Sample records for content total nitrogen

  1. Study on grain quality forecasting method and indicators by using hyperspectral data in wheat

    NASA Astrophysics Data System (ADS)

    Huang, Wenjiang; Wang, Jihua; Liu, Liangyun; Wang, Zhijie; Tan, Changwei; Song, Xiaoyu; Wang, Jingdi

    2005-01-01

    Field experiments were conducted to examine the influence factors of cultivar, nitrogen application and irrigation on grain protein content, gluten content and grain hardness in three winter wheat cultivars under four levels of nitrogen and irrigation treatments. Firstly, the influence of cultivars and environment factors on grain quality were studied, the effective factors were cultivars, irrigation, fertilization, et al. Secondly, total nitrogen content around winter wheat anthesis stage was proved to be significant correlative with grain protein content, and spectral vegetation index significantly correlated to total nitrogen content around anthesis stage were the potential indicators for grain protein content. Accumulation of total nitrogen content and its transfer to grain is the physical link to produce the final grain protein, and total nitrogen content at anthesis stage was proved to be an indicator of final grain protein content. The selected normalized photochemical reflectance index (NPRI) was proved to be able to predict of grain protein content on the close correlation between the ratio of total carotenoid to chlorophyll a and total nitrogen content. The method contributes towards developing optimal procedures for predicting wheat grain quality through analysis of their canopy reflected spectrum at anthesis stage. Regression equations were established for forecasting grain protein and dry gluten content by total nitrogen content at anthesis stage, so it is feasible for forecasting grain quality by establishing correlation equations between biochemical constitutes and canopy reflected spectrum.

  2. [Effects of nitrogen application levels on yield and active composition content of Desmodium styracifolium].

    PubMed

    Zhou, Jiamin; Yin, Xiaohong; Chen, Chaojun; Huang, Min; Peng, Fuyuan; Zhu, Xiaoqi

    2010-06-01

    To find out the optimal nitrogen application level of Desmodium styracifolium. A field experiment using randomized block design was carried out to study the effects of 5 nitrogen application levels (150, 187.5, 225.0, 262.5 and 300.0 kg x hm(-2)) on yield and active component content of D. styracifolium. Nitrogen application could increase the yield and contents of polysaccharide, total flavonoides and total saponins of D. styracifolium. However, the enhancing extent of the active component content and the yield were not always significant with the increase of nitrogen level. In which, the yield were not significantly different among the nitrogen application levels of 225.0, 262.5, 300.0 kg x hm(-2) the polysaccharide content was no significantly difference among the nitrogen application levels of 225.0, 262. 5 and 300.0 kg x hm(-2), the total flavonoides content under the nitrogen level of 300.0 kg x hm(-2) was significantly lower than that of 150.0 kg hm(-2) (P < 0.01), and the total saponins content under the nitrogen level of 300.0 kg x hm(-2) was no significant difference compared with that of 262.5 kg x hm(-2). The optimal nitrogen application level of D. styracifolium was 225.0-262.5 kg x hm(-2).

  3. Study on Hyperspectral Estimation Model of Total Nitrogen Content in Soil of Shaanxi Province

    NASA Astrophysics Data System (ADS)

    Liu, Jinbao; Dong, Zhenyu; Chen, Xi

    2018-01-01

    The development of hyperspectral remote sensing technology has been widely used in soil nutrient prediction. The soil is the representative soil type in Shaanxi Province. In this study, the soil total nitrogen content in Shaanxi soil was used as the research target, and the soil samples were measured by reflectance spectroscopy using ASD method. Pre-treatment, the first order differential, second order differential and reflectance logarithmic transformation of the reflected spectrum after pre-treatment, and the hyperspectral estimation model is established by using the least squares regression method and the principal component regression method. The results show that the correlation between the reflectance spectrum and the total nitrogen content of the soil is significantly improved. The correlation coefficient between the original reflectance and soil total nitrogen content is in the range of 350 ~ 2500nm. The correlation coefficient of soil total nitrogen content and first deviation of reflectance is more than 0.5 at 142nm, 1963nm, 2204nm and 2307nm, the second deviation has a significant positive correlation at 1114nm, 1470nm, 1967nm, 2372nm and 2402nm, respectively. After the reciprocal logarithmic transformation of the reflectance with the total nitrogen content of the correlation analysis found that the effect is not obvious. Rc2 = 0.7102, RMSEC = 0.0788; Rv2 = 0.8480, RMSEP = 0.0663, which can achieve the rapid prediction of the total nitrogen content in the region. The results show that the principal component regression model is the best.

  4. [Effect of NH4(+) -N/NO3(-)-N ratio in applied supplementary fertilizer on nitrogen metabolism and main chemical composition of Pinellia ternata].

    PubMed

    Hu, Long-Jiao; Wang, Kang-Cai; Li, Can-Wen

    2013-07-01

    To study the effect of nitrogen forms on nitrogen metabolism and main chemical composition of Pinellia ternate. Through the soilless cultivation experiment and based at the same nitrogen level and different NH4(+) -N/NO3(-) -N ratios, nitrate reductase (NR) activity, glutamine synthetase (GS) activity, the content of nitrate nitrogen and ammonium nitrogen in different parts of P. ternate were determined. The contents of total alkaloid, free total organic acids and guanosine in the tuber were determined. The yield of bulbil and tuber was calculated. The test results showed that, with the NH4(+) -N/NO3(-) -N ratio increasing, the activity of nitrate reductase decreased, the content of nitrate nitrogen in the leaves, petioles and tuber increasing initially, then decreased, and the content of nitrate nitrogen in the root decreased. Meanwhile, with the NH4(+) -N/NO3(-) -N ratio increasing, the activity of glutamine synthetase in the leaves, petioles and root increased, the activity of glutamine synthetase in the tuber increasing initially, then decreased. The contents of ammonium nitrogen in the leaves, tuber and root increased initially, then decreased, and the contents of ammonium nitrogen in the petioles increased with the NH4(+)(-N/NO3(-)-N ratio increasing. The yield of bulbil and tuber were the highest at the NH4(+)-N/NO3(-) -N ratio of 75: 25. The content of total alkaloid and guanosine in the tuber were the highest at the NH4(+)-N/NO3(-) -N ratio of 0: 100, and the contents were 0.245% and 0.0197% respectively. With the NH4(+)-N/NO3(-) -N ratio of 50: 50, the content of free total organic acids was the highest, it reached 0.7%, however, the content of free total organic acids was the lowest at the NH4(+) -N/NO3(-) -N ratio of 0: 100. Nitrogen fertilization significant influences the nitrogen metabolism, the yield and main chemical composition of P. ternate.

  5. [Effects of the frequency and intensity of nitrogen addition on soil pH, the contents of carbon, nitrogen and phosphorus in temperate steppe in Inner Mongolia, China.

    PubMed

    Zhou, Ji Dong; Shi, Rong Jiu; Zhao, Feng; Han, Si Qin; Zhang, Ying

    2016-08-01

    A four-year simulated nitrogen (N) deposition experiment involving nine N gradients and two N deposition frequencies (N was added either twice yearly or monthly) was conducted in Inner Mongolian grassland, to examine the effects of frequency and intensity of N addition on pH and the contents of carbon, nitrogen and phosphorus in soil. The results indicated that the soil pH and total phosphorus content, regardless of the N addition frequency, gradually decreased with the increase of N addition intensity. By contrast, the contents of soil available nitrogen and available phosphorus showed an increasing trend, while no significant variation in dissolved organic carbon (DOC) content was observed, and the contents of soil total carbon and total nitrogen had no change. Compared with the monthly N addition, the twice-a-year N addition substantially overestimated the effects of N deposition on decreasing the soil pH and increasing the available phosphorus content, but underestimated the effects of N deposition on increasing the soil available nitrogen content, and the significant difference was found in 0-5 cm soil layer.

  6. Total Protein Content Determination of Microalgal Biomass by Elemental Nitrogen Analysis and a Dedicated Nitrogen-to-Protein Conversion Factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurens, Lieve M; Olstad-Thompson, Jessica L; Templeton, David W

    Accurately determining protein content is important in the valorization of algal biomass in food, feed, and fuel markets, where these values are used for component balance calculations. Conversion of elemental nitrogen to protein is a well-accepted and widely practiced method, but depends on developing an applicable nitrogen-to-protein conversion factor. The methodology reported here covers the quantitative assessment of the total nitrogen content of algal biomass and a description of the methodology that underpins the accurate de novo calculation of a dedicated nitrogen-to-protein conversion factor.

  7. Temporal variation in leaf nitrogen partitioning of a broad-leaved evergreen tree, Quercus myrsinaefolia.

    PubMed

    Yasumura, Yuko; Ishida, Atsushi

    2011-01-01

    We examined temporal changes in the amount of nitrogenous compounds in leaves from the outer and inner parts of the crown of Quercus myrsinaefolia growing in a seasonal climate. Throughout the leaf life span, metabolic protein and Rubisco content closely correlated with total nitrogen content, while structural protein content was relatively stable after full leaf expansion. Chlorophyll content was affected by shading as well as total nitrogen content in outer leaves that were overtopped by new shoots in the second year. Outer leaves showed a large seasonal variation in photosynthetic nitrogen-use efficiency (PNUE; the light-saturated photosynthetic rate per unit leaf nitrogen content) during the first year of their life, with PNUE decreasing from the peak in summer towards winter. Outer and inner leaves both showed age-related decline in PNUE in the second year. There were no such drastic changes in leaf nitrogen partitioning that could explain seasonal and yearly variations in PNUE. Nitrogen resorption occurred in overwintering leaves in spring. Metabolic protein explained the majority of nitrogen being resorbed, whereas structural protein, which was low in degradability, contributed little to nitrogen resorption.

  8. Vertical distribution of total carbon, nitrogen and phosphorus in sediments of Drug Spring Lake, Wudalianchi

    NASA Astrophysics Data System (ADS)

    Zeng, Ying; Yang, Chen

    2018-02-01

    The content of total organic carbon, total nitrogen and total phosphorus in sediments of Drug Spring Lake was detected and their vertical distribution characteristic was analysed. Results showed that there were significant changes to the content of total organic carbon, total nitrogen and total phosphorus in different depth of the columnar sediments. Their highest content both appeared in the interval of 10cm to 25cm corresponding to the period of 1980s to 1990s, when the tourism of Wudalianchi scenic area began to develop. It reflected the impact of human activities on the Drug Spring Lake. That means the regulation was still not enough, although a series of pollution control measures adopted by the government in recent years had initial success.

  9. [Vertical Distribution Characteristics of Typical Forest Soil Organic Nitrogen in Dawei Mountain].

    PubMed

    Ding, Xian-qing; Ma, Hui-jing; Zhu, Xiao-long; Chen, Shan; Hou, Hong-bo; Peng, Pei-qin

    2015-10-01

    To clarify altitudinal gradient of subtropical forest soil total nitrogen and organic nitrogen, soil samples were collected per 10 cm on soil profile (0-100 cm) in Dawei Mountain, researched the variation of soil organic nitrogen and correlation with soil physical and chemical properties. The results showed that: (1) Total nitrogen, acid hydrolysable organic nitrogen and soluble organic nitrogen decreased with the increase of depth, content of each component in mountain granite yellow-brown soils was much higher affected by altitude; (2) The average percentage of soil organic nitrogen to total nitrogen was 97.39% ± 1.17%, and soil acid hydrolysable organic nitrogen was 64.38% ± 10.68%, each component decreased with the increase of soil depth; (3) Soil soluble organic nitrogen content was 9.92- 23.45 mg x kg(-1), free amino acids (1.62 - 12.02 mg x kg(-1)) accounted for about 27.36% ± 9.95% of soluble organic nitrogen; (4) Soil acid hydrolysable organic nitrogen and soluble organic nitrogen were significantly positively correlated with total nitrogen, total soluble nitrogen and inorganic nitrogen (P < 0.05), were highly significantly correlated with soil bulk density, organic carbon, and total phosphorus (P < 0.01). Organic nitrogen was the main body of soil nitrogen in typical subtropical forest, each component showed a downward trend increase with soil depth affected by altitude and soil physical and chemical properties. There was a close conversion relationship between soil organic nitrogen and other nitrogen forms, the characteristics of soil organic nitrogen will have profound impact on nitrogen cycling of forest ecological system.

  10. [Effects of short-term continuous lighting with LED lamps and nitrogen nutrition conditions on quality of hydroponically grown purple lettuce].

    PubMed

    Yu, Yi; Yang, Qi-chang; Liu, Wen-ke

    2015-11-01

    Purple lettuce was grown hydroponically under six different nitrogen nutrition conditions, with NO(3-)-N:NH(4+)-N at 1:0, 4:1 and 1:1 combined with nitrogen application levels of 10 and 15 mmol · L(-1), for 25 days in solar greenhouse, then treated with short-term continuous lighting (SCL) before harvest to study the changes in contents of nutrients and analyze the effects of nitrogen nutrition conditions on the changes. Results showed that the shoot dry mass of all six nitrogen nutrition conditions were significantly improved under SCL treatment, by 35.1% at least, and the root dry mass increased greatly except for NO(3-)-N:NH(4+)-N 1:1 combined with nitrogen application level 15 mmol · L(-1) treatment and NO(3-)-N:NH(4+)-N 1:0 combined with nitrogen application level 10 mmol · L(-1) treatment. The relative contents of total phenols and flavonoid of different nitrogen nutrition conditions turned significantly different after treatment with SCL. The relative contents of total phenols and flavonoid were enhanced with the improvement of ammonium nitrogen ratio, while the relative content of anthocyanin increased and then decreased with the improvement of ammonium nitrogen ratio. The lighting treatment reduced the nitrate content of leaf blade of all six nitrogen nutrition conditions remarkably by 23.2% at least. The contents of ascorbic acid, soluble sugar and soluble protein rose significantly under SCL treatments. The study showed that the reduction of nitrate content speeded up with the enhancement of nitrogen application level and ammonium nitrogen ratio, and the advancement of ascorbic acid content slowed down with the increasing nitrogen application level. The soluble sugar improvement speed increased with the increasing ammonium nitrogen ratio, and SCL lifted the dry mass of the lettuce greatly. The results showed that SCL with LED lamps improved significantly the dry matter of lettuce under different nitrogen nutrition conditions, reduced the nitrate content and increased the ascorbic acid, soluble sugar and soluble protein contents greatly. In addition, nitrogen nutrition conditions affected the effectiveness of short-term continuous lighting on quality improvement rate of hydroponic lettuce remarkably.

  11. Influence on wine biogenic amine composition of modifications to soil N availability and grapevine N by cover crops.

    PubMed

    Pérez-Álvarez, Eva P; Garde-Cerdán, Teresa; Cabrita, Maria João; García-Escudero, Enrique; Peregrina, Fernando

    2017-11-01

    Vineyard soil management can modify the nitrogen soil availability and, therefore, grape amino acid content. These compounds are precursors of biogenic amines, which have negative effects on wine quality and human health. The objective was to study whether the effect of conventional tillage and two cover crops (barley and clover) on grapevine nitrogen status could be related to wine biogenic amines. Over 4 years, soil NO 3 - -N, nitrogen content in leaf and wine biogenic amine concentration were determined. Barley reduced soil NO 3 - -N availability and clover increased it. In 2011, at bloom, nitrogen content decreased with barley treatment in both blade and petiole. In 2012, nitrogen content in both leaf tissues at bloom was greater with clover than with tillage and barley treatments. Also, total biogenic amines decreased in barley with respect to tillage and clover treatments. There were correlations between some individual and total biogenic amine concentrations with respect to nitrogen content in leaf tissues. Wine biogenic amine concentration can be affected by the grapevine nitrogen status, provoked by changes in the soil NO 3 - -N availability with both cover crop treatments. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. [Distribution of soil organic carbon, total nitrogen, total phosphorus and water stable aggregates of cropland with different soil textures on the Loess Plateau, Northwest China].

    PubMed

    Ge, Nan Nan; Shi, Yun; Yang, Xian Long; Zhang, Qing Yin; Li, Xue Zhang; Jia, Xiao Xu; Shao, Ming An; Wei, Xiao Rong

    2017-05-18

    In this study, combined with field investigation and laboratory analyses, we assessed the distribution of soil organic carbon, nitrogen, phosphorous contents and their stoichiometric ratios, and the distribution of soil water stable aggregates along a soil texture gradient in the cropland of the Loess Plateau to understand the effect of soil texture and the regulation of soil aggregates on soil fertility in cropland. The results showed that, with the change from fine soils to coarse soils along the texture gradient (loam clay→ clay loam→ sandy loam), the contents of macroaggregates, organic carbon, nitrogen, phosphorous and their stoichiometric ratios decreased, while pH value and microaggregates content showed an opposite changing pattern. The contents of macroaggregates, organic carbon, nitrogen, phosphorous, and C/P and N/P were significantly increased, but pH value and microaggregates content were significantly decreased with increasing the soil clay content. Furthermore, the contents of organic carbon, nitrogen, phosphorous, and C/P and N/P increased with the increase of macroaggregates content. These results indicated that soil fertility in croplands at a regional scale was mainly determined by soil texture, and was regulated by soil macroaggregates.

  13. Near-infrared reflectance models for the rapid prediction of quality of brewing raw materials.

    PubMed

    Marte, Luisa; Belloni, Paolo; Genorini, Emiliano; Sileoni, Valeria; Perretti, Giuseppe; Montanari, Luigi; Marconi, Ombretta

    2009-01-28

    Calibration models for quickly and reliably predicting moisture content and total nitrogen, both "as is" and "dry matter" on malt, as well as moisture content and total lipids, both "as is" and "dry matter", on maize by means of near-infrared (NIR) spectroscopy were developed. The FT-NIR spectra recorded on the finely ground cereals were correlated to the analytical data by means of the multivariate PLS algorithm. In particular, these models were developed on the raw materials, which are used by the main Italian brewing industries. Validation was carried out both by means of cross-validation and test set validation. Regression coefficients (R(2)) were higher than 97 for both malt and maize moisture content and higher than 85 and 88 for malt total nitrogen and maize total lipids, respectively. The RMSE values (both RMSECV and RMSEP) were lower than 0.1% m/m for both malt and maize moisture contents, whereas they ranged from 0.024 to 0.042% m/m for malt total nitrogen and from 0.042 to 0.055% m/m for maize total lipids. Repeatability was tested by taking into account more than one sample for each calibration and compared, when possible, to those of the standard methods. Repeatability (r(95)) ranged from 0.060 to 0.158% m/m and from 0.020 to 0.055% m/m for malt moisture and total nitrogen contents, respectively, and from 0.094 to 0.160% m/m and from 0.076 to 0.208% m/m for maize moisture and total lipids contents, respectively.

  14. Distinctive Responses of Ribulose-1,5-Bisphosphate Carboxylase and Carbonic Anhydrase in Wheat Leaves to Nitrogen Nutrition and their Possible Relationships to CO2-Transfer Resistance 1

    PubMed Central

    Makino, Amane; Sakashita, Hiroshi; Hidema, Jun; Mae, Tadahiko; Ojima, Kunihiko; Osmond, Barry

    1992-01-01

    The amounts of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), total chlorophyll (Chl), and total leaf nitrogen were measured in fully expanded, young leaves of wheat (Triticum aestivum L.), rice (Oryza sativa L.), spinach (Spinacia oleracea L.), bean (Phaseolus vulgaris L.), and pea (Pisum sativum L.). In addition, the activities of whole-chain electron transport and carbonic anhydrase were measured. All plants were grown hydroponically at different nitrogen concentrations. Although a greater than proportional increase in Rubisco content relative to leaf nitrogen content and Chl was found with increasing nitrogen supply for rice, spinach, bean, and pea, the ratio of Rubisco to total leaf nitrogen or Chl in wheat was essentially independent of nitrogen treatment. In addition, the ratio of Rubisco to electron transport activities remained constant only in wheat. Nevertheless, gas-exchange analysis showed that the in vivo balance between the capacities of Rubisco and electron transport in wheat, rice, and spinach remained almost constant, irrespective of nitrogen treatment. The in vitro carbonic anhydrase activity in wheat was very low and strongly responsive to increasing nitrogen content. Such a response was not found for the other C3 plants examined, which had 10- to 30-fold higher carbonic anhydrase activity than wheat at any leaf-nitrogen content. These distinctive responses of carbonic anhydrase activity in wheat were discussed in relation to CO2-transfer resistance and the in vivo balance between the capacities of Rubisco and electron transport. PMID:16653191

  15. Leaf Stable Isotope and Nutrient Status of Temperate Mangroves As Ecological Indicators to Assess Anthropogenic Activity and Recovery from Eutrophication

    PubMed Central

    Gritcan, Iana; Duxbury, Mark; Leuzinger, Sebastian; Alfaro, Andrea C.

    2016-01-01

    We measured nitrogen stable isotope values (δ15N), and total phosphorus (%P) and total nitrogen (%N) contents in leaves of the temperate mangrove (Avicennia marina sp. australasica) from three coastal ecosystems exposed to various levels of human impact (Manukau, high; Mangawhai, low; and Waitemata, intermediate) in northern New Zealand. We measured δ15N values around 10‰ in environments where the major terrestrial water inputs are sewage. The highest average total nitrogen contents and δ15N values were found in the Auckland city region (Manukau Harbour) at 2.2%N and 9.9‰, respectively. The lowest values were found in Mangawhai Harbour, situated about 80 km north of Auckland city, at 2.0%N and 5.2‰, respectively. In the Waitemata Harbour, also located in Auckland city but with less exposure to human derived sewage inputs, both parameters were intermediate, at 2.1%N and 6.4‰. Total phosphorus contents did not vary significantly. Additionally, analysis of historical mangrove leaf herbarium samples obtained from the Auckland War Memorial Museum indicated that a reduction in both leaf total nitrogen and δ15N content has occurred over the past 100 years in Auckland’s harbors. Collectively, these results suggest that anthropogenically derived nitrogen has had a significant impact on mangrove nutrient status in Auckland harbors over the last 100 years. The observed decrease in nitrogenous nutrients probably occurred due to sewage system improvements. We suggest that mangrove plant physiological response to nutrient excess could be used as an indicator of long-term eutrophication trends. Monitoring leaf nutrient status in mangroves can be used to assess environmental stress (sewage, eutrophication) on coastal ecosystems heavily impacted by human activities. Moreover, nitrogen and phosphorus leaf contents can be used to assess levels of available nutrients in the surrounding environments. PMID:28066477

  16. Microbial Biofertilizer Decreases Nicotine Content by Improving Soil Nitrogen Supply.

    PubMed

    Shang, Cui; Chen, Anwei; Chen, Guiqiu; Li, Huanke; Guan, Song; He, Jianmin

    2017-01-01

    Biofertilizers have been widely used in many countries for their benefit to soil biological and physicochemical properties. A new microbial biofertilizer containing Phanerochaete chrysosporium and Bacillus thuringiensis was prepared to decrease nicotine content in tobacco leaves by regulating soil nitrogen supply. Soil NO 3 - -N, NH 4 + -N, nitrogen supply-related enzyme activities, and nitrogen accumulation in plant leaves throughout the growing period were investigated to explore the mechanism of nicotine reduction. The experimental results indicated that biofertilizer can reduce the nicotine content in tobacco leaves, with a maximum decrement of 16-18 % in mature upper leaves. In the meantime, the total nitrogen in mature lower and middle leaves increased with the application of biofertilizer, while an opposite result was observed in upper leaves. Protein concentration in leaves had similar fluctuation to that of total nitrogen in response to biofertilizer. NO 3 - -N content and nitrate reductase activity in biofertilizer-amended soil increased by 92.3 and 42.2 %, respectively, compared to those in the control, whereas the NH 4 + -N and urease activity decreased by 37.8 and 29.3 %, respectively. Nitrogen uptake was improved in the early growing stage, but this phenomenon was not observed during the late growth period. Nicotine decrease is attributing to the adjustment of biofertilizer in soil nitrogen supply and its uptake in tobacco, which result in changes of nitrogen content as well as its distribution in tobacco leaves. The application of biofertilizer containing P. chrysosporium and B. thuringiensis can reduce the nicotine content and improve tobacco quality, which may provide some useful information for tobacco cultivation.

  17. [Impact of short-term grazing disturbance on nitrogen accumulation of biological soil crusts in the hilly Loess Plateau region, China].

    PubMed

    Wang, Shan Shan; Zhao, Yun Ge; Shi, Ya Fang; Gao, Li Qian; Yang, Qiao Yun

    2017-12-01

    The variations of total nitrogen, available nitrogen and microbial biomass nitrogen caused by simulated grazing disturbance were investigated in the sixth and twelfth months by using field survey combined with laboratory analysis in order to reveal the sensitivity of nitrogen content in biocrustal soils to disturbance in the hilly Loess Plateau region. The results showed that nitrogen contents in biocrustal soil were sensitive to disturbance. Total nitrogen and available nitrogen in the biocrustal layers were decreased by 0.17-0.39 g·kg -1 and 1.78-5.65 mg·kg -1 during the first half-year compared to the undisturbed treatment, and they were found respectively decreased by 0.13-0.40 g·kg -1 and 11.45-32.68 mg·kg -1 one year later since disturbance. The content of microbial biomass nitrogen in the biocrustal layer was reduced by 69.99-330.97 mg·kg -1 , whereas the content was increased by 25.51-352.17 mg·kg -1 in soil of 0-2 cm layer. The induction of nitrogen accumulation depended on the intensity of disturbance. Slight variation was observed in the nitrogen accumulation in biocrustal layer under 20% and 30% disturbance, while significant reduction was found in the 40% and 50% disturbance. Significant reduction was detected only in nitrogen accumulation in the biocrustal layers, whereas no significant influence was found in the top 5 cm soil layer.

  18. Effects of Applied Nitrogen Amounts on the Functional Components of Mulberry (Morus alba L.) Leaves.

    PubMed

    Sugiyama, Mari; Takahashi, Makoto; Katsube, Takuya; Koyama, Akio; Itamura, Hiroyuki

    2016-09-21

    This study investigated the effects of applied nitrogen amounts on specific functional components in mulberry (Morus alba L.) leaves. The relationships between mineral elements and the functional components in mulberry leaves were examined using mulberry trees cultivated in different soil conditions in four cultured fields. Then, the relationships between the nitrogen levels and the leaf functional components were studied by culturing mulberry in plastic pots and experimental fields. In the common cultured fields, total nitrogen was negatively correlated with the chlorogenic acid content (R(2) = -0.48) and positively correlated with the 1-deoxynojirimycin content (R(2) = 0.60). Additionally, differences in nitrogen fertilizer application levels affected each functional component in mulberry leaves. For instance, with increased nitrogen levels, the chlorogenic acid and flavonol contents significantly decreased, but the 1-deoxynojirimycin content significantly increased. Selection of the optimal nitrogen application level is necessary to obtain the desired functional components from mulberry leaves.

  19. Ozone and nitrogen dioxide above the northern Tien Shan

    NASA Technical Reports Server (NTRS)

    Arefev, Vladimir N.; Volkovitsky, Oleg A.; Kamenogradsky, Nikita E.; Semyonov, Vladimir K.; Sinyakov, Valery P.

    1994-01-01

    The results of systematic perennial measurements of the total ozone (since 1979) and nitrogen dioxide column (since 1983) in the atmosphere in the European-Asian continent center above the mountainmass of the Tien Shan are given. This region is distinguished by a great number of sunny days during a year. The observation station is at the Northern shore of Issyk Kul Lake (42.56 N 77.04 E 1650 m above the sea level). The measurement results are presented as the monthly averaged atmospheric total ozone and NO2 stratospheric column abundances (morning and evening). The peculiarities of seasonal variations of ozone and nitrogen dioxide atmospheric contents, their regular variances with a quasi-biennial cycles and trends have been noticed. Irregular variances of ozone and nitrogen dioxide atmospheric contents, i.e. their positive and negative anomalies in the monthly averaged contents relative to the perennial averaged monthly means, have been analyzed. The synchronous and opposite in phase anomalies in variations of ozone and nitrogen dioxide atmospheric contents were explained by the transport and zonal circulation in the stratosphere (Kamenogradsky et al., 1990).

  20. Physical, chemical and biological properties of simulated beef cattle bedded manure packs

    USDA-ARS?s Scientific Manuscript database

    Manure including bedding material can be a valuable fertilizer, yet numerous, poorly characterized, environmental factors control its quality. The objective was to determine whether moisture content (MC), nutrient value (ammonium nitrogen (NH4-N), total nitrogen (TN), total phosphorus (TP), total po...

  1. Effects of Nitrogen Fertilization on Synthesis of Primary and Secondary Metabolites in Three Varieties of Kacip Fatimah (Labisia Pumila Blume)

    PubMed Central

    Ibrahim, Mohd Hafiz; Jaafar, Hawa Z.E.; Rahmat, Asmah; Rahman, Zaharah Abdul

    2011-01-01

    A split plot 3 by 4 experiment was designed to examine the impact of 15-week variable levels of nitrogen fertilization (0, 90, 180 and 270 kg N/ha) on the characteristics of total flavonoids (TF), total phenolics (TP), total non structurable carbohydrate (TNC), net assimilation rate, leaf chlorophyll content, carbon to nitrogen ratio (C/N), phenyl alanine lyase activity (PAL) and protein content, and their relationships, in three varieties of Labisia pumila Blume (alata, pumila and lanceolata). The treatment effects were solely contributed by nitrogen application; there was neither varietal nor interaction effect observed. As nitrogen levels increased from 0 to 270 kg N/ha, the production of TNC was found to decrease steadily. Production of TF and TP reached their peaks under 0 followed by 90, 180 and 270 kg N/ha treatment. However, net assimilation rate was enhanced as nitrogen fertilization increased from 0 to 270 kg N/ha. The increase in production of TP and TF under low nitrogen levels (0 and 90 kg N/ha) was found to be correlated with enhanced PAL activity. The enhancement in PAL activity was followed by reduction in production of soluble protein under low nitrogen fertilization indicating more availability of amino acid phenyl alanine (phe) under low nitrogen content that stimulate the production of carbon based secondary metabolites (CBSM). The latter was manifested by high C/N ratio in L. pumila plants. PMID:21954355

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guardia, A. de, E-mail: amaury.de-guardia@cemagref.f; Universite Europeenne de Bretagne, F-35000 Rennes; Mallard, P.

    This paper aimed to compare household waste, separated pig solids, food waste, pig slaughterhouse sludge and green algae regarding processes ruling nitrogen dynamic during composting. For each waste, three composting simulations were performed in parallel in three similar reactors (300 L), each one under a constant aeration rate. The aeration flows applied were comprised between 100 and 1100 L/h. The initial waste and the compost were characterized through the measurements of their contents in dry matter, total carbon, Kjeldahl and total ammoniacal nitrogen, nitrite and nitrate. Kjeldahl and total ammoniacal nitrogen and nitrite and nitrate were measured in leachates andmore » in condensates too. Ammonia and nitrous oxide emissions were monitored in continue. The cumulated emissions in ammonia and in nitrous oxide were given for each waste and at each aeration rate. The paper focused on process of ammonification and on transformations and transfer of total ammoniacal nitrogen. The parameters of nitrous oxide emissions were not investigated. The removal rate of total Kjeldahl nitrogen was shown being closely tied to the ammonification rate. Ammonification was modelled thanks to the calculation of the ratio of biodegradable carbon to organic nitrogen content of the biodegradable fraction. The wastes were shown to differ significantly regarding their ammonification ability. Nitrogen balances were calculated by subtracting nitrogen losses from nitrogen removed from material. Defaults in nitrogen balances were assumed to correspond to conversion of nitrate even nitrite into molecular nitrogen and then to the previous conversion by nitrification of total ammoniacal nitrogen. The pool of total ammoniacal nitrogen, i.e. total ammoniacal nitrogen initially contained in waste plus total ammoniacal nitrogen released by ammonification, was calculated for each experiment. Then, this pool was used as the referring amount in the calculation of the rates of accumulation, stripping and nitrification of total ammoniacal nitrogen. Separated pig solids were characterised by a high ability to accumulate total ammoniacal nitrogen. Whatever the waste, the striping rate depended mostly on the aeration rate and on the pool concentration in biofilm. The nitrification rate was observed as all the higher as the concentration in total ammoniacal nitrogen in the initial waste was low. Thus, household waste and green algae exhibited the highest nitrification rates. This result could mean that in case of low concentrations in total ammoniacal nitrogen, a nitrifying biomass was already developed and that this biomass consumed it. In contrast, in case of high concentrations, this could traduce some difficulties for nitrifying microorganisms to develop.« less

  3. Nitrogen extraction potential of wild and cultured bivalves harvested from nearshore waters of Cape Cod, USA.

    PubMed

    Reitsma, Joshua; Murphy, Diane C; Archer, Abigail F; York, Richard H

    2017-03-15

    As nitrogen entering coastal waters continues to be an issue, much attention has been generated to identify potential options that may help alleviate this stressor to estuaries, including the propagation of bivalves to remove excess nitrogen. Oysters (Crassostrea virginica) and quahogs (Mercenaria mercenaria) from numerous Cape Cod, MA, (USA) sources were analyzed for nitrogen content stored in tissues that would represent a net removal of nitrogen from a water body if harvested. Results showed local oysters average 0.69% nitrogen by total dry weight (mean 0.28gN/animal) and quahogs average 0.67% nitrogen by total dry weight (mean 0.22gN/animal); however, these values did vary by season and to a lesser extent by location or grow-out method. The differences in nitrogen content were largely related to the mass of shell or soft tissue. Nitrogen isotope data indicate shellfish from certain water bodies in the region are incorporating significant amounts of nitrogen from anthropogenic sources. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Nitrogen content of Letharia vulpina tissue from forests of the Sierra Nevada, California: geographic patterns and relationships to ammonia estimates and climate

    Treesearch

    Sarah Jovan; Tom Carlberg

    2007-01-01

    Nitrogen (N) pollution is a growing concern in forests of the greater Sierra Nevada, which lie downwind of the highly populated and agricultural Central Valley. Nitrogen content of Letharia vulpina tissue was analyzed from 38 sites using total Kjeldahl analysis to provide a preliminary assessment of N deposition patterns. Collections were co-located with plots where...

  5. Soil organic carbon and nitrogen accumulation on coal mine spoils reclaimed with maritime pine (Pinus pinaster Aiton) in Agacli-Istanbul.

    PubMed

    Sever, Hakan; Makineci, Ender

    2009-08-01

    Mining operations on open coal mines in Agacli-Istanbul have resulted in the destruction of vast amounts of land. To rehabilitate these degraded lands, plantations on this area began in 1988. Twelve tree species were planted, however, the most planted tree species was maritime pine (Pinus pinaster Aiton). This study performed on 14 sample plots randomly selected in maritime pine plantations on coal mine soil/spoils in 2005. Soil samples were taken from eight different soil layers (0-1, 1-3, 3-5, 5-10, 10-20, 20-30, 30-40 and 40-50 cm) into the soil profile. On soil samples; fine soil fraction (<2 mm), soil acidity (pH), organic carbon (C(org)) and total nitrogen (N(t)) contents were investigated, and results were compared statistically among soil layers. As a result, 17 years after plantations, total forest floor accumulation determined as 17,973.20 kg ha(-1). Total nitrogen and organic matter amounts of forest floor were 113.90 and 14,640.92 kg ha(-1) respectively. Among soil layers, the highest levels of organic carbon (1.77%) and total nitrogen (0.096%) and the lowest pH value (pH 5.38) were found in 0-1 cm soil layer, and the variation differs significantly among soil layers. Both organic carbon and total nitrogen content decreased, pH values increased from 0-1 to 5-10 cm layer. In conclusion, according to results obtained maritime pine plantations on coal mine spoils; slow accumulation and decomposition of forest floor undergo simultaneously. Depending on these changes organic carbon and total nitrogen contents increased in upper layer of soil/spoil.

  6. Increase in Dry Weight and Total Nitrogen Content in Zea mays and Setaria italica Associated with Nitrogen-fixing Azospirillum spp. 1

    PubMed Central

    Cohen, Efraim; Okon, Yaacov; Kigel, Jaime; Nur, Israel; Henis, Yigal

    1980-01-01

    The association between nitrogen-fixing bacteria from the genus Azospirillum and the grasses Zea mays and Setaria italica was investigated in sterilized Leonard-jar assemblies. Nitrogen-fixing bacteria isolated from Cynodon dactylon roots in Israel and Azospirillum brasilense (Sp-7, Sp-80, and Cd) were examined. C2H2 reduction activity was detected in systems containing 0.0 to 0.08 but not in those containing 0.16 gram per liter NH4NO3. The organisms tested significantly increased plant dry weight (50-100%), total N content of leaves (50-100%) and C2H4 production (300-1000 nanomoles C2H4 per plant per hour). Highest C2H2 reduction activities were obtained above 30 C and with high light intensities. Significant increases in S. italica dry weight (DW) and nitrogen (N) content were observed in sand (DW = 80%, N = 150%), sandy loam soil (DW = 80%, N = 75%) and loess (DW = 37%, N = 25%). The results obtained in this work clearly demonstrate the potential benefit of inoculating grasses with Azospirillum. PMID:16661514

  7. [Characteristics of soil microorganisms and soil nutrients in different sand-fixation shrub plantations in Kubuqi Desert, China].

    PubMed

    Zhang, Li-Xin; Duan, Yu Xi; Wang, Bo; Wang, Wei Feng; Li, Xiao Jing; Liu, Jin Jie

    2017-12-01

    Three types of sand-fixation shrub plantations, including Artemisia ordosica + Hedysarum fruticosum, Caragana korshinskii and Salix psammophila, were selected in the eastern area of Kubuqi Desert to study the changes in soil microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN), quantities of soil microorganisms, contents of soil nutrients and the relations among these variables under the different plantation types and shifting sandy land. The restoration effects of each plantation type on soil quality were assessed by synthetic index method. The results showed that the contents of soil organic matter, total nitrogen and phosphorus, and available nitrogen and phosphorus under different plantations were all significantly greater than those under shifting sandy land, and the order of increase was A. ordosica + H. fruticosum > C. korshinskii > S. psammophila. The soil nutrient contents decreased with the increase of soil depth under all plantation types. The quantities of soil microorganisms and the contents of soil MBC and MBN under the plantations were higher at different degrees than those under shifting sandy land. MBC, MBN and the relative numbers of bacteria under A. ordosica+H. fruticosum plantation were higher than those under C. korshinskii plantation and S. psammophila plantation. The relative numbers of fungi and actinobacteria decreased in the order of C. korshinskii > S. psammophila > A. ordosica + H. fruticosum. The relative number of bacteria, MBC and MBN under the plantations were mainly affected by the contents of soil organic matter, total nitrogen, total phosphorus, available nitrogen, available phosphorus, as well as C/N, and the relative numbers of actinobacteria and fungi were primarily affected by the contents of soil total phosphorus, available nitrogen and available phosphorus. Soil quality was ranked in the order of A. ordosica + H. fruticosum > C. korshinskii > S. psammophila > shifting sandy land. These results demonstrated that different sand-fixation shrub plantations could improve the quality of the desert soil and the A. ordosica + H. fruticosum plantation was the best for soil restoration and quality improvement in the desert.

  8. Investigation of nitrogen and phosphorus contents in water in the tributaries of Danjiangkou Reservoir

    PubMed Central

    Liu, Yan; Zhu, Yuanyuan; Qiao, Xiaocui; Chang, Sheng; Fu, Qing

    2018-01-01

    As part of the efforts to ensure adequate supply of quality water from Danjiangkou Reservoir to Beijing, surface water samples were taken from the tributaries of Danjiangkou Reservoir in the normal (May), flood (August) and dry (December) seasons of 2014, and characterized for nitrogen and phosphorus contents as specified in the applicable standards. Test results indicated that (i) the organic pollution in the Sihe and Shendinghe rivers was more serious than those in other tributaries, and the concentrations of nitrogen and phosphorus favoured the growth of most algae; (ii) total phosphorus (TP), total nitrogen (TN) and dissolved inorganic nitrogen (DIN) were in the forms of dissolved phosphorus (DTP), dissolved nitrogen (DTN) and nitrate nitrogen (NO3−-N), respectively, in these seasons; (iii) compared with nitrogen, phosphorus was more likely to block an overrun of phytoplankton; (iv) TN, TP, permanganate index (CODMn) and other ions were positively correlated. These findings are helpful for the government to develop effective measures to protect the source water in Danjingkou Reservoir from pollution. PMID:29410793

  9. Quality improvement on half-fin anchovy (Setipinna taty) fish sauce by Psychrobacter sp. SP-1 fermentation.

    PubMed

    Zheng, Bin; Liu, Yu; He, Xiaoxia; Hu, Shiwei; Li, Shijie; Chen, Meiling; Jiang, Wei

    2017-10-01

    A method of improving fish sauce quality during fermentation was investigated. Psychrobacter sp. SP-1, a halophilic protease-producing bacterium, was isolated from fish sauce with flavor-enhancing properties and non-biogenic amine-producing activity. The performance of Psychrobacter sp. SP-1 in Setipinna taty fish sauce fermentation was investigated further. The inoculation of Psychrobacter sp. SP-1 did not significantly affect pH or NaCl concentration changes (P > 0.05), although it significantly increased total moderately halophilic microbial count, protease activity, total soluble nitrogen content and amino acid nitrogen content, and also promoted the umami taste and meaty aroma (P < 0.05). Furthermore, the inoculation of Psychrobacter sp. SP-1 significantly decreased total volatile basic nitrogen content and biogenic amines content (P < 0.05), which were regarded as harmful compounds in foods. The results of the present study demonstrate that Psychrobacter sp. SP-1 can be used as a potential starter culture for improving fish sauce quality by fermentation. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Nitrogen balance and transformation in the nitrification process of coking wastewater and the influence on nitrification kinetics.

    PubMed

    Shan, Mingjun; Zhang, Yan; Kou, Lihong

    2014-01-01

    This paper describes the total nitrogen balance, and the direction and degree of nitrogen transformation during the nitrification process of coking wastewater. According to the actual nitrification process, the conventional nitrification kinetic equation was amended. After 48 h of nitrification, the total nitrogen content remained almost the same with error less than 0.6%. The total removal efficiency of NH4(+)-N was 91.1%, in which blow-off, producing cells and transforming to nitrate nitrogen accounted for 1.1, 17.8 and 72.2% respectively. Considering the influences of NH4(+)-N blow-off and conversion from cyanide, thiocyanide and organic nitrogen, the nitrification kinetic equation was amended as μ'=0.82·S/(0.48+S).

  11. [Effects of controlled release blend bulk urea on soil nitrogen and soil enzyme activity in wheat and rice fields].

    PubMed

    Zhang, Jing Sheng; Wang, Chang Quan; Li, Bing; Liang, Jing Yue; He, Jie; Xiang, Hao; Yin, Bin; Luo, Jing

    2017-06-18

    A field experiment was conducted to investigate the effect of controlled-release fertilizer (CRF) combined with urea (UR) on the soil fertility and environment in wheat-rice rotation system. Changes in four forms of nitrogen (total nitrogen, ammonium nitrogen, nitrate nitrogen, and microbial biomass nitrogen) and in activities of three soil enzymes participating in nitrogen transformation (urease, protease, and nitrate reductase) were measured in seven fertilization treatments (no fertilization, routine fertilization, 10%CRF+90%UR, 20%CRF+80%UR, 40%CRF+60%UR, 80%CRF+20%UR, and 100%CRF). The results showed that soil total nitrogen was stable in the whole growth period of wheat and rice. There was no significant difference among the treatments of over 20% CRF in soil total nitrogen content of wheat and rice. The soil inorganic nitrogen content was increased dramatically in treatments of 40% or above CRF during the mid-late growing stages of wheat and rice. With the advance of the growth period, conventional fertilization significantly decreased soil microbial biomass nitrogen, but the treatments of 40% and above CRF increased the soil microbial biomass nitrogen significantly. The soil enzyme activities were increased with over 40% of CRF in the mid-late growing stage of wheat and rice. By increasing the CRF ratio, the soil protease activity and nitrate reductase activity were improved gradually, and peaked in 100% CRF. The treatments of above 20% CRF could decrease the urease activity in tillering stage of rice and delay the peak of ammonium nitrogen, which would benefit nitrogen loss reduction. The treatments of 40% and above CRF were beneficial to improving soil nitrogen supply and enhancing soil urease and protease activities, which could promote the effectiveness of nitrogen during the later growth stages of wheat and rice. The 100% CRF treatment improved the nitrate reductase activity significantly during the later stage of wheat and rice. Compared with the treatments of 40%-80% CRF, 100% CRF reduced the soil nitrate content of 20-40 cm soil layer in wheat significantly suggesting it could reduce the loss of nitrogen.

  12. Effect of mineral phosphates on growth and nitrogen fixation of diazotrophic cyanobacteria Anabaena variabilis and Westiellopsis prolifica.

    PubMed

    Yandigeri, Mahesh S; Yadav, Arvind K; Meena, Kamlesh Kumar; Pabbi, Sunil

    2010-03-01

    The nitrogen fixing cyanobacterial strains namely Anabaena variabilis (Nostocales, Nostocaceae) and Westiellopsis prolifica (Nostocales, Hapalosiphonaceae) were evaluated for their nitrogen fixation and growth potential in response to different concentrations (10, 20 and 30 mg P) of the alternate insoluble P-sources Mussorie Rock Phosphate and Tricalcium Phosphate. Distinct and significant intergeneric differences were observed with respect to nitrogen fixation measured as Acetylene Reduction Activity (ARA) and growth potential as soluble proteins, total carbohydrate content, dry weight and total chlorophyll content in response to different concentrations of Mussorie Rock Phosphate and Tricalcium Phosphate. Both the strains showed higher soluble protein content at 20 mg P (Mussorie Rock Phosphate) that increased with time of incubation in A. variabilis. Both cyanobacteria recorded maximum Acetylene Reduction Activity at 20 mg P (Tricalcium Phosphate) followed by activity in presence of soluble phosphate (K2HPO4). The mean activity at all concentrations of insoluble phosphate (Mussorie Rock Phosphate and Tricalcium Phosphate) was more than in the presence of soluble phosphate.

  13. [Prediction of total nitrogen and alkali hydrolysable nitrogen content in loess using hyperspectral data based on correlation analysis and partial least squares regression].

    PubMed

    Liu, Xiu-ying; Wang, Li; Chang, Qing-rui; Wang, Xiao-xing; Shang, Yan

    2015-07-01

    Wuqi County of Shaanxi Province, where the vegetation recovering measures have been carried out for years, was taken as the study area. A total of 100 loess samples from 24 different profiles were collected. Total nitrogen (TN) and alkali hydrolysable nitrogen (AHN) contents of the soil samples were analyzed, and the soil samples were scanned in the visible/near-infrared (VNIR) region of 350-2500 nm in the laboratory. The calibration models were developed between TN and AHN contents and VNIR values based on correlation analysis (CA) and partial least squares regression (PLS). Independent samples validated the calibration models. The results indicated that the optimum model for predicting TN of loess was established by using first derivative of reflectance. The best model for predicting AHN of loess was established by using normal derivative spectra. The optimum TN model could effectively predict TN in loess from 0 to 40 cm, but the optimum AHN model could only roughly predict AHN at the same depth. This study provided a good method for rapidly predicting TN of loess where vegetation recovering measures have been adopted, but prediction of AHN needs to be further studied.

  14. [Effects of plateau zokor disturbance and restoration years on soil nutrients and microbial functional diversity in alpine meadow].

    PubMed

    Hu, Lei; Ade, Lu-ji; Zi, Hong-biao; Wang, Chang-ting

    2015-09-01

    To explore the dynamic process of restoration succession in degraded alpine meadow that had been disturbed by plateau zokors in the eastern Tibetan Plateau, we examined soil nutrients and microbial functional diversity using conventional laboratory analysis and the Biolog-ECO microplate method. Our study showed that: 1) The zokors disturbance significantly reduced soil organic matter, total nitrogen, available nitrogen and phosphorus contents, but had no significant effects on soil total phosphorus and potassium contents; 2) Soil microbial carbon utilization efficiency, values of Shannon, Pielou and McIntosh indexes increased with alpine meadow restoration years; 3) Principal component analysis (PCA) showed that carbohydrates and amino acids were the main carbon sources for maintaining soil microbial community; 4) Redundancy analysis ( RDA) indicated that soil pH, soil organic matter, total nitrogen, available nitrogen, and total potassium were the main factors influencing the metabolic rate of soil microbial community and microbial functional diversity. In summary, variations in soil microbial functional diversity at different recovery stages reflected the microbial response to aboveground vegetation, soil microbial composition and soil nutrients.

  15. Nitrogen-to-Protein Conversion Factors for Three Edible Insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens.

    PubMed

    Janssen, Renske H; Vincken, Jean-Paul; van den Broek, Lambertus A M; Fogliano, Vincenzo; Lakemond, Catriona M M

    2017-03-22

    Insects are considered a nutritionally valuable source of alternative proteins, and their efficient protein extraction is a prerequisite for large-scale use. The protein content is usually calculated from total nitrogen using the nitrogen-to-protein conversion factor (Kp) of 6.25. This factor overestimates the protein content, due to the presence of nonprotein nitrogen in insects. In this paper, a specific Kp of 4.76 ± 0.09 was calculated for larvae from Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens, using amino acid analysis. After protein extraction and purification, a Kp factor of 5.60 ± 0.39 was found for the larvae of three insect species studied. We propose to adopt these Kp values for determining protein content of insects to avoid overestimation of the protein content.

  16. Nitrogen-to-Protein Conversion Factors for Three Edible Insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens

    PubMed Central

    2017-01-01

    Insects are considered a nutritionally valuable source of alternative proteins, and their efficient protein extraction is a prerequisite for large-scale use. The protein content is usually calculated from total nitrogen using the nitrogen-to-protein conversion factor (Kp) of 6.25. This factor overestimates the protein content, due to the presence of nonprotein nitrogen in insects. In this paper, a specific Kp of 4.76 ± 0.09 was calculated for larvae from Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens, using amino acid analysis. After protein extraction and purification, a Kp factor of 5.60 ± 0.39 was found for the larvae of three insect species studied. We propose to adopt these Kp values for determining protein content of insects to avoid overestimation of the protein content. PMID:28252948

  17. Spatial variability of chlorophyll and nitrogen content of rice from hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Moharana, Shreedevi; Dutta, Subashisa

    2016-12-01

    Chlorophyll and nitrogen are the most essential parameters for paddy crop growth. Spectroradiometric measurements were collected at canopy level during critical growth period of rice. Chemical analysis was performed to quantify the total leaf content. By exploiting the ground based measurements, regression models were established for chlorophyll and nitrogen aimed indices with their corresponding crop growth variables. Vegetation index models were developed for mapping these parameters from Hyperion imagery in an agriculture system. It was inferred that the present Simple Ratio (SR) and Leaf Nitrogen Concentration (LNC) indices, which followed a linear and nonlinear relationship respectively, were completely different from published Tian et al. (2011). The nitrogen content varied widely from 1 to 4% and only 2 to 3% for paddy crop using present modified index models and Tian et al. (2011) respectively. The modified LNC index model performed better than the established Tian et al. (2011) model as far as estimated nitrogen content from Hyperion imagery was concerned. Furthermore, within the observed chlorophyll range obtained from the studied rice varieties grown in the rice agriculture system, the index models (LNC, OASVI, Gitelson, mSR and MTCI) performed well in the spatial distribution of rice chlorophyll content from Hyperion imagery. Spatial distribution of total chlorophyll content varied widely from 1.77 to 5.81 mg/g (LNC), 3.0 to 13 mg/g (OASVI), 0.5 to 10.43 mg/g (Gitelson), 2.18 to 10.61 mg/g (mSR) and 2.90 to 5.40 mg/g (MTCI). The spatial information of these parameters will help in proper nutrient management, yield forecasting, and will serve as inputs for crop growth and forecasting models for a precision rice agriculture system.

  18. [Effects of nitrogen addition and elevated CO2 concentration on soil dissolved organic carbon and nitrogen in rhizosphere and non-rhizosphere of Bothriochloa ischaemum].

    PubMed

    Xiao, Lie; Liu, Guo Bin; Li, Peng; Xue, Sha

    2017-01-01

    A pot experiment was conducted to study soil dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in the rhizosphere and non-rhizosphere of Bothriochloa ischaemum in loess hilly-gully region under the different treatments of CO 2 concentrations (400 and 800 μmol·mol -1 ) and nitrogen addition (0, 2.5, 5.0 g N·m -2 ·a -1 ). The results showed that eleva-ted CO 2 treatments had no significant effect on the contents of DOC, dissolved total nitrogen (DTN), DON, dissolved ammonium nitrogen (NH 4 + -N) and dissolved nitrate nitrogen (NO 3 - -N) in the soil of rhizosphere and non-rhizosphere of B. ischaemum. The contents of DTN, DON, and NO 3 - -N in the rhizosphere soil were significantly increased with the nitrogen application and the similar results of DTN and NO 3 - -N also were observed in the non-rhizosphere of B. ischaemum. Nitrogen application significantly decreased DOC/DON in the rhizosphere of B. ischaemum. The contents of DTN, NO 3 - -N and DON in the soil of rhizosphere were significantly lower than that in the non-rhizosphere soil, and DOC/DON was significantly higher in the rhizosphere soil than that in the non-rhizosphere soil. It indicated that short-term elevated CO 2 concentration had no significant influence on the contents of soil dissolved organic carbon and nitrogen. Simulated nitrogen deposition, to some extent, increased the content of soil dissolved nitrogen, but it was still insufficient to meet the demand of dissolved nitrogen for plant growing.

  19. [Dynamics of carbon and nitrogen storage of Cupressus chengiana plantations in the arid valley of Minjiang River, Southwest China].

    PubMed

    Luo, Da; Feng, Qiu-hong; Shi, Zuo-min; Li, Dong-sheng; Yang, Chang-xu; Liu, Qian-li; He, Jian-she

    2015-04-01

    The carbon and nitrogen storage and distribution patterns of Cupressus chengiana plantation ecosystems with different stand ages in the arid valley of Minjiang River were studied. The results showed that carbon contents in different organs of C. chengiana were relatively stable, while nitrogen contents were closely related to different organs, and soil organic carbon and nitrogen contents increased with the stand age. Carbon and nitrogen storage in vegetation layer, soil layer, and the whole ecosystem of the plantation increased with the stand age. The values of total carbon storage in the 13-, 11-, 8-, 6- and 4-year-old C. chengiana plantation ecosystems were 190.90, 165.91, 144.57, 119.44, and 113.49 t x hm(-2), and the values of total nitrogen storage were 19.09, 17.97, 13.82, 13.42, and 12.26 t x hm(-2), respectively. Most of carbon and nitrogen were stored in the 0-60 cm soil layer in the plantation ecosystems and occupied 92.8% and 98.8%, respectively, and the amounts of carbon and nitrogen stored in the top 0-20 cm soil layer, accounted for 54.4% and 48.9% of those in the 0-60 cm soil layer, respectively. Difference in distribution of carbon and nitrogen storage was observed in the vegetation layer. The percentage of carbon storage in tree layer (3.7%) were higher than that in understory vegetation (3.5%), while the percentage of nitrogen storage in tree layer (0.5%) was lower than that in understory (0.7%). The carbon and nitrogen storage and distribution patterns in the plantations varied obviously with the stand age, and the plantation ecosystems at these age stages could accumulate organic carbon and nitrogen continuously.

  20. Nitrogen fertilizer factory effects on the amino acid and nitrogen content in the needles of Scots pine.

    PubMed

    Kupsinskiene, E

    2001-12-04

    The aim of the research was to evaluate the content of amino acids in the needles of Pinus sylvestris growing in the area affected by a nitrogen fertilizer factory and to compare them with other parameters of needles, trees, and sites. Three young-age stands of Scots pine were selected at a distance of 0.5 km, 5 km, and 17 km from the factory. Examination of the current-year needles in winter of the year 2000 revealed significant (p < 0.05) differences between the site at a 0.5-km distance from the factory and the site at a 17-km distance from the factory--with the site closest to the factory showing the highest concentrations of protein (119%), total arginine (166%), total other amino acids (depending on amino acid, the effect ranged between 119 and 149%), free arginine (771%), other free amino acids (glutamic acid, threonine, serine, lysine--depending on amino acid, the effect ranged between 162 and 234%), also the longest needles, widest diameter, largest surface area, and heaviest dry weight (respectively, 133, 110, 136, and 169%). The gradient of nitrogen concentration in the needles was assessed on the selected plots over the period of 1995-2000, with the highest concentration (depending on year, 119 to 153%) documented in the site located 0.5 km from the factory. Significant correlations were determined between the total amino acid contents (r = 0.448 -0.939, p < 0.05), some free amino acid (arginine, aspartic acid, glutamic acid, lysine, threonine, and serine) contents (r = 0.418 - 0.975, p < 0.05), and air pollutant concentration at the sites, the distance between the sites and the factory, and characteristics of the needles. No correlation was found between free or total arginine content and defoliation or retention of the needles. In conclusion, it was revealed that elevated mean monthly concentration of ammonia (26 microg m(-3)) near the nitrogen fertilizer factory caused changes in nitrogen metabolism, especially increasing (nearly eight times) concentration of free arginine in the needles of Scots pine.

  1. Effects of nitrogen fertilization on the phenolic composition and antioxidant properties of basil (Ocimum basilicum L.).

    PubMed

    Nguyen, Phuong M; Niemeyer, Emily D

    2008-09-24

    Many herbs and spices have been shown to contain high levels of polyphenolic compounds with potent antioxidant properties. In the present study, we explore how nutrient availability, specifically nitrogen fertilization, affects the production of polyphenolic compounds in three cultivars (Dark Opal, Genovese, and Sweet Thai) of the culinary herb, basil ( Ocimum basilicum L.). Nitrogen fertilization was found to have a significant effect on total phenolic levels in Dark Opal ( p < 0.001) and Genovese ( p < 0.001) basil with statistically higher phenolic contents observed when nutrient availability was limited at the lowest (0.1 mM) applied nitrogen treatment. Similarly, basil treated at the lowest nitrogen fertilization level generally contained significantly higher rosmarinic ( p = 0.001) and caffeic ( p = 0.001) acid concentrations than basil treated at other nitrogen levels. Nitrogen fertilization also affected antioxidant activity ( p = 0.002) with basil treated at the highest applied nitrogen level, 5.0 mM, exhibiting lower antioxidant activity than all other nitrogen treatments. The anthocyanin content of Dark Opal basil was not affected by applied nitrogen level, but anthocyanin concentrations were significantly impacted by growing season ( p = 0.001). Basil cultivar was also determined to have a statistically significant effect on total phenolic levels, rosmarinic and caffeic acid concentrations, and antioxidant activities.

  2. [Changes of soil nutrient contents after prescribed burning of forestland in Heshan City, Guangdong Province].

    PubMed

    Sun, Yu-xin; Wu, Jian-ping; Zhou, Li-xia; Lin, Yong-biao; Fu, Sheng-lei

    2009-03-01

    A comparative study was conducted to analyze the changes of soil nutrient contents in Eucalyptus forestland and in shrubland after three years of prescribed burning. In Eucalyptus forestland, soil organic carbon, total nitrogen, available potassium contents and soil pH decreased significantly; soil available phosphorus and exchangeable magnesium contents, net nitrogen mineralization rate and ammonification rate also decreased but showed no significant difference. In shrubland, soil exchangeable calcium content increased significantly, but the contents of other nutrients had no significant change. The main reason of the lower soil net nitrogen mineralization rate in Eucalyptus forest could be the decrease of available substrates and the uptake of larger amount of soil nutrients by the fast growth of Eucalyptus. The soil nutrients in shrubland had a quick restoration rate after burning.

  3. Mapping of Biophysical Parameters of Rice Agriculture System from Hyperspectral Imagery

    NASA Astrophysics Data System (ADS)

    Moharana, Shreedevi; Duta, Subashisa

    2017-04-01

    Chlorophyll, nitrogen and leaf water content are the most essential parameters for paddy crop growth. Ground hyperspectral observations were collected at canopy level during critical growth period of rice by using hand held Spectroradiometer. Chemical analysis was carried out to quantify the total chlorophyll, nitrogen and leaf water content. By exploiting the in-situ hyperspectral measurements, regression models were established between each of the crop growth parameters and the spectral indices specifically designed for chlorophyll, nitrogen and water stress. Narrow band vegetation index models were developed for mapping these parameters from Hyperion imagery in an agriculture system. It was inferred that the modified simple ratio (SR) and leaf nitrogen concentration (LNC) predictive index models, which followed a linear and nonlinear relationship respectively, produced satisfactory results in predicting rice nitrogen content from hyperspectral imagery. The presently developed model was compared with other models proposed by researchers. It was ascertained that, nitrogen content varied widely from 1-4 percentage and only 2-3 percentage for paddy crop using present modified index models and well-known predicted Tian et al. (2011) model respectively. The modified present LNC index model performed better than the established Tian et al. (2011) model as far as the estimated nitrogen content from Hyperion imagery was concerned. Moreover, within the observed chlorophyll range attained from the rice genotypes cultivated in the studied rice agriculture system, the index models (LNC, OASVI, Gitelson, mSR and MTCI) accomplished satisfactory results in the spatial distribution of rice chlorophyll content from Hyperion imagery. Spatial distribution of total chlorophyll content widely varied from 1.77-5.81 mg/g (LNC), 3.0-13 mg/g (OASVI) and 2.90-5.40 mg/g (MTCI). Following the similar guideline, it was found that normalized difference water index (NDWI) and normalized difference infrared index (NDII) predictive models demonstrated the spatial variability of leaf water content from 40 percentage to 90 percentage in the same rice agriculture system which has a good agreement with observed in-situ leaf water measurements. The spatial information of these parameters will be useful for crop nutrient management and yield forecasting, and will serve as inputs to various crop-forecasting models for developing a precision rice agriculture system. Key words: Rice agriculture system, nitrogen, chlorophyll, leaf water content, vegetation index

  4. Remote Sensing of Vegetation Nitrogen Content for Spatially Explicit Carbon and Water Cycle Estimation

    NASA Astrophysics Data System (ADS)

    Zhang, Y. L.; Miller, J. R.; Chen, J. M.

    2009-05-01

    Foliage nitrogen concentration is a determinant of photosynthetic capacity of leaves, thereby an important input to ecological models for estimating terrestrial carbon and water budgets. Recently, spectrally continuous airborne hyperspectral remote sensing imagery has proven to be useful for retrieving an important related parameter, total chlorophyll content at both leaf and canopy scales. Thus remote sensing of vegetation biochemical parameters has promising potential for improving the prediction of global carbon and water balance patterns. In this research, we explored the feasibility of estimating leaf nitrogen content using hyperspectral remote sensing data for spatially explicit estimation of carbon and water budgets. Multi-year measurements of leaf biochemical contents of seven major boreal forest species were carried out in northeastern Ontario, Canada. The variation of leaf chlorophyll and nitrogen content in response to various growth conditions, and the relationship between them,were investigated. Despite differences in plant type (deciduous and evergreen), leaf age, stand growth conditions and developmental stages, leaf nitrogen content was strongly correlated with leaf chlorophyll content on a mass basis during the active growing season (r2=0.78). With this general correlation, leaf nitrogen content was estimated from leaf chlorophyll content at an accuracy of RMSE=2.2 mg/g, equivalent to 20.5% of the average measured leaf nitrogen content. Based on this correlation and a hyperspectral remote sensing algorithm for leaf chlorophyll content retrieval, the spatial variation of leaf nitrogen content was inferred from the airborne hyperspectral remote sensing imagery acquired by Compact Airborne Spectrographic Imager (CASI). A process-based ecological model Boreal Ecosystem Productivity Simulator (BEPS) was used for estimating terrestrial carbon and water budgets. In contrast to the scenario with leaf nitrogen content assigned as a constant value without differentiation between and within vegetation types for calculating the photosynthesis rate, we incorporated the spatial distribution of leaf nitrogen content in the model to estimate net primary productivity and evaportranspiration of boreal ecosystem. These regional estimates of carbon and water budgets with and without N mapping are compared, and the importance of this leaf biochemistry information derived from hyperspectral remote sensing in regional mapping of carbon and water fluxes is quantitatively assessed. Keywords: Remote Sensing, Leaf Nitrogen Content, Spatial Distribution, Carbon and Water Budgets, Estimation

  5. [Nutrient contents and microbial populations of aeolian sandy soil in Sanjiangyuan region of Qinghai Province].

    PubMed

    Lin, Chao-feng; Chen, Zhan-quan; Xue, Quan-hong; Lai, Hang-xian; Chen, Lai-sheng; Zhang, Deng-shan

    2007-01-01

    Sanjiangyuan region (the headstream of three rivers) in Qinghai Province of China is the highest and largest inland alpine wetland in the world. The study on the nutrient contents and microbial populations of aeolian sandy soils in this region showed that soil organic matter content increased with the evolution of aeolian sand dunes from un-stabilized to stabilized state, being 5.9 and 3.8 times higher in stabilized sand dune than in mobile and semi-stabilized sand dunes, respectively. Soil nitrogen and phosphorus contents increased in line with the amount of organic matter, while potassium content and pH value varied slightly. The microbial populations changed markedly with the development of vegetation, fixing of mobile sand, and increase of soil nutrients. The quantities of soil bacteria, fungi and actinomycetes were 4.0 and 2.8 times, 19.6 and 6.3 times, and 12.4 and 2.6 times higher in stabilized and semi-stabilized sand dunes than in mobile sand dune, respectively, indicating that soil microbial bio-diversity was increased with the evolution of aeolian sand dunes from mobile to stabilized state. In addition, the quantities of soil microbes were closely correlated with the contents of soil organic matter, total nitrogen, and available nitrogen and phosphorus, but not correlated with soil total phosphorus, total and available potassium, or pH value.

  6. High nitrogen availability reduces polyphenol content in Sphagnum peat.

    PubMed

    Bragazza, Luca; Freeman, Chris

    2007-05-15

    Peat mosses of the genus Sphagnum constitute the bulk of living and dead biomass in bogs. These plants contain peculiar polyphenols which hamper litter peat decomposition through their inhibitory activity on microbial breakdown. In the light of the increasing availability of biologically active nitrogen in natural ecosystems, litter derived from Sphagnum mosses is an ideal substrate to test the potential effects of increased atmospheric nitrogen deposition on polyphenol content in litter peat. To this aim, we measured total nitrogen and soluble polyphenol concentration in Sphagnum litter peat collected in 11 European bogs under a chronic gradient of atmospheric nitrogen deposition. Our results demonstrate that increasing nitrogen concentration in Sphagnum litter, as a consequence of increased exogenous nitrogen availability, is accompanied by a decreasing concentration of polyphenols. This inverse relationship is consistent with reports that in Sphagnum mosses, polyphenol and protein biosynthesis compete for the same precursor. Our observation of modified Sphagnum litter chemistry under chronic nitrogen eutrophication has implications in the context of the global carbon balance, because a lower content of decay-inhibiting polyphenols would accelerate litter peat decomposition.

  7. Decomposition rate of peat-forming plants in the oligotrophic peatland at the first stages of destruction

    NASA Astrophysics Data System (ADS)

    Nikonova, L. G.; Golovatskaya, E. A.; Terechshenko, N. N.

    2018-03-01

    The research presents quantitative estimates of the decomposition rate of plant residues at the initial stages of the decay of two plant species (Eriophorum vaginatum and Sphagnum fuscum) in a peat deposit of the oligotrophic bog in the southern taiga subzone of Western Siberia. We also studied a change in the content of total carbon and nitrogen in plant residues and the activity of microflora in the initial stages of decomposition. At the initial stage of the transformation process of peat-forming plants the losses of mass of Sph. fuscum is 2.5 times lower then E. vaginatum. The most active mass losses, as well as a decrease in the total carbon content, is observed after four months of the experiment. The most active carbon removal is characteristic for E. vaginatum. During the decomposition of plant residues, the nitrogen content decreases, and the most intense nitrogen losses were characteristic for Sph. fuscum. The microorganisms assimilating organic and mineral nitrogen are more active in August, the oligotrophic and cellulolytic microorganisms – in July.

  8. [Nitrogen Fraction Distributions and Impacts on Soil Nitrogen Mineralization in Different Vegetation Restorations of Karst Rocky Desertification].

    PubMed

    Hu, Ning; Ma, Zhi-min; Lan, Jia-cheng; Wu, Yu-chun; Chen, Gao-qi; Fu, Wa-li; Wen, Zhi-lin; Wang, Wen-jing

    2015-09-01

    In order to illuminate the impact on soil nitrogen accumulation and supply in karst rocky desertification area, the distribution characteristics of soil nitrogen pool for each class of soil aggregates and the relationship between aggregates nitrogen pool and soil nitrogen mineralization were analyzed in this study. The results showed that the content of total nitrogen, light fraction nitrogen, available nitrogen and mineral nitrogen in soil aggregates had an increasing tendency along with the descending of aggregate-size, and the highest content was occurred in < 0. 25 mm. The content of nitrogen fractions for all aggregate-classes followed in the order of abandoned land < grass land < brush land < brush-arbor land < arbor land in different sample plots. Artificial forest lands had more effects on the improvement of the soil nitrogen than honeysuckle land. In this study it also showed the nitrogen stockpiling quantity of each aggregate-size class was differed in all aggregate-size classes, in which the content of nitrogen fraction in 5-10 mm and 2-5 mm classes of soil aggregate-size were the highest. And it meant that soil nutrient mainly was stored in large size aggregates. Large size aggregates were significant to the storage of soil nutrient. For each class of soil aggregate-size, the contribution of the nitrogen stockpiling quantity of 0. 25-1 mm class to soil net nitrogen mineralization quantity was the biggest, and following >5mm and 2-5 mm classes, and the others were the smallest. With the positive vegetation succession, the weight percentage of > 5 mm aggregate-size classes was improved and the nitrogen storage of macro-aggregates also was increased. Accordingly, the capacity of soil supply mineral nitrogen and storage organic nitrogen were intensified.

  9. Low light intensity and nitrogen starvation modulate the chlorophyll content of Scenedesmus dimorphus.

    PubMed

    Ferreira, V S; Pinto, R F; Sant'Anna, C

    2016-03-01

    Chlorophyll is a photosynthetic pigment found in plants and algal organisms and is a bioproduct with human health benefits and a great potential for use in the food industry. The chlorophyll content in microalgae strains varies in response to environmental factors. In this work, we assessed the effect of nitrogen depletion and low light intensity on the chlorophyll content of the Scenedesmus dimorphus microalga. The growth of S. dimorphus under low light intensity led to a reduction in cell growth and volume as well as increased cellular chlorophyll content. Nitrogen starvation led to a reduction in cell growth and the chlorophyll content, changes in the yield and productivity of chlorophylls a and b. Transmission electron microscopy was used to investigate the ultrastructural changes in the S. dimorphus exposed to nitrogen and light deficiency. In contrast to nitrogen depletion, low light availability was an effective mean for increasing the total chlorophyll content of green microalga S. dimorphus. The findings acquired in this work are of great biotechnological importance to extend knowledge of choosing the right culture condition to stimulate the effectiveness of microalgae strains for chlorophyll production purposes. © 2015 The Society for Applied Microbiology.

  10. Microalgae-activated sludge treatment of molasses wastewater in sequencing batch photo-bioreactor.

    PubMed

    Tsioptsias, Costas; Lionta, Gesthimani; Samaras, Petros

    2017-05-01

    The aim of this work was the examination of the treatment potential of molasses wastewater, by the utilization of activated sludge and microalgae. The systems used included a sequencing batch bioreactor and a similar photo-bioreactor, favoring microalgae growth. The microalgae treatment of molasses wastewater mixture resulted in a considerable reduction in the total nitrogen content. A reduction in the ammonium and nitrate content was observed in the photo-bioreactor, while the effluent's total nitrogen consisted mainly of 50% organic nitrogen. The transformation of the nitrogen forms in the photo-bioreactor was attributed to microalgae activity, resulting in the production of a better quality effluent. Lower COD removal was observed for the photo-bioreactor than the control, which however increased, by the replacement of the anoxic phase by a long aeration period. The mechanism of nitrogen removal included both the denitrification process during the anoxic stage and the microalgae activities, as the replacement of the anoxic stage resulted in low total nitrogen removal capacities. A decrease in the photobioreactor performance was observed after 35 days of operation due to biofilm formation on the light tube surface, while the operation at higher temperature accelerated microalgae growth, resulting thus in the early failure of the photoreactor.

  11. Effect of nitrogen nutrition on endosperm protein synthesis in wild and cultivated barley grown in spike culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corke, H.; Atsmon, D.

    1988-06-01

    In normal growth conditions, total protein percent, in the endosperm at maturity in barley cultivar Hordeum vulgare L. cv Ruth was about 14%, whereas in an accession of wild barley, Hordeum spontaneum Koch line 297, it was about 28%. Spike culture experiments were conducted to ascertain whether there were basic differences between the two genotypes under conditions of widely different nitrogen supply. Spikes of each genotype were grown from 8 to 25 days after flowering in in vitro culture in a growth medium containing 0 to 4 grams per liter nitrogen supplied as NH{sub 4}NO{sub 3}. Spikes were pulse-labeled atmore » intervals from 12 to 24 days after flowering with 3.7 megabecquerel of ({sup 3}H)leucine to determine relative rates of synthesis of hordein-1 and hordein-2 polypedtides. At low nitrogen levels Ruth had a lower protein content than 297, but at increasing nitrogen levels its protein content increased rapidly and reached a maximum (35%) higher than 297 (30%). The relative contribution of the hordein fraction to total protein increased mainly with time, and hordein-1 to total hordein increased mainly with nitrogen level, in both genotypes. There appeared to be no fundamental limitations in the capacity of Ruth to accumulate protein: 297 appears to have a greater basal level of nitrogen availability under normal conditions.« less

  12. Biocrusts role on nitrogen cycle and microbial communities from underlying soils in drylands

    NASA Astrophysics Data System (ADS)

    Anguita-Maeso, Manuel; Miralles*, Isabel; van Wesemael, Bas; Lázaro, Roberto; Ortega, Raúl; Garcia-Salcedo, José Antonio; Soriano**, Miguel

    2017-04-01

    Biocrusts are distributed in arid areas widely covering most of the soil surface and playing an essential role in the functioning of nitrogen cycle. The absence of biocrust coverage might affect the soil nitrogen content and the quantity and diversity of microbial communities in underlying biocrust soils. To analyse this mater, we have collected three underlying soils biocrusts samples dominated by the lichen Diploschistes diacapsis and Squamarina lentigera from Tabernas desert (southeast of Spain) at two extremes of its spatial distribution range: one with a high percentage of biocrust coverage and other with a huge degradation and low percentage of biocrust coverage in order to determine differences on the total nitrogen content and microbial communities from these underlying soils. DNA from these samples was isolated though a commercial kit and it was used as template for metagenomic analysis. We accomplished a sequencing of the amplicons V4-V5 of the 16S rRNA gene with Next-Generation Sequencing (NGS) Illumina MiSeq platform and a relative quantity of bacteria (rRNA 16S) and fungi (ITS1-5.8S) were conducted by quantitative qPCR. Total nitrogen was measured by the Kjeldahl method. Statistical analyses were based on ANOVAs, heatmap and Generalized Linear Models (GLM). The results showed 1.89E+09 bacteria per gram of soil in the high biocrust coverage position while 6.98E+08 microorganisms per gram of soil were found in the less favourable position according to the lower percentage of biocrust coverage. Similarly, 1.19E+12 was the amount of fungi per gram of soil located in the favourable position with higher biocrust coverage and 7.62E+11 was found in the unfavourable position. Furthermore, the soil under high percentage of biocrust coverage showed the greatest total nitrogen content (1.1 g kg-1) whereas the soil sampled under depressed percentage of biocrust coverage displayed the fewest quantity of total nitrogen content (0.9 g kg-1). Metagenomic and statistical analysis exhibited different bacteria communities according to underlying soils with unlike percentage of biocrust coverage. Opitutus and Adhaeribacter predominated in soil under high biocrust coverage percentage whereas Chelatococcus was found as prevalent bacteria community in soils under low biocrust coverage percentage. Our data illustrate that the percentage of biocrust coverage influence the total nitrogen content in underlying biocrust soils and also affects the amount and the variety of bacteria communities in these underlying soils. (*) Financial support by Marie Curie Intra-European Fellowship (FP7-577 PEOPLE-2013-IEF, Proposal n° 623393) and (**) by the Ministerio de Economía y Competitividad (MINECO) cofinanced with FEDER funds (project CGL2015-71709-R) is acknowledged.

  13. Dietary carbohydrate deprivation increases 24-hour nitrogen excretion without affecting postabsorptive hepatic or whole body protein metabolism in healthy men.

    PubMed

    Bisschop, P H; De Sain-Van Der Velden, M G M; Stellaard, F; Kuipers, F; Meijer, A J; Sauerwein, H P; Romijn, J A

    2003-08-01

    Because insulin is an important regulator of protein metabolism, we hypothesized that physiological modulation of insulin secretion, by means of extreme variations in dietary carbohydrate content, affects postabsorptive protein metabolism. Therefore, we studied the effects of three isocaloric diets with identical protein content and low-carbohydrate/high-fat (2% and 83% of total energy, respectively), intermediate-carbohydrate/intermediate-fat (44% and 41% of total energy, respectively), and high-carbohydrate/low-fat (85% and 0% of total energy, respectively) content in six healthy men. Whole body protein metabolism was assessed by 24-h urinary nitrogen excretion, postabsorptive leucine kinetics, and fibrinogen and albumin synthesis by infusion of [1-(13)C]leucine and [1-(13)C]valine. The low-carbohydrate/high-fat diet resulted in lower absorptive and postabsorptive plasma insulin concentrations, and higher rates of nitrogen excretion compared with the other two diets: 15.3 +/- 0.9 vs. 12.1 +/- 1.1 (P = 0.03) and 10.8 +/- 0.5 g/24 h (P = 0.005), respectively. Postabsorptive rates of appearance of leucine and of leucine oxidation were not different among the three diets. In addition, dietary carbohydrate content did not affect the synthesis rates of fibrinogen and albumin. In conclusion, eucaloric carbohydrate deprivation increases 24-h nitrogen loss but does not affect postabsorptive protein metabolism at the hepatic and whole body level. By deduction, dietary carbohydrate is required for an optimal regulation of absorptive, rather than postabsorptive, protein metabolism.

  14. Experimental manipulations of snow-depth: Effects on nutrient content of caribou forage

    USGS Publications Warehouse

    Walsh, Noreen E.; McCabe, Thomas R.; Welker, J.M.; Parsons, A.N.

    1997-01-01

    We investigated the potential effects of global climate change on arctic tundra vegetation used as caribou forage. A total of 96 experimental plots was established at six sites on the coastal plain of the Arctic National Wildlife Refuge, Alaska, in 1993 and 1994. We erected snow-fences to increase the amount of snow deposition, and therefore delay the date of the snowmelt on 48 plots (referred to as increased snow/late melting plots). We used black mesh netting on the surface of the snow to increase the rate of melting on 24 plots; the remaining 24 plots served as controls. In July 1994, we collected green leaves from Eriophorum vaginatum, Salix planifolia, and Betula nana and analysed these samples for total carbon and total nitrogen content. Ratios of carbon to nitrogen differed among treatments for all three species. Generally, C:N ratios for B. nana and E. vaginatum on increased snow/late melting plots were lower than on control plots. C:N ratios for S. planifolia on increased snow/late melting plots did not differ from controls, but were lower than on plots which started to melt early. These results may be due to the timing of nitrogen translocation from leaf and stem tissue into storage organs, or due to an increase in available nitrogen input to the system. Further sampling is needed to adequately determine the mechanism responsible for increased nitrogen content of caribou forage in areas with increased amount of snow and delayed snowmelt. ?? 1997 Blackwell Science Ltd.

  15. Effects of replacing groundnut cake with rumen content supplemented with or without enzyme in the diet of weaner rabbits.

    PubMed

    Adeniji, A A; Rumak, S; Oluwafemi, R A

    2015-12-18

    Rabbits are also herbivores which efficiently convert fodder to food. They are prolific and converter of plant proteins of little or no use to people as food into high-value animal protein. Rabbit meat is high in protein, low in calories and low in fat and cholesterol contents, being considered as a delicacy and a healthy food product. Feeding rabbits with concentrates is expensive and therefore in order to reduce cost of production, hence the use of rumen content in this study as alternative feedstuff without competition. A total of thirty six (36) weaner rabbits (oryctalagus cuniculus) of different body weight and age where use in this experiment to determine the effects of replacing rumen content with or without enzyme supplementation for groundnut cake. This feeding trial which lasted for 8 weeks was carried out in order to determine the replacement value of groundnut cake with rumen content with or without enzyme in the diet of weaner rabbit. A 3x2 factorial experiment was adopted such that there where three (3) replacement level of rumen content (0, 25 and 50 %) for groundnut cake by two supplemental level (no enzyme and enzyme supplement). The results showed that increased inclusion level of rumen content has significant effects (p < 0.05) on daily feed intake, rate of weight gain, feed to gain ratio, nitrogen retention, faecal nitrogen, total nitrogen output and nitrogen digestibility. The weight gained by rabbits fed on 0, 25 and 50 % were all comparable (p > 0.05) with weight gained value of 7.62,7.44 and 7.36 g respectively. Similarly there was a significant (p < 0.05) effect of supplement added on the body weight gain of the experimental animals. There was significant effect (p < 0.05) of the diet on the obtained feed to gain ratio. However, there was no significant effect (p > 0.05) of the treatment on urinary nitrogen. Significant (p < 0.05) effects of supplementation was observed on the feed intake, weight gain, feed to gain ratio, faecal nitrogen, nitrogen retention and nitrogen digestibility but there was no significant effects (p > 0.05) of the supplementation on the nitrogen intake. The interaction between the varying levels of rumen content supplementation had significant effects (p < 0.05) on the feacal nitrogen, feed intake and feed to gain ratio but no significant (p < 0.05) effects on interaction of nitrogen intake. In conclusion, since the results from this study showed no negative effects on the performance of the experimental animals, the test ingredient can be used as alternative feedstuff at a lower inclusion level so as to reduce production cost and expand rabbit production.

  16. Development of FT-NIR Models for the Simultaneous Estimation of Chlorophyll and Nitrogen Content in Fresh Apple (Malus Domestica) Leaves

    PubMed Central

    Tamburini, Elena; Ferrari, Giuseppe; Marchetti, Maria Gabriella; Pedrini, Paola; Ferro, Sergio

    2015-01-01

    Agricultural practices determine the level of food production and, to great extent, the state of the global environment. During the last decades, the indiscriminate recourse to fertilizers as well as the nitrogen losses from land application have been recognized as serious issues of modern agriculture, globally contributing to nitrate pollution. The development of a reliable Near-Infra-Red Spectroscopy (NIRS)-based method, for the simultaneous monitoring of nitrogen and chlorophyll in fresh apple (Malus domestica) leaves, was investigated on a set of 133 samples, with the aim of estimating the nutritional and physiological status of trees, in real time, cheaply and non-destructively. By means of a FT (Fourier Transform)-NIR instrument, Partial Least Squares (PLS) regression models were developed, spanning a concentration range of 0.577%–0.817% for the total Kjeldahl nitrogen (TKN) content (R2 = 0.983; SEC = 0.012; SEP = 0.028), and of 1.534–2.372 mg/g for the total chlorophyll content (R2 = 0.941; SEC = 0.132; SEP = 0.162). Chlorophyll-a and chlorophyll-b contents were also evaluated (R2 = 0.913; SEC = 0.076; SEP = 0.101 and R2 = 0.899; SEC = 0.059; SEP = 0.101, respectively). All calibration models were validated by means of 47 independent samples. The NIR approach allows a rapid evaluation of the nitrogen and chlorophyll contents, and may represent a useful tool for determining nutritional and physiological status of plants, in order to allow a correction of nutrition programs during the season. PMID:25629703

  17. Soil Microbial Communities and Gas Dynamics Contribute to Arbuscular Mycorrhizal Nitrogen Uptake and Transfer to Plants

    NASA Astrophysics Data System (ADS)

    Hestrin, R.; Harrison, M. J.; Lehmann, J.

    2016-12-01

    Arbuscular mycorrhizal fungi (AMF) associate with most terrestrial plants and influence ecosystem ecology and biogeochemistry. There is evidence that AMF play a role in soil nitrogen cycling, in part by taking up nitrogen and transferring it to plants. However, many aspects of this process are poorly understood, including the factors that control fungal access to nitrogen stored in soil organic matter. In this study, we used stable isotopes and root exclusion to track nitrogen movement from organic matter into AMF and host plants. AMF significantly increased total plant biomass and nitrogen content, but both AMF and other soil microbes seemed to compete with plants for nitrogen. Surprisingly, gaseous nitrogen species also contributed significantly to plant nitrogen content under alkaline soil conditions. Our current experiments investigate whether free-living microbial communities that have evolved under a soil nitrogen gradient influence AMF access to soil organic nitrogen and subsequent nitrogen transfer to plants. This research links interactions between plants, mycorrhizal symbionts, and free-living microbes with terrestrial carbon and nitrogen dynamics.

  18. Overexpression of the autophagy-related gene SiATG8a from foxtail millet (Setaria italica L.) confers tolerance to both nitrogen starvation and drought stress in Arabidopsis.

    PubMed

    Li, Wei-wei; Chen, Ming; Zhong, Li; Liu, Jia-ming; Xu, Zhao-shi; Li, Lian-cheng; Zhou, Yong-Bin; Guo, Chang-Hong; Ma, You-Zhi

    2015-12-25

    Autophagy is an evolutionarily conserved biological process in all eukaryotes for the degradation of intracellular components for nutrient recycling. Autophagy is known to be involved in responses to low nitrogen stress in Arabidopsis. Foxtail millet has strong abiotic stress resistance to both low nutrient and drought stress. However, to date, there have only been a few genes reported to be related with abiotic stress resistance in foxtail millet. In this study, we identified an autophagy-related gene, SiATG8a, from foxtail millet. SiATG8a is mainly expressed in stems and its expression was dramatically induced by drought stress and nitrogen starvation treatments. SiATG8a was localized in the membrane and cytoplasm of foxtail millet. Overexpression of SiATG8a in Arabidopsis conferred tolerance to both nitrogen starvation and to drought stress. Under nitrogen starvation conditions, the SiATG8a transgenic plants had larger root and leaf areas and accumulated more total nitrogen than wild-type plants. The transgenic plants had lower total protein concentrations than did the WT plants. Under drought stress, the SiATG8a transgenic plants had higher survival rates, chlorophyll content, and proline content, but had lower MDA content than wild type plants. Taken together, our results represent the first identified case where overexpression of autophagy related gene can simultaneously improve plant resistance to low nitrogen and drought stresses. These findings implicate plant autophagy in plant stress responses to low nitrogen and drought and should be helpful in efforts to improve stresses resistance to nitrogen starvation and drought of crops by genetic transformation. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Effect of Holder pasteurization and frozen storage on macronutrients and energy content of breast milk.

    PubMed

    García-Lara, Nadia Raquel; Vieco, Diana Escuder; De la Cruz-Bértolo, Javier; Lora-Pablos, David; Velasco, Noelia Ureta; Pallás-Alonso, Carmen Rosa

    2013-09-01

    The aim of this study was to explore the effect of Holder pasteurization and frozen storage at -20°C after pasteurization on fat, total nitrogen, lactose, and energy content of breast milk. Both procedures are routinely practiced in human milk banks. A total of 34 samples of frozen breast milk, donated by 28 women, were collected. Once thawed, an aliquot of each sample was analyzed before pasteurization; the remaining milk was pasteurized (Holder method) and split into 8 aliquots. One aliquot was analyzed after pasteurization and the remainder frozen at -20°C and analyzed 30, 60, 90, 120, and 180 days later. For every aliquot, fat, total nitrogen, lactose, and energy content were determined using the device human Milk Analyzer. We observed a significant reduction in fat (3.5%; -0.17 (-0.29; -0.04) g/dL) and energy content (2.8%; -2.03 (-3.60; -0.46) g/dL) after pasteurization. A significant decrease over time was observed for fat, lactose and energy content. No significant changes were observed for nitrogen content. Mean differences between day 0 postpasteurization and day 180 were -0.13 (-0.21; -0.06) g/dL for fat, -0.08 (-0.13; -0.03) g/dL for lactose, and -1.55 (-2.38; -0.71) kcal/dL for energy content. The relative decreases were 2.8%, 1.7%, and 2.2%, respectively. Overall (postpasteurization + frozen storage), a 6.2% and 5% decrease were observed for fat and energy, respectively. Holder pasteurization decreased fat and energy content of human milk. Frozen storage at -20°C of pasteurized milk significantly reduced fat, lactose, and energy content of human milk.

  20. Alterations in nitrogen metabolites after putrescine treatment in alfalfa under drought stress.

    PubMed

    Zeid, I M; Shedeed, Z A

    2007-05-01

    Alfalfa (Medicago sativa, Siwa 1) seeds were subjected to drought stress during germination by using polyethylene glycol (PEG 4000) for studying the changes in some enzyme activities involved in nitrogen metabolism and the content of nitrogenous compounds during the first four days of growth after putrescine (Put) treatment. Decreasing the external water potential reduced activities of glutamate-pyruvate transferase (GPT), glutamate-oxaloacetate transferase (GOT) and RNase. Some free amino acids such as proline and glycine increased, while alanine and aspartic acid decreased. Nucleic acids content also decreased. Polyamines e.g., spermidine (Spd) and spermine (Spm) increased at the water potential -0.4 MPa. Put treatment increased activities of GOT, GPT and RNase. Furthermore, Put treatment increased nucleic acids content and the endogenous polyamines under drought stress. Drought stress was imposed during seedling stage by decreasing soil moisture content. GOT, GPT and RNase activities increased in leaves of alfalfa seedlings under drought stress. Soluble nitrogenous compounds accumulated under drought stress, while nucleic acids content decreased. Except glutamic acid, all free amino acids detected increased under drought stress. Put treatment decreased activities of GOT, GPT and RNase, as well as reduced the accumulation of the total soluble nitrogenous compounds, but increased DNA, RNA and protein contents.

  1. Total body nitrogen analysis. [neutron activation analysis

    NASA Technical Reports Server (NTRS)

    Palmer, H. E.

    1975-01-01

    Studies of two potential in vivo neutron activation methods for determining total and partial body nitrogen in animals and humans are described. A method using the CO-11 in the expired air as a measure of nitrogen content was found to be adequate for small animals such as rats, but inadequate for human measurements due to a slow excretion rate. Studies on the method of measuring the induced N-13 in the body show that with further development, this method should be adequate for measuring muscle mass changes occurring in animals or humans during space flight.

  2. Effects of low nitrogen supply on tomato (Solanum lycopersicum) fruit yield and quality with special emphasis on sugars, acids, ascorbate, carotenoids, and phenolic compounds.

    PubMed

    Bénard, Camille; Gautier, Hélène; Bourgaud, Frédéric; Grasselly, Dominique; Navez, Brigitte; Caris-Veyrat, Catherine; Weiss, Marie; Génard, Michel

    2009-05-27

    The objective of this study was to determine the impact of lowering nitrogen supply from 12 to 6 or 4 mM NO(3)(-) on tomato fruit yield and quality during the growing season. Lowering nitrogen supply had a low impact on fruit commercial yield (-7.5%), but it reduced plant vegetative growth and increased fruit dry matter content, improving consequently fruit quality. Fruit quality was improved due to lower acid (10-16%) and increased soluble sugar content (5-17%). The content of some phenolic compounds (rutin, a caffeic acid glycoside, and a caffeic acid derivate) and total ascorbic acid tended to be higher in fruit with the lowest nitrogen supply, but differences were significant in only a few cases (trusses). With regard to carotenoids, data did not show significant and univocal differences related to different levels of nitrogen supply. Thus, reducing nitrogen fertilization limited environmental pollution, on the one hand, and may improve, on the other hand, both growers' profits, by limiting nitrogen inputs, and fruit quality for consumers, by increasing tomato sugars content. It was concluded that primary and secondary metabolites could be affected as a result of a specific response to low nitrogen, combined with a lower degree of vegetative development, increasing fruit irradiance, and therefore modifying fruit composition.

  3. Herbivory alters plant carbon assimilation, patterns of biomass allocation and nitrogen use efficiency

    NASA Astrophysics Data System (ADS)

    Peschiutta, María Laura; Scholz, Fabián Gustavo; Goldstein, Guillermo; Bucci, Sandra Janet

    2018-01-01

    Herbivory can trigger physiological processes resulting in leaf and whole plant functional changes. The effects of chronic infestation by an insect on leaf traits related to carbon and nitrogen economy in three Prunus avium cultivars were assessed. Leaves from non-infested trees (control) and damaged leaves from infested trees were selected. The insect larvae produce skeletonization of the leaves leaving relatively intact the vein network of the eaten leaves and the abaxial epidermal tissue. At the leaf level, nitrogen content per mass (Nmass) and per area (Narea), net photosynthesis per mass (Amass) and per area (Aarea), photosynthetic nitrogen-use efficiency (PNUE), leaf mass per area (LMA) and total leaf phenols content were measured in the three cultivars. All cultivars responded to herbivory in a similar fashion. The Nmass, Amass, and PNUE decreased, while LMA and total content of phenols increased in partially damaged leaves. Increases in herbivore pressure resulted in lower leaf size and total leaf area per plant across cultivars. Despite this, stem cumulative growth tended to increase in infected plants suggesting a change in the patterns of biomass allocation and in resources sequestration elicited by herbivory. A larger N investment in defenses instead of photosynthetic structures may explain the lower PNUE and Amass observed in damaged leaves. Some physiological changes due to herbivory partially compensate for the cost of leaf removal buffering the carbon economy at the whole plant level.

