Optimal synthesis conditions, including calcia content, planetary mill treatment regime, sintering time and temperature, corresponding to the highest values of hardness H, Young modulus E, and fracture toughness KC are found. The values of the mechanical properties H = 10.8 GPa, E = 200 GPa, and KC = 13.3 MPa m1/2 are comparable with or exceed the corresponding properties of commercial yttria-stabilized ceramics prepared from chemically precipitated zirconia.
Wang, Chih-Hao; Fang, Te-Hua; Cheng, Po-Chien; Chiang, Chia-Chin; Chao, Kuan-Chi
2015-06-01
This paper used numerical and experimental methods to investigate the mechanical properties of amorphous NiAl alloys during the nanoindentation process. A simulation was performed using the many-body tight-binding potential method. Temperature, plastic deformation, elastic recovery, and hardness were evaluated. The experimental method was based on nanoindentation measurements, allowing a precise prediction of Young's modulus and hardness values for comparison with the simulation results. The indentation simulation results showed a significant increase of NiAl hardness and elastic recovery with increasing Ni content. Furthermore, the results showed that hardness and Young's modulus increase with increasing Ni content. The simulation results are in good agreement with the experimental results. Adhesion test of amorphous NiAl alloys at room temperature is also described in this study.
Effect of Alloy Elements on Microstructures and Mechanical Properties in Al-Mg-Si Alloys
NASA Astrophysics Data System (ADS)
Kato, Yoshikazu; Hisayuki, Koji; Sakaguchi, Masashi; Higashi, Kenji
Microstructures and mechanical properties in the modified Al-Mg-Si alloys with variation in the alloy elements and their contents were investigated to enhance higher strength and ductility. Optimizing both the alloy element design and the industrial processes including heat-treatments and extrusion technology was carried out along the recent suggestion from the first principles calculation. The investigation concluded that the addition of Fe and/or Cu could recovery their lost ductility, furthermore increase their tensile strength up to 420 MPa at high elongation of 24 % after T6 condition for Al-0.8mass%Mg-1.0mass%Si-0.8mass%Cu-0.5mass%Fe alloy with excess Si content. The excellent combination between strength and ductility could be obtained by improvement to the grain boundary embitterment caused by grain boundary segregation of Si as a result from the interaction of Si with Cu or Fe with optimizing the amount of Cu and Fe contents.
NASA Astrophysics Data System (ADS)
Kinasih, N. A.; Fathurrohman, M. I.; Winarto, D. A.
2017-07-01
Epoxidized natural rubber (ENR) with different level of epoxidation (i.e. 10, 20, 30, 40 and 50 mol% indicated as ENR ENR10, ENR20, ENR30, ENR40 and ENR50, respectively) were prepared. They were then vulcanized by using efficient system vulcanization. The effect of epoxide content on curing characteristic, swelling and mechanical properties in N-pentane was investigated. The Attenuated Resonance Fourier Transform Infrared (ATR-FTIR) and H-Nuclear Magnetic Resonance (H-NMR) were used to determine the epoxidation level. Glass transition (Tg) of ENR samples was determined by using Direct Scanning Calorimetry (DSC). The result revealed that the resistance of ENR in N-pentane increased with increasing epoxidation level, which indicated by decreasing equilibrium mol uptake and diffusion coefficient. The compression set of ENR and aging resistance increased with increasing epoxide content, except ENR50 was due to ENR 50 have two Tg value. However, the value of hardness and tensile strength were not effected by epoxidation level.
NASA Astrophysics Data System (ADS)
Zhang, Ziying; Zhang, Huizhen; Zhao, Hui; Yu, Zhishui; He, Liang; Li, Jin
2015-04-01
The crystal structures, electronic structures, thermodynamic and mechanical properties of Mg2Ni alloy and its saturated hydride with different Mn-doping contents are investigated using first-principles density functional theory. The lattice parameters for the Mn-doped Mg2Ni alloys and their saturated hydrides decreased with an increasing Mn-doping content because of the smaller atomic size of Mn compared with that of Mg. Analysis of the formation enthalpies and electronic structures reveal that the partial substitution of Mg with Mn reduces the stability of Mg2Ni alloy and its saturated hydride. The calculated elastic constants indicate that, although the partial substitution of Mg with Mn lowers the toughness of the hexagonal Mg2Ni alloy, the charge/discharge cycles are elevated when the Mn-doping content is high enough to form the predicted intermetallic compound Mg3MnNi2.
Rice stubble as a new biopolymer source to produce carboxymethyl cellulose-blended films.
Rodsamran, Pattrathip; Sothornvit, Rungsinee
2017-09-01
Rice stubble is agricultural waste consisting of cellulose which can be converted to carboxymethyl cellulose from rice stubble (CMCr) as a potential biomaterial. Plasticizer types (glycerol and olive oil) and their contents were investigated to provide flexibility for use as food packaging material. Glycerol content enhanced extensibility, while olive oil content improved the moisture barrier of films. Additionally, CMCr showed potential as a replacement for up to 50% of commercial CMC without any changes in mechanical and permeability properties. A mixture of plasticizers (10% glycerol and 10% olive oil) provided blended film with good water barrier and mechanical properties comparable with 20% individual plasticizer. Principle component (PC) analysis with 2 PCs explained approximately 81% of the total variance, was a useful tool to select a suitable plasticizer ratio for blended film production. Therefore, CMCr can be used to form edible film and coating as a renewable environmentally friendly packaging material. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Grande, Dodd H.; Ilcewicz, Larry B.; Avery, William B.; Bascom, Willard D.
1991-01-01
Composite materials having multiphase toughened matrix systems and laminate architectures characterized by resin-rich interlaminar layers (RIL) have been the subject of much recent attention. Such materials are likely to find applications in thick compressively loaded structures such as the keel area of commercial aircraft fuselages. The effects of resin content and its interlaminar and intralaminar distribution on mechanical properties were investigated with test and analysis of two carbon-epoxy systems. The RIL was found to reduce the in situ strengthening effect for matrix cracking in laminates. Mode 2 fracture toughness was found to increase with increasing RIL thickness over the range investigated, and Mode 1 interlaminar toughness was negligibly affected. Compressive failure strains were found to increase with increasing resin content for specimens having no damage, holes, and impact damage. Analytical tools for predicting matrix cracking of off-axis plies and damage tolerance in compression after impact (CAI) were successfully applied to materials with RIL.
Bone scaffolds with homogeneous and discrete gradient mechanical properties.
Jelen, C; Mattei, G; Montemurro, F; De Maria, C; Mattioli-Belmonte, M; Vozzi, G
2013-01-01
Bone TE uses a scaffold either to induce bone formation from surrounding tissue or to act as a carrier or template for implanted bone cells or other agents. We prepared different bone tissue constructs based on collagen, gelatin and hydroxyapatite using genipin as cross-linking agent. The fabricated construct did not present a release neither of collagen neither of genipin over its toxic level in the surrounding aqueous environment. Each scaffold has been mechanically characterized with compression, swelling and creep tests, and their respective viscoelastic mechanical models were derived. Mechanical characterization showed a practically elastic behavior of all samples and that compressive elastic modulus basically increases as content of HA increases, and it is strongly dependent on porosity and water content. Moreover, by considering that gradients in cellular and extracellular architecture as well as in mechanical properties are readily apparent in native tissues, we developed discrete functionally graded scaffolds (discrete FGSs) in order to mimic the graded structure of bone tissue. These new structures were mechanically characterized showing a marked anisotropy as the native bone tissue. Results obtained have shown FGSs could represent valid bone substitutes. Copyright © 2012 Elsevier B.V. All rights reserved.
Propensity of bond exchange as a window into the mechanical properties of metallic glasses
NASA Astrophysics Data System (ADS)
Jiao, W.; Wang, X. L.; Lan, S.; Pan, S. P.; Lu, Z. P.
2015-02-01
We investigated the mechanical properties of Zr-Cu-Al bulk metallic glasses, by compression experiment and molecular dynamics simulations. From the simulation, we found that the large, solvent atom, Zr, has high propensity of bond exchange compared to those of the smaller solute atoms. The difference in bond exchange is consistent with the observed disparity in mechanical behaviors: Zr-rich metallic glass exhibits low elastic modulus and large plastic strain. X-ray photoelectron spectroscopy measurements suggest that the increased propensity in bond exchange is related to the softening of Zr bonds with increasing Zr content.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karaköse, Ercan, E-mail: ekarakose@karatekin.edu.t
2016-11-15
The present work examines the effect of Mg contents and cooling rate on the morphology and mechanical properties of Al{sub 20}Cu{sub 12}Fe quasicrystalline alloy. The microstructure of the alloys was analyzed by scanning electron microscopy and the phase composition was identified by X-ray diffractometry. The melting characteristics were studied by differential thermal analysis under an Ar atmosphere. The mechanical features of the melt-spun and conventionally solidified alloys were tested by tensile-strength test and Vickers micro-hardness test. It was found that the final microstructure of the Al{sub 20}Cu{sub 12}Fe samples mainly depends on the cooling rate and Mg contents, which suggestsmore » that different cooling rates and Mg contents produce different microstructures and properties. The average grain sizes of the melt spun samples were about 100–300 nm at 35 m/s. The nanosize, dispersed, different shaped quasicrystal particles possessed a remarkable effect to the mechanical characteristics of the rapidly solidified ribbons. The microhardness values of the melt spun samples were approximately 18% higher than those of the conventionally counterparts. - Highlights: •Quasicrystal-creating materials have high potential for applications. •Different shaped nanosize quasicrystal particles were observed. •The addition of Mg has an important impact on the mechanical properties. •H{sub V} values of the MS0, MS3 and MS5 samples at 35 m/s were 8.56, 8.66 and 8.80 GPa. •The volume fraction of IQC increases with increasing cooling rates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arif, M. F.; Yusoff, P. S. M. M.; Eng, K. K.
2010-03-11
High Density Polyethylene (HDPE) composites were fabricated using oil palm empty fruit bunch (EFB) as the reinforcing material. The effect of reinforcement shape on the tensile and flexural properties, that is 5 mm average length of short fiber and 325-400 {mu}m size distribution of particulate filler have been studied. Overall, EFB short fiber-HDPE composites yield higher mechanical properties compared to EFB particulate-HDPE composites. For both types of composites, considerable improvement showed in tensile and flexural modulus. However, the tensile strength decreased with increase in EFB content. Attempts to improve these properties using alkali and two types of silane, namely gamma-Methacryloxypropyltrimethoxysilanemore » (MTS) and vinyltriethoxysilane (VTS) were described. It is found that both types of silane enhanced the mechanical properties of composites. MTS showed better tensile strength compared to VTS. However, only marginal improvement obtained from alkali treatments.« less
Structure and Mechanical Properties of As-Cast Ti-5Sn-xMo Alloys.
Yu, Hsing-Ning; Hsu, Hsueh-Chuan; Wu, Shih-Ching; Hsu, Shih-Kuang; Ho, Wen-Fu
2017-04-27
Ti-5Sn- x Mo ( x = 0, 1, 3, 5, 7.5, 10, 12.5, 15, 17.5, and 20 wt %) alloys were designed and prepared for application as implant materials with superior mechanical properties. The results demonstrated that the crystal structure and mechanical properties of Ti-5Sn- x Mo alloys are highly affected by their Mo content. The as-cast microstructures of Ti-5Sn- x Mo alloys transformed in the sequence of phases α' → α″ → β, and the morphologies of the alloys changed from a lath structure to an equiaxed structure as the Mo content increased. The α″-phase Ti-5Sn-7.5Mo (80 GPa) and β-phase Ti-5Sn-10Mo (85 GPa) exhibited relatively low elastic moduli and had excellent elastic recovery angles of 27.4° and 37.8°, respectively. Furthermore, they exhibited high ductility and moderate strength, as evaluated using the three-point bending test. Search for a more suitable implant material by this study, Ti-5Sn- x Mo alloys with 7.5 and 10 wt % Mo appear to be promising candidates because they demonstrate the optimal combined properties of microhardness, ductility, elastic modulus, and elastic recovery capability.
NASA Astrophysics Data System (ADS)
Jiang, J.; Shen, Z.; Jia, Y.
2017-12-01
Methane hydrates are superior energy resources and potential predisposing factors of geohazard. With the success in China's persistent exploitation of methane hydrates in the Shenhu area of South China Sea for 60 days, there is an increasing demand for detailed knowledge of sediment properties and hazard assessment in this area. In this paper, the physical and mechanical properties of both the surface sediments and methane hydrate-bearing sediments (MHBS) in the exploitation area, the Shenhu area of South China Sea, were investigated using laboratory geotechnical experiments, and triaxial tests were carried out on remolded sediment samples using a modified triaxial apparatus. The results show that sediments in this area are mainly silt with high moisture content, high plasticity, low permeability and low shear strength. The moisture content and permeability decrease while the shear strength increases with the increasing depth. The elastic modulus and peak strength of MHBS increase with the increasing effective confining pressure and higher hydrate saturation. The cohesion increases with higher hydrate saturation while the internal friction angle is barely affected by hydrate saturation. The obtained results demonstrate clearly that methane hydrates have significant impacts on the physical and mechanical properties of sediments and there is still a wide gap in knowledge about MHBS.
Santos, Pedro Fernandes; Niinomi, Mitsuo; Liu, Huihong; Cho, Ken; Nakai, Masaaki; Itoh, Yoshinori; Narushima, Takayuki; Ikeda, Masahiko
2016-06-01
Titanium and its alloys are suitable for biomedical applications owing to their good mechanical properties and biocompatibility. Beta-type Ti-Mn alloys (8-17 mass% Mn) were fabricated by metal injection molding (MIM) as a potential low cost material for use in biomedical applications. The microstructures and mechanical properties of the alloys were evaluated. For up to 13 mass% Mn, the tensile strength (1162-938MPa) and hardness (308-294HV) of the MIM fabricated alloys are comparable to those of Ti-Mn alloys fabricated by cold crucible levitation melting. Ti-9Mn exhibits the best balance of ultimate tensile strength (1046MPa) and elongation (4.7%) among the tested alloys, and has a Young's modulus of 89GPa. The observed low elongation of the alloys is attributed to the combined effects of high oxygen content, with the presence of interconnected pores and titanium carbides, the formation of which is due to carbon pickup during the debinding process. The elongation and tensile strength of the alloys decrease with increasing Mn content. The Ti-Mn alloys show good compressive properties, with Ti-17Mn showing a compressive 0.2% proof stress of 1034MPa, and a compressive strain of 50%. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Benchirouf, Abderrahmane; Müller, Christian; Kanoun, Olfa
2016-01-01
In this paper, we propose strain-sensitive thin films based on chemically reduced graphene oxide (GO) and multi-walled carbon nanotubes (MWCNTs) without adding any further surfactants. In spite of the insulating properties of the thin-film-based GO due to the presence functional groups such as hydroxyl, epoxy, and carbonyl groups in its atomic structure, a significant enhancement of the film conductivity was reached by chemical reduction with hydro-iodic acid. By optimizing the MWCNT content, a significant improvement of electrical and mechanical thin film sensitivity is realized. The optical properties and the morphology of the prepared thin films were studied using ultraviolet-visible spectroscopy (UV-Vis) and scanning electron microscope (SEM). The UV-Vis spectra showed the ability to tune the band gap of the GO by changing the MWCNT content, whereas the SEM indicated that the MWCNTs were well dissolved and coated by the GO. Investigations of the piezoresistive properties of the hybrid nanocomposite material under mechanical load show a linear trend between the electrical resistance and the applied strain. A relatively high gauge factor of 8.5 is reached compared to the commercial metallic strain gauges. The self-assembled hybrid films exhibit outstanding properties in electric conductivity, mechanical strength, and strain sensitivity, which provide a high potential for use in strain-sensing applications.
Benchirouf, Abderrahmane; Müller, Christian; Kanoun, Olfa
2016-12-01
In this paper, we propose strain-sensitive thin films based on chemically reduced graphene oxide (GO) and multi-walled carbon nanotubes (MWCNTs) without adding any further surfactants. In spite of the insulating properties of the thin-film-based GO due to the presence functional groups such as hydroxyl, epoxy, and carbonyl groups in its atomic structure, a significant enhancement of the film conductivity was reached by chemical reduction with hydro-iodic acid. By optimizing the MWCNT content, a significant improvement of electrical and mechanical thin film sensitivity is realized. The optical properties and the morphology of the prepared thin films were studied using ultraviolet-visible spectroscopy (UV-Vis) and scanning electron microscope (SEM). The UV-Vis spectra showed the ability to tune the band gap of the GO by changing the MWCNT content, whereas the SEM indicated that the MWCNTs were well dissolved and coated by the GO. Investigations of the piezoresistive properties of the hybrid nanocomposite material under mechanical load show a linear trend between the electrical resistance and the applied strain. A relatively high gauge factor of 8.5 is reached compared to the commercial metallic strain gauges. The self-assembled hybrid films exhibit outstanding properties in electric conductivity, mechanical strength, and strain sensitivity, which provide a high potential for use in strain-sensing applications.
Platero, Emiliano; Fernandez, Maria Emilia; Bonelli, Pablo Ricardo; Cukierman, Ana Lea
2017-04-01
Graphene oxide/alginate beads were prepared from lab-synthesized graphene oxide, varying its content within the beads (0.05, 0.125, and 0.25wt.%). Ethanol-drying and lyophilization were compared as drying methods to obtain suitable adsorbents which were later tested to the removal of a model organic molecule (methylene blue). The morphological and textural properties of all the beads were characterized by scanning electron microscopy and N 2 adsorption/desorption isotherms at -196°C, respectively. Limited porosity was obtained for all cases (S BET <60m 2 /g). Uniaxial compression tests were performed to assess the mechanical properties of the beads. Ethanol-dried ones exhibited higher Young's elasticity modulus (E=192kPa) than the lyophilized samples (twice at 0.25wt.% graphene oxide loading), which disclosed breakage points at lower deformation percentages. Adsorption experiments were conducted and dye adsorption isotherms were obtained for the beads with the best removal performance. The experimental data were better fitted by the Langmuir model. The highest maximum adsorption capacity (4.25mmol/g) was obtained for the lyophilized beads with the highest graphene oxide content. Mechanical properties were found to be affected also by the dye adsorption. Copyright © 2016 Elsevier Inc. All rights reserved.
Structure and Mechanical Properties of As-Cast Ti–5Sn–xMo Alloys
Yu, Hsing-Ning; Hsu, Hsueh-Chuan; Wu, Shih-Ching; Hsu, Shih-Kuang; Ho, Wen-Fu
2017-01-01
Ti–5Sn–xMo (x = 0, 1, 3, 5, 7.5, 10, 12.5, 15, 17.5, and 20 wt %) alloys were designed and prepared for application as implant materials with superior mechanical properties. The results demonstrated that the crystal structure and mechanical properties of Ti–5Sn–xMo alloys are highly affected by their Mo content. The as-cast microstructures of Ti–5Sn–xMo alloys transformed in the sequence of phases α′ → α″ → β, and the morphologies of the alloys changed from a lath structure to an equiaxed structure as the Mo content increased. The α″-phase Ti–5Sn–7.5Mo (80 GPa) and β-phase Ti–5Sn–10Mo (85 GPa) exhibited relatively low elastic moduli and had excellent elastic recovery angles of 27.4° and 37.8°, respectively. Furthermore, they exhibited high ductility and moderate strength, as evaluated using the three-point bending test. Search for a more suitable implant material by this study, Ti–5Sn–xMo alloys with 7.5 and 10 wt % Mo appear to be promising candidates because they demonstrate the optimal combined properties of microhardness, ductility, elastic modulus, and elastic recovery capability. PMID:28772820
Data on optimum recycle aggregate content in production of new structural concrete.
Paul, Suvash Chandra
2017-12-01
This data presented herein are the research summary of "mechanical behavior and durability performance of concrete containing recycled concrete aggregate" (Paul, 2011) [1]. The results reported in this article relate to an important parameter of optimum content of recycle concrete aggregate (RCA) in production of new concrete for both structural and non-structural applications. For the purpose of the research various types of physical, mechanical and durability tests are performed for concrete made with different percentages of RCA. Therefore, this data set can be a great help of the readers to understand the mechanism of RCA in relates to the concrete properties.
Mechanical Properties of Uranium Silicides by Nanoindentation and Finite Elements Modeling
NASA Astrophysics Data System (ADS)
Carvajal-Nunez, U.; Elbakhshwan, M. S.; Mara, N. A.; White, J. T.; Nelson, A. T.
2018-02-01
Three methods were used to measure the mechanical properties of {U}3{Si}, {U}_3{Si}2, and USi. Quasi-static and continuous stiffness measurement nanoindentation were used to determine hardness and Young's modulus, and microindentation was used to evaluate the bulk hardness. Hardness and Young's modulus of the three U-Si compounds were both observed to increase with Si content. Finally, finite elements modelling was used to validate the nanoindentation data calculated for {U}3{Si}2 and estimate its yield strength.
Nagakura, Manamu; Tanimoto, Yasuhiro; Nishiyama, Norihiro
2017-07-26
The use of non-metal clasp denture (NMCD) materials may seriously affect the remaining tissues because of the low rigidity of NMCD materials such as polyamides. The purpose of this study was to develop a high-rigidity glass fiber-reinforced thermoplastic (GFRTP) composed of E-glass fiber and polyamide-6 for NMCDs using an injection molding. The reinforcing effects of fiber on the flexural properties of GFRTPs were investigated using glass fiber content ranging from 0 to 50 mass%. Three-point bending tests indicated that the flexural strength and elastic modulus of a GFRTP with a fiber content of 50 mass% were 5.4 and 4.7 times higher than those of unreinforced polyamide-6, respectively. The result showed that the physical characteristics of GFRTPs were greatly improved by increasing the fiber content, and the beneficial effects of fiber reinforcement were evident. The findings suggest that the injection-molded GFRTPs are adaptable to NMCDs because of their excellent mechanical properties.
Sun, Li; Yan, Zhuanjun; Duan, Youxin; Zhang, Junyan; Liu, Bin
2018-06-01
The aim of this study was to improve the mechanical properties, wear resistance and antibacterial properties of conventional glass ionomer cements (GICs) by fluorinated graphene (FG), under the premise of not influencing their solubility and fluoride ion releasing property. FG with bright white color was prepared using graphene oxide by a hydrothermal reaction. Experimental modified GICs was prepared by adding FG to the traditional GICs powder with four different weight ratios (0.5wt%, 1wt%, 2wt% and 4wt%) using mechanical blending. Compressive and flexural strength of each experimental and control group materials were investigated using a universal testing machine. The Vickers microhardness of all the specimens was measured by a Vicker microhardness tester. For tribological properties of the composites, specimens of each group were investigated by high-speed reciprocating friction tester. Fluoride ion releasing was measured by fluoride ion selective electrode methods. The antibacterial effect of GICs/FG composites on selected bacteria (Staphylococci aureus and Streptococcus mutans) was tested with pellicle sticking method. The prepared GICs/FG composites with white color were successfully fabricated. Increase of Vickers microhardness and compressive strength and decrease of friction coefficient of the GICs/FG composites were achieved compared to unreinforced materials. The colony count against S. aureus and S. mutans decreased with the increase of the content of FG. And the antibacterial rate of S. mutans can be up to 85.27% when the FG content was 4wt%. Additionally, fluoride ion releasing property and solubility did not show significant differences between unreinforced and FG reinforced GICs. Adding FG to traditional GICs could not only improve mechanical and tribological properties of the composites, but also improve their antibacterial properties. In addition, the GICs/FG composites had no negative effect on the color, solubility and fluoride ion releasing properties, which will open up new roads for the application of dental materials. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.
Cappelli, Jamil; García, Andrés J; Kotrba, Radim; Gambín Pozo, Pablo; Landete-Castillejos, Tomas; Gallego, Laureano; Ceacero, Francisco
2018-01-01
Horns are permanent structures projecting from the head of bovids, consisting of a bony horncore covered with a layer of skin and then a sheath of keratinous material showing variability of growth intensity based on nutrition. From the point of view of the horn's mechanical properties, the keratin sheath has been widely studied, but only a few studies have considered the complete structure of the horn and fewer studies have focused on the bony horncore and its characteristics. The latter showed the important role of the bony core, when cranial appendages are subject to mechanical stress (as happens during fighting). The mechanical properties of bone material, along with its mineral profile, are also important, because they can show effects of different factors, such as nutrition and mineral deficiencies in diet. For this reason, eight horncores of captive common eland male were sampled at four positions along the vertical axis of the horn. The main aim was to study variation in mechanical properties and the mineral content along the vertical axis of the horncores. We further analysed whether the spiral bony ridge present on eland horncores differs in any of the studied properties from adjacent parts of the horncore. In other antelopes, spiral ridges on the horns have been proposed to increase grip during wrestling between males. Cross-sections of the horncores were performed at four positions along the longitudinal axis and, for each position, two bone bars were extracted to be tested in impact and bending. Moreover, in the first sampling position (the closest position to the base) two bars were extracted from the spiralled bony area. The resulting fragments were used to measure ash content, bone density and mineral content. Results showed that horn bone decreased along the vertical axis, in ash (-36%), density (-32%), and in impact work 'U' (marginally significant but large effect: -48%). The concentration of several minerals decreased significantly (Mg, Cr, Mn and Tl by -33%, -25%, -31%, -43%, respectively) between the basal and the uppermost sampling site. The bone tissue of the horncore spiral compared with non-spiral bone of the same position showed a lower ash content (53% vs. 57%), Mg and Mn; in addition to showing approximately half values in work to peak force 'W', bending strength 'BS' and 'U', but not in Young's modulus of elasticity 'E'. In conclusion, similarly to the results in a totally different fighting bony structure, the antlers, the horncore of eland shows advantageous parameters in bone tissue of the base in respect to the tip, with higher values for mechanical properties, density and mineral profile. Moreover, the spiral bone tissue showed lower material mechanical properties. Probably the spiral tissue of the horn may have a role in deflecting potential cross-sectional fractures during wrestling. In addition, it may serve to improve the grip during wrestling, and we propose that it may also prevent risk of rotation of sheath with respect to internal bone not only in this, but also in other straight bovid horns. © 2017 Anatomical Society.
Fabrication of Carbon Nanofibers/A356 Nanocomposites by High-Intensity Ultrasonic Processing
NASA Astrophysics Data System (ADS)
Wu, Qing-Jie; Yan, Hong
2018-03-01
A356 alloy reinforced with carbon nanofibers (CNFs) was fabricated by high-intensity ultrasonic vibration processing. The microstructure and mechanical properties were investigated. The distribution of CNFs became more and more uniform with the increase of ultrasonic power, and the mechanical properties of nanocomposites were significantly enhanced accordingly. The yield strength (YS), ultimate tensile strength (UTS), and microhardness of the nanocomposite increased by 38.3, 21.9, and 43.2 pct, respectively, at a CNF content of 0.9 wt pct compared with the matrix without CNF addition. The improvement in mechanical properties was the effect of CNFs on the thermal expansion mismatch strengthening of the nanocomposite, the grain refinement of the nanocomposite, and the load transfer from the matrix to the nanofibers.
Fabrication of Carbon Nanofibers/A356 Nanocomposites by High-Intensity Ultrasonic Processing
NASA Astrophysics Data System (ADS)
Wu, Qing-Jie; Yan, Hong
2018-06-01
A356 alloy reinforced with carbon nanofibers (CNFs) was fabricated by high-intensity ultrasonic vibration processing. The microstructure and mechanical properties were investigated. The distribution of CNFs became more and more uniform with the increase of ultrasonic power, and the mechanical properties of nanocomposites were significantly enhanced accordingly. The yield strength (YS), ultimate tensile strength (UTS), and microhardness of the nanocomposite increased by 38.3, 21.9, and 43.2 pct, respectively, at a CNF content of 0.9 wt pct compared with the matrix without CNF addition. The improvement in mechanical properties was the effect of CNFs on the thermal expansion mismatch strengthening of the nanocomposite, the grain refinement of the nanocomposite, and the load transfer from the matrix to the nanofibers.
Geotechnical behavior of the MSW in Tianziling landfill.
Zhu, Xiang-Rong; Jin, Jian-Min; Fang, Peng-Fei
2003-01-01
The valley shaped Tianziling landfill of Hangzhou in China built in 1991 to dispose of municipal solid waste (MSW) was designed for a service life of 13 years. The problem of waste landfill slope stability and expansion must be considered from the geotechnical engineering point of view, for which purpose, it is necessary to understand the geotechnical properties of the MSW in the landfill, some of whose physical properties were measured by common geotechnical tests, such as those on unit weight, water content, organic matter content, specific gravity, coefficient of permeability, compressibility, etc. The mechanical properties were studied by direct shear test, triaxial compression test, and static and dynamic penetration tests. Some strength parameters for engineering analysis were obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.
We study the temperature dependent Young’s modulus for the glass/ceramic seal material used in Solid Oxide Fuel Cells (SOFCs). With longer heat treatment or aging time during operation, further devitrification may reduce the residual glass content in the seal material while boosting the ceramic crystalline content. In the meantime, micro-voids induced by the cooling process from the high operating temperature to room temperature can potentially degrade the mechanical properties of the glass/ceramic sealant. Upon reheating to the SOFC operating temperature, possible self-healing phenomenon may occur in the glass/ceramic sealant which can potentially restore some of its mechanical properties. A phenomenologicalmore » model is developed to model the temperature dependent Young’s modulus of glass/ceramic seal considering the combined effects of aging, micro-voids, and possible self-healing. An aging-time-dependent crystalline content model is first developed to describe the increase of the crystalline content due to the continuing devitrification under high operating temperature. A continuum damage mechanics (CDM) model is then adapted to model the effects of both cooling induced micro-voids and reheating induced self-healing. This model is applied to model the glass-ceramic G18, a candidate SOFC seal material previously developed at PNNL. Experimentally determined temperature dependent Young’s modulus is used to validate the model predictions« less
NASA Astrophysics Data System (ADS)
Fan, Linfeng; Lehmann, Peter; Or, Dani
2016-03-01
Spatial variations in soil properties affect key hydrological processes, yet their role in soil mechanical response to hydro-mechanical loading is rarely considered. This study aims to fill this gap by systematically quantifying effects of spatial variations in soil type and initial water content on rapid rainfall-induced shallow landslide predictions at the hillslope- and catchment-scales. We employed a physically-based landslide triggering model that considers mechanical interactions among soil columns governed by strength thresholds. At the hillslope scale, we found that the emergence of weak regions induced by spatial variations of soil type and initial water content resulted in early triggering of landslides with smaller volumes of released mass relative to a homogeneous slope. At the catchment scale, initial water content was linked to a topographic wetness index, whereas soil type varied deterministically with soil depth considering spatially correlated stochastic components. Results indicate that a strong spatial organization of initial water content delays landslide triggering, whereas spatially linked soil type with soil depth promoted landslide initiation. Increasing the standard deviation and correlation length of the stochastic component of soil type increases landslide volume and hastens onset of landslides. The study illustrates that for similar external boundary conditions and mean soil properties, landslide characteristics vary significantly with soil variability, hence it must be considered for improved landslide model predictions.
Lavoratti, Alessandra; Scienza, Lisete Cristine; Zattera, Ademir José
2016-01-20
Composites of unsaturated polyester resin (UPR) and cellulose nanofibers (CNFs) obtained from dry cellulose waste of softwood (Pinus sp.) and hardwood (Eucalyptus sp.) were developed. The fiber properties and the influence of the CNFs in the dynamic-mechanical and thermomechanical properties of the composites were evaluated. CNFs with a diameter of 70-90 nm were obtained. Eucalyptus sp. has higher α-cellulose content than Pinus sp. fibers. The crystallinity of the cellulose pulps decreased after grinding. However, high values were still obtained. The chemical composition of the fibers was not significantly altered by the grinding process. Eucalyptus sp. CNF composites had water absorption close to the neat resin at 1 wt% filler. The dynamic-mechanical properties of Eucalyptus sp. CNFs were slightly increased and the thermal stability was improved. Copyright © 2015 Elsevier Ltd. All rights reserved.
Influence of low nickel (0.09 wt%) content on microstructure and toughness of P91 steel welds
NASA Astrophysics Data System (ADS)
Arivazhagan, B.; Vasudevan, M.; Kamaraj, M.
2015-05-01
Modified 9Cr-1Mo (P91) steel is widely used as a high temperature structural material in the fabrication of power plant components. Alloying elements significantly influences the microstructure and mechanical properties of P91 steel weldments. The alloying elements manganese and nickel significantly influence the lower critical phase transformation temperature (AC1) as well as tempering response of welds. In the existing published information there was wide spread use of high Mn+Ni filler wire. In the present study, weldment preparation was completed using GTA filler wire having low Nickel content (Mn+Ni of 0.58 wt% including nickel content of 0.09 wt%). Microstructure and mechanical properties characterization was done. There is a requirement on minimum toughness of 47 Joules for P91 steel tempered welds at room temperature. Microstructural observation revealed that the GTA welds have low δ-ferrite content (<0.5%) in the martensite matrix. In the as-weld condition, the toughness was 28 Joules whereas after PWHT at 760 °C-2 h it was 115 Joules. In the present study, toughness of low nickel weld was higher due to low δ-ferrite content (<0.5%), multipass grain refinement and weld metal deposition of single pass per layer of weldment.
Matysik, Piotr; Jóźwiak, Stanisław; Czujko, Tomasz
2015-03-04
Fe-Al intermetallic alloys with aluminum content over 60 at% are in the area of the phase equilibrium diagram that is considerably less investigated in comparison to the high-symmetry Fe₃Al and FeAl phases. Ambiguous crystallographic information and incoherent data referring to the phase equilibrium diagrams placed in a high-aluminum range have caused confusions and misinformation. Nowadays unequivocal material properties description of FeAl₂, Fe₂Al₅ and FeAl₃ intermetallic alloys is still incomplete. In this paper, the influence of aluminum content and processing parameters on phase composition is presented. The occurrence of low-symmetry FeAl₂, Fe₂Al₅ and FeAl₃ structures determined by chemical composition and phase transformations was defined by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) examinations. These results served to verify diffraction investigations (XRD) and to explain the mechanical properties of cast materials such as: hardness, Young's modulus and fracture toughness evaluated using the nano-indentation technique.
NASA Astrophysics Data System (ADS)
Daoush, Walid Mohamed Rashad Mohamed; Park, Hee Sup; Inam, Fawad; Lim, Byung Kyu; Hong, Soon Hyung
2015-03-01
Ti-12Mo-6Zr/Al2O3 (titanium biomaterial) was prepared by a powder metallurgy route using Spark Plasma Sintering (SPS). Ti, Mo, and Zr powders were mixed by wet milling with different content of alumina nanoparticles (up to 5 wt pct) as an oxide dispersion strengthening phase. Composite powder mixtures were SPSed at 1273 K (1000 °C) followed by heat treatment and quenching. Composite powders, sintered materials, and heat-treated materials were examined using optical and high-resolution electronic microscopy (scanning and transmission) and X-ray diffraction to characterize particle size, surface morphology, and phase identifications for each composition. All sintered materials were evaluated by measuring density, Vickers hardness, and tensile properties. Fully dense sintered materials were produced by SPS and mechanical properties were found to be improved by subsequent heat treatment. The tensile properties as well as the hardness were increased by increasing the content of Al2O3 nanoparticles in the Ti-12Mo-6Zr matrix.
