Sample records for content-based image information

  1. Application of content-based image compression to telepathology

    NASA Astrophysics Data System (ADS)

    Varga, Margaret J.; Ducksbury, Paul G.; Callagy, Grace

    2002-05-01

    Telepathology is a means of practicing pathology at a distance, viewing images on a computer display rather than directly through a microscope. Without compression, images take too long to transmit to a remote location and are very expensive to store for future examination. However, to date the use of compressed images in pathology remains controversial. This is because commercial image compression algorithms such as JPEG achieve data compression without knowledge of the diagnostic content. Often images are lossily compressed at the expense of corrupting informative content. None of the currently available lossy compression techniques are concerned with what information has been preserved and what data has been discarded. Their sole objective is to compress and transmit the images as fast as possible. By contrast, this paper presents a novel image compression technique, which exploits knowledge of the slide diagnostic content. This 'content based' approach combines visually lossless and lossy compression techniques, judiciously applying each in the appropriate context across an image so as to maintain 'diagnostic' information while still maximising the possible compression. Standard compression algorithms, e.g. wavelets, can still be used, but their use in a context sensitive manner can offer high compression ratios and preservation of diagnostically important information. When compared with lossless compression the novel content-based approach can potentially provide the same degree of information with a smaller amount of data. When compared with lossy compression it can provide more information for a given amount of compression. The precise gain in the compression performance depends on the application (e.g. database archive or second opinion consultation) and the diagnostic content of the images.

  2. World Wide Web Based Image Search Engine Using Text and Image Content Features

    NASA Astrophysics Data System (ADS)

    Luo, Bo; Wang, Xiaogang; Tang, Xiaoou

    2003-01-01

    Using both text and image content features, a hybrid image retrieval system for Word Wide Web is developed in this paper. We first use a text-based image meta-search engine to retrieve images from the Web based on the text information on the image host pages to provide an initial image set. Because of the high-speed and low cost nature of the text-based approach, we can easily retrieve a broad coverage of images with a high recall rate and a relatively low precision. An image content based ordering is then performed on the initial image set. All the images are clustered into different folders based on the image content features. In addition, the images can be re-ranked by the content features according to the user feedback. Such a design makes it truly practical to use both text and image content for image retrieval over the Internet. Experimental results confirm the efficiency of the system.

  3. Attention to local and global levels of hierarchical Navon figures affects rapid scene categorization.

    PubMed

    Brand, John; Johnson, Aaron P

    2014-01-01

    In four experiments, we investigated how attention to local and global levels of hierarchical Navon figures affected the selection of diagnostic spatial scale information used in scene categorization. We explored this issue by asking observers to classify hybrid images (i.e., images that contain low spatial frequency (LSF) content of one image, and high spatial frequency (HSF) content from a second image) immediately following global and local Navon tasks. Hybrid images can be classified according to either their LSF, or HSF content; thus, making them ideal for investigating diagnostic spatial scale preference. Although observers were sensitive to both spatial scales (Experiment 1), they overwhelmingly preferred to classify hybrids based on LSF content (Experiment 2). In Experiment 3, we demonstrated that LSF based hybrid categorization was faster following global Navon tasks, suggesting that LSF processing associated with global Navon tasks primed the selection of LSFs in hybrid images. In Experiment 4, replicating Experiment 3 but suppressing the LSF information in Navon letters by contrast balancing the stimuli examined this hypothesis. Similar to Experiment 3, observers preferred to classify hybrids based on LSF content; however and in contrast, LSF based hybrid categorization was slower following global than local Navon tasks.

  4. Attention to local and global levels of hierarchical Navon figures affects rapid scene categorization

    PubMed Central

    Brand, John; Johnson, Aaron P.

    2014-01-01

    In four experiments, we investigated how attention to local and global levels of hierarchical Navon figures affected the selection of diagnostic spatial scale information used in scene categorization. We explored this issue by asking observers to classify hybrid images (i.e., images that contain low spatial frequency (LSF) content of one image, and high spatial frequency (HSF) content from a second image) immediately following global and local Navon tasks. Hybrid images can be classified according to either their LSF, or HSF content; thus, making them ideal for investigating diagnostic spatial scale preference. Although observers were sensitive to both spatial scales (Experiment 1), they overwhelmingly preferred to classify hybrids based on LSF content (Experiment 2). In Experiment 3, we demonstrated that LSF based hybrid categorization was faster following global Navon tasks, suggesting that LSF processing associated with global Navon tasks primed the selection of LSFs in hybrid images. In Experiment 4, replicating Experiment 3 but suppressing the LSF information in Navon letters by contrast balancing the stimuli examined this hypothesis. Similar to Experiment 3, observers preferred to classify hybrids based on LSF content; however and in contrast, LSF based hybrid categorization was slower following global than local Navon tasks. PMID:25520675

  5. Content Based Image Retrieval and Information Theory: A General Approach.

    ERIC Educational Resources Information Center

    Zachary, John; Iyengar, S. S.; Barhen, Jacob

    2001-01-01

    Proposes an alternative real valued representation of color based on the information theoretic concept of entropy. A theoretical presentation of image entropy is accompanied by a practical description of the merits and limitations of image entropy compared to color histograms. Results suggest that image entropy is a promising approach to image…

  6. Content-based image retrieval on mobile devices

    NASA Astrophysics Data System (ADS)

    Ahmad, Iftikhar; Abdullah, Shafaq; Kiranyaz, Serkan; Gabbouj, Moncef

    2005-03-01

    Content-based image retrieval area possesses a tremendous potential for exploration and utilization equally for researchers and people in industry due to its promising results. Expeditious retrieval of desired images requires indexing of the content in large-scale databases along with extraction of low-level features based on the content of these images. With the recent advances in wireless communication technology and availability of multimedia capable phones it has become vital to enable query operation in image databases and retrieve results based on the image content. In this paper we present a content-based image retrieval system for mobile platforms, providing the capability of content-based query to any mobile device that supports Java platform. The system consists of light-weight client application running on a Java enabled device and a server containing a servlet running inside a Java enabled web server. The server responds to image query using efficient native code from selected image database. The client application, running on a mobile phone, is able to initiate a query request, which is handled by a servlet in the server for finding closest match to the queried image. The retrieved results are transmitted over mobile network and images are displayed on the mobile phone. We conclude that such system serves as a basis of content-based information retrieval on wireless devices and needs to cope up with factors such as constraints on hand-held devices and reduced network bandwidth available in mobile environments.

  7. Content-based image retrieval by matching hierarchical attributed region adjacency graphs

    NASA Astrophysics Data System (ADS)

    Fischer, Benedikt; Thies, Christian J.; Guld, Mark O.; Lehmann, Thomas M.

    2004-05-01

    Content-based image retrieval requires a formal description of visual information. In medical applications, all relevant biological objects have to be represented by this description. Although color as the primary feature has proven successful in publicly available retrieval systems of general purpose, this description is not applicable to most medical images. Additionally, it has been shown that global features characterizing the whole image do not lead to acceptable results in the medical context or that they are only suitable for specific applications. For a general purpose content-based comparison of medical images, local, i.e. regional features that are collected on multiple scales must be used. A hierarchical attributed region adjacency graph (HARAG) provides such a representation and transfers image comparison to graph matching. However, building a HARAG from an image requires a restriction in size to be computationally feasible while at the same time all visually plausible information must be preserved. For this purpose, mechanisms for the reduction of the graph size are presented. Even with a reduced graph, the problem of graph matching remains NP-complete. In this paper, the Similarity Flooding approach and Hopfield-style neural networks are adapted from the graph matching community to the needs of HARAG comparison. Based on synthetic image material build from simple geometric objects, all visually similar regions were matched accordingly showing the framework's general applicability to content-based image retrieval of medical images.

  8. Kingfisher: a system for remote sensing image database management

    NASA Astrophysics Data System (ADS)

    Bruzzo, Michele; Giordano, Ferdinando; Dellepiane, Silvana G.

    2003-04-01

    At present retrieval methods in remote sensing image database are mainly based on spatial-temporal information. The increasing amount of images to be collected by the ground station of earth observing systems emphasizes the need for database management with intelligent data retrieval capabilities. The purpose of the proposed method is to realize a new content based retrieval system for remote sensing images database with an innovative search tool based on image similarity. This methodology is quite innovative for this application, at present many systems exist for photographic images, as for example QBIC and IKONA, but they are not able to extract and describe properly remote image content. The target database is set by an archive of images originated from an X-SAR sensor (spaceborne mission, 1994). The best content descriptors, mainly texture parameters, guarantees high retrieval performances and can be extracted without losses independently of image resolution. The latter property allows DBMS (Database Management System) to process low amount of information, as in the case of quick-look images, improving time performance and memory access without reducing retrieval accuracy. The matching technique has been designed to enable image management (database population and retrieval) independently of dimensions (width and height). Local and global content descriptors are compared, during retrieval phase, with the query image and results seem to be very encouraging.

  9. Method for the reduction of image content redundancy in large image databases

    DOEpatents

    Tobin, Kenneth William; Karnowski, Thomas P.

    2010-03-02

    A method of increasing information content for content-based image retrieval (CBIR) systems includes the steps of providing a CBIR database, the database having an index for a plurality of stored digital images using a plurality of feature vectors, the feature vectors corresponding to distinct descriptive characteristics of the images. A visual similarity parameter value is calculated based on a degree of visual similarity between features vectors of an incoming image being considered for entry into the database and feature vectors associated with a most similar of the stored images. Based on said visual similarity parameter value it is determined whether to store or how long to store the feature vectors associated with the incoming image in the database.

  10. Image/text automatic indexing and retrieval system using context vector approach

    NASA Astrophysics Data System (ADS)

    Qing, Kent P.; Caid, William R.; Ren, Clara Z.; McCabe, Patrick

    1995-11-01

    Thousands of documents and images are generated daily both on and off line on the information superhighway and other media. Storage technology has improved rapidly to handle these data but indexing this information is becoming very costly. HNC Software Inc. has developed a technology for automatic indexing and retrieval of free text and images. This technique is demonstrated and is based on the concept of `context vectors' which encode a succinct representation of the associated text and features of sub-image. In this paper, we will describe the Automated Librarian System which was designed for free text indexing and the Image Content Addressable Retrieval System (ICARS) which extends the technique from the text domain into the image domain. Both systems have the ability to automatically assign indices for a new document and/or image based on the content similarities in the database. ICARS also has the capability to retrieve images based on similarity of content using index terms, text description, and user-generated images as a query without performing segmentation or object recognition.

  11. Content-Based Medical Image Retrieval

    NASA Astrophysics Data System (ADS)

    Müller, Henning; Deserno, Thomas M.

    This chapter details the necessity for alternative access concepts to the currently mainly text-based methods in medical information retrieval. This need is partly due to the large amount of visual data produced, the increasing variety of medical imaging data and changing user patterns. The stored visual data contain large amounts of unused information that, if well exploited, can help diagnosis, teaching and research. The chapter briefly reviews the history of image retrieval and its general methods before technologies that have been developed in the medical domain are focussed. We also discuss evaluation of medical content-based image retrieval (CBIR) systems and conclude with pointing out their strengths, gaps, and further developments. As examples, the MedGIFT project and the Image Retrieval in Medical Applications (IRMA) framework are presented.

  12. A content-based image retrieval method for optical colonoscopy images based on image recognition techniques

    NASA Astrophysics Data System (ADS)

    Nosato, Hirokazu; Sakanashi, Hidenori; Takahashi, Eiichi; Murakawa, Masahiro

    2015-03-01

    This paper proposes a content-based image retrieval method for optical colonoscopy images that can find images similar to ones being diagnosed. Optical colonoscopy is a method of direct observation for colons and rectums to diagnose bowel diseases. It is the most common procedure for screening, surveillance and treatment. However, diagnostic accuracy for intractable inflammatory bowel diseases, such as ulcerative colitis (UC), is highly dependent on the experience and knowledge of the medical doctor, because there is considerable variety in the appearances of colonic mucosa within inflammations with UC. In order to solve this issue, this paper proposes a content-based image retrieval method based on image recognition techniques. The proposed retrieval method can find similar images from a database of images diagnosed as UC, and can potentially furnish the medical records associated with the retrieved images to assist the UC diagnosis. Within the proposed method, color histogram features and higher order local auto-correlation (HLAC) features are adopted to represent the color information and geometrical information of optical colonoscopy images, respectively. Moreover, considering various characteristics of UC colonoscopy images, such as vascular patterns and the roughness of the colonic mucosa, we also propose an image enhancement method to highlight the appearances of colonic mucosa in UC. In an experiment using 161 UC images from 32 patients, we demonstrate that our method improves the accuracy of retrieving similar UC images.

  13. Tag-Based Social Image Search: Toward Relevant and Diverse Results

    NASA Astrophysics Data System (ADS)

    Yang, Kuiyuan; Wang, Meng; Hua, Xian-Sheng; Zhang, Hong-Jiang

    Recent years have witnessed a great success of social media websites. Tag-based image search is an important approach to access the image content of interest on these websites. However, the existing ranking methods for tag-based image search frequently return results that are irrelevant or lack of diversity. This chapter presents a diverse relevance ranking scheme which simultaneously takes relevance and diversity into account by exploring the content of images and their associated tags. First, it estimates the relevance scores of images with respect to the query term based on both visual information of images and semantic information of associated tags. Then semantic similarities of social images are estimated based on their tags. Based on the relevance scores and the similarities, the ranking list is generated by a greedy ordering algorithm which optimizes Average Diverse Precision (ADP), a novel measure that is extended from the conventional Average Precision (AP). Comprehensive experiments and user studies demonstrate the effectiveness of the approach.

  14. Developing a comprehensive system for content-based retrieval of image and text data from a national survey

    NASA Astrophysics Data System (ADS)

    Antani, Sameer K.; Natarajan, Mukil; Long, Jonathan L.; Long, L. Rodney; Thoma, George R.

    2005-04-01

    The article describes the status of our ongoing R&D at the U.S. National Library of Medicine (NLM) towards the development of an advanced multimedia database biomedical information system that supports content-based image retrieval (CBIR). NLM maintains a collection of 17,000 digitized spinal X-rays along with text survey data from the Second National Health and Nutritional Examination Survey (NHANES II). These data serve as a rich data source for epidemiologists and researchers of osteoarthritis and musculoskeletal diseases. It is currently possible to access these through text keyword queries using our Web-based Medical Information Retrieval System (WebMIRS). CBIR methods developed specifically for biomedical images could offer direct visual searching of these images by means of example image or user sketch. We are building a system which supports hybrid queries that have text and image-content components. R&D goals include developing algorithms for robust image segmentation for localizing and identifying relevant anatomy, labeling the segmented anatomy based on its pathology, developing suitable indexing and similarity matching methods for images and image features, and associating the survey text information for query and retrieval along with the image data. Some highlights of the system developed in MATLAB and Java are: use of a networked or local centralized database for text and image data; flexibility to incorporate new research work; provides a means to control access to system components under development; and use of XML for structured reporting. The article details the design, features, and algorithms in this third revision of this prototype system, CBIR3.

  15. A novel methodology for querying web images

    NASA Astrophysics Data System (ADS)

    Prabhakara, Rashmi; Lee, Ching Cheng

    2005-01-01

    Ever since the advent of Internet, there has been an immense growth in the amount of image data that is available on the World Wide Web. With such a magnitude of image availability, an efficient and effective image retrieval system is required to make use of this information. This research presents an effective image matching and indexing technique that improvises on existing integrated image retrieval methods. The proposed technique follows a two-phase approach, integrating query by topic and query by example specification methods. The first phase consists of topic-based image retrieval using an improved text information retrieval (IR) technique that makes use of the structured format of HTML documents. It consists of a focused crawler that not only provides for the user to enter the keyword for the topic-based search but also, the scope in which the user wants to find the images. The second phase uses the query by example specification to perform a low-level content-based image match for the retrieval of smaller and relatively closer results of the example image. Information related to the image feature is automatically extracted from the query image by the image processing system. A technique that is not computationally intensive based on color feature is used to perform content-based matching of images. The main goal is to develop a functional image search and indexing system and to demonstrate that better retrieval results can be achieved with this proposed hybrid search technique.

  16. A novel methodology for querying web images

    NASA Astrophysics Data System (ADS)

    Prabhakara, Rashmi; Lee, Ching Cheng

    2004-12-01

    Ever since the advent of Internet, there has been an immense growth in the amount of image data that is available on the World Wide Web. With such a magnitude of image availability, an efficient and effective image retrieval system is required to make use of this information. This research presents an effective image matching and indexing technique that improvises on existing integrated image retrieval methods. The proposed technique follows a two-phase approach, integrating query by topic and query by example specification methods. The first phase consists of topic-based image retrieval using an improved text information retrieval (IR) technique that makes use of the structured format of HTML documents. It consists of a focused crawler that not only provides for the user to enter the keyword for the topic-based search but also, the scope in which the user wants to find the images. The second phase uses the query by example specification to perform a low-level content-based image match for the retrieval of smaller and relatively closer results of the example image. Information related to the image feature is automatically extracted from the query image by the image processing system. A technique that is not computationally intensive based on color feature is used to perform content-based matching of images. The main goal is to develop a functional image search and indexing system and to demonstrate that better retrieval results can be achieved with this proposed hybrid search technique.

  17. Integrated approach to multimodal media content analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Tong; Kuo, C.-C. Jay

    1999-12-01

    In this work, we present a system for the automatic segmentation, indexing and retrieval of audiovisual data based on the combination of audio, visual and textural content analysis. The video stream is demultiplexed into audio, image and caption components. Then, a semantic segmentation of the audio signal based on audio content analysis is conducted, and each segment is indexed as one of the basic audio types. The image sequence is segmented into shots based on visual information analysis, and keyframes are extracted from each shot. Meanwhile, keywords are detected from the closed caption. Index tables are designed for both linear and non-linear access to the video. It is shown by experiments that the proposed methods for multimodal media content analysis are effective. And that the integrated framework achieves satisfactory results for video information filtering and retrieval.

  18. A picture tells a thousand words: A content analysis of concussion-related images online.

    PubMed

    Ahmed, Osman H; Lee, Hopin; Struik, Laura L

    2016-09-01

    Recently image-sharing social media platforms have become a popular medium for sharing health-related images and associated information. However within the field of sports medicine, and more specifically sports related concussion, the content of images and meta-data shared through these popular platforms have not been investigated. The aim of this study was to analyse the content of concussion-related images and its accompanying meta-data on image-sharing social media platforms. We retrieved 300 images from Pinterest, Instagram and Flickr by using a standardised search strategy. All images were screened and duplicate images were removed. We excluded images if they were: non-static images; illustrations; animations; or screenshots. The content and characteristics of each image was evaluated using a customised coding scheme to determine major content themes, and images were referenced to the current international concussion management guidelines. From 300 potentially relevant images, 176 images were included for analysis; 70 from Pinterest, 63 from Flickr, and 43 from Instagram. Most images were of another person or a scene (64%), with the primary content depicting injured individuals (39%). The primary purposes of the images were to share a concussion-related incident (33%) and to dispense education (19%). For those images where it could be evaluated, the majority (91%) were found to reflect the Sports Concussion Assessment Tool 3 (SCAT3) guidelines. The ability to rapidly disseminate rich information though photos, images, and infographics to a wide-reaching audience suggests that image-sharing social media platforms could be used as an effective communication tool for sports concussion. Public health strategies could direct educative content to targeted populations via the use of image-sharing platforms. Further research is required to understand how image-sharing platforms can be used to effectively relay evidence-based information to patients and sports medicine clinicians. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Web image retrieval using an effective topic and content-based technique

    NASA Astrophysics Data System (ADS)

    Lee, Ching-Cheng; Prabhakara, Rashmi

    2005-03-01

    There has been an exponential growth in the amount of image data that is available on the World Wide Web since the early development of Internet. With such a large amount of information and image available and its usefulness, an effective image retrieval system is thus greatly needed. In this paper, we present an effective approach with both image matching and indexing techniques that improvise on existing integrated image retrieval methods. This technique follows a two-phase approach, integrating query by topic and query by example specification methods. In the first phase, The topic-based image retrieval is performed by using an improved text information retrieval (IR) technique that makes use of the structured format of HTML documents. This technique consists of a focused crawler that not only provides for the user to enter the keyword for the topic-based search but also, the scope in which the user wants to find the images. In the second phase, we use query by example specification to perform a low-level content-based image match in order to retrieve smaller and relatively closer results of the example image. From this, information related to the image feature is automatically extracted from the query image. The main objective of our approach is to develop a functional image search and indexing technique and to demonstrate that better retrieval results can be achieved.

  20. A neotropical Miocene pollen database employing image-based search and semantic modeling.

    PubMed

    Han, Jing Ginger; Cao, Hongfei; Barb, Adrian; Punyasena, Surangi W; Jaramillo, Carlos; Shyu, Chi-Ren

    2014-08-01

    Digital microscopic pollen images are being generated with increasing speed and volume, producing opportunities to develop new computational methods that increase the consistency and efficiency of pollen analysis and provide the palynological community a computational framework for information sharing and knowledge transfer. • Mathematical methods were used to assign trait semantics (abstract morphological representations) of the images of neotropical Miocene pollen and spores. Advanced database-indexing structures were built to compare and retrieve similar images based on their visual content. A Web-based system was developed to provide novel tools for automatic trait semantic annotation and image retrieval by trait semantics and visual content. • Mathematical models that map visual features to trait semantics can be used to annotate images with morphology semantics and to search image databases with improved reliability and productivity. Images can also be searched by visual content, providing users with customized emphases on traits such as color, shape, and texture. • Content- and semantic-based image searches provide a powerful computational platform for pollen and spore identification. The infrastructure outlined provides a framework for building a community-wide palynological resource, streamlining the process of manual identification, analysis, and species discovery.

  1. Breast Histopathological Image Retrieval Based on Latent Dirichlet Allocation.

    PubMed

    Ma, Yibing; Jiang, Zhiguo; Zhang, Haopeng; Xie, Fengying; Zheng, Yushan; Shi, Huaqiang; Zhao, Yu

    2017-07-01

    In the field of pathology, whole slide image (WSI) has become the major carrier of visual and diagnostic information. Content-based image retrieval among WSIs can aid the diagnosis of an unknown pathological image by finding its similar regions in WSIs with diagnostic information. However, the huge size and complex content of WSI pose several challenges for retrieval. In this paper, we propose an unsupervised, accurate, and fast retrieval method for a breast histopathological image. Specifically, the method presents a local statistical feature of nuclei for morphology and distribution of nuclei, and employs the Gabor feature to describe the texture information. The latent Dirichlet allocation model is utilized for high-level semantic mining. Locality-sensitive hashing is used to speed up the search. Experiments on a WSI database with more than 8000 images from 15 types of breast histopathology demonstrate that our method achieves about 0.9 retrieval precision as well as promising efficiency. Based on the proposed framework, we are developing a search engine for an online digital slide browsing and retrieval platform, which can be applied in computer-aided diagnosis, pathology education, and WSI archiving and management.

  2. Validating a Geographical Image Retrieval System.

    ERIC Educational Resources Information Center

    Zhu, Bin; Chen, Hsinchun

    2000-01-01

    Summarizes a prototype geographical image retrieval system that demonstrates how to integrate image processing and information analysis techniques to support large-scale content-based image retrieval. Describes an experiment to validate the performance of this image retrieval system against that of human subjects by examining similarity analysis…

  3. Material classification and automatic content enrichment of images using supervised learning and knowledge bases

    NASA Astrophysics Data System (ADS)

    Mallepudi, Sri Abhishikth; Calix, Ricardo A.; Knapp, Gerald M.

    2011-02-01

    In recent years there has been a rapid increase in the size of video and image databases. Effective searching and retrieving of images from these databases is a significant current research area. In particular, there is a growing interest in query capabilities based on semantic image features such as objects, locations, and materials, known as content-based image retrieval. This study investigated mechanisms for identifying materials present in an image. These capabilities provide additional information impacting conditional probabilities about images (e.g. objects made of steel are more likely to be buildings). These capabilities are useful in Building Information Modeling (BIM) and in automatic enrichment of images. I2T methodologies are a way to enrich an image by generating text descriptions based on image analysis. In this work, a learning model is trained to detect certain materials in images. To train the model, an image dataset was constructed containing single material images of bricks, cloth, grass, sand, stones, and wood. For generalization purposes, an additional set of 50 images containing multiple materials (some not used in training) was constructed. Two different supervised learning classification models were investigated: a single multi-class SVM classifier, and multiple binary SVM classifiers (one per material). Image features included Gabor filter parameters for texture, and color histogram data for RGB components. All classification accuracy scores using the SVM-based method were above 85%. The second model helped in gathering more information from the images since it assigned multiple classes to the images. A framework for the I2T methodology is presented.

  4. Color Based Bags-of-Emotions

    NASA Astrophysics Data System (ADS)

    Solli, Martin; Lenz, Reiner

    In this paper we describe how to include high level semantic information, such as aesthetics and emotions, into Content Based Image Retrieval. We present a color-based emotion-related image descriptor that can be used for describing the emotional content of images. The color emotion metric used is derived from psychophysical experiments and based on three variables: activity, weight and heat. It was originally designed for single-colors, but recent research has shown that the same emotion estimates can be applied in the retrieval of multi-colored images. Here we describe a new approach, based on the assumption that perceived color emotions in images are mainly affected by homogenous regions, defined by the emotion metric, and transitions between regions. RGB coordinates are converted to emotion coordinates, and for each emotion channel, statistical measurements of gradient magnitudes within a stack of low-pass filtered images are used for finding interest points corresponding to homogeneous regions and transitions between regions. Emotion characteristics are derived for patches surrounding each interest point, and saved in a bag-of-emotions, that, for instance, can be used for retrieving images based on emotional content.

  5. Content based image retrieval for matching images of improvised explosive devices in which snake initialization is viewed as an inverse problem

    NASA Astrophysics Data System (ADS)

    Acton, Scott T.; Gilliam, Andrew D.; Li, Bing; Rossi, Adam

    2008-02-01

    Improvised explosive devices (IEDs) are common and lethal instruments of terrorism, and linking a terrorist entity to a specific device remains a difficult task. In the effort to identify persons associated with a given IED, we have implemented a specialized content based image retrieval system to search and classify IED imagery. The system makes two contributions to the art. First, we introduce a shape-based matching technique exploiting shape, color, and texture (wavelet) information, based on novel vector field convolution active contours and a novel active contour initialization method which treats coarse segmentation as an inverse problem. Second, we introduce a unique graph theoretic approach to match annotated printed circuit board images for which no schematic or connectivity information is available. The shape-based image retrieval method, in conjunction with the graph theoretic tool, provides an efficacious system for matching IED images. For circuit imagery, the basic retrieval mechanism has a precision of 82.1% and the graph based method has a precision of 98.1%. As of the fall of 2007, the working system has processed over 400,000 case images.

  6. Plant leaf chlorophyll content retrieval based on a field imaging spectroscopy system.

    PubMed

    Liu, Bo; Yue, Yue-Min; Li, Ru; Shen, Wen-Jing; Wang, Ke-Lin

    2014-10-23

    A field imaging spectrometer system (FISS; 380-870 nm and 344 bands) was designed for agriculture applications. In this study, FISS was used to gather spectral information from soybean leaves. The chlorophyll content was retrieved using a multiple linear regression (MLR), partial least squares (PLS) regression and support vector machine (SVM) regression. Our objective was to verify the performance of FISS in a quantitative spectral analysis through the estimation of chlorophyll content and to determine a proper quantitative spectral analysis method for processing FISS data. The results revealed that the derivative reflectance was a more sensitive indicator of chlorophyll content and could extract content information more efficiently than the spectral reflectance, which is more significant for FISS data compared to ASD (analytical spectral devices) data, reducing the corresponding RMSE (root mean squared error) by 3.3%-35.6%. Compared with the spectral features, the regression methods had smaller effects on the retrieval accuracy. A multivariate linear model could be the ideal model to retrieve chlorophyll information with a small number of significant wavelengths used. The smallest RMSE of the chlorophyll content retrieved using FISS data was 0.201 mg/g, a relative reduction of more than 30% compared with the RMSE based on a non-imaging ASD spectrometer, which represents a high estimation accuracy compared with the mean chlorophyll content of the sampled leaves (4.05 mg/g). Our study indicates that FISS could obtain both spectral and spatial detailed information of high quality. Its image-spectrum-in-one merit promotes the good performance of FISS in quantitative spectral analyses, and it can potentially be widely used in the agricultural sector.

  7. Plant Leaf Chlorophyll Content Retrieval Based on a Field Imaging Spectroscopy System

    PubMed Central

    Liu, Bo; Yue, Yue-Min; Li, Ru; Shen, Wen-Jing; Wang, Ke-Lin

    2014-01-01

    A field imaging spectrometer system (FISS; 380–870 nm and 344 bands) was designed for agriculture applications. In this study, FISS was used to gather spectral information from soybean leaves. The chlorophyll content was retrieved using a multiple linear regression (MLR), partial least squares (PLS) regression and support vector machine (SVM) regression. Our objective was to verify the performance of FISS in a quantitative spectral analysis through the estimation of chlorophyll content and to determine a proper quantitative spectral analysis method for processing FISS data. The results revealed that the derivative reflectance was a more sensitive indicator of chlorophyll content and could extract content information more efficiently than the spectral reflectance, which is more significant for FISS data compared to ASD (analytical spectral devices) data, reducing the corresponding RMSE (root mean squared error) by 3.3%–35.6%. Compared with the spectral features, the regression methods had smaller effects on the retrieval accuracy. A multivariate linear model could be the ideal model to retrieve chlorophyll information with a small number of significant wavelengths used. The smallest RMSE of the chlorophyll content retrieved using FISS data was 0.201 mg/g, a relative reduction of more than 30% compared with the RMSE based on a non-imaging ASD spectrometer, which represents a high estimation accuracy compared with the mean chlorophyll content of the sampled leaves (4.05 mg/g). Our study indicates that FISS could obtain both spectral and spatial detailed information of high quality. Its image-spectrum-in-one merit promotes the good performance of FISS in quantitative spectral analyses, and it can potentially be widely used in the agricultural sector. PMID:25341439

  8. Self-adaptive relevance feedback based on multilevel image content analysis

    NASA Astrophysics Data System (ADS)

    Gao, Yongying; Zhang, Yujin; Fu, Yu

    2001-01-01

    In current content-based image retrieval systems, it is generally accepted that obtaining high-level image features is a key to improve the querying. Among the related techniques, relevance feedback has become a hot research aspect because it combines the information from the user to refine the querying results. In practice, many methods have been proposed to achieve the goal of relevance feedback. In this paper, a new scheme for relevance feedback is proposed. Unlike previous methods for relevance feedback, our scheme provides a self-adaptive operation. First, based on multi- level image content analysis, the relevant images from the user could be automatically analyzed in different levels and the querying could be modified in terms of different analysis results. Secondly, to make it more convenient to the user, the procedure of relevance feedback could be led with memory or without memory. To test the performance of the proposed method, a practical semantic-based image retrieval system has been established, and the querying results gained by our self-adaptive relevance feedback are given.

  9. Self-adaptive relevance feedback based on multilevel image content analysis

    NASA Astrophysics Data System (ADS)

    Gao, Yongying; Zhang, Yujin; Fu, Yu

    2000-12-01

    In current content-based image retrieval systems, it is generally accepted that obtaining high-level image features is a key to improve the querying. Among the related techniques, relevance feedback has become a hot research aspect because it combines the information from the user to refine the querying results. In practice, many methods have been proposed to achieve the goal of relevance feedback. In this paper, a new scheme for relevance feedback is proposed. Unlike previous methods for relevance feedback, our scheme provides a self-adaptive operation. First, based on multi- level image content analysis, the relevant images from the user could be automatically analyzed in different levels and the querying could be modified in terms of different analysis results. Secondly, to make it more convenient to the user, the procedure of relevance feedback could be led with memory or without memory. To test the performance of the proposed method, a practical semantic-based image retrieval system has been established, and the querying results gained by our self-adaptive relevance feedback are given.

  10. Medical Image Retrieval: A Multimodal Approach

    PubMed Central

    Cao, Yu; Steffey, Shawn; He, Jianbiao; Xiao, Degui; Tao, Cui; Chen, Ping; Müller, Henning

    2014-01-01

    Medical imaging is becoming a vital component of war on cancer. Tremendous amounts of medical image data are captured and recorded in a digital format during cancer care and cancer research. Facing such an unprecedented volume of image data with heterogeneous image modalities, it is necessary to develop effective and efficient content-based medical image retrieval systems for cancer clinical practice and research. While substantial progress has been made in different areas of content-based image retrieval (CBIR) research, direct applications of existing CBIR techniques to the medical images produced unsatisfactory results, because of the unique characteristics of medical images. In this paper, we develop a new multimodal medical image retrieval approach based on the recent advances in the statistical graphic model and deep learning. Specifically, we first investigate a new extended probabilistic Latent Semantic Analysis model to integrate the visual and textual information from medical images to bridge the semantic gap. We then develop a new deep Boltzmann machine-based multimodal learning model to learn the joint density model from multimodal information in order to derive the missing modality. Experimental results with large volume of real-world medical images have shown that our new approach is a promising solution for the next-generation medical imaging indexing and retrieval system. PMID:26309389

  11. A neotropical Miocene pollen database employing image-based search and semantic modeling1

    PubMed Central

    Han, Jing Ginger; Cao, Hongfei; Barb, Adrian; Punyasena, Surangi W.; Jaramillo, Carlos; Shyu, Chi-Ren

    2014-01-01

    • Premise of the study: Digital microscopic pollen images are being generated with increasing speed and volume, producing opportunities to develop new computational methods that increase the consistency and efficiency of pollen analysis and provide the palynological community a computational framework for information sharing and knowledge transfer. • Methods: Mathematical methods were used to assign trait semantics (abstract morphological representations) of the images of neotropical Miocene pollen and spores. Advanced database-indexing structures were built to compare and retrieve similar images based on their visual content. A Web-based system was developed to provide novel tools for automatic trait semantic annotation and image retrieval by trait semantics and visual content. • Results: Mathematical models that map visual features to trait semantics can be used to annotate images with morphology semantics and to search image databases with improved reliability and productivity. Images can also be searched by visual content, providing users with customized emphases on traits such as color, shape, and texture. • Discussion: Content- and semantic-based image searches provide a powerful computational platform for pollen and spore identification. The infrastructure outlined provides a framework for building a community-wide palynological resource, streamlining the process of manual identification, analysis, and species discovery. PMID:25202648

  12. Image Location Estimation by Salient Region Matching.

    PubMed

    Qian, Xueming; Zhao, Yisi; Han, Junwei

    2015-11-01

    Nowadays, locations of images have been widely used in many application scenarios for large geo-tagged image corpora. As to images which are not geographically tagged, we estimate their locations with the help of the large geo-tagged image set by content-based image retrieval. In this paper, we exploit spatial information of useful visual words to improve image location estimation (or content-based image retrieval performances). We proposed to generate visual word groups by mean-shift clustering. To improve the retrieval performance, spatial constraint is utilized to code the relative position of visual words. We proposed to generate a position descriptor for each visual word and build fast indexing structure for visual word groups. Experiments show the effectiveness of our proposed approach.

  13. Novel Algorithm for Classification of Medical Images

    NASA Astrophysics Data System (ADS)

    Bhushan, Bharat; Juneja, Monika

    2010-11-01

    Content-based image retrieval (CBIR) methods in medical image databases have been designed to support specific tasks, such as retrieval of medical images. These methods cannot be transferred to other medical applications since different imaging modalities require different types of processing. To enable content-based queries in diverse collections of medical images, the retrieval system must be familiar with the current Image class prior to the query processing. Further, almost all of them deal with the DICOM imaging format. In this paper a novel algorithm based on energy information obtained from wavelet transform for the classification of medical images according to their modalities is described. For this two types of wavelets have been used and have been shown that energy obtained in either case is quite distinct for each of the body part. This technique can be successfully applied to different image formats. The results are shown for JPEG imaging format.

  14. Image BOSS: a biomedical object storage system

    NASA Astrophysics Data System (ADS)

    Stacy, Mahlon C.; Augustine, Kurt E.; Robb, Richard A.

    1997-05-01

    Researchers using biomedical images have data management needs which are oriented perpendicular to clinical PACS. The image BOSS system is designed to permit researchers to organize and select images based on research topic, image metadata, and a thumbnail of the image. Image information is captured from existing images in a Unix based filesystem, stored in an object oriented database, and presented to the user in a familiar laboratory notebook metaphor. In addition, the ImageBOSS is designed to provide an extensible infrastructure for future content-based queries directly on the images.

  15. Monitoring Change Through Hierarchical Segmentation of Remotely Sensed Image Data

    NASA Technical Reports Server (NTRS)

    Tilton, James C.; Lawrence, William T.

    2005-01-01

    NASA's Goddard Space Flight Center has developed a fast and effective method for generating image segmentation hierarchies. These segmentation hierarchies organize image data in a manner that makes their information content more accessible for analysis. Image segmentation enables analysis through the examination of image regions rather than individual image pixels. In addition, the segmentation hierarchy provides additional analysis clues through the tracing of the behavior of image region characteristics at several levels of segmentation detail. The potential for extracting the information content from imagery data based on segmentation hierarchies has not been fully explored for the benefit of the Earth and space science communities. This paper explores the potential of exploiting these segmentation hierarchies for the analysis of multi-date data sets, and for the particular application of change monitoring.

  16. MetaSEEk: a content-based metasearch engine for images

    NASA Astrophysics Data System (ADS)

    Beigi, Mandis; Benitez, Ana B.; Chang, Shih-Fu

    1997-12-01

    Search engines are the most powerful resources for finding information on the rapidly expanding World Wide Web (WWW). Finding the desired search engines and learning how to use them, however, can be very time consuming. The integration of such search tools enables the users to access information across the world in a transparent and efficient manner. These systems are called meta-search engines. The recent emergence of visual information retrieval (VIR) search engines on the web is leading to the same efficiency problem. This paper describes and evaluates MetaSEEk, a content-based meta-search engine used for finding images on the Web based on their visual information. MetaSEEk is designed to intelligently select and interface with multiple on-line image search engines by ranking their performance for different classes of user queries. User feedback is also integrated in the ranking refinement. We compare MetaSEEk with a base line version of meta-search engine, which does not use the past performance of the different search engines in recommending target search engines for future queries.

  17. Mobile object retrieval in server-based image databases

    NASA Astrophysics Data System (ADS)

    Manger, D.; Pagel, F.; Widak, H.

    2013-05-01

    The increasing number of mobile phones equipped with powerful cameras leads to huge collections of user-generated images. To utilize the information of the images on site, image retrieval systems are becoming more and more popular to search for similar objects in an own image database. As the computational performance and the memory capacity of mobile devices are constantly increasing, this search can often be performed on the device itself. This is feasible, for example, if the images are represented with global image features or if the search is done using EXIF or textual metadata. However, for larger image databases, if multiple users are meant to contribute to a growing image database or if powerful content-based image retrieval methods with local features are required, a server-based image retrieval backend is needed. In this work, we present a content-based image retrieval system with a client server architecture working with local features. On the server side, the scalability to large image databases is addressed with the popular bag-of-word model with state-of-the-art extensions. The client end of the system focuses on a lightweight user interface presenting the most similar images of the database highlighting the visual information which is common with the query image. Additionally, new images can be added to the database making it a powerful and interactive tool for mobile contentbased image retrieval.

  18. Content-based image retrieval with ontological ranking

    NASA Astrophysics Data System (ADS)

    Tsai, Shen-Fu; Tsai, Min-Hsuan; Huang, Thomas S.

    2010-02-01

    Images are a much more powerful medium of expression than text, as the adage says: "One picture is worth a thousand words." It is because compared with text consisting of an array of words, an image has more degrees of freedom and therefore a more complicated structure. However, the less limited structure of images presents researchers in the computer vision community a tough task of teaching machines to understand and organize images, especially when a limit number of learning examples and background knowledge are given. The advance of internet and web technology in the past decade has changed the way human gain knowledge. People, hence, can exchange knowledge with others by discussing and contributing information on the web. As a result, the web pages in the internet have become a living and growing source of information. One is therefore tempted to wonder whether machines can learn from the web knowledge base as well. Indeed, it is possible to make computer learn from the internet and provide human with more meaningful knowledge. In this work, we explore this novel possibility on image understanding applied to semantic image search. We exploit web resources to obtain links from images to keywords and a semantic ontology constituting human's general knowledge. The former maps visual content to related text in contrast to the traditional way of associating images with surrounding text; the latter provides relations between concepts for machines to understand to what extent and in what sense an image is close to the image search query. With the aid of these two tools, the resulting image search system is thus content-based and moreover, organized. The returned images are ranked and organized such that semantically similar images are grouped together and given a rank based on the semantic closeness to the input query. The novelty of the system is twofold: first, images are retrieved not only based on text cues but their actual contents as well; second, the grouping is different from pure visual similarity clustering. More specifically, the inferred concepts of each image in the group are examined in the context of a huge concept ontology to determine their true relations with what people have in mind when doing image search.

  19. MediaNet: a multimedia information network for knowledge representation

    NASA Astrophysics Data System (ADS)

    Benitez, Ana B.; Smith, John R.; Chang, Shih-Fu

    2000-10-01

    In this paper, we present MediaNet, which is a knowledge representation framework that uses multimedia content for representing semantic and perceptual information. The main components of MediaNet include conceptual entities, which correspond to real world objects, and relationships among concepts. MediaNet allows the concepts and relationships to be defined or exemplified by multimedia content such as images, video, audio, graphics, and text. MediaNet models the traditional relationship types such as generalization and aggregation but adds additional functionality by modeling perceptual relationships based on feature similarity. For example, MediaNet allows a concept such as car to be defined as a type of a transportation vehicle, but which is further defined and illustrated through example images, videos and sounds of cars. In constructing the MediaNet framework, we have built on the basic principles of semiotics and semantic networks in addition to utilizing the audio-visual content description framework being developed as part of the MPEG-7 multimedia content description standard. By integrating both conceptual and perceptual representations of knowledge, MediaNet has potential to impact a broad range of applications that deal with multimedia content at the semantic and perceptual levels. In particular, we have found that MediaNet can improve the performance of multimedia retrieval applications by using query expansion, refinement and translation across multiple content modalities. In this paper, we report on experiments that use MediaNet in searching for images. We construct the MediaNet knowledge base using both WordNet and an image network built from multiple example images and extracted color and texture descriptors. Initial experimental results demonstrate improved retrieval effectiveness using MediaNet in a content-based retrieval system.

  20. Retinal image quality assessment based on image clarity and content

    NASA Astrophysics Data System (ADS)

    Abdel-Hamid, Lamiaa; El-Rafei, Ahmed; El-Ramly, Salwa; Michelson, Georg; Hornegger, Joachim

    2016-09-01

    Retinal image quality assessment (RIQA) is an essential step in automated screening systems to avoid misdiagnosis caused by processing poor quality retinal images. A no-reference transform-based RIQA algorithm is introduced that assesses images based on five clarity and content quality issues: sharpness, illumination, homogeneity, field definition, and content. Transform-based RIQA algorithms have the advantage of considering retinal structures while being computationally inexpensive. Wavelet-based features are proposed to evaluate the sharpness and overall illumination of the images. A retinal saturation channel is designed and used along with wavelet-based features for homogeneity assessment. The presented sharpness and illumination features are utilized to assure adequate field definition, whereas color information is used to exclude nonretinal images. Several publicly available datasets of varying quality grades are utilized to evaluate the feature sets resulting in area under the receiver operating characteristic curve above 0.99 for each of the individual feature sets. The overall quality is assessed by a classifier that uses the collective features as an input vector. The classification results show superior performance of the algorithm in comparison to other methods from literature. Moreover, the algorithm addresses efficiently and comprehensively various quality issues and is suitable for automatic screening systems.

  1. Content-based image exploitation for situational awareness

    NASA Astrophysics Data System (ADS)

    Gains, David

    2008-04-01

    Image exploitation is of increasing importance to the enterprise of building situational awareness from multi-source data. It involves image acquisition, identification of objects of interest in imagery, storage, search and retrieval of imagery, and the distribution of imagery over possibly bandwidth limited networks. This paper describes an image exploitation application that uses image content alone to detect objects of interest, and that automatically establishes and preserves spatial and temporal relationships between images, cameras and objects. The application features an intuitive user interface that exposes all images and information generated by the system to an operator thus facilitating the formation of situational awareness.

  2. Advanced Image Enhancement Method for Distant Vessels and Structures in Capsule Endoscopy

    PubMed Central

    Pedersen, Marius

    2017-01-01

    This paper proposes an advanced method for contrast enhancement of capsule endoscopic images, with the main objective to obtain sufficient information about the vessels and structures in more distant (or darker) parts of capsule endoscopic images. The proposed method (PM) combines two algorithms for the enhancement of darker and brighter areas of capsule endoscopic images, respectively. The half-unit weighted-bilinear algorithm (HWB) proposed in our previous work is used to enhance darker areas according to the darker map content of its HSV's component V. Enhancement of brighter areas is achieved thanks to the novel threshold weighted-bilinear algorithm (TWB) developed to avoid overexposure and enlargement of specular highlight spots while preserving the hue, in such areas. The TWB performs enhancement operations following a gradual increment of the brightness of the brighter map content of its HSV's component V. In other words, the TWB decreases its averaged weights as the intensity content of the component V increases. Extensive experimental demonstrations were conducted, and, based on evaluation of the reference and PM enhanced images, a gastroenterologist (Ø.H.) concluded that the PM enhanced images were the best ones based on the information about the vessels, contrast in the images, and the view or visibility of the structures in more distant parts of the capsule endoscopy images. PMID:29225668

  3. The infection algorithm: an artificial epidemic approach for dense stereo correspondence.

    PubMed

    Olague, Gustavo; Fernández, Francisco; Pérez, Cynthia B; Lutton, Evelyne

    2006-01-01

    We present a new bio-inspired approach applied to a problem of stereo image matching. This approach is based on an artificial epidemic process, which we call the infection algorithm. The problem at hand is a basic one in computer vision for 3D scene reconstruction. It has many complex aspects and is known as an extremely difficult one. The aim is to match the contents of two images in order to obtain 3D information that allows the generation of simulated projections from a viewpoint that is different from the ones of the initial photographs. This process is known as view synthesis. The algorithm we propose exploits the image contents in order to produce only the necessary 3D depth information, while saving computational time. It is based on a set of distributed rules, which propagate like an artificial epidemic over the images. Experiments on a pair of real images are presented, and realistic reprojected images have been generated.

  4. An information based approach to improving overhead imagery collection

    NASA Astrophysics Data System (ADS)

    Sourwine, Matthew J.; Hintz, Kenneth J.

    2011-06-01

    Recent growth in commercial imaging satellite development has resulted in a complex and diverse set of systems. To simplify this environment for both customer and vendor, an information based sensor management model was built to integrate tasking and scheduling systems. By establishing a relationship between image quality and information, tasking by NIIRS can be utilized to measure the customer's required information content. Focused on a reduction in uncertainty about a target of interest, the sensor manager finds the best sensors to complete the task given the active suite of imaging sensors' functions. This is done through determination of which satellite will meet customer information and timeliness requirements with low likelihood of interference at the highest rate of return.

  5. Image information content and patient exposure.

    PubMed

    Motz, J W; Danos, M

    1978-01-01

    Presently, patient exposure and x-ray tube kilovoltage are determined by image visibility requirements on x-ray film. With the employment of image-processing techniques, image visibility may be manipulated and the exposure may be determined only by the desired information content, i.e., by the required degree of tissue-density descrimination and spatial resolution. This work gives quantitative relationships between the image information content and the patient exposure, give estimates of the minimum exposures required for the detection of image signals associated with particular radiological exams. Also, for subject thickness larger than approximately 5 cm, the results show that the maximum information content may be obtained at a single kilovoltage and filtration with the simultaneous employment of image-enhancement and antiscatter techniques. This optimization may be used either to reduce the patient exposure or to increase the retrieved information.

  6. Mobile visual object identification: from SIFT-BoF-RANSAC to Sketchprint

    NASA Astrophysics Data System (ADS)

    Voloshynovskiy, Sviatoslav; Diephuis, Maurits; Holotyak, Taras

    2015-03-01

    Mobile object identification based on its visual features find many applications in the interaction with physical objects and security. Discriminative and robust content representation plays a central role in object and content identification. Complex post-processing methods are used to compress descriptors and their geometrical information, aggregate them into more compact and discriminative representations and finally re-rank the results based on the similarity geometries of descriptors. Unfortunately, most of the existing descriptors are not very robust and discriminative once applied to the various contend such as real images, text or noise-like microstructures next to requiring at least 500-1'000 descriptors per image for reliable identification. At the same time, the geometric re-ranking procedures are still too complex to be applied to the numerous candidates obtained from the feature similarity based search only. This restricts that list of candidates to be less than 1'000 which obviously causes a higher probability of miss. In addition, the security and privacy of content representation has become a hot research topic in multimedia and security communities. In this paper, we introduce a new framework for non- local content representation based on SketchPrint descriptors. It extends the properties of local descriptors to a more informative and discriminative, yet geometrically invariant content representation. In particular it allows images to be compactly represented by 100 SketchPrint descriptors without being fully dependent on re-ranking methods. We consider several use cases, applying SketchPrint descriptors to natural images, text documents, packages and micro-structures and compare them with the traditional local descriptors.

  7. Computer vision in cell biology.

    PubMed

    Danuser, Gaudenz

    2011-11-23

    Computer vision refers to the theory and implementation of artificial systems that extract information from images to understand their content. Although computers are widely used by cell biologists for visualization and measurement, interpretation of image content, i.e., the selection of events worth observing and the definition of what they mean in terms of cellular mechanisms, is mostly left to human intuition. This Essay attempts to outline roles computer vision may play and should play in image-based studies of cellular life. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. DWT-based stereoscopic image watermarking

    NASA Astrophysics Data System (ADS)

    Chammem, A.; Mitrea, M.; Pr"teux, F.

    2011-03-01

    Watermarking already imposed itself as an effective and reliable solution for conventional multimedia content protection (image/video/audio/3D). By persistently (robustly) and imperceptibly (transparently) inserting some extra data into the original content, the illegitimate use of data can be detected without imposing any annoying constraint to a legal user. The present paper deals with stereoscopic image protection by means of watermarking techniques. That is, we first investigate the peculiarities of the visual stereoscopic content from the transparency and robustness point of view. Then, we advance a new watermarking scheme designed so as to reach the trade-off between transparency and robustness while ensuring a prescribed quantity of inserted information. Finally, this method is evaluated on two stereoscopic image corpora (natural image and medical data).

  9. a Clustering-Based Approach for Evaluation of EO Image Indexing

    NASA Astrophysics Data System (ADS)

    Bahmanyar, R.; Rigoll, G.; Datcu, M.

    2013-09-01

    The volume of Earth Observation data is increasing immensely in order of several Terabytes a day. Therefore, to explore and investigate the content of this huge amount of data, developing more sophisticated Content-Based Information Retrieval (CBIR) systems are highly demanded. These systems should be able to not only discover unknown structures behind the data, but also provide relevant results to the users' queries. Since in any retrieval system the images are processed based on a discrete set of their features (i.e., feature descriptors), study and assessment of the structure of feature space, build by different feature descriptors, is of high importance. In this paper, we introduce a clustering-based approach to study the content of image collections. In our approach, we claim that using both internal and external evaluation of clusters for different feature descriptors, helps to understand the structure of feature space. Moreover, the semantic understanding of users about the images also can be assessed. To validate the performance of our approach, we used an annotated Synthetic Aperture Radar (SAR) image collection. Quantitative results besides the visualization of feature space demonstrate the applicability of our approach.

  10. Adaptive removal of background and white space from document images using seam categorization

    NASA Astrophysics Data System (ADS)

    Fillion, Claude; Fan, Zhigang; Monga, Vishal

    2011-03-01

    Document images are obtained regularly by rasterization of document content and as scans of printed documents. Resizing via background and white space removal is often desired for better consumption of these images, whether on displays or in print. While white space and background are easy to identify in images, existing methods such as naïve removal and content aware resizing (seam carving) each have limitations that can lead to undesirable artifacts, such as uneven spacing between lines of text or poor arrangement of content. An adaptive method based on image content is hence needed. In this paper we propose an adaptive method to intelligently remove white space and background content from document images. Document images are different from pictorial images in structure. They typically contain objects (text letters, pictures and graphics) separated by uniform background, which include both white paper space and other uniform color background. Pixels in uniform background regions are excellent candidates for deletion if resizing is required, as they introduce less change in document content and style, compared with deletion of object pixels. We propose a background deletion method that exploits both local and global context. The method aims to retain the document structural information and image quality.

  11. Content based information retrieval in forensic image databases.

    PubMed

    Geradts, Zeno; Bijhold, Jurrien

    2002-03-01

    This paper gives an overview of the various available image databases and ways of searching these databases on image contents. The developments in research groups of searching in image databases is evaluated and compared with the forensic databases that exist. Forensic image databases of fingerprints, faces, shoeprints, handwriting, cartridge cases, drugs tablets, and tool marks are described. The developments in these fields appear to be valuable for forensic databases, especially that of the framework in MPEG-7, where the searching in image databases is standardized. In the future, the combination of the databases (also DNA-databases) and possibilities to combine these can result in stronger forensic evidence.

  12. Automatically augmenting lifelog events using pervasively generated content from millions of people.

    PubMed

    Doherty, Aiden R; Smeaton, Alan F

    2010-01-01

    In sensor research we take advantage of additional contextual sensor information to disambiguate potentially erroneous sensor readings or to make better informed decisions on a single sensor's output. This use of additional information reinforces, validates, semantically enriches, and augments sensed data. Lifelog data is challenging to augment, as it tracks one's life with many images including the places they go, making it non-trivial to find associated sources of information. We investigate realising the goal of pervasive user-generated content based on sensors, by augmenting passive visual lifelogs with "Web 2.0" content collected by millions of other individuals.

  13. A similarity learning approach to content-based image retrieval: application to digital mammography.

    PubMed

    El-Naqa, Issam; Yang, Yongyi; Galatsanos, Nikolas P; Nishikawa, Robert M; Wernick, Miles N

    2004-10-01

    In this paper, we describe an approach to content-based retrieval of medical images from a database, and provide a preliminary demonstration of our approach as applied to retrieval of digital mammograms. Content-based image retrieval (CBIR) refers to the retrieval of images from a database using information derived from the images themselves, rather than solely from accompanying text indices. In the medical-imaging context, the ultimate aim of CBIR is to provide radiologists with a diagnostic aid in the form of a display of relevant past cases, along with proven pathology and other suitable information. CBIR may also be useful as a training tool for medical students and residents. The goal of information retrieval is to recall from a database information that is relevant to the user's query. The most challenging aspect of CBIR is the definition of relevance (similarity), which is used to guide the retrieval machine. In this paper, we pursue a new approach, in which similarity is learned from training examples provided by human observers. Specifically, we explore the use of neural networks and support vector machines to predict the user's notion of similarity. Within this framework we propose using a hierarchal learning approach, which consists of a cascade of a binary classifier and a regression module to optimize retrieval effectiveness and efficiency. We also explore how to incorporate online human interaction to achieve relevance feedback in this learning framework. Our experiments are based on a database consisting of 76 mammograms, all of which contain clustered microcalcifications (MCs). Our goal is to retrieve mammogram images containing similar MC clusters to that in a query. The performance of the retrieval system is evaluated using precision-recall curves computed using a cross-validation procedure. Our experimental results demonstrate that: 1) the learning framework can accurately predict the perceptual similarity reported by human observers, thereby serving as a basis for CBIR; 2) the learning-based framework can significantly outperform a simple distance-based similarity metric; 3) the use of the hierarchical two-stage network can improve retrieval performance; and 4) relevance feedback can be effectively incorporated into this learning framework to achieve improvement in retrieval precision based on online interaction with users; and 5) the retrieved images by the network can have predicting value for the disease condition of the query.

  14. Occam's razor: supporting visual query expression for content-based image queries

    NASA Astrophysics Data System (ADS)

    Venters, Colin C.; Hartley, Richard J.; Hewitt, William T.

    2005-01-01

    This paper reports the results of a usability experiment that investigated visual query formulation on three dimensions: effectiveness, efficiency, and user satisfaction. Twenty eight evaluation sessions were conducted in order to assess the extent to which query by visual example supports visual query formulation in a content-based image retrieval environment. In order to provide a context and focus for the investigation, the study was segmented by image type, user group, and use function. The image type consisted of a set of abstract geometric device marks supplied by the UK Trademark Registry. Users were selected from the 14 UK Patent Information Network offices. The use function was limited to the retrieval of images by shape similarity. Two client interfaces were developed for comparison purposes: Trademark Image Browser Engine (TRIBE) and Shape Query Image Retrieval Systems Engine (SQUIRE).

  15. Occam"s razor: supporting visual query expression for content-based image queries

    NASA Astrophysics Data System (ADS)

    Venters, Colin C.; Hartley, Richard J.; Hewitt, William T.

    2004-12-01

    This paper reports the results of a usability experiment that investigated visual query formulation on three dimensions: effectiveness, efficiency, and user satisfaction. Twenty eight evaluation sessions were conducted in order to assess the extent to which query by visual example supports visual query formulation in a content-based image retrieval environment. In order to provide a context and focus for the investigation, the study was segmented by image type, user group, and use function. The image type consisted of a set of abstract geometric device marks supplied by the UK Trademark Registry. Users were selected from the 14 UK Patent Information Network offices. The use function was limited to the retrieval of images by shape similarity. Two client interfaces were developed for comparison purposes: Trademark Image Browser Engine (TRIBE) and Shape Query Image Retrieval Systems Engine (SQUIRE).

  16. Geographical Topics Learning of Geo-Tagged Social Images.

    PubMed

    Zhang, Xiaoming; Ji, Shufan; Wang, Senzhang; Li, Zhoujun; Lv, Xueqiang

    2016-03-01

    With the availability of cheap location sensors, geotagging of images in online social media is very popular. With a large amount of geo-tagged social images, it is interesting to study how these images are shared across geographical regions and how the geographical language characteristics and vision patterns are distributed across different regions. Unlike textual document, geo-tagged social image contains multiple types of content, i.e., textual description, visual content, and geographical information. Existing approaches usually mine geographical characteristics using a subset of multiple types of image contents or combining those contents linearly, which ignore correlations between different types of contents, and their geographical distributions. Therefore, in this paper, we propose a novel method to discover geographical characteristics of geo-tagged social images using a geographical topic model called geographical topic model of social images (GTMSIs). GTMSI integrates multiple types of social image contents as well as the geographical distributions, in which image topics are modeled based on both vocabulary and visual features. In GTMSI, each region of the image would have its own topic distribution, and hence have its own language model and vision pattern. Experimental results show that our GTMSI could identify interesting topics and vision patterns, as well as provide location prediction and image tagging.

  17. Medical Image Databases

    PubMed Central

    Tagare, Hemant D.; Jaffe, C. Carl; Duncan, James

    1997-01-01

    Abstract Information contained in medical images differs considerably from that residing in alphanumeric format. The difference can be attributed to four characteristics: (1) the semantics of medical knowledge extractable from images is imprecise; (2) image information contains form and spatial data, which are not expressible in conventional language; (3) a large part of image information is geometric; (4) diagnostic inferences derived from images rest on an incomplete, continuously evolving model of normality. This paper explores the differentiating characteristics of text versus images and their impact on design of a medical image database intended to allow content-based indexing and retrieval. One strategy for implementing medical image databases is presented, which employs object-oriented iconic queries, semantics by association with prototypes, and a generic schema. PMID:9147338

  18. Multiple Object Retrieval in Image Databases Using Hierarchical Segmentation Tree

    ERIC Educational Resources Information Center

    Chen, Wei-Bang

    2012-01-01

    The purpose of this research is to develop a new visual information analysis, representation, and retrieval framework for automatic discovery of salient objects of user's interest in large-scale image databases. In particular, this dissertation describes a content-based image retrieval framework which supports multiple-object retrieval. The…

  19. High content screening of ToxCast compounds using Vala Sciences’ complex cell culturing systems (SOT)

    EPA Science Inventory

    US EPA’s ToxCast research program evaluates bioactivity for thousands of chemicals utilizing high-throughput screening assays to inform chemical testing decisions. Vala Sciences provides high content, multiplexed assays that utilize quantitative cell-based digital image analysis....

  20. Multi-scale learning based segmentation of glands in digital colonrectal pathology images.

    PubMed

    Gao, Yi; Liu, William; Arjun, Shipra; Zhu, Liangjia; Ratner, Vadim; Kurc, Tahsin; Saltz, Joel; Tannenbaum, Allen

    2016-02-01

    Digital histopathological images provide detailed spatial information of the tissue at micrometer resolution. Among the available contents in the pathology images, meso-scale information, such as the gland morphology, texture, and distribution, are useful diagnostic features. In this work, focusing on the colon-rectal cancer tissue samples, we propose a multi-scale learning based segmentation scheme for the glands in the colon-rectal digital pathology slides. The algorithm learns the gland and non-gland textures from a set of training images in various scales through a sparse dictionary representation. After the learning step, the dictionaries are used collectively to perform the classification and segmentation for the new image.

  1. Multi-scale learning based segmentation of glands in digital colonrectal pathology images

    NASA Astrophysics Data System (ADS)

    Gao, Yi; Liu, William; Arjun, Shipra; Zhu, Liangjia; Ratner, Vadim; Kurc, Tahsin; Saltz, Joel; Tannenbaum, Allen

    2016-03-01

    Digital histopathological images provide detailed spatial information of the tissue at micrometer resolution. Among the available contents in the pathology images, meso-scale information, such as the gland morphology, texture, and distribution, are useful diagnostic features. In this work, focusing on the colon-rectal cancer tissue samples, we propose a multi-scale learning based segmentation scheme for the glands in the colon-rectal digital pathology slides. The algorithm learns the gland and non-gland textures from a set of training images in various scales through a sparse dictionary representation. After the learning step, the dictionaries are used collectively to perform the classification and segmentation for the new image.

  2. Contour sensitive saliency and depth application in image retargeting

    NASA Astrophysics Data System (ADS)

    Lu, Hongju; Yue, Pengfei; Zhao, Yanhui; Liu, Rui; Fu, Yuanbin; Zheng, Yuanjie; Cui, Jia

    2018-04-01

    Image retargeting technique requires important information preservation and less edge distortion during increasing/decreasing image size. The major existed content-aware methods perform well. However, there are two problems should be improved: the slight distortion appeared at the object edges and the structure distortion in the nonsalient area. According to psychological theories, people evaluate image quality based on multi-level judgments and comparison between different areas, both image content and image structure. The paper proposes a new standard: the structure preserving in non-salient area. After observation and image analysis, blur (slight blur) is generally existed at the edge of objects. The blur feature is used to estimate the depth cue, named blur depth descriptor. It can be used in the process of saliency computation for balanced image retargeting result. In order to keep the structure information in nonsalient area, the salient edge map is presented in Seam Carving process, instead of field-based saliency computation. The derivative saliency from x- and y-direction can avoid the redundant energy seam around salient objects causing structure distortion. After the comparison experiments between classical approaches and ours, the feasibility of our algorithm is proved.

  3. Augmented reality on poster presentations, in the field and in the classroom

    NASA Astrophysics Data System (ADS)

    Hawemann, Friedrich; Kolawole, Folarin

    2017-04-01

    Augmented reality (AR) is the direct addition of virtual information through an interface to a real-world environment. In practice, through a mobile device such as a tablet or smartphone, information can be projected onto a target- for example, an image on a poster. Mobile devices are widely distributed today such that augmented reality is easily accessible to almost everyone. Numerous studies have shown that multi-dimensional visualization is essential for efficient perception of the spatial, temporal and geometrical configuration of geological structures and processes. Print media, such as posters and handouts lack the ability to display content in the third and fourth dimensions, which might be in space-domain as seen in three-dimensional (3-D) objects, or time-domain (four-dimensional, 4-D) expressible in the form of videos. Here, we show that augmented reality content can be complimentary to geoscience poster presentations, hands-on material and in the field. In the latter example, location based data is loaded and for example, a virtual geological profile can be draped over a real-world landscape. In object based AR, the application is trained to recognize an image or object through the camera of the user's mobile device, such that specific content is automatically downloaded and displayed on the screen of the device, and positioned relative to the trained image or object. We used ZapWorks, a commercially-available software application to create and present examples of content that is poster-based, in which important supplementary information is presented as interactive virtual images, videos and 3-D models. We suggest that the flexibility and real-time interactivity offered by AR makes it an invaluable tool for effective geoscience poster presentation, class-room and field geoscience learning.

  4. Resolution analysis of archive films for the purpose of their optimal digitization and distribution

    NASA Astrophysics Data System (ADS)

    Fliegel, Karel; Vítek, Stanislav; Páta, Petr; Myslík, Jiří; Pecák, Josef; Jícha, Marek

    2017-09-01

    With recent high demand for ultra-high-definition (UHD) content to be screened in high-end digital movie theaters but also in the home environment, film archives full of movies in high-definition and above are in the scope of UHD content providers. Movies captured with the traditional film technology represent a virtually unlimited source of UHD content. The goal to maintain complete image information is also related to the choice of scanning resolution and spatial resolution for further distribution. It might seem that scanning the film material in the highest possible resolution using state-of-the-art film scanners and also its distribution in this resolution is the right choice. The information content of the digitized images is however limited, and various degradations moreover lead to its further reduction. Digital distribution of the content in the highest image resolution might be therefore unnecessary or uneconomical. In other cases, the highest possible resolution is inevitable if we want to preserve fine scene details or film grain structure for archiving purposes. This paper deals with the image detail content analysis of archive film records. The resolution limit in captured scene image and factors which lower the final resolution are discussed. Methods are proposed to determine the spatial details of the film picture based on the analysis of its digitized image data. These procedures allow determining recommendations for optimal distribution of digitized video content intended for various display devices with lower resolutions. Obtained results are illustrated on spatial downsampling use case scenario, and performance evaluation of the proposed techniques is presented.