  4. Leaching behavior of total organic carbon, nitrogen, and phosphorus from banana peel.

    PubMed

    Jiang, Ruixue; Sun, Shujuan; Xu, Yan; Qiu, Xiudong; Yang, Jili; Li, Xiaochen

    2015-01-01

    The leaching behavior of organic carbon and nutrient compounds from banana peel (BP) was investigated in batch assays with respect to particle size, contact time, pH value, and temperature. The granularity, contact time, pH, and temperature caused no significant effects on the leaching of total phosphorus (TP) from the BP. The maximum leached total nitrogen (TN) content was found at pH 5.0 and 90 minutes, while no significant effects were caused by the granularity and temperature. The maximum leached total organic carbon (TOC) content was found by using a powder of 40 mesh, 150 minutes and at pH 6.0, while the temperature had no effect on the TOC leaching. The proportions of the TN, TP, and TOC contents leached from the dried BP ranged from 33.6% to 40.9%, 60.4% to 72.7%, and 8.2% to 9.9%, respectively, indicating that BP could be a potential pollution source for surface and ground water if discharged as domestic waste or reutilized without pretreatment.

  5. Nitrogen-to-Protein Conversion Factors for Crop Residues and Animal Manure Common in China.

    PubMed

    Chen, Xueli; Zhao, Guanglu; Zhang, Yang; Han, Lujia; Xiao, Weihua

    2017-10-25

    Accurately determining protein content is essential in exploiting biomass as feed and fuel. A survey of biomass samples in China indicated protein contents from 2.65 to 3.98% for crop residues and from 6.07 to 10.24% for animal manure of dry basis. Conversion factors based on amino acid nitrogen (k A ) ranged from 5.42 to 6.00 for the former and from 4.78 to 5.36 for the latter, indicating that the traditional factor of 6.25 is not suitable for biomass samples. On the other hand, conversion factors from Kjeldahl nitrogen (k P ) ranged from 3.97 to 4.57 and from 2.76 to 4.31 for crop residues and animal manure, respectively. Of note, conversion factors were strongly affected by amino acid composition and levels of nonprotein nitrogen. Thus, k P values of 4.23 for crop residues, 4.11 for livestock manure, and 3.11 for poultry manure are recommended to better estimate protein content from total nitrogen.

  6. Effects of Elevated CO2 and Temperature on Yield and Fruit Quality of Strawberry (Fragaria × ananassa Duch.) at Two Levels of Nitrogen Application

    PubMed Central

    Sun, Peng; Mantri, Nitin; Lou, Heqiang; Hu, Ya; Sun, Dan; Zhu, Yueqing; Dong, Tingting; Lu, Hongfei

    2012-01-01

    We investigated if elevated CO2 could alleviate the negative effect of high temperature on fruit yield of strawberry (Fragaria × ananassa Duch. cv. Toyonoka) at different levels of nitrogen and also tested the combined effects of CO2, temperature and nitrogen on fruit quality of plants cultivated in controlled growth chambers. Results show that elevated CO2 and high temperature caused a further 12% and 35% decrease in fruit yield at low and high nitrogen, respectively. The fewer inflorescences and smaller umbel size during flower induction caused the reduction of fruit yield at elevated CO2 and high temperature. Interestingly, nitrogen application has no beneficial effect on fruit yield, and this may be because of decreased sucrose export to the shoot apical meristem at floral transition. Moreover, elevated CO2 increased the levels of dry matter-content, fructose, glucose, total sugar and sweetness index per dry matter, but decreased fruit nitrogen content, total antioxidant capacity and all antioxidant compounds per dry matter in strawberry fruit. The reduction of fruit nitrogen content and antioxidant activity was mainly caused by the dilution effect of accumulated non-structural carbohydrates sourced from the increased net photosynthetic rate at elevated CO2. Thus, the quality of strawberry fruit would increase because of the increased sweetness and the similar amount of fruit nitrogen content, antioxidant activity per fresh matter at elevated CO2. Overall, we found that elevated CO2 improved the production of strawberry (including yield and quality) at low temperature, but decreased it at high temperature. The dramatic fluctuation in strawberry yield between low and high temperature at elevated CO2 implies that more attention should be paid to the process of flower induction under climate change, especially in fruits that require winter chilling for reproductive growth. PMID:22911728

  7. Scaling of xylem and phloem transport capacity and resource usage with tree size

    PubMed Central

    Hölttä, Teemu; Kurppa, Miika; Nikinmaa, Eero

    2013-01-01

    Xylem and phloem need to maintain steady transport rates of water and carbohydrates to match the exchange rates of these compounds at the leaves. A major proportion of the carbon and nitrogen assimilated by a tree is allocated to the construction and maintenance of the xylem and phloem long distance transport tissues. This proportion can be expected to increase with increasing tree size due to the growing transport distances between the assimilating tissues, i.e., leaves and fine roots, at the expense of their growth. We formulated whole tree level scaling relations to estimate how xylem and phloem volume, nitrogen content and hydraulic conductance scale with tree size, and how these properties are distributed along a tree height. Xylem and phloem thicknesses and nitrogen contents were measured within varying positions in four tree species from Southern Finland. Phloem volume, nitrogen amount and hydraulic conductance were found to be concentrated toward the branch and stem apices, in contrast to the xylem where these properties were more concentrated toward the tree base. All of the species under study demonstrated very similar trends. Total nitrogen amount allocated to xylem and phloem was predicted to be comparable to the nitrogen amount allocated to the leaves in small and medium size trees, and to increase significantly above the nitrogen content of the leaves in larger trees. Total volume, hydraulic conductance and nitrogen content of the xylem were predicted to increase faster than that of the phloem with increasing tree height in small trees (<~10 m in height). In larger trees, xylem sapwood turnover to heartwood, if present, would maintain phloem conductance at the same level with xylem conductance with further increases in tree height. Further simulations with a previously published xylem-phloem transport model demonstrated that the Münch pressure flow hypothesis could explain phloem transport with increasing tree height even for the tallest trees. PMID:24367373

  8. [Spatial variability of surface soil nutrients in the landslide area of Beichuan County, South- west China, after 5 · 12 Wenchuan Earthquake].

    PubMed

    Mai, Ji-shan; Zhao, Ting-ning; Zheng, Jiang-kun; Shi, Chang-qing

    2015-12-01

    Based on grid sampling and laboratory analysis, spatial variability of surface soil nutrients was analyzed with GS⁺ and other statistics methods on the landslide area of Fenghuang Mountain, Leigu Town, Beichuan County. The results showed that except for high variability of available phosphorus, other soil nutrients exhibited moderate variability. The ratios of nugget to sill of the soil available phosphorus and soil organic carbon were 27.9% and 28.8%, respectively, showing moderate spatial correlation, while the ratios of nugget to sill of the total nitrogen (20.0%), total phosphorus (24.3%), total potassium (11.1%), available nitrogen (11.2%), and available potassium (22.7%) suggested strong spatial correlation. The total phosphorus had the maximum range (1232.7 m), followed by available nitrogen (541.27 m), total nitrogen (468.35 m), total potassium (136.0 m), available potassium (128.7 m), available phosphorus (116.6 m), and soil organic carbon (93.5 m). Soil nutrients had no significant variation with the increase of altitude, but gradually increased from the landslide area, the transition area, to the little-impacted area. The total and available phosphorus contents of the landslide area decreased by 10.3% and 79.7% compared to that of the little-impacted area, respectively. The soil nutrient contents in the transition area accounted for 31.1%-87.2% of that of the little-impacted area, with the nant reason for the spatial variability of surface soil nutrients.

  9. Bioremediation of oil sludge using a type of nitrogen source and the consortium of bacteria with composting method

    NASA Astrophysics Data System (ADS)

    Fitri, Inayah; Ni'matuzahroh, Surtiningsih, Tini

    2017-06-01

    The purpose of this research are to know the effect of addition of different nitrogen source, consortium of bacteria, incubation time and the interaction between those variables to the total number of bacteria (CFU/g-soil) and the percentage of degradation (%) in the bioremediation of oil sludge contaminated soil; as well as degraded hydrocarbon components at the best treatment on 6th week. The experiments carried out by mixing the materials and placed them in each bath with and without adding different nitrogen source and bacterial consortium. pH and moisture were measured for every week. An increase in total number of bacteria and percent of maximum degradation recorded at treatment with the addition of NPK+Azotobacter+bacteria consortium; with the TPC value was 14.24 log CFU/g, percent degradation was 77.8%, organic C content was 10.91%, total N was 0.12% and organic matter content was 18.87%, respectively.

  10. Determination of kjeldahl nitrogen in fertilizers by AOAC official methods 978.02: effect of copper sulfate as a catalyst.

    PubMed

    Abrams, Dean; Metcalf, David; Hojjatie, Michael

    2014-01-01

    In AOAC Official Method 955.04, Nitrogen (Total) in Fertilizers, Kjeldahl Method, fertilizer materials are analyzed using mercuric oxide or metallic mercury HgO or Hg) as a catalyst. AOAC Official Methods 970.02, Nitrogen (Total) in Fertilizers is a comprehensive total nitrogen (including nitrate nitrogen) method adding chromium metal. AOAC Official Method 978.02, Nitrogen (Total) in Fertilizers is a modified comprehensive nitrogen method used to measure total nitrogen in fertilizers with two types of catalysts. In this method, either copper sulfate or chromium metal is added to analyze for total Kjeldahl nitrogen. In this study, the part of AOAC Official Method 978.02 that is for nitrate-free fertilizer products was modified. The objective was to examine the necessity of copper sulfate as a catalyst for the nitrate-free fertilizer products. Copper salts are not environmentally friendly and are considered pollutants. Products such as ammonium sulfate, diammonium phosphate, monoammonium phosphate, urea-containing fertilizers such as isobutylene diurea (IBDU), and urea-triazone fertilizer solutions were examined. The first part of the study was to measure Kjeldahl nitrogen as recommended by AOAC Official Method 978.02. The second part of the study was to exclude the addition of copper sulfate from AOAC Official Method 978.02 to examine the necessity of copper sulfate as a catalyst in nitrate-free fertilizers, which was the primary objective. Our findings indicate that copper sulfate can be eliminated from the method with no significant difference in the results for the nitrogen content of the fertilizer products.

  11. Study of Cleanliness of High Nitrogen Steel in ESR

    NASA Astrophysics Data System (ADS)

    Xuwei, Tang; Rong, Zhu

    This paper compares inclusions in high nitrogen steel before and after ESR process, analyzes the influence of slag systems and total oxygen content in consumable ingots. The total oxygen content is reduced apparently during ESR process, which indicates good effects on removal of inclusions. In the experiment, it shows that different slag systems will affect the result of inclusions removal significantly; proper w(CaO/Al2O3) will reduce the level of inclusions and total oxygen content in ESR ingots. In ESR process, the type and chemical composition of inclusions have no difference when oxygen content in consumable ingots is different, which means O content in consumable ingots have no direct relationship with cleanliness of ESR ingots. In typical inclusions, w(MnO)/w(MnO+Al2O3)≈0.23 0.32. The total oxygen content of ESR ingots keeps between 20 30ppm when the oxygen contents in consumable ingots are diverse from 40 to 100ppm. Meanwhile, this paper studies desulfurization process of high nitrogen steel in ESR, analyzes the influence of slag systems a nd remelting rates on desulfurization efficiency. The results indicate that the average size and quant ity of sulfide inclusion decrease after ESR process. The typical inclusion after ESR process is MnS+Al2O3. Slag system with proper CaO content has higher sulfur partition ratio, which leads to better desulfurization effect. The desulfurization rate changes greatly with different remelting rates, which indicates the kinetic parameter has more influence in desulfurization. The reason of this phenomenon is that the process of desulfurization can be considered as a non-equilibrium reaction, which differs with thermodynamic equilibrium. In kinetic study, it is founded that the desulfurization efficiency increases with higher remelting area, sulfur partition and lower remelting rate, which is different from experiment. The desulfurization efficiency decreases firstly and then recovers when remelting rate drops. The enrichment of sulfide in slag results in resulfurization in steel, which leads to lower desulfurization efficiency.

  12. The relationship between phenolics and flavonoids production with total non structural carbohydrate and photosynthetic rate in Labisia pumila Benth. under high CO2 and nitrogen fertilization.

    PubMed

    Ibrahim, Mohd Hafiz; Jaafar, Hawa Z E; Rahmat, Asmah; Rahman, Zaharah Abdul

    2010-12-29

    A factorial split plot 4 × 3 experiment was designed to examine and characterize the relationship among production of secondary metabolites (total phenolics, TP; total flavonoids, TF), carbohydrate content and photosynthesis of three varieties of the Malaysian medicinal herb Labisia pumila Benth. namely the varieties alata, pumila and lanceolata under CO(2) enrichment (1,200 µmol mol(-1)) combined with four levels of nitrogen fertilization (0, 90, 180 and 270 kg N ha(-1)). No varietal differences were observed, however, as the levels of nitrogen increased from 0 to 270 kg N ha(-1), the production of TP and TF decreased in the order leaves>roots>stems. The production of TP and TF was related to increased total non structural carbohydrate (TNC), where the increase in starch content was larger than that in sugar concentration. Nevertheless, the regression analysis exhibited a higher influence of soluble sugar concentration (r(2) = 0.88) than starch on TP and TF biosynthesis. Photosynthesis, on the other hand, displayed a significant negative relationship with TP and TF production (r(2) = -0.87). A decrease in photosynthetic rate with increasing secondary metabolites might be due to an increase in the shikimic acid pathway that results in enhanced production of TP and TF. Chlorophyll content exhibited very significant negative relationships with total soluble sugar, starch and total non structural carbohydrate.

  13. [Influences of tide on silicon and nitrogen contents in soil and porewater in the Minjiang Ri-ver estuary, Southeast China].

    PubMed

    Hou, Guan Yun; Zhai, Shui Jing; Le, Xiao Qing; Tong, Chuan

    2017-01-01

    Taking Shanyuntan wetland in the Minjiang River estuary as test object, the dissolved silicates (DSi) and inorganic nitrogen contents in porewater and the biogenic silica (BSi) and total nitrogen contents in surface soil of the Phragmites australis wetland, Cyperus malaccensis wetland and Spartina alterniflora wetland were measured in October 2014 (spring tide month) and April 2015 (neap tide month), respectively, to illuminate the influence of tide on silicon and nitrogen contents in soil and porewater of estuarine wetland. Results showed that the DSi content in porewater and the BSi content in surface soil in spring tide month were slightly higher than those in neap tide month, with the highest being observed on neap tide day and the lowest occurring on spring tide day. In contrast, the BSi content in surface soil on spring tide day showed an opposite trend with that on neap tide day. The contents of NH 4 + -N and NO 3 - -N in porewater of different wetland soils in spring tide month were higher than those in neap tide month, while the content of NH 4 + -N on spring tide day was significantly higher than that on neap tide day (P<0.05). The study found that hydrological conditions such as flooding duration and drying-wetting alternation caused by tide had great influences on silicon and nitrogen contents in porewater and surface soil, and vegetation types also showed great influences on their distributions in intertidal wetland of the Minjiang River estuary.

  14. IMPACT OF LIQUID NITROGEN EXPOSURE ON SELECTED BIOCHEMICAL AND STRUCTURAL PARAMETERS OF HYDRATED Phaseolus vulgaris L. SEEDS.

    PubMed

    Cejas, Inaudis; Rivas, Maribel; Nápoles, Lelurlys; Marrero, Pedro; Yabor, Lourdes; Aragón, Carlos; Pérez, Aurora; Engelmann, Florent; Martínez-Montero, Marcos Edel; Lorenzo, José Carlos

    2015-01-01

    It is well known that cryopreserving seeds with high water content is detrimental to survival, but biochemical and structural parameters of cryostored hydrated common bean seeds have not been published. The objective of this work was to study the effect of liquid nitrogen exposure on selected biochemical and structural parameters of hydrated Phaseolus vulgaris seeds. We cryopreserved seeds at various moisture contents and evaluated: germination; electrolyte leakage; fresh seed weight; levels of chlorophyll pigments, malondialdehyde, other aldehydes, phenolics and proteins; thickness of cotyledon epidermis, parenchyma, and starch storage parenchyma; and radicle and plumule lengths. Germination was totally inhibited when seeds were immersed in water for 50 min (moisture content of 38%, FW basis) before cryopreservation. The combined effects of seed water imbibition and cryostorage decreased phenolics (free, cell wall-linked, total), chlorophyll a and protein content. By contrast, electrolyte leakage and levels of chlorophyll b and other aldehydes increased as a result of the combination of these two experimental factors. These were the most significant effects observed during exposure of humid seed to liquid nitrogen. Further studies are still required to clarify the molecular events taking place in plant cells during cryostorage.

  15. Low Cycle Fatigue Behavior of 316LN Stainless Steel Alloyed with Varying Nitrogen Content. Part II: Fatigue Life and Fracture Behavior

    NASA Astrophysics Data System (ADS)

    Prasad Reddy, G. V.; Sandhya, R.; Sankaran, S.; Mathew, M. D.

    2014-10-01

    Influence of nitrogen content on low cycle fatigue life and fracture behavior of 316LN stainless steel (SS) alloyed with 0.07 to 0.22 wt pct nitrogen is presented in this paper over a range of total strain amplitudes ( ±0.25 to 1.0 pct) in the temperature range from 773 K to 873 K (500 °C to 600 °C). The combined effect of nitrogen and strain amplitude on fatigue life is observed to be complex i.e., fatigue life either decreases/increases with increase in nitrogen content or saturates/peaks at 0.14 wt pct N depending on strain amplitude and temperature. Coffin-Manson plots (CMPs) revealed both single-slope and dual-slope strain-life curves depending on the test temperature and nitrogen content. 316LN SS containing 0.07 and 0.22 wt pct N showed nearly single-slope CMP at all test temperatures, while 316LN SS with 0.11 and 0.14 wt pct N exhibited marked dual-slope behavior at 773 K (500 °C) that changes to single-slope behavior at 873 K (600 °C). The changes in slope of CMP are found to be in good correlation with deformation substructural changes.

  16. High Resolution Spectrometry of Leaf and Canopy Chemistry for Biochemical Cycling

    NASA Technical Reports Server (NTRS)

    Spanner, M. A.; Peterson, D. L.; Acevedo, W.; Matson, P.

    1985-01-01

    High-resolution laboratory spectrophotometer and Airborne Imaging Spectrometer (AIS) data were used to analyze forest leaf and canopy chemistry. Fundamental stretching frequencies of organic bonds in the visible, near infrared and short-wave infrared are indicative of concentrations and total content of nitrogen, phosphorous, starch and sugar. Laboratory spectrophotometer measurements showed very strong negative correlations with nitrogen (measured using wet chemistry) in the visible wavelengths. Strong correlations with green wet canopy weight in the atmospheric water absorption windows were observed in the AIS data. A fairly strong negative correlation between the AIS data at 1500 nm and total nitrogen and nitrogen concentration was evident. This relationship corresponds very closely to protein absorption features near 1500 nm.

  17. Effect of fiber source on cecal fermentation and nitrogen recycled through cecotrophy in rabbits.

    PubMed

    García, J; Carabaño, R; Pérez-Alba, L; de Blas, J C

    2000-03-01

    The influence of fiber source on fiber digestion in rabbits was investigated. Six fibrous feedstuffs with wide differences in chemical composition and particle size were selected: paprika meal, olive leaves, alfalfa hay, soybean hulls, sodium hydroxide-treated barley straw, and sunflower hulls. Six diets were formulated to contain one of these ingredients as the sole source of fiber. To avoid nutrient imbalances, fiber sources were supplemented with different proportions of a fiber-free concentrate, based on soy protein isolate, wheat flour, lard, and a vitamin and mineral mix, to obtain diets containing at least 3% nitrogen and 5% starch. Daily soft feces excretion, and its NDF, and total and microbial nitrogen content were determined in 60 fattening rabbits (10 per diet). Seven days after the last cecotrophy control, the same animals were used to determine weight of stomach, cecum and their contents, and cecal fermentation traits (pH, VFA and ammonia concentrations, and buffer properties of cecal contents). Stepwise regression analysis showed a positive effect (P < .001) on soft feces excretion, total and microbial nitrogen concentrations in soft feces, cecal acidity, and total VFA in the cecum of dietary pectic constituents (2.9, 3.5, 2.5, .9, and 6.6%) and proportion of fine particles (< .315 mm) (1.8, .9, 1.3, .15, and .9%) per each increment of one percentage unit of the independent variables. Proportion of fine particles also increased weight of cecal contents (P < .001). Soft feces excretion and weight of stomach and of its contents increased (P < .001) by 5.2, 2.8, and 10.2% per each percentage unit increment of proportion of large particles (> 1.25 mm). Degree of lignification of NDF decreased total nitrogen concentration in soft feces and cecal VFA concentration (P < .001). Source of fiber affected cecal pH not only by its influence on the cecal concentrations of the final products of fermentation, but also through its effect on the pH of dry cecal contents (P < .001). The latter was negatively correlated with dietary proportion of fine particles, degree of lignification of NDF, and base-buffering capacity of dry cecal contents (r = -.52, -.37, and -.49, respectively). From these results, we conclude that pectic constituent concentration, degree of lignification of NDF, and particle size are the variables that best characterize the influence of the source of fiber on soft feces excretion and cecal fermentation traits in rabbits.

  18. [Nitrogen and protein content analysis of human milk, diurnality vs nocturnality].

    PubMed

    Sánchez López, C L; Hernández, A; Rodríguez, A B; Rivero, M; Barriga, C; Cubero, J

    2011-01-01

    Breast milk is changing with the progression of lactation and during a 24-h period. To determine the effect of diurnality or nocturnality on total nitrogen and protein content of the breast milk. We collected human milk samples from health mothers living throughout Community of Extremadura (Spain) from January 2008 to December 2008 with less than two months of lactation. We divided the samples in three groups: calostral group (1-5 days postpartum), transitional group (6-15 days postpartum) and mature group (> 15 days postpartum). All samples were stored in a freezer at -80 ºC. We considered as day period between 08:00-20:00 h and night period 20:00-08:00 h. Analysis of the human milk samples was based on the Kjeldahl method. Protein contents were calculated from total nitrogen x 6,25. The statistical analysis of the data was descriptive (mean ± standard deviation) and inferential (T-Student test). No differences (P > 0,05) were found to exist among the contents of individual human milk samples. The mean contents of each component were as follows: Total nitrogen of calostral, transitional and mature group was 0,30 ± 0,06 g/dL (night period), 0,29 ± 0,05 g/dL (day period); 0,26 ± 0,04 g/dL (night period), 0,25 ± 0,04 g/dL (day period); 0,22 ± 0,05 g/dL (night period), 0,20 ± 0,04 g/dL (day period) respectively, in this mature group with a statistical variation (P < 0,05). Protein content of calostral, transitional and mature group was 1,88 ± 0,4 g/dL (night period), 1,81 ± 0,3 g/dL (day period); 1,62 ± 0,3 g/dL (night period), 1,59 ± 0,3 g/dL (day period); 1,35 ± 0,3 g/dL (night period), 1,26 ± 0,3 g/dL (day period) respectively, in this mature group with a statistical variation (P < 0,05). Although we observed differences in the nitrogen and protein content during the individual stages of lactation, it is just in the population of mature lactating women, where the components analyzed varied significantly between day and night.

  19. Life cycle assessment of microalgae-based aviation fuel: Influence of lipid content with specific productivity and nitrogen nutrient effects.

    PubMed

    Guo, Fang; Zhao, Jing; A, Lusi; Yang, Xiaoyi

    2016-12-01

    The aim of this work is to compare the life cycle assessments of low-N and normal culture conditions for a balance between the lipid content and specific productivity. In order to achieve the potential contribution of lipid content to the life cycle assessment, this study established relationships between lipid content (nitrogen effect) and specific productivity based on three microalgae strains including Chlorella, Isochrysis and Nannochloropsis. For microalgae-based aviation fuel, the effects of the lipid content on fossil fuel consumption and greenhouse gas (GHG) emissions are similar. The fossil fuel consumption (0.32-0.68MJ·MJ -1 MBAF) and GHG emissions (17.23-51.04gCO 2 e·MJ -1 MBAF) increase (59.70-192.22%) with the increased lipid content. The total energy input decreases (2.13-3.08MJ·MJ -1 MBAF, 14.91-27.95%) with the increased lipid content. The LCA indicators increased (0-47.10%) with the decreased nitrogen recovery efficiency (75-50%). Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Superior triacylglycerol (TAG) accumulation in starchless mutants of Scenedesmus obliquus: (I) mutant generation and characterization

    PubMed Central

    2014-01-01

    Background Microalgae are a promising platform for producing neutral lipids, to be used in the application for biofuels or commodities in the feed and food industry. A very promising candidate is the oleaginous green microalga Scenedesmus obliquus, because it accumulates up to 45% w/w triacylglycerol (TAG) under nitrogen starvation. Under these conditions, starch is accumulated as well. Starch can amount up to 38% w/w under nitrogen starvation, which is a substantial part of the total carbon captured. When aiming for optimized TAG production, blocking the formation of starch could potentially increase carbon allocation towards TAG. In an attempt to increase TAG content, productivity and yield, starchless mutants of this high potential strain were generated using UV mutagenesis. Previous studies in Chlamydomonas reinhardtii have shown that blocking the starch synthesis yields higher TAG contents, although these TAG contents do not surpass those of oleaginous microalgae yet. So far no starchless mutants in oleaginous green microalgae have been isolated that result in higher TAG productivities. Results Five starchless mutants have been isolated successfully from over 3,500 mutants. The effect of the mutation on biomass and total fatty acid (TFA) and TAG productivity under nitrogen-replete and nitrogen-depleted conditions was studied. All five starchless mutants showed a decreased or completely absent starch content. In parallel, an increased TAG accumulation rate was observed for the starchless mutants and no substantial decrease in biomass productivity was perceived. The most promising mutant showed an increase in TFA productivity of 41% at 4 days after nitrogen depletion, reached a TAG content of 49.4% (% of dry weight) and had no substantial change in biomass productivity compared to the wild type. Conclusions The improved S. obliquus TAG production strains are the first starchless mutants in an oleaginous green microalga that show enhanced TAG content under photoautotrophic conditions. These results can pave the way towards a more feasible microalgae-driven TAG production platform. PMID:24920957

  1. Dynamics of N-NH4 +, N-NO3 -, and total soil nitrogen in paddy field with azolla and biochar

    NASA Astrophysics Data System (ADS)

    Dewi, W. S.; Wahyuningsih, G. I.; Syamsiyah, J.; Mujiyo

    2018-03-01

    Nitrogen (N) is one of macronutrients which is dynamic in the soil and becomes constraint factor for rice crops. The addition of nitrogen fertilizers and its absorption in paddy field causes the dynamics of nitrogen, thus declines of N absorption efficiency. The aim of this research is to know influence Azolla, biochar and different varieties application on N-NH4 +, N-NO3 -, and total soil N in paddy field. This research was conducted in a screen house located in Jumantono Laboratory, Faculty of Agriculture, Universitas Sebelas Maret (UNS) with altitude 170 m asl from April to June 2016. Treatment factors that were examined consisted of azolla (0 and 10 tons/ha), biochar (0 and 2 tons/ha), and rice varieties (Cisadane, Memberamo, Ciherang, IR64). The results of this research showed that there was no interaction between azolla, biochar and varieties. Nevertheless, azolla treatment with dose of 10 tons/ha increased soil NH4 + content (41 days after planting, DAP) by 13.4% but tend to decrease at 70 and 90 DAP. Biochar treatment with dose of 2 ton/ha increases NO3 - soil content (70 DAP) by 1.7% but decreases total N soil by 5.8% (41 DAP) and 4.7% (90 DAP). Different rice varieties generated different soil NH4 + content (41 DAP) and rice root volume. Cisadane variety can increase soil NH4 + content (41 DAP) by 52.08% and root volume by 51.80% (90 DAP) compared with Ciherang variety. Organic rice field management with azolla and biochar affects the availability of N in the soil and increase N absorption efficiency through its role in increasing rice root volume.

  2. Effect of CO2 enrichment on the glucosinolate contents under different nitrogen levels in bolting stem of Chinese kale (Brassica alboglabra L.).

    PubMed

    La, Gui-xiao; Fang, Ping; Teng, Yi-bo; Li, Ya-juan; Lin, Xian-yong

    2009-06-01

    The effects of CO(2) enrichment on the growth and glucosinolate (GS) concentrations in the bolting stem of Chinese kale (Brassica alboglabra L.) treated with three nitrogen (N) concentrations (5, 10, and 20 mmol/L) were investigated. Height, stem thickness, and dry weights of the total aerial parts, bolting stems, and roots, as well as the root to shoot ratio, significantly increased as CO(2) concentration was elevated from 350 to 800 microl/L at each N concentration. In the edible part of the bolting stem, 11 individual GSs were identified, including 7 aliphatic and 4 indolyl GSs. GS concentration was affected by the elevated CO(2) concentration, N concentration, and CO(2)xN interaction. At 5 and 10 mmol N/L, the concentrations of aliphatic GSs and total GSs significantly increased, whereas those of indolyl GSs were not affected, by elevated atmospheric CO(2). However, at 20 mmol N/L, elevated CO(2) had no significant effects on the concentrations of total GSs and total indolyl GSs, but the concentrations of total aliphatic GSs significantly increased. Moreover, the bolting stem carbon (C) content increased, whereas the N and sulfur (S) contents decreased under elevated CO(2) concentration in the three N treatments, resulting in changes in the C/N and N/S ratios. Also the C/N ratio is not a reliable predictor of change of GS concentration, while the changes in N and S contents and the N/S ratio at the elevated CO(2) concentration may influence the GS concentration in Chinese kale bolting stems. The results demonstrate that high nitrogen supply is beneficial for the growth of Chinese kale, but not for the GS concentration in bolting stems, under elevated CO(2) condition.

  3. HydroCrowd: a citizen science snapshot to assess the spatial control of nitrogen solutes in surface waters

    PubMed Central

    Breuer, Lutz; Hiery, Noreen; Kraft, Philipp; Bach, Martin; Aubert, Alice H.; Frede, Hans-Georg

    2015-01-01

    We organized a crowdsourcing experiment in the form of a snapshot sampling campaign to assess the spatial distribution of nitrogen solutes, namely, nitrate, ammonium and dissolved organic nitrogen (DON), in German surface waters. In particular, we investigated (i) whether crowdsourcing is a reasonable sampling method in hydrology and (ii) what the effects of population density, soil humus content and arable land were on actual nitrogen solute concentrations and surface water quality. The statistical analyses revealed a significant correlation between nitrate and arable land (0.46), as well as soil humus content (0.37) but a weak correlation with population density (0.12). DON correlations were weak but significant with humus content (0.14) and arable land (0.13). The mean contribution of DON to total dissolved nitrogen was 22%. Samples were classified as water quality class II or above, following the European Water Framework Directive for nitrate and ammonium (53% and 82%, respectively). Crowdsourcing turned out to be a useful method to assess the spatial distribution of stream solutes, as considerable amounts of samples were collected with comparatively little effort. PMID:26561200

  4. The effects of apple pomace, bentonite and calcium superphosphate on swine manure aerobic composting.

    PubMed

    Jiang, Jishao; Huang, Yimei; Liu, Xueling; Huang, Hua

    2014-09-01

    The effects of additives such as apple pomace, bentonite and calcium superphosphate on swine manure composting were investigated in a self-built aerated static box (90 L) by assessing their influences on the transformation of nitrogen, carbon, phosphorous and compost maturity. The results showed that additives all prolonged the thermophilic stage in composting compared to control. Nitrogen losses amounted to 34-58% of the initial nitrogen, in which ammonia volatilization accounted for 0.3-4.6%. Calcium superphosphate was helpful in facilitating composting process as it significantly reduced the ammonia volatilization during thermophilic stage and increased the contents of total nitrogen and phosphorous in compost, but bentonite increased the ammonia volatilization and reduced the total nitrogen concentration. It suggested that calcium superphosphate is an effective additive for keeping nitrogen during swine manure composting. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Urban emission, Santa Ana wind, and fire sources of aerosol nitrogen in Southern California

    NASA Astrophysics Data System (ADS)

    Mackey, K. R.; Stragier, S.; Robledo, L.; Cat, L. A.; Czimczik, C. I.

    2017-12-01

    Southern California is a highly urbanized region surrounded by extensive areas of agriculture and wilderness. While emissions from fossil fuel combustion are a large source of aerosol NOx in urban areas, fires contribute considerable aerosol NOx and ammonium in undeveloped regions. Southern California also has frequent wildfires, particularly during dry Santa Ana wind events that occur periodically throughout the winter. To explore the relative contributions of these sources to aerosol nitrogen content, we collected aerosol samples over two years in Irvine, a city in Southern California approximately 6 km from the Pacific coast. Samples were analyzed for total nitrogen and carbon content and isotopic composition (δ15N and δ13C), and nitrate and ammonium content. Carbon content was higher and δ13C values were lower in the winter than the summer. The C/N ratios of two samples collected during a Santa Ana wind event in January of 2012 were particularly elevated (C/N of 22 and 30) relative to other samples (C/N 3-6). We found that ammonium comprised 35% of total aerosol N across samples (R2=0.65), and that the δ15N of aerosol nitrogen decreased logarithmically as the proportion of nitrate in the sample increased (R2=0.60). Aerosol deposition of bioavailable nitrate and ammonium from these sources may support primary productivity in Southern California's coastal waters, particularly during the winter months and El Nino periods when upwelled nutrient sources are limited.

  6. Co-composting of two-phase olive-mill pomace and poultry manure with tomato harvest stalks.

    PubMed

    Sülük, Kemal; Tosun, İsmail; Ekinci, Kamil

    2017-04-01

    In this study, two-phase olive-mill pomace with poultry manure and chopped tomato harvest stalks were composted at different initial carbon/nitrogen (C/N) ratios with fixed free air space of 35%. Composting experiment was carried out in the 15 aerobic reactors made of stainless steel and was monitored for 28 days. During the composting process, temperature, moisture content, organic matter (OM), pH, electrical conductivity, oxygen and carbon dioxide concentrations, total carbon, total nitrogen, ammonium nitrogen ([Formula: see text]), nitrate nitrogen ([Formula: see text]), and total phosphorus were monitored. Compost mass and volume changes were determined at the beginning, during remixings, and at the end of composting. While the stabilization period took less time for the mixtures containing a high amount of poultry manure, the mixtures having the high portion of two-phase olive-mill pomace took a longer time due to the structure of olive stone and its lignin content. Dry matter loss (range: 18.1-34.0%.) in the mixtures increased with an increase in the share of poultry manure and tomato stalks in the initial mixture. OM loss (range: 21.7-46.1%) for tomato stalks (measured separately) during composting increased due to an increase in the ratio of poultry manure in the initial mixtures.

  7. Effect of two doses of urea foliar application on leaves and grape nitrogen composition during two vintages.

    PubMed

    Pérez-Álvarez, Eva P; Garde-Cerdán, Teresa; García-Escudero, Enrique; Martínez-Vidaurre, José María

    2017-06-01

    Nitrogen affects grapevine growth and also yeast metabolism, which have a direct influence on fermentation kinetics and the formation of different volatile compounds. Throughout the grapevine cycle, soil nitrogen availability and grape nitrogen composition can vary because of different factors. Nitrogen foliar applications can contribute toward enhancing grapevine nitrogen status and minimize the problem of leaching that traditional nitrogen-soil applications can provoke. The present study aimed to evaluate the influence of urea foliar applications on grapevine nitrogen status and grape amino acid content. Accordingly, two different doses of urea were applied over the leaves of a 'Tempranillo' vineyard. The highest urea doses affected nitrogen content on blade leaf tissues after veraison. Must amino acid profiles were modified by urea application and some of the compounds increased their concentrations. The effect of year on the increase of must total amino acid concentrations was more important than the effect of the doses applied. Urea foliar applications can be an interesting tool for decreasing grapevine nitrogen deficiencies. This method of nitrogen implementation in the vineyard could avoid sluggish fermentation problems during winemaking, enhance must nitrogen composition, and contribute to improving wine quality. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  8. Influence of Agricultural Management on Phytochemicals of Colored Corn Genotypes ( Zea mays L.). Part 1: Nitrogen Fertilization.

    PubMed

    Giordano, Debora; Beta, Trust; Vanara, Francesca; Blandino, Massimo

    2018-05-02

    In this study, the influence of nitrogen (N) fertilization (170 versus 300 kg of N/ha) on the content of bioactive compounds of whole-meal flour of 10 different colored corn genotypes was investigated. Considerable differences in antioxidant capacity and phytochemical concentrations were observed among genotypes. Higher N fertilization rates significantly ( p < 0.05) increased the content of both total cell-wall-bound phenolics and xanthophylls (lutein and zeaxanthin). Nevertheless, the main phenolic acids (ferulic, p-coumaric, and sinapic acids) as well as the antioxidant capacity and content of β-cryptoxanthin, β-carotene, and total anthocyanins did not show significant differences as far as the N fertilization rate is concerned. For corn cultivation, the application of high N fertilization rates, generally carried out to obtain higher grain yields, could positively influence the content of some bioactives particularly in years characterized by high rainfall levels responsible for N leaching from the soil.

  9. Prospective application of Leucaena leucocephala for phytoextraction of Cd and Zn and nitrogen fixation in metal polluted soils.

    PubMed

    Saraswat, Shweta; Rai, J P N

    2011-03-01

    The study deals with phytoextraction of Zn and Cd by Leucaena leucocephala grown on effluent fed and low nitrogen soils collected from S1, S2, and S3 sites, representing decreasing metal content with increasing distance from the effluent drain. Plant nitrogen fixation potential and soil micro-biochemical attributes against metal stress were also assessed. Increasing soil metal content and plant growth enhanced metal accumulation. Relatively greater amount of Zn than Cd was accumulated by L. leucocephala, which exceeded in roots with that of other parts. Remediation factor for Cd was maximum (3.6%) in S2 grown plant. Nodule numbers, their biomass, nitrogenase activity, and leghaemoglobin content were maximum in plants grown in S3 and minimum in S1 soil having maximum metals. Maximum soil organic C, total N, C(mic), and N(mic), respiration rate, ATP content, and enzymatic activities in response to phytoremediation was recorded in S3 followed by S2 and S1. Phytoremediation for a year enhanced extractable Zn and Cd by 36% and 45%, and their total removal by 20% and 30%, respectively from S2, which suggests the possible application of L. leucocephala for the remediation of metal contaminated sites and their fertility restoration by improving microbial functionalities and N-pool.

  10. Thermo-tolerant phosphate-solubilizing microbes for multi-functional biofertilizer preparation.

    PubMed

    Chang, Cheng-Hsiung; Yang, Shang-Shyng

    2009-02-01

    In order to prepare the multi-functional biofertilizer, thermo-tolerant phosphate-solubilizing microbes including bacteria, actinomycetes, and fungi were isolated from different compost plants and biofertilizers. Except Streptomycesthermophilus J57 which lacked pectinase, all isolates possessed amylase, CMCase, chitinase, pectinase, protease, lipase, and nitrogenase activities. All isolates could solubilize calcium phosphate and Israel rock phosphate; various isolates could solubilize aluminum phosphate, iron phosphate, and hydroxyapatite. During composting, biofertilizers inoculated with the tested microbes had a significantly higher temperature, ash content, pH, total nitrogen, soluble phosphorus content, and germination rate than non-inoculated biofertilizer; total organic carbon and carbon-to-nitrogen ratio showed the opposite pattern. Adding these microbes can shorten the period of maturity, improve the quality, increase the soluble phosphorus content, and enhance the populations of phosphate-solubilizing and proteolytic microbes in biofertilizers. Therefore, inoculating thermo-tolerant phosphate-solubilizing microbes into agricultural and animal wastes represents a practical strategy for preparing multi-functional biofertilizer.

  11. Synthesis of boron, nitrogen co-doped porous carbon from asphaltene for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhou, Ying; Wang, Dao-Long; Wang, Chun-Lei; Jin, Xin-Xin; Qiu, Jie-Shan

    2014-08-01

    Oxidized asphaltene (OA), a thermosetting material with plenty of functional groups, is synthesized from asphaltene (A) using HNO3/H2SO4 as the oxidizing agent. Boron, nitrogen co-doped porous carbon (BNC—OA) is prepared by carbonization of the mixture of boric acid and OA at 1173 K in an argon atmosphere. X-ray photoelectron spectroscopy (XPS) characterization reveals that the BNC—OA has a nitrogen content of 3.26 at.% and a boron content of 1.31 at.%, while its oxidation-free counterpart (BNC—SA) has a nitrogen content of 1.61 at.% and a boron content of 3.02 at.%. The specific surface area and total pore volume of BNC—OA are 1103 m2·g-1 and 0.921 cm3·g-1, respectively. At a current density of 0.1 A·g-1, the specific capacitance of BNC-OA is 335 F·g-1 and the capacitance retention can still reach 83% at 1 A·g-1. The analysis shows that the superior electrochemical performance of the BNC—OA is attributed to the pseudocapacitance behavior of surface heteroatom functional groups and an abundant pore-structure. Boron, nitrogen co-doped porous carbon is a promising electrode material for supercapacitors.

  12. Nitrogen losses and chemical parameters during co-composting of solid wastes and liquid pig manure.

    PubMed

    Vázquez, M A; de la Varga, D; Plana, R; Soto, M

    2017-07-04

    The aim of this research was to study nitrogen losses during the treatment of the liquid fraction (LF) of pig manure by co-composting and to establish the best conditions for compost production with higher nitrogen and low heavy metal contents. Windrows were constituted with the solid fraction (SF) of pig manure, different organic waste (SF of pig manure, sawdust and grape bagasse) as co-substrate and Populus spp. wood chips as bulking material and watered intensely with the LF. Results show that nitrogen losses ranged from 30% to 66% of initial nitrogen and were mainly governed by substrate to bulking mass ratio and liquid fraction to substrate (LF/S) ratio, and only secondarily by operational parameters. Nitrogen losses decreased from 55-65% at low LF/S ratios (1.7-1.9 m 3 /t total solids (TS)) to 30-39% at high LF/S ratios (4.4-4.7 m 3 /t TS). Therefore, integrating the LF in the composting process at high LF/S ratios favoured nitrogen recovery and conservation. Nitrogen in the fine fraction (ranging from 27% to 48% of initial nitrogen) was governed by operational parameters, namely pH and temperature. Final compost showed low content in most heavy metals, but Zn was higher than the limits for compost use in agriculture. Zn content in the obtained compost varied from 1863 to 3269 mg/kg dm, depending on several factors. The options for obtaining better quality composts from the LF of pig manure are selecting co-substrates with low heavy metal content and using them instead of the SF of pig manure.

  13. Gross Nitrogen Mineralization in Surface Sediments of the Yangtze Estuary

    PubMed Central

    Liu, Min; Li, Xiaofei; Yin, Guoyu; Zheng, Yanling; Deng, Fengyu

    2016-01-01

    Nitrogen mineralization is a key biogeochemical process transforming organic nitrogen to inorganic nitrogen in estuarine and coastal sediments. Although sedimentary nitrogen mineralization is an important internal driver for aquatic eutrophication, few studies have investigated sedimentary nitrogen mineralization in these environments. Sediment-slurry incubation experiments combined with 15N isotope dilution technique were conducted to quantify the potential rates of nitrogen mineralization in surface sediments of the Yangtze Estuary. The gross nitrogen mineralization (GNM) rates ranged from 0.02 to 5.13 mg N kg-1 d-1 in surface sediments of the study area. The GNM rates were generally higher in summer than in winter, and the relative high rates were detected mainly at sites near the north branch and frontal edge of this estuary. The spatial and temporal distributions of GNM rates were observed to depend largely on temperature, salinity, sedimentary organic carbon and nitrogen contents, and extracellular enzyme (urease and L-glutaminase) activities. The total mineralized nitrogen in the sediments of the Yangtze Estuary was estimated to be about 6.17 × 105 t N yr-1, and approximately 37% of it was retained in the estuary. Assuming the retained mineralized nitrogen is totally released from the sediments into the water column, which contributed 12–15% of total dissolved inorganic nitrogen (DIN) sources in this study area. This result indicated that the mineralization process is a significant internal nitrogen source for the overlying water of the Yangtze Estuary, and thus may contribute to the estuarine and coastal eutrophication. PMID:26991904

  14. Invasive plant Alternanthera philoxeroides suffers more severe herbivory pressure than native competitors in recipient communities.

    PubMed

    Fan, Shufeng; Yu, Haihao; Dong, Xianru; Wang, Ligong; Chen, Xiuwen; Yu, Dan; Liu, Chunhua

    2016-11-09

    Host-enemy interactions are vital mechanisms that explain the success or failure of invasive plants in new ranges. We surveyed the defoliation of invasive Alternanthera philoxeroides and co-occurring native plants on two islands during different seasons over three consecutive years and measured the leaf nitrogen content and the C/N ratio of each plant species. To evaluate the effects of herbivory on A. philoxeroides, an herbivore exclosure experiment was conducted. We found that the mean defoliation of A. philoxeroides was higher than that of native plants, regardless of whether the dominant species was A. philoxeroides or native plants. A. philoxeroides defoliation increased significantly as the months progressed, whereas the defoliation of the total population of native plants was constant. The leaf nitrogen content was positively correlated with defoliation, and it was highest in A. philoxeroides. Additionally, A. philoxeroides in the herbivore exclusion treatment showed an increase in shoot biomass and total shoot length. Our study revealed that native generalist herbivores prefer the invasive plant to the natives because of the higher leaf nitrogen content. These results support the biotic resistance hypothesis, suggesting that native herbivore species can limit the population spread of invasive plants.

  15. Proximate biochemical composition and caloric content calculated from elemental CHN analysis: a stoichiometric concept.

    PubMed

    Gnaiger, E; Bitterlich, G

    1984-06-01

    Carbohydrate, lipid, and protein compositions are stoichiometrically related to organic CHN (carbon, hydrogen, nitrogen) contents. Elemental CHN analyses of total biomass and ash, therefore, provide a basis for the calculation of proximate biochemical composition and bomb caloric value. The classical nitrogen to protein conversion factor (6.25) should be replaced by 5.8±0.13. A linear relation exists between the mass fraction of non-protein carbon and the carbohydrate and lipid content. Residual water in dry organic matter can be estimated with the additional information derived from hydrogen measurements.The stoichiometric CHN method and direct biochemical analysis agreed within 10% of ash-free dry biomass (for muscle, liver and fat tissue of silver carp; gut contents composed of detritus and algae; commercial fish food). The detrital material, however, had to be corrected for non-protein nitrogen.A linear relationship between bomb caloric value and organic carbon fractions was derived on the basis of thermodynamic and stoichiometric principles, in agreement with experimental data published for bacteria, algae, protozoa and invertebrates. The highly automatic stoichiometric CHN method for the separation of nutrient contents in biomass extends existing ecophysiological concepts for the construction of balanced carbon and nitrogen, as well as biochemical and energy budgets.

  16. [Nitrogen mineralization rate in different soil layers and its influence factors under plastic film mulched in Danjiangkou Reservoir area, China].

    PubMed

    Yu, Xing Xiu; Xui, Miao Miao; Zhao, Jin Hui; Zhang, Jia Peng; Wang, Wei; Guo, Ya Li; Xiao, Juan Hua

    2018-04-01

    The objective of this study was to investigate the rate of nitrogen mineralization in various soil layers (0-10, 10-20, and 20-30 cm) and its influencing factors under plastic film mulching ridge-furrow in a corn field of Wulongchi small watershed, Danjiangkou Reservoir Area. Results showed that the rate of soil ammonification decreased with soil depth during the entire maize growth period. The rate of nitrification in seedling, jointing, and heading stages decreased in the following order: 10-20 cm > 0-10 cm > 20-30 cm, while it increased with soil depth in maturation stage. The rate of soil nitrogen mineralization decreased with the increases in soil depth in the seedling, jointing and heading stages, whereas an opposite pattern was observed in maturation stage. Compared with non-filming, film mulching promoted the soil ammonification process in 0-10 cm and the soil nitrification and nitrogen mineralization processes in jointing, heading, and maturation stages in both 0-10 and 10-20 cm. However, the rates of soil nitrification and nitrogen mineralization under film mulching were much lower than those under non-filming in seedling stage. The stepwise regression analysis indicated that the main factors influencing soil nitrogen mineralization rate varied with soil depth. Soil moisture and total N content were the dominant controller for variation of soil nitrogen mineralization in 0-10 cm layer. Soil temperature, moisture, and total N content were dominant controller for that in 10-20 cm layer. Soil temperature drove the variation of soil nitrogen mineralization in 20-30 cm layer.

  17. A nine-country study of the protein content and amino acid composition of mature human milk

    PubMed Central

    Feng, Ping; Gao, Ming; Burgher, Anita; Zhou, Tian Hui; Pramuk, Kathryn

    2016-01-01

    Background Numerous studies have evaluated protein and amino acid levels in human milk. However, research in this area has been limited by small sample sizes and study populations with little ethnic or racial diversity. Objective Evaluate the protein and amino acid composition of mature (≥30 days) human milk samples collected from a large, multinational study using highly standardized methods for sample collection, storage, and analysis. Design Using a single, centralized laboratory, human milk samples from 220 women (30–188 days postpartum) from nine countries were analyzed for amino acid composition using Waters AccQ-Tag high-performance liquid chromatography and total nitrogen content using the LECO FP-528 nitrogen analyzer. Total protein was calculated as total nitrogen×6.25. True protein, which includes protein, free amino acids, and peptides, was calculated from the total amino acids. Results Mean total protein from individual countries (standard deviation [SD]) ranged from 1,133 (125.5) to 1,366 (341.4) mg/dL; the mean across all countries (SD) was 1,192 (200.9) mg/dL. Total protein, true protein, and amino acid composition were not significantly different across countries except Chile, which had higher total and true protein. Amino acid profiles (percent of total amino acids) did not differ across countries. Total and true protein concentrations and 16 of 18 amino acid concentrations declined with the stage of lactation. Conclusions Total protein, true protein, and individual amino acid concentrations in human milk steadily decline from 30 to 151 days of lactation, and are significantly higher in the second month of lactation compared with the following 4 months. There is a high level of consistency in the protein content and amino acid composition of human milk across geographic locations. The size and diversity of the study population and highly standardized procedures for the collection, storage, and analysis of human milk support the validity and broad application of these findings. PMID:27569428

  18. Energy content of municipal solid waste bales.

    PubMed

    Ozbay, Ismail; Durmusoglu, Ertan

    2013-07-01

    Baling technology is a preferred method for temporary storage of municipal solid waste (MSW) prior to final disposal. If incineration is intended for final disposal of the bales, the energy content of the baled MSW gains importance. In this study, nine cylindrical bales containing a mix of different waste materials were constructed and several parameters, including total carbon (TC), total organic carbon (TOC), total Kjeldahl nitrogen, moisture content, loss on ignition, gross calorific value and net calorific value (NCV) were determined before the baling and at the end of 10 months of storage. In addition, the relationships between the waste materials and the energy contents of the bales were investigated by the bivariate correlation analyses. At the end, linear regression models were developed in order to forecast the decrease of energy content during storage. While the NCVs of the waste materials before the baling ranged between 6.2 and 23.7 MJ kg(-1) dry basis, they ranged from 1.0 to 16.4 MJ kg(-1) dry basis at the end of the storage period. Moreover, food wastes exhibited the highest negative correlation with NCVs, whereas plastics have significant positive correlation with both NCVs and TCs. Similarly, TOCs and carbon/nitrogen ratios decreased with the increase in food amounts inside the bales. In addition, textile, wood and yard wastes increase the energy content of the bales slightly over the storage period.

  19. The Vegetation Nitrogen Content and its Latitudinal Patterns in China

    NASA Astrophysics Data System (ADS)

    Zhao, Hang; He, Nianpeng; Yu, Guirui; Wang, Qiufeng

    2017-04-01

    Nitrogen is an essential nutrient element in biological life activities, and plays an important role in plant production and growth. Vegetation nitrogen content can be used as an important component in estimating ecosystem nitrogen storage. In the present study, we used a large amount of data from the database of north-south transects of eastern China and published literatures. We explored the nitrogen content of different components of China terrestrial ecosystems and its latitude pattern at the scales of the plots and of 8 eco-regions. The average nitrogen content of the forest ecosystem was 1.797% in the tree leaves, 0.663% in the tree branch, 0.586% in the tree stem, 0.755% in the tree root. In the shrub layer, the average leaf nitrogen content is 1.845%, the average branch content is 0.968% and the average root nitrogen content is 0.995%. In the herb layer, the average nitrogen content of aboveground is 2.463% and 1.279% for underground. The average nitrogen content of aboveground in grassland ecosystem is 2.006% and 0.994% for underground. The average aboveground nitrogen content in desert ecosystem is 1.911%. The average nitrogen contents of the leaves, stems and roots in wetland ecosystem were 1.669%, 0.741% and 0.659%. There were significant differences in nitrogen content among different organs, and it showed that the nitrogen content of leaves > roots > branches > trunks and aboveground component > underground component. The nitrogen content of different components in China terrestrial ecosystems increased with increasing latitude, especially in leaf. These results demonstrated latitudinal patterns of nitrogen content in Chinese terrestrial ecosystems, based on field-measured data, and provided a reference or standard for regional vegetation nitrogen allocation and storage estimations.

  20. Calculation of Manure Production and Excretion of Nitrogen, Phosphorous and Potassium by Dairy Cattle in the Comarca Lagunera

    USDA-ARS?s Scientific Manuscript database

    The objective of this study is to show how to calculate dairy manure production and the manure content of N, P and K. At the regional level, 7.5 x 106 ton yr-1 of fresh manure is produced, with 12.3% of dry matter (DM) content, for a total of 925,000 ton yr-1 (DM). Total N excreted is 46,200 ton yr-...

  1. Characterization of Arab medium crude fractions with emphasis on kinematic viscosity - temperature behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beg, S.A.; Amin, M.B.; Hussain, I.

    1986-01-01

    Characterization of Arab medium Crude Oil, has been carried out in terms of API gravity, debutanized crude gravity, total sulfur content, Reid vapour pressure ash content, heating value, salt content, viscosity SUS, vanadium content as V/sub 2/O/sub 5/, pour point and analysis of various metals. Further, six true boiling point (TBP) fractions (IBP-95/sup 0/C, 95-205/sup 0/C, 205-260/sup 0/C, 260-345/sup 0/C, 345-455/sup 0/C and 455/sup 0/C+) of this crude were characterized in terms of API gravity, total sulfur contents H/sub 2/S content, mercaptons content, molecular weight, elemental analyses for total carbon, hydrogen and nitrogen, analyses of various metals and paraffin, aromaticmore » and naphthene contents of lighter fractions. The kinematic viscosity-temperature data have been obtained for 95/sup 0/C+ TBP fractions for a wide range of temperatures.« less

  2. Influence of composted dairy manure and perennial forage on soil carbon and nitrogen fractions during transition into organic management

    USDA-ARS?s Scientific Manuscript database

    Composted dairy manure (CDM) is among the management practices used in transitioning from a conventional to an organic agricultural system. The objectives of this study are to evaluate the impact of several organic nitrogen (N) sources on: (i) soil organic C (SOC) and soil total N (STN) content; (ii...

  3. Effects of polyacrylamide on soil erosion and nutrient losses from substrate material in steep rocky slope stabilization projects.

    PubMed

    Chen, Zhang; Chen, Wenlu; Li, Chengjun; Pu, Yanpin; Sun, Haifeng

    2016-06-01

    Erosion of denuded steep rocky slopes causes increasing losses of nitrogen and phosphorus, which is a severe problem in rocky slope protection. Thus, it is important to determine the appropriate materials that can reduce the erodibility and losses of nitrogen and phosphorus of the soil. In this paper, twenty-seven simulated rainfall events were carried out in a greenhouse, in which the substrate material was artificial soil; nine types of anionic polyacrylamide (PAM) were studied, which consisted of three molecular weight (6, 12, and 18 Mg mol(-1)) and three charge density (10, 20, and 30%) formulations in a 3 by 3 factorial design. The results showed that: (1) Polyacrylamide application reduced total nitrogen losses by 35.3% to 50.0% and total phosphorus losses by 34.9% to 48.0% relative to the control group. (2) The losses of total nitrogen and total phosphorus had significant correlation with the molecular weight. Besides, the losses of total phosphorus, particulate-bound phosphorus and inorganic nitrogen (NH4-N) were significantly correlated with their molecular weight and charge density. However, the losses of dissolved organic nitrogen, inorganic nitrogen (NO3-N), dissolved organic phosphorus, inorganic phosphorus (PO4-P) were non-significantly correlated with molecular weight and charge density. (3) Particulate-bound nitrogen and phosphorus were responsible for the losses of nitrogen and phosphorus during runoff events, where particulate-bound nitrogen made up 71.7% to 73.2% of total nitrogen losses, and particulate-bound phosphorus made up 82.3% to 85.2% of total phosphorus losses. (4) Polyacrylamide treatments increased water-stable aggregates content by 32.3% to 59.1%, total porosity by 11.3% to 49.0%, final infiltrative rate by 41.3% to 72.5%, and reduced soil erosion by 18.9% to 39.8% compared with the control group. Overall, the results of this study indicated that polyacrylamide application in the steep rocky slope stabilization projects could significantly reduce nutrient losses and soil erosion of substrate material. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077.

    PubMed

    Pancha, Imran; Chokshi, Kaumeel; George, Basil; Ghosh, Tonmoy; Paliwal, Chetan; Maurya, Rahulkumar; Mishra, Sandhya

    2014-03-01

    The aim of present study was to investigate the effects of nitrogen limitation as well as sequential nitrogen starvation on morphological and biochemical changes in Scenedesmus sp. CCNM 1077. The results revealed that the nitrogen limitation and sequential nitrogen starvation conditions significantly decreases the photosynthetic activity as well as crude protein content in the organism, while dry cell weight and biomass productivity are largely unaffected up to nitrate concentration of about 30.87mg/L and 3 days nitrate limitation condition. Nitrate stress was found to have a significant effect on cell morphology of Scenedesmus sp. CCNM 1077. Total removal of nitrate from the growth medium resulted in highest lipid (27.93%) and carbohydrate content (45.74%), making it a potential feed stock for biodiesel and bio-ethanol production. This is a unique approach to understand morphological and biochemical changes in freshwater microalgae under nitrate limitation as well as sequential nitrate removal conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Soil biochemical properties of grassland ecosystems under anthropogenic emission of nitrogen compounds

    NASA Astrophysics Data System (ADS)

    Kudrevatykh, Irina; Ivashchenko, Kristina; Ananyeva, Nadezhda

    2016-04-01

    Inflow of pollutants in terrestrial ecosystems nowadays increases dramatically, that might be led to disturbance of natural biogeochemical cycles and landscapes structure. Production of nitrogen fertilizers is one of the air pollution sources, namely by nitrogen compounds (NH4+, NO3-, NO2-). Air pollution by nitrogen compounds of terrestrial ecosystems might be affected on soil biochemical properties, which results increasing mineral nitrogen content in soil, changing soil P/N and Al/Ca ratios, and, finally, the deterioration of soil microbial community functioning. The research is focused on the assessment of anthropogenic emission of nitrogen compounds on soil properties of grassland ecosystems in European Russia. Soil samples (Voronic Chernozem Pachic, upper 10 cm mineral layer, totally 10) were taken from grassland ecosystem: near (5-10 m) nitrogen fertilizer factory (NFF), and far from it (20-30 km, served as a control) in Tula region. In soil samples the NH4+ and NO3- (Kudeyarov's photocolorimetric method), P, Ca, Al (X-ray fluorescence method) contents were measured. Soil microbial biomass carbon (Cmic) was analyzed by substrate-induced respiration method. Soil microbial respiration (MR) was assessed by CO2 rate production. Soil microbial metabolic quotient (qCO2) was calculated as MR/Cmic ratio. Near NFF the soil ammonium and nitrate nitrogen contents were a strongly varied, variation coefficient (CV) was 42 and 86This study was supported by Russian Foundation of Basic Research Grant No. 14-04-00098, 15-44-03220, 15-04-00915.

  6. Alleviation of Nitrogen and Sulfur Deficiency and Enhancement of Photosynthesis in Arabidopsis thaliana by Overexpression of Uroporphyrinogen III Methyltransferase (UPM1)

    PubMed Central

    Garai, Sampurna; Tripathy, Baishnab C.

    2018-01-01

    Siroheme, an iron-containing tetrapyrrole, is the prosthetic group of nitrite reductase (NiR) and sulfite reductase (SiR); it is synthesized from uroporphyrinogen III, an intermediate of chlorophyll biosynthesis, and is required for nitrogen (N) and sulfur (S) assimilation. Further, uroporphyrinogen III methyltransferase (UPM1), responsible for two methylation reactions to form dihydrosirohydrochlorin, diverts uroporphyrinogen III from the chlorophyll biosynthesis pathway toward siroheme synthesis. AtUPM1 [At5g40850] was used to produce both sense and antisense plants of Arabidopsis thaliana in order to modulate siroheme biosynthesis. In our experiments, overexpression of AtUPM1 signaled higher NiR (NII) and SiR gene and gene product expression. Increased NII expression was found to regulate and enhance the transcript and protein abundance of nitrate reductase (NR). We suggest that elevated NiR, NR, and SiR expression must have contributed to the increased synthesis of S containing amino acids in AtUPM1overexpressors, observed in our studies. We note that due to higher N and S assimilation in these plants, total protein content had increased in these plants. Consequently, chlorophyll biosynthesis increased in these sense plants. Higher chlorophyll and protein content of plants upregulated photosynthetic electron transport and carbon assimilation in the sense plants. Further, we have observed increased plant biomass in these plants, and this must have been due to increased N, S, and C assimilation. On the other hand, in the antisense plants, the transcript abundance, and protein content of NiR, and SiR was shown to decrease, resulting in reduced total protein and chlorophyll content. This led to a decrease in photosynthetic electron transport rate, carbon assimilation and plant biomass in these antisense plants. Under nitrogen or sulfur starvation conditions, the overexpressors had higher protein content and photosynthetic electron transport rate than the wild type (WT). Conversely, the antisense plants had lower protein content and photosynthetic efficiency in N-deficient environment. Our results clearly demonstrate that upregulation of siroheme biosynthesis leads to increased nitrogen and sulfur assimilation, and this imparts tolerance to nitrogen and sulfur deficiency in Arabidopsis thaliana plants. PMID:29472934

  7. Investigation of grass carp by-products from a fish farm in Vojvodina

    NASA Astrophysics Data System (ADS)

    Okanović, Đ.; Tasić, T.; Kormanjoš, Š.; Ikonić, P.; Šojić, B.; Pelić, M.; Ristić, M.

    2017-09-01

    The quantity of by-products obtained during grass carp primary processing and chemical characteristics of internal organs were investigated. The total average weight of byproducts was 783.69 g (36.99%) in relation to live body weight which was cca 2118.5 g. The by-product contributing the largest quantity to total live body weight was the head with 458.22 g (21.63% of live body weight), followed by complete internal organs and tail and fins, with weights of 198.03 g or 9.35% and 57.93 g or 2.73%, respectively. The chemical composition of internal organs from the grass carp was mostly water (65.55%), following by crude fats and crude proteins (17.47% and 13.35%, respectively). The low collagen content (13.43% of total crude protein) indicates the high nutritional quality of the protein content from internal organs. Nitrogenous complexes from the internal organs were predominantly proteins. Digestible nitrogen was approximately equal to total nitrogen (89.38%), indicating that all proteins of the internal organs had high biological value. Based on the results obtained, it can be concluded that carp internal organs could be important sources of proteins and fats, and thus, could be used in Serbia as a raw material for feed and technical fat production.

  8. Effects of different nitrogen levels on the leaf chlorophyll content nutrient concentration and nutrient uptake pattern of blackgram.

    PubMed

    Kulsum, M U; Baque, M A; Karim, M A

    2007-01-15

    This study was conducted to evaluate the performance of blackgram (Vigna mungo L) under various levels of nitrogen at the Agronomy Research Site of Bangabandhu Sheikh Mujibur Rahman Agricultural University during March to June 2002. Two varieties of blackgram--BARI mash 3 and BINA mash 1 and six levels of nitrogen viz. 0, 20, 40, 60, 80 and 100 kg N ha(-1) were the treatment variables. The experiment was laid out in a RCB Design with three replications. A best-fit positive linear relationship existed between leaf chlorophyll and leaf nitrogen content with different nitrogen levels. Unexpectedly the N, P and K accumulation in the two varieties was not affected significantly. However, there was an increasing tendency of total uptake of these elements in both the varieties. N, P and K uptake increased up to 60 kg N ha(-1) then decreased with the increasing nitrogen levels. Among the varieties BARI mash 3 showed better performance than BINA mash 1 for most of the parameters.

  9. Impact of Soil Composition and Electrochemistry on Corrosion of Rock-cut Slope Nets along Railway Lines in China.

    PubMed

    Chen, Jiao; Chen, Zhaoqiong; Ai, Yingwei; Xiao, Jingyao; Pan, Dandan; Li, Wei; Huang, Zhiyu; Wang, Yumei

    2015-10-09

    Taking the slope of Suiyu Railway to study, the research separately studied soil resistivity, soil electrochemistry (corrosion potential, oxidization reduction potential, electric potential gradient and pH), soil anions (total soluble salt, Cl(-), SO4(2-) and ), and soil nutrition (moisture content, organic matter, total nitrogen, alkali-hydrolysable nitrogen, available phosphorus, and available potassium) at different slope levels, and conducted corrosion grade evaluation on artificial soil according to its single index and comprehensive indexes. Compared with other factors, water has the biggest impact on the corrosion of slope protection net, followed by anion content. Total soluble salt has the moderate impact on the corrosion of slope protection net, and stray current has the moderate impact on the corrosion of mid-slope protection net. Comprehensive evaluation on the corrosive degree of soil samples indicates that the corrosion of upper slope is moderate, and the corrosion of mid-slope and lower slope is strong. Organic matter in soil is remarkably relevant to electric potential gradient. Available nitrogen, available potassium and available phosphorus are remarkably relevant to anions. The distribution of soil nutrient is indirectly relevant to slope type.

  10. Impact of Soil Composition and Electrochemistry on Corrosion of Rock-cut Slope Nets along Railway Lines in China

    PubMed Central

    Chen, Jiao; Chen, Zhaoqiong; Ai, Yingwei; Xiao, Jingyao; Pan, Dandan; Li, Wei; Huang, Zhiyu; Wang, Yumei

    2015-01-01

    Taking the slope of Suiyu Railway to study, the research separately studied soil resistivity, soil electrochemistry (corrosion potential, oxidization reduction potential, electric potential gradient and pH), soil anions (total soluble salt, Cl−, SO42− and ), and soil nutrition (moisture content, organic matter, total nitrogen, alkali-hydrolysable nitrogen, available phosphorus, and available potassium) at different slope levels, and conducted corrosion grade evaluation on artificial soil according to its single index and comprehensive indexes. Compared with other factors, water has the biggest impact on the corrosion of slope protection net, followed by anion content. Total soluble salt has the moderate impact on the corrosion of slope protection net, and stray current has the moderate impact on the corrosion of mid-slope protection net. Comprehensive evaluation on the corrosive degree of soil samples indicates that the corrosion of upper slope is moderate, and the corrosion of mid-slope and lower slope is strong. Organic matter in soil is remarkably relevant to electric potential gradient. Available nitrogen, available potassium and available phosphorus are remarkably relevant to anions. The distribution of soil nutrient is indirectly relevant to slope type. PMID:26450811

  11. [Correlation Among Soil Organic Carbon, Soil Inorganic Carbon and the Environmental Factors in a Typical Oasis in the Southern Edge of the Tarim Basin].

    PubMed

    Gong, Lu; Zhu, Mei-ling; Liu, Zeng-yuan; Zhang, Xue-ni; Xie, Li-na

    2016-04-15

    We analyzed the differentiation among the environmental factors and soil organic/inorganic carbon contents of irrigated desert soil, brown desert soil, saline soil and aeolian sandy soil by classical statistics methods, and studied the correlation between soil carbon contents and the environmental factor by redundancy analysis (RDA) in a typical oasis of Yutian in the southern edge of the Tarim Basin. The results showed that the average contents of soil organic carbon and soil inorganic carbon were 2.51 g · kg⁻¹ and 25.63 g · kg⁻¹ respectively. The soil organic carbon content of the irrigated desert soil was significantly higher than those of brown desert soil, saline soil and aeolian sandy soil, while the inorganic carbon content of aeolian sandy soil was significantly higher than those of other soil types. The soil moisture and nutrient content were the highest in the irrigated desert soil and the lowest in the aeolian sandy sail. All soil types had high degree of salinization except the irrigated desert soil. The RDA results showed that the impacts of environmental factors on soil carbon contents ranked in order of importance were total nitrogen > available phosphorus > soil moisture > ground water depth > available potassium > pH > total salt. The soil carbon contents correlated extremely significantly with total nitrogen, available phosphorus, soil moisture and ground water depth (P < 0.01), and it correlated significantly with available potassium and pH (P < 0.05). There was no significant correlation between soil carbon contents and other environmental factors (P > 0.05).

  12. Responses of soil physical and chemical properties to karst rocky desertification evolution in typical karst valley area

    NASA Astrophysics Data System (ADS)

    Chen, Fei; Zhou, Dequan; Bai, Xiaoyong; zeng, Cheng; Xiao, Jianyong; Qian, Qinghuan; Luo, Guangjie

    2018-01-01

    In order to reveal the differences of soil physical and chemical properties and their response mechanism to the evolution of KRD. The characteristics of soil physical and chemical properties of different grades of KRD were studied by field sampling method to research different types of KRD in the typical karst valley of southern China. Instead of using space of time, to explore the response and the mechanisms of the soil physical and chemical properties at the different evolution process. The results showed that: (1) There were significant differences in organic matter, pH, total nitrogen, total phosphorus, total potassium, sediment concentration, clay content and AWHC in different levels of KRD environment. However, these indicators are not with increasing desertification degree has been degraded, but improved after a first degradation trends; (2) The correlation analysis showed that soil organic matter, acid, alkali, total nitrogen, total phosphorus, total potassium and clay contents were significantly correlated with other physical and chemical factors. They are the key factors of soil physical and chemical properties, play a key role in improving soil physical and chemical properties and promoting nutrient cycling; (3) The principal component analysis showed that the cumulative contribution rate of organic matter, pH, total nitrogen, total phosphorus, total potassium and sediment concentration was 80.26%, which was the key index to evaluate rocky desertification degree based on soil physical and chemical properties. The results have important theoretical and practical significance for the protection and restoration of rocky desertification ecosystem in southwest China.

  13. [Effects of different vegetation restoration patterns on the diversity of soil nitrogen-fixing microbes in Hulunbeier sandy land, Inner Mongolia of North China].

    PubMed

    Li, Gang; Wang, Li-Juan; Li, Yu-Jie; Qiao, Jiang; Zhang, Hai-Fang; Song, Xiao-Long; Yang, Dian-Lin

    2013-06-01

    By using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and sequence analysis, this paper studied the nifH gene diversity and community structure of soil nitrogen-fixing microbes in Hulunbeier sandy land of Inner Mongolia under four years management of five vegetation restoration modes, i. e., mixed-planting of Agropyron cristatum, Hedysarum fruticosum, Caragana korshinskii, and Elymus nutans (ACHE) and of Agropyron cristatum and Hedysarum fruticosum (AC), and mono-planting of Caragana korshinskii (UC), Agropyron cristatum (UA), and Hedysarum fruticosum (UH), taking the bare land as the control (CK). There existed significant differences in the community composition of nitrogen-fixing microbes among the five vegetation restoration patterns. The Shannon index of the nifH gene was the highest under ACHE, followed by under AC, UC, UA, and UH, and the lowest in CK. Except that UH and CK had less difference in the Shannon index, the other four vegetation restoration modes had a significantly higher Shannon index than CK (P < 0.05). The phylogenetic analysis showed that the soil nitrogen-fixing microbes under UA, UH, and UC were mainly of cyanobacteria, but the soil nitrogen-fixing microbes under AC and ACHE changed obviously, mainly of proteobacteria, and also of cyanobacteria. The canonical correlation analysis showed that the soil total phosphorus, available phosphorus, total nitrogen, and nitrate nitrogen contents under the five vegetation restoration modes had significant effects on the nitrogen-fixing microbial communities, and there existed significant correlations among the soil total phosphorus, available phosphorus, total nitrogen, and nitrate nitrogen. It was suggested that the variations of the community composition of soil nitrogen-fixing microbes under the five vegetation restoration modes were resulted from the interactive and combined effects of the soil physical and chemical factors.

  14. Effect of CO2 enrichment on the glucosinolate contents under different nitrogen levels in bolting stem of Chinese kale (Brassica alboglabra L.)*

    PubMed Central

    La, Gui-xiao; Fang, Ping; Teng, Yi-bo; Li, Ya-juan; Lin, Xian-yong

    2009-01-01

    The effects of CO2 enrichment on the growth and glucosinolate (GS) concentrations in the bolting stem of Chinese kale (Brassica alboglabra L.) treated with three nitrogen (N) concentrations (5, 10, and 20 mmol/L) were investigated. Height, stem thickness, and dry weights of the total aerial parts, bolting stems, and roots, as well as the root to shoot ratio, significantly increased as CO2 concentration was elevated from 350 to 800 μl/L at each N concentration. In the edible part of the bolting stem, 11 individual GSs were identified, including 7 aliphatic and 4 indolyl GSs. GS concentration was affected by the elevated CO2 concentration, N concentration, and CO2×N interaction. At 5 and 10 mmol N/L, the concentrations of aliphatic GSs and total GSs significantly increased, whereas those of indolyl GSs were not affected, by elevated atmospheric CO2. However, at 20 mmol N/L, elevated CO2 had no significant effects on the concentrations of total GSs and total indolyl GSs, but the concentrations of total aliphatic GSs significantly increased. Moreover, the bolting stem carbon (C) content increased, whereas the N and sulfur (S) contents decreased under elevated CO2 concentration in the three N treatments, resulting in changes in the C/N and N/S ratios. Also the C/N ratio is not a reliable predictor of change of GS concentration, while the changes in N and S contents and the N/S ratio at the elevated CO2 concentration may influence the GS concentration in Chinese kale bolting stems. The results demonstrate that high nitrogen supply is beneficial for the growth of Chinese kale, but not for the GS concentration in bolting stems, under elevated CO2 condition. PMID:19489111

  15. [Effects of litterfall and root input on soil physical and chemical properties in Pinus massoniana plantations in Three Gorges Reservoir Area, China].

    PubMed

    Ge, Xiao-Gai; Huang, Zhi-Lin; Cheng, Rui-Mei; Zeng, Li-Xiong; Xiao, Wen-Fa; Tan, Ben-Wang

    2012-12-01

    An investigation was made on the soil physical and chemical properties in different-aged Pinus massoniana plantations in Three Gorges Reservoir Area under effects of litterfall and roots. The annual litter production in mature stand was 19.4% and 65.7% higher than that in nearly mature and middle-aged stands, respectively. The litter standing amount was in the sequence of mature stand > middle-aged stand > nearly mature stand, while the litter turnover coefficient was in the order of nearly mature stand (0.51) > mature stand (0.40) > middle-aged stand (0.36). The total root biomass, live root biomass, and dead root biomass were the highest in middle-aged stand, and the lowest in nearly mature stand. In middle-aged stand, soil total porosity was the highest, and soil bulk density was the lowest. Soil organic matter and total nitrogen contents were in the order of mature stand > middle-aged stand > nearly mature stand, soil nitrate nitrogen occupied a larger proportion of soil mineral N in nearly mature stand, while ammonium nitrogen accounted more in middle-aged and mature stands. In nearly mature stand, litter production was moderate but turnover coefficient was the highest, and soil nutrient contents were the lowest. In middle-aged stand, root biomass and soil total porosity were the highest, and soil bulk density were the lowest. In mature stand, root biomass was lower while soil nutrient contents were the highest. The increase of root biomass could improve soil physical properties.

  16. Effects of combined application of organic and inorganic fertilizers plus nitrification inhibitor DMPP on nitrogen runoff loss in vegetable soils.

    PubMed

    Yu, Qiaogang; Ma, Junwei; Zou, Ping; Lin, Hui; Sun, Wanchun; Yin, Jianzhen; Fu, Jianrong

    2015-01-01

    The application of nitrogen fertilizers leads to various ecological problems such as large amounts of nitrogen runoff loss causing water body eutrophication. The proposal that nitrification inhibitors could be used as nitrogen runoff loss retardants has been suggested in many countries. In this study, simulated artificial rainfall was used to illustrate the effect of the nitrification inhibitor DMPP (3,4-dimethyl pyrazole phosphate) on nitrogen loss from vegetable fields under combined organic and inorganic nitrogen fertilizer application. The results showed that during the three-time simulated artificial rainfall period, the ammonium nitrogen content in the surface runoff water collected from the DMPP application treatment increased by 1.05, 1.13, and 1.10 times compared to regular organic and inorganic combined fertilization treatment, respectively. In the organic and inorganic combined fertilization with DMPP addition treatment, the nitrate nitrogen content decreased by 38.8, 43.0, and 30.1% in the three simulated artificial rainfall runoff water, respectively. Besides, the nitrite nitrogen content decreased by 95.4, 96.7, and 94.1% in the three-time simulated artificial rainfall runoff water, respectively. A robust decline in the nitrate and nitrite nitrogen surface runoff loss could be observed in the treatments after the DMPP addition. The nitrite nitrogen in DMPP addition treatment exhibited a significant low level, which is near to the no fertilizer application treatment. Compared to only organic and inorganic combined fertilizer treatment, the total inorganic nitrogen runoff loss declined by 22.0 to 45.3% in the organic and inorganic combined fertilizers with DMPP addition treatment. Therefore, DMPP could be used as an effective nitrification inhibitor to control the soil ammonium oxidation in agriculture and decline the nitrogen runoff loss, minimizing the nitrogen transformation risk to the water body and being beneficial for the ecological environment.

  17. Dynamics of nitrogen in subtropical wetland and its uptake and storage by Pistia stratiotes.

    PubMed

    Irfan, Sufia; Shardendu

    2009-11-01

    The paper describes the dynamics of nitrogen in different components (water, soil and plants) of Kabar wetland situated in Begusarai district of Bihar. Contents of nitrogen in the natural components were determined and were compared with the rate of uptake and accumulation under the experimental conditions. Physico-chemical characteristics of natural water and of test basins were quite similar. The trend of seasonal variation of NO3(-)-N in water and total N in soil and P. stratiotes tissue was almost similar but content of nitrogen differed significantly in the different components. The accumulation of nitrogen in the tissues of P. stratiotes was 5 to 15 fold higher than the concentration of nitrogen in the water and 2 to 3 fold higher than the nitrogen content measured in the soil. Maximum accumulation of nitrogen in P. stratiotes was 15.25 mg g(-1) when the concentration of NO3(-)-N in water was 0.86 mg l(-1). Under experimental conditions six different nitrogen concentrations were supplied and determined the uptake and accumulation of nitrogen in P. stratiotes. Maximum uptake and accumulation was 82.87 g m(-2) at the end of 60 days after starting the experiment but still the rate of accumulation was in rising trend. In another part of experiment no nitrogen was left in the basins of low concentrations (0.5 and 5 mg N l(-1)) at the end of 60 days of experiment but at higher concentrations (50 and 65 mg N l(-1)) significant amount of N was left in the test basin. The biomass enhancement was parallel with nitrogen supply till 15 mg N l(-1). This was opposite to the relationship between the nitrogen accumulation in the tissues and nitrogen supply in the experimental basins. Though, potassium was added as an essential growth nutrient but its accumulation was 95g m(-2) at 5 mg l(-1).

  18. Performance and membrane fouling of a step-fed submerged membrane sequencing batch reactor treating swine biogas digestion slurry.

    PubMed

    Han, Zhiying; Chen, Shixia; Lin, Xiaochang; Yu, Hongjun; Duan, Li'an; Ye, Zhangying; Jia, Yanbo; Zhu, Songming; Liu, Dezhao

    2018-01-02

    To identify the performance of step-fed submerged membrane sequencing batch reactor (SMSBR) treating swine biogas digestion slurry and to explore the correlation between microbial metabolites and membrane fouling within this novel reactor, a lab-scale step-fed SMSBR was operated under nitrogen loading rate of 0.026, 0.052 and 0.062 g NH 4 + -N (gVSS·d) -1 . Results show that the total removal efficiencies for NH 4 + -N, total nitrogen and chemical oxygen demand in the reactor (>94%, >89% and >97%, respectively) were high during the whole experiment. However, the cycle removal efficiency of NH 4 + -N decreased significantly when the nitrogen loading rate was increased to 0.062 g NH 4 + -N (gVSS·d) -1 . The total removal efficiency of total phosphorus in the step-fed SMSBR was generally higher than 75%, though large fluctuations were observed during the experiments. In addition, the concentrations of microbial metabolites, i.e., soluble microbial products (SMP) and extracellular polymeric substances (EPS) from activated sludge increased as nitrogen loading rate increased, both showing quadratic equation correlations with viscosity of the mixed liquid in the step-fed SMSBR (both R 2 > 0.90). EPS content was higher than SMP content, while protein (PN) was detected as the main component in both SMP and EPS. EPS PN was found to be well correlated with transmembrane pressure, membrane flux and the total membrane fouling resistance. Furthermore, the three-dimensional excitation-emission matrix fluorescence spectroscopy results suggested the tryptophan-like protein as one of the main contributors to the membrane fouling. Overall, this study showed that the step-fed SMSBR could be used to treat swine digestion slurry at nitrogen loading rate of 0.052 g NH 4 + -N (gVSS·d) -1 , and the control strategy of membrane fouling should be developed based on reducing the tryptophan-like PN in EPS.

  19. Physiological characters of soybean cultivars with application of nitrogen sources under dry land conditions

    NASA Astrophysics Data System (ADS)

    Hasanah, Y.; Nisa, T. C.; Hapsoh; Hanum, H.

    2018-02-01

    The objective of this study was to evaluate the influence of nutrient N management on physiological characteristics of three different soybean cultivars under dry land conditions. The study was conducted under dry lands of Desa Sambirejo (Langkat Regency) in the dry season. The study was conducted with a Randomize Block Design with two factors and three replication. The research was used a randomized block design with 2 factors and 3 replications. The first factor was soybean cultivars (Anjasmoro, Wilis, Sinabung). The second factor was N source, with Urea (50 kg/ha), Bradyrhizobium sp., farmyard manure (10 ton/ha), a combination of Bradyrhizobium sp. + farmyard manure (5 ton/ha) and a control with no N. The parameter observed in this study was the content of root N, shoot Nitrogen, shoot Phosphor, shoot Potassium and total of chlorophyll content. The results suggest that Anjasmoro and Sinabung cultivars had higher physiological characteristics (root N, shoot P and shoot K) compared to Wilis. Nitrogen source of Urea gave a higher physiological characteristics (content of root N, shoot Phosphor and shoot Potassium) compared to different treatment of N source in this study. The interaction between Anjasmoro cultivar and Urea gave the highest of content of shoot Phosphor and shoot Potassium, otherwise the interaction between Sinabung cultivar and Bradyrhizobium sp. gave the highest of content of shoot Nitrogen.

  20. Diamonds from Orapa Mine show a clear subduction signature in SIMS stable isotope data

    NASA Astrophysics Data System (ADS)

    Chinn, Ingrid L.; Perritt, Samantha H.; Stiefenhofer, Johann; Stern, Richard A.

    2018-05-01

    Spatially resolved analyses reveal considerable isotopic heterogeneity within and among diamonds ranging in size from 0.15 to 4.75 mm from the Orapa Mine, Botswana. The isotopic data are interpreted in conjunction with nitrogen aggregation state data and growth zone relationships from cathodoluminescence images. The integrated information confirms that a distinct diamond growth event (with low IaAB nitrogen aggregation states, moderately high nitrogen contents and δ13C and δ15N values compatible with average mantle values) is younger than the dominant population(s) of Type IaAB diamonds and cores of composite diamonds with more negative and positive δ13C and δ15N values, respectively. A significant proportion of the older diamond generation has high nitrogen contents, well outside the limit sector relationship, and these diamonds are likely to reflect derivation from subducted organic matter. Diamonds with low δ13C values combined with high nitrogen contents and positive δ15N values have not been previously widely recognised, even in studies of diamonds from Orapa. This may have been caused by prior analytical bias towards inclusion-bearing diamonds that are not necessarily representative of the entire range of diamond populations, and because of average measurements from heterogeneous diamonds measured by bulk combustion methods. Two distinct low nitrogen/Type II microdiamond populations were recognised that do not appear to continue into the macrodiamond sizes in the samples studied. Other populations, e.g. those containing residual singly-substituted nitrogen defects, range in size from small microdiamonds to large macrodiamonds. The total diamond content of the Orapa kimberlite thus reflects a complex assortment of multiple diamond populations.

  1. Contrasting soil microbial community functional structures in two major landscapes of the Tibetan alpine meadow

    DOE PAGES

    Chu, Houjuan; Wang, Shiping; Yue, Haowei; ...

    2014-07-07

    The grassland and shrubland are two major landscapes of the Tibetan alpine meadow, a region very sensitive to the impact of global warming and anthropogenic perturbation. Herein, we report a study showing that a majority of differences in soil microbial community functional structures, measured by a functional gene array named GeoChip 4.0, in two adjacent shrubland and grassland areas, were explainable by environmental properties, suggesting that the harsh environments in the alpine grassland rendered niche adaptation important. Furthermore, genes involved in labile carbon degradation were more abundant in the shrubland than those of the grassland but genes involved in recalcitrantmore » carbon degradation were less abundant, which was conducive to long-term carbon storage and sequestration in the shrubland despite low soil organic carbon content. In addition, genes of anerobic nitrogen cycling processes such as denitrification and dissimilatory nitrogen reduction were more abundant, shifting soil nitrogen cycling toward ammonium biosynthesis and consequently leading to higher soil ammonium contents. In conclusion, we also noted higher abundances of stress genes responsive to nitrogen limitation and oxygen limitation, which might be attributed to low total nitrogen and higher water contents in the shrubland. Together, these results provide mechanistic knowledge about microbial linkages to soil carbon and nitrogen storage and potential consequences of vegetation shifts in the Tibetan alpine meadow.« less

  2. Effect of C/N ratio, aeration rate and moisture content on ammonia and greenhouse gas emission during the composting.

    PubMed

    Jiang, Tao; Schuchardt, Frank; Li, Guoxue; Guo, Rui; Zhao, Yuanqiu

    2011-01-01

    Gaseous emission (N2O, CH4 and NH3) from composting can be an important source of anthropogenic greenhouse gas and air pollution. A laboratory scale orthogonal experiment was conducted to estimate the effects of C/N ratio, aeration rate and initial moisture content on gaseous emission during the composting of pig faeces from Chinese Ganqinfen system. The results showed that about 23.9% to 45.6% of total organic carbon (TOC) was lost in the form of CO2 and 0.8% to 7.5% of TOC emitted as CH4. Most of the nitrogen was lost in the form of NH3, which account for 9.6% to 32.4% of initial nitrogen. N2O was also an important way of nitrogen losses and 1.5% to 7.3% of initial total nitrogen was lost as it. Statistic analysis showed that the aeration rate is the most important factor which could affect the NH3 (p = 0.0189), CH4 (p = 0.0113) and N2O (p = 0.0493) emissions significantly. Higher aeration rates reduce the CH4 emission but increase the NH3 and N2O losses. C/N ratio could affect the NH3 (p = 0.0442) and CH4 (p = 0.0246) emissions significantly, but not the N2O. Lower C/N ratio caused higher NH3 and CH4 emissions. The initial moisture content can not influence the gaseous emission significantly. Most treatments were matured after 37 days, except a trial with high moisture content and a low C/N ratio.

  3. Wet and dry atmospheric depositions of inorganic nitrogen during plant growing season in the coastal zone of Yellow River Delta.

    PubMed

    Yu, Junbao; Ning, Kai; Li, Yunzhao; Du, Siyao; Han, Guangxuan; Xing, Qinghui; Wu, Huifeng; Wang, Guangmei; Gao, Yongjun

    2014-01-01

    The ecological problems caused by dry and wet deposition of atmospheric nitrogen have been widespread concern in the world. In this study, wet and dry atmospheric depositions were monitored in plant growing season in the coastal zone of the Yellow River Delta (YRD) using automatic sampling equipment. The results showed that SO4 (2-) and Na(+) were the predominant anion and cation, respectively, in both wet and dry atmospheric depositions. The total atmospheric nitrogen deposition was ~2264.24 mg m(-2), in which dry atmospheric nitrogen deposition was about 32.02%. The highest values of dry and wet atmospheric nitrogen deposition appeared in May and August, respectively. In the studied area, NO3 (-)-N was the main nitrogen form in dry deposition, while the predominant nitrogen in wet atmospheric deposition was NH4 (+)-N with ~56.51% of total wet atmospheric nitrogen deposition. The average monthly attribution rate of atmospheric deposition of NO3 (-)-N and NH4 (+)-N was ~31.38% and ~20.50% for the contents of NO3 (-)-N and NH4 (+)-N in 0-10 cm soil layer, respectively, suggested that the atmospheric nitrogen was one of main sources for soil nitrogen in coastal zone of the YRD.

  4. Effects of sampling time and nitrogen fertilization on anthocyanidin levels in Vaccinium myrtillus fruits.

    PubMed

    Akerström, Andreas; Forsum, Asa; Rumpunen, Kimmo; Jäderlund, Anders; Bång, Ulla

    2009-04-22

    Vaccinium myrtillus berries (bilberries) contain antioxidants, in particular anthocyanins, which are secondary metabolites that have proven health-promoting effects. Bilberries were collected at the Svartberget research forest in northern Sweden from plots with no, low, and high applications of NH(4)NO(3) on three replicated dates in each year from 2005-2007, and their anthocyanidin contents were analyzed by high performance liquid chromatography. Their mean total anthocyanidin contents were 9.0, 6.2, and 22.7 mg/g DW in 2005, 2006, and 2007, respectively. The values were significantly higher in 2005 than in 2006 and significantly higher in 2007 than in both previous years, across all three sampling dates. In addition, anthocyanidin contents were significantly affected by sampling date in all years (P < 0.001); they were linearly correlated with the thermal sum in 2005 and 2007 but rose between the first and second sampling occasions and subsequently declined in 2006. No significant effect of nitrogen fertilization on total anthocyanidin levels was detected in any of the studied years. The results indicate that climatic factors and yearly fluctuations influence anthocyanidin biosynthesis and degradation more strongly than nitrogen availability. To our knowledge, this is the first time this effect of sampling time on anthocyanins in mature bilberries has been shown.

  5. Chemical Modification of Graphene Oxide by Nitrogenation: An X-ray Absorption and Emission Spectroscopy Study

    DOE PAGES

    Chuang, Cheng-Hao; Ray, Sekhar C.; Mazumder, Debarati; ...

    2017-02-10

    Nitrogen-doped graphene oxides (GO:N x) were synthesized by a partial reduction of graphene oxide (GO) using urea [CO(NH 2) 2 ]. Their electronic/bonding structures were investigated using X-ray absorption near-edge structure (XANES), valence-band photoemission spectroscopy (VB-PES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). During GO:N x synthesis, different nitrogen-bonding species, such as pyrrolic/graphitic-nitrogen, were formed by replacing of oxygen-containing functional groups. At lower N-content (2.7 at%), pyrrolic-N, owing to surface and subsurface diffusion of C, N and NH is deduced from various X-ray spectroscopies. In contrast, at higher N-content (5.0 at%) graphitic nitrogen was formed in whichmore » each N-atom trigonally bonds to three distinct sp 2 -hybridized carbons with substitution of the N-atoms for C atoms in the graphite layer. Upon nitrogen substitution, the total density of state close to Fermi level is increased to raise the valence-band maximum, as revealed by VB-PES spectra, indicating an electron donation from nitrogen, molecular bonding C/N/O coordination or/and lattice structure reorganization in GO:N x . The well-ordered chemical environments induced by nitrogen dopant are revealed by XANES and RIXS measurements.« less

  6. Chemical Modification of Graphene Oxide by Nitrogenation: An X-ray Absorption and Emission Spectroscopy Study

    NASA Astrophysics Data System (ADS)

    Chuang, Cheng-Hao; Ray, Sekhar C.; Mazumder, Debarati; Sharma, Surbhi; Ganguly, Abhijit; Papakonstantinou, Pagona; Chiou, Jau-Wern; Tsai, Huang-Ming; Shiu, Hung-Wei; Chen, Chia-Hao; Lin, Hong-Ji; Guo, Jinghua; Pong, Way-Faung

    2017-02-01

    Nitrogen-doped graphene oxides (GO:Nx) were synthesized by a partial reduction of graphene oxide (GO) using urea [CO(NH2)2]. Their electronic/bonding structures were investigated using X-ray absorption near-edge structure (XANES), valence-band photoemission spectroscopy (VB-PES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). During GO:Nx synthesis, different nitrogen-bonding species, such as pyrrolic/graphitic-nitrogen, were formed by replacing of oxygen-containing functional groups. At lower N-content (2.7 at%), pyrrolic-N, owing to surface and subsurface diffusion of C, N and NH is deduced from various X-ray spectroscopies. In contrast, at higher N-content (5.0 at%) graphitic nitrogen was formed in which each N-atom trigonally bonds to three distinct sp2-hybridized carbons with substitution of the N-atoms for C atoms in the graphite layer. Upon nitrogen substitution, the total density of state close to Fermi level is increased to raise the valence-band maximum, as revealed by VB-PES spectra, indicating an electron donation from nitrogen, molecular bonding C/N/O coordination or/and lattice structure reorganization in GO:Nx. The well-ordered chemical environments induced by nitrogen dopant are revealed by XANES and RIXS measurements.