The effect of impurities elements on titanium alloy (Ti-6Al-4V) MIM sintered part properties
NASA Astrophysics Data System (ADS)
Ahmad, M. Azmirruddin; Jabir, M.; Johari, N.; Ibrahim, R.; Hamidi, N.
2017-12-01
The titanium alloys (Ti-6Al-4V) compact were fabricated by Metal Injection Molding (MIM). However, the real challenge of MIM processing for titanium alloy is its affinity to be contaminated by interstitial light elements such as oxygen and carbon which could degrade the mechanical properties of sintered titanium alloy such as its tensile strength and ductility. The sintering temperature effect on carbon and oxygen content that affects its physical and mechanical properties of the sintered titanium alloy was studied. The titanium MIM brown specimen was sintered at four different sintering temperatures which are 1100 °C, 1150 °C, 1200 °C and 1250 °C for 4 hours under furnace control atmosphere. The experimental result indicated that the specimen which has been made from 100% gas atomized powder have a relative density of 92.2 % - 97.6 %, the range of porosity percent around 2.38 %-3.84 %. Ultimate tensile strength of 873.11 MPa - 1007.19 MPa and ductility percent in range of 1.89 %-3.46 %. The titanium alloy MIM specimen which was sintered at 1150 °C contained 0.145 % of carbon and 0.143 % of oxygen possess the highest value of density and tensile strength, with value of 4.344 gcm-3 and 1007.2 MPa respectively. Meanwhile, the titanium alloy MIM specimen which was sintered at 1200 °C contains 0.130 % of carbon and 0.127 % of oxygen, has the highest percentage of ductility with 3.46 %. The carbon content level increased as the sintering temperature increased due to decomposition of high molecule weight of residue binder system which could not be eliminated during solvent extraction debinding process and sintered at low temperature. Contrarily, the oxygen content level indicates a decrease as the sintering temperature increased. Briefly, the sintering temperature could influence the physical and mechanical properties of titanium alloy MIM sintered specimen as it influences the oxygen and carbon content level in the alloys.
Fazaeli, S; Ghazanfari, S; Everts, V; Smit, T H; Koolstra, J H
2016-07-01
The Temporomandibular Joint (TMJ) disc is a fibrocartilaginous structure located between the mandibular condyle and the temporal bone, facilitating smooth movements of the jaw. The load-bearing properties of its anisotropic collagenous network have been well characterized under tensile loading conditions. However, recently it has also been speculated that the collagen fibers may contribute dominantly in reinforcing the disc under compression. Therefore, in this study, the structural-functional role of collagen fibers in mechanical compressive properties of TMJ disc was investigated. Intact porcine TMJ discs were enzymatically digested with collagenase to disrupt the collagenous network of the cartilage. The digested and non-digested articular discs were analyzed mechanically, biochemically and histologically in five various regions. These tests included: (1) cyclic compression tests, (2) biochemical quantification of collagen and glycosaminoglycan (GAG) content and (3) visualization of collagen fibers' alignment by polarized light microscopy (PLM). The instantaneous compressive moduli of the articular discs were reduced by as much as 50-90% depending on the region after the collagenase treatment. The energy dissipation properties of the digested discs showed a similar tendency. Biochemical analysis of the digested samples demonstrated an average of 14% and 35% loss in collagen and GAG, respectively. Despite the low reduction of collagen content the PLM images showed considerable perturbation of the collagenous network of the TMJ disc. The results indicated that even mild disruption of collagen fibers can lead to substantial mechanical softening of TMJ disc undermining its reinforcement and mechanical stability under compression. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Feng, Xinhao; Yang, Zhaozhe; Chmely, Stephen; Wang, Qingwen; Wang, Siqun; Xie, Yanjun
2017-08-01
Various contents of lignin-coated cellulose nanocrystals (L-CNC) were incorporated into methacrylate (MA) resin and their mixture was used to prepare nanocomposites via 3D stereolithography (3D-SL) printing. Gaps were found between the L-CNC and MA matrix in 3D-SL printed nanocomposites before postcure. However, gaps decreased after postcure due to interactions between the L-CNC and MA molecules. Mechanical properties increased with the addition of 0.1% and 0.5% L-CNC after postcure, and the thermal stability was improved at 0.5% L-CNC. Dynamic mechanical analysis demonstrated that incorporation of L-CNC increased the storage modulus in the rubbery plateau. The loss factor had two transition regions, which gradually changed by merging together with increasing L-CNC content, and a broadening of the transition region was observed after postcure. In particular, the mechanical and thermal properties of 3D-SL printed nanocomposites, after postcure, exhibited higher improvement than those before postcure. Copyright © 2017 Elsevier Ltd. All rights reserved.
Influence of the grade on the variability of the mechanical properties of polypropylene waste.
Jmal, Hamdi; Bahlouli, Nadia; Wagner-Kocher, Christiane; Leray, Dimitri; Ruch, Frédéric; Munsch, Jean-Nicolas; Nardin, Michel
2018-05-01
The prior properties of recycled polypropylene depend on the origin of waste deposits and its chemical constituents. To obtain specific properties with a predefine melt flow index of polypropylene, the suppliers of polymer introduce additives and fillers. However, the addition of additives and/or fillers can modify strongly the mechanical behaviour of recycled polypropylene. To understand the impact of the additives and fillers on the quasi-static mechanical behaviour, we consider, in this study, three different recycled polypropylenes with three different melt flow index obtained from different waste deposits. The chemical constituents of the additives and filler contents of the recycled polypropylenes are determined through thermo-physico-chemical analysis. Tensile and bending tests performed at different strain rates allow identifying the mechanical properties such as the elastic modulus, the yield stress, the maximum stress, and the failure mechanisms. The results obtained are compared with non-recycled polypropylene and with few researches to explain the combined effect of additives. Finally, a post-mortem analysis of the samples was carried out to make the link between the obtained mechanical properties and microstructure. Copyright © 2018 Elsevier Ltd. All rights reserved.
Novel Hydrogels from Renewable Resources
NASA Astrophysics Data System (ADS)
Karaaslan, Muzafer Ahmet
2011-12-01
The cell wall of most plant biomass from forest and agricultural resources consists of three major polymers, cellulose, hemicellulose and lignin. Of these, hemicelluloses have gained increasing attention as sustainable raw materials. In the first part of this study, novel pH-sensitive semi-IPN hydrogels based on hemicelluloses and chitosan were prepared using glutaraldehyde as the crosslinking agent. The hemicellulose isolated from aspen was analyzed for sugar content by HPLC, and its molecular weight distribution was determined by high performance size exclusion chromatography. Results revealed that hemicellulose had a broad molecular weight distribution with a fair amount of polymeric units, together with xylose, arabinose and glucose. The effect of hemicellulose content on mechanical properties and swelling behavior of hydrogels were investigated. The semi-IPNs hydrogel structure was confirmed by FT-IR, X-ray study and ninhydrin assay method. X-ray analysis showed that higher hemicellulose contents yielded higher crystallinity. Mechanical properties were mainly dependent on the crosslink density and average molecular weight between crosslinks. Swelling ratios increased with increasing hemicellulose content and were high at low pH values due to repulsion between similarly charged groups. In vitro release study of a model drug showed that these semi-IPN hydrogels could be used for controlled drug delivery into gastric fluid. The aim of the second part of this study was to control the crosslink density and the mechanical properties of hemicellulose/chitosan semi-IPN hydrogels by changing the crosslinking sequence. It has been hypothesized that by performing the crosslinking step before introducing hemicellulose, covalent crosslinking of chitosan would not be hindered and therefore more and/or shorter crosslinks could be formed. Furthermore, additional secondary interactions and crystalline domains introduced through hemicellulose could be favorable in terms of mechanical stability of semi-IPN hydrogels. In this last section of this study, the natural affinity of hemicellulose to cellulose was utilized to coat cellulose whiskers with chemically modified hemicellulose isolated from wood fiber. Surface modified cellulose nanowhiskers were used to prepare nanocomposite hydrogels using free radical polymerization of 2-hydroxyethyl methacrylate (HEMA), a biocompatible monomer. The effect of morphology and concentration of the incorporated nanocrystals on the hydrogel network was related to the mechanical properties, viscoelastic behavior and swelling of the hydrogels.
Murienne, Barbara J.; Jefferys, Joan L.; Quigley, Harry A.; Nguyen, Thao D.
2014-01-01
Pathological changes in scleral glycosaminoglycan (GAG) content and in scleral mechanical properties have been observed in eyes with glaucoma and myopia. The purpose of this study is to investigate the effect of GAG removal on the scleral mechanical properties to better understand the impact of GAG content variations in the pathophysiology of glaucoma and myopia. We measured how the removal of sulphated GAG (s-GAG) affected the hydration, thickness and mechanical properties of the posterior sclera in enucleated eyes of 6–9 month-old pigs. Measurements were made in 4 regions centered on the optic nerve head (ONH) and evaluated under 3 conditions: no treatment (control), after treatment in buffer solution alone, and after treatment in buffer containing chondroitinase ABC (ChABC) to remove s-GAGs. The specimens were mechanically tested by pressure-controlled inflation with full-field deformation mapping using digital image correlation (DIC). The mechanical outcomes described the tissue tensile and viscoelastic behavior. Treatment with buffer alone increased the hydration of the posterior sclera compared to controls, while s-GAG removal caused a further increase in hydration compared to buffer-treated scleras. Buffer-treatment significantly changed the scleral mechanical behavior compared to the control condition, in a manner consistent with an increase in hydration. Specifically, buffer-treatment led to an increase in low-pressure stiffness, hysteresis, and creep rate, and a decrease in high-pressure stiffness. ChABC-treatment on buffer-treated scleras had opposite mechanical effects than buffer-treatment on controls, leading to a decrease in low-pressure stiffness, hysteresis, and creep rate, and an increase in high-pressure stiffness and transition strain. Furthermore, s-GAG digestion dramatically reduced the differences in the mechanical behavior among the 4 quadrants surrounding the ONH as well as the differences between the circumferential and meridional responses compared to the buffer-treated condition. These findings demonstrate a significant effect of s-GAGs on both the stiffness and time-dependent behavior of the sclera. Alterations in s-GAG content may contribute to the altered creep and stiffness of the sclera of myopic and glaucoma eyes. PMID:25448352
Preparation and physical properties of tara gum film reinforced with cellulose nanocrystals.
Ma, Qianyun; Hu, Dongying; Wang, Lijuan
2016-05-01
Cellulose nanocrystals (CNC) prepared from microcrystalline cellulose were blended in tara gum solution to prepare nanocomposite films. The morphology, crystallinity, and thermal properties of the CNC and films were evaluated by using transmission electron microscopy, X-ray diffractometry, and thermogravimetric analysis, respectively. The resultant CNC was rod-shaped with diameters of around 8.6 nm. The effect of CNC content on physical and thermal properties of films was studied. The composite film tensile strength increased from 27.86 to 65.73 MPa, elastic modulus increased from 160.98 MPa to 882.49 MPa and the contact angle increased from 55.8° to 98.7° with increasing CNC content from 0 to 6 wt%. However, CNC addition increased the thermal stability slightly and CNC content above 6 wt% decreased the tensile strength by CNC aggregation in the matrix. The nanocomposite film containing 6 wt% CNC possessed the highest light transmittance, mechanical properties, and lowest oxygen permeability. CNC addition is a suitable method to modify tara gum matrix polymer properties. Copyright © 2016 Elsevier B.V. All rights reserved.
Preparation of UV-protective kefiran/nano-ZnO nanocomposites: physical and mechanical properties.
Shahabi-Ghahfarrokhi, Iman; Khodaiyan, Faramarz; Mousavi, Mohammad; Yousefi, Hossein
2015-01-01
In this study, we investigated the effect of ZnO nanoparticles (ZN) as a UV-protective agent of kefiran biopolymers. Our results showed that with increasing ZN content, the tensile strength, elongation at break, and tensile energy to break the kefiran film and nanocomposites also increased. Kefiran nanocomposites with a ZN content higher than 2% produced a UV-protective film with good visual properties, low sensibility to water, and low water-vapor permeability. The thermal properties of all specimens, analyzed by DSC, showed that the ZN content had a negative effect on Tg and a positive effect on nanocomposites' melting point. TEM, SEM micrography and XRD spectrum analysis confirmed the hypothesis that ZNs act like a ball bearing, making movement of kefiran chains easier and increasing elongation at break, while simultaneously decreasing the Tg of kefiran nanocomposites. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zheng, X. J.; He, L.; Zhou, Y. C.; Tang, M. H.
2006-12-01
The effects of europium (Eu) content on the microstructure, fatigue endurance, leakage current density, and remnant polarization (2Pr) of Bi4-xEuxTi3O12 (BET) thin films prepared by metal-organic decomposition method at 700°C annealing temperature were studied in detail. The results showed that 2Pr (82μC/cm2 under 300kV/cm), fatigue endurance (2% loss of 2Pr after 9.0×109 switching cycles), and leakage current density (1×10-8A/cm2 at 200kV/cm) of BET thin film with x =0.85 are better than those of thin films with other contents. Additionally, the mechanism concerning the dependence of ferroelectric properties on Eu content was discussed.
Characteristics of Thermoplastic Potato Starch/Bentonite Nanocomposite Film
NASA Astrophysics Data System (ADS)
Zakaria, N. H.; Muhammad, N.; Abdullah, M. M. A. B.; Sandu, I. G.; Wan, C. L. Mei
2018-06-01
The aim of this study is to investigate the effect of bentonite towards thermoplastic potato starch nanocomposite films on the mechanical, microstructure and physical properties. The nanocomposite films were prepared using bentonite nano filler (0, 1, 5, 10, 15 and 20%) through solution casting technique. Obtained result indicate that, tensile strength increased significantly with increasing bentonite content and the highest tensile strength was recorded for nanocomposite film with 20% bentonite content. Meanwhile, elongation at break increased as the bentonite content increased from 0 to 15%, however significantly decreased at 20% bentonite content due to ductile structure and anti-plasticizing effect. Besides, good dispersion between bentonite nano filler and starch matrix with slightly remaining anglomerates was evident in scanning electron microscopy (SEM) image. Overall result shows that the addition of bentonite nano filler in potato starch film significantly influenced the properties of the films.
NASA Astrophysics Data System (ADS)
Slyusarev, Yu. K.; Braga, A. V.; Slyusarev, I. Yu.
2017-09-01
The effect of the chemical composition of high-strength cast iron VCh35 on the content, shape and diameter of graphite inclusions and on the presence of structurally-free cementite and defects is studied. A relationship is determined between the structure and metallurgical defects and characteristics of the mechanical and magnetic rigidity of cast samples. Relationships are established in a group of factors and property characteristics: chemical composition - microstructure - mechanical rigidity - magnetic stiffness. The basis of a method is established making it possible to perform operative non-destructive monitoring of the melt quality preparation for high-strength iron casting.
Kim, Jong-Woo; Shin, Kwan-Ha; Koh, Young-Hag; Hah, Min Jin; Moon, Jiyoung; Kim, Hyoun-Ee
2017-01-01
We produced poro-us poly(ε-caprolactone) (PCL)/hydroxyapatite (HA) composite scaffolds for bone regeneration, which can have a tailored macro/micro-porous structure with high mechanical properties and excellent in vitro bioactivity using non-solvent-induced phase separation (NIPS)-based 3D plotting. This innovative 3D plotting technique can create highly microporous PCL/HA composite filaments by inducing unique phase separation in PCL/HA solutions through the non-solvent-solvent exchange phenomenon. The PCL/HA composite scaffolds produced with various HA contents (0 wt %, 10 wt %, 15 wt %, and 20 wt %) showed that PCL/HA composite struts with highly microporous structures were well constructed in a controlled periodic pattern. Similar levels of overall porosity (~78 vol %) and pore size (~248 µm) were observed for all the PCL/HA composite scaffolds, which would be highly beneficial to bone tissue regeneration. Mechanical properties, such as ultimate tensile strength and compressive yield strength, increased with an increase in HA content. In addition, incorporating bioactive HA particles into the PCL polymer led to remarkable enhancements in in vitro apatite-forming ability. PMID:28937605
Park, Jun Wuk; Doi, Yoshiharu; Iwata, Tadahisa
2004-01-01
Blends of poly(L-lactic acid) (PLLA) with two kinds of poly[(R)-3-hydroxybutyrate] (PHB) having different molecular weights, commercial-grade bacterial PHB (bacterial-PHB) and ultrahigh molecular weight PHB (UHMW-PHB), were prepared by the solvent-casting method and uniaxially drawn at two drawing temperatures, around PHB's T(g) (2 degrees C) for PHB-rich blends and around PLLA's T(g) (60 degrees C) for PLLA-rich blends. Differential scanning calorimetry analysis showed that this system was immiscible over the entire composition range. Mechanical properties of all of the samples were improved in proportion to the draw ratio. Although PLLA domains in bacterial-PHB-rich blends remained almost unstretched during cold drawing, a good interfacial adhesion between two polymers and the reinforcing role of PLLA components led to enhanced mechanical properties proportionally to the PLLA content at the same draw ratio. On the contrary, in the case of UHMW-PHB-rich blends, the minor component PLLA was found to be also oriented by cold drawing in ice water due to an increase in the interfacial entanglements caused by the very long chain length of the matrix polymer. As a result, their mechanical properties were considerably improved with increasing PLLA content compared with the bacterial-PHB system. Scanning electron microscopy observations on the surface and cross-section revealed that a layered structure with uniformly oriented microporous in the interior was obtained by selectively removal of PLLA component after simple alkaline treatment.
Investigation on Mechanical Properties of Graphene Oxide reinforced GFRP
NASA Astrophysics Data System (ADS)
Arun, G. K.; Sreenivas, Nikhil; Brahma Reddy, Kesari; Sai Krishna Reddy, K.; Shashi Kumar, M. E.; Pramod, R.
2018-02-01
Graphene and E-glass fibres individually find a very wide field of applications because of their various mechanical and chemical properties. Recently graphene has attracted both academic and industrial interest because it can produce a dramatic improvement in properties at very low filler content. The primary interest of this venture is to investigate on Graphene reinforced polymer matrix nanocomposites and finding the mechanical properties. The composites were fabricated by Hand Lay Process and have been evaluated by the addition of Graphene with 1, 1.5, 2, 2.5 and 3 by weight% as reinforcement in composites. The theoretical and experimental results validate the increase in properties such as tensile strength, hardness and flexural strength with increase in weight proportions from 1% to 3% of graphene powder. It was observed that the composite material with 2.5% weight fraction of graphene yielded superior properties over other weight percentages. Graphene reinforced polymer matrix nanocomposites finds its major applications in the manufacture of aircraft bodies, ballistic missiles, sporting equipment, marine applications and extraterrestrial ventures.
NASA Astrophysics Data System (ADS)
Sharma, Ankush; Patnaik, Amar
2018-03-01
The present investigation evaluates the effects of waste marble dust, collected from the marble industries of Rajasthan, India, on the mechanical properties of needle-punched nonwoven jute fiber/epoxy composites. The composites with varying filler contents from 0 wt.% to 30 wt.% marble dust were prepared using vacuum-assisted resin-transfer molding. The influences of the filler material on the void content, tensile strength, flexural strength, interlaminar shear strength (ILSS), and thermal conductivity of the hybrid composites have been analyzed experimentally under the desired optimal conditions. The addition of marble dust up to 30 wt.% increases the flexural strength, ILSS, and thermal conductivity, but decreases the tensile strength. Subsequently, the fractured surfaces of the particulate-filled jute/epoxy composites were analyzed microstructurally by field-emission scanning electron microscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, M. L.; Yue, M., E-mail: yueming@bjut.edu.cn; Wu, Q.
2016-05-15
Sm{sub 1-x}Pr{sub x}Co{sub 5} (x=0-0.6) nanoflakes with CaCu{sub 5} structure were successfully prepared by surfactant-assisted high-energy ball milling (SAHEBM). The crystal structure and magnetic properties of Sm{sub 1-x}Pr{sub x}Co{sub 5} (x=0-0.6) nanoflakes were studied by X-ray diffraction and vibrating sample magnetometer. Effects of Pr addition on the structure, magnetic properties and coercivity mechanism of Sm{sub 1-x}Pr{sub x}Co{sub 5} nanoflakes were systematically investigated. XRD results show that all the nanoflakes have a hexagonal CaCu{sub 5}-type (Sm, Pr){sub 1}Co{sub 5} main phase and the (Sm, Pr){sub 2}Co{sub 7} impurity phase, and all of the samples exhibit a strong (00l) texture after magneticmore » alignment. As the Pr content increases, remanence firstly increases, then slightly reduced, while anisotropy field (H{sub A}) and H{sub ci} of decrease monotonically. Maximum energy product [(BH){sub max}] of the flakes increases first, peaks at 24.4 MGOe with Pr content of x = 0.4, then drops again. Magnetization behavior analysis indicate that the coercivity mechanism is mainly controlled by inhomogeneous domain wall pinning, and the pinning strength weakens with the increased Pr content, suggesting the great influence of H{sub A} on the coercivity of flakes.« less
Luo, Shuangjiang; Stevens, Kevin A; Park, Jae Sung; Moon, Joshua D; Liu, Qiang; Freeman, Benny D; Guo, Ruilan
2016-01-27
Poly(ethylene oxide) (PEO)-containing polymer membranes are attractive for CO2-related gas separations due to their high selectivity toward CO2. However, the development of PEO-rich membranes is frequently challenged by weak mechanical properties and a high crystallization tendency of PEO that hinders gas transport. Here we report a new series of highly CO2-selective, amorphous PEO-containing segmented copolymers prepared from commercial Jeffamine polyetheramines and pentiptycene-based polyimide. The copolymers are much more mechanically robust than the nonpentiptycene containing counterparts due to the molecular reinforcement mechanism of supramolecular chain threading and interlocking interactions induced by the pentiptycene structures, which also effectively suppresses PEO crystallization leading to a completely amorphous structure even at 60% PEO weight content. Membrane transport properties are sensitively affected by both PEO weight content and PEO chain length. A nonlinear correlation between CO2 permeability with PEO weight content was observed due to the competition between solubility and diffusivity contributions, whereby the copolymers change from being size-selective to solubility-selective when PEO content reaches 40%. CO2 selectivities over H2 and N2 increase monotonically with both PEO content and chain length, indicating strong CO2-philicity of the copolymers. The copolymer film with the longest PEO sequence (PEO2000) and highest PEO weight content (60%) showed a measured CO2 pure gas permeability of 39 Barrer, and ideal CO2/H2 and CO2/N2 selectivities of 4.1 and 46, respectively, at 35 °C and 3 atm, making them attractive for hydrogen purification and carbon capture.
Introducing cellulose nanocrystals in sheet molding compounds (SMC)
Amir Asadi; Mark Miller; Sanzida Sultana; Robert J. Moon; Kyriaki Kalaitzidou
2016-01-01
The mechanical properties of short glass fiber/epoxy composites containing cellulose nanocrystals (CNC) made using sheet molding compound (SMC) manufacturing method as well as the rheological and thermomechanical properties of the CNC-epoxy composites were investigated as a function of the CNC content. CNC up to 1.4 wt% were dispersed in the epoxy to produce the resin...
The Study on the Mechanical Properties of Multi-walled Carbon Nanotube/Polypropylene Fibers
NASA Astrophysics Data System (ADS)
Youssefi, Mostafa; Safaie, Banafsheh
2018-06-01
Polypropylene (PP) is an important semicrystalline polymer with various applications. Polypropylene fibers containing 1 wt% of multi-walled carbon nanotube was spun using a conventional melt spinning apparatus. The produced fibers were drawn with varying levels of draw ratio. The mechanical properties of the composites were studied. Tensile strength and modulus of the composite fibers were increased with the increase in draw ratio. Molecular orientation and helical content of the composite fibers were increased after drawing. To conclude, tensile properties and molecular orientation of the composite fibers were higher than those of neat polypropylene fibers with the same draw ratio.
A composite material based on recycled tires
NASA Astrophysics Data System (ADS)
Malers, L.; Plesuma, R.; Locmele, L.
2009-01-01
The present study is devoted to the elaboration and investigation of a composite material based on mechanically grinded recycled tires and a polymer binder. The correlation between the content of the binder, some technological parameters, and material properties of the composite was clarified. The apparent density, the compressive stress at a 10% strain, the compressive elastic modulus in static and cyclic loadings, and the insulating properties (acoustic and thermal) were the parameters of special interest of the present investigation. It is found that a purposeful variation of material composition and some technological parameters leads to multifunctional composite materials with different and predictable mechanical and insulation properties.
NASA Astrophysics Data System (ADS)
Hanafee, Z. M.; Khalina, A.; Norkhairunnisa, M.; Syams, Z. Edi; Liew, K. E.
2017-09-01
This paper investigates the effect of fibre volume fraction on mechanical properties of banana-pineapple leaf (PaLF)-glass reinforced epoxy resin under tensile loading. Uniaxial tensile tests were carried out on specimens with different fibre contents (30%, 40%, 50% in weight). The composite specimens consists of 13 different combinations. The effect of hybridisation between synthetic and natural fibre onto tensile properties was determined and the optimum fibre volume fraction was obtained at 50% for both banana and PaLF composites. Additional 1 layer of woven glass fibre increased the tensile strength of banana-PaLF composite up to 85%.
The Study on the Mechanical Properties of Multi-walled Carbon Nanotube/Polypropylene Fibers
NASA Astrophysics Data System (ADS)
Youssefi, Mostafa; Safaie, Banafsheh
2018-01-01
Polypropylene (PP) is an important semicrystalline polymer with various applications. Polypropylene fibers containing 1 wt% of multi-walled carbon nanotube was spun using a conventional melt spinning apparatus. The produced fibers were drawn with varying levels of draw ratio. The mechanical properties of the composites were studied. Tensile strength and modulus of the composite fibers were increased with the increase in draw ratio. Molecular orientation and helical content of the composite fibers were increased after drawing. To conclude, tensile properties and molecular orientation of the composite fibers were higher than those of neat polypropylene fibers with the same draw ratio.
NASA Technical Reports Server (NTRS)
Roberts, Gary D.; Malarik, Diane C.; Robaidek, Jerrold O.
1991-01-01
The viscoelastic properties of an addition-cured polyimide, PMR-15, were evaluated through dynamic mechanical and stress relaxation testing. Below the glass transition temperature, the dynamic mechanical properties of the composites are strongly affected by the absorbed moisture in the resin. At temperature 20 C and more above the glass transition temperature, the storage modulus increases continuously with time, indicating that additional crosslinking is occurring in the resin. For resin moisture contents less than 2 percent, stress relaxation curves measured at different temperatures can be superimposed using horizontal shifts along the log(time) axis with only small shifts along the vertical axis.
NASA Astrophysics Data System (ADS)
Syarifuddin, A.; Hasmiyani; Dirpan, A.; Mahendradatta, M.
2017-12-01
The development of mixed emulsion-based films formed by sodium alginate/gelatin incorporated with canola oil can offer particular properties such as water vapor barrier properties. The different ratios of sodium alginate/gelatin and sodium alginate/gelatin emulsion-based films incorporated with canola oil were developed and their effects on films’ physical, mechanical and barrier properties were assessed. Here we set out to examine whether canola oil addition and different ratio of sodium alginate/gelatin modified physical, mechanical, and barrier properties of films. To do so, the films were prepared by vary the ratio of sodium alginate/gelatin (2.5, 1, 0.5). Canola oil addition induced changes in moisture content, thickness, solubility, water vapor transmission rate (WVTR), percent elongation at break (p<0.05). In addition, it is apparent that varying ratio of sodium alginate to gelatin induced change the mechanical properties of films. The reduction of sodium alginate to gelatin decreased the tensile strength of both films. Improved values of WVTR, tensile strength and solubility at break were observed when the ratio of sodium alginate/gelatin emulsion film incorporated with canola oil was 2.5. Therefore, different ratio of sodium alginate/gelatin incorporated with canola oil can be used to tailor emulsion films with enhanced water vapor barrier and mechanical properties.
A Review: Origins of the Dielectric Properties of Proteins and Potential Development as Bio-Sensors
Bibi, Fabien; Villain, Maud; Guillaume, Carole; Sorli, Brice; Gontard, Nathalie
2016-01-01
Polymers can be classified as synthetic polymers and natural polymers, and are often characterized by their most typical functions namely their high mechanical resistivity, electrical conductivity and dielectric properties. This bibliography report consists in: (i) Defining the origins of the dielectric properties of natural polymers by reviewing proteins. Despite their complex molecular chains, proteins present several points of interest, particularly, their charge content conferring their electrical and dielectric properties; (ii) Identifying factors influencing the dielectric properties of protein films. The effects of vapors and gases such as water vapor, oxygen, carbon dioxide, ammonia and ethanol on the dielectric properties are put forward; (iii) Finally, potential development of protein films as bio-sensors coated on electronic devices for detection of environmental changes particularly humidity or carbon dioxide content in relation with dielectric properties variations are discussed. As the study of the dielectric properties implies imposing an electric field to the material, it was necessary to evaluate the impact of frequency on the polymers and subsequently on their structure. Characterization techniques, on the one hand dielectric spectroscopy devoted for the determination of the glass transition temperature among others, and on the other hand other techniques such as infra-red spectroscopy for structure characterization as a function of moisture content for instance are also introduced. PMID:27527179
Shape Memory Polyurethane Materials Containing Ferromagnetic Iron Oxide and Graphene Nanoplatelets
Urban, Magdalena
2017-01-01
Intelligent materials, such as memory shape polymers, have attracted considerable attention due to wide range of possible applications. Currently, intensive research is underway, in matters of obtaining memory shape materials that can be actuated via inductive methods, for example with help of magnetic field. In this work, an attempt was made to develop a new polymer composite—polyurethane modified with graphene nanoplates and ferromagnetic iron oxides—with improved mechanical properties and introduced magnetic and memory shape properties. Based on the conducted literature review, gathered data were compared to the results of similar materials. Obtained materials were tested for their thermal, rheological, mechanical and shape memory properties. Structure of both fillers and composites were also analyzed using various spectroscopic methods. The addition of fillers to the polyurethane matrix improved the mechanical and shape memory properties, without having a noticeable impact on thermal properties. As it was expected, the high content of fillers caused a significant change in viscosity of filled prepolymers (during the synthesis stage). Each of the studied composites showed better mechanical properties than the unmodified polyurethanes. The addition of magnetic particles introduced additional properties to the composite, which could significantly expand the functionality of the materials developed in this work. PMID:28906445
Shape Memory Polyurethane Materials Containing Ferromagnetic Iron Oxide and Graphene Nanoplatelets.
Urban, Magdalena; Strankowski, Michał
2017-09-14
Intelligent materials, such as memory shape polymers, have attracted considerable attention due to wide range of possible applications. Currently, intensive research is underway, in matters of obtaining memory shape materials that can be actuated via inductive methods, for example with help of magnetic field. In this work, an attempt was made to develop a new polymer composite-polyurethane modified with graphene nanoplates and ferromagnetic iron oxides-with improved mechanical properties and introduced magnetic and memory shape properties. Based on the conducted literature review, gathered data were compared to the results of similar materials. Obtained materials were tested for their thermal, rheological, mechanical and shape memory properties. Structure of both fillers and composites were also analyzed using various spectroscopic methods. The addition of fillers to the polyurethane matrix improved the mechanical and shape memory properties, without having a noticeable impact on thermal properties. As it was expected, the high content of fillers caused a significant change in viscosity of filled prepolymers (during the synthesis stage). Each of the studied composites showed better mechanical properties than the unmodified polyurethanes. The addition of magnetic particles introduced additional properties to the composite, which could significantly expand the functionality of the materials developed in this work.
Effects of POE-g-MAH on properties of PP-based binder in metal injection molding
NASA Astrophysics Data System (ADS)
Li, Duxin; Zhang, Chenming; Ding, Chuxiong; Pan, Donghua; Lu, Renwei; Yang, Zhongchen
2018-06-01
The objective of this study is to explore the effects of maleic anhydride-grafted polyolefin elastomer (POE-g-MAH) on properties of polypropylene (PP)-based binder. The viscosity of feedstocks as well as properties of green parts, brown parts and sintered parts were investigated. Through the analysis of viscosity, the feedstock containing 8 vol% POE-g-MAH in binder was supposed to be more suitable for the injection molding. The impact absorbed energy at break increased with increasing POE-g-MAH content in binder while the bending strength decreased first and then increased. The introduction of POE-g-MAH improve the density distribution and increased the density of green parts. After debinding, most binder components were removed regardless of the POE-g-MAH content in binder. As for the parts after sintering, the carbon content decreased with an increase in POE-g-MAH content. The results suggest that POE-g-MAH act as a toughening agent as well as compatibilizer for PP-based binder/metal powder system. The mechanical properties of the green parts could be enhanced even after multiple injection and in addition the powder-binder separation trend could be decreased.
Bachar, Ahmed; Mercier, Cyrille; Tricoteaux, Arnaud; Hampshire, Stuart; Leriche, Anne; Follet, Claudine
2013-07-01
Bioactive glasses are able to bond to bone through formation of carbonated hydroxyapatite in body fluids, and fluoride-releasing bioactive glasses are of interest for both orthopaedic and, in particular, dental applications for caries inhibition. However, because of their poor strength their use is restricted to non-load-bearing applications. In order to increase their mechanical properties, doping with nitrogen has been performed on two series of bioactive glasses: series (I) was a "bioglass" composition (without P2O5) within the quaternary system SiO2-Na2O-CaO-Si3N4 and series (II) was a simple substitution of CaF2 for CaO in series (I) glasses keeping the Na:Ca ratio constant. The objective of this work was to evaluate the effect of the variation in nitrogen and fluorine content on the properties of these glasses. The density, glass transition temperature, hardness and elastic modulus all increased linearly with nitrogen content which indicates that the incorporation of nitrogen stiffens the glass network because N is mainly in 3-fold coordination with Si atoms. Fluorine addition significantly decreases the thermal property values but the mechanical properties of these glasses remain unchanged with fluorine. The combination of both nitrogen and fluorine in oxyfluoronitride glasses gives better mechanical properties at much lower melting temperatures since fluorine reduces the melting point, allows higher solubility of nitrogen and does not affect the higher mechanical properties arising from incorporation of nitrogen. The characterization of these N and F substituted bioactive glasses using (29)Si MAS NMR has shown that the increase in rigidity of the glass network can be explained by the formation of SiO3N, SiO2N2 tetrahedra and Q(4) units with extra bridging anions at the expense of Q(3) units. Bioactivity of the glasses was investigated in vitro by examining apatite formation on the surface of glasses treated in acellular simulated body fluid (SBF) with ion concentrations similar to those in human blood plasma. Formation of a bioactive apatite layer on the samples treated in SBF was confirmed by grazing incidence X-ray diffraction and scanning electron microscopy (SEM) combined with energy dispersive X-ray spectroscopy (EDS). The crystallinity of this layer decreases with increasing N content suggesting that N may decrease bioactivity slightly. Copyright © 2013. Published by Elsevier Ltd.