  5. A novel content-based active contour model for brain tumor segmentation.

    PubMed

    Sachdeva, Jainy; Kumar, Vinod; Gupta, Indra; Khandelwal, Niranjan; Ahuja, Chirag Kamal

    2012-06-01

    Brain tumor segmentation is a crucial step in surgical and treatment planning. Intensity-based active contour models such as gradient vector flow (GVF), magneto static active contour (MAC) and fluid vector flow (FVF) have been proposed to segment homogeneous objects/tumors in medical images. In this study, extensive experiments are done to analyze the performance of intensity-based techniques for homogeneous tumors on brain magnetic resonance (MR) images. The analysis shows that the state-of-art methods fail to segment homogeneous tumors against similar background or when these tumors show partial diversity toward the background. They also have preconvergence problem in case of false edges/saddle points. However, the presence of weak edges and diffused edges (due to edema around the tumor) leads to oversegmentation by intensity-based techniques. Therefore, the proposed method content-based active contour (CBAC) uses both intensity and texture information present within the active contour to overcome above-stated problems capturing large range in an image. It also proposes a novel use of Gray-Level Co-occurrence Matrix to define texture space for tumor segmentation. The effectiveness of this method is tested on two different real data sets (55 patients - more than 600 images) containing five different types of homogeneous, heterogeneous, diffused tumors and synthetic images (non-MR benchmark images). Remarkable results are obtained in segmenting homogeneous tumors of uniform intensity, complex content heterogeneous, diffused tumors on MR images (T1-weighted, postcontrast T1-weighted and T2-weighted) and synthetic images (non-MR benchmark images of varying intensity, texture, noise content and false edges). Further, tumor volume is efficiently extracted from 2-dimensional slices and is named as 2.5-dimensional segmentation. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Trends in Library and Information Science: 1989. ERIC Digest.

    ERIC Educational Resources Information Center

    Eisenberg, Michael B.

    Based on a content analysis of professional journals, conference proceedings, ERIC documents, annuals, and dissertations in library and information science, the following current trends in the field are discussed: (1) there are important emerging roles and responsibilities for information professionals; (2) the status and image of librarians…

  7. Imaging optical sensor arrays.

    PubMed

    Walt, David R

    2002-10-01

    Imaging optical fibres have been etched to prepare microwell arrays. These microwells have been loaded with sensing materials such as bead-based sensors and living cells to create high-density sensor arrays. The extremely small sizes and volumes of the wells enable high sensitivity and high information content sensing capabilities.

  8. Conversion of a traditional image archive into an image resource on compact disc.

    PubMed Central

    Andrew, S M; Benbow, E W

    1997-01-01

    The conversion of a traditional archive of pathology images was organised on 35 mm slides into a database of images stored on compact disc (CD-ROM), and textual descriptions were added to each image record. Students on a didactic pathology course found this resource useful as an aid to revision, despite relative computer illiteracy, and it is anticipated that students on a new problem based learning course, which incorporates experience with information technology, will benefit even more readily when they use the database as an educational resource. A text and image database on CD-ROM can be updated repeatedly, and the content manipulated to reflect the content and style of the courses it supports. Images PMID:9306931

  9. Texture characterization for joint compression and classification based on human perception in the wavelet domain.

    PubMed

    Fahmy, Gamal; Black, John; Panchanathan, Sethuraman

    2006-06-01

    Today's multimedia applications demand sophisticated compression and classification techniques in order to store, transmit, and retrieve audio-visual information efficiently. Over the last decade, perceptually based image compression methods have been gaining importance. These methods take into account the abilities (and the limitations) of human visual perception (HVP) when performing compression. The upcoming MPEG 7 standard also addresses the need for succinct classification and indexing of visual content for efficient retrieval. However, there has been no research that has attempted to exploit the characteristics of the human visual system to perform both compression and classification jointly. One area of HVP that has unexplored potential for joint compression and classification is spatial frequency perception. Spatial frequency content that is perceived by humans can be characterized in terms of three parameters, which are: 1) magnitude; 2) phase; and 3) orientation. While the magnitude of spatial frequency content has been exploited in several existing image compression techniques, the novel contribution of this paper is its focus on the use of phase coherence for joint compression and classification in the wavelet domain. Specifically, this paper describes a human visual system-based method for measuring the degree to which an image contains coherent (perceptible) phase information, and then exploits that information to provide joint compression and classification. Simulation results that demonstrate the efficiency of this method are presented.

  10. Retrieving the unretrievable in electronic imaging systems: emotions, themes, and stories

    NASA Astrophysics Data System (ADS)

    Joergensen, Corinne

    1999-05-01

    New paradigms such as 'affective computing' and user-based research are extending the realm of facets traditionally addressed in IR systems. This paper builds on previous research reported to the electronic imaging community concerning the need to provide access to more abstract attributes of images than those currently amenable to a variety of content-based and text-based indexing techniques. Empirical research suggest that, for visual materials, in addition to standard bibliographic data and broad subject, and in addition to such visually perceptual attributes such as color, texture, shape, and position or focal point, additional access points such as themes, abstract concepts, emotions, stories, and 'people-related' information such as social status would be useful in image retrieval. More recent research demonstrates that similar results are also obtained with 'fine arts' images, which generally have no access provided for these types of attributes. Current efforts to match image attributes as revealed in empirical research with those addressed both in current textural and content-based indexing systems are discussed, as well as the need for new representations for image attributes and for collaboration among diverse communities of researchers.

  11. New approach for cognitive analysis and understanding of medical patterns and visualizations

    NASA Astrophysics Data System (ADS)

    Ogiela, Marek R.; Tadeusiewicz, Ryszard

    2003-11-01

    This paper presents new opportunities for applying linguistic description of the picture merit content and AI methods to undertake tasks of the automatic understanding of images semantics in intelligent medical information systems. A successful obtaining of the crucial semantic content of the medical image may contribute considerably to the creation of new intelligent multimedia cognitive medical systems. Thanks to the new idea of cognitive resonance between stream of the data extracted from the image using linguistic methods and expectations taken from the representaion of the medical knowledge, it is possible to understand the merit content of the image even if teh form of the image is very different from any known pattern. This article proves that structural techniques of artificial intelligence may be applied in the case of tasks related to automatic classification and machine perception based on semantic pattern content in order to determine the semantic meaning of the patterns. In the paper are described some examples presenting ways of applying such techniques in the creation of cognitive vision systems for selected classes of medical images. On the base of scientific research described in the paper we try to build some new systems for collecting, storing, retrieving and intelligent interpreting selected medical images especially obtained in radiological and MRI examinations.

  12. Visual information mining in remote sensing image archives

    NASA Astrophysics Data System (ADS)

    Pelizzari, Andrea; Descargues, Vincent; Datcu, Mihai P.

    2002-01-01

    The present article focuses on the development of interactive exploratory tools for visually mining the image content in large remote sensing archives. Two aspects are treated: the iconic visualization of the global information in the archive and the progressive visualization of the image details. The proposed methods are integrated in the Image Information Mining (I2M) system. The images and image structure in the I2M system are indexed based on a probabilistic approach. The resulting links are managed by a relational data base. Both the intrinsic complexity of the observed images and the diversity of user requests result in a great number of associations in the data base. Thus new tools have been designed to visualize, in iconic representation the relationships created during a query or information mining operation: the visualization of the query results positioned on the geographical map, quick-looks gallery, visualization of the measure of goodness of the query, visualization of the image space for statistical evaluation purposes. Additionally the I2M system is enhanced with progressive detail visualization in order to allow better access for operator inspection. I2M is a three-tier Java architecture and is optimized for the Internet.

  13. Efficient content-based low-altitude images correlated network and strips reconstruction

    NASA Astrophysics Data System (ADS)

    He, Haiqing; You, Qi; Chen, Xiaoyong

    2017-01-01

    The manual intervention method is widely used to reconstruct strips for further aerial triangulation in low-altitude photogrammetry. Clearly the method for fully automatic photogrammetric data processing is not an expected way. In this paper, we explore a content-based approach without manual intervention or external information for strips reconstruction. Feature descriptors in the local spatial patterns are extracted by SIFT to construct vocabulary tree, in which these features are encoded in terms of TF-IDF numerical statistical algorithm to generate new representation for each low-altitude image. Then images correlated network is reconstructed by similarity measure, image matching and geometric graph theory. Finally, strips are reconstructed automatically by tracing straight lines and growing adjacent images gradually. Experimental results show that the proposed approach is highly effective in automatically rearranging strips of lowaltitude images and can provide rough relative orientation for further aerial triangulation.

  14. Image Hashes as Templates for Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janik, Tadeusz; Jarman, Kenneth D.; Robinson, Sean M.

    2012-07-17

    Imaging systems can provide measurements that confidently assess characteristics of nuclear weapons and dismantled weapon components, and such assessment will be needed in future verification for arms control. Yet imaging is often viewed as too intrusive, raising concern about the ability to protect sensitive information. In particular, the prospect of using image-based templates for verifying the presence or absence of a warhead, or of the declared configuration of fissile material in storage, may be rejected out-of-hand as being too vulnerable to violation of information barrier (IB) principles. Development of a rigorous approach for generating and comparing reduced-information templates from images,more » and assessing the security, sensitivity, and robustness of verification using such templates, are needed to address these concerns. We discuss our efforts to develop such a rigorous approach based on a combination of image-feature extraction and encryption-utilizing hash functions to confirm proffered declarations, providing strong classified data security while maintaining high confidence for verification. The proposed work is focused on developing secure, robust, tamper-sensitive and automatic techniques that may enable the comparison of non-sensitive hashed image data outside an IB. It is rooted in research on so-called perceptual hash functions for image comparison, at the interface of signal/image processing, pattern recognition, cryptography, and information theory. Such perceptual or robust image hashing—which, strictly speaking, is not truly cryptographic hashing—has extensive application in content authentication and information retrieval, database search, and security assurance. Applying and extending the principles of perceptual hashing to imaging for arms control, we propose techniques that are sensitive to altering, forging and tampering of the imaged object yet robust and tolerant to content-preserving image distortions and noise. Ensuring that the information contained in the hashed image data (available out-of-IB) cannot be used to extract sensitive information about the imaged object is of primary concern. Thus the techniques are characterized by high unpredictability to guarantee security. We will present an assessment of the performance of our techniques with respect to security, sensitivity and robustness on the basis of a methodical and mathematically precise framework.« less

  15. Information content exploitation of imaging spectrometer's images for lossless compression

    NASA Astrophysics Data System (ADS)

    Wang, Jianyu; Zhu, Zhenyu; Lin, Kan

    1996-11-01

    Imaging spectrometer, such as MAIS produces a tremendous volume of image data with up to 5.12 Mbps raw data rate, which needs urgently a real-time, efficient and reversible compression implementation. Between the lossy scheme with high compression ratio and the lossless scheme with high fidelity, we must make our choice based on the particular information content analysis of each imaging spectrometer's image data. In this paper, we present a careful analysis of information-preserving compression of imaging spectrometer MAIS with an entropy and autocorrelation study on the hyperspectral images. First, the statistical information in an actual MAIS image, captured in Marble Bar Australia, is measured with its entropy, conditional entropy, mutual information and autocorrelation coefficients on both spatial dimensions and spectral dimension. With these careful analyses, it is shown that there is high redundancy existing in the spatial dimensions, but the correlation in spectral dimension of the raw images is smaller than expected. The main reason of the nonstationarity on spectral dimension is attributed to the instruments's discrepancy on detector's response and channel's amplification in different spectral bands. To restore its natural correlation, we preprocess the signal in advance. There are two methods to accomplish this requirement: onboard radiation calibration and normalization. A better result can be achieved by the former one. After preprocessing, the spectral correlation increases so high that it contributes much redundancy in addition to spatial correlation. At last, an on-board hardware implementation for the lossless compression is presented with an ideal result.

  16. Extraction of Graph Information Based on Image Contents and the Use of Ontology

    ERIC Educational Resources Information Center

    Kanjanawattana, Sarunya; Kimura, Masaomi

    2016-01-01

    A graph is an effective form of data representation used to summarize complex information. Explicit information such as the relationship between the X- and Y-axes can be easily extracted from a graph by applying human intelligence. However, implicit knowledge such as information obtained from other related concepts in an ontology also resides in…

  17. Coverage of Skin Cancer Risk Factors and UV Behaviors in Popular U.S. Magazines from 2000 to 2012.

    PubMed

    McWhirter, Jennifer E; Hoffman-Goetz, Laurie

    2016-06-01

    Mass media is an influential source of skin cancer and tanning information for the public, but we know little about its content or emphasis. The objective of this research was to describe the volume and nature of skin cancer and tanning messages in 20 popular U.S. men's and women's magazines (2000-2012). We used a directed content analysis to determine frequency information about risk factors and ultraviolet (UV) behaviors in 608 articles and 930 images. Chi-square and Fisher's exact tests determined coverage differences based on content type (text vs. image) and target audience (women vs. men). UV exposure was the most common risk factor mentioned (37.7 %) and sunscreen use the most common behavior encouraged (60.0 %); information about other risk factors and protective behaviors was uncommon. Both articles (25.2 %) and images (36.9 %) promoted the tanned look as attractive. In most cases, images infrequently contained helpful information on skin cancer risk factors and prevention, except for high-SPF sunscreens. Women's magazines published more articles on skin cancer and tanning than men's magazines (456 vs. 159, χ(2) = 143.43, P < .01), and the nature of the messages differed between them. Magazine skin cancer and tanning content may contribute to inaccurate public understanding of risks and prevention. These findings are relevant to cancer educators, who may wish to counter potentially harmful messages and enhance positive ones through cancer education efforts.

  18. Bridging the integration gap between imaging and information systems: a uniform data concept for content-based image retrieval in computer-aided diagnosis.

    PubMed

    Welter, Petra; Riesmeier, Jörg; Fischer, Benedikt; Grouls, Christoph; Kuhl, Christiane; Deserno, Thomas M

    2011-01-01

    It is widely accepted that content-based image retrieval (CBIR) can be extremely useful for computer-aided diagnosis (CAD). However, CBIR has not been established in clinical practice yet. As a widely unattended gap of integration, a unified data concept for CBIR-based CAD results and reporting is lacking. Picture archiving and communication systems and the workflow of radiologists must be considered for successful data integration to be achieved. We suggest that CBIR systems applied to CAD should integrate their results in a picture archiving and communication systems environment such as Digital Imaging and Communications in Medicine (DICOM) structured reporting documents. A sample DICOM structured reporting template adaptable to CBIR and an appropriate integration scheme is presented. The proposed CBIR data concept may foster the promulgation of CBIR systems in clinical environments and, thereby, improve the diagnostic process.

  19. Bridging the integration gap between imaging and information systems: a uniform data concept for content-based image retrieval in computer-aided diagnosis

    PubMed Central

    Riesmeier, Jörg; Fischer, Benedikt; Grouls, Christoph; Kuhl, Christiane; Deserno (né Lehmann), Thomas M

    2011-01-01

    It is widely accepted that content-based image retrieval (CBIR) can be extremely useful for computer-aided diagnosis (CAD). However, CBIR has not been established in clinical practice yet. As a widely unattended gap of integration, a unified data concept for CBIR-based CAD results and reporting is lacking. Picture archiving and communication systems and the workflow of radiologists must be considered for successful data integration to be achieved. We suggest that CBIR systems applied to CAD should integrate their results in a picture archiving and communication systems environment such as Digital Imaging and Communications in Medicine (DICOM) structured reporting documents. A sample DICOM structured reporting template adaptable to CBIR and an appropriate integration scheme is presented. The proposed CBIR data concept may foster the promulgation of CBIR systems in clinical environments and, thereby, improve the diagnostic process. PMID:21672913

  20. Content-based cell pathology image retrieval by combining different features

    NASA Astrophysics Data System (ADS)

    Zhou, Guangquan; Jiang, Lu; Luo, Limin; Bao, Xudong; Shu, Huazhong

    2004-04-01

    Content Based Color Cell Pathology Image Retrieval is one of the newest computer image processing applications in medicine. Recently, some algorithms have been developed to achieve this goal. Because of the particularity of cell pathology images, the result of the image retrieval based on single characteristic is not satisfactory. A new method for pathology image retrieval by combining color, texture and morphologic features to search cell images is proposed. Firstly, nucleus regions of leukocytes in images are automatically segmented by K-mean clustering method. Then single leukocyte region is detected by utilizing thresholding algorithm segmentation and mathematics morphology. The features that include color, texture and morphologic features are extracted from single leukocyte to represent main attribute in the search query. The features are then normalized because the numerical value range and physical meaning of extracted features are different. Finally, the relevance feedback system is introduced. So that the system can automatically adjust the weights of different features and improve the results of retrieval system according to the feedback information. Retrieval results using the proposed method fit closely with human perception and are better than those obtained with the methods based on single feature.

  1. Fusion of spectral and panchromatic images using false color mapping and wavelet integrated approach

    NASA Astrophysics Data System (ADS)

    Zhao, Yongqiang; Pan, Quan; Zhang, Hongcai

    2006-01-01

    With the development of sensory technology, new image sensors have been introduced that provide a greater range of information to users. But as the power limitation of radiation, there will always be some trade-off between spatial and spectral resolution in the image captured by specific sensors. Images with high spatial resolution can locate objects with high accuracy, whereas images with high spectral resolution can be used to identify the materials. Many applications in remote sensing require fusing low-resolution imaging spectral images with panchromatic images to identify materials at high resolution in clutter. A pixel-based false color mapping and wavelet transform integrated fusion algorithm is presented in this paper, the resulting images have a higher information content than each of the original images and retain sensor-specific image information. The simulation results show that this algorithm can enhance the visibility of certain details and preserve the difference of different materials.

  2. Using satellite data in map design and production

    USGS Publications Warehouse

    Hutchinson, John A.

    2002-01-01

    Satellite image maps have been produced by the U.S. Geological Survey (USGS) since shortly after the launch of the first Landsat satellite in 1972. Over the years, the use of image data to design and produce maps has developed from a manual and photographic process to one that incorporates geographic information systems, desktop publishing, and digital prepress techniques. At the same time, the content of most image-based maps produced by the USGS has shifted from raw image data to land cover or other information layers derived from satellite imagery, often portrayed in combination with shaded relief.

  3. Study on Hybrid Image Search Technology Based on Texts and Contents

    NASA Astrophysics Data System (ADS)

    Wang, H. T.; Ma, F. L.; Yan, C.; Pan, H.

    2018-05-01

    Image search was studied first here based on texts and contents, respectively. The text-based image feature extraction was put forward by integrating the statistical and topic features in view of the limitation of extraction of keywords only by means of statistical features of words. On the other hand, a search-by-image method was put forward based on multi-feature fusion in view of the imprecision of the content-based image search by means of a single feature. The layered-searching method depended on primarily the text-based image search method and additionally the content-based image search was then put forward in view of differences between the text-based and content-based methods and their difficult direct fusion. The feasibility and effectiveness of the hybrid search algorithm were experimentally verified.

  4. Intelligent bandwidth compression

    NASA Astrophysics Data System (ADS)

    Tseng, D. Y.; Bullock, B. L.; Olin, K. E.; Kandt, R. K.; Olsen, J. D.

    1980-02-01

    The feasibility of a 1000:1 bandwidth compression ratio for image transmission has been demonstrated using image-analysis algorithms and a rule-based controller. Such a high compression ratio was achieved by first analyzing scene content using auto-cueing and feature-extraction algorithms, and then transmitting only the pertinent information consistent with mission requirements. A rule-based controller directs the flow of analysis and performs priority allocations on the extracted scene content. The reconstructed bandwidth-compressed image consists of an edge map of the scene background, with primary and secondary target windows embedded in the edge map. The bandwidth-compressed images are updated at a basic rate of 1 frame per second, with the high-priority target window updated at 7.5 frames per second. The scene-analysis algorithms used in this system together with the adaptive priority controller are described. Results of simulated 1000:1 bandwidth-compressed images are presented.

  5. TBIdoc: 3D content-based CT image retrieval system for traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Li, Shimiao; Gong, Tianxia; Wang, Jie; Liu, Ruizhe; Tan, Chew Lim; Leong, Tze Yun; Pang, Boon Chuan; Lim, C. C. Tchoyoson; Lee, Cheng Kiang; Tian, Qi; Zhang, Zhuo

    2010-03-01

    Traumatic brain injury (TBI) is a major cause of death and disability. Computed Tomography (CT) scan is widely used in the diagnosis of TBI. Nowadays, large amount of TBI CT data is stacked in the hospital radiology department. Such data and the associated patient information contain valuable information for clinical diagnosis and outcome prediction. However, current hospital database system does not provide an efficient and intuitive tool for doctors to search out cases relevant to the current study case. In this paper, we present the TBIdoc system: a content-based image retrieval (CBIR) system which works on the TBI CT images. In this web-based system, user can query by uploading CT image slices from one study, retrieval result is a list of TBI cases ranked according to their 3D visual similarity to the query case. Specifically, cases of TBI CT images often present diffuse or focal lesions. In TBIdoc system, these pathological image features are represented as bin-based binary feature vectors. We use the Jaccard-Needham measure as the similarity measurement. Based on these, we propose a 3D similarity measure for computing the similarity score between two series of CT slices. nDCG is used to evaluate the system performance, which shows the system produces satisfactory retrieval results. The system is expected to improve the current hospital data management in TBI and to give better support for the clinical decision-making process. It may also contribute to the computer-aided education in TBI.

  6. Intelligent bandwith compression

    NASA Astrophysics Data System (ADS)

    Tseng, D. Y.; Bullock, B. L.; Olin, K. E.; Kandt, R. K.; Olsen, J. D.

    1980-02-01

    The feasibility of a 1000:1 bandwidth compression ratio for image transmission has been demonstrated using image-analysis algorithms and a rule-based controller. Such a high compression ratio was achieved by first analyzing scene content using auto-cueing and feature-extraction algorithms, and then transmitting only the pertinent information consistent with mission requirements. A rule-based controller directs the flow of analysis and performs priority allocations on the extracted scene content. The reconstructed bandwidth-compressed image consists of an edge map of the scene background, with primary and secondary target windows embedded in the edge map. The bandwidth-compressed images are updated at a basic rate of 1 frame per second, with the high-priority target window updated at 7.5 frames per second. The scene-analysis algorithms used in this system together with the adaptive priority controller are described. Results of simulated 1000:1 band width-compressed images are presented. A video tape simulation of the Intelligent Bandwidth Compression system has been produced using a sequence of video input from the data base.

  7. Exploring access to scientific literature using content-based image retrieval

    NASA Astrophysics Data System (ADS)

    Deserno, Thomas M.; Antani, Sameer; Long, Rodney

    2007-03-01

    The number of articles published in the scientific medical literature is continuously increasing, and Web access to the journals is becoming common. Databases such as SPIE Digital Library, IEEE Xplore, indices such as PubMed, and search engines such as Google provide the user with sophisticated full-text search capabilities. However, information in images and graphs within these articles is entirely disregarded. In this paper, we quantify the potential impact of using content-based image retrieval (CBIR) to access this non-text data. Based on the Journal Citations Report (JCR), the journal Radiology was selected for this study. In 2005, 734 articles were published electronically in this journal. This included 2,587 figures, which yields a rate of 3.52 figures per article. Furthermore, 56.4% of these figures are composed of several individual panels, i.e. the figure combines different images and/or graphs. According to the Image Cross-Language Evaluation Forum (ImageCLEF), the error rate of automatic identification of medical images is about 15%. Therefore, it is expected that, by applying ImageCLEF-like techniques, already 95.5% of articles could be retrieved by means of CBIR. The challenge for CBIR in scientific literature, however, is the use of local texture properties to analyze individual image panels in composite illustrations. Using local features for content-based image representation, 8.81 images per article are available, and the predicted correctness rate may increase to 98.3%. From this study, we conclude that CBIR may have a high impact in medical literature research and suggest that additional research in this area is warranted.

  8. Content-based image retrieval in medical applications for picture archiving and communication systems

    NASA Astrophysics Data System (ADS)

    Lehmann, Thomas M.; Guld, Mark O.; Thies, Christian; Fischer, Benedikt; Keysers, Daniel; Kohnen, Michael; Schubert, Henning; Wein, Berthold B.

    2003-05-01

    Picture archiving and communication systems (PACS) aim to efficiently provide the radiologists with all images in a suitable quality for diagnosis. Modern standards for digital imaging and communication in medicine (DICOM) comprise alphanumerical descriptions of study, patient, and technical parameters. Currently, this is the only information used to select relevant images within PACS. Since textual descriptions insufficiently describe the great variety of details in medical images, content-based image retrieval (CBIR) is expected to have a strong impact when integrated into PACS. However, existing CBIR approaches usually are limited to a distinct modality, organ, or diagnostic study. In this state-of-the-art report, we present first results implementing a general approach to content-based image retrieval in medical applications (IRMA) and discuss its integration into PACS environments. Usually, a PACS consists of a DICOM image server and several DICOM-compliant workstations, which are used by radiologists for reading the images and reporting the findings. Basic IRMA components are the relational database, the scheduler, and the web server, which all may be installed on the DICOM image server, and the IRMA daemons running on distributed machines, e.g., the radiologists" workstations. These workstations can also host the web-based front-ends of IRMA applications. Integrating CBIR and PACS, a special focus is put on (a) location and access transparency for data, methods, and experiments, (b) replication transparency for methods in development, (c) concurrency transparency for job processing and feature extraction, (d) system transparency at method implementation time, and (e) job distribution transparency when issuing a query. Transparent integration will have a certain impact on diagnostic quality supporting both evidence-based medicine and case-based reasoning.

  9. iPixel: a visual content-based and semantic search engine for retrieving digitized mammograms by using collective intelligence.

    PubMed

    Alor-Hernández, Giner; Pérez-Gallardo, Yuliana; Posada-Gómez, Rubén; Cortes-Robles, Guillermo; Rodríguez-González, Alejandro; Aguilar-Laserre, Alberto A

    2012-09-01

    Nowadays, traditional search engines such as Google, Yahoo and Bing facilitate the retrieval of information in the format of images, but the results are not always useful for the users. This is mainly due to two problems: (1) the semantic keywords are not taken into consideration and (2) it is not always possible to establish a query using the image features. This issue has been covered in different domains in order to develop content-based image retrieval (CBIR) systems. The expert community has focussed their attention on the healthcare domain, where a lot of visual information for medical analysis is available. This paper provides a solution called iPixel Visual Search Engine, which involves semantics and content issues in order to search for digitized mammograms. iPixel offers the possibility of retrieving mammogram features using collective intelligence and implementing a CBIR algorithm. Our proposal compares not only features with similar semantic meaning, but also visual features. In this sense, the comparisons are made in different ways: by the number of regions per image, by maximum and minimum size of regions per image and by average intensity level of each region. iPixel Visual Search Engine supports the medical community in differential diagnoses related to the diseases of the breast. The iPixel Visual Search Engine has been validated by experts in the healthcare domain, such as radiologists, in addition to experts in digital image analysis.

  10. Video Analytics for Indexing, Summarization and Searching of Video Archives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trease, Harold E.; Trease, Lynn L.

    This paper will be submitted to the proceedings The Eleventh IASTED International Conference on. Signal and Image Processing. Given a video or video archive how does one effectively and quickly summarize, classify, and search the information contained within the data? This paper addresses these issues by describing a process for the automated generation of a table-of-contents and keyword, topic-based index tables that can be used to catalogue, summarize, and search large amounts of video data. Having the ability to index and search the information contained within the videos, beyond just metadata tags, provides a mechanism to extract and identify "useful"more » content from image and video data.« less

  11. Content-based histopathology image retrieval using CometCloud.

    PubMed

    Qi, Xin; Wang, Daihou; Rodero, Ivan; Diaz-Montes, Javier; Gensure, Rebekah H; Xing, Fuyong; Zhong, Hua; Goodell, Lauri; Parashar, Manish; Foran, David J; Yang, Lin

    2014-08-26

    The development of digital imaging technology is creating extraordinary levels of accuracy that provide support for improved reliability in different aspects of the image analysis, such as content-based image retrieval, image segmentation, and classification. This has dramatically increased the volume and rate at which data are generated. Together these facts make querying and sharing non-trivial and render centralized solutions unfeasible. Moreover, in many cases this data is often distributed and must be shared across multiple institutions requiring decentralized solutions. In this context, a new generation of data/information driven applications must be developed to take advantage of the national advanced cyber-infrastructure (ACI) which enable investigators to seamlessly and securely interact with information/data which is distributed across geographically disparate resources. This paper presents the development and evaluation of a novel content-based image retrieval (CBIR) framework. The methods were tested extensively using both peripheral blood smears and renal glomeruli specimens. The datasets and performance were evaluated by two pathologists to determine the concordance. The CBIR algorithms that were developed can reliably retrieve the candidate image patches exhibiting intensity and morphological characteristics that are most similar to a given query image. The methods described in this paper are able to reliably discriminate among subtle staining differences and spatial pattern distributions. By integrating a newly developed dual-similarity relevance feedback module into the CBIR framework, the CBIR results were improved substantially. By aggregating the computational power of high performance computing (HPC) and cloud resources, we demonstrated that the method can be successfully executed in minutes on the Cloud compared to weeks using standard computers. In this paper, we present a set of newly developed CBIR algorithms and validate them using two different pathology applications, which are regularly evaluated in the practice of pathology. Comparative experimental results demonstrate excellent performance throughout the course of a set of systematic studies. Additionally, we present and evaluate a framework to enable the execution of these algorithms across distributed resources. We show how parallel searching of content-wise similar images in the dataset significantly reduces the overall computational time to ensure the practical utility of the proposed CBIR algorithms.

  12. Multispectral UV imaging for fast and non-destructive quality control of chemical and physical tablet attributes.

    PubMed

    Klukkert, Marten; Wu, Jian X; Rantanen, Jukka; Carstensen, Jens M; Rades, Thomas; Leopold, Claudia S

    2016-07-30

    Monitoring of tablet quality attributes in direct vicinity of the production process requires analytical techniques that allow fast, non-destructive, and accurate tablet characterization. The overall objective of this study was to investigate the applicability of multispectral UV imaging as a reliable, rapid technique for estimation of the tablet API content and tablet hardness, as well as determination of tablet intactness and the tablet surface density profile. One of the aims was to establish an image analysis approach based on multivariate image analysis and pattern recognition to evaluate the potential of UV imaging for automatized quality control of tablets with respect to their intactness and surface density profile. Various tablets of different composition and different quality regarding their API content, radial tensile strength, intactness, and surface density profile were prepared using an eccentric as well as a rotary tablet press at compression pressures from 20MPa up to 410MPa. It was found, that UV imaging can provide both, relevant information on chemical and physical tablet attributes. The tablet API content and radial tensile strength could be estimated by UV imaging combined with partial least squares analysis. Furthermore, an image analysis routine was developed and successfully applied to the UV images that provided qualitative information on physical tablet surface properties such as intactness and surface density profiles, as well as quantitative information on variations in the surface density. In conclusion, this study demonstrates that UV imaging combined with image analysis is an effective and non-destructive method to determine chemical and physical quality attributes of tablets and is a promising approach for (near) real-time monitoring of the tablet compaction process and formulation optimization purposes. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Fast content-based image retrieval using dynamic cluster tree

    NASA Astrophysics Data System (ADS)

    Chen, Jinyan; Sun, Jizhou; Wu, Rongteng; Zhang, Yaping

    2008-03-01

    A novel content-based image retrieval data structure is developed in present work. It can improve the searching efficiency significantly. All images are organized into a tree, in which every node is comprised of images with similar features. Images in a children node have more similarity (less variance) within themselves in relative to its parent. It means that every node is a cluster and each of its children nodes is a sub-cluster. Information contained in a node includes not only the number of images, but also the center and the variance of these images. Upon the addition of new images, the tree structure is capable of dynamically changing to ensure the minimization of total variance of the tree. Subsequently, a heuristic method has been designed to retrieve the information from this tree. Given a sample image, the probability of a tree node that contains the similar images is computed using the center of the node and its variance. If the probability is higher than a certain threshold, this node will be recursively checked to locate the similar images. So will its children nodes if their probability is also higher than that threshold. If no sufficient similar images were founded, a reduced threshold value would be adopted to initiate a new seeking from the root node. The search terminates when it found sufficient similar images or the threshold value is too low to give meaningful sense. Experiments have shown that the proposed dynamic cluster tree is able to improve the searching efficiency notably.

  14. Combining semantic technologies with a content-based image retrieval system - Preliminary considerations

    NASA Astrophysics Data System (ADS)

    Chmiel, P.; Ganzha, M.; Jaworska, T.; Paprzycki, M.

    2017-10-01

    Nowadays, as a part of systematic growth of volume, and variety, of information that can be found on the Internet, we observe also dramatic increase in sizes of available image collections. There are many ways to help users browsing / selecting images of interest. One of popular approaches are Content-Based Image Retrieval (CBIR) systems, which allow users to search for images that match their interests, expressed in the form of images (query by example). However, we believe that image search and retrieval could take advantage of semantic technologies. We have decided to test this hypothesis. Specifically, on the basis of knowledge captured in the CBIR, we have developed a domain ontology of residential real estate (detached houses, in particular). This allows us to semantically represent each image (and its constitutive architectural elements) represented within the CBIR. The proposed ontology was extended to capture not only the elements resulting from image segmentation, but also "spatial relations" between them. As a result, a new approach to querying the image database (semantic querying) has materialized, thus extending capabilities of the developed system.

  15. High-order distance-based multiview stochastic learning in image classification.

    PubMed

    Yu, Jun; Rui, Yong; Tang, Yuan Yan; Tao, Dacheng

    2014-12-01

    How do we find all images in a larger set of images which have a specific content? Or estimate the position of a specific object relative to the camera? Image classification methods, like support vector machine (supervised) and transductive support vector machine (semi-supervised), are invaluable tools for the applications of content-based image retrieval, pose estimation, and optical character recognition. However, these methods only can handle the images represented by single feature. In many cases, different features (or multiview data) can be obtained, and how to efficiently utilize them is a challenge. It is inappropriate for the traditionally concatenating schema to link features of different views into a long vector. The reason is each view has its specific statistical property and physical interpretation. In this paper, we propose a high-order distance-based multiview stochastic learning (HD-MSL) method for image classification. HD-MSL effectively combines varied features into a unified representation and integrates the labeling information based on a probabilistic framework. In comparison with the existing strategies, our approach adopts the high-order distance obtained from the hypergraph to replace pairwise distance in estimating the probability matrix of data distribution. In addition, the proposed approach can automatically learn a combination coefficient for each view, which plays an important role in utilizing the complementary information of multiview data. An alternative optimization is designed to solve the objective functions of HD-MSL and obtain different views on coefficients and classification scores simultaneously. Experiments on two real world datasets demonstrate the effectiveness of HD-MSL in image classification.

  16. Documenting the information content of images.

    PubMed Central

    Bidgood, W. D.

    1997-01-01

    A standards-based message and terminology architecture has been specified to enable large-scale open and non-proprietary interchange of imaging-procedure descriptions and image-interpretation reports providing semantically-rich linkage of linguistic and non-linguistic information. The DICOM Structured Reporting Supplement, now available for trial use, embodies this interdependent message/terminology architecture. A DICOM structured report object is a self-describing information structure that can be tailored to support diverse clinical observation reporting applications by utilization of templates and context-dependent terminology from an external message/terminology mapping resource such as the SNOMED DICOM Microglossary (SDM), HL7 Vocabulary, or Terminology Resource for Message Standards (TeRMS). PMID:9357661

  17. Space based topographic mapping experiment using Seasat synthetic aperture radar and LANDSAT 3 return beam vidicon imagery

    NASA Technical Reports Server (NTRS)

    Mader, G. L.

    1981-01-01

    A technique for producing topographic information is described which is based on same side/same time viewing using a dissimilar combination of radar imagery and photographic images. Common geographic areas viewed from similar space reference locations produce scene elevation displacements in opposite direction and proper use of this characteristic can yield the perspective information necessary for determination of base to height ratios. These base to height ratios can in turn be used to produce a topographic map. A test area covering the Harrisburg, Pennsylvania region was observed by synthetic aperture radar on the Seasat satellite and by return beam vidicon on by the LANDSAT - 3 satellite. The techniques developed for the scaling re-orientation and common registration of the two images are presented along with the topographic determination data. Topographic determination based exclusively on the images content is compared to the map information which is used as a performance calibration base.

  18. Harnessing the power of multimedia in offender-based law enforcement information systems

    NASA Astrophysics Data System (ADS)

    Zimmerman, Alan P.

    1997-02-01

    Criminal offenders are increasingly administratively processed by automated multimedia information systems. During this processing, case and offender biographical data, mugshot photos, fingerprints and other valuable information and media are collected by law enforcement officers. As part of their criminal investigations, law enforcement officers are routinely called to solve criminal cases based upon limited evidence . . . evidence increasingly comprised of human DNA, ballistic casings and projectiles, chemical residues, latent fingerprints, surveillance camera facial images and voices. As multimedia systems receive greater use in law enforcement, traditional approaches used to index text data are not appropriate for images and signal data which comprise a multimedia database. Multimedia systems with integrated advanced pattern matching tools will provide law enforcement the ability to effectively locate multimedia information based upon content, without reliance upon the accuracy or completeness of text-based indexing.

  19. Observation of the immune response of cells and tissue through multimodal label-free microscopy

    NASA Astrophysics Data System (ADS)

    Pavillon, Nicolas; Smith, Nicholas I.

    2017-02-01

    We present applications of a label-free approach to assess the immune response based on the combination of interferometric microscopy and Raman spectroscopy, which makes it possible to simultaneously acquire morphological and molecular information of live cells. We employ this approach to derive statistical models for predicting the activation state of macrophage cells based both on morphological parameters extracted from the high-throughput full-field quantitative phase imaging, and on the molecular content information acquired through Raman spectroscopy. We also employ a system for 3D imaging based on coherence gating, enabling specific targeting of the Raman channel to structures of interest within tissue.

  20. Wavelet-based reversible watermarking for authentication

    NASA Astrophysics Data System (ADS)

    Tian, Jun

    2002-04-01

    In the digital information age, digital content (audio, image, and video) can be easily copied, manipulated, and distributed. Copyright protection and content authentication of digital content has become an urgent problem to content owners and distributors. Digital watermarking has provided a valuable solution to this problem. Based on its application scenario, most digital watermarking methods can be divided into two categories: robust watermarking and fragile watermarking. As a special subset of fragile watermark, reversible watermark (which is also called lossless watermark, invertible watermark, erasable watermark) enables the recovery of the original, unwatermarked content after the watermarked content has been detected to be authentic. Such reversibility to get back unwatermarked content is highly desired in sensitive imagery, such as military data and medical data. In this paper we present a reversible watermarking method based on an integer wavelet transform. We look into the binary representation of each wavelet coefficient and embed an extra bit to expandable wavelet coefficient. The location map of all expanded coefficients will be coded by JBIG2 compression and these coefficient values will be losslessly compressed by arithmetic coding. Besides these two compressed bit streams, an SHA-256 hash of the original image will also be embedded for authentication purpose.

  1. [Estimation and Visualization of Nitrogen Content in Citrus Canopy Based on Two Band Vegetation Index (TBVI)].

    PubMed

    Wang, Qiao-nan; Ye, Xu-jun; Li, Jin-meng; Xiao, Yu-zhao; He, Yong

    2015-03-01

    Nitrogen is a necessary and important element for the growth and development of fruit orchards. Timely, accurate and nondestructive monitoring of nitrogen status in fruit orchards would help maintain the fruit quality and efficient production of the orchard, and mitigate the pollution of water resources caused by excessive nitrogen fertilization. This study investigated the capability of hyperspectral imagery for estimating and visualizing the nitrogen content in citrus canopy. Hyperspectral images were obtained for leaf samples in laboratory as well as for the whole canopy in the field with ImSpector V10E (Spectral Imaging Ltd., Oulu, Finland). The spectral datas for each leaf sample were represented by the average spectral data extracted from the selected region of interest (ROI) in the hyperspectral images with the aid of ENVI software. The nitrogen content in each leaf sample was measured by the Dumas combustion method with the rapid N cube (Elementar Analytical, Germany). Simple correlation analysis and the two band vegetation index (TBVI) were then used to develop the spectra data-based nitrogen content prediction models. Results obtained through the formula calculation indicated that the model with the two band vegetation index (TBVI) based on the wavelengths 811 and 856 nm achieved the optimal estimation of nitrogen content in citrus leaves (R2 = 0.607 1). Furthermore, the canopy image for the identified TBVI was calculated, and the nitrogen content of the canopy was visualized by incorporating the model into the TBVI image. The tender leaves, middle-aged leaves and elder leaves showed distinct nitrogen status from highto low-levels in the canopy image. The results suggested the potential of hyperspectral imagery for the nondestructive detection and diagnosis of nitrogen status in citrus canopy in real time. Different from previous studies focused on nitrogen content prediction at leaf level, this study succeeded in predicting and visualizing the nutrient content of fruit trees at canopy level. This would provide valuable information for the implementation of individual tree-based fertilization schemes in precision orchard management practices.

  2. A spatiotemporal decomposition strategy for personal home video management

    NASA Astrophysics Data System (ADS)

    Yi, Haoran; Kozintsev, Igor; Polito, Marzia; Wu, Yi; Bouguet, Jean-Yves; Nefian, Ara; Dulong, Carole

    2007-01-01

    With the advent and proliferation of low cost and high performance digital video recorder devices, an increasing number of personal home video clips are recorded and stored by the consumers. Compared to image data, video data is lager in size and richer in multimedia content. Efficient access to video content is expected to be more challenging than image mining. Previously, we have developed a content-based image retrieval system and the benchmarking framework for personal images. In this paper, we extend our personal image retrieval system to include personal home video clips. A possible initial solution to video mining is to represent video clips by a set of key frames extracted from them thus converting the problem into an image search one. Here we report that a careful selection of key frames may improve the retrieval accuracy. However, because video also has temporal dimension, its key frame representation is inherently limited. The use of temporal information can give us better representation for video content at semantic object and concept levels than image-only based representation. In this paper we propose a bottom-up framework to combine interest point tracking, image segmentation and motion-shape factorization to decompose the video into spatiotemporal regions. We show an example application of activity concept detection using the trajectories extracted from the spatio-temporal regions. The proposed approach shows good potential for concise representation and indexing of objects and their motion in real-life consumer video.

  3. Classification Comparisons Between Compact Polarimetric and Quad-Pol SAR Imagery

    NASA Astrophysics Data System (ADS)

    Souissi, Boularbah; Doulgeris, Anthony P.; Eltoft, Torbjørn

    2015-04-01

    Recent interest in dual-pol SAR systems has lead to a novel approach, the so-called compact polarimetric imaging mode (CP) which attempts to reconstruct fully polarimetric information based on a few simple assumptions. In this work, the CP image is simulated from the full quad-pol (QP) image. We present here the initial comparison of polarimetric information content between QP and CP imaging modes. The analysis of multi-look polarimetric covariance matrix data uses an automated statistical clustering method based upon the expectation maximization (EM) algorithm for finite mixture modeling, using the complex Wishart probability density function. Our results showed that there are some different characteristics between the QP and CP modes. The classification is demonstrated using a E-SAR and Radarsat2 polarimetric SAR images acquired over DLR Oberpfaffenhofen in Germany and Algiers in Algeria respectively.

  4. The Analysis of Image Segmentation Hierarchies with a Graph-based Knowledge Discovery System

    NASA Technical Reports Server (NTRS)

    Tilton, James C.; Cooke, diane J.; Ketkar, Nikhil; Aksoy, Selim

    2008-01-01

    Currently available pixel-based analysis techniques do not effectively extract the information content from the increasingly available high spatial resolution remotely sensed imagery data. A general consensus is that object-based image analysis (OBIA) is required to effectively analyze this type of data. OBIA is usually a two-stage process; image segmentation followed by an analysis of the segmented objects. We are exploring an approach to OBIA in which hierarchical image segmentations provided by the Recursive Hierarchical Segmentation (RHSEG) software developed at NASA GSFC are analyzed by the Subdue graph-based knowledge discovery system developed by a team at Washington State University. In this paper we discuss out initial approach to representing the RHSEG-produced hierarchical image segmentations in a graphical form understandable by Subdue, and provide results on real and simulated data. We also discuss planned improvements designed to more effectively and completely convey the hierarchical segmentation information to Subdue and to improve processing efficiency.

  5. Method of passive ranging from infrared image sequence based on equivalent area

    NASA Astrophysics Data System (ADS)

    Yang, Weiping; Shen, Zhenkang

    2007-11-01

    The information of range between missile and targets is important not only to missile controlling component, but also to automatic target recognition, so studying the technique of passive ranging from infrared images has important theoretic and practical meanings. Here we tried to get the range between guided missile and target and help to identify targets or dodge a hit. The issue of distance between missile and target is currently a hot and difficult research content. As all know, infrared imaging detector can not range so that it restricts the functions of the guided information processing system based on infrared images. In order to break through the technical puzzle, we investigated the principle of the infrared imaging, after analysing the imaging geometric relationship between the guided missile and the target, we brought forward the method of passive ranging based on equivalent area and provided mathematical analytic formulas. Validating Experiments demonstrate that the presented method has good effect, the lowest relative error can reach 10% in some circumstances.

  6. Ultrafast Microfluidic Cellular Imaging by Optical Time-Stretch.

    PubMed

    Lau, Andy K S; Wong, Terence T W; Shum, Ho Cheung; Wong, Kenneth K Y; Tsia, Kevin K

    2016-01-01

    There is an unmet need in biomedicine for measuring a multitude of parameters of individual cells (i.e., high content) in a large population efficiently (i.e., high throughput). This is particularly driven by the emerging interest in bringing Big-Data analysis into this arena, encompassing pathology, drug discovery, rare cancer cell detection, emulsion microdroplet assays, to name a few. This momentum is particularly evident in recent advancements in flow cytometry. They include scaling of the number of measurable colors from the labeled cells and incorporation of imaging capability to access the morphological information of the cells. However, an unspoken predicament appears in the current technologies: higher content comes at the expense of lower throughput, and vice versa. For example, accessing additional spatial information of individual cells, imaging flow cytometers only achieve an imaging throughput ~1000 cells/s, orders of magnitude slower than the non-imaging flow cytometers. In this chapter, we introduce an entirely new imaging platform, namely optical time-stretch microscopy, for ultrahigh speed and high contrast label-free single-cell (in a ultrafast microfluidic flow up to 10 m/s) imaging and analysis with an ultra-fast imaging line-scan rate as high as tens of MHz. Based on this technique, not only morphological information of the individual cells can be obtained in an ultrafast manner, quantitative evaluation of cellular information (e.g., cell volume, mass, refractive index, stiffness, membrane tension) at nanometer scale based on the optical phase is also possible. The technology can also be integrated with conventional fluorescence measurements widely adopted in the non-imaging flow cytometers. Therefore, these two combinatorial and complementary measurement capabilities in long run is an attractive platform for addressing the pressing need for expanding the "parameter space" in high-throughput single-cell analysis. This chapter provides the general guidelines of constructing the optical system for time stretch imaging, fabrication and design of the microfluidic chip for ultrafast fluidic flow, as well as the image acquisition and processing.

  7. Hyperspectral imaging detection of decayed honey peaches based on their chlorophyll content.

    PubMed

    Sun, Ye; Wang, Yihang; Xiao, Hui; Gu, Xinzhe; Pan, Leiqing; Tu, Kang

    2017-11-15

    Honey peach is a very common but highly perishable market fruit. When pathogens infect fruit, chlorophyll as one of the important components related to fruit quality, decreased significantly. Here, the feasibility of hyperspectral imaging to determine the chlorophyll content thus distinguishing diseased peaches was investigated. Three optimal wavelengths (617nm, 675nm, and 818nm) were selected according to chlorophyll content via successive projections algorithm. Partial least square regression models were established to determine chlorophyll content. Three band ratios were obtained using these optimal wavelengths, which improved spatial details, but also integrates the information of chemical composition from spectral characteristics. The band ratio values were suitable to classify the diseased peaches with 98.75% accuracy and clearly show the spatial distribution of diseased parts. This study provides a new perspective for the selection of optimal wavelengths of hyperspectral imaging via chlorophyll content, thus enabling the detection of fungal diseases in peaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. A data mining based approach to predict spatiotemporal changes in satellite images

    NASA Astrophysics Data System (ADS)

    Boulila, W.; Farah, I. R.; Ettabaa, K. Saheb; Solaiman, B.; Ghézala, H. Ben

    2011-06-01

    The interpretation of remotely sensed images in a spatiotemporal context is becoming a valuable research topic. However, the constant growth of data volume in remote sensing imaging makes reaching conclusions based on collected data a challenging task. Recently, data mining appears to be a promising research field leading to several interesting discoveries in various areas such as marketing, surveillance, fraud detection and scientific discovery. By integrating data mining and image interpretation techniques, accurate and relevant information (i.e. functional relation between observed parcels and a set of informational contents) can be automatically elicited. This study presents a new approach to predict spatiotemporal changes in satellite image databases. The proposed method exploits fuzzy sets and data mining concepts to build predictions and decisions for several remote sensing fields. It takes into account imperfections related to the spatiotemporal mining process in order to provide more accurate and reliable information about land cover changes in satellite images. The proposed approach is validated using SPOT images representing the Saint-Denis region, capital of Reunion Island. Results show good performances of the proposed framework in predicting change for the urban zone.

  9. Comparing the quality of accessing medical literature using content-based visual and textual information retrieval

    NASA Astrophysics Data System (ADS)

    Müller, Henning; Kalpathy-Cramer, Jayashree; Kahn, Charles E., Jr.; Hersh, William

    2009-02-01

    Content-based visual information (or image) retrieval (CBIR) has been an extremely active research domain within medical imaging over the past ten years, with the goal of improving the management of visual medical information. Many technical solutions have been proposed, and application scenarios for image retrieval as well as image classification have been set up. However, in contrast to medical information retrieval using textual methods, visual retrieval has only rarely been applied in clinical practice. This is despite the large amount and variety of visual information produced in hospitals every day. This information overload imposes a significant burden upon clinicians, and CBIR technologies have the potential to help the situation. However, in order for CBIR to become an accepted clinical tool, it must demonstrate a higher level of technical maturity than it has to date. Since 2004, the ImageCLEF benchmark has included a task for the comparison of visual information retrieval algorithms for medical applications. In 2005, a task for medical image classification was introduced and both tasks have been run successfully for the past four years. These benchmarks allow an annual comparison of visual retrieval techniques based on the same data sets and the same query tasks, enabling the meaningful comparison of various retrieval techniques. The datasets used from 2004-2007 contained images and annotations from medical teaching files. In 2008, however, the dataset used was made up of 67,000 images (along with their associated figure captions and the full text of their corresponding articles) from two Radiological Society of North America (RSNA) scientific journals. This article describes the results of the medical image retrieval task of the ImageCLEF 2008 evaluation campaign. We compare the retrieval results of both visual and textual information retrieval systems from 15 research groups on the aforementioned data set. The results show clearly that, currently, visual retrieval alone does not achieve the performance necessary for real-world clinical applications. Most of the common visual retrieval techniques have a MAP (Mean Average Precision) of around 2-3%, which is much lower than that achieved using textual retrieval (MAP=29%). Advanced machine learning techniques, together with good training data, have been shown to improve the performance of visual retrieval systems in the past. Multimodal retrieval (basing retrieval on both visual and textual information) can achieve better results than purely visual, but only when carefully applied. In many cases, multimodal retrieval systems performed even worse than purely textual retrieval systems. On the other hand, some multimodal retrieval systems demonstrated significantly increased early precision, which has been shown to be a desirable behavior in real-world systems.

  10. Classification of document page images based on visual similarity of layout structures

    NASA Astrophysics Data System (ADS)

    Shin, Christian K.; Doermann, David S.

    1999-12-01

    Searching for documents by their type or genre is a natural way to enhance the effectiveness of document retrieval. The layout of a document contains a significant amount of information that can be used to classify a document's type in the absence of domain specific models. A document type or genre can be defined by the user based primarily on layout structure. Our classification approach is based on 'visual similarity' of the layout structure by building a supervised classifier, given examples of the class. We use image features, such as the percentages of tex and non-text (graphics, image, table, and ruling) content regions, column structures, variations in the point size of fonts, the density of content area, and various statistics on features of connected components which can be derived from class samples without class knowledge. In order to obtain class labels for training samples, we conducted a user relevance test where subjects ranked UW-I document images with respect to the 12 representative images. We implemented our classification scheme using the OC1, a decision tree classifier, and report our findings.

  11. High content image analysis for human H4 neuroglioma cells exposed to CuO nanoparticles.

    PubMed

    Li, Fuhai; Zhou, Xiaobo; Zhu, Jinmin; Ma, Jinwen; Huang, Xudong; Wong, Stephen T C

    2007-10-09

    High content screening (HCS)-based image analysis is becoming an important and widely used research tool. Capitalizing this technology, ample cellular information can be extracted from the high content cellular images. In this study, an automated, reliable and quantitative cellular image analysis system developed in house has been employed to quantify the toxic responses of human H4 neuroglioma cells exposed to metal oxide nanoparticles. This system has been proved to be an essential tool in our study. The cellular images of H4 neuroglioma cells exposed to different concentrations of CuO nanoparticles were sampled using IN Cell Analyzer 1000. A fully automated cellular image analysis system has been developed to perform the image analysis for cell viability. A multiple adaptive thresholding method was used to classify the pixels of the nuclei image into three classes: bright nuclei, dark nuclei, and background. During the development of our image analysis methodology, we have achieved the followings: (1) The Gaussian filtering with proper scale has been applied to the cellular images for generation of a local intensity maximum inside each nucleus; (2) a novel local intensity maxima detection method based on the gradient vector field has been established; and (3) a statistical model based splitting method was proposed to overcome the under segmentation problem. Computational results indicate that 95.9% nuclei can be detected and segmented correctly by the proposed image analysis system. The proposed automated image analysis system can effectively segment the images of human H4 neuroglioma cells exposed to CuO nanoparticles. The computational results confirmed our biological finding that human H4 neuroglioma cells had a dose-dependent toxic response to the insult of CuO nanoparticles.

  12. A content analysis of visual cancer information: prevalence and use of photographs and illustrations in printed health materials.

    PubMed

    King, Andy J

    2015-01-01

    Researchers and practitioners have an increasing interest in visual components of health information and health communication messages. This study contributes to this evolving body of research by providing an account of the visual images and information featured in printed cancer communication materials. Using content analysis, 147 pamphlets and 858 images were examined to determine how frequently images are used in printed materials, what types of images are used, what information is conveyed visually, and whether or not current recommendations for the inclusion of visual content were being followed. Although visual messages were found to be common in printed health materials, existing recommendations about the inclusion of visual content were only partially followed. Results are discussed in terms of how relevant theoretical frameworks in the areas of behavior change and visual persuasion seem to be used in these materials, as well as how more theory-oriented research is necessary in visual messaging efforts.

  13. Mobile medical visual information retrieval.

    PubMed

    Depeursinge, Adrien; Duc, Samuel; Eggel, Ivan; Müller, Henning

    2012-01-01

    In this paper, we propose mobile access to peer-reviewed medical information based on textual search and content-based visual image retrieval. Web-based interfaces designed for limited screen space were developed to query via web services a medical information retrieval engine optimizing the amount of data to be transferred in wireless form. Visual and textual retrieval engines with state-of-the-art performance were integrated. Results obtained show a good usability of the software. Future use in clinical environments has the potential of increasing quality of patient care through bedside access to the medical literature in context.

  14. What Can Pictures Tell Us About Web Pages? Improving Document Search Using Images.

    PubMed

    Rodriguez-Vaamonde, Sergio; Torresani, Lorenzo; Fitzgibbon, Andrew W

    2015-06-01

    Traditional Web search engines do not use the images in the HTML pages to find relevant documents for a given query. Instead, they typically operate by computing a measure of agreement between the keywords provided by the user and only the text portion of each page. In this paper we study whether the content of the pictures appearing in a Web page can be used to enrich the semantic description of an HTML document and consequently boost the performance of a keyword-based search engine. We present a Web-scalable system that exploits a pure text-based search engine to find an initial set of candidate documents for a given query. Then, the candidate set is reranked using visual information extracted from the images contained in the pages. The resulting system retains the computational efficiency of traditional text-based search engines with only a small additional storage cost needed to encode the visual information. We test our approach on one of the TREC Million Query Track benchmarks where we show that the exploitation of visual content yields improvement in accuracies for two distinct text-based search engines, including the system with the best reported performance on this benchmark. We further validate our approach by collecting document relevance judgements on our search results using Amazon Mechanical Turk. The results of this experiment confirm the improvement in accuracy produced by our image-based reranker over a pure text-based system.

  15. A multiplexed method for kinetic measurements of apoptosis and proliferation using live-content imaging.

    PubMed

    Artymovich, Katherine; Appledorn, Daniel M

    2015-01-01

    In vitro cell proliferation and apoptosis assays are widely used to study cancer cell biology. Commonly used methodologies are however performed at a single, user-defined endpoint. We describe a kinetic multiplex assay incorporating the CellPlayer(TM) NucLight Red reagent to measure proliferation and the CellPlayer(TM) Caspase-3/7 reagent to measure apoptosis using the two-color, live-content imaging platform, IncuCyte(TM) ZOOM. High-definition phase-contrast images provide an additional qualitative validation of cell death based on morphological characteristics. The kinetic data generated using this strategy can be used to derive informed pharmacology measurements to screen potential cancer therapeutics.

  16. Computer vision-based analysis of foods: a non-destructive colour measurement tool to monitor quality and safety.

    PubMed

    Mogol, Burçe Ataç; Gökmen, Vural

    2014-05-01

    Computer vision-based image analysis has been widely used in food industry to monitor food quality. It allows low-cost and non-contact measurements of colour to be performed. In this paper, two computer vision-based image analysis approaches are discussed to extract mean colour or featured colour information from the digital images of foods. These types of information may be of particular importance as colour indicates certain chemical changes or physical properties in foods. As exemplified here, the mean CIE a* value or browning ratio determined by means of computer vision-based image analysis algorithms can be correlated with acrylamide content of potato chips or cookies. Or, porosity index as an important physical property of breadcrumb can be calculated easily. In this respect, computer vision-based image analysis provides a useful tool for automatic inspection of food products in a manufacturing line, and it can be actively involved in the decision-making process where rapid quality/safety evaluation is needed. © 2013 Society of Chemical Industry.

  17. Adaptive platform for fluorescence microscopy-based high-content screening

    NASA Astrophysics Data System (ADS)

    Geisbauer, Matthias; Röder, Thorsten; Chen, Yang; Knoll, Alois; Uhl, Rainer

    2010-04-01

    Fluorescence microscopy has become a widely used tool for the study of medically relevant intra- and intercellular processes. Extracting meaningful information out of a bulk of acquired images is usually performed during a separate post-processing task. Thus capturing raw data results in an unnecessary huge number of images, whereas usually only a few images really show the particular information that is searched for. Here we propose a novel automated high-content microscope system, which enables experiments to be carried out with only a minimum of human interaction. It facilitates a huge speed-increase for cell biology research and its applications compared to the widely performed workflows. Our fluorescence microscopy system can automatically execute application-dependent data processing algorithms during the actual experiment. They are used for image contrast enhancement, cell segmentation and/or cell property evaluation. On-the-fly retrieved information is used to reduce data and concomitantly control the experiment process in real-time. Resulting in a closed loop of perception and action the system can greatly decrease the amount of stored data on one hand and increases the relative valuable data content on the other hand. We demonstrate our approach by addressing the problem of automatically finding cells with a particular combination of labeled receptors and then selectively stimulate them with antagonists or agonists. The results are then compared against the results of traditional, static systems.

  18. Medical image security using modified chaos-based cryptography approach

    NASA Astrophysics Data System (ADS)

    Talib Gatta, Methaq; Al-latief, Shahad Thamear Abd

    2018-05-01

    The progressive development in telecommunication and networking technologies have led to the increased popularity of telemedicine usage which involve storage and transfer of medical images and related information so security concern is emerged. This paper presents a method to provide the security to the medical images since its play a major role in people healthcare organizations. The main idea in this work based on the chaotic sequence in order to provide efficient encryption method that allows reconstructing the original image from the encrypted image with high quality and minimum distortion in its content and doesn’t effect in human treatment and diagnosing. Experimental results prove the efficiency of the proposed method using some of statistical measures and robust correlation between original image and decrypted image.

  19. On the analysis of time-of-flight spin-echo modulated dark-field imaging data

    NASA Astrophysics Data System (ADS)

    Sales, Morten; Plomp, Jeroen; Bouwman, Wim G.; Tremsin, Anton S.; Habicht, Klaus; Strobl, Markus

    2017-06-01

    Spin-Echo Modulated Small Angle Neutron Scattering with spatial resolution, i.e. quantitative Spin-Echo Dark Field Imaging, is an emerging technique coupling neutron imaging with spatially resolved quantitative small angle scattering information. However, the currently achieved relatively large modulation periods of the order of millimeters are superimposed to the images of the samples. So far this required an independent reduction and analyses of the image and scattering information encoded in the measured data and is involving extensive curve fitting routines. Apart from requiring a priori decisions potentially limiting the information content that is extractable also a straightforward judgment of the data quality and information content is hindered. In contrast we propose a significantly simplified routine directly applied to the measured data, which does not only allow an immediate first assessment of data quality and delaying decisions on potentially information content limiting further reduction steps to a later and better informed state, but also, as results suggest, generally better analyses. In addition the method enables to drop the spatial resolution detector requirement for non-spatially resolved Spin-Echo Modulated Small Angle Neutron Scattering.

  20. Morphometric information to reduce the semantic gap in the characterization of microscopic images of thyroid nodules.

    PubMed

    Macedo, Alessandra A; Pessotti, Hugo C; Almansa, Luciana F; Felipe, Joaquim C; Kimura, Edna T

    2016-07-01

    The analyses of several systems for medical-imaging processing typically support the extraction of image attributes, but do not comprise some information that characterizes images. For example, morphometry can be applied to find new information about the visual content of an image. The extension of information may result in knowledge. Subsequently, results of mappings can be applied to recognize exam patterns, thus improving the accuracy of image retrieval and allowing a better interpretation of exam results. Although successfully applied in breast lesion images, the morphometric approach is still poorly explored in thyroid lesions due to the high subjectivity thyroid examinations. This paper presents a theoretical-practical study, considering Computer Aided Diagnosis (CAD) and Morphometry, to reduce the semantic discontinuity between medical image features and human interpretation of image content. The proposed method aggregates the content of microscopic images characterized by morphometric information and other image attributes extracted by traditional object extraction algorithms. This method carries out segmentation, feature extraction, image labeling and classification. Morphometric analysis was included as an object extraction method in order to verify the improvement of its accuracy for automatic classification of microscopic images. To validate this proposal and verify the utility of morphometric information to characterize thyroid images, a CAD system was created to classify real thyroid image-exams into Papillary Cancer, Goiter and Non-Cancer. Results showed that morphometric information can improve the accuracy and precision of image retrieval and the interpretation of results in computer-aided diagnosis. For example, in the scenario where all the extractors are combined with the morphometric information, the CAD system had its best performance (70% of precision in Papillary cases). Results signalized a positive use of morphometric information from images to reduce semantic discontinuity between human interpretation and image characterization. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Data Mining and Knowledge Discovery tools for exploiting big Earth-Observation data

    NASA Astrophysics Data System (ADS)

    Espinoza Molina, D.; Datcu, M.

    2015-04-01

    The continuous increase in the size of the archives and in the variety and complexity of Earth-Observation (EO) sensors require new methodologies and tools that allow the end-user to access a large image repository, to extract and to infer knowledge about the patterns hidden in the images, to retrieve dynamically a collection of relevant images, and to support the creation of emerging applications (e.g.: change detection, global monitoring, disaster and risk management, image time series, etc.). In this context, we are concerned with providing a platform for data mining and knowledge discovery content from EO archives. The platform's goal is to implement a communication channel between Payload Ground Segments and the end-user who receives the content of the data coded in an understandable format associated with semantics that is ready for immediate exploitation. It will provide the user with automated tools to explore and understand the content of highly complex images archives. The challenge lies in the extraction of meaningful information and understanding observations of large extended areas, over long periods of time, with a broad variety of EO imaging sensors in synergy with other related measurements and data. The platform is composed of several components such as 1.) ingestion of EO images and related data providing basic features for image analysis, 2.) query engine based on metadata, semantics and image content, 3.) data mining and knowledge discovery tools for supporting the interpretation and understanding of image content, 4.) semantic definition of the image content via machine learning methods. All these components are integrated and supported by a relational database management system, ensuring the integrity and consistency of Terabytes of Earth Observation data.

  2. PCI bus content-addressable-memory (CAM) implementation on FPGA for pattern recognition/image retrieval in a distributed environment

    NASA Astrophysics Data System (ADS)

    Megherbi, Dalila B.; Yan, Yin; Tanmay, Parikh; Khoury, Jed; Woods, C. L.