  7. Genetic Engineering of Maize (Zea mays L.) with Improved Grain Nutrients.

    PubMed

    Guo, Xiaotong; Duan, Xiaoguang; Wu, Yongzhen; Cheng, Jieshan; Zhang, Juan; Zhang, Hongxia; Li, Bei

    2018-02-21

    Cell-wall invertase plays important roles in the grain filling of crop plants. However, its functions in the improvement of grain nutrients have not been investigated. In this work, the stable expression of cell-wall-invertase-encoding genes from different plant species and the contents of total starch, protein, amino acid, nitrogen, lipid, and phosphorus were examined in transgenic maize plants. High expressions of the cell-wall-invertase gene conferred enhanced invertase activity and sugar content in transgenic plants, leading to increased grain yield and improved grain nutrients. Transgenic plants with high expressions of the transgene produced more total starch, protein, nitrogen, and essential amino acids in the seeds. Overall, the results indicate that the cell-wall-invertase gene can be used as a potential candidate for the genetic breeding of grain crops with both improved grain yield and quality.

  8. Fiber source and inclusion level affects characteristics of excreta from growing pigs

    PubMed Central

    Ndou, Saymore Petros; Bakare, Archibold Garikayi

    2018-01-01

    Objective The objective of the study was to determine the influence of varying fibrous diets on fecal characteristics of growing pigs. Methods A total of 104 pigs (initial weight 18±2.0 kg) were used in the study. They were housed in individual pens and fed on diets containing maize cob, grass hay, lucerne hay, maize stover, and sunflower husk. These fibers were included at 0, 80, 160, 240, 320 and 400 g/kg. Fecal and urine samples were collected. Results Fecal output was largest amongst pigs fed on diets containing grass hay and maize stover (p<0.05). Nitrogen content was highest in feces from pigs fed on sunflower husk (p< 0.05). Pigs fed on diets containing maize stover and maize cobs produced the largest concentrations of short chain fatty acids. Acetate concentration was high in feces of pigs fed maize stover than those fed grass hay and lucerne hay (p<0.05). As the level of fiber inclusion increased, fecal consistency and nitrogen content increased linearly (p<0.05). Urea nitrogen decreased as the inclusion level increased across all the fibers (p<0.05), with maize cobs containing the largest content of urea nitrogen. As dietary fiber content increased, fecal nitrogen content also increased (p<0.05). Conclusion It was concluded that different fiber sources influence fecal characteristics, thereby having different implications on pig waste management. It is vital to monitor fiber inclusion thresholds so as to easily manage environmental pollutants such as butyrate that contribute to odors. PMID:26954189

  9. Short-term contributions of cover crop surface residue return to soil carbon and nitrogen contents in temperate Australia.

    PubMed

    Zhou, Xiaoqi; Wu, Hanwen; Li, Guangdi; Chen, Chengrong

    2016-11-01

    Cover crop species are usually grown to control weeds. After cover crop harvest, crop residue is applied on the ground to improve soil fertility and crop productivity. Little information is available about quantifying the contributions of cover crop application to soil total carbon (C) and nitrogen (N) contents in temperate Australia. Here, we selected eight cover crop treatments, including two legume crops (vetch and field pea), four non-legume crops (rye, wheat, Saia oat, and Indian mustard), a mixture of rye and vetch, and a nil-crop control in temperate Australia to calculate the contributions of cover crops (crop growth + residue decomposition) to soil C and N contents. Cover crops were sown in May 2009 (autumn). After harvest, the crop residue was placed on the soil surface in October 2009. Soil and crop samples were collected in October 2009 after harvest and in May 2010 after 8 months of residue decomposition. We examined cover crop residue biomass, soil and crop total C and N contents, and soil microbial biomass C and N contents. The results showed that cover crop application increased the mean soil total C by 187-253 kg ha -1 and the mean soil total N by 16.3-19.1 kg ha -1 relative to the nil-crop treatment, except for the mixture treatment, which had similar total C and N contents to the nil-crop control. Cover crop application increased the mean soil microbial biomass C by 15.5-20.9 kg ha -1 and the mean soil microbial biomass N by 4.5-10.2 kg ha -1 . We calculated the apparent percentage of soil total C derived from cover crop residue C losses and found that legume crops accounted for 10.6-13.9 %, whereas non-legume crops accounted for 16.4-18.4 % except for the mixture treatment (0.2 %). Overall, short-term cover crop application increased soil total C and N contents and microbial biomass C and N contents, which might help reduce N fertilizer use and improve sustainable agricultural development.

  10. Ultrafast microwave-assisted synthesis of nitrogen-doped carbons as electrocatalysts for oxygen reduction reaction.

    PubMed

    Xu, Jingjing; Zhang, Ruifang; Lu, Shiyao; Liu, Huan; Li, Zhaoyang; Zhang, Xinyu; Ding, Shujiang

    2018-07-27

    A facile and ultrafast microwave-assisted thermolysis approach has been adopted to synthesize hierarchical nitrogen-doped carbon within a very short time. The precursor PANI@carbon felt composite was pyrolyzed in microwave oven for different time (10, 20, 30, 40, 50 s) and denoted as NC-X (X = 10, 20, 30, 40, 50). As for NC-30, nitrogen-doping content is obtained up to 3.62 at% with striking enrichment of pyridinic N as high as 45% of the total nitrogen content. Raman analysis indicates the extent graphitization level for the resultant NC-30 and the relative intensity I D /I G was 1.26. High nitrogen-doping content and graphitization level provide effective active sites and efficient electron transfer channel. The resultant NC-30 exhibits pronounced ORR activity with an onset potential of 0.94 V (versus RHE), half-wave potential of 0.80 V and diffusion limiting current density of -5.23 mA cm -2 , comparable to those of the commercial Pt/C. It also shows enhanced stability with current retention of 98.3% over 7.5 h as well as superior tolerance against methanol. The simple preparation and excellent ORR performance of NC-30 suggest its promising practical application.

  11. Potential of duckweed in the conversion of wastewater nutrients to valuable biomass: a pilot-scale comparison with water hyacinth.

    PubMed

    Zhao, Yonggui; Fang, Yang; Jin, Yanling; Huang, Jun; Bao, Shu; Fu, Tian; He, Zhiming; Wang, Feng; Zhao, Hai

    2014-07-01

    The application potential of duckweed (Lemna japonica 0234) and water hyacinth (Eichhornia crassipes) were compared in two pilot-scale wastewater treatment systems for more than one year. The results indicated duckweed had the same total nitrogen (TN) recovery rate as water hyacinth (0.4 g/m(2)/d) and a slightly lower total phosphorus (TP) recovery rate (approximately 0.1g/m(2)/d) even though its biomass production was half that of water hyacinth. The higher content of crude protein (33.34%), amino acids (25.80%), starch (40.19%), phosphorus (1.24%), flavonoids (2.91%) and lower fiber content provided duckweed with more advantages in resource utilization. Additionally, microbial community discovered by 454 pyrosequencing indicated that less nitrifying bacteria and more nitrogen-fixing bacteria in rhizosphere of duckweed provided it with higher nitrogen recovery efficiency (60%) than water hyacinth (47%). Under the presented condition, duckweed has more application advantages than water hyacinth because it more effectively converted the wastewater nutrients into valuable biomass. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Water and Temperature Stresses Impact Canola (Brassica napus L.) Fatty Acid, Protein, and Yield over Nitrogen and Sulfur.

    PubMed

    Hammac, W Ashley; Maaz, Tai M; Koenig, Richard T; Burke, Ian C; Pan, William L

    2017-12-06

    Interactive effects of weather and soil nutrient status often control crop productivity. An experiment was conducted to determine effects of nitrogen (N) and sulfur (S) fertilizer rate, soil water, and atmospheric temperature on canola (Brassica napus L.) fatty acid (FA), total oil, protein, and grain yield. Nitrogen and sulfur were assessed in a 4-yr study with two locations, five N rates (0, 45, 90, 135, and 180 kg ha -1 ), and two S rates (0 and 17 kg ha -1 ). Water and temperature were assessed using variability across 12 site-years of dryland canola production. Effects of N and S were inconsistent. Unsaturated FA, oleic acid, grain oil, protein, and theoretical maximum grain yield were highly related to water and temperature variability across the site-years. A nonlinear model identified water and temperature conditions that enabled production of maximum unsaturated FA content, oleic acid content, total oil, protein, and theoretical maximum grain yield. Water and temperature variability played a larger role than soil nutrient status on canola grain constituents and yield.

  13. Effect of Epichloë gansuensis Endophyte on the Nitrogen Metabolism, Nitrogen Use Efficiency, and Stoichiometry of Achnatherum inebrians under Nitrogen Limitation.

    PubMed

    Wang, Jianfeng; Nan, Zhibiao; Christensen, Michael J; Zhang, Xingxu; Tian, Pei; Zhang, Zhixin; Niu, Xueli; Gao, Peng; Chen, Tao; Ma, Lixia

    2018-04-25

    The systemic fungal endophyte of the grass Achnatherum inebrians, Epichloë gansuensis, has important roles in enhancing resistance to biotic and abiotic stresses. In this work, we first evaluated the effects of E. gansuensis on nitrogen metabolism, nitrogen use efficiency, and stoichiometry of A. inebrians under varying nitrogen concentrations. The results demonstrated that E. gansuensis significantly improved the growth of A. inebrians under low nitrogen conditions. The fresh and dry weights, nitrogen reductase, nitrite reductase, and glutamine synthetase activity, NO 3 - , NH 4 + , N, and P content, and also the total N accumulation, N utilization efficiency, and N uptake efficiency were all higher in leaves of A. inebrians with E. ganusensis (E+) plants than A. inebrians plants without this endophyte (E-) under low nitrogen availability. In conclusion, E. gansuensis has positive effects on improving the growth of A. inebrians under low-nitrogen conditions by modulating the enzymes of nitrogen metabolism and enhancing nitrogen use efficiency.

  14. Over-Expression of a Tobacco Nitrate Reductase Gene in Wheat (Triticum aestivum L.) Increases Seed Protein Content and Weight without Augmenting Nitrogen Supplying

    PubMed Central

    Zhao, Xiao-Qiang; Nie, Xuan-Li; Xiao, Xing-Guo

    2013-01-01

    Heavy nitrogen (N) application to gain higher yield of wheat (Triticum aestivum L.) resulted in increased production cost and environment pollution. How to diminish the N supply without losing yield and/or quality remains a challenge. To meet the challenge, we integrated and expressed a tobacco nitrate reductase gene (NR) in transgenic wheat. The 35S-NR gene was transferred into two winter cultivars, “Nongda146” and “Jimai6358”, by Agrobacterium-mediation. Over-expression of the transgene remarkably enhanced T1 foliar NR activity and significantly augmented T2 seed protein content and 1000-grain weight in 63.8% and 68.1% of T1 offspring (total 67 individuals analyzed), respectively. Our results suggest that constitutive expression of foreign nitrate reductase gene(s) in wheat might improve nitrogen use efficiency and thus make it possible to increase seed protein content and weight without augmenting N supplying. PMID:24040315

  15. Over-expression of a tobacco nitrate reductase gene in wheat (Triticum aestivum L.) increases seed protein content and weight without augmenting nitrogen supplying.

    PubMed

    Zhao, Xiao-Qiang; Nie, Xuan-Li; Xiao, Xing-Guo

    2013-01-01

    Heavy nitrogen (N) application to gain higher yield of wheat (Triticum aestivum L.) resulted in increased production cost and environment pollution. How to diminish the N supply without losing yield and/or quality remains a challenge. To meet the challenge, we integrated and expressed a tobacco nitrate reductase gene (NR) in transgenic wheat. The 35S-NR gene was transferred into two winter cultivars, "Nongda146" and "Jimai6358", by Agrobacterium-mediation. Over-expression of the transgene remarkably enhanced T1 foliar NR activity and significantly augmented T2 seed protein content and 1000-grain weight in 63.8% and 68.1% of T1 offspring (total 67 individuals analyzed), respectively. Our results suggest that constitutive expression of foreign nitrate reductase gene(s) in wheat might improve nitrogen use efficiency and thus make it possible to increase seed protein content and weight without augmenting N supplying.

  16. The study on the near infrared spectrum technology of sauce component analysis

    NASA Astrophysics Data System (ADS)

    Li, Shangyu; Zhang, Jun; Chen, Xingdan; Liang, Jingqiu; Wang, Ce

    2006-01-01

    The author, Shangyu Li, engages in supervising and inspecting the quality of products. In soy sauce manufacturing, quality control of intermediate and final products by many components such as total nitrogen, saltless soluble solids, nitrogen of amino acids and total acid is demanded. Wet chemistry analytical methods need much labor and time for these analyses. In order to compensate for this problem, we used near infrared spectroscopy technology to measure the chemical-composition of soy sauce. In the course of the work, a certain amount of soy sauce was collected and was analyzed by wet chemistry analytical methods. The soy sauce was scanned by two kinds of the spectrometer, the Fourier Transform near infrared spectrometer (FT-NIR spectrometer) and the filter near infrared spectroscopy analyzer. The near infrared spectroscopy of soy sauce was calibrated with the components of wet chemistry methods by partial least squares regression and stepwise multiple linear regression. The contents of saltless soluble solids, total nitrogen, total acid and nitrogen of amino acids were predicted by cross validation. The results are compared with the wet chemistry analytical methods. The correlation coefficient and root-mean-square error of prediction (RMSEP) in the better prediction run were found to be 0.961 and 0.206 for total nitrogen, 0.913 and 1.215 for saltless soluble solids, 0.855 and 0.199 nitrogen of amino acids, 0.966 and 0.231 for total acid, respectively. The results presented here demonstrate that the NIR spectroscopy technology is promising for fast and reliable determination of major components of soy sauce.

  17. Seed and Foliar Application of Amino Acids Improve Variables of Nitrogen Metabolism and Productivity in Soybean Crop.

    PubMed

    Teixeira, Walquíria F; Fagan, Evandro B; Soares, Luis H; Soares, Jérssica N; Reichardt, Klaus; Neto, Durval D

    2018-01-01

    The application of amino acids in crops has been a common practice in recent years, although most of the time they are associated with products based on algae extracts or on fermented animal or vegetable wastes. However, little is known about the isolated effect of amino acids on the development of crops. Therefore, the objective of this research was to evaluate the effect of the application of isolated amino acids on the in some steps of the soybean nitrogen metabolism and on productivity. Experiments were carried out in a greenhouse and in the field with the application of the amino acids glutamate (Glu), phenylalanine (Phe), cysteine (Cys) and glycine (Gly) and as a set (Glu+Phe+Cys+Gly), as seed treatment (ST), as foliar application (FA) and both (ST+FA), at the V 4 growth stage. Evaluations consisted of nitrate reductase and urease activities, nitrate, ureide, total amino acids and total nitrogen content in leaves, and productivity. The application of Glu to leaves, Cys as ST and a mixture of Glu+Cys+Phe+Gly as ST+FA in the greenhouse experiment increased the total amino acids content. In the field experiment all treatments increased the amino acid content in leaves. At the V 6 stage in the field experiment, all modes of Gly application, Glu as ST and FA, Cys and Phe as ST+FA and Glu+Cys+Phe+Gly as FA increased the nitrate content in leaves. In the greenhouse, application of Cys and Phe as ST increased the production of soybean plants by at least 21%. The isolated application of Cys, Phe, Gly, Glu and the set of these amino acids as ST increased the productivity of soybean plants in the field experiment by at least 22%.

  18. Seed and Foliar Application of Amino Acids Improve Variables of Nitrogen Metabolism and Productivity in Soybean Crop

    PubMed Central

    Teixeira, Walquíria F.; Fagan, Evandro B.; Soares, Luis H.; Soares, Jérssica N.; Reichardt, Klaus; Neto, Durval D.

    2018-01-01

    The application of amino acids in crops has been a common practice in recent years, although most of the time they are associated with products based on algae extracts or on fermented animal or vegetable wastes. However, little is known about the isolated effect of amino acids on the development of crops. Therefore, the objective of this research was to evaluate the effect of the application of isolated amino acids on the in some steps of the soybean nitrogen metabolism and on productivity. Experiments were carried out in a greenhouse and in the field with the application of the amino acids glutamate (Glu), phenylalanine (Phe), cysteine (Cys) and glycine (Gly) and as a set (Glu+Phe+Cys+Gly), as seed treatment (ST), as foliar application (FA) and both (ST+FA), at the V4 growth stage. Evaluations consisted of nitrate reductase and urease activities, nitrate, ureide, total amino acids and total nitrogen content in leaves, and productivity. The application of Glu to leaves, Cys as ST and a mixture of Glu+Cys+Phe+Gly as ST+FA in the greenhouse experiment increased the total amino acids content. In the field experiment all treatments increased the amino acid content in leaves. At the V6 stage in the field experiment, all modes of Gly application, Glu as ST and FA, Cys and Phe as ST+FA and Glu+Cys+Phe+Gly as FA increased the nitrate content in leaves. In the greenhouse, application of Cys and Phe as ST increased the production of soybean plants by at least 21%. The isolated application of Cys, Phe, Gly, Glu and the set of these amino acids as ST increased the productivity of soybean plants in the field experiment by at least 22%. PMID:29643860

  19. Nitrogen availability in composted poultry litter using natural amendments.

    PubMed

    Turan, N Gamze

    2009-02-01

    Poultry litter compost is used as fertilizer on agricultural land because of its high nutrient content. A major limitation of land application of poultry litter compost is the loss of nitrogen via NH3 volatilization. The present work was conducted to monitor nitrogen availability during composting of poultry litter with natural zeolite, expanded perlite, pumice and expanded vermiculite. Poultry litter was composted for 100 days using five in-vessel composting simulators with a volumetric ratio of natural materials:poultry litter of 1:10. It was found that natural materials significantly reduced NH3 volatilization. At the end of the process, the control treatment without any natural materials had the lowest rate of total N: 72% of the initial total N was lost from the compost made with no amendment, while 53, 42, 26 and 16% of initial total N was lost from compost containing expandable perlite, expandable vermiculite, pumice and natural zeolite, respectively.

  20. Carbon, nitrogen, and phosphorus transport by world rivers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meybeck, M.

    1982-04-01

    The various forms (dissolved and particulate, organic and inorganic) of carbon, nitrogen, and phosphorus in world rivers are reviewed from literature data. Natural levels are based mainly on major rivers for the subarctic and tropical zones which are still unpolluted and on smaller streams for the temperate zone. Atmospheric fallout is also reviewed. Natural contents of dissolved organic carbon (DOC) are mainly dependent on environmental conditions: DOC varies from 1 mg 1/sup -1/ in the mountainous alpine environments to 20 mg 1/sup -1/ in some taiga rivers. The world DOC average is 5.75 mg l/sup -1/. Nitrogen forms include dissolvedmore » organic nitrogen (DON), dissolved inorganic nitrogen (DIN = N - NH/sub 4//sup +/ + N - NO/sub 3//sup -/ + N - NO/sub 2//sup -/), and particulate organic nitrogen (PON). Natural levels are very low: DIN = 120 ..mu..g 1/sup -1/ of which only 15 percent is present as ammonia, and 1 percent as nitrite. Phosphorus is naturally present in very low amounts: around 10 ..mu..g 1/sup -1/ for P-PO/sub 4//sup 3/ and 25 ..mu..g 1/sup -1/ for total dissolved phosphorus (TDP which includes the organic form). The average nutrient content of rains has been estimated with a set of unpolluted stations: P - PO/sub 4/ = 5 ..mu..g 1/sup -1/, TDP = 10, N - NO/sub 2/ = 5, N - NH/sub 4/ = 225, DON = 225, and N - NO/sub 3/ = 175 ..mu..g 1/sup -1/. TOC levels are probably around several mg 1/sup -1/. These contents are very similar to those found in unpolluted rivers. Man's influence on surface waters has now greatly increased natural nutrient levels. Total dissolved P and N have globally increased by a factor of two and locally (Western Europe, North America) by factors of 10 to 50. These increases were found to be directly proportional to the watershed population and to its energy consumption.« less

  1. Mapping soil total nitrogen of cultivated land at county scale by using hyperspectral image

    NASA Astrophysics Data System (ADS)

    Gu, Xiaohe; Zhang, Li Yan; Shu, Meiyan; Yang, Guijun

    2018-02-01

    Monitoring total nitrogen content (TNC) in the soil of cultivated land quantitively and mastering its spatial distribution are helpful for crop growing, soil fertility adjustment and sustainable development of agriculture. The study aimed to develop a universal method to map total nitrogen content in soil of cultivated land by HSI image at county scale. Several mathematical transformations were used to improve the expression ability of HSI image. The correlations between soil TNC and the reflectivity and its mathematical transformations were analyzed. Then the susceptible bands and its transformations were screened to develop the optimizing model of map soil TNC in the Anping County based on the method of multiple linear regression. Results showed that the bands of 14th, 16th, 19th, 37th and 60th with different mathematical transformations were screened as susceptible bands. Differential transformation was helpful for reducing the noise interference to the diagnosis ability of the target spectrum. The determination coefficient of the first order differential of logarithmic transformation was biggest (0.505), while the RMSE was lowest. The study confirmed the first order differential of logarithm transformation as the optimal inversion model for soil TNC, which was used to map soil TNC of cultivated land in the study area.

  2. Dairy manure nutrient analysis using quick tests.

    PubMed

    Singh, A; Bicudo, J R

    2005-05-01

    Rapid on-farm assessment of manure nutrient content can be achieved with the use of quick tests. These tests can be used to indirectly measure the nutrient content in animal slurries immediately before manure is applied on agricultural fields. The objective of this study was to assess the reliability of hydrometers, electrical conductivity meter and pens, and Agros N meter against standard laboratory methods. Manure samples were collected from 34 dairy farms in the Mammoth Cave area in central Kentucky. Regression equations were developed for combined and individual counties located In the area (Barren, Hart and Monroe). Our results indicated that accuracy in nutrient estimation could be improved if separate linear regressions were developed for farms with similar facilities in a county. Direct hydrometer estimates of total nitrogen were among the most accurate when separate regression equations were developed for each county (R2 = 0.61, 0.93, and 0.74 for Barren, Hart and Monroe county, respectively). Reasonably accurate estimates (R2 > 0.70) were also obtained for total nitrogen and total phosphorus using hydrometers, either by relating specific gravity to nutrient content or to total solids content. Estimation of ammoniacal nitrogen with Agros N meter and electrical conductivity meter/pens correlated well with standard laboratory determinations, especially while using the individual data sets from Hart County (R2 = 0.70 to 0.87). This study indicates that the use of quick test calibration equations developed for a small area or region where farms are similar in terms of manure handling and management, housing, and feed ration are more appropriate than using "universal" equations usually developed with combined data sets. Accuracy is expected to improve if individual farms develop their own calibration curves. Nevertheless, we suggest confidence intervals always be specified for nutrients estimated through quick testing for any specific region, county, or farm.

  3. Light aerobic physical exercise in combination with leucine and/or glutamine-rich diet can improve the body composition and muscle protein metabolism in young tumor-bearing rats.

    PubMed

    Salomão, Emilianne Miguel; Gomes-Marcondes, Maria Cristina Cintra

    2012-12-01

    Nutritional supplementation with some amino acids may influence host's responses and also certain mechanism involved in tumor progression. It is known that exercise influences body weight and muscle composition. Previous findings from our group have shown that leucine has beneficial effects on protein composition in cachectic rat model as the Walker 256 tumor. The main purpose of this study was to analyze the effects of light exercise and leucine and/or glutamine-rich diet in body composition and skeletal muscle protein synthesis and degradation in young tumor-bearing rats. Walker tumor-bearing rats were subjected to light aerobic exercise (swimming 30 min/day) and fed a leucine-rich (3%) and/or glutamine-rich (4%) diet for 10 days and compared to healthy young rats. The carcasses were analyzed as total water and fat body content and lean body mass. The gastrocnemious muscles were isolated and used for determination of total protein synthesis and degradation. The chemical body composition changed with tumor growth, increasing body water and reducing body fat content and total body nitrogen. After tumor growth, the muscle protein metabolism was impaired, showing that the muscle protein synthesis was also reduced and the protein degradation process was increased in the gastrocnemius muscle of exercised rats. Although short-term exercise (10 days) alone did not produce beneficial effects that would reduce tumor damage, host protein metabolism was improved when exercise was combined with a leucine-rich diet. Only total carcass nitrogen and protein were recovered by a glutamine-rich diet. Exercise, in combination with an amino acid-rich diet, in particular, leucine, had effects beyond reducing tumoral weight such as improving protein turnover and carcass nitrogen content in the tumor-bearing host.

  4. The methods of geomorphometry and digital soil mapping for assessing spatial variability in the properties of agrogray soils on a slope

    NASA Astrophysics Data System (ADS)

    Gopp, N. V.; Nechaeva, T. V.; Savenkov, O. A.; Smirnova, N. V.; Smirnov, V. V.

    2017-01-01

    The relationships between the morphometric parameters (MPs) of topography calculated on the basis of digital elevation model (ASTER GDEM, 30 m) and the properties of the plow layer of agrogray soils on a slope were analyzed. The contribution of MPs to the spatial variability of the soil moisture reached 42%; to the content of physical clay (<0.01 mm particles), 59%; to the humus content, 46%; to the total nitrogen content, 31%; to the content of nitrate nitrogen, 28%; to the content of mobile phosphorus, 40%; to the content of exchangeable potassium, 45%; to the content of exchangeable calcium, 67%; to the content of exchangeable magnesium, 40%; and to the soil pH, 42%. A comparative analysis of the plow layer within the eluvial and transitional parts of the slope was performed with the use of geomorphometric methods and digital soil mapping. The regression analysis showed statistically significant correlations between the properties of the plow layer and the MPs describing surface runoff, geometric forms of surface, and the soil temperature regime.

  5. Arab light crude study focuses on kinematic viscosity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beg, S.A.; Al-Mutawa, A.H.; Amin, M.B.

    1989-02-01

    Arab light crude oil has been characterized in terms of API gravity, total sulfur content, Reid vapor pressure, ash content, heating value, salt content, viscosity SUS, vanadium content as V/sub 2/O/sub 5/, pour point and analyses of various metals. The crude oil was fractionated into six true boiling point (TBP) fractions (IBP-95/sup 0/C, 95-205/sup 0/C, 205-260/sup 0/C, 260-345/sup 0/C, 345-455/sup 0/C and 455/sup 0/C+). These fractions were characterized in terms of API gravity, total sulfur, H/sub 2/S, mercaptan contents, molecular weight, elemental analyses for total carbon, hydrogen and nitrogen, and analyses of various metals. The kinematic viscosity data have beenmore » obtained for 95/sup 0/C+ TBP fractions for a wide range of temperature up to 200/sup 0/C.« less

  6. NITROGEN CONCENTRATION OF STOMACH CONTENTS AS AN INDEX OF DIETARY NITROGEN FOR HISPID COTTON RATS

    EPA Science Inventory

    We examined the reliability of using nitrogen concentration of stomach contents from hispid cotton rats (Sigmodon hispidus) as an index of diet nitrogen. Stomach contents of cotton rats fed diets varying in nitrogen concentration were analyzed for stomach nitrogen. Regression a...

  7. NITROGEN CONCENTRATION OF STOMACH CONTENTS AS AN INDEX OF DIETARY NITROGEN FOR HISPID COTTON RATS (SIGMODON HISPIDUS)

    EPA Science Inventory

    We examined the reliability of using nitrogen concentration of stomach contents from hispid cotton rats (Sigmodon hispidus) as an index of diet nitrogen. Stomach contents of cotton rats fed diets varying in nitrogen concentration were analyzed for stomach nitrogen. Regression a...

  8. Organic and Inorganic Nitrogen Impact Chlorella variabilis Productivity and Host Quality for Viral Production and Cell Lysis.

    PubMed

    Cheng, Yu-Shen; Labavitch, John; VanderGheynst, Jean S

    2015-05-01

    Microalgae have been proposed as a potential feedstock for biofuel production; however, cell disruption is usually required for collection and utilization of cytoplasmic polysaccharides and lipids. Virus infection might be one approach to disrupt the cell wall. The concentration of yeast extract and presence of KNO3 in algae cultivation media were investigated to observe their effects on Chlorella variabilis NC64A physiology and composition and the subsequent effect on production of Chlorella virus and disruption of infected cells. Cytoplasmic starch accumulation increased from 5% to approximately 35% of the total dry weight when yeast extract decreased from 1 to 0.25 g L(-1). When cells were cultured with the lowest nitrogen levels, the total polysaccharide accounted for more than 50% of the cell wall, which was 1.7 times higher than the content in cells cultured with the highest nitrogen levels. The C/N ratio of the algal biomass decreased by a factor of approximately 2 when yeast extract increased from 0.25 to 1 g L(-1). After virus infection, cells with a low C/N ratio produced a 7.6 times higher burst size than cells with a high C/N ratio, suggesting that the nitrogen content in C. variabilis has a large influence on viral production and cell lysis. The results have implications on management of nitrogen for both the synthesis of products from algae and product recovery via viral lysis.

  9. The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp.

    PubMed

    Pal, Dipasmita; Khozin-Goldberg, Inna; Cohen, Zvi; Boussiba, Sammy

    2011-05-01

    We examined responses of batch cultures of the marine microalga Nannochloropsis sp. to combined alterations in salinity (13, 27, and 40 g/l NaCl) and light intensity (170 and 700 μmol photons/m(2)·s). Major growth parameters and lipid productivity (based on total fatty acid determination) were determined in nitrogen-replete and nitrogen-depleted cultures of an initial biomass of 0.8 and 1.4 g/l, respectively. On the nitrogen-replete medium, increases in light intensity and salinity increased the cellular content of dry weight and lipids due to enhanced formation of triacylglycerols (TAG). Maximum average productivity of ca. 410 mg TFA/l/d were obtained at 700 μmol photons/m(2)·s and 40 g/l NaCl within 7 days. Under stressful conditions, content of the major LC-PUFA, eicosapentaenoic acid (EPA), was significantly reduced while TAG reached 25% of biomass. In contrast, lower salinity tended to improve major growth parameters, consistent with less variation in EPA contents. Combined higher salinity and light intensity was detrimental to lipid productivity under nitrogen starvation; biomass TFA content, and lipid productivity amounted for only 33% of DW and ca. 200 mg TFA/l/day, respectively. The highest biomass TFA content (ca. 47% DW) and average lipid productivity of ca. 360 mg TFA/l/day were achieved at 13 g/l NaCl and 700 μmol photons/m(2)·s. Our data further support selecting Nannochloropsis as promising microalgae for biodiesel production. Moreover, appropriate cultivation regimes may render Nannochloropsis microalgae to produce simultaneously major valuable components, EPA, and TAG, while sustaining relatively high biomass growth rates.

  10. Wet and Dry Atmospheric Depositions of Inorganic Nitrogen during Plant Growing Season in the Coastal Zone of Yellow River Delta

    PubMed Central

    Li, Yunzhao; Du, Siyao; Han, Guangxuan; Xing, Qinghui; Wu, Huifeng; Wang, Guangmei

    2014-01-01

    The ecological problems caused by dry and wet deposition of atmospheric nitrogen have been widespread concern in the world. In this study, wet and dry atmospheric depositions were monitored in plant growing season in the coastal zone of the Yellow River Delta (YRD) using automatic sampling equipment. The results showed that SO4 2− and Na+ were the predominant anion and cation, respectively, in both wet and dry atmospheric depositions. The total atmospheric nitrogen deposition was ~2264.24 mg m−2, in which dry atmospheric nitrogen deposition was about 32.02%. The highest values of dry and wet atmospheric nitrogen deposition appeared in May and August, respectively. In the studied area, NO3 −–N was the main nitrogen form in dry deposition, while the predominant nitrogen in wet atmospheric deposition was NH4 +–N with ~56.51% of total wet atmospheric nitrogen deposition. The average monthly attribution rate of atmospheric deposition of NO3 −–N and NH4 +–N was ~31.38% and ~20.50% for the contents of NO3 −–N and NH4 +–N in 0–10 cm soil layer, respectively, suggested that the atmospheric nitrogen was one of main sources for soil nitrogen in coastal zone of the YRD. PMID:24977238

  11. Indicative capacity of NDVI in predictive mapping of the properties of plow horizons of soils on slopes in the south of Western Siberia

    NASA Astrophysics Data System (ADS)

    Gopp, N. V.; Nechaeva, T. V.; Savenkov, O. A.; Smirnova, N. V.; Smirnov, V. V.

    2017-11-01

    The informativeness of NDVI for predictive mapping of the physical and chemical properties of plow horizons of soils on different slope positions within the first (280-310 m a.s.l.) and second (240-280 m a.s.l.) altitudinal steps has been examined. This index is uninformative for mapping soil properties in small hollows, whose factual width is less than the Landsat image resolution (30 m). In regression models, NDVI index explains 52% of variance in the content of humus; 35 and 24% of variance in the contents of total and nitrate nitrogen; 19 and 29% of variance in the contents of total and available phosphorus; 25 and 50% of variance in the contents of exchangeable calcium and manganese; and 30 and 29% of variance in the contents of fine silt and soil water, respectively. On the basis of the models obtained, prognostic maps of the soil properties have been developed. Spatial distribution patterns of NDVI calculated from Landsat 8 images (30-m resolution) serve as the cartographic base and the main indicator of the soil properties. The NDVI values and the contents of humus, physical clay (<0.01 mm) and fine silt particles, total and nitrate nitrogen, total phosphorus, and exchangeable calcium and manganese in the soils of the first altitudinal step are higher than those in the soils of the second altitudinal step. An opposite tendency has been found for the available phosphorus content: in the soils of the second altitudinal step and the hollow, its content is higher than that in the soils of the first altitudinal step by 1.8 and 2.4 times, respectively. Differences in the pH of soil water suspensions, easily available phosphorus, and clay in the soils of the compared topographic positions (first and second altitudinal steps and the hollow) are statistically unreliable.

  12. Nitrogen removal in maturation waste stabilisation ponds via biological uptake and sedimentation of dead biomass.

    PubMed

    Camargo Valero, M A; Mara, D D; Newton, R J

    2010-01-01

    In this work a set of experiments was undertaken in a pilot-scale WSP system to determine the importance of organic nitrogen sedimentation on ammonium and total nitrogen removals in maturation ponds and its seasonal variation under British weather conditions, from September 2004 to May 2007. The nitrogen content in collected sediment samples varied from 4.17% to 6.78% (dry weight) and calculated nitrogen sedimentation rates ranged from 273 to 2868 g N/ha d. High ammonium removals were observed together with high concentrations of chlorophyll-a in the pond effluent. Moreover, chlorophyll-a had a very good correlation with the corresponding increment of VSS (algal biomass) and suspended organic nitrogen (biological nitrogen uptake) in the maturation pond effluents. Therefore, when ammonium removal reached its maximum, total nitrogen removal was very poor as most of the ammonia taken up by algae was washed out in the pond effluent in the form of suspended solids. After sedimentation of the dead algal biomass, it was clear that algal-cell nitrogen was recycled from the sludge layer into the pond water column. Recycled nitrogen can either be taken up by algae or washed out in the pond effluent. Biological (mainly algal) uptake of inorganic nitrogen species and further sedimentation of dead biomass (together with its subsequent mineralization) is one of the major mechanisms controlling in-pond nitrogen recycling in maturation WSP, particularly when environmental and operational conditions are favourable for algal growth.

  13. Lignin phenols in sediments of Lake Baikal, Siberia: Application to paleoenvironmental studies

    USGS Publications Warehouse

    Orem, W.H.; Colman, Steven M.; Lerch, H.E.

    1997-01-01

    Sediments from three cores obtained from distinct depositional environments in Lake Baikal, Siberia were analyzed for organic carbon, total nitrogen and lignin phenol concentration and composition. Results were used to examine changes in paleoenvironmental conditions during climatic cycles of the late Quaternary (< 125 ka). Average organic carbon, and total nitrogen concentrations, atomic C/N ratios and organic carbon accumulation rates were significantly higher in the Holocene compared with the late Pleistocene, reflecting overall warmer temperatures and increased runoff during the Holocene. A Holocene maximum in organic carbon was observed at about 6 ka, and may represent the warmest wettest period of the Holocene. At one site (Academician Ridge) pronounced late Pleistocene maxima in organic carbon and biogenic silica were observed at about 80-85 ka, probably indicative of an interstadial period with enhanced aquatic productivity. Total sedimentary lignin phenol contents were generally lower in the late Pleistocene compared to the Holocene, but with several peaks in concentration during the late Pleistocene. These late Pleistocene peaks in total sedimentary lignin content (dated at about 80, 50 and 30 ka) directly precede or occur during peaks in sedimentary biogenic silica contents. These periods likely represent relatively warm interstadial times, with increased precipitation producing the observed increase in terrestrial runoff and aquatic productivity. Lignin phenol ratios (S/V, C/V and P/V) were used to examine changes in terrestrial vegetation type resulting from changes in paleoenvironmental conditions during the late Pleistocene. A degree of caution must be used in the interpretation of these ratios with regard to vegetation sources and paleoenvironmental conditions, because of potential compositional changes in lignin resulting from biodegradation. Nevertheless, results show that long glacial periods were characterized by terrestrial vegetation composed of a mix of non-woody angiosperm vegetation and minor gymnosperm forest. Shorter interstadial periods are defined by a change to dominant gymnosperm forest and were observed at about 80, 75, 63, 50 and 30 ka, ranging from about 2-6 kyr in duration. These interstadial periods of the late Pleistocene defined by lignin phenol ratios generally occur during longer periods of enhanced sedimentary biogenic silica content (about 10-15 ka in duration), providing corroborative evidence of these warm interstadial periods.Sediments obtained in Lake Baikal were analyzed for organic carbon, total nitrogen and lignin phenol composition and used to study changes in paleoenvironmental conditions during climatic cycles of the late Quaternary. The organic carbon, total nitrogen concentrations, atomic C/N ratios and organic carbon accumulation rates were higher in the Holocene showing overall warmer temperatures and increased runoff. Total lignin phenol contents were lower in the Pleistocene representing relatively warm interstadial times with increased precipitation, runoff and aquatic productivity. Lignin phenol was used to examine vegetation changes due to paleoenvironmental conditions and showed that long glacial periods were characterized by terrestrial vegetation.

  14. Effect of cooking temperatures on protein hydrolysates and sensory quality in crucian carp (Carassius auratus) soup.

    PubMed

    Zhang, Jinjie; Yao, Yanjia; Ye, Xingqian; Fang, Zhongxiang; Chen, Jianchu; Wu, Dan; Liu, Donghong; Hu, Yaqin

    2013-06-01

    Cooking methods have a significant impact on flavour compounds in fish soup. The effects of cooking temperatures (55, 65, 75, 85, 95, and 100 °C) on sensory properties and protein hydrolysates were studied in crucian carp (Carassius auratus) soup. The results showed that the soup prepared at 85 °C had the best sensory quality in color, flavour, amour, and soup pattern. Cooking temperature had significant influence on the hydrolysis of proteins in the soup showed by SDS-PAGE result. The contents of water soluble nitrogen (WSN) and non-protein nitrogen (NPN) increased with the cooking temperature, but the highest contents of total peptides and total free amino acids (FAA) were obtained at the cooking temperature of 85 °C. The highest contents of umami-taste active amino acid and branched-chain amino acids were also observed in the 85 °C sample. In conclusion, a cooking temperature of 85 °C was preferred for more excellent flavor and higher nutritional value of crucian carp soup.

  15. Dugong dugon feeding in tropical Australian seagrass meadows: implications for conservation planning.

    PubMed

    Tol, Samantha J; Coles, Rob G; Congdon, Bradley C

    2016-01-01

    Dugongs (Dugong dugon) are listed as vulnerable to extinction due to rapid population reductions caused in part by loss of seagrass feeding meadows. Understanding dugong feeding behaviour in tropical Australia, where the majority of dugongs live, will assist conservation strategies. We examined whether feeding patterns in intertidal seagrass meadows in tropical north-eastern Australia were related to seagrass biomass, species composition and/or nitrogen content. The total biomass of each seagrass species removed by feeding dugongs was measured and compared to its relative availability. Nitrogen concentrations were also determined for each seagrass species present at the sites. Dugongs consumed seagrass species in proportion to their availability, with biomass being the primary determining factor. Species composition and/or nitrogen content influenced consumption to a lesser degree. Conservation plans focused on protecting high biomass intertidal seagrass meadows are likely to be most effective at ensuring the survival of dugong in tropical north-eastern Australia.

  16. A comparative study on phyllosphere nitrogen fixation by newly isolated Corynebacterium sp. & Flavobacterium sp. and their potentialities as biofertilizer.

    PubMed

    Giri, S; Pati, B R

    2004-01-01

    A number of nitrogen fixing bacteria has been isolated from forest phyllosphere on the basis of nitrogenase activity. Among them two best isolates are selected and identified as Corynebacterium sp. AN1 & Flavobacterium sp. TK2 able to reduce 88 and 132 n mol of acetylene (10(8)cells(-1)h(-1)) respectively. They were grown in large amount and sprayed on the phyllosphere of maize plants as a substitute for nitrogenous fertilizer. Marked improvements in growth and total nitrogen content of the plant have been observed by the application of these nitrogen-fixing bacteria. An average 30-37% increase in yield was obtained, which is nearer to chemical fertilizer treatment. Comparatively better effect was obtained by application of Flavobacterium sp.

  17. Measured and simulated nitrogen fluxes after field application of food-processing and municipal organic wastes.

    PubMed

    Parnaudeau, V; Génermont, S; Hénault, C; Farrugia, A; Robert, P; Nicolardot, B

    2009-01-01

    The aims of this study were to (i) assess N fluxes (mineralization, volatilization, denitrification, leaching) caused by spreading various organic wastes from food-processing industries during a field experiment, and (ii) to identify the main factors affecting N transformation processes after field spreading. Experimental treatments including the spreading of six types of waste and a control soil were set up in August 2000 and studied for 22 mo under bare soil conditions. Ammonia and nitrous oxide emissions, and nitrogen mineralization were measured in experimental devices and extrapolated to field conditions or computed in calculation models. The ammonia emissions varied from 80 to 580 g kg(-1) NH4+-N applied, representing 0 to 90 g N kg(-1) total N applied. Under these meteorologically favorable conditions (dry and warm weather), waste pH was the main factor affecting volatilization rates. Cumulated N2O-N fluxes were estimated at 2 to 5 g kg(-1) total N applied, which was quite low due to the low soil water content during the experimental period; water-filled pore space (WFPS) was confirmed as the main factor affecting N2O fluxes. Nitrogen mineralization from wastes represented 126 to 723 g N kg(-1) organic N added from the incorporation date to 14 May 2001 and was not related to the organic C to organic N ratio of wastes. Nitrogen lost by leaching during the equivalent period ranged from 30 to 890 g kg(-1) total N applied. The highest values were obtained for wastes having the highest inorganic N content and mineralization rates.

  18. Features of abandoned cemetery soils on sandy substrates in Northern Poland

    NASA Astrophysics Data System (ADS)

    Majgier, L.; Rahmonov, O.; Bednarek, R.

    2014-06-01

    Morphological and chemical features of cemetery soils (Necrosols and undisturbed cemetery soils) have been studied with Northern Poland as an example. Special attention has been given to the contents of the total phosphorus (as an indicator of the anthropogenic impact); the organic carbon; the total nitrogen; the calcium carbonate; and the changes in the acidity and total Ca, Na, K, Al, Fe, Mg, Zn, Cd, and Pb. The soil profiles have been compared to the control soil (a Brunic Arenosol according to the WRB classification) occurring beyond the cemetery area. The changes in the studied burial soils are mainly manifested in their morphology: the disturbance of the primary genetic horizons and the presence of mixed soil horizons and artifacts (bones, coffin remains, limestone-concrete debris of the cemetery infrastructure). Such changes in the chemical properties as an increase in the contents of the organic carbon and total nitrogen and the soil reaction were observed. Our studies have shown that the highest Ptotal concentration is observed in the A horizons of the anthropogenic burial horizons and undisturbed cemetery soils. The content of phosphorus in the Necrosols is significantly higher than that in the control soil profile, as is observed for the Cgrb layers of burial Necrosols. The morphology and chemistry of the undisturbed cemetery soils are very similar to those of the control profile.

  19. Cylindrospermopsin induced changes in growth, toxin production and antioxidant response of Acutodesmus acuminatus and Microcystis aeruginosa under differing light and nitrogen conditions.

    PubMed

    Chia, Mathias Ahii; Cordeiro-Araújo, Micheline Kézia; Lorenzi, Adriana Sturion; Bittencourt-Oliveira, Maria do Carmo

    2017-08-01

    Growing evidence suggests that some bioactive metabolites (e.g. cyanotoxins) produced by cyanobacteria have allelopathic potential, due to their inhibitory or stimulatory effects on competing species. Although a number of studies have shown that the cyanotoxin cylindrospermopsin (CYN) has variable effects on phytoplankton species, the impact of changing physicochemical conditions on its allelopathic potential is yet to be investigated. We investigated the physiological response of Microcystis aeruginosa (Cyanobacteria) and Acutodesmus acuminatus (Chlorophyta) to CYN under varying nitrogen and light conditions. At 24h, higher microcystins content of M. aeruginosa was recorded under limited light in the presence of CYN, while at 120h the lower levels of the toxins were observed in the presence of CYN under optimum light. Total MCs concentration was significantly (p<0.05) lowered by CYN after 120h of exposure under limited and optimum nitrogen conditions. On the other hand, there were no significant (p>0.05) changes in total MCs concentrations after exposure to CYN under high nitrogen conditions. As expected, limited light and limited nitrogen conditions resulted in lower cell density of both species, while CYN only significantly (p<0.05) inhibited the growth of M. aeruginosa. Regardless of the light or nitrogen condition, the presence of CYN increased internal H 2 O 2 content of both species, which resulted in significant (p<0.05) changes in antioxidant enzyme (catalase, peroxidase, superoxide dismutase and glutathione S-transferase) activities. The oxidative stress caused by CYN was higher under limited light and limited nitrogen. These results showed that M. aeruginosa and A. acuminatus have variable response to CYN under changing light and nitrogen conditions, and demonstrate that need to consider changes in physicochemical conditions during ecotoxicological and ecophysiological investigations. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Nutrient removal and starch production through cultivation of Wolffia arrhiza.

    PubMed

    Fujita, M; Mori, K; Kodera, T

    1999-01-01

    Wolffia arrhiza, a small weed found mostly in tropical and subtropical water environments, exhibits a high growth rate and consequently absorbs large amounts of nitrogen and phosphorus. Its vegetative frond contains 40% protein on a dry weight basis and its turion, which is the dormant form, has a similar starch content. The applicability of this weed to nutrient removal from secondary-treated waste water combined with starch resource production was evaluated. The nitrogen and phosphorus removal capabilities of the vegetative frond and the optimal conditions for inducing of the formation of turions from harvested biomass of vegetative fronds for the production of starch were investigated using artificial nutrient solutions. The vegetative frond showed high contents of nitrogen (6-7% of the total dry weight) and phosphorus (1-2% of the total dry weight). The nutrient removal rates of the vegetative frond were estimated to be 126 mg-N/m(2)/d and 38 mg-P/m(2)/d under a continuous flow condition. For turion formation from the vegetative fronds, a low nutrient concentration and a high plant density were most effective. Under the optimum conditions, the starch production rate was estimated to be 6 g-starch/m(2) (nutrient removal tank)/d.

  1. Mineralogical impact on long-term patterns of soil nitrogen and phosphorus enzyme activities

    NASA Astrophysics Data System (ADS)

    Mikutta, Robert; Turner, Stephanie; Meyer-Stüve, Sandra; Guggenberger, Georg; Dohrmann, Reiner; Schippers, Axel

    2014-05-01

    Soil chronosequences provide a unique opportunity to study microbial activity over time in mineralogical diverse soils of different ages. The main objective of this study was to test the effect of mineralogical properties, nutrient and organic matter availability over whole soil pro-files on the abundance and activity of the microbial communities. We focused on microbio-logical processes involved in nitrogen and phosphorus cycling at the 120,000-year Franz Josef soil chronosequence. Microbial abundances (microbial biomass and total cell counts) and enzyme activities (protease, urease, aminopeptidase, and phosphatase) were determined and related to nutrient contents and mineralogical soil properties. Both, microbial abundances and enzyme activities decreased with soil depth at all sites. In the organic layers, microbial biomass and the activities of N-hydrolyzing enzymes showed their maximum at the intermediate-aged sites, corresponding to a high aboveground biomass. In contrast, the phosphatase activity increased with site age. The activities of N-hydrolyzing enzymes were positively correlated with total carbon and nitrogen contents, whereas the phosphatase activity was negatively correlated with the phosphorus content. In the mineral soil, the enzyme activities were generally low, thus reflecting the presence of strongly sorbing minerals. Sub-strate-normalized enzyme activities correlated negatively to clay content as well as poorly crystalline Al and Fe oxyhydroxides, supporting the view that the evolution of reactive sec-ondary mineral phases alters the activity of the microbial communities by constraining sub-strate availability. Our data suggest a strong mineralogical influence on nutrient cycling par-ticularly in subsoil environments.

  2. [Nitrogen and phosphate pollution characteristics and eutrophication evaluation for typical urban landscape waters in Hefei City].

    PubMed

    Li, Ru-Zhong; Liu, Ke-Feng; Qian, Jing; Yang, Ji-Wei; Zhang, Pian-Pian

    2014-05-01

    To understand the water environment regimes of the city-circling water system in Hefei City, six typical landscape waters were chosen to investigate pollution characteristics of nitrogen and phosphate and evaluate water eutrophication level according to the monitoring data of water physicochemical characteristics and chlorophyll content from September 2012 to July 2013. Study results showed that (1) the six waters mentioned above have been seriously polluted by nitrogen and phosphorus loadings, with the monthly mean values of total nitrogen (TN) and total phosphorus (TP) concentrations far exceeding the universally accepted threshold values of water eutrophication; (2) the nitrogen contents in the waters of Nanfeihe River, Heichiba and Yuhuatang scenic spots exhibited a markedly monthly variation, and both TP and PO(3-)(4)-P in Nanfeihe River showed a fluctuated characteristic with high concentrations while presenting a significant upward trend in Yuhuatang scenic spot; (3) the average values of TN/TP ratios for Yuhuatang and Heichiba scenic spots were 104.7 and 158.3, respectively, and the ratios for Baohe Park, Yinhe Park, Xiaoyaojin Park, and city segment of Nanfeihe River were 16.8, 18.7, 6.4 and 16.8, respectively, indicating that the scenic waters of Yuhuatang and Heichiba were phosphate-limited whereas Xiaoyaojin Park was nitrogen-limited; (4) all the six scenic waters were, in general, subsumed under just two broad categories, namely Hechiba scenic spot and Nanfeihe River, which were seriously polluted, and clustered together, and the others fall into the second class; and (5) water eutrophication appraisal result indicated that the six waters were all in the state of eutrophication, and could be arranged in the order of eutrophication level, Yinhe Park > Heichiba scenic spot > city segment of Nanfeihe River > Xiaoyaojin Park > Yuhuatang scenic spot > Baohe Park.

  3. The interaction of ozone and nitrogen dioxide in the stratosphere of East Antarctica

    NASA Astrophysics Data System (ADS)

    Bruchkouski, Ilya; Krasouski, Aliaksandr; Dziomin, Victar; Svetashev, Alexander

    2016-04-01

    At the Russian Antarctic station "Progress" (S69°23´, E76°23´) simultaneous measurements of trace gases using the MARS-B (Multi-Axis Recorder of Spectra) instrument and PION-UV spectro-radiometer for the time period from 05.01.2014 to 28.02.2014 have been performed. Both instruments were located outdoors. The aim of the measurements was to retrieve the vertical distribution of ozone and nitrogen dioxide in the atmosphere and to study their variability during the period of measurements. The MARS-B instrument, developed at the National Ozone Monitoring Research and Education Centre of the Belarusian State University (NOMREC BSU), successfully passed the procedure of international inter-comparison campaign MAD-CAT 2013 in Mainz, Germany. The instrument is able to record the spectra of scattered sunlight at different elevation angles within a maximum aperture of 1.3°. 12 elevation angles have been used in this study, including the zenith direction. Approximately 7000 spectra per day were registered in the range of 403-486 nm, which were then processed by DOAS technique aiming to retrieve differential slant columns of ozone, nitrogen dioxide and oxygen dimer. Furthermore, total nitrogen dioxide column values have been retrieved employing the Libradtran radiative transfer model. The PION-UV spectro-radiometer, also developed at NOMREC BSU, is able to record the spectra of scattered sunlight from the hemisphere in the range of 280-430 nm. The registered spectra have been used to retrieve the total ozone column values employing the Stamnes method. In this study observational data from both instruments is presented and analyzed. Furthermore, by combining analysis of this data with model simulations it is shown that decreases in nitrogen dioxide content in the upper atmosphere can be associated with increases in total ozone column values and rising of the ozone layer upper boundary. Finally, the time delay between changes in nitrogen dioxide and ozone values is calculated from the observed time series, demonstrating that changes in nitrogen dioxide content cause subsequent changes in the ozone layer. Attempt to explain this phenomenon as influence upper atmosphere on ozone layer is under discussed.

  4. [Effects of reduced N application rate on yield and nutrient uptake and utilization in maize-soybean relay strip intercropping system].

    PubMed

    Yong, Tai-Wen; Liu, Xiao-Ming; Wen-Yu, Liu; Su, Ben-Ying; Song, Chun; Yang, Feng; Wang, Xiao-Chun; Yang, Wen-Yu

    2014-02-01

    A field experiment with three N application rates (0, 180, 240 N kg x hm(-2), representing zero, reduced and conventional N application, respectively) and three planting patterns (maize monoculture, soybean monoculture and maize-soybean relay strip intercropping) was conducted to reveal the effects of cropping patterns and N application rates on yield, nutrient uptake and nitrogen use efficiency of maize and soybean. The results showed that the grain yield, N, P and K uptake and harvest index of the intercropped maize reduced slightly compared with the monoculture maize, however these indices of the intercropped soybean increased significantly compared with the monoculture. With the increase in nitrogen fertilizer application, the excellence of relay strip intercropping was weakened in the maize-soybean intercropping system. The grain yield, economic coefficient, N, P and K uptake, harvest index, N agronomy efficiency and N uptake efficiency of maize and soybean increased significantly at the reduced nitrogen rate (180 N kg x hm(-2)), but the rate of soil N contribution declined, compared with the conventional rate of N application by local farmers (240 N kg x hm(-2)). In the reduced nitrogen rate treatment, total soil N and P contents of the maize strip reduced, whereas the total soil N, P and K contents of soybean strip and the total K content of maize strip increased compared with the zero N application treatment. With the reduced N application, the annual total grain yield, N, P and K uptake of above-ground biomass in the maize-soybean relay strip intercropping system were higher than in the monoculture, and the land equivalent ratio (LER) was 2.28. N uptake efficiency of maize in the relay strip intercropping system was 20.2% higher than in the maize monoculture, and the index of soybean was 30.5% lower than in the monoculture. The rate of soil N contribution in the relay strip intercropping system was 20.0% and 8.8% lower than in the maize and soybean monoculture, respectively. The reduced N application in the maize-soybean relay strip intercropping system was helpful to promote annual grain yield and improve N utilization efficiency.

  5. Effect of fuel nitrogen and hydrogen content on emissions in hydrocarbon combustion

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.; Wolfbrandt, G.

    1981-01-01

    How the emissions of nitrogen oxides and carbon monoxide are affected by: (1) the decreased hydrogen content and (2) the increased organic nitrogen content of coal derived fuels is investigated. Previous CRT experimental work in a two stage flame tube has shown the effectiveness of rich lean two stage combustion in reducing fuel nitrogen conversion to nitrogen oxides. Previous theoretical work gave preliminary indications that emissions trends from the flame tube experiment could be predicted by a two stage, well stirred reactor combustor model using a detailed chemical mechanism for propane oxidation and nitrogen oxide formation. Additional computations are reported and comparisons with experimental results for two additional fuels and a wide range of operating conditions are given. Fuels used in the modeling are pure propane, a propane toluene mixture and pure toluene. These give hydrogen contents 18, 11 and 9 percent by weight, respectively. Fuel bound nitrogen contents of 0.5 and 1.0 percent were used. Results are presented for oxides of nitrogen and also carbon monoxide concentrations as a function of primary equivalence ratio, hydrogen content and fuel bound nitrogen content.

  6. Nitrogen cycling in the soil-plant system along a series of coral islands affected by seabirds in the South China Sea.

    PubMed

    Wu, Libin; Liu, Xiaodong; Fang, Yunting; Hou, Shengjie; Xu, Liqiang; Wang, Xueying; Fu, Pingqing

    2018-06-15

    The nitrogen (N) utilization strategy of plants has become a topic of interest within the field of phytoecology. However, few studies have considered N cycling on coral island ecosystems from the perspective of their evolution. The aim of this study was to test the impacts of biological transport by seabirds, on the sources and uses of N by plants, and pathways of N cycling in soil-plant ecosystems on coral islands. A series of eight coral islands were investigated, five of which were affected to a varying extent by seabirds. The total phosphorus (TP) concentration from avian sources and the δ 15 N values of total nitrogen (TN) and inorganic nitrogen (IN: NH 4 + -N, and NO 3 - -N), δ 18 O of NO 3 - -O, in soils were determined, as well as proxies in plant leaves of two dominant plant species, including TN, the carbon/nitrogen ratio (C/N), and δ 13 C and δ 15 N values. The results show that, with an increase of TP, the TN and IN content, and δ 15 N values in soils all increased. Plant C/N and δ 15 N values decreased and increased, respectively, as the soil N content increased. When the TN content of the soil was low, the δ 15 N value in plant leaves was similar to that in soil NO 3 - , but was much lower than that in soil NH 4 + . When the soil TN content was high, the δ 15 N values were similar. Both plants and soil were probably N-limited prior to seabird colonization, with the N source on the barren coral islands originating primarily from atmospheric deposition. With seabird guano input and subsequent pedogenesis, the source of N switched to guano. Under these conditions, most of the N utilized by plants originated from NH 4 + , while nitrate is dominant for non-seabirds islands. Seabird activities have played a key role in the N dynamics of soil-plant ecosystems at coral islands. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. [Effects of diurnal warming on soil N2O emission in soybean field].

    PubMed

    Hu, Zheng-Hua; Zhou, Ying-Ping; Cui, Hai-Ling; Chen, Shu-Tao; Xiao, Qi-Tao; Liu, Yan

    2013-08-01

    To investigate the impact of experimental warming on N2O emission from soil of soybean field, outdoor experiments with simulating diurnal warming were conducted, and static dark chamber-gas chromatograph method was used to measure N2O emission fluxes. Results indicated that: the diurnal warming did not change the seasonal pattern of N2O emissions from soil. In the whole growing season, comparing to the control treatment (CK), the warming treatment (T) significantly enhanced the N2O flux and the cumulative amount of N2O by 17.31% (P = 0.019), and 20.27% (P = 0.005), respectively. The significant correlations were found between soil N2O emission and soil temperature, moisture. The temperature sensitivity values of soil N2O emission under CK and T treatments were 3.75 and 4.10, respectively. In whole growing stage, T treatment significantly increased the crop aboveground and total biomass, the nitrate reductase activity, and total nitrogen in leaves, while significantly decreased NO3(-) -N content in leaves. T treatment significantly increased soil NO3(-) -N content, but had no significant effect on soil organic carbon and total nitrogen contents. The results of this study suggested that diurnal warming enhanced N2O emission from soil in soybean field.

  8. Global sensitivity analysis for identifying important parameters of nitrogen nitrification and denitrification under model uncertainty and scenario uncertainty

    NASA Astrophysics Data System (ADS)

    Chen, Zhuowei; Shi, Liangsheng; Ye, Ming; Zhu, Yan; Yang, Jinzhong

    2018-06-01

    Nitrogen reactive transport modeling is subject to uncertainty in model parameters, structures, and scenarios. By using a new variance-based global sensitivity analysis method, this paper identifies important parameters for nitrogen reactive transport with simultaneous consideration of these three uncertainties. A combination of three scenarios of soil temperature and two scenarios of soil moisture creates a total of six scenarios. Four alternative models describing the effect of soil temperature and moisture content are used to evaluate the reduction functions used for calculating actual reaction rates. The results show that for nitrogen reactive transport problem, parameter importance varies substantially among different models and scenarios. Denitrification and nitrification process is sensitive to soil moisture content status rather than to the moisture function parameter. Nitrification process becomes more important at low moisture content and low temperature. However, the changing importance of nitrification activity with respect to temperature change highly relies on the selected model. Model-averaging is suggested to assess the nitrification (or denitrification) contribution by reducing the possible model error. Despite the introduction of biochemical heterogeneity or not, fairly consistent parameter importance rank is obtained in this study: optimal denitrification rate (Kden) is the most important parameter; reference temperature (Tr) is more important than temperature coefficient (Q10); empirical constant in moisture response function (m) is the least important one. Vertical distribution of soil moisture but not temperature plays predominant role controlling nitrogen reaction. This study provides insight into the nitrogen reactive transport modeling and demonstrates an effective strategy of selecting the important parameters when future temperature and soil moisture carry uncertainties or when modelers face with multiple ways of establishing nitrogen models.

  9. Commercial fertilizers: Total US fertilizer consumption 44.9 million tons in 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hargett, N.L.; Berry, J.T.; McKinney, S.L.

    1989-12-31

    US fertilizer consumption for the 1988--1989 year was 44.9 million tons of material-an increase of less than one percent from the previous year. The average plant nutrient content of all fertilizers decreased slightly as total plant nutrient consumption declined from 19.61 million to 19.59 million tons of N, P{sub 2}O{sub 5}, and K{sub 2}O. Total nitrogen consumption increased one percent to 10.63 million tons, while P{sub 2}O{sub 5} use decreased by less than one percent to 4.12 million tons. Potash consumption declined from 4.97 million tons to 4.83 million tons K{sub 2}O-a 2.8 percent decrease. Consumption patterns varied widely frommore » state to state as weather conditions adversely affected fertilizer application even with significant increases in total planted crop acreage. Illinois, Indiana, Iowa, Minnesota, and Ohio reported a decline in total plant nutrient application while several of the southeastern states registered an increase in consumption. Nutrient levels in mixed fertilizers remained unchanged as slight gains in the nitrogen and P{sub 2}O{sub 5} content were offset by a decline in K{sub 2}O. Consumption of ammonium polyphosphate solution (10-34-0) and monoammonium phosphates increased 9.2 percent and 12.8 percent respectively, while diammonium phosphate (18-46-0) use was 2.4 percent below last year. A general increase in the use of nitrogen materials was reported with the exception of nitrogen solutions which declined 2.1 percent from 1987--1988. Urea consumption rose almost 2 percent. ammonium nitrate was up 8.1 percent, and ammonium sulfate recorded a 9.5 percent gain in consumption. Anhydrous ammonia use was only 35,000 tons above last year. This document contains a state by state listing of individual fertilizer consumption rates, numerical data only.« less

  10. Commercial fertilizers: Total US fertilizer consumption 44. 9 million tons in 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hargett, N.L.; Berry, J.T.; McKinney, S.L.

    1989-01-01

    US fertilizer consumption for the 1988--1989 year was 44.9 million tons of material-an increase of less than one percent from the previous year. The average plant nutrient content of all fertilizers decreased slightly as total plant nutrient consumption declined from 19.61 million to 19.59 million tons of N, P[sub 2]O[sub 5], and K[sub 2]O. Total nitrogen consumption increased one percent to 10.63 million tons, while P[sub 2]O[sub 5] use decreased by less than one percent to 4.12 million tons. Potash consumption declined from 4.97 million tons to 4.83 million tons K[sub 2]O-a 2.8 percent decrease. Consumption patterns varied widely frommore » state to state as weather conditions adversely affected fertilizer application even with significant increases in total planted crop acreage. Illinois, Indiana, Iowa, Minnesota, and Ohio reported a decline in total plant nutrient application while several of the southeastern states registered an increase in consumption. Nutrient levels in mixed fertilizers remained unchanged as slight gains in the nitrogen and P[sub 2]O[sub 5] content were offset by a decline in K[sub 2]O. Consumption of ammonium polyphosphate solution (10-34-0) and monoammonium phosphates increased 9.2 percent and 12.8 percent respectively, while diammonium phosphate (18-46-0) use was 2.4 percent below last year. A general increase in the use of nitrogen materials was reported with the exception of nitrogen solutions which declined 2.1 percent from 1987--1988. Urea consumption rose almost 2 percent. ammonium nitrate was up 8.1 percent, and ammonium sulfate recorded a 9.5 percent gain in consumption. Anhydrous ammonia use was only 35,000 tons above last year. This document contains a state by state listing of individual fertilizer consumption rates, numerical data only.« less

  11. Effects of Land Use Change and Seasonality of Precipitation on Soil Nitrogen in a Dry Tropical Forest Area in the Western Llanos of Venezuela

    PubMed Central

    González-Pedraza, Ana Francisca; Dezzeo, Nelda

    2014-01-01

    We evaluated changes of different soil nitrogen forms (total N, available ammonium and nitrate, total N in microbial biomass, and soil N mineralization) after conversion of semideciduous dry tropical forest in 5- and 18-year-old pastures (YP and OP, resp.) in the western Llanos of Venezuela. This evaluation was made at early rainy season, at end rainy season, and during dry season. With few exceptions, no significant differences were detected in the total N in the three study sites. Compared to forest soils, YP showed ammonium losses from 4.2 to 62.9% and nitrate losses from 20.0 to 77.8%, depending on the season of the year. In OP, the ammonium content increased from 50.0 to 69.0% at the end of the rainy season and decreased during the dry season between 25.0 and 55.5%, whereas the nitrate content increased significantly at early rainy season. The net mineralization and the potentially mineralizable N were significantly higher (P < 0.05) in OP than in forest and YP, which would indicate a better quality of the substrate in OP for mineralization. The mineralization rate constant was higher in YP than in forest and OP. This could be associated with a reduced capacity of these soils to preserve the available nitrogen. PMID:25610907

  12. Effects of land use change and seasonality of precipitation on soil nitrogen in a dry tropical forest area in the Western Llanos of Venezuela.

    PubMed

    González-Pedraza, Ana Francisca; Dezzeo, Nelda

    2014-01-01

    We evaluated changes of different soil nitrogen forms (total N, available ammonium and nitrate, total N in microbial biomass, and soil N mineralization) after conversion of semideciduous dry tropical forest in 5- and 18-year-old pastures (YP and OP, resp.) in the western Llanos of Venezuela. This evaluation was made at early rainy season, at end rainy season, and during dry season. With few exceptions, no significant differences were detected in the total N in the three study sites. Compared to forest soils, YP showed ammonium losses from 4.2 to 62.9% and nitrate losses from 20.0 to 77.8%, depending on the season of the year. In OP, the ammonium content increased from 50.0 to 69.0% at the end of the rainy season and decreased during the dry season between 25.0 and 55.5%, whereas the nitrate content increased significantly at early rainy season. The net mineralization and the potentially mineralizable N were significantly higher (P < 0.05) in OP than in forest and YP, which would indicate a better quality of the substrate in OP for mineralization. The mineralization rate constant was higher in YP than in forest and OP. This could be associated with a reduced capacity of these soils to preserve the available nitrogen.

  13. Effect of Nitrogen on Cellular Production and Release of the Neurotoxin Anatoxin-A in a Nitrogen-Fixing Cyanobacterium

    PubMed Central

    Gagnon, Alexis; Pick, Frances R.

    2012-01-01

    Anatoxin-a (ANTX) is a neurotoxin produced by several freshwater cyanobacteria and implicated in lethal poisonings of domesticated animals and wildlife. The factors leading to its production in nature and in culture are not well understood. Resource availability may influence its cellular production as suggested by the carbon-nutrient hypothesis, which links the amount of secondary metabolites produced by plants or microbes to the relative abundance of nutrients. We tested the effects of nitrogen supply (as 1, 5, and 100% N of standard cyanobacterial medium corresponding to 15, 75, and 1500 mg L−1 of NaNO3 respectively) on ANTX production and release in a toxic strain of the planktonic cyanobacterium Aphanizomenon issatschenkoi (Nostocales). We hypothesized that nitrogen deficiency might constrain the production of ANTX. However, the total concentration and more significantly the cellular content of anatoxin-a peaked (max. 146 μg/L and 1683 μg g−1 dry weight) at intermediate levels of nitrogen supply when N-deficiency was evident based on phycocyanin to chlorophyll a and carbon to nitrogen ratios. The results suggest that the cellular production of anatoxin-a may be stimulated by moderate nitrogen stress. Maximal cellular contents of other cyanotoxins have recently been reported under severe stress conditions in another Nostocales species. PMID:22701451

  14. Study on application of polyenzyme method to offal of Harengula zunasi

    NASA Astrophysics Data System (ADS)

    Deng, Shanggui; Yang, Ping; Xia, Xingzhou

    2003-12-01

    The new polyenzyme method for making gravy from Harengula zunasi offal involves protein enzymolysis with flavorase after proper alkaline and neutral protease levels were established by orthogonal trials to select the best hydrolytic conditions for processing offal with alkaline and neutral protease. The conditions for the polyenzyme method were pH of 7.0, temperature of 50°C, alkaline and neutral protease concentration of 1.5% respectively, hydrolysis time of 120 min, and flavorase concentration of 2.0%, for 60 min. The new gravy-making technology yields a nutritious and delicious gravy containing 40.3% of total essential amino acids, with delicious amino acids Glu, Asp, Gly, Ala, Pro and Ser comprising 49.5%, total and amino nitrogen being respectively 1.9 and 1.1 g/100 g (amino acid nitrogen being 61.0% of total nitrogen), The polyenzyme method was used to make 14.8% protein gravy from Harengula zunasi offal. In addition, inorganic elements, the phosphorus content is the highest.

  15. Feasibility study of a V-shaped pipe for passive aeration composting.

    PubMed

    Ogunwande, Gbolabo A

    2011-03-01

    A V-shaped (Vs) pipe was improvised for composting of chicken litter in passive aeration piles. Three piles, equipped with horizontal (Ho), vertical (Ve) and Vs pipes were set up. The three treatments were replicated thrice. The effects of the aeration pipe on the physico-chemical properties of chicken litter and air distribution within the composting piles were investigated during composting. The properties monitored were temperature, pH, electrical conductivity, moisture content, total carbon, total nitrogen, total phosphorus and carbon-to-nitrogen ratio. Moisture level in the piles was replenished fortnightly to 60% during composting. The results of the study showed that all the piles attained the optimum temperature range (40-65°C) for effective composting and satisfied the requirements for sanitation. The non-significant (p > 0.05) temperature difference within the piles with Ve and Vs pipes indicated that these pipes were effective for uniform air distribution within the pile. The aeration pipe had significant (p ≤ 0.05) effect on pile temperature, pre-replenishment moisture content, pH and total phosphorus. In conclusion, the study showed that the Vs pipe is feasible and effective for passive aeration composting.

  16. Effects of nitrogen fertilizers on the growth and nitrate content of lettuce (Lactuca sativa L.).

    PubMed

    Liu, Cheng-Wei; Sung, Yu; Chen, Bo-Ching; Lai, Hung-Yu

    2014-04-22

    Nitrogen is an essential element for plant growth and development; however, due to environmental pollution, high nitrate concentrations accumulate in the edible parts of these leafy vegetables, particularly if excessive nitrogen fertilizer has been applied. Consuming these crops can harm human health; thus, developing a suitable strategy for the agricultural application of nitrogen fertilizer is important. Organic, inorganic, and liquid fertilizers were utilized in this study to investigate their effect on nitrate concentrations and lettuce growth. The results of this pot experiment show that the total nitrogen concentration in soil and the nitrate concentration in lettuce increased as the amount of nitrogen fertilizer increased. If the recommended amount of inorganic fertilizer (200 kg·N·ha⁻¹) is used as a standard of comparison, lettuce augmented with organic fertilizers (200 kg·N·ha⁻¹) have significantly longer and wider leaves, higher shoot, and lower concentrations of nitrate.

  17. Effects of Nitrogen Fertilizers on the Growth and Nitrate Content of Lettuce (Lactuca sativa L.)

    PubMed Central

    Liu, Cheng-Wei; Sung, Yu; Chen, Bo-Ching; Lai, Hung-Yu

    2014-01-01

    Nitrogen is an essential element for plant growth and development; however, due to environmental pollution, high nitrate concentrations accumulate in the edible parts of these leafy vegetables, particularly if excessive nitrogen fertilizer has been applied. Consuming these crops can harm human health; thus, developing a suitable strategy for the agricultural application of nitrogen fertilizer is important. Organic, inorganic, and liquid fertilizers were utilized in this study to investigate their effect on nitrate concentrations and lettuce growth. The results of this pot experiment show that the total nitrogen concentration in soil and the nitrate concentration in lettuce increased as the amount of nitrogen fertilizer increased. If the recommended amount of inorganic fertilizer (200 kg·N·ha−1) is used as a standard of comparison, lettuce augmented with organic fertilizers (200 kg·N·ha−1) have significantly longer and wider leaves, higher shoot, and lower concentrations of nitrate. PMID:24758896

  18. Deposition of TiOxNy Thin Films with Various Nitrogen Flow Rate:. Growth Behavior and Structural Properties

    NASA Astrophysics Data System (ADS)

    Cho, S.-J.; Jung, C.-K.; Bae, I.-S.; Song, Y.-H.; Boo, J.-H.

    2011-06-01

    We have deposited TiOxNy thin films on Si(100) substrates at 500 °C using RF PECVD system. Titanium iso-propoxide was used as precursor with different nitrogen flow rate to control oxygen and nitrogen contents in the films. Changes of chemical states of constituent elements in the deposited films were examined by XPS analysis. The data showed that with increasing nitrogen flow rate, the total amounts of nitrogen and titanium were increased while that of oxygen was decreased, resulting in a binding energy shift toward high energy side. The characteristics of film growth orientation and structure as well as morphology change behavior were also analyzed by XRD, TED, FT-IR, TEM, and SEM. Deposition at higher nitrogen flow rate results in finer clusters with a nanograin size and more effective photocatalytic TiOxNy thin films with hydrophilic surface.

  19. The Chemical Composition and Nitrogen Distribution of Chinese Yak (Maiwa) Milk

    PubMed Central

    Li, Haimei; Ma, Ying; Li, Qiming; Wang, Jiaqi; Cheng, Jinju; Xue, Jun; Shi, John

    2011-01-01

    The paper surveyed the chemical composition and nitrogen distribution of Maiwa yak milk, and compared the results with reference composition of cow milk. Compared to cow milk, yak milk was richer in protein (especially whey protein), essential amino acids, fat, lactose and minerals (except phosphorus). The contents of some nutrients (total protein, lactose, essential amino acids and casein) were higher in the warm season than in the cold season. Higher ratios of total essential amino acids/total amino acids (TEAA/TAA) and total essential amino acids/total non essential amino acids (TEAA/TNEAA) were found in the yak milk from the warm season. However its annual average ratio of EAA/TAA and that of EAA/NEAA were similar to those of cow milk. Yak milk was rich in calcium and iron (p < 0.05), and thus may serve as a nutritional ingredient with a potential application in industrial processing. PMID:21954332

  20. Soil nitrogen accretion along a floodplain terrace chronosequence in northwest Alaska: Influence of the nitrogen-fixing shrub Shepherdia canadensis

    USGS Publications Warehouse

    Rhoades, Charles; Binkley, Dan; Oskarsson, Hlynur; Stottlemyer, Robert

    2008-01-01

    Nitrogen enters terrestrial ecosystems through multiple pathways during primary succession. We measured accumulation of total soil nitrogen and changes in inorganic nitrogen (N) pools across a 300-y sequence of river terraces in northwest Alaska and assessed the contribution of the nitrogen-fixing shrub Shepherdia canadensis. Our work compared 5 stages of floodplain succession, progressing from a sparsely vegetated silt cap to dense shrubby vegetation, balsam poplar-dominated (Populus balsamifera) and white spruce-dominated (Picea glauca) mixed forests, and old-growth white spruce forest. Total soil N (0–30 cm depth) increased throughout the age sequence, initially by 2.4 g N·m−2·y−1 during the first 120 y of terrace development, then by 1.6 g N·m−2·y−1 during the subsequent 2 centuries. Labile soil N, measured by anaerobic incubation, increased most rapidly during the first 85 y of terrace formation, then remained relatively constant during further terrace development. On recently formed terraces, Shepherdia shrubs enriched soil N pools several-fold compared to soil beneath Salix spp. shrubs or intercanopy sites. Total and labile soil N accretion was proportional to Shepherdia cover during the first century of terrace development, and mineral soil δ15N content indicated that newly formed river terraces receive substantial N through N-fixation. About half the 600 g total N·m−2 accumulated across the river terrace chronosequence occurred during the 120 y when S. canadensis was dominant. Sediment deposited by periodic flooding continued to add N to terrace soils after the decline in Shepherdia abundance and may have contributed 25% of the total N found in the floodplain terrace soils.

  1. Preliminary assessment of sources of nitrogen in groundwater at a biosolids-application area near Deer Trail

    USGS Publications Warehouse

    Yager, Tracy J.B.; McMahon, Peter B.

    2012-01-01

    Concentrations of dissolved nitrite plus nitrate increased fairly steadily in samples from four shallow groundwater monitoring wells after biosolids applications to nonirrigated farmland began in 1993. The U.S. Geological Survey began a preliminary assessment of sources of nitrogen in shallow groundwater at part of the biosolids-application area near Deer Trail, Colorado, in 2005 in cooperation with the Metro Wastewater Reclamation District. Possible nitrogen sources in the area include biosolids, animal manure, inorganic fertilizer, atmospheric deposition, and geologic materials (bedrock and soil). Biosolids from the Metro Wastewater Reclamation District plant in Denver and biosolids, cow manure, geologic materials (bedrock and soil), and groundwater from the study area were sampled to measure nitrogen content and nitrogen isotopic compositions of nitrate or total nitrogen. Biosolids also were leached, and the leachates were analyzed for nitrogen content and other concentrations. Geologic materials from the study area also were sampled to determine mineralogy. Estimates of nitrogen contributed from inorganic fertilizer and atmospheric deposition were calculated from other published reports. The nitrogen information from the study indicates that each of the sources contain sufficient nitrogen to potentially affect groundwater nitrate concentrations. Natural processes can transform the nitrogen in any of the sources to nitrate in the groundwater. Load calculations indicate that animal manure, inorganic fertilizer, or atmospheric deposition could have contributed the largest nitrogen load to the study area in the 13 years before biosolids applications began, but biosolids likely contributed the largest nitrogen load to the study area in the 13 years after biosolids applications began. Various approaches provided insights into sources of nitrate in the groundwater samples from 2005. The isotopic data indicate that, of the source materials considered, biosolids and (or) animal manure were the most likely sources of nitrate in the wells at the time of sampling (2005), and that inorganic fertilizer, atmospheric deposition, and geologic materials were not substantial sources of nitrate in the wells in 2005. The large total nitrogen content of the biosolids and animal-manure samples and biosolids leachates also indicates that the biosolids and animal manure had potential to leach nitrogen and produce large dissolved nitrate concentrations in groundwater. The available data, however, could not be used to distinguish between biosolids or manure as the dominant source of nitrate in the groundwater because the nitrogen isotopic composition of the two materials is similar. Major-ion data also could not be used to distinguish between biosolids or manure as the dominant source of nitrate in the groundwater because the major-ion composition (as well as the isotopic composition) of the two materials is similar. Without additional data, chloride/bromide mass ratios do not necessarily support or refute the hypothesis that biosolids and (or) animal manure were the primary sources of nitrate in water from the study-area wells in 2005. Concentrations of water-extractable nitrate in the soil indicate that biosolids could be an important source of nitrate in the groundwater recharge. Nitrogen inventories in the soil beneath biosolids-application areas and the nitrogen-input estimates for the study area both support the comparisons of isotopic composition, which indicate that some type of human waste (such as biosolids) and (or) animal manure was the source of nitrate in groundwater sampled from the wells in 2005. The nitrogen-load estimates considered with the nitrogen isotopic data and the soil-nitrogen inventories indicate that biosolids applications likely are a major source of nitrogen to the shallow groundwater at these monitoring wells.

  2. Exogenous trehalose improves growth under limiting nitrogen through upregulation of nitrogen metabolism.

    PubMed

    Lin, Yingchao; Zhang, Jie; Gao, Weichang; Chen, Yi; Li, Hongxun; Lawlor, David W; Paul, Matthew J; Pan, Wenjie

    2017-12-19

    The trehalose (Tre) pathway has strong effects on growth and development in plants through regulation of carbon metabolism. Altering either Tre or trehalose 6-phosphate (T6P) can improve growth and productivity of plants as observed under different water availability. As yet, there are no reports of the effects of modification of Tre orT6P on plant performance under limiting nutrition. Here we report that nitrogen (N) metabolism is positively affected by exogenous application of Tre in nitrogen-deficient growing conditions. Spraying foliage of tobacco (Nicotiana tabacum) with trehalose partially alleviated symptoms of nitrogen deficiency through upregulation of nitrate and ammonia assimilation and increasing activities of nitrate reductase (NR), glycolate oxidase (GO), glutamine synthetase (GS) and glutamine oxoglutarate aminotransferase (GOGAT) with concomitant changes in ammonium (NH 4 + ) and nitrate (NO 3 - ) concentrations, glutamine and amino acids. Chlorophyll and total nitrogen content of leaves and rates of photosynthesis were increased compared to nitrogen-deficient plants without applied Tre. Total plant biomass accumulation was also higher in Tre -fed nitrogen-deficient plants, with a smaller proportion of dry weight partitioned to roots, compared to nitrogen-deficient plants without applied Tre. Consistent with higher nitrogen assimilation and growth, Tre application reduced foliar starch. Minimal effects of Tre feeding were observed on nitrogen-sufficient plants. The data show, for the first time, significant stimulatory effects of exogenous Tre on nitrogen metabolism and growth in plants growing under deficient nitrogen. Under such adverse conditions metabolism is regulated for survival rather than productivity. Application of Tre can alter this regulation towards maintenance of productive functions under low nitrogen. This has implications for considering approaches to modifying the Tre pathway for to improve crop nitrogen-use efficiency and production.

  3. [Runoff loss of soil mineral nitrogen and its relationship with grass coverage on Loess slope land].

    PubMed

    Zhang, Yali; Li, Huai'en; Zhang, Xingchang; Xiao, Bo

    2006-12-01

    In a simulated rainfall experiment on Loess slope land, this paper determined the rainfall, surface runoff and the effective depth of interaction (EDI) between rainfall and soil mineral nitrogen, and studied the effects of grass coverage on the EDI and the runoff loss of soil mineral nitrogen. The results showed that with the increase of EDI, soil nitrogen in deeper layers could be released into surface runoff through dissolution and desorption. The higher the grass coverage, the deeper the EDI was. Grass coverage promoted the interaction between surface runoff and surface soil. On the slope land with 60%, 80% and 100% of grass coverage, the mean content of runoff mineral nitrogen increased by 34.52%, 32.67% and 6.00%, while surface runoff decreased by 4.72%, 9.84% and 12.89%, and eroded sediment decreased by 83.55%, 87.11% and 89.01%, respectively, compared with bare slope land. The total runoff loss of soil mineral nitrogen on the lands with 60%, 80%, and 100% of grass coverage was 95.73%, 109.04%, and 84.05% of that on bare land, respectively. Grass cover had dual effects on the surface runoff of soil mineral nitrogen. On one hand, it enhanced the influx of soil mineral nitrogen to surface runoff, and on the other hand, it markedly decreased the runoff, resulting in the decrease of soil mineral nitrogen loss through runoff and sediment. These two distinct factors codetermined the total runoff loss of soil mineral nitrogen.

  4. The effect of grain size and surface area on organic matter, lignin and carbohydrate concentration, and molecular compositions in Peru Margin sediments

    USGS Publications Warehouse

    Bergamaschi, B.A.; Tsamakis, E.; Keil, R.G.; Eglinton, T.I.; Montlucon, D.B.; Hedges, J.I.

    1997-01-01

    A C-rich sediment sample from the Peru Margin was sorted into nine hydrodynamically-determined grain size fractions to explore the effect of grain size distribution and sediment surface area on organic matter content and composition. The neutral monomeric carbohydrate composition, lignin oxidation product yields, total organic carbon, and total nitrogen contents were determined independently for each size fraction, in addition to sediment surface area and abundance of biogenic opal. The percent organic carbon and percent total nitrogen were strongly related to surface area in these sediments. In turn, the distribution of surface area closely followed mass distribution among the textural size classes, suggesting hydrodynamic controls on grain size also control organic carbon content. Nevertheless, organic compositional distinctions were observed between textural size classes. Total neutral carbohydrate yields in the Peru Margin sediments were found to closely parallel trends in total organic carbon, increasing in abundance among grain size fractions in proportion to sediment surface area. Coincident with the increases in absolute abundance, rhamnose and mannose increased as a fraction of the total carbohydrate yield in concert with surface area, indicating these monomers were preferentially represented in carbohydrates associated with surfaces. Lignin oxidation product yields varied with surface area when normalized to organic carbon, suggesting that the terrestrially-derived component may be diluted by sorption of marine derived material. Lignin-based parameters suggest a separate source for terrestrially derived material associated with sand-size material as opposed to that associated with silts and clays. Copyright ?? 1997 Elsevier Science Ltd.

  5. The effect of grain size and surface area on organic matter, lignin and carbohydrate concentration, and molecular compositions in Peru Margin sediments

    NASA Astrophysics Data System (ADS)

    Bergamaschi, Brian A.; Tsamakis, Elizabeth; Keil, Richard G.; Eglinton, Timothy I.; Montluçon, Daniel B.; Hedges, John I.

    1997-03-01

    A C-rich sediment sample from the Peru Margin was sorted into nine hydrodynamically-determined grain size fractions to explore the effect of grain size distribution and sediment surface area on organic matter content and composition. The neutral monomeric carbohydrate composition, lignin oxidation product yields, total organic carbon, and total nitrogen contents were determined independently for each size fraction, in addition to sediment surface area and abundance of biogenic opal. The percent organic carbon and percent total nitrogen were strongly related to surface area in these sediments. In turn, the distribution of surface area closely followed mass distribution among the textural size classes, suggesting hydrodynamic controls on grain size also control organic carbon content. Nevertheless, organic compositional distinctions were observed between textural size classes. Total neutral carbohydrate yields in the Peru Margin sediments were found to closely parallel trends in total organic carbon, increasing in abundance among grain size fractions in proportion to sediment surface area. Coincident with the increases in absolute abundance, rhamnose and mannose increased as a fraction of the total carbohydrate yield in concert with surface area, indicating these monomers were preferentially represented in carbohydrates associated with surfaces. Lignin oxidation product yields varied with surface area when normalized to organic carbon, suggesting that the terrestrially-derived component may be diluted by sorption of marine derived material. Lignin-based parameters suggest a separate source for terrestrially derived material associated with sand-size material as opposed to that associated with silts and clays.

  6. A systematic review and meta-analysis of the nutrient content of preterm and term breast milk.

    PubMed

    Gidrewicz, Dominica A; Fenton, Tanis R

    2014-08-30

    Breast milk nutrient content varies with prematurity and postnatal age. Our aims were to conduct a meta-analysis of preterm and term breast milk nutrient content (energy, protein, lactose, oligosaccharides, fat, calcium, and phosphorus); and to assess the influence of gestational and postnatal age. Additionally we assessed for differences by laboratory methods for: energy (measured vs. calculated estimates) and protein (true protein measurement vs. the total nitrogen estimates). Systematic review results were summarized graphically to illustrate the changes in composition over time for term and preterm milk. Since breast milk fat content varies within feeds and diurnally, to obtain accurate estimates we limited the meta-analyses for fat and energy to 24-hour breast milk collections. Forty-one studies met the inclusion criteria: 26 (843 mothers) preterm studies and 30 (2299 mothers) term studies of breast milk composition. Preterm milk was higher in true protein than term milk, with differences up to 35% (0.7 g/dL) in colostrum, however, after postnatal day 3, most of the differences in true protein between preterm and term milk were within 0.2 g/dL, and the week 10-12 estimates suggested that term milk may be the same as preterm milk by that age. Colostrum was higher than mature milk for protein, and lower than mature milk for energy, fat and lactose for both preterm and term milk. Breast milk composition was relatively stable between 2 and 12 weeks. With milk maturation, there was a narrowing of the protein variance. Energy estimates differed whether measured or calculated, from -9 to 13%; true protein measurement vs. the total nitrogen estimates differed by 1 to 37%. Although breast milk is highly variable between individuals, postnatal age and gestational stage (preterm versus term) were found to be important predictors of breast milk content. Energy content of breast milk calculated from the macronutrients provides poor estimates of measured energy, and protein estimated from the nitrogen over-estimates the protein milk content. When breast milk energy, macronutrient and mineral content cannot be directly measured the average values from these meta-analyses may provide useful estimates of mother's milk energy and nutrient content.

  7. Removing organic and nitrogen content from a highly saline municipal wastewater reverse osmosis concentrate by UV/H2O2-BAC treatment.

    PubMed

    Pradhan, Shovana; Fan, Linhua; Roddick, Felicity A

    2015-10-01

    Reverse osmosis (RO) concentrate (ROC) streams generated from RO-based municipal wastewater reclamation processes pose potential health and environmental risks on their disposal to confined water bodies such as bays. A UV/H2O2 advanced oxidation process followed by a biological activated carbon (BAC) treatment was evaluated at lab-scale for the removal of organic and nutrient content from a highly saline ROC (TDS 16 g L(-1), EC 23.5 mS cm(-1)) for its safe disposal to the receiving environment. Over the 230-day operation of the UV/H2O2-BAC process, the colour and UV absorbance (254 nm) of the ROC were reduced to well below those of the influent to the reclamation process. The concentrations of DOC and total nitrogen (TN) were reduced by approximately 60% at an empty bed contact time (EBCT) of 60 min. The reduction in ammonia nitrogen by the BAC remained high under all conditions tested (>90%). Further investigation confirmed that the presence of residual peroxide in the UV/H2O2 treated ROC was beneficial for DOC removal, but markedly inhibited the activities of the nitrifying bacteria (i.e., nitrite oxidising bacteria) in the BAC system and hence compromised total nitrogen removal. This work demonstrated that the BAC treatment could be acclimated to the very high salinity environment, and could be used as a robust method for the removal of organic matter and nitrogen from the pre-oxidised ROC under optimised conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Kinetics of growth and lipids accumulation in Chlorella vulgaris during batch heterotrophic cultivation: Effect of different nutrient limitation strategies.

    PubMed

    Sakarika, Myrsini; Kornaros, Michael

    2017-11-01

    The present study aimed at: (1) determining the effect of sulfur addition on biomass growth and (2) assessing the effect of sulfur, phosphorus and nitrogen limitation on lipid accumulation by C. vulgaris SAG 211-11b. The sulfur cellular content was more than two-fold higher under nitrogen and phosphorus limitation (0.52% and 0.54%ww -1 , respectively) compared to sulfur requirements (0.20%ww -1 ) under sulfur limiting conditions. The nitrogen needs are significantly lower (2.81-3.35%ww -1 ) when compared to other microalgae and become 23% lower under nitrogen or phosphorus limitation. The microalga exhibited substrate inhibition above 30gL -1 initial glucose concentration. Sulfur limitation had the most significant effect on lipid accumulation, resulting in maximum total lipid content of 53.43±3.93%gg DW -1 . In addition to enhancing lipid productivity, adopting the optimal nutrient limitation strategy can result in cost savings by avoiding unnecessary nutrient additions and eliminate the environmental burden due to wasted resources. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Effects of Praxelis clematidea invasion on soil nitrogen fractions and transformation rates in a tropical savanna.

    PubMed

    Wei, Hui; Xu, Jialin; Quan, Guoming; Zhang, Jiaen; Qin, Zhong

    2017-02-01

    Plant invasion has been reported to affect a mass of soil ecological processes and functions, although invasion effects are often context-, species- and ecosystem- specific. This study was conducted to explore potential impacts of Praxelis clematidea invasion on contents of total and available soil nitrogen (N) and microbial N transformations in a tropical savanna. Soil samples were collected from the surface and sub-surface layers in plots with non-, slight, or severe P. clematidea invasion in Hainan Province of southern China, which remains less studied, and analyzed for contents of the total and available N fractions and microbial N transformations. Results showed that total N content significantly increased in the surface soil but trended to decrease in the sub-surface soil in the invaded plots relative to the non-invaded control. Slight invasion significantly increased soil alkali-hydrolysable N content in the two soil layers. Soil net N mineralization rate was not significantly changed in both the soil layers, although soil microbial biomass N was significantly higher in plots with severe invasion than the control. There was no significant difference in content of soil N fractions between plots with slight and severe invasion. Our results suggest that invasion of P. clematidea promotes soil N accumulation in the surface soil layer, which is associated with increased microbial biomass N. However, the invasion-induced ecological impacts did not increase with further invasion. Significantly higher microbial biomass N was maintained in plots with severe invasion, implying that severe P. clematidea invasion may accelerate nutrient cycling in invaded ecosystems.

  10. Data on the chemical properties of commercial fish sauce products.

    PubMed

    Nakano, Mitsutoshi; Sagane, Yoshimasa; Koizumi, Ryosuke; Nakazawa, Yozo; Yamazaki, Masao; Watanabe, Toshihiro; Takano, Katsumi; Sato, Hiroaki

    2017-12-01

    This data article reports on the chemical properties of commercial fish sauce products associated with the fish sauce taste and flavor. All products were analyzed in triplicate. Dried solid content was analyzed by moisture analyzer. Fish sauce salinity was determined by a salt meter. pH was measured using a pH meter. The acidity was determined using a titration assay. Amino nitrogen and total nitrogen were evaluated using a titration assay and Combustion-type nitrogen analyzer, respectively. The analyzed products originated from Japan, Thailand, Vietnam, China, the Philippines, and Italy. Data on the chemical properties of the products are provided in table format in the current article.