Bozkurt, Ozlem; Bilgin, Mehmet Dincer; Evis, Zafer; Pleshko, Nancy; Severcan, Feride
2016-12-01
Alterations in microstructure and mineral features can affect the mechanical and chemical properties of bones and their capacity to resist mechanical forces. Controversial results on diabetic bone mineral content have been reported and little is known about the structural alterations in collagen, maturation of apatite crystals, and carbonate content in diabetic bone. This current study is the first to report the mineral and organic properties of cortical, trabecular, and growth plate regions of diabetic rat femurs using Fourier transform infrared (FT-IR) microspectroscopy and the Vickers microhardness test. Femurs of type I diabetic rats were embedded into polymethylmethacrylate blocks, which were used for FT-IR imaging and microhardness studies. A lower mineral content and microhardness, a higher carbonate content especially labile type carbonate content, and an increase in size and maturation of hydroxyapatite crystals were observed in diabetic femurs, which indicate that diabetes has detrimental effects on bone just like osteoporosis. There was a decrease in the level of collagen maturity in diabetic femurs, implying a decrease in bone collagen quality that may contribute to the decrease in tensile strength and bone fragility. Taken together, the findings revealed alterations in structure and composition of mineral and matrix components, and an altered quality and mechanical strength of rat femurs in an early stage of type I diabetes. The results contribute to the knowledge of structure-function relationship of mineral and matrix components in diabetic bone disorder and can further be used for diagnostic or therapeutic purposes. © The Author(s) 2016.
Jindal, Swati K; Sherriff, Martyn; Waters, Mark G; Coward, Trevor J
2016-10-01
Conventionally, maxillofacial prostheses are fabricated by hand carving the missing anatomic defect in wax and creating a mold into which pigmented silicone elastomer is placed. Digital technologies such as computer numerical control (CNC) milling and 3-dimensional (3D) printing have been used to prepare molds directly or indirectly into which a biocompatible pigmented silicone elastomer is placed. The purpose of this in vitro study was to develop a silicone elastomer by varying composition that could eventually be 3D printed directly without a mold to create facial/body prostheses. The silicone was composed of polydimethylsiloxane (PDMS), filler, catalyst, and cross-linker. Four types of base silicone polymers were prepared with different PDMS molecular weight combinations with long, medium, and short chain length PDMS. The effect of the cross-linker (2.5% to 12.5%) content in these bases was assessed for the effect upon the mechanical properties of the elastomer. Ten readings were made for each formulation, and differences in the means were evaluated with a 2-way ANOVA (α=.05). Variations in silicone composition resulted in hardness from 6.8 to 28.5 durometer, tensile strength from 0.720 to 3.524 kNm -1 and tear strength from 0.954 to 8.484 MPa. Significant differences were observed among all formulations (P<.05). These formulations have mechanical properties comparable with the commercial silicones currently used for the fabrication of facial prostheses. The formulation with 5% cross-linker content and high content of long-chain PDMS chains with optimum mechanical properties was chosen for further development. The optimum combination of mechanical properties implies the use of one of these formulations for further evaluation in a 3D printer capable of actively mixing and extruding 2-component, room temperature vulcanization silicone. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Fei, X.; He, W. S.; Havenhill, A.; Ying, Z. Q.; Xin, Y.; Alzayed, N.; Wong, K. K.; Guo, Y.; Reichle, D.; Lucas, M. S. P.
1995-01-01
Superconducting Tl2Ba2Ca2Cu3O10 (Tl2223) was ground to powder. Mixture with silver powder (0-80% weight) and press to desired shape. After proper annealing, one can get good silver-content Tl2223 bulk superconductor. It is time-stable and has good superconducting property as same as pure Tl2223. It also has better mechanical property and far better thermal cycle property than pure Tl2223.
Shim, Young-Sun; Park, Soo-Jin
2012-07-01
In this study, the effects of polypropylene-grafted maleic-anhydride-treated multi-walled carbon nanotubes (PP-MWNTs) on the viscoelastic behaviors and mechanical properties of a polypropylene-(PP)-based composite system were examined. The PP-MWNT/PP composites were prepared via melt mixing with a 3:1 ratio of PP-g-MA and acid-treated MWNTs at 220 degrees C. The surface characteristics of the PP-MWNTs were confirmed via Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM). The viscoelastic behavior and mechanical properties of the PP-MWNT/PP composites were confirmed using a rheometer and an ultimate testing machine (UTM). The storage and loss moduli increased with increasing PP-MWNT content. The critical intensity stress factor (K(IC)) of the PP-MWNT/PP composites at high filler loading was also higher than that of the MWNT/PP composites. In conclusion, the viscoelastic behavior and mechanical properties of MWNT/PP can be improved by grafting MWNTs to PP-g-MA.
Wang, Miaomiao; Wang, Zubin; Chen, Qirong; Meng, Xiangfu; Heng, Liping
2018-06-01
The wear resistance and stable mechanical properties affect the service life of the underwater functional materials to a certain extent. Unfortunately, the current study of underwater functional materials is rarely related to these aspects. Herein, we successfully designed and prepared polyurethane/graphite nanosheet (PU/GN) composite materials, which exhibited excellent wear resistance and stable mechanical properties underwater. The PU/GN composite films were prepared by evaporating a mixed solution of PU and GN on concave hexagonal honeycomb silicon templates. The mechanical properties of the composite films were determined by tensile test, and the wear resistance was evaluated by comparing the surface morphology before and after grind. By adjusting the content of graphite in the composite films, we found that the composite films containing 23 wt% GN had higher tensile strength and superior wear resistance. Moreover, this composite film showed an outstanding stability when expose to water. The impressive results along with simple preparation process made PU/GN composite films had potential applications in robust underwater functional materials.
Cecchini, Juan Pablo; Spotti, María J; Piagentini, Andrea M; Milt, Viviana G; Carrara, Carlos R
2017-06-01
Edible films with whey protein concentrate (WPC) with a lipid component, sunflower oil (O) or beeswax (W), to enhance barrier to water vapor were obtained. Brea gum was used as emulsifier and also as matrix component. In order to achieve emulsion with small and homogeneous droplet size, an ultrasonicator equipment was used after obtaining a pre-emulsion using a blender. The films were made by casting. Effects of lipid fraction on droplet size, zeta potential, mechanical properties, water vapor permeability (WVP), solubility, and optical properties were determined. The droplet size of emulsions with BG decreased when decreasing the lipid content in the formulation. The zeta potential was negative for all the formulations, since the pH was close to 6 for all of them and pI of BG is close to 2.5, and pI of ß-lactoglobulin and α-lactalbumin (main proteins in WPC) are 5.2 and 4.1, respectively. Increasing W or SO content in blended films reduced the tensile strength and puncture resistance significantly. BG and WPC films without lipid presented better mechanical properties. The presence of lipids decreased the WVP, as expected, and those films having BG improved this property. BG films were slightly amber as a result of the natural color of the gum. BG has shown to be a good polysaccharide for emulsifying the lipid fraction and improving the homogeneity and mechanical properties of the films with WPC and beeswax or oil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Q.; Hu, X; Wang, X
Water-insoluble regenerated silk materials are normally produced by increasing the {beta}-sheet content (silk II). In the present study water-insoluble silk films were prepared by controlling the very slow drying of Bombyx mori silk solutions, resulting in the formation of stable films with a predominant silk I instead of silk II structure. Wide angle X-ray scattering indicated that the silk films stabilized by slow drying were mainly composed of silk I rather than silk II, while water- and methanol-annealed silk films had a higher silk II content. The silk films prepared by slow drying had a globule-like structure at the coremore » surrounded by nano-filaments. The core region was composed of silk I and silk II, surrounded by hydrophilic nano-filaments containing random turns and {alpha}-helix secondary structures. The insoluble silk films prepared by slow drying had unique thermal, mechanical and degradative properties. Differential scanning calorimetry results revealed that silk I crystals had stable thermal properties up to 250 C, without crystallization above the T{sub g}, but degraded at lower temperatures than silk II structure. Compared with water- and methanol-annealed films the films prepared by slow drying had better mechanical ductility and were more rapidly enzymatically degraded, reflecting the differences in secondary structure achieved via differences in post processing of the cast silk films. Importantly, the silk I structure, a key intermediate secondary structure for the formation of mechanically robust natural silk fibers, was successfully generated by the present approach of very slow drying, mimicking the natural process. The results also point to a new mode of generating new types of silk biomaterials with enhanced mechanical properties and increased degradation rates, while maintaining water insolubility, along with a low {beta}-sheet content.« less
Fan, Wei-Jie; Wang, Xiao-Yong; Park, Ki-Bong
2015-01-01
High-calcium fly ash (FH) is the combustion residue from electric power plants burning lignite or sub-bituminous coal. As a mineral admixture, FH can be used to produce high-strength concrete and high-performance concrete. The development of chemical and mechanical properties is a crucial factor for appropriately using FH in the concrete industry. To achieve sustainable development in the concrete industry, this paper presents a theoretical model to systematically evaluate the property developments of FH blended concrete. The proposed model analyzes the cement hydration, the reaction of free CaO in FH, and the reaction of phases in FH other than free CaO. The mutual interactions among cement hydration, the reaction of free CaO in FH, and the reaction of other phases in FH are also considered through the calcium hydroxide contents and the capillary water contents. Using the hydration degree of cement, the reaction degree of free CaO in FH, and the reaction degree of other phases in FH, the proposed model evaluates the calcium hydroxide contents, the reaction degree of FH, chemically bound water, porosity, and the compressive strength of hardening concrete with different water to binder ratios and FH replacement ratios. The evaluated results are compared to experimental results, and good consistencies are found. PMID:28793543
Rui-Hong, Xie; Peng-Gang, Ren; Jian, Hui; Fang, Ren; Lian-Zhen, Ren; Zhen-Feng, Sun
2016-03-15
In this study, graphene oxide reinforced regenerated cellulose/polyvinyl alcohol (GO-RCE/PVA) ternary hydrogels were successfully prepared via a repeated freezing and thawing method in NaOH/urea aqueous solution. The effect of GO content on the mechanical properties, swelling behavior, water content of composite hydrogels was investigated. It was found that the mechanical properties of GO-RCE/PVA ternary hydrogels were largely enhanced relative to RCE/PVA hydrogels. With the addition of 1.0wt% GO, the tensile strength was increased by 40.4% from 0.52MPa to 0.73MPa, accompanied by the increase of the elongation at break (from 103% to 238%). Meanwhile, GO-RCE/PVA ternary hydrogels performed the excellent pH-sensitivity, and the higher pH leaded to higher swelling ratio. With 0.8wt% GO loading, the swelling ratio of GO-RCE/PVA ternary hydrogel was improved from 150% (pH=2) to 310% (pH=14). In addition, a slight increase in the water content of the ternary hydrogel was achieved with increasing concentrations of GO. It is believed that this novel ternary hydrogels is a promising material in the application of biomedical engineering and intelligent devices. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lyophilized Silk Sponges: A Versatile Biomaterial Platform for Soft Tissue Engineering
2015-01-01
We present a silk biomaterial platform with highly tunable mechanical and degradation properties for engineering and regeneration of soft tissues such as, skin, adipose, and neural tissue, with elasticity properties in the kilopascal range. Lyophilized silk sponges were prepared under different process conditions and the effect of silk molecular weight, concentration and crystallinity on 3D scaffold formation, structural integrity, morphology, mechanical and degradation properties, and cell interactions in vitro and in vivo were studied. Tuning the molecular weight distribution (via degumming time) of silk allowed the formation of stable, highly porous, 3D scaffolds that held form with silk concentrations as low as 0.5% wt/v. Mechanical properties were a function of silk concentration and scaffold degradation was driven by beta-sheet content. Lyophilized silk sponges supported the adhesion of mesenchymal stem cells throughout 3D scaffolds, cell proliferation in vitro, and cell infiltration and scaffold remodeling when implanted subcutaneously in vivo. PMID:25984573
Persson, Maria; Lorite, Gabriela S; Cho, Sung-Woo; Tuukkanen, Juha; Skrifvars, Mikael
2013-08-14
Composite fibers from poly(lactic acid) (PLA) and hydroxyapatite (HA) particles were prepared using melt spinning. Different loading concentrations of HA particles (i.e., 5, 10, 15, and 20 wt %) in the PLA fibers and solid-state draw ratios (SSDRs) were evaluated in order to investigate their influence on the fibers' morphology and thermal and mechanical properties. A scanning electron microscopy investigation indicated that the HA particles were homogeneously distributed in the PLA fibers. It was also revealed by atomic force microscopy and Fourier transform infrared spectroscopy that HA particles were located on the fiber surface, which is of importance for their intended application in biomedical textiles. Our results also suggest that the mechanical properties were independent of the loading concentration of the HA particles and that the SSDR played an important role in improving the mechanical properties of the composite fibers.
Abou Neel, Ensanya Ali; Young, Anne M.
2017-01-01
Regardless of the excellent properties of glass ionomer cements, their poor mechanical properties limit their applications to non-load bearing areas. This study aimed to investigate the effect of incorporated short, chopped and randomly distributed flax fibers (0, 0.5, 1, 2.5, 5 and 25 wt%) on setting reaction kinetics, and mechanical and morphological properties of glass ionomer cements. Addition of flax fibers did not significantly affect the setting reaction extent. According to their content, flax fibers increased the compressive (from 148 to 250 MPa) and flexure strength (from 20 to 42 MPa). They also changed the brittle behavior of glass ionomer cements to a plastic one. They significantly reduced the compressive (from 3 to 1.3 GPa) and flexure modulus (from 19 to 14 GPa). Accordingly, flax fiber-modified glass ionomer cements could be potentially used in high-stress bearing areas. PMID:28808218
Structures, properties, and energy-storage mechanisms of the semi-lunar process cuticles in locusts.
Wan, Chao; Hao, Zhixiu; Feng, Xiqiao
2016-10-17
Locusts have excellent jumping and kicking abilities to survive in nature, which are achieved through the energy storage and release processes occurring in cuticles, especially in the semi-lunar processes (SLP) at the femorotibial joints. As yet, however, the strain energy-storage mechanisms of the SLP cuticles remain unclear. To decode this mystery, we investigated the microstructure, material composition, and mechanical properties of the SLP cuticle and its remarkable strain energy-storage mechanisms for jumping and kicking. It is found that the SLP cuticle of adult Locusta migratoria manilensis consists of five main parts that exhibit different microstructural features, material compositions, mechanical properties, and biological functions in storing strain energy. The mechanical properties of these five components are all transversely isotropic and strongly depend on their water contents. Finite element simulations indicate that the two parts of the core region of the SLP cuticle likely make significant contributions to its outstanding strain energy-storage ability. This work deepens our understanding of the locomotion behaviors and superior energy-storage mechanisms of insects such as locusts and is helpful for the design and fabrication of strain energy-storage devices.
Structures, properties, and energy-storage mechanisms of the semi-lunar process cuticles in locusts
Wan, Chao; Hao, Zhixiu; Feng, Xiqiao
2016-01-01
Locusts have excellent jumping and kicking abilities to survive in nature, which are achieved through the energy storage and release processes occurring in cuticles, especially in the semi-lunar processes (SLP) at the femorotibial joints. As yet, however, the strain energy-storage mechanisms of the SLP cuticles remain unclear. To decode this mystery, we investigated the microstructure, material composition, and mechanical properties of the SLP cuticle and its remarkable strain energy-storage mechanisms for jumping and kicking. It is found that the SLP cuticle of adult Locusta migratoria manilensis consists of five main parts that exhibit different microstructural features, material compositions, mechanical properties, and biological functions in storing strain energy. The mechanical properties of these five components are all transversely isotropic and strongly depend on their water contents. Finite element simulations indicate that the two parts of the core region of the SLP cuticle likely make significant contributions to its outstanding strain energy-storage ability. This work deepens our understanding of the locomotion behaviors and superior energy-storage mechanisms of insects such as locusts and is helpful for the design and fabrication of strain energy-storage devices. PMID:27748460
NASA Astrophysics Data System (ADS)
Vogt, Bryan; Wiener, Clinton; Wang, Chao; Weiss, Bob
Stress dissipation mechanisms are critical to improving the toughness of hydrogels. The use of reversible hydrophobic associations for crosslnking of hydrogels provides such a mechanism for toughening, but can also lead to the creep of the hydrogel as the crosslinks break and reform. The morphology of the hydrophobic aggregates thus is critical to the mechanical properties of the hydrogels. In this work, we will demonstrate how the processing of these copolymers impacts the hydrogel structure and this structure is correlated with the mechanical properties through a combination of small angle scattering, rheology, and tensile measurements. The hydrophilic and hydrophobic chemistries in the copolymer can be used to tune the water content and strength of the crosslinks, while the copolymer composition provides the number density of crosslinks and also acts to modulate the swelling of the hydrogel. These copolymers as well as their hydrogels can in general use traditional polymer processing, but the details of this processing impacts both the nanoscale morphology and the resultant mechanical properties of the hydrogels. This work was financially supported by the Civil, Mechanical and Manufacturing Innovation (CMMI) Division in the Directorate for Engineering of the National Science Foundation, Grant. CMMI-1300212.
Structures, properties, and energy-storage mechanisms of the semi-lunar process cuticles in locusts
NASA Astrophysics Data System (ADS)
Wan, Chao; Hao, Zhixiu; Feng, Xiqiao
2016-10-01
Locusts have excellent jumping and kicking abilities to survive in nature, which are achieved through the energy storage and release processes occurring in cuticles, especially in the semi-lunar processes (SLP) at the femorotibial joints. As yet, however, the strain energy-storage mechanisms of the SLP cuticles remain unclear. To decode this mystery, we investigated the microstructure, material composition, and mechanical properties of the SLP cuticle and its remarkable strain energy-storage mechanisms for jumping and kicking. It is found that the SLP cuticle of adult Locusta migratoria manilensis consists of five main parts that exhibit different microstructural features, material compositions, mechanical properties, and biological functions in storing strain energy. The mechanical properties of these five components are all transversely isotropic and strongly depend on their water contents. Finite element simulations indicate that the two parts of the core region of the SLP cuticle likely make significant contributions to its outstanding strain energy-storage ability. This work deepens our understanding of the locomotion behaviors and superior energy-storage mechanisms of insects such as locusts and is helpful for the design and fabrication of strain energy-storage devices.
Zhu, Jian; Zhang, Huanan; Kotov, Nicholas A
2013-06-25
Materials assembled by layer-by-layer (LBL) assembly and vacuum-assisted flocculation (VAF) have similarities, but a systematic study of their comparative advantages and disadvantages is missing. Such a study is needed from both practical and fundamental perspectives aiming at a better understanding of structure-property relationships of nanocomposites and purposeful engineering of materials with unique properties. Layered composites from polyvinyl alcohol (PVA) and reduced graphene (RG) are made by both techniques. We comparatively evaluate their structure, mechanical, and electrical properties. LBL and VAF composites demonstrate clear differences at atomic and nanoscale structural levels but reveal similarities in micrometer and submicrometer organization. Epitaxial crystallization and suppression of phase transition temperatures are more pronounced for PVA in LBL than for VAF composites. Mechanical properties are virtually identical for both assemblies at high RG contents. We conclude that mechanical properties in layered RG assemblies are largely determined by the thermodynamic state of PVA at the polymer/nanosheet interface rather than the nanometer scale differences in RG packing. High and nearly identical values of toughness for LBL and VAF composites reaching 6.1 MJ/m(3) observed for thermodynamically optimal composition confirm this conclusion. Their toughness is the highest among all other layered assemblies from RG, cellulose, clay, etc. Electrical conductivity, however, is more than 10× higher for LBL than for VAF composites for the same RG contents. Electrical properties are largely determined by the tunneling barrier between RG sheets and therefore strongly dependent on atomic/nanoscale organization. These findings open the door for application-oriented methods of materials engineering using both types of layered assemblies.
Simple green approach to reinforce natural rubber with bacterial cellulose nanofibers.
Trovatti, Eliane; Carvalho, Antonio J F; Ribeiro, Sidney J L; Gandini, Alessandro
2013-08-12
Natural rubber (NR) is a renewable polymer with a wide range of applications, which is constantly tailored, further increasing its utilizations. The tensile strength is one of its most important properties susceptible of being enhanced by the simple incorporation of nanofibers. The preparation and characterization of natural-rubber based nanocomposites reinforced with bacterial cellulose (BC) and bacterial cellulose coated with polystyrene (BCPS), yielded high performance materials. The nanocomposites were prepared by a simple and green process, and characterized by tensile tests, dynamical mechanical analysis (DMA), scanning electron microscopy (SEM), and swelling experiments. The effect of the nanofiber content on morphology, static, and dynamic mechanical properties was also investigated. The results showed an increase in the mechanical properties, such as Young's modulus and tensile strength, even with modest nanofiber loadings.
NASA Astrophysics Data System (ADS)
Lian, Yong; Huang, Jinfeng; Zhang, Jin; Zhang, Cheng; Gao, Wen; Zhao, Chao
2015-11-01
The effect that a 0, 0.2, and 0.5 wt.% titanium content has on the microstructure and mechanical properties of 13Cr supermartensitic stainless steel was investigated using an optical microscope, transmission electron microscope, and X-ray diffraction. The resultant microstructures of the three steels were tempered martensite with a reversed austenite dispersed throughout the matrix. Additionally, the formation of Cr-rich carbides was suppressed by stable Ti(C, N), which improved the strength without severely decreasing in the Ti-microalloyed steel toughness. Nano-precipitation of Ni3Ti was found for the 0.5 wt.% Ti steel during tempering, which significantly increased the strength, but decreased the toughness. The reversed austenite volume fraction also significantly influenced the mechanical properties.
Mechanical Properties of Uranium Silicides by Nanoindentation and Finite Elements Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carvajal-Nunez, U.; Elbakhshwan, M. S.; Mara, N. A.
Three methods were used to measure the mechanical properties of U 3Si, U 3Si 2, and USi. Quasi-static and continuous stiffness measurement nanoindentation were used to determine hardness and Young’s modulus, and microindentation was used to evaluate the bulk hardness. Hardness and Young’s modulus of the three U-Si compounds were both observed to increase with Si content. In conclusion, finite elements modelling was used to validate the nanoindentation data calculated for U 3Si 2 and estimate its yield strength.
Mechanical Properties of Uranium Silicides by Nanoindentation and Finite Elements Modeling
Carvajal-Nunez, U.; Elbakhshwan, M. S.; Mara, N. A.; ...
2017-12-04
Three methods were used to measure the mechanical properties of U 3Si, U 3Si 2, and USi. Quasi-static and continuous stiffness measurement nanoindentation were used to determine hardness and Young’s modulus, and microindentation was used to evaluate the bulk hardness. Hardness and Young’s modulus of the three U-Si compounds were both observed to increase with Si content. In conclusion, finite elements modelling was used to validate the nanoindentation data calculated for U 3Si 2 and estimate its yield strength.
Micro-mechanical modelling of cellulose aerogels from molten salt hydrates.
Rege, Ameya; Schestakow, Maria; Karadagli, Ilknur; Ratke, Lorenz; Itskov, Mikhail
2016-09-14
In this paper, a generalised micro-mechanical model capable of capturing the mechanical behaviour of polysaccharidic aerogels, in particular cellulose aerogels, is proposed. To this end, first the mechanical structure and properties of these highly nanoporous cellulose aerogels prepared from aqueous salt hydrate melts (calcium thiocyanate, Ca(SCN)2·6H2O and zinc chloride, ZnCl2·4H2O) are studied. The cellulose content within these aerogels is found to have a direct relation to the microstructural quantities such as the fibril length and diameter. This, along with porosity, appears to influence the resulting mechanical properties. Furthermore, experimental characterisation of cellulose aerogels was done using scanning electron microscopy (SEM), pore-size data analysis, and compression tests. Cellulose aerogels are of a characteristic cellular microstructures and accordingly a network formed by square shaped cells is considered in the micro-mechanical model proposed in this paper. This model is based on the non-linear bending and collapse of such cells of varying pore sizes. The extended Euler-Bernoulli beam theory for large deflections is used to describe the bending in the cell walls. The proposed model is physically motivated and demonstrates a good agreement with our experimental data of both ZnCl2 and Ca(SCN)2 based cellulose aerogels with different cellulose contents.
Meglen, Robert R.; Kelley, Stephen S.
2003-01-01
In a method for determining the dry mechanical strength for a green wood, the improvement comprising: (a) illuminating a surface of the wood to be determined with a reduced range of wavelengths in the VIS-NIR spectra 400 to 1150 nm, said wood having a green moisture content; (b) analyzing the surface of the wood using a spectrometric method, the method generating a first spectral data of a reduced range of wavelengths in VIS-NIR spectra; and (c) using a multivariate analysis technique to predict the mechanical strength of green wood when dry by comparing the first spectral data with a calibration model, the calibration model comprising a second spectrometric method of spectral data of a reduced range of wavelengths in VIS-NIR spectra obtained from a reference wood having a green moisture content, the second spectral being correlated with a known mechanical strength analytical result obtained from the reference wood when dried and a having a dry moisture content.
Long, Kai; Liu, Yang; Li, Weichang; Wang, Lin; Liu, Sa; Wang, Yingjun; Wang, Zhichong; Ren, Li
2015-03-01
Although collagen with outstanding biocompatibility has promising application in corneal tissue engineering, the mechanical properties of collagen-based scaffolds, especially suture retention strength, must be further improved to satisfy the requirements of clinical applications. This article describes a toughness reinforced collagen-based membrane using silk fibroin. The collagen-silk fibroin membranes based on collagen [silk fibroin (w/w) ratios of 100:5, 100:10, and 100:20] were prepared by using silk fibroin and cross-linking by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide. These membranes were analyzed by scanning electron microscopy and their optical property, and NaCl and tryptophan diffusivity had been tested. The water content was found to be dependent on the content of silk fibroin, and CS10 membrane (loading 10 wt % of silk fibroin) performed the optimal mechanical properties. Also the suture experiments have proved CS10 has high suture retention strength, which can be sutured in rabbit eyes integrally. Moreover, the composite membrane proved good biocompatibility for the proliferation of human corneal epithelial cells in vitro. Lamellar keratoplasty shows that CS10 membrane promoted complete epithelialization in 35 ± 5 days, and their transparency is restored quickly in the first month. Corneal rejection reaction, neovascularization, and keratoconus are not observed. The composite films show potential for use in the field of corneal tissue engineering. © 2014 Wiley Periodicals, Inc.
Murphy, Meghan K.; Huey, Daniel J.; Reimer, Andrew J.; Hu, Jerry C.; Athanasiou, Kyriacos A.
2013-01-01
The insufficient healing capacity of articular cartilage necessitates mechanically functional biologic tissue replacements. Using cells to form biomimetic cartilage implants is met with the challenges of cell scarcity and donor site morbidity, requiring expanded cells that possess the ability to generate robust neocartilage. To address this, this study assesses the effects of expansion medium supplementation (bFGF, TFP, FBS) and self-assembled construct seeding density (2, 3, 4 million cells/5 mm dia. construct) on the ability of costochondral cells to generate biochemically and biomechanically robust neocartilage. Results show TFP (1 ng/mL TGF-β1, 5 ng/mL bFGF, 10 ng/mL PDGF) supplementation of serum-free chondrogenic expansion medium enhances the post-expansion chondrogenic potential of costochondral cells, evidenced by increased glycosaminoglycan content, decreased type I/II collagen ratio, and enhanced compressive properties. Low density (2 million cells/construct) enhances matrix synthesis and tensile and compressive mechanical properties. Combined, TFP and Low density interact to further enhance construct properties. That is, with TFP, Low density increases type II collagen content by over 100%, tensile stiffness by over 300%, and compressive moduli by over 140%, compared with High density. In conclusion, the interaction of TFP and Low density seeding enhances construct material properties, allowing for a mechanically functional, biomimetic cartilage to be formed using clinically relevant costochondral cells. PMID:23437288
Alternating block polyurethanes based on PCL and PEG as potential nerve regeneration materials.
Li, Guangyao; Li, Dandan; Niu, Yuqing; He, Tao; Chen, Kevin C; Xu, Kaitian
2014-03-01
Polyurethanes with regular and controlled block arrangement, i.e., alternating block polyurethanes (abbreviated as PUCL-alt-PEG) based on poly(ε-caprolactone) (PCL-diol) and poly(ethylene glycol) (PEG) was prepared via selectively coupling reaction between PCL-diol and diisocyanate end-capped PEG. Chemical structure, molecular weight, distribution, and thermal properties were systematically characterized by FTIR, (1)H NMR, GPC, DSC, and TGA. Hydrophilicity was studied by static contact angle of H2O and CH2I2. Film surface was observed by scanning electron microscope (SEM) and atomic force microscopy, and mechanical properties were assessed by universal test machine. Results show that alternating block polyurethanes give higher crystal degree, higher mechanical properties, and more hydrophilic and rougher (deep ravine) surface than their random counterpart, due to regular and controlled structure. Platelet adhesion illustrated that PUCL-alt-PEG has better hemocompatibility and the hemacompatibility was affected significantly by PEG content. Excellent hemocompatibility was obtained with high PEG content. CCK-8 assay and SEM observation revealed much better cell compatibility of fibroblast L929 and rat glial cells on the alternating block polyurethanes than that on random counterpart. Alternating block polyurethane PUC20-a-E4 with optimized composition, mechanical, surface properties, hemacompatibility, and highest cell growth and proliferation was achieved for potential use in nerve regeneration. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Xu, Zh. H.; Kong, Zh. N.
2014-07-01
Natural rubber (NR) and polyethylene (PE) composites were compounded with chemically treated coir fibers by using a heated two-roll mill. Two chemical treatments of the fibers — by silane and sodium hydroxide — were carried out to improve the interfacial adhesion between them and the polyethylene matrix. The mechanical properties of the composites obtained were evaluated and compared with those made from a neat polymer and untreated fibers. The mechanical properties of the composites, such as the tensile strength, Young's modulus, and the elongation at break, were examined, and their shrinkage and flame retardant characteristics were measured. From these experiments, the effect of plasma treatment on the mechanical-physical behavior of coconut-fiberreinforced NR/PE composites was identified. In addition, their thermal characteristics were evaluated, and the results showed a slight decrease in them with increasing content of coir fibers.
NASA Astrophysics Data System (ADS)
Verma, Devendra; Qu, Tao; Tomar, Vikas
2015-04-01
The exoskeletons of crustacean species in the form of thin films have been investigated by several researchers to better understand the role played by the exoskeletal structure in affecting the functioning of species such as shrimps, crabs, and lobsters. These species exhibit similar designs in their exoskeleton microstructure, such as a Bouligand pattern (twisted plywood structure), layers of different thickness across cross section, change in mineral content through the layers, etc. Different parts of crustaceans exhibit a significant variation in mechanical properties based on the variation in the above-mentioned parameters. This change in mechanical properties has been analyzed by using imaging techniques such as scanning electron microscopy and energy-dispersive x-ray spectroscopy, and by using mechanical characterization techniques such as nanoindentation and atomic force microscopy. In this article, the design principles of these biological composites are discussed based on two shrimp species: Rimicaris exoculata and Pandalus platyceros.
Effects of bioleaching on the mechanical and chemical properties of waste rocks
NASA Astrophysics Data System (ADS)
Yin, Sheng-Hua; Wu, Ai-Xiang; Wang, Shao-Yong; Ai, Chun-Ming
2012-01-01
Bioleaching processes cause dramatic changes in the mechanical and chemical properties of waste rocks, and play an important role in metal recovery and dump stability. This study focused on the characteristics of waste rocks subjected to bioleaching. A series of experiments were conducted to investigate the evolution of rock properties during the bioleaching process. Mechanical behaviors of the leached waste rocks, such as failure patterns, normal stress, shear strength, and cohesion were determined through mechanical tests. The results of SEM imaging show considerable differences in the surface morphology of leached rocks located at different parts of the dump. The mineralogical content of the leached rocks reflects the extent of dissolution and precipitation during bioleaching. The dump porosity and rock size change under the effect of dissolution, precipitation, and clay transportation. The particle size of the leached rocks decreased due to the loss of rock integrity and the conversion of dry precipitation into fine particles.