    2004-11-01

    Recently surveillance and Automatic Target Recognition (ATR) applications are increasing as the cost of computing power needed to process the massive amount of information continues to fall. This computing power has been made possible partly by the latest advances in FPGAs and SOPCs. In particular, to design and implement state-of-the-Art electro-optical imaging systems to provide advanced surveillance capabilities, there is a need to integrate several technologies (e.g. telescope, precise optics, cameras, image/compute vision algorithms, which can be geographically distributed or sharing distributed resources) into a programmable system and DSP systems. Additionally, pattern recognition techniques and fast information retrieval, are often important components of intelligent systems. The aim of this work is using embedded FPGA as a fast, configurable and synthesizable search engine in fast image pattern recognition/retrieval in a distributed hardware/software co-design environment. In particular, we propose and show a low cost Content Addressable Memory (CAM)-based distributed embedded FPGA hardware architecture solution with real time recognition capabilities and computing for pattern look-up, pattern recognition, and image retrieval. We show how the distributed CAM-based architecture offers a performance advantage of an order-of-magnitude over RAM-based architecture (Random Access Memory) search for implementing high speed pattern recognition for image retrieval. The methods of designing, implementing, and analyzing the proposed CAM based embedded architecture are described here. Other SOPC solutions/design issues are covered. Finally, experimental results, hardware verification, and performance evaluations using both the Xilinx Virtex-II and the Altera Apex20k are provided to show the potential and power of the proposed method for low cost reconfigurable fast image pattern recognition/retrieval at the hardware/software co-design level.

  3. Case retrieval in medical databases by fusing heterogeneous information.

    PubMed

    Quellec, Gwénolé; Lamard, Mathieu; Cazuguel, Guy; Roux, Christian; Cochener, Béatrice

    2011-01-01

    A novel content-based heterogeneous information retrieval framework, particularly well suited to browse medical databases and support new generation computer aided diagnosis (CADx) systems, is presented in this paper. It was designed to retrieve possibly incomplete documents, consisting of several images and semantic information, from a database; more complex data types such as videos can also be included in the framework. The proposed retrieval method relies on image processing, in order to characterize each individual image in a document by their digital content, and information fusion. Once the available images in a query document are characterized, a degree of match, between the query document and each reference document stored in the database, is defined for each attribute (an image feature or a metadata). A Bayesian network is used to recover missing information if need be. Finally, two novel information fusion methods are proposed to combine these degrees of match, in order to rank the reference documents by decreasing relevance for the query. In the first method, the degrees of match are fused by the Bayesian network itself. In the second method, they are fused by the Dezert-Smarandache theory: the second approach lets us model our confidence in each source of information (i.e., each attribute) and take it into account in the fusion process for a better retrieval performance. The proposed methods were applied to two heterogeneous medical databases, a diabetic retinopathy database and a mammography screening database, for computer aided diagnosis. Precisions at five of 0.809 ± 0.158 and 0.821 ± 0.177, respectively, were obtained for these two databases, which is very promising.

  4. Automatic selection of localized region-based active contour models using image content analysis applied to brain tumor segmentation.

    PubMed

    Ilunga-Mbuyamba, Elisee; Avina-Cervantes, Juan Gabriel; Cepeda-Negrete, Jonathan; Ibarra-Manzano, Mario Alberto; Chalopin, Claire

    2017-12-01

    Brain tumor segmentation is a routine process in a clinical setting and provides useful information for diagnosis and treatment planning. Manual segmentation, performed by physicians or radiologists, is a time-consuming task due to the large quantity of medical data generated presently. Hence, automatic segmentation methods are needed, and several approaches have been introduced in recent years including the Localized Region-based Active Contour Model (LRACM). There are many popular LRACM, but each of them presents strong and weak points. In this paper, the automatic selection of LRACM based on image content and its application on brain tumor segmentation is presented. Thereby, a framework to select one of three LRACM, i.e., Local Gaussian Distribution Fitting (LGDF), localized Chan-Vese (C-V) and Localized Active Contour Model with Background Intensity Compensation (LACM-BIC), is proposed. Twelve visual features are extracted to properly select the method that may process a given input image. The system is based on a supervised approach. Applied specifically to Magnetic Resonance Imaging (MRI) images, the experiments showed that the proposed system is able to correctly select the suitable LRACM to handle a specific image. Consequently, the selection framework achieves better accuracy performance than the three LRACM separately. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Image-Based Grouping during Binocular Rivalry Is Dictated by Eye-Of-Origin

    PubMed Central

    Stuit, Sjoerd M.; Paffen, Chris L. E.; van der Smagt, Maarten J.; Verstraten, Frans A. J.

    2014-01-01

    Prolonged viewing of dichoptically presented images with different content results in perceptual alternations known as binocular rivalry. This phenomenon is thought to be the result of competition at a local level, where local rivalry zones interact to give rise to a single, global dominant percept. Certain perceived combinations that result from this local competition are known to last longer than others, which is referred to as grouping during binocular rivalry. In recent years, the phenomenon has been suggested to be the result of competition at both eye- and image-based processing levels, although the exact contribution from each level remains elusive. Here we use a paradigm designed specifically to quantify the contribution of eye- and image-based processing to grouping during rivalry. In this paradigm we used sine-wave gratings as well as upright and inverted faces, with and without binocular disparity-based occlusion. These stimuli and conditions were used because they are known to result in processing at different stages throughout the visual processing hierarchy. Specifically, more complex images were included in order to maximize the potential contribution of image-based grouping. In spite of this, our results show that increasing image complexity did not lead to an increase in the contribution of image-based processing to grouping during rivalry. In fact, the results show that grouping was primarily affected by the eye-of-origin of the image parts, irrespective of stimulus type. We suggest that image content affects grouping during binocular rivalry at low-level processing stages, where it is intertwined with eye-of-origin information. PMID:24987847

  6. Two-dimensional imaging of gas temperature and concentration based on hyperspectral tomography

    NASA Astrophysics Data System (ADS)

    Xin, Ming-yuan; Jin, Xing; Wang, Guang-yu; Song, Junling

    2016-10-01

    Two-dimensional imaging of gas temperature and concentration is realized by hyperspectral tomography, which has the characteristics of using multi-wavelengths absorption spectral information, so that the imaging could be accomplished in a small number of projections and viewing angles. A temperature and concentration model is established to simulate the combustion conditions and a total number of 10 near-infrared absorption spectral information of H2O is used. An improved simulated annealing algorithm by adjusting search step is performed the main search algorithm for the tomography. By adding random errors into the absorption area information, the stability of the algorithm is tested, and the results are compared with the reconstructions provided by algebraic reconstruction technique which takes advantage of 2 spectral information contents in imaging. The results show that the two methods perform equivalent in low-level noise environment, but at high-level, hyperspectral tomography turns out to be more stable.

  7. iPad: Semantic annotation and markup of radiological images.

    PubMed

    Rubin, Daniel L; Rodriguez, Cesar; Shah, Priyanka; Beaulieu, Chris

    2008-11-06

    Radiological images contain a wealth of information,such as anatomy and pathology, which is often not explicit and computationally accessible. Information schemes are being developed to describe the semantic content of images, but such schemes can be unwieldy to operationalize because there are few tools to enable users to capture structured information easily as part of the routine research workflow. We have created iPad, an open source tool enabling researchers and clinicians to create semantic annotations on radiological images. iPad hides the complexity of the underlying image annotation information model from users, permitting them to describe images and image regions using a graphical interface that maps their descriptions to structured ontologies semi-automatically. Image annotations are saved in a variety of formats,enabling interoperability among medical records systems, image archives in hospitals, and the Semantic Web. Tools such as iPad can help reduce the burden of collecting structured information from images, and it could ultimately enable researchers and physicians to exploit images on a very large scale and glean the biological and physiological significance of image content.

  8. Biodynamic profiling of three-dimensional tissue growth techniques

    NASA Astrophysics Data System (ADS)

    Sun, Hao; Merrill, Dan; Turek, John; Nolte, David

    2016-03-01

    Three-dimensional tissue culture presents a more biologically relevant environment in which to perform drug development than conventional two-dimensional cell culture. However, obtaining high-content information from inside three dimensional tissue has presented an obstacle to rapid adoption of 3D tissue culture for pharmaceutical applications. Biodynamic imaging is a high-content three-dimensional optical imaging technology based on low-coherence interferometry and digital holography that uses intracellular dynamics as high-content image contrast. In this paper, we use biodynamic imaging to compare pharmaceutical responses to Taxol of three-dimensional multicellular spheroids grown by three different growth techniques: rotating bioreactor, hanging-drop and plate-grown spheroids. The three growth techniques have systematic variations among tissue cohesiveness and intracellular activity and consequently display different pharmacodynamics under identical drug dose conditions. The in vitro tissue cultures are also compared to ex vivo living biopsies. These results demonstrate that three-dimensional tissue cultures are not equivalent, and that drug-response studies must take into account the growth method.

  9. Bone marrow fat content is correlated with hepatic fat content in paediatric non-alcoholic fatty liver disease.

    PubMed

    Yu, N Y; Wolfson, T; Middleton, M S; Hamilton, G; Gamst, A; Angeles, J E; Schwimmer, J B; Sirlin, C B

    2017-05-01

    To investigate the relationship between bone marrow fat content and hepatic fat content in children with known or suspected non-alcoholic fatty liver disease (NAFLD). This was an institutional review board-approved, Health Insurance Portability and Accountability Act (HIPAA)-compliant, cross-sectional, prospective analysis of data collected between October 2010 to March 2013 in 125 children with known or suspected NAFLD. Written informed consent was obtained for same-day research magnetic resonance imaging (MRI) of the lumbar spine, liver, and abdominal adiposity. Lumbar spine bone marrow proton density fat fraction (PDFF) and hepatic PDFF were estimated using complex-based MRI (C-MRI) techniques and magnitude-based MRI (M-MRI), respectively. Visceral adipose tissue (VAT) and subcutaneous adipose tissue (SCAT) were quantified using high-resolution MRI. All images were acquired by two MRI technologists. Hepatic M-MRI images were analysed by an image analyst; all other images were analysed by a single investigator. The relationship between lumbar spine bone marrow PDFF and hepatic PDFF was assessed with and without adjusting for the presence of covariates using correlation and regression analysis. Lumbar spine bone marrow PDFF was positively associated with hepatic PDFF in children with known or suspected NAFLD prior to adjusting for covariates (r=0.33, p=0.0002). Lumbar spine bone marrow PDFF was positively associated with hepatic PDFF in children with known or suspected NAFLD (r=0.24, p=0.0079) after adjusting for age, sex, body mass index z-score, VAT, and SCAT in a multivariable regression analysis. Bone marrow fat content is positively associated with hepatic fat content in children with known or suspected NAFLD. Further research is needed to confirm these results and understand their clinical and biological implications. Copyright © 2016 The Royal College of Radiologists. All rights reserved.

  10. BIRAM: a content-based image retrieval framework for medical images

    NASA Astrophysics Data System (ADS)

    Moreno, Ramon A.; Furuie, Sergio S.

    2006-03-01

    In the medical field, digital images are becoming more and more important for diagnostics and therapy of the patients. At the same time, the development of new technologies has increased the amount of image data produced in a hospital. This creates a demand for access methods that offer more than text-based queries for retrieval of the information. In this paper is proposed a framework for the retrieval of medical images that allows the use of different algorithms for the search of medical images by similarity. The framework also enables the search for textual information from an associated medical report and DICOM header information. The proposed system can be used for support of clinical decision making and is intended to be integrated with an open source picture, archiving and communication systems (PACS). The BIRAM has the following advantages: (i) Can receive several types of algorithms for image similarity search; (ii) Allows the codification of the report according to a medical dictionary, improving the indexing of the information and retrieval; (iii) The algorithms can be selectively applied to images with the appropriated characteristics, for instance, only in magnetic resonance images. The framework was implemented in Java language using a MS Access 97 database. The proposed framework can still be improved, by the use of regions of interest (ROI), indexing with slim-trees and integration with a PACS Server.

  11. Public sentiment and discourse about Zika virus on Instagram.

    PubMed

    Seltzer, E K; Horst-Martz, E; Lu, M; Merchant, R M

    2017-09-01

    Social media have strongly influenced the awareness and perceptions of public health emergencies, and a considerable amount of social media content is now shared through images, rather than text alone. This content can impact preparedness and response due to the popularity and real-time nature of social media platforms. We sought to explore how the image-sharing platform Instagram is used for information dissemination and conversation during the current Zika outbreak. This was a retrospective review of publicly posted images about Zika on Instagram. Using the keyword '#zika' we identified 500 images posted on Instagram from May to August 2016. Images were coded by three reviewers and contextual information was collected for each image about sentiment, image type, content, audience, geography, reliability, and engagement. Of 500 images tagged with #zika, 342 (68%) contained content actually related to Zika. Of the 342 Zika-specific images, 299 were coded as 'health' and 193 were coded 'public interest'. Some images had multiple 'health' and 'public interest' codes. Health images tagged with #zika were primarily related to transmission (43%, 129/299) and prevention (48%, 145/299). Transmission-related posts were more often mosquito-human transmission (73%, 94/129) than human-human transmission (27%, 35/129). Mosquito bite prevention posts outnumbered safe sex prevention; (84%, 122/145) and (16%, 23/145) respectively. Images with a target audience were primarily aimed at women (95%, 36/38). Many posts (60%, 61/101) included misleading, incomplete, or unclear information about the virus. Additionally, many images expressed fear and negative sentiment, (79/156, 51%). Instagram can be used to characterize public sentiment and highlight areas of focus for public health, such as correcting misleading or incomplete information or expanding messages to reach diverse audiences. Copyright © 2017 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  12. A hierarchical SVG image abstraction layer for medical imaging

    NASA Astrophysics Data System (ADS)

    Kim, Edward; Huang, Xiaolei; Tan, Gang; Long, L. Rodney; Antani, Sameer

    2010-03-01

    As medical imaging rapidly expands, there is an increasing need to structure and organize image data for efficient analysis, storage and retrieval. In response, a large fraction of research in the areas of content-based image retrieval (CBIR) and picture archiving and communication systems (PACS) has focused on structuring information to bridge the "semantic gap", a disparity between machine and human image understanding. An additional consideration in medical images is the organization and integration of clinical diagnostic information. As a step towards bridging the semantic gap, we design and implement a hierarchical image abstraction layer using an XML based language, Scalable Vector Graphics (SVG). Our method encodes features from the raw image and clinical information into an extensible "layer" that can be stored in a SVG document and efficiently searched. Any feature extracted from the raw image including, color, texture, orientation, size, neighbor information, etc., can be combined in our abstraction with high level descriptions or classifications. And our representation can natively characterize an image in a hierarchical tree structure to support multiple levels of segmentation. Furthermore, being a world wide web consortium (W3C) standard, SVG is able to be displayed by most web browsers, interacted with by ECMAScript (standardized scripting language, e.g. JavaScript, JScript), and indexed and retrieved by XML databases and XQuery. Using these open source technologies enables straightforward integration into existing systems. From our results, we show that the flexibility and extensibility of our abstraction facilitates effective storage and retrieval of medical images.

  13. Logarithmic profile mapping multi-scale Retinex for restoration of low illumination images

    NASA Astrophysics Data System (ADS)

    Shi, Haiyan; Kwok, Ngaiming; Wu, Hongkun; Li, Ruowei; Liu, Shilong; Lin, Ching-Feng; Wong, Chin Yeow

    2018-04-01

    Images are valuable information sources for many scientific and engineering applications. However, images captured in poor illumination conditions would have a large portion of dark regions that could heavily degrade the image quality. In order to improve the quality of such images, a restoration algorithm is developed here that transforms the low input brightness to a higher value using a modified Multi-Scale Retinex approach. The algorithm is further improved by a entropy based weighting with the input and the processed results to refine the necessary amplification at regions of low brightness. Moreover, fine details in the image are preserved by applying the Retinex principles to extract and then re-insert object edges to obtain an enhanced image. Results from experiments using low and normal illumination images have shown satisfactory performances with regard to the improvement in information contents and the mitigation of viewing artifacts.

  14. Automatic cataloguing and characterization of Earth science data using SE-trees

    NASA Technical Reports Server (NTRS)

    Rymon, Ron; Short, Nicholas M., Jr.

    1994-01-01

    In the future, NASA's Earth Observing System (EOS) platforms will produce enormous amounts of remote sensing image data that will be stored in the EOS Data Information System. For the past several years, the Intelligent Data Management group at Goddard's Information Science and Technology Office has been researching techniques for automatically cataloguing and characterizing image data (ADCC) from EOS into a distributed database. At the core of the approach, scientists will be able to retrieve data based upon the contents of the imagery. The ability to automatically classify imagery is key to the success of contents-based search. We report results from experiments applying a novel machine learning framework, based on Set-Enumeration (SE) trees, to the ADCC domain. We experiment with two images: one taken from the Blackhills region in South Dakota; and the other from the Washington DC area. In a classical machine learning experimentation approach, an image's pixels are randomly partitioned into training (i.e. including ground truth or survey data) and testing sets. The prediction model is built using the pixels in the training set, and its performance is estimated using the testing set. With the first Blackhills image, we perform various experiments achieving an accuracy level of 83.2 percent, compared to 72.7 percent using a Back Propagation Neural Network (BPNN) and 65.3 percent using a Gaussain Maximum Likelihood Classifier (GMLC). However, with the Washington DC image, we were only able to achieve 71.4 percent, compared with 67.7 percent reported for the BPNN model and 62.3 percent for the GMLC.

  15. High-content screening for the discovery of pharmacological compounds: advantages, challenges and potential benefits of recent technological developments.

    PubMed

    Soleilhac, Emmanuelle; Nadon, Robert; Lafanechere, Laurence

    2010-02-01

    Screening compounds with cell-based assays and microscopy image-based analysis is an approach currently favored for drug discovery. Because of its high information yield, the strategy is called high-content screening (HCS). This review covers the application of HCS in drug discovery and also in basic research of potential new pathways that can be targeted for treatment of pathophysiological diseases. HCS faces several challenges, however, including the extraction of pertinent information from the massive amount of data generated from images. Several proposed approaches to HCS data acquisition and analysis are reviewed. Different solutions from the fields of mathematics, bioinformatics and biotechnology are presented. Potential applications and limits of these recent technical developments are also discussed. HCS is a multidisciplinary and multistep approach for understanding the effects of compounds on biological processes at the cellular level. Reliable results depend on the quality of the overall process and require strong interdisciplinary collaborations.

  16. Recognition of pornographic web pages by classifying texts and images.

    PubMed

    Hu, Weiming; Wu, Ou; Chen, Zhouyao; Fu, Zhouyu; Maybank, Steve

    2007-06-01

    With the rapid development of the World Wide Web, people benefit more and more from the sharing of information. However, Web pages with obscene, harmful, or illegal content can be easily accessed. It is important to recognize such unsuitable, offensive, or pornographic Web pages. In this paper, a novel framework for recognizing pornographic Web pages is described. A C4.5 decision tree is used to divide Web pages, according to content representations, into continuous text pages, discrete text pages, and image pages. These three categories of Web pages are handled, respectively, by a continuous text classifier, a discrete text classifier, and an algorithm that fuses the results from the image classifier and the discrete text classifier. In the continuous text classifier, statistical and semantic features are used to recognize pornographic texts. In the discrete text classifier, the naive Bayes rule is used to calculate the probability that a discrete text is pornographic. In the image classifier, the object's contour-based features are extracted to recognize pornographic images. In the text and image fusion algorithm, the Bayes theory is used to combine the recognition results from images and texts. Experimental results demonstrate that the continuous text classifier outperforms the traditional keyword-statistics-based classifier, the contour-based image classifier outperforms the traditional skin-region-based image classifier, the results obtained by our fusion algorithm outperform those by either of the individual classifiers, and our framework can be adapted to different categories of Web pages.

  17. Three-dimensional image acquisition and reconstruction system on a mobile device based on computer-generated integral imaging.

    PubMed

    Erdenebat, Munkh-Uchral; Kim, Byeong-Jun; Piao, Yan-Ling; Park, Seo-Yeon; Kwon, Ki-Chul; Piao, Mei-Lan; Yoo, Kwan-Hee; Kim, Nam

    2017-10-01

    A mobile three-dimensional image acquisition and reconstruction system using a computer-generated integral imaging technique is proposed. A depth camera connected to the mobile device acquires the color and depth data of a real object simultaneously, and an elemental image array is generated based on the original three-dimensional information for the object, with lens array specifications input into the mobile device. The three-dimensional visualization of the real object is reconstructed on the mobile display through optical or digital reconstruction methods. The proposed system is implemented successfully and the experimental results certify that the system is an effective and interesting method of displaying real three-dimensional content on a mobile device.

  18. Combining textual and visual information for image retrieval in the medical domain.

    PubMed

    Gkoufas, Yiannis; Morou, Anna; Kalamboukis, Theodore

    2011-01-01

    In this article we have assembled the experience obtained from our participation in the imageCLEF evaluation task over the past two years. Exploitation on the use of linear combinations for image retrieval has been attempted by combining visual and textual sources of images. From our experiments we conclude that a mixed retrieval technique that applies both textual and visual retrieval in an interchangeably repeated manner improves the performance while overcoming the scalability limitations of visual retrieval. In particular, the mean average precision (MAP) has increased from 0.01 to 0.15 and 0.087 for 2009 and 2010 data, respectively, when content-based image retrieval (CBIR) is performed on the top 1000 results from textual retrieval based on natural language processing (NLP).

  19. Forensic hash for multimedia information

    NASA Astrophysics Data System (ADS)

    Lu, Wenjun; Varna, Avinash L.; Wu, Min

    2010-01-01

    Digital multimedia such as images and videos are prevalent on today's internet and cause significant social impact, which can be evidenced by the proliferation of social networking sites with user generated contents. Due to the ease of generating and modifying images and videos, it is critical to establish trustworthiness for online multimedia information. In this paper, we propose novel approaches to perform multimedia forensics using compact side information to reconstruct the processing history of a document. We refer to this as FASHION, standing for Forensic hASH for informatION assurance. Based on the Radon transform and scale space theory, the proposed forensic hash is compact and can effectively estimate the parameters of geometric transforms and detect local tampering that an image may have undergone. Forensic hash is designed to answer a broader range of questions regarding the processing history of multimedia data than the simple binary decision from traditional robust image hashing, and also offers more efficient and accurate forensic analysis than multimedia forensic techniques that do not use any side information.

  20. Enabling search over encrypted multimedia databases

    NASA Astrophysics Data System (ADS)

    Lu, Wenjun; Swaminathan, Ashwin; Varna, Avinash L.; Wu, Min

    2009-02-01

    Performing information retrieval tasks while preserving data confidentiality is a desirable capability when a database is stored on a server maintained by a third-party service provider. This paper addresses the problem of enabling content-based retrieval over encrypted multimedia databases. Search indexes, along with multimedia documents, are first encrypted by the content owner and then stored onto the server. Through jointly applying cryptographic techniques, such as order preserving encryption and randomized hash functions, with image processing and information retrieval techniques, secure indexing schemes are designed to provide both privacy protection and rank-ordered search capability. Retrieval results on an encrypted color image database and security analysis of the secure indexing schemes under different attack models show that data confidentiality can be preserved while retaining very good retrieval performance. This work has promising applications in secure multimedia management.

  1. Simple, fast, and low-cost camera-based water content measurement with colorimetric fluorescent indicator

    NASA Astrophysics Data System (ADS)

    Song, Seok-Jeong; Kim, Tae-Il; Kim, Youngmi; Nam, Hyoungsik

    2018-05-01

    Recently, a simple, sensitive, and low-cost fluorescent indicator has been proposed to determine water contents in organic solvents, drugs, and foodstuffs. The change of water content leads to the change of the indicator's fluorescence color under the ultra-violet (UV) light. Whereas the water content values could be estimated from the spectrum obtained by a bulky and expensive spectrometer in the previous research, this paper demonstrates a simple and low-cost camera-based water content measurement scheme with the same fluorescent water indicator. Water content is calculated over the range of 0-30% by quadratic polynomial regression models with color information extracted from the captured images of samples. Especially, several color spaces such as RGB, xyY, L∗a∗b∗, u‧v‧, HSV, and YCBCR have been investigated to establish the optimal color information features over both linear and nonlinear RGB data given by a camera before and after gamma correction. In the end, a 2nd order polynomial regression model along with HSV in a linear domain achieves the minimum mean square error of 1.06% for a 3-fold cross validation method. Additionally, the resultant water content estimation model is implemented and evaluated in an off-the-shelf Android-based smartphone.

  2. Generalized interpretation scheme for arbitrary HR InSAR image pairs

    NASA Astrophysics Data System (ADS)

    Boldt, Markus; Thiele, Antje; Schulz, Karsten

    2013-10-01

    Land cover classification of remote sensing imagery is an important topic of research. For example, different applications require precise and fast information about the land cover of the imaged scenery (e.g., disaster management and change detection). Focusing on high resolution (HR) spaceborne remote sensing imagery, the user has the choice between passive and active sensor systems. Passive systems, such as multispectral sensors, have the disadvantage of being dependent from weather influences (fog, dust, clouds, etc.) and time of day, since they work in the visible part of the electromagnetic spectrum. Here, active systems like Synthetic Aperture Radar (SAR) provide improved capabilities. As an interactive method analyzing HR InSAR image pairs, the CovAmCohTM method was introduced in former studies. CovAmCoh represents the joint analysis of locality (coefficient of variation - Cov), backscatter (amplitude - Am) and temporal stability (coherence - Coh). It delivers information on physical backscatter characteristics of imaged scene objects or structures and provides the opportunity to detect different classes of land cover (e.g., urban, rural, infrastructure and activity areas). As example, railway tracks are easily distinguishable from other infrastructure due to their characteristic bluish coloring caused by the gravel between the sleepers. In consequence, imaged objects or structures have a characteristic appearance in CovAmCoh images which allows the development of classification rules. In this paper, a generalized interpretation scheme for arbitrary InSAR image pairs using the CovAmCoh method is proposed. This scheme bases on analyzing the information content of typical CovAmCoh imagery using the semisupervised k-means clustering. It is shown that eight classes model the main local information content of CovAmCoh images sufficiently and can be used as basis for a classification scheme.

  3. Data-Base Software For Tracking Technological Developments

    NASA Technical Reports Server (NTRS)

    Aliberti, James A.; Wright, Simon; Monteith, Steve K.

    1996-01-01

    Technology Tracking System (TechTracS) computer program developed for use in storing and retrieving information on technology and related patent information developed under auspices of NASA Headquarters and NASA's field centers. Contents of data base include multiple scanned still images and quick-time movies as well as text. TechTracS includes word-processing, report-editing, chart-and-graph-editing, and search-editing subprograms. Extensive keyword searching capabilities enable rapid location of technologies, innovators, and companies. System performs routine functions automatically and serves multiple users.

  4. Neural image analysis for estimating aerobic and anaerobic decomposition of organic matter based on the example of straw decomposition

    NASA Astrophysics Data System (ADS)

    Boniecki, P.; Nowakowski, K.; Slosarz, P.; Dach, J.; Pilarski, K.

    2012-04-01

    The purpose of the project was to identify the degree of organic matter decomposition by means of a neural model based on graphical information derived from image analysis. Empirical data (photographs of compost content at various stages of maturation) were used to generate an optimal neural classifier (Boniecki et al. 2009, Nowakowski et al. 2009). The best classification properties were found in an RBF (Radial Basis Function) artificial neural network, which demonstrates that the process is non-linear.

  5. Content-based retrieval of historical Ottoman documents stored as textual images.

    PubMed

    Saykol, Ediz; Sinop, Ali Kemal; Güdükbay, Ugur; Ulusoy, Ozgür; Cetin, A Enis

    2004-03-01

    There is an accelerating demand to access the visual content of documents stored in historical and cultural archives. Availability of electronic imaging tools and effective image processing techniques makes it feasible to process the multimedia data in large databases. In this paper, a framework for content-based retrieval of historical documents in the Ottoman Empire archives is presented. The documents are stored as textual images, which are compressed by constructing a library of symbols occurring in a document, and the symbols in the original image are then replaced with pointers into the codebook to obtain a compressed representation of the image. The features in wavelet and spatial domain based on angular and distance span of shapes are used to extract the symbols. In order to make content-based retrieval in historical archives, a query is specified as a rectangular region in an input image and the same symbol-extraction process is applied to the query region. The queries are processed on the codebook of documents and the query images are identified in the resulting documents using the pointers in textual images. The querying process does not require decompression of images. The new content-based retrieval framework is also applicable to many other document archives using different scripts.

  6. A text zero-watermarking method based on keyword dense interval

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Zhu, Yuesheng; Jiang, Yifeng; Qing, Yin

    2017-07-01

    Digital watermarking has been recognized as a useful technology for the copyright protection and authentication of digital information. However, rarely did the former methods focus on the key content of digital carrier. The idea based on the protection of key content is more targeted and can be considered in different digital information, including text, image and video. In this paper, we use text as research object and a text zero-watermarking method which uses keyword dense interval (KDI) as the key content is proposed. First, we construct zero-watermarking model by introducing the concept of KDI and giving the method of KDI extraction. Second, we design detection model which includes secondary generation of zero-watermark and the similarity computing method of keyword distribution. Besides, experiments are carried out, and the results show that the proposed method gives better performance than other available methods especially in the attacks of sentence transformation and synonyms substitution.

  7. Out-of-Sample Extrapolation utilizing Semi-Supervised Manifold Learning (OSE-SSL): Content Based Image Retrieval for Histopathology Images

    PubMed Central

    Sparks, Rachel; Madabhushi, Anant

    2016-01-01

    Content-based image retrieval (CBIR) retrieves database images most similar to the query image by (1) extracting quantitative image descriptors and (2) calculating similarity between database and query image descriptors. Recently, manifold learning (ML) has been used to perform CBIR in a low dimensional representation of the high dimensional image descriptor space to avoid the curse of dimensionality. ML schemes are computationally expensive, requiring an eigenvalue decomposition (EVD) for every new query image to learn its low dimensional representation. We present out-of-sample extrapolation utilizing semi-supervised ML (OSE-SSL) to learn the low dimensional representation without recomputing the EVD for each query image. OSE-SSL incorporates semantic information, partial class label, into a ML scheme such that the low dimensional representation co-localizes semantically similar images. In the context of prostate histopathology, gland morphology is an integral component of the Gleason score which enables discrimination between prostate cancer aggressiveness. Images are represented by shape features extracted from the prostate gland. CBIR with OSE-SSL for prostate histology obtained from 58 patient studies, yielded an area under the precision recall curve (AUPRC) of 0.53 ± 0.03 comparatively a CBIR with Principal Component Analysis (PCA) to learn a low dimensional space yielded an AUPRC of 0.44 ± 0.01. PMID:27264985

  8. Reducing flicker due to ambient illumination in camera captured images

    NASA Astrophysics Data System (ADS)

    Kim, Minwoong; Bengtson, Kurt; Li, Lisa; Allebach, Jan P.

    2013-02-01

    The flicker artifact dealt with in this paper is the scanning distortion arising when an image is captured by a digital camera using a CMOS imaging sensor with an electronic rolling shutter under strong ambient light sources powered by AC. This type of camera scans a target line-by-line in a frame. Therefore, time differences exist between the lines. This mechanism causes a captured image to be corrupted by the change of illumination. This phenomenon is called the flicker artifact. The non-content area of the captured image is used to estimate a flicker signal that is a key to being able to compensate the flicker artifact. The average signal of the non-content area taken along the scan direction has local extrema where the peaks of flicker exist. The locations of the extrema are very useful information to estimate the desired distribution of pixel intensities assuming that the flicker artifact does not exist. The flicker-reduced images compensated by our approach clearly demonstrate the reduced flicker artifact, based on visual observation.

  9. Using complex networks towards information retrieval and diagnostics in multidimensional imaging

    NASA Astrophysics Data System (ADS)

    Banerjee, Soumya Jyoti; Azharuddin, Mohammad; Sen, Debanjan; Savale, Smruti; Datta, Himadri; Dasgupta, Anjan Kr; Roy, Soumen

    2015-12-01

    We present a fresh and broad yet simple approach towards information retrieval in general and diagnostics in particular by applying the theory of complex networks on multidimensional, dynamic images. We demonstrate a successful use of our method with the time series generated from high content thermal imaging videos of patients suffering from the aqueous deficient dry eye (ADDE) disease. Remarkably, network analyses of thermal imaging time series of contact lens users and patients upon whom Laser-Assisted in situ Keratomileusis (Lasik) surgery has been conducted, exhibit pronounced similarity with results obtained from ADDE patients. We also propose a general framework for the transformation of multidimensional images to networks for futuristic biometry. Our approach is general and scalable to other fluctuation-based devices where network parameters derived from fluctuations, act as effective discriminators and diagnostic markers.

  10. Using complex networks towards information retrieval and diagnostics in multidimensional imaging.

    PubMed

    Banerjee, Soumya Jyoti; Azharuddin, Mohammad; Sen, Debanjan; Savale, Smruti; Datta, Himadri; Dasgupta, Anjan Kr; Roy, Soumen

    2015-12-02

    We present a fresh and broad yet simple approach towards information retrieval in general and diagnostics in particular by applying the theory of complex networks on multidimensional, dynamic images. We demonstrate a successful use of our method with the time series generated from high content thermal imaging videos of patients suffering from the aqueous deficient dry eye (ADDE) disease. Remarkably, network analyses of thermal imaging time series of contact lens users and patients upon whom Laser-Assisted in situ Keratomileusis (Lasik) surgery has been conducted, exhibit pronounced similarity with results obtained from ADDE patients. We also propose a general framework for the transformation of multidimensional images to networks for futuristic biometry. Our approach is general and scalable to other fluctuation-based devices where network parameters derived from fluctuations, act as effective discriminators and diagnostic markers.

  11. Using complex networks towards information retrieval and diagnostics in multidimensional imaging

    PubMed Central

    Banerjee, Soumya Jyoti; Azharuddin, Mohammad; Sen, Debanjan; Savale, Smruti; Datta, Himadri; Dasgupta, Anjan Kr; Roy, Soumen

    2015-01-01

    We present a fresh and broad yet simple approach towards information retrieval in general and diagnostics in particular by applying the theory of complex networks on multidimensional, dynamic images. We demonstrate a successful use of our method with the time series generated from high content thermal imaging videos of patients suffering from the aqueous deficient dry eye (ADDE) disease. Remarkably, network analyses of thermal imaging time series of contact lens users and patients upon whom Laser-Assisted in situ Keratomileusis (Lasik) surgery has been conducted, exhibit pronounced similarity with results obtained from ADDE patients. We also propose a general framework for the transformation of multidimensional images to networks for futuristic biometry. Our approach is general and scalable to other fluctuation-based devices where network parameters derived from fluctuations, act as effective discriminators and diagnostic markers. PMID:26626047

  12. Complex Event Processing for Content-Based Text, Image, and Video Retrieval

    DTIC Science & Technology

    2016-06-01

    NY): Wiley- Interscience; 2000. Feldman R, Sanger J. The text mining handbook: advanced approaches in analyzing unstructured data. New York (NY...ARL-TR-7705 ● JUNE 2016 US Army Research Laboratory Complex Event Processing for Content-Based Text , Image, and Video Retrieval...ARL-TR-7705 ● JUNE 2016 US Army Research Laboratory Complex Event Processing for Content-Based Text , Image, and Video Retrieval

  13. Blurry-frame detection and shot segmentation in colonoscopy videos

    NASA Astrophysics Data System (ADS)

    Oh, JungHwan; Hwang, Sae; Tavanapong, Wallapak; de Groen, Piet C.; Wong, Johnny

    2003-12-01

    Colonoscopy is an important screening procedure for colorectal cancer. During this procedure, the endoscopist visually inspects the colon. Human inspection, however, is not without error. We hypothesize that colonoscopy videos may contain additional valuable information missed by the endoscopist. Video segmentation is the first necessary step for the content-based video analysis and retrieval to provide efficient access to the important images and video segments from a large colonoscopy video database. Based on the unique characteristics of colonoscopy videos, we introduce a new scheme to detect and remove blurry frames, and segment the videos into shots based on the contents. Our experimental results show that the average precision and recall of the proposed scheme are over 90% for the detection of non-blurry images. The proposed method of blurry frame detection and shot segmentation is extensible to the videos captured from other endoscopic procedures such as upper gastrointestinal endoscopy, enteroscopy, cystoscopy, and laparoscopy.

  14. Nonlinear Fusion of Multispectral Citrus Fruit Image Data with Information Contents.

    PubMed

    Li, Peilin; Lee, Sang-Heon; Hsu, Hung-Yao; Park, Jae-Sam

    2017-01-13

    The main issue of vison-based automatic harvesting manipulators is the difficulty in the correct fruit identification in the images under natural lighting conditions. Mostly, the solution has been based on a linear combination of color components in the multispectral images. However, the results have not reached a satisfactory level. To overcome this issue, this paper proposes a robust nonlinear fusion method to augment the original color image with the synchronized near infrared image. The two images are fused with Daubechies wavelet transform (DWT) in a multiscale decomposition approach. With DWT, the background noises are reduced and the necessary image features are enhanced by fusing the color contrast of the color components and the homogeneity of the near infrared (NIR) component. The resulting fused color image is classified with a C-means algorithm for reconstruction. The performance of the proposed approach is evaluated with the statistical F measure in comparison to some existing methods using linear combinations of color components. The results show that the fusion of information in different spectral components has the advantage of enhancing the image quality, therefore improving the classification accuracy in citrus fruit identification in natural lighting conditions.

  15. Nonlinear Fusion of Multispectral Citrus Fruit Image Data with Information Contents

    PubMed Central

    Li, Peilin; Lee, Sang-Heon; Hsu, Hung-Yao; Park, Jae-Sam

    2017-01-01

    The main issue of vison-based automatic harvesting manipulators is the difficulty in the correct fruit identification in the images under natural lighting conditions. Mostly, the solution has been based on a linear combination of color components in the multispectral images. However, the results have not reached a satisfactory level. To overcome this issue, this paper proposes a robust nonlinear fusion method to augment the original color image with the synchronized near infrared image. The two images are fused with Daubechies wavelet transform (DWT) in a multiscale decomposition approach. With DWT, the background noises are reduced and the necessary image features are enhanced by fusing the color contrast of the color components and the homogeneity of the near infrared (NIR) component. The resulting fused color image is classified with a C-means algorithm for reconstruction. The performance of the proposed approach is evaluated with the statistical F measure in comparison to some existing methods using linear combinations of color components. The results show that the fusion of information in different spectral components has the advantage of enhancing the image quality, therefore improving the classification accuracy in citrus fruit identification in natural lighting conditions. PMID:28098797

  16. Diversification of visual media retrieval results using saliency detection

    NASA Astrophysics Data System (ADS)

    Muratov, Oleg; Boato, Giulia; De Natale, Franesco G. B.

    2013-03-01

    Diversification of retrieval results allows for better and faster search. Recently there has been proposed different methods for diversification of image retrieval results mainly utilizing text information and techniques imported from natural language processing domain. However, images contain visual information that is impossible to describe in text and the use of visual features is inevitable. Visual saliency is information about the main object of an image implicitly included by humans while creating visual content. For this reason it is naturally to exploit this information for the task of diversification of the content. In this work we study whether visual saliency can be used for the task of diversification and propose a method for re-ranking image retrieval results using saliency. The evaluation has shown that the use of saliency information results in higher diversity of retrieval results.

  17. Evaluation techniques and metrics for assessment of pan+MSI fusion (pansharpening)

    NASA Astrophysics Data System (ADS)

    Mercovich, Ryan A.

    2015-05-01

    Fusion of broadband panchromatic data with narrow band multispectral data - pansharpening - is a common and often studied problem in remote sensing. Many methods exist to produce data fusion results with the best possible spatial and spectral characteristics, and a number have been commercially implemented. This study examines the output products of 4 commercial implementations with regard to their relative strengths and weaknesses for a set of defined image characteristics and analyst use-cases. Image characteristics used are spatial detail, spatial quality, spectral integrity, and composite color quality (hue and saturation), and analyst use-cases included a variety of object detection and identification tasks. The imagery comes courtesy of the RIT SHARE 2012 collect. Two approaches are used to evaluate the pansharpening methods, analyst evaluation or qualitative measure and image quality metrics or quantitative measures. Visual analyst evaluation results are compared with metric results to determine which metrics best measure the defined image characteristics and product use-cases and to support future rigorous characterization the metrics' correlation with the analyst results. Because pansharpening represents a trade between adding spatial information from the panchromatic image, and retaining spectral information from the MSI channels, the metrics examined are grouped into spatial improvement metrics and spectral preservation metrics. A single metric to quantify the quality of a pansharpening method would necessarily be a combination of weighted spatial and spectral metrics based on the importance of various spatial and spectral characteristics for the primary task of interest. Appropriate metrics and weights for such a combined metric are proposed here, based on the conducted analyst evaluation. Additionally, during this work, a metric was developed specifically focused on assessment of spatial structure improvement relative to a reference image and independent of scene content. Using analysis of Fourier transform images, a measure of high-frequency content is computed in small sub-segments of the image. The average increase in high-frequency content across the image is used as the metric, where averaging across sub-segments combats the scene dependent nature of typical image sharpness techniques. This metric had an improved range of scores, better representing difference in the test set than other common spatial structure metrics.

  18. Flexible medical image management using service-oriented architecture.

    PubMed

    Shaham, Oded; Melament, Alex; Barak-Corren, Yuval; Kostirev, Igor; Shmueli, Noam; Peres, Yardena

    2012-01-01

    Management of medical images increasingly involves the need for integration with a variety of information systems. To address this need, we developed Content Management Offering (CMO), a platform for medical image management supporting interoperability through compliance with standards. CMO is based on the principles of service-oriented architecture, implemented with emphasis on three areas: clarity of business process definition, consolidation of service configuration management, and system scalability. Owing to the flexibility of this platform, a small team is able to accommodate requirements of customers varying in scale and in business needs. We describe two deployments of CMO, highlighting the platform's value to customers. CMO represents a flexible approach to medical image management, which can be applied to a variety of information technology challenges in healthcare and life sciences organizations.

  19. Construction of Reference Data for Tissue Characterization of Arterial Wall Based on Elasticity Images

    NASA Astrophysics Data System (ADS)

    Inagaki, Jun; Hasegawa, Hideyuki; Kanai, Hiroshi; Ichiki, Masataka; Tezuka, Fumiaki

    2005-06-01

    Previously, we developed the phased tracking method [H. Kanai et al.: IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43 (1996) 791] for measuring the minute change in thickness during one heartbeat and the elasticity of the arterial wall. By comparing pathological images with elasticity images measured with ultrasound, elasticity distributions for respective tissues in the arterial wall were determined. We have already measured the elasticity distributions for lipids and fibrous tissues (mixtures of smooth-muscle and collagen fiber) [H. Kanai et al.: Circulation 107 (2003) 3018]. In this study, elasticity distributions were measured for blood clots and calcified tissues. We discuss whether these elasticity distributions, which were measuerd in vitro, can be used as reference data for classifying cross-sectional elasticity images measured in vivo into respective tissues. In addition to the measurement of elasticity distributions, correlations between collagen content and elasticity were investigated with respect to fibrous tissue to estimate the collagen and smooth-muscle content based on elasticity. Collagen and smooth-muscle content may be important factors in determining the stability of the fibrous cap of atherosclerotic plaque. Therefore, correlations between elasticity and elements of the tissue in the arterial wall may provide useful information for the noninvasive diagnosis of plaque vulnerability.

  20. Content standards for medical image metadata

    NASA Astrophysics Data System (ADS)

    d'Ornellas, Marcos C.; da Rocha, Rafael P.

    2003-12-01

    Medical images are at the heart of the healthcare diagnostic procedures. They have provided not only a noninvasive mean to view anatomical cross-sections of internal organs but also a mean for physicians to evaluate the patient"s diagnosis and monitor the effects of the treatment. For a Medical Center, the emphasis may shift from the generation of image to post processing and data management since the medical staff may generate even more processed images and other data from the original image after various analyses and post processing. A medical image data repository for health care information system is becoming a critical need. This data repository would contain comprehensive patient records, including information such as clinical data and related diagnostic images, and post-processed images. Due to the large volume and complexity of the data as well as the diversified user access requirements, the implementation of the medical image archive system will be a complex and challenging task. This paper discusses content standards for medical image metadata. In addition it also focuses on the image metadata content evaluation and metadata quality management.

  1. Potential of Near-Infrared Chemical Imaging as Process Analytical Technology Tool for Continuous Freeze-Drying.

    PubMed

    Brouckaert, Davinia; De Meyer, Laurens; Vanbillemont, Brecht; Van Bockstal, Pieter-Jan; Lammens, Joris; Mortier, Séverine; Corver, Jos; Vervaet, Chris; Nopens, Ingmar; De Beer, Thomas

    2018-04-03

    Near-infrared chemical imaging (NIR-CI) is an emerging tool for process monitoring because it combines the chemical selectivity of vibrational spectroscopy with spatial information. Whereas traditional near-infrared spectroscopy is an attractive technique for water content determination and solid-state investigation of lyophilized products, chemical imaging opens up possibilities for assessing the homogeneity of these critical quality attributes (CQAs) throughout the entire product. In this contribution, we aim to evaluate NIR-CI as a process analytical technology (PAT) tool for at-line inspection of continuously freeze-dried pharmaceutical unit doses based on spin freezing. The chemical images of freeze-dried mannitol samples were resolved via multivariate curve resolution, allowing us to visualize the distribution of mannitol solid forms throughout the entire cake. Second, a mannitol-sucrose formulation was lyophilized with variable drying times for inducing changes in water content. Analyzing the corresponding chemical images via principal component analysis, vial-to-vial variations as well as within-vial inhomogeneity in water content could be detected. Furthermore, a partial least-squares regression model was constructed for quantifying the water content in each pixel of the chemical images. It was hence concluded that NIR-CI is inherently a most promising PAT tool for continuously monitoring freeze-dried samples. Although some practicalities are still to be solved, this analytical technique could be applied in-line for CQA evaluation and for detecting the drying end point.

  2. Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Pian, Qi; Yao, Ruoyang; Sinsuebphon, Nattawut; Intes, Xavier

    2017-07-01

    Spectrally resolved fluorescence lifetime imaging and spatial multiplexing have offered information content and collection-efficiency boosts in microscopy, but efficient implementations for macroscopic applications are still lacking. An imaging platform based on time-resolved structured light and hyperspectral single-pixel detection has been developed to perform quantitative macroscopic fluorescence lifetime imaging (MFLI) over a large field of view (FOV) and multiple spectral bands simultaneously. The system makes use of three digital micromirror device (DMD)-based spatial light modulators (SLMs) to generate spatial optical bases and reconstruct N by N images over 16 spectral channels with a time-resolved capability (∼40 ps temporal resolution) using fewer than N2 optical measurements. We demonstrate the potential of this new imaging platform by quantitatively imaging near-infrared (NIR) Förster resonance energy transfer (FRET) both in vitro and in vivo. The technique is well suited for quantitative hyperspectral lifetime imaging with a high sensitivity and paves the way for many important biomedical applications.

  3. A Complete Color Normalization Approach to Histopathology Images Using Color Cues Computed From Saturation-Weighted Statistics.

    PubMed

    Li, Xingyu; Plataniotis, Konstantinos N

    2015-07-01

    In digital histopathology, tasks of segmentation and disease diagnosis are achieved by quantitative analysis of image content. However, color variation in image samples makes it challenging to produce reliable results. This paper introduces a complete normalization scheme to address the problem of color variation in histopathology images jointly caused by inconsistent biopsy staining and nonstandard imaging condition. Method : Different from existing normalization methods that either address partial cause of color variation or lump them together, our method identifies causes of color variation based on a microscopic imaging model and addresses inconsistency in biopsy imaging and staining by an illuminant normalization module and a spectral normalization module, respectively. In evaluation, we use two public datasets that are representative of histopathology images commonly received in clinics to examine the proposed method from the aspects of robustness to system settings, performance consistency against achromatic pixels, and normalization effectiveness in terms of histological information preservation. As the saturation-weighted statistics proposed in this study generates stable and reliable color cues for stain normalization, our scheme is robust to system parameters and insensitive to image content and achromatic colors. Extensive experimentation suggests that our approach outperforms state-of-the-art normalization methods as the proposed method is the only approach that succeeds to preserve histological information after normalization. The proposed color normalization solution would be useful to mitigate effects of color variation in pathology images on subsequent quantitative analysis.

  4. Autofluorescence-based diagnostic UV imaging of tissues and cells

    NASA Astrophysics Data System (ADS)

    Renkoski, Timothy E.

    Cancer is the second leading cause of death in the United States, and its early diagnosis is critical to improving treatment options and patient outcomes. In autofluorescence (AF) imaging, light of controlled wavelengths is projected onto tissue, absorbed by specific molecules, and re-emitted at longer wavelengths. Images of re-emitted light are used together with spectral information to infer tissue functional information and diagnosis. This dissertation describes AF imaging studies of three different organs using data collected from fresh human surgical specimens. In the ovary study, illumination was at 365 nm, and images were captured at 8 emission wavelengths. Measurements from a multispectral imaging system and fiber optic probe were used to map tissue diagnosis at every image pixel. For the colon and pancreas studies, instrumentation was developed extending AF imaging capability to sub-300 nm excitation. Images excited in the deep UV revealed tryptophan and protein content which are believed to change with disease state. Several excitation wavelength bands from 280 nm to 440 nm were investigated. Microscopic AF images collected in the pancreas study included both cultured and primary cells. Several findings are reported. A method of transforming fiber optic probe spectra for direct comparison with imager spectra was devised. Normalization of AF data by green reflectance data was found useful in correcting hemoglobin absorption. Ratio images, both AF and reflectance, were formulated to highlight growths in the colon. Novel tryptophan AF images were found less useful for colon diagnostics than the new ratio techniques. Microscopic tryptophan AF images produce useful visualization of cellular protein content, but their diagnostic value requires further study.

  5. Advanced Image Processing Techniques for Maximum Information Recovery

    DTIC Science & Technology

    2006-11-01

    0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision...available information from an image. Some radio frequency and optical sensors collect large-scale sets of spatial imagery data whose content is often...Some radio frequency and optical sensors collect large- scale sets of spatial imagery data whose content is often obscured by fog, clouds, foliage

  6. Using deep learning for content-based medical image retrieval

    NASA Astrophysics Data System (ADS)

    Sun, Qinpei; Yang, Yuanyuan; Sun, Jianyong; Yang, Zhiming; Zhang, Jianguo

    2017-03-01

    Content-Based medical image retrieval (CBMIR) is been highly active research area from past few years. The retrieval performance of a CBMIR system crucially depends on the feature representation, which have been extensively studied by researchers for decades. Although a variety of techniques have been proposed, it remains one of the most challenging problems in current CBMIR research, which is mainly due to the well-known "semantic gap" issue that exists between low-level image pixels captured by machines and high-level semantic concepts perceived by human[1]. Recent years have witnessed some important advances of new techniques in machine learning. One important breakthrough technique is known as "deep learning". Unlike conventional machine learning methods that are often using "shallow" architectures, deep learning mimics the human brain that is organized in a deep architecture and processes information through multiple stages of transformation and representation. This means that we do not need to spend enormous energy to extract features manually. In this presentation, we propose a novel framework which uses deep learning to retrieval the medical image to improve the accuracy and speed of a CBIR in integrated RIS/PACS.

  7. Acid diffusion, standing waves, and information theory: a molecular-scale model of chemically amplified resist

    NASA Astrophysics Data System (ADS)

    Trefonas, Peter, III; Allen, Mary T.

    1992-06-01

    Shannon's information theory is adapted to analyze the photolithographic process, defining the mask pattern as the prior state. Definitions and constraints to the general theory are developed so that the information content at various stages of the lithographic process can be described. Its application is illustrated by exploring the information content within projected aerial images and resultant latent images. Next, a 3-dimensional molecular scale model of exposure, acid diffusion, and catalytic crosslinking in acid-hardened resists (AHR) is presented. In this model, initial positions of photogenerated acids are determined by probability functions generated from the aerial images and the local light intensity in the film. In order to simulate post-exposure baking processes, acids are diffused in a random walk manner, for which the catalytic chain length and the average distance between crosslinks can be set. Crosslink locations are defined in terms of the topologically minimized number required to link different chains. The size and location of polymer chains involved in a larger scale crosslinked network is established and related to polymer solubility. In this manner, the nature of the crosslinked latent image can be established. Good correlation with experimental data is found for the calculated percent insolubilization as a function of dose when the rms acid diffusion length is about 500 angstroms. Information analysis is applied in detail to the specific example of AHR chemistry. The information contained within the 3-D crosslinked latent image is explored as a function of exposure dose, catalytic chain length, average distance between crosslinks. Eopt (the exposure dose which optimizes the information contained within the latent image) was found to vary with catalytic chain length in a manner similar to that observed experimentally in a plot of E90 versus post-exposure bake time. Surprisingly, the information content of the crosslinked latent image remains high even when rms diffusion lengths are as long as 1500 angstroms. The information content of a standing wave is shown to decrease with increasing diffusion length, with essentially all standing wave information being lost at diffusion lengths greater than 450 angstroms. A unique mechanism for self-contrast enhancement and high resolution in AHR resist is proposed.

  8. Psychophysical experiments on the PicHunter image retrieval system

    NASA Astrophysics Data System (ADS)

    Papathomas, Thomas V.; Cox, Ingemar J.; Yianilos, Peter N.; Miller, Matt L.; Minka, Thomas P.; Conway, Tiffany E.; Ghosn, Joumana

    2001-01-01

    Psychophysical experiments were conducted on PicHunter, a content-based image retrieval (CBIR) experimental prototype with the following properties: (1) Based on a model of how users respond, it uses Bayes's rule to predict what target users want, given their actions. (2) It possesses an extremely simple user interface. (3) It employs an entropy- based scheme to improve convergence. (4) It introduces a paradigm for assessing the performance of CBIR systems. Experiments 1-3 studied human judgment of image similarity to obtain data for the model. Experiment 4 studied the importance of using: (a) semantic information, (b) memory of earlier input, and (c) relative and absolute judgments of similarity. Experiment 5 tested an approach that we propose for comparing performances of CBIR systems objectively. Finally, experiment 6 evaluated the most informative display-updating scheme that is based on entropy minimization, and confirmed earlier simulation results. These experiments represent one of the first attempts to quantify CBIR performance based on psychophysical studies, and they provide valuable data for improving CBIR algorithms. Even though they were designed with PicHunter in mind, their results can be applied to any CBIR system and, more generally, to any system that involves judgment of image similarity by humans.

  9. Scalable gastroscopic video summarization via similar-inhibition dictionary selection.

    PubMed

    Wang, Shuai; Cong, Yang; Cao, Jun; Yang, Yunsheng; Tang, Yandong; Zhao, Huaici; Yu, Haibin

    2016-01-01

    This paper aims at developing an automated gastroscopic video summarization algorithm to assist clinicians to more effectively go through the abnormal contents of the video. To select the most representative frames from the original video sequence, we formulate the problem of gastroscopic video summarization as a dictionary selection issue. Different from the traditional dictionary selection methods, which take into account only the number and reconstruction ability of selected key frames, our model introduces the similar-inhibition constraint to reinforce the diversity of selected key frames. We calculate the attention cost by merging both gaze and content change into a prior cue to help select the frames with more high-level semantic information. Moreover, we adopt an image quality evaluation process to eliminate the interference of the poor quality images and a segmentation process to reduce the computational complexity. For experiments, we build a new gastroscopic video dataset captured from 30 volunteers with more than 400k images and compare our method with the state-of-the-arts using the content consistency, index consistency and content-index consistency with the ground truth. Compared with all competitors, our method obtains the best results in 23 of 30 videos evaluated based on content consistency, 24 of 30 videos evaluated based on index consistency and all videos evaluated based on content-index consistency. For gastroscopic video summarization, we propose an automated annotation method via similar-inhibition dictionary selection. Our model can achieve better performance compared with other state-of-the-art models and supplies more suitable key frames for diagnosis. The developed algorithm can be automatically adapted to various real applications, such as the training of young clinicians, computer-aided diagnosis or medical report generation. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. A memory learning framework for effective image retrieval.

    PubMed

    Han, Junwei; Ngan, King N; Li, Mingjing; Zhang, Hong-Jiang

    2005-04-01

    Most current content-based image retrieval systems are still incapable of providing users with their desired results. The major difficulty lies in the gap between low-level image features and high-level image semantics. To address the problem, this study reports a framework for effective image retrieval by employing a novel idea of memory learning. It forms a knowledge memory model to store the semantic information by simply accumulating user-provided interactions. A learning strategy is then applied to predict the semantic relationships among images according to the memorized knowledge. Image queries are finally performed based on a seamless combination of low-level features and learned semantics. One important advantage of our framework is its ability to efficiently annotate images and also propagate the keyword annotation from the labeled images to unlabeled images. The presented algorithm has been integrated into a practical image retrieval system. Experiments on a collection of 10,000 general-purpose images demonstrate the effectiveness of the proposed framework.

  11. A Novel Image Retrieval Based on Visual Words Integration of SIFT and SURF

    PubMed Central

    Ali, Nouman; Bajwa, Khalid Bashir; Sablatnig, Robert; Chatzichristofis, Savvas A.; Iqbal, Zeshan; Rashid, Muhammad; Habib, Hafiz Adnan

    2016-01-01

    With the recent evolution of technology, the number of image archives has increased exponentially. In Content-Based Image Retrieval (CBIR), high-level visual information is represented in the form of low-level features. The semantic gap between the low-level features and the high-level image concepts is an open research problem. In this paper, we present a novel visual words integration of Scale Invariant Feature Transform (SIFT) and Speeded-Up Robust Features (SURF). The two local features representations are selected for image retrieval because SIFT is more robust to the change in scale and rotation, while SURF is robust to changes in illumination. The visual words integration of SIFT and SURF adds the robustness of both features to image retrieval. The qualitative and quantitative comparisons conducted on Corel-1000, Corel-1500, Corel-2000, Oliva and Torralba and Ground Truth image benchmarks demonstrate the effectiveness of the proposed visual words integration. PMID:27315101

  12. Content dependent selection of image enhancement parameters for mobile displays

    NASA Astrophysics Data System (ADS)

    Lee, Yoon-Gyoo; Kang, Yoo-Jin; Kim, Han-Eol; Kim, Ka-Hee; Kim, Choon-Woo

    2011-01-01

    Mobile devices such as cellular phones and portable multimedia player with capability of playing terrestrial digital multimedia broadcasting (T-DMB) contents have been introduced into consumer market. In this paper, content dependent image quality enhancement method for sharpness and colorfulness and noise reduction is presented to improve perceived image quality on mobile displays. Human visual experiments are performed to analyze viewers' preference. Relationship between the objective measures and the optimal values of image control parameters are modeled by simple lookup tables based on the results of human visual experiments. Content dependent values of image control parameters are determined based on the calculated measures and predetermined lookup tables. Experimental results indicate that dynamic selection of image control parameters yields better image quality.

  13. Information-based approach to performance estimation and requirements allocation in multisensor fusion for target recognition

    NASA Astrophysics Data System (ADS)

    Harney, Robert C.

    1997-03-01

    A novel methodology offering the potential for resolving two of the significant problems of implementing multisensor target recognition systems, i.e., the rational selection of a specific sensor suite and optimal allocation of requirements among sensors, is presented. Based on a sequence of conjectures (and their supporting arguments) concerning the relationship of extractable information content to recognition performance of a sensor system, a set of heuristics (essentially a reformulation of Johnson's criteria applicable to all sensor and data types) is developed. An approach to quantifying the information content of sensor data is described. Coupling this approach with the widely accepted Johnson's criteria for target recognition capabilities results in a quantitative method for comparing the target recognition ability of diverse sensors (imagers, nonimagers, active, passive, electromagnetic, acoustic, etc.). Extension to describing the performance of multiple sensors is straightforward. The application of the technique to sensor selection and requirements allocation is discussed.

  14. MultiFacet: A Faceted Interface for Browsing Large Multimedia Collections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, Michael J.; Hampton, Shawn D.; Endert, Alexander

    2013-10-31

    Faceted browsing is a common technique for exploring collections where the data can be grouped into a number of pre-defined categories, most often generated from textual metadata. Historically, faceted browsing has been applied to a single data type such as text or image data. However, typical collections contain multiple data types, such as information from web pages that contain text, images, and video. Additionally, when browsing a collection of images and video, facets are often created based on the metadata which may be incomplete, inaccurate, or missing altogether instead of the actual visual content contained within those images and video.more » In this work we address these limitations by presenting MultiFacet, a faceted browsing interface that supports multiple data types. MultiFacet constructs facets for images and video in a collection from the visual content using computer vision techniques. These visual facets can then be browsed in conjunction with text facets within a single interface to reveal relationships and phenomena within multimedia collections. Additionally, we present a use case based on real-world data, demonstrating the utility of this approach towards browsing a large multimedia data collection.« less

  15. Tracking transcriptional activities with high-content epifluorescent imaging

    NASA Astrophysics Data System (ADS)

    Hua, Jianping; Sima, Chao; Cypert, Milana; Gooden, Gerald C.; Shack, Sonsoles; Alla, Lalitamba; Smith, Edward A.; Trent, Jeffrey M.; Dougherty, Edward R.; Bittner, Michael L.

    2012-04-01

    High-content cell imaging based on fluorescent protein reporters has recently been used to track the transcriptional activities of multiple genes under different external stimuli for extended periods. This technology enhances our ability to discover treatment-induced regulatory mechanisms, temporally order their onsets and recognize their relationships. To fully realize these possibilities and explore their potential in biological and pharmaceutical applications, we introduce a new data processing procedure to extract information about the dynamics of cell processes based on this technology. The proposed procedure contains two parts: (1) image processing, where the fluorescent images are processed to identify individual cells and allow their transcriptional activity levels to be quantified; and (2) data representation, where the extracted time course data are summarized and represented in a way that facilitates efficient evaluation. Experiments show that the proposed procedure achieves fast and robust image segmentation with sufficient accuracy. The extracted cellular dynamics are highly reproducible and sensitive enough to detect subtle activity differences and identify mechanisms responding to selected perturbations. This method should be able to help biologists identify the alterations of cellular mechanisms that allow drug candidates to change cell behavior and thereby improve the efficiency of drug discovery and treatment design.

  16. Landmark Image Retrieval by Jointing Feature Refinement and Multimodal Classifier Learning.

    PubMed

    Zhang, Xiaoming; Wang, Senzhang; Li, Zhoujun; Ma, Shuai; Xiaoming Zhang; Senzhang Wang; Zhoujun Li; Shuai Ma; Ma, Shuai; Zhang, Xiaoming; Wang, Senzhang; Li, Zhoujun

    2018-06-01

    Landmark retrieval is to return a set of images with their landmarks similar to those of the query images. Existing studies on landmark retrieval focus on exploiting the geometries of landmarks for visual similarity matches. However, the visual content of social images is of large diversity in many landmarks, and also some images share common patterns over different landmarks. On the other side, it has been observed that social images usually contain multimodal contents, i.e., visual content and text tags, and each landmark has the unique characteristic of both visual content and text content. Therefore, the approaches based on similarity matching may not be effective in this environment. In this paper, we investigate whether the geographical correlation among the visual content and the text content could be exploited for landmark retrieval. In particular, we propose an effective multimodal landmark classification paradigm to leverage the multimodal contents of social image for landmark retrieval, which integrates feature refinement and landmark classifier with multimodal contents by a joint model. The geo-tagged images are automatically labeled for classifier learning. Visual features are refined based on low rank matrix recovery, and multimodal classification combined with group sparse is learned from the automatically labeled images. Finally, candidate images are ranked by combining classification result and semantic consistence measuring between the visual content and text content. Experiments on real-world datasets demonstrate the superiority of the proposed approach as compared to existing methods.

  17. Automated processing of zebrafish imaging data: a survey.

    PubMed

    Mikut, Ralf; Dickmeis, Thomas; Driever, Wolfgang; Geurts, Pierre; Hamprecht, Fred A; Kausler, Bernhard X; Ledesma-Carbayo, María J; Marée, Raphaël; Mikula, Karol; Pantazis, Periklis; Ronneberger, Olaf; Santos, Andres; Stotzka, Rainer; Strähle, Uwe; Peyriéras, Nadine

    2013-09-01

    Due to the relative transparency of its embryos and larvae, the zebrafish is an ideal model organism for bioimaging approaches in vertebrates. Novel microscope technologies allow the imaging of developmental processes in unprecedented detail, and they enable the use of complex image-based read-outs for high-throughput/high-content screening. Such applications can easily generate Terabytes of image data, the handling and analysis of which becomes a major bottleneck in extracting the targeted information. Here, we describe the current state of the art in computational image analysis in the zebrafish system. We discuss the challenges encountered when handling high-content image data, especially with regard to data quality, annotation, and storage. We survey methods for preprocessing image data for further analysis, and describe selected examples of automated image analysis, including the tracking of cells during embryogenesis, heartbeat detection, identification of dead embryos, recognition of tissues and anatomical landmarks, and quantification of behavioral patterns of adult fish. We review recent examples for applications using such methods, such as the comprehensive analysis of cell lineages during early development, the generation of a three-dimensional brain atlas of zebrafish larvae, and high-throughput drug screens based on movement patterns. Finally, we identify future challenges for the zebrafish image analysis community, notably those concerning the compatibility of algorithms and data formats for the assembly of modular analysis pipelines.