  11. Further contributions to the understanding of nitrogen removal in waste stabilization ponds.

    PubMed

    Bastos, R K X; Rios, E N; Sánchez, I A

    2018-06-01

    A set of experiments were conducted in Brazil in a pilot-scale waste stabilization pond (WSP) system (a four-maturation-pond series) treating an upflow anaerobic sludge blanket (UASB) reactor effluent. Over a year and a half the pond series was monitored under two flow rate conditions, hence also different hydraulic retention times and surface loading rates. On-site and laboratory trials were carried out to assess: (i) ammonia losses by volatilization using acrylic capture chambers placed at the surface of the ponds; (ii) organic nitrogen sedimentation rates using metal buckets placed at the bottom of the ponds for collecting settled particulate matter; (iii) nitrogen removal by algal uptake based on the nitrogen content of the suspended particulate matter in samples from the ponds' water column. In addition, nitrification and denitrification rates were measured in laboratory-based experiments using pond water and sediment samples. The pond system achieved high nitrogen removal (69% total nitrogen and 92% ammonia removal). The average total nitrogen removal rates varied from 10,098 to 3,849 g N/ha·d in the first and the last ponds, respectively, with the following fractions associated with the various removal pathways: (i) 23.5-45.6% sedimentation of organic nitrogen; (ii) 13.1-27.8% algal uptake; (iii) 1.2-3.1% ammonia volatilization; and (iv) 0.15-0.34% nitrification-denitrification.

  12. Effects of land use, climate, topography and soil properties on regional soil organic carbon and total nitrogen in the upstream watershed of Miyun Reservoir, North China.

    PubMed

    Wang, Shufang; Wang, Xiaoke; Ouyang, Zhiyun

    2012-01-01

    Soil organic carbon (SOC) and total nitrogen (TN) contents as well as their relationships with site characteristics are of profound importance in assessing current regional, continental and global soil C and N stocks and potentials for C sequestration and N conservation to offset anthropogenic emissions of greenhouse gases. This study investigated contents and distribution of SOC and TN under different land uses, and the quantitative relationships between SOC or TN and site characteristics in the Upstream Watershed of Miyun Reservoir, North China. Overall, both SOC and TN contents in natural secondary forests and grasslands were much higher than in plantations and croplands. Land use alone explained 37.2% and 38.4% of variations in SOC and TN contents, respectively. The optimal models for SOC and TN, achieved by multiple regression analysis combined with principal component analysis (PCA) to remove the multicollinearity among site variables, showed that elevation, slope, soil clay and water contents were the most significant factors controlling SOC and TN contents, jointly explaining 70.3% of SOC and 67.1% of TN contents variability. Only does additional 1.9% and 3% increase in the interpretations of SOC and TN contents variability respectively when land use was added to regressions, probably due to environment factors determine land use. Therefore, environmental variables were more important for SOC and TN variability than land use in the study area, and should be taken into consideration in properly evaluating effects of future land use changes on SOC and TN on a regional scale.

  13. Effect of barley and its amylopectin content on ruminal fermentation and nitrogen utilization in lactating dairy cows.

    PubMed

    Foley, A E; Hristov, A N; Melgar, A; Ropp, J K; Etter, R P; Zaman, S; Hunt, C W; Huber, K; Price, W J

    2006-11-01

    The effect of type of grain (corn vs. barley) and amylopectin content of barley grain (normal vs. waxy) on ruminal fermentation, digestibility, and utilization of ruminal ammonia nitrogen for milk protein synthesis was studied in a replicated 3 x 3 Latin square design trial with 6 lactating dairy cows. The experimental treatments were (proportion of dietary dry matter): CORN, 40% corn grain, NBAR, 30% normal Baronesse barley:10% corn grain, and WBAR, 30% high-amylopectin (waxy) Baronesse barley:10% corn grain. All grains were steam-rolled and fed as part of a total mixed ration. The NBAR and WBAR diets resulted in increased ruminal ammonia concentrations compared with CORN (8.2, 7.4, and 5.6 mM, respectively), but other ruminal fermentation parameters were not affected. Ruminal digestibility of dietary nutrients and microbial protein synthesis in the rumen were also not affected by diet. Corn grain had greater in situ effective ruminal dry matter degradability (62.8%) than the barley grains (58.2 and 50.7%, respectively), and degradability of the normal barley starch was greater than that of the waxy barley (69.3 and 58.9%, respectively). A greater percentage of relative starch crystallinity was observed for the waxy compared with the normal barley grain. Total tract apparent digestibility of dry matter and organic matter were decreased by WBAR compared with CORN and NBAR. Total tract starch digestibility was greater and milk urea nitrogen content was lower for CORN compared with the 2 barley diets. In this study, the extent of processing of the grain component of the diet was most likely the factor that determined the diet responses. Minimal processing of barley grain (processing indexes of 79.2 to 87.9%) reduced its total tract digestibility of starch compared with steam-rolled corn (processing index of 58.8%). As a result of the increased ammonia concentration and reduced degradability of barley dry matter in the rumen, the utilization of ruminal ammonia nitrogen for microbial protein synthesis was decreased with the barley diets compared with the corn-based diet. In this study, waxy Baronesse barley was less degradable in the rumen and the total digestive tract than its normal counterpart. The most likely reasons for these effects were the differences in starch characteristics and chemical composition, and perhaps the different response to processing between the 2 barleys.

  14. Nitrogen mineralization and geochemical characteristics of amino acids in surface sediments of a typical polluted area in the Haihe River Basin, China.

    PubMed

    Zhao, Yu; Shan, Baoqing; Tang, Wenzhong; Zhang, Hong

    2015-11-01

    Studies of nitrogen mineralization and diagenetic status of organic matter evaluated by total hydrolysable amino acids (THAAs) were designed to test the hypothesis that nitrogen mineralization in sediments was a potential source of ammonium in strongly artificially disturbed rivers such as the Ziya River watershed. Ammonium and organic nitrogen in both water and sediment samples were the major forms of nitrogen in the watershed. NH3-N was significantly correlated with organic nitrogen in both water (R = 0.823, P < 0.01) and sediments (R = 0.787, P < 0.01). Organic nitrogen with an average content of 3,275.21 ± 1,476.10 mg · kg(-1), accounted for 82.73 % of total nitrogen (TN) in sediments. Organic nitrogen was a potential source of ammonia release into overlying water. Nitrogen mineralization experiments showed that accumulated dissolved inorganic nitrogen ranged from 326.15 to 545.72 mg · kg(-1) and accumulated NH3-N ranged from 320.95 to 533.93 mg · kg(-1). Most of the mineralized nitrogen was NH3-N ( approximately 98.17%) and mineralized nitrogen in sediments ranged from 6.20 to 22.10% of TN. Twenty amino acids were detected, accounting for 45.70 % of organic nitrogen. Protein amino acids, accounting for 89.22% of THAAs, were the dominant THAAs in sediments. The ratio of L-glutamic acid to γ-aminobutyric acid and degradation index showed that the organic matter was poorly degraded and presented a high potential risk of ammonium mineralization.

  15. Sugar Regulation of Plastid Interconversions in Epicarp of Citrus Fruit 1

    PubMed Central

    Huff, Albert

    1984-01-01

    Seasonal transformations between chloroplasts and chromoplasts, as measured by changes in chlorophyll content, in the epicarp of degreening and regreening Citrus sinensis (L.) Osbeck cv Valencia fruit closely parallelled the accumulation and later loss of soluble sugars. At any stage of development, reversing the relative soluble sugar content in the epicarp by culturing pericarp segments on agar media with low (15 millimolar) or high (150 millimolar) sucrose concentrations reversed the direction of change in chlorophyll content. Fruit of C. madurensis Lour., which mature year around and do not regreen, also accumulated soluble sugars in the pericarp as degreening was initiated. The epicarp of C. sinensis fruit accumulated nitrogen, but total nitrogen concentrations and amino acid concentrations changed little, during degreening and regreening of C. sinensis fruit. Cessation of nitrogen fertilization reduced the tendency of pericarp segments to regreen in vitro during subsequent years, but regreening tendency was restored by inclusion of KNO3 in the media. It is concluded that chloroplasts become chromoplasts and citrus fruit degreen partially in response to the accumulation of sugars in the epicarp and that the reverse transformation accompanying regreening of certain citrus species occurs when accumulated sugars disappear. Change in nitrogen flux to the fruit is probably not a factor in regulating seasonal transformations, but an abundance of nitrogen in the epicarp diminishes the effects of high sugar concentrations in inducing transformation of chloroplasts to chromoplasts, thereby retarding degreening and promoting regreening. PMID:16663837

  16. Reduction of salt content of fish sauce by ethanol treatment.

    PubMed

    Liu, Yu; Xu, Ying; He, Xiaoxia; Wang, Dongfeng; Hu, Shiwei; Li, Shijie; Jiang, Wei

    2017-08-01

    Fish sauce is a traditional condiment in Southeast Asia, normally containing high concentration of salt. The solubility of salt is lower in ethanol than in water. In the present study, fish sauce was desalted by ethanol treatment (including the processes of ethanol addition, mixing, standing and rotary evaporation). The salt concentration of fish sauce decreased significantly from 29.72 to 19.72 g/100 mL when the treated ethanol concentration was 21% (v/v). The addition of more than 12% (v/v) of ethanol significantly reduced dry weight, total soluble nitrogen content and amino acids nitrogen content. Besides, the quality of fish sauce remained first grade if no more than 21% (v/v) of ethanol was used. Furthermore, sensory analyses showed that ethanol treatment significantly reduced the taste of salty and the odor of ammonia. This study demonstrates that ethanol treatment is a potential way to decrease salt content in fish sauce, which meanwhile limits the losses of nutritional and sensorial values within an acceptable range.

  17. Effect of shrimp ( Litopenaeus vannamei) farming waste on the growth, digestion, ammonium-nitrogen excretion of sea cucumber ( Stichopus monotuberculatus)

    NASA Astrophysics Data System (ADS)

    Chen, Yanfeng; Luo, Peng; Hu, Chaoqun; Ren, Chunhua

    2015-06-01

    In this study, specific growth rate (SGR), ingestion rate (IR), food conversion ratio (FCR), apparent digestion ratio (ADR) and ammonium-nitrogen excretion were determined for sea cucumber ( Stichopus monotuberculatus) reared in plastic containers (70 L; 4 containers each diet treatment). Sea cucumbers were fed with five diets containing different amounts of farming waste from shrimp ( Litopenaeus vannamei) (100%, 75%, 50%, 25% and 0) and a formulated compound (20% sea mud and 80% powdered algae). Sea cucumbers grew faster when they were fed with diet D (25% shrimp waste and 75% formulated compound) than those fed with other diets. Although IR value of sea cucumber fed with diet A (shrimp waste) was higher than those fed with other diets, both the lowest SGR and the highest FCR occurred in this diet group. The highest and the lowest ADR occurred in diet E (formulated compound) and diet A group, respectively, and the same to ammonium-nitrogen excretion. The contents of crude protein, crude lipid and total organic matter (TOM) in feces decreased in comparison with corresponding diets. In the feces from different diet treatments, the contents of crude protein and TOM increased gradually as the contents of crude protein and TOM in diets increased, while crude lipid content decreased gradually as the crude lipid content in diets increased.

  18. Assessment of Various Organic Matter Properties by Infrared Reflectance Spectroscopy of Sediments and Filters

    NASA Astrophysics Data System (ADS)

    Alaoui, G.; Leger, M.; Gagne, J.; Tremblay, L.

    2009-05-01

    The goal of this work was to evaluate the capability of infrared reflectance spectroscopy for a fast quantification of the elemental and molecular compositions of sedimentary and particulate organic matter (OM). A partial least-squares (PLS) regression model was used for analysis and values were compared to those obtained by traditional methods (i.e., elemental, humic and HPLC analyses). PLS tools are readily accessible from software such as GRAMS (Thermo-Fisher) used in spectroscopy. This spectroscopic-chemometric approach has several advantages including its rapidity and use of whole unaltered samples. To predict properties, a set of infrared spectra from representative samples must first be fitted to form a PLS calibration model. In this study, a large set (180) of sediments and particles on GFF filters from the St. Lawrence estuarine system were used. These samples are very heterogenous (e.g., various tributaries, terrigenous vs. marine, events such as landslides and floods) and thus represent a challenging test for PLS prediction. For sediments, the infrared spectra were obtained with a diffuse reflectance, or DRIFT, accessory. Sedimentary carbon, nitrogen, humic substance contents as well as humic substance proportions in OM and N:C ratios were predicted by PLS. The relative root mean square error of prediction (%RMSEP) for these properties were between 5.7% (humin content) and 14.1% (total humic substance yield) using the cross-validation, or leave-one out, approach. The %RMSEP calculated by PLS for carbon content was lower with the PLS model (7.6%) than with an external calibration method (11.7%) (Tremblay and Gagné, 2002, Anal. Chem., 74, 2985). Moreover, the PLS approach does not require the extraction of POM needed in external calibration. Results highlighted the importance of using a PLS calibration set representative of the unknown samples (e.g., same area). For filtered particles, the infrared spectra were obtained using a novel approach based on attenuated total reflectance, or ATR, allowing the direct analysis of the filters. In addition to carbon and nitrogen contents, amino acid and muramic acid (a bacterial biomarker) yields were predicted using PLS. Calculated %RMSEP varied from 6.4% (total amino acid content) to 18.6% (muramic acid content) with cross-validation. PLS regression modeling does not require a priori knowledge of the spectral bands associated with the properties to be predicted. In turn, the spectral regions that give good PLS predictions provided valuable information on band assignment and geochemical processes. For instance, nitrogen and humin contents were greatly determined by an absorption band caused by aluminosilicate OH group. This supports the idea that OM-clay interactions, important in humin formation and OM preservation, are mediated by nitrogen-containing groups.

  19. NPK NMR Sensor: Online Monitoring of Nitrogen, Phosphorus, and Potassium in Animal Slurry.

    PubMed

    Sørensen, Morten K; Jensen, Ole; Bakharev, Oleg N; Nyord, Tavs; Nielsen, Niels Chr

    2015-07-07

    Knowledge of the actual content of nitrogen, phosphorus, and potassium (NPK) in animal slurry is highly important to optimize crop production and avoid environmental pollution when slurry is spread on agricultural fields. Here, we present a mobile, low-field nuclear magnetic resonance (NMR) sensor suitable for online monitoring of the NPK content in animal slurry as an alternative to crude estimates or tedious nonspecific, off-site laboratory analysis. The sensor is based on (14)N, (17)O, (31)P, and (39)K NMR in a digital NMR instrument equipped with a 1.5 T Halbach magnet for direct detection of ammonium N, total P, and K and indirect evaluation of the organic N content, covering all practical components of NPK in animal slurry. In correlation studies, the obtained NMR measurements show good agreement with reference measurements from commercial laboratories.

  20. Interactive effects of and light on growth rates and RUBISCO content of small and large centric diatoms

    NASA Astrophysics Data System (ADS)

    Li, G.; Campbell, D. A.

    2015-10-01

    Among marine phytoplankton groups, diatoms span the widest range of cell size, with resulting effects upon their nitrogen uptake, photosynthesis and growth responses to light. We grew two strains of marine centric diatoms, the small Thalassiosira pseudonana and the larger T. punctigera in high and low nitrogen media, across a range of growth light levels. Nitrogen and total proteins per cell decreased with increasing growth light in both species when grown under low nitrogen media. Surprisingly, low nitrogen increased the cellular allocation to RUBISCO and the rate of electron transport away from Photosystem II for the smaller diatom under low growth light, and for the larger diatom across the range of growth lights. Low nitrogen decreased the growth rate of the smaller diatom, particularly under higher light, but stimulated the growth rate of the larger diatom. Our results show that the high nitrogen in common growth media favours the growth rate of a small diatom but inhibits growth of a larger species.

  1. A COMAPRISON OF MERCURY IN MINK AND FISHER IN RHODE ISLAND

    EPA Science Inventory

    Comparison of total mercury concentrations and nitrogen and carbon stable isotope values in muscle tissue and stomach contents of mink (Mustela vison) and fisher (Martes pennanti) from Rhode Island in 2000- 2003 showed results which appeared to reflect dietary differences betwee...

  2. Effect of mineral fertilizers on microbiological and biochemical characteristics of agrochernozem.

    NASA Astrophysics Data System (ADS)

    Tkhakakhova, Azida; Vasilenko, Elena; Kutovaya, Olga

    2013-04-01

    The problem of reproduction of soil fertility of chernozems are solved with integrated action, the ecological condition of the soil can be assessed by the activity of physiological groups of microorganisms. Microorganisms are the most important in the transformation of compounds of biogenic elements and therefore it is very interesting to study the nature of the relationship of some biochemical parameters with the development of microflora and micromycetes eco-trophic groups. Agrochemical researches have been conducted at agroecological station "Stone Steppe" in central Russia. Experiment variants: 1 - Control (without fertilizer); 2 - N10,5 P10,5 K10,5; 3 - N56,5 P56,5 K56,5; 4 - deposit soil. Mobile forms of humic substances (mobile carbon and carbon water extract) have changed during the cultivation of the chernozem soil. Amount of mobile humus has doubled in the variants with the use of mineral fertilizers. It's just mobile humus which determines the soil response to any impact, especially ecological. Water extract carbon - organic matter contained in the soil solution and the subject of assimilation of plants and microorganisms. It increased in agricultural soils. The total nitrogen and nitrate nitrogen amount in the variants of agricultural use is higher than in the deposit soil. This is probably because of the soil aeration, the release of nitrogen from the labile humus due to biological activity and nitrification. Amount of ammonia nitrogen has increased in the variant with the use of high doses of fertilizers. Deposit soil (40 years without agricultural use) has a lower, but more stable microbial activity. Process of anoxic decomposition of plant remains develops more active than others, due to the natural structure of the soil anaerobiosis in the spring time. Processes of nitrogen cycle (nitrogen accumulation - fixation of atmospheric nitrogen, nitrogen losses - denitrification) are progressing very intensively in agricultural soil with fertilizer. Content of humic substances in the soil affects all groups of microorganisms, except actinomycetes and cellulolytices. These microorganisms have an active system of hydrolytic enzymes that taking action on hard organic materials. Movable carbon largely affects the anaerobic microorganisms nitrogen cycle and inverse relationship takes place during with the developing of actinomycetes. Correlation between the aqueous extract carbon with cellulolitic bacteria, aerobic nitrogen-fixing bacteria and amylolytic microorganisms using mineral nitrogen is the highest. Organic material of the soil solution in the growing season associated with NO3-. The content of total nitrogen and nitrate associated with anaerobic denitrifying bacteria, nitrogen-fixing bacteria and amylolytic microorganisms. The content of ammonia nitrogen N-NH4+ renders very strong influence on soil microorganisms. A positive correlation is observed with ammonifiers, nitrogen-fixing bacteria, denitrifying bacteria. There is inverse relationship with actinomycetes (R = - 0,96) and anaerobic cellulolitic bacteria (R = - 0,80). Representatives of these microorganisms are active participants in the carbon cycle; their development in the presence of the ammonium form of nitrogen is possibly suspended. There is a complicated relationship of biochemical indicators of the development of soil microorganisms in the black earth. The problem preserving stable humus and physiologically active mobile forms that affect plant growth can only be achieved while maintaining the living organisms in it.

  3. Coordinated regulation of nitrogen supply mode and initial cell density for energy storage compounds production with economized nitrogen utilization in a marine microalga Isochrysis zhangjiangensis.

    PubMed

    Chi, Lei; Yao, Changhong; Cao, Xupeng; Xue, Song

    2016-01-01

    Lipids and carbohydrates are main energy storage compounds (ESC) of microalgae under stressed conditions and they are potential feedstock for biofuel production. Yet, the sustainable and commercially successful production of ESC in microalgae needs to consider nitrogen utilization efficiency. Here the impact of different initial cell densities (ICDs) on ESC accumulation in Isochrysis zhangjiangensis under two nitrogen supply modes (an initially equal concentration of nitrogen per-cell in the medium (N1) and an equal total concentration of nitrogen in the culture system (N2)) were investigated. The results demonstrated that the highest ESC yield (1.36gL(-1)) at N1, which included a maximal nitrogen supply in the cultivation system, and the highest ESC content (66.5%) and ESC productivity per mass of nitrogen (3.28gg(-1) (N) day(-1)) at N2, were all obtained under a high ICD of 8.0×10(6)cellsmL(-1). Therefore I. zhangjiangensis qualifies for ESC-enriched biomass production with economized nitrogen utilization. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Elevated atmospheric carbon dioxide concentrations amplify Alternaria alternata sporulation and total antigen production.

    PubMed

    Wolf, Julie; O'Neill, Nichole R; Rogers, Christine A; Muilenberg, Michael L; Ziska, Lewis H

    2010-09-01

    Although the effect of elevated carbon dioxide (CO2) concentration on pollen production has been established in some plant species, impacts on fungal sporulation and antigen production have not been elucidated. Our purpose was to examine the effects of rising atmospheric CO2 concentrations on the quantity and quality of fungal spores produced on timothy (Phleum pratense) leaves. Timothy plants were grown at four CO2 concentrations (300, 400, 500, and 600 micromol/mol). Leaves were used as growth substrate for Alternaria alternata and Cladosporium phlei. The spore abundance produced by both fungi, as well as the size (microscopy) and antigenic protein content (ELISA) of A. alternata, were quantified. Leaf carbon-to-nitrogen ratio was greater at 500 and 600 micromol/mol, and leaf biomass was greater at 600 micromol/mol than at the lower CO2 concentrations. Leaf carbon-to-nitrogen ratio was positively correlated with A. alternata spore production per gram of leaf but negatively correlated with antigenic protein content per spore. At 500 and 600 micromol/mol CO2 concentrations, A. alternata produced nearly three times the number of spores and more than twice the total antigenic protein per plant than at lower concentrations. C. phlei spore production was positively correlated with leaf carbon-to-nitrogen ratio, but overall spore production was much lower than in A. alternata, and total per-plant production did not vary among CO2 concentrations. Elevated CO2 concentrations often increase plant leaf biomass and carbon-to-nitrogen ratio. Here we demonstrate for the first time that these leaf changes are associated with increased spore production by A. alternata, a ubiquitous allergenic fungus. This response may contribute to the increasing prevalence of allergies and asthma.

  5. [Effects of elevated atmospheric CO2 and nitrogen application on cotton biomass, nitrogen utilization and soil urease activity].

    PubMed

    Lyu, Ning; Yin, Fei-hu; Chen, Yun; Gao, Zhi-jian; Liu, Yu; Shi, Lei

    2015-11-01

    In this study, a semi-open-top artificial climate chamber was used to study the effect of CO2 enrichment (360 and 540 µmol · mol(-1)) and nitrogen addition (0, 150, 300 and 450 kg · hm(-2)) on cotton dry matter accumulation and distribution, nitrogen absorption and soil urease activity. The results showed that the dry matter accumulation of bud, stem, leaf and the whole plant increased significantly in the higher CO2 concentration treatment irrespective of nitrogen level. The dry matter of all the detected parts of plant with 300 kg · hm(-2) nitrogen addition was significantly higher than those with the other nitrogen levels irrespective of CO2 concentration, indicating reasonable nitrogen fertilization could significantly improve cotton dry matter accumulation. Elevated CO2 concentration had significant impact on the nitrogen absorption contents of cotton bud and stem. Compared to those under CO2 concentration of 360 µmol · mol(-1), the nitrogen contents of bud and stem both increased significantly under CO2 concentration of 540 µmol · mol(-1). The nitrogen content of cotton bud in the treatment of 300 kg · hm(-2) nitrogen was the highest among the four nitrogen fertilizer treatments. While the nitrogen contents of cotton stem in the treatments of 150 kg · hm(-2) and 300 kg · hm(-2) nitrogen levels were higher than those in the treatment of 0 kg · hm(-2) and 450 kg · hm(-2) nitrogen levels. The nitrogen content of cotton leaf was significantly influenced by the in- teraction of CO2 elevation and N addition as the nitrogen content of leaf increased in the treatments of 0, 150 and 300 kg · hm(-2) nitrogen levels under the CO2 concentration of 540 µmol · mol(-1). The nitrogen content in cotton root was significantly increased with the increase of nitrogen fertilizer level under elevated CO2 (540 µmol · mol(-1)) treatment. Overall, the cotton nitrogen absorption content under the elevated CO2 (540 µmol · mol(-1)) treatment was higher than that under the ambient CO2- (360 µmol · mol(-1)) treatment. The order of nitrogen accumulation content in organs was bud > leaf > stem > root. Soil urease activity of both layers increased significantly with the elevation of CO2 concentration in all the nitrogen treatments. Under each CO2 concentration treatment, the soil urease activity in the upper layer (0-20 cm) increased significantly with nitrogen application, while the urease activity under the application of 300 kg · hm(-2) nitrogen was highest in the lower layer (20- 40 cm). The average soil urease activity in the upper layer (0-20 cm) was significantly higher than that in the lower layer (20-40 cm). This study suggested that the cotton dry matter accumulation and nitrogen absorption content were significantly increased in response to the elevated CO2 concentration (540 µmol · mol(-1)) and higher nitrogen addition (300 kg · hm(-2)).

  6. Benefits of biochar, compost and biochar-compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil.

    PubMed

    Agegnehu, Getachew; Bass, Adrian M; Nelson, Paul N; Bird, Michael I

    2016-02-01

    Soil quality decline represents a significant constraint on the productivity and sustainability of agriculture in the tropics. In this study, the influence of biochar, compost and mixtures of the two on soil fertility, maize yield and greenhouse gas (GHG) emissions was investigated in a tropical Ferralsol. The treatments were: 1) control with business as usual fertilizer (F); 2) 10 t ha(-1) biochar (B)+F; 3) 25 t ha(-1) compost (Com)+F; 4) 2.5 t ha(-1) B+25 t ha(-1) Com mixed on site+F; and 5) 25 t ha(-1) co-composted biochar-compost (COMBI)+F. Total aboveground biomass and maize yield were significantly improved relative to the control for all organic amendments, with increases in grain yield between 10 and 29%. Some plant parameters such as leaf chlorophyll were significantly increased by the organic treatments. Significant differences were observed among treatments for the δ(15)N and δ(13)C contents of kernels. Soil physicochemical properties including soil water content (SWC), total soil organic carbon (SOC), total nitrogen (N), available phosphorus (P), nitrate-nitrogen (NO3(-)N), ammonium-nitrogen (NH4(+)-N), exchangeable cations and cation exchange capacity (CEC) were significantly increased by the organic amendments. Maize grain yield was correlated positively with total biomass, leaf chlorophyll, foliar N and P content, SOC and SWC. Emissions of CO2 and N2O were higher from the organic-amended soils than from the fertilizer-only control. However, N2O emissions generally decreased over time for all treatments and emission from the biochar was lower compared to other treatments. Our study concludes that the biochar and biochar-compost-based soil management approaches can improve SOC, soil nutrient status and SWC, and maize yield and may help mitigate greenhouse gas emissions in certain systems. Copyright © 2015. Published by Elsevier B.V.

  7. Overexpression of Arabidopsis NLP7 improves plant growth under both nitrogen-limiting and -sufficient conditions by enhancing nitrogen and carbon assimilation.

    PubMed

    Yu, Lin-Hui; Wu, Jie; Tang, Hui; Yuan, Yang; Wang, Shi-Mei; Wang, Yu-Ping; Zhu, Qi-Sheng; Li, Shi-Gui; Xiang, Cheng-Bin

    2016-06-13

    Nitrogen is essential for plant survival and growth. Excessive application of nitrogenous fertilizer has generated serious environment pollution and increased production cost in agriculture. To deal with this problem, tremendous efforts have been invested worldwide to increase the nitrogen use ability of crops. However, only limited success has been achieved to date. Here we report that NLP7 (NIN-LIKE PROTEIN 7) is a potential candidate to improve plant nitrogen use ability. When overexpressed in Arabidopsis, NLP7 increases plant biomass under both nitrogen-poor and -rich conditions with better-developed root system and reduced shoot/root ratio. NLP7-overexpressing plants show a significant increase in key nitrogen metabolites, nitrogen uptake, total nitrogen content, and expression levels of genes involved in nitrogen assimilation and signalling. More importantly, overexpression of NLP7 also enhances photosynthesis rate and carbon assimilation, whereas knockout of NLP7 impaired both nitrogen and carbon assimilation. In addition, NLP7 improves plant growth and nitrogen use in transgenic tobacco (Nicotiana tabacum). Our results demonstrate that NLP7 significantly improves plant growth under both nitrogen-poor and -rich conditions by coordinately enhancing nitrogen and carbon assimilation and sheds light on crop improvement.

  8. Cattle feedlot soil moisture and manure content: I. Impacts on greenhouse gases, odor compounds, nitrogen losses, and dust.

    PubMed

    Miller, Daniel N; Berry, Elaine D

    2005-01-01

    Beef cattle feedlots face serious environmental challenges associated with manure management, including greenhouse gas, odor, NH3, and dust emissions. Conditions affecting emissions are poorly characterized, but likely relate to the variability of feedlot surface moisture and manure contents, which affect microbial processes. Odor compounds, greenhouse gases, nitrogen losses, and dust potential were monitored at six moisture contents (0.11, 0.25, 0.43, 0.67, 1.00, and 1.50 g H2O g(-1) dry matter [DM]) in three artificial feedlot soil mixtures containing 50, 250, and 750 g manure kg(-1) total (manure + soil) DM over a two-week period. Moisture addition produced three microbial metabolisms: inactive, aerobic, and fermentative at low, moderate, and high moisture, respectively. Manure content acted to modulate the effect of moisture and enhanced some microbial processes. Greenhouse gas (CO2, N2O, and CH4) emissions were dynamic at moderate to high moisture. Malodorous volatile fatty acid (VFA) compounds did not accumulate in any treatments, but their persistence and volatility varied depending on pH and aerobic metabolism. Starch was the dominant substrate fueling both aerobic and fermentative metabolism. Nitrogen losses were observed in all metabolically active treatments; however, there was evidence for limited microbial nitrogen uptake. Finally, potential dust production was observed below defined moisture thresholds, which were related to manure content of the soil. Managing feedlot surface moisture within a narrow moisture range (0.2-0.4 g H2O g(-1) DM) and minimizing the accumulation of manure produced the optimum conditions that minimized the environmental impact from cattle feedlot production.

  9. Organic nitrogen components in soils from southeast China*

    PubMed Central

    Chen, Xian-you; Wu, Liang-huan; Cao, Xiao-chuang; Zhu, Yuan-hong

    2013-01-01

    Objective: To investigate the amounts of extractable organic nitrogen (EON), and the relationships between EON and total extractable nitrogen (TEN), especially the amino acids (AAs) adsorbed by soils, and a series of other hydrolyzed soil nitrogen indices in typical land use soil types from southeast China. Under traditional agricultural planting conditions, the functions of EON, especially AAs in the rhizosphere and in bulk soil zones were also investigated. Methods: Pot experiments were conducted using plants of pakchoi (Brassica chinensis L.) and rice (Oryza sativa L.). In the rhizosphere and bulk soil zone studies, organic nitrogen components were extracted with either distilled water, 0.5 mol/L K2SO4 or acid hydrolysis. Results: K2SO4-EON constituted more than 30% of TEN pools. K2SO4-extractable AAs accounted for 25% of EON pools and nearly 10% of TEN pools in rhizosphere soils. Overall, both K2SO4-EON and extractable AAs contents had positive correlations with TEN pools. Conclusions: EON represented a major component of TEN pools in garden and paddy soils under traditional planting conditions. Although only a small proportion of the EON was present in the form of water-extractable and K2SO4-extractable AAs, the release of AAs from soil exchangeable sites might be an important source of organic nitrogen (N) for plant growth. Our findings suggest that the content of most organic forms of N was significantly greater in rhizosphere than in bulk soil zone samples. However, it was also apparent that the TEN pool content was lower in rhizosphere than in bulk soil samples without added N. PMID:23549843

  10. Corrosion Behavior of High Nitrogen Nickel-Free Fe-16Cr-Mn-Mo-N Stainless Steels

    NASA Astrophysics Data System (ADS)

    Chao, K. L.; Liao, H. Y.; Shyue, J. J.; Lian, S. S.

    2014-04-01

    The purpose of the current study is to develop austenitic nickel-free stainless steels with lower chromium content and higher manganese and nitrogen contents. In order to prevent nickel-induced skin allergy, cobalt, manganese, and nitrogen were used to substitute nickel in the designed steel. Our results demonstrated that manganese content greater than 14 wt pct results in a structure that is in full austenite phase. The manganese content appears to increase the solubility of nitrogen; however, a lower corrosion potential was found in steel with high manganese content. Molybdenum appears to be able to increase the pitting potential. The effects of Cr, Mn, Mo, and N on corrosion behavior of Fe-16Cr-2Co-Mn-Mo-N high nitrogen stainless steels were evaluated with potentiodynamic tests and XPS surface analysis. The results reveal that anodic current and pits formation of the Fe-16Cr-2Co-Mn-Mo-N high nitrogen stainless steels were smaller than those of lower manganese and nitrogen content stainless steel.

  11. Bioconversion of sugar cane crop residues with white-rot fungiPleurotus sp.

    PubMed

    Ortega, G M; Martínez, E O; Betancourt, D; González, A E; Otero, M A

    1992-07-01

    Four mushroom strains ofPleurotus spp. were cultivated on sugar cane crop residues for 30 days at 26°C. Biochemical changes affected the substrate as a result of fungal growth, in terms of nitrogen, lignin, cellulose and hemicellulose contents. All strains showed a strong ligninolytic activity together with variable cellulolytic and xylanolytic action.Pleurotus sajor-caju attacked lignin and cellulose at the same rate, showing a degradation of 47% and 55%, respectively. A better balance was shown by theP. ostreatus-P. pulmonarius hybrid, which exhibited the poorest cellulolytic action (39%) and the highest ligninolytic activity (67%). The average composition of mushroom fruit bodies, in terms of nitrogen, carbohydrates, fats and amino acid profiles, was determined. Crude protein and total carbohydrate varied from 23% to 33% and 36% to 68% of dry matter, respectively. Fat ranged from 3.3% to 4.7% and amino acid content from 12.2% to 22.2%. Slight evidence for a nitrogen fixing capability was encountered in the substrate to fruit body balance.

  12. A comparative study of thermochemical and cold plasma treatment on lignin-based activated carbon for adsorbing Fe(III)

    NASA Astrophysics Data System (ADS)

    Shi, Shukai; Wang, Xin; Chen, Weimin; Chen, Minzhi; Zhou, Xiaoyan

    2018-05-01

    The as-prepared lignin-based activated carbon (LAC) was post-treated by urea and radio-frequency cold plasma separately. The obtained results demonstrated that the BET surface and total volumes of the LAC and plasma-treated LACs were greater than the urea-modified sample. The analysis of surface elemental composition showed that the nitrogen content of urea-modified LAC and nitrogen plasma-treated LAC are 3.79% and 2.62% higher than that of original LAC respectively, while the oxygen content of air plasma-treated LAC is 10.23% higher than that of original LAC. The Fe(III) ions adsorbed studies with pseudo-second order kinetic model revealed that urea-modified LAC had faster chemisorption rates while air plasma-treated LAC had larger adsorption capacity within 3 h. Moreover, the adsorption capacity and chemisorption rates of LAC post-treated by nitrogen plasma are inferior to the air plasma-treated LAC.

  13. Remote sensing of forest canopy and leaf biochemical contents

    NASA Technical Reports Server (NTRS)

    Peterson, David L.; Matson, Pamela A.; Card, Don H.; Aber, John D.; Wessman, Carol; Swanberg, Nancy; Spanner, Michael

    1988-01-01

    Recent research on the remote sensing of forest leaf and canopy biochemical contents suggests that the shortwave IR region contains this information; laboratory analyses of dry ground leaves have yielded reliable predictive relationships between both leaf nitrogen and lignin with near-IR spectra. Attention is given to the application of these laboratory techniques to a limited set of spectra from fresh, whole leaves of conifer species. The analysis of Airborne Imaging Spectrometer data reveals that total water content variations in deciduous forest canopies appear as overall shifts in the brightness of raw spectra.

  14. Soil Physical, Chemical, and Thermal Characterization, Teller Road Site, Seward Peninsula, Alaska, 2016

    DOE Data Explorer

    Graham, David; Kholodov, Alexander; Wilson, Cathy; Moon, Ji-Won; Romanovsky, Vladimir; Busey, Bob

    2018-02-05

    This dataset provides the results of physical, chemical, and thermal characterization of soils at the Teller Road Site, Seward Peninsula, Alaska. Soil pits were dug from 7-14 September 2016 at designated Intensive Stations 2 through 9 at the Teller Road MM 27 Site. This dataset includes field observations and descriptions of soil layers or horizons, field measurements of soil volumetric water content, soil temperature, thermal conductivity, and heat capacity. Laboratory measurements of soil properties include gravimetric water content, bulk density, volumetric water content, and total carbon and nitrogen.

  15. Soil Physical, Chemical, and Thermal Characterization, Council Road Site, Seward Peninsula, Alaska, 2016

    DOE Data Explorer

    Alexander Kholodov; David Graham; Ji-Won Moon

    2018-01-22

    This dataset provides the results of physical, chemical, and thermal characterization of soils at the Council Road Site at MM71, Seward Peninsula, Alaska. Soil pits were dug on 11 September 2016 at three sites. This dataset includes field observations and descriptions of soil layers or horizons, field measurements of soil volumetric water content, soil temperature, thermal conductivity, and heat capacity. Laboratory measurements of soil properties include gravimetric water content, bulk density, volumetric water content, total carbon and nitrogen, and elemental composition from X-ray fluorescence for some elements.

  16. Genetic and agronomic assessment of cob traits in corn under low and normal nitrogen management conditions.

    PubMed

    Jansen, Constantin; Zhang, Yongzhong; Liu, Hongjun; Gonzalez-Portilla, Pedro J; Lauter, Nick; Kumar, Bharath; Trucillo-Silva, Ignacio; Martin, Juan Pablo San; Lee, Michael; Simcox, Kevin; Schussler, Jeff; Dhugga, Kanwarpal; Lübberstedt, Thomas

    2015-07-01

    Exploring and understanding the genetic basis of cob biomass in relation to grain yield under varying nitrogen management regimes will help breeders to develop dual-purpose maize. With rising energy demands and costs for fossil fuels, alternative energy from renewable sources such as maize cobs will become competitive. Maize cobs have beneficial characteristics for utilization as feedstock including compact tissue, high cellulose content, and low ash and nitrogen content. Nitrogen is quantitatively the most important nutrient for plant growth. However, the influence of nitrogen fertilization on maize cob production is unclear. In this study, quantitative trait loci (QTL) have been analyzed for cob morphological traits such as cob weight, volume, length, diameter and cob tissue density, and grain yield under normal and low nitrogen regimes. 213 doubled-haploid lines of the intermated B73 × Mo17 (IBM) Syn10 population have been resequenced for 8575 bins, based on SNP markers. A total of 138 QTL were found for six traits across six trials using composite interval mapping with ten cofactors and empirical comparison-wise thresholds (P = 0.001). Despite moderate to high repeatabilities across trials, few QTL were consistent across trials and overall levels of explained phenotypic variance were lower than expected some of the cob trait × trial combinations (R (2) = 7.3-43.1 %). Variation for cob traits was less affected by nitrogen conditions than by grain yield. Thus, the economics of cob usage under low nitrogen regimes is promising.

  17. Interactive effects of nitrogen and light on growth rates and RUBISCO content of small and large centric diatoms.

    PubMed

    Li, Gang; Campbell, Douglas A

    2017-01-01

    Among marine phytoplankton groups, diatoms span the widest range of cell size, with resulting effects upon their nitrogen uptake, photosynthesis and growth responses to light. We grew two strains of marine centric diatoms differing by ~4 orders of magnitude in cell biovolume in high (enriched artificial seawater with ~500 µmol L -1  µmol L -1  NO 3 - ) and lower-nitrogen (enriched artificial seawater with <10 µmol L -1  NO 3 - ) media, across a range of growth light levels. Nitrogen and total protein per cell decreased with increasing growth light in both species when grown under the lower-nitrogen media. Cells growing under lower-nitrogen media increased their cellular allocation to RUBISCO and their rate of electron transport away from PSII, for the smaller diatom under low growth light and for the larger diatom across the range of growth lights. The smaller coastal diatom Thalassiosira pseudonana is able to exploit high nitrogen in growth media by up-regulating growth rate, but the same high-nitrogen growth media inhibits growth of the larger diatom species.

  18. Dislocation density evolution in the process of high-temperature treatment and creep of EK-181 steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vershinina, Tatyana, E-mail: vershinina@bsu.edu.ru

    2017-03-15

    X-ray diffraction has been used to study the dislocation structure in ferrite-martensite high-chromium steel EK-181 in the states after heat treatment and high-temperature creep. The influence of heat treatment and stress on evolution of lath martensite structure was investigated by and electron back-scattered diffraction. The effect of nitrogen content on the total dislocation density, fraction of edge and screw dislocation segments are analyzed. - Highlights: •Fraction of edge dislocation in quenched state depends on nitrogen concentration. •Nitrogen affects the character of dislocation structure evolution during annealing. •Edge dislocations fraction influences on dislocation density after aging and creep.

  19. Interspecific variations in mangrove leaf litter decomposition are related to labile nitrogenous compounds

    NASA Astrophysics Data System (ADS)

    Nordhaus, Inga; Salewski, Tabea; Jennerjahn, Tim C.

    2017-06-01

    Mangrove leaves form a large pool of carbon, nitrogen and energy that is a major driver of element cycles and detrital food webs inside mangrove forests as well as in adjacent coastal waters. However, there are large gaps in knowledge on the transformation pathways and ultimate fate of leaf nitrogen. Therefore, the main objective of this study was to determine the amount and composition of nitrogenous organic matter and possible species-specific differences during the decomposition of mangrove leaf litter. For that purpose a three month decomposition experiment with litterbags was conducted using leaves of Aegiceras corniculatum, Avicennia alba, Ceriops decandra, Rhizophora apiculata, and Sonneratia caseolaris in the mangrove forest of the Segara Anakan Lagoon, Java, Indonesia. Detrital leaves were analyzed for bulk carbon and total nitrogen (N), stable carbon and nitrogen isotope composition (δ13C, δ15N), total hydrolyzable amino acids (THAA) and total hydrolyzable hexosamines (THHA). Decomposition rates (k d-1) were highest and tM50 values (when 50% of the original mass had been degraded) lowest in S. caseolaris (k = 0.0382 d-1; tM50 = 18 days), followed by A. alba, C. decandra, A. corniculatum, and R. apiculata (k = 0.0098 d-1; tM50 = 71 days). The biochemical composition of detrital leaves differed significantly among species and over time. S. caseolaris and A. alba had higher concentrations of N, THAA and THHA and a lower C/N ratio than the other three species. For most of the species concentrations of N, THAA and THHA increased during decomposition. The hexosamine galactosamine, indicative of bacterial cell walls, was first found in leaves after 5-7 days of decomposition and increased afterwards. Our findings suggest an increasing, but species-specific varying, portion of labile nitrogenous OM and total N in decomposing leaves over time that is partly related to the activity of leaf-colonizing bacteria. Despite a higher relative nitrogen content in the remaining litter of the fast decomposing S. caseolaris and A. alba as compared to the other three species, the total loss of nitrogen was even higher because of the much higher mass loss after three months of decomposition. It is inferred that the amount of labile nitrogenous organic matter plays a major role in determining the rate of decomposition of leaf litter in mangroves.

  20. Research on the Optimum Water Content of Detecting Soil Nitrogen Using Near Infrared Sensor

    PubMed Central

    He, Yong; Nie, Pengcheng; Dong, Tao; Qu, Fangfang; Lin, Lei

    2017-01-01

    Nitrogen is one of the important indexes to evaluate the physiological and biochemical properties of soil. The level of soil nitrogen content influences the nutrient levels of crops directly. The near infrared sensor can be used to detect the soil nitrogen content rapidly, nondestructively, and conveniently. In order to investigate the effect of the different soil water content on soil nitrogen detection by near infrared sensor, the soil samples were dealt with different drying times and the corresponding water content was measured. The drying time was set from 1 h to 8 h, and every 1 h 90 samples (each nitrogen concentration of 10 samples) were detected. The spectral information of samples was obtained by near infrared sensor, meanwhile, the soil water content was calculated every 1 h. The prediction model of soil nitrogen content was established by two linear modeling methods, including partial least squares (PLS) and uninformative variable elimination (UVE). The experiment shows that the soil has the highest detection accuracy when the drying time is 3 h and the corresponding soil water content is 1.03%. The correlation coefficients of the calibration set are 0.9721 and 0.9656, and the correlation coefficients of the prediction set are 0.9712 and 0.9682, respectively. The prediction accuracy of both models is high, while the prediction effect of PLS model is better and more stable. The results indicate that the soil water content at 1.03% has the minimum influence on the detection of soil nitrogen content using a near infrared sensor while the detection accuracy is the highest and the time cost is the lowest, which is of great significance to develop a portable apparatus detecting nitrogen in the field accurately and rapidly. PMID:28880202

  1. Research on the Optimum Water Content of Detecting Soil Nitrogen Using Near Infrared Sensor.

    PubMed

    He, Yong; Xiao, Shupei; Nie, Pengcheng; Dong, Tao; Qu, Fangfang; Lin, Lei

    2017-09-07

    Nitrogen is one of the important indexes to evaluate the physiological and biochemical properties of soil. The level of soil nitrogen content influences the nutrient levels of crops directly. The near infrared sensor can be used to detect the soil nitrogen content rapidly, nondestructively, and conveniently. In order to investigate the effect of the different soil water content on soil nitrogen detection by near infrared sensor, the soil samples were dealt with different drying times and the corresponding water content was measured. The drying time was set from 1 h to 8 h, and every 1 h 90 samples (each nitrogen concentration of 10 samples) were detected. The spectral information of samples was obtained by near infrared sensor, meanwhile, the soil water content was calculated every 1 h. The prediction model of soil nitrogen content was established by two linear modeling methods, including partial least squares (PLS) and uninformative variable elimination (UVE). The experiment shows that the soil has the highest detection accuracy when the drying time is 3 h and the corresponding soil water content is 1.03%. The correlation coefficients of the calibration set are 0.9721 and 0.9656, and the correlation coefficients of the prediction set are 0.9712 and 0.9682, respectively. The prediction accuracy of both models is high, while the prediction effect of PLS model is better and more stable. The results indicate that the soil water content at 1.03% has the minimum influence on the detection of soil nitrogen content using a near infrared sensor while the detection accuracy is the highest and the time cost is the lowest, which is of great significance to develop a portable apparatus detecting nitrogen in the field accurately and rapidly.

  2. Nitrogen addition shifts the microbial community in the rhizosphere of Pinus tabuliformis in Northwestern China

    PubMed Central

    Lv, Fenglian; Xue, Sha; Wang, Guoliang; Zhang, Chao

    2017-01-01

    Atmospheric nitrogen (N) deposition profoundly alters the soil microbial communities and will thus affect nutrient cycles. The effects of N availability on microbial community, however, are not clear. We used PLFA analysis to evaluate the effects of a gradient of N addition (0, 2.8, 5.6, 11.2, and 22.4 g N m-2 y-1) for three years on the rhizospheric microbial community of Pinus tabuliformis seedlings. The main factors influencing the community were quantified using structural equation modelling and redundancy analysis. At the microbial-community level, N addition increased the total phospholipid fatty acids content by increasing the dissolved organic carbon (DOC) and root biomass. Increases in soil microbial biomass carbon and N, however, was attributed to the increased DOC, N content and decreased pH. At the microbial-groups level, Fungal, arbuscular mycorrhizal fungal (AMF), gram-positive bacterial (GP) abundances and the GP:GN ratio first increased and then decreased with N addition. Nitrogen addition increased the abundances of bacteria, fungi, and actinomycetes mainly by increasing the DOC content and decreasing root biomass. Additionally, the decrease of pH and ammonium N caused by N addition increased the fungal abundances and reduced actinomycete abundances, respectively. Nitrogen addition shifted the rhizospheric microbial community mainly by altering the DOC content and root biomass. The current rate of N deposition (2.5 g N m-2 y-1) benefits plant growth and increases the abundances of fungi, arbuscular mycorrhizal fungi, GP, actinomycetes and the GP:GN ratio. PMID:28234932

  3. [Changes in vegetation and soil characteristics under tourism disturbance in lakeside wetland of northwest Yunnan Plateau, Southwest China].

    PubMed

    Tang, Ming-Yan; Yang, Yong-Xing

    2014-05-01

    The characteristics of vegetation and soil were investigated in Bita Lake and Shudu Lake wetlands in northwest Yunnan Plateau under tourism disturbance. The 22 typical plots in the wetlands were classified into 4 types by TWINSPAN, including primary wetland, light degradation, moderate degradation, and severe degradation. Along the degradation gradient, the plant community density, coverage, species number and Shannon diversity index increased and the plant height decreased in Bita Lake and Shudu Lake wetlands, and Whittaker diversity index increased in Bita Lake wetland. Plant species number, soil organic matter, total nitrogen, porosity, available nitrogen, available phosphorus and available potassium contents were higher in Shudu Lake wetland than in Bita Lake wetland, but the plant density, height, soil total potassium and pH were opposite. Canonical correspondence analysis (CCA) by importance values of 42 plants and 11 soil variables showed that soil organic matter, total nitrogen and total potassium were the key factors on plant species distribution in Bita Lake and Shudu Lake wetlands under tourism disturbance. TWINSPAN classification and analysis of vegetation-soil characteristics indicated the effects of tourism disturbance in Bita Lake wetland were larger than in Shudu Lake wetland.

  4. A simple method for estimating gross carbon budgets for vegetation in forest ecosystems.

    PubMed

    Ryan, Michael G.

    1991-01-01

    Gross carbon budgets for vegetation in forest ecosystems are difficult to construct because of problems in scaling flux measurements made on small samples over short periods of time and in determining belowground carbon allocation. Recently, empirical relationships have been developed to estimate total belowground carbon allocation from litterfall, and maintenance respiration from tissue nitrogen content. I outline a method for estimating gross carbon budgets using these empirical relationships together with data readily available from ecosystem studies (aboveground wood and canopy production, aboveground wood and canopy biomass, litterfall, and tissue nitrogen contents). Estimates generated with this method are compared with annual carbon fixation estimates from the Forest-BGC model for a lodgepole pine (Pinus contorta Dougl.) and a Pacific silver fir (Abies amabilis Dougl.) chronosequence.

  5. Air-drying of cells, the novel conditions for stimulated synthesis of triacylglycerol in a Green Alga, Chlorella kessleri.

    PubMed

    Shiratake, Takuma; Sato, Atsushi; Minoda, Ayumi; Tsuzuki, Mikio; Sato, Norihiro

    2013-01-01

    Triacylglycerol is used for the production of commodities including food oils and biodiesel fuel. Microalgae can accumulate triacylglycerol under adverse environmental conditions such as nitrogen-starvation. This study explored the possibility of air-drying of green algal cells as a novel and simple protocol for enhancement of their triacylglycerol content. Chlorella kessleri cells were fixed on the surface of a glass fibre filter and then subjected to air-drying with light illumination. The dry cell weight, on a filter, increased by 2.7-fold in 96 h, the corresponding chlorophyll content ranging from 1.0 to 1.3-fold the initial one. Concomitantly, the triacylglycerol content remarkably increased to 70.3 mole% of fatty acids and 15.9% (w/w), relative to total fatty acids and dry cell weight, respectively, like in cells starved of nitrogen. Reduction of the stress of air-drying by placing the glass filter on a filter paper soaked in H2O lowered the fatty acid content of triacylglycerol to 26.4 mole% as to total fatty acids. Moreover, replacement of the H2O with culture medium further decreased the fatty acid content of triacylglycerol to 12.2 mole%. It thus seemed that severe dehydration is required for full induction of triacylglycerol synthesis, and that nutritional depletion as well as dehydration are crucial environmental factors. Meanwhile, air-drying of Chlamydomonas reinhardtii cells increased the triacylglycerol content to only 37.9 mole% of fatty acids and 4.8% (w/w), relative to total fatty acids and dry cell weight, respectively, and a marked decrease in the chlorophyll content, on a filter, of 33%. Air-drying thus has an impact on triacylglycerol synthesis in C. reinhardtii also, however, the effect is considerably limited, owing probably to instability of the photosynthetic machinery. This air-drying protocol could be useful for the development of a system for industrial production of triacylglycerol with appropriate selection of the algal species.

  6. Body Mass Parameters, Lipid Profiles and Protein Contents of Zebrafish Embryos and Effects of 2,4-Dinitrophenol Exposure

    PubMed Central

    Hachicho, Nancy; Reithel, Sarah; Miltner, Anja; Heipieper, Hermann J.; Küster, Eberhard; Luckenbach, Till

    2015-01-01

    Morphology and physiology of fish embryos undergo dramatic changes during their development until the onset of feeding, supplied only by endogenous yolk reserves. For obtaining an insight how these restructuring processes are reflected by body mass related parameters, dry weights (dw), contents of the elements carbon and nitrogen and lipid and protein levels were quantified in different stages within the first four days of embryo development of the zebrafish (Danio rerio). The data show age dependent changes in tissue composition. Dry weights decreased significantly from 79μgdw/egg at 0hours post fertilization (hpf) to 61 μgdw/egg after 96 hpf. The amounts of total carbon fluctuated between 460 mg g-1 and 540 mg g-1 dw, nitrogen was at about 100 mg g-1 dw and total fatty acids were between 48–73 mg g-1 dw. In contrast to these parameters that remained relatively constant, the protein content, which was 240 mg g-1 at 0 hpf, showed an overall increase of about 40%. Comparisons of intact eggs and dechorionated embryos at stages prior to hatching (24, 30, 48 hpf) showed that the differences seen for dry weight and for carbon and nitrogen contents became smaller at more advanced stages, consistent with transition of material from the chorion to embryo tissue. Further, we determined the effect of 2,4-dinitrophenol at a subacutely toxic concentration (14 μM, LC10) as a model chemical challenge on the examined body mass related parameters. The compound caused significant decreases in phospholipid and glycolipid fatty acid contents along with a decrease in the phospholipid fatty acid unsaturation index. No major changes were observed for the other examined parameters. Lipidomic studies as performed here may thus be useful for determining subacute effects of lipophilic organic compounds on lipid metabolism and on cellular membranes of zebrafish embryos. PMID:26292096

  7. Nitrogen

    USGS Publications Warehouse

    Apodaca, L.E.

    2010-01-01

    Ammonia was produced by 13 companies at 23 plants in 16 states during 2009. Sixty percent of all U.S. ammonia production capacity was centered in Louisiana. Oklahoma and Texas because of those states' large reserves of natural gas, the dominant domestic feedstock. In 2009, U.S. producers operated at about 83 percent of their rated capacity (excluding plants that were idle for the entire year). Five companies — Koch Nitrogen Co.; Terra Industries Inc.; CF Industries Inc.; PCS Nitrogen Inc. and Agrium Inc., in descending order — accounted for 80 percent of the total U.S. ammonia production capacity. U.S. production was estimated to be 7.7 Mt (8.5 million st) of nitrogen (N) content in 2009 compared with 7.85 Mt (8.65 million st) of N content in 2008. Apparent consumption was estimated to have decreased to 12.1 Mt (13.3 million st) of N, a 10-percent decrease from 2008. The United States was the world's fourth-ranked ammonia producer and consumer following China, India and Russia. Urea, ammonium nitrate, ammonium phosphates, nitric acid and ammonium sulfate were the major derivatives of ammonia in the United States, in descending order of importance.

  8. Variation of alkaline phosphatase activity in sediments of shrimp culture ponds and its relationship with the contents of C, N and P

    NASA Astrophysics Data System (ADS)

    Su, Yuepeng; Ma, Shen; Dong, Shuanglin

    2005-01-01

    Nine enclosures (5 m × 5 m) were built in a Fenneropenaeus chinensis culture pond of Rushan Gulf in April, 2001. The probiotics and BIO ENERGIZER solution were applied for disparate treatments. Variations of alkaline phosphatase activity (APA) and its relationship with the contents of C, N and P in sediments were studied. Results show that APA of sediments increases from 3.096 nmol g-1min-1 to 5.407nmol g-1min-1 in culture period; the bacteria biomass is not the only factor to determine APA; the contents of total P and total organic carbon have a significant positive correlation with APA, while that of total nitrogen has a negative correlation. In addition, the contents of inorganic P and organic P are not regular with APA. By comparison, TOC shows a more significant coherence with APA, meaning that organic pollution in sediments affects APA remarkably.

  9. Solubility of Nitrogen in Superaustenitic Stainless Steels During Air Induction Melting

    NASA Astrophysics Data System (ADS)

    Chandrasekar, A.; Anburaj, J.; Narayanan, R.; Balusamy, V.; Mohamed Nazirudeen, S. S.

    2013-04-01

    The amount of nitrogen contained in super austenitic stainless steels (SASS) influences their properties significantly. The effect of maximum amount of nitrogen in the highly alloyed Cr and Ni SASS containing further additions of Mo and Mn is studied. The calculated nitrogen contents of the experimental alloys are compared with the actual nitrogen contents obtained in the alloys produced using induction melting furnace. The actual nitrogen content of the alloys is always lower than the calculated value, and this discrepancy is due to the presence of positive interaction parameters of Ni, Cu, and Si in the alloy. However, the yield of nitrogen in the liquid SASS is improved significantly with additions of Mn and Mo contents. The construction of multicomponent phase diagrams for SASS is demonstrated using Thermo-Calc software. SASS containing more nitrogen exhibited a very high strength without loss of toughness.

  10. Evalution on nutritive value of Portunus trituberculatus

    NASA Astrophysics Data System (ADS)

    Su, Xiu-Rong; Li, Tai-Wu; Ding, Ming-Jin; Chien, Paul K.

    1997-06-01

    This study on the nutritive indexes (total nitrogen, amino acids, crude fats, inorganic elements, unsaturated fatty acids) of meat, male and female reproductive gland of Portunus trituberculatus showed that their nutritive value is in the order meat>female reproductive gland>male reproductive gland and that they do not raise the total cholesterol (TC) and triglyceride (TG) contents of the serum of the animals which eat them but increase the contents of high density lipoprotein cholesterol (HDL-C) in the animal's blood. These findings implied that people who have high blood lipid and aortic atheroma can safely use them as food. This study showed that P. trituberculatus has high nutritive value.

  11. Effect of freezing time on macronutrients and energy content of breastmilk.

    PubMed

    García-Lara, Nadia Raquel; Escuder-Vieco, Diana; García-Algar, Oscar; De la Cruz, Javier; Lora, David; Pallás-Alonso, Carmen

    2012-08-01

    In neonatal units and human milk banks freezing breastmilk at less than -20 °C is the choice for preserving it. Scientific evidence in relation to the loss of nutritional quality during freezing is rare. Our main aim in this study is to determine the effect of freezing time up to 3 months on the content of fat, total nitrogen, lactose, and energy. Our secondary aim is to assess whether ultrasonic homogenization of samples enables a more suitable reading of breastmilk macronutrients with a human milk analyzer (HMA) (MIRIS, Uppsala, Sweden). Refrigerated breastmilk samples were collected. Each sample was divided into six pairs of aliquots. One pair was analyzed on day 0, and the remaining pairs were frozen and analyzed, one each at 7, 15, 30, 60, and 90 days later. For each pair, one aliquot was homogenized by stirring, and the other by applying ultrasound. Samples were analyzed with the HMA. By 3 months from freezing with the two homogenization methods, we observed a relevant and significant decline in the concentration of fat and energy content. The modification of total nitrogen and lactose was not constant and of lower magnitude. The absolute concentration of all macronutrients and calories was greater with ultrasonic homogenization. After 3 months from freezing at -20 °C, an important decrease in fat and caloric content is observed. Correct homogenization is fundamental for correct nutritional analysis.

  12. Combined effects of climate, restoration measures and slope position in change in soil chemical properties and nutrient loss across lands affected by the Wenchuan Earthquake in China.

    PubMed

    Lin, Yongming; Deng, Haojun; Du, Kun; Rafay, Loretta; Zhang, Guang-Shuai; Li, Jian; Chen, Can; Wu, Chengzhen; Lin, Han; Yu, Wei; Fan, Hailan; Ge, Yonggang

    2017-10-15

    The MS 8.0Wenchuan Earthquake in 2008 caused huge damage to land cover in the northwest of China's Sichuan province. In order to determine the nutrient loss and short term characteristics of change in soil chemical properties, we established an experiment with three treatments ('undestroyed', 'destroyed and treated', and 'destroyed and untreated'), two climate types (semi-arid hot climate and subtropical monsoon climate), and three slope positions (upslope, mid-slope, and bottom-slope) in 2011. Ten soil properties-including pH, organic carbon, total nitrogen, total phosphorus, total potassium, Ca 2+ , Mg 2+ , alkaline hydrolysable nitrogen, available phosphorus, and available potassium-were measured in surface soil samples in December 2014. Analyses were performed to compare the characteristics of 3-year change in soil chemical properties in two climate zones. This study revealed that soil organic carbon, total nitrogen, Ca 2+ content, alkaline hydrolysable nitrogen, available phosphorus, and available potassium were significantly higher in subtropical monsoon climate zones than in semi-arid hot climate zones. However, subtropical monsoon climate zones had a higher decrease in soil organic carbon, total nitrogen, total phosphorus, total potassium, and alkaline hydrolysable nitrogen in 'destroyed and untreated' sites than in semi-arid hot climate zones. Most soil chemical properties exhibited significant interactions, indicating that they may degrade or develop concomitantly. 'Destroyed and treated' sites in both climate types had lower C:P and N:P ratios than 'destroyed and untreated' sites. Principal component analysis (PCA) showed that the first, second, and third principal components explained 76.53% of the variation and might be interpreted as structural integrity, nutrient supply availability, and efficiency of soil; the difference of soil parent material; as well as weathering and leaching effects. Our study indicated that the characteristics of short term change in soil properties were affected by climate types and treatments, but not slope positions. Our results provide useful information for the selection of restoration countermeasures in different climate types to facilitate ecological restoration and reconstruction strategies in earthquake-affected areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Atmospheric Nitrogen Deposition and the Properties of Soils in Forests of Vologda Region

    NASA Astrophysics Data System (ADS)

    Kudrevatykh, I. Yu.; Ivashchenko, K. V.; Ananyeva, N. D.; Ivanishcheva, E. A.

    2018-02-01

    Twenty plots (20 m2 each) were selected in coniferous and mixed forests of the industrial Vologda district and the Vytegra district without developed industries in Vologda region. In March, snow cores corresponding to the snow cover depth were taken on these plots. In August, soil samples from the 0- to 20-cm layer of litter-free soddy-podzolic soil (Albic Retisol (Ochric)) were taken on the same plots in August. The content of mineral nitrogen (Nmin), including its ammonium (NH+ 4) and nitrate (NO- 3) forms, was determined in the snow (meltwater) and soil. The contents of total organic carbon, total nitrogen, and elements (Al, Ca); pH; particle size distribution; and microbiological parameters―carbon of microbial biomass (Cmic) and microbial respiration (MR)―were determined in the soil. The ratio MR/Cmic = qCO2 (specific respiration of microbial biomass, or soil microbial metabolic quotient) was calculated. The content of Nmic in meltwater of two districts was 1.7 mg/L on the average (1.5 and 0.3 mg/L for the NH+ 4 and NO- 3 forms, respectively). The annual atmospheric deposition was 0.6-8.9 kg Nmin/ha, the value of which in the Vologda district was higher than in the Vytegra district by 40%. Reliable correlations were found between atmospheric NH+ 4 depositions and Cmic (-0.45), between NH+ 4 and qCO2 (0.56), between atmospheric NO- 3 depositions and the soil NO- 3 (-0.45), and between NO- 3 and qCO2 (-0.58). The content of atmospheric Nmin depositions correlated with the ratios C/N (-0.46) and Al/Ca (-0.52) in the soil. In forests with the high input of atmospheric nitrogen (>2.0 kg NH+ 4/(ha yr) and >6.4 kg Nmin/(ha yr)), a tendency of decreasing Cmic, C/N, and Al/Ca, as well as increasing qCO2, was revealed, which could be indicative of deterioration in the functioning of microbial community and the chemical properties of the soil.

  14. Evaluating the impacts of landscape positions and nitrogen fertilizer rates on dissolved organic carbon on switchgrass land seeded on marginally yielding cropland.

    PubMed

    Lai, Liming; Kumar, Sandeep; Mbonimpa, Eric G; Hong, Chang Oh; Owens, Vance N; Neupane, Ram P

    2016-04-15

    Dissolved organic carbon (DOC) through leaching into the soils is another mechanism of net C loss. It plays an important role in impacting the environment and impacted by soil and crop management practices. However, little is known about the impacts of landscape positions and nitrogen (N) fertilizer rates on DOC leaching in switchgrass (Panicum virgatum L.). This experimental design included three N fertilizer rates [0 (low); 56 (medium); 112 (high) kg N ha(-1)] and three landscape positions (shoulder, backslope and footslope). Daily average DOC contents at backslope were significantly lower than that at shoulder and footslope. The DOC contents from the plots that received medium N rate were also significantly lower than the plots that received low N rates. The interactions of landscape and N rates on DOC contents were different in every year from 2009 to 2014, however, no significant consistent trend of DOC contents was observed over time. Annual average DOC contents from the plots managed with low N rate were higher than those with high N rate. These contents at the footslope were higher than that at the shoulder position. Data show that there is a moderate positive relationship between the total average DOC contents and the total average switchgrass biomass yields. Overall, the DOC contents from leachate in the switchgrass land were significantly influenced by landscape positions and N rates. The N fertilization reduced DOC leaching contents in switchgrass field. The switchgrass could retain soil and environment sustainability to some extent. These findings will assist in understanding the mechanism of changes in DOC contents with various parameters in the natural environment and crop management systems. However, use of long-term data might help to better assess the effects of above factors on DOC leaching contents and loss in the switchgrass field in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Effect of chronic nitrogen additions on soil nitrogen fractions in red spruce stands

    USGS Publications Warehouse

    David, M.B.; Cupples, A.M.; Lawrence, G.B.; Shi, G.; Vogt, K.; Wargo, P.M.

    1998-01-01

    The responses of temperate and boreal forest ecosystems to increased nitrogen (N) inputs have been varied, and the responses of soil N pools have been difficult to measure. In this study, fractions and pool sizes of N were determined in the forest floor of red spruce stands at four sites in the northeastern U.S. to evaluate the effect of increased N inputs on forest floor N. Two of the stands received 100 kg N ha-1 yr-1 for three years, one stand received 34 kg N ha-1 yr-1 for six years, and the remaining stand received only ambient N inputs. No differences in total N content or N fractions were measured in samples of the Oie and Oa horizons between treated and control plots in the three sites that received N amendments. The predominant N fraction in these samples was amino acid N (31-45 % of total N), followed by hydrolyzable unidentified N (16-31% of total N), acid- soluble N (18-22 % of total N), and NH4/+-N (9-13 % of total N). Rates of atmospheric deposition varied greatly among the four stands. Ammonium N and amino acid N concentrations in the Oie horizon were positively related to wet N deposition, with respective r2 values of 0.92 and 0.94 (n = 4, p < 0.05). These relationships were somewhat stronger than that observed between atmospheric wet N deposition and total N content of the forest floor, suggesting that these pools retain atmospherically deposited N. The NH4/+- N pool may represent atmospherically deposited N that is incorporated into organic matter, whereas the amino acid N pool could result from microbial immobilization of atmospheric N inputs. The response of forest floor N pools to applications of N may be masked, possibly by the large soil N pool, which has been increased by the long-term input of N from atmospheric deposition, thereby overwhelming the short-term treatments.

  16. Foliar nitrogen metabolism of adult Douglas-fir trees is affected by soil water availability and varies little among provenances.

    PubMed

    Du, Baoguo; Kreuzwieser, Jürgen; Dannenmann, Michael; Junker, Laura Verena; Kleiber, Anita; Hess, Moritz; Jansen, Kirstin; Eiblmeier, Monika; Gessler, Arthur; Kohnle, Ulrich; Ensminger, Ingo; Rennenberg, Heinz; Wildhagen, Henning

    2018-01-01

    The coniferous forest tree Douglas-fir (Pseudotsuga menziesii) is native to the pacific North America, and is increasingly planted in temperate regions worldwide. Nitrogen (N) metabolism is of great importance for growth, resistance and resilience of trees. In the present study, foliar N metabolism of adult trees of three coastal and one interior provenance of Douglas-fir grown at two common gardens in southwestern Germany (Wiesloch, W; Schluchsee, S) were characterized in two subsequent years. Both the native North American habitats of the seed sources and the common garden sites in Germany differ in climate conditions. Total and mineral soil N as well as soil water content were higher in S compared to W. We hypothesized that i) provenances differ constitutively in N pool sizes and composition, ii) N pools are affected by environmental conditions, and iii) that effects of environmental factors on N pools differ among interior and coastal provenances. Soil water content strongly affected the concentrations of total N, soluble protein, total amino acids (TAA), arginine and glutamate. Foliar concentrations of total N, soluble protein, structural N and TAA of trees grown at W were much higher than in trees at S. Provenance effects were small but significant for total N and soluble protein content (interior provenance showed lowest concentrations), as well as arginine, asparagine and glutamate. Our data suggest that needle N status of adult Douglas-fir is independent from soil N availability and that low soil water availability induces a re-allocation of N from structural N to metabolic N pools. Small provenance effects on N pools suggest that local adaptation of Douglas-fir is not dominated by N conditions at the native habitats.

  17. [Ecological distribution and antimicrobial effects of soil actinomycetes in artificial vegetation systems in Shazhuyu of Qinghai, China].

    PubMed

    Yang, Bin; Xue, Quan-hong; Chen, Zhan-quan; Guo, Zhi-ying; Zhang, Xiao-lu; Zhou, Yong-qiang; Xu, Ying-jun; Sun, De-fu

    2008-08-01

    In order to probe into the effects of artificial vegetation rehabilitation on soil actinomycetes, dilution plate and agar block methods were used to investigate the ecological distribution and antimicrobial effects of actinomycetes in sandy soil in Shazhuyu area of Qinghai after artificial vegetation restoration. The results showed that with the vegetation rehabilitation and the improvement of vegetation coverage on alpine sandy dry land, the quantity of soil actinomycetes increased significantly, being 145.4% higher in the grassland transferred from farmland than in sandy land. The quantity of soil Micromonospora in grassland transferred from farmland was about six times as much as that in sandy land. The average selection rate of antimicrobial actinomycetes was increased greatly, with the antimicrobial actinomycetes in the soil of grassland transferred from farmland, the antibacterial actinomycetes in the soil of natural grassland, and the pathogenic fungus resistant aetinomycetes in the soil of forestland being approximately 2, 3.2 and 1.5 times as much as those in the soil of sandy land, respectively. Vegetation coverage and soil nutrients had great influences on the quantities of actinomycetes and antimicrobial actinomycetes. The contents of soil organic matter and alkali-hydrolyzable nitrogen and the yield of fresh grasses had significant correlations with the quantities of actinomycetes (P < 0.01), and the content of soil organic matter and the yield of fresh grasses significantly correlated with the strain numbers of antimicrobial actinomycetes (P < 0.01). Furthermore, vegetation coverage and the contents of soil total nitrogen, total phosphorous, total potassium, total salt, and available potassium had significant correlations with the total quantities of actinomycetes, Streptomycetes, and Micromonospora (P < 0.05).

  18. Foliar nitrogen metabolism of adult Douglas-fir trees is affected by soil water availability and varies little among provenances

    PubMed Central

    Du, Baoguo; Kreuzwieser, Jürgen; Dannenmann, Michael; Junker, Laura Verena; Kleiber, Anita; Hess, Moritz; Jansen, Kirstin; Eiblmeier, Monika; Gessler, Arthur; Kohnle, Ulrich; Ensminger, Ingo; Rennenberg, Heinz

    2018-01-01

    The coniferous forest tree Douglas-fir (Pseudotsuga menziesii) is native to the pacific North America, and is increasingly planted in temperate regions worldwide. Nitrogen (N) metabolism is of great importance for growth, resistance and resilience of trees. In the present study, foliar N metabolism of adult trees of three coastal and one interior provenance of Douglas-fir grown at two common gardens in southwestern Germany (Wiesloch, W; Schluchsee, S) were characterized in two subsequent years. Both the native North American habitats of the seed sources and the common garden sites in Germany differ in climate conditions. Total and mineral soil N as well as soil water content were higher in S compared to W. We hypothesized that i) provenances differ constitutively in N pool sizes and composition, ii) N pools are affected by environmental conditions, and iii) that effects of environmental factors on N pools differ among interior and coastal provenances. Soil water content strongly affected the concentrations of total N, soluble protein, total amino acids (TAA), arginine and glutamate. Foliar concentrations of total N, soluble protein, structural N and TAA of trees grown at W were much higher than in trees at S. Provenance effects were small but significant for total N and soluble protein content (interior provenance showed lowest concentrations), as well as arginine, asparagine and glutamate. Our data suggest that needle N status of adult Douglas-fir is independent from soil N availability and that low soil water availability induces a re-allocation of N from structural N to metabolic N pools. Small provenance effects on N pools suggest that local adaptation of Douglas-fir is not dominated by N conditions at the native habitats. PMID:29566035

  19. Effects of Environmental Factors on Nutrients Release at Sediment-Water Interface and Assessment of Trophic Status for a Typical Shallow Lake, Northwest China

    PubMed Central

    Hou, Dekun; He, Jiang; Lü, Changwei; Sun, Ying; Zhang, Fujin; Otgonbayar, Khureldavaa

    2013-01-01

    Surface sediment and water samples were collected from Daihai Lake to study the biogeochemical characteristics of nitrogen and phosphorus, to estimate the loads of these nutrients, and to assess their effects on water quality. The contents and spatial distributions of total phosphorus (TP), total nitrogen (TN), and different nitrogen forms in sediments were analyzed. The results showed that concentrations of TN and TP in surface sediments ranged from 0.27 to 1.78 g/kg and from 558.31 to 891.29 mg/kg, respectively. Ratios of C : N ranged between 8.2 and 12.1, which indicated that nitrogen accumulated came mainly from terrestrial source. Ratios of N : P in all sampling sites were below 10, which indicated that N was the limiting nutrient for algal growth in this lake. Effects of environment factors on the release of nitrogen and phosphorus in lake sediments were also determined; high pH values could encourage the release of nitrogen and phosphorus. Modified Carlson's trophic state index (TSIM) and comprehensive trophic state index (TSIC) were applied to ascertain the trophic classification of the studied lake, and the values of TSIM and TSIC ranged from 53.72 to 70.61 and from 47.73 to 53.67, respectively, which indicated that the Daihai Lake was in the stage of hypereutropher. PMID:24023535

  20. Quality changes in sea urchin (Strongylocentrotus nudus) during storage in artificial seawater saturated with oxygen, nitrogen and air.

    PubMed

    Wang, Chao; Xue, Changhu; Xue, Yong; Li, Zhaojie; Lv, Yingchun; Zhang, Hao

    2012-01-15

    Sea urchin gonads are highly valued seafood that degenerates rapidly during the storage period. To study the influence of dissolved oxygen concentration on quality changes of sea urchin (Strongylocentrotus nudus) gonads, they were stored in artificial seawater saturated with oxygen, nitrogen or air at 5 ± 1 °C for 12 days. The sensory acceptability limit was 11-12, 6-7 and 7-8 days for gonads with oxygen, nitrogen or air packaging, respectively. Total volatile basic nitrogen (TVB-N) values reached 22.60 ± 1.32, 32.37 ± 1.37 and 24.91 ± 1.54 mg 100 g(-1) for gonads with oxygen, nitrogen or air packaging at the points of near to, exceeding and reaching the limit of sensory acceptability, indicating that TVB-N values of about 25 mg 100 g(-1) should be regarded as the limit of acceptability for sea urchin gonads. Relative ATP content values were 56.55%, 17.36% and 18.75% for gonads with oxygen, nitrogen or air packaging, respectively, on day 2. K-values were 19.37%, 25.05% and 29.02% for gonads with oxygen, nitrogen or air packaging, respectively, on day 2. Both pH and aerobic plate count values showed no significant difference (P > 0.05) for gonads with the three treatments. Gonads with oxygen packaging had lower sensory demerit point (P < 0.05) and TVB-N values (P < 0.05), and higher relative ATP content (P < 0.01) and K-values (P < 0.05), than that with nitrogen or air packaging, with an extended shelf life of 4-5 days during storage in artificial seawater at 5 ± 1 °C. Copyright © 2011 Society of Chemical Industry.

  1. Sunflower hulls degradation by co-composting with different nitrogen sources.

    PubMed

    Conghos, M M; Aguirre, M E; Santamaría, R M

    2006-09-01

    The decomposition of sunflower hull and its mixtures was examined under mesophilic (M) and thermophilic (T) temperatures during 100 days. Thermophilic conditions were used to define the composting process. Vetch, alfalfa and ammonium nitrate were used as nitrogen co-substrates, in 6 treatments: sunflower hulls alone (C), sunflower hulls plus ammonium nitrate (CN), sunflower hulls plus alfalfa (CA), sunflower hulls plus alfalfa and ammonium nitrate (CAV), sunflower hulls plus vetch (CV), sunflower hulls plus vetch and ammonium nitrate (CVN). Total organic carbon (TOC), oxidizable carbon (OC), dry matter, ashes content, total nitrogen (N), cellulose, hemicellulose, lignin, pH, electrical conductivity and C to N ratio were measured to asses the efficiency of the composting process and to determine the best amendment. Results show that sunflower hulls (Sh) treatment with the organic amendments had a better response than the inorganic ones. This was concluded from the variation in the fiberfractions, the decrease in dry matter and the major decrease in C to N ratio.

  2. Investigation of biomass and lipids production with Neochloris oleoabundans in photobioreactor.

    PubMed

    Pruvost, J; Van Vooren, G; Cogne, G; Legrand, J

    2009-12-01

    The fresh water microalga Neochloris oleoabundans was investigated for its ability to accumulate lipids and especially triacylglycerols (TAG). A systematic study was conducted, from the determination of the growth medium to its characterization in an airlift photobioreactor. Without nutrient limitation, a maximal biomass areal productivity of 16.5 g m(-2) day(-1) was found. Effects of nitrogen starvation to induce lipids accumulation was next investigated. Due to initial N. oleoabundans total lipids high content (23% of dry weight), highest productivity was obtained without mineral limitation with a maximal total lipids productivity of 3.8 g m(-2) day(-1). Regarding TAG, an almost similar productivity was found whatever the protocol was: continuous production without mineral limitation (0.5 g m(-2) day(-1)) or batch production with either sudden or progressive nitrogen deprivation (0.7 g m(-2) day(-1)). The decrease in growth rate reduces the benefit of the important lipids and TAG accumulation as obtained in nitrogen starvation (37% and 18% of dry weight, respectively).

  3. Characteristics of maize biochar with different pyrolysis temperatures and its effects on organic carbon, nitrogen and enzymatic activities after addition to fluvo-aquic soil.

    PubMed

    Wang, Xiubin; Zhou, Wei; Liang, Guoqing; Song, Dali; Zhang, Xiaoya

    2015-12-15

    In this study, the characteristics of maize biochar produced at different pyrolysis temperatures (300, 450 and 600°C) and its effects on organic carbon, nitrogen and enzymatic activities after addition to fluvo-aquic soil were investigated. As pyrolysis temperature increased, ash content, pH, electrical conductivity, surface area, pore volume and aromatic carbon content of biochar increased while yield, ratios of oxygen:carbon and hydrogen: carbon and alkyl carbon content decreased. During incubation, SOC, total N, and ammonium-N contents increased in all biochar-amended treatments compared with the urea treatment; however, soil nitrate-N content first increased and then decreased with increasing pyrolysis temperature of the applied biochar. Extracellular enzyme activities associated with carbon transformation first increased and then decreased with biochars pyrolyzed at 450 and 600°C. Protease activity markedly increased with increased pyrolysis temperatures, whereas pyrolysis temperature had limited effect on soil urease activity. The results indicated that the responses of extracellular enzymes to biochar were dependent on the pyrolysis temperature, the enzyme itself and incubation time as well. Copyright © 2015. Published by Elsevier B.V.

  4. Solvent-induced synthesis of nitrogen-doped hollow carbon spheres with tunable surface morphology for supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Yuan, Ren-Lu; Zhang, Ning; Ke, Chang-Ce; Ma, Shao-Xia; Zhang, Ru-Liang; Liu, Lei

    2018-04-01

    Nitrogen doped hollow carbon spheres (NHCSs) with tunable surface morphology have been prepared through one-pot carbonization method by using melamine-formaldehyde spheres as template and resorcinol-based resin as carbon precursor in ethanol-water solution. Well-dispersed NHCSs with particle size of 800 nm were obtained and the surface of NHCSs turn from smooth to tough, wrinkled, and finally concave by increasing the ethanol concentration. The fabricated NHCSs possessed high nitrogen content (3.99-4.83%) and hierarchical micro-dual mesoporous structure with surface area range of 265-405 m2 g-1 and total pore volume of 0.18-0.29 cm3 g-1, which contributed to high specific capacitance, excellent rate capability and long cycle life.

  5. Biogeochemical impacts of submerging forests through large dams in the Rio Negro, Uruguay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campo, J.; Sancholuz, K.

    1998-09-01

    The Bonete, Baygorria and Palmar dams of the Rio Negro successively submerged complex floodplain forests. The forest area submerged was greater than 280 km{sup 2} and resulted in large inputs of carbon, nitrogen and phosphorus to the reservoirs. After 46 years wood released 40, 34 and 71% of their original contents of carbon, nitrogen and phosphorus, respectively. During the same period the total amount of nutrients released by wood in comparison to leaves and litter is slightly less for nitrogen, almost double for phosphorus and more than three times for carbon. These results suggest that wood decomposition in water maymore » have a role in the trophic state of reservoirs.« less

  6. Concurrent production of carotenoids and lipid by a filamentous microalga Trentepohlia arborum.

    PubMed

    Chen, Lin; Zhang, Lanlan; Liu, Tianzhong

    2016-08-01

    During the study of Trentepohlia arborum it became clear that its cells are rich in lipids and carotenoids. Thus, lipid content, composition and fatty acids profiles in individual lipid classes, as well as pigment profiles, responding to different culture conditions, were further investigated. The results showed that the predominant carotenoids and lipid fraction in total lipid in this study was β-carotene and TAG, respectively. The lipid content increased significantly under high light while nitrogen-replete conditions induced the highest carotenoids content. However, only with a double stress of high light and nitrogen-deficiency it was possible to maximize the productivities of both carotenoids and lipids. Carotenoids (mainly β-carotene) accounted for ca. 5% of the microalgal lipid under the double stress. Data herein show the potential of T. arborum for the production of both lipids and carotenoids, and hence provide an appropriate way to produce different products from T. arborum. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Y.V.; Baghy, M.O.

    Sweet potato can yield 1000 gallons of ethanol/acre compared with 250-300 gal/acre for corn. Sweet potatoes of normal, relatively high, and very high dry-matter contents were fermented to ethanol. Pectinase was necessary to decrease viscosity before fermentation for economic processing, especially for varieties of normal and relatively high dry-matter contents. Attained yield of ethanol was 90% of theoretical value. After ethanol was distilled, residual stillage was separated by screening and centrifugation into filter cake, centrifuged solids, and stillage solubles. Filter cake and centrifuged solids had crude protein contents (nitrogen x 6.25, dry basis) of 22-32% and 42-57%, respectively, and accountedmore » for 44-85% and 0-17% of total sweet potato nitrogen. Sweet potatoes and their fermented products had 4.3-7.6 g of lysine/16 g of N and are expected to have good nutritional value. This practical method to ferment sweet potato for ethanol and to recover valuable protein-rich byproducts may have commercial potential. (Refs. 19).« less

  8. Soil-based treatment of partially treated liquid swine manure.

    PubMed

    Yang, H; Xiao, J; El-Din, M Gamal; Buchanan, I D; Bromley, D; Ikehata, K

    2007-01-01

    A soil-column system was tested for the removal of soluble organics and nutrients from partially treated liquid swine manure. The liquid manure was applied to the 900 mm deep (300 mm of local topsoil and 600 mm of local subsoil) soil columns continuously for an eight-week period, and leachate as well as soil samples were analysed. An effective liquid manure application rate of 17 mm d(-1) was determined based on a preliminary liquid manure soil-based treatment experiment. It was found that more than 90% of five-day biochemical oxygen demand, chemical oxygen demand, total Kjeldahl and ammonia nitrogen, and total phosphorus could be effectively removed from the liquid manure by the soil system. Nitrogen contents accumulated in the soil matrix mostly within the 0 to 300 mm depth, while no significant increase was observed in sub soils. Soil analyses indicated the occurrence of nitrification and denitrification in the soil columns. Nitrogen balance showed that about 42% of the applied nitrogen was lost from the system during the liquid manure soil-based treatment experiment, suggesting the emission of ammonia and other gaseous nitrogen generated through nitrification and denitrification. The leachate of the soil treatment system was used to irrigate Bermuda grass. No negative effect of leachate was observed on the plant growth.

  9. 21 CFR 177.1040 - Acrylonitrile/styrene copoly-mer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... article Nitrogen content of copolymer Maximum extractable fractions at specified temperatures and times... Total nonvolatile extractives not to exceed 0.01 mg/in 2 surface area of the food contact article when... not exceed 0.001 mg/in 2 surface area of the food contact article when exposed to distilled water and...

  10. Statistical, graphical, and trend summaries of selected water-quality and streamflow data from the Trinity River near Crockett, Texas, 1964-85

    USGS Publications Warehouse

    Goss, Richard L.

    1987-01-01

    As part of the statistical summaries, trend tests were conducted. Several small uptrends were detected for total nitrogen, total organic nitrogen, total ammonia nitrogen, total nitrite nitrogen, total nitrate nitrogen, total organic plus ammonia nitrogen, total nitrite plus nitrate nitrogen, and total phosphorus. Small downtrends were detected for biochemical oxygen demand and dissolved magnesium.

  11. Bioconversion of garden waste, kitchen waste and cow dung into value-added products using earthworm Eisenia fetida

    PubMed Central

    Wani, K.A.; Mamta; Rao, R.J.

    2013-01-01

    Solid waste management is a worldwide problem and it is becoming more and more complicated day by day due to rise in population, industrialization and changes in our life style. Transformation of industrial sludges into vermicompost is of double interest: on the one hand, a waste is converted into value added product, and, on the other, it controls a pollutant that is a consequence of increasing industrialization. Garden waste, kitchen waste and cow dung were subjected to recycle through vermicomposting by using the epigeic earthworm Eisenia fetida under field conditions. The pH, moisture content, total organic carbon, humus, nitrogen, phosphorous and potassium in vermicompost was analysed. It was found that moisture content, total organic carbon, humus, nitrogen, phosphorous and potassium was high in cow dung, followed by kitchen waste and garden waste. This study clearly indicates that vermicomposting of garden waste, kitchen waste and cow dung can not only produce a value added produce (vermicomposting) but at the same time reduce the quantity of waste. PMID:23961230

  12. Determination of volatile nitrosamines in grilled lamb and vegetables using comprehensive gas chromatography - nitrogen chemiluminescence detection.

    PubMed

    Kocak, D; Ozel, M Z; Gogus, F; Hamilton, J F; Lewis, A C

    2012-12-15

    The grilling of meat may generate dangerous levels of mutagenic and carcinogenic nitrosamines (NAs). Meat and vegetable samples underwent a two-step solid-phase extraction before analysis by comprehensive gas chromatography with a nitrogen chemiluminescence detection system (GCxGC-NCD). The GCxGC-NCD method showed high selectivity, sensitivity and equimolarity in its response to six specific NAs. NA contamination of charcoal-grilled lamb at various stages of cooking and with various fat contents and also charcoal-grilled vegetables were investigated. The grilling of lamb on unready charcoal resulted in the formation of considerable quantities of NAs. Grilling lamb on properly prepared, ready charcoal resulted in an increase in total concentrations of six NAs from 0 to 4.51 μg kg(-1) over a period of 16 min. Increasing the fat content of the grilled lamb from 5% to 20% caused a modest increase in total concentrations of the six investigated NAs from 4.51 to 5.30 μg kg(-1). Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. In situ one-step synthesis of hierarchical nitrogen-doped porous carbon for high-performance supercapacitors.

    PubMed

    Jeon, Ju-Won; Sharma, Ronish; Meduri, Praveen; Arey, Bruce W; Schaef, Herbert T; Lutkenhaus, Jodie L; Lemmon, John P; Thallapally, Praveen K; Nandasiri, Manjula I; McGrail, Benard Peter; Nune, Satish K

    2014-05-28

    A hierarchically structured nitrogen-doped porous carbon is prepared from a nitrogen-containing isoreticular metal-organic framework (IRMOF-3) using a self-sacrificial templating method. IRMOF-3 itself provides the carbon and nitrogen content as well as the porous structure. For high carbonization temperatures (950 °C), the carbonized MOF required no further purification steps, thus eliminating the need for solvents or acid. Nitrogen content and surface area are easily controlled by the carbonization temperature. The nitrogen content decreases from 7 to 3.3 at % as carbonization temperature increases from 600 to 950 °C. There is a distinct trade-off between nitrogen content, porosity, and defects in the carbon structure. Carbonized IRMOFs are evaluated as supercapacitor electrodes. For a carbonization temperature of 950 °C, the nitrogen-doped porous carbon has an exceptionally high capacitance of 239 F g(-1). In comparison, an analogous nitrogen-free carbon bears a low capacitance of 24 F g(-1), demonstrating the importance of nitrogen dopants in the charge storage process. The route is scalable in that multi-gram quantities of nitrogen-doped porous carbons are easily produced.

  14. Impact of nitrogen source and supply level on growth, yield and nutritional value of two contrasting ecotypes of Cichorium spinosum L. grown hydroponically.

    PubMed

    Chatzigianni, Martina; Alkhaled, Bara'a; Livieratos, Ioannis; Stamatakis, Aristidis; Ntatsi, Georgia; Savvas, Dimitrios

    2018-03-01

    In the present study, two contrasting stamnagathi (Cichorium spinosum L.) ecotypes originating either from a mountainous or from a seaside habitat were grown hydroponically and supplied with a nutrient solution differing in the total-N level (4 or 16 mmol L -1 ) and the N source (NH 4 + -N/total-N: 0.05, 0.25 or 0.50). The aim was to search for genotypic differences in nitrogen nutrition. At commercial maturity, the dry weight of mountainous plants was higher than that of seaside plants. The shoot mineral concentrations were higher in seaside plants than in mountainous plants in both harvests. The leaf nitrate concentration was influenced by the levels of both total-N and NH 4 + -N/total-N at both harvests, whereas plants with a seaside origin exhibited higher nitrate concentrations than those originating from a mountainous site in all total-N and NH 4 + -N/total-N treatments. The two stamnagathi ecotypes differed considerably in their responses to nitrogen nutrition and tissue nitrate content. The mountainous ecotype was superior in terms of growth, tissue nitrate concentration and antioxidant capacity, whereas the seaside ecotype accumulated more nutrient microcations in leaves. A low total-N concentration (up to 4 mmol L -1 ) combined with a high NH 4 + -N/total-N ratio (up to 0.05) could minimize tissue NO 3 - concentrations without compromising yield. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Concentrations and isotope ratios of carbon, nitrogen and sulfur in ocean-floor basalts

    USGS Publications Warehouse

    Sakai, H.; Marais, D.J.D.; Ueda, A.; Moore, J.G.

    1984-01-01

    Fresh submarine basalt glasses from Galapagos Ridge, FAMOUS area, Cayman Trough and Kilauea east rift contain 22 to 160 ppm carbon and 0.3 to 2.8 ppm nitrogen, respectively, as the sums of dissolved species and vesicle-filling gases (CO2 and N2). The large range of variation in carbon content is due to combined effect of depth-dependency of the solubility of carbon in basalt melt and varying extents of vapour loss during magma emplacement as well as in sample crushing. The isotopic ratios of indigenous carbon and nitrogen are in very narrow ranges,-6.2 ?? 0.2% relative to PDB and +0.2 ?? 0.6 %. relative to atmospheric nitrogen, respectively. In basalt samples from Juan de Fuca Ridge, however, isotopically light carbon (??13C = around -24%.) predominates over the indigenous carbon; no indigenous heavy carbon was found. Except for Galapagos Ridge samples, these ocean-floor basalts contain 670 to 1100 ppm sulfur, averaging 810 ppm, in the form of both sulfide and sulfate, whereas basalts from Galapagos Ridge are higher in both sulfur (1490 and 1570 ppm) and iron (11.08% total iron as FeO). The ??34S values average +0.3 ?? 0.5%. with average fractionation factor between sulfate and sulfide of +7.4 ?? 1.6%.. The sulfate/sulfide ratios tend to increase with increasing water content of basalt, probably because the oxygen fugacity increases with increasing water content in basalt melt. ?? 1984.

  16. Concentrations and isotope ratios of carbon, nitrogen and sulfur in ocean-floor basalts.

    PubMed

    Sakai, H; Des Marais, D J; Ueda, A; Moore, J G

    1984-01-01

    Fresh submarine basalt glasses from Galapagos Ridge, FAMOUS area, Cayman Trough and Kilauea east rift contain 22 to 160 ppm carbon and 0.3 to 2.8 ppm nitrogen, respectively, as the sums of dissolved species and vesicle-filling gases (CO2 and N2). The large range of variation in carbon content is due to combined effect of depth-dependency of the solubility of carbon in basalt melt and varying extents of vapour loss during magma emplacement as well as in sample crushing. The isotopic ratios of indigenous carbon and nitrogen are in very narrow ranges, -6.2 +/- 0.2% relative to PDB and +0.2 +/- 0.6% relative to atmospheric nitrogen, respectively. In basalt samples from Juan de Fuca Ridge, however, isotopically light carbon (delta 13 C = around -24%) predominates over the indigenous carbon; no indigenous heavy carbon was found. Except for Galapagos Ridge samples, these ocean-floor basalts contain 670 to 1100 ppm sulfur, averaging 810 ppm in the form of both sulfide and sulfate, whereas basalts from Galapagos Ridge are higher in both sulfur (1490 and 1570 ppm) and iron (11.08% total iron as FeO). the delta 34S values average +0.3 +/- 0.5% with average fractionation factor between sulfate and sulfide of +7.4 +/- 1.6%. The sulfate/sulfide ratios tend to increase with increasing water content of basalt, probably because the oxygen fugacity increases with increasing water content in basalt melt.