Amiriyan, Mahdi; Blais, Carl; Savoie, Sylvio; Schulz, Robert; Gariépy, Mario; Alamdari, Houshang
2016-01-01
This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2 powders in a high energy ball mill. The high-velocity oxy-fuel (HVOF) technique was used to deposit the feedstock powder on a steel substrate. The effect of TiB2 addition on mechanical properties and dry sliding wear rates of the coatings at sliding speeds ranging from 0.04 to 0.8 m·s−1 and loads of 3, 5 and 7 N was studied. Coatings made from unreinforced Fe3Al exhibited a relatively high wear rate. The Vickers hardness, elastic modulus and wear resistance of the coatings increased with increasing TiB2 content in the Fe3Al matrix. The wear mechanisms strongly depended on the sliding speed and the presence of TiB2 particles but were less dependent on the applied load. This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2 powders in a high energy ball mill. The high-velocity oxy-fuel (HVOF) technique was used to deposit the feedstock powder on a steel substrate. The effect of TiB2 addition on mechanical properties and dry sliding wear rates of the coatings at sliding speeds ranging from 0.04 to 0.8 m·s−1 and loads of 3, 5 and 7 N was studied. Coatings made from unreinforced Fe3Al exhibited a relatively high wear rate. The Vickers hardness, elastic modulus and wear resistance of the coatings increased with increasing TiB2 content in the Fe3Al matrix. The wear mechanisms strongly depended on the sliding speed and the presence of TiB2 particles but were less dependent on the applied load. This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2 powders in a high energy ball mill. The high-velocity oxy-fuel (HVOF) technique was used to deposit the feedstock powder on a steel substrate. The effect of TiB2 addition on mechanical properties and dry sliding wear rates of the coatings at sliding speeds ranging from 0.04 to 0.8 m·s−1 and loads of 3, 5 and 7 N was studied. Coatings made from unreinforced Fe3Al exhibited a relatively high wear rate. The Vickers hardness, elastic modulus and wear resistance of the coatings increased with increasing TiB2 content in the Fe3Al matrix. The wear mechanisms strongly depended on the sliding speed and the presence of TiB2 particles but were less dependent on the applied load. This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2 powders in a high energy ball mill. The high-velocity oxy-fuel (HVOF) technique was used to deposit the feedstock powder on a steel substrate. The effect of TiB2 addition on mechanical properties and dry sliding wear rates of the coatings at sliding speeds ranging from 0.04 to 0.8 m·s−1 and loads of 3, 5 and 7 N was studied. Coatings made from unreinforced Fe3Al exhibited a relatively high wear rate. The Vickers hardness, elastic modulus and wear resistance of the coatings increased with increasing TiB2 content in the Fe3Al matrix. The wear mechanisms strongly depended on the sliding speed and the presence of TiB2 particles but were less dependent on the applied load. This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2 powders in a high energy ball mill. The high-velocity oxy-fuel (HVOF) technique was used to deposit the feedstock powder on a steel substrate. The effect of TiB2 addition on mechanical properties and dry sliding wear rates of the coatings at sliding speeds ranging from 0.04 to 0.8 m·s−1 and loads of 3, 5 and 7 N was studied. Coatings made from unreinforced Fe3Al exhibited a relatively high wear rate. The Vickers hardness, elastic modulus and wear resistance of the coatings increased with increasing TiB2 content in the Fe3Al matrix. The wear mechanisms strongly depended on the sliding speed and the presence of TiB2 particles but were less dependent on the applied load. This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2 powders in a high energy ball mill. The high-velocity oxy-fuel (HVOF) technique was used to deposit the feedstock powder on a steel substrate. The effect of TiB2 addition on mechanical properties and dry sliding wear rates of the coatings at sliding speeds ranging from 0.04 to 0.8 m·s−1 and loads of 3, 5 and 7 N was studied. Coatings made from unreinforced Fe3Al exhibited a relatively high wear rate. The Vickers hardness, elastic modulus and wear resistance of the coatings increased with increasing TiB2 content in the Fe3Al matrix. The wear mechanisms strongly depended on the sliding speed and the presence of TiB2 particles but were less dependent on the applied load. PMID:28787917
Kim, Jong Won; Lee, Joon Seok
2016-01-01
Generally, to produce film-type thermoplastic composites with good mechanical properties, high-performance reinforcement films are used. In this case, films used as a matrix are difficult to impregnate into tow due to their high melt viscosity and high molecular weight. To solve the problem, in this paper, three polypropylene (PP) films with different melt viscosities were used separately to produce film-type thermoplastic composites. A film with a low melt viscosity was stacked so that tow was impregnated first and a film with a higher melt viscosity was then stacked to produce the composite. Four different composites were produced by regulating the pressure rising time. The thickness, density, fiber volume fraction (Vf), and void content (Vc) were analyzed to identify the physical properties and compare them in terms of film stacking types. The thermal properties were identified by using differential scanning calorimetry (DSC) and dynamical mechanical thermal analysis (DMTA). The tensile property, flexural property, interlaminar shear strength (ILSS), and scanning electron microscopy (SEM) were performed to identify the mechanical properties. For the films with low molecular weight, impregnation could be completed fast but showed low strength. Additionally, the films with high molecular weight completed impregnation slowly but showed high strength. Therefore, appropriate films should be used considering the forming process time and their mechanical properties to produce film-type composites. PMID:28773572
Lv, Lili; Han, Xiangsheng; Zong, Lu; Li, Mingjie; You, Jun; Wu, Xiaochen; Li, Chaoxu
2017-08-22
Silk, one of the strongest natural biopolymers, was hybridized with Kevlar, one of the strongest synthetic polymers, through a biomimetic nanofibrous strategy. Regenerated silk materials have outstanding properties in transparency, biocompatibility, biodegradability and sustainability, and promising applications as diverse as in pharmaceutics, electronics, photonic devices and membranes. To compete with super mechanic properties of their natural counterpart, regenerated silk materials have been hybridized with inorganic fillers such as graphene and carbon nanotubes, but frequently lose essential mechanic flexibility. Inspired by the nanofibrous strategy of natural biomaterials (e.g., silk fibers, hemp and byssal threads of mussels) for fantastic mechanic properties, Kevlar was integrated in regenerated silk materials by combining nanometric fibrillation with proper hydrothermal treatments. The resultant hybrid films showed an ultimate stress and Young's modulus two times as high as those of pure regenerated SF films. This is not only because of the reinforcing effect of Kevlar nanofibrils, but also because of the increasing content of silk β-sheets. When introducing Kevlar nanofibrils into the membranes of silk nanofibrils assembled by regenerated silk fibroin, the improved mechanic properties further enabled potential applications as pressure-driven nanofiltration membranes and flexible substrates of electronic devices.
Structural characterization and mechanical properties of polypropylene reinforced natural fibers
NASA Astrophysics Data System (ADS)
Karim, M. A. A.; Zaman, I.; Rozlan, S. A. M.; Berhanuddin, N. I. C.; Manshoor, B.; Mustapha, M. S.; Khalid, A.; Chan, S. W.
2017-10-01
Recently the development of natural fiber composite instead of synthetics fiber has lead to eco-friendly product manufacturing to meet various applications in the field of automotive, construction and manufacturing. The use of natural fibers offer an alternative to the reinforcing fibers because of their good mechanical properties, low density, renewability, and biodegradability. In this present research, the effects of maleic anhydride polypropylene (MAPP) on the mechanical properties and material characterization behaviour of kenaf fiber and coir fiber reinforced polypropylene were investigated. Different fractions of composites with 10wt%, 20wt% and 30wt% fiber content were prepared by using brabender mixer at 190°C. The 3wt% MAPP was added during the mixing. The composites were subsequently molded with injection molding to prepare the test specimens. The mechanical properties of the samples were investigated according to ISO 527 to determine the tensile strength and modulus. These results were also confirmed by the SEM machine observations of fracture surface of composites and FTIR analysis of the chemical structure. As the results, the presence of MAPP helps increasing the mechanical properties of both fibers and 30wt% kenaf fiber with 3wt% MAPP gives the best result compare to others.
Elhennawy, Karim; Manton, David John; Crombie, Felicity; Zaslansky, Paul; Radlanski, Ralf J; Jost-Brinkmann, Paul-Georg; Schwendicke, Falk
2017-11-01
To systematically assess and contrast reported differences in microstructure, mineral density, mechanical and chemical properties between molar-incisor-hypomineralization-affected (MIH) enamel and unaffected enamel. Studies on extracted human teeth, clinically diagnosed with MIH, reporting on the microstructure, mechanical properties or the chemical composition and comparing them to unaffected enamel were reviewed. Electronic databases (PubMed, Embase and Google Scholar) were screened; hand searches and cross-referencing were also performed. Twenty-two studies were included. Fifteen studies on a total of 201 teeth investigated the structural properties, including ten (141 teeth) on microstructure and seven (60 teeth) on mineral density; six (29 teeth) investigated the mechanical properties and eleven (87 teeth) investigated the chemical properties of MIH-affected enamel and compared them to unaffected enamel. Studies unambiguously found a reduction in mineral quantity and quality (reduced Ca and P content), reduction of hardness and modulus of elasticity (also in the clinically sound-appearing enamel bordering the MIH-lesion), an increase in porosity, carbon/carbonate concentrations and protein content compared to unaffected enamel. were ambiguous with regard to the extent of the lesion through the enamel to the enamel-dentin junction, the Ca/P ratio and the association between clinical appearance and defect severity. There is an understanding of the changes related to MIH-affected enamel. The association of these changes with the clinical appearance and resulting implications for clinical management are unclear. MIH-affected enamel is greatly different from unaffected enamel. This has implications for management strategies. The possibility of correlating the clinical appearance of MIH-affected enamel with the severity of enamel changes and deducing clinical concepts (risk stratification etc.) is limited. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Enhanced Densification of PM Steels by Liquid Phase Sintering with Boron-Containing Master Alloy
NASA Astrophysics Data System (ADS)
Vattur Sundaram, Maheswaran; Surreddi, Kumar Babu; Hryha, Eduard; Veiga, Angela; Berg, Sigurd; Castro, Fransisco; Nyborg, Lars
2018-01-01
Reaching high density in PM steels is important for high-performance applications. In this study, liquid phase sintering of PM steels by adding gas-atomized Ni-Mn-B master alloy was investigated for enhancing the density levels of Fe- and Mo- prealloyed steel powder compacts. The results indicated that liquid formation occurs in two stages, beginning with the master alloy melting (LP-1) below and eutectic phase formation (LP-2) above 1373 K (1100 °C). Mo and C addition revealed a significant influence on the LP-2 temperatures and hence on the final densification behavior and mechanical properties. Microstructural embrittlement occurs with the formation of continuous boride networks along the grain boundaries, and its severity increases with carbon addition, especially for 2.5 wt pct of master alloy content. Sintering behavior, along with liquid generation, microstructural characteristics, and mechanical testing revealed that the reduced master alloy content from 2.5 to 1.5 wt pct (reaching overall boron content from 0.2 to 0.12 wt pct) was necessary for obtaining good ductility with better mechanical properties. Sintering with Ni-Mn-B master alloy enables the sintering activation by liquid phase formation in two stages to attain high density in PM steels suitable for high-performance applications.
NASA Astrophysics Data System (ADS)
Puype, A.; Malerba, L.; De Wispelaere, N.; Petrov, R.; Sietsma, J.
2018-04-01
The C, N, and W content in EUROFER97, a 9CrWVTa reduced-activation ferritic/martensitic (RAFM) steel, was varied to obtain an experimental assessment of the main effects of the compositional variation on the mechanical properties and microstructural characteristics of six different experimental grades. Light optical microscopy (LOM) and electron back-scattered diffraction (EBSD) revealed in almost all cases a fine tempered lath martensite structure. Analyses of transmission electron micrographs, together with inductively coupled plasma mass spectrometry (ICPMS) and energy-dispersive x-ray spectroscopy (EDS) data, shows the precipitation state and spatial distribution of MxCy (M = Cr, W and Fe) and MX (M = V and/or Ta, X = C or N) carbonitrides within the matrix. The mechanical characterization of the six different steel grades was carried out by means of A50 tensile testing and Charpy tests on standard specimens (55 × 10 × 10 mm3). Lowering the carbon content and keeping the nitrogen content higher than 0.02 wt%, leads to a reduction of the ductile-to-brittle-transition-temperature (DBTT) in comparison with EUROFER97-2. The addition of tungsten further reduces the DBTT to - 94 °C, while maintaining good tensile strength and elongation.
NASA Astrophysics Data System (ADS)
Guan, Zhuo
Glass fiber (GF) reinforced polypropylene (PP) has become a common composite material used for various applications. Previous reports indicated that grafting ratio and molecular weight (MW) of znaleic anhydride grafted polypropylene (PP-g-MA) are the two most significant factors affecting the mechanical properties of PP/PP-g-MA/GF composites, but the combined effect of these two factors remains controversial. The study of the importance of MA grafting ratio and MW is continued in this work using PPIPP-g MA/GF composites containing various grades and concentrations of PP-g MA compatibilizer. First, MFR and FT1R analyses were performed to characterize the physical and chemical properties- of each PP-g-MA resin. Then, premixed PP and PP-g-MA blend were compounded with GF via twin screw extrusion, with the compounds injection molded into tensile, flexural and Izod impact specimens (all ASTM standard) for mechanical properties testing. Generally speaking, at a given GF content, higher compatibilizer concentrations led to higher tensile, flexural and notched Izod impact strength up to an optimum MA concentrations above which these properties tended to level off PP-g-MA resins with higher grafting ratio were more efficient compatibilizers as indicated by improved tensile, flexural and impact properties at lower PP-g-MA contents. In addition, MW was expected to affect properties as well, with too high and too 16w MW values leading to reduced reinforcement. While the optimum MW values for tensile and impact strength were still not clear based on present results, the estimated optimum weight average MW for maximum flexural strength was 90,000 +/- 1,400 g/mol.
Differences in time-dependent mechanical properties between extruded and molded hydrogels
Ersumo, N; Witherel, CE; Spiller, KL
2016-01-01
The mechanical properties of hydrogels used in biomaterials and tissue engineering applications are critical determinants of their functionality. Despite the recent rise of additive manufacturing, and specifically extrusion-based bioprinting, as a prominent biofabrication method, comprehensive studies investigating the mechanical behavior of extruded constructs remain lacking. To address this gap in knowledge, we compared the mechanical properties and swelling properties of crosslinked gelatin-based hydrogels prepared by conventional molding techniques or by 3D bioprinting using a BioBots Beta pneumatic extruder. A preliminary characterization of the impact of bioprinting parameters on construct properties revealed that both Young's modulus and optimal extruding pressure increased with polymer content, and that printing resolution increased with both printing speed and nozzle gauge. High viability (>95%) of encapsulated NIH 3T3 fibroblasts confirmed the cytocompatibility of the construct preparation process. Interestingly, the Young's moduli of extruded and molded constructs were not different, but extruded constructs did show increases in both the rate and extent of time-dependent mechanical behavior observed in creep. Despite similar polymer densities, extruded hydrogels showed greater swelling over time compared to molded hydrogels, suggesting that differences in creep behavior derived from differences in microstructure and fluid flow. Because of the crucial roles of time-dependent mechanical properties, fluid flow, and swelling properties on tissue and cell behavior, these findings highlight the need for greater consideration of the effects of the extrusion process on hydrogel properties. PMID:27550945
Jing, Xin; Mi, Hao-Yang; Turng, Lih-Sheng
2017-03-01
In this work, three-dimensional poly(caprolactone) (PCL) tissue engineering scaffolds were prepared by co-extrusion and gas foaming. Biocompatible hydroxyapatite (HA) and halloysite nanotubes (HNT) were added to the polymer matrix to enhance the mechanical properties and bioactivity of the composite scaffolds. The effects of HA and HNT on the rheological behavior, microstructure, and mechanical properties of the composite scaffolds were systematically compared. It was found that the HNT improved viscosity more significantly than HA, and reduced the pore size of scaffolds, while the mechanical performance of PCL/HNT scaffolds was higher than PCL/HA scaffolds with the same filler content. Human mesenchymal stem cells (hMSCs) were used as the cell model to compare the biological properties of two composite scaffolds. The results demonstrated that cells could survive on all scaffolds, and showed a more flourishing living state on the composite scaffolds. The cell differentiation for 5% HA and 1% HNT scaffolds were significantly higher than other scaffolds, while the differentiation of 5% HNT scaffolds was lower than that of 1% HNT scaffolds mainly because of the reduced pore size and pore interconnectivity. Therefore, this study suggested that, with proper filler content and control of microstructure through processing, HNT could be a suitable substitute for HA for bone tissue engineering to reduce the cost and improve mechanical performance. Copyright © 2016. Published by Elsevier B.V.
Tatara, Marcin R; Krupski, Witold; Kozłowski, Krzysztof; Drażbo, Aleksandra; Jankowski, Jan
2015-03-18
The enzyme phytase is able to initiate the release of phosphates from phytic acid, making it available for absorption within gastrointestinal tract and following utilization. The aim of the study was to determine effects of Escherichia coli phytase administration on morphological, densitometric and mechanical properties of femur in 16-week-old turkeys. One-day-old BUT Big-6 males were assigned to six weight-matched groups. Turkeys receiving diet with standard phosphorus (P) and calcium (Ca) content belonged to the positive control group (Group I). Negative control group (Group II) consisted of birds fed diet with lowered P and Ca content. Turkeys belonging to the remaining groups have received the same diet as group II but enriched with graded levels of Escherichia coli phytase: 125 (Group III), 250 (Group IV), 500 (Group V) and 1000 (Group VI) FTU/kg. At the age of 112 days of life, the final body weights were determined and the turkeys were sacrificed to obtain right femur for analyses. Geometric and densitometric properties of femur were determined using quantitative computed tomography (QCT) technique, while mechanical evaluation was performed in three-point bending test. Phytase administration increased cross-sectional area, second moment of inertia, mean relative wall thickness, cortical bone mineral density and maximum elastic strength decreasing cortical bone area of femur (P < 0.05). Reduced dietary Ca and P content decreased final body weight of turkeys by 6.5% (P = 0.006). The most advantageous effects of Escherichia coli phytase administration on geometric, densitometric and mechanical properties of femur were observed in turkeys receiving 125 and 250 FTU/kg of the diet. Phytase administration at the dosages of 500 and 1000 FTU/kg of the diet improved the final body weight in turkeys. The results obtained in this study indicate a possible practical application of Escherichia coli phytase in turkey feeding to improve skeletal system properties and function.
Recycled wind turbine blades as a feedstock for second generation composites.
Mamanpush, Seyed Hossein; Li, Hui; Englund, Karl; Tabatabaei, Azadeh Tavousi
2018-06-01
With an increase in renewable wind energy via turbines, an underlying problem of the turbine blade disposal is looming in many areas of the world. These wind turbine blades are predominately a mixture of glass fiber composites (GFCs) and wood and currently have not found an economically viable recycling pathway. This work investigates a series of second generation composites fabricated using recycled wind turbine material and a polyurethane adhesive. The recycled material was first comminuted via a hammer-mill through a range of varying screen sizes, resinated and compressed to a final thickness. The refined particle size, moisture content and resin content were assessed for their influence on the properties of recycled composites. Static bending, internal bond and water sorption properties were obtained for all composites panels. Overall improvement of mechanical properties correlated with increase in resin content, moisture content, and particle size. The current investigation demonstrates that it is feasible and promising to recycle the wind turbine blade to fabricate value-added high-performance composite. Copyright © 2018 Elsevier Ltd. All rights reserved.
Goudarzi, Vahid; Shahabi-Ghahfarrokhi, Iman; Babaei-Ghazvini, Amin
2017-02-01
In this study, ecofriendly starch/TiO 2 bio-nanocomposites were produced using with different nano-TiO 2 (TiO 2 ) content (1, 3, and 5 (wt%)). Physical, mechanical, thermal, water-vapor permeability (WVP) properties and UV transmittance were investigated. Our results showed that the increasing TiO 2 content increased the hydrophobicity of starch/TiO 2 films. WVP of the bio-nanocomposites was reduced, simultaneously. With increasing TiO 2 content, tensile strength and Young's modulus of the film specimens were reduced while elongation at break and tensile energy to break were increased. The thermal properties of specimens showed that glass transition temperature of the films increased but melting point of the specimen films was decreased by increasing TiO 2 content. Scanning electron microscopy observations demonstrated, the most of films' physical properties were in relation to their microstructures. The starch/TiO 2 nanocomposites effectively protect goods against UV light, and could potentially be applied as UV-shielding packaging materials. Copyright © 2016 Elsevier B.V. All rights reserved.
Zou, Xiang Hui; Chen, Guo-Qiang
2007-02-12
Poly(hydroxyalkanoate)s (PHAs) are a class of microbially synthesized polyesters that combine biological properties, such as biocompatibility and biodegradability, and non-bioproperties such as thermoprocessability, piezoelectricity, and nonlinear optical activity. PHA monomer structures and their contents strongly affect the PHA properties. Using metabolic engineering approaches, PHA structures and contents can be manipulated to achieve controllable monomer and PHA cellular contents. This paper focuses on metabolic engineering methods to produce PHA consisting of 3-hydroxybutyrate (3HB) and medium-chain-length 3-hydroxyalkanoates (3HA) in recombinant microbial systems. This type of copolyester has mechanical and thermal properties similar to conventional plastics such as poly(propylene) and poly(ethylene terephthalate) (PET). In addition, pathways containing engineered PHA synthases have proven to be useful for enhanced PHA production with adjustable PHA monomers and contents. The applications of PHA as implant biomaterials are briefly discussed here. In the very near term, metabolic engineering will help solve many problems in promoting PHA as a new type of plastic material for many applications.
Robert J. Moon; Joseph Wells; David E. Kretschmann; James Evans; Alex C. Wiedenhoeft; Charles R. Frihart
2010-01-01
To better understand the performance of bonded, coated, and modified wood, knowledge of how these processes alter the dimensional change and mechanical properties of wood at a given moisture content (MC) are important. These localized influences on earlywood (EW) and latewood (LW) properties are not well understood. In the present study, the influence of chemical...
Melt rheological properties of natural fiber-reinforced polypropylene
Jarrod J. Schemenauer; Tim A. Osswald; Anand R. Sanadi; Daniel F. Caulfield
2000-01-01
The melt viscosities and mechanical properties of 3 different natural fiber-polypropylene composites were investigated. Coir (coconut), jute, and kenaf fibers were compounded with polypropylene at 30% by weight content. A capillary rheometer was used to evaluate melt viscosity. The power-law model parameters are reported over a shear rate range between 100 to 1000 sâ1...
Zhao, Haibin; Zhao, Guoqun
2016-01-01
In view of their complementary properties, blending polylactide (PLA) with poly (ε-caprolactone) (PCL) becomes a good choice to improve PLA's properties without compromising its biodegradability. A series of blends of biodegradable PLA and PCL with different mass fraction were prepared by melt mixing. Standard tensile bars were produced by both conventional and microcellular injection molding to study their mechanical and thermal properties. With the increase in PCL content, the blend showed decreased tensile strength and modulus; however, elongation was dramatically increased. With the addition of PCL, the failure mode changed from brittle fracture of the neat PLA to ductile fracture of the blend as demonstrated by tensile test. Various theoretical models based on dispersion and interface adhesion were used to predict the Young's modulus and the results shows the experimental data are consistent with the predictions of the foam model and Kerner-Uemura-Takayangi model. The thermal behavior of the blends was investigated by DSC and TGA. The melting temperature and the degree of crystallinity of PCL in the PLA/PCL did not significantly change with the PCL content increasing in the whole range of blends composition. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of Al-doped YCrO3 on structural, electronic and magnetic properties
NASA Astrophysics Data System (ADS)
Durán, A.; Verdín, E.; Conde, A.; Escamilla, R.
2018-05-01
Structural, dielectric and magnetic properties were investigated in the YCr1-xAlxO3 with 0 < x < 0.5 compositions. XRD and XPS studies show that the partial substitution of the Al3+ ion decreases the cell volume of the orthorhombic structure without changes in the oxidation state of the Cr3+ ions. We discuss two mechanisms that could have a significant influence on the magnetic properties. The first is related to local deformation occurring for x < 0.1 of Al content and the second is related to change of the electronic structure. The local deformation is controlled by the inclination of the octahedrons and the octahedral distortion having a strong effect on the TN and the coercive field at low Al concentrations. On the other hand, the decreasing of the magnetization values (Mr and Hc) is ascribed to changes in the electronic structure, which is confirmed by a decreasing of the contribution of Cr 3d states at Fermi level due to increasing Al3+ content. Thus, we analyzed and discussed that both mechanisms influence the electronic properties of the YCr1-xAlxO3 solid solution.
NASA Astrophysics Data System (ADS)
Ibrahim, Mohamed Fawzy
The present work was carried out on a series of heat-treatable aluminum-based aeronautical alloys containing various amounts of magnesium (Mg), iron (Fe), strontium (Sr) and beryllium (Be). Tensile test bars (dendrite arm spacing ~ 24mum) were solutionized for either 5 or 12 hours at 540°C, followed by quenching in warm water (60°C). Subsequently, these quenched samples were aged at 160°C for times up to 12 hours. Microstructural assessment was performed. All heat-treated samples were pulled to fracture at room temperature using a servo-hydraulic tensile testing machine. The results show that Be causes partial modification of the eutectic silicon (Si) particles similar to that reported for Mg addition. Addition of 0.8 wt.% Mg reduced the eutectic temperature by ~10°C. During solidification of alloys containing high levels of Fe and Mg, without Sr, a peak corresponding to the formation of a Be-Fe phase (Al8Fe2BeSi) was detected at 611°C. The Be-Fe phase precipitates in a script-like morphology. A new quinary eutectic-like reaction was observed to take place near the end of solidification of high Mg, high Fe, Be-containing alloys. This new reaction is composed mainly of fine particles of Si, Mg2Si, pi-Al 8Mg3FeSi6 and (Be-Fe) phases. The volume fraction of this reaction decreased with the addition of Sr. The addition of Be has a noticeable effect on decreasing the beta-phase length, or volume fraction, this effect may be limited by adding Sr. Beryllium addition also results in the precipitation of the beta-phase in a nodular form, which reduces the harmful effects of these intermetallics on the alloy mechanical properties. Increasing both Mg and Fe levels led to an increase in the amount of the pi-phase; increasing the iron content led to an increase in the volume fraction of the partially soluble beta- and pi-phases, while Mg2Si particles were completely dissolved. The beta-phase platelets were observed to undergo changes in their morphology due to the dissolution, thinning, necking and fragmentation of these platelets upon increasing the solutionizing time. The pi-phase was observed to dissolve and/or transform into a cluster of very fine beta-phase platelets. In the as-cast conditions, increasing the Mg content leads to increased transformation of beta-phase platelets into Chinese-script pi-phase, regardless of the Fe content. This, in turn, decreases the harmful effect of the beta-phase. Increasing the solutionizing time leads to a decomposition of the pi-phase to the beta-phase, fragmentation of the beta-phase and spheroidization of both the eutectic Si and the pi-phase particles, thus improving alloy tensile properties. Two mechanisms of Mg2Si precipitate coarsening were observed to occur: (1) Ostwald ripening in the solution heat-treated samples and (2) clustering. Coarsening increases with increased solution heat treatment time, increased aging time, as well as with greater Mg contents. Increased Fe levels decrease the alloy quality index (Q) values, whereas adding Mg increases them. Introducing Be, in spite of it being a toxic material, Sr, or both, simultaneously improves the alloy quality index values, regardless of solutionizing time or Fe and Mg levels. Quality index values increase with solution heat treatment time from 5 to 12 hours. Higher Mg contents lead to an increase in alloy ductility, ultimate tensile strength (UTS) and yield strength (YS), while higher Fe levels can drastically decrease these properties. For the same levels of Fe and/or Mg, Be and Sr have significant effects in improving alloy mechanical properties; these effects can be readily observed in low levels of Fe and high Mg contents. Beryllium addition is beneficial in the case of high Fe contents as it lowers the harmful effects of Fe-phases in Al-Si alloys. In the case of high Fe contents, it seems that the addition of 500 ppm of Be is not sufficient for all interactions with other alloying elements. During the melting process the formation of Be-Sr phase (probably SrBe3O4 compound) decreases the free Be content and hence the alloy mechanical properties. The role of Be in preventing the oxidation of Mg and in changing the chemistry and morphology of the Fe-intermetallics is observed through improved mechanical properties of Be-containing alloys. The partial modification effect of both Mg and Be appears to improve the alloy tensile properties. Solutionizing and aging times are important parameters affecting the alloy tensile properties. The Mg2Si precipitates were confirmed to be the main hardening components of the 356 and 357 alloys investigated. The yield strength increases with greater Mg levels, reduced Fe levels, addition of Be, Sr-modification, solution heat treatment time and aging time. The present work was extended to include an investigation of the experimental 7073 aluminum alloy. (Abstract shortened by UMI.).
Extrusion of xylans extracted from corn cobs into biodegradable polymeric materials.
Bahcegul, Erinc; Akinalan, Busra; Toraman, Hilal E; Erdemir, Duygu; Ozkan, Necati; Bakir, Ufuk
2013-12-01
Solvent casting technique, which comprises multiple energy demanding steps including the dissolution of a polymer in a solvent followed by the evaporation of the solvent from the polymer solution, is currently the main technique for the production of xylan based polymeric materials. The present study shows that sufficient water content renders arabinoglucuronoxylan (AGX) polymers extrudable, enabling the production of AGX based polymeric materials in a single step via extrusion, which is economically advantageous to solvent casting process for mass production. AGX polymers with water content of 27% were found to yield extrudates at an extrusion temperature of 90°C. The extruded strips showed very good mechanical properties with an ultimate tensile strength of 76 ± 6 MPa and elongation at break value of 35 ± 8%, which were superior to the mechanical properties of the strips obtained from polylactic acid. Copyright © 2013 Elsevier Ltd. All rights reserved.
Poly(glycerol sebacate urethane)-cellulose nanocomposites with water-active shape-memory effects.
Wu, Tongfei; Frydrych, Martin; O'Kelly, Kevin; Chen, Biqiong
2014-07-14
Biodegradable and biocompatible materials with shape-memory effects (SMEs) are attractive for use as minimally invasive medical devices. Nanocomposites with SMEs were prepared from biodegradable poly(glycerol sebacate urethane) (PGSU) and renewable cellulose nanocrystals (CNCs). The effects of CNC content on the structure, water absorption, and mechanical properties of the PGSU were studied. The water-responsive mechanically adaptive properties and shape-memory performance of PGSU-CNC nanocomposites were observed, which are dependent on the content of CNCs. The PGSU-CNC nanocomposite containing 23.2 vol % CNCs exhibited the best SMEs among the nanocomposites investigated, with the stable shape fixing and shape recovery ratios being 98 and 99%, respectively, attributable to the formation of a hydrophilic, yet strong, CNC network in the elastomeric matrix. In vitro degradation profiles of the nanocomposites were assessed with and without the presence of an enzyme.
Colussi, Rosana; Pinto, Vânia Zanella; El Halal, Shanise Lisie Mello; Biduski, Bárbara; Prietto, Luciana; Castilhos, Danilo Dufech; Zavareze, Elessandra da Rosa; Dias, Alvaro Renato Guerra
2017-04-15
Biodegradable films from native or acetylated starches with different amylose levels were prepared. The films were characterized according to the mechanical, water vapor barrier, thermal, and biodegradability properties. The films from acetylated high amylose starches had higher moisture content and water solubility than the native high amylose starch film. However, the acetylation did not affect acid solubility of the films, regardless of the amylose content. Films made from high and medium amylose rice starches were obtained; however low amylose rice starches, whether native or acetylated, did not form films with desirable characteristics. The acetylation decreased the tensile strength and increased the elongation of the films. The acetylated starch-based films had a lower decomposition temperature and higher thermal stability than native starch films. Acetylated starches films exhibited more rapid degradation as compared with the native starches films. Copyright © 2016 Elsevier Ltd. All rights reserved.
Preparation and characterization of porous Mg-Zn-Ca alloy by space holder technique
NASA Astrophysics Data System (ADS)
Annur, D.; Lestari, Franciska P.; Erryani, A.; Sijabat, Fernando A.; G. P. Astawa, I. N.; Kartika, I.
2018-04-01
Magnesium had been recently researched as a future biodegradable implant material. In the recent study, porous Mg-Zn-Ca alloys were developed using space holder technique in powder metallurgy process. Carbamide (10-20%wt) was added into Mg-6Zn-1Ca (in wt%) alloy system as a space holder to create porous structure material. Sintering process was done in a tube furnace under Argon atmosphere in 610 °C for 5 hours. Porous structure of the resulted alloy was examined using Scanning Electron Microscope (SEM), while the phase formation was characterized by X-ray diffraction analysis (XRD). Further, mechanical properties of porous Mg-Zn-Ca alloy was examined through compression testing. Microstructure characterization showed higher content of Carbamide in the alloy would give different type of pores. However, compression test showed that mechanical properties of Mg-Zn-Ca alloy would decrease significantly when higher content of carbamide was added.
NASA Astrophysics Data System (ADS)
Bhat, M. R.; Binoy, M. P.; Surya, N. M.; Murthy, C. R. L.; Engelbart, R. W.
2012-05-01
In this work, an attempt is made to induce porosity of varied levels in carbon fiber reinforced epoxy based polymer composite laminates fabricated using prepregs by varying the fabrication parameters such as applied vacuum, autoclave pressure and curing temperature. Different NDE tools have been utilized to evaluate the porosity content and correlate with measurable parameters of different NDE techniques. Primarily, ultrasonic imaging and real time digital X-ray imaging have been tried to obtain a measurable parameter which can represent or reflect the amount of porosity contained in the composite laminate. Also, effect of varied porosity content on mechanical properties of the CFRP composite materials is investigated through a series of experimental investigations. The outcome of the experimental approach has yielded interesting and encouraging trend as a first step towards developing an NDE tool for quantification of effect of varied porosity in the polymer composite materials.
NASA Astrophysics Data System (ADS)
Guan, J. J.; Wang, H. Q.; Qin, L. Z.; Liao, B.; Liang, H.; Li, B.
2017-04-01
The CrCN coatings were fabricated onto Si (1 1 1) wafers and SUS304 stainless steel plates using filtered cathodic vacuum arc deposition (FCVAD) technique under different flow ratios of N2/C2H2 gas mixture. The morphology, crystalline structure and chemical composition of the coatings were characterized. It was found that the grain size reduce with increasing carbon content, which makes the CrCN coatings refined and smooth. The quasi-one-dimensional carbolite phase was also found in CrN host lattice with C2H2 content ranging from 5% to 20%, and it will be evolved into amorphous carbon and amorphous CNx phases as C2H2 content exceeds 20%. Moreover, we examined the mechanical and tribological properties of the CrCN coatings, and the experimental results confirmed that the friction coefficient of the coatings descend to the lowest value as 0.39 with 30% C2H2 content, due to the graphite (sp2 Csbnd C) phase embed in CrN host lattice; while the chromium carbon (Cr3C2) and diamond (sp3 Csbnd C) phases may give rise to the increase of the coating hardness with the highest value at 23.97 GPa under 20% C2H2 content.
Zhang, Kai; Wu, Zhengdan; Tang, Daobin; Luo, Kai; Lu, Huixiang; Liu, Yingying; Dong, Jie; Wang, Xin; Lv, Changwen; Wang, Jichun; Lu, Kun
2017-01-01
The starch properties of the storage root (SR) affect the quality of sweet potato (Ipomoea batatas (L.) Lam.). Although numerous studies have analyzed the accumulation and properties of starch in sweet potato SRs, the transcriptomic variation associated with starch properties in SR has not been quantified. In this study, we measured the starch and sugar contents and analyzed the transcriptome profiles of SRs harvested from sweet potatoes with high, medium, and extremely low starch contents, at five developmental stages [65, 80, 95, 110, and 125 days after transplanting (DAP)]. We found that differences in both water content and starch accumulation in the dry matter affect the starch content of SRs in different sweet potato genotypes. Based on transcriptome sequencing data, we assembled 112336 unigenes, and identified several differentially expressed genes (DEGs) involved in starch and sucrose metabolism, and revealed the transcriptional regulatory network controlling starch and sucrose metabolism in sweet potato SRs. Correlation analysis between expression patterns and starch and sugar contents suggested that the sugar–starch conversion steps catalyzed by sucrose synthase (SuSy) and UDP-glucose pyrophosphorylase (UGPase) may be essential for starch accumulation in the dry matter of SRs, and IbβFRUCT2, a vacuolar acid invertase, might also be a key regulator of starch content in the SRs. Our results provide valuable resources for future investigations aimed at deciphering the molecular mechanisms determining the starch properties of sweet potato SRs. PMID:28690616
NASA Astrophysics Data System (ADS)
Qaban, Abdullah; Naher, Sumsun
2018-05-01
High-strength low-alloy steel (HSLA) has been widely used in many applications involving automobiles, aerospace, construction, and oil and gas pipelines due to their enhanced mechanical and chemical properties. One of the most critical elements used to improve these properties is Aluminium. This work will explore the effect of Al content on the corrosion behaviour of hot rolled high-strength low-alloy steel as a function of grain size. The method of investigation employed was weight loss technique. It was obvious that the increase in Al content enhanced corrosion resistance through refinement of grain size obtained through AlN precipitation by pinning grain boundaries and hindering their growth during solidification which was found to be beneficial in reducing corrosion rate.