  18. Automated Processing of Zebrafish Imaging Data: A Survey

    PubMed Central

    Dickmeis, Thomas; Driever, Wolfgang; Geurts, Pierre; Hamprecht, Fred A.; Kausler, Bernhard X.; Ledesma-Carbayo, María J.; Marée, Raphaël; Mikula, Karol; Pantazis, Periklis; Ronneberger, Olaf; Santos, Andres; Stotzka, Rainer; Strähle, Uwe; Peyriéras, Nadine

    2013-01-01

    Abstract Due to the relative transparency of its embryos and larvae, the zebrafish is an ideal model organism for bioimaging approaches in vertebrates. Novel microscope technologies allow the imaging of developmental processes in unprecedented detail, and they enable the use of complex image-based read-outs for high-throughput/high-content screening. Such applications can easily generate Terabytes of image data, the handling and analysis of which becomes a major bottleneck in extracting the targeted information. Here, we describe the current state of the art in computational image analysis in the zebrafish system. We discuss the challenges encountered when handling high-content image data, especially with regard to data quality, annotation, and storage. We survey methods for preprocessing image data for further analysis, and describe selected examples of automated image analysis, including the tracking of cells during embryogenesis, heartbeat detection, identification of dead embryos, recognition of tissues and anatomical landmarks, and quantification of behavioral patterns of adult fish. We review recent examples for applications using such methods, such as the comprehensive analysis of cell lineages during early development, the generation of a three-dimensional brain atlas of zebrafish larvae, and high-throughput drug screens based on movement patterns. Finally, we identify future challenges for the zebrafish image analysis community, notably those concerning the compatibility of algorithms and data formats for the assembly of modular analysis pipelines. PMID:23758125

  19. An algorithm for encryption of secret images into meaningful images

    NASA Astrophysics Data System (ADS)

    Kanso, A.; Ghebleh, M.

    2017-03-01

    Image encryption algorithms typically transform a plain image into a noise-like cipher image, whose appearance is an indication of encrypted content. Bao and Zhou [Image encryption: Generating visually meaningful encrypted images, Information Sciences 324, 2015] propose encrypting the plain image into a visually meaningful cover image. This improves security by masking existence of encrypted content. Following their approach, we propose a lossless visually meaningful image encryption scheme which improves Bao and Zhou's algorithm by making the encrypted content, i.e. distortions to the cover image, more difficult to detect. Empirical results are presented to show high quality of the resulting images and high security of the proposed algorithm. Competence of the proposed scheme is further demonstrated by means of comparison with Bao and Zhou's scheme.

  20. Effectiveness of image features and similarity measures in cluster-based approaches for content-based image retrieval

    NASA Astrophysics Data System (ADS)

    Du, Hongbo; Al-Jubouri, Hanan; Sellahewa, Harin

    2014-05-01

    Content-based image retrieval is an automatic process of retrieving images according to image visual contents instead of textual annotations. It has many areas of application from automatic image annotation and archive, image classification and categorization to homeland security and law enforcement. The key issues affecting the performance of such retrieval systems include sensible image features that can effectively capture the right amount of visual contents and suitable similarity measures to find similar and relevant images ranked in a meaningful order. Many different approaches, methods and techniques have been developed as a result of very intensive research in the past two decades. Among many existing approaches, is a cluster-based approach where clustering methods are used to group local feature descriptors into homogeneous regions, and search is conducted by comparing the regions of the query image against those of the stored images. This paper serves as a review of works in this area. The paper will first summarize the existing work reported in the literature and then present the authors' own investigations in this field. The paper intends to highlight not only achievements made by recent research but also challenges and difficulties still remaining in this area.

  1. User-oriented evaluation of a medical image retrieval system for radiologists.

    PubMed

    Markonis, Dimitrios; Holzer, Markus; Baroz, Frederic; De Castaneda, Rafael Luis Ruiz; Boyer, Célia; Langs, Georg; Müller, Henning

    2015-10-01

    This article reports the user-oriented evaluation of a text- and content-based medical image retrieval system. User tests with radiologists using a search system for images in the medical literature are presented. The goal of the tests is to assess the usability of the system, identify system and interface aspects that need improvement and useful additions. Another objective is to investigate the system's added value to radiology information retrieval. The study provides an insight into required specifications and potential shortcomings of medical image retrieval systems through a concrete methodology for conducting user tests. User tests with a working image retrieval system of images from the biomedical literature were performed in an iterative manner, where each iteration had the participants perform radiology information seeking tasks and then refining the system as well as the user study design itself. During these tasks the interaction of the users with the system was monitored, usability aspects were measured, retrieval success rates recorded and feedback was collected through survey forms. In total, 16 radiologists participated in the user tests. The success rates in finding relevant information were on average 87% and 78% for image and case retrieval tasks, respectively. The average time for a successful search was below 3 min in both cases. Users felt quickly comfortable with the novel techniques and tools (after 5 to 15 min), such as content-based image retrieval and relevance feedback. User satisfaction measures show a very positive attitude toward the system's functionalities while the user feedback helped identifying the system's weak points. The participants proposed several potentially useful new functionalities, such as filtering by imaging modality and search for articles using image examples. The iterative character of the evaluation helped to obtain diverse and detailed feedback on all system aspects. Radiologists are quickly familiar with the functionalities but have several comments on desired functionalities. The analysis of the results can potentially assist system refinement for future medical information retrieval systems. Moreover, the methodology presented as well as the discussion on the limitations and challenges of such studies can be useful for user-oriented medical image retrieval evaluation, as user-oriented evaluation of interactive system is still only rarely performed. Such interactive evaluations can be limited in effort if done iteratively and can give many insights for developing better systems. Copyright © 2015. Published by Elsevier Ireland Ltd.

  2. Visible Light Image-Based Method for Sugar Content Classification of Citrus

    PubMed Central

    Wang, Xuefeng; Wu, Chunyan; Hirafuji, Masayuki

    2016-01-01

    Visible light imaging of citrus fruit from Mie Prefecture of Japan was performed to determine whether an algorithm could be developed to predict the sugar content. This nondestructive classification showed that the accurate segmentation of different images can be realized by a correlation analysis based on the threshold value of the coefficient of determination. There is an obvious correlation between the sugar content of citrus fruit and certain parameters of the color images. The selected image parameters were connected by addition algorithm. The sugar content of citrus fruit can be predicted by the dummy variable method. The results showed that the small but orange citrus fruits often have a high sugar content. The study shows that it is possible to predict the sugar content of citrus fruit and to perform a classification of the sugar content using light in the visible spectrum and without the need for an additional light source. PMID:26811935

  3. Old document image segmentation using the autocorrelation function and multiresolution analysis

    NASA Astrophysics Data System (ADS)

    Mehri, Maroua; Gomez-Krämer, Petra; Héroux, Pierre; Mullot, Rémy

    2013-01-01

    Recent progress in the digitization of heterogeneous collections of ancient documents has rekindled new challenges in information retrieval in digital libraries and document layout analysis. Therefore, in order to control the quality of historical document image digitization and to meet the need of a characterization of their content using intermediate level metadata (between image and document structure), we propose a fast automatic layout segmentation of old document images based on five descriptors. Those descriptors, based on the autocorrelation function, are obtained by multiresolution analysis and used afterwards in a specific clustering method. The method proposed in this article has the advantage that it is performed without any hypothesis on the document structure, either about the document model (physical structure), or the typographical parameters (logical structure). It is also parameter-free since it automatically adapts to the image content. In this paper, firstly, we detail our proposal to characterize the content of old documents by extracting the autocorrelation features in the different areas of a page and at several resolutions. Then, we show that is possible to automatically find the homogeneous regions defined by similar indices of autocorrelation without knowledge about the number of clusters using adapted hierarchical ascendant classification and consensus clustering approaches. To assess our method, we apply our algorithm on 316 old document images, which encompass six centuries (1200-1900) of French history, in order to demonstrate the performance of our proposal in terms of segmentation and characterization of heterogeneous corpus content. Moreover, we define a new evaluation metric, the homogeneity measure, which aims at evaluating the segmentation and characterization accuracy of our methodology. We find a 85% of mean homogeneity accuracy. Those results help to represent a document by a hierarchy of layout structure and content, and to define one or more signatures for each page, on the basis of a hierarchical representation of homogeneous blocks and their topology.

  4. Present status and trends of image fusion

    NASA Astrophysics Data System (ADS)

    Xiang, Dachao; Fu, Sheng; Cai, Yiheng

    2009-10-01

    Image fusion information extracted from multiple images which is more accurate and reliable than that from just a single image. Since various images contain different information aspects of the measured parts, and comprehensive information can be obtained by integrating them together. Image fusion is a main branch of the application of data fusion technology. At present, it was widely used in computer vision technology, remote sensing, robot vision, medical image processing and military field. This paper mainly presents image fusion's contents, research methods, and the status quo at home and abroad, and analyzes the development trend.

  5. Introducing keytagging, a novel technique for the protection of medical image-based tests.

    PubMed

    Rubio, Óscar J; Alesanco, Álvaro; García, José

    2015-08-01

    This paper introduces keytagging, a novel technique to protect medical image-based tests by implementing image authentication, integrity control and location of tampered areas, private captioning with role-based access control, traceability and copyright protection. It relies on the association of tags (binary data strings) to stable, semistable or volatile features of the image, whose access keys (called keytags) depend on both the image and the tag content. Unlike watermarking, this technique can associate information to the most stable features of the image without distortion. Thus, this method preserves the clinical content of the image without the need for assessment, prevents eavesdropping and collusion attacks, and obtains a substantial capacity-robustness tradeoff with simple operations. The evaluation of this technique, involving images of different sizes from various acquisition modalities and image modifications that are typical in the medical context, demonstrates that all the aforementioned security measures can be implemented simultaneously and that the algorithm presents good scalability. In addition to this, keytags can be protected with standard Cryptographic Message Syntax and the keytagging process can be easily combined with JPEG2000 compression since both share the same wavelet transform. This reduces the delays for associating keytags and retrieving the corresponding tags to implement the aforementioned measures to only ≃30 and ≃90ms respectively. As a result, keytags can be seamlessly integrated within DICOM, reducing delays and bandwidth when the image test is updated and shared in secure architectures where different users cooperate, e.g. physicians who interpret the test, clinicians caring for the patient and researchers. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Foodomics imaging by mass spectrometry and magnetic resonance.

    PubMed

    Canela, Núria; Rodríguez, Miguel Ángel; Baiges, Isabel; Nadal, Pedro; Arola, Lluís

    2016-07-01

    This work explores the use of advanced imaging MS (IMS) and magnetic resonance imaging (MRI) techniques in food science and nutrition to evaluate food sensory characteristics, nutritional value and health benefits. Determining the chemical content and applying imaging tools to food metabolomics offer detailed information about food quality, safety, processing, storage and authenticity assessment. IMS and MRI are powerful analytical systems with an excellent capability for mapping the distribution of many molecules, and recent advances in these platforms are reviewed and discussed, showing the great potential of these techniques for small molecule-based food metabolomics research. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Discriminative Multi-View Interactive Image Re-Ranking.

    PubMed

    Li, Jun; Xu, Chang; Yang, Wankou; Sun, Changyin; Tao, Dacheng

    2017-07-01

    Given an unreliable visual patterns and insufficient query information, content-based image retrieval is often suboptimal and requires image re-ranking using auxiliary information. In this paper, we propose a discriminative multi-view interactive image re-ranking (DMINTIR), which integrates user relevance feedback capturing users' intentions and multiple features that sufficiently describe the images. In DMINTIR, heterogeneous property features are incorporated in the multi-view learning scheme to exploit their complementarities. In addition, a discriminatively learned weight vector is obtained to reassign updated scores and target images for re-ranking. Compared with other multi-view learning techniques, our scheme not only generates a compact representation in the latent space from the redundant multi-view features but also maximally preserves the discriminative information in feature encoding by the large-margin principle. Furthermore, the generalization error bound of the proposed algorithm is theoretically analyzed and shown to be improved by the interactions between the latent space and discriminant function learning. Experimental results on two benchmark data sets demonstrate that our approach boosts baseline retrieval quality and is competitive with the other state-of-the-art re-ranking strategies.

  8. Image query and indexing for digital x rays

    NASA Astrophysics Data System (ADS)

    Long, L. Rodney; Thoma, George R.

    1998-12-01

    The web-based medical information retrieval system (WebMIRS) allows interned access to databases containing 17,000 digitized x-ray spine images and associated text data from National Health and Nutrition Examination Surveys (NHANES). WebMIRS allows SQL query of the text, and viewing of the returned text records and images using a standard browser. We are now working (1) to determine utility of data directly derived from the images in our databases, and (2) to investigate the feasibility of computer-assisted or automated indexing of the images to support image retrieval of images of interest to biomedical researchers in the field of osteoarthritis. To build an initial database based on image data, we are manually segmenting a subset of the vertebrae, using techniques from vertebral morphometry. From this, we will derive and add to the database vertebral features. This image-derived data will enhance the user's data access capability by enabling the creation of combined SQL/image-content queries.

  9. Single-scale center-surround Retinex based restoration of low-illumination images with edge enhancement

    NASA Astrophysics Data System (ADS)

    Kwok, Ngaiming; Shi, Haiyan; Peng, Yeping; Wu, Hongkun; Li, Ruowei; Liu, Shilong; Rahman, Md Arifur

    2018-04-01

    Restoring images captured under low-illuminations is an essential front-end process for most image based applications. The Center-Surround Retinex algorithm has been a popular approach employed to improve image brightness. However, this algorithm in its basic form, is known to produce color degradations. In order to mitigate this problem, here the Single-Scale Retinex algorithm is modifid as an edge extractor while illumination is recovered through a non-linear intensity mapping stage. The derived edges are then integrated with the mapped image to produce the enhanced output. Furthermore, in reducing color distortion, the process is conducted in the magnitude sorted domain instead of the conventional Red-Green-Blue (RGB) color channels. Experimental results had shown that improvements with regard to mean brightness, colorfulness, saturation, and information content can be obtained.

  10. Image retrieval for identifying house plants

    NASA Astrophysics Data System (ADS)

    Kebapci, Hanife; Yanikoglu, Berrin; Unal, Gozde

    2010-02-01

    We present a content-based image retrieval system for plant identification which is intended for providing users with a simple method to locate information about their house plants. A plant image consists of a collection of overlapping leaves and possibly flowers, which makes the problem challenging. We studied the suitability of various well-known color, texture and shape features for this problem, as well as introducing some new ones. The features are extracted from the general plant region that is segmented from the background using the max-flow min-cut technique. Results on a database of 132 different plant images show promise (in about 72% of the queries, the correct plant image is retrieved among the top-15 results).

  11. Exploring context and content links in social media: a latent space method.

    PubMed

    Qi, Guo-Jun; Aggarwal, Charu; Tian, Qi; Ji, Heng; Huang, Thomas S

    2012-05-01

    Social media networks contain both content and context-specific information. Most existing methods work with either of the two for the purpose of multimedia mining and retrieval. In reality, both content and context information are rich sources of information for mining, and the full power of mining and processing algorithms can be realized only with the use of a combination of the two. This paper proposes a new algorithm which mines both context and content links in social media networks to discover the underlying latent semantic space. This mapping of the multimedia objects into latent feature vectors enables the use of any off-the-shelf multimedia retrieval algorithms. Compared to the state-of-the-art latent methods in multimedia analysis, this algorithm effectively solves the problem of sparse context links by mining the geometric structure underlying the content links between multimedia objects. Specifically for multimedia annotation, we show that an effective algorithm can be developed to directly construct annotation models by simultaneously leveraging both context and content information based on latent structure between correlated semantic concepts. We conduct experiments on the Flickr data set, which contains user tags linked with images. We illustrate the advantages of our approach over the state-of-the-art multimedia retrieval techniques.

  12. A network-based training environment: a medical image processing paradigm.

    PubMed

    Costaridou, L; Panayiotakis, G; Sakellaropoulos, P; Cavouras, D; Dimopoulos, J

    1998-01-01

    The capability of interactive multimedia and Internet technologies is investigated with respect to the implementation of a distance learning environment. The system is built according to a client-server architecture, based on the Internet infrastructure, composed of server nodes conceptually modelled as WWW sites. Sites are implemented by customization of available components. The environment integrates network-delivered interactive multimedia courses, network-based tutoring, SIG support, information databases of professional interest, as well as course and tutoring management. This capability has been demonstrated by means of an implemented system, validated with digital image processing content, specifically image enhancement. Image enhancement methods are theoretically described and applied to mammograms. Emphasis is given to the interactive presentation of the effects of algorithm parameters on images. The system end-user access depends on available bandwidth, so high-speed access can be achieved via LAN or local ISDN connections. Network based training offers new means of improved access and sharing of learning resources and expertise, as promising supplements in training.

  13. [The segmentation of urinary cells--a first step in the automated processing in urine cytology (author's transl)].

    PubMed

    Liedtke, C E; Aeikens, B

    1980-01-01

    By segmentation of cell images we understand the automated decomposition of microscopic cell scenes into nucleus, plasma and background. A segmentation is achieved by using information from the microscope image and prior knowledge about the content of the scene. Different algorithms have been investigated and applied to samples of urothelial cells. A particular algorithm based on a histogram approach which can be easily implemented in hardware is discussed in more detail.

  14. New Satellite Estimates of Mixed-Phase Cloud Properties: A Synergistic Approach for Application to Global Satellite Imager Data

    NASA Astrophysics Data System (ADS)

    Smith, W. L., Jr.; Spangenberg, D.; Fleeger, C.; Sun-Mack, S.; Chen, Y.; Minnis, P.

    2016-12-01

    Determining accurate cloud properties horizontally and vertically over a full range of time and space scales is currently next to impossible using data from either active or passive remote sensors or from modeling systems. Passive satellite imagers provide horizontal and temporal resolution of clouds, but little direct information on vertical structure. Active sensors provide vertical resolution but limited spatial and temporal coverage. Cloud models embedded in NWP can produce realistic clouds but often not at the right time or location. Thus, empirical techniques that integrate information from multiple observing and modeling systems are needed to more accurately characterize clouds and their impacts. Such a strategy is employed here in a new cloud water content profiling technique developed for application to satellite imager cloud retrievals based on VIS, IR and NIR radiances. Parameterizations are developed to relate imager retrievals of cloud top phase, optical depth, effective radius and temperature to ice and liquid water content profiles. The vertical structure information contained in the parameterizations is characterized climatologically from cloud model analyses, aircraft observations, ground-based remote sensing data, and from CloudSat and CALIPSO. Thus, realistic cloud-type dependent vertical structure information (including guidance on cloud phase partitioning) circumvents poor assumptions regarding vertical homogeneity that plague current passive satellite retrievals. This paper addresses mixed phase cloud conditions for clouds with glaciated tops including those associated with convection and mid-latitude storm systems. Novel outcomes of our approach include (1) simultaneous retrievals of ice and liquid water content and path, which are validated with active sensor, microwave and in-situ data, and yield improved global cloud climatologies, and (2) new estimates of super-cooled LWC, which are demonstrated in aviation safety applications and validated with icing PIREPS. The initial validation is encouraging for single-layer cloud conditions. More work is needed to test and refine the method for global application in a wider range of cloud conditions. A brief overview of our current method, applications, verification, and plans for future work will be presented.

  15. Interactive classification and content-based retrieval of tissue images

    NASA Astrophysics Data System (ADS)

    Aksoy, Selim; Marchisio, Giovanni B.; Tusk, Carsten; Koperski, Krzysztof

    2002-11-01

    We describe a system for interactive classification and retrieval of microscopic tissue images. Our system models tissues in pixel, region and image levels. Pixel level features are generated using unsupervised clustering of color and texture values. Region level features include shape information and statistics of pixel level feature values. Image level features include statistics and spatial relationships of regions. To reduce the gap between low-level features and high-level expert knowledge, we define the concept of prototype regions. The system learns the prototype regions in an image collection using model-based clustering and density estimation. Different tissue types are modeled using spatial relationships of these regions. Spatial relationships are represented by fuzzy membership functions. The system automatically selects significant relationships from training data and builds models which can also be updated using user relevance feedback. A Bayesian framework is used to classify tissues based on these models. Preliminary experiments show that the spatial relationship models we developed provide a flexible and powerful framework for classification and retrieval of tissue images.

  16. Toward privacy-preserving JPEG image retrieval

    NASA Astrophysics Data System (ADS)

    Cheng, Hang; Wang, Jingyue; Wang, Meiqing; Zhong, Shangping

    2017-07-01

    This paper proposes a privacy-preserving retrieval scheme for JPEG images based on local variance. Three parties are involved in the scheme: the content owner, the server, and the authorized user. The content owner encrypts JPEG images for privacy protection by jointly using permutation cipher and stream cipher, and then, the encrypted versions are uploaded to the server. With an encrypted query image provided by an authorized user, the server may extract blockwise local variances in different directions without knowing the plaintext content. After that, it can calculate the similarity between the encrypted query image and each encrypted database image by a local variance-based feature comparison mechanism. The authorized user with the encryption key can decrypt the returned encrypted images with plaintext content similar to the query image. The experimental results show that the proposed scheme not only provides effective privacy-preserving retrieval service but also ensures both format compliance and file size preservation for encrypted JPEG images.

  17. Modelling plant species distribution in alpine grasslands using airborne imaging spectroscopy

    PubMed Central

    Pottier, Julien; Malenovský, Zbyněk; Psomas, Achilleas; Homolová, Lucie; Schaepman, Michael E.; Choler, Philippe; Thuiller, Wilfried; Guisan, Antoine; Zimmermann, Niklaus E.

    2014-01-01

    Remote sensing using airborne imaging spectroscopy (AIS) is known to retrieve fundamental optical properties of ecosystems. However, the value of these properties for predicting plant species distribution remains unclear. Here, we assess whether such data can add value to topographic variables for predicting plant distributions in French and Swiss alpine grasslands. We fitted statistical models with high spectral and spatial resolution reflectance data and tested four optical indices sensitive to leaf chlorophyll content, leaf water content and leaf area index. We found moderate added-value of AIS data for predicting alpine plant species distribution. Contrary to expectations, differences between species distribution models (SDMs) were not linked to their local abundance or phylogenetic/functional similarity. Moreover, spectral signatures of species were found to be partly site-specific. We discuss current limits of AIS-based SDMs, highlighting issues of scale and informational content of AIS data. PMID:25079495

  18. A Wireless Sensor Network for Growth Environment Measurement and Multi-Band Optical Sensing to Diagnose Tree Vigor

    PubMed Central

    Kameoka, Shinichi; Isoda, Shuhei; Hashimoto, Atsushi; Ito, Ryoei; Miyamoto, Satoru; Wada, Genki; Watanabe, Naoki; Yamakami, Takashi; Suzuki, Ken; Kameoka, Takaharu

    2017-01-01

    We have tried to develop the guidance system for farmers to cultivate using various phenological indices. As the sensing part of this system, we deployed a new Wireless Sensor Network (WSN). This system uses the 920 MHz radio wave based on the Wireless Smart Utility Network that enables long-range wireless communication. In addition, the data acquired by the WSN were standardized for the advanced web service interoperability. By using these standardized data, we can create a web service that offers various kinds of phenological indices as secondary information to the farmers in the field. We have also established the field management system using thermal image, fluorescent and X-ray fluorescent methods, which enable the nondestructive, chemical-free, simple, and rapid measurement of fruits or trees. We can get the information about the transpiration of plants through a thermal image. The fluorescence sensor gives us information, such as nitrate balance index (NBI), that shows the nitrate balance inside the leaf, chlorophyll content, flavonol content and anthocyanin content. These methods allow one to quickly check the health of trees and find ways to improve the tree vigor of weak ones. Furthermore, the fluorescent x-ray sensor has the possibility to quantify the loss of minerals necessary for fruit growth. PMID:28448452

  19. A Wireless Sensor Network for Growth Environment Measurement and Multi-Band Optical Sensing to Diagnose Tree Vigor.

    PubMed

    Kameoka, Shinichi; Isoda, Shuhei; Hashimoto, Atsushi; Ito, Ryoei; Miyamoto, Satoru; Wada, Genki; Watanabe, Naoki; Yamakami, Takashi; Suzuki, Ken; Kameoka, Takaharu

    2017-04-27

    We have tried to develop the guidance system for farmers to cultivate using various phenological indices. As the sensing part of this system, we deployed a new Wireless Sensor Network (WSN). This system uses the 920 MHz radio wave based on the Wireless Smart Utility Network that enables long-range wireless communication. In addition, the data acquired by the WSN were standardized for the advanced web service interoperability. By using these standardized data, we can create a web service that offers various kinds of phenological indices as secondary information to the farmers in the field. We have also established the field management system using thermal image, fluorescent and X-ray fluorescent methods, which enable the nondestructive, chemical-free, simple, and rapid measurement of fruits or trees. We can get the information about the transpiration of plants through a thermal image. The fluorescence sensor gives us information, such as nitrate balance index (NBI), that shows the nitrate balance inside the leaf, chlorophyll content, flavonol content and anthocyanin content. These methods allow one to quickly check the health of trees and find ways to improve the tree vigor of weak ones. Furthermore, the fluorescent x-ray sensor has the possibility to quantify the loss of minerals necessary for fruit growth.

  20. Information Object Definition–based Unified Modeling Language Representation of DICOM Structured Reporting

    PubMed Central

    Tirado-Ramos, Alfredo; Hu, Jingkun; Lee, K.P.

    2002-01-01

    Supplement 23 to DICOM (Digital Imaging and Communications for Medicine), Structured Reporting, is a specification that supports a semantically rich representation of image and waveform content, enabling experts to share image and related patient information. DICOM SR supports the representation of textual and coded data linked to images and waveforms. Nevertheless, the medical information technology community needs models that work as bridges between the DICOM relational model and open object-oriented technologies. The authors assert that representations of the DICOM Structured Reporting standard, using object-oriented modeling languages such as the Unified Modeling Language, can provide a high-level reference view of the semantically rich framework of DICOM and its complex structures. They have produced an object-oriented model to represent the DICOM SR standard and have derived XML-exchangeable representations of this model using World Wide Web Consortium specifications. They expect the model to benefit developers and system architects who are interested in developing applications that are compliant with the DICOM SR specification. PMID:11751804

  1. Video content parsing based on combined audio and visual information

    NASA Astrophysics Data System (ADS)

    Zhang, Tong; Kuo, C.-C. Jay

    1999-08-01

    While previous research on audiovisual data segmentation and indexing primarily focuses on the pictorial part, significant clues contained in the accompanying audio flow are often ignored. A fully functional system for video content parsing can be achieved more successfully through a proper combination of audio and visual information. By investigating the data structure of different video types, we present tools for both audio and visual content analysis and a scheme for video segmentation and annotation in this research. In the proposed system, video data are segmented into audio scenes and visual shots by detecting abrupt changes in audio and visual features, respectively. Then, the audio scene is categorized and indexed as one of the basic audio types while a visual shot is presented by keyframes and associate image features. An index table is then generated automatically for each video clip based on the integration of outputs from audio and visual analysis. It is shown that the proposed system provides satisfying video indexing results.

  2. Visual analytics for semantic queries of TerraSAR-X image content

    NASA Astrophysics Data System (ADS)

    Espinoza-Molina, Daniela; Alonso, Kevin; Datcu, Mihai

    2015-10-01

    With the continuous image product acquisition of satellite missions, the size of the image archives is considerably increasing every day as well as the variety and complexity of their content, surpassing the end-user capacity to analyse and exploit them. Advances in the image retrieval field have contributed to the development of tools for interactive exploration and extraction of the images from huge archives using different parameters like metadata, key-words, and basic image descriptors. Even though we count on more powerful tools for automated image retrieval and data analysis, we still face the problem of understanding and analyzing the results. Thus, a systematic computational analysis of these results is required in order to provide to the end-user a summary of the archive content in comprehensible terms. In this context, visual analytics combines automated analysis with interactive visualizations analysis techniques for an effective understanding, reasoning and decision making on the basis of very large and complex datasets. Moreover, currently several researches are focused on associating the content of the images with semantic definitions for describing the data in a format to be easily understood by the end-user. In this paper, we present our approach for computing visual analytics and semantically querying the TerraSAR-X archive. Our approach is mainly composed of four steps: 1) the generation of a data model that explains the information contained in a TerraSAR-X product. The model is formed by primitive descriptors and metadata entries, 2) the storage of this model in a database system, 3) the semantic definition of the image content based on machine learning algorithms and relevance feedback, and 4) querying the image archive using semantic descriptors as query parameters and computing the statistical analysis of the query results. The experimental results shows that with the help of visual analytics and semantic definitions we are able to explain the image content using semantic terms and the relations between them answering questions such as what is the percentage of urban area in a region? or what is the distribution of water bodies in a city?

  3. Food's visually perceived fat content affects discrimination speed in an orthogonal spatial task.

    PubMed

    Harrar, Vanessa; Toepel, Ulrike; Murray, Micah M; Spence, Charles

    2011-10-01

    Choosing what to eat is a complex activity for humans. Determining a food's pleasantness requires us to combine information about what is available at a given time with knowledge of the food's palatability, texture, fat content, and other nutritional information. It has been suggested that humans may have an implicit knowledge of a food's fat content based on its appearance; Toepel et al. (Neuroimage 44:967-974, 2009) reported visual-evoked potential modulations after participants viewed images of high-energy, high-fat food (HF), as compared to viewing low-fat food (LF). In the present study, we investigated whether there are any immediate behavioural consequences of these modulations for human performance. HF, LF, or non-food (NF) images were used to exogenously direct participants' attention to either the left or the right. Next, participants made speeded elevation discrimination responses (up vs. down) to visual targets presented either above or below the midline (and at one of three stimulus onset asynchronies: 150, 300, or 450 ms). Participants responded significantly more rapidly following the presentation of a HF image than following the presentation of either LF or NF images, despite the fact that the identity of the images was entirely task-irrelevant. Similar results were found when comparing response speeds following images of high-carbohydrate (HC) food items to low-carbohydrate (LC) food items. These results support the view that people rapidly process (i.e. within a few hundred milliseconds) the fat/carbohydrate/energy value or, perhaps more generally, the pleasantness of food. Potentially as a result of HF/HC food items being more pleasant and thus having a higher incentive value, it seems as though seeing these foods results in a response readiness, or an overall alerting effect, in the human brain.

  4. Non-destructive evaluation of chlorophyll content in quinoa and amaranth leaves by simple and multiple regression analysis of RGB image components.

    PubMed

    Riccardi, M; Mele, G; Pulvento, C; Lavini, A; d'Andria, R; Jacobsen, S-E

    2014-06-01

    Leaf chlorophyll content provides valuable information about physiological status of plants; it is directly linked to photosynthetic potential and primary production. In vitro assessment by wet chemical extraction is the standard method for leaf chlorophyll determination. This measurement is expensive, laborious, and time consuming. Over the years alternative methods, rapid and non-destructive, have been explored. The aim of this work was to evaluate the applicability of a fast and non-invasive field method for estimation of chlorophyll content in quinoa and amaranth leaves based on RGB components analysis of digital images acquired with a standard SLR camera. Digital images of leaves from different genotypes of quinoa and amaranth were acquired directly in the field. Mean values of each RGB component were evaluated via image analysis software and correlated to leaf chlorophyll provided by standard laboratory procedure. Single and multiple regression models using RGB color components as independent variables have been tested and validated. The performance of the proposed method was compared to that of the widely used non-destructive SPAD method. Sensitivity of the best regression models for different genotypes of quinoa and amaranth was also checked. Color data acquisition of the leaves in the field with a digital camera was quick, more effective, and lower cost than SPAD. The proposed RGB models provided better correlation (highest R (2)) and prediction (lowest RMSEP) of the true value of foliar chlorophyll content and had a lower amount of noise in the whole range of chlorophyll studied compared with SPAD and other leaf image processing based models when applied to quinoa and amaranth.

  5. Information fusion performance evaluation for motion imagery data using mutual information: initial study

    NASA Astrophysics Data System (ADS)

    Grieggs, Samuel M.; McLaughlin, Michael J.; Ezekiel, Soundararajan; Blasch, Erik

    2015-06-01

    As technology and internet use grows at an exponential rate, video and imagery data is becoming increasingly important. Various techniques such as Wide Area Motion imagery (WAMI), Full Motion Video (FMV), and Hyperspectral Imaging (HSI) are used to collect motion data and extract relevant information. Detecting and identifying a particular object in imagery data is an important step in understanding visual imagery, such as content-based image retrieval (CBIR). Imagery data is segmented and automatically analyzed and stored in dynamic and robust database. In our system, we seek utilize image fusion methods which require quality metrics. Many Image Fusion (IF) algorithms have been proposed based on different, but only a few metrics, used to evaluate the performance of these algorithms. In this paper, we seek a robust, objective metric to evaluate the performance of IF algorithms which compares the outcome of a given algorithm to ground truth and reports several types of errors. Given the ground truth of a motion imagery data, it will compute detection failure, false alarm, precision and recall metrics, background and foreground regions statistics, as well as split and merge of foreground regions. Using the Structural Similarity Index (SSIM), Mutual Information (MI), and entropy metrics; experimental results demonstrate the effectiveness of the proposed methodology for object detection, activity exploitation, and CBIR.

  6. Qualitative website analysis of information on birth after caesarean section.

    PubMed

    Peddie, Valerie L; Whitelaw, Natalie; Cumming, Grant P; Bhattacharya, Siladitya; Black, Mairead

    2015-08-19

    The United Kingdom (UK) caesarean section (CS) rate is largely determined by reluctance to augment trial of labour and vaginal birth. Choice between repeat CS and attempting vaginal birth after CS (VBAC) in the next pregnancy is challenging, with neither offering clear safety advantages. Women may access online information during the decision-making process. Such information is known to vary in its support for either mode of birth when assessed quantitatively. Therefore, we sought to explore qualitatively, the content and presentation of web-based health care information on birth after caesarean section (CS) in order to identify the dominant messages being conveyed. The search engine Google™ was used to conduct an internet search using terms relating to birth after CS. The ten most frequently returned websites meeting relevant purposive sampling criteria were analysed. Sampling criteria were based upon funding source, authorship and intended audience. Images and written textual content together with presence of links to additional media or external web content were analysed using descriptive and thematic analyses respectively. Ten websites were analysed: five funded by Government bodies or professional membership; one via charitable donations, and four funded commercially. All sites compared the advantages and disadvantages of both repeat CS and VBAC. Commercially funded websites favoured a question and answer format alongside images, 'pop-ups', social media forum links and hyperlinks to third-party sites. The relationship between the parent sites and those being linked to may not be readily apparent to users, risking perception of endorsement of either VBAC or repeat CS whether intended or otherwise. Websites affiliated with Government or health services presented referenced clinical information in a factual manner with podcasts of real life experiences. Many imply greater support for VBAC than repeat CS although this was predominantly conveyed through subtle use of words rather than overt messages, with the exception of the latter being apparent in one site. Websites providing information on birth after CS appear to vary in nature of content according to their funding source. The most user-friendly, balanced and informative websites appear to be those funded by government agencies.

  7. An integrated content and metadata based retrieval system for art.

    PubMed

    Lewis, Paul H; Martinez, Kirk; Abas, Fazly Salleh; Fauzi, Mohammad Faizal Ahmad; Chan, Stephen C Y; Addis, Matthew J; Boniface, Mike J; Grimwood, Paul; Stevenson, Alison; Lahanier, Christian; Stevenson, James

    2004-03-01

    A new approach to image retrieval is presented in the domain of museum and gallery image collections. Specialist algorithms, developed to address specific retrieval tasks, are combined with more conventional content and metadata retrieval approaches, and implemented within a distributed architecture to provide cross-collection searching and navigation in a seamless way. External systems can access the different collections using interoperability protocols and open standards, which were extended to accommodate content based as well as text based retrieval paradigms. After a brief overview of the complete system, we describe the novel design and evaluation of some of the specialist image analysis algorithms including a method for image retrieval based on sub-image queries, retrievals based on very low quality images and retrieval using canvas crack patterns. We show how effective retrieval results can be achieved by real end-users consisting of major museums and galleries, accessing the distributed but integrated digital collections.

  8. A Novel Method for Block Size Forensics Based on Morphological Operations

    NASA Astrophysics Data System (ADS)

    Luo, Weiqi; Huang, Jiwu; Qiu, Guoping

    Passive forensics analysis aims to find out how multimedia data is acquired and processed without relying on pre-embedded or pre-registered information. Since most existing compression schemes for digital images are based on block processing, one of the fundamental steps for subsequent forensics analysis is to detect the presence of block artifacts and estimate the block size for a given image. In this paper, we propose a novel method for blind block size estimation. A 2×2 cross-differential filter is first applied to detect all possible block artifact boundaries, morphological operations are then used to remove the boundary effects caused by the edges of the actual image contents, and finally maximum-likelihood estimation (MLE) is employed to estimate the block size. The experimental results evaluated on over 1300 nature images show the effectiveness of our proposed method. Compared with existing gradient-based detection method, our method achieves over 39% accuracy improvement on average.

  9. Enhanced visual perception through tone mapping

    NASA Astrophysics Data System (ADS)

    Harrison, Andre; Mullins, Linda L.; Raglin, Adrienne; Etienne-Cummings, Ralph

    2016-05-01

    Tone mapping operators compress high dynamic range images to improve the picture quality on a digital display when the dynamic range of the display is lower than that of the image. However, tone mapping operators have been largely designed and evaluated based on the aesthetic quality of the resulting displayed image or how perceptually similar the compressed image appears relative to the original scene. They also often require per image tuning of parameters depending on the content of the image. In military operations, however, the amount of information that can be perceived is more important than the aesthetic quality of the image and any parameter adjustment needs to be as automated as possible regardless of the content of the image. We have conducted two studies to evaluate the perceivable detail of a set of tone mapping algorithms, and we apply our findings to develop and test an automated tone mapping algorithm that demonstrates a consistent improvement in the amount of perceived detail. An automated, and thereby predictable, tone mapping method enables a consistent presentation of perceivable features, can reduce the bandwidth required to transmit the imagery, and can improve the accessibility of the data by reducing the needed expertise of the analyst(s) viewing the imagery.

  10. Embedding QR codes in tumor board presentations, enhancing educational content for oncology information management.

    PubMed

    Siderits, Richard; Yates, Stacy; Rodriguez, Arelis; Lee, Tina; Rimmer, Cheryl; Roche, Mark

    2011-01-01

    Quick Response (QR) Codes are standard in supply management and seen with increasing frequency in advertisements. They are now present regularly in healthcare informatics and education. These 2-dimensional square bar codes, originally designed by the Toyota car company, are free of license and have a published international standard. The codes can be generated by free online software and the resulting images incorporated into presentations. The images can be scanned by "smart" phones and tablets using either the iOS or Android platforms, which link the device with the information represented by the QR code (uniform resource locator or URL, online video, text, v-calendar entries, short message service [SMS] and formatted text). Once linked to the device, the information can be viewed at any time after the original presentation, saved in the device or to a Web-based "cloud" repository, printed, or shared with others via email or Bluetooth file transfer. This paper describes how we use QR codes in our tumor board presentations, discusses the benefits, the different QR codes from Web links and how QR codes facilitate the distribution of educational content.

  11. Autosophy information theory provides lossless data and video compression based on the data content

    NASA Astrophysics Data System (ADS)

    Holtz, Klaus E.; Holtz, Eric S.; Holtz, Diana

    1996-09-01

    A new autosophy information theory provides an alternative to the classical Shannon information theory. Using the new theory in communication networks provides both a high degree of lossless compression and virtually unbreakable encryption codes for network security. The bandwidth in a conventional Shannon communication is determined only by the data volume and the hardware parameters, such as image size; resolution; or frame rates in television. The data content, or what is shown on the screen, is irrelevant. In contrast, the bandwidth in autosophy communication is determined only by data content, such as novelty and movement in television images. It is the data volume and hardware parameters that become irrelevant. Basically, the new communication methods use prior 'knowledge' of the data, stored in a library, to encode subsequent transmissions. The more 'knowledge' stored in the libraries, the higher the potential compression ratio. 'Information' is redefined as that which is not already known by the receiver. Everything already known is redundant and need not be re-transmitted. In a perfect communication each transmission code, called a 'tip,' creates a new 'engram' of knowledge in the library in which each tip transmission can represent any amount of data. Autosophy theories provide six separate learning modes, or omni dimensional networks, all of which can be used for data compression. The new information theory reveals the theoretical flaws of other data compression methods, including: the Huffman; Ziv Lempel; LZW codes and commercial compression codes such as V.42bis and MPEG-2.

  12. Visual Based Retrieval Systems and Web Mining--Introduction.

    ERIC Educational Resources Information Center

    Iyengar, S. S.

    2001-01-01

    Briefly discusses Web mining and image retrieval techniques, and then presents a summary of articles in this special issue. Articles focus on Web content mining, artificial neural networks as tools for image retrieval, content-based image retrieval systems, and personalizing the Web browsing experience using media agents. (AEF)

  13. Security of fragile authentication watermarks with localization

    NASA Astrophysics Data System (ADS)

    Fridrich, Jessica

    2002-04-01

    In this paper, we study the security of fragile image authentication watermarks that can localize tampered areas. We start by comparing the goals, capabilities, and advantages of image authentication based on watermarking and cryptography. Then we point out some common security problems of current fragile authentication watermarks with localization and classify attacks on authentication watermarks into five categories. By investigating the attacks and vulnerabilities of current schemes, we propose a variation of the Wong scheme18 that is fast, simple, cryptographically secure, and resistant to all known attacks, including the Holliman-Memon attack9. In the new scheme, a special symmetry structure in the logo is used to authenticate the block content, while the logo itself carries information about the block origin (block index, the image index or time stamp, author ID, etc.). Because the authentication of the content and its origin are separated, it is possible to easily identify swapped blocks between images and accurately detect cropped areas, while being able to accurately localize tampered pixels.

  14. iScreen: Image-Based High-Content RNAi Screening Analysis Tools.

    PubMed

    Zhong, Rui; Dong, Xiaonan; Levine, Beth; Xie, Yang; Xiao, Guanghua

    2015-09-01

    High-throughput RNA interference (RNAi) screening has opened up a path to investigating functional genomics in a genome-wide pattern. However, such studies are often restricted to assays that have a single readout format. Recently, advanced image technologies have been coupled with high-throughput RNAi screening to develop high-content screening, in which one or more cell image(s), instead of a single readout, were generated from each well. This image-based high-content screening technology has led to genome-wide functional annotation in a wider spectrum of biological research studies, as well as in drug and target discovery, so that complex cellular phenotypes can be measured in a multiparametric format. Despite these advances, data analysis and visualization tools are still largely lacking for these types of experiments. Therefore, we developed iScreen (image-Based High-content RNAi Screening Analysis Tool), an R package for the statistical modeling and visualization of image-based high-content RNAi screening. Two case studies were used to demonstrate the capability and efficiency of the iScreen package. iScreen is available for download on CRAN (http://cran.cnr.berkeley.edu/web/packages/iScreen/index.html). The user manual is also available as a supplementary document. © 2014 Society for Laboratory Automation and Screening.

  15. On the Prediction of Flickr Image Popularity by Analyzing Heterogeneous Social Sensory Data.

    PubMed

    Aloufi, Samah; Zhu, Shiai; El Saddik, Abdulmotaleb

    2017-03-19

    The increase in the popularity of social media has shattered the gap between the physical and virtual worlds. The content generated by people or social sensors on social media provides information about users and their living surroundings, which allows us to access a user's preferences, opinions, and interactions. This provides an opportunity for us to understand human behavior and enhance the services provided for both the real and virtual worlds. In this paper, we will focus on the popularity prediction of social images on Flickr, a popular social photo-sharing site, and promote the research on utilizing social sensory data in the context of assisting people to improve their life on the Web. Social data are different from the data collected from physical sensors; in the fact that they exhibit special characteristics that pose new challenges. In addition to their huge quantity, social data are noisy, unstructured, and heterogeneous. Moreover, they involve human semantics and contextual data that require analysis and interpretation based on human behavior. Accordingly, we address the problem of popularity prediction for an image by exploiting three main factors that are important for making an image popular. In particular, we investigate the impact of the image's visual content, where the semantic and sentiment information extracted from the image show an impact on its popularity, as well as the textual information associated with the image, which has a fundamental role in boosting the visibility of the image in the keyword search results. Additionally, we explore social context, such as an image owner's popularity and how it positively influences the image popularity. With a comprehensive study on the effect of the three aspects, we further propose to jointly consider the heterogeneous social sensory data. Experimental results obtained from real-world data demonstrate that the three factors utilized complement each other in obtaining promising results in the prediction of image popularity on social photo-sharing site.

  16. Mobile and web-based education: delivering emergency department discharge and aftercare instructions.

    PubMed

    Saidinejad, Mohsen; Zorc, Joseph

    2014-03-01

    Prior research has identified deficiencies in the standard process of providing instructions for care at discharge from the emergency department (ED). Patients typically receive a brief verbal instruction, along with preformatted written discharge documents. Studies have found that understanding and retention of such information by families are very poor, leading to nonadherence in follow-up care, unnecessary return visit to the ED, and poor health outcomes. The combination of systems factors (information content, delivery methods, and timing) and patient factors (health literacy, language proficiency, and cultural factors) contributes to the challenge of providing successful discharge communication. Internet and mobile devices provide a novel opportunity to better engage families in this process.Mobile health can address both system- and patient-level challenges. By incorporating images, animation, and full Web-based video content, more comprehensible content that is better suited for patients with lower health literacy and today's visual learners can be created. Information can also be delivered both synchronously and asynchronously, enabling the health care providers to deliver health education to the patients electronically to their home, where health care occurs. Furthermore, the providers can track information access by patients, customize content to the individual patients, and reach other caregivers who may not be present during the ED visit. Further research is needed to develop the systems and best practices for incorporating mobile health in the ED setting.

  17. New generation of the multimedia search engines

    NASA Astrophysics Data System (ADS)

    Mijes Cruz, Mario Humberto; Soto Aldaco, Andrea; Maldonado Cano, Luis Alejandro; López Rodríguez, Mario; Rodríguez Vázqueza, Manuel Antonio; Amaya Reyes, Laura Mariel; Cano Martínez, Elizabeth; Pérez Rosas, Osvaldo Gerardo; Rodríguez Espejo, Luis; Flores Secundino, Jesús Abimelek; Rivera Martínez, José Luis; García Vázquez, Mireya Saraí; Zamudio Fuentes, Luis Miguel; Sánchez Valenzuela, Juan Carlos; Montoya Obeso, Abraham; Ramírez Acosta, Alejandro Álvaro

    2016-09-01

    Current search engines are based upon search methods that involve the combination of words (text-based search); which has been efficient until now. However, the Internet's growing demand indicates that there's more diversity on it with each passing day. Text-based searches are becoming limited, as most of the information on the Internet can be found in different types of content denominated multimedia content (images, audio files, video files). Indeed, what needs to be improved in current search engines is: search content, and precision; as well as an accurate display of expected search results by the user. Any search can be more precise if it uses more text parameters, but it doesn't help improve the content or speed of the search itself. One solution is to improve them through the characterization of the content for the search in multimedia files. In this article, an analysis of the new generation multimedia search engines is presented, focusing the needs according to new technologies. Multimedia content has become a central part of the flow of information in our daily life. This reflects the necessity of having multimedia search engines, as well as knowing the real tasks that it must comply. Through this analysis, it is shown that there are not many search engines that can perform content searches. The area of research of multimedia search engines of new generation is a multidisciplinary area that's in constant growth, generating tools that satisfy the different needs of new generation systems.

  18. Conjunctive patches subspace learning with side information for collaborative image retrieval.

    PubMed

    Zhang, Lining; Wang, Lipo; Lin, Weisi

    2012-08-01

    Content-Based Image Retrieval (CBIR) has attracted substantial attention during the past few years for its potential practical applications to image management. A variety of Relevance Feedback (RF) schemes have been designed to bridge the semantic gap between the low-level visual features and the high-level semantic concepts for an image retrieval task. Various Collaborative Image Retrieval (CIR) schemes aim to utilize the user historical feedback log data with similar and dissimilar pairwise constraints to improve the performance of a CBIR system. However, existing subspace learning approaches with explicit label information cannot be applied for a CIR task, although the subspace learning techniques play a key role in various computer vision tasks, e.g., face recognition and image classification. In this paper, we propose a novel subspace learning framework, i.e., Conjunctive Patches Subspace Learning (CPSL) with side information, for learning an effective semantic subspace by exploiting the user historical feedback log data for a CIR task. The CPSL can effectively integrate the discriminative information of labeled log images, the geometrical information of labeled log images and the weakly similar information of unlabeled images together to learn a reliable subspace. We formally formulate this problem into a constrained optimization problem and then present a new subspace learning technique to exploit the user historical feedback log data. Extensive experiments on both synthetic data sets and a real-world image database demonstrate the effectiveness of the proposed scheme in improving the performance of a CBIR system by exploiting the user historical feedback log data.

  19. The DICOM-based radiation therapy information system

    NASA Astrophysics Data System (ADS)

    Law, Maria Y. Y.; Chan, Lawrence W. C.; Zhang, Xiaoyan; Zhang, Jianguo

    2004-04-01

    Similar to DICOM for PACS (Picture Archiving and Communication System), standards for radiotherapy (RT) information have been ratified with seven DICOM-RT objects and their IODs (Information Object Definitions), which are more than just images. This presentation describes how a DICOM-based RT Information System Server can be built based on the PACS technology and its data model for a web-based distribution. Methods: The RT information System consists of a Modality Simulator, a data format translator, a RT Gateway, the DICOM RT Server, and the Web-based Application Server. The DICOM RT Server was designed based on a PACS data model and was connected to a Web application Server for distribution of the RT information including therapeutic plans, structures, dose distribution, images and records. Various DICOM RT objects of the patient transmitted to the RT Server were routed to the Web Application Server where the contents of the DICOM RT objects were decoded and mapped to the corresponding location of the RT data model for display in the specially-designed Graphic User Interface. The non-DICOM objects were first rendered to DICOM RT Objects in the translator before they were sent to the RT Server. Results: Ten clinical cases have been collected from different hopsitals for evaluation of the DICOM-based RT Information System. They were successfully routed through the data flow and displayed in the client workstation of the RT information System. Conclusion: Using the DICOM-RT standards, integration of RT data from different vendors is possible.

  20. Light microscopy applications in systems biology: opportunities and challenges

    PubMed Central

    2013-01-01

    Biological systems present multiple scales of complexity, ranging from molecules to entire populations. Light microscopy is one of the least invasive techniques used to access information from various biological scales in living cells. The combination of molecular biology and imaging provides a bottom-up tool for direct insight into how molecular processes work on a cellular scale. However, imaging can also be used as a top-down approach to study the behavior of a system without detailed prior knowledge about its underlying molecular mechanisms. In this review, we highlight the recent developments on microscopy-based systems analyses and discuss the complementary opportunities and different challenges with high-content screening and high-throughput imaging. Furthermore, we provide a comprehensive overview of the available platforms that can be used for image analysis, which enable community-driven efforts in the development of image-based systems biology. PMID:23578051

  1. Evaluation of information-theoretic similarity measures for content-based retrieval and detection of masses in mammograms.

    PubMed

    Tourassi, Georgia D; Harrawood, Brian; Singh, Swatee; Lo, Joseph Y; Floyd, Carey E

    2007-01-01

    The purpose of this study was to evaluate image similarity measures employed in an information-theoretic computer-assisted detection (IT-CAD) scheme. The scheme was developed for content-based retrieval and detection of masses in screening mammograms. The study is aimed toward an interactive clinical paradigm where physicians query the proposed IT-CAD scheme on mammographic locations that are either visually suspicious or indicated as suspicious by other cuing CAD systems. The IT-CAD scheme provides an evidence-based, second opinion for query mammographic locations using a knowledge database of mass and normal cases. In this study, eight entropy-based similarity measures were compared with respect to retrieval precision and detection accuracy using a database of 1820 mammographic regions of interest. The IT-CAD scheme was then validated on a separate database for false positive reduction of progressively more challenging visual cues generated by an existing, in-house mass detection system. The study showed that the image similarity measures fall into one of two categories; one category is better suited to the retrieval of semantically similar cases while the second is more effective with knowledge-based decisions regarding the presence of a true mass in the query location. In addition, the IT-CAD scheme yielded a substantial reduction in false-positive detections while maintaining high detection rate for malignant masses.

  2. Evaluation of information-theoretic similarity measures for content-based retrieval and detection of masses in mammograms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tourassi, Georgia D.; Harrawood, Brian; Singh, Swatee

    The purpose of this study was to evaluate image similarity measures employed in an information-theoretic computer-assisted detection (IT-CAD) scheme. The scheme was developed for content-based retrieval and detection of masses in screening mammograms. The study is aimed toward an interactive clinical paradigm where physicians query the proposed IT-CAD scheme on mammographic locations that are either visually suspicious or indicated as suspicious by other cuing CAD systems. The IT-CAD scheme provides an evidence-based, second opinion for query mammographic locations using a knowledge database of mass and normal cases. In this study, eight entropy-based similarity measures were compared with respect to retrievalmore » precision and detection accuracy using a database of 1820 mammographic regions of interest. The IT-CAD scheme was then validated on a separate database for false positive reduction of progressively more challenging visual cues generated by an existing, in-house mass detection system. The study showed that the image similarity measures fall into one of two categories; one category is better suited to the retrieval of semantically similar cases while the second is more effective with knowledge-based decisions regarding the presence of a true mass in the query location. In addition, the IT-CAD scheme yielded a substantial reduction in false-positive detections while maintaining high detection rate for malignant masses.« less

  3. Supervised learning of tools for content-based search of image databases

    NASA Astrophysics Data System (ADS)

    Delanoy, Richard L.

    1996-03-01

    A computer environment, called the Toolkit for Image Mining (TIM), is being developed with the goal of enabling users with diverse interests and varied computer skills to create search tools for content-based image retrieval and other pattern matching tasks. Search tools are generated using a simple paradigm of supervised learning that is based on the user pointing at mistakes of classification made by the current search tool. As mistakes are identified, a learning algorithm uses the identified mistakes to build up a model of the user's intentions, construct a new search tool, apply the search tool to a test image, display the match results as feedback to the user, and accept new inputs from the user. Search tools are constructed in the form of functional templates, which are generalized matched filters capable of knowledge- based image processing. The ability of this system to learn the user's intentions from experience contrasts with other existing approaches to content-based image retrieval that base searches on the characteristics of a single input example or on a predefined and semantically- constrained textual query. Currently, TIM is capable of learning spectral and textural patterns, but should be adaptable to the learning of shapes, as well. Possible applications of TIM include not only content-based image retrieval, but also quantitative image analysis, the generation of metadata for annotating images, data prioritization or data reduction in bandwidth-limited situations, and the construction of components for larger, more complex computer vision algorithms.

  4. Sensor image prediction techniques

    NASA Astrophysics Data System (ADS)

    Stenger, A. J.; Stone, W. R.; Berry, L.; Murray, T. J.

    1981-02-01

    The preparation of prediction imagery is a complex, costly, and time consuming process. Image prediction systems which produce a detailed replica of the image area require the extensive Defense Mapping Agency data base. The purpose of this study was to analyze the use of image predictions in order to determine whether a reduced set of more compact image features contains enough information to produce acceptable navigator performance. A job analysis of the navigator's mission tasks was performed. It showed that the cognitive and perceptual tasks he performs during navigation are identical to those performed for the targeting mission function. In addition, the results of the analysis of his performance when using a particular sensor can be extended to the analysis of this mission tasks using any sensor. An experimental approach was used to determine the relationship between navigator performance and the type of amount of information in the prediction image. A number of subjects were given image predictions containing varying levels of scene detail and different image features, and then asked to identify the predicted targets in corresponding dynamic flight sequences over scenes of cultural, terrain, and mixed (both cultural and terrain) content.

  5. Hierarchical content-based image retrieval by dynamic indexing and guided search

    NASA Astrophysics Data System (ADS)

    You, Jane; Cheung, King H.; Liu, James; Guo, Linong

    2003-12-01

    This paper presents a new approach to content-based image retrieval by using dynamic indexing and guided search in a hierarchical structure, and extending data mining and data warehousing techniques. The proposed algorithms include: a wavelet-based scheme for multiple image feature extraction, the extension of a conventional data warehouse and an image database to an image data warehouse for dynamic image indexing, an image data schema for hierarchical image representation and dynamic image indexing, a statistically based feature selection scheme to achieve flexible similarity measures, and a feature component code to facilitate query processing and guide the search for the best matching. A series of case studies are reported, which include a wavelet-based image color hierarchy, classification of satellite images, tropical cyclone pattern recognition, and personal identification using multi-level palmprint and face features.

  6. Content based image retrieval using local binary pattern operator and data mining techniques.

    PubMed

    Vatamanu, Oana Astrid; Frandeş, Mirela; Lungeanu, Diana; Mihalaş, Gheorghe-Ioan

    2015-01-01

    Content based image retrieval (CBIR) concerns the retrieval of similar images from image databases, using feature vectors extracted from images. These feature vectors globally define the visual content present in an image, defined by e.g., texture, colour, shape, and spatial relations between vectors. Herein, we propose the definition of feature vectors using the Local Binary Pattern (LBP) operator. A study was performed in order to determine the optimum LBP variant for the general definition of image feature vectors. The chosen LBP variant is then subsequently used to build an ultrasound image database, and a database with images obtained from Wireless Capsule Endoscopy. The image indexing process is optimized using data clustering techniques for images belonging to the same class. Finally, the proposed indexing method is compared to the classical indexing technique, which is nowadays widely used.

  7. Detection of amblyopia utilizing generated retinal reflexes

    NASA Technical Reports Server (NTRS)

    Kerr, J. H.; Hay, S. H.

    1981-01-01

    Investigation confirmed that GRR images can be consistently obtained and that these images contain information required to detect the optical inequality of one eye compared to the fellow eye. Digital analyses, electro-optical analyses, and trained observers were used to evaluate the GRR images. Two and three dimensional plots were made from the digital analyses results. These plotted data greatly enhanced the GRR image content, and it was possible for nontrained observers to correctly identify normal vs abnormal ocular status by viewing the plots. Based upon the criteria of detecting equality or inequality of ocular status of a person's eyes, the trained observer correctly identified the ocular status of 90% of the 232 persons who participated in this program.

  8. Utilizing Hierarchical Segmentation to Generate Water and Snow Masks to Facilitate Monitoring Change with Remotely Sensed Image Data

    NASA Technical Reports Server (NTRS)

    Tilton, James C.; Lawrence, William T.; Plaza, Antonio J.

    2006-01-01

    The hierarchical segmentation (HSEG) algorithm is a hybrid of hierarchical step-wise optimization and constrained spectral clustering that produces a hierarchical set of image segmentations. This segmentation hierarchy organizes image data in a manner that makes the image's information content more accessible for analysis by enabling region-based analysis. This paper discusses data analysis with HSEG and describes several measures of region characteristics that may be useful analyzing segmentation hierarchies for various applications. Segmentation hierarchy analysis for generating landwater and snow/ice masks from MODIS (Moderate Resolution Imaging Spectroradiometer) data was demonstrated and compared with the corresponding MODIS standard products. The masks based on HSEG segmentation hierarchies compare very favorably to the MODIS standard products. Further, the HSEG based landwater mask was specifically tailored to the MODIS data and the HSEG snow/ice mask did not require the setting of a critical threshold as required in the production of the corresponding MODIS standard product.

  9. Global-Context Based Salient Region Detection in Nature Images

    NASA Astrophysics Data System (ADS)

    Bao, Hong; Xu, De; Tang, Yingjun

    Visually saliency detection provides an alternative methodology to image description in many applications such as adaptive content delivery and image retrieval. One of the main aims of visual attention in computer vision is to detect and segment the salient regions in an image. In this paper, we employ matrix decomposition to detect salient object in nature images. To efficiently eliminate high contrast noise regions in the background, we integrate global context information into saliency detection. Therefore, the most salient region can be easily selected as the one which is globally most isolated. The proposed approach intrinsically provides an alternative methodology to model attention with low implementation complexity. Experiments show that our approach achieves much better performance than that from the existing state-of-art methods.

  10. Content-Based Management of Image Databases in the Internet Age

    ERIC Educational Resources Information Center

    Kleban, James Theodore

    2010-01-01

    The Internet Age has seen the emergence of richly annotated image data collections numbering in the billions of items. This work makes contributions in three primary areas which aid the management of this data: image representation, efficient retrieval, and annotation based on content and metadata. The contributions are as follows. First,…

  11. Cloud Retrieval Information Content Studies with the Pre-Aerosol, Cloud and ocean Ecosystem (PACE) Ocean Color Imager (OCI)

    NASA Astrophysics Data System (ADS)

    Coddington, Odele; Platnick, Steven; Pilewskie, Peter; Schmidt, Sebastian

    2016-04-01

    The NASA Pre-Aerosol, Cloud and ocean Ecosystem (PACE) Science Definition Team (SDT) report released in 2012 defined imager stability requirements for the Ocean Color Instrument (OCI) at the sub-percent level. While the instrument suite and measurement requirements are currently being determined, the PACE SDT report provided details on imager options and spectral specifications. The options for a threshold instrument included a hyperspectral imager from 350-800 nm, two near-infrared (NIR) channels, and three short wave infrared (SWIR) channels at 1240, 1640, and 2130 nm. Other instrument options include a variation of the threshold instrument with 3 additional spectral channels at 940, 1378, and 2250 nm and the inclusion of a spectral polarimeter. In this work, we present cloud retrieval information content studies of optical thickness, droplet effective radius, and thermodynamic phase to quantify the potential for continuing the low cloud climate data record established by the MOderate Resolution and Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) missions with the PACE OCI instrument (i.e., non-polarized cloud reflectances and in the absence of midwave and longwave infrared channels). The information content analysis is performed using the GEneralized Nonlinear Retrieval Analysis (GENRA) methodology and the Collection 6 simulated cloud reflectance data for the common MODIS/VIIRS algorithm (MODAWG) for Cloud Mask, Cloud-Top, and Optical Properties. We show that using both channels near 2 microns improves the probability of cloud phase discrimination with shortwave-only cloud reflectance retrievals. Ongoing work will extend the information content analysis, currently performed for dark ocean surfaces, to different land surface types.

  12. On the Prediction of Flickr Image Popularity by Analyzing Heterogeneous Social Sensory Data

    PubMed Central

    Aloufi, Samah; Zhu, Shiai; El Saddik, Abdulmotaleb

    2017-01-01

    The increase in the popularity of social media has shattered the gap between the physical and virtual worlds. The content generated by people or social sensors on social media provides information about users and their living surroundings, which allows us to access a user’s preferences, opinions, and interactions. This provides an opportunity for us to understand human behavior and enhance the services provided for both the real and virtual worlds. In this paper, we will focus on the popularity prediction of social images on Flickr, a popular social photo-sharing site, and promote the research on utilizing social sensory data in the context of assisting people to improve their life on the Web. Social data are different from the data collected from physical sensors; in the fact that they exhibit special characteristics that pose new challenges. In addition to their huge quantity, social data are noisy, unstructured, and heterogeneous. Moreover, they involve human semantics and contextual data that require analysis and interpretation based on human behavior. Accordingly, we address the problem of popularity prediction for an image by exploiting three main factors that are important for making an image popular. In particular, we investigate the impact of the image’s visual content, where the semantic and sentiment information extracted from the image show an impact on its popularity, as well as the textual information associated with the image, which has a fundamental role in boosting the visibility of the image in the keyword search results. Additionally, we explore social context, such as an image owner’s popularity and how it positively influences the image popularity. With a comprehensive study on the effect of the three aspects, we further propose to jointly consider the heterogeneous social sensory data. Experimental results obtained from real-world data demonstrate that the three factors utilized complement each other in obtaining promising results in the prediction of image popularity on social photo-sharing site. PMID:28335498

  13. Feature Extraction in Sequential Multimedia Images: with Applications in Satellite Images and On-line Videos

    NASA Astrophysics Data System (ADS)

    Liang, Yu-Li

    Multimedia data is increasingly important in scientific discovery and people's daily lives. Content of massive multimedia is often diverse and noisy, and motion between frames is sometimes crucial in analyzing those data. Among all, still images and videos are commonly used formats. Images are compact in size but do not contain motion information. Videos record motion but are sometimes too big to be analyzed. Sequential images, which are a set of continuous images with low frame rate, stand out because they are smaller than videos and still maintain motion information. This thesis investigates features in different types of noisy sequential images, and the proposed solutions that intelligently combined multiple features to successfully retrieve visual information from on-line videos and cloudy satellite images. The first task is detecting supraglacial lakes above ice sheet in sequential satellite images. The dynamics of supraglacial lakes on the Greenland ice sheet deeply affect glacier movement, which is directly related to sea level rise and global environment change. Detecting lakes above ice is suffering from diverse image qualities and unexpected clouds. A new method is proposed to efficiently extract prominent lake candidates with irregular shapes, heterogeneous backgrounds, and in cloudy images. The proposed system fully automatize the procedure that track lakes with high accuracy. We further cooperated with geoscientists to examine the tracked lakes and found new scientific findings. The second one is detecting obscene content in on-line video chat services, such as Chatroulette, that randomly match pairs of users in video chat sessions. A big problem encountered in such systems is the presence of flashers and obscene content. Because of various obscene content and unstable qualities of videos capture by home web-camera, detecting misbehaving users is a highly challenging task. We propose SafeVchat, which is the first solution that achieves satisfactory detection rate by using facial features and skin color model. To harness all the features in the scene, we further developed another system using multiple types of local descriptors along with Bag-of-Visual Word framework. In addition, an investigation of new contour feature in detecting obscene content is presented.