  17. Controls for maintaining low nitrogen oxides content in internal combustion engine exhaust gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siebke, H.; Moro, B.; Schoenborn, M.

    1976-08-10

    A control system and apparatus for measuring and monitoring the nitrogen oxides content of internal combustion engine exhaust gases is described. The exhaust gases are contacted with the reducing electrode of a sensor cell having a predetermined potential established between the cell electrodes so that the reducing electrode is able to reduce both the nitrogen oxides and oxygen content of the exhaust gas. The current flowing through the sensor cell is measured to determine whether the nitrogen oxides content of the exhaust gas is sufficiently low.

  18. Relationship between potassium fertilization and nitrogen metabolism in the leaf subtending the cotton (Gossypium hirsutum L.) boll during the boll development stage.

    PubMed

    Hu, Wei; Zhao, Wenqing; Yang, Jiashuo; Oosterhuis, Derrick M; Loka, Dimitra A; Zhou, Zhiguo

    2016-04-01

    The nitrogen (N) metabolism of the leaf subtending the cotton boll (LSCB) was studied with two cotton (Gossypium hirsutum L.) cultivars (Simian 3, low-K tolerant; Siza 3, low-K sensitive) under three levels of potassium (K) fertilization (K0: 0 g K2O plant(-1), K1: 4.5 K2O plant(-1) and K2: 9.0 g K2O plant(-1)). The results showed that total dry matter increased by 13.1-27.4% and 11.2-18.5% under K supply for Simian 3 and Siza 3. Boll biomass and boll weight also increased significantly in K1 and K2 treatments. Leaf K content, leaf N content and nitrate (NO3(-)) content increased with increasing K rates, and leaf N content or NO3(-) content had a significant positive correlation with leaf K content. Free amino acid content increased in the K0 treatment for both cultivars, due to increased protein degradation caused by higher protease and peptidase activities, resulting in lower protein content in the K0 treatment. The critical leaf K content for free amino acid and soluble protein content were 14 mg g(-1) and 15 mg g(-1) in Simian 3, and 17 mg g(-1) and 18 mg g(-1) in Siza 3, respectively. Nitrate reductase (NR), glutamic-oxaloace transaminase (GOT) and glutamic-pyruvic transaminase (GPT) activities increased in the K1 and K2 treatments for both cultivars, while glutamine synthetase (GS) and glutamate synthase (GOGAT) activities increased under K supply treatments only for Siza 3, and were not affected in Simian 3, indicating that this was the primary difference in nitrogen-metabolizing enzymes activities for the two cultivars with different sensitivity to low-K. Copyright © 2016. Published by Elsevier Masson SAS.

  19. A Mathematical Model of Neutral Lipid Content in terms of Initial Nitrogen Concentration and Validation in Coelastrum sp. HA-1 and Application in Chlorella sorokiniana

    PubMed Central

    Zhao, Yue; Liu, Zhiyong; Liu, Chenfeng; Hu, Zhipeng

    2017-01-01

    Microalgae are considered to be a potential major biomass feedstock for biofuel due to their high lipid content. However, no correlation equations as a function of initial nitrogen concentration for lipid accumulation have been developed for simplicity to predict lipid production and optimize the lipid production process. In this study, a lipid accumulation model was developed with simple parameters based on the assumption protein synthesis shift to lipid synthesis by a linear function of nitrogen quota. The model predictions fitted well for the growth, lipid content, and nitrogen consumption of Coelastrum sp. HA-1 under various initial nitrogen concentrations. Then the model was applied successfully in Chlorella sorokiniana to predict the lipid content with different light intensities. The quantitative relationship between initial nitrogen concentrations and the final lipid content with sensitivity analysis of the model were also discussed. Based on the model results, the conversion efficiency from protein synthesis to lipid synthesis is higher and higher in microalgae metabolism process as nitrogen decreases; however, the carbohydrate composition content remains basically unchanged neither in HA-1 nor in C. sorokiniana. PMID:28194424

  20. Effects of Non-Indigenous Oysters on Microbial Diversity and Ecosystem Functioning

    PubMed Central

    Green, Dannielle S.; Boots, Bas; Crowe, Tasman P.

    2012-01-01

    Invasive ecosystem engineers can physically and chemically alter the receiving environment, thereby affecting biodiversity and ecosystem functioning. The Pacific oyster, Crassostrea gigas, invasive throughout much of the world, can establish dense populations monopolising shorelines and possibly altering ecosystem processes including decomposition and nutrient cycling. The effects of increasing cover of invasive C. gigas on ecosystem processes and associated microbial assemblages in mud-flats were tested experimentally in the field. Pore-water nutrients (NH4 + and total oxidised nitrogen), sediment chlorophyll content, microbial activity, total carbon and nitrogen, and community respiration (CO2 and CH4) were measured to assess changes in ecosystem functioning. Assemblages of bacteria and functionally important microbes, including methanogens, methylotrophs and ammonia-oxidisers were assessed in the oxic and anoxic layers of sediment using terminal restriction length polymorphism of the bacterial 16S rRNA, mxaF, amoA and archaeal mcrA genes respectively. At higher covers (40 and 80%) of oysters there was significantly greater microbial activity, increased chlorophyll content, CO2 (13 fold greater) and CH4 (6 fold greater) emission from the sediment compared to mud-flats without C. gigas. At 10% cover, C. gigas increased the concentration of total oxidised nitrogen and altered the assemblage structure of ammonia-oxidisers and methanogens. Concentrations of pore-water NH4 + were increased by C. gigas regardless of cover. Invasive species can alter ecosystem functioning not only directly, but also indirectly, by affecting microbial communities vital for the maintenance of ecosystem processes, but the nature and magnitude of these effects can be non-linear, depending on invader abundance. PMID:23144762

  1. Biogas Production by Co-Digestion of Goat Manure with Three Crop Residues

    PubMed Central

    Zhang, Tong; Liu, Linlin; Song, Zilin; Ren, Guangxin; Feng, Yongzhong; Han, Xinhui; Yang, Gaihe

    2013-01-01

    Goat manure (GM) is an excellent raw material for anaerobic digestion because of its high total nitrogen content and fermentation stability. Several comparative assays were conducted on the anaerobic co-digestion of GM with three crop residues (CRs), namely, wheat straw (WS), corn stalks (CS) and rice straw (RS), under different mixing ratios. All digesters were implemented simultaneously under mesophilic temperature at 35±1 °C with a total solid concentration of 8%. Result showed that the combination of GM with CS or RS significantly improved biogas production at all carbon-to-nitrogen (C/N) ratios. GM/CS (30:70), GM/CS (70:30), GM/RS (30:70) and GM/RS (50:50) produced the highest biogas yields from different co-substrates (14840, 16023, 15608 and 15698 mL, respectively) after 55 d of fermentation. Biogas yields of GM/WS 30:70 (C/N 35.61), GM/CS 70:30 (C/N 21.19) and GM/RS 50:50 (C/N 26.23) were 1.62, 2.11 and 1.83 times higher than that of CRs, respectively. These values were determined to be the optimal C/N ratios for co-digestion. However, compared with treatments of GM/CS and GM/RS treatments, biogas generated from GM/WS was only slightly higher than the single digestion of GM or WS. This result was caused by the high total carbon content (35.83%) and lignin content (24.34%) in WS, which inhibited biodegradation. PMID:23825574

  2. [Vermicomposting of different organic materials and three-dimensional excitation emission matrix fluorescence spectroscopic characterization of their dissolved organic matter].

    PubMed

    Yang, Wei; Wang, Dong-sheng; Liu, Man-qiang; Hu, Feng; Li, Hui-xin; Huang, Zhong-yang; Chang, Yi-jun; Jiao, Jia-guo

    2015-10-01

    In this experiment, different proportions of the cattle manure, tea-leaf, herb and mushroom residues, were used as food for earthworm (Eisenia fetida) to study the growth of the earth-worm. Then the characteristics and transformation of nutrient content and three-dimensional excitation emission matrix fluorescence (3DEEM) of dissolved organic matter (DOM) during vermistabilization were investigated by means of chemical and spectroscopic methods. The result showed that the mixture of different ratios of cattle manure with herb residue, and cattle manure with tea-leaf were conducive to the growth of earthworm, while the materials compounded with mushroom residue inhibited the growth of earthworm. With the increasing time of verimcomposting, the pH in vermicompost tended to be circumneutral and weakly acidic, and there were increases in electrical conductivity, and the contents of total nitrogen, total phosphorus, available nitrogen, and available phosphorus, while the total potassium and available potassium increased first and then decreased, and the organic matter content decreased. 3DEEM and fluorescence regional integration results indicated that, the fluorescence of protein-like fluorescence peaks declined significantly, while the intensity of humic-like fluorescence peak increased significantly in DOM. Vermicomposting process might change the compositions of DOM with elevated concentrations of humic acid and fulvic acid in the organics. In all, this study suggested the suitability of 3DEEM for monitoring the organics transformation and assessing the maturity in the vermicomposting.

  3. Application of wet waste from shrimp ( Litopenaeus vannamei) with or without sea mud to feeding sea cucumber ( Stichopus monotuberculatus)

    NASA Astrophysics Data System (ADS)

    Chen, Yanfeng; Hu, Chaoqun; Ren, Chunhua

    2015-02-01

    In the present study, the applicability of the wet waste collected from shrimp ( Litopenaeus vannamei) to the culture of sea cucumber ( Stichopus monotuberculatus) was determined. The effects of dietary wet shrimp waste on the survival, specific growth rate (SGR), fecal production rate (FPR), ammonia- and nitrite-nitrogen productions of sea cucumber were studied. The total organic matter (TOM) level in the feces of sea cucumber was compared with that in corresponding feeds. Diet C (50% wet shrimp waste and 50% sea mud mash) made sea cucumber grow faster than other diets. Sea cucumber fed with either diet D (25% wet shrimp waste and 75% sea mud mash) or sole sea mud exhibited negative growth. The average lowest total FPR of sea cucumber occurred in diet A (wet shrimp waste), and there was no significant difference in total FPR between diet C and diet E (sea mud mash) ( P > 0.05). The average ammonia-nitrogen production of sea cucumber in different diet treatments decreased gradually with the decrease of crude protein content in different diets. The average highest nitrite-nitrogen production occurred in diet E treatment, and there was no significant difference in nitrite-nitrogen production among diet A, diet B (75% wet shrimp waste and 25% sea mud mash) and diet C treatments ( P > 0.05). In each diet treatment, the total organic matter (TOM) level in feces decreased to different extent compared with that in corresponding feeds.

  4. [Estimation and Visualization of Nitrogen Content in Citrus Canopy Based on Two Band Vegetation Index (TBVI)].

    PubMed

    Wang, Qiao-nan; Ye, Xu-jun; Li, Jin-meng; Xiao, Yu-zhao; He, Yong

    2015-03-01

    Nitrogen is a necessary and important element for the growth and development of fruit orchards. Timely, accurate and nondestructive monitoring of nitrogen status in fruit orchards would help maintain the fruit quality and efficient production of the orchard, and mitigate the pollution of water resources caused by excessive nitrogen fertilization. This study investigated the capability of hyperspectral imagery for estimating and visualizing the nitrogen content in citrus canopy. Hyperspectral images were obtained for leaf samples in laboratory as well as for the whole canopy in the field with ImSpector V10E (Spectral Imaging Ltd., Oulu, Finland). The spectral datas for each leaf sample were represented by the average spectral data extracted from the selected region of interest (ROI) in the hyperspectral images with the aid of ENVI software. The nitrogen content in each leaf sample was measured by the Dumas combustion method with the rapid N cube (Elementar Analytical, Germany). Simple correlation analysis and the two band vegetation index (TBVI) were then used to develop the spectra data-based nitrogen content prediction models. Results obtained through the formula calculation indicated that the model with the two band vegetation index (TBVI) based on the wavelengths 811 and 856 nm achieved the optimal estimation of nitrogen content in citrus leaves (R2 = 0.607 1). Furthermore, the canopy image for the identified TBVI was calculated, and the nitrogen content of the canopy was visualized by incorporating the model into the TBVI image. The tender leaves, middle-aged leaves and elder leaves showed distinct nitrogen status from highto low-levels in the canopy image. The results suggested the potential of hyperspectral imagery for the nondestructive detection and diagnosis of nitrogen status in citrus canopy in real time. Different from previous studies focused on nitrogen content prediction at leaf level, this study succeeded in predicting and visualizing the nutrient content of fruit trees at canopy level. This would provide valuable information for the implementation of individual tree-based fertilization schemes in precision orchard management practices.

  5. Spatial Heterogeneity in the Properties of High-Moor Peat Soils under Local Pyrogenesis in Northeastern Sakhalin

    NASA Astrophysics Data System (ADS)

    Lipatov, D. N.; Shcheglov, A. I.; Manakhov, D. V.; Brekhov, P. T.

    2016-02-01

    The structure and properties of oligotrophic peat, oligotrophic peat gley, and pyrogenic oligotrophic peat soils identified on a plot 0.5 km2 in area in the northeast of Sakhalin Island have been studied. The vertical distributions of physicochemical, chemical, and ecotoxicological parameters in the profiles of some bog soil groups have been considered. An increase in ash content, a less acid reaction, and a deficit of available nitrogen and potassium have been revealed in the upper horizons of pyrogenic soils. No accumulation of mobile heavy metals is manifested in the pyrogenic horizons of peat soils. Statistical parameters of the spatial variation in pHKCl and total acidity, as well as the contents of ash, available phosphorus, exchangeable potassium, ammonium and nitrate nitrogen, mobile heavy metals (Cr, Ni, Cu, Zn, Cd, Pb), and benzo[ a]pyrene, have been calculated for the moss and sublitter horizons. The variation coefficients are 30-100% for most of the studied parameters and reach 100-200% for available phosphorus; ammonium nitrogen; and mobile Ni, Cu, Zn, and Cd. An increase in the content of benzo[ a]pyrene, although without MPC exceedance, is noted in the moss of pyrogenic soils and the peat horizons untouched by fires.

  6. Development of Soil Characteristics and Plant Communities On Reclaimed and Unreclaimed Spoil Heaps After Coal Mining

    NASA Astrophysics Data System (ADS)

    Cudlín, Ondřej; Řehák, Zdeněk; Cudlín, Pavel

    2016-10-01

    The aim of this study was to compare soil characteristics, plant communities and the rate of selected ecosystem function performance on reclaimed and unreclaimed plots (left for spontaneous succession) of different age on spoil heaps. Twelve spoil heaps (three circle plots of radius 12.5 m) near the town Kladno in north-west direction from Prague, created after deep coal mining, were compared. Five mixed soil samples from organo-mineral horizons in each plot were analysed for total content of carbon, nitrogen and phosphorus. In addition, active soil pH (pHH2O) was determined. Plant diversity was determined by vegetation releves. The biodiversity value of the habitat according to the Habitat Valuation Method was assessed and the rate of evapotranspiration function by the Method of Valuation Functions and Services of Ecosystems in the Czech Republic were determined. The higher organo-mineral layers and higher amount of total nitrogen content were found on the older reclaimed and unreclaimed plots than in younger plots. The number of plant species and the total contents of carbon and nitrogen were significantly higher at the unreclaimed plots compared to reclaimed plots. The biodiversity values and evapotranspiration function rate were also higher on unreclaimed plots. From this perspective, it is possible to recommend using of spontaneous succession, together with routine reclamation methods to restore habitats after coal mining. Despite the relatively high age of vegetation in some of selected plots (90 years), both the reclaimed and unreclaimed plots have not reached the stage of potential vegetation near to natural climax. Slow development of vegetation was probably due to unsuitable substrate of spoil heaps and a lack of plant and tree species of natural forest habitats in this area. However, it is probable that vegetation communities on observed spoil heaps in both type of management (reclaimed and unreclaimed) will achieve the stage of natural climax and they will provide ecosystem functions more effectively in the future.

  7. The adaptability of a wetland plant species Myriophyllum aquaticum to different nitrogen forms and nitrogen removal efficiency in constructed wetlands.

    PubMed

    Wang, Rui; Bai, Na; Xu, Shengjun; Zhuang, Guoqiang; Bai, Zhihui; Zhao, Zhirui; Zhuang, Xuliang

    2018-03-01

    Constructed wetlands (CWs) cultivated with Myriophyllum aquaticum showed great potential for total nitrogen (TN) removal from aquatic ecosystems in previous studies. To evaluate the growth characteristics, photosynthetic pigment content, and antioxidative responses of M. aquaticum, as well as its TN removal efficiency in CWs, M. aquaticum was treated with different levels of ammonium (NH 4 + ) and nitrate (NO 3 - ) for 28 days. The results indicated that M. aquaticum had strong nitrogen stress tolerance and was more likely to be suppressed by high levels of NH 4 + than NO 3 - . High levels of NH 4 + also led to inhibition of synthesis of photosynthetic pigments and increased peroxidase activity in plant leaves, which was not found in the NO 3 - treatments. High levels of both NH 4 + and NO 3 - generated obvious oxidative stress through elevation of malondialdehyde content while decreasing superoxide dismutase activity in the early stage. A sustainable increase of TN removal efficiency in most of the CWs indicated that M. aquaticum was a candidate species for treating wastewater with high levels of nitrogen because of its higher tolerance for NH 4 + and NO 3 - stress. However, the increase of TN removal efficiency was hindered in the late stage when treated with high levels of NH 4 + of 26 and 36 mmol/L, indicating that its tolerance to NH 4 + stress might have a threshold. The results of this study will enrich the studies on detoxification of high ammonium ion content in NH 4 + -tolerant submerged plants and supply valuable reference data for proper vegetation of M. aquaticum in CWs.

  8. Delayed addition of nitrogen-rich substrates during composting of municipal waste: Effects on nitrogen loss, greenhouse gas emissions and compost stability.

    PubMed

    Nigussie, Abebe; Bruun, Sander; Kuyper, Thomas W; de Neergaard, Andreas

    2017-01-01

    Municipal waste is usually composted with an N-rich substrate, such as manure, to increase the N content of the product. This means that a significant amount of nitrogen can be lost during composting. The objectives of this study were (i) to investigate the effect of split addition of a nitrogen-rich substrate (poultry manure) on nitrogen losses and greenhouse gas emissions during composting and to link this effect to different bulking agents (coffee husks and sawdust), and (ii) to assess the effect of split addition of a nitrogen-rich substrate on compost stability and sanitisation. The results showed that split addition of the nitrogen-rich substrate reduced nitrogen losses by 9% when sawdust was used and 20% when coffee husks were used as the bulking agent. Depending on the bulking agent used, split addition increased cumulative N 2 O emissions by 400-600% compared to single addition. In contrast, single addition increased methane emissions by up to 50% compared to split addition of the substrate. Hence, the timing of the addition of the N-rich substrate had only a marginal effect on total non-CO 2 greenhouse gas emissions. Split addition of the N-rich substrate resulted in compost that was just as stable and effective at completely eradicating weed seeds as single addition. These findings therefore show that split addition of a nitrogen-rich substrate could be an option for increasing the fertilising value of municipal waste compost without having a significant effect on total greenhouse gas emissions or compost stability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Performance of phosphogypsum and calcium magnesium phosphate fertilizer for nitrogen conservation in pig manure composting.

    PubMed

    Li, Yun; Luo, Wenhai; Li, Guoxue; Wang, Kun; Gong, Xiaoyan

    2018-02-01

    This study investigated the performance of phosphogypsum and calcium magnesium phosphate fertilizer for nitrogen conservation during pig manure composting with cornstalk as the bulking agent. Results show that phosphogypsum increased nitrous oxide (N 2 O) emission, but significantly reduced ammonia (NH 3 ) emission and thus enhanced the mineral and total nitrogen (TN) contents in compost. Although N 2 O emission could be reduced by adding calcium magnesium phosphate fertilizer, NH 3 emission was considerably increased, resulting in an increase in TN loss during composting. By blending these two additives, both NH 3 and N 2 O emissions could be mitigated, achieving effective nitrogen conservation in composting. More importantly, with the addition of 20% TN of the mixed composting materials, these two additives could synergistically improve the compost maturity and quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Physicochemical characterization of mozzarella cheese wheys and stretchwaters in comparison with several other sweet wheys.

    PubMed

    Gernigon, G; Piot, M; Beaucher, E; Jeantet, R; Schuck, P

    2009-11-01

    To better understand the origins of the problems occurring during mozzarella cheese whey concentration, lactose crystallization, and spray-drying steps, a physicochemical characterization was achieved. For this purpose, mozzarella cheese wheys were sampled and their content in different compounds such as total nitrogen, noncasein nitrogen, nonprotein nitrogen, lactate, citrate, chloride, sulfate, phosphate anions, calcium, magnesium, potassium, sodium cations, and the sugars glucose and galactose were measured. In a second step, the results were compared with the corresponding content in cheddar cheese wheys, raclette cheese wheys, soft cheese wheys, and Swiss-type cheese wheys. At the end of this survey, it was shown that mozzarella cheese wheys were more concentrated in lactate and in minerals--especially phosphate, calcium, and magnesium--than the other cheese wheys and that they contained galactose. These constituents are known to be hygroscopic. Complementary surveys are now necessary to compare the hygroscopicity of galactose and lactate and discover whether the amounts of these compounds found in mozzarella cheese wheys are a factor in the problems encountered during the concentration, lactose crystallization, and spray-drying steps.

  11. [Effects of supplemental irrigation by monitoring soil moisture on the'water-nitrogen utilization of wheat and soil NO3(-)-N leaching].

    PubMed

    Shi, Yu; Yu, Zhen-wen; He, Jian-ning; Zhang, Yong-li

    2016-02-01

    Field experiments were conducted during 2012-2014 wheat growing seasons. With no irrigation in the whole stage (WO) treatment as control, three supplemental irrigation treatments were designed based on average relative soil moisture contents at 0-140-cm layer, at jointing and anthesis stages (65% for treatment W1 ; 70% for treatment W2; 75% for treatment W3; respectively), to examine effects of supplemental irrigation on nitrogen accumulation and translocation, grain yield, water use efficiency, and soil nitrate nitrogen leaching in wheat field., Soil water consumption amount, the percentage of soil water consumption and water irrigation to total water consumption in W2 were higher, and soil water consumption of W2 in 100-140 cm soil layer was also higher. The nitrogen accumulation before anthesis and after anthesis were presented as W2, W3>W1>W0, the nitrogen accumulation in vegetative organs at maturity as W3>W2>Wl>W0, and the nitrogen translocation from vegetative organs to grain and the nitrogen accumulation in grain at maturity as W2> W3>W1>W0. At maturity, soil NO3(-)-N content in 0-60 cm soil layer was presented. as W0>W1>W2>W3, that in 80-140 cm soil layer was significantly higher in W3 than in the other treatments, and no significant difference was found in 140-200 cm soil layer among all treatments. W treatment obtained the highest grain yield, water use efficiency, nitrogen uptake efficiency and partial productivity of applied nitrogen. As far as grain yield, water use efficiency, nitrogen uptake efficiency and soil NO3(1)-N leaching were concerned, the W2 regime was the optimal irrigation treatment in this experiment.

  12. Effect of feed characteristics on the organic matter, nitrogen and phosphorus removal in an activated sludge system treating piggery slurry.

    PubMed

    González, C; García, P A; Muñoz, R

    2009-01-01

    Piggery wastewater is characterized by its high content in nitrogen and phosphorus, as well as by a low C/N ratio. This type of wastewater is traditionally spread to croplands (with its subsequent leaching to groundwater) or rarely discharged into natural water bodies, which ultimately cause severe episodes of eutrophication in aquatic ecosystems. In this context, activated sludge systems constitute a robust and efficient treatment option. The performance of an activated sludge process using a pre-denitrification configuration treating both sieved and flocculated swine slurry at a hydraulic retention time (HRT) of 7.7 days was evaluated. In order to avoid bacterial wash-out, sludge from the settler was recirculated to the anoxic tank to accomplish denitrification. Once the biomass was acclimatized, the reactor was fed with swine slurry containing 19, 2.6, and 0.27 g/L of total chemical oxygen demand (COD), total Kjeldhal nitrogen (TKN), and soluble P, respectively. Nitrogen removal showed a clear dependency on the influent composition. When the influent TKN/total COD and soluble COD/total COD ratios were respectively 0.12-0.15 and 0.7, the reactor exhibited good removal efficiencies (up to 99 and 91 for N-NH(4)(+), TKN, respectively) while PO(4)(3-) was removed up to 65%. However, when the influent TKN/total COD ratio rose to 0.26 and soluble COD/total COD decreased to 0.3, the denitrification process was severely hindered concomitant with and accumulation of nitrite. Nevertheless, organic matter degradation was not affected by influent composition. At the last stage of the experiment, removals of dissolved phosphorus fell to 40% when the redox potential (ORP) profile showed a constant value of -400 mV, likely due to phosphate released from bacterial sludge.

  13. Soil respiration characteristics in different land uses and response of soil organic carbon to biochar addition in high-latitude agricultural area.

    PubMed

    Ouyang, Wei; Geng, Xiaojun; Huang, Wejia; Hao, Fanghua; Zhao, Jinbo

    2016-02-01

    The farmland tillage practices changed the soil chemical properties, which also impacted the soil respiration (R s ) process and the soil carbon conservation. Originally, the farmland in northeast China had high soil carbon content, which was decreased in the recent decades due to the tillage practices. To better understand the R s dynamics in different land use types and its relationship with soil carbon loss, soil samples at two layers (0-15 and 15-30 cm) were analyzed for organic carbon (OC), total nitrogen (TN), total phosphorus (TP), total carbon (TC), available nitrogen (AN), available phosphorus (AP), soil particle size distribution, as well as the R s rate. The R s rate of the paddy land was 0.22 (at 0-15 cm) and 3.01 (at 15-30 cm) times of the upland. The average concentrations of OC and clay content in cultivated areas were much lower than in non-cultivated areas. The partial least squares analysis suggested that the TC and TN were significantly related to the R s process in cultivated soils. The upland soil was further used to test soil CO2 emission response at different biochar addition levels during 70-days incubation. The measurement in the limited incubation period demonstrated that the addition of biochar improved the soil C content because it had high concentration of pyrogenic C, which was resistant to mineralization. The analysis showed that biochar addition can promote soil OC by mitigating carbon dioxide (CO2) emission. The biochar addition achieved the best performance for the soil carbon conservation in high-latitude agricultural area due to the originally high carbon content.

  14. Plasticity in mesophyll volume fraction modulates light-acclimation in needle photosynthesis in two pines.

    PubMed

    Niinemets, Ulo; Lukjanova, Aljona; Turnbull, Matthew H; Sparrow, Ashley D

    2007-08-01

    Acclimation potential of needle photosynthetic capacity varies greatly among pine species, but the underlying chemical, anatomical and morphological controls are not entirely understood. We investigated the light-dependent variation in needle characteristics in individuals of Pinus patula Schlect. & Cham., which has 19-31-cm long pendulous needles, and individuals of P. radiata D. Don., which has shorter (8-17-cm-long) stiffer needles. Needle nitrogen and carbon contents, mesophyll and structural tissue volume fractions, needle dry mass per unit total area (M(A)) and its components, volume to total area ratio (V/A(T)) and needle density (D = M(A)/(V/A(T))), and maximum carboxylase activity of Rubisco (V(cmax)) and capacity of photosynthetic electron transport (J(max)) were investigated in relation to seasonal mean integrated irradiance (Q(int)). Increases in Q(int) from canopy bottom to top resulted in proportional increases in both needle thickness and width such that needle total to projected surface area ratio, characterizing the efficiency of light interception, was independent of Q(int). Increased light availability also led to larger M(A) and nitrogen content per unit area (N(A)). Light-dependent modifications in M(A) resulted from increases in both V/A(T) and D, whereas N(A) changed because of increases in both M(A) and mass-based nitrogen content (N(M)) (N(A) = N(M)M(A)). Overall, the volume fraction of mesophyll cells increased with increasing irradiance and V/A(T) as the fraction of hypodermis and epidermis decreased with increasing needle thickness. Increases in M(A) and N(A) resulted in enhanced J(max) and V(cmax) per unit area in both species, but mass-based photosynthetic capacity increased only in P. patula. In addition, J(max) and V(cmax) showed greater plasticity in response to light in P. patula. Species differences in mesophyll volume fraction explained most of the variation in mass-based needle photosynthetic capacity between species, demonstrating that differences in plastic adjustments in mass-based photosynthetic activities among these representative individuals were mainly associated with contrasting investments in mesophyll cells. Greater area-based photosynthetic plasticity in P. patula relative to P. radiata was associated with larger increases in M(A) and mesophyll volume fraction with increasing irradiance. These data collectively demonstrate that light-dependent increases in mass-based nitrogen contents and photosynthetic activities were associated with an increased mesophyll volume fraction in needles at higher irradiances. They also emphasize the importance of light-dependent anatomical modifications in determining needle photosynthetic capacity.

  15. Dibasic Ammonium Phosphate Application Enhances Aromatic Compound Concentration in Bog Bilberry Syrup Wine.

    PubMed

    Wang, Shao-Yang; Li, Yi-Qing; Li, Teng; Yang, Hang-Yu; Ren, Jie; Zhang, Bo-Lin; Zhu, Bao-Qing

    2016-12-29

    A nitrogen deficiency always causes bog bilberry syrup wine to have a poor sensory feature. This study investigated the effect of nitrogen source addition on volatile compounds during bog bilberry syrup wine fermentation. The syrup was supplemented with 60, 90, 120 or 150 mg/L dibasic ammonium phosphate (DAP) before fermentation. Results showed that an increase of DAP amounts accelerated fermentation rate, increased alcohol content, and decreased sugar level. Total phenol and total flavonoid content were also enhanced with the increase of DAP amounts. A total of 91 volatile compounds were detected in the wine and their concentrations were significantly enhanced with the increase of DAP. Ethyl acetate, isoamyl acetate, phenethyl acetate, ethyl butanoate, ethyl hexanoate, ethyl octanoate, ethyl decanoate, isobutanol, isoamyl alcohol, levo -2,3-butanediol, 2-phenylethanol, meso -2,3-butanediol, isobutyric acid, hexanoic acid, and octanoic acid exhibited a significant increase of their odor activity value (OAV) with the increase of DAP amounts. Bog bilberry syrup wine possessed fruity, fatty, and caramel flavors as its major aroma, whereas a balsamic note was the least present. The increase of DAP amounts significantly improved the global aroma attributes, thereby indicating that DAP supplementation could promote wine fermentation performance and enhance the sensory quality of bog bilberry syrup wine.

  16. Enzymatic hydrolysis of anchovy fine powder at high and ambient pressure, and characterization of the hydrolyzates.

    PubMed

    Kim, Namsoo; Son, So-Hee; Maeng, Jin-Soo; Cho, Yong-Jin; Kim, Chong-Tai

    2016-02-01

    At specific conditions of high pressure, the stability and activity of some enzymes are reportedly known to increase. The aim of this study was to apply pressure-tolerant proteases to hydrolyzing anchovy fine powder (AFP) and to determine product characteristics of the resultant hydrolyzates. Anchovy fine powder enzyme hydrolyzates (AFPEHs) were produced at 300 MPa and ambient pressure using combinations of Flavourzyme 500MG, Alcalase 2.4L, Marugoto E and Protamex. When the same protease combination was used for hydrolysis, the contents of total soluble solids, total water-soluble nitrogen and trichloroacetic acid-soluble nitrogen in the AFPEHs produced at 300 MPa were conspicuously higher than those in the AFPEHs produced at ambient pressure. This result and electrophoretic characteristics indicated that the high-pressure process of this study accelerates protein hydrolysis compared with the ambient-pressure counterpart. Most peptides in the hydrolyzates obtained at 300 MPa had molecular masses less than 5 kDa. Functionality, sensory characteristics and the content of total free amino acids of selected hydrolyzates were also determined. The high-pressure hydrolytic process utilizing pressure-tolerant proteases was found to be an efficient method for producing protein hydrolyzates with good product characteristics. © 2015 Society of Chemical Industry.

  17. Effects of legume species introduction on vegetation and soil nutrient development on abandoned croplands in a semi-arid environment on the Loess Plateau, China.

    PubMed

    Yuan, Zi-Qiang; Yu, Kai-Liang; Epstein, Howard; Fang, Chao; Li, Jun-Ting; Liu, Qian-Qian; Liu, Xue-Wei; Gao, Wen-Juan; Li, Feng-Min

    2016-01-15

    Revegetation facilitated by legume species introduction has been used for soil erosion control on the Loess Plateau, China. However, it is still unclear how vegetation and soil resources develop during this restoration process, especially over the longer term. In this study, we investigated the changes of plant aboveground biomass, vegetation cover, species richness and density of all individuals, and soil total nitrogen, mineral nitrogen, total phosphorus and available phosphorus over 11 years from 2003 to 2013 in three treatments (natural revegetation, Medicago sativa L. introduction and Melilotus suaveolens L. introduction) on the semi-arid Loess Plateau. Medicago significantly increased aboveground biomass and vegetation cover, and soil total nitrogen and mineral nitrogen contents. The Medicago treatment had lower species richness and density of all individuals, lower soil moisture in the deep soil (i.e., 1.4-5m), and lower soil available phosphorus. Melilotus introduction significantly increased aboveground biomass in only the first two years, and it was not an effective approach to improve vegetation biomass and cover, and soil nutrients, especially in later stages of revegetation. Overall, our study suggests that M. sativa can be the preferred plant species for revegetation of degraded ecosystems on the Loess Plateau, although phosphorus fertilizer should be applied for the sustainability of the revegetation. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. How Fencing Affects the Soil Quality and Plant Biomass in the Grassland of the Loess Plateau

    PubMed Central

    Liu, Yang; Xiao, Li; Huang, Yimei

    2017-01-01

    Overgrazing is a severe problem in several regions in Northwestern China and has caused serious land degradation. Secondary natural succession plays an important role in the accumulation of soil carbon and nitrogen contents. Estimating the effects of grazing exclusion on soil quality and plant diversity will improve our understanding of the succession process after overgrazing and promote judicious management of degraded pastures. This experiment was designed to measure soil properties and plant diversity following an age chronosequence of grasslands (ages ranged from one year, 12 years, 20 years, and 30 years) in Northwestern China. The results showed that continuous fencing resulted in a considerable increase in plant coverage, plant biomass (above- and below-ground biomass), and plant diversity, which can directly or indirectly improve the accumulation of soil organic carbon and total nitrogen content. The plant coverage and the above- and below-ground biomass linearly increased along the succession time, whereas soil organic C and N contents showed a significant decline in the first 12 years and, subsequently, a significant increase. The increased plant biomass caused an increase in soil organic carbon and soil total nitrogen. These results suggested that soil restoration and plant cover were an incongruous process. Generally, soil restoration is a slow process and falls behind vegetation recovery after grazing exclusion. Although the accumulation of soil C and N stocks needed a long term, vegetation restoration was a considerable option for the degraded grassland due to the significant increase of plant biomass, diversity, and soil C and N stocks. Therefore, fencing with natural succession should be considered in the design of future degraded pastures. PMID:28946681

  19. How Fencing Affects the Soil Quality and Plant Biomass in the Grassland of the Loess Plateau.

    PubMed

    Zeng, Quanchao; Liu, Yang; Xiao, Li; Huang, Yimei

    2017-09-25

    Overgrazing is a severe problem in several regions in Northwestern China and has caused serious land degradation. Secondary natural succession plays an important role in the accumulation of soil carbon and nitrogen contents. Estimating the effects of grazing exclusion on soil quality and plant diversity will improve our understanding of the succession process after overgrazing and promote judicious management of degraded pastures. This experiment was designed to measure soil properties and plant diversity following an age chronosequence of grasslands (ages ranged from one year, 12 years, 20 years, and 30 years) in Northwestern China. The results showed that continuous fencing resulted in a considerable increase in plant coverage, plant biomass (above- and below-ground biomass), and plant diversity, which can directly or indirectly improve the accumulation of soil organic carbon and total nitrogen content. The plant coverage and the above- and below-ground biomass linearly increased along the succession time, whereas soil organic C and N contents showed a significant decline in the first 12 years and, subsequently, a significant increase. The increased plant biomass caused an increase in soil organic carbon and soil total nitrogen. These results suggested that soil restoration and plant cover were an incongruous process. Generally, soil restoration is a slow process and falls behind vegetation recovery after grazing exclusion. Although the accumulation of soil C and N stocks needed a long term, vegetation restoration was a considerable option for the degraded grassland due to the significant increase of plant biomass, diversity, and soil C and N stocks. Therefore, fencing with natural succession should be considered in the design of future degraded pastures.

  20. Effect of Freezing Time on Macronutrients and Energy Content of Breastmilk

    PubMed Central

    Escuder-Vieco, Diana; García-Algar, Oscar; De la Cruz, Javier; Lora, David; Pallás-Alonso, Carmen

    2012-01-01

    Abstract Background In neonatal units and human milk banks freezing breastmilk at less than –20°C is the choice for preserving it. Scientific evidence in relation to the loss of nutritional quality during freezing is rare. Our main aim in this study is to determine the effect of freezing time up to 3 months on the content of fat, total nitrogen, lactose, and energy. Our secondary aim is to assess whether ultrasonic homogenization of samples enables a more suitable reading of breastmilk macronutrients with a human milk analyzer (HMA) (MIRIS®, Uppsala, Sweden). Methods Refrigerated breastmilk samples were collected. Each sample was divided into six pairs of aliquots. One pair was analyzed on day 0, and the remaining pairs were frozen and analyzed, one each at 7, 15, 30, 60, and 90 days later. For each pair, one aliquot was homogenized by stirring, and the other by applying ultrasound. Samples were analyzed with the HMA. Results By 3 months from freezing with the two homogenization methods, we observed a relevant and significant decline in the concentration of fat and energy content. The modification of total nitrogen and lactose was not constant and of lower magnitude. The absolute concentration of all macronutrients and calories was greater with ultrasonic homogenization. Conclusions After 3 months from freezing at –20°C, an important decrease in fat and caloric content is observed. Correct homogenization is fundamental for correct nutritional analysis. PMID:22047109

  1. Nitrogen in Chinese coals

    USGS Publications Warehouse

    Wu, D.; Lei, J.; Zheng, B.; Tang, X.; Wang, M.; Hu, Jiawen; Li, S.; Wang, B.; Finkelman, R.B.

    2011-01-01

    Three hundred and six coal samples were taken from main coal mines of twenty-six provinces, autonomous regions, and municipalities in China, according to the resource distribution and coal-forming periods as well as the coal ranks and coal yields. Nitrogen was determined by using the Kjeldahl method at U. S. Geological Survey (USGS), which exhibit a normal frequency distribution. The nitrogen contents of over 90% Chinese coal vary from 0.52% to 1.41% and the average nitrogen content is recommended to be 0.98%. Nitrogen in coal exists primarily in organic form. There is a slight positive relationship between nitrogen content and coal ranking. ?? 2011 Science Press, Institute of Geochemistry, CAS and Springer Berlin Heidelberg.

  2. Polycyclic Aromatic Hydrocarbons Content in Contaminated Forest Soils with Different Humus Types.

    PubMed

    Lasota, Jarosław; Błońska, Ewa

    2018-01-01

    The aim of the study was to determine polycyclic aromatic hydrocarbon (PAH) content in different forest humus types. The investigation was carried out in Chrzanów Forest District in southern Poland. Twenty research plots with different humus types (mor and mull) were selected. The samples for analysis were taken after litter horizons removing from a depth of 0-10 cm (from the Of- and Oh-horizon total or A-horizon). pH, organic carbon and total nitrogen content, base cations, acidity, and heavy metal content were determined. In the natural moisture state, the activity of dehydrogenase was determined. The study included the determination of PAH content. The conducted research confirms strong contamination of study soil by PAHs and heavy metals. Our experiment provided evidence that different forest humus types accumulate different PAH amounts. The highest content of PAHs and heavy metals was recorded in mor humus type. The content of PAHs in forest humus horizon depends on the content and quality of soil organic matter. Weaker degradation of hydrocarbons is associated with lower biological activity of soils. The mull humus type showed lower content of PAHs and at the same time the highest biological activity confirmed by high dehydrogenase activity.

  3. Composition of Ragusano cheese during aging.

    PubMed

    Licitra, G; Campo, P; Manenti, M; Portelli, G; Scuderi, S; Carpino, S; Barbano, D M

    2000-03-01

    Ragusano cheese is a brine-salted pasta filata cheese. Composition changes during 12 mo of aging were determined. Historically, Ragusano cheese has been aged in caves at 14 to 16 degrees C with about 80 to 90% relative humidity. Cheeses (n = 132) included in our study of block-to-block variation were produced by 20 farmhouse cheese makers in the Hyblean plain region of the Province of Ragusa in Sicily. Mean initial cheese block weight was about 14 kg. The freshly formed blocks of cheese before brine salting contained about 45.35% moisture, 25.3% protein, and 25.4% fat, with a pH of 5.25. As result of the brining and aging process, a natural rind forms. After 12 mo of aging, the cheese contained about 33.6% moisture, 29.2% protein, 30.0% fat, and 4.4% salt with a pH of 5.54, but block-to-block variation was large. Both soluble nitrogen content and free fatty acid (FFA) content increased with age. The pH 4.6 acetate buffer and 12% TCA-soluble nitrogen as a percentage of total nitrogen were 16 and 10.7%, respectively, whereas the FFA content was about 643 mg/100 g of cheese at 180 d. Five blocks of cheese were selected at 180 d for a study of variation within block. Composition variation within block was large; the center had higher moisture and lower salt in moisture content than did the outside. Composition variation within blocks favored more proteolysis and softer texture in the center.

  4. Nitrogen balance for wheat canopies (Triticum aestivum cv. Veery 10) grown under elevated and ambient CO2 concentrations

    NASA Technical Reports Server (NTRS)

    Smart, D. R.; Ritchie, K.; Bloom, A. J.; Bugbee, B. B.

    1998-01-01

    We examined the hypothesis that elevated CO2 concentration would increase NO3- absorption and assimilation using intact wheat canopies (Triticum aestivum cv. Veery 10). Nitrate consumption, the sum of plant absorption and nitrogen loss, was continuously monitored for 23 d following germination under two CO2 concentrations (360 and 1000 micromol mol-1 CO2) and two root zone NO3- concentrations (100 and 1000 mmol m3 NO3-). The plants were grown at high density (1780 m-2) in a 28 m3 controlled environment chamber using solution culture techniques. Wheat responded to 1000 micromol mol-1 CO2 by increasing carbon allocation to root biomass production. Elevated CO2 also increased root zone NO3- consumption, but most of this increase did not result in higher biomass nitrogen. Rather, nitrogen loss accounted for the greatest part of the difference in NO3- consumption between the elevated and ambient [CO2] treatments. The total amount of NO3(-)-N absorbed by roots or the amount of NO3(-)-N assimilated per unit area did not significantly differ between elevated and ambient [CO2] treatments. Instead, specific leaf organic nitrogen content declined, and NO3- accumulated in canopies growing under 1000 micromol mol-1 CO2. Our results indicated that 1000 micromol mol-1 CO2 diminished NO3- assimilation. If NO3- assimilation were impaired by high [CO2], then this offers an explanation for why organic nitrogen contents are often observed to decline in elevated [CO2] environments.

  5. Soil nitrogen dynamics in high-altitude ski runs during the winter season (Monterosaski - Vallée d

    NASA Astrophysics Data System (ADS)

    Freppaz, M.; Icardi, M.; Filippa, G.; Zanini, E.

    2009-04-01

    In many Alpine catchments, the development of winter tourism determined a widespread change in land use, shifting from forested and cultivated lands to ski slopes. The construction of a ski slope implies a strong impact on the landscape, with potential consequences on the soil quality. In most cases, the construction procedures include the total or partial removal of the soil body, the reallocation of the fine hearth fraction, the subsequent seeding of plants and the use of organic fertilizers. This work aims to evaluate soil physical and chemical properties and nitrogen (N) dynamics in anthropogenic soils from ski slopes of different age. Study sites were located in Champoluc (AO)- NW Italy between 2400 and 2700 m ASL. Topsoils (0-10 cm depth) were sampled in 4 ski slopes hydroseeded with commercial mixtures 4, 6, 10 and 12 years earlier, and in 4 control plots at the same exposure and altitude as the ski slopes. Soil samples were characterized, N dynamics in winter was evaluated with the buried bag technique and snowpack was analyzed for chemical and physical properties. Total nitrogen (TN) content in topsoil ranged 0.75-1.06 g kg-1 and was not correlated with the ski slope age. In all but one site, the TN content was significantly lower in the ski slope than in the control plot. A positive net ammonification and nitrification throughout the winter were found in all but one ski runs. These results suggest a high variability in the evolution degree of these anthropogenic soils. The net overwinter N mineralization that we report demonstrates that these soils are biologically active during the winter season. Such activity results in a pool of labile inorganic nitrogen potentially available for plant demand at the spring snowmelt.

  6. Effects of floodgates operation on nitrogen transformation in a lake based on structural equation modeling analysis.

    PubMed

    Zhu, Longji; Zhou, Haixuan; Xie, Xinyu; Li, Xueke; Zhang, Duoying; Jia, Liming; Wei, Qingbin; Zhao, Yue; Wei, Zimin; Ma, Yingying

    2018-08-01

    Floodgates operation is one of the primary means of flood control in lake development. However, knowledge on the linkages between floodgates operation and nitrogen transformation during the flood season is limited. In this study, water samples from six sampling sites along Lake Xingkai watershed were collected before and after floodgates operation. The causal relationships between environmental factors, bacterioplankton community composition and nitrogen fractions were determined during flood season. We found that concentrations of nitrogen fractions decreased significantly when the floodgates were opened, while the concentrations of total nitrogen (TN) and NO 3 - increased when the floodgates had been shut for a period. Further, we proposed a possible mechanism that the influence of floodgates operation on nitrogen transformation was largely mediated through changes in dissolved organic matter, dissolved oxygen and bacterioplankton community composition as revealed by structural equation modeling (SEM). We conclude that floodgates operation has a high risk for future eutrophication of downstream watershed, although it can reduce nitrogen content temporarily. Therefore, the environmental impacts of floodgates operation should be carefully evaluated before the floodwaters were discharged into downstream watershed. Copyright © 2018. Published by Elsevier B.V.

  7. Reduced turning frequency and delayed poultry manure addition reduces N loss from sugarcane compost.

    PubMed

    Bryndum, S; Muschler, R; Nigussie, A; Magid, J; de Neergaard, A

    2017-07-01

    Composting is an effective method to recycle biodegradable waste as soil amendment in smallholder farming systems. Although all essential plant nutrients are found in compost, a substantial amount of nitrogen is lost during composting. This study therefore investigated the potential of reducing N losses by (i) delaying the addition of nitrogen-rich substrates (i.e. poultry manure), and (ii) reducing the turning frequency during composting. Furthermore, we tested the effect of compost application method on nitrogen mineralization. Sugarcane-waste was composted for 54days with addition of poultry manure at the beginning (i.e. early addition) or after 21days of composting (delayed addition). The compost pile was then turned either every three or nine days. Composts were subsequently applied to soil as (i) homogeneously mixed, or (ii) stratified, and incubated for 28days to test the effect of compost application on nitrogen mineralization. The results showed that delayed addition of poultry manure reduced total nitrogen loss by 33% and increased mineral nitrogen content by >200% compared with early addition. Similarly, less frequent turning reduced total N loss by 12% compared with frequent turning. Stratified placement of compost did not enhance N mineralization compared to a homogeneous mixing. Our results suggested that simple modifications of the composting process (i.e. delayed addition and/or turning frequency) could significantly reduce N losses and improve the plant-nutritional value of compost. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. EFFECTS OF BACTERIAL ENDOTOXINS ON METABOLISM

    PubMed Central

    Berry, L. Joe; Smythe, Dorothy S.

    1961-01-01

    In vitro secretion of glycocorticoids by adrenal glands pooled from several control mice was compared with that of glands removed from animals following injections of either ACTH or endotoxin. Both substances prevent glycocorticoid synthesis stimulated in vitro with ACTH. Cholesterol content of adrenal glands under these conditions was nearly depleted, indicating maximal response to ACTH or endotoxin prior to their removal for the in vitro tests. In an effort to account physiologically for the manner in which endotoxin suppresses or prevents the rise in urinary nitrogen excreted in response to ACTH, blood non-protein nitrogen levels (NPN) were determined. The following experimental conditions resulted in increased urinary nitrogen excretion but did not alter blood NPN: cortisone given alone or at the same time as endotoxin; ACTH alone; dichloroisoproterenol (DCI) given concurrently with endotoxin; and lactalbumin digest injected intraperitoneally. Increases (2- to 3-fold) in blood NPN were observed when endotoxin was given alone, concurrently with ACTH, or 3 hours prior to cortisone, DCI, or lactalbumin digest. Urinary nitrogen excretion showed no change under these conditions. The elevation in blood NPN in endotoxin-poisoned mice was found to be due almost entirely to urea nitrogen and not to amino acid nitrogen or to other nitrogenous wastes. Blood clearance of mulin, phenol red excretion, and urea elimination were each determined in control and in endotoxin-poisoned mice. The latter mice showed impaired renal function. Treatment with diuretics (diuril and aminophylline) failed to alter oliguria or elevated blood NPN. Hydergine treatment was also without effect. Total carcass NPN and urinary nitrogen excretion data were combined to give a picture of total protein catabolized by mice under different experimental conditions. Cortisone injected at the same time as endotoxin or 3 hours later resulted in the same increase in total NPN. However, in the former case all the extra nitrogen appeared in the urine while in the latter it remained in the carcass. ACTH given alone or concurrently with endotoxin produced large increases in total NPN but less in poisoned mice. This suggests that endotoxin suppresses adrenal response to ACTH. Urea injected into normal mice was recovered quantitatively in urine while in endotoxin-poisoned mice it was partitioned between carcass and urine. Elevation of carcass NPN by means of urea injections failed to alter the lethality of an LD70 dose of endotoxin. PMID:19867206

  9. Espresso coffee residues: a valuable source of unextracted compounds.

    PubMed

    Cruz, Rebeca; Cardoso, Maria M; Fernandes, Luana; Oliveira, Marta; Mendes, Eulália; Baptista, Paula; Morais, Simone; Casal, Susana

    2012-08-15

    Espresso spent coffee grounds were chemically characterized to predict their potential, as a source of bioactive compounds, by comparison with the ones from the soluble coffee industry. Sampling included a total of 50 samples from 14 trademarks, collected in several coffee shops and prepared with distinct coffee machines. A high compositional variability was verified, particularly with regard to such water-soluble components as caffeine, total chlorogenic acids (CGA), and minerals, supported by strong positive correlations with total soluble solids retained. This is a direct consequence of the reduced extraction efficiency during espresso coffee preparation, leaving a significant pool of bioactivity retained in the extracted grounds. Besides the lipid (12.5%) and nitrogen (2.3%) contents, similar to those of industrial coffee residues, the CGA content (478.9 mg/100 g), for its antioxidant capacity, and its caffeine content (452.6 mg/100 g), due to its extensive use in the food and pharmaceutical industries, justify the selective assembly of this residue for subsequent use.

  10. Optimized batch fermentation of cheese whey. Supplemented feedlot waste filtrate to produce a nitrogen-rich feed supplement for ruminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erdman, M.D.; Reddy, C.A.

    1986-03-01

    An optimized batch fermentation process for the conversion of cattle feedlot waste filtrate, supplemented with cheese whey, into a nitrogenous feed supplement for ruminants is described. Feedlot waste filtrate supplemented with cheese whey (5 g of whey per 100 ml) was fermented by the indigenous microbial flora in the feedlot waste filtrate. Ammonium hydroxide was added to the fermentation not only to maintain a constant pH but also to produce ammonium salts of organic acids, which have been shown to be valuable as nitrogenous feed supplements for ruminants. The utilization of substrate carbohydrate at pH 7.0 and 43 degrees Cmore » was greater than 94% within 8 h, and the crude protein (total N X 6.25) content of the product was 70 to 78% (dry weight basis). About 66 to 69% of the crude protein was in the form of ammonia nitrogen. Lactate and acetate were the predominant acids during the first 6 to 8 hours of fermentation, but after 24 hours, appreciable levels of propionate and butyrate were also present. The rate of fermentation and the crude protein content of the product were optimal at pH 7.0 and decreased at a lower pH. For example, fermentation did not go to completion even after 24 hours at pH 4.5. Fermentation proceeded optimally at 43 degrees C, less so at 37 degrees C, and considerably more slowly at 23 and 50 degrees C. Concentrations of up to 15 g of cheese whey per 100 ml of feedlot waste filtrate were fermented efficiently. Fermentation of feedlot waste filtrate obtained from animals fed low silage-high grain, high silage-low grain, or dairy rations resulted in similar products in terms of total nitrogen and organic acid composition.« less

  11. Laser nitriding of iron: Nitrogen profiles and phases

    NASA Astrophysics Data System (ADS)

    Illgner, C.; Schaaf, P.; Lieb, K. P.; Schubert, E.; Queitsch, R.; Bergmann, H.-W.

    1995-07-01

    Armco iron samples were surface nitrided by irradiating them with pulses of an excimer laser in a nitrogen atmosphere. The resulting nitrogen depth profiles measured by Resonant Nuclear Reaction Analysis (RNRA) and the phase formation determined by Conversion Electron Mössbauer Spectroscopy (CEMS) were investigated as functions of energy density and the number of pulses. The nitrogen content of the samples was found to be independent of the number of pulses in a layer of 50 nm from the surface and to increase in depths exceeding 150 nm. The phase composition did not change with the number of pulses. The nitrogen content can be related to an enhanced nitrogen solubility based on high temperatures and high pressures due to the laser-induced plasma above the sample. With increasing pulse energy density, the phase composition changes towards phases with higher nitrogen contents. Nitrogen diffusion seems to be the limiting factor for the nitriding process.

  12. Effect of Sterilization Process and Storage on the Antioxidative Properties of Runner Bean.

    PubMed

    Wołosiak, Rafał; Drużyńska, Beata; Piecyk, Małgorzata; Majewska, Ewa; Worobiej, Elwira

    2018-06-11

    In this study, we investigated the effect of standard preservation of bean seeds on changes in contents and activity of their selected components: dry matter, ash, different forms of nitrogen, composition of protein fractions; total phenolics and condensed tannins; ability to chelate iron(II) ions; antiradical activity against ABTS •+ and DPPH • ; and capability for inhibiting autoxidation and enzymatic oxidation of linoleic acid. The conducted technological process caused various changes in contents of nitrogen forms and partial loss of phenolic compounds. The antiradical and antioxidative activity of the extracts decreased significantly, while an increase was observed in their ability to chelate Fe(II). These changes were due to the migration of active compounds to the brine, and to their structural transformations and degradation. Longer storage of the sterilized product caused restoration of part of the antiradical activity of the seeds.

  13. 21 CFR 176.170 - Components of paper and paperboard in contact with aqueous and fatty foods.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... acrylamide monomer and having an average nitrogen content of 14.9 percent such that a 1 percent by weight... ethylenediamine sulfate having a nitrogen content of 22.5-25.0 percent (Kjeldahl dry basis) and containing no more.... Acrylonitrile polymer with styrene, reaction product with ethylenediamine acetate, having a nitrogen content of...

  14. 21 CFR 176.170 - Components of paper and paperboard in contact with aqueous and fatty foods.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... acrylamide monomer and having an average nitrogen content of 14.9 percent such that a 1 percent by weight... ethylenediamine sulfate having a nitrogen content of 22.5-25.0 percent (Kjeldahl dry basis) and containing no more.... Acrylonitrile polymer with styrene, reaction product with ethylenediamine acetate, having a nitrogen content of...

  15. Nitrogen fertilization and plant growth promoting rhizobacteria treatments affected amino acid content of cabbage

    NASA Astrophysics Data System (ADS)

    Dursun, Atilla; Yildirim, Ertan; Ekinci, Melek; Turan, Metin; Kul, Raziye; Karagöz, Fazilet P.

    2017-04-01

    This study was designed to determine the influence of a nitrogen fixing plant growth promoting rhizobacteria (PGPR) inoculation (seed coating and seedling dipping) and 6 doses of nitrogen (0, 40, 80, 120, 160, 200 kg ha-1) application on amino acid contents of cabbage. Coating and seedling dipping applications caused a significant increase in values histidine, glycine, thionin, arginine and alanine of cabbage. Highest glutamate, serine, asparagines and glutamine contents were obtained from 160-200 kg ha-1 nitrogen dose applied plants. As a result, the use of bacteria treatments provides means of improving amino acid contents in cabbage.

  16. Effect of soil contamination with fluorine on the yield and content of nitrogen forms in the biomass of crops.

    PubMed

    Szostek, Radosław; Ciećko, Zdzisław

    2017-03-01

    The research was based on a pot experiment, in which the response of eight species of crops to soil contamination with fluorine was investigated. In parallel, some inactivating substances were tested in terms of their potential use for the neutralization of the harmful influence of fluorine on plants. The response of crops to soil contamination with fluorine was assessed according to the volume of biomass produced by aerial organs and roots as well as their content of N-total, N-protein, and N-NO 3 - . The following crops were tested: maize, yellow lupine, winter oilseed rape, spring triticale, narrow-leaf lupine, black radish, phacelia, and lucerne. In most cases, soil pollution with fluorine stimulated the volume of biomass produced by the plants. The exceptions included grain and straw of spring triticale, maize roots, and aerial parts of lucerne, where the volume of harvested biomass was smaller in treatments with fluorine-polluted soil. Among the eight plant species, lucerne was most sensitive to the pollution despite smaller doses of fluorine in treatments with this plant. The other species were more tolerant to elevated concentrations of fluorine in soil. In most of the tested plants, the analyzed organs contained more total nitrogen, especially aerial organs and roots of black radish, grain and straw of spring triticale, and aerial biomass of lucerne. A decrease in the total nitrogen content due to soil contamination with fluorine was detected only in the aerial mass of yellow lupine. With respect to protein nitrogen, its increase in response to fluorine as a soil pollutant was found in grain of spring triticale and roots of black radish, whereas the aerial biomass of winter oilseed rape contained less of this nutrient. Among the analyzed neutralizing substances, lime most effectively alleviated the negative effect of soil pollution with fluorine. The second most effective substance was loam, while charcoal was the least effective in this respect. Our results showed the effect of soil contamination with fluorine on the yield and chemical composition of fluorine depended on the species and organ of a tested plant, on the rate of the xenobotic element and on the substance added to soil in order to neutralize fluorine.

  17. [Effects of cotton straw returning on soil organic carbon, nitrogen, phosphorus and potas-sium contents in soil aggregates].

    PubMed

    Wang, Shuang Lei; Liu, Yan Hui; Song, Xian Liang; Wei, Shao Bin; Li, Jin Pu; Nie, Jun Jun; Qin, Du Lin; Sun, Xue Zhen

    2016-12-01

    To clarify the effects of cotton straw returning on the composition and contents of nu-trients in different particle sizes of aggregates, two treatments with or without cotton straw returning were tested in continuous three years. After three years straw treatments, we collected undisturbed soil within 0-5, 5-10, 10-20 and 20-30 cm soil layers, and to measure the composition, soil organic carbon, nitrogen, phosphorus and potassium contents in different particle sizes of aggregates classified using dry sieving. Returning cotton straw into the field significantly increased particle contents of 2-5 mm and >5 mm aggregates in 0-5 cm soil layer, while the content of <0.25 mm micro-aggregates was decreased. Cotton straw returning significantly improved soil organic carbon, nitrogen, and potassium contents by 19.2%, 14.2% and 17.3%, respectively, compared to no returning control. In 5-10 cm soil layer, cotton straw returning increased the contents of 2-5 mm and >5 mm aggregates, reduced the content of <0.25 mm micro-aggregate, but significantly increased contents of soil organic carbon, available nitrogen and potassium by 19.6%, 12.6% and 23.4%, compared to no straw returning control. In 10-20 cm soil layer, cotton straw returning significantly reduced the content of <0.25 mm micro-aggregates, and significantly enhanced soil organic carbon, nitrogen, and potassium contents by 8.4%, 10.9% and 11.5%, compared to the control. However, in 20-30 cm soil layer, cotton straw returning only increased soil available potassium content by 12.0%, while there were no significant changes in particle size, organic carbon, nitrogen and phosphorus contents. We concluded that cotton straw returning could significantly improve the structure of surface soil by increasing the number of macro-aggregates, contents of organic carbon, available nitrogen and potassium in aggregates, while decreasing micro-aggregate content. The enhancement of the contribution of macro-aggregates to soil fertility by returning cotton straw could improve soil physical structure, fertility and then increase cotton yield.

  18. [Effects of mulching management on biomass of Phyllostachys praecox and soil fertility].

    PubMed

    Zhai, Wan Lu; Yang, Chuan Bao; Zhang, Xiao Ping; Gao, Gui Bin; Zhong, Zhe Ke

    2018-04-01

    We analyzed the dynamics of stand growth and soil nutrient availability during the degradation processes of Phyllostachys praecox plantation, taking the advantage of bamboo forest stands with different mulching ages (0, 3, 6, 9 and 12 a). The results showed the aboveground and belowground biomass of bamboo forest reached the maximum value when they were covered by three years, which was significantly increased by 14.6% and 146.6% compared with the control. The soil nutrient content was affected by the mulching age and soil layer. Soil nutrients gradually accumulated in upper layer. Soil organic carbon and total nitrogen content were increased with the increases of coverage years. The soil total phosphorus content at different soil layers showed a trend of decreasing first and then increasing. It was the lowest level in the surface layer (0-20 cm) and the bottom (40-60 cm) in 6 years, and the subsurface (20-40 cm) soil reached the lowest level in three years. The total potassium content kept increasing in 0-20 cm soil layer, but decreased during the first three years of mulching and then increased in 20-60 cm soil layer. The comprehensive index of soil fertility quality was greatly improved after nine years mulching, with fertility of subsurface soil being better than that of surface and bottom soils. There was no relationship between the soil fertility index and biomass of different organs in bamboo in the different mulching ages. In the subsurface, however, nitrogen content was negatively related to leaf biomass and potassium was negatively correlated with the biomass of leaves and whip roots. Our results indicated that excessive accumulation of soil nutrients seriously inhibited the propagation and biomass accumulation of P. praecox after long-term mulching management and a large amount of fertilizer, which further aggravated the degradation of bamboo plantation.

  19. Climate Extreme Effects on the Chemical Composition of Temperate Grassland Species under Ambient and Elevated CO2: A Comparison of Fructan and Non-Fructan Accumulators

    PubMed Central

    Zinta, Gaurav; Van den Ende, Wim; Janssens, Ivan A.; Asard, Han

    2014-01-01

    Elevated CO2 concentrations and extreme climate events, are two increasing components of the ongoing global climatic change factors, may alter plant chemical composition and thereby their economic and ecological characteristics, e.g. nutritional quality and decomposition rates. To investigate the impact of climate extremes on tissue quality, four temperate grassland species: the fructan accumulating grasses Lolium perenne, Poa pratensis, and the nitrogen (N) fixing legumes Medicago lupulina and Lotus corniculatus were subjected to water deficit at elevated temperature (+3°C), under ambient CO2 (392 ppm) and elevated CO2 (620 ppm). As a general observation, the effects of the climate extreme were larger and more ubiquitous in combination with elevated CO2. The imposed climate extreme increased non-structural carbohydrate and phenolics in all species, whereas it increased lignin in legumes and decreased tannins in grasses. However, there was no significant effect of climate extreme on structural carbohydrates, proteins, lipids and mineral contents and stoichiometric ratios. In combination with elevated CO2, climate extreme elicited larger increases in fructan and sucrose content in the grasses without affecting the total carbohydrate content, while it significantly increased total carbohydrates in legumes. The accumulation of carbohydrates in legumes was accompanied by higher activity of sucrose phosphate synthase, sucrose synthase and ADP-Glc pyrophosphorylase. In the legumes, elevated CO2 in combination with climate extreme reduced protein, phosphorus (P) and magnesium (Mg) contents and the total element:N ratio and it increased phenol, lignin, tannin, carbon (C), nitrogen (N) contents and C:N, C:P and N:P ratios. On the other hand, the tissue composition of the fructan accumulating grasses was not affected at this level, in line with recent views that fructans contribute to cellular homeostasis under stress. It is speculated that quality losses will be less prominent in grasses (fructan accumulators) than legumes under climate extreme and its combination with elevated CO2 conditions. PMID:24670435

  20. Climate extreme effects on the chemical composition of temperate grassland species under ambient and elevated CO2: a comparison of fructan and non-fructan accumulators.

    PubMed

    AbdElgawad, Hamada; Peshev, Darin; Zinta, Gaurav; Van den Ende, Wim; Janssens, Ivan A; Asard, Han

    2014-01-01

    Elevated CO2 concentrations and extreme climate events, are two increasing components of the ongoing global climatic change factors, may alter plant chemical composition and thereby their economic and ecological characteristics, e.g. nutritional quality and decomposition rates. To investigate the impact of climate extremes on tissue quality, four temperate grassland species: the fructan accumulating grasses Lolium perenne, Poa pratensis, and the nitrogen (N) fixing legumes Medicago lupulina and Lotus corniculatus were subjected to water deficit at elevated temperature (+3°C), under ambient CO2 (392 ppm) and elevated CO2 (620 ppm). As a general observation, the effects of the climate extreme were larger and more ubiquitous in combination with elevated CO2. The imposed climate extreme increased non-structural carbohydrate and phenolics in all species, whereas it increased lignin in legumes and decreased tannins in grasses. However, there was no significant effect of climate extreme on structural carbohydrates, proteins, lipids and mineral contents and stoichiometric ratios. In combination with elevated CO2, climate extreme elicited larger increases in fructan and sucrose content in the grasses without affecting the total carbohydrate content, while it significantly increased total carbohydrates in legumes. The accumulation of carbohydrates in legumes was accompanied by higher activity of sucrose phosphate synthase, sucrose synthase and ADP-Glc pyrophosphorylase. In the legumes, elevated CO2 in combination with climate extreme reduced protein, phosphorus (P) and magnesium (Mg) contents and the total element:N ratio and it increased phenol, lignin, tannin, carbon (C), nitrogen (N) contents and C:N, C:P and N:P ratios. On the other hand, the tissue composition of the fructan accumulating grasses was not affected at this level, in line with recent views that fructans contribute to cellular homeostasis under stress. It is speculated that quality losses will be less prominent in grasses (fructan accumulators) than legumes under climate extreme and its combination with elevated CO2 conditions.

  1. Prediction of ammonia emission from dairy cattle manure based on milk urea nitrogen: relation of milk urea nitrogen to urine urea nitrogen excretion.

    PubMed

    Burgos, S A; Fadel, J G; Depeters, E J

    2007-12-01

    The objectives of this study were to assess the relationship between urinary urea N (UUN) excretion (g/d) and milk urea N (MUN; mg/dL) and to test whether the relationship was affected by stage of lactation and the dietary crude protein (CP) content. Twelve lactating multiparous Holstein cows were randomly selected and blocked into 3 groups of 4 cows intended to represent early [123 +/- 26 d in milk (DIM); mean +/- standard deviation], mid (175 +/- 3 DIM), and late (221 +/- 12 DIM) lactation stages. Cows within each stage of lactation were randomly assigned to a treatment sequence within a split-plot Latin square balanced for carryover effects. Stage of lactation formed the main plots (squares) and dietary CP levels (15, 17, 19, and 21% of diet dry matter) formed the subplots. Graded amounts of urea were added to the basal total mixed ration to linearly increase dietary CP content while maintaining similar concentrations of all other nutrients among treatments. The experimental periods lasted 7 d, with d 1 to 6 used for adjustment to diets and d 7 used for total collection of urine as well as milk and blood sample collection. Dry matter intake and yields of milk, fat, protein, and lactose declined progressively with lactation stage and were unaffected by dietary CP content. Milk and plasma urea-N as well as UUN concentration and excretion increased in response to dietary CP content. Milk and urine urea-N concentration rose at increasing and decreasing rates, respectively, as a function of plasma urea-N. The renal urea-N clearance rate differed among lactation stages and dietary CP contents. The relationship between UUN excretion and MUN differed among lactation stages and diverged from linearity for cows in early and late lactation. However, these differences were restricted to very high MUN concentrations. Milk urea N may be a useful tool to predict the UUN excretion and ultimately NH(3) emission from dairy cattle manure.

  2. Higher Ammonium Transamination Capacity Can Alleviate Glutamate Inhibition on Winter Wheat (Triticum aestivum L.) Root Growth under High Ammonium Stress

    PubMed Central

    Liu, Yang; Tian, Zhongwei; Muhammad, Abid; Zhang, Yixuan; Jiang, Dong; Cao, Weixing; Dai, Tingbo

    2016-01-01

    Most of the studies about NH4+ stress mechanism simply address the effects of free NH4+, failing to recognize the changed nitrogen assimilation products. The objective of this study was to elucidate the effects of glutamate on root growth under high ammonium (NH4+) conditions in winter wheat (Triticum aestivum L.). Hydroponic experiments were conducted using two wheat cultivars, AK58 (NH4+-sensitive) and Xumai25 (NH4+-tolerant) with either 5 mM NH4+ nitrogen (AN) as stress treatment or 5 mM nitrate (NO3-) nitrogen as control. To evaluate the effects of NH4+-assimilation products on plant growth, 1 μM L-methionine sulfoximine (MSO) (an inhibitor of glutamine synthetase (GS)) and 1 mM glutamates (a primary N assimilation product) were added to the solutions, respectively. The AN significantly reduced plant biomass, total root length, surface area and root volume in both cultivars, but less effect was observed in Xumai25. The inhibition effects were alleviated by the application of MSO but strengthened by the application of glutamate. The AN increased the activities of GS, glutamate dehydrogenase (GDH) in both cultivars, resulting in higher glutamate contents. However, its contents were decreased by the application of MSO. Compared to AK58, Xumai25 showed lower glutamate contents due to its higher activities of glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT). With the indole-3-acetic acid (IAA) contents decreasing in roots, the ratio of shoot to root in IAA was increased, and further increased by the application of glutamate, and reduced by the application of MSO, but the ratio was lower in Xumai25. Meanwhile, the total soluble sugar contents and its root to shoot ratio also showed similar trends. These results indicate that the NH4+-tolerant cultivar has a greater transamination ability to prevent glutamate over-accumulation to maintain higher IAA transport ability, and consequently promoted soluble sugar transport to roots, further maintaining root growth. PMID:27512992

  3. Nitrogen requirements of white-lipped peccary (Mammalia, Tayassuidae).

    PubMed

    Nogueira-Filho, Sérgio L G; Borges, Rogério M; Mendes, Alcester; Dias, Carlos T S

    2014-01-01

    A study was conducted to determine the protein requirement of the white-lipped peccary (Tayassu pecari) performing a nitrogen (N) balance digestion trial. In a 4 × 4 Latin square design, four adult captive male peccaries were fed four isoenergetic diets containing four different levels of N (13.3, 19.2, 28.7, and 37.1 g N/kg dry matter). After 15 days of adaptation, the total collection of feces and urine was carried out for five consecutive days. By regression analysis between N intake and N in feces and urine, the metabolic fecal nitrogen (MFN = 3.1 g/kg of dry matter intake) and daily endogenous urinary N (EUN = 91.0 mg/kg(0.75) ) were determined. Likewise, by regression analyses between consumption of nitrogen and the nitrogen balance [NBN consumed-(fecal N + Urine N)] we estimated the daily requirement of 336.5 mgN/kg(0.75) . Therefore, if food intake is unrestricted, white-lipped peccaries require a minimum content in their diet of about 4.5% crude protein as percentage of dry diet. These values are similar to those found in frugivorous wild ruminants, which reinforces the proposition that peccaries have a digestive physiology nearer to that of ruminants than of domestic pigs. Furthermore, the low nutritional maintenance requirements for white-lipped peccary may explain how this species thrive in the Neo-tropical region eating predominantly palm-fruits that normally have low crude protein contents. © 2014 Wiley Periodicals, Inc.

  4. Sulfur dioxide and nitrogen oxides emissions from U.S. pulp and paper mills, 1980-2005.

    PubMed

    Pinkerton, John E

    2007-08-01

    Comprehensive surveys conducted at 5-yr intervals were used to estimate sulfur dioxide (SO,) and nitrogen oxides (NO.) emissions from U.S. pulp and paper mills for 1980, 1985, 1990, 1995, 2000, and 2005. Over the 25-yr period, paper production increased by 50%, whereas total SO, emissions declined by 60% to 340,000 short tons (t) and total NO, emissions decreased approximately 15% to 230,000 t. The downward emission trends resulted from a combination of factors, including reductions in oil and coal use, steadily declining fuel sulfur content, lower pulp and paper production in recent years, increased use of flue gas desulfurization systems on boilers, growing use of combustion modifications and add-on control systems to reduce boiler and gas turbine NO, emissions, and improvements in kraft recovery furnace operations.

  5. [Effects of irrigation of untreated livestock farm wastewater on accumulation and vertical mig- ration of nitrogen and phosphorus in paddy soil].

    PubMed

    Zhang, Ming-kui; Ahmed Elgodah; Bao, Chen-yan

    2014-12-01

    Although a series of process techniques for treating wastewater from livestock and poultry breeding have been developed in China and overseas, it is still common in China's rural areas for utilization of the untreated wastewater to irrigate farmland directly because of economic reasons. The impact of untreated wastewater irrigation on accumulation and vertical migration of nitrogen and phosphorus in paddy soil is concerned. Consequently, four representative paddy fields with different histories of livestock farm wastewater irrigation (0, 4, 7, 13 years) were selected for collecting profile soil samples to study the effects of long-term irrigation of untreated livestock farm wastewater on various forms of nitrogen and phosphorus in the soils at different vertical depths. As compared with control field without any irrigation of wastewater, long-term irrigation of untreated livestock farm wastewater significantly increased the accumulation of N and P in the soils with increasing the irrigation year, and the increment of total P in the soil was greater than that of total N. Total P content in surface soil from fields with 4, 7, and 13 years irrigation was increased by 43.6%, 95.2%, and 148.4%, while total N increased by 7.6%, 16.9%, and 28.4%, respectively. Different forms of soil N were increased in order of NH4+ -N, NO3- -N > acid hydrolyzable N > non-acid hydrolyzable N, and soil available P changed much more than total P. Long-term irrigation of untreated livestock farm wastewater could promote vertical migration of soil nitrogen and phosphorus, and increase the pollution risk for groundwater.

  6. Morphological and biochemical changes in Azadirachta indica from coal combustion fly ash dumping site from a thermal power plant in Delhi, India.

    PubMed

    Qadir, Sami Ullah; Raja, Vaseem; Siddiqui, Weqar A

    2016-07-01

    The foliar and biochemical traits of Azadirachta indica A. Juss from fly ash (FA) dumping site in Badarpur thermal power plant (BTPP) New Delhi, India was studied. Three different experimental sites were selected at different distances from the thermal power plant. Ambient suspended particulate matter (SPM) and plant responses such as leaf pigments (chlorophyll a, chlorophyll b, and carotenoids), total chlorophyll, net photosynthetic rate, stomatal index (SI), stomatal conductance (SC), intercellular carbon dioxide concentration [CO2]i, net photosynthetic rate (NPR), nitrogen, nitrate, nitrate reductase activity, proline, protein, reducing sugar and sulphur content were measured. Considerable reduction in pigments (chlorophyll a, chlorophyll b and carotenoids), and total chlorophyll was observed at fly ash dumping site. Fly ash stress revealed the inhibitory effect on Nitrate reductase activity (NRA), Nitrate, soluble protein, and reducing sugar content, whereas stimulatory effect was found for the stomatal index, nitrogen, proline, antioxidants and sulphur content in the leaves. Under fly ash stress, stomatal conductance was low, leading to declining in photosynthetic rate and increase in the internal CO2 concentration of leaf. Single leaf area (SLA), leaf length and leaf width also showed a declining trend from control to the polluted site. Antioxidant enzymes increased in leaves reflecting stress and extenuation of reactive oxygen species (ROS). Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Carbon-to-nitrogen ratio affects the biomass composition and the fatty acid profile of heterotrophically grown Chlorella sp. TISTR 8990 for biodiesel production.

    PubMed

    Singhasuwan, Somruethai; Choorit, Wanna; Sirisansaneeyakul, Sarote; Kokkaew, Nakhon; Chisti, Yusuf

    2015-12-20

    Chlorella sp. TISTR 8990 was cultivated heterotrophically in media with various initial carbon-to-nitrogen ratios (C/N ratio) and at different agitation speeds. The production of the biomass, its total fatty acid content and the composition of the fatty acids were affected by the C/N ratio, but not by agitation speed in the range examined. The biomass production was maximized at a C/N mass ratio of 29:1. At this C/N ratio, the biomass productivity was 0.68gL(-1)d(-1), or nearly 1.6-fold the best attainable productivity in photoautotrophic growth. The biomass yield coefficient on glucose was 0.62gg(-1) during exponential growth. The total fatty acids (TFAs) in the freeze-dried biomass were maximum (459mgg(-1)) at a C/N ratio of 95:1. Lower values of the C/N ratio reduced the fatty acid content of the biomass. The maximum productivity of TFAs (186mgL(-1)d(-1)) occurred at C/N ratios of 63:1 and higher. At these conditions, the fatty acids were mostly of the polyunsaturated type. Allowing the alga to remain in the stationary phase for a prolonged period after N-depletion, reduced the level of monounsaturated fatty acids and the level of polyunsaturated fatty acids increased. Biotin supplementation of the culture medium reduced the biomass productivity relative to biotin-free control, but had no effect on the total fatty acid content of the biomass. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. 21 CFR 176.170 - Components of paper and paperboard in contact with aqueous and fatty foods.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... average nitrogen content of 14.9 percent such that a 1 percent by weight aqueous solution has a minimum... sulfate having a nitrogen content of 22.5-25.0 percent (Kjeldahl dry basis) and containing no more than 0... polymer with styrene, reaction product with ethylenediamine acetate, having a nitrogen content of 7.4-8.3...

  9. Humus and nitrogen in soddy-podzolic soils of different agricultural lands in Perm region

    NASA Astrophysics Data System (ADS)

    Zav'yalova, N. E.

    2016-11-01

    Heavy loamy soddy-podzolic soils (Eutric Albic Retisols (Abruptic, Loamic, Cutanic)) under a mixed forest, a grass-herb meadow, a perennial legume crop (fodder galega, Galéga orientalis), and an eightcourse crop rotation (treatment without fertilization) have been characterized by the main fertility parameters. Differences have been revealed in the contents of humus and essential nutrients in the 0- to 20- and 20- to 40-cm layers of soils of the studied agricultural lands. The medium acid reaction and the high content of ash elements and nitrogen in stubble-root residues of legume grasses favor the accumulation of humic acids in the humus of soil under fodder galega; the CHA/CFA ratio is 0.95 in the 0- to 20-cm layer and 0.81 in the 20- to 40-cm layer (under forest, 0.61 and 0.41, respectively). The nitrogen pool in the upper horizon of the studied soddy-podzolic soil includes 61-76% nonhydrolyzable nitrogen and 17-25% difficultly hydrolyzable nitrogen. The content of easily hydrolyzable nitrogen varies depending on the type of agricultural land from 6% in the soil under mixed forest to 10% under crop rotation; the content of mineral nitrogen varies from 0.9 to 1.9%, respectively. The long-term use of plowland in crop rotation and the cultivation of perennial legume crop have increased the content of hydrolyzable nitrogen forms but have not changed the proportions of nitrogen fractions characteristic of this soil type.

  10. The nitrogen efficiency of MSW composts as measured by triticale uptake in a 3-year field experiment

    NASA Astrophysics Data System (ADS)

    Weber, Jerzy; Licznar, Michal; Bekier, Jakub; Drozd, Jerzy; Jamroz, Elzbieta; Kocowicz, Andrzej; Parylak, Danuta; Kordas, Leszek; Licznar, Stanislawa

    2010-05-01

    This paper presents results of three year field experiment, where two different composts produced from municipal solid wastes were applied to sandy soil. The experiment was established on soil developed from loam sand, according to U.S.D.A. textural classes (81% of sand, 12% of silt, and 7% of clay), of a slightly acidic reaction (pH KCl 6.05 - 6.44). The plough layer (0 - 25 cm) contained about 5.0 g/kg of organic carbon. Both composts were alkaline in reaction and contained high amounts of plant available forms of phosphorus, potassium and magnesium. Composts were used non-recurrently in rates of 18, 36, and 72 t/ha, calculated on dry matter basis. Control objects (0 and NPK) were plots without fertilization, as well as plots fertilized each year with mineral forms of NPK. Field experiment was conducted in 15 m2 plots, using five replications in a randomized block design. Spring triticale (x Triticosecale Wittm.) cultivated in a 3-year monoculture was used as the experiment plant. Soil samples were collected each year after harvesting. Changes in triticale yield were considered in relation to soil properties and nitrogen content in triticale straw and grain. Application of composts caused beneficial changes in soil fertility, connected mainly with an increase of soil organic matter and content of available forms of P, K, and Mg. These effects were observed throughout three years of the experiment. However, significantly higher values of organic carbon - as compared to control (0 and NPK) - were observed only in plots with medium and highest compost doses. This effect was very clear in the first year, while significant differences in soil carbon content were still observed in next two years. The yield of triticale straw and grain depended significantly on fertilization with composts, but beneficial effect of compost was observed only in the first year. Yield similar to NPK control was found only on plots where the highest dose of compost was applied. Next two years, all compost amended plots indicated distinctly lower yield than that on NPK control. Decrease of yield was accompanied by decreased level of nitrogen in triticale straw and grain, although soil of compost amended and NPK fertilized plots indicated the same level of total nitrogen. In the third year dramatic decrease of soil total nitrogen was observed in (0) control, as result of exhausting available nitrogen, while soil amended with composts still contained nitrogen present in non-mineralized organic matter. The yield of triticale grown on soil amended with compost produced from municipal solid wastes was limited by not sufficient amount of plant available nitrogen. Nitrogen efficiency measured as amount of N taken up by triticale grain and straw - after depriving N uptake by triticale grown on control (0) - was very low, around 3 % in the first year and around 1% in the third year. Application of MSW composts is a good alternative for mineral fertilization, however supplementary fertilization with mineral nitrogen is necessary, depending on compost dose and quality.

  11. [Effects of nitrogen and irrigation water application on yield, water and nitrogen utilization and soil nitrate nitrogen accumulation in summer cotton].

    PubMed

    Si, Zhuan Yun; Gao, Yang; Shen, Xiao Jun; Liu, Hao; Gong, Xue Wen; Duan, Ai Wang

    2017-12-01

    A field experiment was carried out to study the effects of nitrogen and irrigation water application on growth, yield, and water and nitrogen use efficiency of summer cotton, and to develop the optimal water and nitrogen management model for suitable yield and less nitrogen loss in summer cotton field in the Huang-Huai region. Two experimental factors were arranged in a split plot design. The main plots were used for arranging nitrogen factor which consisted of five nitrogen fertilizer le-vels(0, 60, 120, 180, 240 kg·hm -2 , referred as N 0 , N 1 , N 2 , N 3 , N 4 ), and the subplots for irrigation factor which consisted of three irrigation quota levels (30, 22.5, 15 mm, referred as I 1 , I 2 , I 3 ). There were 15 treatments with three replications. Water was applied with drip irrigation system. Experimental results showed that both irrigation and nitrogen fertilization promoted cotton growth and yield obviously, but nitrogen fertilizer showed more important effects than irrigation and was the main factor of regulating growth and yield of summer cotton in the experimental region. With the increase of nitrogen fertilization rate and irrigation amount, the dry mater accumulation of reproductive organs, the above-ground biomass at the flowering-bolling stage and seed cotton yield increased gradually, reached peak values at nitrogen fertilization rate of 180 kg·hm -2 and decreased slowly with the nitrogen fertilization rate further increased. The maximum yield of 4016 kg·hm -2 was observed in the treatment of N 3 I 1 . Increasing nitrogen fertilizer amount would improve significantly total N absorption of shoots and N content of stem and leaf, but decrease nitrogen partial factor productivity. The maximum irrigation-water use efficiency of 5.40 kg·m -3 and field water use efficiency of 1.24 kg·m -3 were found in the treatments of N 3 I 3 and N 3 I 1 , respectively. With increasing nitrogen fertilization amount, soil NO 3 - -N content increased and the main soil NO 3 - -N accumulation layer moved downward. By comprehensively considering above-ground biomass, seed cotton yield, water and nitrogen uptake and utilization, and soil NO 3 - -N accumulation in the soil profile, the treatment N 3 I 1 could be recommended as the optimal water and nitrogen application pattern for summer cotton production in the experimental region.

  12. SSTs, nitrogen fertiliser and stratospheric ozone

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Whitten, R. C.; Poppoff, I. G.; Capone, L. A.

    1978-01-01

    A recently revised model of the stratosphere is used to show that a substantial enhancement in the ozone layer could accompany worldwide SST fleet operations and that water vapor may be an important factor in SST assessments. Revised rate coefficients for various ozone-destroying reactions are employed in calculations which indicate a slight increase in the total content of stratospheric ozone for modest-sized fleets of SSTs flying below about 25 km. It is found that water-vapor chemical reactions can negate in large part the NOx-induced ozone gains computed below 25 km and that increased use of nitrogen fertilizer might also enhance the ozone layer.

  13. Effects of nitrogen and phosphorous stress on the formation of high value LC-PUFAs in Porphyridium cruentum.

    PubMed

    Hu, Hao; Wang, Hou-Feng; Ma, Lin-Lin; Shen, Xiao-Fei; Zeng, Raymond Jianxiong

    2018-04-18

    This study systematically examined the effect of nitrogen and phosphorous stress on the formation of linoleic acid (LA), arachidonic acid (ARA), and eicosapentaenoic acid (EPA) in Porphyridium cruentum gy-h56. P. cruentum was cultivated in six different media conferring different conditions of nitrogen (N) sufficiency/deprivation and phosphorous (P) sufficiency/limitation/deprivation. Over a 16-day cultivation process, the dry-weight content, proportion of total fatty acids (TFAs), and the concentration in the medium of linoleic acid (LA) were greatly improved by a maximum of 2.5-, 1.6-, and 1.1-fold, respectively, under conditions of N or P deprivation compared with N and P sufficiency. In contrast, levels of EPA or ARA were not enhanced under N or P stress conditions. Additionally, the results showed that N deprivation weakened the impact of P deficiency on the content and proportions of LA and EPA, while P deprivation enhanced the impact of N starvation on the content and proportions of LA and EPA. The conditions of N sufficiency and P deprivation (N+P-) were the optimal conditions for the production of LA, while the optimal conditions for EPA, ARA, and TFAs production were N sufficiency and P limitation (N+P-lim). This study suggests the potential application of combining N removal from saline wastewater with the production of LA, ARA, EPA, and biodiesel.

  14. Impact of Variety and Agronomic Factors on Crude Protein and Total Lysine in Chicory; N(ε)-Carboxymethyl-lysine-Forming Potential during Drying and Roasting.

    PubMed

    Loaëc, Grégory; Niquet-Léridon, Céline; Henry, Nicolas; Jacolot, Philippe; Jouquand, Céline; Janssens, Myriam; Hance, Philippe; Cadalen, Thierry; Hilbert, Jean-Louis; Desprez, Bruno; Tessier, Frédéric J

    2015-12-02

    During the heat treatment of coffee and its substitutes some compounds potentially deleterious to health are synthesized by the Maillard reaction. Among these, N(ε)-carboxymethyl-lysine (CML) was detected at high levels in coffee substitutes. The objective of this study was to evaluate the impact of changes in agricultural practice on the lysine content present in chicory roots and try to limit CML formation during roasting. Of the 24 varieties analyzed, small variations in lysine content were observed, 213 ± 8 mg/100 g dry matter (DM). The formation of lysine tested in five commercial varieties was affected by the nitrogen treatment with mean levels of 176 ± 2 mg/100 g DM when no fertilizer was added and 217 ± 7 mg/100 g DM with a nitrogen supply of 120 kg/ha. The lysine content of fresh roots was significantly correlated to the concentration of CML formed in roasted roots (r = 0.51; p < 0.0001; n = 76).

  15. Effect of pH and complementary ion concentration on nitrate removal using puroliteA400 Resin impregnated Cu in batch system

    NASA Astrophysics Data System (ADS)

    Turmuzi, M.; Tarigan, Z. N.; Nadapdap, L.; Batubara, F.

    2018-02-01

    The total nitrogen content in water bodies should be below 50 mg NO3 -/L (11.3 mgN/l) World Health Organization (WHO) 2006. The content of nitrogen exceeding the quality standard threshold will cause damage to the aquatic ecosystem and be carcinogenic to humans. The Purolite A-400 resin will be modified with Cu metal by batch method to see the adsorption allowance of nitrate in synthetic liquid waste with nitrate concentration of 50 mg/l. This study will evaluate the effect of pH and complementary ions on the adsorption process. From the result of the research, the second order pseudo model is the most suitable adsorption kinetics model. For the adsorption isotherms the most suitable model is the Freundlich adsorption isotherm model. The optimum pH conditions were at the range of 8.5. The addition of complementary ions sulfate and phosphate did not show any significant change, but sulfate is the most effective complementary ion with a content of 20 mg/l.

  16. Water-quality assessment of Steiner Branch basin, Lafayette County, Wisconsin

    USGS Publications Warehouse

    Field, Stephen J.; Lidwin, R.A.

    1982-01-01

    Most of the nutrient load of the stream was transported during runoff: total organic nitrogen, 80 percent; ammonia nitrogen, 80 percent; total phosphorus, 84 percent; and total orthophosphorus, 77 percent. Transport of nitrite plus nitrate nitrogen and total nitrogen occurred primarily during baseflow conditions, with 75 and 56 percent, respectively, of the total load for the study period being transported during these conditions. The time distribution of total phosphorus, total orthophosphorus, ammonia nitrogen, and total organic nitrogen transport was very similar to suspended-sediment transport in Steiner Branch.

  17. The application dosage of Azolla pinnata in fresh and powder form as organic fertilizer on soil chemical properties, growth and yield of rice plant

    NASA Astrophysics Data System (ADS)

    Setiawati, Mieke Rochimi; Damayani, Maya; Herdiyantoro, Diyan; Suryatmana, Pujawati; Anggraini, Derisfha; Khumairah, Fiqriah Hanum

    2018-02-01

    The yield of rice plants is strongly influenced by N fertilizer. Nitrogen in rice plants has roles in vegetative growth, tiller formation and increasing yield through rice protein formation. Nitrogen supplied from organic fertilizers is better than inorganic fertilizers that may have environmental problem effects. Organic fertilizers from Azolla pinnata water fern contain higher N than other organic fertilizers. Symbiosis between A. pinnata and the N-fixing cyanobacteria results in high content of nitrogen, 3 to 5%. A. pinnata can be added to the rice field as organic fertilizer in form of fresh biomass or composted. Composted form can be ground into powder which passes through 100 mesh sieve. Preparation of compost powder of A. pinnata is done to reduce the constraints of voluminous application of organic fertilizers and to improve the efficiency of its use. The objective of this research was to compare the effect of the use of fresh A. pinnata and compost powder of A. pinnata on some soil and plant chemical properties and rice yield. The treatments applied were fresh A. pinnata at the dose of 0, 10 and 20 ton ha-1 and A. pinnata compost powder at 12.5 and 25 kg ha-1. The results showed that incorporation of fresh A. pinnata at 20 tons ha-1 and its compost powder at 25 kg ha-1 increased the available P of soil, plant P content and tiller number, but did not affect the content of organic-C, total soil N, plant N content and rice yield. This study suggested the benefits of A. pinnata compost powder technology in organic fertilization of soil to increase the nutrient content of soil and rice plants.

  18. [Effects of long-term fertilization on organic nitrogen fractions in aquic brown soil].

    PubMed

    Ren, Jin Feng; Zhou, Hua; Ma, Qiang; Xu, Yong Gang; Jiang, Chun Ming; Pan, Fei Fei; Yu, Wan Tai

    2017-05-18

    The purpose of present research was to investigate how different fertilization regimes altered soil organic nitrogen fractions and their inter-annual dynamics based on a series of long-term experiment (initiated at 1990), including: CK (non-fertilization); M (recycled pig manure); NPK (chemical fertilizer NPK); NPK + M (recycled pig manure with chemical fertilizer NPK). The results showed that soil organic nitrogen components under the different fertilization treatments presented contrastive patterns from the establishment the experiments to 2015. Generally, acid hydrolysable organic nitrogen content increased year by year. The amino acid nitrogen content under CK and NPK treatments consistently declined, although amino acid nitrogen for M and NPK+M treatments showed a increasing trend. These phenomena were probably ascribed to the utilization of soil amino acids by microbes. From 1990 to 2015, NPK treatment substantially elevated the content of acid-released ammonium nitrogen by 31.1% compared with CK (mean value across the experiment), and for the treatments using organic manure (M and NPK+M), the contents of all fractions of soil organic nitrogen increased. Notably, the increase magnitudes for NPK+M were more dramatic than those of M. These results demonstrated that combined use of organic and inorganic fertilizers could more effectively elevate soil organic nitrogen, subsequently helping to improve the capacity of soil nitrogen supply and enhance the soil fertility.

  19. Study of Cetane Properties of ATJ Blends Based on World Survey of Jet Fuels

    DTIC Science & Technology

    2016-01-28

    49.84 N/A N/A N/A 46.92 N/A N/A N/A 12 (100% Syn.) 1 57.79 N/A N/A N/A 53.48 N/A N/A N/A a - Conventional petroleum based jet fuel; b - Oil Shale ...Australia (% Nitrogen content unknown) c - Oil Shale , Australia (Low Nitrogen); d - Oil Shale , Australia (High Nitrogen) U/A – Unavailable in PQIS...fuel b - Oil Shale , Australia (% Nitrogen content unknown) c - Oil Shale , Australia (Low Nitrogen) d - Oil Shale , Australia (High Nitrogen) U/A

  20. Nitrogen split dose fertilization, plant age and frost effects on phytochemical content and sensory properties of curly kale (Brassica oleracea L. var. sabellica).