Dynamic mechanical analysis of carbon nanotube-reinforced nanocomposites.
Her, Shiuh-Chuan; Lin, Kuan-Yu
2017-06-16
To predict the mechanical properties of multiwalled carbon nanotube (MWCNT)-reinforced polymers, it is necessary to understand the role of the nanotube-polymer interface with regard to load transfer and the formation of the interphase region. The main objective of this study was to explore and attempt to clarify the reinforcement mechanisms of MWCNTs in epoxy matrix. Nanocomposites were fabricated by adding different amounts of MWCNTs to epoxy resin. Tensile test and dynamic mechanical analysis (DMA) were conducted to investigate the effect of MWCNT contents on the mechanical properties and thermal stability of nanocomposites. Compared with the neat epoxy, nanocomposite reinforced with 1 wt% of MWCNTs exhibited an increase of 152% and 54% in Young's modulus and tensile strength, respectively. Dynamic mechanical analysis demonstrates that both the storage modulus and glass transition temperature tend to increase with the addition of MWCNTs. Scanning electron microscopy (SEM) observations reveal that uniform dispersion and strong interfacial adhesion between the MWCNTs and epoxy are achieved, resulting in the improvement of mechanical properties and thermal stability as compared with neat epoxy.
Ch’ng, Shiau Ying; Andriyana, Andri; Tee, Yun Lu; Verron, Erwan
2015-01-01
The effect of carbon black on the mechanical properties of elastomers is of great interest, because the filler is one of principal ingredients for the manufacturing of rubber products. While fillers can be used to enhance the properties of elastomers, including stress-free swelling resistance in solvent, it is widely known that the introduction of fillers yields significant inelastic responses of elastomers under cyclic mechanical loading, such as stress-softening, hysteresis and permanent set. When a filled elastomer is under mechanical deformation, the filler acts as a strain amplifier in the rubber matrix. Since the matrix local strain has a profound effect on the material’s ability to absorb solvent, the study of the effect of carbon black content on the swelling characteristics of elastomeric components exposed to solvent in the presence of mechanical deformation is a prerequisite for durability analysis. The aim of this study is to investigate the effect of carbon black content on the swelling of elastomers in solvent in the presence of static mechanical strains: simple extension and simple torsion. Three different types of elastomers are considered: unfilled, filled with 33 phr (parts per hundred) and 66 phr of carbon black. The peculiar role of carbon black on the swelling characteristics of elastomers in solvent in the presence of mechanical strain is explored. PMID:28787977
Effect of nickel addition on mechanical properties of powder forged Fe-Cu-C
NASA Astrophysics Data System (ADS)
Archana Barla, Nikki
2018-03-01
Fe-Cu-C system is very popular in P/M industry for its good compressibility and dimensional stability with high strength. Fe-Cu-C is a structural material and is used where high strength with high hardness is required. The composition of powder metallurgy steel plays a vital role in the microstructure and physical properties of the sintered component. Fe-2Cu-0.7C-Ni alloy with varying nickel composition (0%, 0.5%, 1.0%, 1.5%, 2.0%, and 3.0%) wt. % was prepared by powder metallurgy (P/M) sinter forging process. The present work discuss the effect of varying nickel content on microstructure and mechanical properties.
NASA Astrophysics Data System (ADS)
Park, Sang-Gyu; Kim, Min-Chul; Lee, Bong-Sang; Wee, Dang-Moon
2010-12-01
SA508 Gr.4N Ni-Mo-Cr low alloy steel has improved fracture toughness and strength compared to commercial low alloy steels such as SA508 Gr.3 Mn-Mo-Ni low alloy steel, which has less than 1% Ni. Higher strength and fracture toughness of low alloy steels can be achieved by increasing the Ni and Cr contents. In this study, the effects of the alloying elements of Ni and Cr on the microstructural characteristics and mechanical properties of SA508 Gr.4N Ni-Mo-Cr low alloy steel are evaluated. Changes in the stable phases of SA508 Gr.4N low alloy steel with these alloying elements were evaluated using thermodynamic calculation software. These values were then compared with the observed microstructural results. Additionally, tensile tests and Charpy impact test were carried out to evaluate the mechanical properties. The thermodynamic calculations show that Ni mainly affects the change of the matrix phase of γ and α rather than the carbide phase. Contrary to the Ni effect, Cr and Mo primarily affect the precipitation behavior of the carbide phases of Cr 23C 6, Cr 7C 3 and Mo 2C. In the microscopic observations, the lath martensitic structure becomes finer as the Ni content increases without affecting the carbides. When the Cr content decreases, the Cr carbide becomes unstable and carbide coarsening occurs. Carbide Mo 2C in the form of fine needles were observed in the high-Mo alloy. Greater strength was obtained after additions of Ni and Mo and the transition properties were improved as the Ni and Cr contents increased. These results were correlated with the thermodynamic calculation results.
Zhu, Jian; Wang, Ping; Lin, Yan; Lei, Ming-jing; Chen, Yang
2016-02-15
In order to understand the difference of in situ immobilization effect and mechanism of Cd contamination in soil using diatomite produced from different areas, the test was conducted using diatomite produced from Yunnan Tengchong, Jilin Linjiang, Zhejiang Shengzhou and Henan Xinyang of China as modifiers to immobilize cadmium contamination in simulated soil. The results indicated that the diatomite from all the four producing areas could effectively immobilize available Cd in soil, decreasing the available Cd content in soil by 27.7%, 28.5%, 30.1% and 57.2%, respectively when the adding concentration was 30 g x kg(-1). Their ability for immobilizing available Cd in soil followed the sequence of Henan Xinyang > Zhejiang Shengzhou > Jilin Linjiang > Yunnan Tengchong. It was also found that the physical and chemical properties of diatomite played a main role in soil cadmium immobilization, lower bulk density, larger specific surface area, more micro pores and wider distribution range of aperture were more favorable for available Cd immobilization. The results also showed that, the diatomite could control Cd contamination by changing soil physical and chemical properties, among these properties, pH and organic matter content were the key factors, increasing soil pH value and organic matter content was favorable for available cadmium immobilization, while the soil water content had little effect on available cadmium immobilization. The control of soil cadmium contamination by using diatomite to change cation exchange capacity was limited by time in some degree. The diatomite produced from Henan Xinyang, Zhejiang Shengzhou and Yunnan Tengchong increased the soil pH value and organic matter content, and was favorable for available Cd immobilization, while the diatomite from Jilin Linjiang showed converse effect.
Pereira, Gabriel K R; Guilardi, Luís F; Dapieve, Kiara S; Kleverlaan, Cornelis J; Rippe, Marília P; Valandro, Luiz Felipe
2018-05-23
This study characterized the mechanical properties (static and under fatigue), the crystalline microstructure (monoclinic - m, tetragonal - t and cubic - c phase contents) and the surface topography of three yttrium-stabilized zirconia (YSZ) materials with different translucent properties, before and after aging in an autoclave (low temperature degradation). Disc-shaped specimens were produced from second generation (Katana ML/HT - high-translucent) and third generations (Katana STML - super-translucent and UTML - ultra-translucent) YSZ ceramics (Kuraray Noritake Dental Inc.), following ISO 6872-2015 guidelines for biaxial flexural strength testing (final dimensions: 15 mm in diameter and 1.2 ± 0.2 mm in thickness), and then subjected to the respective tests and analyses. ML was mainly composed of tetragonal crystals, while STML and UTML presented cubic content. Aging increased the monoclinic content for ML and did not affect STML and UTML. Topographical analysis highlights different grain sizes on the ceramic surface (UTML > STML > ML) and aging had no effect on this outcome. Weibull analysis showed the highest characteristic strength for ML both before and after aging, and statistically similar Weibull moduli for all groups. ML material also obtained the highest survival rates (ML > STML > UTML) for both fatigue strength and number of cycles to failure. All fractures originated from surface defects on the tensile side. Third generation zirconia (Katana STML and UTML) are fully stabilized materials (with tetragonal and cubic crystals), being totally inert to the autoclave aging, and presented lower mechanical properties than the second-generation zirconia (Katana ML - metastable zirconia). Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Syahrial, Anne Zulfia; Puspita, Lalita Padma; Dhaneswara, Donanta; Utomo, Budi Wahyu
2018-05-01
The effects of Sr addition on microstructure and mechanical properties of ADC12/nano Al2O3 composite has been studied. In this research ADC12 as a matrix was added by 0.3 vf% nano Al2O3 as a reinforcement and Al-5Sr varied from 0.00 wt% to 0.05 wt% to modify the eutectic structure of the matrix. The composites were further characterized both microstructural analysis and mechanical properties. The results showed that the intermetallic phases including β-Al5FeSi and Al2Cu were detected using scanning electron microscope and α-Al(Mn,Fe)Si or α-cubic phases was possible to form due to high content of Mn in the composites. The Mg2Si primary, binary, and ternary phases were detected in this composites by metallographic examination. Then, MgAl2O4 (spinnel) were found by XRD analysis. The higher of Sr content from 0,00 to 0.02 the lower SDAS formation from 15 µm to 14 µm as well as porosity content reduced from 4% to 3%. The ultimate tensile strength increased from 115 MPa to 137 MPa as well as in impact toughness from 0.016 J/mm2 to 0.025 J/mm2. The highest hardness and the lowest wear rate were obtained with the addition of 0.05 wt% Sr with 46 HRB and 1.04 10-5 mm3/m respectively due to the changed of chinese script became refined fibrous type.
NASA Astrophysics Data System (ADS)
Hosoda, Masaki; Wang, Jing; Tsikudi, Diane; Nadkarni, Seemantini
2016-02-01
Acute myocardial infarction is frequently caused by the rupture of coronary plaques with severely compromised viscoelastic properties. We have developed a new optical technology termed intravascular laser speckle imaging (ILSI) that evaluates plaque viscoelastic properties, by measuring the time scale (time constant, τ) of temporally evolving laser speckle fluctuations. To enable coronary evaluation in vivo, an optical ILSI catheter has been developed that accomplishes omni-directional illumination and viewing of the entire coronary circumference without the need for mechanical rotation. Here, we describe the capability of ILSI for evaluating human coronary atherosclerosis in cadaveric hearts. ILSI was conducted in conjunction with optical coherence tomography (OCT) imaging in five human cadaveric hearts. The left coronary artery (LCA), left anterior descending (LAD), left circumflex artery (LCx), and right coronary artery (RCA) segments were resected and secured on custom-developed coronary holders to enable accurate co-registration between ILSI, OCT, and histopathology. Speckle time constants, τ, calculated from each ILSI section were compared with lipid and collagen content measured from quantitative Histopathological analysis of the corresponding Oil Red O and Picrosirius Red stained sections. Because the presence of low viscosity lipid elicits rapid speckle fluctuations, we observed an inverse correlation between τ measured by ILSI and lipid content (R= -0.64, p< 0.05). In contrast, the higher viscoelastic modulus of fibrous regions resulted in a positive correlation between τ and collagen content (R= 0.54, p< 0.05). These results demonstrate the feasibility of conducting ILSI evaluation of arterial mechanical properties using a miniaturized omni-directional catheter.
Matysik, Piotr; Jóźwiak, Stanisław; Czujko, Tomasz
2015-01-01
Fe-Al intermetallic alloys with aluminum content over 60 at% are in the area of the phase equilibrium diagram that is considerably less investigated in comparison to the high-symmetry Fe3Al and FeAl phases. Ambiguous crystallographic information and incoherent data referring to the phase equilibrium diagrams placed in a high-aluminum range have caused confusions and misinformation. Nowadays unequivocal material properties description of FeAl2, Fe2Al5 and FeAl3 intermetallic alloys is still incomplete. In this paper, the influence of aluminum content and processing parameters on phase composition is presented. The occurrence of low-symmetry FeAl2, Fe2Al5 and FeAl3 structures determined by chemical composition and phase transformations was defined by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) examinations. These results served to verify diffraction investigations (XRD) and to explain the mechanical properties of cast materials such as: hardness, Young’s modulus and fracture toughness evaluated using the nano-indentation technique. PMID:28787979
Lecithin, gelatin and hydrolyzed collagen orally disintegrating films: functional properties.
Borges, J G; Silva, A G; Cervi-Bitencourt, C M; Vanin, F M; Carvalho, R A
2016-05-01
Orally disintegrating films (ODFs) can transport natural active compounds such as ethanol extract of propolis (EEP). This paper aimed to investigate the effect of lecithin on different gelatin and hydrolyzed collagen (HC) polymeric matrices with addition of EEP. ODFs were prepared by casting technique and were characterized (color parameters, water content, mechanical properties, microstructure, disintegration time (DT), infrared spectroscopy (FTIR), contact angle (CA), swelling degree and total phenolic content). The mechanical properties were influenced by HC. The microstructure demonstrated increased porosity and roughness in films with EEP, and the addition of lecithin resulted in an increase in the number of pores. Lecithin-gelatin and lecithin-EEP-gelatin interactions were observed by FTIR. The addition of HC and EEP reduced the DT and CA, and HC and lecithin reduced the swelling capacity. However, the swelling capacity was not affected by presence of EEP. The addition of lecithin to gelatin and HC ODFs may improve the incorporation and the oral transport of active compounds such as EEP. Copyright © 2016 Elsevier B.V. All rights reserved.
Liu, Zengshe; Erhan, Sevim Z; Akin, Danny E; Barton, Franklin E
2006-03-22
In recent years there has been considerable interest in using natural plant fibers as reinforcements for plastics. The motivation includes cost, performance enhancement, weight reduction, and environment concerns. High performance flax fiber could potentially substitute for glass or carbon fibers as reinforcements for plastics. This study reports the "green" composites obtained from a mixture of epoxidized soybean oil and epoxy resin, 1,1,1-tris(p-hydroxyphenyl)ethane triglycidyl ether (THPE-GE), reinforced with flax fiber. The compression molding method is used for making the composites. Curing agents triethylenetetramine and diethylenetriamine provide better physical properties of the composites than Jeffamine agents D-230 and EDR-148. Both the flexural modulus and the tensile modulus of the composites increase as the amount of THPE-GE increases. The flexural modulus increased at a fiber content of <10 wt %, but there is a decrease beyond 10 wt %. The tensile modulus increases with fiber content until a maximum at 13.5 wt %, and then it decreases. The flax fiber length affected the mechanical properties of the composites: the longer the fiber length, the better are the mechanical properties observed.
da Silva, Gabriela T; Voss, Guilherme T; Kaplum, Vanessa; Nakamura, Celso V; Wilhelm, Ethel A; Luchese, Cristiane; Fajardo, André R
2017-03-01
Chondroitin sulfate (ChS), a sulfated glycosaminoglycan, poly(vinyl alcohol) (PVA) and bovine bone powder (BBP) were blended to form a novel eco-friendly biocomposite through cyclic freeze-thawing under mild conditions. The systematic investigation reveals that the content of BBP has a remarkable effect on the pore size, porosity, mechanical and liquid uptake properties and biodegradability. At 10wt.% BBP the biocomposite exhibited enhanced mechanical properties and biodegradability rate as compared to the pristine sample. Further, different properties of the biocomposite can be tailored according to the content of BBP. In vitro assays showed that ChS/PVA-BBP does not exert cytotoxicity against healthy cells. In vivo and ex vivo experiments revealed that ChS/PVA-BBP biocomposites are biocompatibility materials without exert pro-inflammatory responses. The biocomposite was completely biodegraded and bioresorbed after 15days of treatment. Taken together, BBP is a low-cost source of hydroxyapatite and collagen, which are insurance. All these results suggest that the biocomposite designed in this study is a promising biomaterial for potential skin tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.
Drying of Pigment-Cellulose Nanofibril Substrates
Timofeev, Oleg; Torvinen, Katariina; Sievänen, Jenni; Kaljunen, Timo; Kouko, Jarmo; Ketoja, Jukka A.
2014-01-01
A new substrate containing cellulose nanofibrils and inorganic pigment particles has been developed for printed electronics applications. The studied composite structure contains 80% fillers and is mechanically stable and flexible. Before drying, the solids content can be as low as 20% due to the high water binding capacity of the cellulose nanofibrils. We have studied several drying methods and their effects on the substrate properties. The aim is to achieve a tight, smooth surface keeping the drying efficiency simultaneously at a high level. The methods studied include: (1) drying on a hot metal surface; (2) air impingement drying; and (3) hot pressing. Somewhat surprisingly, drying rates measured for the pigment-cellulose nanofibril substrates were quite similar to those for the reference board sheets. Very high dewatering rates were observed for the hot pressing at high moisture contents. The drying method had significant effects on the final substrate properties, especially on short-range surface smoothness. The best smoothness was obtained with a combination of impingement and contact drying. The mechanical properties of the sheets were also affected by the drying method and associated temperature. PMID:28788220
Properties of amalgams made from lathe-cut, high Cu amalgam alloys.
Espevik, S
1980-01-01
Two alloys for dental amalgams made from lathe-cut powder with high Cu content have been developed. The alloys have been characterized with respect to physical properties and microstructure. The strongest amalgam exhibited minimal dimensional changes during setting and had low flow and creep values. It had the highest Cu content of the two amalgams investigated and no gamma 2 phase. The epsilon and eta' phases may dispersion-strenthen the amalgam which in compressive strength was comparable to the strongest amalgams available. A new mechanism for gamma 2 disappearance is suggested where Cu replaces Hg directly in the gamma 2 phase thus forming the eta' phase.
Yamashita, Takako; Tanaka, Yuji; Yagoshi, Masayasu; Ishida, Kiyohito
2016-01-01
In multiphase steels, control of the carbon contents in the respective phases is the most important factor in alloy design for achieving high strength and high ductility. However, it is unusually difficult to determine the carbon contents in multiphase structures with high accuracy by electron probe microanalysis (EPMA) due to the unavoidable effect of hydrocarbon contamination during measurements. We have investigated new methods for suppressing hydrocarbon contamination during field emission (FE) EPMA measurements as well as a conventional liquid nitrogen trap. Plasma cleaner inside the specimen chamber results in a improvement of carbon-content determination by point analysis, increasing precision tenfold from the previous 0.1 mass%C to 0.01 mass%C. Stage heating at about 100 °C dramatically suppresses contamination growth during continuous point measurement and mapping. By the combination of above two techniques, we successfully visualized the two-dimensional carbon distribution in a dual-phase steel. It was also noted that the carbon concentrations at the ferrite/martensite interfaces were not the same across all interfaces, and local variation was observed. The developed technique is expected to be a powerful tool for understanding the mechanisms of mechanical properties and microstructural evolution, thereby contributing to the design of new steel products with superior properties. PMID:27431281
Characterization of Low-Melting-Point Sn-Bi-In Lead-Free Solders
NASA Astrophysics Data System (ADS)
Li, Qin; Ma, Ninshu; Lei, YongPing; Lin, Jian; Fu, HanGuang; Gu, Jian
2016-11-01
Development of lead-free solders with low melting temperature is important for substitution of Pb-based solders to reduce direct risks to human health and the environment. In the present work, Sn-Bi-In solders were studied for different ratios of Bi and Sn to obtain solders with low melting temperature. The microstructure, thermal properties, wettability, mechanical properties, and reliability of joints with Cu have been investigated. The results show that the microstructures of the Sn-Bi-In solders were composed of β-Sn, Bi, and InBi phases. The intermetallic compound (IMC) layer was mainly composed of Cu6Sn5, and its thickness increased slightly as the Bi content was increased. The melting temperature of the solders was around 100°C to 104°C. However, when the Sn content exceeded 50 wt.%, the melting range became larger and the wettability became worse. The tensile strength of the solder alloys and solder joints declined with increasing Bi content. Two fracture modes (IMC layer fracture and solder/IMC mixed fracture) were found in solder joints. The fracture mechanism of solder joints was brittle fracture. In addition, cleavage steps on the fracture surface and coarse grains in the fracture structure were comparatively apparent for higher Bi content, resulting in decreased elongation for both solder alloys and solder joints.
Compositional origin of unusual β-relaxation properties in La-Ni-Al metallic glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Z. G.; Li, Y. Z.; Wang, Z.
2014-08-28
The β-relaxation of metallic glasses (MGs) bears nontrivial connections to their microscopic and macroscopic properties. In an effort to elucidate the mechanism of the β-relaxation, we studied by dynamical mechanical measurements the change of its properties on varying the composition of La{sub 60}Ni{sub 15}Al{sub 25} in various ways. The properties of the β-relaxation turn out to be very sensitive to the composition. It is found that the isochronal loss peak temperature of β-relaxation, T{sub β,peak}, is effectively determined by the total (La + Ni) content. When Cu is added into the alloy to replace either La, Ni, or Al, themore » T{sub β,peak} increases with decrease of the (La + Ni) content. The trend is in accordance with data of binary and ternary MGs formed from La, Ni, Al, and Cu. Binary La-Ni MGs have pronounced β-relaxation loss peaks, well separated from the α-relaxation. In contrast, the β-relaxation is not resolved in La-Al and La-Cu MGs, showing up as an excess wing. For the ternary La-Ni-Al MGs, increase of La or Ni content is crucial to lower the T{sub β,peak}. Keeping the Al content fixed, increase of La content lowers the T{sub β,peak} further, indicating the more important role La plays in lowering T{sub β,peak} than Ni. The observed effects on changing the composition of La{sub 60}Ni{sub 15}Al{sub 25} lead to the conclusion that the properties of the β-relaxation are mainly determined by the interaction between the largest solvent element, La, and the smallest element, Ni. From our data, it is further deduced that La and Ni have high mobility in the MGs, and this explains why the β-relaxation in this La-based MGs is prominent and well resolved from the α-relaxation as opposed to Pd- and Zr-based MGs where the solvent and largest atoms, Pd and Zr, are the least mobile.« less
Beyond clay: Towards an improved set of variables for predicting soil organic matter content
Rasmussen, Craig; Heckman, Katherine; Wieder, William R.; Keiluweit, Marco; Lawrence, Corey R.; Berhe, Asmeret Asefaw; Blankinship, Joseph C.; Crow, Susan E.; Druhan, Jennifer; Hicks Pries, Caitlin E.; Marin-Spiotta, Erika; Plante, Alain F.; Schadel, Christina; Schmiel, Joshua P.; Sierra, Carlos A.; Thompson, Aaron; Wagai, Rota
2018-01-01
Improved quantification of the factors controlling soil organic matter (SOM) stabilization at continental to global scales is needed to inform projections of the largest actively cycling terrestrial carbon pool on Earth, and its response to environmental change. Biogeochemical models rely almost exclusively on clay content to modify rates of SOM turnover and fluxes of climate-active CO2 to the atmosphere. Emerging conceptual understanding, however, suggests other soil physicochemical properties may predict SOM stabilization better than clay content. We addressed this discrepancy by synthesizing data from over 5,500 soil profiles spanning continental scale environmental gradients. Here, we demonstrate that other physicochemical parameters are much stronger predictors of SOM content, with clay content having relatively little explanatory power. We show that exchangeable calcium strongly predicted SOM content in water-limited, alkaline soils, whereas with increasing moisture availability and acidity, iron- and aluminum-oxyhydroxides emerged as better predictors, demonstrating that the relative importance of SOM stabilization mechanisms scales with climate and acidity. These results highlight the urgent need to modify biogeochemical models to better reflect the role of soil physicochemical properties in SOM cycling.
Mechanical properties and microstructure analysis of fly ash geopolymeric recycled concrete.
Shi, X S; Collins, F G; Zhao, X L; Wang, Q Y
2012-10-30
Six mixtures with different recycled aggregate (RA) replacement ratios of 0%, 50% and 100% were designed to manufacture recycled aggregate concrete (RAC) and alkali-activated fly ash geopolymeric recycled concrete (GRC). The physical and mechanical properties were investigated indicating different performances from each other. Optical microscopy under transmitted light and scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX) were carried out in this study in order to identify the mechanism underlying the effects of the geopolymer and RA on concrete properties. The features of aggregates, paste and interfacial transition zone (ITZ) were compared and discussed. Experimental results indicate that using alkali-activated fly ash geopolymer as replacement of ordinary Portland cement (OPC) effectively improved the compressive strength. With increasing of RA contents in both RAC and GRC, the compressive strength decreased gradually. The microstructure analysis shows that, on one hand, the presence of RA weakens the strength of the aggregates and the structure of ITZs; on the other hand, due to the alkali-activated fly ash in geopolymer concrete, the contents of Portlandite (Ca(OH)(2)) and voids were reduced, as well as improved the matrix homogeneity. The microstructure of GRC was changed by different reaction products, such as aluminosilicate gel. Copyright © 2012 Elsevier B.V. All rights reserved.
Revati, R; Abdul Majid, M S; Ridzuan, M J M; Normahira, M; Mohd Nasir, N F; Rahman Y, M N; Gibson, A G
2017-06-01
The mechanical, thermal, and morphological properties of a 3D porous Pennisetum purpureum (PP)/polylactic acid (PLA) based scaffold were investigated. In this study, a scaffold containing P. purpureum and PLA was produced using the solvent casting and particulate leaching method. P. purpureum fibre, also locally known as Napier grass, is composed of 46% cellulose, 34% hemicellulose, and 20% lignin. PLA composites with various P. purpureum contents (10%, 20%, and 30%) were prepared and subsequently characterised. The morphologies, structures and thermal behaviours of the prepared composite scaffolds were characterised using field-emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The morphology was studied using FESEM; the scaffold possessed 70-200μm-sized pores with a high level of interconnectivity. The moisture content and mechanical properties of the developed porous scaffolds were further characterised. The P. purpureum/PLA scaffold had a greater porosity factor (99%) and compression modulus (5.25MPa) than those of the pure PLA scaffold (1.73MPa). From the results, it can be concluded that the properties of the highly porous P. purpureum/PLA scaffold developed in this study can be controlled and optimised. This can be used to facilitate the construction of implantable tissue-engineered cartilage. Copyright © 2017 Elsevier B.V. All rights reserved.
Dynamic mechanical analysis of waste tyre rubber filled brake friction composite materials
NASA Astrophysics Data System (ADS)
Rathi, Mukesh Kumar; Singh, Tej; Chauhan, Ranchan
2018-05-01
In this research work, the dynamic mechanical properties of waste tyre rubber filled friction composites were studied. Four friction composites with varying amount of waste rubber (0, 4, 8, 12 wt.%) and barium sulphate (38, 42, 46, 50 wt.%) were designed and fabricated as per industrial norms. Dynamic mechanical analysis has been carried out to characterize the storage modulus, loss modulus and damping factor of the fabricated friction composite. Experimental results indicated that storage modulus decreases with increasing waste rubber content up to particular loading (4 wt.%), and after that it increases with further loading. The loss modulus of the composites increases steadily with increasing waste rubber content whereas, damping factor remain maximum for 12 wt.% waste rubber filled friction composites.
Reinforcement of SBR/waste rubber powder vulcanizate with in situ generated zinc dimethacrylate
NASA Astrophysics Data System (ADS)
Wang, X. P.; Cheng, B. K.; Zhang, X.; Jia, D. M.
2016-07-01
Methyl acrylic acid/zinc oxide (MAA/ZnO) was introduced to modify styrene- butadiene rubber/waste rubber powder (SBR/WRP) composites by blending. The enhanced mechanical properties and processing ability were presumably originated from improved compatibility and interfacial interaction between WRP and the SBR matrix by the in situ polymerization of zinc dimethacrylate (ZDMA). A refined interface of the modified SBR/WRP composite was observed by scanning electron microscopy. The formation of ZDMA significantly increased the ionic bond content in the vulcanizate, resulting in exceptional mechanical performance. The comprehensive mechanical properties including tensile strength, tear strength and dynamic heat-building performance reached optimum values with 16 phr MAA.
NASA Astrophysics Data System (ADS)
Soltani, Z.; Ziaie, F.; Ghaffari, M.; Afarideh, H.; Ehsani, M.
2013-02-01
In this work the nano-composite samples were prepared using the LDPE filled with different weight percentages of hydroxyapatite powder which was synthesized via hydrolysis method. The samples were subjected to irradiation under 10 MeV electron beam in 75-250 kGy doses. Mechanical and thermal properties as well as the morphology of the nano-composite samples were investigated and compared. The hot-set and swelling tests confirmed the radiation crosslinking induced in the polymer matrix especially between the matrix and reinforcement phase. The result indicates that the mechanical and thermal parameters are strongly dependent on the hydroxyapatite content in comparison to radiation.
Thermoplastic coating of carbon fibers
NASA Technical Reports Server (NTRS)
Edie, D. D.; Lickfield, G. C.
1991-01-01
Using a continuous powder coating process, more than 1500 meters of T 300/LaRC-TPI prepreg were produced. Two different types of heating sections in the coating line, namely electrical resistance and convection heating, were utilized. These prepregs were used to fabricate unidirectional composites. During composite fabrication the cure time of the consolidation was varied, and composites samples were produced with and without vacuum. Under these specimens, the effects of the different heating sections and of the variation of the consolidation parameters on mechanical properties and void content were investigated. The void fractions of the various composites were determined from density measurements, and the mechanical properties were measured by tensile testing, short beam shear testing and dynamic mechanical analysis.
NASA Astrophysics Data System (ADS)
Belgamwar, Sachin U.; Sharma, N. N.
2018-04-01
Multi-walled Carbon nanotubes–copper (MWCNT/Cu) composite powders with variable MWCNT content were synthesized by modified electro-co-deposition method. The electro-co-deposited MWCNT/Cu powders were consolidated by conventional compaction and sintering process. The consolidated products were then hot rolled and cold drawn to fine wires. The MWCNT/Cu composite wire samples were characterized for electrical and mechanical properties. We have been able to achieve an increase of around 8% in electrical conductivity of the form wires repeatedly. It has been observed that there was gradual improvement in the properties with reinforcement of MWCNT in the copper matrix. The betterment of electrical property has been achieved with simultaneous improvement in mechanical properties of the wire. The yield strength of MWCNT/Cu composite wire was found to be four times and the tensile strength two times greater than that of pure copper. The improved properties are attributed to the proper distribution of MWCNTs in the copper matrix and excellent interfacial bonding between MWCNT and composite copper fabricated by the modified method.
NASA Astrophysics Data System (ADS)
García-Junceda, A.; Rincón, M.; Torralba, J. M.
2018-01-01
The feasibility of processing duplex stainless steels with promising properties using a powder metallurgical route, including the consolidation by field-assisted hot pressing, is assessed in this investigation. The influence of the particle size and morphology of the raw austenitic and ferritic powders on the final microstructure and properties is also evaluated for an austenitic content of 60 wt pct. In addition, the properties of a new microconstituent generated between the initial constituents are analyzed. The maximum sintered density (98.9 pct) and the best mechanical behavior, in terms of elastic modulus, nanohardness, yield strength, ultimate tensile strength, and ductility, are reached by the duplex stainless steel processed with austenitic and ferritic gas atomized stainless steel powders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fei, X.; He, W.S.; Havenhill, A.
1994-12-31
Superconducting Tl{sub 2}Ba{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10} (Tl2223) was ground to powder. Mixture with silver powder (0--80% weight) and press to desired shape. After proper annealing, one can get good silver-content Tl2223 bulk superconductor. It is time-stable and has good superconducting property as same as pure Tl2223. It also has better mechanical property and far better thermal cycle property than pure Tl2223.
NASA Astrophysics Data System (ADS)
Liu, Lidong; Duan, Yuping; Ma, Lixin; Liu, Shunhua; Yu, Zhen
2010-11-01
To prevent serious electromagnetic interference, a single-layer wave-absorbing coating employing complex absorbents composed of carbonyl-iron powder (CIP) and carbon black (CB) with epoxy resin as matrix was prepared. The morphologies of CIP and CB were characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM), respectively. The electromagnetic parameters of CIP and CB were measured in the frequency range of 2-18 GHz by transmission/reflection technology, and the electromagnetic loss mechanisms of the two particles were discussed, respectively. The microwave absorption properties of the coatings were investigated by measuring reflection loss (RL) using arch method. The effects of CIP ratio, CB content and thickness on the microwave absorption properties were discussed, respectively. The results showed that the higher thickness, CIP or CB content could make the absorption band shift towards the lower frequency range. Significantly, the wave-absorbing coating could be applied in different frequency ranges according to actual demand by controlling the content of CIP or CB in composites.
Cao, Xiaodong; Xu, Chuanhui; Liu, Yuhong; Chen, Yukun
2013-01-30
A series of carboxylated styrene-butadiene rubber (XSBR)/cellulose nanocrystals (CNs) latex composites were successfully prepared. The vulcanization process, morphology, dynamic viscoelastic behavior, dynamic mechanical property, thermal and mechanical performance of the XSBR/CNs composites were investigated in detail. The results revealed that CNs were dispersed uniformly in the XSBR matrix and formed a strong filler-filler network. The dynamic mechanical analysis (DMA) showed that the glass transition temperature (T(g)) of XSBR matrix was shifted from 48.45 to 50.64 °C with 3 phr CNs, but decreased from 50.64 to 46.28 °C when further increasing CNs content up to 15 phr. The composites exhibited a significant enhancement in tensile strength (from 16.9 to 24.1 MPa) and tear strength (from 43.5 to 65.2 MPa) with loading CNs from 0 to 15 phr. In addition, the thermo-gravimetric analysis (TGA) showed that the temperature at 5% weight loss of the XSBR/CNs composites decreased slightly with an increase of the CNs content. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
1972-01-01
A compilation on the technical uses of various metallurgical processes is presented. Descriptions are given of the mechanical properties of various alloys, ranging from TAZ-813 at 2200 F to investment cast alloy 718 at -320 F. Methods are also described for analyzing some of the constituents of various alloys from optical properties of carbide precipitates in Rene 41 to X-ray spectrographic analysis of the manganese content of high chromium steels.
Laboratory Characterization of SAM-35 Concrete
2006-09-01
procedures given in American Society for Testing and Materials (ASTM) D 2216 (ASTM 2002e). Based on the appropriate values of posttest water content, wet...composition properties of the material. All of the mechanical property tests were conducted quasi -statically with axial strain rates on the order...nondestructive pulse-velocity measurements were performed on each specimen. The TXC tests exhibited a continuous increase in principal stress
Effects of varying refiner pressure on the machanical properties of loblolly pine fibres
Les Groom; Timothy Rials; Rebecca Snell
2000-01-01
Loblolly pine chips, separated into mature and juvenile portions, were refined at three pressures (4, 8, and 12 bar) in a single disc refiner at the BioComposites Centre. Fibres were dried in a flash drier to a moisture content of approximately 12 percent. The mechanical properties of single fibres from each refining pressure were determined using a tensile strength...