  14. CAMEL: concept annotated image libraries

    NASA Astrophysics Data System (ADS)

    Natsev, Apostol; Chadha, Atul; Soetarman, Basuki; Vitter, Jeffrey S.

    2001-01-01

    The problem of content-based image searching has received considerable attention in the last few years. Thousands of images are now available on the Internet, and many important applications require searching of images in domains such as E-commerce, medical imaging, weather prediction, satellite imagery, and so on. Yet, content-based image querying is still largely unestablished as a mainstream field, nor is it widely used by search engines. We believe that two of the major hurdles for this poor acceptance are poor retrieval quality and usability.

  15. CAMEL: concept annotated image libraries

    NASA Astrophysics Data System (ADS)

    Natsev, Apostol; Chadha, Atul; Soetarman, Basuki; Vitter, Jeffrey S.

    2000-12-01

    The problem of content-based image searching has received considerable attention in the last few years. Thousands of images are now available on the Internet, and many important applications require searching of images in domains such as E-commerce, medical imaging, weather prediction, satellite imagery, and so on. Yet, content-based image querying is still largely unestablished as a mainstream field, nor is it widely used by search engines. We believe that two of the major hurdles for this poor acceptance are poor retrieval quality and usability.

  16. Improved image retrieval based on fuzzy colour feature vector

    NASA Astrophysics Data System (ADS)

    Ben-Ahmeida, Ahlam M.; Ben Sasi, Ahmed Y.

    2013-03-01

    One of Image indexing techniques is the Content-Based Image Retrieval which is an efficient way for retrieving images from the image database automatically based on their visual contents such as colour, texture, and shape. In this paper will be discuss how using content-based image retrieval (CBIR) method by colour feature extraction and similarity checking. By dividing the query image and all images in the database into pieces and extract the features of each part separately and comparing the corresponding portions in order to increase the accuracy in the retrieval. The proposed approach is based on the use of fuzzy sets, to overcome the problem of curse of dimensionality. The contribution of colour of each pixel is associated to all the bins in the histogram using fuzzy-set membership functions. As a result, the Fuzzy Colour Histogram (FCH), outperformed the Conventional Colour Histogram (CCH) in image retrieving, due to its speedy results, where were images represented as signatures that took less size of memory, depending on the number of divisions. The results also showed that FCH is less sensitive and more robust to brightness changes than the CCH with better retrieval recall values.

  17. Acceptable bit-rates for human face identification from CCTV imagery

    NASA Astrophysics Data System (ADS)

    Tsifouti, Anastasia; Triantaphillidou, Sophie; Bilissi, Efthimia; Larabi, Mohamed-Chaker

    2013-01-01

    The objective of this investigation is to produce recommendations for acceptable bit-rates of CCTV footage of people onboard London buses. The majority of CCTV recorders on buses use a proprietary format based on the H.264/AVC video coding standard, exploiting both spatial and temporal redundancy. Low bit-rates are favored in the CCTV industry but they compromise the image usefulness of the recorded imagery. In this context usefulness is defined by the presence of enough facial information remaining in the compressed image to allow a specialist to identify a person. The investigation includes four steps: 1) Collection of representative video footage. 2) The grouping of video scenes based on content attributes. 3) Psychophysical investigations to identify key scenes, which are most affected by compression. 4) Testing of recording systems using the key scenes and further psychophysical investigations. The results are highly dependent upon scene content. For example, very dark and very bright scenes were the most challenging to compress, requiring higher bit-rates to maintain useful information. The acceptable bit-rates are also found to be dependent upon the specific CCTV system used to compress the footage, presenting challenges in drawing conclusions about universal `average' bit-rates.

  18. Modernization of the International Volcanic Ash Website - a global resource for ashfall preparedness and impact guidance.

    NASA Astrophysics Data System (ADS)

    Wallace, K.; Leonard, G.; Stewart, C.; Wilson, T. M.; Randall, M.; Stovall, W. K.

    2015-12-01

    The internationally collaborative volcanic ash website (http://volcanoes.usgs.gov/ash/) has been an important global information resource for ashfall preparedness and impact guidance since 2004. Recent volcanic ashfalls with significant local, regional, and global impacts highlighted the need to improve the website to make it more accessible and pertinent to users worldwide. Recently, the Volcanic Ash Impacts Working Group (Cities and Volcanoes Commission of IAVCEI) redesigned and modernized the website. Improvements include 1) a database-driven back end, 2) reorganized menu navigation, 3) language translation, 4) increased downloadable content, 5) addition of ash-impact case studies, 7) expanded and updated references , 8) an image database, and 9) inclusion of cooperating organization's logos. The database-driven platform makes the website more dynamic and efficient to operate and update. New menus provide information about specific impact topics (buildings, transportation, power, health, agriculture, water and waste water, equipment and communications, clean up) and updated content has been added throughout all topics. A new "for scientists" menu includes information on ash collection and analysis. Website translation using Google translate will significantly increase user base. Printable resources (e.g. checklists, pamphlets, posters) provide information to people without Internet access. Ash impact studies are used to improve mitigation measures during future eruptions, and links to case studies will assist communities' preparation and response plans. The Case Studies menu is intended to be a living topic area, growing as new case studies are published. A database of all images from the website allows users to access larger resolution images and additional descriptive details. Logos clarify linkages among key contributors and assure users that the site is authoritative and science-based.

  19. A review of EO image information mining

    NASA Astrophysics Data System (ADS)

    Quartulli, Marco; Olaizola, Igor G.

    2013-01-01

    We analyze the state of the art of content-based retrieval in Earth observation image archives focusing on complete systems showing promise for operational implementation. The different paradigms at the basis of the main system families are introduced. The approaches taken are considered, focusing in particular on the phases after primitive feature extraction. The solutions envisaged for the issues related to feature simplification and synthesis, indexing, semantic labeling are reviewed. The methodologies for query specification and execution are evaluated. Conclusions are drawn on the state of published research in Earth observation (EO) mining.

  20. Side information in coded aperture compressive spectral imaging

    NASA Astrophysics Data System (ADS)

    Galvis, Laura; Arguello, Henry; Lau, Daniel; Arce, Gonzalo R.

    2017-02-01

    Coded aperture compressive spectral imagers sense a three-dimensional cube by using two-dimensional projections of the coded and spectrally dispersed source. These imagers systems often rely on FPA detectors, SLMs, micromirror devices (DMDs), and dispersive elements. The use of the DMDs to implement the coded apertures facilitates the capture of multiple projections, each admitting a different coded aperture pattern. The DMD allows not only to collect the sufficient number of measurements for spectrally rich scenes or very detailed spatial scenes but to design the spatial structure of the coded apertures to maximize the information content on the compressive measurements. Although sparsity is the only signal characteristic usually assumed for reconstruction in compressing sensing, other forms of prior information such as side information have been included as a way to improve the quality of the reconstructions. This paper presents the coded aperture design in a compressive spectral imager with side information in the form of RGB images of the scene. The use of RGB images as side information of the compressive sensing architecture has two main advantages: the RGB is not only used to improve the reconstruction quality but to optimally design the coded apertures for the sensing process. The coded aperture design is based on the RGB scene and thus the coded aperture structure exploits key features such as scene edges. Real reconstructions of noisy compressed measurements demonstrate the benefit of the designed coded apertures in addition to the improvement in the reconstruction quality obtained by the use of side information.

  1. Remote sensing with simulated unmanned aircraft imagery for precision agriculture applications

    USGS Publications Warehouse

    Hunt, E. Raymond; Daughtry, Craig S.T.; Mirsky, Steven B.; Hively, W. Dean

    2014-01-01

    An important application of unmanned aircraft systems (UAS) may be remote-sensing for precision agriculture, because of its ability to acquire images with very small pixel sizes from low altitude flights. The objective of this study was to compare information obtained from two different pixel sizes, one about a meter (the size of a small vegetation plot) and one about a millimeter. Cereal rye (Secale cereale) was planted at the Beltsville Agricultural Research Center for a winter cover crop with fall and spring fertilizer applications, which produced differences in biomass and leaf chlorophyll content. UAS imagery was simulated by placing a Fuji IS-Pro UVIR digital camera at 3-m height looking nadir. An external UV-IR cut filter was used to acquire true-color images; an external red cut filter was used to obtain color-infrared-like images with bands at near-infrared, green, and blue wavelengths. Plot-scale Green Normalized Difference Vegetation Index was correlated with dry aboveground biomass ( ${mbi {r}} = 0.58$ ), whereas the Triangular Greenness Index (TGI) was not correlated with chlorophyll content. We used the SamplePoint program to select 100 pixels systematically; we visually identified the cover type and acquired the digital numbers. The number of rye pixels in each image was better correlated with biomass ( ${mbi {r}} = 0.73$ ), and the average TGI from only leaf pixels was negatively correlated with chlorophyll content ( ${mbi {r}} = -0.72$ ). Thus, better information for crop requirements may be obtained using very small pixel sizes, but new algorithms based on computer vision are needed for analysis. It may not be necessary to geospatially register large numbers of photographs with very small pixel sizes. Instead, images could be analyzed as single plots along field transects.

  2. Intelligent distributed medical image management

    NASA Astrophysics Data System (ADS)

    Garcia, Hong-Mei C.; Yun, David Y.

    1995-05-01

    The rapid advancements in high performance global communication have accelerated cooperative image-based medical services to a new frontier. Traditional image-based medical services such as radiology and diagnostic consultation can now fully utilize multimedia technologies in order to provide novel services, including remote cooperative medical triage, distributed virtual simulation of operations, as well as cross-country collaborative medical research and training. Fast (efficient) and easy (flexible) retrieval of relevant images remains a critical requirement for the provision of remote medical services. This paper describes the database system requirements, identifies technological building blocks for meeting the requirements, and presents a system architecture for our target image database system, MISSION-DBS, which has been designed to fulfill the goals of Project MISSION (medical imaging support via satellite integrated optical network) -- an experimental high performance gigabit satellite communication network with access to remote supercomputing power, medical image databases, and 3D visualization capabilities in addition to medical expertise anywhere and anytime around the country. The MISSION-DBS design employs a synergistic fusion of techniques in distributed databases (DDB) and artificial intelligence (AI) for storing, migrating, accessing, and exploring images. The efficient storage and retrieval of voluminous image information is achieved by integrating DDB modeling and AI techniques for image processing while the flexible retrieval mechanisms are accomplished by combining attribute- based and content-based retrievals.

  3. Multimedia human brain database system for surgical candidacy determination in temporal lobe epilepsy with content-based image retrieval

    NASA Astrophysics Data System (ADS)

    Siadat, Mohammad-Reza; Soltanian-Zadeh, Hamid; Fotouhi, Farshad A.; Elisevich, Kost

    2003-01-01

    This paper presents the development of a human brain multimedia database for surgical candidacy determination in temporal lobe epilepsy. The focus of the paper is on content-based image management, navigation and retrieval. Several medical image-processing methods including our newly developed segmentation method are utilized for information extraction/correlation and indexing. The input data includes T1-, T2-Weighted MRI and FLAIR MRI and ictal and interictal SPECT modalities with associated clinical data and EEG data analysis. The database can answer queries regarding issues such as the correlation between the attribute X of the entity Y and the outcome of a temporal lobe epilepsy surgery. The entity Y can be a brain anatomical structure such as the hippocampus. The attribute X can be either a functionality feature of the anatomical structure Y, calculated with SPECT modalities, such as signal average, or a volumetric/morphological feature of the entity Y such as volume or average curvature. The outcome of the surgery can be any surgery assessment such as memory quotient. A determination is made regarding surgical candidacy by analysis of both textual and image data. The current database system suggests a surgical determination for the cases with relatively small hippocampus and high signal intensity average on FLAIR images within the hippocampus. This indication pretty much fits with the surgeons" expectations/observations. Moreover, as the database gets more populated with patient profiles and individual surgical outcomes, using data mining methods one may discover partially invisible correlations between the contents of different modalities of data and the outcome of the surgery.

  4. Optical Method for Estimating the Chlorophyll Contents in Plant Leaves.

    PubMed

    Pérez-Patricio, Madaín; Camas-Anzueto, Jorge Luis; Sanchez-Alegría, Avisaí; Aguilar-González, Abiel; Gutiérrez-Miceli, Federico; Escobar-Gómez, Elías; Voisin, Yvon; Rios-Rojas, Carlos; Grajales-Coutiño, Ruben

    2018-02-22

    This work introduces a new vision-based approach for estimating chlorophyll contents in a plant leaf using reflectance and transmittance as base parameters. Images of the top and underside of the leaf are captured. To estimate the base parameters (reflectance/transmittance), a novel optical arrangement is proposed. The chlorophyll content is then estimated by using linear regression where the inputs are the reflectance and transmittance of the leaf. Performance of the proposed method for chlorophyll content estimation was compared with a spectrophotometer and a Soil Plant Analysis Development (SPAD) meter. Chlorophyll content estimation was realized for Lactuca sativa L., Azadirachta indica , Canavalia ensiforme , and Lycopersicon esculentum . Experimental results showed that-in terms of accuracy and processing speed-the proposed algorithm outperformed many of the previous vision-based approach methods that have used SPAD as a reference device. On the other hand, the accuracy reached is 91% for crops such as Azadirachta indica , where the chlorophyll value was obtained using the spectrophotometer. Additionally, it was possible to achieve an estimation of the chlorophyll content in the leaf every 200 ms with a low-cost camera and a simple optical arrangement. This non-destructive method increased accuracy in the chlorophyll content estimation by using an optical arrangement that yielded both the reflectance and transmittance information, while the required hardware is cheap.

  5. Duplicate document detection in DocBrowse

    NASA Astrophysics Data System (ADS)

    Chalana, Vikram; Bruce, Andrew G.; Nguyen, Thien

    1998-04-01

    Duplicate documents are frequently found in large databases of digital documents, such as those found in digital libraries or in the government declassification effort. Efficient duplicate document detection is important not only to allow querying for similar documents, but also to filter out redundant information in large document databases. We have designed three different algorithm to identify duplicate documents. The first algorithm is based on features extracted from the textual content of a document, the second algorithm is based on wavelet features extracted from the document image itself, and the third algorithm is a combination of the first two. These algorithms are integrated within the DocBrowse system for information retrieval from document images which is currently under development at MathSoft. DocBrowse supports duplicate document detection by allowing (1) automatic filtering to hide duplicate documents, and (2) ad hoc querying for similar or duplicate documents. We have tested the duplicate document detection algorithms on 171 documents and found that text-based method has an average 11-point precision of 97.7 percent while the image-based method has an average 11- point precision of 98.9 percent. However, in general, the text-based method performs better when the document contains enough high-quality machine printed text while the image- based method performs better when the document contains little or no quality machine readable text.

  6. An Open Source Agenda for Research Linking Text and Image Content Features.

    ERIC Educational Resources Information Center

    Goodrum, Abby A.; Rorvig, Mark E.; Jeong, Ki-Tai; Suresh, Chitturi

    2001-01-01

    Proposes methods to utilize image primitives to support term assignment for image classification. Proposes to release code for image analysis in a common tool set for other researchers to use. Of particular focus is the expansion of work by researchers in image indexing to include image content-based feature extraction capabilities in their work.…

  7. Enhanced image capture through fusion

    NASA Technical Reports Server (NTRS)

    Burt, Peter J.; Hanna, Keith; Kolczynski, Raymond J.

    1993-01-01

    Image fusion may be used to combine images from different sensors, such as IR and visible cameras, to obtain a single composite with extended information content. Fusion may also be used to combine multiple images from a given sensor to form a composite image in which information of interest is enhanced. We present a general method for performing image fusion and show that this method is effective for diverse fusion applications. We suggest that fusion may provide a powerful tool for enhanced image capture with broad utility in image processing and computer vision.

  8. A unified framework of image latent feature learning on Sina microblog

    NASA Astrophysics Data System (ADS)

    Wei, Jinjin; Jin, Zhigang; Zhou, Yuan; Zhang, Rui

    2015-10-01

    Large-scale user-contributed images with texts are rapidly increasing on the social media websites, such as Sina microblog. However, the noise and incomplete correspondence between the images and the texts give rise to the difficulty in precise image retrieval and ranking. In this paper, a hypergraph-based learning framework is proposed for image ranking, which simultaneously utilizes visual feature, textual content and social link information to estimate the relevance between images. Representing each image as a vertex in the hypergraph, complex relationship between images can be reflected exactly. Then updating the weight of hyperedges throughout the hypergraph learning process, the effect of different edges can be adaptively modulated in the constructed hypergraph. Furthermore, the popularity degree of the image is employed to re-rank the retrieval results. Comparative experiments on a large-scale Sina microblog data-set demonstrate the effectiveness of the proposed approach.

  9. Pixel-based image fusion with false color mapping

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Mao, Shiyi

    2003-06-01

    In this paper, we propose a pixel-based image fusion algorithm that combines the gray-level image fusion method with the false color mapping. This algorithm integrates two gray-level images presenting different sensor modalities or at different frequencies and produces a fused false-color image. The resulting image has higher information content than each of the original images. The objects in the fused color image are easy to be recognized. This algorithm has three steps: first, obtaining the fused gray-level image of two original images; second, giving the generalized high-boost filtering images between fused gray-level image and two source images respectively; third, generating the fused false-color image. We use the hybrid averaging and selection fusion method to obtain the fused gray-level image. The fused gray-level image will provide better details than two original images and reduce noise at the same time. But the fused gray-level image can't contain all detail information in two source images. At the same time, the details in gray-level image cannot be discerned as easy as in a color image. So a color fused image is necessary. In order to create color variation and enhance details in the final fusion image, we produce three generalized high-boost filtering images. These three images are displayed through red, green and blue channel respectively. A fused color image is produced finally. This method is used to fuse two SAR images acquired on the San Francisco area (California, USA). The result shows that fused false-color image enhances the visibility of certain details. The resolution of the final false-color image is the same as the resolution of the input images.

  10. The impact of positive, negative and neutral stimuli in a virtual reality cognitive-motor rehabilitation task: a pilot study with stroke patients.

    PubMed

    Cameirão, Mónica S; Faria, Ana Lúcia; Paulino, Teresa; Alves, Júlio; Bermúdez I Badia, Sergi

    2016-08-09

    Virtual Reality (VR) based methods for stroke rehabilitation have mainly focused on motor rehabilitation, but there is increasing interest in integrating motor and cognitive training to increase similarity to real-world settings. Unfortunately, more research is needed for the definition of which type of content should be used in the design of these tools. One possibility is the use of emotional stimuli, which are known to enhance attentional processes. According to the Socioemotional Selectivity Theory, as people age, the emotional salience arises for positive and neutral, but not for negative stimuli. For this study we developed a cognitive-motor VR task involving attention and short-term memory, and we investigated the impact of using emotional images of varying valence. The task consisted of finding a target image, shown for only two seconds, among fourteen neutral distractors, and selecting it through arm movements. After performing the VR task, a recall task took place and the patients had to identify the target images among a valence-matched number of distractors. Ten stroke patients participated in a within-subjects experiment with three conditions based on the valence of the images: positive, negative and neutral. Eye movements were recorded during VR task performance with an eye tracking system. Our results show decreased attention for negative stimuli in the VR task performance when compared to neutral stimuli. The recall task shows significantly more wrongly identified images (false memories) for negative stimuli than for neutral. Regression and correlation analyses with the Montreal Cognitive Assessment and the Geriatric Depression Scale revealed differential effects of cognitive function and depressive symptomatology in the encoding and recall of positive, negative and neutral images. Further, eye movement data shows reduced search patterns for wrongly selected stimuli containing emotional content. The results of this study suggest that it is feasible to use emotional content in a VR based cognitive-motor task for attention and memory training after stroke. Stroke survivors showed less attention towards negative information, exhibiting reduced visual search patterns and more false memories. We have also shown that the use of emotional stimuli in a VR task can provide additional information regarding patient's mood and cognitive status.

  11. Putting humans in the loop: Using crowdsourced snow information to inform water management

    NASA Astrophysics Data System (ADS)

    Fedorov, Roman; Giuliani, Matteo; Castelletti, Andrea; Fraternali, Piero

    2016-04-01

    The unprecedented availability of user generated data on the Web due to the advent of online services, social networks, and crowdsourcing, is opening new opportunities for enhancing real-time monitoring and modeling of environmental systems based on data that are public, low-cost, and spatio-temporally dense, possibly contributing to our ability of making better decisions. In this work, we contribute a novel crowdsourcing procedure for computing virtual snow indexes from public web images, either produced by users or generated by touristic webcams, which is based on a complex architecture designed for automatically crawling content from multiple web data sources. The procedure retains only geo-tagged images containing a mountain skyline, identifies the visible peaks in each image using a public online digital terrain model, and classifies the mountain image pixels as snow or no-snow. This operation yields a snow mask per image, from which it is possible to extract time series of virtual snow indexes representing a proxy of the snow covered area. The value of the obtained virtual snow indexes is estimated in a real world water management problem. We consider the snow-dominated catchment of Lake Como, a regulated lake in Northern Italy, where snowmelt represents the most important contribution to seasonal lake storage, and we used the virtual snow indexes for informing the daily operation of the lake's dam. Numerical results show that such information is effective in extending the anticipation capacity of the lake operations, ultimately improving the system performance.

  12. DialysisNet: Application for Integrating and Management Data Sources of Hemodialysis Information by Continuity of Care Record.

    PubMed

    Ku, Ho Suk; Kim, Sungho; Kim, HyeHyeon; Chung, Hee-Joon; Park, Yu Rang; Kim, Ju Han

    2014-04-01

    Health Avatar Beans was for the management of chronic kidney disease and end-stage renal disease (ESRD). This article is about the DialysisNet system in Health Avatar Beans for the seamless management of ESRD based on the personal health record. For hemodialysis data modeling, we identified common data elements for hemodialysis information (CDEHI). We used ASTM continuity of care record (CCR) and ISO/IEC 11179 for the compliance method with a standard model for the CDEHI. According to the contents of the ASTM CCR, we mapped the CDHEI to the contents and created the metadata from that. It was transformed and parsed into the database and verified according to the ASTM CCR/XML schema definition (XSD). DialysisNet was created as an iPad application. The contents of the CDEHI were categorized for effective management. For the evaluation of information transfer, we used CarePlatform, which was developed for data access. The metadata of CDEHI in DialysisNet was exchanged by the CarePlatform with semantic interoperability. The CDEHI was separated into a content list for individual patient data, a contents list for hemodialysis center data, consultation and transfer form, and clinical decision support data. After matching to the CCR, the CDEHI was transformed to metadata, and it was transformed to XML and proven according to the ASTM CCR/XSD. DialysisNet has specific consideration of visualization, graphics, images, statistics, and database. We created the DialysisNet application, which can integrate and manage data sources for hemodialysis information based on CCR standards.

  13. Toward semantic-based retrieval of visual information: a model-based approach

    NASA Astrophysics Data System (ADS)

    Park, Youngchoon; Golshani, Forouzan; Panchanathan, Sethuraman

    2002-07-01

    This paper center around the problem of automated visual content classification. To enable classification based image or visual object retrieval, we propose a new image representation scheme called visual context descriptor (VCD) that is a multidimensional vector in which each element represents the frequency of a unique visual property of an image or a region. VCD utilizes the predetermined quality dimensions (i.e., types of features and quantization level) and semantic model templates mined in priori. Not only observed visual cues, but also contextually relevant visual features are proportionally incorporated in VCD. Contextual relevance of a visual cue to a semantic class is determined by using correlation analysis of ground truth samples. Such co-occurrence analysis of visual cues requires transformation of a real-valued visual feature vector (e.g., color histogram, Gabor texture, etc.,) into a discrete event (e.g., terms in text). Good-feature to track, rule of thirds, iterative k-means clustering and TSVQ are involved in transformation of feature vectors into unified symbolic representations called visual terms. Similarity-based visual cue frequency estimation is also proposed and used for ensuring the correctness of model learning and matching since sparseness of sample data causes the unstable results of frequency estimation of visual cues. The proposed method naturally allows integration of heterogeneous visual or temporal or spatial cues in a single classification or matching framework, and can be easily integrated into a semantic knowledge base such as thesaurus, and ontology. Robust semantic visual model template creation and object based image retrieval are demonstrated based on the proposed content description scheme.

  14. Information content of data from the LANDSAT-4 Thematic Mapper (TM) and multispectral scanner (MSS)

    NASA Technical Reports Server (NTRS)

    Price, J. C.

    1983-01-01

    The progress of an investigation to quantify the increased information content of thematic mapper (TM) data as compared to that from the LANDSAT 4 multispectral scanner (MSS) is reported. Two night infrared images were examined and compared with Heat Capacity Mapping Mission data.

  15. High-Content Microscopy Analysis of Subcellular Structures: Assay Development and Application to Focal Adhesion Quantification.

    PubMed

    Kroll, Torsten; Schmidt, David; Schwanitz, Georg; Ahmad, Mubashir; Hamann, Jana; Schlosser, Corinne; Lin, Yu-Chieh; Böhm, Konrad J; Tuckermann, Jan; Ploubidou, Aspasia

    2016-07-01

    High-content analysis (HCA) converts raw light microscopy images to quantitative data through the automated extraction, multiparametric analysis, and classification of the relevant information content. Combined with automated high-throughput image acquisition, HCA applied to the screening of chemicals or RNAi-reagents is termed high-content screening (HCS). Its power in quantifying cell phenotypes makes HCA applicable also to routine microscopy. However, developing effective HCA and bioinformatic analysis pipelines for acquisition of biologically meaningful data in HCS is challenging. Here, the step-by-step development of an HCA assay protocol and an HCS bioinformatics analysis pipeline are described. The protocol's power is demonstrated by application to focal adhesion (FA) detection, quantitative analysis of multiple FA features, and functional annotation of signaling pathways regulating FA size, using primary data of a published RNAi screen. The assay and the underlying strategy are aimed at researchers performing microscopy-based quantitative analysis of subcellular features, on a small scale or in large HCS experiments. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  16. A Neural Network Architecture For Rapid Model Indexing In Computer Vision Systems

    NASA Astrophysics Data System (ADS)

    Pawlicki, Ted

    1988-03-01

    Models of objects stored in memory have been shown to be useful for guiding the processing of computer vision systems. A major consideration in such systems, however, is how stored models are initially accessed and indexed by the system. As the number of stored models increases, the time required to search memory for the correct model becomes high. Parallel distributed, connectionist, neural networks' have been shown to have appealing content addressable memory properties. This paper discusses an architecture for efficient storage and reference of model memories stored as stable patterns of activity in a parallel, distributed, connectionist, neural network. The emergent properties of content addressability and resistance to noise are exploited to perform indexing of the appropriate object centered model from image centered primitives. The system consists of three network modules each of which represent information relative to a different frame of reference. The model memory network is a large state space vector where fields in the vector correspond to ordered component objects and relative, object based spatial relationships between the component objects. The component assertion network represents evidence about the existence of object primitives in the input image. It establishes local frames of reference for object primitives relative to the image based frame of reference. The spatial relationship constraint network is an intermediate representation which enables the association between the object based and the image based frames of reference. This intermediate level represents information about possible object orderings and establishes relative spatial relationships from the image based information in the component assertion network below. It is also constrained by the lawful object orderings in the model memory network above. The system design is consistent with current psychological theories of recognition by component. It also seems to support Marr's notions of hierarchical indexing. (i.e. the specificity, adjunct, and parent indices) It supports the notion that multiple canonical views of an object may have to be stored in memory to enable its efficient identification. The use of variable fields in the state space vectors appears to keep the number of required nodes in the network down to a tractable number while imposing a semantic value on different areas of the state space. This semantic imposition supports an interface between the analogical aspects of neural networks and the propositional paradigms of symbolic processing.

  17. Integrating multisensor satellite data merging and image reconstruction in support of machine learning for better water quality management.

    PubMed

    Chang, Ni-Bin; Bai, Kaixu; Chen, Chi-Farn

    2017-10-01

    Monitoring water quality changes in lakes, reservoirs, estuaries, and coastal waters is critical in response to the needs for sustainable development. This study develops a remote sensing-based multiscale modeling system by integrating multi-sensor satellite data merging and image reconstruction algorithms in support of feature extraction with machine learning leading to automate continuous water quality monitoring in environmentally sensitive regions. This new Earth observation platform, termed "cross-mission data merging and image reconstruction with machine learning" (CDMIM), is capable of merging multiple satellite imageries to provide daily water quality monitoring through a series of image processing, enhancement, reconstruction, and data mining/machine learning techniques. Two existing key algorithms, including Spectral Information Adaptation and Synthesis Scheme (SIASS) and SMart Information Reconstruction (SMIR), are highlighted to support feature extraction and content-based mapping. Whereas SIASS can support various data merging efforts to merge images collected from cross-mission satellite sensors, SMIR can overcome data gaps by reconstructing the information of value-missing pixels due to impacts such as cloud obstruction. Practical implementation of CDMIM was assessed by predicting the water quality over seasons in terms of the concentrations of nutrients and chlorophyll-a, as well as water clarity in Lake Nicaragua, providing synergistic efforts to better monitor the aquatic environment and offer insightful lake watershed management strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Mapping as a visual health communication tool: promises and dilemmas.

    PubMed

    Parrott, Roxanne; Hopfer, Suellen; Ghetian, Christie; Lengerich, Eugene

    2007-01-01

    In the era of evidence-based public health promotion and planning, the use of maps as a form of evidence to communicate about the multiple determinants of cancer is on the rise. Geographic information systems and mapping technologies make future proliferation of this strategy likely. Yet disease maps as a communication form remain largely unexamined. This content analysis considers the presence of multivariate information, credibility cues, and the communication function of publicly accessible maps for cancer control activities. Thirty-six state comprehensive cancer control plans were publicly available in July 2005 and were reviewed for the presence of maps. Fourteen of the 36 state cancer plans (39%) contained map images (N = 59 static maps). A continuum of map inter activity was observed, with 10 states having interactive mapping tools available to query and map cancer information. Four states had both cancer plans with map images and interactive mapping tools available to the public on their Web sites. Of the 14 state cancer plans that depicted map images, two displayed multivariate data in a single map. Nine of the 10 states with interactive mapping capability offered the option to display multivariate health risk messages. The most frequent content category mapped was cancer incidence and mortality, with stage at diagnosis infrequently available. The most frequent communication function served by the maps reviewed was redundancy, as maps repeated information contained in textual forms. The social and ethical implications for communicating about cancer through the use of visual geographic representations are discussed.

  19. A Sensitive Measurement for Estimating Impressions of Image-Contents

    NASA Astrophysics Data System (ADS)

    Sato, Mie; Matouge, Shingo; Mori, Toshifumi; Suzuki, Noboru; Kasuga, Masao

    We have investigated Kansei Content that appeals maker's intention to viewer's kansei. An SD method is a very good way to evaluate subjective impression of image-contents. However, because the SD method is performed after subjects view the image-contents, it is difficult to examine impression of detailed scenes of the image-contents in real time. To measure viewer's impression of the image-contents in real time, we have developed a Taikan sensor. With the Taikan sensor, we investigate relations among the image-contents, the grip strength and the body temperature. We also explore the interface of the Taikan sensor to use it easily. In our experiment, a horror movie is used that largely affects emotion of the subjects. Our results show that there is a possibility that the grip strength increases when the subjects view a strained scene and that it is easy to use the Taikan sensor without its circle base that is originally installed.

  20. Hyperspectral remote sensing image retrieval system using spectral and texture features.

    PubMed

    Zhang, Jing; Geng, Wenhao; Liang, Xi; Li, Jiafeng; Zhuo, Li; Zhou, Qianlan

    2017-06-01

    Although many content-based image retrieval systems have been developed, few studies have focused on hyperspectral remote sensing images. In this paper, a hyperspectral remote sensing image retrieval system based on spectral and texture features is proposed. The main contributions are fourfold: (1) considering the "mixed pixel" in the hyperspectral image, endmembers as spectral features are extracted by an improved automatic pixel purity index algorithm, then the texture features are extracted with the gray level co-occurrence matrix; (2) similarity measurement is designed for the hyperspectral remote sensing image retrieval system, in which the similarity of spectral features is measured with the spectral information divergence and spectral angle match mixed measurement and in which the similarity of textural features is measured with Euclidean distance; (3) considering the limited ability of the human visual system, the retrieval results are returned after synthesizing true color images based on the hyperspectral image characteristics; (4) the retrieval results are optimized by adjusting the feature weights of similarity measurements according to the user's relevance feedback. The experimental results on NASA data sets can show that our system can achieve comparable superior retrieval performance to existing hyperspectral analysis schemes.

  1. Stereoscopic medical imaging collaboration system

    NASA Astrophysics Data System (ADS)

    Okuyama, Fumio; Hirano, Takenori; Nakabayasi, Yuusuke; Minoura, Hirohito; Tsuruoka, Shinji

    2007-02-01

    The computerization of the clinical record and the realization of the multimedia have brought improvement of the medical service in medical facilities. It is very important for the patients to obtain comprehensible informed consent. Therefore, the doctor should plainly explain the purpose and the content of the diagnoses and treatments for the patient. We propose and design a Telemedicine Imaging Collaboration System which presents a three dimensional medical image as X-ray CT, MRI with stereoscopic image by using virtual common information space and operating the image from a remote location. This system is composed of two personal computers, two 15 inches stereoscopic parallax barrier type LCD display (LL-151D, Sharp), one 1Gbps router and 1000base LAN cables. The software is composed of a DICOM format data transfer program, an operation program of the images, the communication program between two personal computers and a real time rendering program. Two identical images of 512×768 pixcels are displayed on two stereoscopic LCD display, and both images show an expansion, reduction by mouse operation. This system can offer a comprehensible three-dimensional image of the diseased part. Therefore, the doctor and the patient can easily understand it, depending on their needs.

  2. Information object definition-based unified modeling language representation of DICOM structured reporting: a case study of transcoding DICOM to XML.

    PubMed

    Tirado-Ramos, Alfredo; Hu, Jingkun; Lee, K P

    2002-01-01

    Supplement 23 to DICOM (Digital Imaging and Communications for Medicine), Structured Reporting, is a specification that supports a semantically rich representation of image and waveform content, enabling experts to share image and related patient information. DICOM SR supports the representation of textual and coded data linked to images and waveforms. Nevertheless, the medical information technology community needs models that work as bridges between the DICOM relational model and open object-oriented technologies. The authors assert that representations of the DICOM Structured Reporting standard, using object-oriented modeling languages such as the Unified Modeling Language, can provide a high-level reference view of the semantically rich framework of DICOM and its complex structures. They have produced an object-oriented model to represent the DICOM SR standard and have derived XML-exchangeable representations of this model using World Wide Web Consortium specifications. They expect the model to benefit developers and system architects who are interested in developing applications that are compliant with the DICOM SR specification.

  3. An automatic fuzzy-based multi-temporal brain digital subtraction angiography image fusion algorithm using curvelet transform and content selection strategy.

    PubMed

    Momeni, Saba; Pourghassem, Hossein

    2014-08-01

    Recently image fusion has prominent role in medical image processing and is useful to diagnose and treat many diseases. Digital subtraction angiography is one of the most applicable imaging to diagnose brain vascular diseases and radiosurgery of brain. This paper proposes an automatic fuzzy-based multi-temporal fusion algorithm for 2-D digital subtraction angiography images. In this algorithm, for blood vessel map extraction, the valuable frames of brain angiography video are automatically determined to form the digital subtraction angiography images based on a novel definition of vessel dispersion generated by injected contrast material. Our proposed fusion scheme contains different fusion methods for high and low frequency contents based on the coefficient characteristic of wrapping second generation of curvelet transform and a novel content selection strategy. Our proposed content selection strategy is defined based on sample correlation of the curvelet transform coefficients. In our proposed fuzzy-based fusion scheme, the selection of curvelet coefficients are optimized by applying weighted averaging and maximum selection rules for the high frequency coefficients. For low frequency coefficients, the maximum selection rule based on local energy criterion is applied to better visual perception. Our proposed fusion algorithm is evaluated on a perfect brain angiography image dataset consisting of one hundred 2-D internal carotid rotational angiography videos. The obtained results demonstrate the effectiveness and efficiency of our proposed fusion algorithm in comparison with common and basic fusion algorithms.

  4. Independent transmission of sign language interpreter in DVB: assessment of image compression

    NASA Astrophysics Data System (ADS)

    Zatloukal, Petr; Bernas, Martin; Dvořák, LukáÅ.¡

    2015-02-01

    Sign language on television provides information to deaf that they cannot get from the audio content. If we consider the transmission of the sign language interpreter over an independent data stream, the aim is to ensure sufficient intelligibility and subjective image quality of the interpreter with minimum bit rate. The work deals with the ROI-based video compression of Czech sign language interpreter implemented to the x264 open source library. The results of this approach are verified in subjective tests with the deaf. They examine the intelligibility of sign language expressions containing minimal pairs for different levels of compression and various resolution of image with interpreter and evaluate the subjective quality of the final image for a good viewing experience.

  5. The commercialization of robotic surgery: unsubstantiated marketing of gynecologic surgery by hospitals.

    PubMed

    Schiavone, Maria B; Kuo, Eugenia C; Naumann, R Wendel; Burke, William M; Lewin, Sharyn N; Neugut, Alfred I; Hershman, Dawn L; Herzog, Thomas J; Wright, Jason D

    2012-09-01

    We analyzed the content, quality, and accuracy of information provided on hospital web sites about robotic gynecologic surgery. An analysis of hospitals with more than 200 beds from a selection of states was performed. Hospital web sites were analyzed for the content and quality of data regarding robotic-assisted surgery. Among 432 hospitals, the web sites of 192 (44.4%) contained marketing for robotic gynecologic surgery. Stock images (64.1%) and text (24.0%) derived from the robot manufacturer were frequent. Although most sites reported improved perioperative outcomes, limitations of robotics including cost, complications, and operative time were discussed only 3.7%, 1.6%, and 3.7% of the time, respectively. Only 47.9% of the web sites described a comparison group. Marketing of robotic gynecologic surgery is widespread. Much of the content is not based on high-quality data, fails to present alternative procedures, and relies on stock text and images. Copyright © 2012 Mosby, Inc. All rights reserved.

  6. Evaluation of contents-based image retrieval methods for a database of logos on drug tablets

    NASA Astrophysics Data System (ADS)

    Geradts, Zeno J.; Hardy, Huub; Poortman, Anneke; Bijhold, Jurrien

    2001-02-01

    In this research an evaluation has been made of the different ways of contents based image retrieval of logos of drug tablets. On a database of 432 illicitly produced tablets (mostly containing MDMA), we have compared different retrieval methods. Two of these methods were available from commercial packages, QBIC and Imatch, where the implementation of the contents based image retrieval methods are not exactly known. We compared the results for this database with the MPEG-7 shape comparison methods, which are the contour-shape, bounding box and region-based shape methods. In addition, we have tested the log polar method that is available from our own research.

  7. Toward visual user interfaces supporting collaborative multimedia content management

    NASA Astrophysics Data System (ADS)

    Husein, Fathi; Leissler, Martin; Hemmje, Matthias

    2000-12-01

    Supporting collaborative multimedia content management activities, as e.g., image and video acquisition, exploration, and access dialogues between naive users and multi media information systems is a non-trivial task. Although a wide variety of experimental and prototypical multimedia storage technologies as well as corresponding indexing and retrieval engines are available, most of them lack appropriate support for collaborative end-user oriented user interface front ends. The development of advanced user adaptable interfaces is necessary for building collaborative multimedia information- space presentations based upon advanced tools for information browsing, searching, filtering, and brokering to be applied on potentially very large and highly dynamic multimedia collections with a large number of users and user groups. Therefore, the development of advanced and at the same time adaptable and collaborative computer graphical information presentation schemes that allow to easily apply adequate visual metaphors for defined target user stereotypes has to become a key focus within ongoing research activities trying to support collaborative information work with multimedia collections.

  8. Human machine interface by using stereo-based depth extraction

    NASA Astrophysics Data System (ADS)

    Liao, Chao-Kang; Wu, Chi-Hao; Lin, Hsueh-Yi; Chang, Ting-Ting; Lin, Tung-Yang; Huang, Po-Kuan

    2014-03-01

    The ongoing success of three-dimensional (3D) cinema fuels increasing efforts to spread the commercial success of 3D to new markets. The possibilities of a convincing 3D experience at home, such as three-dimensional television (3DTV), has generated a great deal of interest within the research and standardization community. A central issue for 3DTV is the creation and representation of 3D content. Acquiring scene depth information is a fundamental task in computer vision, yet complex and error-prone. Dedicated range sensors, such as the Time­ of-Flight camera (ToF), can simplify the scene depth capture process and overcome shortcomings of traditional solutions, such as active or passive stereo analysis. Admittedly, currently available ToF sensors deliver only a limited spatial resolution. However, sophisticated depth upscaling approaches use texture information to match depth and video resolution. At Electronic Imaging 2012 we proposed an upscaling routine based on error energy minimization, weighted with edge information from an accompanying video source. In this article we develop our algorithm further. By adding temporal consistency constraints to the upscaling process, we reduce disturbing depth jumps and flickering artifacts in the final 3DTV content. Temporal consistency in depth maps enhances the 3D experience, leading to a wider acceptance of 3D media content. More content in better quality can boost the commercial success of 3DTV.

  9. Content-based multiple bitstream image transmission over noisy channels.

    PubMed

    Cao, Lei; Chen, Chang Wen

    2002-01-01

    In this paper, we propose a novel combined source and channel coding scheme for image transmission over noisy channels. The main feature of the proposed scheme is a systematic decomposition of image sources so that unequal error protection can be applied according to not only bit error sensitivity but also visual content importance. The wavelet transform is adopted to hierarchically decompose the image. The association between the wavelet coefficients and what they represent spatially in the original image is fully exploited so that wavelet blocks are classified based on their corresponding image content. The classification produces wavelet blocks in each class with similar content and statistics, therefore enables high performance source compression using the set partitioning in hierarchical trees (SPIHT) algorithm. To combat the channel noise, an unequal error protection strategy with rate-compatible punctured convolutional/cyclic redundancy check (RCPC/CRC) codes is implemented based on the bit contribution to both peak signal-to-noise ratio (PSNR) and visual quality. At the receiving end, a postprocessing method making use of the SPIHT decoding structure and the classification map is developed to restore the degradation due to the residual error after channel decoding. Experimental results show that the proposed scheme is indeed able to provide protection both for the bits that are more sensitive to errors and for the more important visual content under a noisy transmission environment. In particular, the reconstructed images illustrate consistently better visual quality than using the single-bitstream-based schemes.

  10. Method for indexing and retrieving manufacturing-specific digital imagery based on image content

    DOEpatents

    Ferrell, Regina K.; Karnowski, Thomas P.; Tobin, Jr., Kenneth W.

    2004-06-15

    A method for indexing and retrieving manufacturing-specific digital images based on image content comprises three steps. First, at least one feature vector can be extracted from a manufacturing-specific digital image stored in an image database. In particular, each extracted feature vector corresponds to a particular characteristic of the manufacturing-specific digital image, for instance, a digital image modality and overall characteristic, a substrate/background characteristic, and an anomaly/defect characteristic. Notably, the extracting step includes generating a defect mask using a detection process. Second, using an unsupervised clustering method, each extracted feature vector can be indexed in a hierarchical search tree. Third, a manufacturing-specific digital image associated with a feature vector stored in the hierarchicial search tree can be retrieved, wherein the manufacturing-specific digital image has image content comparably related to the image content of the query image. More particularly, can include two data reductions, the first performed based upon a query vector extracted from a query image. Subsequently, a user can select relevant images resulting from the first data reduction. From the selection, a prototype vector can be calculated, from which a second-level data reduction can be performed. The second-level data reduction can result in a subset of feature vectors comparable to the prototype vector, and further comparable to the query vector. An additional fourth step can include managing the hierarchical search tree by substituting a vector average for several redundant feature vectors encapsulated by nodes in the hierarchical search tree.

  11. Color reproduction and processing algorithm based on real-time mapping for endoscopic images.

    PubMed

    Khan, Tareq H; Mohammed, Shahed K; Imtiaz, Mohammad S; Wahid, Khan A

    2016-01-01

    In this paper, we present a real-time preprocessing algorithm for image enhancement for endoscopic images. A novel dictionary based color mapping algorithm is used for reproducing the color information from a theme image. The theme image is selected from a nearby anatomical location. A database of color endoscopy image for different location is prepared for this purpose. The color map is dynamic as its contents change with the change of the theme image. This method is used on low contrast grayscale white light images and raw narrow band images to highlight the vascular and mucosa structures and to colorize the images. It can also be applied to enhance the tone of color images. The statistic visual representation and universal image quality measures show that the proposed method can highlight the mucosa structure compared to other methods. The color similarity has been verified using Delta E color difference, structure similarity index, mean structure similarity index and structure and hue similarity. The color enhancement was measured using color enhancement factor that shows considerable improvements. The proposed algorithm has low and linear time complexity, which results in higher execution speed than other related works.

  12. Generating description with multi-feature fusion and saliency maps of image

    NASA Astrophysics Data System (ADS)

    Liu, Lisha; Ding, Yuxuan; Tian, Chunna; Yuan, Bo

    2018-04-01

    Generating description for an image can be regard as visual understanding. It is across artificial intelligence, machine learning, natural language processing and many other areas. In this paper, we present a model that generates description for images based on RNN (recurrent neural network) with object attention and multi-feature of images. The deep recurrent neural networks have excellent performance in machine translation, so we use it to generate natural sentence description for images. The proposed method uses single CNN (convolution neural network) that is trained on ImageNet to extract image features. But we think it can not adequately contain the content in images, it may only focus on the object area of image. So we add scene information to image feature using CNN which is trained on Places205. Experiments show that model with multi-feature extracted by two CNNs perform better than which with a single feature. In addition, we make saliency weights on images to emphasize the salient objects in images. We evaluate our model on MSCOCO based on public metrics, and the results show that our model performs better than several state-of-the-art methods.

  13. Dual tracer imaging of SPECT and PET probes in living mice using a sequential protocol

    PubMed Central

    Chapman, Sarah E; Diener, Justin M; Sasser, Todd A; Correcher, Carlos; González, Antonio J; Avermaete, Tony Van; Leevy, W Matthew

    2012-01-01

    Over the past 20 years, multimodal imaging strategies have motivated the fusion of Positron Emission Tomography (PET) or Single Photon Emission Computed Tomography (SPECT) scans with an X-ray computed tomography (CT) image to provide anatomical information, as well as a framework with which molecular and functional images may be co-registered. Recently, pre-clinical nuclear imaging technology has evolved to capture multiple SPECT or multiple PET tracers to further enhance the information content gathered within an imaging experiment. However, the use of SPECT and PET probes together, in the same animal, has remained a challenge. Here we describe a straightforward method using an integrated trimodal imaging system and a sequential dosing/acquisition protocol to achieve dual tracer imaging with 99mTc and 18F isotopes, along with anatomical CT, on an individual specimen. Dosing and imaging is completed so that minimal animal manipulations are required, full trimodal fusion is conserved, and tracer crosstalk including down-scatter of the PET tracer in SPECT mode is avoided. This technique will enhance the ability of preclinical researchers to detect multiple disease targets and perform functional, molecular, and anatomical imaging on individual specimens to increase the information content gathered within longitudinal in vivo studies. PMID:23145357

  14. Quantitative Assessment of Optical Coherence Tomography Imaging Performance with Phantom-Based Test Methods And Computational Modeling

    NASA Astrophysics Data System (ADS)

    Agrawal, Anant

    Optical coherence tomography (OCT) is a powerful medical imaging modality that uniquely produces high-resolution cross-sectional images of tissue using low energy light. Its clinical applications and technological capabilities have grown substantially since its invention about twenty years ago, but efforts have been limited to develop tools to assess performance of OCT devices with respect to the quality and content of acquired images. Such tools are important to ensure information derived from OCT signals and images is accurate and consistent, in order to support further technology development, promote standardization, and benefit public health. The research in this dissertation investigates new physical and computational models which can provide unique insights into specific performance characteristics of OCT devices. Physical models, known as phantoms, are fabricated and evaluated in the interest of establishing standardized test methods to measure several important quantities relevant to image quality. (1) Spatial resolution is measured with a nanoparticle-embedded phantom and model eye which together yield the point spread function under conditions where OCT is commonly used. (2) A multi-layered phantom is constructed to measure the contrast transfer function along the axis of light propagation, relevant for cross-sectional imaging capabilities. (3) Existing and new methods to determine device sensitivity are examined and compared, to better understand the detection limits of OCT. A novel computational model based on the finite-difference time-domain (FDTD) method, which simulates the physics of light behavior at the sub-microscopic level within complex, heterogeneous media, is developed to probe device and tissue characteristics influencing the information content of an OCT image. This model is first tested in simple geometric configurations to understand its accuracy and limitations, then a highly realistic representation of a biological cell, the retinal cone photoreceptor, is created and its resulting OCT signals studied. The phantoms and their associated test methods have successfully yielded novel types of data on the specific performance parameters of interest, which can feed standardization efforts within the OCT community. The level of signal detail provided by the computational model is unprecedented and gives significant insights into the effects of subcellular structures on OCT signals. Together, the outputs of this research effort serve as new tools in the toolkit to examine the intricate details of how and how well OCT devices produce information-rich images of biological tissue.

  15. (abstract) Topographic Signatures in Geology

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.; Evans, Diane L.

    1996-01-01

    Topographic information is required for many Earth Science investigations. For example, topography is an important element in regional and global geomorphic studies because it reflects the interplay between the climate-driven processes of erosion and the tectonic processes of uplift. A number of techniques have been developed to analyze digital topographic data, including Fourier texture analysis. A Fourier transform of the topography of an area allows the spatial frequency content of the topography to be analyzed. Band-pass filtering of the transform produces images representing the amplitude of different spatial wavelengths. These are then used in a multi-band classification to map units based on their spatial frequency content. The results using a radar image instead of digital topography showed good correspondence to a geologic map, however brightness variations in the image unrelated to topography caused errors. An additional benefit to the use of Fourier band-pass images for the classification is that the textural signatures of the units are quantative measures of the spatial characteristics of the units that may be used to map similar units in similar environments.

  16. Imaging and Analytics: The changing face of Medical Imaging

    NASA Astrophysics Data System (ADS)

    Foo, Thomas

    There have been significant technological advances in imaging capability over the past 40 years. Medical imaging capabilities have developed rapidly, along with technology development in computational processing speed and miniaturization. Moving to all-digital, the number of images that are acquired in a routine clinical examination has increased dramatically from under 50 images in the early days of CT and MRI to more than 500-1000 images today. The staggering number of images that are routinely acquired poses significant challenges for clinicians to interpret the data and to correctly identify the clinical problem. Although the time provided to render a clinical finding has not substantially changed, the amount of data available for interpretation has grown exponentially. In addition, the image quality (spatial resolution) and information content (physiologically-dependent image contrast) has also increased significantly with advances in medical imaging technology. On its current trajectory, medical imaging in the traditional sense is unsustainable. To assist in filtering and extracting the most relevant data elements from medical imaging, image analytics will have a much larger role. Automated image segmentation, generation of parametric image maps, and clinical decision support tools will be needed and developed apace to allow the clinician to manage, extract and utilize only the information that will help improve diagnostic accuracy and sensitivity. As medical imaging devices continue to improve in spatial resolution, functional and anatomical information content, image/data analytics will be more ubiquitous and integral to medical imaging capability.

  17. Early event-related brain potentials that reflect interest for content information in the media.

    PubMed

    Adachi, Shinobu; Morikawa, Koji; Nittono, Hiroshi

    2012-03-28

    This study investigated the relationship between event-related brain potentials (ERPs) to abridged content information in the media and the subsequent decisions to view the full content. Student volunteers participated in a task that simulated information selection on the basis of the content information. Screenshots of television clips and headlines of news articles on the Web were used as content information for the image condition and the headline condition, respectively. Following presentation of a stimulus containing content information, participants decided whether or not they would view the full content by pressing a select or a reject button. When the select button was pressed, participants were presented with a television clip or a news article. When the reject button was pressed, participants continued on to the next trial, without viewing further. In comparison with rejected stimuli, selected stimuli elicited a larger negative component, with a peak latency of ∼250 ms. The increase in the negative component was independent of the type of visual stimulus. These results suggest that interest toward content information is reflected in early-stage event-related brain potential responses.

  18. Information content of data from the LANDSAT 4 Thematic Mapper (TM) and multispectral scanner (MSS)

    NASA Technical Reports Server (NTRS)

    Price, J. C.

    1983-01-01

    Simultaneous data acquisition by the LANDSAT 4 thematic mapper and the multispectral scanner permits the comparison of the two types of image data with respect to engineering performance and data applications. Progress in the evaluation of information content of matching scenes in agricultural areas is briefly reported.

  19. BDVC (Bimodal Database of Violent Content): A database of violent audio and video

    NASA Astrophysics Data System (ADS)

    Rivera Martínez, Jose Luis; Mijes Cruz, Mario Humberto; Rodríguez Vázqu, Manuel Antonio; Rodríguez Espejo, Luis; Montoya Obeso, Abraham; García Vázquez, Mireya Saraí; Ramírez Acosta, Alejandro Álvaro

    2017-09-01

    Nowadays there is a trend towards the use of unimodal databases for multimedia content description, organization and retrieval applications of a single type of content like text, voice and images, instead bimodal databases allow to associate semantically two different types of content like audio-video, image-text, among others. The generation of a bimodal database of audio-video implies the creation of a connection between the multimedia content through the semantic relation that associates the actions of both types of information. This paper describes in detail the used characteristics and methodology for the creation of the bimodal database of violent content; the semantic relationship is stablished by the proposed concepts that describe the audiovisual information. The use of bimodal databases in applications related to the audiovisual content processing allows an increase in the semantic performance only and only if these applications process both type of content. This bimodal database counts with 580 audiovisual annotated segments, with a duration of 28 minutes, divided in 41 classes. Bimodal databases are a tool in the generation of applications for the semantic web.

  20. A Multi-Functional Imaging Approach to High-Content Protein Interaction Screening

    PubMed Central

    Matthews, Daniel R.; Fruhwirth, Gilbert O.; Weitsman, Gregory; Carlin, Leo M.; Ofo, Enyinnaya; Keppler, Melanie; Barber, Paul R.; Tullis, Iain D. C.; Vojnovic, Borivoj; Ng, Tony; Ameer-Beg, Simon M.

    2012-01-01

    Functional imaging can provide a level of quantification that is not possible in what might be termed traditional high-content screening. This is due to the fact that the current state-of-the-art high-content screening systems take the approach of scaling-up single cell assays, and are therefore based on essentially pictorial measures as assay indicators. Such phenotypic analyses have become extremely sophisticated, advancing screening enormously, but this approach can still be somewhat subjective. We describe the development, and validation, of a prototype high-content screening platform that combines steady-state fluorescence anisotropy imaging with fluorescence lifetime imaging (FLIM). This functional approach allows objective, quantitative screening of small molecule libraries in protein-protein interaction assays. We discuss the development of the instrumentation, the process by which information on fluorescence resonance energy transfer (FRET) can be extracted from wide-field, acceptor fluorescence anisotropy imaging and cross-checking of this modality using lifetime imaging by time-correlated single-photon counting. Imaging of cells expressing protein constructs where eGFP and mRFP1 are linked with amino-acid chains of various lengths (7, 19 and 32 amino acids) shows the two methodologies to be highly correlated. We validate our approach using a small-scale inhibitor screen of a Cdc42 FRET biosensor probe expressed in epidermoid cancer cells (A431) in a 96 microwell-plate format. We also show that acceptor fluorescence anisotropy can be used to measure variations in hetero-FRET in protein-protein interactions. We demonstrate this using a screen of inhibitors of internalization of the transmembrane receptor, CXCR4. These assays enable us to demonstrate all the capabilities of the instrument, image processing and analytical techniques that have been developed. Direct correlation between acceptor anisotropy and donor FLIM is observed for FRET assays, providing an opportunity to rapidly screen proteins, interacting on the nano-meter scale, using wide-field imaging. PMID:22506000

  1. Applications of 2D to 3D conversion for educational purposes

    NASA Astrophysics Data System (ADS)

    Koido, Yoshihisa; Morikawa, Hiroyuki; Shiraishi, Saki; Takeuchi, Soya; Maruyama, Wataru; Nakagori, Toshio; Hirakata, Masataka; Shinkai, Hirohisa; Kawai, Takashi

    2013-03-01

    There are three main approaches creating stereoscopic S3D content: stereo filming using two cameras, stereo rendering of 3D computer graphics, and 2D to S3D conversion by adding binocular information to 2D material images. Although manual "off-line" conversion can control the amount of parallax flexibly, 2D material images are converted according to monocular information in most cases, and the flexibility of 2D to S3D conversion has not been exploited. If the depth is expressed flexibly, comprehensions and interests from converted S3D contents are anticipated to be differed from those from 2D. Therefore, in this study we created new S3D content for education by applying 2D to S3D conversion. For surgical education, we created S3D surgical operation content under a surgeon using a partial 2D to S3D conversion technique which was expected to concentrate viewers' attention on significant areas. And for art education, we converted Ukiyoe prints; traditional Japanese artworks made from a woodcut. The conversion of this content, which has little depth information, into S3D, is expected to produce different cognitive processes from those evoked by 2D content, e.g., the excitation of interest, and the understanding of spatial information. In addition, the effects of the representation of these contents were investigated.

  2. DNA content alterations in Tetrahymena pyriformis macronucleus after exposure to food preservatives sodium nitrate and sodium benzoate.

    PubMed

    Loutsidou, Ariadni C; Hatzi, Vasiliki I; Chasapis, C T; Terzoudi, Georgia I; Spiliopoulou, Chara A; Stefanidou, Maria E

    2012-12-01

    The toxicity, in terms of changes in the DNA content, of two food preservatives, sodium nitrate and sodium benzoate was studied on the protozoan Tetrahymena pyriformis using DNA image analysis technology. For this purpose, selected doses of both food additives were administered for 2 h to protozoa cultures and DNA image analysis of T. pyriformis nuclei was performed. The analysis was based on the measurement of the Mean Optical Density which represents the cellular DNA content. The results have shown that after exposure of the protozoan cultures to doses equivalent to ADI, a statistically significant increase in the macronuclear DNA content compared to the unexposed control samples was observed. The observed increase in the macronuclear DNA content is indicative of the stimulation of the mitotic process and the observed increase in MOD, accompanied by a stimulation of the protozoan proliferation activity is in consistence with this assumption. Since alterations at the DNA level such as DNA content and uncontrolled mitogenic stimulation have been linked with chemical carcinogenesis, the results of the present study add information on the toxicogenomic profile of the selected chemicals and may potentially lead to reconsideration of the excessive use of nitrates aiming to protect public health.

  3. Evaluating carotenoid changes in tomatoes during postharvest ripening using Raman chemical imaging

    NASA Astrophysics Data System (ADS)

    Qin, Jianwei; Chao, Kuanglin; Kim, Moon S.

    2011-06-01

    Lycopene is a major carotenoid in tomatoes and its content varies considerably during postharvest ripening. Hence evaluating lycopene changes can be used to monitor the ripening of tomatoes. Raman chemical imaging technique is promising for mapping constituents of interest in complex food matrices. In this study, a benchtop point-scanning Raman chemical imaging system was developed to evaluate lycopene content in tomatoes at different maturity stages. The system consists of a 785 nm laser, a fiber optic probe, a dispersive imaging spectrometer, a spectroscopic CCD camera, and a two-axis positioning table. Tomato samples at different ripeness stages (i.e., green, breaker, turning, pink, light red, and red) were selected and cut before imaging. Hyperspectral Raman images were acquired from cross sections of the fruits in the wavenumber range of 200 to 2500 cm-1 with a spatial resolution of 1 mm. The Raman spectrum of pure lycopene was measured as reference for spectral matching. A polynomial curve-fitting method was used to correct for the underlying fluorescence background in the Raman spectra of the tomatoes. A hyperspectral image classification method was developed based on spectral information divergence to identify lycopene in the tomatoes. Raman chemical images were created to visualize quantity and spatial distribution of the lycopene at different ripeness stages. The lycopene patterns revealed the mechanism of lycopene generation during the postharvest development of the tomatoes. The method and findings of this study form a basis for the future development of a Raman-based nondestructive approach for monitoring internal maturity of the tomatoes.

  4. Determining similarity in histological images using graph-theoretic description and matching methods for content-based image retrieval in medical diagnostics.

    PubMed

    Sharma, Harshita; Alekseychuk, Alexander; Leskovsky, Peter; Hellwich, Olaf; Anand, R S; Zerbe, Norman; Hufnagl, Peter

    2012-10-04

    Computer-based analysis of digitalized histological images has been gaining increasing attention, due to their extensive use in research and routine practice. The article aims to contribute towards the description and retrieval of histological images by employing a structural method using graphs. Due to their expressive ability, graphs are considered as a powerful and versatile representation formalism and have obtained a growing consideration especially by the image processing and computer vision community. The article describes a novel method for determining similarity between histological images through graph-theoretic description and matching, for the purpose of content-based retrieval. A higher order (region-based) graph-based representation of breast biopsy images has been attained and a tree-search based inexact graph matching technique has been employed that facilitates the automatic retrieval of images structurally similar to a given image from large databases. The results obtained and evaluation performed demonstrate the effectiveness and superiority of graph-based image retrieval over a common histogram-based technique. The employed graph matching complexity has been reduced compared to the state-of-the-art optimal inexact matching methods by applying a pre-requisite criterion for matching of nodes and a sophisticated design of the estimation function, especially the prognosis function. The proposed method is suitable for the retrieval of similar histological images, as suggested by the experimental and evaluation results obtained in the study. It is intended for the use in Content Based Image Retrieval (CBIR)-requiring applications in the areas of medical diagnostics and research, and can also be generalized for retrieval of different types of complex images. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1224798882787923.

  5. Determining similarity in histological images using graph-theoretic description and matching methods for content-based image retrieval in medical diagnostics

    PubMed Central

    2012-01-01

    Background Computer-based analysis of digitalized histological images has been gaining increasing attention, due to their extensive use in research and routine practice. The article aims to contribute towards the description and retrieval of histological images by employing a structural method using graphs. Due to their expressive ability, graphs are considered as a powerful and versatile representation formalism and have obtained a growing consideration especially by the image processing and computer vision community. Methods The article describes a novel method for determining similarity between histological images through graph-theoretic description and matching, for the purpose of content-based retrieval. A higher order (region-based) graph-based representation of breast biopsy images has been attained and a tree-search based inexact graph matching technique has been employed that facilitates the automatic retrieval of images structurally similar to a given image from large databases. Results The results obtained and evaluation performed demonstrate the effectiveness and superiority of graph-based image retrieval over a common histogram-based technique. The employed graph matching complexity has been reduced compared to the state-of-the-art optimal inexact matching methods by applying a pre-requisite criterion for matching of nodes and a sophisticated design of the estimation function, especially the prognosis function. Conclusion The proposed method is suitable for the retrieval of similar histological images, as suggested by the experimental and evaluation results obtained in the study. It is intended for the use in Content Based Image Retrieval (CBIR)-requiring applications in the areas of medical diagnostics and research, and can also be generalized for retrieval of different types of complex images. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1224798882787923. PMID:23035717

  6. Fruit-related terms and images on food packages and advertisements affect children's perceptions of foods' fruit content.

    PubMed

    Heller, Rebecca; Martin-Biggers, Jennifer; Berhaupt-Glickstein, Amanda; Quick, Virginia; Byrd-Bredbenner, Carol

    2015-10-01

    To determine whether food label information and advertisements for foods containing no fruit cause children to have a false impression of the foods' fruit content. In the food label condition, a trained researcher showed each child sixteen different food label photographs depicting front-of-food label packages that varied with regard to fruit content (i.e. real fruit v. sham fruit) and label elements. In the food advertisement condition, children viewed sixteen, 30 s television food advertisements with similar fruit content and label elements as in the food label condition. After viewing each food label and advertisement, children responded to the question 'Did they use fruit to make this?' with responses of yes, no or don't know. Schools, day-care centres, after-school programmes and other community groups. Children aged 4-7 years. In the food label condition, χ 2 analysis of within fruit content variation differences indicated children (n 58; mean age 4·2 years) were significantly more accurate in identifying real fruit foods as the label's informational load increased and were least accurate when neither a fruit name nor an image was on the label. Children (n 49; mean age 5·4 years) in the food advertisement condition were more likely to identify real fruit foods when advertisements had fruit images compared with when no image was included, while fruit images in advertisements for sham fruit foods significantly reduced accuracy of responses. Findings suggest that labels and advertisements for sham fruit foods mislead children with regard to the food's real fruit content.

  7. Shape priors for segmentation of the cervix region within uterine cervix images

    NASA Astrophysics Data System (ADS)

    Lotenberg, Shelly; Gordon, Shiri; Greenspan, Hayit

    2008-03-01

    The work focuses on a unique medical repository of digital Uterine Cervix images ("Cervigrams") collected by the National Cancer Institute (NCI), National Institute of Health, in longitudinal multi-year studies. NCI together with the National Library of Medicine is developing a unique web-based database of the digitized cervix images to study the evolution of lesions related to cervical cancer. Tools are needed for the automated analysis of the cervigram content to support the cancer research. In recent works, a multi-stage automated system for segmenting and labeling regions of medical and anatomical interest within the cervigrams was developed. The current paper concentrates on incorporating prior-shape information in the cervix region segmentation task. In accordance with the fact that human experts mark the cervix region as circular or elliptical, two shape models (and corresponding methods) are suggested. The shape models are embedded within an active contour framework that relies on image features. Experiments indicate that incorporation of the prior shape information augments previous results.