    PubMed

    Groenbaek, Marie; Jensen, Sidsel; Neugart, Susanne; Schreiner, Monika; Kidmose, Ulla; Kristensen, Hanne L

    2016-04-15

    We investigated how concentrations of sensory relevant compounds: glucosinolates (GLSs), flavonoid glycosides, hydroxycinnamic acid derivatives and sugars in kale responded to split dose and reduced nitrogen (N) fertilization, plant age and controlled frost exposure. In addition, frost effects on sensory properties combined with N supply were assessed. Seventeen week old kale plants showed decreased aliphatic GLSs at split dose N fertilization; whereas reduced N increased aliphatic and total GLSs. Ontogenetic effects were demonstrated for all compounds: sugars, aliphatic and total GLSs increased throughout plant development, whereas kaempferol and total flavonoid glycosides showed higher concentrations in 13 week old plants. Controlled frost exposure altered sugar composition slightly, but not GLSs or flavonoid glycosides. Reduced N supply resulted in less bitterness, astringency and pungent aroma, whereas frost exposure mainly influenced aroma and texture. N treatment explained most of the sensory variation. Producers should not rely on frost only to obtain altered sensory properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Using cow dung and spent coffee grounds to enhance the two-stage co-composting of green waste.

    PubMed

    Zhang, Lu; Sun, Xiangyang

    2017-12-01

    The objective of this study was to determine the effects of cow dung (CD) (at 0%, 20%, and 35%) and/or spent coffee grounds (SCGs) (at 0%, 30%, and 45%) as amendments in the two-stage co-composting of green waste (GW); the percentages refer to grams of amendment per 100g of GW based on dry weights. The combined addition of CD and SCGs improved the conditions during co-composting and the quality of the compost product in terms of composting temperature; particle-size distribution; mechanical properties; nitrogen changes; low-molecular weight compounds; humic substances; the degradation of lignin, cellulose, and hemicellulose; enzyme activities; the contents of total Kjeldahl nitrogen, total phosphorus, and total potassium; and the toxicity to germinating seeds. The combined addition of 20% CD and 45% SCGs to GW resulted in the production of the highest quality compost product and did so in only 21days. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Flood flows, leaf breakdown, and plant-available nitrogen on a dryland river floodplain

    USGS Publications Warehouse

    Andersen, Douglas C.; Nelson, S. Mark; Binkley, Dan

    2003-01-01

    We tested the hypothesis that decomposition in flood-inundated patches of riparian tree leaf litter results in higher plant-available nitrogen in underlying, nutrient-poor alluvium. We used leafpacks (n = 56) containing cottonwood (Populus deltoides ssp. wislizenii) leaf litter to mimic natural accumulations of leaves in an experiment conducted on the Yampa River floodplain in semi-arid northwestern Colorado, USA. One-half of the leafpacks were set on the sandy alluvial surface, and one-half were buried 5 cm below the surface. The presence of NO3− and NH4+ presumed to result from a leafpack's submergence during the predictable spring flood pulse was assessed using an ion-exchange resin bag (IER) placed beneath each leafpack and at control locations. Leafpacks and IERs were collected one week after flood peak (71 days total exposure) at half the stations; the remainder were collected three weeks later (93 days exposure). A multi-peaked spring flood with above-average maximum discharge inundated leafpacks for total time periods ranging from 133 to 577 hours. Litter lost from 43 to 68 percent of its initial organic matter (OM) content. Organic matter loss increased with total time inundated and total time of exposure on the floodplain. Burial retarded OM loss if the total time inundated was relatively long, and substrate texture (sand vs. silt) affected OM loss in a complex manner through interactions with total time inundated and total time of exposure. No pulse of N attributable to leaf breakdown was detected in the IERs, and leafpack litter showed no net change in the mass of nitrogen present. Patterns of leafpack and IER nitrogen levels suggested that litter removed N from floodwater and thereby reduced N availability in underlying sediment. Immobilization of floodwater-N by litter and N mineralization outside the flood period may be important components of N flux in semi-arid and arid floodplain environments.

  3. [Soil microbial community structure of monoculture and mixed plantation stands of native tree species in south subtropical China].

    PubMed

    Luo, Da; Shi, Zuo-Min; Tang, Jing-Chao; Liu, Shi-Rong; Lu, Li-Hua

    2014-09-01

    The effects of three plantation stands, Erythrophleumf ordii (EF), Pinus massoniana (PM), and their mixed plantation (MP), on soil microbial biomass and microbial community structure in south subtropical China were studied by the method of phospholipid fatty acids (PLFAs) analysis. The results showed that the amounts of microbial total PLFAs and PLFAs of each microbial group in these three plantation stand soils were significantly higher in dry season than in rainy season. In dry season, the amounts of microbial total PLFAs, bacteria PLFAs, fungi PLFAs, and actinomycetes PLFAs were the highest in the PM soil, moderate in the MP soil, and the lowest in the EF soil. But in rainy season, the amounts of microbial total PLFAs, bacteria PLFAs, fungi PLFAs, and arbuscular mycorrhizal fungi (AMF) PLFAs in the EF soil were higher than in the MP soil, and were significantly higher than in the PM soil. Principal component analysis (PCA) indicated that the variations in soil microbial community structure composition were affected by both plantation types and seasons. Redundancy analysis (RDA) of soil microbial community structure and environmental factors showed that soil temperature and moisture, pH, total nitrogen content, and ammonium nitrogen content had significant correlations with PLFA signatures. In addition, the ratio of fungi PLFAs to bacteria PLFAs in the MP soil was the highest among the three stand soils within the whole year, indicating that mixed plantation stands could facilitate the stability of the soil ecosystem.

  4. System Response of Metabolic Networks in Chlamydomonas reinhardtii to Total Available Ammonium

    PubMed Central

    Lee, Do Yup; Park, Jeong-Jin; Barupal, Dinesh K.; Fiehn, Oliver

    2012-01-01

    Drastic alterations in macronutrients are known to cause large changes in biochemistry and gene expression in the photosynthetic alga Chlamydomonas reinhardtii. However, metabolomic and proteomic responses to subtle reductions in macronutrients have not yet been studied. When ammonium levels were reduced by 25–100% compared with control cultures, ammonium uptake and growth rates were not affected at 25% or 50% nitrogen-reduction for 28 h. However, primary metabolism and enzyme expression showed remarkable changes at acute conditions (4 h and 10 h after ammonium reduction) compared with chronic conditions (18 h and 28 h time points). Responses of 145 identified metabolites were quantified using gas chromatography-time of flight mass spectrometry; 495 proteins (including 187 enzymes) were monitored using liquid chromatography-ion trap mass spectrometry with label-free spectral counting. Stress response and carbon assimilation processes (Calvin cycle, acetate uptake and chlorophyll biosynthesis) were altered first, in addition to increase in enzyme contents for lipid biosynthesis and accumulation of short chain free fatty acids. Nitrogen/carbon balance metabolism was found changed only under chronic conditions, for example in the citric acid cycle and amino acid metabolism. Metabolism in Chlamydomonas readily responds to total available media nitrogen with temporal increases in short-chain free fatty acids and turnover of internal proteins, long before nitrogen resources are depleted. PMID:22787274

  5. Controlled release of alendronate from nitrogen-doped mesoporous carbon

    DOE PAGES

    Saha, Dipendu; Spurri, Amanda; Chen, Jihua; ...

    2016-04-13

    With this study, we have synthesized a nitrogen doped mesoporous carbon with the BET surface area of 1066 m 2/g, total pore volume 0.6 cm 3/g and nitrogen content of 0.5%. Total alendronate adsorption in this carbon was ~5%. The release experiments were designed in four different media with sequential pH values of 1.2, 4.5, 6.8 and 7.4 for 3, 1, 3 and 5 h, respectively and at 37 °C to imitate the physiological conditions of stomach, duodenum, small intestine and colon, respectively. Release of the drug demonstrated a controlled fashion; only 20% of the drug was released in themore » media with pH = 1.2, whereas 64% of the drug was released in pH = 7.4. This is in contrary to pure alendronate that was completely dissolved within 30 min in the first release media (pH = 1.2) only. The relatively larger uptake of alendronate in this carbon and its sustained fashion of release can be attributed to the hydrogen bonding between the drug and the nitrogen functionalities on carbon surface. Based on this result, it can be inferred that this formulation may lower the side effects of oral delivery of alendronate.« less

  6. Enhancement of docosahexaenoic acid (DHA) production from Schizochytrium sp. S31 using different growth medium conditions.

    PubMed

    Sahin, Deniz; Tas, Ezgi; Altindag, Ulkü Hüma

    2018-01-24

    Schizochytrium species is one of the most studied microalgae for production of docosahexaenoic acid (DHA) which is an omega-3 fatty acid with positive effects for human health. However, high cost and low yield in production phase makes optimization of cultivation process inevitable. We focus on the optimization of DHA production using Schizochytrium sp. using different media supplements; glucose, fructose and glycerol as carbon variants, proteose peptone and tryptone as nitrogen variants. The highest biomass (5.61 g/L) and total fatty acid yield (1.74 g/L) were obtained in proteose peptone medium which was used as the alternative nitrogen source instead of yeast extract. The highest DHA yield (0.40 g/L) was achieved with glycerol as the carbon source although it had the second lowest biomass production after ethanol containing medium. Ethanol, as an alternative carbon source and a precursor for acetyl-CoA, increased DHA percentage in total lipid content from 29.94 to 40.04% but decreasing the biomass drastically. Considering different carbon and nitrogen sources during cultivation of Schizochytrium sp. will improve DHA production. Combination of proteose peptone and glycerol as nitrogen and carbon sources, respectively, and addition of ethanol with a proper timing will be useful to have higher DHA yield.

  7. Effects of different microbes on fermenting feed for sea cucumber ( Apostichopus japonicus)

    NASA Astrophysics Data System (ADS)

    Jiang, Yan; Wang, Yingeng; Mai, Kangsen; Zhang, Zheng; Liao, Meijie; Rong, Xiaojun

    2015-10-01

    The effects of different microbes on fermenting feed for sea cucumber ( Apostichopus japonicus) were compared to select the optimal fermentation strain in this study. Saccharomgces cerevisae, Candida utilis, Bacillus subtilis and Geotrichum candidum were independently added into the experimental compound feed, while only saline was mixed with the control feed. The fermentation treatments were inoculated with 10% seed solution under the condition of 25°C and 70% water content, which lasted for 5 days to elucidate the optimal microbe strain for fermenting effect. Physicochemical indexes and sensorial characteristics were measured per day during the fermentation. The indexes included dry matter recovery (DMR), crude protein (CP), the percentage of amino acid nitrogen to total nitrogen (AA-N/tN), the percentage of ammonia nitrogen to total nitrogen (NH3-N/tN), and the ratio of fermentation strains and vibrios to the total microbes, color, smell and viscosity. The results showed that DMR, CP and AA-N/tN of the S. cerevisae group reached the highest level on day 3, but the ratio of fermentation strain was second to C. utilis group. In addition, its NH3-N/tN and the ratio of vibrios were maintained at low levels, and the sensory evaluation score including smell, color and viscosity was the highest in S. cerevisae group on day 3. Therefore, S. cerevisae could be the optimal strain for the feed fermentation for sea cucumber. This research developed a new production method of fermentation feed for sea cucumber.

  8. [Research on fast detecting tomato seedlings nitrogen content based on NIR characteristic spectrum selection].

    PubMed

    Wu, Jing-zhu; Wang, Feng-zhu; Wang, Li-li; Zhang, Xiao-chao; Mao, Wen-hua

    2015-01-01

    In order to improve the accuracy and robustness of detecting tomato seedlings nitrogen content based on near-infrared spectroscopy (NIR), 4 kinds of characteristic spectrum selecting methods were studied in the present paper, i. e. competitive adaptive reweighted sampling (CARS), Monte Carlo uninformative variables elimination (MCUVE), backward interval partial least squares (BiPLS) and synergy interval partial least squares (SiPLS). There were totally 60 tomato seedlings cultivated at 10 different nitrogen-treatment levels (urea concentration from 0 to 120 mg . L-1), with 6 samples at each nitrogen-treatment level. They are in different degrees of over nitrogen, moderate nitrogen, lack of nitrogen and no nitrogen status. Each sample leaves were collected to scan near-infrared spectroscopy from 12 500 to 3 600 cm-1. The quantitative models based on the above 4 methods were established. According to the experimental result, the calibration model based on CARS and MCUVE selecting methods show better performance than those based on BiPLS and SiPLS selecting methods, but their prediction ability is much lower than that of the latter. Among them, the model built by BiPLS has the best prediction performance. The correlation coefficient (r), root mean square error of prediction (RMSEP) and ratio of performance to standard derivate (RPD) is 0. 952 7, 0. 118 3 and 3. 291, respectively. Therefore, NIR technology combined with characteristic spectrum selecting methods can improve the model performance. But the characteristic spectrum selecting methods are not universal. For the built model based or single wavelength variables selection is more sensitive, it is more suitable for the uniform object. While the anti-interference ability of the model built based on wavelength interval selection is much stronger, it is more suitable for the uneven and poor reproducibility object. Therefore, the characteristic spectrum selection will only play a better role in building model, combined with the consideration of sample state and the model indexes.

  9. Structure, thermodynamic and electronic properties of carbon-nitrogen cubanes and protonated polynitrogen cations

    NASA Astrophysics Data System (ADS)

    Chaban, Vitaly V.; Andreeva, Nadezhda A.

    2017-12-01

    Energy generation and storage are at the center of modern civilization. Energetic materials constitute quite a large class of compounds with a high amount of stored chemical energy that can be released. We hereby use a combination of quantum chemistry methods to investigate feasibility and properties of carbon-nitrogen cubanes and multi-charged polynitrogen cations in the context of their synthesis and application as unprecedented energetic materials. We show that the stored energy increases gradually with the nitrogen content increase. Nitrogen-poor cubanes retain their stabilities in vacuum, even at elevated temperatures. Such molecules will be probably synthesized at some point. In turn, polynitrogen cations are highly unstable, except N8H+, despite they are isoelectronic to all-carbon cubane. Kinetic stability of the cation decays drastically as its total charge increases. High-level thermodynamic calculations revealed that large amounts of energy are liberated upon decompositions of polynitrogen cations, which produce molecular nitrogen, acetylene, and protons. The present results bring a substantial insights to the design of novel high-energy compounds.

  10. Medium-chain triglyceride feeding in premature infants: effects on fat and nitrogen absorption.

    PubMed

    Tantibhedhyangkul, P; Hashim, S A

    1975-03-01

    The effect of medium-chain triglycerides (MCT) on the "physiological" steatorrhea of prematurity was studied in 34 infants with birthweights below 2,000 gm. The infants were divided into three groups and fed three formulas identical in nutrient content except for the type of fat, as follows: group 1 (control): corn oil, oleo, and coconut oil (39:41:20); group 2: MCT, corn oil, and coconut oil (40:40:20); group 3: MCT and corn oil (80:20). The infants fed MCT-containing formulas had striking diminution in stool volume and frequency. Their total fat absorption was significantly improved when compared with controls; nitrogen absorption was slightly but significantly improved in the 80% MCT group. The results also suggest that nitrogen sparing may be enhanced in premature infants fed MCT-containing formulas.

  11. Nod factor supply under water stress conditions modulates cytokinin biosynthesis and enhances nodule formation and N nutrition in soybean.

    PubMed

    Prudent, Marion; Salon, Christophe; Smith, Donald L; Emery, R J Neil

    2016-09-01

    Nod factors (NF) are molecules produced by rhizobia which are involved in the N 2 -fixing symbiosis with legume plants, enabling the formation of specific organs called nodules. Under drought conditions, nitrogen acquisition by N 2 -fixation is depressed, resulting in low legume productivity. In this study, we evaluated the effects of NF supply on nitrogen acquisition and on cytokinin biosynthesis of soybean plants grown under drought. NF supply to water stressed soybeans increased the CK content of all organs. The profile of CK metabolites also shifted from t-Z to cis-Z and an accumulation of nucleotide and glucoside conjugates. The changes in CK coincided with enhanced nodule formation with sustained nodule specific activity, which ultimately increased the total nitrogen fixed by the plant.

  12. A mechanistic, globally-applicable model of plant nitrogen uptake, retranslocation and fixation

    NASA Astrophysics Data System (ADS)

    Fisher, J. B.; Tan, S.; Malhi, Y.; Fisher, R. A.; Sitch, S.; Huntingford, C.

    2008-12-01

    Nitrogen is one of the nutrients that can most limit plant growth, and nitrogen availability may be a controlling factor on biosphere responses to climate change. We developed a plant nitrogen assimilation model based on a) advective transport through the transpiration stream, b) retranslocation whereby carbon is expended to resorb nitrogen from leaves, c) active uptake whereby carbon is expended to acquire soil nitrogen, and d) biological nitrogen fixation whereby carbon is expended for symbiotic nitrogen fixers. The model relies on 9 inputs: 1) net primary productivity (NPP), 2) plant C:N ratio, 3) available soil nitrogen, 4) root biomass, 5) transpiration rate, 6) saturated soil depth,7) leaf nitrogen before senescence, 8) soil temperature, and 9) ability to fix nitrogen. A carbon cost of retranslocation is estimated based on leaf nitrogen and compared to an active uptake carbon cost based on root biomass and available soil nitrogen; for nitrogen fixers both costs are compared to a carbon cost of fixation dependent on soil temperature. The NPP is then allocated to optimize growth while maintaining the C:N ratio. The model outputs are total plant nitrogen uptake, remaining NPP available for growth, carbon respired to the soil and updated available soil nitrogen content. We test and validate the model (called FUN: Fixation and Uptake of Nitrogen) against data from the UK, Germany and Peru, and run the model under simplified scenarios of primary succession and climate change. FUN is suitable for incorporation into a land surface scheme of a General Circulation Model and will be coupled with a soil model and dynamic global vegetation model as part of a land surface model (JULES).

  13. Influence of shade on the growth and nitrogen assimilation of developing fruits on bell pepper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achhireddy, N.R.; Fletcher, J.S.; Beevers, L.

    Accumulation of dry mass, total N, protein N, and soluble amino acid N in the developing fruit and seeds of bell pepper (Capsicum annuum L.) was determined at selected intervals following anthesis. The importance of photosynthesis to the growth and nitrogen (N) assimilation in the developing fruit wall plus placenta (FWP) and seeds was evaluated by comparing the growth and accumulation of reduced N in nonphotosynthetic and photosynthetic fruits (covered vs. uncovered). The growth rate of the FWP and seeds was similar under both conditions. After 65 days of growth, the fruits kept in the dark weighed about 15% lessmore » than those receiving illumination; seed weight was the same for both treatments. Total N content of the FWP or seed continued to increase up to 55 days after anthesis. The FWP accumulated over 90% of fruit's total N, and there were no significant differences between covered and uncovered fruits. Protein N accounted for about 50% of the total N present in both covered and uncovered fruits. 15 references, 2 figures, 2 tables.« less

  14. [Effects of applying controlled-release fertilizer blended with conventional nitrogen fertilizer on Chinese cabbage yield and quality as well as nitrogen losses].

    PubMed

    Yang, Jun-gang; Xu, Kai; Tong, Er-jian; Cao, Bing; Ni, Xiao-hui; Xu, Jun-xiang

    2010-12-01

    An open field experiment was conducted to study the effects of applying controlled-release fertilizer blended with rapidly available chemical N fertilizer on Chinese cabbage yield and quality as well as nitrogen losses, including ammonia volatilization and NO3- -N accumulation and leaching in Beijing suburb. The results showed that a combined application of 2:1 controlled-release fertilizer and urea fertilizer (total N rate 150 kg x hm(-2)) did not induce the reduction of Chinese cabbage yield, and decreased the leaf nitrate and organic acid contents significantly, compared with conventional urea N application (300 kg x hm(-2)), and had no significant difference in the cabbage yield and leaf nitrate content, compared with applying 150 kg x hm(-2) of urea N. The combined application of 2:1 controlled-release fertilizer and urea fertilizer improved the N use efficiency of Chinese cabbage, and reduced the ammonia volatilization and NO3- -N leaching. At harvest, the NO3- -N concentrations in 20-40, 60-80 and 80-100 cm soil layers were significantly lower in the combined application treatment than in urea N treatment.

  15. Effects of short-term invasion of Spartina alterniflora and the subsequent restoration of native mangroves on the soil organic carbon, nitrogen and phosphorus stock.

    PubMed

    Feng, Jianxiang; Zhou, Jian; Wang, Liming; Cui, Xiaowei; Ning, Cunxin; Wu, Hao; Zhu, Xiaoshan; Lin, Guanghui

    2017-10-01

    The exotic cordgrass Spartina alterniflora has severely invaded the mangrove wetlands in southern China and ecological restoration using native mangroves was conducted in an attempt to control this invasive species. In this study, the contents and pools of soil organic carbon (SOC), total nitrogen (TN) and total phosphorus (TP) were quantified to investigate the invasive effects of S. alterniflora and then to evaluate whether the ecological restoration of native mangrove could reverse those effects. S. alterniflora only showed significantly higher organic carbon content in the surface 0-10 cm of soil than in the uninvaded mudflat. The high δ 13 C values in the surface soil of the invaded habitat demonstrated that S. alterniflora contributed 42.6-62.2% of the organic carbon. The SOC for invasive S. alterniflora and newly restored mangroves (4 years and 14 years) was not enhanced in comparison to the unvegetated mudflat. S. alterniflora significantly increased the surface soil TN content, but decreased the available phosphorus content and TP density. The TN densities increased gradually with the mangrove restoration, while the TP densities were only slightly influenced. The results suggested that short-term invasion of S. alterniflora and subsequent mangrove restoration did not alter SOC or TN pool sizes, but S. alterniflora was shown to affect the potential carbon storage capacity produced by the mangroves in the Zhangjiang Estuary. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Effects of salinity and nitrogen supply on the quality and health-related compounds of strawberry fruits (Fragaria × ananassa cv. Primoris).

    PubMed

    Cardeñosa, Vanessa; Medrano, Evangelina; Lorenzo, Pilar; Sánchez-Guerrero, Maria Cruz; Cuevas, Francisco; Pradas, Inmaculada; Moreno-Rojas, José M

    2015-11-01

    Different nitrogen inputs and/or development under adverse water conditions (water stress/low quality and/or high salinity/electrical conductivity), such as those prevailing in Almeria (Mediterranean coast, south-east Spain), may affect overall fruit and vegetable quality. This study evaluated the influence of salinity and nitrogen reduction in hydroponic nutrient solution on strawberry fruit quality and nutritional compounds (Fragaria × ananassa Duch., cv. Primoris). Strawberries obtained under salinity treatments recorded the highest values for soluble solids content (SSC; all samplings); fruit taste was thus enhanced. Additionally, salinity improved fruit nutritional value, with higher contents of antioxidants compounds (first sampling). During first and second samplings, strawberries grown under N reduction and non-saline conditions showed higher values for firmness compared to fruits developed under other treatments. Regarding health-related compounds, few differences were found except for total polyphenols concentration and antioxidant activity for the first sampling, where strawberries grown under saline treatments obtained the highest values for both parameters. The use of low-quality waters, such as those found in Almeria (salinity, N9S and N5S) and low nitrogen inputs (N5, avoid environmental impact) for strawberry cultivation does not exert a negative impact on overall quality. Positive differences could be found in SSC, firmness and health-related compounds when compared against the control treatment (N9). © 2014 Society of Chemical Industry.

  17. Leaf nitrogen assimilation and partitioning differ among subtropical forest plants in response to canopy addition of nitrogen treatments.

    PubMed

    Liu, Nan; Wu, Shuhua; Guo, Qinfeng; Wang, Jiaxin; Cao, Ce; Wang, Jun

    2018-05-12

    Global increases in nitrogen deposition may alter forest structure and function by interfering with plant nitrogen metabolism (e.g., assimilation and partitioning) and subsequent carbon assimilation, but it is unclear how these responses to nitrogen deposition differ among species. In this study, we conducted a 2-year experiment to investigate the effects of canopy addition of nitrogen (CAN) on leaf nitrogen assimilation and partitioning in three subtropical forest plants (Castanea henryi, Ardisia quinquegona, and Blastus cochinchinensis). We hypothesized that responses of leaf nitrogen assimilation and partitioning to CAN differ among subtropical forest plants. CAN increased leaf nitrate reductase (NR) activity, and leaf nitrogen and chlorophyll contents but reduced leaf maximum photosynthetic rate (A max ), photosynthetic nitrogen use efficiency (PNUE), ribulose-1,5-bisphosphate carboxylase (Rubisco) activity, and metabolic protein content of an overstory tree species C. henryi. In an understory tree A. quinquegona, CAN increased NR activity and glutamine synthetase activity and therefore increased metabolic protein synthesis (e.g., Rubisco) in leaves. In the shrub B. cochinchinensis, CAN increased A max , PNUE, Rubisco content, metabolic protein content, and Rubisco activity in leaves. Leaf nitrogen assimilation and partitioning results indicated that A. quinquegona and B. cochinchinensis may better acclimate to CAN than C. henryi and that the acclimation mechanism differs among the species. Results from this study suggest that long-term elevated atmospheric nitrogen deposition has contributed to the ongoing transformation of subtropical forests into communities dominated by small trees and shrubs. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. [Nitrogen status diagnosis of rice by using a digital camera].

    PubMed

    Jia, Liang-Liang; Fan, Ming-Sheng; Zhang, Fu-Suo; Chen, Xin-Ping; Lü, Shi-Hua; Sun, Yan-Ming

    2009-08-01

    In the present research, a field experiment with different N application rate was conducted to study the possibility of using visible band color analysis methods to monitor the N status of rice canopy. The Correlations of visible spectrum band color intensity between rice canopy image acquired from a digital camera and conventional nitrogen status diagnosis parameters of leaf SPAD chlorophyll meter readings, total N content, upland biomass and N uptake were studied. The results showed that the red color intensity (R), green color intensity (G) and normalized redness intensity (NRI) have significant inverse linear correlations with the conventional N diagnosis parameters of SPAD readings, total N content, upland biomass and total N uptake. The correlation coefficient values (r) were from -0.561 to -0.714 for red band (R), from -0.452 to -0.505 for green band (G), and from -0.541 to 0.817 for normalized redness intensity (NRI). But the normalized greenness intensity (NGI) showed a significant positive correlation with conventional N parameters and the correlation coefficient values (r) were from 0.505 to 0.559. Compared with SPAD readings, the normalized redness intensity (NRI), with a high r value of 0.541-0.780 with conventional N parameters, could better express the N status of rice. The digital image color analysis method showed the potential of being used in rice N status diagnosis in the future.

  19. The effects of antecedent dry days on the nitrogen removal in layered soil infiltration systems for storm run-off control.

    PubMed

    Cho, Kang-Woo; Yoon, Min-Hyuk; Song, Kyung-Guen; Ahn, Kyu-Hong

    2011-01-01

    The effects of antecedent dry days (ADD) on nitrogen removal efficiency were investigated in soil infiltration systems, with three distinguishable layers: mulch layer (ML), coarse soil layer (CSL) and fine soil layer (FSL). Two sets of lab-scale columns with loamy CSL (C1) and sandy CSL (C2) were dosed with synthetic run-off, carrying chemical oxygen demand of 100 mg L(-1) and total nitrogen of 13 mg L(-1). The intermittent dosing cycle was stepwise adjusted for 5, 10 and 20 days. The influent ammonium and organic nitrogen were adsorbed to the entire depth in C1, while dominantly to the FSL in C2. In both columns, the effluent ammonium concentration increased while the organic nitrogen concentration decreased, as ADD increased from 5 to 20 days. The effluent of C1 always showed nitrate concentration exceeding influent, caused by nitrification, by increasing amounts as ADD increased. However, the wash-out of nitrate in C1 was not distinct in terms of mass since the effluent flow rate was only 25% of the influent. In contrast, efficient reduction (>95%) of nitrate loading was observed in C2 under ADD of 5 and 10 days, because of insignificant nitrification in the CSL and denitrification in the FSL. However, for the ADD of 20 days, a significant nitrate wash-out appeared in C2 as well, possibly because of the re-aeration by the decreasing water content in the FSL. Consequently, the total nitrogen load escaping with the effluent was always smaller in C2, supporting the effectiveness of sandy CSL over loamy FSL for nitrogen removal under various ADDs.

  20. Silicon oxynitride films deposited by reactive high power impulse magnetron sputtering using nitrous oxide as a single-source precursor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hänninen, Tuomas, E-mail: tuoha@ifm.liu.se; Schmidt, Susann; Jensen, Jens

    2015-09-15

    Silicon oxynitride thin films were synthesized by reactive high power impulse magnetron sputtering of silicon in argon/nitrous oxide plasmas. Nitrous oxide was employed as a single-source precursor supplying oxygen and nitrogen for the film growth. The films were characterized by elastic recoil detection analysis, x-ray photoelectron spectroscopy, x-ray diffraction, x-ray reflectivity, scanning electron microscopy, and spectroscopic ellipsometry. Results show that the films are silicon rich, amorphous, and exhibit a random chemical bonding structure. The optical properties with the refractive index and the extinction coefficient correlate with the film elemental composition, showing decreasing values with increasing film oxygen and nitrogen content.more » The total percentage of oxygen and nitrogen in the films is controlled by adjusting the gas flow ratio in the deposition processes. Furthermore, it is shown that the film oxygen-to-nitrogen ratio can be tailored by the high power impulse magnetron sputtering-specific parameters pulse frequency and energy per pulse.« less

  1. [Effects of different mulching materials on nitrate metabolism in soil of apple root-zone in summer and autumn.

    PubMed

    Zhang, Rui Xue; Yang, Hong Qiang; Xu, Ying; Lyu, Ting Wen; Cao, Hui; Ning, Liu Fang; Zhou, Chun Ran; Fan, Wei Guo

    2016-08-01

    This study explored the effects of mulching straw mat, agricultural carpet, transparent-plastic film and horticultural fabric on nitrification-denitrification, nitrate reductase (NR), nitrite reductase (NiR), ammonium, nitrate and nitrite nitrogen in root-zone soil grown with three-year old apple trees (Malus domestica cv. Starkrimson) during summer and autumn. Results showed that the four treatments decreased nitrification intensity in summer soil, NiR activity in summer-autumn soil and the variation coefficient of nitrification-denitrification intensity and NR in both summer and autumn soil. The treatments increased the denitrification intensity, NR activity, ammonium nitrogen contents in summer-autumn soil and ammonium nitrogen contents in autumn soil. Straw mat treatment increased denitrification intensity and nitrate nitrogen contents in both summer and autumn soil and decreased the activity of NR and NiR in summer soil. The coefficient of variation of nitrification-denitrification intensity and NR activity treated by mulching straw mat was lower than those in the other treatments in both summer and autumn soil. Agricultural carpet increased the NR and NiR activity in summer soil, the nitrate nitrogen contents in summer-autumn soil and the denitrification intensity in autumn soil and decreased denitrification intensity in summer soil. Transparent-plastic film increased the nitrite nitrogen contents in summer soil, the contents of nitrate nitrogen in summer-autumn soil, the nitrification intensity and NiR activity in autumn soil, and decreased nitrate nitrogen contents in summer soil. Horticultural fabric increased denitrification intensity in summer soil, nitrification intensity in summer-autumn and autumn soil and the nitrate nitrogen contents in autumn soil. The four mulching treatments all promoted plant growth. In the four mulching treatments, the new shoot and trunk thickening growth were more under straw mat and horticultural fabric treatments. The four mulching treatments had different effects on nitrate metabolism in summer and autumn soil, but they were able to stabilize the soil nitrate metabolism and transformation. Among the treatments, straw mat had the best stable effect.

  2. Transfer of blood urea nitrogen to cecal microbial nitrogen is increased by fructo-oligosaccharide feeding in guinea pigs.

    PubMed

    Kawasaki, Kiyonori; Min, Xiao; Li, Xiao; Hasegawa, Ena; Sakaguchi, Ei

    2015-01-01

    The present study was conducted to determine the mechanism by which nitrogen (N) availability is improved by fructo-oligosaccharide (FOS) in guinea pigs. Adult male guinea pigs were fed a commercial pellet diet (50 g/day) with either 5% glucose or 5% FOS for 7 days in individual metabolism cages. After 7 days of feeding the diet, (15) N-urea was administered intravenously 1 h before slaughter under anesthesia. The amount and concentration of total, protein, bacterial, ammonia and urea N and the (15) N atom % excess were measured in blood, liver, gut contents and urine. The (15) N atom % excess of total and protein N, and the amount of total, protein and bacteria N and (15) N in the cecum were significantly increased by the consumption of FOS. Furthermore, the concentration and amount of short-chain fatty acids were significantly increased by the consumption of FOS. In contrast, the amount of urinary (15) N was significantly decreased by the consumption of FOS. These results suggest that consumption of FOS increases transfer of blood urea N into the large intestine for bacterial N synthesis, which is subsequently re-absorbed by cecotrophy, and contributes to the increase of N utilization in guinea pigs. © 2014 Japanese Society of Animal Science.

  3. Fermentation and Characterization of Pitaya Wine

    NASA Astrophysics Data System (ADS)

    Gong, Xiao; Yang, Yaxuan; Ma, Lina; Peng, Shaodan; Lin, Mao

    2017-12-01

    Juice was extracted from pitaya pulp. After fermentation, the wine produced contained 11.2% vol (v/v) alcohol, total sugar content is 7.3g/L, 7.8% °Brix, the content of titratable acid and amino acid nitrogen are 2.34 g/L and 0.46 g/L, respectively. Dragon fruit wine of the communist party of detect aroma components is 56 kinds, content is more than 0.5%, 17 kinds, 9 esters are among those kinds, 5 kinds alcohol, there are 2 kinds of acids, one kind of alkanes. The physicochemical characteristics of wines produced from pitaya is attractive, with unique flavor and rich nutritional value, which makes it widely accepted and even liked.

  4. Nutritional support of malnourished lactose intolerant African patients.

    PubMed

    O'Keefe, S J; Adam, J K; Cakata, E; Epstein, S

    1984-09-01

    The effectiveness of two commonly available liquid diets was assessed in 40 severely malnourished black African patients. All patients were shown to have normal xylose absorption. The diets were given according to the manufacturer's recommendations. One diet was lactose containing (LC diet) (150 g/d) and high protein (112 g/d), the other normal protein and lactose free (LF diet) (protein 67 g/d), total energy content being similar. Patients were randomly divided into two equal groups and allocated (blind) to one of the diets. Tolerance and nitrogen balance were assessed over two three day periods on half and then full strength formulations. Severe intolerant symptoms were observed in 50% of patients on half strength and 94% of patients on full strength lactose containing diet with evidence of malabsorption of fluid, nitrogen, and fat. Despite high stool nitrogen losses (3.75 +/- 1.04 g/d), however, positive nitrogen balance was achieved in most patients receiving the full strength LC formulation. On the other hand, the full strength LF diet was generally well tolerated and was associated with significantly lower faecal losses and positive nitrogen balance. The results indicate that high density lactose containing liquid formulae are poorly tolerated by severely malnourished black African patients, while lactose free formulae containing approximately 10 g nitrogen/d are well tolerated and result in positive nitrogen balance.

  5. Ash Tree Leaf Litter (Fraxinus excelsior L.) Breakdown in Two Different Biotopes and Streams

    NASA Astrophysics Data System (ADS)

    Fleituch, Tadeusz; Leichtfried, Maria

    2004-11-01

    Coarse (0.5 mm) and fine (0.1 mm) mesh size bag methodology was used for comparing the breakdown of ash tree leaves (Fraxinus excelsior L.) in two biotopes (dry - terrestrial and wet - overflown stream zones) in two low order streams (the Oberer Seebach (OSB), Lower Austria and the Brzezowka stream (BRZ), Beskidy Mountains, southern Poland). In total, 96 bags were exposed in autumn 2000. Ash-free dry mass (AFDM) ranged in dry zones of both streams from 94-62% (OSB) and 85-53% (BRZ) respectively. The decomposition process was faster in wet zones: 96-33% (OSB) and 56-11% (B) during the study period. Significant differences in ash breakdown and its chemical content between studied streams were found. Total organic carbon (TOC) and total nitrogen content (TN) of AFDM of litter showed increased differences with experiment duration between zones and between two bag types for both streams. The strongest increase of TOC and TN content (100% on average initial content) for bag types, zones, and streams was observed in the first two weeks of the experiment. These results confirm the importance of chemical compounds for microbiological processes (biofilms) in different ecosystem biotopes. (

  6. Resolving model parameter values from carbon and nitrogen stock measurements in a wide range of tropical mature forests using nonlinear inversion and regression trees

    USGS Publications Warehouse

    Liu, S.; Anderson, P.; Zhou, G.; Kauffman, B.; Hughes, F.; Schimel, D.; Watson, Vicente; Tosi, Joseph

    2008-01-01

    Objectively assessing the performance of a model and deriving model parameter values from observations are critical and challenging in landscape to regional modeling. In this paper, we applied a nonlinear inversion technique to calibrate the ecosystem model CENTURY against carbon (C) and nitrogen (N) stock measurements collected from 39 mature tropical forest sites in seven life zones in Costa Rica. Net primary productivity from the Moderate-Resolution Imaging Spectroradiometer (MODIS), C and N stocks in aboveground live biomass, litter, coarse woody debris (CWD), and in soils were used to calibrate the model. To investigate the resolution of available observations on the number of adjustable parameters, inversion was performed using nine setups of adjustable parameters. Statistics including observation sensitivity, parameter correlation coefficient, parameter sensitivity, and parameter confidence limits were used to evaluate the information content of observations, resolution of model parameters, and overall model performance. Results indicated that soil organic carbon content, soil nitrogen content, and total aboveground biomass carbon had the highest information contents, while measurements of carbon in litter and nitrogen in CWD contributed little to the parameter estimation processes. The available information could resolve the values of 2-4 parameters. Adjusting just one parameter resulted in under-fitting and unacceptable model performance, while adjusting five parameters simultaneously led to over-fitting. Results further indicated that the MODIS NPP values were compressed as compared with the spatial variability of net primary production (NPP) values inferred from inverse modeling. Using inverse modeling to infer NPP and other sensitive model parameters from C and N stock observations provides an opportunity to utilize data collected by national to regional forest inventory systems to reduce the uncertainties in the carbon cycle and generate valuable databases to validate and improve MODIS NPP algorithms.

  7. Evaluating the Effects of Aromatics Content in Gasoline on Gaseous and Particulate Matter Emissions from SI-PFI and SIDI Vehicles.

    PubMed

    Karavalakis, Georgios; Short, Daniel; Vu, Diep; Russell, Robert; Hajbabaei, Maryam; Asa-Awuku, Akua; Durbin, Thomas D

    2015-06-02

    We assessed the emissions response of a fleet of seven light-duty gasoline vehicles for gasoline fuel aromatic content while operating over the LA92 driving cycle. The test fleet consisted of model year 2012 vehicles equipped with spark-ignition (SI) and either port fuel injection (PFI) or direct injection (DI) technology. Three gasoline fuels were blended to meet a range of total aromatics targets (15%, 25%, and 35% by volume) while holding other fuel properties relatively constant within specified ranges, and a fourth fuel was formulated to meet a 35% by volume total aromatics target but with a higher octane number. Our results showed statistically significant increases in carbon monoxide, nonmethane hydrocarbon, particulate matter (PM) mass, particle number, and black carbon emissions with increasing aromatics content for all seven vehicles tested. Only one vehicle showed a statistically significant increase in total hydrocarbon emissions. The monoaromatic hydrocarbon species that were evaluated showed increases with increasing aromatic content in the fuel. Changes in fuel composition had no statistically significant effect on the emissions of nitrogen oxides (NOx), formaldehyde, or acetaldehyde. A good correlation was also found between the PM index and PM mass and number emissions for all vehicle/fuel combinations with the total aromatics group being a significant contributor to the total PM index followed by naphthalenes and indenes.

  8. Targeted Enhancement of Glutamate-to-γ-Aminobutyrate Conversion in Arabidopsis Seeds Affects Carbon-Nitrogen Balance and Storage Reserves in a Development-Dependent Manner1[W][OA

    PubMed Central

    Fait, Aaron; Nesi, Adriano Nunes; Angelovici, Ruthie; Lehmann, Martin; Pham, Phuong Anh; Song, Luhua; Haslam, Richard P.; Napier, Johnathan A.; Galili, Gad; Fernie, Alisdair R.

    2011-01-01

    In seeds, glutamate decarboxylase (GAD) operates at the metabolic nexus between carbon and nitrogen metabolism by catalyzing the unidirectional decarboxylation of glutamate to form γ-aminobutyric acid (GABA). To elucidate the regulatory role of GAD in seed development, we generated Arabidopsis (Arabidopsis thaliana) transgenic plants expressing a truncated GAD from Petunia hybrida missing the carboxyl-terminal regulatory Ca2+-calmodulin-binding domain under the transcriptional regulation of the seed maturation-specific phaseolin promoter. Dry seeds of the transgenic plants accumulated considerable amounts of GABA, and during desiccation the content of several amino acids increased, although not glutamate or proline. Dry transgenic seeds had higher protein content than wild-type seeds but lower amounts of the intermediates of glycolysis, glycerol and malate. The total fatty acid content of the transgenic seeds was 50% lower than in the wild type, while acyl-coenzyme A accumulated in the transgenic seeds. Labeling experiments revealed altered levels of respiration in the transgenic seeds, and fractionation studies indicated reduced incorporation of label in the sugar and lipid fractions extracted from transgenic seeds. Comparative transcript profiling of the dry seeds supported the metabolic data. Cellular processes up-regulated at the transcript level included the tricarboxylic acid cycle, fatty acid elongation, the shikimate pathway, tryptophan metabolism, nitrogen-carbon remobilization, and programmed cell death. Genes involved in the regulation of germination were similarly up-regulated. Taken together, these results indicate that the GAD-mediated conversion of glutamate to GABA during seed development plays an important role in balancing carbon and nitrogen metabolism and in storage reserve accumulation. PMID:21921115

  9. Targeted enhancement of glutamate-to-γ-aminobutyrate conversion in Arabidopsis seeds affects carbon-nitrogen balance and storage reserves in a development-dependent manner.

    PubMed

    Fait, Aaron; Nesi, Adriano Nunes; Angelovici, Ruthie; Lehmann, Martin; Pham, Phuong Anh; Song, Luhua; Haslam, Richard P; Napier, Johnathan A; Galili, Gad; Fernie, Alisdair R

    2011-11-01

    In seeds, glutamate decarboxylase (GAD) operates at the metabolic nexus between carbon and nitrogen metabolism by catalyzing the unidirectional decarboxylation of glutamate to form γ-aminobutyric acid (GABA). To elucidate the regulatory role of GAD in seed development, we generated Arabidopsis (Arabidopsis thaliana) transgenic plants expressing a truncated GAD from Petunia hybrida missing the carboxyl-terminal regulatory Ca(2+)-calmodulin-binding domain under the transcriptional regulation of the seed maturation-specific phaseolin promoter. Dry seeds of the transgenic plants accumulated considerable amounts of GABA, and during desiccation the content of several amino acids increased, although not glutamate or proline. Dry transgenic seeds had higher protein content than wild-type seeds but lower amounts of the intermediates of glycolysis, glycerol and malate. The total fatty acid content of the transgenic seeds was 50% lower than in the wild type, while acyl-coenzyme A accumulated in the transgenic seeds. Labeling experiments revealed altered levels of respiration in the transgenic seeds, and fractionation studies indicated reduced incorporation of label in the sugar and lipid fractions extracted from transgenic seeds. Comparative transcript profiling of the dry seeds supported the metabolic data. Cellular processes up-regulated at the transcript level included the tricarboxylic acid cycle, fatty acid elongation, the shikimate pathway, tryptophan metabolism, nitrogen-carbon remobilization, and programmed cell death. Genes involved in the regulation of germination were similarly up-regulated. Taken together, these results indicate that the GAD-mediated conversion of glutamate to GABA during seed development plays an important role in balancing carbon and nitrogen metabolism and in storage reserve accumulation.

  10. Changes in mineral elements and starch quality of grains during the improvement of japonica rice cultivars.

    PubMed

    Zhang, Hao; Yu, Chao; Hou, Danping; Liu, Hailang; Zhang, Huiting; Tao, Rongrong; Cai, Han; Gu, Junfei; Liu, Lijun; Zhang, Zujian; Wang, Zhiqin; Yang, Jianchang

    2018-01-01

    The improvement of rice cultivars plays an important role in yield increase. However, little is known about the changes in starch quality and mineral elements during the improvement of rice cultivars. This study was conducted to investigate the changes in starch quality and mineral elements in japonica rice cultivars. Twelve typical rice cultivars, applied in the production in Jiangsu province during the last 60 years, were grown in the paddy fields. These cultivars were classified into six types according to their application times, plant types and genotypes. The nitrogen (N), phosphorus (P) and, and potassium (K) were mainly distributed in endosperm, bran and bran, respectively. Secondary and micromineral nutrients were distributed throughout grains. With the improvement of cultivars, total N contents gradually decreased, while total P, K and magnesium contents increased in grains. Total copper and zinc contents in type 80'S in grains were highest. The improvement of cultivars enhanced palatability (better gelatinisation enthalpy and amylose content), taste (better protein content) and protein quality (better protein components and essential amino acids). Correlation analysis indicated the close relationship between mineral elements and starch quality. The mineral elements and starch quality of grains during the improvement of japonica rice cultivars are improved. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Percentile Distributions of Median Nitrite Plus Nitrate as Nitrogen, Total Nitrogen, and Total Phosphorus Concentrations in Oklahoma Streams, 1973-2001

    USGS Publications Warehouse

    Haggard, Brian E.; Masoner, Jason R.; Becker, Carol J.

    2003-01-01

    Nutrients are one of the primary causes of water-quality impairments in streams, lakes, reservoirs, and estuaries in the United States. The U.S. Environmental Protection Agency has developed regional-based nutrient criteria using ecoregions to protect streams in the United States from impairment. However, nutrient criteria were based on nutrient concentrations measured in large aggregated nutrient ecoregions with little relevance to local environmental conditions in states. The Oklahoma Water Resources Board is using a dichotomous process known as Use Support Assessment Protocols to define nutrient criteria in Oklahoma streams. The Oklahoma Water Resources Board is modifying the Use Support Assessment Protocols to reflect nutrient informa-tion and environmental characteristics relevant to Oklahoma streams, while considering nutrient information grouped by geographic regions based on level III ecoregions and state boundaries. Percentile distributions of median nitrite plus nitrate as nitrogen, total nitrogen, and total phosphorous concentrations were calculated from 563 sites in Oklahoma and 4 sites in Arkansas near the Oklahoma and Arkansas border to facilitate development of nutrient criteria for Oklahoma streams. Sites were grouped into four geographic regions and were categorized into eight stream categories by stream slope and stream order. The 50th percentiles of median nitrite plus nitrate as nitrogen, total nitrogen, and total phosphorus concentrations were greater in the Ozark Highland ecoregion and were less in the Ouachita Mountains ecoregion when compared to other geographic areas used to group sites. The 50th percentiles of median concentrations of nitrite plus nitrate as nitrogen, total nitrogen, and total phosphorus were least in first, second, and third order streams. The 50th percentiles of median nitrite plus nitrate as nitrogen, total nitrogen and total phosphorus concentrations in the Ozark Highland and Ouachita Mountains ecoregions were least in first, second, and third order streams with streams slopes greater than 17 feet per mile. Nitrite plus nitrate as nitrogen and total nitrogen criteria determined by the U.S. Environmental Protection Agency for the Ozark Highland ecoregion were less than the 25th percentiles of median nitrite plus nitrate as nitrogen, total nitrogen, and total phosphorus concentrations in the Ozark Highland ecoregion calculated for this report. Nitrite plus nitrate as nitrogen and total nitrogen criteria developed by the U.S. Environmental Protection Agency for the Ouachita Mountains ecoregion were similar to the 25th percentiles of median nitrite plus nitrate as nitrogen and total nitrogen concentrations in the Ouachita Mountains ecoregion calculated for this report. Nitrate as nitrogen and total phosphorus concentrations currently (2002) used in the Use Support Assessment Protocols for Oklahoma were greater than the 75th percentiles of median nitrite plus nitrate as nitrogen and total phosphorus concentrations calculated for this report.

  12. Equilibrium responses of global net primary production and carbon storage to doubled atmospheric carbon dioxide: Sensitivity to changes in vegetation nitrogen concentration

    USGS Publications Warehouse

    McGuire, David A.; Melillo, J.M.; Kicklighter, D.W.; Pan, Y.; Xiao, X.; Helfrich, J.; Moore, B.; Vorosmarty, C.J.; Schloss, A.L.

    1997-01-01

    We ran the terrestrial ecosystem model (TEM) for the globe at 0.5?? resolution for atmospheric CO2 concentrations of 340 and 680 parts per million by volume (ppmv) to evaluate global and regional responses of net primary production (NPP) and carbon storage to elevated CO2 for their sensitivity to changes in vegetation nitrogen concentration. At 340 ppmv, TEM estimated global NPP of 49.0 1015 g (Pg) C yr-1 and global total carbon storage of 1701.8 Pg C; the estimate of total carbon storage does not include the carbon content of inert soil organic matter. For the reference simulation in which doubled atmospheric CO2 was accompanied with no change in vegetation nitrogen concentration, global NPP increased 4.1 Pg C yr-1 (8.3%), and global total carbon storage increased 114.2 Pg C. To examine sensitivity in the global responses of NPP and carbon storage to decreases in the nitrogen concentration of vegetation, we compared doubled CO2 responses of the reference TEM to simulations in which the vegetation nitrogen concentration was reduced without influencing decomposition dynamics ("lower N" simulations) and to simulations in which reductions in vegetation nitrogen concentration influence decomposition dynamics ("lower N+D" simulations). We conducted three lower N simulations and three lower N+D simulations in which we reduced the nitrogen concentration of vegetation by 7,5, 15.0, and 22.5%. In the lower N simulations, the response of global NPP to doubled atmospheric CO2 increased approximately 2 Pg C yr-1 for each incremental 7.5% reduction in vegetation nitrogen concentration, and vegetation carbon increased approximately an additional 40 Pg C, and soil carbon increased an additional 30 Pg C, for a total carbon storage increase of approximately 70 Pg C. In the lower N+D simulations, the responses of NPP and vegetation carbon storage were relatively insensitive to differences in the reduction of nitrogen concentration, but soil carbon storage showed a large change. The insensitivity of NPP in the N+D simulations occurred because potential enhancements in NPP associated with reduced vegetation nitrogen concentration were approximately offset by lower nitrogen availability associated with the decomposition dynamics of reduced litter nitrogen concentration. For each 7.5% reduction in vegetation nitrogen concentration, soil carbon increased approximately an additional 60 Pg C, while vegetation carbon storage increased by only approximately 5 Pg C. As the reduction in vegetation nitrogen concentration gets greater in the lower N+D simulations, more of the additional carbon storage tends to become concentrated in the north temperateboreal region in comparison to the tropics. Other studies with TEM show that elevated CO2 more than offsets the effects of climate change to cause increased carbon storage. The results of this study indicate that carbon storage would be enhanced by the influence of changes in plant nitrogen concentration on carbon assimilation and decomposition rates. Thus changes in vegetation nitrogen concentration may have important implications for the ability of the terrestrial biosphere to mitigate increases in the atmospheric concentration of CO2 and climate changes associated with the increases.

  13. Evaluation of efficiency of aircraft liquid waste treatment and identification of daily inspection indices: a case study in Changchun, China.

    PubMed

    Xu, Jianling; Yang, Jiaqi; Zhao, Nan; Sheng, Lianxi; Zhao, Yuanhui; Tang, Zhanhui

    2013-07-01

    Evaluation of the efficiency of aircraft liquid waste treatment has previously been conducted to prevent pollution of the environment. The current study aimed to provide a set of practical methods for efficient airport sanitary supervision. Aircraft liquid waste was collected at Longjia International Airport, Changchun from multiple flights. The efficiency of liquid waste treatment as well as the water quality of the wastewater processed via a second-stage wastewater facility were examined by measuring a number of physical, chemical, and biological indices. Our results indicated that treatment solely via resolvable sanitizing liquid was not sufficient. Although the contents of first-class pollutants all met the requirements of the standard criteria, the contents of a number of second-class pollutants did not satisfy these criteria. However, after further treatment via a second-stage wastewater facility installed at the airport, all indices reached second-grade requirements of the discharge standard. We suggest that daily inspection and quarantine indices at airports should include the suspension content, biological oxygen demands after 5 days, chemical oxygen demand total organic carbon content, amino nitrogen content, total phosphorous content, and the level of fecal coliforms.

  14. Growth and certain chemical constituents of tobacco plants exposed to air ions

    NASA Astrophysics Data System (ADS)

    Barthakur, N. N.; Arnold, N. P.

    1988-06-01

    Controlled experiments were performed in Faraday cages on the effects of positive and negative air ions on flue-cured tobacco plants. Continuous exposures for 15 days to air ions showed no significant differences in any plant growth characteristic between the treated and control plants. Standard errors in the measurement of the growth parameters for ion exposed plants were, however, consistently higher than those of control plants. Spatial variation in concentration gradients of air ions produced by corona discharge might have contributed to masking of the relatively small effects of air ions on biological organisms observed in previous experiments in this laboratory. No significant difference was observed between the experimental and control plants in nicotine, total alkaloid, and reducing sugar contents. Total nitrogen content was slightly higher for treated than control plants.

  15. [Effect of DMPP on inorganic nitrogen runoff loss from vegetable soil].

    PubMed

    Yu, Qiao-Gang; Fu, Jian-Rong; Ma, Jun-Wei; Ye, Jing; Ye, Xue-Zhu

    2009-03-15

    The effect of urea with 1% 3,4-dimethyl pyrazole phosphate (DMPP) on inorganic nitrogen runoff loss from agriculture field was determined in an undisturbed vegetable soil by using the simulated artificial rainfall method. The results show that, during the three simulated artificial rainfall period, the ammonium nitrogen content in the runoff water is increased 1.42, 2.82 and 1.95 times with the DMPP application treatment compared to regular urea treatment, respectively. In the urea with DMPP addition treatment, the nitrate nitrogen content is decreased 70.2%, 59.7% and 52.1% in the three simulated artificial rainfall runoff water, respectively. The nitrite nitrogen content is also decreased 98.7%, 90.6% and 85.6% in the three simulated artificial rainfall runoff water, respectively. The nitrate nitrogen and nitrite nitrogen runoff loss are greatly declined with the DMPP addition in the urea. Especially the nitrite nitrogen is in a significant low level and is near to the treatment with no fertilizer application. The inorganic nitrogen runoff loss is declined by 39.0% to 44.8% in the urea with DMPP addition treatment. So DMPP could be used as an effective nitrification inhibitor to control the soil ammonium oxidation, decline the nitrogen runoff loss, lower the nitrogen transformation risk to the waterbody and be beneficial for the ecological environment.

  16. Effects of the dietary nonfiber carbohydrate content on lactation performance, rumen fermentation, and nitrogen utilization in mid-lactation dairy cows receiving corn stover.

    PubMed

    Wei, Zihai; Zhang, Baoxin; Liu, Jianxin

    2018-01-01

    Corn stover (CS) is an abundant source of feed for livestock in China. However, it is low in nutritional value that we have been seeking technologies to improve. Previous studies show that non-fiber carbohydrate (NFC) might limit the utilization of a CS diet by lactating dairy cows. Thus, this study was conducted to investigate the lactation performance and rumen fermentation characteristics in lactating cows consuming CS with two contents of NFC compared to an alfalfa hay-containing diet. Twelve Holstein cows were used in a replicated 3 × 3 Latin square design with three dietary treatments: (1) low-NFC diet (NFC = 35.6%, L-NFC), (2) high-NFC diet (NFC = 40.1%, H-NFC), and (3) alfalfa hay diet (NFC = 38.9%, AH). Intake of DM was lower for cows fed H-NFC compared to L-NFC and AH, while the milk yield was higher in AH than in H-NFC and L-NFC ( P  < 0.01). The feed efficiency (milk yield/DM intake, 1.15 vs. 1.08, P  < 0.01) were greater for cows fed H-NFC than L-NFC. The contents of milk protein and lactose were not different among the groups ( P  > 0.11), but milk fat content was higher for cows fed H-NFC and L-NFC compared to AH ( P  < 0.01). The rumen ammonia nitrogen concentration and the concentrations of urea nitrogen in blood and milk were lower for cows fed H-NFC and AH compared to L-NFC ( P  < 0.05). The concentrations of rumen propionate and total volatile fatty acids were different among groups ( P  < 0.05) with higher concentration for cows fed AH compared to H-NFC and L-NFC, and acetate concentration tended to be different among groups ( P  = 0.06). From the results obtained in this study, it was inferred that the increased NFC content in a diet containing corn stover can improve the feed efficiency and benefit the nitrogen conversion.

  17. Nutritive value and fermentation quality of palisadegrass and stylo mixed silages.

    PubMed

    da Silva, Juliana S; Ribeiro, Karina G; Pereira, Odilon G; Mantovani, Hilário C; Cecon, Paulo R; Pereira, Rosana C; Silva, Janaina de L

    2018-01-01

    The nutritive value and fermentation quality of palisadegrass (Brachiaria brizantha cv. Xaraes) and stylo (Stylosanthes capitata × S. macrocephala cv. Campo Grande) mixed silages were evaluated. The experiment was analyzed in a factorial scheme (5 × 2) in a completely randomized design using increasing levels of stylo (0, 25, 50, 75 and 100% on a fresh matter basis) on palisadegrass silages, with and without microbial inoculants (MI). With the increased ratio of stylo in mixed silages, dry matter (DM), crude protein (CP), acid detergent fiber (ADF), and lignin content increased in silages. The presence of MI promoted lower DM content, and higher neutral detergent fiber corrected for ash and protein, ADF and lignin content. The acid detergent insoluble nitrogen content and the lactic acid bacteria populations were not affected by treatments. The in vitroDM digestibility was affected by the interaction of levels of the stylo and MI. The pH, NH 3 -N/total nitrogen and butyric acid concentrations decreased with increasing levels of stylo. Better nutritive value and quality of fermentation was found in the silage containing higher proportions of this stylo mixed with palisadegrass. The microbial inoculant evaluated did not alter the nutritive value or quality of the fermentation of the silages in this experiment. © 2017 Japanese Society of Animal Science.

  18. Influence of feed/inoculum ratios and waste cooking oil content on the mesophilic anaerobic digestion of food waste.

    PubMed

    Li, Yangyang; Jin, Yiying; Borrion, Aiduan; Li, Jinhui

    2018-03-01

    Information on the anaerobic digestion (AD) of food waste (FW) with different waste cooking oil contents is limited in terms of the effect of the initial substrate concentrations. In this work, batch tests were performed to evaluate the combined effects of waste cooking oil content (33-53%) and feed/inoculum (F/I) ratios (0.5-1.2) on biogas/methane yield, process stability parameters and organics reduction during the FW AD. Both waste cooking oil and the inoculation ratios were found to affect digestion parameters during the AD process start-up and the F/I ratio was the predominant factor affecting AD after the start-up phase. The possible inhibition due to acidification caused by volatile fatty acids accumulation, low pH values and long-chain fatty acids was reversible. The characteristics of the final digestate indicated a stable anaerobic system, whereas samples with F/I ratios ranging from 0.8 to 1.2 display higher propionic and valeric acid contents and high amounts of total ammonia nitrogen and free ammonia nitrogen. Overall, F/I ratios higher than 0.70 caused inhibition and resulted in low biogas/methane yields from the FW. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Ecological effects of co-culturing the sea cucumber Apostichopus japonicus with the Chinese white shrimp Fenneropenaeus chinensis in an earthen pond

    NASA Astrophysics Data System (ADS)

    Zhou, Shun; Ren, Yichao; Pearce, Christopher M.; Dong, Shuanglin; Tian, Xiangli; Gao, Qinfeng; Wang, Fang

    2017-01-01

    Using net enclosures in an earthen pond, we established three culture treatments with the sea cucumber Apostichopus japonicus and the Chinese white shrimp Fenneropenaeus chinensis: monoculture of sea cucumbers (C), monoculture of shrimp (S), and co-culture of the two species (CS). We measured levels of suspended particulate matter in the water column; total organic matter, total organic carbon, total nitrogen, and carbon/nitrogen ratios in both settling particles and the sediment; and chlorophyll a levels in the sediment. We then compared these variables between the three treatments. We also examined growth, survival, and yield of the two species in the different treatments. From June to September, the mean monthly suspended particulate matter sedimentation rates in the CS and S treatments were significantly ( P<0.05) greater than those in the C treatment. From August to November, the mean monthly total organic matter, total organic carbon, total nitrogen, and chlorophyll a contents in the sediment in the CS and S treatments were significantly ( P <0.05) greater than those in the C treatment. Final wet weight, specific growth rate, survival rate, and total yield of sea cucumbers in co-culture were all significantly greater than those of sea cucumbers in monoculture. There were no significant differences among any of these variables for shrimp reared in the two systems. The bioturbation of the sediment and fecal production of the shrimp likely supplied natural food for the sea cucumbers. Co-culture of the two species is a viable option for increasing yield per unit area, maximizing use of the water body, and diversifying crop production.

  20. Oleaginous yeasts from Antarctica: Screening and preliminary approach on lipid accumulation.

    PubMed

    Viñarta, Silvana C; Angelicola, M Virginia; Barros, J Maximiliano; Fernández, Pablo M; Mac Cormak, Walter; Aybar, Manuel J; de Figueroa, Lucía I C

    2016-12-01

    The capability of 17 Rhodotorula spp. isolated from Antarctica to accumulate intracellular lipids in nitrogen-limited medium was investigated. As results, 10 isolates were selected by Nile red staining, while 12 isolates were selected as oleaginous by analysis of total lipid content (20.4-73%, w/w of dry biomass). The higher lipid production and accumulation was exhibited for six strains belonging to three species of Rhodotorula (Rhodotorula glutinis, Rhodotorula glacialis, and Rhodotorula laryngis). This is the first report where R. laryngis have been identified within oleaginous specie. Lipid accumulation was evaluated comparatively in two nitrogen-limited glucose-based media (MI and MII). MI (low C/N ratio) was more suitable for biomass and lipid production while in MII (high C/N ratio) total lipid content was improved. R. glutinis R4, R. glacialis R15, and R. glutinis R48 showed high lipid concentrations (4.65-6.93 g L -1 ) and they were able to accumulate large amounts of lipids per gram of biomass (47-77%, w/w). A similar profile in fatty acids composition and content of neutral lipids to vegetable oils was observed, indicating that lipids produced by oleaginous Antarctic yeasts can be considered an alternative feedstock for biodiesel production. Antarctica represents an important source of oleaginous yeasts with adaptive capabilities to accumulate considerable amounts of lipids with biotechnological interest at 15 °C and 25 °C. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Effects of graded levels of liquid brewer's yeast on chemical composition and fermentation quality in cassava pulp and rice straw-based total mixed ration silage.

    PubMed

    Kamphayae, Sukanya; Kumagai, Hajime; Bureenok, Smerjai; Narmseelee, Ramphrai; Butcha, Patima

    2017-04-01

    This study aimed to evaluate the effect of liquid brewer's yeast (LBY) addition on chemical composition and fermentation quality of mixture of LBY and cassava pulp (CVP) with rice straw (RS) in different ratios during preservation periods. Four mixtures of LBY, CVP and RS were made, that is mixture ratio of LBY : CVP : RS of 0% LBY, 20% LBY, 35% LBY and 50% LBY were 0:70:30, 20:50:30, 35:35:30 and 50:20:30 as fresh matter, respectively. The bags were opened at weeks 0, 1, 2, 4 and 8 after storage. The contents of dry matter, organic matter, crude protein (CP), ether extract (EE), neutral detergent fiber and acid detergent fiber ranged 36.4-40.0, 88.9-90.8, 4.0-12.0, 1.1-1.3, 58.8-61.6 and 37.6-40.0, respectively, and the contents of CP and EE increased and the other components decreased in proportion to LBY inclusion (P < 0.01). 50% LBY had the highest (P < 0.05) pH (4.81) and ammonia nitrogen per total nitrogen (NH 3 -N/TN) (7.40%) and the lowest V-score (90.3). Propionic and butyric acid contents were 0.01% or lower in each mixture and storage period. There were rapid pH decrease and NH 3 -N/TN increase during the first week of the storage period. The increases of NH 3 -N/TN and acetic acid content and decreases of pH, lactic acid content and V-score during the preservation were more drastic as LBY inclusion increased. Although higher proportion of LBY produced higher CP and lower fiber contents in the mixture, attention should be paid for the reduction of fermentation quality during longer storage periods. © 2016 Japanese Society of Animal Science.

  2. Measurements of radiatively active tropo-stratospheric constituents over the northern Tien Shan (Kyrgyzstan)

    NASA Astrophysics Data System (ADS)

    Semenov, V.; Sinyakov, V.; Aref'ev, V.; Kashin, F.; Kamenogradsky, N.

    2003-04-01

    The results of long-term (from 15 to 22 years) continuous measurements of ozone, nitrogen dioxide, water vapor and carbon dioxide total contents in the atmosphere; and of its spectral transparency in the visible range and aerosol optical depth are presented. The measurements were carried out on Issyk Kul station (42.6 N, 77 E, 1650 m a.s.l.) in center of the Eurasian continent (Northern Tien Shan, the Issyk Kul lake) by the spectroscopic method with the use of the sun as a radiation source. Issyk Kul station belong NDSC complementary network. Total ozone is determined by the multiwave method according to the results of solar radiation absorption measurements at 6 wave lengths: 303.3; 305.2; 308.6; 311.0; 313.8 and 315.0 nm coinciding with maxima in the spectrum having a quasilinear structure. The method of CO2 measurements is based on the measurement of solar radiation transmission through the atmosphere with a mean spectral resolution of about 3 cm-1 in the carbon dioxide absorption band with the center near 2.06 micron. The measurement results obtained by this method have low sensitivity to CO2 local sources-sinks. To control water vapor content by the spectroscopic method a narrow section (about 2.04 micron) of the atmospheric spectrum was registered in the wing of CO2 absorption band with the center at about 2.06 micron. Such a choice of the spectrum section provides simultaneous determination of H2O and CO2 contents with one and the same record of a solar radiation spectrum. The measurements of total nitrogen dioxide were carried out with the use of the spectroscopic instrumentation set by the three-wave-length twilight method. For determining NO2 the intensity of the solar radiation at the wave lengths of 437.6, 439.8 and 442.0 nm scattered in the atmosphere were registered at the zenith angles of 85-92 degrees at sunrise and sunset. The changes of mean monthly and annual values of the atmospheric components studied were considered. Seasonal and other variations with different periods and trends were revealed: positive for total carbon dioxide (0.45+/-0.01)% a yr, total water vapor (0.8+/-0.5)% a yr, total nitrogen dioxide (1.44+/-0.08)% yr and for spectral transparencies (0.37+/-0.07)% a yr; and negative for total ozone (0.44+/-0.08)% a yr. The measurements results were compared to one another and to some meteorological and geophysical parameters and phenomena. The studies have been carries out under a financial support of the International Science and Technology Center (Grant ISTC Kr-763.

  3. Dynamics of a vertical-flow windrow vermicomposting system.

    PubMed

    Hanc, Ales; Castkova, Tereza; Kuzel, Stanislav; Cajthaml, Tomas

    2017-11-01

    Large-scale vermicomposting under outdoor conditions may differ from small-scale procedures in the laboratory. The present study evaluated changes in selected properties of a large-scale vertical-flow windrow vermicomposting system with continuous feeding with household biowaste. The windrow profile was divided into five layers of differing thickness and age after more than 12 months of vermicomposting. The top layer (0-30 cm, age <3 months) was characterised by partially decomposed organic matter with a high pH value and an elevated carbon/nitrogen (C/N) ratio. The earthworm biomass was 15 g kg -1 with a population density of 125 earthworms per kilogram predominantly found in clusters. The greatest amount of fungi (3.5 µg g -1 dw) and bacteria (62 µg g -1 dw) (expressed as phospholipid fatty acid analysis) was found in this layer. Thus, the top layer could be used for an additional cycle of windrow vermicomposting and for the preparation of aqueous extracts to protect plants against diseases. The lower layers (graduated by 30 cm and by 3 months of age) were mature as reflected by the low content of ammonia nitrogen, ratio of ammonia to nitrate nitrogen and dissolved organic carbon, and high ion-exchange capacity and its ratio to carbon. These layers were characterised by elevated values for electrical conductivity, total content of nutrients, available magnesium content, and a relatively large bacterial/fungal ratio. On the basis of the observed properties, the bottom layers were predetermined as effective fertilisers.

  4. Effect of Nitrogen Fertilization and Harvest Time on Steviol Glycosides, Flavonoid Composition, and Antioxidant Properties in Stevia rebaudiana Bertoni.

    PubMed

    Tavarini, Silvia; Sgherri, Cristina; Ranieri, Anna Maria; Angelini, Luciana G

    2015-08-12

    This work investigated the effect of nitrogen fertilization and harvest time on the flavonoid composition and antioxidant properties of Stevia rebaudiana leaves. At the same time, changes in stevioside (Stev) and rebaudioside A (RebA) contents were recorded. A pot trial under open air conditions was set up, testing five N rates and three harvest times. The results showed that, by using an adequate N rate and choosing an appropriate harvest time, it was possible to significantly increase and optimize the bioactive compound levels. In particular, higher RebA, RebA/Stev ratio, total phenols and flavonoids, luteolin-7-O-glucoside, and apigenin-7-O-glucoside levels and antioxidant capacity were recorded by supplying 150 kg N ha(-1). Reduced or increased N availability in comparison with N150 had no consistent effect on Stevia phytochemicals content. Significant correlations were also found between stevioside and some of the flavonoids, indicating a possible role of flavonoids in the stevioside metabolic pathway, which deserves more investigations.

  5. Manipulation of culture conditions alters lipid content and fatty acid profiles of a wide variety of known and new oleaginous yeast species.

    PubMed

    Sitepu, Irnayuli R; Sestric, Ryan; Ignatia, Laura; Levin, David; German, J Bruce; Gillies, Laura A; Almada, Luis A G; Boundy-Mills, Kyria L

    2013-09-01

    Oleaginous yeasts have been studied for oleochemical production for over 80 years. Only a few species have been studied intensely. To expand the diversity of oleaginous yeasts available for lipid research, we surveyed a broad diversity of yeasts with indicators of oleaginicity including known oleaginous clades, and buoyancy. Sixty-nine strains representing 17 genera and 50 species were screened for lipid production. Yeasts belonged to Ascomycota families, Basidiomycota orders, and the yeast-like algal genus Prototheca. Total intracellular lipids and fatty acid composition were determined under different incubation times and nitrogen availability. Thirteen new oleaginous yeast species were discovered, representing multiple ascomycete and basidiomycete clades. Nitrogen starvation generally increased intracellular lipid content. The fatty acid profiles varied with the growth conditions regardless of taxonomic affiliation. The dominant fatty acids were oleic acid, palmitic acid, linoleic acid, and stearic acid. Yeasts and culture conditions that produced fatty acids appropriate for biodiesel were identified. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Manipulation of culture conditions alters lipid content and fatty acid profiles of a wide variety of known and new oleaginous yeasts species

    PubMed Central

    Sitepu, Irnayuli R.; Sestric, Ryan; Ignatia, Laura; Levin, David; German, J. Bruce; Gillies, Laura A.; Almada, Luis A.G.; Boundy-Mills, Kyria L.

    2013-01-01

    Oleaginous yeasts have been studied for oleochemical production for over 80 years. Only a few species have been studied intensely. To expand the diversity of oleaginous yeasts available for lipid research, we surveyed a broad diversity of yeasts with indicators of oleaginicity including known oleaginous clades, and buoyancy. Sixty-nine strains representing 17 genera and 50 species were screened for lipid production. Yeasts belonged to Ascomycota families, Basidiomycota orders, and the yeast-like algal genus Prototheca. Total intracellular lipids and fatty acid composition were determined under different incubation times and nitrogen availability. Thirteen new oleaginous yeast species were discovered, representing multiple ascomycete and basidiomycete clades. Nitrogen starvation generally increased intracellular lipid content. The fatty acid profiles varied with the growth conditions regardless of taxonomic affiliation. The dominant fatty acids were oleic acid, palmitic acid, linoleic acid, and stearic acid. Yeasts and culture conditions that produced fatty acids appropriate for biodiesel were identified. PMID:23891835

  7. Continuous operation of thermophilic food waste digestion with side-stream ammonia stripping.

    PubMed

    Zhang, Wei; Heaven, Sonia; Banks, Charles J

    2017-11-01

    Digesters fed on food waste (high nitrogen content) were operated successfully over an extended period using sidestream biogas stripping to control total ammonia nitrogen (TAN) below inhibitory concentrations. This is the first time biogas stripping has been used to achieve stable thermophilic operation with undiluted substrate of this type. Stripping columns operated batch-wise treated the equivalent of 1.7-4.1% of digester contents daily at pH >10 and 70°C, with no detrimental effect on digestion. TKN removal was 54%, with potential to recover 3.5kgNtonne -1 substrate. When stripping was stopped in one digester TAN increased, accompanied by rising propionic acid concentrations with progressive instability observed from 2.5gNL -1 . Eventual failure as TAN approached 5gNL -1 was due to rapid acetic acid accumulation, resulting in a fall in pH to below 6.5. The pattern of VFA accumulation indicated failure of both acetoclastic methanogenesis and acetate oxidation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Effects of organic composition on the anaerobic biodegradability of food waste.

    PubMed

    Li, Yangyang; Jin, Yiying; Borrion, Aiduan; Li, Hailong; Li, Jinhui

    2017-11-01

    This work investigated the influence of carbohydrates, proteins and lipids on the anaerobic digestion of food waste (FW) and the relationship between the parameters characterising digestion. Increasing the concentrations of proteins and lipids, and decreasing carbohydrate content in FW, led to high buffering capacity, reduction of proteins (52.7-65.0%) and lipids (57.4-88.2%), and methane production (385-627 mLCH 4 /g volatile solid), while achieving a short retention time. There were no significant correlations between the reduction of organics, hydrolysis rate constant (0.25-0.66d -1 ) and composition of organics. Principal Component Analysis revealed that lipid, C, and N contents as well as the C/N ratio were the principal components for digestion. In addition, methane yield, the final concentrations of total ammonia nitrogen and free ammonia nitrogen, final pH values, and the reduction of proteins and lipids could be predicted by a second-order polynomial model, in terms of the protein and lipid weight fraction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maloy, Stuart Andrew; Pestovich, Kimberly Shay; Anderoglu, Osman

    The Fuel Cycle Research and Development program is investigating methods of transmuting minor actinides in various fuel cycle options. To achieve this goal, new fuels and cladding materials must be developed and tested to high burnup levels (e.g. >20%) requiring cladding to withstand very high doses (greater than 200 dpa) while in contact with the coolant and the fuel. To develop and qualify materials to a total fluence greater than 200 dpa requires development of advanced alloys and irradiations in fast reactors to test these alloys. Recent results from testing numerous ferritic/martensitic steels at low temperatures suggest that improvements inmore » low temperature radiation tolerance can be achieved through carefully controlling the nitrogen content in these alloys. Thus, four new heats of HT-9 were produced with controlled nitrogen content: two by Metalwerks and two by Sophisticated Alloys. Initial results on these new alloys are presented including microstructural analysis and hardness testing. Future testing will include irradiation testing with ions and in reactor.« less

  10. Nutrient recovery from swine waste and protein biomass production using duckweed ponds (Landoltia punctata): southern Brazil.

    PubMed

    Mohedano, R A; Velho, V F; Costa, R H R; Hofmann, S M; Belli Filho, P

    2012-01-01

    Brazil is one of the most important countries in pork production worldwide, ranking third. This activity has an important role in the national economic scenario. However, the fast growth of this activity has caused major environmental impacts, especially in developing countries. The large amount of nitrogen and phosphorus compounds found in pig manure has caused ecological imbalances, with eutrophication of major river basins in the producing regions. Moreover, much of the pig production in developing countries occurs on small farms, and therefore causes diffuse pollution. Therefore, duckweed pond have been successfully used in the swine waste polishing, generating further a biomass with high protein content. The present study evaluated the efficiency of two full scale duckweed ponds for the polishing of a small pig farm effluent, biomass yield and crude protein (CP) content. Duckweed pond series received the effluent from a biodigester-storage pond, with a flow rate of 1 m(3)/day (chemical oxygen demand rate = 186 kg/ha day) produced by 300 animals. After 1 year a great improvement of effluent quality was observed, with removal of 96% of total Kjeldahl nitrogen (TKN) and 89% of total phosphorus (TP), on average. Nitrogen removal rate is one of the highest ever found (4.4 g TKN/m(2) day). Also, the dissolved oxygen rose from 0.0 to 3.0 mg/L. The two ponds produced together over 13 tons of fresh biomass (90.5% moisture), with 35% of CP content, which represents a productivity of 24 tonsCP/ha year. Due to the high rate of nutrient removal, and also the high protein biomass production, duckweed ponds revealed, under the presented conditions, a great potential for the polishing and valorization of swine waste. Nevertheless, this technology should be better exploited to improve the sustainability of small pig farms in order to minimize the impacts of this activity on the environment.

  11. Nitrogen removal from landfill leachate using single or combined processes.

    PubMed

    He, P J; Shao, L M; Guo, H D; Li, G J; Lee, D J

    2005-04-01

    The municipal solids waste (MSW) collected at Shanghai includes a high proportion of food waste, which is easily hydrolyzed to generate ammonia-nitrogen in leachate. This study investigated the efficiency of nitrogen removal from landfill leachate employing four different treatment processes. The simulated rainfall and direct leachate recycling produced strong leachate with high ammonia-nitrogen content, and resulted in the removal of only a small amount of nitrogen. Although pretreating the leachate using an aerobic reactor removed some nitrogen, most of which was transformed to biomass because of the high organic loading applied. Using the three-compartment system, which comprises a landfill column with fresh MSW, a column with well-decomposed refuse layer as the methane generator, and a nitrifier, the ammonia-nitrogen was converted into nitrogen gas and hence removed. Experimental results demonstrated the feasibility of adopting the three-compartment system for managing nitrogen in landfill leachate generated from high-nitrogen-content MSW.

  12. [Effects of nitrogen preserving agent on composting process and nitrogen loss of Eichhornia crassipes].

    PubMed

    Li, Sen; Luo, Xue Mei; Tu, Wei Guo; Fan, Hua; Gou, Xiao Lin; DU, Yu Long; Li, Ling; Wang, Qiong Yao

    2017-04-18

    To study the effects of nitrogen preserving agent (NPA) on composting process and nitrogen loss of Eichhornia crassipes, an aerobic composting was conducted for 35 days using four treatments. The NPA was prepared by mixing ferrous sulfate, humic acid sodium, and superphosphate (M:M:M=75:20:5). Four treatments were included with different mass ratios of NPA, including 0% (CK), 1% (PN1), 2% (PN2), and 3% (PN3). The physical and chemical properties, N fraction concentrations, ammonia volatilization, and N loss rates were measured and explored during composting process. The results showed that the pile temperature of NPA treatments were higher than that of CK in thermophillic period, however their water contents were significantly (P<0.05) lower than that in CK in cooling period. At the end of composting, the concentrations of total nitrogen and organic nitrogen increased significantly in NPA treatments (P<0.05), and their highest concentrations in the PN3 treatment were 16.3% and 13.2% higher than those in CK, respectively. The ammonia volatilization losses of PN1, PN2 and PN3 treatments were 25.9%, 31.5% and 42.4% lower than that of CK, respectively, however, their nitrogen fixation rates reached 31.3%, 40.7% and 72.2% respectively. Therefore, adding NPA could accelerate start-up speed, shorten composting time, and also could effectively reduce ammonia volatilizations and nitrogen loss in the composting process of E. crassipes. Therefore, PN3 showed the best effects of nitrogen preserving.

  13. Fire impact on forest soils evaluated using near-infrared spectroscopy and multivariate calibration.

    PubMed

    Vergnoux, A; Dupuy, N; Guiliano, M; Vennetier, M; Théraulaz, F; Doumenq, P

    2009-11-15

    The assessment of physico-chemical properties in forest soils affected by fires was evaluated using near infrared reflectance (NIR) spectroscopy coupled with chemometric methods. In order to describe the soil properties, measurements were taken of the total organic carbon on solid phase, the total nitrogen content, the organic carbon and the specific absorbences at 254 and 280 nm of humic substances, organic carbon in humic and fulvic acids, concentrations of NH(4)(+), Ca(2+), Mg(2+), K(+) and phosphorus in addition to NIR spectra. Then, a fire recurrence index was defined and calculated according to the different fires extents affecting soils. This calculation includes the occurrence of fires as well as the time elapsed since the last fire. This study shows that NIR spectroscopy could be considered as a tool for soil monitoring, particularly for the quantitative prediction of the total organic carbon, total nitrogen content, organic carbon in humic substances, concentrations of phosphorus, Mg(2+), Ca(2+) and NH(4)(+) and humic substances UVSA(254). Further validation in this field is necessary however, to try and make successful predictions of K(+), organic carbon in humic and fulvic acids and the humic substances UVSA(280). Moreover, NIR coupled with PLS can also be useful to predict the fire recurrence index in order to determine the spatial variability. Also this method can be used to map more or less burned areas and possibly to apply adequate rehabilitation techniques, like soil litter reconstitution with organic enrichments (industrial composts) or reforestation. Finally, the proposed recurrence index can be considered representative of the state of the soils.

  14. [Control of Soil Nutrient Loss of Typical Reforestation Patterns Along the Three Gorges Reservoir Area].

    PubMed

    Wu, Dong; Huang, Zhi-lin; Xiao, Wen-fa; Zeng, Li-xiong

    2015-10-01

    Annual soil nutrient loss characteristics on typical reforestation patterns in watershed along the Three Gorges Reservoir Area were studied based on runoff plot experiment. Runoff and sediment nutrition content from May to October 2014 of typical reforestation patterns including garden plot (tea garden), forest land (Chinese chestnut) and the original slope farmland were determined and then analyzed. The results showed that: (1) After the Returning Farmland to Forest Project the quantity of annual soil nutrient (nitrogen and phosphorus, the sum of them in sediment and runoff) loss decreased. The output of total nitrogen (TN) was in the order of slope farmland (2 444.27 g x hm(-2)) > tea garden (998.70 g x hm(-2)) > Chinese chestnut forest (532.61 g x hm(-2)), and for total phosphorus (TP) loss was slope farmland (1 690.48 g x hm(-2)) > tea garden (488.06 g x hm(-2)) > Chinese chestnut forest (129.00 g x hm(-2)) . Compared with slope farmland, the load of TN and TP output of reforestation patterns decreased 68.68% and 81.75%, respectively. (2) Compared with slope farmland, available nitrogen loss decreased in reforestation patterns. Total nitrate nitrogen (NO3(-)-N) loss ranked in the order of slope farmland (113.79 g x hm(-2)) > tea garden (73.75 g x hm(-2)) > Chinese chestnut forest (56.06 g x hm(-2)) The largest amount of ammonium nitrogen (NH4(+)-N) was found in tea garden (69.34 g x hm(-2)), then in farmland (52.45 g x hm(-2)), and the least in Chinese chestnut forest (47.23 g x hm(-2)). (3) The main route of NO3(-)-N and NH4(+)-N loss was both through runoff, the quantity of NO3(-)-N and NH4(+)-N output in which accounted for 91.4% and 92.2% of the total, respectively. The quantity of TN and TP in sediment accounted for 86.6% and 98.4% of the total. TN and TP loss showed an extremely significant correlation with sediments, which showed that sediment output was the main approach of TN and TP loss.

  15. Nitrogen emission and deposition budget in West and Central Africa

    NASA Astrophysics Data System (ADS)

    Galy-Lacaux, C.; Delon, C.

    2014-12-01

    Atmospheric nitrogen depends on land surface exchanges of nitrogen compounds. In Sub Saharan Africa, deposition and emission fluxes of nitrogen compounds are poorly quantified, and are likely to increase in the near future due to land use change and anthropogenic pressure. This work proposes an estimate of atmospheric N compounds budget in West and Central Africa, along an ecosystem transect, from dry savanna to wet savanna and forest, for years 2000-2007. The budget may be considered as a one point in time budget, to be included in long term studies as one of the first reference point for Sub Saharan Africa. Gaseous dry deposition fluxes are estimated by considering N compounds concentrations measured in the frame of the IDAF network (IGAC/DEBITS/AFrica) at the monthly scale and modeling of deposition velocities at the IDAF sites, taking into account the bi directional exchange of ammonia. Particulate dry deposition fluxes are calculated using the same inferential method. Wet deposition fluxes are calculated from measurements of ammonium and nitrate chemical content in precipitations at the IDAF sites combined with the annual rainfall amount. In terms of emission, biogenic NO emissions are simulated at each IDAF site with a surface model coupled to an emission module elaborated from an artificial neural network equation. Ammonia emissions from volatilization are calculated from literature data on livestock quantity in each country and N content in manure. NOx and NH3 emission from biomass burning and domestic fires are estimated from satellite data and emission factors. The total budget shows that emission sources of nitrogen compounds are in equilibrium with deposition fluxes in dry and wet savannas, with respectively 7.40 (±1.90) deposited and 9.01 (±3.44) kgN ha-1 yr-1 emitted in dry savanna, 8.38 (±2.04) kgN ha-1 yr-1 deposited and 9.60 (±0.69) kgN ha-1 yr-1 emitted in wet savanna. In forested ecosystems, the total budget is dominated by wet plus dry deposition processes (14.75 ± 2.36 kgN ha-1 yr-1), compared to emissions processes (8.54 ± 0.50 kgN ha-1 yr-1).

  16. USSR and Eastern Europe Scientific Abstracts Chemistry No. 53

    DTIC Science & Technology

    1977-03-23

    EFFECTIVENESS OF N,N-DIALKYL-N’-ARYLGUANIDINES AGAINST POWDERY MILDEW OF CUCUMBERS Moscow KHIM. SREDSTVA ZASHCHITY RAST. [CHEMICAL SUBSTANCES FOR PLANT... powdery mildew of cucumbers. A number of compounds are discovered which are similar in effectiveness to caratan (ethanol). A study is made of the...RELATIONSHIP BETWEEN THE CONTENT OF TOTAL NITROGEN, PROTEIN AND GLUTEN IN WINTER WHEAT GRAIN Moscow KHIMIYA V SEL’SKOM KHOZYAYSTVE in Russian Vol

  17. Influence of red alder on chemical properties of a clay loam soil in western Washington.

    Treesearch

    D.S. DeBell; M.A. Radwan; J.M. Kraft

    1983-01-01

    Chemical characteristics of mineral soil beneath red alder (Alnus rubra Bong.) stands of various ages were studied. Total nitrogen (N) of the 0-to 20-centimeter (0- to 8-inch) soil layer increased with stand age, and pH of both the 0- to 20-centimeter and 20- to 50-centimeter (8- to 20-inch) layers decreased with stand age. Contents of some mineral...

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, Dipendu; Spurri, Amanda; Chen, Jihua

    With this study, we have synthesized a nitrogen doped mesoporous carbon with the BET surface area of 1066 m 2/g, total pore volume 0.6 cm 3/g and nitrogen content of 0.5%. Total alendronate adsorption in this carbon was ~5%. The release experiments were designed in four different media with sequential pH values of 1.2, 4.5, 6.8 and 7.4 for 3, 1, 3 and 5 h, respectively and at 37 °C to imitate the physiological conditions of stomach, duodenum, small intestine and colon, respectively. Release of the drug demonstrated a controlled fashion; only 20% of the drug was released in themore » media with pH = 1.2, whereas 64% of the drug was released in pH = 7.4. This is in contrary to pure alendronate that was completely dissolved within 30 min in the first release media (pH = 1.2) only. The relatively larger uptake of alendronate in this carbon and its sustained fashion of release can be attributed to the hydrogen bonding between the drug and the nitrogen functionalities on carbon surface. Based on this result, it can be inferred that this formulation may lower the side effects of oral delivery of alendronate.« less

  19. Metabolic Profiling and Physiological Analysis of a Novel Rice Introgression Line with Broad Leaf Size

    PubMed Central

    Zhao, Xiuqin; Zhang, Guilian; Wang, Yun; Zhang, Fan; Wang, Wensheng; Zhang, Wenhao; Fu, Binying; Xu, Jianlong; Li, Zhikang

    2015-01-01

    A rice introgression line, NIL-SS1, and its recurrent parent, Teqing, were used to investigate the influence of the introgression segment on plant growth. The current research showed NIL-SS1 had an increased flag leaf width, total leaf area, spikelet number per panicle and grain yield, but a decreased photosynthetic rate. The metabolite differences in NIL-SS1 and Teqing at different developmental stages were assessed using gas chromatography—mass spectrometry technology. Significant metabolite differences were observed across the different stages. NIL-SS1 increased the plant leaf nitrogen content, and the greatest differences between NIL-SS1 and Teqing occurred at the booting stage. Compared to Teqing, the metabolic phenotype of NIL-SS1 at the booting stage has closer association with those at the flowering stage. The introgression segment induced more active competition for sugars and organic acids (OAs) from leaves to the growing young spikes, which resulted in more spikelet number per plant (SNP). The results indicated the introgression segment could improve rice grain yield by increasing the SNP and total leaf area per plant, which resulted from the higher plant nitrogen content across growth stages and stronger competition for sugars and OAs of young spikes at the booting stage. PMID:26713754

  20. Horizon-Specific Bacterial Community Composition of German Grassland Soils, as Revealed by Pyrosequencing-Based Analysis of 16S rRNA Genes ▿ †

    PubMed Central

    Will, Christiane; Thürmer, Andrea; Wollherr, Antje; Nacke, Heiko; Herold, Nadine; Schrumpf, Marion; Gutknecht, Jessica; Wubet, Tesfaye; Buscot, François; Daniel, Rolf

    2010-01-01

    The diversity of bacteria in soil is enormous, and soil bacterial communities can vary greatly in structure. Here, we employed a pyrosequencing-based analysis of the V2-V3 16S rRNA gene region to characterize the overall and horizon-specific (A and B horizons) bacterial community compositions in nine grassland soils, which covered three different land use types. The entire data set comprised 752,838 sequences, 600,544 of which could be classified below the domain level. The average number of sequences per horizon was 41,824. The dominant taxonomic groups present in all samples and horizons were the Acidobacteria, Betaproteobacteria, Actinobacteria, Gammaproteobacteria, Alphaproteobacteria, Deltaproteobacteria, Chloroflexi, Firmicutes, and Bacteroidetes. Despite these overarching dominant taxa, the abundance, diversity, and composition of bacterial communities were horizon specific. In almost all cases, the estimated bacterial diversity (H′) was higher in the A horizons than in the corresponding B horizons. In addition, the H′ was positively correlated with the organic carbon content, the total nitrogen content, and the C-to-N ratio, which decreased with soil depth. It appeared that lower land use intensity results in higher bacterial diversity. The majority of sequences affiliated with the Actinobacteria, Bacteroidetes, Cyanobacteria, Fibrobacteres, Firmicutes, Spirochaetes, Verrucomicrobia, Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria were derived from A horizons, whereas the majority of the sequences related to Acidobacteria, Chloroflexi, Gemmatimonadetes, Nitrospira, TM7, and WS3 originated from B horizons. The distribution of some bacterial phylogenetic groups and subgroups in the different horizons correlated with soil properties such as organic carbon content, total nitrogen content, or microbial biomass. PMID:20729324

  1. Characterization of the biosolids composting process by hyperspectral analysis.

    PubMed

    Ilani, Talli; Herrmann, Ittai; Karnieli, Arnon; Arye, Gilboa

    2016-02-01

    Composted biosolids are widely used as a soil supplement to improve soil quality. However, the application of immature or unstable compost can cause the opposite effect. To date, compost maturation determination is time consuming and cannot be done at the composting site. Hyperspectral spectroscopy was suggested as a simple tool for assessing compost maturity and quality. Nevertheless, there is still a gap in knowledge regarding several compost maturation characteristics, such as dissolved organic carbon, NO3, and NH4 contents. In addition, this approach has not yet been tested on a sample at its natural water content. Therefore, in the current study, hyperspectral analysis was employed in order to characterize the biosolids composting process as a function of composting time. This goal was achieved by correlating the reflectance spectra in the range of 400-2400nm, using the partial least squares-regression (PLS-R) model, with the chemical properties of wet and oven-dried biosolid samples. The results showed that the proposed method can be used as a reliable means to evaluate compost maturity and stability. Specifically, the PLS-R model was found to be an adequate tool to evaluate the biosolids' total carbon and dissolved organic carbon, total nitrogen and dissolved nitrogen, and nitrate content, as well as the absorbance ratio of 254/365nm (E2/E3) and C/N ratios in the dry and wet samples. It failed, however, to predict the ammonium content in the dry samples since the ammonium evaporated during the drying process. It was found that in contrast to what is commonly assumed, the spectral analysis of the wet samples can also be successfully used to build a model for predicting the biosolids' compost maturity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. [The relationship between abiotic factors and microbial activities of microbial eco-system in contaminated soil with petroleum hydrocarbons].