The effect of filler loading and morphology on the mechanical properties of contemporary composites.
Kim, Kyo-Han; Ong, Joo L; Okuno, Osamu
2002-06-01
Little information exists regarding the filler morphology and loading of composites with respect to their effects on selected mechanical properties and fracture toughness. The objectives of this study were to: (1) classify commercial composites according to filler morphology, (2) evaluate the influence of filler morphology on filler loading, and (3) evaluate the effect of filler morphology and loading on the hardness, flexural strength, flexural modulus, and fracture toughness of contemporary composites. Field emission scanning electron microscopy/energy dispersive spectroscopy was used to classify 3 specimens from each of 14 commercial composites into 4 groups according to filler morphology. The specimens (each 5 x 2.5 x 15 mm) were derived from the fractured remnants after the fracture toughness test. Filler weight content was determined by the standard ash method, and the volume content was calculated using the weight percentage and density of the filler and matrix components. Microhardness was measured with a Vickers hardness tester, and flexural strength and modulus were measured with a universal testing machine. A 3-point bending test (ASTM E-399) was used to determine the fracture toughness of each composite. Data were compared with analysis of variance followed by Duncan's multiple range test, both at the P<.05 level of significance. The composites were classified into 4 categories according to filler morphology: prepolymerized, irregular-shaped, both prepolymerized and irregular-shaped, and round particles. Filler loading was influenced by filler morphology. Composites containing prepolymerized filler particles had the lowest filler content (25% to 51% of filler volume), whereas composites containing round particles had the highest filler content (59% to 60% of filler volume). The mechanical properties of the composites were related to their filler content. Composites with the highest filler by volume exhibited the highest flexural strength (120 to 129 MPa), flexural modulus (12 to 15 GPa), and hardness (101 to 117 VHN). Fracture toughness was also affected by filler volume, but maximum toughness was found at a threshold level of approximately 55% filler volume. Within the limitations of this study, the commercial composites tested could be classified by their filler morphology. This property influenced filler loading. Both filler morphology and filler loading influenced flexural strength, flexural modulus, hardness, and fracture toughness.
Dong, Yimeng; Gupta, Nirupam; Chopra, Nikhil
2016-11-01
In this paper, vulnerability of a distributed consensus seeking multi-agent system (MAS) with double-integrator dynamics against edge-bound content modification cyber attacks is studied. In particular, we define a specific edge-bound content modification cyber attack called malignant content modification attack (MCoMA), which results in unbounded growth of an appropriately defined group disagreement vector. Properties of MCoMA are utilized to design detection and mitigation algorithms so as to impart resilience in the considered MAS against MCoMA. Additionally, the proposed detection mechanism is extended to detect the general edge-bound content modification attacks (not just MCoMA). Finally, the efficacies of the proposed results are illustrated through numerical simulations.
Content modification attacks on consensus seeking multi-agent system with double-integrator dynamics
NASA Astrophysics Data System (ADS)
Dong, Yimeng; Gupta, Nirupam; Chopra, Nikhil
2016-11-01
In this paper, vulnerability of a distributed consensus seeking multi-agent system (MAS) with double-integrator dynamics against edge-bound content modification cyber attacks is studied. In particular, we define a specific edge-bound content modification cyber attack called malignant content modification attack (MCoMA), which results in unbounded growth of an appropriately defined group disagreement vector. Properties of MCoMA are utilized to design detection and mitigation algorithms so as to impart resilience in the considered MAS against MCoMA. Additionally, the proposed detection mechanism is extended to detect the general edge-bound content modification attacks (not just MCoMA). Finally, the efficacies of the proposed results are illustrated through numerical simulations.
NASA Astrophysics Data System (ADS)
Gray, G. T.; Cerreta, E.; Chen, Shuh Rong; Maudlin, P. J.
2004-06-01
Jim Williams has made seminal contributions to the field of structure / property relations and its controlling effects on the mechanical behavior of metals and alloys. This talk will discuss experimental results illustrating the role of interstitial content, grain size, texture, temperature, and strain rate on the operative deformation mechanisms, mechanical behavior, and substructure evolution in titanium, zirconium, hafnium, and rhenium. Increasing grain size is shown to significantly decrease the dynamic flow strength of Ti and Zr while increasing work-hardening rates due to an increased incidence of deformation twinning. Increasing oxygen interstitial content is shown to significantly alter both the constitutive response and α-ω shock-induced phase transition in Zr. The influence of crystallographic texture on the mechanical behavior in Ti, Zr, and Hf is discussed in terms of slip system and deformation twinning activity. An example of the utility of incorporation of operative deformation mechanisms into a polycrystalline plasticity constitutive model and validation using Taylor cylinder impact testing is presented.
Integrated mechanics for the passive damping of polymer-matrix composites and composite structures
NASA Technical Reports Server (NTRS)
Saravanos, D. A.; Chamis, Christos C.
1991-01-01
Some recent developments on integrated damping mechanics for unidirectional composites, laminates, and composite structures are reviewed. Simplified damping micromechanics relate the damping of on-axis and off-axis composites to constituent properties, fiber volume ratio, fiber orientation, temperature, and moisture. Laminate and structural damping mechanics for thin composites are summarized. Discrete layer damping mechanics for thick laminates, including the effects of interlaminar shear damping, are developed and semianalytical predictions of modal damping in thick simply supported specialty composite plates are presented. Applications show the advantages of the unified mechanics, and illustrate the effect of fiber volume ratio, fiber orientation, structural geometry, and temperature on the damping. Additional damping properties for composite plates of various laminations, aspect ratios, fiber content, and temperature illustrate the merits and ranges of applicability of each theory (thin or thick laminates).
NASA Astrophysics Data System (ADS)
Fu, Jun; Liu, Zhihong; Liu, Jie
2018-01-01
Asphalt Emulsion—Cement Concrete (AECC) is currently considered as a typical semi-flexibility material. One of the disadvantages of this material is brittle fracture and lacking ductility. This study aims at accelerating the basic mechanical properties of AECC using fibers and different aggregates size. The mix of AECC was introduced and the different content of fibers and aggregates size were studied. The results showed that the smaller aggregates size could improve the young’s modulus and compressive strength as well as fiber. The modulus-compressive strength ratio of fiber reinforced AECC is always below 500.
Study on microstructure and strengthening mechanism of AZ91-Y magnesium alloy
NASA Astrophysics Data System (ADS)
Cai, Huisheng; Guo, Feng; Su, Juan; Liu, Liang; Chen, Baodong
2018-03-01
AZ91-Y magnesium alloy with different thicknesses were prepared by die casting process. The main existence forms of Y in alloy and the effects of Y on microstructure and mechanical properties of alloy were studied, the main reason for the change of mechanical properties and fracture mechanism were analyzed. The results show that, yttrium exists mainly in the forms of Al2Y phase and trace solid solution in α-Mg. Yttrium can refine the grain of α-Mg, reduce the amount of eutectic β-Mg17Al12 phase and promote its discrete distribution. The room temperature tensile strength and elongation of alloy increased first and then decreased with the increase of Y content. The designed alloys containing 0.6% Y (measured containing 0.63% Y) have better mechanical properties. The change of mechanical properties of alloy is a comprehensive reflection of the effect of solid solution, grain refinement and second phase. The cracking of Al2Y phase and β-Mg17Al12 phase and crack propagation through Al2Y phase and β-Mg17Al12 phase are the main fracture mechanism of magnesium alloy containing yttrium. The cooling rate does not change the trend of the influence of Y, but affects the degree of influence of Y.
NASA Astrophysics Data System (ADS)
Kadlec, J.; Rieger, D.; Kovářík, T.; Novotný, P.; Franče, P.; Pola, M.
2017-02-01
In this study the effect of metakaolin replacement by milled blast furnace slag in alkali-activated geopolymeric binder was investigated in accordance to their rheological and mechanical properties. It was demonstrated that slag addition into the metakaolin binder can improve mechanical properties of final products. Our investigation was focused on broad interval of metakaolin substitution in the range from 100 to 40 volume per cents of metakaolin so that the volume content of solids in final binder was maintained constant. Prepared binders were activated by alkaline solution of potassium silicate with silicate module of 1.61. The particle size analyses were performed for determination of particle size distribution. The rheological properties were determined in accordance to flow properties by measurements on Ford viscosity cup and by oscillatory measurements of hardening process. For the investigation of hardening process, the strain controlled small amplitude oscillatory rheometry was used in plane-plate geometry. For determination of applied mechanical properties were binders filled by ceramic grog in the granularity range 0-1 mm. The filling was maintained constant at 275 volume per cents in accordance to ratio of solids in dry binder. The mechanical properties were investigated after 1, 7 and 28 days and microstructure was documented by scanning electron microscopy. The results indicate that slag addition have beneficial effect not only on mechanical properties of hardened binder but also on flow properties of fresh geopolymer paste and subsequent hardening kinetics of alkali-activated binders.
NASA Technical Reports Server (NTRS)
Delvigs, P.
1976-01-01
The effects were investigated of partial substitution of tetraamine crosslinking agents for diamine reactants on the thermomechanical properties of PMR polyimide resins and graphite fiber-reinforced composites. The effect of tetraamine content on isothermal weight loss, glass transition, and softening temperatures of neat resin samples is discussed. Composites were fabricated using PMR methodology. Monomeric solution of various stoichiometric ratios was used to impregnate Hercules HTS graphite fiber. The mechanical property retention characteristics of the composites at 316 C (600 F) are described.
Lee, Ji Hye; Bae, Yeon Su; Kim, Su Jin; Song, Dae Woong; Park, Young Hwan; Bae, Do Gyu; Choi, Jin Hyun; Um, In Chul
2018-01-01
Electro-spun regenerated silk webs have been extensively studied for biomedical applications because of the simplicity of their fabrication methods However, the productivity of the electro-spinning process is low for web fabrication and the mechanical properties of the electro-spun silk web are not satisfactory, which restricts its commercialization. In this study, a new silk non-woven fabric was successfully fabricated by wetting and hot press treatments using the excellent binding characteristic of sericin. The effects of the press temperature and residual sericin content on the preparation, structure, and properties of the silk non-woven fabric were examined. A press temperature of 200°C was optimum for obtaining non-woven fabrics with best mechanical properties, without yellowing. The silk non-woven fabric could not be fabricated without sericin, and a minimum of 8% sericin was required to fabricate it. As the sericin content was increased, the strength and Young's modulus of the silk non-woven fabric increased, while the tensile elongation remained constant. Regardless of the press temperature and sericin content, all the silk non-woven fabrics showed good cell viability, comparable to that of the tissue culture plate (TCP) used as a control until 4days, which however decreased compared to that of TCP after 7days. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.
2018-03-01
The present work is aimed at studying the microstructure, mechanical and corrosion properties of high nitrogen stainless steel shielded metal arc (SMA) welds made with Cromang-N electrode. Basis for selecting this electrode is to increase the solubility of nitrogen in weld metal due to high chromium and manganese content. Microstructures of the welds were characterized using optical microscopy (OM), field emission scanning electron microscopy (FESEM) and electron back scattered diffraction (EBSD) mainly to determine the morphology, phase analysis, grain size and orientation image mapping. Hardness, tensile and ductility bend tests were carried out to determine mechanical properties. Potentio-dynamic polarization testing was carried out to study the pitting corrosion resistance using a GillAC basic electrochemical system. Constant load type testing was carried out to study stress corrosion cracking (SCC) behaviour of welds. The investigation results shown that the selected Cr–Mn–N type electrode resulted in favourable microstructure and completely solidified as single phase coarse austenite. Mechanical properties of SMA welds are found to be inferior when compared to that of base metal and is due to coarse and dendritic structure.
NASA Astrophysics Data System (ADS)
Jiang, M. Z.; Yu, Y. C.; Li, H.; Ren, X.; Wang, S. B.
2017-02-01
Low carbon high manganese steels with different Ce contents were melted in medium frequency vacuum induction furnace. The microstructures and mechanical properties of steels were studied by OM, SEM, EDS and mechanical property testing. The results showed that the microstructures of experimental steels were refined remarkably, inclusions distributed more finely and uniformly, the tensile strength and impact toughness of tested steels both improved greatly after the addition of Ce. Thermodynamic calculation results demonstrated that Ce contained inclusions were Ce2O3 and Ce3S4, which agreed well with the results observed by SEM and EDS. By analysis of two-dimensional lattice disregistry, it was shown that the lattice misfit parameter between δ-Fe and Ce2O3, Ce3S4 are less than 6 %, which indicated that Ce2O3 and Ce3S4 could effectively act as the heterogeneous nuclei of initial δ-Fe. Therefore, the microstructures were refined significantly and the mechanical properties were improved correspondingly in Ce-added low carbon high manganese steels.
Optimization of factors to obtain cassava starch films with improved mechanical properties
NASA Astrophysics Data System (ADS)
Monteiro, Mayra; Oliveira, Victor; Santos, Francisco; Barros Neto, Eduardo; Silva, Karyn; Silva, Rayane; Henrique, João; Chibério, Abimaelle
2017-08-01
In this study, was investigated the optimization of the factors that significantly influenced the mechanical property improvement of cassava starch films through complete factorial design 23. The factors to be analyzed were cassava starch, glycerol and modified clay contents. A regression model was proposed by the factorial analysis, aiming to estimate the condition of the individual factors investigated in the optimum state of the mechanical properties of the biofilm, using the following statistical tool: desirability function and response surface. The response variable that delimits the improvement of the mechanical property of the biofilm is the tensile strength, such improvement is obtained by maximizing the response variable. The factorial analysis showed that the best combination of factor configurations to reach the best response was found to be: with 5g of cassava starch, 10% of glycerol and 5% of modified clay, both percentages in relation to the dry mass of starch used. In addition, the starch biofilm showing the lowest response contained 2g of cassava starch, 0% of modified clay and 30% of glycerol, and was consequently considered the worst biofilm.
Yin, Ziying; Schmid, Thomas M.; Yasar, Temel K.; Liu, Yifei; Royston, Thomas J.
2014-01-01
Knowledge of mechanical properties of tissue-engineered cartilage is essential for the optimization of cartilage tissue engineering strategies. Microscopic magnetic resonance elastography (μMRE) is a recently developed MR-based technique that can nondestructively visualize shear wave motion. From the observed wave pattern in MR phase images the tissue mechanical properties (e.g., shear modulus or stiffness) can be extracted. For quantification of the dynamic shear properties of small and stiff tissue-engineered cartilage, μMRE needs to be performed at frequencies in the kilohertz range. However, at frequencies greater than 1 kHz shear waves are rapidly attenuated in soft tissues. In this study μMRE, with geometric focusing, was used to overcome the rapid wave attenuation at high frequencies, enabling the measurement of the shear modulus of tissue-engineered cartilage. This methodology was first tested at a frequency of 5 kHz using a model system composed of alginate beads embedded in agarose, and then applied to evaluate extracellular matrix development in a chondrocyte pellet over a 3-week culture period. The shear stiffness in the pellet was found to increase over time (from 6.4 to 16.4 kPa), and the increase was correlated with both the proteoglycan content and the collagen content of the chondrocyte pellets (R2=0.776 and 0.724, respectively). Our study demonstrates that μMRE when performed with geometric focusing can be used to calculate and map the shear properties within tissue-engineered cartilage during its development. PMID:24266395
NASA Astrophysics Data System (ADS)
Zou, Y. S.; Wu, Y. F.; Yang, H.; Cang, K.; Song, G. H.; Li, Z. X.; Zhou, K.
2011-12-01
Protective hard coatings deposited on magnesium alloys are believed to be effective for overcoming their poor wear properties. In this work, diamond-like carbon (DLC) films as hard protective films were deposited on AZ91 magnesium alloy by arc ion plating under negative pulse bias voltages ranging from 0 to -200 V. The microstructure, composition and mechanical properties of the DLC films were analyzed by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and nanoindentation. The tribological behavior of uncoated and coated AZ91 magnesium alloy was investigated using a ball-on-disk tribotester. The results show that the negative pulse bias voltage used for film deposition has a significant effect on the sp3 carbon content and mechanical properties of the deposited DLC films. A maximum sp3 content of 33.3% was obtained at -100 V, resulting in a high hardness of 28.6 GPa and elastic modulus of 300.0 GPa. The DLC films showed very good adhesion to the AZ91 magnesium alloy with no observable cracks and delamination even during friction testing. Compared with the uncoated AZ91 magnesium alloy, the magnesium alloy coated with DLC films exhibits a low friction coefficient and a narrow, shallow wear track. The wear resistance and surface hardness of AZ91 magnesium alloy can be significantly improved by coating a layer of DLC protective film due to its high hardness and low friction coefficient.
Indentation size effect of cortical bones submitted to different soft tissue removals.
Bandini, A; Chicot, D; Berry, P; Decoopman, X; Pertuz, A; Ojeda, D
2013-04-01
Properties of elasticity, hardness and viscosity are determined for the study of the visco-elastoplastic behavior of bones. The mechanical properties are compared in two upright sections of the bone due to their anisotropy. Besides, influence of hydration treatments leading to structural modifications of collagen and ground substance contents of bones on the mechanical properties is studied on a femoral cortical bovine bone. The treatments applied to the bone are used by forensic anthropologists to remove the soft tissue and modifying the hydration degree coupled to the collagen content. From instrumented indentation experiments, the hardness is characterized by the macrohardness and a hardness length-scale factor stating the hardness-load dependence. The elastic modulus results from the application of the methodology of Oliver and Pharr (1992). The coefficient of viscosity is deduced from a rheological model representing the indenter time-displacement observed under the application of a constant load. As a result, all the mechanical properties are found to be lower in the transverse section in an extent depending on the hydration treatment, i.e. the different values are located between 5% and 25% for the hardness around 0.5GPa, between 25% and 40% for the elastic modulus around 20GPa and between 2% and 35% for the coefficient of viscosity around 60GPa.s. Unexpectedly, the elastic modulus to coefficient of viscosity ratio is found to be independent on the hydration treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Muntaha, M.
2017-11-01
Indonesia, which located in tropical region, continuously undergoes wetting and drying cycles due to the changeable seasons. An important role in activating the clay minerals on tropical residual soils is the main factor that affects the static and dynamic properties, such as: volume change, soil suction and dynamic modulus. The purpose of this paper is to evaluate the effect of drying-wetting cycles repetition on volume change, soil suction and mechanical characteristics of natural and stabilization of residual soils from Jawa Timur - Indonesia. The natural undisturbed and stabilized residual soil sample was naturally and gradually dried up with air to 25%, 50%, 75%, and 100 % of the initial water content. The wetting processes were carried out with the gradual increment water content of 25 %(wsat - wi), 50 %(wsat - wi), 75 %(wsat - wi), up to 100 %(wsat - wi). The Direct Shear test is used to measure the mechanic properties, and Whatman filter paper No. 42 is used to measure the soil suction. The drying-wetting processes were carried out for 1, 2, 4, and 6 cycles. The laboratory test results showed that, the void ratio decreased, the unit weight, cohesion and the internal friction angle were increasing due to stabilization. Drying-wetting cycle repetition reduces void ratio, negative pore-water pressure, cohesion and internal friction angle of natural and stabilized soils. Briefly, the decreased of mechanical soil properties was proven from the physical properties change observation.
Aust, Gabriela; Boldt, Andreas; Fritsch, Sebastian; Keil, Isabel; Koch, Holger; Möbius, Robert; Scheidt, Holger A.; Wagner, Martin F. X.; Hammer, Niels
2016-01-01
Introduction Though xenogeneic acellular scaffolds are frequently used for surgical reconstruction, knowledge of their mechanical properties is lacking. This study compared the mechanical, histological and ultrastructural properties of various native and acellular specimens. Materials and Methods Porcine esophagi, ureters and skin were tested mechanically in a native or acellular condition, focusing on the elastic modulus, ultimate tensile stress and maximum strain. The testing protocol for soft tissues was standardized, including the adaption of the tissue’s water content and partial plastination to minimize material slippage as well as templates for normed sample dimensions and precise cross-section measurements. The native and acellular tissues were compared at the microscopic and ultrastructural level with a focus on type I collagens. Results Increased elastic modulus and ultimate tensile stress values were quantified in acellular esophagi and ureters compared to the native condition. In contrast, these values were strongly decreased in the skin after acellularization. Acellularization-related decreases in maximum strain were found in all tissues. Type I collagens were well-preserved in these samples; however, clotting and a loss of cross-linking type I collagens was observed ultrastructurally. Elastins and fibronectins were preserved in the esophagi and ureters. A loss of the epidermal layer and decreased fibronectin content was present in the skin. Discussion Acellularization induces changes in the tensile properties of soft tissues. Some of these changes appear to be organ specific. Loss of cross-linking type I collagen may indicate increased mechanical strength due to decreasing transverse forces acting upon the scaffolds, whereas fibronectin loss may be related to decreased load-bearing capacity. Potentially, the alterations in tissue mechanics are linked to organ function and to the interplay of cells and the extracellular matrix, which is different in hollow organs when compared to skin. PMID:26960134
Mechanical Deformation Behavior of Sn-Ag-Cu Solders with Minor Addition of 0.05 wt.% Ni
NASA Astrophysics Data System (ADS)
Hammad, A. E.; El-Taher, A. M.
2014-11-01
The aim of the present work is to develop a comparative evaluation of the microstructural and mechanical deformation behavior of Sn-Ag-Cu (SAC) solders with the minor addition of 0.05 wt.% Ni. Test results showed that, by adding 0.05Ni element into SAC solders, generated mainly small rod-shaped (Cu,Ni)6Sn5 intermetallic compounds (IMCs) inside the β-Sn phase. Moreover, increasing the Ag content and adding Ni could result in the change of the shape and size of the IMC precipitate. Hence, a significant improvement is observed in the mechanical properties of SAC solders with increasing Ag content and Ni addition. On the other hand, the tensile results of Ni-doped SAC solders showed that both the yield stress and ultimate tensile strengths decrease with increasing temperature and with decreasing strain rate. This behavior was attributed to the competing effects of work hardening and dynamic recovery processes. The Sn-2.0Ag-0.5Cu-0.05Ni solder displayed the highest mechanical properties due to the formation of hard (Cu,Ni)6Sn5 IMCs. Based on the obtained stress exponents and activation energies, it is suggested that the dominant deformation mechanism in SAC (205)-, SAC (0505)- and SAC (0505)-0.05Ni solders is pipe diffusion, and lattice self-diffusion in SAC (205)-0.05Ni solder. In view of these results, the Sn-2.0Ag-0.5Cu-0.05Ni alloy is a more reliable solder alloy with improved properties compared with other solder alloys tested in the present work.
Zou, Fengjuan; Li, Runrun; Jiang, Jianjun; Mo, Xiumei; Gu, Guofeng; Guo, Zhongwu; Chen, Zonggang
2017-12-01
The collagen-chitosan complex with a three-dimensional nanofiber structure was fabricated to mimic native ECM for tissue repair and biomedical applications. Though the three-dimensional hierarchical fibrous structures of collagen-chitosan composites could provide more adequate stimulus to facilitate cell adhesion, migrate and proliferation, and thus have the potential as tissue engineering scaffolding, there are still limitations in their applications due to the insufficient mechanical properties of natural materials. Because poly (vinyl alcohol) (PVA) and thermoplastic polyurethane (TPU) as biocompatible synthetic polymers can offer excellent mechanical properties, they were introduced into the collagen-chitosan composites to fabricate the mixed collagen/chitosan/PVA fibers and a sandwich structure (collagen/chitosan-TPU-collagen/chitosan) of nanofiber in order to enhance the mechanical properties of the nanofibrous collagen-chitosan scaffold. The results showed that the tensile behavior of materials was enhanced to different degrees with the difference of collagen content in the fibers. Besides the Young's modulus had no obvious changes, both the break strength and the break elongation of materials were heightened after reinforced by PVA. For the collagen-chitosan nanofiber reinforced by TPU, both the break strength and the Young's modulus of materials were heightened in different degrees with the variety of collagen content in the fibers despite the decrease of the break elongation of materials to some extent. In vitro cell test demonstrated that the materials could provide adequate environment for cell adhesion and proliferation. All these indicated that the reinforced collagen-chitosan nanofiber could be as potential scaffold for tissue engineering according to the different mechanical requirements in clinic.
Qiu, Ling; Xiao, Heming
2009-05-15
To investigate the effect of polymer binders on the monoexplosive, molecular dynamics simulations were performed to study the binding energies, mechanical properties, and detonation performances of the bicyclo-HMX-based polymer-bonded explosives (PBXs). The results show that the binding energies on different crystalline surfaces of bicyclo-HMX decrease in the order of (010)>(100)>(001). On each crystalline surface, binding properties of different polymers with the same chain segment are different from each other, while those of the polymers in the same content decrease in the sequence of PVDF>F(2311)>F(2314) approximately PCTFE. The mechanical properties of a dozen of model systems (elastic coefficients, various moduli, Cauchy pressure, and Poisson's ratio) have been obtained. It is found that mechanical properties are effectively improved by adding small amounts of fluorine polymers, and the overall effect of fluorine polymers on three crystalline surfaces of bicyclo-HMX changes in the order of (010)>(001) approximately (100). In comparison with the base explosive, detonation performances of the PBXs decrease slightly, but they are still superior to TNT. These suggestions may be useful for the formulation design of bicyclo-HMX-based PBXs.
Schmitz, Andreas; Schmid, Carolin; de Boor, Johannes; Müller, Eckhard
2017-03-01
Filled cobalt-antimony based skutterudites have proven themselves as very promising thermoelectric materials for generator applications in an intermediate temperature range between 400 and 800 K due to their high figure of merit. Besides the functional thermoelectric properties also the skutterudites’ mechanical properties play an important role to withstand external mechanical and internal thermomechanical loads during operation. Properties of interest are hardness as well as fracture toughness and resistance to fatigue. Carbon nano tubes are well known for their high tensile strength and may therefore be used to increase the mechanical strength of composite materials. Additionally, the thermoelectric properties of the composite material might benefit from the high electrical conductivity of carbon nano tubes and increased phonon scattering at interfaces between matrix and carbon nano tube. A main precondition for benefiting from embedded nano-tubes is to achieve a homogeneous distribution of the CNTs and good adhesion between carbon nano tube and matrix material. In this work we present the influence of the introduction of multi-walled carbon nano tubes on the thermoelectric and mechanical properties of p-type skutterudites Ce(0.14)La(0.06)Co(2)Fe(2)Sb(12). The influence of different carbon nano tube concentrations and preparation routes on the resulting composite material’s thermoelectric, mechanical and microstructural properties is studied. A reduction of electrical and thermal conductivity as well as fracture strength is observed with increasing carbon nano tube content which is attributed to strong agglomeration of the nano tubes. The results underline the pivotal role of a homogeneous distribution of the carbon nano tubes for improving the mechanical properties of skutterudites.
Gug, JeongIn; Cacciola, David; Sobkowicz, Margaret J
2015-01-01
Diversion of waste streams such as plastics, woods, papers and other solid trash from municipal landfills and extraction of useful materials from landfills is an area of increasing interest especially in densely populated areas. One promising technology for recycling municipal solid waste (MSW) is to burn the high-energy-content components in standard coal power plant. This research aims to reform wastes into briquettes that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, free of hazardous contaminants, and moisture resistant, while retaining high fuel value. This study aims to investigate the effects of processing conditions and added recyclable plastics on the properties of MSW solid fuels. A well-sorted waste stream high in paper and fiber content was combined with controlled levels of recyclable plastics PE, PP, PET and PS and formed into briquettes using a compression molding technique. The effect of added plastics and moisture content on binding attraction and energy efficiency were investigated. The stability of the briquettes to moisture exposure, the fuel composition by proximate analysis, briquette mechanical strength, and burning efficiency were evaluated. It was found that high processing temperature ensures better properties of the product addition of milled mixed plastic waste leads to better encapsulation as well as to greater calorific value. Also some moisture removal (but not complete) improves the compacting process and results in higher heating value. Analysis of the post-processing water uptake and compressive strength showed a correlation between density and stability to both mechanical stress and humid environment. Proximate analysis indicated heating values comparable to coal. The results showed that mechanical and moisture uptake stability were improved when the moisture and air contents were optimized. Moreover, the briquette sample composition was similar to biomass fuels but had significant advantages due to addition of waste plastics that have high energy content compared to other waste types. Addition of PP and HDPE presented better benefits than addition of PET due to lower softening temperature and lower oxygen content. It should be noted that while harmful emissions such as dioxins, furans and mercury can result from burning plastics, WTE facilities have been able to control these emissions to meet US EPA standards. This research provides a drop-in coal replacement that reduces demand on landfill space and replaces a significant fraction of fossil-derived fuel with a renewable alternative. Copyright © 2014 Elsevier Ltd. All rights reserved.
Pernier, C; Grosgogeat, B; Ponsonnet, L; Benay, G; Lissac, M
2005-02-01
Orthodontic wires are frequently packaged in individual sealed bags in order to avoid cross-contamination. The instructions on the wrapper generally advise autoclave sterilization of the package and its contents if additional protection is desired. However, sterilization can modify the surface parameters and the mechanical properties of many types of material. The aim of this research was to determine the influence of one of the most widely used sterilization processes, autoclaving (18 minutes at 134 degrees C, as recommended by the French Ministry of Health), on the surface parameters and mechanical properties of six wires currently used in orthodontics (one stainless steel alloy: Tru-Chrome RMO; two nickel-titanium shape memory alloys: Neo Sentalloy and Neo Sentalloy with Ionguard GAC; and three titanium-molybdenum alloys: TMA(R) and Low Friction TMA Ormco and Resolve GAC). The alloys were analysed on receipt and after sterilization, using surface structure observation techniques, including optical, scanning electron and atomic force microscopy and profilometry. The mechanical properties were assessed by three-point bending tests. The results showed that autoclave sterilization had no adverse effects on the surface parameters or on the selected mechanical properties. This supports the possibility for practitioners to systematically sterilize wires before placing them in the oral environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Mengkui; Winter, W.T.
1995-12-01
This paper describes membranes of cellulose or its blends with guar gums. Their morphology, hydration behavior, mechanical properties and permselectivity are all dependent upon preparation conditions. Wet membranes exhibit decreased strength but increased elasticity with increasing guar content. Morphologies of the wet membranes range from microporous to macrovoids to systems of regularly arranged conduits and could be formed in a reproducible manner. Dry membranes were invariably dense. Both wet and dry membranes had markedly higher permeation rates for molecules with 400 < M < 4000 than similarly treated commercial cellulose dialysis membranes and the rates increased with increasing guar content.more » Dried membranes of either cellulose or the blends showed appreciable permselectivity in this same intermediate molecular weight range which disappeared with increasing guar content.« less
Mechanical contribution of lamellar and interlamellar elastin along the mouse aorta.
Clark, T E; Lillie, M A; Vogl, A W; Gosline, J M; Shadwick, R E
2015-10-15
The mechanical properties of aortic elastin vary regionally, but the microstructural basis for this variation is unknown. This study was designed to identify the relative contributions of lamellar and interlamellar elastin to circumferential load bearing in the mouse thoracic and abdominal aortas. Forces developed in uniaxial tests of samples of fresh and autoclaved aorta were correlated with elastin content and morphology obtained from histology and multiphoton laser scanning microscopy. Autoclaving should render much of the interlamellar elastin mechanically incompetent. In autoclaved tissue force per unit sample width correlated with lamellar elastin content (P≪0.001) but not total elastin content. In fresh tissue at low strain where elastin dominates the mechanical response, forces were higher than in the autoclaved tissue, but force did not correlate with total elastin content. Therefore although interlamellar elastin likely contributed to the stiffness in the fresh aorta, its contribution appeared not in proportion to its quantity. In both fresh and autoclaved tissue, elastin stiffness consistently decreased along the abdominal aorta, a key area for aneurysm development, and this difference could not be fully accounted for on the basis of either lamellar or total elastin content. These findings are relevant to the development of mathematical models of arterial mechanics, particularly for mouse models of arterial diseases involving elastic tissue. In microstructural based models the quantity of each mural constituent determines its contribution to the total response. This study shows elastin's mechanical response cannot necessarily be accounted for on the basis of fibre quantity, orientation, and modulus. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.
This chapter first describes tests to investigate the temporal evolution of the volume fraction of ceramic phases, the evolution of micro-damage, and the self-healing behavior of the glass ceramic sealant used in SOFCs, then a phenomenological model based on mechanical analogs is developed to describe the temperature dependent Young’s modulus of glass ceramic seal materials. It was found that after the initial sintering process, further crystallization of the glass ceramic sealant does not stop, but slows down and reduces the residual glass content while boosting the ceramic crystalline content. Under the long-term operating environment, distinct fibrous and needle-like crystals inmore » the amorphous phase disappeared, and smeared/diffused phase boundaries between the glass phase and ceramic phase were observed. Meanwhile, the micro-damage was induced by the cooling-down process from the operating temperature to the room temperature, which can potentially degrade the mechanical properties of the glass/ceramic sealant. The glass/ceramic sealant self-healed upon reheating to the SOFC operating temperature, which can restore the mechanical performance of the glass/ceramic sealant. The phenomenological model developed here includes the effects of continuing aging and devitrification on the ceramic phase volume fraction and the resulted mechanical properties of glass ceramic seal material are considered. The effects of micro-voids and self-healing are also considered using a continuum damage mechanics (CDM) model. The formulation is for glass/ceramic seal in general, and it can be further developed to account for effects of various processing parameters. This model was applied to G18, and the temperature-dependent experimental measurements were used to calibrate the modeling parameters and to validate the model prediction.« less
Mechanical response tissue analyzer for estimating bone strength
NASA Technical Reports Server (NTRS)
Arnaud, Sara B.; Steele, Charles; Mauriello, Anthony
1991-01-01
One of the major concerns for extended space flight is weakness of the long bones of the legs, composed primarily of cortical bone, that functions to provide mechanical support. The strength of cortical bone is due to its complex structure, described simplistically as cylinders of parallel osteons composed of layers of mineralized collagen. The reduced mechanical stresses during space flight or immobilization of bone on Earth reduces the mineral content, and changes the components of its matrix and structure so that its strength is reduced. Currently, the established clinical measures of bone strength are indirect. The measures are based on determinations of mineral density by means of radiography, photon absorptiometry, and quantitative computer tomography. While the mineral content of bone is essential to its strength, there is growing awareness of the limitations of the measurement as the sole predictor of fracture risk in metabolic bone diseases, especially limitations of the measurement as the sole predictor of fracture risk in metabolic bone diseases, especially osteoporosis. Other experimental methods in clinical trials that more directly evaluate the physical properties of bone, and do not require exposure to radiation, include ultrasound, acoustic emission, and low-frequency mechanical vibration. The last method can be considered a direct measure of the functional capacity of a long bone since it quantifies the mechanical response to a stimulus delivered directly to the bone. A low frequency vibration induces a response (impedance) curve with a minimum at the resonant frequency, that a few investigators use for the evaluation of the bone. An alternative approach, the method under consideration, is to use the response curve as the basis for determination of the bone bending stiffness EI (E is the intrinsic material property and I is the cross-sectional moment of inertia) and mass, fundamental mechanical properties of bone.