  8. An integrated one-step system to extract, analyze and annotate all relevant information from image-based cell screening of chemical libraries.

    PubMed

    Rabal, Obdulia; Link, Wolfgang; Serelde, Beatriz G; Bischoff, James R; Oyarzabal, Julen

    2010-04-01

    Here we report the development and validation of a complete solution to manage and analyze the data produced by image-based phenotypic screening campaigns of small-molecule libraries. In one step initial crude images are analyzed for multiple cytological features, statistical analysis is performed and molecules that produce the desired phenotypic profile are identified. A naïve Bayes classifier, integrating chemical and phenotypic spaces, is built and utilized during the process to assess those images initially classified as "fuzzy"-an automated iterative feedback tuning. Simultaneously, all this information is directly annotated in a relational database containing the chemical data. This novel fully automated method was validated by conducting a re-analysis of results from a high-content screening campaign involving 33 992 molecules used to identify inhibitors of the PI3K/Akt signaling pathway. Ninety-two percent of confirmed hits identified by the conventional multistep analysis method were identified using this integrated one-step system as well as 40 new hits, 14.9% of the total, originally false negatives. Ninety-six percent of true negatives were properly recognized too. A web-based access to the database, with customizable data retrieval and visualization tools, facilitates the posterior analysis of annotated cytological features which allows identification of additional phenotypic profiles; thus, further analysis of original crude images is not required.

  9. Invariant domain watermarking using heaviside function of order alpha and fractional Gaussian field.

    PubMed

    Abbasi, Almas; Woo, Chaw Seng; Ibrahim, Rabha Waell; Islam, Saeed

    2015-01-01

    Digital image watermarking is an important technique for the authentication of multimedia content and copyright protection. Conventional digital image watermarking techniques are often vulnerable to geometric distortions such as Rotation, Scaling, and Translation (RST). These distortions desynchronize the watermark information embedded in an image and thus disable watermark detection. To solve this problem, we propose an RST invariant domain watermarking technique based on fractional calculus. We have constructed a domain using Heaviside function of order alpha (HFOA). The HFOA models the signal as a polynomial for watermark embedding. The watermark is embedded in all the coefficients of the image. We have also constructed a fractional variance formula using fractional Gaussian field. A cross correlation method based on the fractional Gaussian field is used for watermark detection. Furthermore the proposed method enables blind watermark detection where the original image is not required during the watermark detection thereby making it more practical than non-blind watermarking techniques. Experimental results confirmed that the proposed technique has a high level of robustness.

  10. Invariant Domain Watermarking Using Heaviside Function of Order Alpha and Fractional Gaussian Field

    PubMed Central

    Abbasi, Almas; Woo, Chaw Seng; Ibrahim, Rabha Waell; Islam, Saeed

    2015-01-01

    Digital image watermarking is an important technique for the authentication of multimedia content and copyright protection. Conventional digital image watermarking techniques are often vulnerable to geometric distortions such as Rotation, Scaling, and Translation (RST). These distortions desynchronize the watermark information embedded in an image and thus disable watermark detection. To solve this problem, we propose an RST invariant domain watermarking technique based on fractional calculus. We have constructed a domain using Heaviside function of order alpha (HFOA). The HFOA models the signal as a polynomial for watermark embedding. The watermark is embedded in all the coefficients of the image. We have also constructed a fractional variance formula using fractional Gaussian field. A cross correlation method based on the fractional Gaussian field is used for watermark detection. Furthermore the proposed method enables blind watermark detection where the original image is not required during the watermark detection thereby making it more practical than non-blind watermarking techniques. Experimental results confirmed that the proposed technique has a high level of robustness. PMID:25884854

  11. Automatic image enhancement based on multi-scale image decomposition

    NASA Astrophysics Data System (ADS)

    Feng, Lu; Wu, Zhuangzhi; Pei, Luo; Long, Xiong

    2014-01-01

    In image processing and computational photography, automatic image enhancement is one of the long-range objectives. Recently the automatic image enhancement methods not only take account of the globe semantics, like correct color hue and brightness imbalances, but also the local content of the image, such as human face and sky of landscape. In this paper we describe a new scheme for automatic image enhancement that considers both global semantics and local content of image. Our automatic image enhancement method employs the multi-scale edge-aware image decomposition approach to detect the underexposure regions and enhance the detail of the salient content. The experiment results demonstrate the effectiveness of our approach compared to existing automatic enhancement methods.

  12. Advertising, patient decision making, and self-referral for computed tomographic and magnetic resonance imaging.

    PubMed

    Illes, Judy; Kann, Dylan; Karetsky, Kim; Letourneau, Phillip; Raffin, Thomas A; Schraedley-Desmond, Pamela; Koenig, Barbara A; Atlas, Scott W

    Self-referred imaging is one of the latest health care services to be marketed directly to consumers. Most aspects of these services are unregulated, and little is known about the messages in advertising used to attract potential consumers. We conducted a detailed analysis of print advertisements and informational brochures for self-referred imaging with respect to themes, content, accuracy, and emotional valence. Forty print advertisements from US newspapers around the country and 20 informational brochures were analyzed by 2 independent raters according to 7 major themes: health care technology; emotion, empowerment, and assurance; incentives; limited supporting evidence; popular appeal; statistics; and images. The Fisher exact test was used to identify significant differences in information content. Both the advertisements and the brochures emphasized health care and technology information and provided assurances of good health and incentives to self-refer. These materials also encouraged consumers to seek further information from company resources; virtually none referred to noncomplying sources of information or to the risks of having a scan. Images of people commonly portrayed European Americans. We found statistical differences between newspaper advertisements and mailed brochures for references to "prevalence of disease" (P<.001), "death" (P<.003), and "radiation" (P<.001). Statements lacking clear scientific evidence were identified in 38% of the advertisements (n = 15) and 25% of the brochures (n = 5). Direct-to-consumer marketing of self-referred imaging services, in both print advertisements and informational brochures, fails to provide prospective consumers with comprehensive balanced information vital to informed autonomous decision making. Professional guidelines and oversight for advertising and promotion of these services are needed.

  13. Approach and Evaluation of a Mobile Video-Based and Location-Based Augmented Reality Platform for Information Brokerage

    NASA Astrophysics Data System (ADS)

    Dastageeri, H.; Storz, M.; Koukofikis, A.; Knauth, S.; Coors, V.

    2016-09-01

    Providing mobile location-based information for pedestrians faces many challenges. On one hand the accuracy of localisation indoors and outdoors is restricted due to technical limitations of GPS and Beacons. Then again only a small display is available to display information as well as to develop a user interface. Plus, the software solution has to consider the hardware characteristics of mobile devices during the implementation process for aiming a performance with minimum latency. This paper describes our approach by including a combination of image tracking and GPS or Beacons to ensure orientation and precision of localisation. To communicate the information on Points of Interest (POIs), we decided to choose Augmented Reality (AR). For this concept of operations, we used besides the display also the acceleration and positions sensors as a user interface. This paper especially goes into detail on the optimization of the image tracking algorithms, the development of the video-based AR player for the Android platform and the evaluation of videos as an AR element in consideration of providing a good user experience. For setting up content for the POIs or even generate a tour we used and extended the Open Geospatial Consortium (OGC) standard Augmented Reality Markup Language (ARML).

  14. Depth-aware image seam carving.

    PubMed

    Shen, Jianbing; Wang, Dapeng; Li, Xuelong

    2013-10-01

    Image seam carving algorithm should preserve important and salient objects as much as possible when changing the image size, while not removing the secondary objects in the scene. However, it is still difficult to determine the important and salient objects that avoid the distortion of these objects after resizing the input image. In this paper, we develop a novel depth-aware single image seam carving approach by taking advantage of the modern depth cameras such as the Kinect sensor, which captures the RGB color image and its corresponding depth map simultaneously. By considering both the depth information and the just noticeable difference (JND) model, we develop an efficient JND-based significant computation approach using the multiscale graph cut based energy optimization. Our method achieves the better seam carving performance by cutting the near objects less seams while removing distant objects more seams. To the best of our knowledge, our algorithm is the first work to use the true depth map captured by Kinect depth camera for single image seam carving. The experimental results demonstrate that the proposed approach produces better seam carving results than previous content-aware seam carving methods.

  15. VidCat: an image and video analysis service for personal media management

    NASA Astrophysics Data System (ADS)

    Begeja, Lee; Zavesky, Eric; Liu, Zhu; Gibbon, David; Gopalan, Raghuraman; Shahraray, Behzad

    2013-03-01

    Cloud-based storage and consumption of personal photos and videos provides increased accessibility, functionality, and satisfaction for mobile users. One cloud service frontier that is recently growing is that of personal media management. This work presents a system called VidCat that assists users in the tagging, organization, and retrieval of their personal media by faces and visual content similarity, time, and date information. Evaluations for the effectiveness of the copy detection and face recognition algorithms on standard datasets are also discussed. Finally, the system includes a set of application programming interfaces (API's) allowing content to be uploaded, analyzed, and retrieved on any client with simple HTTP-based methods as demonstrated with a prototype developed on the iOS and Android mobile platforms.

  16. A content analysis of thinspiration images and text posts on Tumblr.

    PubMed

    Wick, Madeline R; Harriger, Jennifer A

    2018-03-01

    Thinspiration is content advocating extreme weight loss by means of images and/or text posts. While past content analyses have examined thinspiration content on social media and other websites, no research to date has examined thinspiration content on Tumblr. Over the course of a week, 222 images and text posts were collected after entering the keyword 'thinspiration' into the Tumblr search bar. These images were then rated on a variety of characteristics. The majority of thinspiration images included a thin woman adhering to culturally based beauty, often posing in a manner that accentuated her thinness or sexuality. The most common themes for thinspiration text posts included dieting/restraint, weight loss, food guilt, and body guilt. The thinspiration content on Tumblr appears to be consistent with that on other mediums. Future research should utilize experimental methods to examine the potential effects of consuming thinspiration content on Tumblr. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A comparative study of multi-sensor data fusion methods for highly accurate assessment of manufactured parts

    NASA Astrophysics Data System (ADS)

    Hannachi, Ammar; Kohler, Sophie; Lallement, Alex; Hirsch, Ernest

    2015-04-01

    3D modeling of scene contents takes an increasing importance for many computer vision based applications. In particular, industrial applications of computer vision require efficient tools for the computation of this 3D information. Routinely, stereo-vision is a powerful technique to obtain the 3D outline of imaged objects from the corresponding 2D images. As a consequence, this approach provides only a poor and partial description of the scene contents. On another hand, for structured light based reconstruction techniques, 3D surfaces of imaged objects can often be computed with high accuracy. However, the resulting active range data in this case lacks to provide data enabling to characterize the object edges. Thus, in order to benefit from the positive points of various acquisition techniques, we introduce in this paper promising approaches, enabling to compute complete 3D reconstruction based on the cooperation of two complementary acquisition and processing techniques, in our case stereoscopic and structured light based methods, providing two 3D data sets describing respectively the outlines and surfaces of the imaged objects. We present, accordingly, the principles of three fusion techniques and their comparison based on evaluation criterions related to the nature of the workpiece and also the type of the tackled application. The proposed fusion methods are relying on geometric characteristics of the workpiece, which favour the quality of the registration. Further, the results obtained demonstrate that the developed approaches are well adapted for 3D modeling of manufactured parts including free-form surfaces and, consequently quality control applications using these 3D reconstructions.

  18. TRENCADIS--a WSRF grid MiddleWare for managing DICOM structured reporting objects.

    PubMed

    Blanquer, Ignacio; Hernandez, Vicente; Segrelles, Damià

    2006-01-01

    The adoption of the digital processing of medical data, especially on radiology, has leaded to the availability of millions of records (images and reports). However, this information is mainly used at patient level, being the extraction of information, organised according to administrative criteria, which make the extraction of knowledge difficult. Moreover, legal constraints make the direct integration of information systems complex or even impossible. On the other side, the widespread of the DICOM format has leaded to the inclusion of other information different from just radiological images. The possibility of coding radiology reports in a structured form, adding semantic information about the data contained in the DICOM objects, eases the process of structuring images according to content. DICOM Structured Reporting (DICOM-SR) is a specification of tags and sections to code and integrate radiology reports, with seamless references to findings and regions of interests of the associated images, movies, waveforms, signals, etc. The work presented in this paper aims at developing of a framework to efficiently and securely share medical images and radiology reports, as well as to provide high throughput processing services. This system is based on a previously developed architecture in the framework of the TRENCADIS project, and uses other components such as the security system and the Grid processing service developed in previous activities. The work presented here introduces a semantic structuring and an ontology framework, to organise medical images considering standard terminology and disease coding formats (SNOMED, ICD9, LOINC..).

  19. Multi-Connection Pattern Analysis: Decoding the representational content of neural communication.

    PubMed

    Li, Yuanning; Richardson, Robert Mark; Ghuman, Avniel Singh

    2017-11-15

    The lack of multivariate methods for decoding the representational content of interregional neural communication has left it difficult to know what information is represented in distributed brain circuit interactions. Here we present Multi-Connection Pattern Analysis (MCPA), which works by learning mappings between the activity patterns of the populations as a factor of the information being processed. These maps are used to predict the activity from one neural population based on the activity from the other population. Successful MCPA-based decoding indicates the involvement of distributed computational processing and provides a framework for probing the representational structure of the interaction. Simulations demonstrate the efficacy of MCPA in realistic circumstances. In addition, we demonstrate that MCPA can be applied to different signal modalities to evaluate a variety of hypothesis associated with information coding in neural communications. We apply MCPA to fMRI and human intracranial electrophysiological data to provide a proof-of-concept of the utility of this method for decoding individual natural images and faces in functional connectivity data. We further use a MCPA-based representational similarity analysis to illustrate how MCPA may be used to test computational models of information transfer among regions of the visual processing stream. Thus, MCPA can be used to assess the information represented in the coupled activity of interacting neural circuits and probe the underlying principles of information transformation between regions. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Practical life log video indexing based on content and context

    NASA Astrophysics Data System (ADS)

    Tancharoen, Datchakorn; Yamasaki, Toshihiko; Aizawa, Kiyoharu

    2006-01-01

    Today, multimedia information has gained an important role in daily life and people can use imaging devices to capture their visual experiences. In this paper, we present our personal Life Log system to record personal experiences in form of wearable video and environmental data; in addition, an efficient retrieval system is demonstrated to recall the desirable media. We summarize the practical video indexing techniques based on Life Log content and context to detect talking scenes by using audio/visual cues and semantic key frames from GPS data. Voice annotation is also demonstrated as a practical indexing method. Moreover, we apply body media sensors to record continuous life style and use body media data to index the semantic key frames. In the experiments, we demonstrated various video indexing results which provided their semantic contents and showed Life Log visualizations to examine personal life effectively.

  1. Volume estimation using food specific shape templates in mobile image-based dietary assessment

    NASA Astrophysics Data System (ADS)

    Chae, Junghoon; Woo, Insoo; Kim, SungYe; Maciejewski, Ross; Zhu, Fengqing; Delp, Edward J.; Boushey, Carol J.; Ebert, David S.

    2011-03-01

    As obesity concerns mount, dietary assessment methods for prevention and intervention are being developed. These methods include recording, cataloging and analyzing daily dietary records to monitor energy and nutrient intakes. Given the ubiquity of mobile devices with built-in cameras, one possible means of improving dietary assessment is through photographing foods and inputting these images into a system that can determine the nutrient content of foods in the images. One of the critical issues in such the image-based dietary assessment tool is the accurate and consistent estimation of food portion sizes. The objective of our study is to automatically estimate food volumes through the use of food specific shape templates. In our system, users capture food images using a mobile phone camera. Based on information (i.e., food name and code) determined through food segmentation and classification of the food images, our system choose a particular food template shape corresponding to each segmented food. Finally, our system reconstructs the three-dimensional properties of the food shape from a single image by extracting feature points in order to size the food shape template. By employing this template-based approach, our system automatically estimates food portion size, providing a consistent method for estimation food volume.

  2. A randomized trial of computer-based communications using imagery and text information to alter representations of heart disease risk and motivate protective behaviour.

    PubMed

    Lee, Tarryn J; Cameron, Linda D; Wünsche, Burkhard; Stevens, Carey

    2011-02-01

    Advances in web-based animation technologies provide new opportunities to develop graphic health communications for dissemination throughout communities. We developed imagery and text contents of brief, computer-based programmes about heart disease risk, with both imagery and text contents guided by the common-sense model (CSM) of self-regulation. The imagery depicts a three-dimensional, beating heart tailored to user-specific information. A 2 × 2 × 4 factorial design was used to manipulate concrete imagery (imagery vs. no imagery) and conceptual information (text vs. no text) about heart disease risk in prevention-oriented programmes and assess changes in representations and behavioural motivations from baseline to 2 days, 2 weeks, and 4 weeks post-intervention. Sedentary young adults (N= 80) were randomized to view one of four programmes: imagery plus text, imagery only, text only, or control. Participants completed measures of risk representations, worry, and physical activity and healthy diet intentions and behaviours at baseline, 2 days post-intervention (except behaviours), and 2 weeks (intentions and behaviours only) and 4 weeks later. The imagery contents increased representational beliefs and mental imagery relating to heart disease, worry, and intentions at post-intervention. Increases in sense of coherence (understanding of heart disease) and worry were sustained after 1 month. The imagery contents also increased healthy diet efforts after 2 weeks. The text contents increased beliefs about causal factors, mental images of clogged arteries, and worry at post-intervention, and increased physical activity 2 weeks later and sense of coherence 1 month later. The CSM-based programmes induced short-term changes in risk representations and behaviour motivation. The combination of CSM-based text and imagery appears to be most effective in instilling risk representations that motivate protective behaviour. ©2010 The British Psychological Society.

  3. Compressibility-aware media retargeting with structure preserving.

    PubMed

    Wang, Shu-Fan; Lai, Shang-Hong

    2011-03-01

    A number of algorithms have been proposed for intelligent image/video retargeting with image content retained as much as possible. However, they usually suffer from some artifacts in the results, such as ridge or structure twist. In this paper, we present a structure-preserving media retargeting technique that preserves the content and image structure as best as possible. Different from the previous pixel or grid based methods, we estimate the image content saliency from the structure of the content. A block structure energy is introduced with a top-down strategy to constrain the image structure inside to deform uniformly in either x or y direction. However, the flexibilities for retargeting are quite different for different images. To cope with this problem, we propose a compressibility assessment scheme for media retargeting by combining the entropies of image gradient magnitude and orientation distributions. Thus, the resized media is produced to preserve the image content and structure as best as possible. Our experiments demonstrate that the proposed method provides resized images/videos with better preservation of content and structure than those by the previous methods.

  4. Semantic transcoding of video based on regions of interest

    NASA Astrophysics Data System (ADS)

    Lim, Jeongyeon; Kim, Munchurl; Kim, Jong-Nam; Kim, Kyeongsoo

    2003-06-01

    Traditional transcoding on multimedia has been performed from the perspectives of user terminal capabilities such as display sizes and decoding processing power, and network resources such as available network bandwidth and quality of services (QoS) etc. The adaptation (or transcoding) of multimedia contents to given such constraints has been made by frame dropping and resizing of audiovisual, as well as reduction of SNR (Signal-to-Noise Ratio) values by saving the resulting bitrates. Not only such traditional transcoding is performed from the perspective of user"s environment, but also we incorporate a method of semantic transcoding of audiovisual based on region of interest (ROI) from user"s perspective. Users can designate their interested parts in images or video so that the corresponding video contents can be adapted focused on the user"s ROI. We incorporate the MPEG-21 DIA (Digital Item Adaptation) framework in which such semantic information of the user"s ROI is represented and delivered to the content provider side as XDI (context digital item). Representation schema of our semantic information of the user"s ROI has been adopted in MPEG-21 DIA Adaptation Model. In this paper, we present the usage of semantic information of user"s ROI for transcoding and show our system implementation with experimental results.

  5. Improving Science Communication with Responsive Web Design

    NASA Astrophysics Data System (ADS)

    Hilverda, M.

    2013-12-01

    Effective science communication requires clarity in both content and presentation. Content is increasingly being viewed via the Web across a broad range of devices, which can vary in screen size, resolution, and pixel density. Readers access the same content from desktop computers, tablets, smartphones, and wearable computing devices. Creating separate presentation formats optimized for each device is inefficient and unrealistic as new devices continually enter the marketplace. Responsive web design is an approach that puts content first within a presentation design that responds automatically to its environment. This allows for one platform to be maintained that can be used effectively for every screen. The layout adapts to screens of all sizes ensuring easy viewing of content for readers regardless of their device. Responsive design is accomplished primarily by the use of media queries within style sheets, which allows for changes to layout properties to be defined based on media types (i.e. screen, print) and resolution. Images and other types of multimedia can also be defined to scale automatically to fit different screen dimensions, although some media types require additional effort for proper implementation. Hardware changes, such as high pixel density screens, also present new challenges for effective presentation of content. High pixel density screens contain a greater number of pixels within a screen area increasing the pixels per inch (PPI) compared to standard screens. The result is increased clarity for text and vector media types, but often decreased clarity for standard resolution raster images. Media queries and other custom solutions can assist by specifying higher resolution images for high pixel density screens. Unfortunately, increasing image resolution results in significantly more data being transferred to the device. Web traffic on mobile devices such as smartphones and tablets is on a steady growth trajectory and many mobile devices around the world use low-bandwidth connections. Communicating science effectively includes efficient delivery of the information to the reader. To meet this criteria, responsive designs should also incorporate "mobile first" elements such as serving ideal image sizes (a low resolution cell phone does not need to receive a large desktop image) and a focus on fast, readable content delivery. The technical implementation of responsive web design is constantly changing as new web standards and approaches become available. However, fundamental design principles such as grid layouts, clear typography, and proper use of white space should be an important part of content delivery within any responsive design. This presentation will discuss current responsive design approaches for improving scientific communication across multiple devices, operating systems, and bandwidth capacities. The presentation will also include example responsive designs for scientific papers and websites. Implementing a responsive design approach with a focus on content and fundamental design principles is an important step to ensuring scientific information remains clear and accessible as screens and devices continue to evolve.

  6. A Markov chain model for image ranking system in social networks

    NASA Astrophysics Data System (ADS)

    Zin, Thi Thi; Tin, Pyke; Toriu, Takashi; Hama, Hiromitsu

    2014-03-01

    In today world, different kinds of networks such as social, technological, business and etc. exist. All of the networks are similar in terms of distributions, continuously growing and expanding in large scale. Among them, many social networks such as Facebook, Twitter, Flickr and many others provides a powerful abstraction of the structure and dynamics of diverse kinds of inter personal connection and interaction. Generally, the social network contents are created and consumed by the influences of all different social navigation paths that lead to the contents. Therefore, identifying important and user relevant refined structures such as visual information or communities become major factors in modern decision making world. Moreover, the traditional method of information ranking systems cannot be successful due to their lack of taking into account the properties of navigation paths driven by social connections. In this paper, we propose a novel image ranking system in social networks by using the social data relational graphs from social media platform jointly with visual data to improve the relevance between returned images and user intentions (i.e., social relevance). Specifically, we propose a Markov chain based Social-Visual Ranking algorithm by taking social relevance into account. By using some extensive experiments, we demonstrated the significant and effectiveness of the proposed social-visual ranking method.

  7. Investigation of two methods to quantify noise in digital images based on the perception of the human eye

    NASA Astrophysics Data System (ADS)

    Kleinmann, Johanna; Wueller, Dietmar

    2007-01-01

    Since the signal to noise measuring method as standardized in the normative part of ISO 15739:2002(E)1 does not quantify noise in a way that matches the perception of the human eye, two alternative methods have been investigated which may be appropriate to quantify the noise perception in a physiological manner: - the model of visual noise measurement proposed by Hung et al2 (as described in the informative annex of ISO 15739:20021) which tries to simulate the process of human vision by using the opponent space and contrast sensitivity functions and uses the CIEL*u*v*1976 colour space for the determination of a so called visual noise value. - The S-CIELab model and CIEDE2000 colour difference proposed by Fairchild et al 3 which simulates human vision approximately the same way as Hung et al2 but uses an image comparison afterwards based on CIEDE2000. With a psychophysical experiment based on just noticeable difference (JND), threshold images could be defined, with which the two approaches mentioned above were tested. The assumption is that if the method is valid, the different threshold images should get the same 'noise value'. The visual noise measurement model results in similar visual noise values for all the threshold images. The method is reliable to quantify at least the JND for noise in uniform areas of digital images. While the visual noise measurement model can only evaluate uniform colour patches in images, the S-CIELab model can be used on images with spatial content as well. The S-CIELab model also results in similar colour difference values for the set of threshold images, but with some limitations: for images which contain spatial structures besides the noise, the colour difference varies depending on the contrast of the spatial content.

  8. Image Recommendation Algorithm Using Feature-Based Collaborative Filtering

    NASA Astrophysics Data System (ADS)

    Kim, Deok-Hwan

    As the multimedia contents market continues its rapid expansion, the amount of image contents used in mobile phone services, digital libraries, and catalog service is increasing remarkably. In spite of this rapid growth, users experience high levels of frustration when searching for the desired image. Even though new images are profitable to the service providers, traditional collaborative filtering methods cannot recommend them. To solve this problem, in this paper, we propose feature-based collaborative filtering (FBCF) method to reflect the user's most recent preference by representing his purchase sequence in the visual feature space. The proposed approach represents the images that have been purchased in the past as the feature clusters in the multi-dimensional feature space and then selects neighbors by using an inter-cluster distance function between their feature clusters. Various experiments using real image data demonstrate that the proposed approach provides a higher quality recommendation and better performance than do typical collaborative filtering and content-based filtering techniques.

  9. Image and Issue Political Information: Message Content or Interpretation?

    ERIC Educational Resources Information Center

    Johnston, Deirdre D.

    1989-01-01

    Explores the existence of a cognitive bias that affects an individual's processing of political advertisements. Finds that whether voters see messages as issue or image material depends on their predisposition. (RS)

  10. Urban area thermal monitoring: Liepaja case study using satellite and aerial thermal data

    NASA Astrophysics Data System (ADS)

    Gulbe, Linda; Caune, Vairis; Korats, Gundars

    2017-12-01

    The aim of this study is to explore large (60 m/pixel) and small scale (individual building level) temperature distribution patterns from thermal remote sensing data and to conclude what kind of information could be extracted from thermal remote sensing on regular basis. Landsat program provides frequent large scale thermal images useful for analysis of city temperature patterns. During the study correlation between temperature patterns and vegetation content based on NDVI and building coverage based on OpenStreetMap data was studied. Landsat based temperature patterns were independent from the season, negatively correlated with vegetation content and positively correlated with building coverage. Small scale analysis included spatial and raster descriptor analysis for polygons corresponding to roofs of individual buildings for evaluating insulation of roofs. Remote sensing and spatial descriptors are poorly related to heat consumption data, however, thermal aerial data median and entropy can help to identify poorly insulated roofs. Automated quantitative roof analysis has high potential for acquiring city wide information about roof insulation, but quality is limited by reference data quality and information on building types, and roof materials would be crucial for further studies.

  11. Evaluation of diffusion kurtosis imaging in ex vivo hypomyelinated mouse brains.

    PubMed

    Kelm, Nathaniel D; West, Kathryn L; Carson, Robert P; Gochberg, Daniel F; Ess, Kevin C; Does, Mark D

    2016-01-01

    Diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), and DKI-derived white matter tract integrity metrics (WMTI) were experimentally evaluated ex vivo through comparisons to histological measurements and established magnetic resonance imaging (MRI) measures of myelin in two knockout mouse models with varying degrees of hypomyelination. DKI metrics of mean and radial kurtosis were found to be better indicators of myelin content than conventional DTI metrics. The biophysical WMTI model based on the DKI framework reported on axon water fraction with good accuracy in cases with near normal axon density, but did not provide additional specificity to myelination. Overall, DKI provided additional information regarding white matter microstructure compared with DTI, making it an attractive method for future assessments of white matter development and pathology. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Image-plane processing of visual information

    NASA Technical Reports Server (NTRS)

    Huck, F. O.; Fales, C. L.; Park, S. K.; Samms, R. W.

    1984-01-01

    Shannon's theory of information is used to optimize the optical design of sensor-array imaging systems which use neighborhood image-plane signal processing for enhancing edges and compressing dynamic range during image formation. The resultant edge-enhancement, or band-pass-filter, response is found to be very similar to that of human vision. Comparisons of traits in human vision with results from information theory suggest that: (1) Image-plane processing, like preprocessing in human vision, can improve visual information acquisition for pattern recognition when resolving power, sensitivity, and dynamic range are constrained. Improvements include reduced sensitivity to changes in lighter levels, reduced signal dynamic range, reduced data transmission and processing, and reduced aliasing and photosensor noise degradation. (2) Information content can be an appropriate figure of merit for optimizing the optical design of imaging systems when visual information is acquired for pattern recognition. The design trade-offs involve spatial response, sensitivity, and sampling interval.

  13. Content-independent embedding scheme for multi-modal medical image watermarking.

    PubMed

    Nyeem, Hussain; Boles, Wageeh; Boyd, Colin

    2015-02-04

    As the increasing adoption of information technology continues to offer better distant medical services, the distribution of, and remote access to digital medical images over public networks continues to grow significantly. Such use of medical images raises serious concerns for their continuous security protection, which digital watermarking has shown great potential to address. We present a content-independent embedding scheme for medical image watermarking. We observe that the perceptual content of medical images varies widely with their modalities. Recent medical image watermarking schemes are image-content dependent and thus they may suffer from inconsistent embedding capacity and visual artefacts. To attain the image content-independent embedding property, we generalise RONI (region of non-interest, to the medical professionals) selection process and use it for embedding by utilising RONI's least significant bit-planes. The proposed scheme thus avoids the need for RONI segmentation that incurs capacity and computational overheads. Our experimental results demonstrate that the proposed embedding scheme performs consistently over a dataset of 370 medical images including their 7 different modalities. Experimental results also verify how the state-of-the-art reversible schemes can have an inconsistent performance for different modalities of medical images. Our scheme has MSSIM (Mean Structural SIMilarity) larger than 0.999 with a deterministically adaptable embedding capacity. Our proposed image-content independent embedding scheme is modality-wise consistent, and maintains a good image quality of RONI while keeping all other pixels in the image untouched. Thus, with an appropriate watermarking framework (i.e., with the considerations of watermark generation, embedding and detection functions), our proposed scheme can be viable for the multi-modality medical image applications and distant medical services such as teleradiology and eHealth.

  14. Scalable ranked retrieval using document images

    NASA Astrophysics Data System (ADS)

    Jain, Rajiv; Oard, Douglas W.; Doermann, David

    2013-12-01

    Despite the explosion of text on the Internet, hard copy documents that have been scanned as images still play a significant role for some tasks. The best method to perform ranked retrieval on a large corpus of document images, however, remains an open research question. The most common approach has been to perform text retrieval using terms generated by optical character recognition. This paper, by contrast, examines whether a scalable segmentation-free image retrieval algorithm, which matches sub-images containing text or graphical objects, can provide additional benefit in satisfying a user's information needs on a large, real world dataset. Results on 7 million scanned pages from the CDIP v1.0 test collection show that content based image retrieval finds a substantial number of documents that text retrieval misses, and that when used as a basis for relevance feedback can yield improvements in retrieval effectiveness.

  15. Holographic intravital microscopy for 2-D and 3-D imaging intact circulating blood cells in microcapillaries of live mice

    NASA Astrophysics Data System (ADS)

    Kim, Kyoohyun; Choe, Kibaek; Park, Inwon; Kim, Pilhan; Park, Yongkeun

    2016-09-01

    Intravital microscopy is an essential tool that reveals behaviours of live cells under conditions close to natural physiological states. So far, although various approaches for imaging cells in vivo have been proposed, most require the use of labelling and also provide only qualitative imaging information. Holographic imaging approach based on measuring the refractive index distributions of cells, however, circumvent these problems and offer quantitative and label-free imaging capability. Here, we demonstrate in vivo two- and three-dimensional holographic imaging of circulating blood cells in intact microcapillaries of live mice. The measured refractive index distributions of blood cells provide morphological and biochemical properties including three-dimensional cell shape, haemoglobin concentration, and haemoglobin contents at the individual cell level. With the present method, alterations in blood flow dynamics in live healthy and sepsis-model mice were also investigated.

  16. Learning to rank using user clicks and visual features for image retrieval.

    PubMed

    Yu, Jun; Tao, Dacheng; Wang, Meng; Rui, Yong

    2015-04-01

    The inconsistency between textual features and visual contents can cause poor image search results. To solve this problem, click features, which are more reliable than textual information in justifying the relevance between a query and clicked images, are adopted in image ranking model. However, the existing ranking model cannot integrate visual features, which are efficient in refining the click-based search results. In this paper, we propose a novel ranking model based on the learning to rank framework. Visual features and click features are simultaneously utilized to obtain the ranking model. Specifically, the proposed approach is based on large margin structured output learning and the visual consistency is integrated with the click features through a hypergraph regularizer term. In accordance with the fast alternating linearization method, we design a novel algorithm to optimize the objective function. This algorithm alternately minimizes two different approximations of the original objective function by keeping one function unchanged and linearizing the other. We conduct experiments on a large-scale dataset collected from the Microsoft Bing image search engine, and the results demonstrate that the proposed learning to rank models based on visual features and user clicks outperforms state-of-the-art algorithms.

  17. Fast and robust brain tumor segmentation using level set method with multiple image information.

    PubMed

    Lok, Ka Hei; Shi, Lin; Zhu, Xianlun; Wang, Defeng

    2017-01-01

    Brain tumor segmentation is a challenging task for its variation in intensity. The phenomenon is caused by the inhomogeneous content of tumor tissue and the choice of imaging modality. In 2010 Zhang developed the Selective Binary Gaussian Filtering Regularizing Level Set (SBGFRLS) model that combined the merits of edge-based and region-based segmentation. To improve the SBGFRLS method by modifying the singed pressure force (SPF) term with multiple image information and demonstrate effectiveness of proposed method on clinical images. In original SBGFRLS model, the contour evolution direction mainly depends on the SPF. By introducing a directional term in SPF, the metric could control the evolution direction. The SPF is altered by statistic values enclosed by the contour. This concept can be extended to jointly incorporate multiple image information. The new SPF term is expected to bring a solution for blur edge problem in brain tumor segmentation. The proposed method is validated with clinical images including pre- and post-contrast magnetic resonance images. The accuracy and robustness is compared with sensitivity, specificity, DICE similarity coefficient and Jaccard similarity index. Experimental results show improvement, in particular the increase of sensitivity at the same specificity, in segmenting all types of tumors except for the diffused tumor. The novel brain tumor segmentation method is clinical-oriented with fast, robust and accurate implementation and a minimal user interaction. The method effectively segmented homogeneously enhanced, non-enhanced, heterogeneously-enhanced, and ring-enhanced tumor under MR imaging. Though the method is limited by identifying edema and diffuse tumor, several possible solutions are suggested to turn the curve evolution into a fully functional clinical diagnosis tool.

  18. Modeling spatial patterns of soil respiration in maize fields from vegetation and soil property factors with the use of remote sensing and geographical information system.

    PubMed

    Huang, Ni; Wang, Li; Guo, Yiqiang; Hao, Pengyu; Niu, Zheng

    2014-01-01

    To examine the method for estimating the spatial patterns of soil respiration (Rs) in agricultural ecosystems using remote sensing and geographical information system (GIS), Rs rates were measured at 53 sites during the peak growing season of maize in three counties in North China. Through Pearson's correlation analysis, leaf area index (LAI), canopy chlorophyll content, aboveground biomass, soil organic carbon (SOC) content, and soil total nitrogen content were selected as the factors that affected spatial variability in Rs during the peak growing season of maize. The use of a structural equation modeling approach revealed that only LAI and SOC content directly affected Rs. Meanwhile, other factors indirectly affected Rs through LAI and SOC content. When three greenness vegetation indices were extracted from an optical image of an environmental and disaster mitigation satellite in China, enhanced vegetation index (EVI) showed the best correlation with LAI and was thus used as a proxy for LAI to estimate Rs at the regional scale. The spatial distribution of SOC content was obtained by extrapolating the SOC content at the plot scale based on the kriging interpolation method in GIS. When data were pooled for 38 plots, a first-order exponential analysis indicated that approximately 73% of the spatial variability in Rs during the peak growing season of maize can be explained by EVI and SOC content. Further test analysis based on independent data from 15 plots showed that the simple exponential model had acceptable accuracy in estimating the spatial patterns of Rs in maize fields on the basis of remotely sensed EVI and GIS-interpolated SOC content, with R2 of 0.69 and root-mean-square error of 0.51 µmol CO2 m(-2) s(-1). The conclusions from this study provide valuable information for estimates of Rs during the peak growing season of maize in three counties in North China.

  19. Modeling Spatial Patterns of Soil Respiration in Maize Fields from Vegetation and Soil Property Factors with the Use of Remote Sensing and Geographical Information System

    PubMed Central

    Huang, Ni; Wang, Li; Guo, Yiqiang; Hao, Pengyu; Niu, Zheng

    2014-01-01

    To examine the method for estimating the spatial patterns of soil respiration (Rs) in agricultural ecosystems using remote sensing and geographical information system (GIS), Rs rates were measured at 53 sites during the peak growing season of maize in three counties in North China. Through Pearson's correlation analysis, leaf area index (LAI), canopy chlorophyll content, aboveground biomass, soil organic carbon (SOC) content, and soil total nitrogen content were selected as the factors that affected spatial variability in Rs during the peak growing season of maize. The use of a structural equation modeling approach revealed that only LAI and SOC content directly affected Rs. Meanwhile, other factors indirectly affected Rs through LAI and SOC content. When three greenness vegetation indices were extracted from an optical image of an environmental and disaster mitigation satellite in China, enhanced vegetation index (EVI) showed the best correlation with LAI and was thus used as a proxy for LAI to estimate Rs at the regional scale. The spatial distribution of SOC content was obtained by extrapolating the SOC content at the plot scale based on the kriging interpolation method in GIS. When data were pooled for 38 plots, a first-order exponential analysis indicated that approximately 73% of the spatial variability in Rs during the peak growing season of maize can be explained by EVI and SOC content. Further test analysis based on independent data from 15 plots showed that the simple exponential model had acceptable accuracy in estimating the spatial patterns of Rs in maize fields on the basis of remotely sensed EVI and GIS-interpolated SOC content, with R2 of 0.69 and root-mean-square error of 0.51 µmol CO2 m−2 s−1. The conclusions from this study provide valuable information for estimates of Rs during the peak growing season of maize in three counties in North China. PMID:25157827

  20. New false color mapping for image fusion

    NASA Astrophysics Data System (ADS)

    Toet, Alexander; Walraven, Jan

    1996-03-01

    A pixel-based color-mapping algorithm is presented that produces a fused false color rendering of two gray-level images representing different sensor modalities. The resulting images have a higher information content than each of the original images and retain sensor-specific image information. The unique component of each image modality is enhanced in the resulting fused color image representation. First, the common component of the two original input images is determined. Second, the common component is subtracted from the original images to obtain the unique component of each image. Third, the unique component of each image modality is subtracted from the image of the other modality. This step serves to enhance the representation of sensor-specific details in the final fused result. Finally, a fused color image is produced by displaying the images resulting from the last step through, respectively, the red and green channels of a color display. The method is applied to fuse thermal and visual images. The results show that the color mapping enhances the visibility of certain details and preserves the specificity of the sensor information. The fused images also have a fairly natural appearance. The fusion scheme involves only operations on corresponding pixels. The resolution of a fused image is therefore directly related to the resolution of the input images. Before fusing, the contrast of the images can be enhanced and their noise can be reduced by standard image- processing techniques. The color mapping algorithm is computationally simple. This implies that the investigated approaches can eventually be applied in real time and that the hardware needed is not too complicated or too voluminous (an important consideration when it has to fit in an airplane, for instance).

  1. Can you see what they are saying? Breast cancer images and text in Canadian women's and fashion magazines.

    PubMed

    McWhirter, J E; Hoffman-Goetz, L; Clarke, J N

    2012-06-01

    Media are an important source of breast cancer information for women. Visual images influence recall and comprehension of information. Research on breast cancer in the media has infrequently focused on images. Using directed content analysis, we compared content, tone, and themes in images (n = 91) and articles (n = 31) in Canadian women's and fashion (n = 6) magazines (2005-2010). About half of the articles (51.6%) had both positive and negative tone; in contrast, 87.7% of women in the images had positive facial expressions. Women in the images were Caucasian (80.9%), young (81.3%), attractive (99.2%), had a healthy body type (93.8%), and appeared to have intact breasts (100%). Images of screening/treatment (5.5%) and visual impact of disease/treatment on the body (4.4%) were rare. The most common theme in the articles was medical issues (35.5%); in the images, it was beauty or fashion (15.4%). The potential impact of these divergent messages for breast cancer education is discussed.

  2. Global Contrast Based Salient Region Detection.

    PubMed

    Cheng, Ming-Ming; Mitra, Niloy J; Huang, Xiaolei; Torr, Philip H S; Hu, Shi-Min

    2015-03-01

    Automatic estimation of salient object regions across images, without any prior assumption or knowledge of the contents of the corresponding scenes, enhances many computer vision and computer graphics applications. We introduce a regional contrast based salient object detection algorithm, which simultaneously evaluates global contrast differences and spatial weighted coherence scores. The proposed algorithm is simple, efficient, naturally multi-scale, and produces full-resolution, high-quality saliency maps. These saliency maps are further used to initialize a novel iterative version of GrabCut, namely SaliencyCut, for high quality unsupervised salient object segmentation. We extensively evaluated our algorithm using traditional salient object detection datasets, as well as a more challenging Internet image dataset. Our experimental results demonstrate that our algorithm consistently outperforms 15 existing salient object detection and segmentation methods, yielding higher precision and better recall rates. We also show that our algorithm can be used to efficiently extract salient object masks from Internet images, enabling effective sketch-based image retrieval (SBIR) via simple shape comparisons. Despite such noisy internet images, where the saliency regions are ambiguous, our saliency guided image retrieval achieves a superior retrieval rate compared with state-of-the-art SBIR methods, and additionally provides important target object region information.

  3. Speckle tracking and speckle content based composite strain imaging for solid and fluid filled lesions.

    PubMed

    Rabbi, Md Shifat-E; Hasan, Md Kamrul

    2017-02-01

    Strain imaging though for solid lesions provides an effective way for determining their pathologic condition by displaying the tissue stiffness contrast, for fluid filled lesions such an imaging is yet an open problem. In this paper, we propose a novel speckle content based strain imaging technique for visualization and classification of fluid filled lesions in elastography after automatic identification of the presence of fluid filled lesions. Speckle content based strain, defined as a function of speckle density based on the relationship between strain and speckle density, gives an indirect strain value for fluid filled lesions. To measure the speckle density of the fluid filled lesions, two new criteria based on oscillation count of the windowed radio frequency signal and local variance of the normalized B-mode image are used. An improved speckle tracking technique is also proposed for strain imaging of the solid lesions and background. A wavelet-based integration technique is then proposed for combining the strain images from these two techniques for visualizing both the solid and fluid filled lesions from a common framework. The final output of our algorithm is a high quality composite strain image which can effectively visualize both solid and fluid filled breast lesions in addition to the speckle content of the fluid filled lesions for their discrimination. The performance of our algorithm is evaluated using the in vivo patient data and compared with recently reported techniques. The results show that both the solid and fluid filled lesions can be better visualized using our technique and the fluid filled lesions can be classified with good accuracy. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Social Image Tag Ranking by Two-View Learning

    NASA Astrophysics Data System (ADS)

    Zhuang, Jinfeng; Hoi, Steven C. H.

    Tags play a central role in text-based social image retrieval and browsing. However, the tags annotated by web users could be noisy, irrelevant, and often incomplete for describing the image contents, which may severely deteriorate the performance of text-based image retrieval models. In order to solve this problem, researchers have proposed techniques to rank the annotated tags of a social image according to their relevance to the visual content of the image. In this paper, we aim to overcome the challenge of social image tag ranking for a corpus of social images with rich user-generated tags by proposing a novel two-view learning approach. It can effectively exploit both textual and visual contents of social images to discover the complicated relationship between tags and images. Unlike the conventional learning approaches that usually assumes some parametric models, our method is completely data-driven and makes no assumption about the underlying models, making the proposed solution practically more effective. We formulate our method as an optimization task and present an efficient algorithm to solve it. To evaluate the efficacy of our method, we conducted an extensive set of experiments by applying our technique to both text-based social image retrieval and automatic image annotation tasks. Our empirical results showed that the proposed method can be more effective than the conventional approaches.

  5. Development and Preliminary Testing of PROGRESS: A Web-based Education Program for Prostate Cancer Survivors Transitioning from Active Treatment

    PubMed Central

    Miller, Suzanne M.; Hudson, Shawna V.; Hui, Siu-kuen Azor; Diefenbach, Michael A.; Fleisher, Linda; Raivitch, Stephanie; Belton, Tanisha; Roy, Gem; Njoku, Anuli; Scarpato, John; Viterbo, Rosalia; Buyyounouski, Mark; Denlinger, Crystal; Miyamoto, Curtis; Reese, Adam; Baman, Jayson

    2015-01-01

    Purpose This formative research study describes the development and preliminary evaluation of a theory-guided, on-line multimedia psycho-educational program (PROGRESS) designed to facilitate adaptive coping among prostate cancer patients transitioning from treatment into long-term survivorship. Methods Guided by the Cognitive-Social Health Information Processing Model (C-SHIP) and using health communications best practices, we conducted a two phase, qualitative formative research study with early stage prostate cancer patients (n=29) to inform the web program development. Phase 1 included individual (n=5) and group (n=12) interviews to help determine intervention content and interface. Phase 2 employed iterative user/usability testing (n=12) to finalize the intervention. Interview data were independently coded and collectively analyzed to achieve consensus. Results Survivors expressed interest in action-oriented content on: (1) managing treatment side effects; (2) handling body image and co-morbidities related to overweight/obesity; (3) coping with emotional and communication issues; (4) tips to reduce disruptions of daily living activities, and (5) health skills training tools. Patients also desired the use of realistic and diverse survivor images. Conclusions Incorporation of an established theoretical framework, application of multimedia intervention development best practices, and an evidence-based approach to content and format, resulted in a psycho-educational tool that comprehensively addresses survivors' needs in a tailored fashion. Implications for Cancer Survivors The results suggest that an interactive web-based multimedia program is useful for survivors if it covers the key topics of symptom control, emotional well-being, and coping skills training; this tool has the potential to be disseminated and implemented as an adjunct to routine clinical care. PMID:25697335

  6. Fractional Diffusion, Low Exponent Lévy Stable Laws, and 'Slow Motion' Denoising of Helium Ion Microscope Nanoscale Imagery.

    PubMed

    Carasso, Alfred S; Vladár, András E

    2012-01-01

    Helium ion microscopes (HIM) are capable of acquiring images with better than 1 nm resolution, and HIM images are particularly rich in morphological surface details. However, such images are generally quite noisy. A major challenge is to denoise these images while preserving delicate surface information. This paper presents a powerful slow motion denoising technique, based on solving linear fractional diffusion equations forward in time. The method is easily implemented computationally, using fast Fourier transform (FFT) algorithms. When applied to actual HIM images, the method is found to reproduce the essential surface morphology of the sample with high fidelity. In contrast, such highly sophisticated methodologies as Curvelet Transform denoising, and Total Variation denoising using split Bregman iterations, are found to eliminate vital fine scale information, along with the noise. Image Lipschitz exponents are a useful image metrology tool for quantifying the fine structure content in an image. In this paper, this tool is applied to rank order the above three distinct denoising approaches, in terms of their texture preserving properties. In several denoising experiments on actual HIM images, it was found that fractional diffusion smoothing performed noticeably better than split Bregman TV, which in turn, performed slightly better than Curvelet denoising.

  7. Advanced digital image archival system using MPEG technologies

    NASA Astrophysics Data System (ADS)

    Chang, Wo

    2009-08-01

    Digital information and records are vital to the human race regardless of the nationalities and eras in which they were produced. Digital image contents are produced at a rapid pace from cultural heritages via digitalization, scientific and experimental data via high speed imaging sensors, national defense satellite images from governments, medical and healthcare imaging records from hospitals, personal collection of photos from digital cameras. With these mass amounts of precious and irreplaceable data and knowledge, what standards technologies can be applied to preserve and yet provide an interoperable framework for accessing the data across varieties of systems and devices? This paper presents an advanced digital image archival system by applying the international standard of MPEG technologies to preserve digital image content.

  8. The compressed average image intensity metric for stereoscopic video quality assessment

    NASA Astrophysics Data System (ADS)

    Wilczewski, Grzegorz

    2016-09-01

    The following article depicts insights towards design, creation and testing of a genuine metric designed for a 3DTV video quality evaluation. The Compressed Average Image Intensity (CAII) mechanism is based upon stereoscopic video content analysis, setting its core feature and functionality to serve as a versatile tool for an effective 3DTV service quality assessment. Being an objective type of quality metric it may be utilized as a reliable source of information about the actual performance of a given 3DTV system, under strict providers evaluation. Concerning testing and the overall performance analysis of the CAII metric, the following paper presents comprehensive study of results gathered across several testing routines among selected set of samples of stereoscopic video content. As a result, the designed method for stereoscopic video quality evaluation is investigated across the range of synthetic visual impairments injected into the original video stream.

  9. Maximising information recovery from rank-order codes

    NASA Astrophysics Data System (ADS)

    Sen, B.; Furber, S.

    2007-04-01

    The central nervous system encodes information in sequences of asynchronously generated voltage spikes, but the precise details of this encoding are not well understood. Thorpe proposed rank-order codes as an explanation of the observed speed of information processing in the human visual system. The work described in this paper is inspired by the performance of SpikeNET, a biologically inspired neural architecture using rank-order codes for information processing, and is based on the retinal model developed by VanRullen and Thorpe. This model mimics retinal information processing by passing an input image through a bank of Difference of Gaussian (DoG) filters and then encoding the resulting coefficients in rank-order. To test the effectiveness of this encoding in capturing the information content of an image, the rank-order representation is decoded to reconstruct an image that can be compared with the original. The reconstruction uses a look-up table to infer the filter coefficients from their rank in the encoded image. Since the DoG filters are approximately orthogonal functions, they are treated as their own inverses in the reconstruction process. We obtained a quantitative measure of the perceptually important information retained in the reconstructed image relative to the original using a slightly modified version of an objective metric proposed by Petrovic. It is observed that around 75% of the perceptually important information is retained in the reconstruction. In the present work we reconstruct the input using a pseudo-inverse of the DoG filter-bank with the aim of improving the reconstruction and thereby extracting more information from the rank-order encoded stimulus. We observe that there is an increase of 10 - 15% in the information retrieved from a reconstructed stimulus as a result of inverting the filter-bank.

  10. Legal and technical means to secure the commercial distribution of copyrighted electronic images on the information superhighway

    NASA Astrophysics Data System (ADS)

    Laurie, Ronald S.

    1995-04-01

    The arrival of the information super highway has introduced a number of problems, both for the owners of copyrighted images and for those who would like to legitimately use those images. The digitization of all content, whether still image, animation, video, music, or text, has made copying infinitely easier and cheaper. Further, the instantaneous access to this wealth of digital copyrighted material by millions of potential users, and would-be pirates, has the potential to greatly proliferate the number of unauthorized copies being made. For most of this century, technology has facilitated the unauthorized, and thus uncompensated, use of copyrighted material. Thus, xerography, audio and video recording systems, and personal computers have all contributed to the problem. However, we are entering a new era, where encryption techniques will not only prevent unauthorized use of copyrighted material but facilitate the use of that material by those that are willing to pay a commercially reasonable fee for such use. The technology, referred to as 'information metering,' allows usage fees to be based on a variety of use parameters. Thus, the material can either be 'rented' for a single use or a fixed number of uses, or it can be 'purchased' for an unlimited number of future uses. One price can be charged for on-screen viewing, with a higher price for hard copy print-out. In the case of digital images, the browsing function can be free, while the price of the print-out function can be based on the resolution of the image.

  11. Terminology issues in user access to Web-based medical information.

    PubMed Central

    McCray, A. T.; Loane, R. F.; Browne, A. C.; Bangalore, A. K.

    1999-01-01

    We conducted a study of user queries to the National Library of Medicine Web site over a three month period. Our purpose was to study the nature and scope of these queries in order to understand how to improve users' access to the information they are seeking on our site. The results show that the queries are primarily medical in content (94%), with only a small percentage (5.5%) relating to library services, and with a very small percentage (.5%) not being medically relevant at all. We characterize the data set, and conclude with a discussion of our plans to develop a UMLS-based terminology server to assist NLM Web users. Images Figure 1 PMID:10566330

  12. Automatic Masking for Robust 3D-2D Image Registration in Image-Guided Spine Surgery.

    PubMed

    Ketcha, M D; De Silva, T; Uneri, A; Kleinszig, G; Vogt, S; Wolinsky, J-P; Siewerdsen, J H

    During spinal neurosurgery, patient-specific information, planning, and annotation such as vertebral labels can be mapped from preoperative 3D CT to intraoperative 2D radiographs via image-based 3D-2D registration. Such registration has been shown to provide a potentially valuable means of decision support in target localization as well as quality assurance of the surgical product. However, robust registration can be challenged by mismatch in image content between the preoperative CT and intraoperative radiographs, arising, for example, from anatomical deformation or the presence of surgical tools within the radiograph. In this work, we develop and evaluate methods for automatically mitigating the effect of content mismatch by leveraging the surgical planning data to assign greater weight to anatomical regions known to be reliable for registration and vital to the surgical task while removing problematic regions that are highly deformable or often occluded by surgical tools. We investigated two approaches to assigning variable weight (i.e., "masking") to image content and/or the similarity metric: (1) masking the preoperative 3D CT ("volumetric masking"); and (2) masking within the 2D similarity metric calculation ("projection masking"). The accuracy of registration was evaluated in terms of projection distance error (PDE) in 61 cases selected from an IRB-approved clinical study. The best performing of the masking techniques was found to reduce the rate of gross failure (PDE > 20 mm) from 11.48% to 5.57% in this challenging retrospective data set. These approaches provided robustness to content mismatch and eliminated distinct failure modes of registration. Such improvement was gained without additional workflow and has motivated incorporation of the masking methods within a system under development for prospective clinical studies.

  13. Automatic masking for robust 3D-2D image registration in image-guided spine surgery

    NASA Astrophysics Data System (ADS)

    Ketcha, M. D.; De Silva, T.; Uneri, A.; Kleinszig, G.; Vogt, S.; Wolinsky, J.-P.; Siewerdsen, J. H.

    2016-03-01

    During spinal neurosurgery, patient-specific information, planning, and annotation such as vertebral labels can be mapped from preoperative 3D CT to intraoperative 2D radiographs via image-based 3D-2D registration. Such registration has been shown to provide a potentially valuable means of decision support in target localization as well as quality assurance of the surgical product. However, robust registration can be challenged by mismatch in image content between the preoperative CT and intraoperative radiographs, arising, for example, from anatomical deformation or the presence of surgical tools within the radiograph. In this work, we develop and evaluate methods for automatically mitigating the effect of content mismatch by leveraging the surgical planning data to assign greater weight to anatomical regions known to be reliable for registration and vital to the surgical task while removing problematic regions that are highly deformable or often occluded by surgical tools. We investigated two approaches to assigning variable weight (i.e., "masking") to image content and/or the similarity metric: (1) masking the preoperative 3D CT ("volumetric masking"); and (2) masking within the 2D similarity metric calculation ("projection masking"). The accuracy of registration was evaluated in terms of projection distance error (PDE) in 61 cases selected from an IRB-approved clinical study. The best performing of the masking techniques was found to reduce the rate of gross failure (PDE > 20 mm) from 11.48% to 5.57% in this challenging retrospective data set. These approaches provided robustness to content mismatch and eliminated distinct failure modes of registration. Such improvement was gained without additional workflow and has motivated incorporation of the masking methods within a system under development for prospective clinical studies.

  14. Partitioning medical image databases for content-based queries on a Grid.

    PubMed

    Montagnat, J; Breton, V; E Magnin, I

    2005-01-01

    In this paper we study the impact of executing a medical image database query application on the grid. For lowering the total computation time, the image database is partitioned into subsets to be processed on different grid nodes. A theoretical model of the application complexity and estimates of the grid execution overhead are used to efficiently partition the database. We show results demonstrating that smart partitioning of the database can lead to significant improvements in terms of total computation time. Grids are promising for content-based image retrieval in medical databases.

  15. Quality Scalability Aware Watermarking for Visual Content.

    PubMed

    Bhowmik, Deepayan; Abhayaratne, Charith

    2016-11-01

    Scalable coding-based content adaptation poses serious challenges to traditional watermarking algorithms, which do not consider the scalable coding structure and hence cannot guarantee correct watermark extraction in media consumption chain. In this paper, we propose a novel concept of scalable blind watermarking that ensures more robust watermark extraction at various compression ratios while not effecting the visual quality of host media. The proposed algorithm generates scalable and robust watermarked image code-stream that allows the user to constrain embedding distortion for target content adaptations. The watermarked image code-stream consists of hierarchically nested joint distortion-robustness coding atoms. The code-stream is generated by proposing a new wavelet domain blind watermarking algorithm guided by a quantization based binary tree. The code-stream can be truncated at any distortion-robustness atom to generate the watermarked image with the desired distortion-robustness requirements. A blind extractor is capable of extracting watermark data from the watermarked images. The algorithm is further extended to incorporate a bit-plane discarding-based quantization model used in scalable coding-based content adaptation, e.g., JPEG2000. This improves the robustness against quality scalability of JPEG2000 compression. The simulation results verify the feasibility of the proposed concept, its applications, and its improved robustness against quality scalable content adaptation. Our proposed algorithm also outperforms existing methods showing 35% improvement. In terms of robustness to quality scalable video content adaptation using Motion JPEG2000 and wavelet-based scalable video coding, the proposed method shows major improvement for video watermarking.

  16. Heuristics and Criterion Setting during Selective Encoding in Visual Decision-Making: Evidence from Eye Movements.

    PubMed

    Schotter, Elizabeth R; Gerety, Cainen; Rayner, Keith

    2012-01-01

    When making a decision, people spend longer looking at the option they ultimately choose compared other options-termed the gaze bias effect-even during their first encounter with the options (Glaholt & Reingold, 2009a, 2009b; Schotter, Berry, McKenzie & Rayner, 2010). Schotter et al. (2010) suggested that this is because people selectively encode decision-relevant information about the options, on-line during the first encounter with them. To extend their findings and test this claim, we recorded subjects' eye movements as they made judgments about pairs of images (i.e., which one was taken more recently or which one was taken longer ago). We manipulated whether both images were presented in the same color content (e.g., both in color or both in black-and-white) or whether they differed in color content and the extent to which color content was a reliable cue to relative recentness of the images. We found that the magnitude of the gaze bias effect decreased when the color content cue was not reliable during the first encounter with the images, but no modulation of the gaze bias effect in remaining time on the trial. These data suggest people do selectively encode decision-relevant information on-line.

  17. An open-source solution for advanced imaging flow cytometry data analysis using machine learning.

    PubMed

    Hennig, Holger; Rees, Paul; Blasi, Thomas; Kamentsky, Lee; Hung, Jane; Dao, David; Carpenter, Anne E; Filby, Andrew

    2017-01-01

    Imaging flow cytometry (IFC) enables the high throughput collection of morphological and spatial information from hundreds of thousands of single cells. This high content, information rich image data can in theory resolve important biological differences among complex, often heterogeneous biological samples. However, data analysis is often performed in a highly manual and subjective manner using very limited image analysis techniques in combination with conventional flow cytometry gating strategies. This approach is not scalable to the hundreds of available image-based features per cell and thus makes use of only a fraction of the spatial and morphometric information. As a result, the quality, reproducibility and rigour of results are limited by the skill, experience and ingenuity of the data analyst. Here, we describe a pipeline using open-source software that leverages the rich information in digital imagery using machine learning algorithms. Compensated and corrected raw image files (.rif) data files from an imaging flow cytometer (the proprietary .cif file format) are imported into the open-source software CellProfiler, where an image processing pipeline identifies cells and subcellular compartments allowing hundreds of morphological features to be measured. This high-dimensional data can then be analysed using cutting-edge machine learning and clustering approaches using "user-friendly" platforms such as CellProfiler Analyst. Researchers can train an automated cell classifier to recognize different cell types, cell cycle phases, drug treatment/control conditions, etc., using supervised machine learning. This workflow should enable the scientific community to leverage the full analytical power of IFC-derived data sets. It will help to reveal otherwise unappreciated populations of cells based on features that may be hidden to the human eye that include subtle measured differences in label free detection channels such as bright-field and dark-field imagery. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Retrieval of ice cloud properties using an optimal estimation algorithm and MODIS infrared observations: 1. Forward model, error analysis, and information content

    NASA Astrophysics Data System (ADS)

    Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Yang, Ping

    2016-05-01

    An optimal estimation (OE) retrieval method is developed to infer three ice cloud properties simultaneously: optical thickness (τ), effective radius (reff), and cloud top height (h). This method is based on a fast radiative transfer (RT) model and infrared (IR) observations from the MODerate resolution Imaging Spectroradiometer (MODIS). This study conducts thorough error and information content analyses to understand the error propagation and performance of retrievals from various MODIS band combinations under different cloud/atmosphere states. Specifically, the algorithm takes into account four error sources: measurement uncertainty, fast RT model uncertainty, uncertainties in ancillary data sets (e.g., atmospheric state), and assumed ice crystal habit uncertainties. It is found that the ancillary and ice crystal habit error sources dominate the MODIS IR retrieval uncertainty and cannot be ignored. The information content analysis shows that for a given ice cloud, the use of four MODIS IR observations is sufficient to retrieve the three cloud properties. However, the selection of MODIS IR bands that provide the most information and their order of importance varies with both the ice cloud properties and the ambient atmospheric and the surface states. As a result, this study suggests the inclusion of all MODIS IR bands in practice since little a priori information is available.

  19. Retrieval of ice cloud properties using an optimal estimation algorithm and MODIS infrared observations. Part I: Forward model, error analysis, and information content.

    PubMed

    Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Yang, Ping

    2016-05-27

    An optimal estimation (OE) retrieval method is developed to infer three ice cloud properties simultaneously: optical thickness ( τ ), effective radius ( r eff ), and cloud-top height ( h ). This method is based on a fast radiative transfer (RT) model and infrared (IR) observations from the MODerate resolution Imaging Spectroradiometer (MODIS). This study conducts thorough error and information content analyses to understand the error propagation and performance of retrievals from various MODIS band combinations under different cloud/atmosphere states. Specifically, the algorithm takes into account four error sources: measurement uncertainty, fast RT model uncertainty, uncertainties in ancillary datasets (e.g., atmospheric state), and assumed ice crystal habit uncertainties. It is found that the ancillary and ice crystal habit error sources dominate the MODIS IR retrieval uncertainty and cannot be ignored. The information content analysis shows that, for a given ice cloud, the use of four MODIS IR observations is sufficient to retrieve the three cloud properties. However, the selection of MODIS IR bands that provide the most information and their order of importance varies with both the ice cloud properties and the ambient atmospheric and the surface states. As a result, this study suggests the inclusion of all MODIS IR bands in practice since little a priori information is available.

  20. Attention-based image similarity measure with application to content-based information retrieval

    NASA Astrophysics Data System (ADS)

    Stentiford, Fred W. M.

    2003-01-01

    Whilst storage and capture technologies are able to cope with huge numbers of images, image retrieval is in danger of rendering many repositories valueless because of the difficulty of access. This paper proposes a similarity measure that imposes only very weak assumptions on the nature of the features used in the recognition process. This approach does not make use of a pre-defined set of feature measurements which are extracted from a query image and used to match those from database images, but instead generates features on a trial and error basis during the calculation of the similarity measure. This has the significant advantage that features that determine similarity can match whatever image property is important in a particular region whether it be a shape, a texture, a colour or a combination of all three. It means that effort is expended searching for the best feature for the region rather than expecting that a fixed feature set will perform optimally over the whole area of an image and over every image in a database. The similarity measure is evaluated on a problem of distinguishing similar shapes in sets of black and white symbols.

  1. Visual content highlighting via automatic extraction of embedded captions on MPEG compressed video

    NASA Astrophysics Data System (ADS)

    Yeo, Boon-Lock; Liu, Bede

    1996-03-01

    Embedded captions in TV programs such as news broadcasts, documentaries and coverage of sports events provide important information on the underlying events. In digital video libraries, such captions represent a highly condensed form of key information on the contents of the video. In this paper we propose a scheme to automatically detect the presence of captions embedded in video frames. The proposed method operates on reduced image sequences which are efficiently reconstructed from compressed MPEG video and thus does not require full frame decompression. The detection, extraction and analysis of embedded captions help to capture the highlights of visual contents in video documents for better organization of video, to present succinctly the important messages embedded in the images, and to facilitate browsing, searching and retrieval of relevant clips.

  2. Applying petrophysical models to radar travel time and electrical resistivity tomograms: Resolution-dependent limitations

    USGS Publications Warehouse

    Day-Lewis, F. D.; Singha, K.; Binley, A.M.