    PubMed

    Jia, Jian-li; Li, Guang-he; Zhong, Yi

    2004-05-01

    By means of the biostimulation and bioaugmentation in the micro-ecological environment of contaminated soil with petrochemical hydrocarbons, the biodegradation rates and mode of the contaminants were significantly improved. Based on the investigations carried out in some oilfields and petrochemical industrial area of Northern China, the relationship between the abiotic factors such as nutrient, pH, contaminants, water content, alkalinity, etc., and microbial activities was interpreted and identified in this paper. The results from the investigations and indoor and in-situ experiments conducted recent years indicated that the soils in the areas, to the extent, have been polluted by the different kinds of organic compounds composed of monoaromatic benzene, PAHs, chlorinated solvent, and alkanes, and the concentrations of the compounds mostly were elevated as compared to the background, with the highest 34,000 mg/kg dry soil. The column chromatography analysis results showed that the alkyl and aromatic compounds were accounted for more than 50% of the total hydrocarbon contents, which was readily degraded by degrading bacteria and improved the degrading microbe activities. The effective nitrogen and phosphorus encountered in the soil was less than 30 mg/kg dry soil and 10 mg/kg dry soil, only about 5% of total contents of them respectively. Based on the stoichiometric calculation and reasonable ratio of carbon to nutrient content regarding the biodegradation of organic compounds, the nutrient levels mainly composed of nitrogen and phosphorus in polluted soil as importantly limiting factors to degrading bacterial growth and activity were insufficient to the biodegradation of petrochemicals, and it is needed to add the nutrient for the bioremediation of contaminated soil. It is undoubted that the optimization of abiotic factors play significant role in increasing the microbial activity and improving the biodegradation rates.

  3. Response of seed tocopherols in oilseed rape to nitrogen fertilizer sources and application rates* #

    PubMed Central

    Hussain, Nazim; Li, Hui; Jiang, Yu-xiao; Jabeen, Zahra; Shamsi, Imran Haider; Ali, Essa; Jiang, Li-xi

    2014-01-01

    Tocopherols (Tocs) are vital scavengers of reactive oxygen species (ROS) and important seed oil quality indicators. Nitrogen (N) is one of the most important fertilizers in promoting biomass and grain yield in crop production. However, the effect of different sources and application rates of N on seed Toc contents in oilseed rape is poorly understood. In this study, pot trials were conducted to evaluate the effect of two sources of N fertilizer (urea and ammonium nitrate). Each source was applied to five oilseed rape genotypes (Zheshuang 72, Jiu-Er-1358, Zheshuang 758, Shiralee, and Pakola) at three different application rates (0.41 g/pot (N1), 0.81 g/pot (N2), and 1.20 g/pot (N3)). Results indicated that urea increased α-, γ-, and total Toc (T-Toc) more than did ammonium nitrate. N3 was proven as the most efficient application rate, which yielded high contents of γ-Toc and T-Toc. Highly significant correlations were observed between Toc isomers, T-Toc, and α-/γ-Toc ratio. These results clearly demonstrate that N sources and application rates significantly affect seed Toc contents in oilseed rape. PMID:24510711

  4. Recovery and Reutilization of Waste Matter from Coffee Preparation. An Experiment for Environmental Science Courses

    NASA Astrophysics Data System (ADS)

    Orecchio, Santino

    2001-12-01

    This work is designed as an experience for organic and analytical chemistry laboratories in environmental science courses. Coffee grounds were chosen because they are easily available, they are a fine example of a waste product, and the students are familiar with them. The coffee bean is a source of a number of by-products. By comparing the physicochemical characteristics of coffee oil (from the grounds) with those of common oils, it is found that coffee oil shows similarity to palm oil. We hydrolysed the coffee oil and obtained a soap that had good detergent and foaming properties similar to olive oil soap or commercial products. Another beneficial aspect of the coffee bean results from the high content in organic matter (C = 48.9%) of the degreased coffee grounds, which allows their utilization to improve the fertility of soils. The total nitrogen content of the residue is higher than that of many composts and is similar to the nitrogen content of some commercial products employed for house plants. The economical, technical, and environmental advantages that frequently can derive from the recovery of some by-products of foods and beverages, such as the coffee grounds in this example, are evident.

  5. A process for polyhydroxyalkanoate (PHA) production from municipal wastewater treatment with biological carbon and nitrogen removal demonstrated at pilot-scale.

    PubMed

    Bengtsson, Simon; Karlsson, Anton; Alexandersson, Tomas; Quadri, Luca; Hjort, Markus; Johansson, Peter; Morgan-Sagastume, Fernando; Anterrieu, Simon; Arcos-Hernandez, Monica; Karabegovic, Lamija; Magnusson, Per; Werker, Alan

    2017-03-25

    A process was developed for biological treatment of municipal wastewater for carbon and nitrogen removal while producing added-value polyhydroxyalkanoates (PHAs). The process comprised steps for pre-denitrification, nitrification and post-denitrification and included integrated fixed-film activated sludge (IFAS) with biofilm carrier media to support nitrification. In a pilot-scale demonstration (500-800L), wastewater treatment performance, in line with European standards, were achieved for total chemical oxygen demand (83% removal) and total nitrogen (80% removal) while producing a biomass that was able to accumulate up to 49% PHA of volatile suspended solids with acetic acid or fermented organic residues as substrates. Robust performance in wastewater treatment and enrichment of PHA-producing biomass was demonstrated under realistic conditions including influent variability during 225days of operation. The IFAS system was found to be advantageous since maintaining nitrification on the biofilm allowed for a relatively low (2days) solids retention time (SRT) for the suspended biomass in the bulk phase. Lower SRT has advantages in higher biomass yield and higher active fraction in the biomass which leads to higher PHA productivity and content. The outcomes show that production of added-value biopolymers may be readily integrated with carbon and nitrogen removal from municipal wastewater. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Resolving the 'nitrogen paradox' of arbuscular mycorrhizas: fertilization with organic matter brings considerable benefits for plant nutrition and growth.

    PubMed

    Thirkell, Tom J; Cameron, Duncan D; Hodge, Angela

    2016-08-01

    Arbuscular mycorrhizal fungi (AMF) can transfer nitrogen (N) to host plants, but the ecological relevance is debated, as total plant N and biomass do not generally increase. The extent to which the symbiosis is mutually beneficial is thought to rely on the stoichiometry of N, phosphorus (P) and carbon (C) availability. While inorganic N fertilization has been shown to elicit strong mutualism, characterized by improved plant and fungal growth and mineral nutrition, similar responses following organic N addition are lacking. Using a compartmented microcosm experiment, we determined the significance to a mycorrhizal plant of placing a (15) N-labelled, nitrogen-rich patch of organic matter in a compartment to which only AMF hyphae had access. Control microcosms denied AMF hyphal access to the patch compartment. When permitted access to the patch compartment, the fungus proliferated extensively in the patch and transferred substantial quantities of N to the plant. Moreover, our data demonstrate that allowing hyphal access to an organic matter patch enhanced total plant N and P contents, with a simultaneous and substantial increase in plant biomass. Furthermore, we demonstrate that organic matter fertilization of arbuscular mycorrhizal plants can foster a mutually beneficial symbiosis based on nitrogen transfer, a phenomenon previously thought irrelevant. © 2015 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  7. Transformation of soil organic matter in leached chernozems under minimized treatment in the forest-steppe of West Siberia

    NASA Astrophysics Data System (ADS)

    Sharkov, I. N.; Samokhvalova, L. M.; Mishina, P. V.

    2016-07-01

    Changes in the contents of total organic carbon and the carbon of easily mineralizable fractions of organic matter (labile humus, detritus, and mortmass) in the layers of 0-10, 10-25, and 0-25 cm were studied in leached chernozems ((Luvic Chernozems (Loamic, Aric)) subjected to deep plowing and surface tillage for nine years. In the layer of 0-25 cm, the content of Corg did not show significant difference between these two treatments and comprised 3.68-3.92% in the case of deep plowing and 3.63-4.08% in the case of surface tillage. Tillage practices greatly affected the distribution of easily mineralizable fractions of organic matter in the layers of 0-10 and 10-25 cm, though the difference between two treatments for the entire layer (0-25 cm) was insignificant. Surface tillage resulted in the increase in the contents of mortmass (by 59%), detritus (by 32%), and labile humus (by 8%) in the layer of 0-10 cm in comparison with deep plowing. At the same time, the contents of these fractions in the layer of 10-25 cm in the surface tillage treatment decreased by 67, 46, and 3%, respectively. The estimate of the nitrogen-mineralizing capacity made according to the data on the uptake of soil nitrogen by oat plants in a special greenhouse experiment confirmed the observed regularities of the redistribution of easily mineralizable organic matter fractions by the soil layers. In case of surface tillage, it increased by 23% in the layer of 0-10 cm; for the layer of 0-25 cm, no significant differences in the uptake of nitrogen by oat plants were found for the two studied treatments.

  8. Growth, ammonium metabolism, and photosynthetic properties of Ulva australis (Chlorophyta) under decreasing pH and ammonium enrichment

    PubMed Central

    Fernandez, Pamela A.; Leal, Pablo P.; Noisette, Fanny; McGraw, Christina M.; Revill, Andrew T.; Hurd, Catriona L.; Kübler, Janet E.

    2017-01-01

    The responses of macroalgae to ocean acidification could be altered by availability of macronutrients, such as ammonium (NH4+). This study determined how the opportunistic macroalga, Ulva australis responded to simultaneous changes in decreasing pH and NH4+ enrichment. This was investigated in a week-long growth experiment across a range of predicted future pHs with ambient and enriched NH4+ treatments followed by measurements of relative growth rates (RGR), NH4+ uptake rates and pools, total chlorophyll, and tissue carbon and nitrogen content. Rapid light curves (RLCs) were used to measure the maximum relative electron transport rate (rETRmax) and maximum quantum yield of photosystem II (PSII) photochemistry (Fv/Fm). Photosynthetic capacity was derived from the RLCs and included the efficiency of light harvesting (α), slope of photoinhibition (β), and the light saturation point (Ek). The results showed that NH4+ enrichment did not modify the effects of pH on RGRs, NH4+ uptake rates and pools, total chlorophyll, rETRmax, α, β, Fv/Fm, tissue C and N, and the C:N ratio. However, Ek was differentially affected by pH under different NH4+ treatments. Ek increased with decreasing pH in the ambient NH4+ treatment, but not in the enriched NH4+ treatment. NH4+ enrichment increased RGRs, NH4+ pools, total chlorophyll, rETRmax, α, β, Fv/Fm, and tissue N, and decreased NH4+ uptake rates and the C:N ratio. Decreased pH increased total chlorophyll content, rETRmax, Fv/Fm, and tissue N content, and decreased the C:N ratio. Therefore, the results indicate that U. australis growth is increased with NH4+ enrichment and not with decreasing pH. While decreasing pH influenced the carbon and nitrogen metabolisms of U. australis, it did not result in changes in growth. PMID:29176815

  9. Effect of CO2 levels on nutrient content of lettuce and radish.

    PubMed

    McKeehen, J D; Smart, D J; Mackowiak, C L; Wheeler, R M; Nielsen, S S

    1996-01-01

    Atmospheric carbon-dioxide enrichment is known to affect the yield of lettuce and radish grown in controlled environments, but little is known about CO2 enrichment effects on the chemical composition of lettuce and radish. These crops are useful model systems for a Controlled Ecological Life-Support System (CELSS), largely because of their relatively short production cycles. Lettuce (Lactuca sativa L.) cultivar 'Waldmann's Green' and radish (Raphanus sativus L.) cultivar 'Giant White Globe' were grown both in the field and in controlled environments, where hydroponic nutrient solution, light, and temperature were regulated, and where CO2 levels were controlled at 400, 1000, 5000, or 10,000 ppm. Plants were harvested at maturity, dried, and analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate N, free sugars, starch, total dietary fiber, and minerals. Total N, protein N, nonprotein N (NPN), and nitrate N generally increased for radish roots and lettuce leaves when grown under growth chamber conditions compared to field conditions. The nitrate-N level of lettuce leaves, as a percentage of total NPN, decreased with increasing levels of CO2 enrichment. The ash content of radish roots and of radish and lettuce leaves decreased with increasing levels of CO2 enrichment. The levels of certain minerals differed between field- and chamber-grown materials, including changes in the calcium (Ca) and phosphorus (P) contents of radish and lettuce leaves, resulting in reduced Ca/P ratio for chamber-grown materials. The free-sugar contents were similar between the field and chamber-grown lettuce leaves, but total dietary fiber content was much higher in the field-grown plant material. The starch content of growth-chamber lettuce increased with CO2 level.

  10. Effect of CO_2 levels on nutrient content of lettuce and radish

    NASA Astrophysics Data System (ADS)

    McKeehen, J. D.; Smart, D. J.; Mackowiak, C. L.; Wheeler, R. M.; Nielsen, S. S.

    Atmospheric carbon-dioxide enrichment is known to affect the yield of lettuce and radish grown in controlled environments, but little is known about CO_2 enrichment effects on the chemical composition of lettuce and radish. These crops are useful model systems for a Controlled Ecological Life-Support System (CELSS), largely because of their relatively short production cycles. Lettuce (Lactuca sativa L.) cultivar `Waldmann's Green' and radish (Raphanus sativus L.) cultivar `Giant White Globe' were grown both in the field and in controlled environments, where hydroponic nutrient solution, light, and temperature were regulated, and where CO_2 levels were controlled at 400, 1000, 5000, or 10,000 ppm. Plants were harvested at maturity, dried, and analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate N, free sugars, starch, total dietary fiber, and minerals. Total N, protein N, nonprotein N (NPN), and nitrate N generally increased for radish roots and lettuce leaves when grown under growth chamber conditions compared to field conditions. The nitrate-N level of lettuce leaves, as a percentage of total NPN, decreased with increasing levels of CO_2 enrichment. The ash content of radish roots and of radish and lettuce leaves decreased with increasing levels of CO_2 enrichment. The levels of certain minerals differed between field- and chamber-grown materials, including changes in the calcium (Ca) and phosphorus (P) contents of radish roots and lettuce leaves, resulting in reduced Ca/P ratio for chamber-grown materials. The free-sugar contents were similar between the field and chamber-grown lettuce leaves, but total dietary fiber content was much higher in the field-grown plant material. The starch content of growth-chamber lettuce increased with CO_2 level.

  11. Effect of CO2 levels on nutrient content of lettuce and radish

    NASA Technical Reports Server (NTRS)

    McKeehen, J. D.; Smart, D. J.; Mackowiak, C. L.; Wheeler, R. M.; Nielsen, S. S.; Mitchell, C. A. (Principal Investigator)

    1996-01-01

    Atmospheric carbon-dioxide enrichment is known to affect the yield of lettuce and radish grown in controlled environments, but little is known about CO2 enrichment effects on the chemical composition of lettuce and radish. These crops are useful model systems for a Controlled Ecological Life-Support System (CELSS), largely because of their relatively short production cycles. Lettuce (Lactuca sativa L.) cultivar 'Waldmann's Green' and radish (Raphanus sativus L.) cultivar 'Giant White Globe' were grown both in the field and in controlled environments, where hydroponic nutrient solution, light, and temperature were regulated, and where CO2 levels were controlled at 400, 1000, 5000, or 10,000 ppm. Plants were harvested at maturity, dried, and analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate N, free sugars, starch, total dietary fiber, and minerals. Total N, protein N, nonprotein N (NPN), and nitrate N generally increased for radish roots and lettuce leaves when grown under growth chamber conditions compared to field conditions. The nitrate-N level of lettuce leaves, as a percentage of total NPN, decreased with increasing levels of CO2 enrichment. The ash content of radish roots and of radish and lettuce leaves decreased with increasing levels of CO2 enrichment. The levels of certain minerals differed between field- and chamber-grown materials, including changes in the calcium (Ca) and phosphorus (P) contents of radish and lettuce leaves, resulting in reduced Ca/P ratio for chamber-grown materials. The free-sugar contents were similar between the field and chamber-grown lettuce leaves, but total dietary fiber content was much higher in the field-grown plant material. The starch content of growth-chamber lettuce increased with CO2 level.

  12. [Indicators of protein metabolism in infants with intrauterine dystrophy red various dietary mixtures].

    PubMed

    Krukowa, A; Symonowicz, H; Wachnik, Z; Koziej, M

    1979-01-01

    In the previous work published in No 7 of "Development Period Medicine" ( Problemy Medycyny Wieku Rozwojowego ) the results of nitrogen balance studies in S-f-D infants fed different milk formulas were described. The present study concerns other protein metabolism indices in the same infants. The infants were divided into four groups according to the formula they were fed. The composition of formulas is shown in table I. In the infants besides the balance study, serum urea nitrogen, protein and albumin level, were estimated once a month. Also urea, creatine and creatinine, and hydroxyproline in 24-hours urine collections were examined. Excretion of creatine, creatinine and hydroxyproline was summarized in 5 boys from the group of 38 investigated infants in the first five months of life when meat-free diet was fed. The above mentioned indices permit for better assessment of the effect of the diet on protein metabolism and the requirement of protein for S-f-D infants. The results of protein metabolism indices were compared with the indices obtained in F.S. infants similarly fed. Group S of S-f-D infants was compared with group A of F.S. infants and the other groups of S-f-D infants were compared with each other. In S-f-D infants fed formula S, a lower level of serum urea nitrogen was observed in comparison with F.S. infants of group A in spite of greater protein intake in S-f-D infants. This should prove a greater protein requirement in S-f-D infants. Decreased protein content and cow's milk fat modification also had profitable influence on protein utilization because serum urea nitrogen and nitrogen in urine were low in S-f-D infants fed this formula. Urine urea nitrogen as a part of total urine nitrogen is bigger in group S and C infants, and the lowest in group G infants (formula with lower fat and total protein content). Serum protein and albumin level was generally higher in S-f-D infants than in FS ones. Particularly high level of these parameters was observed in group G infants. The most regular behaviour of age trend versus protein and albumin level was observed in S-f-D infants fed formula H and C, fast increase of values was observed in the first half of life. In the S-f-D infants which were given formulas with decreased content of protein H and C group lower excretion of creatine was noted. As in FS infants, a gradual increase of creatine with age and body weight was stated. In 24-hour urine collection creatine excretion was lower, particularly in the infants daily creatinine excretion was positively correlated with body weight, body length and age.(ABSTRACT TRUNCATED AT 400 WORDS)

  13. Biofloc improves water, effluent quality and growth parameters of Penaeus vannamei in an intensive culture system.

    PubMed

    Santhana Kumar, V; Pandey, P K; Anand, Theivasigamani; Bhuvaneswari, G Rathi; Dhinakaran, A; Kumar, Saurav

    2018-06-01

    Biofloc technology was evaluated with a view to analyse utilization of nitrogenous waste from the effluent and to improve water quality and growth parameters of Penaeus vannamei in intensive culture system. The experiment was carried out in two different treatment outdoor earthen ponds of 0.12 ha, one supplemented with carbon source (molasses, wheat and sugar) for biofloc formation and other was feed based control pond with a stocking density of 60 animals m -2 in duplicate for 120 days. Water, sediment and P. vannamei were sampled at regular intervals from the both set of ponds for evaluating physico-chemical parameters, nitrogen content and growth parameters, respectively. A significant reduction in the concentration of total ammonia nitrogen (TAN) and nitrite (NO 2 -N) were found in the biofloc pond than that of control pond. A significant low level of nitrogen was recorded in the effluents of biofloc pond in comparison to the control. In biofloc system, a significantly elevated heterotrophic bacterial count along with reduction in total Vibrio count was noticed. A significant improvement in the feed conversion efficiency (FCR) and growth parameters of P. vannamei was noticed in the biofloc pond. Growth of P. vannamei in the biofloc pond showed positive allometric pattern with an increased survival. The microbial biomass grown in biofloc consumes toxic inorganic nitrogen and converts it into useful protein, making it available for the cultured shrimp. This improved FCR and reduced the discharge of nitrogenous waste into adjacent environment, making intensive shrimp farming an eco-friendly enterprise. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Effect of different cover crops on C and N cycling in sorghum NT systems.

    PubMed

    Frasier, Ileana; Quiroga, Alberto; Noellemeyer, Elke

    2016-08-15

    In many no-till (NT) systems, residue input is low and fallow periods excessive, for which reasons soil degradation occurs. Cover crops could improve organic matter, biological activity, and soil structure. In order to study changes in soil carbon, nitrogen and microbial biomass a field experiment (2010-2012) was set up with sorghum (Sorghum bicolor Moench.) monoculture and with cover crops. Treatments were control (NT with bare fallow), rye (Secale cereale L.) (R), rye with nitrogen fertilization (R+N), vetch (Vicia villosa Roth.) (V), and rye-vetch mixture (VR) cover crops. A completely randomized block design with 4 replicates was used. Soil was sampled once a year at 0.06 and 0.12m depth for total C, microbial biomass carbon (MBC) and-nitrogen (MBN) determinations. Shoot and root biomass of sorghum and cover crops, litter biomass, and their respective carbon and nitrogen contents were determined. Soil temperatures at 0.06 and 0.12m depth, volumetric water contents and nitrate concentrations were determined at sowing, and harvest of each crop, and during sorghum's vegetative phase. NT led to a small increase in MBC and MBN, despite low litter and root biomass residue. Cover crops increased litter, root biomass, total C, MBC, and MBN. Relationships between MBC, MBN, and root-C and -N adjusted to logistic models (R(2)=0.61 and 0.43 for C and N respectively). Litter cover improved soil moisture to 45-50% water filled pore space and soil temperatures not exceeding 25°C during the warmest month. Microbial biomass stabilized at 20.1gCm(-2) and 1.9gNm(-2) in the upper 0.06m. Soil litter disappearance was a good indicator of mineral N availability. These findings support the view that cover crops, specifically legumes in NT systems can increase soil ecosystem services related to water and carbon storage, habitat for biodiversity, and nutrient availability. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Fluorescently tuned nitrogen-doped carbon dots from carbon source with different content of carboxyl groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hao; Wang, Yun; Dai, Xiao

    2015-08-01

    In this study, fluorescent nitrogen-doped carbon dots (NCDs) were tuned via varying the sources with different number of carboxyl groups. Owing to the interaction between amino and carboxyl, more amino groups conjugate the surface of the NCDs by the source with more carboxyl groups. Fluorescent NCDs were tuned via varying the sources with different content of carboxyl groups. Correspondingly, the nitrogen content, fluorescence quantum yields and lifetime of NCDs increases with the content of carboxyl groups from the source. Furthermore, cytotoxicity assay and cell imaging test indicate that the resultant NCDs possess low cytotoxicity and excellent biocompatibility.

  16. Spatial and seasonal distribution of carbon, nitrogen, phosphorus, and sulfur and their ecological stoichiometry in wetland soils along a water and salt gradient in the Yellow River Delta, China

    NASA Astrophysics Data System (ADS)

    Lu, Qiongqiong; Bai, Junhong; Zhang, Guangliang; Zhao, Qingqing; Wu, Jianjun

    2018-04-01

    Top soils (0-10 cm) were collected in three sampling belts during four seasons in 2014, including bare land (HN1), Calamagrostis epigeios (HN2), Typha orientalis (HN3), Phragmites australis (HN4), Tamarix chinensis (HN5) and Suaeda salsa (HN6) along a water and salinity gradient in the Yellow River Delta, China. Soil organic carbon (SOC), total nitrogen (TN), total phosphorous (TP), total sulfur (TS) and their ecological stoichiometry were measured to investigate their seasonal and horizontal distribution patterns, as well as their important influencing factors such as electric conductivity (EC) and water content (WC). Our results showed that the contents of SOC and TN exhibited similar changing tendency along the water and salinity gradient. The TP contents followed the order HN5 ≈ HN2 > HN3 ≈ HN6 > HN4 > HN1. TS levels generally increased with increasing salinity from HN1 to HN6. The higher levels of SOC and TP were mostly observed in October and August, respectively, while the seasonal variations in TN were heterogeneous under different plant covers. TS contents were lower in August compared with other sampling periods except for HN4. The mean values of the C/N, C/P and C/S ratios along a water-salinity gradient ranged from 26 to 72, 20 to 74, and 61 to 292, respectively. Generally, higher C/P ratios were observed in sampling sites with plant covers in October expect for HN1, whereas they were lower in January or August. SOC, TN and TP were significantly positively correlated with soil organic matter (SOM), silt, WC and cation exchange capacity (CEC) (p < 0.05), whereas TS showed a positive correlation with EC and cations content (p > 0.05). Bulk density (BD) had a great influence on C/N ratio, C/P ratio were mainly effected by SOM, EC and silt, while C/S ratio showed a significant negative correlation with BD, EC, K+, Na+, and Mg2+ (p < 0.05).

  17. [Effects of different fertilization measures on N2O emission in oil sunflower field in irrigation area of upper Yellow River].

    PubMed

    Chen, Zhe; Chen, Yuan-yuan; Gao, Ji; Liu, Ru-liang; Yang, Zheng-li; Zhang, Ai-ping

    2015-01-01

    Agricultural soil has become the largest anthropogenic source of atmospheric nitrous oxide (N20). To estimate the impacts of long-term combined application of organic and inorganic fertilizers on N20 emission in a typical winter wheat-oil sunflower cropping system in the Ningxia irrigation area, we measured N20 fluxes using the static opaque chamber-gas chromatograph method and monitored the seasonal dynamics of related factors. Our results showed that nitrogen addition in the previous crop field significantly stimulated N2O emissions during the following oil-sunflower cultivation, and the mean fluxes of N300-OM, N240-OM1/2, N300 and N240 were (34.16 ± 9.72), (39.69 ±10.70), (27.75 ±9.57) and (26.30 ± 8.52) µg . m-2 . h-1, respectively, which were 4.09, 4.75, 3.32 and 3.15 times of the control groups. The total cumulative N2O emissions of fertilizer treatments in growing season was as high as 796.7 to 1242.5 g . hm-2, which was 2.99 to 4.67 times of the control groups. During the growing season, the rates of N2O emission in each month organic and inorganic fertlizers combined treatments were similar at high levels. N2O emission in chemical fertilizer treatments gradually decreased, and the main period of N2O emission occurred at the beginning of growing season. Taking July for example, N2O emission accounted for 41.3% to 41. 8% of total cumulative amount. The amounts of N20 emission under organic and inorganic fertilizers combined treatments were significantly higher than under chemical fertilizer treatments. The N2O emissions were not significantly different between conventional and optimized applications of nitrogen fertilizer under the same fertilizing method, either between N300-OM and N240-OM1/2, or between N300 and N240. On account of the drought, N2O emission in each treatment was mainly affected by soil moisture. N2O emission had a significant positive correlation with soil ammonium nitrogen content under combined applications of organic and inorganic fertilizers, but was not correlated with soil nitrate nitrogen content under all treatments. This showed that adding organic fertilizer could stimulate the NO2 production via increasing the soil ammonium nitrogen content.

  18. Effect of nitrogen sources on biomass, lipid and docosahexanoic acid production by Aurantiochytrium sp. SW1

    NASA Astrophysics Data System (ADS)

    Auma, Khairunnisa; Hamid, Aidil Abdul; Yusoff, Wan Mohtar Wan

    2018-04-01

    A local isolate, Aurantiochytrium sp. SW1 has been verified to have high content of docosahexanoic acid (DHA). However, the effect of different nitrogen sources on biomass, lipid concentration and DHA content in Aurantiochytrium sp. SW1 is still unknown. Hence, this study is focused in using six different organic and inorganic nitrogen sources to grow Aurantiochytrium sp. SW1 in optimized Burja medium. Monosodium glutamate (MSG) gave the highest biomass concentration of 15.97 g/L followed by ammonium nitrate (NH4NO3) with 13.37 g/L at 96 hr. These two nitrogen sources had significant effect on the biomass concentration (p<0.05). The highest lipid accumulated was obtained using MSG that reached 79.6% in biomass concentration. DHA content in lipid showed cultivation using MSG reached 47.9% (4.95 g/L). Statistical analysis using least significant difference (LSD) showed significant lipid production (p<0.05) when cultivated in MSG compared to other five nitrogen sources. The highest DHA productivity (0.052 g/L hr-1) was obtained in medium containing MSG. This study proves that nitrogen component in the medium significantly affects the biomass concentration, lipid and DHA content.

  19. EnviroAtlas - Atmospheric Nitrogen Deposition by 12-digit HUC for the Conterminous United States (2002)

    EPA Pesticide Factsheets

    This EnviroAtlas dataset includes annual nitrogen and sulfur deposition within each 12-digit HUC subwatershed for the year 2002. Values are provided for total oxidized nitrogen (HNO3, NO, NO2, N2O5, NH3, HONO, PAN, organic nitrogen, and particulate NO3), oxidized nitrogen wet deposition, oxidized nitrogen dry deposition, total reduced nitrogen (NH3 and particulate NH4), reduced nitrogen dry deposition, reduced nitrogen wet deposition, total dry nitrogen deposition, total wet nitrogen deposition, total nitrogen deposition (wet+dry), total sulfur (SO2 + particulate SO4) dry deposition, total sulfur wet deposition, and total sulfur deposition. The dataset is based on output from the Community Multiscale Air Quality modeling system (CMAQ) v5.0.2 run using the bidirectional flux option for the 12-km grid size for the US, Canada, and Mexico. The CMAQ output has been post-processed to adjust the wet deposition for errors in the location and amount of precipitation and for regional biases in the TNO3 (HNO3 + NO3), NHx (NH4 + NH3), and sulfate wet deposition. Model predicted values of dry deposition were not adjusted. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadab

  20. EnviroAtlas - Atmospheric Nitrogen and Sulfur Deposition by 12-digit HUC for the Conterminous United States (2011)

    EPA Pesticide Factsheets

    This EnviroAtlas dataset includes annual nitrogen and sulfur deposition within each 12-digit HUC subwatershed for the year 2011. Values are provided for total oxidized nitrogen (HNO3, NO, NO2, N2O5, NH3, HONO, PAN, organic nitrogen, and particulate NO3), oxidized nitrogen wet deposition, oxidized nitrogen dry deposition, total reduced nitrogen (NH3 and particulate NH4), reduced nitrogen dry deposition, reduced nitrogen wet deposition, total dry nitrogen deposition, total wet nitrogen deposition, total nitrogen deposition (wet+dry), total sulfur (SO2 + particulate SO4) dry deposition, total sulfur wet deposition, and total sulfur deposition. The dataset is based on output from the Community Multiscale Air Quality modeling system (CMAQ) run using the bidirectional flux option for the 12-km grid size for the US, Canada, and Mexico. The CMAQ output has been post-processed to adjust the wet deposition for errors in the location and amount of precipitation and for regional biases in the TNO3 (HNO3 + NO3), NHx (NH4 + NH3), and sulfate wet deposition. Model predicted values of dry deposition were not adjusted. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data

  1. EnviroAtlas - Atmospheric Nitrogen Deposition by 12-digit HUC for the Conterminous United States (2006)

    EPA Pesticide Factsheets

    This EnviroAtlas dataset includes annual nitrogen and sulfur deposition within each 12-digit HUC subwatershed for the year 2006. Values are provided for total oxidized nitrogen (HNO3, NO, NO2, N2O5, NH3, HONO, PAN, organic nitrogen, and particulate NO3), oxidized nitrogen wet deposition, oxidized nitrogen dry deposition, total reduced nitrogen (NH3 and particulate NH4), reduced nitrogen dry deposition, reduced nitrogen wet deposition, total dry nitrogen deposition, total wet nitrogen deposition, total nitrogen deposition (wet+dry), total sulfur (SO2 + particulate SO4) dry deposition, total sulfur wet deposition, and total sulfur deposition. The dataset is based on output from the Community Multiscale Air Quality modeling system (CMAQ) run using the bidirectional flux option for the 12-km grid size for the US, Canada, and Mexico. The CMAQ output has been post-processed to adjust the wet deposition for errors in the location and amount of precipitation and for regional biases in the TNO3 (HNO3 + NO3), NHx (NH4 + NH3), and sulfate wet deposition. Model predicted values of dry deposition were not adjusted. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable dat

  2. Formulation of fermentation media from flour-rich waste streams for microbial lipid production by Lipomyces starkeyi.

    PubMed

    Tsakona, Sofia; Kopsahelis, Nikolaos; Chatzifragkou, Afroditi; Papanikolaou, Seraphim; Kookos, Ioannis K; Koutinas, Apostolis A

    2014-11-10

    Flour-rich waste (FRW) and by-product streams generated by bakery, confectionery and wheat milling plants could be employed as the sole raw materials for generic fermentation media production, suitable for microbial oil synthesis. Wheat milling by-products were used in solid state fermentations (SSF) of Aspergillus awamori for the production of crude enzymes, mainly glucoamylase and protease. Enzyme-rich SSF solids were subsequently employed for hydrolysis of FRW streams into nutrient-rich fermentation media. Batch hydrolytic experiments using FRW concentrations up to 205 g/L resulted in higher than 90% (w/w) starch to glucose conversion yields and 40% (w/w) total Kjeldahl nitrogen to free amino nitrogen conversion yields. Starch to glucose conversion yields of 98.2, 86.1 and 73.4% (w/w) were achieved when initial FRW concentrations of 235, 300 and 350 g/L were employed in fed-batch hydrolytic experiments, respectively. Crude hydrolysates were used as fermentation media in shake flask cultures with the oleaginous yeast Lipomyces starkeyi DSM 70296 reaching a total dry weight of 30.5 g/L with a microbial oil content of 40.4% (w/w), higher than that achieved in synthetic media. Fed-batch bioreactor cultures led to a total dry weight of 109.8 g/L with a microbial oil content of 57.8% (w/w) and productivity of 0.4 g/L/h. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Bicarbonate supplementation enhanced biofuel production potential as well as nutritional stress mitigation in the microalgae Scenedesmus sp. CCNM 1077.

    PubMed

    Pancha, Imran; Chokshi, Kaumeel; Ghosh, Tonmoy; Paliwal, Chetan; Maurya, Rahulkumar; Mishra, Sandhya

    2015-10-01

    The aim of the present study was to find out the optimum sodium bicarbonate concentration to produce higher biomass with higher lipid and carbohydrate contents in microalgae Scenedesmus sp. CCNM 1077. The role of bicarbonate supplementation under different nutritional starvation conditions was also evaluated. The results clearly indicate that 0.6 g/L sodium bicarbonate was optimum concentration resulting in 20.91% total lipid and 25.56% carbohydrate along with 23% increase in biomass production compared to normal growth condition. Addition of sodium bicarbonate increased the activity of nutrient assimilatory enzymes, biomass, lipid and carbohydrate contents under different nutritional starvation conditions. Nitrogen starvation with bicarbonate supplementation resulted in 54.03% carbohydrate and 34.44% total lipid content in microalgae Scenedesmus sp. CCNM 1077. These findings show application of bicarbonate grown microalgae Scenedesmus sp. CCNM 1077 as a promising feedstock for biodiesel and bioethanol production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Additive effects due to biochar and endophyte application enable soybean to enhance nutrient uptake and modulate nutritional parameters* #

    PubMed Central

    Waqas, Muhammad; Kim, Yoon-Ha; Khan, Abdul Latif; Shahzad, Raheem; Asaf, Sajjad; Hamayun, Muhammad; Kang, Sang-Mo; Khan, Muhammad Aaqil; Lee, In-Jung

    2017-01-01

    We studied the effects of hardwood-derived biochar (BC) and the phytohormone-producing endophyte Galactomyces geotrichum WLL1 in soybean (Glycine max (L.) Merr.) with respect to basic, macro-and micronutrient uptakes and assimilations, and their subsequent effects on the regulation of functional amino acids, isoflavones, fatty acid composition, total sugar contents, total phenolic contents, and 1,1-diphenyl-2-picrylhydrazyl (DPPH)-scavenging activity. The assimilation of basic nutrients such as nitrogen was up-regulated, leaving carbon, oxygen, and hydrogen unaffected in BC+G. geotrichum-treated soybean plants. In comparison, the uptakes of macro-and micronutrients fluctuated in the individual or co-application of BC and G. geotrichum in soybean plant organs and rhizospheric substrate. Moreover, the same attribute was recorded for the regulation of functional amino acids, isoflavones, fatty acid composition, total sugar contents, total phenolic contents, and DPPH-scavenging activity. Collectively, these results showed that BC+G. geotrichum-treated soybean yielded better results than did the plants treated with individual applications. It was concluded that BC is an additional nutriment source and that the G. geotrichum acts as a plant biostimulating source and the effects of both are additive towards plant growth promotion. Strategies involving the incorporation of BC and endophytic symbiosis may help achieve eco-friendly agricultural production, thus reducing the excessive use of chemical agents. PMID:28124840

  5. Aflatoxin contamination of developing corn kernels.

    PubMed

    Amer, M A

    2005-01-01

    Preharvest of corn and its contamination with aflatoxin is a serious problem. Some environmental and cultural factors responsible for infection and subsequent aflatoxin production were investigated in this study. Stage of growth and location of kernels on corn ears were found to be one of the important factors in the process of kernel infection with A. flavus & A. parasiticus. The results showed positive correlation between the stage of growth and kernel infection. Treatment of corn with aflatoxin reduced germination, protein and total nitrogen contents. Total and reducing soluble sugar was increase in corn kernels as response to infection. Sucrose and protein content were reduced in case of both pathogens. Shoot system length, seeding fresh weigh and seedling dry weigh was also affected. Both pathogens induced reduction of starch content. Healthy corn seedlings treated with aflatoxin solution were badly affected. Their leaves became yellow then, turned brown with further incubation. Moreover, their total chlorophyll and protein contents showed pronounced decrease. On the other hand, total phenolic compounds were increased. Histopathological studies indicated that A. flavus & A. parasiticus could colonize corn silks and invade developing kernels. Germination of A. flavus spores was occurred and hyphae spread rapidly across the silk, producing extensive growth and lateral branching. Conidiophores and conidia had formed in and on the corn silk. Temperature and relative humidity greatly influenced the growth of A. flavus & A. parasiticus and aflatoxin production.

  6. [Effect of increased protein content on nutritional and sensory quality of cookies].

    PubMed

    Pérez, Santiago Rafael; Osella, Carlos Alberto; Torre, Maria Adela de la; Sánchez, Hugo Diego

    2008-12-01

    The objective of this work was to study the effect of soy flour and whey protein concentrate (WPC) on cookies quality. An optimal recipe showing improved protein quality and content as well as acceptable sensory quality was defined taking into account the results obtained. Rotary moulded cookie formulation adaptable to lamination and cutting in pilot plant was used. Wheat flour from this formulation was partially replaced by whey protein concentrate and full fat soy flour. Second order models were employed to generate response surfaces for: total protein, lysine by 16 grams of total nitrogen, lysine by 100 grams of sample, loss of lysine during processing and sensory evaluation of cookies. We could obtain an effect on available lysine value when water content was increased in the formulation because a delay in the Maillard reaction. The optimal formulation contains 13% of full fat soy flour, 3% of whey protein concentrate and 23% of water. The results demonstrated that the protein content and the protein quality of the supplemented flours were increased when soy flour was added in the formulation of cookies. On other hand, protein content was increased but protein quality was decreased when WPC was used, because of available lysine loss.

  7. Fatty acids, sterols, and antioxidant activity in minimally processed avocados during refrigerated storage.

    PubMed

    Plaza, Lucía; Sánchez-Moreno, Concepción; de Pascual-Teresa, Sonia; de Ancos, Begoña; Cano, M Pilar

    2009-04-22

    Avocado ( Persea americana Mill.) is a good source of bioactive compounds such as monounsaturated fatty acids and sterols. The impact of minimal processing on its health-promoting attributes was investigated. Avocados cut into slices or halves were packaged in plastic bags under nitrogen, air, or vacuum and stored at 8 degrees C for 13 days. The stabilities of fatty acids and sterols as well as the effect on antioxidant activity were evaluated. The main fatty acid identified and quantified in avocado was oleic acid (about 57% of total content), whereas beta-sitosterol was found to be the major sterol (about 89% of total content). In general, after refrigerated storage, a significant decrease in fatty acid content was observed. Vacuum/halves and air/slices were the samples that maintained better this content. With regard to phytosterols, there were no significant changes during storage. Antioxidant activity showed a slight positive correlation against stearic acid content. At the end of refrigerated storage, a significant increase in antiradical efficiency (AE) was found for vacuum samples. AE values were quite similar among treatments. Hence, minimal processing can be a useful tool to preserve health-related properties of avocado fruit.

  8. Tracing nitrogen accumulation in decaying wood and examining its impact on wood decomposition rate

    NASA Astrophysics Data System (ADS)

    Rinne, Katja T.; Rajala, Tiina; Peltoniemi, Krista; Chen, Janet; Smolander, Aino; Mäkipää, Raisa

    2016-04-01

    Decomposition of dead wood, which is controlled primarily by fungi is important for ecosystem carbon cycle and has potentially a significant role in nitrogen fixation via diazotrophs. Nitrogen content has been found to increase with advancing wood decay in several studies; however, the importance of this increase to decay rate and the sources of external nitrogen remain unclear. Improved knowledge of the temporal dynamics of wood decomposition rate and nitrogen accumulation in wood as well as the drivers of the two processes would be important for carbon and nitrogen models dealing with ecosystem responses to climate change. To tackle these questions we applied several analytical methods on Norway spruce logs from Lapinjärvi, Finland. We incubated wood samples (density classes from I to V, n=49) in different temperatures (from 8.5oC to 41oC, n=7). After a common seven day pre-incubation period at 14.5oC, the bottles were incubated six days in their designated temperature prior to CO2 flux measurements with GC to determine the decomposition rate. N2 fixation was measured with acetylene reduction assay after further 48 hour incubation. In addition, fungal DNA, (MiSeq Illumina) δ15N and N% composition of wood for samples incubated at 14.5oC were determined. Radiocarbon method was applied to obtain age distribution for the density classes. The asymbiotic N2 fixation rate was clearly dependent on the stage of wood decay and increased from stage I to stage IV but was substantially reduced in stage V. CO2 production was highest in the intermediate decay stage (classes II-IV). Both N2 fixation and CO2 production were highly temperature sensitive having optima in temperature 25oC and 31oC, respectively. We calculated the variation of annual levels of respiration and N2 fixation per hectare for the study site, and used the latter data together with the 14C results to determine the amount of N2 accumulated in wood in time. The proportion of total nitrogen in wood originating from N2 increased from 0.4% (class I) to 22% (V). Despite significant N inputs, N2 fixation explained only 34%-57% of the increase in wood N content of classes III-V. The DNA results indicated that mycorrhizal colonization of wood could only partially explain the remaining increase in N content. However, majority of the samples contained one or more wood decomposing fungal species that have been reported to have the capability to produce rhizomorphs or mycelial cords used for scavenging nutrients from outside sources. Assuming that the remaining increase in N content was due to fungal activity, we modelled the δ15N variation of wood from class I to V and compared the modelled and measured δ15N values (r = 0.95, p<0.05). The increase in wood nitrogen content in time was observed to have a significant, positive impact on the respiration rate (I-IV: r = 0.57, p<0.01).

  9. Effects of late-stage nitrogen fertilizer application on the starch structure and cooking quality of rice.

    PubMed

    Cao, XianMei; Sun, HuiYan; Wang, ChunGe; Ren, XiaoJia; Liu, HongFei; Zhang, ZuJian

    2018-04-01

    With the rapid development of modern agriculture, high-quality rice production and consumption has become the current urgent demand for the development of rice production. In this paper, the effects of late-stage nitrogen fertilizer application on rice quality were studied under the same genetic background. Wx near-isogenic lines were used as test materials to study the starch composition, amylopectin structure and cooking quality of rice. Results showed that rice amylose content and gel consistency significantly differed when different Wx genes were tranformed into waxy rice. The law of apparent amylose content in rice is Wx a > Wx in > Wx b > wx at the same nitrogen level, while the trend of gel consistency was opposite to that of apparent amylose content, presenting obvious characteristics of Indica and Japonica varieties. As the amount of fertilizer application increased, apparent amylose content increased, gel consistency decreased, breakdown and peak viscosities dropped and setback viscosity and peak time increased. Moreover, the cooking quality of rice significantly decreased with the use of nitrogen fertilizer, especially under low-level nitrogen fertilizer application. Amylopectin structure varied significantly in different genotypes of the Wx gene, and the degree of branching was as follows: wx > Wx b > Wx in > Wx a . This result indicated that the closer to Indica rice, the fewer short chains of amylopectin. Starch crystallinity and swelling potential were negatively correlated with amylose content but significantly positively correlated with amylopectin branching degree, decreasing with the increase of late-stage nitrogen fertilization. Late-stage nitrogen fertilization reduced the cooking quality of rice by increasing amylose content and reducing amylopectin branching degree, which decreased starch crystallinity and aggravated pasting properties. Obviously, controlling late nitrogen application is essential to optimize rice quality. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. The nitrogen effect on Type 304L austenitic stainless steel weld metal welded with a GTA (Gas Tungsten Arc) system under ambient and hyperbaric conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okagawa, R.K.

    1984-01-01

    Small amounts of nitrogen were injected into Type 304L austenitic stainless steel weld metal. This was accomplished by using an Ar-N/sub 2/ shield gas mixture in combination with a controlled argon atmosphere on autogeneous Gas Tungsten Arc (GTA) welds. Weld metal nitrogen as a function of nitrogen shield gas content and applied pressure was examined. Nitrogen shield gas contents above 4% were found to have a major effect on the weld metal microstructure. The base metal nitrogen did not influence the nitrogen solubility reaction or solidification behavior during welding. For Type 304L austenitic stainless steel, a nitrogen coefficient of 13.4more » was determined for the nickel equivalent expression. 63 refs., 19 figs., 4 tabs.« less

  11. Analyses of Small Punch Creep Deformation Behavior of 316LN Stainless Steel Having Different Nitrogen Contents

    NASA Astrophysics Data System (ADS)

    Ganesh Kumar, J.; Laha, K.; Ganesan, V.; Prasad Reddy, G. V.

    2018-05-01

    The small punch creep (SPC) behavior of 316LN stainless steel (SS) containing 0.07, 0.11 and 0.14 wt.% nitrogen has been investigated at 923 K. The transient and tertiary SPC deformation of 316LN SS with various nitrogen contents have been analyzed according to the equation proposed for SPC deflection, δ = δ0 + δT (1 - e^{ - κ t} ) + \\dot{δ }s t + δ3 e^{[ φ( {t - tr } )} ]. The relationships among the rate of exhaustion of transient creep ( κ), steady-state deflection rate (\\dot{δ }s) and the rate of acceleration of tertiary creep ( φ) revealed the interrelationships among the three stages of SPC curve. The first-order reaction rate theory was found to be applicable to SPC deformation throughout the transient as well as tertiary region, in all the investigated steels. The initial and final creep deflection rates were decreased, whereas time to attain steady-state deflection rate increased with the increase in nitrogen content. By increasing the nitrogen content in 316LN SS from 0.07 to 0.14 wt.%, each stage of SPC was prolonged, and consequently, the values of κ, \\dot{δ }s and φ were lowered. Using the above parameters, the master curves for both transient and tertiary SPC deflections were constructed for 316LN SS containing different nitrogen contents.

  12. Analyses of Small Punch Creep Deformation Behavior of 316LN Stainless Steel Having Different Nitrogen Contents

    NASA Astrophysics Data System (ADS)

    Ganesh Kumar, J.; Laha, K.; Ganesan, V.; Prasad Reddy, G. V.

    2018-04-01

    The small punch creep (SPC) behavior of 316LN stainless steel (SS) containing 0.07, 0.11 and 0.14 wt.% nitrogen has been investigated at 923 K. The transient and tertiary SPC deformation of 316LN SS with various nitrogen contents have been analyzed according to the equation proposed for SPC deflection, δ = δ0 + δT (1 - e^{ - κ t} ) + \\dot{δ }s t + δ3 e^[ φ( t - tr ) ]. The relationships among the rate of exhaustion of transient creep (κ), steady-state deflection rate (\\dot{δ }s ) and the rate of acceleration of tertiary creep (φ) revealed the interrelationships among the three stages of SPC curve. The first-order reaction rate theory was found to be applicable to SPC deformation throughout the transient as well as tertiary region, in all the investigated steels. The initial and final creep deflection rates were decreased, whereas time to attain steady-state deflection rate increased with the increase in nitrogen content. By increasing the nitrogen content in 316LN SS from 0.07 to 0.14 wt.%, each stage of SPC was prolonged, and consequently, the values of κ, \\dot{δ }s and φ were lowered. Using the above parameters, the master curves for both transient and tertiary SPC deflections were constructed for 316LN SS containing different nitrogen contents.

  13. [Flow injection-spectrophotometric determination of total dissolved nitrogen in seawater based on quantificational solenoid valves].

    PubMed

    Han, Bin; Cao, Lei; Zheng, Li; Zang, Jia-ye; Wang, Xiao-ru

    2012-01-01

    Using three pipe clamp solenoid valves to replace the traditional six-port valve for sample quota, a set of multi-channel flow injection analyzer was designed in the present paper. The authors optimized optimum instrumental testing condition, and realized determination and analysis of total dissolved nitrogen in seawaters. The construction of apparatus is simple and it has the potential to be used for analysis of total dissolved nitrogen. The sample throughput of total dissolved nitrogen was 27 samples per hour. The linear range of total dissolved nitrogen was 50.0-1 000.0 microgN x L(-3) (r > or = 0.999). The detection limit was 7.6 microgN x L(-3). The recovery of total dissolved nitrogen was 87.3%-107.2%. The relative standard deviation for total dissolved nitrogen was 1.35%-6.32% (n = 6). After the t-test analysis, it does not have the significance difference between this method and national standard method. It is suitable for fast analysis of total dissolved nitrogen in seawater.

  14. [Variations of soil labile organic carbon along an altitude gradient in Wuyi Mountain].

    PubMed

    Xu, Xia; Chen, Yue-Qin; Wang, Jia-She; Fang, Yan-Hong; Quan, Wei; Ruan, Hong-Hua; Xu, Zi-Kun

    2008-03-01

    By using sequential fumigation-incubation method, this paper determined the soil labile organic carbon (LOC) content under evergreen broadleaf forest, coniferous forest, sub-alpine dwarf forest, and alpine meadow along an altitude gradient in Wuyi Mountain National Nature Reserve in Fujian Province of China, with its relations to soil microbial biomass carbon (MBC), total organic carbon (TOC), total nitrogen (TN), and fine root biomass (FRB) analyzed. The results showed that soil LOC occupied 3.40%-7.46% of soil TOC, and soil MBC occupied 26.87%-80.38% of the LOC. The LOC under different forest stands increased significantly with altitude, and decreased with soil depth. Soil LOC had very significant correlations with soil MBC, TOC, TN and FRB, and its content was obviously higher at higher altitudes than at lower altitudes.

  15. Effect of Nitrogen Content on Physical and Chemical Properties of TiN Thin Films Prepared by DC Magnetron Sputtering with Supported Discharge

    NASA Astrophysics Data System (ADS)

    Kavitha, A.; Kannan, R.; Gunasekhar, K. R.; Rajashabala, S.

    2017-10-01

    Amorphous titanium nitride (TiN) thin films have been prepared on silicon (Si) and glass substrates by direct-current (DC) reactive magnetron sputtering with a supported discharge (triode). Nitrogen gas (N2) at partial pressure of 0.3 Pa, 0.4 Pa, 0.5 Pa, and 0.6 Pa was used to prepare the TiN thin films, maintaining total pressure of argon and N2 of about 0.7 Pa. The chemical, microstructural, optical, and electrical properties of the TiN thin films were systematically studied. Presence of different phases of Ti with nitrogen (N), oxygen (O2), and carbon (C) elements was revealed by x-ray photoelectron spectroscopy characterization. Increase in the nitrogen pressure from 0.3 Pa to 0.6 Pa reduced the optical bandgap of the TiN thin film from 2.9 eV to 2.7 eV. Photoluminescence study showed that TiN thin film deposited at N2 partial pressure of 0.3 Pa exhibited three shoulder peaks at 330 nm, 335 nm, and 340 nm, which disappeared when the sample was deposited with N2 partial pressure of 0.6 Pa. Increase in the nitrogen content decreased the electrical resistivity of the TiN thin film from 3200 μΩ cm to 1800 μΩ cm. Atomic force microscopy studies of the TiN thin films deposited with N2 partial pressure of 0.6 Pa showed a uniform surface pattern associated with accumulation of fine grains. The results and advantages of this method of preparing TiN thin films are also reported.

  16. Inoculation of hybrid poplar with the endophytic bacterium Enterobacter sp. 638 increases biomass but does not impact leaf level physiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, A.; McDonald, K.; Muehlbauer, M. F.

    Endophytic bacteria have been shown to provide several advantages to their host, including enhanced growth. Inoculating biofuel species with endophytic bacteria is therefore an attractive option to increase the productivity of biofuel feedstocks. Here, we investigated the effect of inoculating hard wood cuttings of Populus deltoides Bartr. x Populus. nigra L. clone OP367 with Enterobacter sp. 638. After 17 weeks, plants inoculated with Enterobacter sp. 638 had 55% greater total biomass than un-inoculated control plants. Study of gas exchange and fluorescence in developing and mature leaves over a diurnal cycle and over a 5 week measurement campaign revealed no effectsmore » of inoculation on photosynthesis, stomatal conductance, photosynthetic water use efficiency or the maximum and operating efficiency of photosystem II. However, plants inoculated with Enterobacter sp. 638 had a canopy that was 39% larger than control plants indicating that the enhanced growth was fueled by increased leaf area, not by improved physiology. Leaf nitrogen content was determined at two stages over the 5 week measurement period. No effect of Enterobacter sp. 638 on leaf nitrogen content was found indicating that the larger plants were acquiring sufficient nitrogen. Enterobacter sp. 638 lacks the genes for N{sub 2} fixation, therefore the increased availability of nitrogen likely resulted from enhanced nitrogen acquisition by the 84% larger root system. These data show that Enterobacter sp. 638 has the potential to dramatically increase productivity in poplar. If fully realized in the production environment, these results indicate that an increase in the environmental and economic viability of poplar as a biofuel feedstock is possible when inoculated with endophytic bacteria like Enterobacter sp. 638.« less

  17. Effects of alfalfa and organic fertilizer on benzo[a]pyrene dissipation in an aged contaminated soil.

    PubMed

    Fu, Dengqiang; Teng, Ying; Luo, Yongming; Tu, Chen; Li, Shixing; Li, Zhengao; Christie, Peter

    2012-06-01

    A climate-controlled pot experiment was conducted to investigate the effects of planting alfalfa and applying organic fertilizer on the dissipation of benzo[a]pyrene from an aged contaminated agricultural soil. Short-term planting of alfalfa inhibited the dissipation of benzo[a]pyrene from the soil by 8.9%, and organic fertilizer enhanced benzo[a]pyrene removal from the soil by 11.6% compared with the unplanted and unfertilized treatments, respectively. No significant interaction was observed between alfalfa and organic fertilizer on benzo[a]pyrene dissipation. Sterilization completely inhibited the removal of benzo[a]pyrene from the soil indicating that its degradation by indigenous microorganisms may have been the main mechanism of dissipation. Furthermore, significant positive relationships were observed between benzo[a]pyrene removal and the contents of soil ammonium nitrogen, nitrate nitrogen, and total mineral nitrogen at the end of the experiment, suggesting that competition between plants and microorganisms for nitrogen may have inhibited benzo[a]pyrene dissipation in the rhizosphere of alfalfa and the addition of organic fertilizer may facilitate microbial degradation of benzo[a]pyrene in the soil.

  18. The combined effects of carbon/nitrogen ratio, suspended biomass, hydraulic retention time and dissolved oxygen on nutrient removal in a laboratory-scale anaerobic-anoxic-oxic activated sludge biofilm reactor.

    PubMed

    Manu, D S; Kumar Thalla, Arun

    2018-01-01

    The current trend in sustainable development deals mainly with environmental management. There is a need for economically affordable, advanced treatment methods for the proper treatment and management of domestic wastewater containing excess nutrients (such as nitrogen and phosphorus) which can cause eutrophication. The reduction of the excess nutrient content of wastewater by appropriate technology is of much concern to the environmentalist. In the current study, a novel integrated anaerobic-anoxic-oxic activated sludge biofilm (A 2 O-AS-biofilm) reactor was designed and operated to improve the biological nutrient removal by varying reactor operating conditions such as carbon to nitrogen (C/N) ratio, suspended biomass, hydraulic retention time (HRT) and dissolved oxygen (DO). Based on various trials, it was seen that the A 2 O-AS-biofilm reactor achieved good removal efficiencies with regard to chemical oxygen demand (95.5%), total phosphorus (93.1%), ammonia nitrogen concentration (NH 4 + -N) (98%) and total nitrogen (80%) when the reactor was maintained at C/N ratio of 4, suspended biomass of 3 to 3.5 g/L, HRT of 10 h, and DO of 1.5 to 2.5 mg/L. Scanning electron microscopy (SEM) of suspended and attached biofilm showed a dense structure of coccus and bacillus bacteria with the diameter ranging from 0.3 to 1.2 μm. The Fourier transform infrared (FTIR) spectroscopy results indicated phosphorylated macromolecules and carbohydrates mix or bind with extracellular proteins in exopolysaccharides.

  19. Water quality of Cedar Creek reservoir in northeast Texas, 1977 to 1984

    USGS Publications Warehouse

    Leibbrand, Norman F.; Gibbons, Willard J.

    1987-01-01

    The concentrations of total inorganic nitrogen, total nitrogen, and total phosphorus were largest during summer stagnation in water near the bottom at the deepest sites. At site Ac, the largest total phosphorus concentration was 5.3 milligrams per liter for a bottom sample. The maximum total inorganic nitrogen concentration for the same sample was 2.5 milligrams per liter. Water near the surface of Cedar Creek Reservoir during summer stagnation and throughout the reservoir during winter circulation had total phosphorus and total inorganic nitrogen concentrations of less than 0.1 milligram per liter. Total nitrogen concentrations near the surface ranged from 0.3 to 1.1 milligrams per liter from January 1980 to August 1984.

  20. Re-assessing the nitrogen signal in continental margin sediments: New insights from the high northern latitudes

    NASA Astrophysics Data System (ADS)

    Knies, Jochen; Brookes, Steven; Schubert, Carsten J.

    2007-01-01

    Organic and inorganic nitrogen and their isotopic signatures were studied in continental margin sediments off Spitsbergen. We present evidence that land-derived inorganic nitrogen strongly dilutes the particulate organic signal in coastal and fjord settings and accounts for up to 70% of the total nitrogen content. Spatial heterogeneity in inorganic nitrogen along the coast is less likely to be influenced by clay mineral assemblages or various substrates than by the supply of terrestrial organic matter (TOM) within eroded soil material into selected fjords and onto the shelf. The δ15N signal of the inorganic nitrogen ( δ15N inorg) in sediments off Spitsbergen seems to be appropriate to trace TOM supply from various climate- and ecosystem zones and elucidates the dominant transport media of terrigenous sediments to the marine realm. Moreover, we postulate that with the study of sedimentary δ15N inorg in the Atlantic-Arctic gateway, climatically induced changes in catchment's vegetations in high northern latitudes may be reconstructed. The δ15N org signal is primarily controlled by the availability of nitrate in the dominating ocean current systems and the corresponding degree of utilization of the nitrate pool in the euphotic zone. Not only does this new approach allow for a detailed view into the nitrogen cycle for settings with purely primary-produced organic matter supply, it also provides new insights into both the deposition of marine and terrestrial nitrogen and its ecosystem response to (paleo-) climate changes.

  1. Bottom sediments and nutrients in the tidal Potomac system, Maryland and Virginia

    USGS Publications Warehouse

    Glenn, Jerry L.

    1988-01-01

    The characteristics and distributions of near-surface bottom sediments and of nutrients in the sediments provide information on modern sediment and nutrient sources, sedimentation environments, and geochemical reactions in the tidal Potomac system, Maryland and Virginia. This information is fundamental to an improved understanding of sedimentation and eutrophication problems in the tidal Potomac system. The tidal Potomac system consists of 1,230 square kilometers of intertidal to subtidal Potomac mainstem and tributary streambed from the heads-of-tides to Chesapeake Bay. Tidal Potomac sediments are dominantly silt and clay except in local areas. An average sediment sample is about two-thirds silt and clay (fine) particles and one-third sand (coarse) particles. The mean of the median size of all samples is 6.60 phi, or 0.010 millimeters. Sorting generally is poor and the average sediment is skewed toward the fine tail of the size-distribution curve. Mean particle-size measures have large standard deviations. Among geomorphic units, two distinctly different size populations are found; fine (median phi about 9), and poorly sorted (sorting about 3) sediments in the channel and the smooth flat, and coarse (median phi about 2), and well sorted (sorting about 1) sediments in the shoreline flat and the irregular slope. Among mainstem hydrologic divisions, an average sediment from the river and the estuary division is coarser and more variable than an average sediment from the transition division. Substantial concentrations of total carbon, total nitrogen, and total phosphorus, and limited amounts of inorganic carbon, ammonia nitrogen and nitrite plus nitrate nitrogen occur in tidal Potomac sediments. An average tidal Potomac sediment sample weighing 1 kilogram contains about 21,000 milligrams of total carbon, 2,400 milligrams of total nitrogen, 1,200 milligrams of total phosphorus, 600 milligrams of inorganic carbon, 170 milligrams of ammonia nitrogen, and 2 milligrams of nitrite plus nitrate nitrogen. Total carbon, nitrogen, and phosphorus have an average ratio by weight of 18:2:1 and an average ratio by atoms of 94:8:1. Nutrient concentrations and nutrient ratios have large ranges and standard deviations. Nutrient concentrations usually are closely related to particle size; large concentrations are characteristic of fine sediments in the channel and the smooth flat, and small concentrations are typical of coarse sediments in the shoreline flat and the irregular slope. Concentrations typically decrease from the river division to the estuary division. Mainstem and tributaries show no statistically significant difference in mean particle-size measures or mean nutrient concentrations. Tributaries do not contribute large quantities of sediment with diverse texture or nutrient content to the Potomac mainstem. Particle-size measures and nutrient concentrations in the mainstem are significantly related to hydrologic divisions and geomorphic units; that is, particle size and nutrients vary significantly along and across the Potomac mainstem. Lateral variations in particle size and nutrient content are more pronounced and contribute more to significant relations than longitudinal variations contribute. The mean values for the median particle size and for the percentage of sand indicate significant variations among hydrologic divisions for samples from a geomorphic unit, and among geomorphic units, for samples from a hydrologic division. Sediments of channels and smooth flats in the river division commonly are coarser than sediments of channels and smooth flats in the transition and the estuary divisions. Shoreline flats in the estuary division are coarser than shoreline flats in the river division. Shoreline flats and irregular slopes in each hydrologic division generally are significantly coarser than channels and smooth flats. Relations between particle-size measures and geomorphic units show progressively larger cor

  2. Tungsten nitride coatings obtained by HiPIMS as plasma facing materials for fusion applications

    NASA Astrophysics Data System (ADS)

    Tiron, Vasile; Velicu, Ioana-Laura; Porosnicu, Corneliu; Burducea, Ion; Dinca, Paul; Malinský, Petr

    2017-09-01

    In this work, tungsten nitride coatings with nitrogen content in the range of 19-50 at% were prepared by reactive multi-pulse high power impulse magnetron sputtering as a function of the argon and nitrogen mixture and further exposed to a deuterium plasma jet. The elemental composition, morphological properties and physical structure of the samples were investigated by Rutherford backscattering spectrometry, atomic force microscopy and X-ray diffraction. Deuterium implantation was performed using a deuterium plasma jet and its retention in nitrogen containing tungsten films was investigated using thermal desorption spectrometry. Deuterium retention and release behaviour strongly depend on the nitrogen content in the coatings and the films microstructure. All nitride coatings have a polycrystalline structure and retain a lower deuterium level than the pure tungsten sample. Nitrogen content in the films acts as a diffusion barrier for deuterium and leads to a higher desorption temperature, therefore to a higher binding energy.

  3. Roostocks/Scion/Nitrogen Interactions Affect Secondary Metabolism in the Grape Berry

    PubMed Central

    Habran, Aude; Commisso, Mauro; Helwi, Pierre; Hilbert, Ghislaine; Negri, Stefano; Ollat, Nathalie; Gomès, Eric; van Leeuwen, Cornelis; Guzzo, Flavia; Delrot, Serge

    2016-01-01

    The present work investigates the interactions between soil content, rootstock, and scion by focusing on the effects of roostocks and nitrogen supply on grape berry content. Scions of Cabernet Sauvignon (CS) and Pinot Noir (PN) varieties were grafted either on Riparia Gloire de Montpellier (RGM) or 110 Richter (110R) rootstock. The 4 rooststock/scion combinations were fertilized with 3 different levels of nitrogen after fruit set. Both in 2013 and 2014, N supply increased N uptake by the plants, and N content both in vegetative and reproductory organs. Rootstock, variety and year affected berry weight at harvest, while nitrogen did not affect significantly this parameter. Grafting on RGM consistently increased berry weight compared to 110R. PN consistently produced bigger berries than CS. CS berries were heavier in 2014 than in 2013, but the year effect was less marked for PN berries. The berries were collected between veraison and maturity, separated in skin and pulp, and their content was analyzed by conventional analytical procedures and untargeted metabolomics. For anthocyanins, the relative quantitation was fairly comparable with both LC-MS determination and HPLC-DAD, which is a fully quantitative technique. The data show complex responses of the metabolite content (sugars, organic acids, amino acids, anthocyanins, flavonols, flavan-3-ols/procyanidins, stilbenes, hydroxycinnamic, and hydroxybenzoic acids) that depend on the rootstock, the scion, the vintage, the nitrogen level, the berry compartment. This opens a wide range of possibilities to adjust the content of these compounds through the choice of the roostock, variety and nitrogen fertilization. PMID:27555847

  4. Roostocks/Scion/Nitrogen Interactions Affect Secondary Metabolism in the Grape Berry.

    PubMed

    Habran, Aude; Commisso, Mauro; Helwi, Pierre; Hilbert, Ghislaine; Negri, Stefano; Ollat, Nathalie; Gomès, Eric; van Leeuwen, Cornelis; Guzzo, Flavia; Delrot, Serge

    2016-01-01

    The present work investigates the interactions between soil content, rootstock, and scion by focusing on the effects of roostocks and nitrogen supply on grape berry content. Scions of Cabernet Sauvignon (CS) and Pinot Noir (PN) varieties were grafted either on Riparia Gloire de Montpellier (RGM) or 110 Richter (110R) rootstock. The 4 rooststock/scion combinations were fertilized with 3 different levels of nitrogen after fruit set. Both in 2013 and 2014, N supply increased N uptake by the plants, and N content both in vegetative and reproductory organs. Rootstock, variety and year affected berry weight at harvest, while nitrogen did not affect significantly this parameter. Grafting on RGM consistently increased berry weight compared to 110R. PN consistently produced bigger berries than CS. CS berries were heavier in 2014 than in 2013, but the year effect was less marked for PN berries. The berries were collected between veraison and maturity, separated in skin and pulp, and their content was analyzed by conventional analytical procedures and untargeted metabolomics. For anthocyanins, the relative quantitation was fairly comparable with both LC-MS determination and HPLC-DAD, which is a fully quantitative technique. The data show complex responses of the metabolite content (sugars, organic acids, amino acids, anthocyanins, flavonols, flavan-3-ols/procyanidins, stilbenes, hydroxycinnamic, and hydroxybenzoic acids) that depend on the rootstock, the scion, the vintage, the nitrogen level, the berry compartment. This opens a wide range of possibilities to adjust the content of these compounds through the choice of the roostock, variety and nitrogen fertilization.

  5. Decreasing the NO3 and increasing the vitamin C contents in spinach by a nitrogen deprivation method.

    PubMed

    Mozafar, A

    1996-02-01

    Excessive use of nitrogen fertilizers is known to increase the NO3 and reduce the vitamin C contents in fruits and vegetables. We investigated the concentration of these compounds in spinach leaves when plants were transferred to nitrogen-free media prior to their harvest. It was noted that a pre-harvest transfer of spinach to N-free media reduces the NO3 and increases the vitamin C content of the leaves by a substantial amount in a 2-3 day period. It is suggested that this technique may be suited to produce spinach or other leafy vegetables with low NO3 and high vitamin C contents under commercial hydroponic conditions.

  6. Assessment of total nitrogen in the upper Connecticut River basin in New Hampshire, Vermont, and Massachusetts, December 2002-September 2005

    USGS Publications Warehouse

    Deacon, Jeffrey R.; Smith, Thor E.; Johnston, Craig M.; Moore, Richard B.; Blake, Laura J.; Weidman, Rebecca M.

    2006-01-01

    A study of total nitrogen concentrations and loads was conducted from December 2002 to September 2005 at 13 river sites in the upper Connecticut River Basin. Ten sites were selected to represent contributions of nitrogen from forested, agricultural, and urban land. Three sites were distributed spatially on the main stem of the Connecticut River to assess the cumulative total nitrogen loads. To further improve the understanding of the sources and concentrations and loads of total nitrogen in the upper Connecticut River Basin, ambient surface water-quality sampling was supplemented with sampling of effluent from 19 municipal and paper mill wastewater-treatment facilities. Mean concentrations of total nitrogen ranged from 0.19 to 2.8 milligrams per liter (mg/L) at river sampling sites. Instantaneous mean loads of total nitrogen ranged from 162 to 58,300 pounds per day (lb/d). Estimated mean annual loads of total nitrogen ranged from 49,100 to 21.6 million pounds per year (lb/yr) with about 30 to 55 percent of the loads being transported during the spring. The estimated mean annual yields of total nitrogen ranged from 1,190 to 7,300 pounds per square mile per year (lb/mi2)/yr. Mean concentrations of total nitrogen ranged from 4.4 to 30 mg/L at wastewater-treatment sampling sites. Instantaneous mean loads of total nitrogen from municipal wastewater-treatment facilities ranged from 36 to 1,780 lb/d. Instantaneous mean loads of total nitrogen from paper mill wastewater-treatment facilities ranged from 96 to 160 lb/d. The median concentration of total nitrogen was 0.24 mg/L at forested sites, 0.48 mg/L at agricultural sites, 0.54 mg/L at urban sites, 0.48 mg/L at main-stem sites, and 14 mg/L at wastewater-treatment sites. Concentrations of total nitrogen at forested sites were significantly less than at all other site types (p0.05) but were significantly greater (p<0.05) than at forested sites and significantly less than concentrations at wastewater-treatment sites (p<0.05). Total nitrogen concentrations at wastewater-treatment sites were significantly different from all other site types (p<0.05). Annual yields of total nitrogen ranged from 732 to 1,920 (lb/mi2)/yr at forested sites; 1,550 to 2,980 (lb/mi2)/yr at agricultural sites; 1,280 to 1,860 (lb/mi2)/yr at urban sites that were not directly affected by wastewater effluent; 7,090 to 7,770 (lb/mi2)/yr at an urban site directly affected by wastewater effluent; and 1,300 to 2,390 (lb/mi2)/yr at main-stem sites. In this study, the mean annual load and yield of total nitrogen at the Connecticut River at Wells River, VT, was estimated at 4.47 million lb/yr and 1,690 (lb/mi2)/yr, respectively. The mean annual load and yield of total nitrogen at the Connecticut River at North Walpole, NH, was estimated at 9.60 million lb/yr and 1,750 (lb/mi2)/yr, respectively. The mean annual load and yield of total nitrogen leaving the upper Connecticut River Basin, as estimated at the Connecticut River at Thompsonville, CT, was 21.6 million lb/yr and 2,230 (lb/mi2)/yr, respectively.

  7. Analyzing the contribution of climate change to long-term variations in sediment nitrogen sources for reservoirs/lakes.

    PubMed

    Xia, Xinghui; Wu, Qiong; Zhu, Baotong; Zhao, Pujun; Zhang, Shangwei; Yang, Lingyan

    2015-08-01

    We applied a mixing model based on stable isotopic δ(13)C, δ(15)N, and C:N ratios to estimate the contributions of multiple sources to sediment nitrogen. We also developed a conceptual model describing and analyzing the impacts of climate change on nitrogen enrichment. These two models were conducted in Miyun Reservoir to analyze the contribution of climate change to the variations in sediment nitrogen sources based on two (210)Pb and (137)Cs dated sediment cores. The results showed that during the past 50years, average contributions of soil and fertilizer, submerged macrophytes, N2-fixing phytoplankton, and non-N2-fixing phytoplankton were 40.7%, 40.3%, 11.8%, and 7.2%, respectively. In addition, total nitrogen (TN) contents in sediment showed significant increasing trends from 1960 to 2010, and sediment nitrogen of both submerged macrophytes and phytoplankton sources exhibited significant increasing trends during the past 50years. In contrast, soil and fertilizer sources showed a significant decreasing trend from 1990 to 2010. According to the changing trend of N2-fixing phytoplankton, changes of temperature and sunshine duration accounted for at least 43% of the trend in the sediment nitrogen enrichment over the past 50years. Regression analysis of the climatic factors on nitrogen sources showed that the contributions of precipitation, temperature, and sunshine duration to the variations in sediment nitrogen sources ranged from 18.5% to 60.3%. The study demonstrates that the mixing model provides a robust method for calculating the contribution of multiple nitrogen sources in sediment, and this study also suggests that N2-fixing phytoplankton could be regarded as an important response factor for assessing the impacts of climate change on nitrogen enrichment. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Nitrogen oxides from burning forest fuels examined by thermogravimetry and evolved gas analysis

    Treesearch

    H.B. Clements; Charles K. McMahon

    1980-01-01

    Abstract. Twelve forest fuels that varied widely in nitrogen content were burned in a thermogravimetric system, and nitrogen oxide production was analyzed by chemiluminescence. The effects of fuel nitrogen concentration, available oxygen, flow rate, and heating rate on nitrogen oxide production were examined.Results show that fuel nitrogen is an...

  9. Organic carbon and nitrogen content associated with colloids and suspended particulates from the Mississippi River and some of its tributaries

    USGS Publications Warehouse

    Rostad, C.E.; Leenheer, J.A.; Daniel, S.R.

    1997-01-01

    Suspended material samples were collected at 16 sites along the Mississippi River and some of its tributaries during July-August 1991, October-November 1991, and April-May 1992, and separated into colloid and particulate fractions to determine the organic carbon content of these two fractions of suspended material. Sample collection involved centrifugation to isolate the suspended particulate fraction and ultrafiltration to isolate the colloid fraction. For the first time, particulate and colloid concentrations and organic carbon and nitrogen content were investigated along the entire reach of the Mississippi River from above Minneapolis, Minnesota, to below New Orleans, Louisiana. Organic carbon content of the colloid (15.2 percent) was much higher than organic carbon content of the particulate material (4.8 percent). Carbon/nitrogen ratios of colloid and particulate phases were more similar to ratios for microorganisms than to ratios for soils, humic materials, or plants.Suspended material samples were collected at 16 sites along the Mississippi River and some of its tributaries during July-August 1991, October-November 1991, and April-May 1992, and separated into colloid and particulate fractions to determine the organic carbon content of these two fractions of suspended material. Sample collection involved centrifugation to isolate the suspended particulate fraction and ultrafiltration to isolate the colloid fraction. For the first time, particulate and colloid concentrations and organic carbon and nitrogen content were investigated along the entire reach of the Mississippi River from above Minneapolis, Minnesota, to below New Orleans, Louisiana. Organic carbon content of the colloid (15.2 percent) was much higher than organic carbon content of the particulate material (4.8 percent). Carbon/nitrogen ratios of colloid and particulate phases were more similar to ratios for microorganisms than to ratios for soils, humic materials, or plants.

  10. Manipulation of Contents of Nitrate, Phenolic Acids, Chlorophylls, and Carotenoids in Lettuce (Lactuca sativa L.) via Contrasting Responses to Nitrogen Fertilizer When Grown in a Controlled Environment.

    PubMed

    Qadir, Othman; Siervo, Mario; Seal, Chris J; Brandt, Kirsten

    2017-11-22

    This study aimed to use different nitrogen fertilizer regimes to produce Butterhead lettuce with such large differences in nitrate content that they could be used as treatment and placebo to study the effect of inorganic nitrate on human health. Plants were grown under controlled conditions at 27/23 °C day/night with a relatively low photosynthetically active radiation (PAR) of 150 μmol m -2 s -1 for 14 h day -1 and nitrogen supplies ranging from 26 to 154 ppm of N as ammonium nitrate in the fertigation solution. This resulted in contrasting high (∼1078 mg nitrate 100 g -1 FW) or low (∼6 mg 100 g -1 ) nitrate contents in the leaves. Contents of carotenoids and chlorophylls in fresh weight did not differ significantly between the highest and the lowest N-supply levels. However, increased nitrogen supply reduced contents of phenolic compounds from 154 to 22 mg 100 g -1 FW, dry matter content from 8.9% to 4.6%, and fresh weight per plant from 108.52 to 47.57 g/plant FW (all P < 0.001). Thus, while fertilizer treatments can provide lettuce with substantially different nitrate contents, maintaining similar pigment contents (color), they also strongly influence the contents of phenolic acids and flavones.

  11. The Arabidopsis halophytic relative Thellungiella halophila tolerates nitrogen-limiting conditions by maintaining growth, nitrogen uptake, and assimilation.

    PubMed

    Kant, Surya; Bi, Yong-Mei; Weretilnyk, Elizabeth; Barak, Simon; Rothstein, Steven J

    2008-07-01

    A comprehensive knowledge of mechanisms regulating nitrogen (N) use efficiency is required to reduce excessive input of N fertilizers while maintaining acceptable crop yields under limited N supply. Studying plant species that are naturally adapted to low N conditions could facilitate the identification of novel regulatory genes conferring better N use efficiency. Here, we show that Thellungiella halophila, a halophytic relative of Arabidopsis (Arabidopsis thaliana), grows better than Arabidopsis under moderate (1 mm nitrate) and severe (0.4 mm nitrate) N-limiting conditions. Thellungiella exhibited a lower carbon to N ratio than Arabidopsis under N limitation, which was due to Thellungiella plants possessing higher N content, total amino acids, total soluble protein, and lower starch content compared with Arabidopsis. Furthermore, Thellungiella had higher amounts of several metabolites, such as soluble sugars and organic acids, under N-sufficient conditions (4 mm nitrate). Nitrate reductase activity and NR2 gene expression in Thellungiella displayed less of a reduction in response to N limitation than in Arabidopsis. Thellungiella shoot GS1 expression was more induced by low N than in Arabidopsis, while in roots, Thellungiella GS2 expression was maintained under N limitation but was decreased in Arabidopsis. Up-regulation of NRT2.1 and NRT3.1 expression was higher and repression of NRT1.1 was lower in Thellungiella roots under N-limiting conditions compared with Arabidopsis. Differential transporter gene expression was correlated with higher nitrate influx in Thellungiella at low (15)NO(3)(-) supply. Taken together, our results suggest that Thellungiella is tolerant to N-limited conditions and could act as a model system to unravel the mechanisms for low N tolerance.

  12. The Arabidopsis Halophytic Relative Thellungiella halophila Tolerates Nitrogen-Limiting Conditions by Maintaining Growth, Nitrogen Uptake, and Assimilation1[W][OA

    PubMed Central

    Kant, Surya; Bi, Yong-Mei; Weretilnyk, Elizabeth; Barak, Simon; Rothstein, Steven J.

    2008-01-01

    A comprehensive knowledge of mechanisms regulating nitrogen (N) use efficiency is required to reduce excessive input of N fertilizers while maintaining acceptable crop yields under limited N supply. Studying plant species that are naturally adapted to low N conditions could facilitate the identification of novel regulatory genes conferring better N use efficiency. Here, we show that Thellungiella halophila, a halophytic relative of Arabidopsis (Arabidopsis thaliana), grows better than Arabidopsis under moderate (1 mm nitrate) and severe (0.4 mm nitrate) N-limiting conditions. Thellungiella exhibited a lower carbon to N ratio than Arabidopsis under N limitation, which was due to Thellungiella plants possessing higher N content, total amino acids, total soluble protein, and lower starch content compared with Arabidopsis. Furthermore, Thellungiella had higher amounts of several metabolites, such as soluble sugars and organic acids, under N-sufficient conditions (4 mm nitrate). Nitrate reductase activity and NR2 gene expression in Thellungiella displayed less of a reduction in response to N limitation than in Arabidopsis. Thellungiella shoot GS1 expression was more induced by low N than in Arabidopsis, while in roots, Thellungiella GS2 expression was maintained under N limitation but was decreased in Arabidopsis. Up-regulation of NRT2.1 and NRT3.1 expression was higher and repression of NRT1.1 was lower in Thellungiella roots under N-limiting conditions compared with Arabidopsis. Differential transporter gene expression was correlated with higher nitrate influx in Thellungiella at low 15NO3− supply. Taken together, our results suggest that Thellungiella is tolerant to N-limited conditions and could act as a model system to unravel the mechanisms for low N tolerance. PMID:18467466

  13. Geochemical analysis of sediments from a semi-enclosed bay (Dongshan Bay, southeast China) to determine the anthropogenic impact and source.

    PubMed

    Xu, Yonghang; Sun, Qinqin; Ye, Xiang; Yin, Xijie; Li, Dongyi; Wang, Liang; Wang, Aijun; Li, Yunhai

    2017-05-01

    The geochemical compositions of sediments in the Dongshan Bay, a semi-enclosed bay on the southeast coast of China, were obtained to identify pollutant sources and evaluate the anthropogenic impacts over the last 100 years. The results indicated that the metal flux had been increasing since the 1980s. Enrichment factor values (Pb, Zn and Cu) suggested only slight enrichment. The proportion of anthropogenic Pb changed from 9% to 15% during 2000-2014. Coal combustion might be an important contamination source in the Dongshan Bay. The historical variation in the metal flux reflected the economic development and urbanization in the Zhangjiang drainage area in the past 30 years. According to the Landsat satellite remote sensing data, the urbanization area expanded approximately three times from 1995 to 2010. The δ 13 C values (-21‰ to -23‰) of the organic matter (OM) in the sediments indicated that the OM was primarily sourced from aquatic, terrigenous and marsh C 3 plants. Nitrogen was mainly derived from aquatic plants and terrigenous erosion before the 1980s. However, the total organic carbon (TOC) contents, total nitrogen (TN) contents and δ 15 N had been increasing since the 1980s, which suggested that the sources of nitrogen were soil erosion, fertilizer and sewage. In addition, the TOC and TN fluxes in the Dongshan Bay had significantly increased since the 1980s, which reflected the use of N fertilizer. However, the TOC and TN fluxes significantly decreased in the past decade because environmental awareness increased and environmental protection policies were implemented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Implication of two in-stream processes in the fate of nutrients discharged by sewage system into a temporary river.

    PubMed

    David, Arthur; Perrin, Jean-Louis; Rosain, David; Rodier, Claire; Picot, Bernadette; Tournoud, Marie-George

    2011-10-01

    The aim of this study was to better understand the fate of nutrients discharged by sewage treatment plants into an intermittent Mediterranean river, during a low-flow period. Many pollutants stored in the riverbed during the low-flow period can be transferred to the downstream environments during flood events. The study focused on two processes that affect the fate and the transport of nutrients, a physical process (retention in the riverbed sediments) and a biological process (denitrification). A spatial campaign was carried out during a low-flow period to characterize the nutrient contents of both water and sediments in the Vène River. The results showed high nutrient concentrations in the water column downstream of the treated wastewater disposal (up to 13,315 μg N/L for ammonium and 2,901 μg P/L for total phosphorus). Nutrient concentrations decreased rapidly downstream of the disposal whereas nutrient contents in the sediments increased (up to 1,898 and 784 μg/g for total phosphorus and Kjeldahl nitrogen, respectively). According to an in situ experiment using sediment boxes placed in the riverbed for 85 days, we estimated that the proportion of nutrients trapped in the sediments represents 25% (respectively 10%) of phosphorus (respectively nitrogen) loads lost from the water column. In parallel, laboratory tests indicated that denitrification occurred in the Vène River, and we estimated that denitrification likely coupled to nitrification processes during the 85 days of the experiment was significantly involved in the removal of nitrogen loads (up to 38%) from the water column and was greater than accumulation processes.

  15. Estimated nitrogen loads from selected tributaries in Connecticut draining to Long Island Sound, 1999–2009

    USGS Publications Warehouse

    Mullaney, John R.; Schwarz, Gregory E.

    2013-01-01

    The total nitrogen load to Long Island Sound from Connecticut and contributing areas to the north was estimated for October 1998 to September 2009. Discrete measurements of total nitrogen concentrations and continuous flow data from 37 water-quality monitoring stations in the Long Island Sound watershed were used to compute total annual nitrogen yields and loads. Total annual computed yields and basin characteristics were used to develop a generalized-least squares regression model for use in estimating the total nitrogen yields from unmonitored areas in coastal and central Connecticut. Significant variables in the regression included the percentage of developed land, percentage of row crops, point-source nitrogen yields from wastewater-treatment facilities, and annual mean streamflow. Computed annual median total nitrogen yields at individual monitoring stations ranged from less than 2,000 pounds per square mile in mostly forested basins (typically less than 10 percent developed land) to more than 13,000 pounds per square mile in urban basins (greater than 40 percent developed) with wastewater-treatment facilities and in one agricultural basin. Medians of computed total annual nitrogen yields for water years 1999–2009 at most stations were similar to those previously computed for water years 1988–98. However, computed medians of annual yields at several stations, including the Naugatuck River, Quinnipiac River, and Hockanum River, were lower than during 1988–98. Nitrogen yields estimated for 26 unmonitored areas downstream from monitoring stations ranged from less than 2,000 pounds per square mile to 34,000 pounds per square mile. Computed annual total nitrogen loads at the farthest downstream monitoring stations were combined with the corresponding estimates for the downstream unmonitored areas for a combined estimate of the total nitrogen load from the entire study area. Resulting combined total nitrogen loads ranged from 38 to 68 million pounds per year during water years 1999–2009. Total annual loads from the monitored basins represent 63 to 74 percent of the total load. Computed annual nitrogen loads from four stations near the Massachusetts border with Connecticut represent 52 to 54 percent of the total nitrogen load during water years 2008–9, the only years with data for all the border sites. During the latter part of the 1999–2009 study period, total nitrogen loads to Long Island Sound from the study area appeared to increase slightly. The apparent increase in loads may be due to higher than normal streamflows, which consequently increased nonpoint nitrogen loads during the study, offsetting major reductions of nitrogen from wastewater-treatment facilities. Nitrogen loads from wastewater treatment facilities declined as much as 2.3 million pounds per year in areas of Connecticut upstream from the monitoring stations and as much as 5.8 million pounds per year in unmonitored areas downstream in coastal and central Connecticut.

  16. Effects of agricultural best-management practices on the Brush Run Creek headwaters, Adams County, Pennsylvania, prior to and during nutrient management

    USGS Publications Warehouse

    Langland, M.J.; Fishel, D.K.

    1996-01-01

    The U.S. Geological Survey, in cooperation with the Susquehanna River Basin Commission and the Pennsylvania Department of Environmental Resources, investigated the effects of agricultural best-management practices on surface-water quality as part of the U.S. Environmental Protection Agency's Chesapeake Bay Program. This report characterizes a 0.63-square- mile agricultural watershed underlain by shale, mudstone, and red arkosic sandstone in the Lower Susquehanna River Basin. The water quality of the Brush Run Creek site was studied from October 1985 through September 1991, prior to and during the implementation of nutrient management designed to reduce sediment and nutrient discharges into Conewago Creek, a tributary to the Chesapeake Bay. The original study area was 0.38 square mile and included an area immediately upstream from a manure lagoon. The study area was increased to 0.63 square mile in the fall of 1987 after an extensive tile-drain network was discovered upstream and downstream from the established streamflow gage, and the farm owner made plans to spray irrigate manure to the downstream fields. Land use for about 64 percent of the 0.63 square mile watershed is cropland, 14 percent is pasture, 7 percent is forest, and the remaining 15 percent is yards, buildings, water, or gardens. About 73 percent of the cropland was used to produce corn during the study. The average annual animal population consisted of 57,000 chickens, 1,530 hogs, and 15 sheep during the study. About 59,340 pounds of nitrogen and 13,710 pounds of phosphorus were applied as manure and commercial fertilizer to fields within the subbasin during the 3-year period prior to implementation of nutrient management. During nutrient management, about 14 percent less nitrogen and 57 percent less phosphorus were applied as commercial and manure fertilizer. Precipitation totaled 209 inches, or 13 percent less than the long-term normal, during the 6-year study. Concentrations of total ammonia in precipitation were as high as 2.7 mg/L (milligrams per liter); in dry deposition the concentrations were as high as 5.4 mg/L, probably because of the ammonia that had volatilized from the manure-storage lagoon. Nitrate nitrogen in the upper 4 feet of the soil ranged from 17 to 452 pounds per acre and soluble phosphorus content ranged from 0.29 to 65 pounds per acre. The maximum concentration of total nitrogen was 2,400 mg/L on September 10, 1986, in discharge from the tile drain near the streamflow gage. Median concentrations of total nitrogen and dissolved nitrite plus nitrate in base flow at the water-quality gage were 14 mg/L and 4.4 mg/L, respectively; prior to nutrient management and during nutrient management, median concentrations were 14 mg/L and 6.2 mg/L, respectively. Significant reductions in total phosphorus and suspended-sediment concentrations occurred at the water-quality gage. The maximum concentrations of total phosphorus (160 mg/L) and suspended sediment (3,530 mg/L) were measured at a tile line above the water-quality gage. Concentrations of total nitrogen, dissolved ammonia, and total phosphorus in base flow increased during dry periods when discharges from the tile drain were not diluted. During nutrient management, only base-flow loads of suspended sediment increased. Total streamflow was about 121.8 inches. About 81 percent was storm runoff. Loads of total nitrogen, total phosphorus in stormflow, and suspended sediment increased 14, 44, and 41 percent during nutrient management, respectively. A load of about 787,780 pounds of sediment, 22,418 pounds of nitrogen, and 5,479 pounds of phosphorus was measured during 214 sampled stormflow days that represented 84 percent of the stormflow. About 812,924 pounds of sediment, 38,421 pounds of nitrogen, and 6,377 pounds of phosphorus were discharged during the 6-year study.

  17. Characterization of bacterial consortium and its application in an ectopic fermentation system.

    PubMed

    Guo, Hui; Geng, Bing; Liu, Xue; Ye, Jing; Zhao, Yongkun; Zhu, Changxiong; Yuan, Hongli

    2013-07-01

    This study aimed to develop an ectopic fermentation system (EFS) to reduce the pollution of cow wastewater and to provide a basis for the production of biofertilizer with fermentation residues. Six thermophilic strains, three of which have efficient cellulose-degrading abilities and the other have good ammonia-N utilizing abilities, were chosen as the microbial inocula. The results showed that EFS inoculated with microbial consortium brought higher temperature and more wastewater was needed to ensure continuous fermentation. The pH values decreased in the early stage of fermentation, and then increased during the process. It caused increases in total Kjeldahl nitrogen, total phosphorous, and total potassium content. Decreases in organic matter content and C/N ratio were also observed. The high level of nutrients indicated the suitability of the paddings after fermentation for agronomic uses. It firstly attempted to combine cow wastewater treatment and bio-organic fertilizer production by EFS with mixed microbial culture. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Influence of natural zeolite and nitrification inhibitor on organics degradation and nitrogen transformation during sludge composting.

    PubMed

    Zhang, Junya; Sui, Qianwen; Li, Kun; Chen, Meixue; Tong, Juan; Qi, Lu; Wei, Yuansong

    2017-04-01

    Sludge composting is one of the most widely used treatments for sewage sludge resource utilization. Natural zeolite and nitrification inhibitor (NI) are widely used during composting and land application for nitrogen conservation, respectively. Three composting reactors (A-the control, B-natural zeolite addition, and C-3,4-dimethylpyrazole phosphate (DMPP) addition) were established to investigate the influence of NI and natural zeolite addition on organics degradation and nitrogen transformation during sludge composting conducted at the lab scale. The results showed that, in comparison with the control, natural zeolite addition accelerated organics degradation and the maturity of sludge compost was higher, while the DMPP addition slowed down the degradation of organic matters. Meanwhile, the nitrogen transformation functional genes including those responses for nitrification (amoA and nxrA) and denitrification (narG, nirS, nirK, and nosZ) were quantified through quantitative PCR (qPCR) to investigate the effects of natural zeolites andDMPP addition on nitrogen transformation. Although no significant difference in the abundance of nitrogen transformation functional genes was observed between treatments, addition of both natural zeolite and DMPP increases the final total nitrogen content by 48.6% and 23.1%, respectively. The ability of natural zeolite for nitrogen conservation was due to the absorption of NH 3 by compost, and nitrogen conservation by DMPP was achieved by the source reduction of denitrification. Besides, it was assumed that the addition of natural zeolite and DMPP may affect the activity of these genes instead of the abundance.

  19. Influence of natural zeolite and nitrification inhibitor on organics degradation and nitrogen transformation during sludge composting.

    PubMed

    Zhang, Junya; Sui, Qianwen; Li, Kun; Chen, Meixue; Tong, Juan; Qi, Lu; Wei, Yuansong

    2016-01-01

    Sludge composting is one of the most widely used treatments for sewage sludge resource utilization. Natural zeolite and nitrification inhibitor (NI) are widely used during composting and land application for nitrogen conservation, respectively. Three composting reactors (A--the control, B--natural zeolite addition, and C--3,4-dimethylpyrazole phosphate (DMPP) addition) were established to investigate the influence of NI and natural zeolite addition on organics degradation and nitrogen transformation during sludge composting conducted at the lab scale. The results showed that, in comparison with the control, natural zeolite addition accelerated organics degradation and the maturity of sludge compost was higher, while the DMPP addition slowed down the degradation of organic matters. Meanwhile, the nitrogen transformation functional genes including those responses for nitrification (amoA and nxrA) and denitrification (narG, nirS, nirK, and nosZ) were quantified through quantitative PCR (qPCR) to investigate the effects of natural zeolites and DMPP addition on nitrogen transformation. Although no significant difference in the abundance of nitrogen transformation functional genes was observed between treatments, addition of both natural zeolite and DMPP increases the final total nitrogen content by 48.6% and 23.1%, respectively. The ability of natural zeolite for nitrogen conservation was due to the absorption of NH3 by compost, and nitrogen conservation by DMPP was achieved by the source reduction of denitrification. Besides, it was assumed that the addition of natural zeolite and DMPP may affect the activity of these genes instead of the abundance.