Liu, Xiaoyan; Li, Feng; Ding, Yongsheng; Zou, Ting; Wang, Lu; Hao, Kuangrong
2015-01-01
A hierarchical support vector regression (SVR) model (HSVRM) was employed to correlate the compositions and mechanical properties of bicomponent stents composed of poly(lactic-co-glycolic acid) (PGLA) film and poly(glycolic acid) (PGA) fibers for urethral repair for the first time. PGLA film and PGA fibers could provide ureteral stents with good compressive and tensile properties, respectively. In bicomponent stents, high film content led to high stiffness, while high fiber content resulted in poor compressional properties. To simplify the procedures to optimize the ratio of PGLA film and PGA fiber in the stents, a hierarchical support vector regression model (HSVRM) and particle swarm optimization (PSO) algorithm were used to construct relationships between the film-to-fiber weight ratio and the measured compressional/tensile properties of the stents. The experimental data and simulated data fit well, proving that the HSVRM could closely reflect the relationship between the component ratio and performance properties of the ureteral stents. PMID:28793658
Mechanical properties of neutron-irradiated model and commercial FeCrAl alloys
Field, Kevin G.; Briggs, Samuel A.; Sridharan, Kumar; ...
2017-03-28
The development and understanding of the mechanical properties of neutron-irradiated FeCrAl alloys is increasingly a critical need as these alloys continue to become more mature for nuclear reactor applications. This study focuses on the mechanical properties of model FeCrAl alloys and of a commercial FeCrAl alloy neutron-irradiated to up to 13.8 displacements per atom (dpa) at irradiation temperatures between 320 and 382 °C. Tensile tests were completed at room temperature and at 320 °C, and a subset of fractured tensile specimens was examined by scanning electron microscopy. Results showed typical radiation hardening and embrittlement indicative of high chromium ferritic alloysmore » with strong chromium composition dependencies at lower doses. At and above 7.0 dpa, the mechanical properties saturated for both the commercial and model FeCrAl alloys, although brittle cleavage fracture was observed at the highest dose in the model FeCrAl alloy with the highest chromium content (18 wt %). Finally, the results suggest the composition and microstructure of FeCrAl alloys plays a critical role in the mechanical response of FeCrAl alloys irradiated near temperatures relevant to light water reactors.« less
Mechanical properties of neutron-irradiated model and commercial FeCrAl alloys
NASA Astrophysics Data System (ADS)
Field, Kevin G.; Briggs, Samuel A.; Sridharan, Kumar; Howard, Richard H.; Yamamoto, Yukinori
2017-06-01
The development and understanding of the mechanical properties of neutron-irradiated FeCrAl alloys is increasingly a critical need as these alloys continue to become more mature for nuclear reactor applications. This study focuses on the mechanical properties of model FeCrAl alloys and of a commercial FeCrAl alloy neutron-irradiated to up to 13.8 displacements per atom (dpa) at irradiation temperatures between 320 and 382 °C. Tensile tests were completed at room temperature and at 320 °C, and a subset of fractured tensile specimens was examined by scanning electron microscopy. Results showed typical radiation hardening and embrittlement indicative of high chromium ferritic alloys with strong chromium composition dependencies at lower doses. At and above 7.0 dpa, the mechanical properties saturated for both the commercial and model FeCrAl alloys, although brittle cleavage fracture was observed at the highest dose in the model FeCrAl alloy with the highest chromium content (18 wt %). The results suggest the composition and microstructure of FeCrAl alloys plays a critical role in the mechanical response of FeCrAl alloys irradiated near temperatures relevant to light water reactors.
Microstructure, Mechanical, and Fatigue Strength of Ti-54M Processed by Rotary Swaging
NASA Astrophysics Data System (ADS)
Al-Khazraji, Hasan; El-Danaf, Ehab; Wollmann, Manfred; Wagner, Lothar
2015-05-01
TIMETAL 54M is a newly developed (α + β) titanium alloy with nominal composition Ti-5Al-4V-0.6Mo-0.4Fe. The alloy can provide a cost benefit over Ti-6Al-4V due to improved machinability and formability. In the present work, evolution of mechanical properties in terms of tensile and hardness values is investigated as a function of deformation degrees imposed via rotary swaging (RS). Microstructure, mechanical properties, and fatigue performance of Ti-54M are investigated after severe plastic deformation by RS conducted at 850 °C and after being subjected to two different post-swaging annealing conditions. Optical microscopy and scanning electron microscopy using electron back scatter diffraction were utilized to document the evolution of the microstructure. Tensile tests were conducted to characterize mechanical properties. RS, to a true strain of 3.0, is found to lead to a marked ultrafine-grained structure of about 1 μm grain size with low content of high angle grain boundaries (HAGBs). Post-swaging heat treatment at 800 °C followed by air cooling did not change the grain size but exhibited high content of HAGBs. Post-swaging heat treatment at 940 °C followed by furnace cooling resulted in a grain size of about 5 μm and enhanced work-hardening capability and ductility, which resulted in less fatigue notch sensitivity, but at the same time lower fatigue strength at 107 cycles.
The Role of Water in Mediating Interfacial Adhesion and Shear Strength in Graphene Oxide.
Soler-Crespo, Rafael A; Gao, Wei; Mao, Lily; Nguyen, Hoang T; Roenbeck, Michael R; Paci, Jeffrey T; Huang, Jiaxing; Nguyen, SonBinh T; Espinosa, Horacio D
2018-06-12
Graphene oxide (GO), whose highly tunable surface chemistry enables the formation of strong interfacial hydrogen-bond networks, has garnered increasing interest in the design of devices that operate in the presence of water. For instance, previous studies have suggested that controlling GO's surface chemistry leads to enhancements in interfacial shear strength, allowing engineers to manage deformation pathways and control failure mechanisms. However, these previous reports have not explored the role of ambient humidity and only offer extensive chemical modifications to GO's surface as the main pathway to control GO's interfacial properties. Herein, through atomic force microscopy experiments on GO-GO interfaces, the adhesion energy and interfacial shear strength of GO were measured as a function of ambient humidity. Experimental evidence shows that adhesion energy and interfacial shear strength can be improved by a factor of 2-3 when GO is exposed to moderate (∼30% water weight) water content. Furthermore, complementary molecular dynamics simulations uncovered the mechanisms by which these nanomaterial interfaces achieve their properties. They reveal that the strengthening mechanism arises from the formation of strongly interacting hydrogen-bond networks, driven by the chemistry of the GO basal plane and intercalated water molecules between two GO surfaces. In summary, the methodology and findings here reported provide pathways to simultaneously optimize GO's interfacial and in-plane mechanical properties, by tailoring the chemistry of GO and accounting for water content, in engineering applications such as sensors, filtration membranes, wearable electronics, and structural materials.
NASA Astrophysics Data System (ADS)
Keshri, Anup Kumar
Plasma sprayed aluminum oxide ceramic coating is widely used due to its outstanding wear, corrosion, and thermal shock resistance. But porosity is the integral feature in the plasma sprayed coating which exponentially degrades its properties. In this study, process maps were developed to obtain Al2O3-CNT composite coatings with the highest density (i.e. lowest porosity) and improved mechanical and wear properties. Process map is defined as a set of relationships that correlates large number of plasma processing parameters to the coating properties. Carbon nanotubes (CNTs) were added as reinforcement to Al2O 3 coating to improve the fracture toughness and wear resistance. Two novel powder processing approaches viz spray drying and chemical vapor growth were adopted to disperse CNTs in Al2O3 powder. The degree of CNT dispersion via chemical vapor deposition (CVD) was superior to spray drying but CVD could not synthesize powder in large amount. Hence optimization of plasma processing parameters and process map development was limited to spray dried Al2O3 powder containing 0, 4 and 8 wt. % CNTs. An empirical model using Pareto diagram was developed to link plasma processing parameters with the porosity of coating. Splat morphology as a function of plasma processing parameter was also studied to understand its effect on mechanical properties. Addition of a mere 1.5 wt. % CNTs via CVD technique showed ˜27% and ˜24% increase in the elastic modulus and fracture toughness respectively. Improved toughness was attributed to combined effect of lower porosity and uniform dispersion of CNTs which promoted the toughening by CNT bridging, crack deflection and strong CNT/Al2O3 interface. Al2O 3-8 wt. % CNT coating synthesized using spray dried powder showed 73% improvement in the fracture toughness when porosity reduced from 4.7% to 3.0%. Wear resistance of all coatings at room and elevated temperatures (573 K, 873 K) showed improvement with CNT addition and decreased porosity. Such behavior was due to improved mechanical properties, protective film formation due to tribochemical reaction, and CNT bridging between the splats. Finally, process maps correlating porosity content, CNT content, mechanical properties, and wear properties were developed.
Analysis of membrane fusion as a two-state sequential process: evaluation of the stalk model.
Weinreb, Gabriel; Lentz, Barry R
2007-06-01
We propose a model that accounts for the time courses of PEG-induced fusion of membrane vesicles of varying lipid compositions and sizes. The model assumes that fusion proceeds from an initial, aggregated vesicle state ((A) membrane contact) through two sequential intermediate states (I(1) and I(2)) and then on to a fusion pore state (FP). Using this model, we interpreted data on the fusion of seven different vesicle systems. We found that the initial aggregated state involved no lipid or content mixing but did produce leakage. The final state (FP) was not leaky. Lipid mixing normally dominated the first intermediate state (I(1)), but content mixing signal was also observed in this state for most systems. The second intermediate state (I(2)) exhibited both lipid and content mixing signals and leakage, and was sometimes the only leaky state. In some systems, the first and second intermediates were indistinguishable and converted directly to the FP state. Having also tested a parallel, two-intermediate model subject to different assumptions about the nature of the intermediates, we conclude that a sequential, two-intermediate model is the simplest model sufficient to describe PEG-mediated fusion in all vesicle systems studied. We conclude as well that a fusion intermediate "state" should not be thought of as a fixed structure (e.g., "stalk" or "transmembrane contact") of uniform properties. Rather, a fusion "state" describes an ensemble of similar structures that can have different mechanical properties. Thus, a "state" can have varying probabilities of having a given functional property such as content mixing, lipid mixing, or leakage. Our data show that the content mixing signal may occur through two processes, one correlated and one not correlated with leakage. Finally, we consider the implications of our results in terms of the "modified stalk" hypothesis for the mechanism of lipid pore formation. We conclude that our results not only support this hypothesis but also provide a means of analyzing fusion time courses so as to test it and gauge the mechanism of action of fusion proteins in the context of the lipidic hypothesis of fusion.
Hernández-Becerra, Ezequiel; Gutiérrez-Cortez, Elsa; Del Real, Alicia; Rojas-Molina, Alejandra; Rodríguez-García, Mario; Rubio, Efraín; Quintero-García, Michelle; Rojas-Molina, Isela
2017-02-04
Mechanical, microstructural properties, mineral content and bone mineral density (BMD) of the femur were evaluated in growing rats fed with Opuntia ficus indica (L.) Mill. (Cactaceae) cladodes at different maturity stages as calcium source. Male weanling rats were fed with cladodes at early maturity stage (25 and 60 days of age, belonging to groups N-60 and N-200, respectively) and cladodes at late maturity stage (100 and 135 days of age, belonging to groups N-400 and N-600, respectively) for 6 weeks. Additionally, a control group fed with calcium carbonate as calcium source was included for comparative purposes. All diets were fitted to the same calcium content (5 g/kg diet). The failure load of femurs was significantly lower ( p ≤ 0.05) in groups N-60 and N-200 in comparison to N-400, N-600 and control groups. The cortical width (Ct.Wi) and trabecular thickness (Tb.Th) of the femurs in control and N-600 groups were significantly higher ( p ≤ 0.05) than Ct.Wi and Tb.Th of femurs in groups N-60 and N-200. Trabecular separation of the femurs in N-60 and N-200 groups showed the highest values compared with all experimental groups. The highest calcium content in the femurs were observed in control, N-600 and N-400 groups; whereas the lowest phosphorus content in the bones were detected in N-200, N-600 and N-400 groups. Finally, the BMD in all experimental groups increased with age; nevertheless, the highest values were observed in N-600 and control groups during pubertal and adolescence stages. The results derived from this research demonstrate, for the first time, that the calcium found in Opuntia ficus indica cladodes is actually bioavailable and capable of improving mineral density and mechanical and microstructural properties of the bones. These findings suggest that the consumption of cladodes at late maturity stage within the diet might have a beneficial impact on bone health.
Hernández-Becerra, Ezequiel; Gutiérrez-Cortez, Elsa; Del Real, Alicia; Rojas-Molina, Alejandra; Rodríguez-García, Mario; Rubio, Efraín; Quintero-García, Michelle; Rojas-Molina, Isela
2017-01-01
Mechanical, microstructural properties, mineral content and bone mineral density (BMD) of the femur were evaluated in growing rats fed with Opuntia ficus indica (L.) Mill. (Cactaceae) cladodes at different maturity stages as calcium source. Male weanling rats were fed with cladodes at early maturity stage (25 and 60 days of age, belonging to groups N-60 and N-200, respectively) and cladodes at late maturity stage (100 and 135 days of age, belonging to groups N-400 and N-600, respectively) for 6 weeks. Additionally, a control group fed with calcium carbonate as calcium source was included for comparative purposes. All diets were fitted to the same calcium content (5 g/kg diet). The failure load of femurs was significantly lower (p ≤ 0.05) in groups N-60 and N-200 in comparison to N-400, N-600 and control groups. The cortical width (Ct.Wi) and trabecular thickness (Tb.Th) of the femurs in control and N-600 groups were significantly higher (p ≤ 0.05) than Ct.Wi and Tb.Th of femurs in groups N-60 and N-200. Trabecular separation of the femurs in N-60 and N-200 groups showed the highest values compared with all experimental groups. The highest calcium content in the femurs were observed in control, N-600 and N-400 groups; whereas the lowest phosphorus content in the bones were detected in N-200, N-600 and N-400 groups. Finally, the BMD in all experimental groups increased with age; nevertheless, the highest values were observed in N-600 and control groups during pubertal and adolescence stages. The results derived from this research demonstrate, for the first time, that the calcium found in Opuntia ficus indica cladodes is actually bioavailable and capable of improving mineral density and mechanical and microstructural properties of the bones. These findings suggest that the consumption of cladodes at late maturity stage within the diet might have a beneficial impact on bone health. PMID:28165410
Controllable preparation of fluorine-containing fullerene-like carbon film
NASA Astrophysics Data System (ADS)
Wang, Jia; Liang, Aimin; Wang, Fuguo; Xu, Longhua; Zhang, Junyan
2016-05-01
Fluorine-containing fullerene-like carbon (F-FLC) films were prepared by high frequency unipolar pulse plasma-enhanced chemical vapor deposition. The microstructures, mechanical properties as well as the tribological properties of the films were investigated. The results indicate that fullerene-like microstructures appear in amorphous carbon matrix and increase greatly with the increase of bias voltage from -600 to -1600 V. And the fluorine contents in F-FLC films also show a minor rise. In addition, the hardness enhances with the bias voltage and the outstanding elastic recovery maintains because of the formation of fullerene-like microstructures in the F-FLC films. Undoubtedly, the F-FLC film deposited under high bias voltage owns a superiorly low friction, which combines the merits of fluorinated carbon film and fullerene-like carbon film. Moreover, the film also shows a remarkable wear resistance, which is mainly attributed to the excellent mechanical properties. This study provides new insights for us to prepare fluorine-containing FLC films with good mechanical and tribological properties.
Investigation the impact of ZTA addition on the properties of nano biogenic hydroxyapatite.
Naga, S M; Sayed, M; El-Maghraby, H F; Awaad, M
2018-05-04
The target of the recent study is to achieve a significant inexpensive and eco-friendly way for getting ZTA/HA composites, based on the nano-HA derived from the eggshell biogenic source. Combining simultaneously the porous structure; which is considered as a bone formation key, with developed mechanical properties and adequate biocompatibility, is another purpose of this study. Furthermore, the impact of ZTA addition from 10-30 mass-%, fabricated by uniaxial pressing and sintering at 1200-1300 °C for 2 h, on the physical and mechanical properties, microstructure and phase composition of ZTA/HA composite bodies was investigated. The results demonstrated that the increasing of ZTA content increases the bodies' apparent porosity and decreases the bulk density due to the decomposition of HA into β-TCP. Where the formation of β-TCP possessed the predominant impact on the mechanical properties of the sintered ZTA/HA composites. ICP, SEM, EDX and thin film XRD results of composites containing 20 mass-% ZTA affirmed the excellent bioactivity of the bodies.
Julkunen, Petro; Kiviranta, Panu; Wilson, Wouter; Jurvelin, Jukka S; Korhonen, Rami K
2007-01-01
Load-bearing characteristics of articular cartilage are impaired during tissue degeneration. Quantitative microscopy enables in vitro investigation of cartilage structure but determination of tissue functional properties necessitates experimental mechanical testing. The fibril-reinforced poroviscoelastic (FRPVE) model has been used successfully for estimation of cartilage mechanical properties. The model includes realistic collagen network architecture, as shown by microscopic imaging techniques. The aim of the present study was to investigate the relationships between the cartilage proteoglycan (PG) and collagen content as assessed by quantitative microscopic findings, and model-based mechanical parameters of the tissue. Site-specific variation of the collagen network moduli, PG matrix modulus and permeability was analyzed. Cylindrical cartilage samples (n=22) were harvested from various sites of the bovine knee and shoulder joints. Collagen orientation, as quantitated by polarized light microscopy, was incorporated into the finite-element model. Stepwise stress-relaxation experiments in unconfined compression were conducted for the samples, and sample-specific models were fitted to the experimental data in order to determine values of the model parameters. For comparison, Fourier transform infrared imaging and digital densitometry were used for the determination of collagen and PG content in the same samples, respectively. The initial and strain-dependent fibril network moduli as well as the initial permeability correlated significantly with the tissue collagen content. The equilibrium Young's modulus of the nonfibrillar matrix and the strain dependency of permeability were significantly associated with the tissue PG content. The present study demonstrates that modern quantitative microscopic methods in combination with the FRPVE model are feasible methods to characterize the structure-function relationships of articular cartilage.
Ferreri, I; Lopes, V; Calderon V, S; Tavares, C J; Cavaleiro, A; Carvalho, S
2014-09-01
With the increase of elderly population and health problems that are arising nowadays, hip joint prostheses are being widely used. However, it is estimated that 20% of hip replacement surgeries simply fails after few years, mainly due to wear fatigue. Bearing this in mind, this work reports on the development of new coatings that are able to sustain long and innocuous life inside the patient, which will confer to the usual biomaterials improved physical, mechanical and tribological properties. In particular, the development of multifunctional coatings based on Ag-ZrCN, prepared by DC reactive magnetron sputtering using two targets, Zr and a modified Zr target, in an Ar+C2H2+N2 atmosphere. Silver pellets were placed in the erosion area of the alloyed Zr target in order to obtain a silver content up to 8 at.%. The structural results obtained by x-ray diffraction show that the coatings crystallize in a NaCl crystal structure typical of ZrC1-xNx. The increase of Ag content promoted the formation of an additional a-CNx amorphous phase, besides a silver crystalline phase. Hardness is decreasing, as increasing silver content. Despite the low thicknesses, adhesion values (LC3) can be considered as good. Dynamic fatigue results suggest that these coatings system can be a real asset in terms of mechanical properties, by improving the performance of usual Stainless Steel 316 L biomaterials. Copyright © 2014 Elsevier B.V. All rights reserved.
Bleach, N C; Nazhat, S N; Tanner, K E; Kellomäki, M; Törmälä, P
2002-04-01
A bioabsorbable self-reinforced polylactide/biphasic calcium phosphate (BCP) composite is being developed for fracture fixation plates. One manufacturing route is to produce preimpregnated sheets by pulling polylactide (PLA) fibres through a suspension of BCP filler in a PLA solution and compression moulding the prepreg to the desired shape. To aid understanding of the process, interactions between the matrix and filler were investigated. Composite films containing 0-0.25 volume fraction filler, produced by solvent casting, were analysed using SEM, tensile testing and dynamic mechanical analysis (DMA). Homogeneous films could be made, although some particle agglomeration was seen at higher filler volume fractions. As the filler content increased, the failure strain decreased due to a reduction in the amount of ductile polymer present and the ultimate tensile strength (UTS) decreased because of agglomeration and void formation at higher filler content. The matrix glass transition temperature increased due to polymer chain adsorption and immobilization onto the BCP particles. Complex damping mechanisms, such as particle-particle agglomeration, may exist at the higher BCP volume fractions.
Jawahar, P; Balasubramanian, M
2006-12-01
Glass fiber reinforced polyester composite and hybrid nanoclay-fiber reinforced composites were prepared by hand lay-up process. The mechanical behavior of these materials and the changes as a result of the incorporation of both nanosize clay and glass fibers were investigated. Composites were prepared with a glass fibre content of 25 vol%. The proportion of the nanosize clay platelets was varied from 0.5 to 2.5 vol%. Hybrid clay-fiber reinforced polyester composite posses better tensile, flexural, impact, and barrier properties. Hybrid clay-fiber reinforced polyester composites also posses better shear strength, storage modulus, and glass transition temperature. The optimum properties were found to be with the hybrid laminates containing 1.5 vol% nanosize clay.
Environmental and strain rate effects on graphite/epoxy composites. Final Report; M.S. Thesis, 1987
NASA Technical Reports Server (NTRS)
Peimandis, Konstantinos
1991-01-01
The hygrothermal characterization of unidirectional graphite/epoxy composites over a range of strain rates was investigated. Special techniques developed for such hygrothermal characterization are also described. The mechanical properties of the composite material were obtained and analyzed by means of a time-temperature-moisture superposition principle. The results show the following: (1) the embedded gage technique was thoroughly examined and found to be appropriate for both hygrothermal expansion and mechanical strain measurements; (2) all transverse properties were found to decrease with increasing temperature and moisture content; and (3) ultimate transverse properties were found to increase with strain rate at low temperatures but follow an opposite trend at high temperatures compared to dry specimens.
Physical and mechanical properties of PMMA bone cement reinforced with nano-sized titania fibers.
Khaled, S M Z; Charpentier, Paul A; Rizkalla, Amin S
2011-02-01
X-ray contrast medium (BaSO(4) or ZrO(2)) used in commercially available PMMA bone cements imparts a detrimental effect on mechanical properties, particularly on flexural strength and fracture toughness. These lower properties facilitate the chance of implant loosening resulting from cement mantle failure. The present study was performed to examine the mechanical properties of a commercially available cement (CMW1) by introducing novel nanostructured titania fibers (n-TiO(2) fibers) into the cement matrix, with the fibers acting as a reinforcing phase. The hydrophilic nature of the n-TiO(2) fibers was modified by using a bifunctional monomer, methacrylic acid. The n-TiO(2) fiber content of the cement was varied from 0 to 2 wt%. Along with the mechanical properties (fracture toughness (K (IC)), flexural strength (FS), and flexural modulus (FM)) of the reinforced cements the following properties were investigated: complex viscosity-versus-time, maximum polymerization temperature (T (max)), dough time (t (dough)), setting time (t (set)), radiopacity, and in vitro biocompatibility. On the basis of the determined mechanical properties, the optimized composition was found at 1 wt% n-TiO(2) fibers, which provided a significant increase in K (IC) (63%), FS (20%), and FM (22%), while retaining the handling properties and in vitro biocompatibility compared to that exhibited by the control cement (CMW1). Moreover, compared to the control cement, there was no significant change in the radiopacity of any of the reinforced cements at p = 0.05. This study demonstrated a novel pathway to augment the mechanical properties of PMMA-based cement by providing an enhanced interfacial interaction and strong adhesion between the functionalized n-TiO( 2) fibers and PMMA matrix, which enhanced the effective load transfer within the cement.
Near-Infrared Imaging for Spatial Mapping of Organic Content in Petroleum Source Rocks
NASA Astrophysics Data System (ADS)
Mehmani, Y.; Burnham, A. K.; Vanden Berg, M. D.; Tchelepi, H.
2017-12-01
Natural gas from unconventional petroleum source rocks (shales) plays a key role in our transition towards sustainable low-carbon energy production. The potential for carbon storage (in adsorbed state) in these formations further aligns with efforts to mitigate climate change. Optimizing production and development from these resources requires knowledge of the hydro-thermo-mechanical properties of the rock, which are often strong functions of organic content. This work demonstrates the potential of near-infrared (NIR) spectral imaging in mapping the spatial distribution of organic content with O(100µm) resolution on cores that can span several hundred feet in depth (Mehmani et al., 2017). We validate our approach for the immature oil shale of the Green River Formation (GRF), USA, and show its applicability potential in other formations. The method is a generalization of a previously developed optical approach specialized to the GRF (Mehmani et al., 2016a). The implications of this work for spatial mapping of hydro-thermo-mechanical properties of excavated cores, in particular thermal conductivity, are discussed (Mehmani et al., 2016b). References:Mehmani, Y., A.K. Burnham, M.D. Vanden Berg, H. Tchelepi, "Quantification of organic content in shales via near-infrared imaging: Green River Formation." Fuel, (2017). Mehmani, Y., A.K. Burnham, M.D. Vanden Berg, F. Gelin, and H. Tchelepi. "Quantification of kerogen content in organic-rich shales from optical photographs." Fuel, (2016a). Mehmani, Y., A.K. Burnham, H. Tchelepi, "From optics to upscaled thermal conductivity: Green River oil shale." Fuel, (2016b).
Secondary Al-Si-Mg High-pressure Die Casting Alloys with Enhanced Ductility
NASA Astrophysics Data System (ADS)
Bösch, Dominik; Pogatscher, Stefan; Hummel, Marc; Fragner, Werner; Uggowitzer, Peter J.; Göken, Mathias; Höppel, Heinz Werner
2015-03-01
Al-Si-Mg-based secondary cast alloys are attractive candidates for thin-walled high-pressure die castings for applications in the transport industry. The present study investigates the effect of manganese additions at high cooling rates on microstructure, mechanical properties, and on the dominating fracture mechanisms of alloy AlSi10Mg with an elevated iron concentration. Systematic variations of the Mn content from 0.20 to 0.85 wt pct at a constant Fe content of 0.55 wt pct illustrate the key changes in type, phase fraction, and shape of the Fe-containing intermetallic phases, and the corresponding influence on the alloy's ductility. For high-pressure die casting (HPDC), an optimal range of the Mn content between 0.40 and 0.60 wt pct, equivalent to a Mn/Fe ratio of approximately 1, has been identified. At these Mn and Fe contents, the high cooling rates obtained in HPDC result in the formation of fine and homogeneously distributed α-Al15(Fe,Mn)3Si2 phase, and crack initiation is transferred from AlFeSi intermetallics to eutectic silicon. The study interprets the microstructure-property relationship in the light of thermodynamic calculations which reveal a significant increase in undercooling of the α-Al15(Fe,Mn)3Si2 phase with increased Mn content. It concludes that the interdependence of the well-defined Mn/Fe ratio and the high cooling rate in HPDC can generate superior ductility in secondary AlSi10Mg cast alloys.
Effect of graphite content on magnetic and mechanical properties of TiC-TiN-Mo-Ni cermets
NASA Astrophysics Data System (ADS)
Zhang, Man; Yang, Qingqing; Xiong, Weihao; Huang, Bin; Ruan, Linji; Mao, Qiao; Li, Shengtao
2018-04-01
TiC-10TiN-6Mo-xGr-yNi (mol%, Gr represents graphite, x = 0, 2, 4, 6, 8, and y = 15, 30) cermets were prepared by powder metallurgy method, in order to inverstigate the effect of Gr content on magnetic and mechanical properties of TiC-TiN-Mo-Ni cermets. Room-temperature (RT) saturation magnetization (Ms) and remanence (Mr) of cermets increased with increasing x. This was mainly attributed to that the total content of non-ferromagnetic carbonitride-forming elements Ti and Mo in Ni-based binder phase decreased with increasing x. At the same x, cermets for y = 15 had lower RT Ms and Mr than those for y = 30. Cermets containing more than 2 mol% Gr became ferromagnetic at RT. Bending strength of cermets first increased and then decreased with increasing x. It reached the maximum at x = 2, mainly due to high total content of solutes Ti and Mo in Ni-based binder phase, and moderate thickness of outer rim of Ti(C,N) ceramic grains. Hardness of cermets was not significantly affected by x, mainly due to the combined action of the decrease of the total content of Ti and Mo in binder phase and the increase of the volume fraction of ceramic grains. At the same x, cermets for y = 15 had lower bending strength and higher hardness than those for y = 30.
Edinçliler, Ayşe; Baykal, Gökhan; Saygili, Altug
2010-06-01
Use of the processed used tires in embankment construction is becoming an accepted way of beneficially recycling scrap tires due to shortages of natural mineral resources and increasing waste disposal costs. Using these used tires in construction requires an awareness of the properties and the limitations associated with their use. The main objective of this paper is to assess the different processing techniques on the mechanical properties of used tires-sand mixtures to improve the engineering properties of the available soil. In the first part, a literature study on the mechanical properties of the processed used tires such as tire shreds, tire chips, tire buffings and their mixtures with sand are summarized. In the second part, large-scale direct shear tests are performed to evaluate shear strength of tire crumb-sand mixtures where information is not readily available in the literature. The test results with tire crumb were compared with the other processed used tire-sand mixtures. Sand-used tire mixtures have higher shear strength than that of the sand alone and the shear strength parameters depend on the processing conditions of used tires. Three factors are found to significantly affect the mechanical properties: normal stress, processing techniques, and the used tire content. Copyright 2009. Published by Elsevier Ltd.
Investigating the Moisture Content of Polyamide 6 by Raman-Microscopy and Multivariate Data Analysis
NASA Astrophysics Data System (ADS)
Lechner, Tobias; Noack, Kristina; Thöne, Manuel; Amend, Philipp; Schmidt, Michael; Will, Stefan
Thermal malleability of thermoplastics results in a high product diversity in various industry sectors. However, industrial applications require a constant and high component quality. Hence, material processing such as laser welding has to consider that, e.g., the moisture content of thermoplastics influences the mechanical properties such as the tensile strength. Moreover, water evaporates during laser welding and can form pores and defects. Thus, there is a large need for non-invasive material inspection before processing. To that end, we developed a methodology based on Raman-microscopy and multivariate data analysis (MVD) to determine the moisture content of polyamide (MCP). Further, the impact of the MCP on the mechanical properties was verified. For samples with a defined variation of the MCP, xyz-Raman-scans were carried out and analysed using MVD. For reference purposes, the samples were weighted and tensile tests were performed. An evaluation by means of partial least squares regression analysis (PLSR) resulted in a prediction of the MCP with a correlation coefficient >98%. Consequently, Raman-microscopy shows large potential for developing new techniques for inspection and quality control of plastics before processing. Dedicated to Professor Alfred Leipertz on the occasion of his 70th birthday.
Monvisade, Pathavuth; Siriphannon, Punnama; Tapcharoen, Walailak
2009-09-01
Preparation of hydroxyapatite/poly(ethylene glutarate) (HAp/PEG) composites was carried out by ring-opening polymerization (ROP) of cyclic oligo(ethylene glutarate) in porous HAp scaffolds using various reaction temperatures and times. The content of ROP-PEG interpenetrated into the porous HAp scaffold was about 13-18 wt % with the values of number average molecular weight (overline_M{n}) and weight average molecular weight (overline_M{W}) of 2120-3630 and 2760-5250 g/mol, respectively. The increase in polymerization time and temperature brought about increase in molecular weight of ROP-PEG, but decrease in its content. Compressive strength and compressive modulus of the HAp/PEG composites were about 5.8-20.1 and 105-208 MPa, respectively. These mechanical properties depend upon the effects of distribution, content, and molecular weight of ROP-PEG in the composites. In vitro bioactivity of the HAp/PEG composites was studied by soaking them in simulated body fluid (SBF) for 28 days. The formation of HAp nanocrystal on the composite surfaces through the consumption of calcium and phosphorus from the SBF solution was observed after soaking, indicating the bioactivity of these HAp/PEG composites.
Effect of surface modified kaolin on properties of polypropylene grafted maleic anhydride
NASA Astrophysics Data System (ADS)
Yang, Ni; Zhang, Zuo-Cai; Ma, Ning; Liu, Huan-Li; Zhan, Xue-Qing; Li, Bing; Gao, Wei; Tsai, Fang-Chang; Jiang, Tao; Chang, Chang-Jung; Chiang, Tai-Chin; Shi, Dean
To achieve reinforcement of mechanical and thermal performances of polypropylene (PP) product, this work aimed at fabrication of surface modified kaolin (M-kaolin) filled polypropylene grafted maleic anhydride (PP-g-MAH) composites with varying contents of fillers and investigation of their mechanical and thermal properties. And the prepared PP-g-MAH/M-kaolin composites were characterized by means of Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Fracture analysis by SEM showed M-kaolin particles were well dispersed in the PP-g-MAH matrix. Mechanical behaviors were determined by tensile strength, tensile strain at break and impact strength analysis. Impact strength of PP-g-MAH/2 wt% M-kaolin composites was improved up to 30% comparing with unfilled composites. Thermostability had been found enhanced when M-kaolin added. The results revealed PP-g-MAH/M-kaolin composites showed the optimal thermal and mechanical properties when 2 wt% of M-kaolin was added.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuanqiang, Zhou; Xiangxiang, Gong; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou
This work was done to better understand the microstructures, composition and mechanical properties of Chinese hairy crab shell. For fully revealing its hierarchical microstructure, the crab shell was observed with electron microscope under different magnifications from different facets. XRD, EDS, FTIR and TGA techniques have been used to characterize the untreated and chemically-treated crab shells, which provided enough information to determine the species and relative content of components in this biomaterial. Combined the microstructures with constituents analysis, the structural principles of crab shell was detailedly realized from different structural levels beyond former reports. To explore the relationship between structure andmore » function, the mechanical properties of shell have been measured through performing tensile tests. The contributions of organics and minerals in shell to the mechanical properties were also discussed by measuring the tensile strength of de-calcification samples treated with HCl solution.« less
NASA Astrophysics Data System (ADS)
Vorozhtsov, S.; Kolarik, V.; Promakhov, V.; Zhukov, I.; Vorozhtsov, A.; Kuchenreuther-Hummel, V.