    2005-01-01

    Geophysical imaging has traditionally provided qualitative information about geologic structure; however, there is increasing interest in using petrophysical models to convert tomograms to quantitative estimates of hydrogeologic, mechanical, or geochemical parameters of interest (e.g., permeability, porosity, water content, and salinity). Unfortunately, petrophysical estimation based on tomograms is complicated by limited and variable image resolution, which depends on (1) measurement physics (e.g., electrical conduction or electromagnetic wave propagation), (2) parameterization and regularization, (3) measurement error, and (4) spatial variability. We present a framework to predict how core-scale relations between geophysical properties and hydrologic parameters are altered by the inversion, which produces smoothly varying pixel-scale estimates. We refer to this loss of information as "correlation loss." Our approach upscales the core-scale relation to the pixel scale using the model resolution matrix from the inversion, random field averaging, and spatial statistics of the geophysical property. Synthetic examples evaluate the utility of radar travel time tomography (RTT) and electrical-resistivity tomography (ERT) for estimating water content. This work provides (1) a framework to assess tomograms for geologic parameter estimation and (2) insights into the different patterns of correlation loss for ERT and RTT. Whereas ERT generally performs better near boreholes, RTT performs better in the interwell region. Application of petrophysical models to the tomograms in our examples would yield misleading estimates of water content. Although the examples presented illustrate the problem of correlation loss in the context of near-surface geophysical imaging, our results have clear implications for quantitative analysis of tomograms for diverse geoscience applications. Copyright 2005 by the American Geophysical Union.

  3. A Multimodal Search Engine for Medical Imaging Studies.

    PubMed

    Pinho, Eduardo; Godinho, Tiago; Valente, Frederico; Costa, Carlos

    2017-02-01

    The use of digital medical imaging systems in healthcare institutions has increased significantly, and the large amounts of data in these systems have led to the conception of powerful support tools: recent studies on content-based image retrieval (CBIR) and multimodal information retrieval in the field hold great potential in decision support, as well as for addressing multiple challenges in healthcare systems, such as computer-aided diagnosis (CAD). However, the subject is still under heavy research, and very few solutions have become part of Picture Archiving and Communication Systems (PACS) in hospitals and clinics. This paper proposes an extensible platform for multimodal medical image retrieval, integrated in an open-source PACS software with profile-based CBIR capabilities. In this article, we detail a technical approach to the problem by describing its main architecture and each sub-component, as well as the available web interfaces and the multimodal query techniques applied. Finally, we assess our implementation of the engine with computational performance benchmarks.

  4. [The application of spectral geological profile in the alteration mapping].

    PubMed

    Li, Qing-Ting; Lin, Qi-Zhong; Zhang, Bing; Lu, Lin-Lin

    2012-07-01

    Geological section can help validating and understanding of the alteration information which is extracted from remote sensing images. In the paper, the concept of spectral geological profile was introduced based on the principle of geological section and the method of spectral information extraction. The spectral profile can realize the storage and vision of spectra along the geological profile, but the spectral geological spectral profile includes more information besides the information of spectral profile. The main object of spectral geological spectral profile is to obtain the distribution of alteration types and content of minerals along the profile which can be extracted from spectra measured by field spectrometer, especially for the spatial distribution and mode of alteration association. Technical method and work flow of alteration information extraction was studied for the spectral geological profile. The spectral geological profile was set up using the ground reflectance spectra and the alteration information was extracted from the remote sensing image with the help of typical spectra geological profile. At last the meaning and effect of the spectral geological profile was discussed.

  5. Optimisation of solar synoptic observations

    NASA Astrophysics Data System (ADS)

    Klvaña, Miroslav; Sobotka, Michal; Švanda, Michal

    2012-09-01

    The development of instrumental and computer technologies is connected with steadily increasing needs for archiving of large data volumes. The current trend to meet this requirement includes the data compression and growth of storage capacities. This approach, however, has technical and practical limits. A further reduction of the archived data volume can be achieved by means of an optimisation of the archiving that consists in data selection without losing the useful information. We describe a method of optimised archiving of solar images, based on the selection of images that contain a new information. The new information content is evaluated by means of the analysis of changes detected in the images. We present characteristics of different kinds of image changes and divide them into fictitious changes with a disturbing effect and real changes that provide a new information. In block diagrams describing the selection and archiving, we demonstrate the influence of clouds, the recording of images during an active event on the Sun, including a period before the event onset, and the archiving of long-term history of solar activity. The described optimisation technique is not suitable for helioseismology, because it does not conserve the uniform time step in the archived sequence and removes the information about solar oscillations. In case of long-term synoptic observations, the optimised archiving can save a large amount of storage capacities. The actual capacity saving will depend on the setting of the change-detection sensitivity and on the capability to exclude the fictitious changes.

  6. Comparative analysis of semantic localization accuracies between adult and pediatric DICOM CT images

    NASA Astrophysics Data System (ADS)

    Robertson, Duncan; Pathak, Sayan D.; Criminisi, Antonio; White, Steve; Haynor, David; Chen, Oliver; Siddiqui, Khan

    2012-02-01

    Existing literature describes a variety of techniques for semantic annotation of DICOM CT images, i.e. the automatic detection and localization of anatomical structures. Semantic annotation facilitates enhanced image navigation, linkage of DICOM image content and non-image clinical data, content-based image retrieval, and image registration. A key challenge for semantic annotation algorithms is inter-patient variability. However, while the algorithms described in published literature have been shown to cope adequately with the variability in test sets comprising adult CT scans, the problem presented by the even greater variability in pediatric anatomy has received very little attention. Most existing semantic annotation algorithms can only be extended to work on scans of both adult and pediatric patients by adapting parameters heuristically in light of patient size. In contrast, our approach, which uses random regression forests ('RRF'), learns an implicit model of scale variation automatically using training data. In consequence, anatomical structures can be localized accurately in both adult and pediatric CT studies without the need for parameter adaptation or additional information about patient scale. We show how the RRF algorithm is able to learn scale invariance from a combined training set containing a mixture of pediatric and adult scans. Resulting localization accuracy for both adult and pediatric data remains comparable with that obtained using RRFs trained and tested using only adult data.

  7. RESEARCH ON ROBUST METHODS FOR EXTRACTING AND RECOGNIZING PHOTOGRAPHY MANAGEMENT ITEMS FROM VARIOUS IMAGE DATA Of CONSTRUCTION

    NASA Astrophysics Data System (ADS)

    Kitagawa, Etsuji; Tanaka, Shigenori; Abiko, Satoshi; Wakabayashi, Katsuma; Jiang, Wenyuan

    Recently, an electronic delivery for various documents is carried out by Ministry of Land, Infrastructure, Transport and Tourism in construction fields. One of them is image data of construction photography that must be delivered with information of photography management items such as construction name or type of works, etc. However, there is a problem that a lot of cost is needed to treat contents of these items from characters printed and handwritten on blackboard into these image data. In this research, we develop the system which can treat contents of these items by extracting contents of these items from the image data of construction photography taken in various scenes with preprocessing the image, recognizing characters with OCR and correcting error with natural language process. And we confirm the effectiveness of the system, by experimenting in each function of system and in entire system.

  8. DynaMed Plus®: An Evidence-Based Clinical Reference Resource.

    PubMed

    Charbonneau, Deborah H; James, LaTeesa N

    2018-01-01

    DynaMed Plus ® from EBSCO Health is an evidence-based tool that health professionals can use to inform clinical care. DynaMed Plus content undergoes a review process, and the evidence is synthesized in detailed topic overviews. A unique three-level rating scale is used to assess the quality of available evidence. Topic overviews summarize current evidence and provide recommendations to support health providers at the point-of-care. Additionally, DynaMed Plus content can be accessed via a desktop computer or mobile platforms. Given this, DynaMed Plus can be a time-saving resource for health providers. Overall, DynaMed Plus provides evidence summaries using an easy-to-read bullet format, and the resource incorporates images, clinical calculators, patient handouts, and practice guidelines in one place.

  9. Machine vision and appearance based learning

    NASA Astrophysics Data System (ADS)

    Bernstein, Alexander

    2017-03-01

    Smart algorithms are used in Machine vision to organize or extract high-level information from the available data. The resulted high-level understanding the content of images received from certain visual sensing system and belonged to an appearance space can be only a key first step in solving various specific tasks such as mobile robot navigation in uncertain environments, road detection in autonomous driving systems, etc. Appearance-based learning has become very popular in the field of machine vision. In general, the appearance of a scene is a function of the scene content, the lighting conditions, and the camera position. Mobile robots localization problem in machine learning framework via appearance space analysis is considered. This problem is reduced to certain regression on an appearance manifold problem, and newly regression on manifolds methods are used for its solution.

  10. Astronomy Fun with Mobile Devices

    NASA Astrophysics Data System (ADS)

    Pilachowski, Catherine A.; Morris, Frank

    2016-01-01

    Those mobile devices your students bring to class can do more that tweet and text. Engage your students with these web-based astronomy learning tools that allow students to manipulate astronomical data to learn important concepts. The tools are HTML5, CSS3, Javascript-based applications that provide access to the content on iPad and Android tablets. With "Three Color" students can combine monochrome astronomical images taken through different color filters or in different wavelength regions into a single color image. "Star Clusters" allows students to compare images of clusters with a pre-defined template of colors and sizes to compare clusters of different ages. An adaptation of Travis Rector's "NovaSearch" allows students to examine images of the central regions of the Andromeda Galaxy to find novae and to measure the time over which the nova fades away. New additions to our suite of applications allow students to estimate the surface temperatures of exoplanets and the probability of life elsewhere in the Universe. Further information and access to these web-based tools are available at www.astro.indiana.edu/ala/.

  11. Astronomy Learning Activities for Tablets

    NASA Astrophysics Data System (ADS)

    Pilachowski, Catherine A.; Morris, Frank

    2015-08-01

    Four web-based tools allow students to manipulate astronomical data to learn concepts in astronomy. The tools are HTML5, CSS3, Javascript-based applications that provide access to the content on iPad and Android tablets. The first tool “Three Color” allows students to combine monochrome astronomical images taken through different color filters or in different wavelength regions into a single color image. The second tool “Star Clusters” allows students to compare images of stars in clusters with a pre-defined template of colors and sizes in order to produce color-magnitude diagrams to determine cluster ages. The third tool adapts Travis Rector’s “NovaSearch” to allow students to examine images of the central regions of the Andromeda Galaxy to find novae. After students find a nova, they are able to measure the time over which the nova fades away. A fourth tool, Proper Pair, allows students to interact with Hipparcos data to evaluate close double stars are physical binaries or chance superpositions. Further information and access to these web-based tools are available at www.astro.indiana.edu/ala/.

  12. An Improved InSAR Image Co-Registration Method for Pairs with Relatively Big Distortions or Large Incoherent Areas

    PubMed Central

    Chen, Zhenwei; Zhang, Lei; Zhang, Guo

    2016-01-01

    Co-registration is one of the most important steps in interferometric synthetic aperture radar (InSAR) data processing. The standard offset-measurement method based on cross-correlating uniformly distributed patches takes no account of specific geometric transformation between images or characteristics of ground scatterers. Hence, it is inefficient and difficult to obtain satisfying co-registration results for image pairs with relatively big distortion or large incoherent areas. Given this, an improved co-registration strategy is proposed in this paper which takes both the geometric features and image content into consideration. Firstly, some geometric transformations including scale, flip, rotation, and shear between images were eliminated based on the geometrical information, and the initial co-registration polynomial was obtained. Then the registration points were automatically detected by integrating the signal-to-clutter-ratio (SCR) thresholds and the amplitude information, and a further co-registration process was performed to refine the polynomial. Several comparison experiments were carried out using 2 TerraSAR-X data from the Hong Kong airport and 21 PALSAR data from the Donghai Bridge. Experiment results demonstrate that the proposed method brings accuracy and efficiency improvements for co-registration and processing abilities in the cases of big distortion between images or large incoherent areas in the images. For most co-registrations, the proposed method can enhance the reliability and applicability of co-registration and thus promote the automation to a higher level. PMID:27649207

  13. An Improved InSAR Image Co-Registration Method for Pairs with Relatively Big Distortions or Large Incoherent Areas.

    PubMed

    Chen, Zhenwei; Zhang, Lei; Zhang, Guo

    2016-09-17

    Co-registration is one of the most important steps in interferometric synthetic aperture radar (InSAR) data processing. The standard offset-measurement method based on cross-correlating uniformly distributed patches takes no account of specific geometric transformation between images or characteristics of ground scatterers. Hence, it is inefficient and difficult to obtain satisfying co-registration results for image pairs with relatively big distortion or large incoherent areas. Given this, an improved co-registration strategy is proposed in this paper which takes both the geometric features and image content into consideration. Firstly, some geometric transformations including scale, flip, rotation, and shear between images were eliminated based on the geometrical information, and the initial co-registration polynomial was obtained. Then the registration points were automatically detected by integrating the signal-to-clutter-ratio (SCR) thresholds and the amplitude information, and a further co-registration process was performed to refine the polynomial. Several comparison experiments were carried out using 2 TerraSAR-X data from the Hong Kong airport and 21 PALSAR data from the Donghai Bridge. Experiment results demonstrate that the proposed method brings accuracy and efficiency improvements for co-registration and processing abilities in the cases of big distortion between images or large incoherent areas in the images. For most co-registrations, the proposed method can enhance the reliability and applicability of co-registration and thus promote the automation to a higher level.

  14. Corporate Social Responsibility programs of Big Food in Australia: a content analysis of industry documents.

    PubMed

    Richards, Zoe; Thomas, Samantha L; Randle, Melanie; Pettigrew, Simone

    2015-12-01

    To examine Corporate Social Responsibility (CSR) tactics by identifying the key characteristics of CSR strategies as described in the corporate documents of selected 'Big Food' companies. A mixed methods content analysis was used to analyse the information contained on Australian Big Food company websites. Data sources included company CSR reports and web-based content that related to CSR initiatives employed in Australia. A total of 256 CSR activities were identified across six organisations. Of these, the majority related to the categories of environment (30.5%), responsibility to consumers (25.0%) or community (19.5%). Big Food companies appear to be using CSR activities to: 1) build brand image through initiatives associated with the environment and responsibility to consumers; 2) target parents and children through community activities; and 3) align themselves with respected organisations and events in an effort to transfer their positive image attributes to their own brands. Results highlight the type of CSR strategies Big Food companies are employing. These findings serve as a guide to mapping and monitoring CSR as a specific form of marketing. © 2015 Public Health Association of Australia.

  15. Absolute calibration for complex-geometry biomedical diffuse optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Mastanduno, Michael A.; Jiang, Shudong; El-Ghussein, Fadi; diFlorio-Alexander, Roberta; Pogue, Brian W.; Paulsen, Keith D.

    2013-03-01

    We have presented methodology to calibrate data in NIRS/MRI imaging versus an absolute reference phantom and results in both phantoms and healthy volunteers. This method directly calibrates data to a diffusion-based model, takes advantage of patient specific geometry from MRI prior information, and generates an initial guess without the need for a large data set. This method of calibration allows for more accurate quantification of total hemoglobin, oxygen saturation, water content, scattering, and lipid concentration as compared with other, slope-based methods. We found the main source of error in the method to be derived from incorrect assignment of reference phantom optical properties rather than initial guess in reconstruction. We also present examples of phantom and breast images from a combined frequency domain and continuous wave MRI-coupled NIRS system. We were able to recover phantom data within 10% of expected contrast and within 10% of the actual value using this method and compare these results with slope-based calibration methods. Finally, we were able to use this technique to calibrate and reconstruct images from healthy volunteers. Representative images are shown and discussion is provided for comparison with existing literature. These methods work towards fully combining the synergistic attributes of MRI and NIRS for in-vivo imaging of breast cancer. Complete software and hardware integration in dual modality instruments is especially important due to the complexity of the technology and success will contribute to complex anatomical and molecular prognostic information that can be readily obtained in clinical use.

  16. Experimental study on water content detection of traditional masonry based on infrared thermal image

    NASA Astrophysics Data System (ADS)

    Zhang, Baoqing; Lei, Zukang

    2017-10-01

    Based on infrared thermal imaging technology for seepage test of two kinds of brick masonry, find out the relationship between the distribution of one-dimensional two brick surface temperature distribution and one-dimensional surface moisture content were determined after seepage brick masonry minimum temperature zone and water content determination method of the highest point of the regression equation, the relationship between temperature and moisture content of the brick masonry reflected the quantitative and establish the initial wet masonry building disease analysis method, then the infrared technology is applied to the protection of historic buildings in.

  17. Content Sharing Based on Personal Information in Virtually Secured Space

    NASA Astrophysics Data System (ADS)

    Sohn, Hosik; Ro, Yong Man; Plataniotis, Kostantinos N.

    User generated contents (UGC) are shared in an open space like social media where users can upload and consume contents freely. Since the access of contents is not restricted, the contents could be delivered to unwanted users or misused sometimes. In this paper, we propose a method for sharing UGCs securely based on the personal information of users. With the proposed method, virtual secure space is created for contents delivery. The virtual secure space allows UGC creator to deliver contents to users who have similar personal information and they can consume the contents without any leakage of personal information. In order to verify the usefulness of the proposed method, the experiment was performed where the content was encrypted with personal information of creator, and users with similar personal information have decrypted and consumed the contents. The results showed that UGCs were securely shared among users who have similar personal information.

  18. Methods for reverberation suppression utilizing dual frequency band imaging.

    PubMed

    Rau, Jochen M; Måsøy, Svein-Erik; Hansen, Rune; Angelsen, Bjørn; Tangen, Thor Andreas

    2013-09-01

    Reverberations impair the contrast resolution of diagnostic ultrasound images. Tissue harmonic imaging is a common method to reduce these artifacts, but does not remove all reverberations. Dual frequency band imaging (DBI), utilizing a low frequency pulse which manipulates propagation of the high frequency imaging pulse, has been proposed earlier for reverberation suppression. This article adds two different methods for reverberation suppression with DBI: the delay corrected subtraction (DCS) and the first order content weighting (FOCW) method. Both methods utilize the propagation delay of the imaging pulse of two transmissions with alternating manipulation pressure to extract information about its depth of first scattering. FOCW further utilizes this information to estimate the content of first order scattering in the received signal. Initial evaluation is presented where both methods are applied to simulated and in vivo data. Both methods yield visual and measurable substantial improvement in image contrast. Comparing DCS with FOCW, DCS produces sharper images and retains more details while FOCW achieves best suppression levels and, thus, highest image contrast. The measured improvement in contrast ranges from 8 to 27 dB for DCS and from 4 dB up to the dynamic range for FOCW.

  19. mPano: cloud-based mobile panorama view from single picture

    NASA Astrophysics Data System (ADS)

    Li, Hongzhi; Zhu, Wenwu

    2013-09-01

    Panorama view provides people an informative and natural user experience to represent the whole scene. The advances on mobile augmented reality, mobile-cloud computing, and mobile internet can enable panorama view on mobile phone with new functionalities, such as anytime anywhere query where a landmark picture is and what the whole scene looks like. To generate and explore panorama view on mobile devices faces significant challenges due to the limitations of computing capacity, battery life, and memory size of mobile phones, as well as the bandwidth of mobile Internet connection. To address the challenges, this paper presents a novel cloud-based mobile panorama view system that can generate and view panorama-view on mobile devices from a single picture, namely "Pano". In our system, first, we propose a novel iterative multi-modal image retrieval (IMIR) approach to get spatially adjacent images using both tag and content information from the single picture. Second, we propose a cloud-based parallel server synthing approach to generate panorama view in cloud, against today's local-client synthing approach that is almost impossible for mobile phones. Third, we propose predictive-cache solution to reduce latency of image delivery from cloud server to the mobile client. We have built a real mobile panorama view system and perform experiments. The experimental results demonstrated the effectiveness of our system and the proposed key component technologies, especially for landmark images.

  20. Effective evaluation of privacy protection techniques in visible and thermal imagery

    NASA Astrophysics Data System (ADS)

    Nawaz, Tahir; Berg, Amanda; Ferryman, James; Ahlberg, Jörgen; Felsberg, Michael

    2017-09-01

    Privacy protection may be defined as replacing the original content in an image region with a (less intrusive) content having modified target appearance information to make it less recognizable by applying a privacy protection technique. Indeed, the development of privacy protection techniques also needs to be complemented with an established objective evaluation method to facilitate their assessment and comparison. Generally, existing evaluation methods rely on the use of subjective judgments or assume a specific target type in image data and use target detection and recognition accuracies to assess privacy protection. An annotation-free evaluation method that is neither subjective nor assumes a specific target type is proposed. It assesses two key aspects of privacy protection: "protection" and "utility." Protection is quantified as an appearance similarity, and utility is measured as a structural similarity between original and privacy-protected image regions. We performed an extensive experimentation using six challenging datasets (having 12 video sequences), including a new dataset (having six sequences) that contains visible and thermal imagery. The new dataset is made available online for the community. We demonstrate effectiveness of the proposed method by evaluating six image-based privacy protection techniques and also show comparisons of the proposed method over existing methods.

  1. Geospatial Data Fusion and Multigroup Decision Support for Surface Water Quality Management

    NASA Astrophysics Data System (ADS)

    Sun, A. Y.; Osidele, O.; Green, R. T.; Xie, H.

    2010-12-01

    Social networking and social media have gained significant popularity and brought fundamental changes to many facets of our everyday life. With the ever-increasing adoption of GPS-enabled gadgets and technology, location-based content is likely to play a central role in social networking sites. While location-based content is not new to the geoscience community, where geographic information systems (GIS) are extensively used, the delivery of useful geospatial data to targeted user groups for decision support is new. Decision makers and modelers ought to make more effective use of the new web-based tools to expand the scope of environmental awareness education, public outreach, and stakeholder interaction. Environmental decision processes are often rife with uncertainty and controversy, requiring integration of multiple sources of information and compromises between diverse interests. Fusing of multisource, multiscale environmental data for multigroup decision support is a challenging task. Toward this goal, a multigroup decision support platform should strive to achieve transparency, impartiality, and timely synthesis of information. The latter criterion often constitutes a major technical bottleneck to traditional GIS-based media, featuring large file or image sizes and requiring special processing before web deployment. Many tools and design patterns have appeared in recent years to ease the situation somewhat. In this project, we explore the use of Web 2.0 technologies for “pushing” location-based content to multigroups involved in surface water quality management and decision making. In particular, our granular bottom-up approach facilitates effective delivery of information to most relevant user groups. Our location-based content includes in-situ and remotely sensed data disseminated by NASA and other national and local agencies. Our project is demonstrated for managing the total maximum daily load (TMDL) program in the Arroyo Colorado coastal river basin in Texas. The overall design focuses on assigning spatial information to decision support elements and on efficiently using Web 2.0 technologies to relay scientific information to the nonscientific community. We conclude that (i) social networking, if appropriately used, has great potential for mitigating difficulty associated with multigroup decision making; (ii) all potential stakeholder groups should be involved in creating a useful decision support system; and (iii) environmental decision support systems should be considered a must-have, instead of an optional component of TMDL decision support projects. Acknowledgment: This project was supported by NASA grant NNX09AR63G.

  2. Energy-resolved neutron imaging for inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Moran, M. J.; Haan, S. W.; Hatchett, S. P.; Izumi, N.; Koch, J. A.; Lerche, R. A.; Phillips, T. W.

    2003-03-01

    The success of the National Ignition Facility program will depend on diagnostic measurements which study the performance of inertial confinement fusion (ICF) experiments. Neutron yield, fusion-burn time history, and images are examples of important diagnostics. Neutron and x-ray images will record the geometries of compressed targets during the fusion-burn process. Such images provide a critical test of the accuracy of numerical modeling of ICF experiments. They also can provide valuable information in cases where experiments produce unexpected results. Although x-ray and neutron images provide similar data, they do have significant differences. X-ray images represent the distribution of high-temperature regions where fusion occurs, while neutron images directly reveal the spatial distribution of fusion-neutron emission. X-ray imaging has the advantage of a relatively straightforward path to the imaging system design. Neutron imaging, by using energy-resolved detection, offers the intriguing advantage of being able to provide independent images of burning and nonburning regions of the nuclear fuel. The usefulness of energy-resolved neutron imaging depends on both the information content of the data and on the quality of the data that can be recorded. The information content will relate to the characteristic neutron spectra that are associated with emission from different regions of the source. Numerical modeling of ICF fusion burn will be required to interpret the corresponding energy-dependent images. The exercise will be useful only if the images can be recorded with sufficient definition to reveal the spatial and energy-dependent features of interest. Several options are being evaluated with respect to the feasibility of providing the desired simultaneous spatial and energy resolution.

  3. The contents of dental implant patient information leaflets available within the UK.

    PubMed

    Barber, J; Puryer, J; McNally, L; O'Sullivan, D

    2015-02-01

    Patient information leaflets are designed to provide easy to follow information summaries and first point of contact information about treatment options. This survey reviewed the content of dental implant patient information leaflets, produced by implant companies and available within the UK in 2011. Dental implant companies in the UK were asked to provide samples of their patient information leaflets. The information within the leaflets was then summarised, including the quantity and the types of images used and whether the source of the information was given. Quantitative data was obtained on the amount of information provided, size of images and number of references. A response rate of 71% was obtained and 23 leaflets were studied. Great variation was found between the leaflets, with the word counts ranging from 88 to 5,434, and 44 different topics were identified. The majority of the images used were decorative, and none of the leaflets gave any reference to the sources of their information. Implant treatment was generally described in a positive way, with an emphasis on describing the treatment and the advantages. Much less information was given about the potential disadvantages and risks of complications or failure, including the relevance of periodontal disease or smoking. Implant patient information leaflets provided by dental implant companies should not be solely relied upon to provide patients with all the information they need to give informed consent to treatment.

  4. Information extraction from multi-institutional radiology reports.

    PubMed

    Hassanpour, Saeed; Langlotz, Curtis P

    2016-01-01

    The radiology report is the most important source of clinical imaging information. It documents critical information about the patient's health and the radiologist's interpretation of medical findings. It also communicates information to the referring physicians and records that information for future clinical and research use. Although efforts to structure some radiology report information through predefined templates are beginning to bear fruit, a large portion of radiology report information is entered in free text. The free text format is a major obstacle for rapid extraction and subsequent use of information by clinicians, researchers, and healthcare information systems. This difficulty is due to the ambiguity and subtlety of natural language, complexity of described images, and variations among different radiologists and healthcare organizations. As a result, radiology reports are used only once by the clinician who ordered the study and rarely are used again for research and data mining. In this work, machine learning techniques and a large multi-institutional radiology report repository are used to extract the semantics of the radiology report and overcome the barriers to the re-use of radiology report information in clinical research and other healthcare applications. We describe a machine learning system to annotate radiology reports and extract report contents according to an information model. This information model covers the majority of clinically significant contents in radiology reports and is applicable to a wide variety of radiology study types. Our automated approach uses discriminative sequence classifiers for named-entity recognition to extract and organize clinically significant terms and phrases consistent with the information model. We evaluated our information extraction system on 150 radiology reports from three major healthcare organizations and compared its results to a commonly used non-machine learning information extraction method. We also evaluated the generalizability of our approach across different organizations by training and testing our system on data from different organizations. Our results show the efficacy of our machine learning approach in extracting the information model's elements (10-fold cross-validation average performance: precision: 87%, recall: 84%, F1 score: 85%) and its superiority and generalizability compared to the common non-machine learning approach (p-value<0.05). Our machine learning information extraction approach provides an effective automatic method to annotate and extract clinically significant information from a large collection of free text radiology reports. This information extraction system can help clinicians better understand the radiology reports and prioritize their review process. In addition, the extracted information can be used by researchers to link radiology reports to information from other data sources such as electronic health records and the patient's genome. Extracted information also can facilitate disease surveillance, real-time clinical decision support for the radiologist, and content-based image retrieval. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Modulation of microsaccades by spatial frequency during object categorization.

    PubMed

    Craddock, Matt; Oppermann, Frank; Müller, Matthias M; Martinovic, Jasna

    2017-01-01

    The organization of visual processing into a coarse-to-fine information processing based on the spatial frequency properties of the input forms an important facet of the object recognition process. During visual object categorization tasks, microsaccades occur frequently. One potential functional role of these eye movements is to resolve high spatial frequency information. To assess this hypothesis, we examined the rate, amplitude and speed of microsaccades in an object categorization task in which participants viewed object and non-object images and classified them as showing either natural objects, man-made objects or non-objects. Images were presented unfiltered (broadband; BB) or filtered to contain only low (LSF) or high spatial frequency (HSF) information. This allowed us to examine whether microsaccades were modulated independently by the presence of a high-level feature - the presence of an object - and by low-level stimulus characteristics - spatial frequency. We found a bimodal distribution of saccades based on their amplitude, with a split between smaller and larger microsaccades at 0.4° of visual angle. The rate of larger saccades (⩾0.4°) was higher for objects than non-objects, and higher for objects with high spatial frequency content (HSF and BB objects) than for LSF objects. No effects were observed for smaller microsaccades (<0.4°). This is consistent with a role for larger microsaccades in resolving HSF information for object identification, and previous evidence that more microsaccades are directed towards informative image regions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Cloud-based application for rice moisture content measurement using image processing technique and perceptron neural network

    NASA Astrophysics Data System (ADS)

    Cruz, Febus Reidj G.; Padilla, Dionis A.; Hortinela, Carlos C.; Bucog, Krissel C.; Sarto, Mildred C.; Sia, Nirlu Sebastian A.; Chung, Wen-Yaw

    2017-02-01

    This study is about the determination of moisture content of milled rice using image processing technique and perceptron neural network algorithm. The algorithm involves several inputs that produces an output which is the moisture content of the milled rice. Several types of milled rice are used in this study, namely: Jasmine, Kokuyu, 5-Star, Ifugao, Malagkit, and NFA rice. The captured images are processed using MATLAB R2013a software. There is a USB dongle connected to the router which provided internet connection for online web access. The GizDuino IOT-644 is used for handling the temperature and humidity sensor, and for sending and receiving of data from computer to the cloud storage. The result is compared to the actual moisture content range using a moisture tester for milled rice. Based on results, this study provided accurate data in determining the moisture content of the milled rice.

  7. Fair Balance and Adequate Provision in Direct-to-Consumer Prescription Drug Online Banner Advertisements: A Content Analysis.

    PubMed

    Adams, Crystal

    2016-02-18

    The current direct-to-consumer advertising (DTCA) guidelines were developed with print, television, and radio media in mind, and there are no specific guidelines for online banner advertisements. This study evaluates how well Internet banner ads comply with existing Food and Drug Administration (FDA) guidelines for DTCA in other media. A content analysis was performed of 68 banner advertisements. A coding sheet was developed based on (1) FDA guidance documents for consumer-directed prescription drug advertisements and (2) previous DTCA content analyses. Specifically, the presence of a brief summary detailing the drug's risks and side effects or of a "major statement" identifying the drug's major risks, and the number and type of provisions made available to consumers for comprehensive information about the drug were coded. In addition, the criterion of "fair balance," the FDA's requirement that prescription drug ads balance information relating to the drug's risks with information relating to its benefits, was measured by numbering the benefit and risk facts identified in the ads and by examining the presentation of risk and benefit information. Every ad in the sample included a brief summary of risk information and at least one form of adequate provision as required by the FDA for broadcast ads that do not give audiences a brief summary of a drug's risks. No ads included a major statement. There were approximately 7.18 risk facts for every benefit fact. Most of the risks (98.85%, 1292/1307) were presented in the scroll portion of the ad, whereas most of the benefits (66.5%, 121/182) were presented in the main part of the ad. Out of 1307 risk facts, 1292 were qualitative and 15 were quantitative. Out of 182 benefit facts, 181 were qualitative and 1 was quantitative. The majority of ads showed neutral images during the disclosure of benefit and risk facts. Only 9% (6/68) of the ads displayed positive images and none displayed negative images when presenting risks facts. When benefit facts were being presented, 7% (5/68) showed only positive images. No ads showed negative images when the benefit facts were being presented. In the face of ambiguous regulatory guidelines for online banner promotion, drug companies appear to make an attempt to adapt to regulatory guidelines designed for traditional media. However, banner ads use various techniques of presentation to present the advertised drug in the best possible light. The FDA should formalize requirements that drug companies provide a brief summary and include multiple forms of adequate provision in banner ads.

  8. Image aesthetic quality evaluation using convolution neural network embedded learning

    NASA Astrophysics Data System (ADS)

    Li, Yu-xin; Pu, Yuan-yuan; Xu, Dan; Qian, Wen-hua; Wang, Li-peng

    2017-11-01

    A way of embedded learning convolution neural network (ELCNN) based on the image content is proposed to evaluate the image aesthetic quality in this paper. Our approach can not only solve the problem of small-scale data but also score the image aesthetic quality. First, we chose Alexnet and VGG_S to compare for confirming which is more suitable for this image aesthetic quality evaluation task. Second, to further boost the image aesthetic quality classification performance, we employ the image content to train aesthetic quality classification models. But the training samples become smaller and only using once fine-tuning cannot make full use of the small-scale data set. Third, to solve the problem in second step, a way of using twice fine-tuning continually based on the aesthetic quality label and content label respective is proposed, the classification probability of the trained CNN models is used to evaluate the image aesthetic quality. The experiments are carried on the small-scale data set of Photo Quality. The experiment results show that the classification accuracy rates of our approach are higher than the existing image aesthetic quality evaluation approaches.

  9. Quantum Image Steganography and Steganalysis Based On LSQu-Blocks Image Information Concealing Algorithm

    NASA Astrophysics Data System (ADS)

    A. AL-Salhi, Yahya E.; Lu, Songfeng

    2016-08-01

    Quantum steganography can solve some problems that are considered inefficient in image information concealing. It researches on Quantum image information concealing to have been widely exploited in recent years. Quantum image information concealing can be categorized into quantum image digital blocking, quantum image stereography, anonymity and other branches. Least significant bit (LSB) information concealing plays vital roles in the classical world because many image information concealing algorithms are designed based on it. Firstly, based on the novel enhanced quantum representation (NEQR), image uniform blocks clustering around the concrete the least significant Qu-block (LSQB) information concealing algorithm for quantum image steganography is presented. Secondly, a clustering algorithm is proposed to optimize the concealment of important data. Finally, we used Con-Steg algorithm to conceal the clustered image blocks. Information concealing located on the Fourier domain of an image can achieve the security of image information, thus we further discuss the Fourier domain LSQu-block information concealing algorithm for quantum image based on Quantum Fourier Transforms. In our algorithms, the corresponding unitary Transformations are designed to realize the aim of concealing the secret information to the least significant Qu-block representing color of the quantum cover image. Finally, the procedures of extracting the secret information are illustrated. Quantum image LSQu-block image information concealing algorithm can be applied in many fields according to different needs.

  10. Case-based lung image categorization and retrieval for interstitial lung diseases: clinical workflows.

    PubMed

    Depeursinge, Adrien; Vargas, Alejandro; Gaillard, Frédéric; Platon, Alexandra; Geissbuhler, Antoine; Poletti, Pierre-Alexandre; Müller, Henning

    2012-01-01

    Clinical workflows and user interfaces of image-based computer-aided diagnosis (CAD) for interstitial lung diseases in high-resolution computed tomography are introduced and discussed. Three use cases are implemented to assist students, radiologists, and physicians in the diagnosis workup of interstitial lung diseases. In a first step, the proposed system shows a three-dimensional map of categorized lung tissue patterns with quantification of the diseases based on texture analysis of the lung parenchyma. Then, based on the proportions of abnormal and normal lung tissue as well as clinical data of the patients, retrieval of similar cases is enabled using a multimodal distance aggregating content-based image retrieval (CBIR) and text-based information search. The global system leads to a hybrid detection-CBIR-based CAD, where detection-based and CBIR-based CAD show to be complementary both on the user's side and on the algorithmic side. The proposed approach is in accordance with the classical workflow of clinicians searching for similar cases in textbooks and personal collections. The developed system enables objective and customizable inter-case similarity assessment, and the performance measures obtained with a leave-one-patient-out cross-validation (LOPO CV) are representative of a clinical usage of the system.

  11. Content Based Image Retrieval based on Wavelet Transform coefficients distribution

    PubMed Central

    Lamard, Mathieu; Cazuguel, Guy; Quellec, Gwénolé; Bekri, Lynda; Roux, Christian; Cochener, Béatrice

    2007-01-01

    In this paper we propose a content based image retrieval method for diagnosis aid in medical fields. We characterize images without extracting significant features by using distribution of coefficients obtained by building signatures from the distribution of wavelet transform. The research is carried out by computing signature distances between the query and database images. Several signatures are proposed; they use a model of wavelet coefficient distribution. To enhance results, a weighted distance between signatures is used and an adapted wavelet base is proposed. Retrieval efficiency is given for different databases including a diabetic retinopathy, a mammography and a face database. Results are promising: the retrieval efficiency is higher than 95% for some cases using an optimization process. PMID:18003013

  12. Hybrid Histogram Descriptor: A Fusion Feature Representation for Image Retrieval.

    PubMed

    Feng, Qinghe; Hao, Qiaohong; Chen, Yuqi; Yi, Yugen; Wei, Ying; Dai, Jiangyan

    2018-06-15

    Currently, visual sensors are becoming increasingly affordable and fashionable, acceleratingly the increasing number of image data. Image retrieval has attracted increasing interest due to space exploration, industrial, and biomedical applications. Nevertheless, designing effective feature representation is acknowledged as a hard yet fundamental issue. This paper presents a fusion feature representation called a hybrid histogram descriptor (HHD) for image retrieval. The proposed descriptor comprises two histograms jointly: a perceptually uniform histogram which is extracted by exploiting the color and edge orientation information in perceptually uniform regions; and a motif co-occurrence histogram which is acquired by calculating the probability of a pair of motif patterns. To evaluate the performance, we benchmarked the proposed descriptor on RSSCN7, AID, Outex-00013, Outex-00014 and ETHZ-53 datasets. Experimental results suggest that the proposed descriptor is more effective and robust than ten recent fusion-based descriptors under the content-based image retrieval framework. The computational complexity was also analyzed to give an in-depth evaluation. Furthermore, compared with the state-of-the-art convolutional neural network (CNN)-based descriptors, the proposed descriptor also achieves comparable performance, but does not require any training process.

  13. Global Interior Robot Localisation by a Colour Content Image Retrieval System

    NASA Astrophysics Data System (ADS)

    Chaari, A.; Lelandais, S.; Montagne, C.; Ahmed, M. Ben

    2007-12-01

    We propose a new global localisation approach to determine a coarse position of a mobile robot in structured indoor space using colour-based image retrieval techniques. We use an original method of colour quantisation based on the baker's transformation to extract a two-dimensional colour pallet combining as well space and vicinity-related information as colourimetric aspect of the original image. We conceive several retrieving approaches bringing to a specific similarity measure [InlineEquation not available: see fulltext.] integrating the space organisation of colours in the pallet. The baker's transformation provides a quantisation of the image into a space where colours that are nearby in the original space are also nearby in the output space, thereby providing dimensionality reduction and invariance to minor changes in the image. Whereas the distance [InlineEquation not available: see fulltext.] provides for partial invariance to translation, sight point small changes, and scale factor. In addition to this study, we developed a hierarchical search module based on the logic classification of images following rooms. This hierarchical module reduces the searching indoor space and ensures an improvement of our system performances. Results are then compared with those brought by colour histograms provided with several similarity measures. In this paper, we focus on colour-based features to describe indoor images. A finalised system must obviously integrate other type of signature like shape and texture.

  14. Homepage to distribute the anatomy learning contents including Visible Korean products, comics, and books.

    PubMed

    Chung, Beom Sun; Chung, Min Suk

    2018-03-01

    The authors have operated the homepage (http://anatomy.co.kr) to provide the learning contents of anatomy. From the homepage, sectioned images, volume models, and surface models-all Visible Korean products-can be downloaded. The realistic images can be interactively manipulated, which will give rise to the interest in anatomy. The various anatomy comics (learning comics, comic strips, plastination comics, etc.) are approachable. Visitors can obtain the regional anatomy book with concise contents, mnemonics, and schematics as well as the simplified dissection manual and the pleasant anatomy essay. Medical students, health allied professional students, and even laypeople are expected to utilize the easy and comforting anatomy contents. It is hoped that other anatomists successively produce and distribute their own informative contents.

  15. Dealing with extreme data diversity: extraction and fusion from the growing types of document formats

    NASA Astrophysics Data System (ADS)

    David, Peter; Hansen, Nichole; Nolan, James J.; Alcocer, Pedro

    2015-05-01

    The growth in text data available online is accompanied by a growth in the diversity of available documents. Corpora with extreme heterogeneity in terms of file formats, document organization, page layout, text style, and content are common. The absence of meaningful metadata describing the structure of online and open-source data leads to text extraction results that contain no information about document structure and are cluttered with page headers and footers, web navigation controls, advertisements, and other items that are typically considered noise. We describe an approach to document structure and metadata recovery that uses visual analysis of documents to infer the communicative intent of the author. Our algorithm identifies the components of documents such as titles, headings, and body content, based on their appearance. Because it operates on an image of a document, our technique can be applied to any type of document, including scanned images. Our approach to document structure recovery considers a finer-grained set of component types than prior approaches. In this initial work, we show that a machine learning approach to document structure recovery using a feature set based on the geometry and appearance of images of documents achieves a 60% greater F1- score than a baseline random classifier.

  16. Content-based image retrieval for interstitial lung diseases using classification confidence

    NASA Astrophysics Data System (ADS)

    Dash, Jatindra Kumar; Mukhopadhyay, Sudipta; Prabhakar, Nidhi; Garg, Mandeep; Khandelwal, Niranjan

    2013-02-01

    Content Based Image Retrieval (CBIR) system could exploit the wealth of High-Resolution Computed Tomography (HRCT) data stored in the archive by finding similar images to assist radiologists for self learning and differential diagnosis of Interstitial Lung Diseases (ILDs). HRCT findings of ILDs are classified into several categories (e.g. consolidation, emphysema, ground glass, nodular etc.) based on their texture like appearances. Therefore, analysis of ILDs is considered as a texture analysis problem. Many approaches have been proposed for CBIR of lung images using texture as primitive visual content. This paper presents a new approach to CBIR for ILDs. The proposed approach makes use of a trained neural network (NN) to find the output class label of query image. The degree of confidence of the NN classifier is analyzed using Naive Bayes classifier that dynamically takes a decision on the size of the search space to be used for retrieval. The proposed approach is compared with three simple distance based and one classifier based texture retrieval approaches. Experimental results show that the proposed technique achieved highest average percentage precision of 92.60% with lowest standard deviation of 20.82%.

  17. XDS in healthcare: Could it lead to a duplication problem? Field study from GVR Sweden

    NASA Astrophysics Data System (ADS)

    Wintell, M.; Lundberg, N.; Lindsköld, L.

    2011-03-01

    Managing different registries and repositories within healthcare regions grows the risk of having almost the same information but with different status and with different content. This is due to the fact that when medical information is created it's done in a dynamical process that will lead to that information will change its contents during lifetime within the "active" healthcare phase. The information needs to be easy accessible, being the platform for making the medical decisions transparent. In the Region Västra Götaland (VGR), Sweden, data is shared from 29 X-ray departments with different Picture Archive and Communication Systems (PACS) and Radiology Information Systems (RIS) systems through the Infobroker solution, that's acts as a broker between the actors involved. Request/reports from RIS are stored as DIgital COmmunication in Medicine (DICOM)-Structured Reports (SR) objects, together with the images. Every status change within this activities are updated within the Information Infrastructure based on Integrating the Healthcare Enterprise (IHE) mission. Cross-enterprise Document Sharing for Imaging (XDS-I) were the registry and the central repository are the components used for sharing medical documentation. The VGR strategy was not to apply one regional XDS-I registry and repository, instead VGR applied an Enterprise Architecture (EA) intertwined with the Information Infrastructure for the dynamic delivery to consumers. The upcoming usage of different Regional XDS registries and repositories could lead to new ways of carrying out shared work but it can also lead into "problems". XDS and XDS-I implemented without a strategy could lead to increased numbers of status/versions but also duplication of information in the Information Infrastructure.

  18. Improved target detection by IR dual-band image fusion

    NASA Astrophysics Data System (ADS)

    Adomeit, U.; Ebert, R.

    2009-09-01

    Dual-band thermal imagers acquire information simultaneously in both the 8-12 μm (long-wave infrared, LWIR) and the 3-5 μm (mid-wave infrared, MWIR) spectral range. Compared to single-band thermal imagers they are expected to have several advantages in military applications. These advantages include the opportunity to use the best band for given atmospheric conditions (e. g. cold climate: LWIR, hot and humid climate: MWIR), the potential to better detect camouflaged targets and an improved discrimination between targets and decoys. Most of these advantages have not yet been verified and/or quantified. It is expected that image fusion allows better exploitation of the information content available with dual-band imagers especially with respect to detection of targets. We have developed a method for dual-band image fusion based on the apparent temperature differences in the two bands. This method showed promising results in laboratory tests. In order to evaluate its performance under operational conditions we conducted a field trial in an area with high thermal clutter. In such areas, targets are hardly to detect in single-band images because they vanish in the clutter structure. The image data collected in this field trial was used for a perception experiment. This perception experiment showed an enhanced target detection range and reduced false alarm rate for the fused images compared to the single-band images.

  19. CHRONIS: an animal chromosome image database.

    PubMed

    Toyabe, Shin-Ichi; Akazawa, Kouhei; Fukushi, Daisuke; Fukui, Kiichi; Ushiki, Tatsuo

    2005-01-01

    We have constructed a database system named CHRONIS (CHROmosome and Nano-Information System) to collect images of animal chromosomes and related nanotechnological information. CHRONIS enables rapid sharing of information on chromosome research among cell biologists and researchers in other fields via the Internet. CHRONIS is also intended to serve as a liaison tool for researchers who work in different centers. The image database contains more than 3,000 color microscopic images, including karyotypic images obtained from more than 1,000 species of animals. Researchers can browse the contents of the database using a usual World Wide Web interface in the following URL: http://chromosome.med.niigata-u.ac.jp/chronis/servlet/chronisservlet. The system enables users to input new images into the database, to locate images of interest by keyword searches, and to display the images with detailed information. CHRONIS has a wide range of applications, such as searching for appropriate probes for fluorescent in situ hybridization, comparing various kinds of microscopic images of a single species, and finding researchers working in the same field of interest.

  20. Using an image-extended relational database to support content-based image retrieval in a PACS.

    PubMed

    Traina, Caetano; Traina, Agma J M; Araújo, Myrian R B; Bueno, Josiane M; Chino, Fabio J T; Razente, Humberto; Azevedo-Marques, Paulo M

    2005-12-01

    This paper presents a new Picture Archiving and Communication System (PACS), called cbPACS, which has content-based image retrieval capabilities. The cbPACS answers range and k-nearest- neighbor similarity queries, employing a relational database manager extended to support images. The images are compared through their features, which are extracted by an image-processing module and stored in the extended relational database. The database extensions were developed aiming at efficiently answering similarity queries by taking advantage of specialized indexing methods. The main concept supporting the extensions is the definition, inside the relational manager, of distance functions based on features extracted from the images. An extension to the SQL language enables the construction of an interpreter that intercepts the extended commands and translates them to standard SQL, allowing any relational database server to be used. By now, the system implemented works on features based on color distribution of the images through normalized histograms as well as metric histograms. Metric histograms are invariant regarding scale, translation and rotation of images and also to brightness transformations. The cbPACS is prepared to integrate new image features, based on texture and shape of the main objects in the image.

  1. What do you think of my picture? Investigating factors of influence in profile images context perception

    NASA Astrophysics Data System (ADS)

    Mazza, F.; Da Silva, M. P.; Le Callet, P.; Heynderickx, I. E. J.

    2015-03-01

    Multimedia quality assessment has been an important research topic during the last decades. The original focus on artifact visibility has been extended during the years to aspects as image aesthetics, interestingness and memorability. More recently, Fedorovskaya proposed the concept of 'image psychology': this concept focuses on additional quality dimensions related to human content processing. While these additional dimensions are very valuable in understanding preferences, it is very hard to define, isolate and measure their effect on quality. In this paper we continue our research on face pictures investigating which image factors influence context perception. We collected perceived fit of a set of images to various content categories. These categories were selected based on current typologies in social networks. Logistic regression was adopted to model category fit based on images features. In this model we used both low level and high level features, the latter focusing on complex features related to image content. In order to extract these high level features, we relied on crowdsourcing, since computer vision algorithms are not yet sufficiently accurate for the features we needed. Our results underline the importance of some high level content features, e.g. the dress of the portrayed person and scene setting, in categorizing image.

  2. Holographic imaging based on time-domain data of natural-fiber-containing materials

    DOEpatents

    Bunch, Kyle J.; McMakin, Douglas L.

    2012-09-04

    Methods and apparatuses for imaging material properties in natural-fiber-containing materials can utilize time-domain data. In particular, images can be constructed that provide quantified measures of localized moisture content. For example, one or more antennas and at least one transceiver can be configured to collect time-domain data from radiation interacting with the natural-fiber-containing materials. The antennas and the transceivers are configured to transmit and receive electromagnetic radiation at one or more frequencies, which are between 50 MHz and 1 THz, according to a time-domain impulse function. A computing device is configured to transform the time-domain data to frequency-domain data, to apply a synthetic imaging algorithm for constructing a three-dimensional image of the natural-fiber-containing materials, and to provide a quantified measure of localized moisture content based on a pre-determined correlation of moisture content to frequency-domain data.

  3. Data augmentation-assisted deep learning of hand-drawn partially colored sketches for visual search

    PubMed Central

    Muhammad, Khan; Baik, Sung Wook

    2017-01-01

    In recent years, image databases are growing at exponential rates, making their management, indexing, and retrieval, very challenging. Typical image retrieval systems rely on sample images as queries. However, in the absence of sample query images, hand-drawn sketches are also used. The recent adoption of touch screen input devices makes it very convenient to quickly draw shaded sketches of objects to be used for querying image databases. This paper presents a mechanism to provide access to visual information based on users’ hand-drawn partially colored sketches using touch screen devices. A key challenge for sketch-based image retrieval systems is to cope with the inherent ambiguity in sketches due to the lack of colors, textures, shading, and drawing imperfections. To cope with these issues, we propose to fine-tune a deep convolutional neural network (CNN) using augmented dataset to extract features from partially colored hand-drawn sketches for query specification in a sketch-based image retrieval framework. The large augmented dataset contains natural images, edge maps, hand-drawn sketches, de-colorized, and de-texturized images which allow CNN to effectively model visual contents presented to it in a variety of forms. The deep features extracted from CNN allow retrieval of images using both sketches and full color images as queries. We also evaluated the role of partial coloring or shading in sketches to improve the retrieval performance. The proposed method is tested on two large datasets for sketch recognition and sketch-based image retrieval and achieved better classification and retrieval performance than many existing methods. PMID:28859140

  4. Information Technology and the Evolution of the Library

    DTIC Science & Technology

    2009-03-01

    Resource Commons/ Repository/ Federated Search ILS (GLADIS/Pathfinder - Millenium)/ Catalog/ Circulation/ Acquisitions/ Digital Object Content...content management services to help centralize and distribute digi- tal content from across the institution, software to allow for seamless federated ... search - ing across multiple databases, and imaging software to allow for daily reimaging of ter- minals to reduce security concerns that otherwise

  5. Deeply learnt hashing forests for content based image retrieval in prostate MR images

    NASA Astrophysics Data System (ADS)

    Shah, Amit; Conjeti, Sailesh; Navab, Nassir; Katouzian, Amin

    2016-03-01

    Deluge in the size and heterogeneity of medical image databases necessitates the need for content based retrieval systems for their efficient organization. In this paper, we propose such a system to retrieve prostate MR images which share similarities in appearance and content with a query image. We introduce deeply learnt hashing forests (DL-HF) for this image retrieval task. DL-HF effectively leverages the semantic descriptiveness of deep learnt Convolutional Neural Networks. This is used in conjunction with hashing forests which are unsupervised random forests. DL-HF hierarchically parses the deep-learnt feature space to encode subspaces with compact binary code words. We propose a similarity preserving feature descriptor called Parts Histogram which is derived from DL-HF. Correlation defined on this descriptor is used as a similarity metric for retrieval from the database. Validations on publicly available multi-center prostate MR image database established the validity of the proposed approach. The proposed method is fully-automated without any user-interaction and is not dependent on any external image standardization like image normalization and registration. This image retrieval method is generalizable and is well-suited for retrieval in heterogeneous databases other imaging modalities and anatomies.

  6. Plant trait detection with multi-scale spectrometry

    NASA Astrophysics Data System (ADS)

    Gamon, J. A.; Wang, R.

    2017-12-01

    Proximal and remote sensing using imaging spectrometry offers new opportunities for detecting plant traits, with benefits for phenotyping, productivity estimation, stress detection, and biodiversity studies. Using proximal and airborne spectrometry, we evaluated variation in plant optical properties at various spatial and spectral scales with the goal of identifying optimal scales for distinguishing plant traits related to photosynthetic function. Using directed approaches based on physiological vegetation indices, and statistical approaches based on spectral information content, we explored alternate ways of distinguishing plant traits with imaging spectrometry. With both leaf traits and canopy structure contributing to the signals, results exhibit a strong scale dependence. Our results demonstrate the benefits of multi-scale experimental approaches within a clear conceptual framework when applying remote sensing methods to plant trait detection for phenotyping, productivity, and biodiversity studies.

  7. A novel 3D shape descriptor for automatic retrieval of anatomical structures from medical images

    NASA Astrophysics Data System (ADS)

    Nunes, Fátima L. S.; Bergamasco, Leila C. C.; Delmondes, Pedro H.; Valverde, Miguel A. G.; Jackowski, Marcel P.

    2017-03-01

    Content-based image retrieval (CBIR) aims at retrieving from a database objects that are similar to an object provided by a query, by taking into consideration a set of extracted features. While CBIR has been widely applied in the two-dimensional image domain, the retrieval of3D objects from medical image datasets using CBIR remains to be explored. In this context, the development of descriptors that can capture information specific to organs or structures is desirable. In this work, we focus on the retrieval of two anatomical structures commonly imaged by Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) techniques, the left ventricle of the heart and blood vessels. Towards this aim, we developed the Area-Distance Local Descriptor (ADLD), a novel 3D local shape descriptor that employs mesh geometry information, namely facet area and distance from centroid to surface, to identify shape changes. Because ADLD only considers surface meshes extracted from volumetric medical images, it substantially diminishes the amount of data to be analyzed. A 90% precision rate was obtained when retrieving both convex (left ventricle) and non-convex structures (blood vessels), allowing for detection of abnormalities associated with changes in shape. Thus, ADLD has the potential to aid in the diagnosis of a wide range of vascular and cardiac diseases.

  8. Latent Semantic Analysis as a Method of Content-Based Image Retrieval in Medical Applications

    ERIC Educational Resources Information Center

    Makovoz, Gennadiy

    2010-01-01

    The research investigated whether a Latent Semantic Analysis (LSA)-based approach to image retrieval can map pixel intensity into a smaller concept space with good accuracy and reasonable computational cost. From a large set of M computed tomography (CT) images, a retrieval query found all images for a particular patient based on semantic…

  9. The state of the art of medical imaging technology: from creation to archive and back.

    PubMed

    Gao, Xiaohong W; Qian, Yu; Hui, Rui

    2011-01-01

    Medical imaging has learnt itself well into modern medicine and revolutionized medical industry in the last 30 years. Stemming from the discovery of X-ray by Nobel laureate Wilhelm Roentgen, radiology was born, leading to the creation of large quantities of digital images as opposed to film-based medium. While this rich supply of images provides immeasurable information that would otherwise not be possible to obtain, medical images pose great challenges in archiving them safe from corrupted, lost and misuse, retrievable from databases of huge sizes with varying forms of metadata, and reusable when new tools for data mining and new media for data storing become available. This paper provides a summative account on the creation of medical imaging tomography, the development of image archiving systems and the innovation from the existing acquired image data pools. The focus of this paper is on content-based image retrieval (CBIR), in particular, for 3D images, which is exemplified by our developed online e-learning system, MIRAGE, home to a repository of medical images with variety of domains and different dimensions. In terms of novelties, the facilities of CBIR for 3D images coupled with image annotation in a fully automatic fashion have been developed and implemented in the system, resonating with future versatile, flexible and sustainable medical image databases that can reap new innovations.

  10. The State of the Art of Medical Imaging Technology: from Creation to Archive and Back

    PubMed Central

    Gao, Xiaohong W; Qian, Yu; Hui, Rui

    2011-01-01

    Medical imaging has learnt itself well into modern medicine and revolutionized medical industry in the last 30 years. Stemming from the discovery of X-ray by Nobel laureate Wilhelm Roentgen, radiology was born, leading to the creation of large quantities of digital images as opposed to film-based medium. While this rich supply of images provides immeasurable information that would otherwise not be possible to obtain, medical images pose great challenges in archiving them safe from corrupted, lost and misuse, retrievable from databases of huge sizes with varying forms of metadata, and reusable when new tools for data mining and new media for data storing become available. This paper provides a summative account on the creation of medical imaging tomography, the development of image archiving systems and the innovation from the existing acquired image data pools. The focus of this paper is on content-based image retrieval (CBIR), in particular, for 3D images, which is exemplified by our developed online e-learning system, MIRAGE, home to a repository of medical images with variety of domains and different dimensions. In terms of novelties, the facilities of CBIR for 3D images coupled with image annotation in a fully automatic fashion have been developed and implemented in the system, resonating with future versatile, flexible and sustainable medical image databases that can reap new innovations. PMID:21915232

  11. LandEx - Fast, FOSS-Based Application for Query and Retrieval of Land Cover Patterns

    NASA Astrophysics Data System (ADS)

    Netzel, P.; Stepinski, T.

    2012-12-01

    The amount of satellite-based spatial data is continuously increasing making a development of efficient data search tools a priority. The bulk of existing research on searching satellite-gathered data concentrates on images and is based on the concept of Content-Based Image Retrieval (CBIR); however, available solutions are not efficient and robust enough to be put to use as deployable web-based search tools. Here we report on development of a practical, deployable tool that searches classified, rather than raw image. LandEx (Landscape Explorer) is a GeoWeb-based tool for Content-Based Pattern Retrieval (CBPR) contained within the National Land Cover Dataset 2006 (NLCD2006). The USGS-developed NLCD2006 is derived from Landsat multispectral images; it covers the entire conterminous U.S. with the resolution of 30 meters/pixel and it depicts 16 land cover classes. The size of NLCD2006 is about 10 Gpixels (161,000 x 100,000 pixels). LandEx is a multi-tier GeoWeb application based on Open Source Software. Main components are: GeoExt/OpenLayers (user interface), GeoServer (OGC WMS, WCS and WPS server), and GRASS (calculation engine). LandEx performs search using query-by-example approach: user selects a reference scene (exhibiting a chosen pattern of land cover classes) and the tool produces, in real time, a map indicating a degree of similarity between the reference pattern and all local patterns across the U.S. Scene pattern is encapsulated by a 2D histogram of classes and sizes of single-class clumps. Pattern similarity is based on the notion of mutual information. The resultant similarity map can be viewed and navigated in a web browser, or it can download as a GeoTiff file for more in-depth analysis. The LandEx is available at http://sil.uc.edu

  12. BOREAS Level-3b Landsat TM Imagery: At-sensor Radiances in BSQ Format

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Nickeson, Jaime; Knapp, David; Newcomer, Jeffrey A.; Cihlar, Josef

    2000-01-01

    For BOREAS, the level-3b Landsat TM data, along with the other remotely sensed images, were collected in order to provide spatially extensive information over the primary study areas. This information includes radiant energy, detailed land cover, and biophysical parameter maps such as FPAR and LAI. Although very similar in content to the level-3a Landsat TM products, the level-3b images were created to provide users with a directly usable at-sensor radiance image. Geographically, the level-3b images cover the BOREAS NSA and SSA. Temporally, the images cover the period of 22-Jun-1984 to 09-Jul-1996. The images are available in binary, image format files.

  13. Monitoring of live cell cultures during apoptosis by phase imaging and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Sharikova, Anna; Saide, George; Sfakis, Lauren; Park, Jun Yong; Desta, Habben; Maloney, Maxwell C.; Castracane, James; Mahajan, Supriya D.; Khmaladze, Alexander

    2017-02-01

    Non-invasive live cell measurements are an important tool in biomedical research. We present a combined digital holography/Raman spectroscopy technique to study live cell cultures during apoptosis. Digital holographic microscopy records an interference pattern between object and reference waves, so that the computationally reconstructed holographic image contains both amplitude and phase information about the sample. When the phase is mapped across the sample and converted into height information for each pixel, a three dimensional image is obtained. The measurement of live cell cultures by digital holographic microscopy yields information about cell shape and volume, changes to which are reflective of alterations in cell cycle and initiation of cell death mechanisms. Raman spectroscopy, on the other hand, is sensitive to rotational and vibrational molecular transitions, as well as intermolecular vibrations. Therefore, Raman spectroscopy provides complementary information about cells, such as protein, lipid and nucleic acid content, and, particularly, the spectral signatures associated with structural changes in molecules. The cell cultures are kept in the temperature-controlled environmental chamber during the experiment, which allows monitoring over multiple cell cycles. The DHM system combines a visible (red) laser source with conventional microscope base, and LabVIEW-run data processing. We analyzed and compared cell culture information obtained by these two methods.

  14. Mosaicing of single plane illumination microscopy images using groupwise registration and fast content-based image fusion

    NASA Astrophysics Data System (ADS)

    Preibisch, Stephan; Rohlfing, Torsten; Hasak, Michael P.; Tomancak, Pavel

    2008-03-01

    Single Plane Illumination Microscopy (SPIM; Huisken et al., Nature 305(5686):1007-1009, 2004) is an emerging microscopic technique that enables live imaging of large biological specimens in their entirety. By imaging the living biological sample from multiple angles SPIM has the potential to achieve isotropic resolution throughout even relatively large biological specimens. For every angle, however, only a relatively shallow section of the specimen is imaged with high resolution, whereas deeper regions appear increasingly blurred. In order to produce a single, uniformly high resolution image, we propose here an image mosaicing algorithm that combines state of the art groupwise image registration for alignment with content-based image fusion to prevent degrading of the fused image due to regional blurring of the input images. For the registration stage, we introduce an application-specific groupwise transformation model that incorporates per-image as well as groupwise transformation parameters. We also propose a new fusion algorithm based on Gaussian filters, which is substantially faster than fusion based on local image entropy. We demonstrate the performance of our mosaicing method on data acquired from living embryos of the fruit fly, Drosophila, using four and eight angle acquisitions.

  15. Summarizing Audiovisual Contents of a Video Program

    NASA Astrophysics Data System (ADS)

    Gong, Yihong

    2003-12-01

    In this paper, we focus on video programs that are intended to disseminate information and knowledge such as news, documentaries, seminars, etc, and present an audiovisual summarization system that summarizes the audio and visual contents of the given video separately, and then integrating the two summaries with a partial alignment. The audio summary is created by selecting spoken sentences that best present the main content of the audio speech while the visual summary is created by eliminating duplicates/redundancies and preserving visually rich contents in the image stream. The alignment operation aims to synchronize each spoken sentence in the audio summary with its corresponding speaker's face and to preserve the rich content in the visual summary. A Bipartite Graph-based audiovisual alignment algorithm is developed to efficiently find the best alignment solution that satisfies these alignment requirements. With the proposed system, we strive to produce a video summary that: (1) provides a natural visual and audio content overview, and (2) maximizes the coverage for both audio and visual contents of the original video without having to sacrifice either of them.

  16. Assessing clutter reduction in parallel coordinates using image processing techniques

    NASA Astrophysics Data System (ADS)

    Alhamaydh, Heba; Alzoubi, Hussein; Almasaeid, Hisham

    2018-01-01

    Information visualization has appeared as an important research field for multidimensional data and correlation analysis in recent years. Parallel coordinates (PCs) are one of the popular techniques to visual high-dimensional data. A problem with the PCs technique is that it suffers from crowding, a clutter which hides important data and obfuscates the information. Earlier research has been conducted to reduce clutter without loss in data content. We introduce the use of image processing techniques as an approach for assessing the performance of clutter reduction techniques in PC. We use histogram analysis as our first measure, where the mean feature of the color histograms of the possible alternative orderings of coordinates for the PC images is calculated and compared. The second measure is the extracted contrast feature from the texture of PC images based on gray-level co-occurrence matrices. The results show that the best PC image is the one that has the minimal mean value of the color histogram feature and the maximal contrast value of the texture feature. In addition to its simplicity, the proposed assessment method has the advantage of objectively assessing alternative ordering of PC visualization.

  17. Automated image-based phenotypic analysis in zebrafish embryos

    PubMed Central

    Vogt, Andreas; Cholewinski, Andrzej; Shen, Xiaoqiang; Nelson, Scott; Lazo, John S.; Tsang, Michael; Hukriede, Neil A.

    2009-01-01

    Presently, the zebrafish is the only vertebrate model compatible with contemporary paradigms of drug discovery. Zebrafish embryos are amenable to automation necessary for high-throughput chemical screens, and optical transparency makes them potentially suited for image-based screening. However, the lack of tools for automated analysis of complex images presents an obstacle to utilizing the zebrafish as a high-throughput screening model. We have developed an automated system for imaging and analyzing zebrafish embryos in multi-well plates regardless of embryo orientation and without user intervention. Images of fluorescent embryos were acquired on a high-content reader and analyzed using an artificial intelligence-based image analysis method termed Cognition Network Technology (CNT). CNT reliably detected transgenic fluorescent embryos (Tg(fli1:EGFP)y1) arrayed in 96-well plates and quantified intersegmental blood vessel development in embryos treated with small molecule inhibitors of anigiogenesis. The results demonstrate it is feasible to adapt image-based high-content screening methodology to measure complex whole organism phenotypes. PMID:19235725

  18. Architecture for biomedical multimedia information delivery on the World Wide Web

    NASA Astrophysics Data System (ADS)

    Long, L. Rodney; Goh, Gin-Hua; Neve, Leif; Thoma, George R.