  20. Behavior and Release of Nitrogen at Mines and Quarries in Nordic Conditions

    NASA Astrophysics Data System (ADS)

    Karlsson, Teemu; Neitola, Raisa; Jermakka, Johannes; Merta, Elina; Mroueh, Ulla-Maija

    2015-04-01

    The increased extraction of mineral resources and mining activities creates added pressure on the environmental issues and a proper water management in mining areas in Finland. Among others, nitrogen compounds released from explosives or from mining processes can have a detrimental effect on the environment. Thus, this project aimed at comprehensive understanding on the nitrogen issue in the extractive industry. The project collected essential data on nitrogen compounds present in the environments of mines and quarries, and generated better understanding of the discharge and behaviour of nitrogen compounds in mining areas. The sources and balances of explosives-originated nitrogen compounds at mines and quarries of different sizes were investigated and compared. Additionally, the focus was in 'nitrogen smudging' problem of waste rocks and the intensity, as well as evolution and chemical characteristics of their nitrogen contamination. According to the results, the total load of potential nitrogen to the environment depends on the scale and type of the activity as well as the type of explosives used. The main emission sources of nitrogen are process and dewatering waters. A lysimeter study showed that the explosives originated nitrogen content of left over stones from natural stone quarrying is relatively low and ca. half of the nitrogen is leached within the first weeks after detonation. The "nitrogen smudging" of natural stone quarrying left over stones is relatively low to begin with and enhanced by the rapid flushing by rainwater, thus the residues of explosives should not be considered to prevent the utilization of otherwise mineralogically inert waste rocks of good technical quality. The overall nitrogen management should take into account the background concentrations and sensitivity of the local ecosystem. The research project "Solution for Control of Nitrogen Discharges at Mines and Quarries, (MINIMAN)" was realized during years 2012-2014 as a cooperative project with GTK, VTT and TTY together with several industrial and international partners and financed by Tekes Green Mining Programme.

  1. Some Properties of Fresh and Ripened Traditional Akcakatik Cheese

    PubMed Central

    2018-01-01

    Akcakatik cheese (yogurt cheese) is produced by drying strained yogurt with or without adding cloves or black cumin. The main objective of this study was to detect the properties of both fresh and ripened Akcakatik cheeses and to compare them. For this purpose the biogenic amine content, volatile flavor compounds, protein degradation level, chemical properties and some microbiological properties of 15 Akcakatik cheese samples were investigated. Titratable acidity, total dry matter, NaCl, total nitrogen, water soluble nitrogen, ripened index, histamine, diacetyl and acetaldehyde levels were found to be higher in ripened cheese samples than in fresh cheese samples. On the other hand, the clove and black cumin ratios were found to be higher in the fresh cheese samples. Sodium dodecyl sulphate polyacrylamide gel electropherograms of cheese samples showed that protein degradation was higher in ripened cheese samples than in fresh samples, as expected. The dominant Lactic acid bacteria (LAB) flora of Akcakatik cheese samples were found to be Streptococcus salivarius subsp. thermophilus and Lactobacillus delbrueckii subsp. bulgaricus. PMID:29725229

  2. Volatiles from roasted byproducts of the poultry-processing industry.

    PubMed

    Wettasinghe, M; Vasanthan, T; Temelli, F; Swallow, K

    2000-08-01

    Volatiles of roasted chicken breast muscle and byproducts, such as backbones, breastbones, spent bones, and skin, were investigated. Total volatile concentrations ranged from 2030 ppb in the roasted backbones to 4049 ppb in the roasted skin. The major classes of volatile compounds detected in roasted samples were aldehydes (648-1532 ppb) and alcohols (336-1006 ppb). Nitrogen- and/or sulfur-containing compounds were also detected in appreciable quantities (161-706 ppb) in all samples. For all samples, hexanal and 2-methyl-2-buten-1-ol were dominant among the aldehydes and alcohols, respectively. Among the nitrogen- and sulfur-containing compounds, Maillard reaction products, such as tetrahydropyridazines, piperidines, and thiazoles, were the major contributors to the total volatile content in all samples. The composition of volatiles observed in roasted byproducts was markedly different from that of the roasted breast muscle. Therefore, the blending of the byproducts in appropriate proportions or blending of volatile flavor extracts from different byproducts may be necessary to obtain an aroma that mimics roasted chicken aroma.

  3. A novel approach to identify genes that determine grain protein deviation in cereals.

    PubMed

    Mosleth, Ellen F; Wan, Yongfang; Lysenko, Artem; Chope, Gemma A; Penson, Simon P; Shewry, Peter R; Hawkesford, Malcolm J

    2015-06-01

    Grain yield and protein content were determined for six wheat cultivars grown over 3 years at multiple sites and at multiple nitrogen (N) fertilizer inputs. Although grain protein content was negatively correlated with yield, some grain samples had higher protein contents than expected based on their yields, a trait referred to as grain protein deviation (GPD). We used novel statistical approaches to identify gene transcripts significantly related to GPD across environments. The yield and protein content were initially adjusted for nitrogen fertilizer inputs and then adjusted for yield (to remove the negative correlation with protein content), resulting in a parameter termed corrected GPD. Significant genetic variation in corrected GPD was observed for six cultivars grown over a range of environmental conditions (a total of 584 samples). Gene transcript profiles were determined in a subset of 161 samples of developing grain to identify transcripts contributing to GPD. Principal component analysis (PCA), analysis of variance (ANOVA) and means of scores regression (MSR) were used to identify individual principal components (PCs) correlating with GPD alone. Scores of the selected PCs, which were significantly related to GPD and protein content but not to the yield and significantly affected by cultivar, were identified as reflecting a multivariate pattern of gene expression related to genetic variation in GPD. Transcripts with consistent variation along the selected PCs were identified by an approach hereby called one-block means of scores regression (one-block MSR). © 2014 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  4. Effect of methyl jasmonate application to grapevine leaves on grape amino acid content.

    PubMed

    Garde-Cerdán, Teresa; Portu, Javier; López, Rosa; Santamaría, Pilar

    2016-07-15

    Over the last few years, considerable attention has been paid to the application of elicitors to vineyard. However, research about the effect of elicitors on grape amino acid content is scarce. Therefore, the aim of this study was to evaluate the influence of foliar application of methyl jasmonate on must amino acid content. Results revealed that total amino acid content was not modified by the application of methyl jasmonate. However, the individual content of certain amino acids was increased as consequence of methyl jasmonate foliar application, i.e., histidine, serine, tryptophan, phenylalanine, tyrosine, asparagine, methionine, and lysine. Among them, phenylalanine content was considerably increased; this amino acid is precursor of phenolic and aromatic compounds. In conclusion, foliar application of methyl jasmonate improved must nitrogen composition. This finding suggests that methyl jasmonate treatment might be conducive to obtain wines of higher quality since must amino acid composition could affect the wine volatile composition and the fermentation kinetics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Effects of myclobutanil on soil microbial biomass, respiration, and soil nitrogen transformations.

    PubMed

    Ju, Chao; Xu, Jun; Wu, Xiaohu; Dong, Fengshou; Liu, Xingang; Zheng, Yongquan

    2016-01-01

    A 3-month-long experiment was conducted to ascertain the effects of different concentrations of myclobutanil (0.4 mg kg(-1) soil [T1]; 1.2 mg kg(-1) soil [T3]; and 4 mg kg(-1) soil [T10]) on soil microbial biomass, respiration, and soil nitrogen transformations using two typical agricultural soils (Henan fluvo-aquic soil and Shanxi cinnamon soil). Soil was sampled after 7, 15, 30, 60, and 90 days of incubation to determine myclobutanil concentration and microbial parameters: soil basal respiration (RB), microbial biomass carbon (MBC) and nitrogen (MBN), NO(-)3-N and NH(+)4-N concentrations, and gene abundance of total bacteria, N2-fixing bacteria, fungi, ammonia-oxidizing archaea (AOA), and ammonia-oxidizing bacteria (AOB). The half-lives of the different doses of myclobutanil varied from 20.3 to 69.3 d in the Henan soil and from 99 to 138.6 d in the Shanxi soil. In the Henan soil, the three treatments caused different degrees of short-term inhibition of RB and MBC, NH(+)4-N, and gene abundance of total bacteria, fungi, N2-fixing bacteria, AOA, and AOB, with the exception of a brief increase in NO(-)3-N content during the T10 treatment. The MBN (immobilized nitrogen) was not affected. In the Shanxi soil, MBC, the populations of total bacteria, fungi, and N2-fixing bacteria, and NH(+)4-N concentration were not significantly affected by myclobutanil. The RB and MBN were decreased transitorily in the T10 treatment. The NO(-)3-N concentrations and the abundance of both AOA and AOB were erratically stimulated by myclobutanil. Regardless of whether stimulation or suppression occurred, the effects of myclobutanil on the two soil types were short term. In summary, myclobutanil had no long-term negative effects on the soil microbial biomass, respiration, and soil nitrogen transformations in the two types of soil, even at 10-fold the recommended dosage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. [Effects of different NO3--N/NH4+-N ratios on cucumber seedlings growth, nitrogen absorption and metabolism under suboptimal temperature and light intensity].

    PubMed

    Zhang, Xiao Cui; Liu, Yu Mei; Bai, Long Qiang; He, Chao Xing; Yu, Xian Chang; Li, Yan Su

    2016-08-01

    Cucumber (cv. Zhongnong 26) was used as material, the effects of NO 3 - -N/NH 4 + -N ratios on growth and physiological characteristics of cucumber seedlings under suboptimal temperature and light intensity (18 ℃/10 ℃,180 ± 20 μmol·m -2 ·s -1 ) were studied. Total nitrogen in the nutrient solution was equal and three NO 3 - -N/NH 4 + -N ratios, 26:2, 21:7 and 14:14, were applied as treatments. The results showed that cucumber treated by NO 3 - -N/NH 4 + -N=21:7 had the longest total root length, the biggest root volume and root surface area, and the maximum number of root tips. H + -ATPase activity and relative expression of genes encoding nitrate transporter (NRT) and ammonium transporter (AMT) in cucumber roots were increased significantly by the treatment of NO 3 - -N/NH 4 + -N=21:7. In addition, nitrate reductase (NR), glutamine synthetase (GS) and glutamate synthase (GOGAT) in cucumber leaves under the treatment of NO 3 - -N/NH 4 + -N=21:7 were higher. As a result, the nitrogen content and biomass of cucumber were significantly increased. Compared with the plants under the treatment of NO 3 - -N/NH 4 + -N=26:2 or 14:14, cucumber seedlings under the treatment of NO 3 - -N/NH 4 + -N=21:7 had the highest biomass and total dry mass (DM) which were increased by 14.0% and 19.3% respectively under suboptimal temperature and light intensity. In conclusion, under suboptimal environmental conditions, NO 3 - -N/NH 4 + -N ratio could be adjusted to increase nitrogen absorption and metabolism of cucumber and alleviate the de-trimental effects caused by suboptimal conditions and promoted the cucumber growth.

  7. Spatial pattern of soil organic carbon and total nitrogen, and analysis of related factors in an agro-pastoral zone in Northern China

    PubMed Central

    Wang, Xuyang; Chen, Yinping; Lian, Jie; Luo, Yongqing; Niu, Yayi; Gong, Xiangwen

    2018-01-01

    The spatial pattern of soil organic carbon (SOC) and total nitrogen (TN) densities plays a profound important role in estimating carbon and nitrogen budgets. Naiman Banner located in northern China was chosen as research site, a total of 332 soil samples were taken in a depth of 100 cm from the low hilly land in the southern part, sandy land in the middle part and an alluvial plain in the northern part of the county. The results showed that SOC and TN density initially decreased and then increased from the north to the south, The highest densities, were generally in the south, with the lowest generally in the middle part. The SOC and TN densities in cropland were significantly greater than those in woodland and grassland in the alluvial plains and for Naiman as a whole. The woodland SOC and TN density were higher than those of grassland in the low hilly land, and higher densities of SOC and TN in grassland than woodland in the sandy land and low hilly land. There were significant differences in SOC and TN densities among the five soil types of Cambisols, Arenosols, Gleysols, Argosols, and Kastanozems. In addition, SOC and TN contents generally decreased with increasing soil depth, but increased below a depth of 40 cm in the Cambisols and became roughly constant at this depth in the Kastanozems. There is considerable potential to sequester carbon and nitrogen in the soil via the conversion of degraded sandy land into woodland and grassland in alluvial plain, and more grassland should be established in sandy land and low hilly land. PMID:29771979

  8. Manure sampling procedures and nutrient estimation by the hydrometer method for gestation pigs.

    PubMed

    Zhu, Jun; Ndegwa, Pius M; Zhang, Zhijian

    2004-05-01

    Three manure agitation procedures were examined in this study (vertical mixing, horizontal mixing, and no mixing) to determine the efficacy of producing a representative manure sample. The total solids content for manure from gestation pigs was found to be well correlated with the total nitrogen (TN) and total phosphorus (TP) concentrations in the manure, with highly significant correlation coefficients of 0.988 and 0.994, respectively. Linear correlations were observed between the TN and TP contents and the manure specific gravity (correlation coefficients: 0.991 and 0.987, respectively). Therefore, it may be inferred that the nutrients in pig manure can be estimated with reasonable accuracy by measuring the liquid manure specific gravity. A rapid testing method for manure nutrient contents (TN and TP) using a soil hydrometer was also evaluated. The results showed that the estimating error increased from +/-10% to +/-30% with the decrease in TN (from 1000 to 100 ppm) and TP (from 700 to 50 ppm) concentrations in the manure. Data also showed that the hydrometer readings had to be taken within 10 s after mixing to avoid reading drift in specific gravity due to the settling of manure solids.

  9. Ambient Ammonium Contribution to total Nitrogen Deposition ...

    EPA Pesticide Factsheets

    There has been a wealth of evidence over the last decade illustrating the rising importance of reduced inorganic nitrogen (NHx = ammonia gas, NH3, plus particulate ammonium, p-NH4) in the overall atmospheric mass balance and deposition of nitrogen as emissions of oxidized nitrogen have decreased throughout a period of stable or increasing NH3 emissions. In addition, the fraction of ambient ammonia relative to p-NH4 generally has risen as a result of decreases in both oxides of nitrogen and sulfur emissions. EPA plans to consider ecological effects related to deposition of nitrogen, of which NHx is a contributing component, in the review of secondary National Ambient Air Quality Standards (NAAQS) for oxides of nitrogen and sulfur (NOx/SOx standard). Although these ecological effects are associated with total nitrogen deposition, it will be important to understand the emissions sources contributing to the total nitrogen deposition and to understand how much of the total nitrogen deposition is from deposition of NHx versus other nitrogen species. Because p-NH4 contributes to nitrogen deposition and can also be a significant component of particulate matter, there is a potential overlap in addressing nitrogen based deposition effects in the secondary PM and NOx/SOx NAAQS. Consequently, there is a policy interest in quantifying the contribution of p-NH4 to total nitrogen deposition. While dry deposition of p-NH4 is calculated through a variety of modeling app

  10. Flame tube parametric studies for control of fuel bound nitrogen using rich-lean two-stage combustion

    NASA Technical Reports Server (NTRS)

    Schultz, D. F.; Wolfbrandt, G.

    1980-01-01

    An experimental parametric study of rich-lean two-stage combustion in a flame tube is described and approaches for minimizing the conversion of fuel-bound nitrogen to nitrogen oxides in a premixed, homogeneous combustion system are evaluated. Air at 672 K and 0.48 MPa was premixed with fuel blends of propane, toluene, and pyridine at primary equivalence ratios ranging from 0.5 to 2.0 and secondary equivalence ratios of 0.5 to 0.7. Distillates of SRC-II, a coal syncrude, were also tested. The blended fuels were proportioned to vary fuel hydrogen composition from 9.0 to 18.3 weight percent and fuel nitrogen composition from zero to 1.5 weight percent. Rich-lean combustion proved effective in reducing fuel nitrogen to NO sub x conversion; conversion rates up to 10 times lower than those normally produced by single-stage combustion were achieved. The optimum primary equivalence ratio, where the least NO sub x was produced and combustion efficiency was acceptable, shifted between 1.4 and 1.7 with changes in fuel nitrogen content and fuel hydrogen content. Increasing levels of fuel nitrogen content lowered the conversion rate, but not enough to avoid higher NO sub x emissions as fuel nitrogen increased.

  11. Thalli Growth, Propagule Survival, and Integrated Physiological Response to Nitrogen Stress of Ramalina calicaris var. japonica in Shennongjia Mountain (China).

    PubMed

    Wang, Chuan-Hua; Wang, Ming; Jia, Rao-Zhen; Guo, Hua

    2018-01-01

    In this study, effects of nitrogen (N) availability on growth, survival of Ramalina calicaris var. japonica , and whether it respond nitrogen stress in an integrated physiological way was evaluated. Thalli growth and propagule survival, thalli N and phosphorus (P) content, and activity of phosphomonoesterase (PME) of R. calicaris var. japonica were determined in a field experiment. Its differentiate adsorption in ammonia and nitrate, the activity of glutamine synthetase (GSA) and nitrate reductase (NRA) also were investigated in a series of indoor experiments. The results showed that N deposition significantly decreased the growth and survival of this lichen, and the N sensitivity threshold was suggested at 6.0 kg N⋅ha -1 ⋅y -1 . When the N deposition increased from 8.59 kg N⋅ha -1 ⋅y -1 to 14.24, 20.49, 32.99 and 57.99 kg N⋅ha -1 ⋅y -1 , the growth rates of lichen thalli decreased by 26.47, 39.01, 52.18 and 60.3%, respectively; Whereas the survival rate of the lichen propagules decreased from 92.8% of control (0.0 kg N⋅ha -1 ⋅y -1 ) to 10.7% of 50.0 kg N⋅ha -1 ⋅y -1 , when they were treated with 0.00, 6.25, 12.5, 25.0, and 50.0 kg N⋅ha -1 ⋅y -1 deposition. Compared with an adequate adsorption of ammonium N, no nitrate adsorption occurred when thalli was submerged in solution lower than 0.4 mM. Our results also suggested that thalli total nitrogen, N:P ratio increased with N availability, and the activity of PME was significantly correlated with thalli total nitrogen. These all indicated that phosphorus limitation occurred when R. calicaris var. japonica treated with higher nitrogen deposition. Compared with slightly effects of NRA, GSA of R. calicaris var. japonica responded nitrogen availability significantly; In addition, GSA and NRA negatively correlated with thalli growth rate and propagule survival significantly. These results indicated that nitrogen stress do decrease growth and survival of R. calicaris var. japonica , and lichen would be impacted by excess nitrogen in a integrated, not a fragmentary way, including nitrogen uptake, assimilation, even nutrient balance of nitrogen and phosphorous.

  12. Nitrogen and phosphorus removed from a subsurface flow multi-stage filtration system purifying agricultural runoff.

    PubMed

    Zhao, Yaqi; Huang, Lei; Chen, Yucheng

    2018-07-01

    Agricultural nonpoint source pollution has been increasingly serious in China since the 1990s. The main causes were excessive inputs of nitrogen fertilizer and pesticides. A multi-stage filtration system was built to test the purification efficiencies and removal characteristics of nitrogen and phosphorus when treating agricultural runoff. Simulated runoff pollution was prepared by using river water as source water based on the monitoring of local agricultural runoff. Experimental study had been performed from September to November 2013, adopting 12 h for flooding and 12 h for drying. The results showed that the system was made adaptive to variation of inflow quality and quantity, and had good removal for dissolved total nitrogen, total nitrogen, dissolved total phosphorus (DTP), and total phosphorus, and the average removal rate was 27%, 36%, 32%, and 48%, respectively. Except nitrate ([Formula: see text]), other forms of nitrogen and phosphorus all decreased with the increase of stages. Nitrogen was removed mainly in particle form the first stage, and mostly removed in dissolved form the second and third stage. Phosphorus was removed mainly in particulate during the first two stages, but the removal of particulate phosphorus and DTP were almost the same in the last stage. An approximate logarithmic relationship between removal loading and influent loading to nitrogen and phosphorus was noted in the experimental system, and the correlation coefficient was 0.78-0.94. [Formula: see text]: ammonium; [Formula: see text]: nitrite; [Formula: see text]: nitrate; DTN: dissolved total nitrogen; TN: total nitrogen; DTP: dissolved total phosphorus; TP: total phosphorus; PN: particulate nitrogen; PP: particulate phosphorus.

  13. Parameter setting for peak fitting method in XPS analysis of nitrogen in sewage sludge

    NASA Astrophysics Data System (ADS)

    Tang, Z. J.; Fang, P.; Huang, J. H.; Zhong, P. Y.

    2017-12-01

    Thermal decomposition method is regarded as an important route to treat increasing sewage sludge, while the high content of N causes serious nitrogen related problems, then figuring out the existing form and content of nitrogen of sewage sludge become essential. In this study, XPSpeak 4.1 was used to investigate the functional forms of nitrogen in sewage sludge, peak fitting method was adopted and the best-optimized parameters were determined. According to the result, the N1s spectra curve can be resolved into 5 peaks: pyridine-N (398.7±0.4eV), pyrrole-N(400.5±0.3eV), protein-N(400.4eV), ammonium-N(401.1±0.3eV) and nitrogen oxide-N(403.5±0.5eV). Based on the the experimental data obtained from elemental analysis and spectrophotometry method, the optimum parameters of curve fitting method were decided: background type: Tougaard, FWHM 1.2, 50% Lorentzian-Gaussian. XPS methods can be used as a practical tool to analysis the nitrogen functional groups of sewage sludge, which can reflect the real content of nitrogen of different forms.

  14. Effect of turning frequency on co-composting pig manure and fungus residue.

    PubMed

    Jiang-Ming, Zhou

    2017-03-01

    Composting of agricultural wastes not only can reduce environmental pollution caused by improper disposal, but also can recycle agricultural wastes and transform them into highly valuable products, such as fertilizers or soil conditioners, for agricultural applications. However, the composting process and final product are easily affected by the limited oxygen supply that results from insufficient aeration, especially in the center of a large-scale windrow. Hence, a pilot-scale experiment was conducted to investigate the effects of the turning frequency on the composting efficiency and compost quality of used pig manure and fungus residue. Physical and chemical characteristics were measured over the course of 63 days of composting. The data indicate that higher temperatures and more rapid moisture removal generally result from a turning treatment of once every 2-4 days than in fewer, or no, turning treatments. The total nitrogen, total phosphorus, and total potassium contents increased in all windrows as the organic matter content decreased, but both the increases and decrease were greater in windrows that were turned more frequently. The reduction of the organic matter mass by 53.7-66.0% for a turning of once every 2-8 days is significantly higher than that for the static windrow (39.1%). Although there is an increase in nitrogen mass loss with an increased turning frequency, lower nitrogen mass losses (12.7-25.7%) in all treatments were noted compared with previous studies. A final compost product with less moisture, less weight, higher nutrient content (N, P, and K), and greater stability was obtained in windrows with turning frequencies of once every 2-4 days, which is recommended when composting pig manure and fungus residue. Composting of agricultural wastes not only can reduce environmental pollution caused by improper disposal, but recycling of agricultural wastes transforms them into highly valuable products, such as fertilizers or soil conditioners, for agricultural applications. However, the composting process and final product are easily affected by the limited oxygen supply that results from insufficient aeration, especially in the center of a large-scale windrow. Hence, a pilot-scale experiment was conducted to investigate the effects of the turning frequency on the composting efficiency and compost quality of used pig manure and fungus residue, so as to capture an operational technique suitable for the effective co-composting pig manure and edible fungi residue for a large-scale composting plant.

  15. [Contents of nutrient elements in NH4(+)-N fertilizer and urea].

    PubMed

    Wang, Zheng-Rui; Qu, Gui-Qin; Rui, Yu-Kui; Shen, Jian-Bo; Zhang, Fu-Suo

    2009-03-01

    Fertilizer contains not only one compound or one element, so it is important to determine the contents of other elements necessitous and beneficial to plant. All the other nutrient elements for plant, including necessitous elements and beneficial elements in ammonia nitrogen fertilizer ((NH4)2SO4) and CO(NH2)2, were analyzed by method of ICP-MS. The results showed that ammonia nitrogen fertilizer ((NH4)2SO4) and CO(NH2)2 both contain many necessitous elements, Mg, P, K, Ca, Mn, Fe, Ni, Cu, Zn and Mo, thereinto the contents of Mg, P, K, Ca, Mn and Fe were on microg x g(-1) the level, and Ni, Cu, Zn and Mo were on the ng x g(-1) level; compared with CO(NH2)2, ammonia nitrogen fertilizer ((NH4)2SO4) contains more necessitous elements and beneficial elements except Mo and Si. All the above elements could influence the results of nitrogen fertilizer efficiency experiments, so pure fertilizer should be used in the future nitrogen fertilizer efficiency experiments and the comparative experiments of different form nitrogen fertilizer.

  16. Temporal-spatial variations and influencing factors of nitrogen in the shallow groundwater of the nearshore vegetable field of Erhai Lake, China.

    PubMed

    Chen, Anqiang; Lei, Baokun; Hu, Wanli; Wang, Hongyuan; Zhai, Limei; Mao, Yanting; Fu, Bin; Zhang, Dan

    2018-02-01

    Nitrogen export from the nearshore vegetable field of Erhai Lake seriously threatens the water quality of Erhai Lake, which is the second largest highland freshwater lake in Yunnan Province, China. Among the nitrogen flows into Erhai Lake, shallow groundwater migration is a major pathway. The nitrogen variation and influencing factors in the shallow groundwater of the nearshore vegetable field of Erhai Lake are not well documented. A 2-year field experiment was conducted to determine the concentrations of nitrogen species in the shallow groundwater and their influencing factors in the nearshore vegetable field of Erhai Lake. The results showed that concentrations of TN, NO 3 - -N, and NO 2 - -N gradually increased with increasing elevation and distance from Erhai Lake, but the opposite was observed for NH 4 + -N in the shallow groundwater. The concentrations of nitrogen species in the rainy season were greater than those in the dry season. NO 3 - -N accounted for more than 79% of total nitrogen in shallow groundwater. Redundancy analysis showed that more than 70% of the temporal and spatial variations of nitrogen concentrations in the shallow groundwater were explained by shallow groundwater depth, and only approximately 10% of variation was explained by the factors of soil porosity, silt clay content of soil, and NH 4 + -N and NO 3 - -N concentrations of soil (p < 0.05). The shallow groundwater depth had more notable effects on nitrogen concentrations in the shallow groundwater than other factors. This result will strongly support the need for further research regarding the management practices for reducing nitrogen concentrations in shallow groundwater.

  17. Eco-sewerage System Design for Modern Office Buildings: based on Vacuum and Source-separation Technology

    NASA Astrophysics Data System (ADS)

    Xu, Kangning; Wang, Chengwen; Zheng, Min; Yuan, Xin

    2010-11-01

    This study aimed to construct an on-site eco-sewerage system for modern office buildings in urban area based on combined innovative technologies of vacuum and source-separation. Results showed that source-separated grey water had low concentrations of pollutants, which helped the reuse of grey water. However, the system had a low separation efficiency between the yellow water and the brown water, which was caused by the plug problem in the urine collection from the urine-diverting toilets. During the storage of yellow water for liquid fertilizer production, nearly all urea nitrogen transferred to ammonium nitrogen and about 2/3 phosphorus was lost because of the struvite precipitation. Total bacteria and coliforms increased first in the storage, but then decreased to low concentrations. The anaerobic/anoxic/aerobic MBR had high elimination rates of COD, ammonium nitrogen and total nitrogen of the brown water, which were 94.2%, 98.1% and 95.1%, respectively. However, the effluent still had high contents of colority, nitrate and phosphorus, which affected the application of the effluent for flushing water. Even though, the effluent might be used as dilution water for the yellow water fertilizer. Based on the results and the assumption of an ideal operation of the vacuum source-separation system, a future plan for on-site eco-sewerage system of modern office buildings was constructed. Its sustainability was validated by the analysis of the substances flow of water and nutrients.

  18. Nitrogen concentrations and loads for the Connecticut River at Middle Haddam, Connecticut, computed with the use of autosampling and continuous measurements of water quality for water years 2009 to 2014

    USGS Publications Warehouse

    Mullaney, John R.; Martin, Joseph W.; Morrison, Jonathan

    2018-03-20

    The daily and annual loads of nitrate plus nitrite and total nitrogen for the Connecticut River at Middle Haddam, Connecticut, were determined for water years 2009 to 2014. The analysis was done with a combination of methods, which included a predefined rating curve method for nitrate plus nitrite and total nitrogen for water years 2009 to 2011 and a custom rating curve method that included sensor measurements of nitrate plus nitrite nitrogen concentration and turbidity along with mean daily flow to determine total nitrogen loads for water years 2011 to 2014. Instantaneous concentrations of total nitrogen were estimated through the use of a regression model based on sensor measurements at 15-minute intervals of nitrate plus nitrite nitrogen and turbidity for water years 2011 to 2014.Annual total nitrogen loads at the Connecticut River at Middle Haddam ranged from 12,900 to 19,200 metric tons, of which about 42 to 49 percent was in the form of nitrate plus nitrite. The mean 95-percent prediction intervals on daily total nitrogen load estimates were smaller from the custom model, which used sensor data, than those calculated by the predefined model.Annual total nitrogen load estimates at the Connecticut River at Middle Haddam were compared with the upstream load estimates at the Connecticut River at Thompsonville, Conn. Annual gains in total nitrogen loads between the two stations ranged from 3,430 to 6,660 metric tons. These increases between the two stations were attributed to the effects of increased urbanization and to combined annual discharges of 1,540 to 2,090 metric tons of nitrogen from 24 wastewater treatment facilities in the drainage area between the two stations. The contribution of total nitrogen from wastewater discharge between the two stations had declined substantially before the beginning of this study and accounted for from 31 to 52 percent of the gain in nitrogen load between the Thompsonville and Middle Haddam sites.

  19. A mathematical model of reservoir sediment quality prediction based on land-use and erosion processes in watershed

    NASA Astrophysics Data System (ADS)

    Junakova, N.; Balintova, M.; Junak, J.

    2017-10-01

    The aim of this paper is to propose a mathematical model for determining of total nitrogen (N) and phosphorus (P) content in eroded soil particles with emphasis on prediction of bottom sediment quality in reservoirs. The adsorbed nutrient concentrations are calculated using the Universal Soil Loss Equation (USLE) extended by the determination of the average soil nutrient concentration in top soils. The average annual vegetation and management factor is divided into five periods of the cropping cycle. For selected plants, the average plant nutrient uptake divided into five cropping periods is also proposed. The average nutrient concentrations in eroded soil particles in adsorbed form are modified by sediment enrichment ratio to obtain the total nutrient content in transported soil particles. The model was designed for the conditions of north-eastern Slovakia. The study was carried out in the agricultural basin of the small water reservoir Klusov.

  20. Evidence for Avt6 as a vacuolar exporter of acidic amino acids in Saccharomyces cerevisiae cells.

    PubMed

    Chahomchuen, Thippayarat; Hondo, Kana; Ohsaki, Mariko; Sekito, Takayuki; Kakinuma, Yoshimi

    2009-12-01

    Here we examined the significance of Avt6, a vacuolar exporter of glutamate and aspartate suggested by the in vitro membrane vesicle experiment, in vacuolar compartmentalization of amino acids in Saccharomyces cerevisiae cells. Fluorescent microscopic observation of GFP-fused Avt6 revealed it to be exclusively localized to the vacuolar membrane, with the amount of Myc-tagged Avt6 significantly increased under nitrogen starvation. Glutamate uptake by cells was enhanced by deletion of the AVT6 gene, indicating indirect involvement of Avt6 in cellular glutamate accumulation. Differences in acidic amino acid content of both total and vacuolar fractions were insignificant between the parent and avt6Delta cells when cultured in nutrient-rich conditions. However, in nitrogen-starved conditions, the amount of glutamate and aspartate in the vacuolar fraction was notably increased in the avt6Delta cells. Avt6 is thus involved in vacuolar amino acid compartmentalization in S. cerevisiae cells, especially under conditions of nitrogen starvation.

  1. Effects of root pruning on the physicochemical properties and microbial activities of poplar rhizosphere soil.

    PubMed

    Jing, Da-Wei; Liu, Fang-Chun; Wang, Ming-You; Ma, Hai-Lin; Du, Zhen-Yu; Ma, Bing-Yao; Dong, Yu-Feng

    2017-01-01

    This study aimed to determine the effects of root pruning on the physicochemical characteristics and microbial activities of poplar rhizosphere soil. The root systems of 5-year-old poplar (Populus×euramericana cv. 'Neva') trees were manually pruned at 6, 8, or 10 times diameter at breast height (DBH) from the trunk (severe, moderate, and light, respectively) along both inter-row sides. Moderate root pruning significantly increased the concentrations of amino acids, organic acids, and total sugars in the root exudates and decreased the pH of rhizosphere soil. This treatment also increased the contents of available nitrogen, phosphorus, potassium, and total organic carbon as well as high-, medium-, and low-activity organic carbon in rhizosphere soil. Moreover, moderate pruning increased the contents of microbial biomass carbon and nitrogen, and enhanced basal respiration, in addition to decreasing the metabolic quotients in rhizosphere soil by 8.9%, 5.0%, and 11.4% compared with control, light, and severe root pruning treatments, respectively. Moderate pruning increased the growth rates of DBH, tree height, and volume to the highest levels. Furthermore, these indices were not significantly different between the light root pruning and control groups, but varied significantly between severe and moderate root-pruning treatments. Thus, root pruning, depending on the distance from the trunk, significantly influences the physicochemical properties and microbial activities in poplar rhizosphere soil.

  2. Effects of root pruning on the physicochemical properties and microbial activities of poplar rhizosphere soil

    PubMed Central

    Jing, Da-Wei; Liu, Fang-Chun; Wang, Ming-You; Ma, Hai-Lin; Du, Zhen-Yu; Ma, Bing-Yao; Dong, Yu-Feng

    2017-01-01

    This study aimed to determine the effects of root pruning on the physicochemical characteristics and microbial activities of poplar rhizosphere soil. The root systems of 5-year-old poplar (Populus×euramericana cv. ‘Neva’) trees were manually pruned at 6, 8, or 10 times diameter at breast height (DBH) from the trunk (severe, moderate, and light, respectively) along both inter-row sides. Moderate root pruning significantly increased the concentrations of amino acids, organic acids, and total sugars in the root exudates and decreased the pH of rhizosphere soil. This treatment also increased the contents of available nitrogen, phosphorus, potassium, and total organic carbon as well as high-, medium-, and low-activity organic carbon in rhizosphere soil. Moreover, moderate pruning increased the contents of microbial biomass carbon and nitrogen, and enhanced basal respiration, in addition to decreasing the metabolic quotients in rhizosphere soil by 8.9%, 5.0%, and 11.4% compared with control, light, and severe root pruning treatments, respectively. Moderate pruning increased the growth rates of DBH, tree height, and volume to the highest levels. Furthermore, these indices were not significantly different between the light root pruning and control groups, but varied significantly between severe and moderate root-pruning treatments. Thus, root pruning, depending on the distance from the trunk, significantly influences the physicochemical properties and microbial activities in poplar rhizosphere soil. PMID:29117215

  3. Soil-borne microbial functional structure across different land uses.

    PubMed

    Kuramae, Eiko E; Zhou, Jizhong Z; Kowalchuk, George A; van Veen, Johannes A

    2014-01-01

    Land use change alters the structure and composition of microbial communities. However, the links between environmental factors and microbial functions are not well understood. Here we interrogated the functional structure of soil microbial communities across different land uses. In a multivariate regression tree analysis of soil physicochemical properties and genes detected by functional microarrays, the main factor that explained the different microbial community functional structures was C : N ratio. C : N ratio showed a significant positive correlation with clay and soil pH. Fields with low C : N ratio had an overrepresentation of genes for carbon degradation, carbon fixation, metal reductase, and organic remediation categories, while fields with high C : N ratio had an overrepresentation of genes encoding dissimilatory sulfate reductase, methane oxidation, nitrification, and nitrogen fixation. The most abundant genes related to carbon degradation comprised bacterial and fungal cellulases; bacterial and fungal chitinases; fungal laccases; and bacterial, fungal, and oomycete polygalacturonases. The high number of genes related to organic remediation was probably driven by high phosphate content, while the high number of genes for nitrification was probably explained by high total nitrogen content. The functional gene diversity found in different soils did not group the sites accordingly to land management. Rather, the soil factors, C : N ratio, phosphate, and total N, were the main factors driving the differences in functional genes across the fields examined.

  4. Adsorption of water vapour and the specific surface area of arctic zone soils (Spitsbergen)

    NASA Astrophysics Data System (ADS)

    Cieśla, Jolanta; Sokołowska, Zofia; Witkowska-Walczak, Barbara; Skic, Kamil

    2018-01-01

    Water vapour/nitrogen adsorption were investigated and calculated the specific surface areas of arctic-zone soil samples (Turbic Cryosols) originating from different micro-relief forms (mud boils, cell forms and sorted circles) and from different depths. For the characterisation of the isotherms obtained for arctic soils, the Brunauer-Emmet-Teller model was then compared with the two other models (Aranovich-Donohue and Guggenheim-Anderson-de Boer) which were developed from Brunauer-Emmet-Teller. Specific surface area was calculated using the Brunauer-Emmet-Teller model at p p0-1 range of 0.05-0.35 for the water vapour desorption and nitrogen adsorption isotherms. The values of total specific surface area were the highest in Cryosols on mud boils, lower on cell forms, and the lowest on sorted circles. Such tendency was observed for the results obtained by both the water vapour and nitrogen adsorption. The differences in the values of specific surface area at two investigated layers were small. High determination coefficients were obtained for relationships between the specific surface areas and contents of clay and silt fraction in Cryosols. No statistically significant correlation between the total carbon amount and the values of specific surface area in Cryosols has been found.

  5. Influence of the nitrogen content on the optical properties of CNx films.

    PubMed

    Abd El-Kader, F H; Moharram, M A; Khafagia, M G; Mamdouh, Fathia

    2012-11-01

    Polycrystalline carbon nitride thin films were prepared by electrolysis of methanol-urea solution at different concentrations of urea to methanol and applied voltage 800 volts for 10h. Grazing incidence X-ray diffraction (GIXRD) revealed that the crystalline structure of carbon nitride films at moderate nitrogen content changed from amorphous phase to polycrystalline α-C(3)N(4), and β-C(3)N(4) phases. The optical transmission analysis of the films revealed that the band gap value for indirect allowed transitions increased with increasing nitrogen content, while the associated phonon energy value showed the opposite behavior. The refractive index and the extinction coefficient of the samples deposited with different concentrations were determined as a function of wavelength. The refractive index decreases with increasing both nitrogen content and crystallinity. The refractive index dispersion for the investigated samples is discussed in terms of the single oscillator model and oscillator parameters. Copyright © 2012. Published by Elsevier B.V.

  6. Long-term groundwater contamination after source removal—The role of sorbed carbon and nitrogen on the rate of reoxygenation of a treated-wastewater plume on Cape Cod, MA, USA

    USGS Publications Warehouse

    Smith, Richard L.; Repert, Deborah A.; Barber, Larry B.; LeBlanc, Denis R.

    2013-01-01

    The consequences of groundwater contamination can remain long after a contaminant source has been removed. Documentation of natural aquifer recoveries and empirical tools to predict recovery time frames and associated geochemical changes are generally lacking. This study characterized the long-term natural attenuation of a groundwater contaminant plume in a sand and gravel aquifer on Cape Cod, Massachusetts, after the removal of the treated-wastewater source. Although concentrations of dissolved organic carbon (DOC) and other soluble constituents have decreased substantially in the 15 years since the source was removed, the core of the plume remains anoxic and has sharp redox gradients and elevated concentrations of nitrate and ammonium. Aquifer sediment was collected from near the former disposal site at several points in time and space along a 0.5-km-long transect extending downgradient from the disposal site and analyses of the sediment was correlated with changes in plume composition. Total sediment carbon content was generally low (< 8 to 55.8 μmol (g dry wt)− 1) but was positively correlated with oxygen consumption rates in laboratory incubations, which ranged from 11.6 to 44.7 nmol (g dry wt)− 1 day− 1. Total water extractable organic carbon was < 10–50% of the total carbon content but was the most biodegradable portion of the carbon pool. Carbon/nitrogen (C/N) ratios in the extracts increased more than 10-fold with time, suggesting that organic carbon degradation and oxygen consumption could become N-limited as the sorbed C and dissolved inorganic nitrogen (DIN) pools produced by the degradation separate with time by differential transport. A 1-D model using total degradable organic carbon values was constructed to simulate oxygen consumption and transport and calibrated by using observed temporal changes in oxygen concentrations at selected wells. The simulated travel velocity of the oxygen gradient was 5–13% of the groundwater velocity. This suggests that the total sorbed carbon pool is large relative to the rate of oxygen entrainment and will be impacting groundwater geochemistry for many decades. This has implications for long-term oxidation of reduced constituents, such as ammonium, that are being transported downgradient away from the infiltration beds toward surface and coastal discharge zones.

  7. Impact of a high ammonia-ammonium-pH system on methane-producing archaea and sulfate-reducing bacteria in mesophilic anaerobic digestion.

    PubMed

    Dai, Xiaohu; Hu, Chongliang; Zhang, Dong; Dai, Lingling; Duan, Nina

    2017-12-01

    A novel strategy for acclimation to ammonia stress was implemented by stimulating a high ammonia-ammonium-pH environment in a high-solid anaerobic digestion (AD) system in this study. Three semi-continuously stirred anaerobic reactors performed well over the whole study period under mesophilic conditions, especially in experimental group (R-2) when accommodated from acclimation period which the maximum total ammonia nitrogen (TAN) and free ammonia nitrogen (FAN) increased to 4921 and 2996mg/L, respectively. Moreover, when it accommodated the high ammonia-ammonium-pH system, the daily biogas production and methane content were similar to those in R-1 (the blank control to R-2), but the hydrogen sulfide (H 2 S) content lower than the blank control. Moreover, mechanistic studies showed that high ammonia stress enhanced the activity of coenzyme F 420 . The results of real-time fluorescent quantitative polymerase chain reaction (PCR) showed that ammonia stress decreased the abundance of sulfate-reducing bacteria and increased the abundance of methane-producing archaea. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Study of biocompatibility of medical grade high nitrogen nickel-free austenitic stainless steel in vitro.

    PubMed

    Li, Menghua; Yin, Tieying; Wang, Yazhou; Du, Feifei; Zou, Xingzheng; Gregersen, Hans; Wang, Guixue

    2014-10-01

    Adverse effects of nickel ions being released into the living organism have resulted in development of high nitrogen nickel-free austenitic stainless steels for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also improves steel properties. The cell cytocompatibility, blood compatibility and cell response of high nitrogen nickel-free austenitic stainless steel were studied in vitro. The mechanical properties and microstructure of this stainless steel were compared to the currently used 316L stainless steel. It was shown that the new steel material had comparable basic mechanical properties to 316L stainless steel and preserved the single austenite organization. The cell toxicity test showed no significant toxic side effects for MC3T3-E1 cells compared to nitinol alloy. Cell adhesion testing showed that the number of MC3T3-E1 cells was more than that on nitinol alloy and the cells grew in good condition. The hemolysis rate was lower than the national standard of 5% without influence on platelets. The total intracellular protein content and ALP activity and quantification of mineralization showed good cell response. We conclude that the high nitrogen nickel-free austenitic stainless steel is a promising new biomedical material for coronary stent development. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Toxic industrial deposit remediation by ant activity

    NASA Astrophysics Data System (ADS)

    Jilkova, Veronika; Frouz, Jan

    2016-04-01

    Toxic industrial deposits are often contaminated by heavy metals and the substrates have low pH values. In such systems, soil development is thus slowed down by high toxicity and acidic conditions which are unfavourable to soil fauna. Ants (Hymenoptera, Formicidae) are considered tolerant to heavy metal pollution and are known to increase organic matter content and microbial activity in their nests. Here, we focused on soil remediation caused by three ant species (Formica sanguinea, Lasius niger, and Tetramorium sp.) in an ore-washery sedimentation basin near Chvaletice (Czech Republic). Soil samples were taken from the centre of ant nests and from the nest surroundings (>3 m from nests). Samples were then analyzed for microbial activity and biomass and contents of organic matter and nutrients. As a result, ant species that most influenced soil properties was F. sanguinea as there were higher microbial activity and total nitrogen and ammonia contents in ant nests than in the surrounding soil. We expected such a result because F. sanguinea builds conspicuous large nests and is a carnivorous species that brings substantial amounts of nitrogen in insect prey to their nests. Effects of the other two ant species might be lower because of smaller nests and different feeding habits as they rely mainly on honeydew from aphids or on plant seeds that do not contain much nutrients.

  10. Accuracy of near infrared spectroscopy for prediction of chemical composition, salt content and free amino acids in dry-cured ham.

    PubMed

    Prevolnik, Maja; Škrlep, Martin; Janeš, Lucija; Velikonja-Bolta, Spela; Škorjanc, Dejan; Čandek-Potokar, Marjeta

    2011-06-01

    The capability of near infrared (NIR) spectroscopy was examined for the purposes of quality control of the traditional Slovenian dry-cured ham "Kraški pršut." Predictive models were developed for moisture, salt, protein, non-protein nitrogen, intramuscular fat and free amino acids in biceps femoris muscle (n = 135). The models' quality was assessed using statistical parameters: coefficient of determination (R(2)) and standard error (se) of cross-validation (CV) and external validation (EV). Residual predictive deviation (RPD) was also assessed. Best results were obtained for salt content and salt percentage in moisture/dry matter (R(CV)(2)>0.90, RPD>3.0), it was satisfactory for moisture, non-protein nitrogen, intramuscular fat and total free amino acids (R(CV)(2) = 0.75-0.90, RPD = 2.0-3.0), while not so for protein content and proteolysis index (R(CV)(2) = 0.65-0.75, RPD<2.0). Calibrations for individual free amino acids yielded R(CV)(2) from 0.40 to 0.90 and RPD from 1.3 to 2.9. Additional external validation of models on independent samples yielded comparable results. Based on the results, NIR spectroscopy can replace chemical methods in quality control of dry-cured ham. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Phytoremediation potential of water caltrop (Trapa natans L.) using municipal wastewater of the activated sludge process-based municipal wastewater treatment plant.

    PubMed

    Kumar, Vinod; Chopra, A K

    2018-01-01

    Phytoremediation experiments were carried out to assess the phytoremediation potential of water caltrop (Trapa natans L.) using municipal wastewater collected from the activated sludge process- (ASP) based municipal wastewater treatment plant. The results revealed that T. natans significantly (P ≤ .05/P ≤ .01/P ≤ .001) reduced the contents of total dissolved solids (TDS), electrical conductivity (EC), biochemical oxygen demand (BOD 5 ), chemical oxygen demand, total Kjeldahl nitrogen, phosphate ([Formula: see text]), sodium (Na + ), potassium (K + ), calcium (Ca 2+ ), magnesium (Mg 2+ ), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), lead (Pb), zinc (Zn), standard plate count, and most probable number of the municipal wastewater after phytoremediation experiments. The maximum removal of these parameters was obtained at 60 days of the phytoremediation experiments, but the removal rate of these parameters was gradually increased from 15 to 45 days and it was slightly decreased at 60 days. Most contents of Cd, Cu, Fe, Mn and Zn were translocated in the leaves of T. natans, whereas most contents of Cr and Pb were accumulated in the root of T. natans after phytoremediation experiments. The contents of different biochemical components were recorded in the order of total sugar > crude protein > total ash > crude fiber > total fat in T. natans after phytoremediation of municipal wastewater. Therefore, T. natans was found to be effective for the removal of different parameters of municipal wastewater and can be used effectively to reduce the pollution load of municipal wastewater drained from the ASP-based treatment plants.

  12. Combined effect of Nitrogen, Phosphorus and Potassium fertilizers on the contents of glucosinolates in rocket salad (Eruca sativa Mill.).

    PubMed

    Chun, Jin-Hyuk; Kim, Silbia; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Chung, Doug Young; Kim, Sun-Ju

    2017-02-01

    Nitrogen (N), phosphorous (P) and potassium (K) are the most limiting factors in crop production. N often affects the amino acid composition of protein and in turn its nutritional quality. In Brassica plants, abundant supply of N fertilizer decreases the relative proportion of glucosinolates (GSLs), thus reducing the biological and medical values of the vegetables. Hence effort was made to evaluate the influence of different proportions of nutrient solutions containing N-P-K on the GSL profiles of rocket salad ( Eruca sativa Mill.). Fifteen desulpho-(DS) GSLs were isolated and identified using liquid chromatography-mass spectrometry (LC/MS) analysis. Rocket salad plants supplied with lesser amount of N, P or higher concentrations of K showed a typical improvement in total GSL contents. In contrast, total GSL levels were less at higher N supply. Furthermore, with N concentrations above 5 mM and K concentrations less than 2.5 mM, the GSL amounts were on average 13.51 and 13.75 μmol/g dry weight (DW), respectively. Aliphatic GSLs predominated in all concentrations of NPK while indolyl GSLs made up marginally less amount of the total compositions. Five and 2 mM N and P possessed much higher levels of several types of aliphatic GSLs than other concentrations, including glucoerucin, glucoraphanin and dimeric 4-mercaptobutyl GSL. From this perspective, it is contended that supply of less N results in enhancing the metabolic pathway for the synthesis of GSLs in rocket salad.

  13. Hyperspectral Imaging Analysis for the Classification of Soil Types and the Determination of Soil Total Nitrogen

    PubMed Central

    Jia, Shengyao; Li, Hongyang; Wang, Yanjie; Tong, Renyuan; Li, Qing

    2017-01-01

    Soil is an important environment for crop growth. Quick and accurately access to soil nutrient content information is a prerequisite for scientific fertilization. In this work, hyperspectral imaging (HSI) technology was applied for the classification of soil types and the measurement of soil total nitrogen (TN) content. A total of 183 soil samples collected from Shangyu City (People’s Republic of China), were scanned by a near-infrared hyperspectral imaging system with a wavelength range of 874–1734 nm. The soil samples belonged to three major soil types typical of this area, including paddy soil, red soil and seashore saline soil. The successive projections algorithm (SPA) method was utilized to select effective wavelengths from the full spectrum. Pattern texture features (energy, contrast, homogeneity and entropy) were extracted from the gray-scale images at the effective wavelengths. The support vector machines (SVM) and partial least squares regression (PLSR) methods were used to establish classification and prediction models, respectively. The results showed that by using the combined data sets of effective wavelengths and texture features for modelling an optimal correct classification rate of 91.8%. could be achieved. The soil samples were first classified, then the local models were established for soil TN according to soil types, which achieved better prediction results than the general models. The overall results indicated that hyperspectral imaging technology could be used for soil type classification and soil TN determination, and data fusion combining spectral and image texture information showed advantages for the classification of soil types. PMID:28974005

  14. Efficacy of reactive mineral-based sorbents for phosphate, bacteria, nitrogen and TOC removal--column experiment in recirculation batch mode.

    PubMed

    Nilsson, Charlotte; Lakshmanan, Ramnath; Renman, Gunno; Rajarao, Gunaratna Kuttuva

    2013-09-15

    Two mineral-based materials (Polonite and Sorbulite) intended for filter wells in on-site wastewater treatment were compared in terms of removal of phosphate (PO4-P), total inorganic nitrogen (TIN), total organic carbon (TOC) and faecal indicator bacteria (Escherichia coli and Enterococci). Using an innovative, recirculating system, septic tank effluent was pumped at a hydraulic loading rate of 3000 L m(2) d(-1) into triplicate bench-scale columns of each material over a 90-day period. The results showed that Polonite performed better with respect to removal of PO4-P, retaining on average 80% compared with 75% in Sorbulite. This difference was attributed to higher CaO content in Polonite and its faster dissolution. Polonite also performed better in terms of removal of bacteria because of its higher pH value. The total average reduction in E. coli was 60% in Polonite and 45% in Sorbulite, while for Enterococci the corresponding value was 56% in Polonite and 34% in Sorbulite. Sorbulite removed TIN more effectively, with a removal rate of 23%, while Polonite removed 11% of TIN, as well as TOC. Organic matter (measured as TOC) was accumulated in the filter materials but was also released periodically. The results showed that Sorbulite could meet the demand in removing phosphate and nitrogen with reduced microbial release from the wastewater treatment process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Nitrogen emissions from broilers measured by mass balance over eighteen consecutive flocks.

    PubMed

    Coufal, C D; Chavez, C; Niemeyer, P R; Carey, J B

    2006-03-01

    Emission of nitrogen in the form of ammonia from poultry rearing facilities has been an important topic for the poultry industry because of concerns regarding the effects of ammonia on the environment. Sound scientific data is needed to accurately estimate air emissions from poultry operations. Many factors, such as season of the year, ambient temperature and humidity, bird health, and management practices can influence ammonia volatilization from broiler rearing facilities. Precise results are often difficult to attain from commercial facilities, particularly over long periods of time. Therefore, an experiment was conducted to determine nitrogen loss from broilers in a research facility under conditions simulating commercial production for 18 consecutive flocks. Broilers were reared to 40 to 42 d of age and fed diets obtained from a commercial broiler integrator. New rice hulls were used for litter for the first flock, and the same litter was recycled for all subsequent flocks with caked litter removed between flocks. All birds, feeds, and litter materials entering and leaving the facility were quantified, sampled, and analyzed for total nitrogen content. Nitrogen loss was calculated by the mass balance method in which loss was equal to the difference between the nitrogen inputs and the nitrogen outputs. Nitrogen partitioning as a percentage of inputs averaged 15.29, 6.84, 55.52, 1.27, and 21.08% for litter, caked litter, broiler carcasses, mortalities, and nitrogen loss, respectively, over all eighteen flocks. During the production of 18 flocks of broilers on the same recycled litter, the average nitrogen emission rate was calculated to range from 4.13 to 19.74 g of N/ kg of marketed broiler (grams of nitrogen per kilogram) and averaged 11.07 g of N/kg. Nitrogen loss was significantly (P < 0.05) greater for flocks reared in summer vs. winter. Results of this experiment have demonstrated that the rate of nitrogen volatilization from broiler grow-out facilities varies significantly on a flock-to-flock basis.

  16. Nitrogen loads from selected rivers in the Long Island Sound Basin, 2005–13, Connecticut and Massachusetts

    USGS Publications Warehouse

    Mullaney, John R.

    2016-03-29

    Total nitrogen loads at 14 water-quality monitoring stations were calculated by using discrete measurements of total nitrogen and continuous streamflow data for the period 2005–13 (water years 2006–13). Total nitrogen loads were calculated by using the LOADEST computer program.Overall, for water years 2006–13, streamflow in Connecticut was generally above normal. Total nitrogen yields ranged from 1,160 to 23,330 pounds per square mile per year. Total nitrogen loads from the French River at North Grosvenordale and the Still River at Brookfield Center, Connecticut, declined noticeably during the study period. An analysis of the bias in estimated loads indicated unbiased results at all but one station, indicating generally good fit for the LOADEST models.

  17. Vertical distribution and retention mechanism of nitrogen and phosphorus in soils with different macrophytes of a natural river mouth wetland.

    PubMed

    Huang, Wei; Chen, Qiuwen; Ren, Kuixiao; Chen, Kaining

    2015-03-01

    Wetland vegetation can improve water quality through several processes including direct assimilation and the indirect effects of sedimentation and mineralization. This research takes the Zhucao River mouth of Daxi reservoir as a study case to investigate the vertical distribution of nitrogen and phosphorus in the soil of a natural wetland covered by different plants prior to any restoration action. There are four native emergent macrophytes (Typha latifolia L., Polygonum hydropiper L., Juncus effuses L., Phragmites communis L.) in the wetland. The total nitrogen (TN) and nitrate contents decreased with the soil depth for all vegetation types, and the mean TN and nitrate concentrations were higher in vegetative soil than in bare ground. The maximum TN concentration was found in the surface soil (0-2 cm) covered by P. communis. Ammonium decreased with the soil depth in vegetative areas, while it increased with soil depth in bare ground. The rank order of P fractions was organic P (OP) > P associated with Ca (Ca-P) > P associated with Fe/Al (Fe/Al-P). Total phosphorus (TP) and OP showed vertical profiles similar to that of TN. The mean concentrations of TP, Ca-P and Fe/Al-P were higher in vegetative soil than in bare ground. The maximum mean TP was also found in soil covered by P. communis. Loss on ignition (LOI) was significantly correlated with TN and TP (P < 0.05). Organic matter accumulation may be the main pathway to retain nitrogen and phosphorus in the wetland. Nitrogen and phosphorus sequestration in P. communis soil was the highest of the four dominant plants. The results could support the restoration of other degraded river mouth wetlands of the reservoir.

  18. Bioretention Design to Improve Nitrogen Removal | Science ...

    EPA Pesticide Factsheets

    Bioretention has been shown to effectively remove a variety of stormwater stressors, including oil/grease, heavy metals, phosphorus, and ammonium. However, reported nitrate and total nitrogen removal performance is highly variable. The media typically used in bioretention installation is coarse-grained with low organic matter content, which facilitates high infiltration rates but fails to provide the anaerobic conditions and carbon availability necessary to promote nitrate removal by denitrification. EPA's research at the Urban Watershed Research Facility investigates the effects of media carbon amendments, introduced internal storage zones, plant type, and media volume on nitrogen removal. Initial bench-scale tests informed media and carbon amendment choices. A locally-available, sandy media with low organic matter content was added to eight experimental, pilot-scale rain gardens above a shallow pea gravel drainage layer. The media was separated from the pea gravel with a nonwoven geotextile. Double-shredded hardwood wood chips were chosen as a carbon amendment and added as a 20-cm layer 10 cm above the geotextile in four of the eight pilot-scale rain gardens; the other four did not receive the mulch layer. Four rain gardens were constructed with an elevated outlet pipe to create an internal storage zone; the other four drain freely. Pilot-scale rain gardens were constructed in tanks of two sizes to test the effects of media volume. After initial hydrologic

  19. Estimates of cloud water deposition at Mountain Acid Deposition Program sites in the Appalachian Mountains.

    PubMed

    Baumgardner, Ralph E; Isil, Selma S; Lavery, Thomas F; Rogers, Christopher M; Mohnen, Volker A

    2003-03-01

    Cloud water deposition was estimated at three high-elevation sites in the Appalachian Mountains of the eastern United States (Whiteface Mountain, NY; Whitetop Mountain, VA; and Clingman's Dome, TN) from 1994 through 1999 as part of the Mountain Acid Deposition Program (MADPro). This paper provides a summary of cloud water chemistry, cloud liquid water content, cloud frequency, estimates of cloud water deposition of sulfur and nitrogen species, and estimates of total deposition of sulfur and nitrogen at these sites. Other cloud studies in the Appalachians and their comparison to MADPro are also summarized. Whiteface Mountain exhibited the lowest mean and median concentrations of sulfur and nitrogen ions in cloud water, while Clingman's Dome exhibited the highest mean and median concentrations. This geographic gradient is partly an effect of the different meteorological conditions experienced at northern versus southern sites in addition to the difference in pollution content of air masses reaching the sites. All sites measured seasonal cloud water deposition rates of SO4(2-) greater than 50 kg/ha and NO3(-) rates of greater than 25 kg/ha. These high-elevation sites experienced additional deposition loading of SO4(2-) and NO3(-) on the order of 6-20 times greater compared with lower elevation Clean Air Status and Trends Network (CASTNet) sites. Approximately 80-90% of this extra loading is from cloud deposition.

  20. The effect of carbon supply on allocation to allelochemicals and caterpillar consumption of peppermint.

    PubMed

    Lincoln, D E; Couvet, D

    1989-01-01

    The carbon supply of peppermint plants was manipulated by growing clonal propagules under three carbon dioxide regimes (350, 500 and 650 μl l -1 ). Feeding by fourth instar caterpillars of Spodoptera eridania increased with elevated CO 2 hostplant regime, as well as with low leaf nitrogen content and by a high proportion of leaf volatile terpenoids. Leaf weight increased significantly with the increased carbon supply, but the amount of nitrogen per leaf did not change. The amount of volatile leaf mono-and sesquiterpenes increased proportionately with total leaf dry weight and hence was not influenced by CO 2 supply. These results are consistent with ecological hypotheses which assume that allocation to defense is closely regulated and not sensitive to carbon supply per se.

  1. Study of the effects of proline, phenylalanine, and urea foliar application to Tempranillo vineyards on grape amino acid content. Comparison with commercial nitrogen fertilisers.

    PubMed

    Garde-Cerdán, T; López, R; Portu, J; González-Arenzana, L; López-Alfaro, I; Santamaría, P

    2014-11-15

    The aim of this work was to study the influence of foliar application of different nitrogen sources on grape amino acid content. The nitrogen sources applied to Tempranillo grapevines were proline, phenylalanine, urea, and two commercial nitrogen fertilisers, both without and with amino acids in their formulations. All treatments were applied at veraison and one week later. Proline treatment did not affect the must nitrogen composition. However, phenylalanine and urea foliar application enhanced the plants' synthesis of most of the amino acids, producing similar effects. In addition, the spray of commercial nitrogen fertilisers over leaves also induced a rise in grape amino acid concentrations regardless of the presence or absence of amino acids in their formulation. The most effective treatments were phenylalanine and urea followed by nitrogen fertilisers. This finding is of oenological interest for improved must nitrogen composition, ensuring better fermentation kinetics and most likely enhancing wine quality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. [Short-term effects of low intensity thinning simulated by gap on ground microclimate and soil nutrients of pure spruce plantation].

    PubMed

    Wang, Cheng; Pang, Xue-Yong; Bao, Wei-Kai

    2010-03-01

    Taking a dense spruce pure plantation as test object and simulating the formation of natural forest gap, this paper studied the effects of low intensity thinning by gap creation on the ground temperature, ground humidity, and nutrient contents in different soil layers of the plantation. In the first year of gap creation, the mean diurnal temperature in the gap across the growth season (May - September) increased, while the mean diurnal humidity decreased. The soil organic matter (SOM) and NH4(+) -N contents in O-horizon (humus layer) increased by 19.62% and 283.85%, and the dissolved organic carbon (DOC) and NO3(-) -N contents decreased by 77.86% and 23.60%, respectively. The SOM, total nitrogen (TN), and NO3(-) -N contents in 0-10 cm soil layer increased by 45.77%, 37.14%, and 75.11%, and the NH4(+) -N, DOC, and total phosphorus (TP) contents decreased by 48.56%, 33.33%, and 13.11%, respectively. All the results suggested that low intensity thinning by gap creation could rapidly improve the ground microclimate of the plantation, and consequently, promote the soil microbial activity and mineralization processes in O-horizon, the release of soil nutrients, and the restoration of soil fertility.

  3. RBCS1A and RBCS3B, two major members within the Arabidopsis RBCS multigene family, function to yield sufficient Rubisco content for leaf photosynthetic capacity

    PubMed Central

    Tsunoda, Honami; Suzuki, Yuji; Makino, Amane; Ishida, Hiroyuki

    2012-01-01

    Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit (RBCS) is encoded by a nuclear RBCS multigene family in many plant species. The contribution of the RBCS multigenes to accumulation of Rubisco holoenzyme and photosynthetic characteristics remains unclear. T-DNA insertion mutants of RBCS1A (rbcs1a-1) and RBCS3B (rbcs3b-1) were isolated among the four Arabidopsis RBCS genes, and a double mutant (rbcs1a3b-1) was generated. RBCS1A mRNA was not detected in rbcs1a-1 and rbcs1a3b-1, while the RBCS3B mRNA level was suppressed to ∼20% of the wild-type level in rbcs3b-1 and rbcs1a3b-1 leaves. As a result, total RBCS mRNA levels declined to 52, 79, and 23% of the wild-type level in rbcs1a-1, rbcs3b-1, and rbcs1a3b-1, respectively. Rubisco contents showed declines similar to total RBCS mRNA levels, and the ratio of Rubisco-nitrogen to total nitrogen was 62, 78, and 40% of the wild-type level in rbcs1a-1, rbcs3b-1, and rbcs1a3b-1, respectively. The effects of RBCS1A and RBCS3B mutations in rbcs1a3b-1 were clearly additive. The rates of CO2 assimilation at ambient CO2 of 40 Pa were reduced with decreased Rubisco contents in the respective mutant leaves. Although the RBCS composition in the Rubisco holoenzyme changed, the CO2 assimilation rates per unit of Rubisco content were the same irrespective of the genotype. These results clearly indicate that RBCS1A and RBCS3B contribute to accumulation of Rubisco in Arabidopsis leaves and that these genes work additively to yield sufficient Rubisco for photosynthetic capacity. It is also suggested that the RBCS composition in the Rubisco holoenzyme does not affect photosynthesis under the present ambient [CO2] conditions. PMID:22223809

  4. RBCS1A and RBCS3B, two major members within the Arabidopsis RBCS multigene family, function to yield sufficient Rubisco content for leaf photosynthetic capacity.

    PubMed

    Izumi, Masanori; Tsunoda, Honami; Suzuki, Yuji; Makino, Amane; Ishida, Hiroyuki

    2012-03-01

    Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit (RBCS) is encoded by a nuclear RBCS multigene family in many plant species. The contribution of the RBCS multigenes to accumulation of Rubisco holoenzyme and photosynthetic characteristics remains unclear. T-DNA insertion mutants of RBCS1A (rbcs1a-1) and RBCS3B (rbcs3b-1) were isolated among the four Arabidopsis RBCS genes, and a double mutant (rbcs1a3b-1) was generated. RBCS1A mRNA was not detected in rbcs1a-1 and rbcs1a3b-1, while the RBCS3B mRNA level was suppressed to ∼20% of the wild-type level in rbcs3b-1 and rbcs1a3b-1 leaves. As a result, total RBCS mRNA levels declined to 52, 79, and 23% of the wild-type level in rbcs1a-1, rbcs3b-1, and rbcs1a3b-1, respectively. Rubisco contents showed declines similar to total RBCS mRNA levels, and the ratio of Rubisco-nitrogen to total nitrogen was 62, 78, and 40% of the wild-type level in rbcs1a-1, rbcs3b-1, and rbcs1a3b-1, respectively. The effects of RBCS1A and RBCS3B mutations in rbcs1a3b-1 were clearly additive. The rates of CO(2) assimilation at ambient CO(2) of 40 Pa were reduced with decreased Rubisco contents in the respective mutant leaves. Although the RBCS composition in the Rubisco holoenzyme changed, the CO(2) assimilation rates per unit of Rubisco content were the same irrespective of the genotype. These results clearly indicate that RBCS1A and RBCS3B contribute to accumulation of Rubisco in Arabidopsis leaves and that these genes work additively to yield sufficient Rubisco for photosynthetic capacity. It is also suggested that the RBCS composition in the Rubisco holoenzyme does not affect photosynthesis under the present ambient [CO(2)] conditions.

  5. Application of titration methods for measuring the contents of ammonium nitrogen and volatile fatty acids in agricultural biogas plants.

    PubMed

    Piątek, Michał; Lisowski, Aleksander; Lisowska, Barbara

    2017-12-20

    The aim of our research was to assess a relatively new method of estimating ammonium nitrogen concentration in anaerobic digestion of plant substrates. We analysed our own data, received from the anaerobic digestion of maize silage (PM), as well as data published by Purser et al. (2014) who measured energy crops and slurry (ECS), and food waste (FW). In our study, the process was monitored for VFA content that was determined by gas chromatography, and for the content of ammonium nitrogen determined using the HACH LANGE LCK 303 cuvette test. We created polynomial regression models that bind the content of ammonium nitrogen with the volume of H 2 SO 4 used to titrate the sample from initial pH to pH 5. To estimate parameters of model, the PM dataset was used. The obtained models were positively validated using ECS and FW datasets. Our results confirmed the effectiveness of the Purser et al. method with an average absolute error of less than 223mgl -1 of the VFA concentration, which was approximately 20-times less than the level that caused inhibition. In conclusion, we can affirm the suitability of using titration methods to assess the ammonium nitrogen content of bioreactors with a stable composition. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Physical and chemical characteristics of water from the hydrographic basin of the Poxim River, Sergipe State, Brazil.

    PubMed

    de Aguiar Netto, Antenor Oliveira; Garcia, Carlos Alexandre Borges; Hora Alves, José do Patrocínio; Ferreira, Robério Anastácio; Gonzaga da Silva, Marinoé

    2013-05-01

    The Poxim River is one of Sergipe State's major waterways. It supplies water to the State capital, Aracaju, but is threatened by urban and agricultural developments that compromise both the quantity and the quality of the water. This has direct impacts on the daily lives of the region's population. In this work, a multivariate analytical approach was used to investigate the physical and chemical characteristics of the water in the river basin. Four sampling campaigns were undertaken, in November 2005, and in February, May, and September 2006, at 15 sites distributed along the Poxim. The parameters analyzed were conductivity, turbidity, color, total dissolved solids, dissolved oxygen, alkalinity, hardness, chlorophyll-a, and nutrients (total phosphorus, dissolved orthophosphate, nitrite, nitrate, ammoniacal nitrogen, and total nitrogen). Dissolved oxygen contents were very low in the Poxim-Açu River (1.0-2.8), the Poxim River (1.6-4.6), and the estuarine region (1.7-5.1), due to the dumping of wastes and discharges of domestic and industrial effluents containing organic matter into fluvial and estuarine regions of the Poxim. Factor analysis identified five components that were indicative of the quality of the water, and that explained 81.73 % of the total variance.

  7. Relationship of nitrogen use efficiency with the activities of enzymes involved in nitrogen uptake and assimilation of finger millet genotypes grown under different nitrogen inputs.

    PubMed

    Gupta, Nidhi; Gupta, Atul K; Gaur, Vikram S; Kumar, Anil

    2012-01-01

    Nitrogen responsiveness of three-finger millet genotypes (differing in their seed coat colour) PRM-1 (brown), PRM-701 (golden), and PRM-801 (white) grown under different nitrogen doses was determined by analyzing the growth, yield parameters and activities of nitrate reductase (NR), glutamine synthetase (GS), glutamate synthase; GOGAT, and glutamate dehydrogenase (GDH) at different developmental stages. High nitrogen use efficiency and nitrogen utilization efficiency were observed in PRM-1 genotype, whereas high nitrogen uptake efficiency was observed in PRM-801 genotype. At grain filling nitrogen uptake efficiency in PRM-1 negatively correlated with NR, GS, GOGAT activities whereas it was positively correlated in PRM-701 and PRM-801, however, GDH showed a negative correlation. Growth and yield parameters indicated that PRM-1 responds well at high nitrogen conditions while PRM-701 and PRM-801 respond well at normal and low nitrogen conditions respectively. The study indicates that PRM-1 is high nitrogen responsive and has high nitrogen use efficiency, whereas golden PRM-701 and white PRM-801 are low nitrogen responsive genotypes and have low nitrogen use efficiency. However, the crude grain protein content was higher in PRM-801 genotype followed by PRM-701 and PRM-1, indicating negative correlation of nitrogen use efficiency with source to sink relationship in terms of seed protein content.

  8. Influence of Substrate Heating and Nitrogen Flow on the Composition, Morphological and Mechanical Properties of SiNx Coatings Aimed for Joint Replacements

    PubMed Central

    Skjöldebrand, Charlotte; Schmidt, Susann; Vuong, Vicky; Pettersson, Maria; Grandfield, Kathryn; Högberg, Hans; Engqvist, Håkan; Persson, Cecilia

    2017-01-01

    Silicon nitride (SiNx) coatings are promising for joint replacement applications due to their high wear resistance and biocompatibility. For such coatings, a higher nitrogen content, obtained through an increased nitrogen gas supply, has been found to be beneficial in terms of a decreased dissolution rate of the coatings. The substrate temperature has also been found to affect the composition as well as the microstructure of similar coatings. The aim of this study was to investigate the effect of the substrate temperature and nitrogen flow on the coating composition, microstructure and mechanical properties. SiNx coatings were deposited onto CoCrMo discs using reactive high power impulse magnetron sputtering. During deposition, the substrate temperatures were set to 200 °C, 350 °C or 430 °C, with nitrogen-to-argon flow ratios of 0.06, 0.17 or 0.30. Scanning and transmission electron spectroscopy revealed that the coatings were homogenous and amorphous. The coatings displayed a nitrogen content of 23–48 at.% (X-ray photoelectron spectroscopy). The surface roughness was similar to uncoated CoCrMo (p = 0.25) (vertical scanning interferometry). The hardness and Young’s modulus, as determined from nanoindentation, scaled with the nitrogen content of the coatings, with the hardness ranging from 12 ± 1 GPa to 26 ± 2 GPa and the Young’s moduli ranging from 173 ± 8 GPa to 293 ± 18 GPa, when the nitrogen content increased from 23% to 48%. The low surface roughness and high nano-hardness are promising for applications exposed to wear, such as joint implants. PMID:28772532

  9. Nitrogen remobilisation facilitates adventitious root formation on reversible dark-induced carbohydrate depletion in Petunia hybrida.

    PubMed

    Zerche, Siegfried; Haensch, Klaus-Thomas; Druege, Uwe; Hajirezaei, Mohammad-Reza

    2016-10-10

    Adventitious root (AR) formation in axillary shoot tip cuttings is a crucial physiological process for ornamental propagation that is utilised in global production chains for young plants. In this process, the nitrogen and carbohydrate metabolisms of a cutting are regulated by its total nitrogen content (N t ), dark exposure during transport and irradiance levels at distinct production sites and phases through a specific plasticity to readjust metabolite pools. Here, we examined how elevated N t contents with a combined dark exposure of cuttings influence their internal N-pools including free amino acids and considered early anatomic events of AR formation as well as further root development in Petunia hybrida cuttings. Enhanced N t contents of unrooted cuttings resulted in elevated total free amino acid levels and in particular glutamate (glu) and glutamine (gln) in leaf and basal stem. N-allocation to mobile N-pools increased whereas the allocation to insoluble protein-N declined. A dark exposure of cuttings conserved initial N t and nitrate-N, while it reduced insoluble protein-N and increased soluble protein, amino- and amide-N. The increase of amino acids mainly comprised asparagine (asn), aspartate (asp) and arginine (arg) in the leaves, with distinct tissue specific responses to an elevated N supply. Dark exposure induced an early transient rise of asp followed by a temporary increase of glu. A strong positive N effect of high N t contents of cuttings on AR formation after 384 h was observed. Root meristematic cells developed at 72 h with a negligible difference for two N t levels. After 168 h, an enhanced N t accelerated AR formation and gave rise to first obvious fully developed roots while only meristems were formed with a low N t . However, dark exposure for 168 h promoted AR formation particularly in cuttings with a low N t to such an extent so that the benefit of the enhanced N t was almost compensated. Combined dark exposure and low N t of cuttings strongly reduced shoot growth during AR formation. The results indicate that both enhanced N t content and dark exposure of cuttings reinforced N signals and mobile N resources in the stem base facilitated by senescence-related proteolysis in leaves. Based on our results, a model of N mobilisation concomitant with carbohydrate depletion and its significance for AR formation is postulated.

  10. Natural and human impact on the land use and soil properties of the Sikkim Himalayas piedmont in India.

    PubMed

    Prokop, P; Płoskonka, D

    2014-06-01

    Natural and human causes of change in land use and soil properties were studied in the Sikkim Himalayas piedmont over the last 150 years, with a special emphasis on the period 1930-2010. Analysis of historical reports, combined with the visual interpretation of topographic maps and satellite images, indicates that the land reforms related to the location of tea gardens caused rapid deforestation of the higher elevated terraces in the late 19th century. Continuous population growth between 1930 and 2010 caused a shift in the major land use changes from the terraces to the floodplains. As a consequence, a gradual extension of tea plantation and forestry development helped in stabilizing the land use of the terraces, while the parallel deforestation of mountain catchments and floodplains for rice cultivation intensified fluvial activity. The enlargement of river-channel area by about 42% between 1930 and 2010 excluded a large part of the floodplains from cultivation and increased risk of soil degradation. The replacement of natural forest by monocultural tea and rice cultivation influenced the physical and chemical properties of the soil. Statistically significant changes were observed only in some chemical properties of the topsoil. Tea cultivation reduced the total carbon content by 26% and total nitrogen content by 33% in the surface soil horizon. The influence of rice tillage on the soil properties is masked by the fluvial activity. The combined effect of flooding and rice cultivation is reflected in the lower content of total carbon and nitrogen in the surface of the soil, namely, 76% and 77% respectively. Taking into account the long-term nature of the plantation, the soil still has the capability to support tea production. The productivity of rice depends partly on fertilization levels and partly on the natural deposition of fresh sediment eroded from mountains. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Fish scales in sediments from off Callao, central Peru

    NASA Astrophysics Data System (ADS)

    Díaz-Ochoa, J. A.; Lange, C. B.; Pantoja, S.; De Lange, G. J.; Gutiérrez, D.; Muñoz, P.; Salamanca, M.

    2009-07-01

    We study fish scales as a proxy of fish abundance and preservation biases together with phosphorus from fish remains (P fish) in a sediment core retrieved off Callao, Peru (12°1'S, 77°42'W; water depth=179 m; core length=52 cm). We interpret our results as a function of changing redox conditions based on ratios of redox-sensitive trace elements (Cu/Al, Mo/Al, Ni/Al, Zn/Al, V/Al), terrigenous indicators (Fe in clays, Ti, Al), and biogenic proxies (CaCO 3, biogenic opal, total nitrogen, organic carbon, barite Ba). The core covers roughly 700 years of deposition, based on 210Pb activities extrapolated downcore and 14C dating at selected intervals. Our fish-scale record is dominated by anchovy ( Engraulis ringens) scales followed by hake ( Merluccius gayii) scales. The core presented an abrupt lithological change at 17 cm (corresponding to the early 19th century). Above that depth, it was laminated and was more organic-rich (10-15% organic carbon) than below, where the core was partly laminated and less organic-rich (<10%). The lithological shift coincides with abrupt changes in dry bulk density and in the contents of terrigenous and redox-sensitive trace elements, biogenic proxies, and fish scales. The remarkable increase in redox-sensitive trace elements in the upper 17 cm of the core suggests more reducing conditions when compared with deeper and older horizons, and is interpreted as an intensification of the oxygen minimum zone off Peru beginning in the early 19th century. Higher fish-scale contents and higher P fish/P total ratios were also observed within the upper 17 cm of the core. The behavior of biogenic proxies and redox-sensitive trace elements was similar; more reduced conditions corresponded to higher contents of CaCO 3, C org, total nitrogen and fish scales, suggesting that these proxies might convey an important preservation signal.

  12. Monitoring of impact of anthropogenic inputs on water quality of mangrove ecosystem of Uran, Navi Mumbai, west coast of India.

    PubMed

    Pawar, Prabhakar R

    2013-10-15

    Surface water samples were collected from substations along Sheva creek and Dharamtar creek mangrove ecosystems of Uran (Raigad), Navi Mumbai, west coast of India. Water samples were collected fortnightly from April 2009 to March 2011 during spring low and high tides and were analyzed for pH, Temperature, Turbidity, Total solids (TS), Total dissolved solids (TDS), Total suspended solids (TSS), Dissolved oxygen (DO), Biochemical oxygen demand (BOD), Carbon dioxide (CO2), Chemical oxygen demand (COD), Salinity, Orthophosphate (O-PO4), Nitrite-nitrogen (NO2-N), Nitrate-nitrogen (NO3-N), and Silicates. Variables like pH, turbidity, TDS, salinity, DO, and BOD show seasonal variations. Higher content of O-PO4, NO3-N, and silicates is recorded due to discharge of domestic wastes and sewage, effluents from industries, oil tanking depots and also from maritime activities of Jawaharlal Nehru Port Trust (JNPT), hectic activities of Container Freight Stations (CFS), and other port wastes. This study reveals that water quality from mangrove ecosystems of Uran is deteriorating due to industrial pollution and that mangrove from Uran is facing the threat due to anthropogenic stress. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Nitrogen, phosphorus, organic carbon, and biochemical oxygen demand : in Florida surface waters, 1972

    USGS Publications Warehouse

    Kaufman, Matthew I.; Dysart, J.E.

    1978-01-01

    Water samples were collected during spring and autumn 1972 from about 100 surface-water sites in Florida. The samples were analyzed for the plant nutrients, nitrogen and phosphorus. In most waters, nitrogen concentrations are less than 2.0 milligrams per liter as nitrogen, and organic nitrogen is dominant. Median total nitrogen concentration for Florida surface waters is between 1.2 and 2.0 milligrams per liter as nitrogen. In samples from 85 percent of the sites, total nitrogen exceeded 0.6 milligrams per liter. Median total phosphorus concentration as phosphorus for Florida surface waters is between 0.05 and 0.1 milligrams per liter. The information will form a base useful to agencies concerned with setting concentration limits for nitrogen and phosphorus in industrial and sewage plant outfalls. (Woodard-USGS)

  14. Soil nitrogen patterns induced by colonization of Polygonum cuspidatum on Mt. Fuji.

    PubMed

    Hirose, T; Tateno, M

    1984-02-01

    The spatial pattern of soil nitrogen was analyzed for a patchy vegetation formed by the colonization of Polygonum cuspidatum in a volcanic "desert" on Mt. Fuji. Soils were sampled radially from the bare ground to the center of the patch, and analyses were done for bulk density, water content, soil acidity, organic matter, organic nitrogen, and ammonium and nitrate nitrogen. The soils matured with succession from the bare ground through P. cuspidatum to Miscanthus oligostachyus and Aster ageratoides sites: bulk density decreased, and water content, organic matter, organic nitrogen, and ammonium nitrogen increased. Nitrate nitrogen showed the highest values at the P. cuspidatum site. Application of principal component analysis to the soil data discriminated two component factors which control the variation of soil characteristics: the first factor is related to soil formation and the second factor to nitrogen mineralization and nitrification. The effect of soil formation on nitrogen mineralization and nitrification was analyzed with a first-order kinetic model. The decreasing trends with soil formation in the ratios of mineral to organic nitrogen and of nitrate to ammonium nitrogen could be accounted for by the higher activity of immobilization by microorganisms and uptake by plants in the more mature ecosystem.

  15. The role of termites in an equatorial rain forest ecosystem of West Malaysia : I. Population density, biomass, carbon, nitrogen and calorific content and respiration rate.

    PubMed

    Matsumoto, Tadao

    1976-06-01

    1. Density of nests, population number, biomass, nitrogen and carbon content, calorific content and respiration rate of termites were studied at Pasoh Forest, West Malaysia mainly with four dominant species of epigeous nest builders, Macrotermes carbonarius, Dicuspiditermes nemorosus type-a, type-b and Homallotermes foraminifer, to reveal their role in the ecosystem. 2. The density of nests or mounds was 15-41/ha in M. carbonarius, 60-110/ha in the two types of D. nemorosus and 85-165/ha in H. foraminifer. 3. The population number per nest or mound was about 88,000 in M. carbonarius, 45,000 in D. nemorosus type-a, 47,000 in D. nemorosus type-b and 13,000 in H. foraminifer. The population number per hectare was about 1.8x10 6 for M. carbonarius, 4.3x10 6 for D. nemorosus type-a, 5.2x10 6 for D. nemorosus type-b and 2.1x10 6 for H. foraminifer. 4. The ratio in number of workers to soldiers was 6.4 for M. carbonarius, 19.0 for D. nemorosus type-a, 23.1 for D. nemorosus type-b and 8.9 for H. foraminifer. The ratio in number of adults (workers plus soldiers) to larvae was 1.4 for M. carbonarius, 0.59 for D. nemorosus type-a, 1.76 for D. nemorosus type-b and 3.84 for H. foraminifer. 5. The number of adults per nest of D. nemorosus type-a, type-b and H. foraminifer was linearly correlated with the weight of nest on the log-log coordinates. 6. The ratio of dry body weight to live weight was 0.24-0.30 for workers, 0.19-0.29 for soldiers and 0.15-0.22 for larvae. 7. The ash content of termite body was 26-66% for workers, 2-24% for soldiers and 1-4% for larvae. 8. The carbon content ranged from 45% to 66% of ash-free dry weight and the nitrogen content from 5.6% to 12.6%. 9. The mean calorific value of termite body was 5.3 gcal/mg in workers and soldiers on an ash-free weight basis, but was greater in nymphs and winged reproductives in the nest (6.7-6.9 gcal/mg) owing probably to their large fat storage. 10. The relation of CO 2 evolution rate to temperature in these termites was similar to what has been found in other insects. 11. The total biomass of the four termite species was estimated at 6.01 kg ash-free dry weight/ha, equivalent to 0.55 kg nitrogen/ha and 3.09 kg carbon/ha. 12. The role of the fungi cultivated by M. carbonarius on their fungus combs was discussed in relation to the nutrition of termites and the decomposition of leaf-litter with special reference to their nitrogen metabolism. The high nitrogen content of fungus spherules growing on fungus combs seemed to have an important bearing on the nutrition of termites. 13. It was concluded that the termites played a very important role in the organic matter decomposition cycle of Pasoh Forest.

  16. Fagaceae tree species allocate higher fraction of nitrogen to photosynthetic apparatus than Leguminosae in Jianfengling tropical montane rain forest, China

    PubMed Central

    Cheng, Ruimei; Shi, Zuomin; Xu, Gexi; Liu, Shirong; Centritto, Mauro

    2018-01-01

    Variation in photosynthetic-nitrogen use efficiency (PNUE) is generally affected by several factors such as leaf nitrogen allocation and leaf diffusional conductances to CO2, although it is still unclear which factors significantly affect PNUE in tropical montane rain forest trees. In this study, comparison of PNUE, photosynthetic capacity, leaf nitrogen allocation, and diffusional conductances to CO2 between five Fagaceae tree species and five Leguminosae tree species were analyzed in Jianfengling tropical montane rain forest, Hainan Island, China. The result showed that PNUE of Fagaceae was significantly higher than that of Leguminosae (+35.5%), attributed to lower leaf nitrogen content per area (Narea, –29.4%). The difference in nitrogen allocation was the main biochemical factor that influenced interspecific variation in PNUE of these tree species. Fagaceae species allocated a higher fraction of leaf nitrogen to the photosynthetic apparatus (PP, +43.8%), especially to Rubisco (PR, +50.0%) and bioenergetics (PB +33.3%) in comparison with Leguminosae species. Leaf mass per area (LMA) of Leguminosae species was lower than that of Fagaceae species (-15.4%). While there was no significant difference shown for mesophyll conductance (gm), Fagaceae tree species may have greater chloroplast to total leaf surface area ratios and that offset the action of thicker cell walls on gm. Furthermore, weak negative relationship between nitrogen allocation in cell walls and in Rubisco was found for Castanopsis hystrix, Cyclobalanopsis phanera and Cy. patelliformis, which might imply that nitrogen in the leaves was insufficient for both Rubisco and cell walls. In summary, our study concluded that higher PNUE might contribute to the dominance of most Fagaceae tree species in Jianfengling tropical montane rain forest. PMID:29390007

  17. Fagaceae tree species allocate higher fraction of nitrogen to photosynthetic apparatus than Leguminosae in Jianfengling tropical montane rain forest, China.

    PubMed

    Tang, Jingchao; Cheng, Ruimei; Shi, Zuomin; Xu, Gexi; Liu, Shirong; Centritto, Mauro

    2018-01-01

    Variation in photosynthetic-nitrogen use efficiency (PNUE) is generally affected by several factors such as leaf nitrogen allocation and leaf diffusional conductances to CO2, although it is still unclear which factors significantly affect PNUE in tropical montane rain forest trees. In this study, comparison of PNUE, photosynthetic capacity, leaf nitrogen allocation, and diffusional conductances to CO2 between five Fagaceae tree species and five Leguminosae tree species were analyzed in Jianfengling tropical montane rain forest, Hainan Island, China. The result showed that PNUE of Fagaceae was significantly higher than that of Leguminosae (+35.5%), attributed to lower leaf nitrogen content per area (Narea, -29.4%). The difference in nitrogen allocation was the main biochemical factor that influenced interspecific variation in PNUE of these tree species. Fagaceae species allocated a higher fraction of leaf nitrogen to the photosynthetic apparatus (PP, +43.8%), especially to Rubisco (PR, +50.0%) and bioenergetics (PB +33.3%) in comparison with Leguminosae species. Leaf mass per area (LMA) of Leguminosae species was lower than that of Fagaceae species (-15.4%). While there was no significant difference shown for mesophyll conductance (gm), Fagaceae tree species may have greater chloroplast to total leaf surface area ratios and that offset the action of thicker cell walls on gm. Furthermore, weak negative relationship between nitrogen allocation in cell walls and in Rubisco was found for Castanopsis hystrix, Cyclobalanopsis phanera and Cy. patelliformis, which might imply that nitrogen in the leaves was insufficient for both Rubisco and cell walls. In summary, our study concluded that higher PNUE might contribute to the dominance of most Fagaceae tree species in Jianfengling tropical montane rain forest.

  18. Characteristics of Tacca leontopetaloides L. Kuntze collected from An Giang in Vietnam

    NASA Astrophysics Data System (ADS)

    Vu, Quan Thi Hong; Le, Phung Thi Kim; Vo, Huy Pham Hoang; Nguyen, Triet Thanh; Nguyen, Tam Kim Minh

    2017-09-01

    Tacca leontopetaloides L. Kuntze has been known as a remedy in folk medicine and also a staple food source in many tropical countries. Nonetheless, there are currently few literature and research on the potential pharmaceutical benefits of this herbal plant. In this study, the constituents of leaves, peels and peeled tubers as well as its antioxidant and antimicrobial activities of Tacca cultivated from mountainous regions in Tinh Bien, An Giang Province, Vietnam were investigated. The results indicated that the highest of total phenolic content (TPC) and total flavonoid content (TFC) were presented in leaves of Tacca which were 16.69 mg GAE (gallic acid equivalent)/g dried weight, 57.24 mg QE (quercetin equivalent)/g dried weight, respectively. Besides, the yield of flour recovery process from Tacca tuber estimated from 18%-20%. The chemical compositions of Tacca flour were 0.66 % total of nitrogen, 0.91% lipid, 0.05% ash and 85.7% starch content on dried weight. Furthermore, the extract of peels possessed potential antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Enterococcus faecalis whilst the extract of others did not show any significant inhibition at the same concentration. As a results, with high starch content (nearly 20% in tuber) is a highly promising new starch for food and pharmaceutical excipient industry, while the usefullness of peel in treatment need further investigation.

  19. Seed storage protein deficiency improves sulfur amino acid content in common bean (Phaseolus vulgaris L.): redirection of sulfur from gamma-glutamyl-S-methyl-cysteine.

    PubMed

    Taylor, Meghan; Chapman, Ralph; Beyaert, Ronald; Hernández-Sebastià, Cinta; Marsolais, Frédéric

    2008-07-23

    The contents of sulfur amino acids in seeds of common bean ( Phaseolus vulgaris L.) are suboptimal for nutrition. They accumulate large amounts of a gamma-glutamyl dipeptide of S-methyl-cysteine, a nonprotein amino acid that cannot substitute for methionine or cysteine in the diet. Protein accumulation and amino acid composition were characterized in three genetically related lines integrating a progressive deficiency in major seed storage proteins, phaseolin, phytohemagglutinin, and arcelin. Nitrogen, carbon, and sulfur contents were comparable among the three lines. The contents of S-methyl-cysteine and gamma-glutamyl-S-methyl-cysteine were progressively reduced in the mutants. Sulfur was shifted predominantly to the protein cysteine pool, while total methionine was only slightly elevated. Methionine and cystine contents (mg per g protein) were increased by up to ca. 40%, to levels slightly above FAO guidelines on amino acid requirements for human nutrition. These findings may be useful to improve the nutritional quality of common bean.

  20. Leaf structural and photosynthetic characteristics, and biomass allocation to foliage in relation to foliar nitrogen content and tree size in three Betula species.

    PubMed

    Niinemets, Ulo; Portsmuth, Angelika; Truus, Laimi

    2002-02-01

    Young trees 0.03-1.7 m high of three coexisting Betula species were investigated in four sites of varying soil fertility, but all in full daylight, to separate nutrient and plant size controls on leaf dry mass per unit area (MA), light-saturated foliar photosynthetic electron transport rate (J) and the fraction of plant biomass in foliage (F(L)). Because the site effect was generally non-significant in the analyses of variance with foliar nitrogen content per unit dry mass (N(M)) as a covariate, N(M) was used as an explaining variable of leaf structural and physiological characteristics. Average leaf area (S) and dry mass per leaf scaled positively with N(M) and total tree height (H) in all species. Leaf dry mass per unit area also increased with increasing H, but decreased with increasing N(M), whereas the effects were species-specific. Increases in plant size led to a lower and increases in N(M) to a greater FL and total plant foliar area per unit plant biomass (LAR). Thus, the self-shading probably increased with increasing N(M) and decreased with increasing H. Nevertheless, the whole-plant average M(A), as well as M(A) values of topmost fully exposed leaves, correlated with N(M) and H in a similar manner, indicating that scaling of MA with N(M) and H did not necessarily result from the modified degree of within-plant shading. The rate of photosynthetic electron transport per unit dry mass (J(M)) scaled positively with N(M), but decreased with increasing H and M(A). Thus, increases in M(A) with tree height and decreasing nitrogen content not only resulted in a lower plant foliar area (LAR = F(L)/M(A)), but also led to lower physiological activity of unit foliar biomass. The leaf parameters (J(M), N(M) and M(A)) varied threefold, but the whole-plant characteristic FL varied 20-fold and LAR 30-fold, indicating that the biomass allocation was more plastically adjusted to different plant internal nitrogen contents and to tree height than the foliar variables. Our results demonstrate that: (1) tree height and N(M) may independently control foliar structure and physiology, and have an even greater impact on biomass allocation; and (2) the modified within-plant light availabilities alone do not explain the observed patterns. Although there were interspecific differences with respect to the statistical significance of the relationships, all species generally fit common regressions. However, these differences were consistent, and suggested that more competitive species with inherently larger growth rates also more plastically respond to N and H.

Top