2016-05-01
Metal matrix composites (MMC) based on aluminum and reinforced with nonmetallic particles are of great practical interest due to their potentially high physico-mechanical properties. In this work, Al-Al4C3 composites were obtained by a hot-compacting method. Introduction of nanodiamonds produced by detonation to the Al powder in an amount of 10 wt.% led to the formation of ~15 wt.% of aluminum carbide during hot compacting. It was found that composite materials with the diamond content of 10 wt.% in the initial powder mix have an average microhardness of 1550 MPa, whilst the similarly compacted aluminum powder without reinforcing particles shows a hardness of 750 MPa. The mechanical properties of an Al-Al4C3 MMC at elevated test temperatures exceeded those of commercial casting aluminum alloys such as A356.
Cicala, Gianluca; Tosto, Claudio; Latteri, Alberta; La Rosa, Angela Daniela; Blanco, Ignazio; Elsabbagh, Ahmed; Russo, Pietro; Ziegmann, Gerhard
2017-08-26
Green composites from polypropylene and lignin-based natural material were manufactured using a melt extrusion process. The lignin-based material used was the so called "liquid wood". The PP/"Liquid Wood" blends were extruded with "liquid wood" content varying from 20 wt % to 80 wt %. The blends were thoroughly characterized by flexural, impact, and dynamic mechanical testing. The addition of the Liquid Wood resulted in a great improvement in terms of both the flexural modulus and strength but, on the other hand, a reduction of the impact strength was observed. For one blend composition, the composites reinforced with hemp fibers were also studied. The addition of hemp allowed us to further improve the mechanical properties. The composite with 20 wt % of hemp, subjected to up to three recycling cycles, showed good mechanical property retention and thermal stability after recycling.
Nanoindentation and thermal characterization of poly (vinylidenefluoride)/MWCNT nanocomposites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eggedi, Obulapathi; Valiyaneerilakkal, Uvais; Varghese, Soney, E-mail: soneyva@nitc.ac.in
2014-04-15
We report the preparation, thermal and micro/nanomechanical behavior of poly (vinylidine diflouride) (PVDF)/multiwalled carbon nanotube (MWCNT) nanocomposites. It has been found that the addition of MWCNT considerably enhances the β-phase formation, thermal and mechanical properties of PVDF. Atomic force microscope (AFM) studies have been performed on the composites under stress conditions to measure the mechanical properties. The nanoscale mechanical properties of the composites like Young's modulus and hardness of the nanocomposites were investigated by nanoindentation technique. Morphological studies of the nanocomposites were also studied, observations show a uniform distribution of MWCNT in the matrix and interfacial adhesion between PVDF andmore » MWCNT was achieved, which was responsible for enhancement in the hardness and Young's modulus. Differential scanning calorimetry (DSC) studies indicate that the melting temperature of the composites have been slightly increased while the heat of fusion markedly decreased with increasing MWCNT content.« less
Stress physiology and weapon integrity of intertidal mantis shrimp under future ocean conditions
deVries, Maya S.; Webb, Summer J.; Tu, Jenny; Cory, Esther; Morgan, Victoria; Sah, Robert L.; Deheyn, Dimitri D.; Taylor, Jennifer R. A.
2016-01-01
Calcified marine organisms typically experience increased oxidative stress and changes in mineralization in response to ocean acidification and warming conditions. These effects could hinder the potency of animal weapons, such as the mantis shrimp’s raptorial appendage. The mechanical properties of this calcified weapon enable extremely powerful punches to be delivered to prey and aggressors. We examined oxidative stress and exoskeleton structure, mineral content, and mechanical properties of the raptorial appendage and the carapace under long-term ocean acidification and warming conditions. The predatory appendage had significantly higher % Mg under ocean acidification conditions, while oxidative stress levels as well as the % Ca and mechanical properties of the appendage remained unchanged. Thus, mantis shrimp tolerate expanded ranges of pH and temperature without experiencing oxidative stress or functional changes to their weapons. Our findings suggest that these powerful predators will not be hindered under future ocean conditions. PMID:27974830
Latteri, Alberta; La Rosa, Angela Daniela; Elsabbagh, Ahmed; Ziegmann, Gerhard
2017-01-01
Green composites from polypropylene and lignin-based natural material were manufactured using a melt extrusion process. The lignin-based material used was the so called “liquid wood”. The PP/“Liquid Wood” blends were extruded with “liquid wood” content varying from 20 wt % to 80 wt %. The blends were thoroughly characterized by flexural, impact, and dynamic mechanical testing. The addition of the Liquid Wood resulted in a great improvement in terms of both the flexural modulus and strength but, on the other hand, a reduction of the impact strength was observed. For one blend composition, the composites reinforced with hemp fibers were also studied. The addition of hemp allowed us to further improve the mechanical properties. The composite with 20 wt % of hemp, subjected to up to three recycling cycles, showed good mechanical property retention and thermal stability after recycling. PMID:28846607
Polypropylenes foam consisting of thermally expandable microcapsule as blowing agent
NASA Astrophysics Data System (ADS)
Jeoung, Sun Kyung; Hwang, Ye Jin; Lee, Hyun Wook; Kwak, Sung Bok; Han, In-Soo; Ha, Jin Uk
2016-03-01
The structure of thermally expandable microcapsule (TEMs) is consisted of a thermoplastic shell which is filled with liquid hydrocarbon at core. The shell of TEMs becomes soft when the temperature is higher than boiling temperature of liquid hydrocarbon. The shell of TEMs is expanded under the high temperature because the inner pressure of TEMs is increased by vaporization of hydrocarbon core. Therefore, the TEMs are applicable for blowing agents and light weight fillers. In this research, we fabricated the polypropylene (PP) foam by using the TEMs and chemical blowing agents and compared to their physical properties. The density of the specimen was decreased when the contents of chemical blowing agents and TEMs were increased. In addition, the mechanical properties (i.e. tensile strength and impact strength) of specimens were deteriorated with increasing amount of chemical blowing agents and TEMs. However, PP foam produced with TEMs showed higher impact strength than the one with the chemical blowing agent. In order to clarify the dependence of impact strength of PP foam as the blowing agent, the morphology difference of the PP foams was investigated. Expanding properties of PP foams produced with TEMs was changed with TEMs content of PP foams. Processing conditions also influenced the mechanical properties of PP foam containing TEMs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Ki-Seok; Park, Soo-Jin, E-mail: sjpark@inha.ac.kr
In this work, poly(methyl methacrylate) (PMMA) was grafted onto amine treated multi-walled carbon nanotubes (NH-MWNTs) and the physical and rheological properties of the NH-MWNTs-g-PMMA nanocomposites were investigated. The graft reaction of NH-MWNTs and the PMMA matrix was confirmed from the change of the N{sub 1S} peaks, including those of amine oxygen and amide oxygen, by X-ray photoelectron spectroscopy (XPS). The thermal and mechanical properties of the NH-MWNT-g-PMMA nanocomposites were enhanced by the graft reaction between NH-MWNTs and PMMA matrix. In addition, the viscosity of the nanocomposites was increased with the addition of NH-MWNTs. Storage (G') and loss modulus (G'') weremore » significantly increased by increase in the NH-MWNT content compared to acid-treated MWNTs/PMMA nanocomposites. This increase was attributed to the strong interaction by the grafting reaction between NH-MWNTs and the PMMA matrix. - Graphical abstract: This describes the increase of mechanical properties in NH-MWNTs-g-PMMA hybrid composites with different NH-MWNT contents. Highlights: > Aminized carbon nanotubes are used as reinforcement for poly(methylmethacrylate). > Poly(methylmethacrylate) is grafted on aminized carbon nanotubes by thermal reaction. > Grafting of carbon nanotubes and polymer provide enhanced physical properties. > It was due to the strong interaction between carbon nanotubes and polymer matrix.« less
NASA Astrophysics Data System (ADS)
Amri, A.; Rahmana, H.; Utami, S. P.; Iriyanti, R. S.; Jiang, Z. T.; Rahman, M. M.
2018-04-01
The conductive composites of tapioca based bioplastic and the electrochemical- mechanical liquid exfoliation (EMLE) graphene have been successfully synthesized via the solution intercalation method for conductive bioplastic applications. The synthesized EMLE graphene quality, the mechanical properties, the functional group interactions and the conductivity of bioplastic composites, respectively, were analyzed using Raman spectroscopy, Universal Testing Machine (UTM) via ASTM D882-92, Fourier Transform Infrared (FTIR) spectroscopy, Multitester via Four Probe Method. Raman spectroscopy analyses revealed that the graphene used is multi layer graphene (~ 3-10 layer) with deffects and minor impurity of graphene oxide (EMLE graphene). The tensile strength and the Young’s modulus increased with the increasing of the EMLE graphene content in the composites, while the elongation decreased. The bioplastic synthesized using the 9% EMLE graphene content and the mixing time of 50 minutes exhibited the best mechanical properties with the tensile strength of 4.116 Mpa, the Young’s modulus of 75.476 Mpa, and the elongation of 5.453%. The FTIR spectra indicated that there was a good interactions of EMLE graphene in the bioplastic matrix due to the hydrophylic properties and the secondary bonds between the EMLE graphene and the starch and glycerol plasticizer. The higher amount of graphene added, the higher conductivity of bioplastic would be, and vice versa for the resistivity. The best electrical properties of 1.57 x10‑1/ohm.cm (conductivity) and 6.34 ohm.cm (resistivity) was reached by the bioplastic synthesized with addition of 9% EMLE graphene and 50 minutes stirring time. EMLE Graphene is the promissing filler for further development of Tapioca based conductive bioplastics.
Beigi, Saeed; Yeganeh, Hamid; Atai, Mohammad
2013-07-01
Study and evaluation of fracture toughness, flexural and dynamic mechanical properties, and crosslink density of ternary thiol-ene-methacrylate systems and comparison with corresponding conventional methacrylate system were considered in the present study. Urethane tetra allyl ether monomer (UTAE) was synthesized as ene monomer. Different formulations were prepared based on combination of UTAE, BisGMA/TEGDMA and a tetrathiol monomer (PETMP). The photocuring reaction was conducted under visible light using BD/CQ combination as photoinitiator system. Mechanical properties were evaluated via measuring flexural strength, flexural modulus and fracture toughness. Scanning electron microscopy (SEM) was utilized to study the morphology of the fractured specimen's cross section. Viscoelastic properties of the samples were also determined by dynamic mechanical thermal analysis (DMTA). The same study was performed on a conventional methacrylate system. The data were analyzed and compared by ANOVA and Tukey HSD tests (significance level=0.05). The results showed improvement in fracture toughness of the specimens containing thiol-ene moieties. DMTA revealed a lower glass transition temperature and more homogenous structure for thiol-ene containing specimens in comparison to the system containing merely methacrylate monomer. The flexural modulus and flexural strength of the specimens with higher thiol-ene content were lower than the neat methacrylate system. The SEM micrographs of the fractured surface of specimens with higher methacrylate content were smooth and mirror-like (shiny) which represent brittle fracture. The thiol-ene-methacrylate system can be used as resin matrix of dental composites with enhanced fracture toughness in comparison to the methacrylate analogous. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Erickson, Isaac E; van Veen, Steven C; Sengupta, Swarnali; Kestle, Sydney R; Mauck, Robert L
2011-10-01
Cartilage degeneration is common in the aged, and aged chondrocytes are inferior to juvenile chondrocytes in producing cartilage-specific extracellular matrix. Mesenchymal stem cells (MSCs) are an alternative cell type that can differentiate toward the chondrocyte phenotype. Aging may influence MSC chondrogenesis but remains less well studied, particularly in the bovine system. The objectives of this study were (1) to confirm age-related changes in bovine articular cartilage, establish how age affects chondrogenesis in cultured pellets for (2) chondrocytes and (3) MSCs, and (4) determine age-related changes in the biochemical and biomechanical development of clinically relevant MSC-seeded hydrogels. Native bovine articular cartilage from fetal (n = 3 donors), juvenile (n = 3 donors), and adult (n = 3 donors) animals was analyzed for mechanical and biochemical properties (n = 3-5 per donor). Chondrocyte and MSC pellets (n = 3 donors per age) were cultured for 6 weeks before analysis of biochemical content (n = 3 per donor). Bone marrow-derived MSCs of each age were also cultured within hyaluronic acid hydrogels for 3 weeks and analyzed for matrix deposition and mechanical properties (n = 4 per age). Articular cartilage mechanical properties and collagen content increased with age. We observed robust matrix accumulation in three-dimensional pellet culture by fetal chondrocytes with diminished collagen-forming capacity in adult chondrocytes. Chondrogenic induction of MSCs was greater in fetal and juvenile cell pellets. Likewise, fetal and juvenile MSCs in hydrogels imparted greater matrix and mechanical properties. Donor age and biochemical microenvironment were major determinants of both bovine chondrocyte and MSC functional capacity. In vitro model systems should be evaluated in the context of age-related changes and should be benchmarked against human MSC data.
The behaviour of stacking fault energy upon interstitial alloying.
Lee, Jee-Yong; Koo, Yang Mo; Lu, Song; Vitos, Levente; Kwon, Se Kyun
2017-09-11
Stacking fault energy is one of key parameters for understanding the mechanical properties of face-centered cubic materials. It is well known that the plastic deformation mechanism is closely related to the size of stacking fault energy. Although alloying is a conventional method to modify the physical parameter, the underlying microscopic mechanisms are not yet clearly established. Here, we propose a simple model for determining the effect of interstitial alloying on the stacking fault energy. We derive a volumetric behaviour of stacking fault energy from the harmonic approximation to the energy-lattice curve and relate it to the contents of interstitials. The stacking fault energy is found to change linearly with the interstitial content in the usual low concentration domain. This is in good agreement with previously reported experimental and theoretical data.
Electromagnetic non-destructive technique for duplex stainless steel characterization
NASA Astrophysics Data System (ADS)
Rocha, João Vicente; Camerini, Cesar; Pereira, Gabriela
2016-02-01
Duplex stainless steel (DSS) is a two-phase (ferrite and austenite) material, which exhibits an attractive combination of mechanical properties and high corrosion resistance, being commonly employed for equipment of petrochemical plants, refining units and oil & gas platforms. The best properties of DSS are achieved when the phases are in equal proportions. However, exposition to high temperatures (e.g. welding process) may entail undesired consequences, such as deleterious phases precipitation (e.g. sigma, chi) and different proportion of the original phases, impairing dramatically the mechanical and corrosion properties of the material. A detailed study of the magnetic behavior of DSS microstructure with different ferrite austenite ratios and deleterious phases content was accomplished. The non destructive method evaluates the electromagnetic properties changes in the material and is capable to identify the presence of deleterious phases into DSS microstructure.
Sheykhnazari, Somayeh; Tabarsa, Taghi; Ashori, Alireza; Ghanbari, Abbas
2016-12-01
The aim of this paper was to prepare composites of bacterial cellulose (BC) filled with silica (SiO 2 ) nanoparticles to evaluate the influence of the SiO 2 contents (3, 5 and 7wt%) on the thermo-mechanical properties of the composites. BC hydro-gel was immersed in an aqueous solution of silanol derived from tetraethoxysilane (TEOS), the silanol was then converted into SiO 2 in the BC matrix by pressing at 120°C and 2MPa. The BC/SiO 2 translucent sheets were examined by dynamic-mechanical analysis (DMA), thermo gravimetric analysis (TGA), and scanning electron microscopy (SEM). The temperature dependence of the storage modulus, loss modulus and tan delta was determined by DMA. In general, the results revealed that the increment of storage modulus and thermal stability increased concomitantly with the augmentation of SiO 2 content. Therefore, it could be concluded that the mechanical properties of the composites were improved by using high amounts of nano silica. This would be a high aspect ratio of BC capable of connecting the BC matrix and SiO 2 , thereby enhancing a large contact surface and resulting in excellent coherence. A decrease of the storage modulus was consistent with increasing temperature, resulting from softening of the composites. The storage modulus of the composites increased in the order: BC/S7>BC/S5>BC/S3, while the loss modulus and tan delta decreased. On the other hand, the thermal stabilities of all BC/SiO 2 composites were remarkably enhanced as compared to the pristine BC. TGA curves showed that the temperature of decomposition of the pure BC gradually shifted from about 260°C to about 370°C as silica content increased. SEM observations illustrated that the nano-scale SiO 2 was embedded between the voids and nano-fibrils of the BC matrix. Overall, the results indicated that the successful synthesis and superior properties of BC/SiO 2 advocate its effectiveness for various applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Composition and Properties of Deposits Formed on the Internal Surface of Oil Pipelines
NASA Astrophysics Data System (ADS)
Gulieva, N. K.; Mustafaev, I. I.; Sabzaliev, A. A.; Garibov, R. G.
2018-03-01
The composition and physicochemical properties of oil deposits formed in pipelines during the transport of oil from Azerbaijani fields were studied by atomic absorption, chromatography-mass spectrometry, gamma spectrometry, and scanning electron microscopy methods. Up to 20% of the deposits were shown to be composed of paraffins, tars, and other heavy oil fractions, while asphaltenes and mechanical impurities (iron, sulfur, manganese, calcium, and silicon compounds) comprise about 80%. The contents of polycyclic aromatic hydrocarbons and radionuclides are within permissible levels, while the content of some heavy metals exceeds the permissible level by a factor of 1000. These data should be used in the management of waste products in petroleum pipelines.
Wang, Yuhui; Shi, Baodong; He, Yanming; Zhang, Hongwang; Peng, Yan
2018-01-01
A Fe-34.5 wt % Mn-0.04 wt % C ultra-high Mn steel with a fully recrystallised fine-grained structure was produced by cold rolling and subsequent annealing. The steel exhibited excellent cryogenic temperature properties with enhanced work hardening rate, high tensile strength, and high uniform elongation. In order to capture the unique mechanical behaviour, a constitutive model within finite strain plasticity framework based on Hill-type yield function was established with standard Armstrong-Frederick type isotropic hardening. In particular, the evolution of isotropic hardening was determined by the content of martensite; thus, a relationship between model parameters and martensite content is built explicitly. PMID:29414840
Observation of the TWIP + TRIP Plasticity-Enhancement Mechanism in Al-Added 6 Wt Pct Medium Mn Steel
NASA Astrophysics Data System (ADS)
Lee, Seawoong; Lee, Kyooyoung; De Cooman, Bruno C.
2015-06-01
The intercritically annealed Fe-0.15 pctC-6.0 pctMn-1.5 pctSi-3.0 pctAl and Fe-0.30 pctC-6.0 pctMn-1.5 pctSi-3.0 pctAl medium Mn steels were found to have improved mechanical properties due to the TWIP and TRIP plasticity-enhancing mechanisms being activated in succession during tensile deformation. The increase of the C content from 0.15 to 0.30 pct resulted in ultra-high strength properties and a strength-ductility balance of approximately 65,000 MPa-pct, i.e., equivalent to the strength-ductility balance of high Mn TWIP steel with a fully austenitic microstructure.
Soil property effects on wind erosion of organic soils
NASA Astrophysics Data System (ADS)
Zobeck, Ted M.; Baddock, Matthew; Scott Van Pelt, R.; Tatarko, John; Acosta-Martinez, Veronica
2013-09-01
Histosols (also known as organic soils, mucks, or peats) are soils that are dominated by organic matter (OM > 20%) in half or more of the upper 80 cm. Forty two states have a total of 21 million ha of Histosols in the United States. These soils, when intensively cropped, are subject to wind erosion resulting in loss of crop productivity and degradation of soil, air, and water quality. Estimating wind erosion on Histosols has been determined by USDA-Natural Resources Conservation Service (NRCS) as a critical need for the Wind Erosion Prediction System (WEPS) model. WEPS has been developed to simulate wind erosion on agricultural land in the US, including soils with organic soil material surfaces. However, additional field measurements are needed to understand how soil properties vary among organic soils and to calibrate and validate estimates of wind erosion of organic soils using WEPS. Soil properties and sediment flux were measured in six soils with high organic contents located in Michigan and Florida, USA. Soil properties observed included organic matter content, particle density, dry mechanical stability, dry clod stability, wind erodible material, and geometric mean diameter of the surface aggregate distribution. A field portable wind tunnel was used to generate suspended sediment and dust from agricultural surfaces for soils ranging from 17% to 67% organic matter. The soils were tilled and rolled to provide a consolidated, friable surface. Dust emissions and saltation were measured using an isokinetic vertical slot sampler aspirated by a regulated suction source. Suspended dust was sampled using a Grimm optical particle size analyzer. Particle density of the saltation-sized material (>106 μm) was inversely related to OM content and varied from 2.41 g cm-3 for the soil with the lowest OM content to 1.61 g cm-3 for the soil with highest OM content. Wind erodible material and the geometric mean diameter of the surface soil were inversely related to dry clod stability. The effect of soil properties on sediment flux varied among flux types. Saltation flux was adequately predicted with simple linear regression models. Dry mechanical stability was the best single soil property linearly related to saltation flux. Simple linear models with soil properties as independent variables were not well correlated with PM10E values (mass flux). A second order polynomial equation with OM as the independent variable was found to be most highly correlated with PM10E values. These results demonstrate that variations in sediment and dust emissions can be linked to soil properties using simple models based on one or more soil properties to estimate saltation mass flux and PM10E values from organic and organic-rich soils.
NASA Astrophysics Data System (ADS)
Wu, W. L.; Chen, Z.
A phase-change energy-storage material, silicone rubber (SR) coated n-octadecane/poly (styrene-methyl methacrylate) (SR/OD/P(St-MMA)) microcapsule composites, was prepared by mixing SR and OD/P(St-MMA) microcapsules. The microcapsule content and silicone rubber coated method were investigated. The morphology and thermal properties of the composites were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TG), differential scanning calorimetry (DSC) and heat storage properties. The results showed that the thermal and mechanical properties of SR/OD/P(St-MMA) composites were excellent when the microcapsules were coated with room temperature vulcanized silicone rubber (RTVSR), of which content was 2 phr (per hundred rubber). The enthalpy value of the composites was 67.6 J g-1 and the composites were found to have good energy storage function.
NASA Astrophysics Data System (ADS)
Xiao, Ling; Sun, Y. H.; Yu, Lie
2011-07-01
This paper investigated the effect of compaction parameters and dielectric composition on mechanical, magnetic and electrical properties of iron-organosilicon epoxy resin soft magnetic composites. In this work, iron powders with high purity were covered by an organic material (organosilicon epoxy resin) and then by coupling agent (KH-550). The coated powders were then cold compacted at 600, 800 and 1000 MPa and cured under vacuum respectively. The results show that the saturation magnetic flux density and electrical resistivity are dependent on compaction pressure and resin content. Increase in the organic phase content leads to decrease of the saturation magnetic flux density, while increase of the electrical resistivity. Furthermore, the samples with 0.9 wt% resins + 0.1 wt% coupling agent at compaction pressure of 800 MPa shows better properties than the others.
High Early-Age Strength Concrete for Rapid Repair
NASA Astrophysics Data System (ADS)
Maler, Matthew O.
The aim of this research was to identify High Early-Age Strength (HES) concrete batch designs, and evaluate their suitability for use in the rapid repair of highways and bridge decks. To this end, two criteria needed to be met; a minimum compressive strength of 20.68 MPa (3000 psi) in no later than 12 hours, and a drying shrinkage of less than 0.06 % at 28 days after curing. The evaluations included both air-entrained, and non-air-entrained concretes. The cement types chosen for this study included Type III and Type V Portland cement and "Rapid Set"--a Calcium Sulfoaluminate (CSA) cement. In addition, two blended concretes containing different ratios of Type V Portland cement and CSA cement were investigated. The evaluation of the studied concretes included mechanical properties and transport properties. Additionally, dimensional stability and durability were investigated. Evaluations were conducted based on cement type and common cement factor. Fresh property tests showed that in order to provide a comparable workability, and still remain within manufactures guideline for plasticizer, the water-to-cement ratio was adjusted for each type of cement utilized. This resulted in the need to increase the water-to-cement ratio as the Blaine Fineness of the cement type increased (0.275 for Type V Portland cement, 0.35 for Type III Portland cement, and 0.4 for Rapid Set cement). It was also observed that negligible changes in setting time occurred with increasing cement content, whereas changes in cement type produced notable differences. The addition of air-entrainment had beneficial effect on workability for the lower cement factors. Increasing trends for peak hydration heat were seen with increases in cement factor, cement Blaine Fineness, and accelerator dosage. Evaluation of hardened properties revealed opening times as low as 5 hours for Type V Portland cement with 2.0 % accelerator per cement weight and further reduction in opening time by an hour when accelerator dosage was increased to 2.8 % by cement weight. When Type III Portland cement and Rapid Set cement were used, the opening time reduced to as low as 4.5 hours and 1 hour, respectively. The results for Type V Portland cement concretes showed that as cement factor increased so did mechanical properties until the cement factor exceeded 504 kg/m3 (850 lb/yd3), at which point the peak heat of hydration exceeded 46.1 °C (115 °F) and the mechanical properties decreased. Other evaluations on the studied High Early-Age Strength Type V Portland cement concretes revealed increases in absorption, rapid chloride penetration, water permeability, drying shrinkage, corrosion resistance, and resistance to wear with increases in cement content. The addition of air-entrainment had adverse effects on compressive strength, absorption, and rapid chloride migration; while showing lower values for rapid chloride penetration. Curing had positive effects on all hardened properties of the studied HES concretes containing Type V cement. When examining the studied Type III Portland cement concretes, it was seen that an increase in cement content led to decreases in mechanical properties. It is noted that the peak heat of hydration for these concrete exceeded the threshold of 46.1 °C (115 °F). In addition, increases in cement factor also resulted in decreases in rapid chloride migration, frost resistance and resistance to wear. Increases in cement content resulted in increases in absorption, rapid chloride penetration, water permeability, drying shrinkage, and corrosion resistance. The use of air-entrainment imparted decreases in compressive strength and rapid chloride penetration, increases in absorption, and negligible effects on rapid chloride migration. Extending curing period resulted in beneficial effects on all properties of the studied Type III cement concretes. The studied CSA cement concretes had slightly decreasing strength trends as cement content was increased. Concretes containing CSA cement produced the lowest opening time (one hour) and the highest peak hydration heats of all concretes studied. While its corrosion and frost resistance reduced as cement content increased, the absorption and rapid chloride penetration increased with increasing cement content. For drying shrinkage, opening time curing showed more volume change with increasing cement content, whereas extending curing to 24 hours and 28 days resulted in reduction of drying shrinkage. Increasing cement factor had minimal effects on water permeability and abrasion resistance. Air-entrainments reduced compressive strength, but increased absorption and rapid chloride penetration. Rapid chloride migration was found to be incompatible with CSA cements concretes. All hardened properties of the studied CSA cement concretes improved once curing age was extended to 24 hours and 28 days. (Abstract shortened by ProQuest.).
Guo, Kaiyu; Dong, Zhaoming; Zhang, Yan; Wang, Dandan; Tang, Muya; Zhang, Xiaolu; Xia, Qingyou; Zhao, Ping
2018-05-01
Bombyx mori silk fibers with thin diameters have advantages of lightness and crease-resistance. Many studies have used anti-juvenile hormones to induce trimolters in order to generate thin silk; however, there has been comparatively little analysis of the morphology, structure and mechanical properties of trimolter silk. This study induced two kinds of trimolters by appling topically anti-juvenile hormones and obtained thin diameter silk. Scanning electron microscope (SEM), FTIR analysis, tensile mechanical testing, chitin staining were used to reveal that the morphology, conformation and mechanical property of the trimolter silk. Cocoon of trimolters were highly densely packed by thinner fibers and thus had small apertures. We found that the conformation of trimolter silk fibroin changed and formed more β-sheet structures. In addition, analysis of mechanical parameters yielded a higher Young's modulus and strength in trimolter silk than in the control. By chitin staining of silk gland, we postulated that the mechanical properties of trimolters' silk was enhanced greatly during to the structural changes of silk gland. We induced trimolters by anti-juvenile hormones and the resulting cocoons were more closely packed and had smaller silk fiber diameters. We found that the conformation of trimolters silk fibroin had a higher content of β-sheet structures and better mechanical properties. Our study revealed the structures and mechanical properties of trimolter silk, and provided a valuable reference to improve silk quality by influencing molting in silkworms. Copyright © 2018 Elsevier B.V. All rights reserved.
Influence of wheat kernel physical properties on the pulverizing process.
Dziki, Dariusz; Cacak-Pietrzak, Grażyna; Miś, Antoni; Jończyk, Krzysztof; Gawlik-Dziki, Urszula
2014-10-01
The physical properties of wheat kernel were determined and related to pulverizing performance by correlation analysis. Nineteen samples of wheat cultivars about similar level of protein content (11.2-12.8 % w.b.) and obtained from organic farming system were used for analysis. The kernel (moisture content 10 % w.b.) was pulverized by using the laboratory hammer mill equipped with round holes 1.0 mm screen. The specific grinding energy ranged from 120 kJkg(-1) to 159 kJkg(-1). On the basis of data obtained many of significant correlations (p < 0.05) were found between wheat kernel physical properties and pulverizing process of wheat kernel, especially wheat kernel hardness index (obtained on the basis of Single Kernel Characterization System) and vitreousness significantly and positively correlated with the grinding energy indices and the mass fraction of coarse particles (> 0.5 mm). Among the kernel mechanical properties determined on the basis of uniaxial compression test only the rapture force was correlated with the impact grinding results. The results showed also positive and significant relationships between kernel ash content and grinding energy requirements. On the basis of wheat physical properties the multiple linear regression was proposed for predicting the average particle size of pulverized kernel.
NASA Astrophysics Data System (ADS)
Nebipasagil, Ali
Poly(arylene ether sulfone)s are high-performance engineering thermoplastics that have been investigated extensively over the past several decades due to their outstanding mechanical properties, high glass transition temperatures (Tg), solvent resistance and exceptional thermal, oxidative and hydrolytic stability. Their thermal and mechanical properties are highly suited to a variety of applications including membrane applications such as reverse osmosis, ultrafiltration, and gas separation. This dissertation covers structure-property-performance relationships of poly(arylene ether sulfone) and poly(ethylene oxide)-containing random and segmented copolymers for reverse osmosis and gas separation membranes. The second chapter of this dissertation describes synthesis of disulfonated poly(arylene ether sulfone) random copolymers with oligomeric molecular weights that contain hydrophilic and hydrophobic segments for thin film composite (TFC) reverse osmosis membranes. These copolymers were synthesized and chemically modified to obtain novel crosslinkable poly(arylene ether sulfone) oligomers with acrylamide groups on both ends. The acrylamideterminated oligomers were crosslinked with UV radiation in the presence of a multifunctional acrylate and a UV initiator. Transparent, dense films were obtained with high gel fractions. Mechanically robust TFC membranes were prepared from either aqueous or water-methanol solutions cast onto a commercial UDELRTM foam support. This was the first example that utilized a water or alcohol solvent system and UV radiation to obtain reverse osmosis TFC membranes. The membranes were characterized with regard to composition, surface properties, and water uptake. Water and salt transport properties were elucidated at the department of chemical engineering at the University of Texas at Austin. The gas separation membranes presented in chapter three were poly(arylene ether sulfone) and poly(ethylene oxide) (PEO)-containing polyurethanes. Poly(arylene ether sulfone) copolymers with controlled molecular weights were synthesized and chemically modified to obtain poly(arylene ether sulfone) polyols with aliphatic hydroxyethyl terminal functionality. The hydroxyethyl-terminated oligomers and a,u-hydroxy-terminated PEO were chain extended with a diisocyanate to obtain polyurethanes. Compositions with high poly(arylene ether sulfone) content relative to the hydrophilic PEO blocks were of interest due to their mechanical integrity. The membranes were characterized to analyze their compositions, thermal and mechanical properties, water uptake, and molecular weights. These membranes were also evaluated by collaborators at the University of Texas at Austin to explore single gas transport properties. The results showed that both polymer and transport properties closely related to PEO-content. The CO2/CH4 gas selectivity of our membranes were improved from 25 to 34 and the CO2/N2 gas selectivity nearly doubled from 25 to 46 by increasing PEO-content from 0 to 30 wt.% in polyurethanes. Chapter four also focuses on polymers for gas separation membranes. Disulfonated poly(arylene ether sulfone) and poly(ethylene oxide)-containing polyurethanes were synthesized for potential applications as gas separation membranes. Disulfonated polyols containing 20 and 40 mole percent of disulfonated repeat units with controlled molecular weights were synthesized. Poly(arylene ether sulfone) polyols and alpha,o-hydroxy-terminated poly(ethylene oxide) were subsequently chain extended with a diisocyanate to obtain polyurethanes. Thermal and mechanical characterization revealed that the polyurethanes had a phase-mixed complex morphology.
Assessing mechanical deconstruction of softwood cell wall for cellulosic biofuels production
NASA Astrophysics Data System (ADS)
Jiang, Jinxue
Mechanical deconstruction offers a promising strategy to overcome biomass recalcitrance for facilitating enzymatic hydrolysis of pretreated substrates with zero chemicals input and presence of inhibitors. The goal of this dissertation research is to gain a more fundamental understanding on the impact of mechanical pretreatment on generating digestible micronized-wood and how the physicochemical characteristics influence the subsequent enzymatic hydrolysis of micronized wood. The initial moisture content of feedstock was found to be the key factor affecting the development of physical features and enzymatic hydrolysis of micronized wood. Lower moisture content resulted in much rounder particles with lower crystallinity, while higher moisture content resulted in the milled particles with larger aspect ratio and crystallinity. The enzymatic hydrolysis of micronized wood was improved as collectively increasing surface area (i.e., reducing particle size and aspect ratio) and decreasing crystallinity during mechanical milling pretreatment. Energy efficiency analysis demonstrated that low-moisture content feedstock with multi-step milling process would contribute to cost-effectiveness of mechanical pretreatment for achieving more than 70% of total sugars conversion. In the early stage of mechanical pretreatment, the types of cell fractures were distinguished by the initial moisture contents of wood, leading to interwall fracture at the middle lamella region for low moisture content samples and intrawall fracture at the inner cell wall for high moisture content samples. The changes in cell wall fractures also resulted in difference in the distribution of surface chemical composition and energy required for milling process. In an effort to exploit the underlying mechanism associated with the reduced recalcitrance in micronized wood, we reported the increased enzymatic sugar yield and correspondingly structural and accessible properties of micronized feedstock. Electronic microscopy analysis detailed the structural alternation of cell wall during mechanical process, including cell fracture and delamination, ultrastructure disintegration, and cell wall fragments amorphization, as coincident with the particle size reduction. It was confirmed with Simons' staining that longer milling time resulted in increased substrate accessibility and porosity. The changes in cellulose molecular structure with respect to degree of polymerization (DP) and crystallinity index (CrI) also benefited to decreasing recalcitrance and facilitating enzymatic hydrolysis of micronized wood.