    1997-10-01

    Research engineers at the National Library of Medicine are building a prototype system for the delivery of multimedia biomedical information on the World Wide Web. This paper discuses the architecture and design considerations for the system, which will be used initially to make images and text from the third National Health and Nutrition Examination Survey (NHANES) publicly available. We categorized our analysis as follows: (1) fundamental software tools: we analyzed trade-offs among use of conventional HTML/CGI, X Window Broadway, and Java; (2) image delivery: we examined the use of unconventional TCP transmission methods; (3) database manager and database design: we discuss the capabilities and planned use of the Informix object-relational database manager and the planned schema for the HNANES database; (4) storage requirements for our Sun server; (5) user interface considerations; (6) the compatibility of the system with other standard research and analysis tools; (7) image display: we discuss considerations for consistent image display for end users. Finally, we discuss the scalability of the system in terms of incorporating larger or more databases of similar data, and the extendibility of the system for supporting content-based retrieval of biomedical images. The system prototype is called the Web-based Medical Information Retrieval System. An early version was built as a Java applet and tested on Unix, PC, and Macintosh platforms. This prototype used the MiniSQL database manager to do text queries on a small database of records of participants in the second NHANES survey. The full records and associated x-ray images were retrievable and displayable on a standard Web browser. A second version has now been built, also a Java applet, using the MySQL database manager.

  19. High-content analysis of single cells directly assembled on CMOS sensor based on color imaging.

    PubMed

    Tanaka, Tsuyoshi; Saeki, Tatsuya; Sunaga, Yoshihiko; Matsunaga, Tadashi

    2010-12-15

    A complementary metal oxide semiconductor (CMOS) image sensor was applied to high-content analysis of single cells which were assembled closely or directly onto the CMOS sensor surface. The direct assembling of cell groups on CMOS sensor surface allows large-field (6.66 mm×5.32 mm in entire active area of CMOS sensor) imaging within a second. Trypan blue-stained and non-stained cells in the same field area on the CMOS sensor were successfully distinguished as white- and blue-colored images under white LED light irradiation. Furthermore, the chemiluminescent signals of each cell were successfully visualized as blue-colored images on CMOS sensor only when HeLa cells were placed directly on the micro-lens array of the CMOS sensor. Our proposed approach will be a promising technique for real-time and high-content analysis of single cells in a large-field area based on color imaging. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Effects of Time-Compressed Narration and Representational Adjunct Images on Cued-Recall, Content Recognition, and Learner Satisfaction

    ERIC Educational Resources Information Center

    Ritzhaupt, Albert Dieter; Barron, Ann

    2008-01-01

    The purpose of this study was to investigate the effect of time-compressed narration and representational adjunct images on a learner's ability to recall and recognize information. The experiment was a 4 Audio Speeds (1.0 = normal vs. 1.5 = moderate vs. 2.0 = fast vs. 2.5 = fastest rate) x Adjunct Image (Image Present vs. Image Absent) factorial…

  1. Phenotypic feature quantification of patient derived 3D cancer spheroids in fluorescence microscopy image

    NASA Astrophysics Data System (ADS)

    Kang, Mi-Sun; Rhee, Seon-Min; Seo, Ji-Hyun; Kim, Myoung-Hee

    2017-03-01

    Patients' responses to a drug differ at the cellular level. Here, we present an image-based cell phenotypic feature quantification method for predicting the responses of patient-derived glioblastoma cells to a particular drug. We used high-content imaging to understand the features of patient-derived cancer cells. A 3D spheroid culture formation resembles the in vivo environment more closely than 2D adherent cultures do, and it allows for the observation of cellular aggregate characteristics. However, cell analysis at the individual level is more challenging. In this paper, we demonstrate image-based phenotypic screening of the nuclei of patient-derived cancer cells. We first stitched the images of each well of the 384-well plate with the same state. We then used intensity information to detect the colonies. The nuclear intensity and morphological characteristics were used for the segmentation of individual nuclei. Next, we calculated the position of each nucleus that is appeal of the spatial pattern of cells in the well environment. Finally, we compared the results obtained using 3D spheroid culture cells with those obtained using 2D adherent culture cells from the same patient being treated with the same drugs. This technique could be applied for image-based phenotypic screening of cells to determine the patient's response to the drug.

  2. Disability in Physical Education Textbooks: An Analysis of Image Content

    ERIC Educational Resources Information Center

    Taboas-Pais, Maria Ines; Rey-Cao, Ana

    2012-01-01

    The aim of this paper is to show how images of disability are portrayed in physical education textbooks for secondary schools in Spain. The sample was composed of 3,316 images published in 36 textbooks by 10 publishing houses. A content analysis was carried out using a coding scheme based on categories employed in other similar studies and adapted…

  3. Localization-based super-resolution imaging meets high-content screening.

    PubMed

    Beghin, Anne; Kechkar, Adel; Butler, Corey; Levet, Florian; Cabillic, Marine; Rossier, Olivier; Giannone, Gregory; Galland, Rémi; Choquet, Daniel; Sibarita, Jean-Baptiste

    2017-12-01

    Single-molecule localization microscopy techniques have proven to be essential tools for quantitatively monitoring biological processes at unprecedented spatial resolution. However, these techniques are very low throughput and are not yet compatible with fully automated, multiparametric cellular assays. This shortcoming is primarily due to the huge amount of data generated during imaging and the lack of software for automation and dedicated data mining. We describe an automated quantitative single-molecule-based super-resolution methodology that operates in standard multiwell plates and uses analysis based on high-content screening and data-mining software. The workflow is compatible with fixed- and live-cell imaging and allows extraction of quantitative data like fluorophore photophysics, protein clustering or dynamic behavior of biomolecules. We demonstrate that the method is compatible with high-content screening using 3D dSTORM and DNA-PAINT based super-resolution microscopy as well as single-particle tracking.

  4. Characterizing the information content of cloud thermodynamic phase retrievals from the notional PACE OCI shortwave reflectance measurements

    NASA Astrophysics Data System (ADS)

    Coddington, O. M.; Vukicevic, T.; Schmidt, K. S.; Platnick, S.

    2017-08-01

    We rigorously quantify the probability of liquid or ice thermodynamic phase using only shortwave spectral channels specific to the National Aeronautics and Space Administration's Moderate Resolution Imaging Spectroradiometer, Visible Infrared Imaging Radiometer Suite, and the notional future Plankton, Aerosol, Cloud, ocean Ecosystem imager. The results show that two shortwave-infrared channels (2135 and 2250 nm) provide more information on cloud thermodynamic phase than either channel alone; in one case, the probability of ice phase retrieval increases from 65 to 82% by combining 2135 and 2250 nm channels. The analysis is performed with a nonlinear statistical estimation approach, the GEneralized Nonlinear Retrieval Analysis (GENRA). The GENRA technique has previously been used to quantify the retrieval of cloud optical properties from passive shortwave observations, for an assumed thermodynamic phase. Here we present the methodology needed to extend the utility of GENRA to a binary thermodynamic phase space (i.e., liquid or ice). We apply formal information content metrics to quantify our results; two of these (mutual and conditional information) have not previously been used in the field of cloud studies.

  5. Content of Weblogs Written by Health Professionals

    PubMed Central

    Kaufman, Elinore J.; Asch, David A.; Armstrong, Katrina

    2008-01-01

    Background Medical weblogs (“blogs”) have emerged as a new connection between health professionals and the public. Objective To examine the scope and content of medical blogs and approximate how often blog authors commented about patients, violated patient privacy, or displayed a lack of professionalism. Design We defined medical blogs as those that contain some medical content and were apparently written by physicians or nurses. We used the Google search term “medical blog” to begin a modified snowball sampling method to identify sites posting entries from 1/1/06 through 12/14/06. We reviewed five entries per blog, categorizing content and characteristics. Results We identified 271 medical blogs. Over half (56.8%) of blog authors provided sufficient information in text or image to reveal their identities. Individual patients were described in 114 (42.1%) blogs. Patients were portrayed positively in 43 blogs (15.9%) and negatively in 48 blogs (17.7%). Of blogs that described interactions with individual patients, 45 (16.6%) included sufficient information for patients to identify their doctors or themselves. Three blogs showed recognizable photographic images of patients. Healthcare products were promoted, either by images or descriptions, in 31 (11.4%) blogs. Conclusions Blogs are a growing part of the public face of the health professions. They offer physicians and nurses the opportunity to share their narratives. They also risk revealing confidential information or, in their tone or content, risk reflecting poorly on the blog authors and their professions. The health professions should assume some responsibility for helping authors and readers negotiate these challenges. PMID:18649110

  6. Automatic graph-cut based segmentation of bones from knee magnetic resonance images for osteoarthritis research.

    PubMed

    Ababneh, Sufyan Y; Prescott, Jeff W; Gurcan, Metin N

    2011-08-01

    In this paper, a new, fully automated, content-based system is proposed for knee bone segmentation from magnetic resonance images (MRI). The purpose of the bone segmentation is to support the discovery and characterization of imaging biomarkers for the incidence and progression of osteoarthritis, a debilitating joint disease, which affects a large portion of the aging population. The segmentation algorithm includes a novel content-based, two-pass disjoint block discovery mechanism, which is designed to support automation, segmentation initialization, and post-processing. The block discovery is achieved by classifying the image content to bone and background blocks according to their similarity to the categories in the training data collected from typical bone structures. The classified blocks are then used to design an efficient graph-cut based segmentation algorithm. This algorithm requires constructing a graph using image pixel data followed by applying a maximum-flow algorithm which generates a minimum graph-cut that corresponds to an initial image segmentation. Content-based refinements and morphological operations are then applied to obtain the final segmentation. The proposed segmentation technique does not require any user interaction and can distinguish between bone and highly similar adjacent structures, such as fat tissues with high accuracy. The performance of the proposed system is evaluated by testing it on 376 MR images from the Osteoarthritis Initiative (OAI) database. This database included a selection of single images containing the femur and tibia from 200 subjects with varying levels of osteoarthritis severity. Additionally, a full three-dimensional segmentation of the bones from ten subjects with 14 slices each, and synthetic images with background having intensity and spatial characteristics similar to those of bone are used to assess the robustness and consistency of the developed algorithm. The results show an automatic bone detection rate of 0.99 and an average segmentation accuracy of 0.95 using the Dice similarity index. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Policy-Aware Content Reuse on the Web

    NASA Astrophysics Data System (ADS)

    Seneviratne, Oshani; Kagal, Lalana; Berners-Lee, Tim

    The Web allows users to share their work very effectively leading to the rapid re-use and remixing of content on the Web including text, images, and videos. Scientific research data, social networks, blogs, photo sharing sites and other such applications known collectively as the Social Web have lots of increasingly complex information. Such information from several Web pages can be very easily aggregated, mashed up and presented in other Web pages. Content generation of this nature inevitably leads to many copyright and license violations, motivating research into effective methods to detect and prevent such violations.

  8. Retrieving clinically relevant diabetic retinopathy images using a multi-class multiple-instance framework

    NASA Astrophysics Data System (ADS)

    Chandakkar, Parag S.; Venkatesan, Ragav; Li, Baoxin

    2013-02-01

    Diabetic retinopathy (DR) is a vision-threatening complication from diabetes mellitus, a medical condition that is rising globally. Unfortunately, many patients are unaware of this complication because of absence of symptoms. Regular screening of DR is necessary to detect the condition for timely treatment. Content-based image retrieval, using archived and diagnosed fundus (retinal) camera DR images can improve screening efficiency of DR. This content-based image retrieval study focuses on two DR clinical findings, microaneurysm and neovascularization, which are clinical signs of non-proliferative and proliferative diabetic retinopathy. The authors propose a multi-class multiple-instance image retrieval framework which deploys a modified color correlogram and statistics of steerable Gaussian Filter responses, for retrieving clinically relevant images from a database of DR fundus image database.

  9. The benefit of limb cloud imaging for tropospheric infrared limb sounding

    NASA Astrophysics Data System (ADS)

    Adams, S.; Spang, R.; Preusse, P.; Heinemann, G.

    2009-03-01

    Advances in detector technology enable a new generation of infrared limb sounders to measure 2-D images of the atmosphere. A proposed limb cloud imager (LCI) mode will measure clouds with very high spatial resolution. For the inference of temperature and trace gas distributions, detector pixels of the LCI have to be combined into super-pixels which provide the required signal-to-noise ratio and information content for the retrievals. This study examines the extent to which tropospheric coverage can be improved in comparison to limb sounding using a fixed field of view with the size of the super-pixels, as in conventional limb sounders. The study is based on cloud topographies derived from (a) IR brightness temperatures (BT) of geostationary weather satellites in conjunction with ECMWF temperature profiles and (b) ice and liquid water content data of the Consortium for Small-scale Modeling-Europe (COSMO-EU) of the German Weather Service. Limb cloud images are simulated by matching the cloud topography with the limb sounding line of sight (LOS). The analysis of the BT data shows that the reduction of the spatial sampling along the track has hardly any effect on the gain in information. The comparison between BT and COSMO-EU data identifies the strength of both data sets, which are the representation of the horizontal cloud extent for the BT data and the reproduction of the cloud amount for the COSMO-EU data. The results of the analysis of both data sets show the great advantage of the cloud imager. However, because both cloud data sets do not present the complete fine structure of the real cloud fields in the atmosphere it is assumed that the results tend to underestimate the increase in information. In conclusion, real measurements by such an instrument may result in an even higher benefit for tropospheric limb retrievals.

  10. The benefit of limb cloud imaging for infrared limb sounding of tropospheric trace gases

    NASA Astrophysics Data System (ADS)

    Adams, S.; Spang, R.; Preusse, P.; Heinemann, G.

    2009-06-01

    Advances in detector technology enable a new generation of infrared limb sounders to measure 2-D images of the atmosphere. A proposed limb cloud imager (LCI) mode will detect clouds with a spatial resolution unprecedented for limb sounding. For the inference of temperature and trace gas distributions, detector pixels of the LCI have to be combined into super-pixels which provide the required signal-to-noise and information content for the retrievals. This study examines the extent to which tropospheric coverage can be improved in comparison to limb sounding using a fixed field of view with the size of the super-pixels, as in conventional limb sounders. The study is based on cloud topographies derived from (a) IR brightness temperatures (BT) of geostationary weather satellites in conjunction with ECMWF temperature profiles and (b) ice and liquid water content data of the Consortium for Small-scale Modeling-Europe (COSMO-EU) of the German Weather Service. Limb cloud images are simulated by matching the cloud topography with the limb sounding line of sight (LOS). The analysis of the BT data shows that the reduction of the spatial sampling along the track has hardly any effect on the gain in information. The comparison between BT and COSMO-EU data identifies the strength of both data sets, which are the representation of the horizontal cloud extent for the BT data and the reproduction of the cloud amount for the COSMO-EU data. The results of the analysis of both data sets show the great advantage of the cloud imager. However, because both cloud data sets do not present the complete fine structure of the real cloud fields in the atmosphere it is assumed that the results tend to underestimate the increase in information. In conclusion, real measurements by such an instrument may result in an even higher benefit for tropospheric limb retrievals.

  11. A cloud-based multimodality case file for mobile devices.

    PubMed

    Balkman, Jason D; Loehfelm, Thomas W

    2014-01-01

    Recent improvements in Web and mobile technology, along with the widespread use of handheld devices in radiology education, provide unique opportunities for creating scalable, universally accessible, portable image-rich radiology case files. A cloud database and a Web-based application for radiologic images were developed to create a mobile case file with reasonable usability, download performance, and image quality for teaching purposes. A total of 75 radiology cases related to breast, thoracic, gastrointestinal, musculoskeletal, and neuroimaging subspecialties were included in the database. Breast imaging cases are the focus of this article, as they best demonstrate handheld display capabilities across a wide variety of modalities. This case subset also illustrates methods for adapting radiologic content to cloud platforms and mobile devices. Readers will gain practical knowledge about storage and retrieval of cloud-based imaging data, an awareness of techniques used to adapt scrollable and high-resolution imaging content for the Web, and an appreciation for optimizing images for handheld devices. The evaluation of this software demonstrates the feasibility of adapting images from most imaging modalities to mobile devices, even in cases of full-field digital mammograms, where high resolution is required to represent subtle pathologic features. The cloud platform allows cases to be added and modified in real time by using only a standard Web browser with no application-specific software. Challenges remain in developing efficient ways to generate, modify, and upload radiologic and supplementary teaching content to this cloud-based platform. Online supplemental material is available for this article. ©RSNA, 2014.

  12. The content of social media's shared images about Ebola: a retrospective study.

    PubMed

    Seltzer, E K; Jean, N S; Kramer-Golinkoff, E; Asch, D A; Merchant, R M

    2015-09-01

    Social media have strongly influenced awareness and perceptions of public health emergencies, but a considerable amount of social media content is now carried through images, rather than just text. This study's objective is to explore how image-sharing platforms are used for information dissemination in public health emergencies. Retrospective review of images posted on two popular image-sharing platforms to characterize public discourse about Ebola. Using the keyword '#ebola' we identified a 1% sample of images posted on Instagram and Flickr across two sequential weeks in November 2014. Images from both platforms were independently coded by two reviewers and characterized by themes. We reviewed 1217 images posted on Instagram and Flickr and identified themes. Nine distinct themes were identified. These included: images of health care workers and professionals [308 (25%)], West Africa [75 (6%)], the Ebola virus [59 (5%)], and artistic renderings of Ebola [64 (5%)]. Also identified were images with accompanying embedded text related to Ebola and associated: facts [68 (6%)], fears [40 (3%)], politics [46 (4%)], and jokes [284 (23%)]. Several [273 (22%)] images were unrelated to Ebola or its sequelae. Instagram images were primarily coded as jokes [255 (42%)] or unrelated [219 (36%)], while Flickr images primarily depicted health care workers and other professionals [281 (46%)] providing care or other services for prevention or treatment. Image sharing platforms are being used for information exchange about public health crises, like Ebola. Use differs by platform and discerning these differences can help inform future uses for health care professionals and researchers seeking to assess public fears and misinformation or provide targeted education/awareness interventions. Copyright © 2015 The Royal Institute of Public Health. All rights reserved.

  13. Discriminative and robust zero-watermarking scheme based on completed local binary pattern for authentication and copyright identification of medical images

    NASA Astrophysics Data System (ADS)

    Liu, Xiyao; Lou, Jieting; Wang, Yifan; Du, Jingyu; Zou, Beiji; Chen, Yan

    2018-03-01

    Authentication and copyright identification are two critical security issues for medical images. Although zerowatermarking schemes can provide durable, reliable and distortion-free protection for medical images, the existing zerowatermarking schemes for medical images still face two problems. On one hand, they rarely considered the distinguishability for medical images, which is critical because different medical images are sometimes similar to each other. On the other hand, their robustness against geometric attacks, such as cropping, rotation and flipping, is insufficient. In this study, a novel discriminative and robust zero-watermarking (DRZW) is proposed to address these two problems. In DRZW, content-based features of medical images are first extracted based on completed local binary pattern (CLBP) operator to ensure the distinguishability and robustness, especially against geometric attacks. Then, master shares and ownership shares are generated from the content-based features and watermark according to (2,2) visual cryptography. Finally, the ownership shares are stored for authentication and copyright identification. For queried medical images, their content-based features are extracted and master shares are generated. Their watermarks for authentication and copyright identification are recovered by stacking the generated master shares and stored ownership shares. 200 different medical images of 5 types are collected as the testing data and our experimental results demonstrate that DRZW ensures both the accuracy and reliability of authentication and copyright identification. When fixing the false positive rate to 1.00%, the average value of false negative rates by using DRZW is only 1.75% under 20 common attacks with different parameters.

  14. Two and three-dimensional quantitative neutron imaging of the water distribution during ponded infiltration

    NASA Astrophysics Data System (ADS)

    Sacha, Jan; Snehota, Michal; Jelinkova, Vladimira

    2016-04-01

    Information on spatial and temporal water and air distribution in a soil sample during hydrological processes is important for evaluating current and developing new water transport models. Modern imaging techniques such as neutron imaging (NI) allow relatively short acquisition times and high resolution of images. At the same time, the appropriate data processing has to be applied to obtain results free of bias and artifacts. In this study a ponded infiltration experiments were conducted on two soil samples packed into the quartz glass columns of inner diameter of 29 and 34 mm, respectively. First sample was prepared by packing of fine and coarse fractions of sand and the second sample was packed using coarse sand and disks of fine porous ceramic. Ponded infiltration experiments conducted on both samples were monitored by neutron radiography to produce two dimensional (2D) projection images during the transient phase of infiltration. During the steady state flow stage of experiments neutron tomography was utilized to obtain three-dimensional (3D) information on gradual water redistribution. The acquired radiographic images were normalized for background noise and spatial inhomogeneity of the detector, fluctuations of the neutron flux in time and for spatial inhomogeneity of the neutron beam. The radiograms of dry sample were subtracted from all subsequent radiograms to determine water thickness in the 2D projection images. All projections were corrected for beam hardening and neutron scattering by empirical method of Kang et al. (2013). Parameters of the correction method uses were identified by two different approaches. The first approach was based on fitting the NI derived water thickness representing the water filled region in the layer of water above the sample surface to actual water thickness. In the second approach the NI derived volume of water in the entire sample in given time was fitted to corresponding gravimetrically determined amount of water in the sample. Tomography images were reconstructed from the both corrected and uncorrected water thickness maps to obtain the 3D spatial distribution of water content within the sample. Without the correction the beam hardening and scattering effects overestimated the water content values close to the sample perimeter and underestimated the values close to the center of the sample, however the total water content of whole sample was the same in both cases.

  15. WE-AB-BRA-01: 3D-2D Image Registration for Target Localization in Spine Surgery: Comparison of Similarity Metrics Against Robustness to Content Mismatch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Silva, T; Ketcha, M; Siewerdsen, J H

    Purpose: In image-guided spine surgery, mapping 3D preoperative images to 2D intraoperative images via 3D-2D registration can provide valuable assistance in target localization. However, the presence of surgical instrumentation, hardware implants, and soft-tissue resection/displacement causes mismatches in image content, confounding existing registration methods. Manual/semi-automatic methods to mask such extraneous content is time consuming, user-dependent, error prone, and disruptive to clinical workflow. We developed and evaluated 2 novel similarity metrics within a robust registration framework to overcome such challenges in target localization. Methods: An IRB-approved retrospective study in 19 spine surgery patients included 19 preoperative 3D CT images and 50 intraoperativemore » mobile radiographs in cervical, thoracic, and lumbar spine regions. A neuroradiologist provided truth definition of vertebral positions in CT and radiography. 3D-2D registration was performed using the CMA-ES optimizer with 4 gradient-based image similarity metrics: (1) gradient information (GI); (2) gradient correlation (GC); (3) a novel variant referred to as gradient orientation (GO); and (4) a second variant referred to as truncated gradient correlation (TGC). Registration accuracy was evaluated in terms of the projection distance error (PDE) of the vertebral levels. Results: Conventional similarity metrics were susceptible to gross registration error and failure modes associated with the presence of surgical instrumentation: for GI, the median PDE and interquartile range was 33.0±43.6 mm; similarly for GC, PDE = 23.0±92.6 mm respectively. The robust metrics GO and TGC, on the other hand, demonstrated major improvement in PDE (7.6 ±9.4 mm and 8.1± 18.1 mm, respectively) and elimination of gross failure modes. Conclusion: The proposed GO and TGC similarity measures improve registration accuracy and robustness to gross failure in the presence of strong image content mismatch. Such registration capability could offer valuable assistance in target localization without disruption of clinical workflow. G. Kleinszig and S. Vogt are employees of Siemens Healthcare.« less

  16. Automatic diet monitoring: a review of computer vision and wearable sensor-based methods.

    PubMed

    Hassannejad, Hamid; Matrella, Guido; Ciampolini, Paolo; De Munari, Ilaria; Mordonini, Monica; Cagnoni, Stefano

    2017-09-01

    Food intake and eating habits have a significant impact on people's health. Widespread diseases, such as diabetes and obesity, are directly related to eating habits. Therefore, monitoring diet can be a substantial base for developing methods and services to promote healthy lifestyle and improve personal and national health economy. Studies have demonstrated that manual reporting of food intake is inaccurate and often impractical. Thus, several methods have been proposed to automate the process. This article reviews the most relevant and recent researches on automatic diet monitoring, discussing their strengths and weaknesses. In particular, the article reviews two approaches to this problem, accounting for most of the work in the area. The first approach is based on image analysis and aims at extracting information about food content automatically from food images. The second one relies on wearable sensors and has the detection of eating behaviours as its main goal.

  17. Evaluating structural connectomics in relation to different Q-space sampling techniques.

    PubMed

    Rodrigues, Paulo; Prats-Galino, Alberto; Gallardo-Pujol, David; Villoslada, Pablo; Falcon, Carles; Prckovska, Vesna

    2013-01-01

    Brain networks are becoming forefront research in neuroscience. Network-based analysis on the functional and structural connectomes can lead to powerful imaging markers for brain diseases. However, constructing the structural connectome can be based upon different acquisition and reconstruction techniques whose information content and mutual differences has not yet been properly studied in a unified framework. The variations of the structural connectome if not properly understood can lead to dangerous conclusions when performing these type of studies. In this work we present evaluation of the structural connectome by analysing and comparing graph-based measures on real data acquired by the three most important Diffusion Weighted Imaging techniques: DTI, HARDI and DSI. We thus come to several important conclusions demonstrating that even though the different techniques demonstrate differences in the anatomy of the reconstructed fibers the respective connectomes show variations of 20%.

  18. Depth-resolved incoherent and coherent wide-field high-content imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    So, Peter T.

    2016-03-01

    Recent advances in depth-resolved wide-field imaging technique has enabled many high throughput applications in biology and medicine. Depth resolved imaging of incoherent signals can be readily accomplished with structured light illumination or nonlinear temporal focusing. The integration of these high throughput systems with novel spectroscopic resolving elements further enable high-content information extraction. We will introduce a novel near common-path interferometer and demonstrate its uses in toxicology and cancer biology applications. The extension of incoherent depth-resolved wide-field imaging to coherent modality is non-trivial. Here, we will cover recent advances in wide-field 3D resolved mapping of refractive index, absorbance, and vibronic components in biological specimens.

  19. Homepage to distribute the anatomy learning contents including Visible Korean products, comics, and books

    PubMed Central

    Chung, Beom Sun

    2018-01-01

    The authors have operated the homepage (http://anatomy.co.kr) to provide the learning contents of anatomy. From the homepage, sectioned images, volume models, and surface models—all Visible Korean products—can be downloaded. The realistic images can be interactively manipulated, which will give rise to the interest in anatomy. The various anatomy comics (learning comics, comic strips, plastination comics, etc.) are approachable. Visitors can obtain the regional anatomy book with concise contents, mnemonics, and schematics as well as the simplified dissection manual and the pleasant anatomy essay. Medical students, health allied professional students, and even laypeople are expected to utilize the easy and comforting anatomy contents. It is hoped that other anatomists successively produce and distribute their own informative contents. PMID:29644104

  20. Informatics in radiology: use of CouchDB for document-based storage of DICOM objects.

    PubMed

    Rascovsky, Simón J; Delgado, Jorge A; Sanz, Alexander; Calvo, Víctor D; Castrillón, Gabriel

    2012-01-01

    Picture archiving and communication systems traditionally have depended on schema-based Structured Query Language (SQL) databases for imaging data management. To optimize database size and performance, many such systems store a reduced set of Digital Imaging and Communications in Medicine (DICOM) metadata, discarding informational content that might be needed in the future. As an alternative to traditional database systems, document-based key-value stores recently have gained popularity. These systems store documents containing key-value pairs that facilitate data searches without predefined schemas. Document-based key-value stores are especially suited to archive DICOM objects because DICOM metadata are highly heterogeneous collections of tag-value pairs conveying specific information about imaging modalities, acquisition protocols, and vendor-supported postprocessing options. The authors used an open-source document-based database management system (Apache CouchDB) to create and test two such databases; CouchDB was selected for its overall ease of use, capability for managing attachments, and reliance on HTTP and Representational State Transfer standards for accessing and retrieving data. A large database was created first in which the DICOM metadata from 5880 anonymized magnetic resonance imaging studies (1,949,753 images) were loaded by using a Ruby script. To provide the usual DICOM query functionality, several predefined "views" (standard queries) were created by using JavaScript. For performance comparison, the same queries were executed in both the CouchDB database and a SQL-based DICOM archive. The capabilities of CouchDB for attachment management and database replication were separately assessed in tests of a similar, smaller database. Results showed that CouchDB allowed efficient storage and interrogation of all DICOM objects; with the use of information retrieval algorithms such as map-reduce, all the DICOM metadata stored in the large database were searchable with only a minimal increase in retrieval time over that with the traditional database management system. Results also indicated possible uses for document-based databases in data mining applications such as dose monitoring, quality assurance, and protocol optimization. RSNA, 2012

  1. Accessibility of online self-management support websites for people with osteoarthritis: A text content analysis.

    PubMed

    Chapman, Lara; Brooks, Charlotte; Lawson, Jem; Russell, Cynthia; Adams, Jo

    2017-01-01

    Objectives This study assessed accessibility of online self-management support webpages for people with osteoarthritis by considering readability of text and inclusion of images and videos. Methods Eight key search terms developed and agreed with patient and public involvement representatives were entered into the Google search engine. Webpages from the first page of Google search results were identified. Readability of webpage text was assessed using two standardised readability indexes, and the number of images and videos included on each webpage was recorded. Results Forty-nine webpages met the inclusion criteria and were assessed. Only five of the webpages met the recommended reading level for health education literature. Almost half (44.9%) of webpages did not include any informative images to support written information. A minority of the webpages (6.12%) included relevant videos. Discussion Information provided on health webpages aiming to support patients to self-manage osteoarthritis may not be read, understood or used effectively by many people accessing it. Recommendations include using accessible language in health information, supplementing written information with visual resources and reviewing content and readability in collaboration with patient and public involvement representatives.

  2. Content Based Image Retrieval by Using Color Descriptor and Discrete Wavelet Transform.

    PubMed

    Ashraf, Rehan; Ahmed, Mudassar; Jabbar, Sohail; Khalid, Shehzad; Ahmad, Awais; Din, Sadia; Jeon, Gwangil

    2018-01-25

    Due to recent development in technology, the complexity of multimedia is significantly increased and the retrieval of similar multimedia content is a open research problem. Content-Based Image Retrieval (CBIR) is a process that provides a framework for image search and low-level visual features are commonly used to retrieve the images from the image database. The basic requirement in any image retrieval process is to sort the images with a close similarity in term of visually appearance. The color, shape and texture are the examples of low-level image features. The feature plays a significant role in image processing. The powerful representation of an image is known as feature vector and feature extraction techniques are applied to get features that will be useful in classifying and recognition of images. As features define the behavior of an image, they show its place in terms of storage taken, efficiency in classification and obviously in time consumption also. In this paper, we are going to discuss various types of features, feature extraction techniques and explaining in what scenario, which features extraction technique will be better. The effectiveness of the CBIR approach is fundamentally based on feature extraction. In image processing errands like object recognition and image retrieval feature descriptor is an immense among the most essential step. The main idea of CBIR is that it can search related images to an image passed as query from a dataset got by using distance metrics. The proposed method is explained for image retrieval constructed on YCbCr color with canny edge histogram and discrete wavelet transform. The combination of edge of histogram and discrete wavelet transform increase the performance of image retrieval framework for content based search. The execution of different wavelets is additionally contrasted with discover the suitability of specific wavelet work for image retrieval. The proposed algorithm is prepared and tried to implement for Wang image database. For Image Retrieval Purpose, Artificial Neural Networks (ANN) is used and applied on standard dataset in CBIR domain. The execution of the recommended descriptors is assessed by computing both Precision and Recall values and compared with different other proposed methods with demonstrate the predominance of our method. The efficiency and effectiveness of the proposed approach outperforms the existing research in term of average precision and recall values.

  3. Investigating the Link Between Radiologists Gaze, Diagnostic Decision, and Image Content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tourassi, Georgia; Voisin, Sophie; Paquit, Vincent C

    2013-01-01

    Objective: To investigate machine learning for linking image content, human perception, cognition, and error in the diagnostic interpretation of mammograms. Methods: Gaze data and diagnostic decisions were collected from six radiologists who reviewed 20 screening mammograms while wearing a head-mounted eye-tracker. Texture analysis was performed in mammographic regions that attracted radiologists attention and in all abnormal regions. Machine learning algorithms were investigated to develop predictive models that link: (i) image content with gaze, (ii) image content and gaze with cognition, and (iii) image content, gaze, and cognition with diagnostic error. Both group-based and individualized models were explored. Results: By poolingmore » the data from all radiologists machine learning produced highly accurate predictive models linking image content, gaze, cognition, and error. Merging radiologists gaze metrics and cognitive opinions with computer-extracted image features identified 59% of the radiologists diagnostic errors while confirming 96.2% of their correct diagnoses. The radiologists individual errors could be adequately predicted by modeling the behavior of their peers. However, personalized tuning appears to be beneficial in many cases to capture more accurately individual behavior. Conclusions: Machine learning algorithms combining image features with radiologists gaze data and diagnostic decisions can be effectively developed to recognize cognitive and perceptual errors associated with the diagnostic interpretation of mammograms.« less

  4. Multi-view information fusion for automatic BI-RADS description of mammographic masses

    NASA Astrophysics Data System (ADS)

    Narvaez, Fabián; Díaz, Gloria; Romero, Eduardo

    2011-03-01

    Most CBIR-based CAD systems (Content Based Image Retrieval systems for Computer Aided Diagnosis) identify lesions that are eventually relevant. These systems base their analysis upon a single independent view. This article presents a CBIR framework which automatically describes mammographic masses with the BI-RADS lexicon, fusing information from the two mammographic views. After an expert selects a Region of Interest (RoI) at the two views, a CBIR strategy searches similar masses in the database by automatically computing the Mahalanobis distance between shape and texture feature vectors of the mammography. The strategy was assessed in a set of 400 cases, for which the suggested descriptions were compared with the ground truth provided by the data base. Two information fusion strategies were evaluated, allowing a retrieval precision rate of 89.6% in the best scheme. Likewise, the best performance obtained for shape, margin and pathology description, using a ROC methodology, was reported as AUC = 0.86, AUC = 0.72 and AUC = 0.85, respectively.

  5. Retrieval of ice cloud properties using an optimal estimation algorithm and MODIS infrared observations. Part I: Forward model, error analysis, and information content

    PubMed Central

    Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Yang, Ping

    2018-01-01

    An optimal estimation (OE) retrieval method is developed to infer three ice cloud properties simultaneously: optical thickness (τ), effective radius (reff), and cloud-top height (h). This method is based on a fast radiative transfer (RT) model and infrared (IR) observations from the MODerate resolution Imaging Spectroradiometer (MODIS). This study conducts thorough error and information content analyses to understand the error propagation and performance of retrievals from various MODIS band combinations under different cloud/atmosphere states. Specifically, the algorithm takes into account four error sources: measurement uncertainty, fast RT model uncertainty, uncertainties in ancillary datasets (e.g., atmospheric state), and assumed ice crystal habit uncertainties. It is found that the ancillary and ice crystal habit error sources dominate the MODIS IR retrieval uncertainty and cannot be ignored. The information content analysis shows that, for a given ice cloud, the use of four MODIS IR observations is sufficient to retrieve the three cloud properties. However, the selection of MODIS IR bands that provide the most information and their order of importance varies with both the ice cloud properties and the ambient atmospheric and the surface states. As a result, this study suggests the inclusion of all MODIS IR bands in practice since little a priori information is available. PMID:29707470

  6. Retrieval of Ice Cloud Properties Using an Optimal Estimation Algorithm and MODIS Infrared Observations. Part I: Forward Model, Error Analysis, and Information Content

    NASA Technical Reports Server (NTRS)

    Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Yang, Ping

    2016-01-01

    An optimal estimation (OE) retrieval method is developed to infer three ice cloud properties simultaneously: optical thickness (tau), effective radius (r(sub eff)), and cloud-top height (h). This method is based on a fast radiative transfer (RT) model and infrared (IR) observations from the MODerate resolution Imaging Spectroradiometer (MODIS). This study conducts thorough error and information content analyses to understand the error propagation and performance of retrievals from various MODIS band combinations under different cloud/atmosphere states. Specifically, the algorithm takes into account four error sources: measurement uncertainty, fast RT model uncertainty, uncertainties in ancillary datasets (e.g., atmospheric state), and assumed ice crystal habit uncertainties. It is found that the ancillary and ice crystal habit error sources dominate the MODIS IR retrieval uncertainty and cannot be ignored. The information content analysis shows that, for a given ice cloud, the use of four MODIS IR observations is sufficient to retrieve the three cloud properties. However, the selection of MODIS IR bands that provide the most information and their order of importance varies with both the ice cloud properties and the ambient atmospheric and the surface states. As a result, this study suggests the inclusion of all MODIS IR bands in practice since little a priori information is available.

  7. Retrieval of Ice Cloud Properties Using an Optimal Estimation Algorithm and MODIS Infrared Observations. Part I: Forward Model, Error Analysis, and Information Content

    NASA Technical Reports Server (NTRS)

    Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Yang, Ping

    2016-01-01

    An optimal estimation (OE) retrieval method is developed to infer three ice cloud properties simultaneously: optical thickness (tau), effective radius (r(sub eff)), and cloud top height (h). This method is based on a fast radiative transfer (RT) model and infrared (IR) observations from the MODerate resolution Imaging Spectroradiometer (MODIS). This study conducts thorough error and information content analyses to understand the error propagation and performance of retrievals from various MODIS band combinations under different cloud/atmosphere states. Specifically, the algorithm takes into account four error sources: measurement uncertainty, fast RT model uncertainty, uncertainties in ancillary data sets (e.g., atmospheric state), and assumed ice crystal habit uncertainties. It is found that the ancillary and ice crystal habit error sources dominate the MODIS IR retrieval uncertainty and cannot be ignored. The information content analysis shows that for a given ice cloud, the use of four MODIS IR observations is sufficient to retrieve the three cloud properties. However, the selection of MODIS IR bands that provide the most information and their order of importance varies with both the ice cloud properties and the ambient atmospheric and the surface states. As a result, this study suggests the inclusion of all MODIS IR bands in practice since little a priori information is available.

  8. Downscattered Neutron Imaging for ICF

    NASA Astrophysics Data System (ADS)

    Moran, Michael; Haan, Steven; Hatchett, Stephen; Izumi, Nobuhiko; Koch, Jeffrey; Lerche, Richard; Phillips, Thomas

    2002-11-01

    Diagnostics which measure the performance of implosions are critical for the success of ignition. Neutron yield, fusion-burn time history, and images are examples of important diagnostics. Neutron and x-ray images will record the geometries of compressed targets during the fusion-burn process. Such images provide a critical test of the accuracy of numerical modeling of ICF experiments. Imaging of downscattered neutrons, by using energy-resolved detection, offers the intriguing advantage of being able to provide independent images of burning and non-burning regions of the nuclear fuel. The usefulness of downscattered neutron imaging depends on both the information content of the data and on the quality of the data that can be recorded. The information content will relate to the characteristic neutron spectra that are associated with emission from different regions of the source. Numerical modeling of ICF fusion burn will be required to interpret the corresponding energy-dependent images. The exercise will be useful only if the images can be recorded with sufficient definition to reveal the spatial and energy-dependent features of interest. Several options are being evaluated with respect to the feasibility of providing the desired simultaneous spatial and energy resolution. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  9. Intelligent Vision On The SM9O Mini-Computer Basis And Applications

    NASA Astrophysics Data System (ADS)

    Hawryszkiw, J.

    1985-02-01

    Distinction has to be made between image processing and vision Image processing finds its roots in the strong tradition of linear signal processing and promotes geometrical transform techniques, such as fi I tering , compression, and restoration. Its purpose is to transform an image for a human observer to easily extract from that image information significant for him. For example edges after a gradient operator, or a specific direction after a directional filtering operation. Image processing consists in fact in a set of local or global space-time transforms. The interpretation of the final image is done by the human observer. The purpose of vision is to extract the semantic content of the image. The machine can then understand that content, and run a process of decision, which turns into an action. Thus, intel I i gent vision depends on - Image processing - Pattern recognition - Artificial intel I igence

  10. Psychophysical studies of the performance of an image database retrieval system

    NASA Astrophysics Data System (ADS)

    Papathomas, Thomas V.; Conway, Tiffany E.; Cox, Ingemar J.; Ghosn, Joumana; Miller, Matt L.; Minka, Thomas P.; Yianilos, Peter N.

    1998-07-01

    We describe psychophysical experiments conducted to study PicHunter, a content-based image retrieval (CBIR) system. Experiment 1 studies the importance of using (a) semantic information, (2) memory of earlier input and (3) relative, rather than absolute, judgements of image similarity. The target testing paradigm is used in which a user must search for an image identical to a target. We find that the best performance comes from a version of PicHunter that uses only semantic cues, with memory and relative similarity judgements. Second best is use of both pictorial and semantic cues, with memory and relative similarity judgements. Most reports of CBIR systems provide only qualitative measures of performance based on how similar retrieved images are to a target. Experiment 2 puts PicHunter into this context with a more rigorous test. We first establish a baseline for our database by measuring the time required to find an image that is similar to a target when the images are presented in random order. Although PicHunter's performance is measurably better than this, the test is weak because even random presentation of images yields reasonably short search times. This casts doubt on the strength of results given in other reports where no baseline is established.

  11. FT-IR imaging for quantitative determination of liver fat content in non-alcoholic fatty liver.

    PubMed

    Kochan, K; Maslak, E; Chlopicki, S; Baranska, M

    2015-08-07

    In this work we apply FT-IR imaging of large areas of liver tissue cross-section samples (∼5 cm × 5 cm) for quantitative assessment of steatosis in murine model of Non-Alcoholic Fatty Liver (NAFLD). We quantified the area of liver tissue occupied by lipid droplets (LDs) by FT-IR imaging and Oil Red O (ORO) staining for comparison. Two alternative FT-IR based approaches are presented. The first, straightforward method, was based on average spectra from tissues and provided values of the fat content by using a PLS regression model and the reference method. The second one – the chemometric-based method – enabled us to determine the values of the fat content, independently of the reference method by means of k-means cluster (KMC) analysis. In summary, FT-IR images of large size liver sections may prove to be useful for quantifying liver steatosis without the need of tissue staining.

  12. Advanced Cell Classifier: User-Friendly Machine-Learning-Based Software for Discovering Phenotypes in High-Content Imaging Data.

    PubMed

    Piccinini, Filippo; Balassa, Tamas; Szkalisity, Abel; Molnar, Csaba; Paavolainen, Lassi; Kujala, Kaisa; Buzas, Krisztina; Sarazova, Marie; Pietiainen, Vilja; Kutay, Ulrike; Smith, Kevin; Horvath, Peter

    2017-06-28

    High-content, imaging-based screens now routinely generate data on a scale that precludes manual verification and interrogation. Software applying machine learning has become an essential tool to automate analysis, but these methods require annotated examples to learn from. Efficiently exploring large datasets to find relevant examples remains a challenging bottleneck. Here, we present Advanced Cell Classifier (ACC), a graphical software package for phenotypic analysis that addresses these difficulties. ACC applies machine-learning and image-analysis methods to high-content data generated by large-scale, cell-based experiments. It features methods to mine microscopic image data, discover new phenotypes, and improve recognition performance. We demonstrate that these features substantially expedite the training process, successfully uncover rare phenotypes, and improve the accuracy of the analysis. ACC is extensively documented, designed to be user-friendly for researchers without machine-learning expertise, and distributed as a free open-source tool at www.cellclassifier.org. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. MPEG-7 based video annotation and browsing

    NASA Astrophysics Data System (ADS)

    Hoeynck, Michael; Auweiler, Thorsten; Wellhausen, Jens

    2003-11-01

    The huge amount of multimedia data produced worldwide requires annotation in order to enable universal content access and to provide content-based search-and-retrieval functionalities. Since manual video annotation can be time consuming, automatic annotation systems are required. We review recent approaches to content-based indexing and annotation of videos for different kind of sports and describe our approach to automatic annotation of equestrian sports videos. We especially concentrate on MPEG-7 based feature extraction and content description, where we apply different visual descriptors for cut detection. Further, we extract the temporal positions of single obstacles on the course by analyzing MPEG-7 edge information. Having determined single shot positions as well as the visual highlights, the information is jointly stored with meta-textual information in an MPEG-7 description scheme. Based on this information, we generate content summaries which can be utilized in a user-interface in order to provide content-based access to the video stream, but further for media browsing on a streaming server.

  14. Beyond maximum entropy: Fractal Pixon-based image reconstruction

    NASA Technical Reports Server (NTRS)

    Puetter, Richard C.; Pina, R. K.

    1994-01-01

    We have developed a new Bayesian image reconstruction method that has been shown to be superior to the best implementations of other competing methods, including Goodness-of-Fit methods such as Least-Squares fitting and Lucy-Richardson reconstruction, as well as Maximum Entropy (ME) methods such as those embodied in the MEMSYS algorithms. Our new method is based on the concept of the pixon, the fundamental, indivisible unit of picture information. Use of the pixon concept provides an improved image model, resulting in an image prior which is superior to that of standard ME. Our past work has shown how uniform information content pixons can be used to develop a 'Super-ME' method in which entropy is maximized exactly. Recently, however, we have developed a superior pixon basis for the image, the Fractal Pixon Basis (FPB). Unlike the Uniform Pixon Basis (UPB) of our 'Super-ME' method, the FPB basis is selected by employing fractal dimensional concepts to assess the inherent structure in the image. The Fractal Pixon Basis results in the best image reconstructions to date, superior to both UPB and the best ME reconstructions. In this paper, we review the theory of the UPB and FPB pixon and apply our methodology to the reconstruction of far-infrared imaging of the galaxy M51. The results of our reconstruction are compared to published reconstructions of the same data using the Lucy-Richardson algorithm, the Maximum Correlation Method developed at IPAC, and the MEMSYS ME algorithms. The results show that our reconstructed image has a spatial resolution a factor of two better than best previous methods (and a factor of 20 finer than the width of the point response function), and detects sources two orders of magnitude fainter than other methods.

  15. Use of Computer Imaging in Rhinoplasty: A Survey of the Practices of Facial Plastic Surgeons.

    PubMed

    Singh, Prabhjyot; Pearlman, Steven

    2017-08-01

    The objective of this study was to quantify the use of computer imaging by facial plastic surgeons. AAFPRS Facial plastic surgeons were surveyed about their use of computer imaging during rhinoplasty consultations. The survey collected information about surgeon demographics, practice settings, practice patterns, and rates of computer imaging (CI) for primary and revision rhinoplasty. For those surgeons who used CI, additional information was also collected, which included who performed the imaging and whether the patient was given the morphed images after the consultation. A total of 238 out of 1200 (19.8%) facial plastic surgeons responded to the survey. Out of those who responded, 195 surgeons (83%) were board certified by the American Board of Facial Plastic and Reconstructive Surgeons (ABFPRS). The majority of respondents (150 surgeons, 63%) used CI during rhinoplasty consultation. Of the surgeons who use CI, 92% performed the image morphing themselves. Approximately two-thirds of surgeons who use CI gave their patient a printout of the morphed images after the consultation. Computer imaging (CI) is a frequently utilized tool for facial plastic surgeons during cosmetic consultations with patients. Based on these results of this study, it can be suggested that the majority of facial plastic surgeons who use CI do so for both primary and revision rhinoplasty. As more sophisticated systems become available, it is possible that utilization of CI modalities will increase. This provides the surgeon with further tools to use at his or her disposal during discussion of aesthetic surgery. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  16. Survey of contemporary trends in color image segmentation

    NASA Astrophysics Data System (ADS)

    Vantaram, Sreenath Rao; Saber, Eli

    2012-10-01

    In recent years, the acquisition of image and video information for processing, analysis, understanding, and exploitation of the underlying content in various applications, ranging from remote sensing to biomedical imaging, has grown at an unprecedented rate. Analysis by human observers is quite laborious, tiresome, and time consuming, if not infeasible, given the large and continuously rising volume of data. Hence the need for systems capable of automatically and effectively analyzing the aforementioned imagery for a variety of uses that span the spectrum from homeland security to elderly care. In order to achieve the above, tools such as image segmentation provide the appropriate foundation for expediting and improving the effectiveness of subsequent high-level tasks by providing a condensed and pertinent representation of image information. We provide a comprehensive survey of color image segmentation strategies adopted over the last decade, though notable contributions in the gray scale domain will also be discussed. Our taxonomy of segmentation techniques is sampled from a wide spectrum of spatially blind (or feature-based) approaches such as clustering and histogram thresholding as well as spatially guided (or spatial domain-based) methods such as region growing/splitting/merging, energy-driven parametric/geometric active contours, supervised/unsupervised graph cuts, and watersheds, to name a few. In addition, qualitative and quantitative results of prominent algorithms on several images from the Berkeley segmentation dataset are shown in order to furnish a fair indication of the current quality of the state of the art. Finally, we provide a brief discussion on our current perspective of the field as well as its associated future trends.

  17. Inverting ion images without Abel inversion: maximum entropy reconstruction of velocity maps.

    PubMed

    Dick, Bernhard

    2014-01-14

    A new method for the reconstruction of velocity maps from ion images is presented, which is based on the maximum entropy concept. In contrast to other methods used for Abel inversion the new method never applies an inversion or smoothing to the data. Instead, it iteratively finds the map which is the most likely cause for the observed data, using the correct likelihood criterion for data sampled from a Poissonian distribution. The entropy criterion minimizes the information content in this map, which hence contains no information for which there is no evidence in the data. Two implementations are proposed, and their performance is demonstrated with simulated and experimental data: Maximum Entropy Velocity Image Reconstruction (MEVIR) obtains a two-dimensional slice through the velocity distribution and can be compared directly to Abel inversion. Maximum Entropy Velocity Legendre Reconstruction (MEVELER) finds one-dimensional distribution functions Q(l)(v) in an expansion of the velocity distribution in Legendre polynomials P((cos θ) for the angular dependence. Both MEVIR and MEVELER can be used for the analysis of ion images with intensities as low as 0.01 counts per pixel, with MEVELER performing significantly better than MEVIR for images with low intensity. Both methods perform better than pBASEX, in particular for images with less than one average count per pixel.

  18. BIOME: An Ecosystem Remote Sensor Based on Imaging Interferometry

    NASA Technical Reports Server (NTRS)

    Peterson, David L.; Hammer, Philip; Smith, William H.; Lawless, James G. (Technical Monitor)

    1994-01-01

    Until recent times, optical remote sensing of ecosystem properties from space has been limited to broad band multispectral scanners such as Landsat and AVHRR. While these sensor data can be used to derive important information about ecosystem parameters, they are very limited for measuring key biogeochemical cycling parameters such as the chemical content of plant canopies. Such parameters, for example the lignin and nitrogen contents, are potentially amenable to measurements by very high spectral resolution instruments using a spectroscopic approach. Airborne sensors based on grating imaging spectrometers gave the first promise of such potential but the recent decision not to deploy the space version has left the community without many alternatives. In the past few years, advancements in high performance deep well digital sensor arrays coupled with a patented design for a two-beam interferometer has produced an entirely new design for acquiring imaging spectroscopic data at the signal to noise levels necessary for quantitatively estimating chemical composition (1000:1 at 2 microns). This design has been assembled as a laboratory instrument and the principles demonstrated for acquiring remote scenes. An airborne instrument is in production and spaceborne sensors being proposed. The instrument is extremely promising because of its low cost, lower power requirements, very low weight, simplicity (no moving parts), and high performance. For these reasons, we have called it the first instrument optimized for ecosystem studies as part of a Biological Imaging and Observation Mission to Earth (BIOME).

  19. DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction.

    PubMed

    Yang, Guang; Yu, Simiao; Dong, Hao; Slabaugh, Greg; Dragotti, Pier Luigi; Ye, Xujiong; Liu, Fangde; Arridge, Simon; Keegan, Jennifer; Guo, Yike; Firmin, David; Keegan, Jennifer; Slabaugh, Greg; Arridge, Simon; Ye, Xujiong; Guo, Yike; Yu, Simiao; Liu, Fangde; Firmin, David; Dragotti, Pier Luigi; Yang, Guang; Dong, Hao

    2018-06-01

    Compressed sensing magnetic resonance imaging (CS-MRI) enables fast acquisition, which is highly desirable for numerous clinical applications. This can not only reduce the scanning cost and ease patient burden, but also potentially reduce motion artefacts and the effect of contrast washout, thus yielding better image quality. Different from parallel imaging-based fast MRI, which utilizes multiple coils to simultaneously receive MR signals, CS-MRI breaks the Nyquist-Shannon sampling barrier to reconstruct MRI images with much less required raw data. This paper provides a deep learning-based strategy for reconstruction of CS-MRI, and bridges a substantial gap between conventional non-learning methods working only on data from a single image, and prior knowledge from large training data sets. In particular, a novel conditional Generative Adversarial Networks-based model (DAGAN)-based model is proposed to reconstruct CS-MRI. In our DAGAN architecture, we have designed a refinement learning method to stabilize our U-Net based generator, which provides an end-to-end network to reduce aliasing artefacts. To better preserve texture and edges in the reconstruction, we have coupled the adversarial loss with an innovative content loss. In addition, we incorporate frequency-domain information to enforce similarity in both the image and frequency domains. We have performed comprehensive comparison studies with both conventional CS-MRI reconstruction methods and newly investigated deep learning approaches. Compared with these methods, our DAGAN method provides superior reconstruction with preserved perceptual image details. Furthermore, each image is reconstructed in about 5 ms, which is suitable for real-time processing.

  20. Limitations and requirements of content-based multimedia authentication systems

    NASA Astrophysics Data System (ADS)

    Wu, Chai W.

    2001-08-01

    Recently, a number of authentication schemes have been proposed for multimedia data such as images and sound data. They include both label based systems and semifragile watermarks. The main requirement for such authentication systems is that minor modifications such as lossy compression which do not alter the content of the data preserve the authenticity of the data, whereas modifications which do modify the content render the data not authentic. These schemes can be classified into two main classes depending on the model of image authentication they are based on. One of the purposes of this paper is to look at some of the advantages and disadvantages of these image authentication schemes and their relationship with fundamental limitations of the underlying model of image authentication. In particular, we study feature-based algorithms which generate an authentication tag based on some inherent features in the image such as the location of edges. The main disadvantage of most proposed feature-based algorithms is that similar images generate similar features, and therefore it is possible for a forger to generate dissimilar images that have the same features. On the other hand, the class of hash-based algorithms utilizes a cryptographic hash function or a digital signature scheme to reduce the data and generate an authentication tag. It inherits the security of digital signatures to thwart forgery attacks. The main disadvantage of hash-based algorithms is that the image needs to be modified in order to be made authenticatable. The amount of modification is on the order of the noise the image can tolerate before it is rendered inauthentic. The other purpose of this paper is to propose a multimedia authentication scheme which combines some of the best features of both classes of algorithms. The proposed scheme utilizes cryptographic hash functions and digital signature schemes and the data does not need to be modified in order to be made authenticatable. Several applications including the authentication of images on CD-ROM and handwritten documents will be discussed.

  1. Automated classification of Acid Rock Drainage potential from Corescan drill core imagery

    NASA Astrophysics Data System (ADS)

    Cracknell, M. J.; Jackson, L.; Parbhakar-Fox, A.; Savinova, K.

    2017-12-01

    Classification of the acid forming potential of waste rock is important for managing environmental hazards associated with mining operations. Current methods for the classification of acid rock drainage (ARD) potential usually involve labour intensive and subjective assessment of drill core and/or hand specimens. Manual methods are subject to operator bias, human error and the amount of material that can be assessed within a given time frame is limited. The automated classification of ARD potential documented here is based on the ARD Index developed by Parbhakar-Fox et al. (2011). This ARD Index involves the combination of five indicators: A - sulphide content; B - sulphide alteration; C - sulphide morphology; D - primary neutraliser content; and E - sulphide mineral association. Several components of the ARD Index require accurate identification of sulphide minerals. This is achieved by classifying Corescan Red-Green-Blue true colour images into the presence or absence of sulphide minerals using supervised classification. Subsequently, sulphide classification images are processed and combined with Corescan SWIR-based mineral classifications to obtain information on sulphide content, indices representing sulphide textures (disseminated versus massive and degree of veining), and spatially associated minerals. This information is combined to calculate ARD Index indicator values that feed into the classification of ARD potential. Automated ARD potential classifications of drill core samples associated with a porphyry Cu-Au deposit are compared to manually derived classifications and those obtained by standard static geochemical testing and X-ray diffractometry analyses. Results indicate a high degree of similarity between automated and manual ARD potential classifications. Major differences between approaches are observed in sulphide and neutraliser mineral percentages, likely due to the subjective nature of manual estimates of mineral content. The automated approach presented here for the classification of ARD potential offers rapid, repeatable and accurate outcomes comparable to manually derived classifications. Methods for automated ARD classifications from digital drill core data represent a step-change for geoenvironmental management practices in the mining industry.

  2. Interactive radiographic image retrieval system.

    PubMed

    Kundu, Malay Kumar; Chowdhury, Manish; Das, Sudeb

    2017-02-01

    Content based medical image retrieval (CBMIR) systems enable fast diagnosis through quantitative assessment of the visual information and is an active research topic over the past few decades. Most of the state-of-the-art CBMIR systems suffer from various problems: computationally expensive due to the usage of high dimensional feature vectors and complex classifier/clustering schemes. Inability to properly handle the "semantic gap" and the high intra-class versus inter-class variability problem of the medical image database (like radiographic image database). This yields an exigent demand for developing highly effective and computationally efficient retrieval system. We propose a novel interactive two-stage CBMIR system for diverse collection of medical radiographic images. Initially, Pulse Coupled Neural Network based shape features are used to find out the most probable (similar) image classes using a novel "similarity positional score" mechanism. This is followed by retrieval using Non-subsampled Contourlet Transform based texture features considering only the images of the pre-identified classes. Maximal information compression index is used for unsupervised feature selection to achieve better results. To reduce the semantic gap problem, the proposed system uses a novel fuzzy index based relevance feedback mechanism by incorporating subjectivity of human perception in an analytic manner. Extensive experiments were carried out to evaluate the effectiveness of the proposed CBMIR system on a subset of Image Retrieval in Medical Applications (IRMA)-2009 database consisting of 10,902 labeled radiographic images of 57 different modalities. We obtained overall average precision of around 98% after only 2-3 iterations of relevance feedback mechanism. We assessed the results by comparisons with some of the state-of-the-art CBMIR systems for radiographic images. Unlike most of the existing CBMIR systems, in the proposed two-stage hierarchical framework, main importance is given on constructing efficient and compact feature vector representation, search-space reduction and handling the "semantic gap" problem effectively, without compromising the retrieval performance. Experimental results and comparisons show that the proposed system performs efficiently in the radiographic medical image retrieval field. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Content-based management service for medical videos.

    PubMed

    Mendi, Engin; Bayrak, Coskun; Cecen, Songul; Ermisoglu, Emre

    2013-01-01

    Development of health information technology has had a dramatic impact to improve the efficiency and quality of medical care. Developing interoperable health information systems for healthcare providers has the potential to improve the quality and equitability of patient-centered healthcare. In this article, we describe an automated content-based medical video analysis and management service that provides convenience and ease in accessing the relevant medical video content without sequential scanning. The system facilitates effective temporal video segmentation and content-based visual information retrieval that enable a more reliable understanding of medical video content. The system is implemented as a Web- and mobile-based service and has the potential to offer a knowledge-sharing platform for the purpose of efficient medical video content access.

  4. Personal medical information system using laser card

    NASA Astrophysics Data System (ADS)

    Cho, Seong H.; Kim, Keun Ho; Choi, Hyung-Sik; Park, Hyun Wook

    1996-04-01

    The well-known hospital information system (HIS) and the picture archiving and communication system (PACS) are typical applications of multimedia to medical area. This paper proposes a personal medical information save-and-carry system using a laser card. This laser card is very useful, especially in emergency situations, because the medical information in the laser card can be read at anytime and anywhere if there exists a laser card reader/writer. The contents of the laser card include the clinical histories of a patient such as clinical chart, exam result, diagnostic reports, images, and so on. The purpose of this system is not a primary diagnosis, but emergency reference of clinical history of the patient. This personal medical information system consists of a personal computer integrated with laser card reader/writer, color frame grabber, color CCD camera and a high resolution image scanner optionally. Window-based graphical user interface was designed for easy use. The laser card has relatively sufficient capacity to store the personal medical information, and has fast access speed to restore and load the data with a portable size as compact as a credit card. Database items of laser card provide the doctors with medical data such as laser card information, patient information, clinical information, and diagnostic result information.

  5. Methods in quantitative image analysis.

    PubMed

    Oberholzer, M; Ostreicher, M; Christen, H; Brühlmann, M

    1996-05-01

    The main steps of image analysis are image capturing, image storage (compression), correcting imaging defects (e.g. non-uniform illumination, electronic-noise, glare effect), image enhancement, segmentation of objects in the image and image measurements. Digitisation is made by a camera. The most modern types include a frame-grabber, converting the analog-to-digital signal into digital (numerical) information. The numerical information consists of the grey values describing the brightness of every point within the image, named a pixel. The information is stored in bits. Eight bits are summarised in one byte. Therefore, grey values can have a value between 0 and 256 (2(8)). The human eye seems to be quite content with a display of 5-bit images (corresponding to 64 different grey values). In a digitised image, the pixel grey values can vary within regions that are uniform in the original scene: the image is noisy. The noise is mainly manifested in the background of the image. For an optimal discrimination between different objects or features in an image, uniformity of illumination in the whole image is required. These defects can be minimised by shading correction [subtraction of a background (white) image from the original image, pixel per pixel, or division of the original image by the background image]. The brightness of an image represented by its grey values can be analysed for every single pixel or for a group of pixels. The most frequently used pixel-based image descriptors are optical density, integrated optical density, the histogram of the grey values, mean grey value and entropy. The distribution of the grey values existing within an image is one of the most important characteristics of the image. However, the histogram gives no information about the texture of the image. The simplest way to improve the contrast of an image is to expand the brightness scale by spreading the histogram out to the full available range. Rules for transforming the grey value histogram of an existing image (input image) into a new grey value histogram (output image) are most quickly handled by a look-up table (LUT). The histogram of an image can be influenced by gain, offset and gamma of the camera. Gain defines the voltage range, offset defines the reference voltage and gamma the slope of the regression line between the light intensity and the voltage of the camera. A very important descriptor of neighbourhood relations in an image is the co-occurrence matrix. The distance between the pixels (original pixel and its neighbouring pixel) can influence the various parameters calculated from the co-occurrence matrix. The main goals of image enhancement are elimination of surface roughness in an image (smoothing), correction of defects (e.g. noise), extraction of edges, identification of points, strengthening texture elements and improving contrast. In enhancement, two types of operations can be distinguished: pixel-based (point operations) and neighbourhood-based (matrix operations). The most important pixel-based operations are linear stretching of grey values, application of pre-stored LUTs and histogram equalisation. The neighbourhood-based operations work with so-called filters. These are organising elements with an original or initial point in their centre. Filters can be used to accentuate or to suppress specific structures within the image. Filters can work either in the spatial or in the frequency domain. The method used for analysing alterations of grey value intensities in the frequency domain is the Hartley transform. Filter operations in the spatial domain can be based on averaging or ranking the grey values occurring in the organising element. The most important filters, which are usually applied, are the Gaussian filter and the Laplace filter (both averaging filters), and the median filter, the top hat filter and the range operator (all ranking filters). Segmentation of objects is traditionally based on threshold grey values. (AB

  6. Application of MPEG-7 descriptors for content-based indexing of sports videos

    NASA Astrophysics Data System (ADS)

    Hoeynck, Michael; Auweiler, Thorsten; Ohm, Jens-Rainer

    2003-06-01

    The amount of multimedia data available worldwide is increasing every day. There is a vital need to annotate multimedia data in order to allow universal content access and to provide content-based search-and-retrieval functionalities. Since supervised video annotation can be time consuming, an automatic solution is appreciated. We review recent approaches to content-based indexing and annotation of videos for different kind of sports, and present our application for the automatic annotation of equestrian sports videos. Thereby, we especially concentrate on MPEG-7 based feature extraction and content description. We apply different visual descriptors for cut detection. Further, we extract the temporal positions of single obstacles on the course by analyzing MPEG-7 edge information and taking specific domain knowledge into account. Having determined single shot positions as well as the visual highlights, the information is jointly stored together with additional textual information in an MPEG-7 description scheme. Using this information, we generate content summaries which can be utilized in a user front-end in order to provide content-based access to the video stream, but further content-based queries and navigation on a video-on-demand streaming server.

  7. Skin deep: Coverage of skin cancer and recreational tanning in Canadian women's magazines (2000-2012).

    PubMed

    McWhirter, Jennifer E; Hoffman-Goetz, Laurie

    2015-06-18

    Skin cancer is a significant public health problem among Canadians. Knowledge and attitudes about health are informed by mass media. The aim of our study was to describe the volume and nature of coverage of skin cancer and recreational tanning in Canadian women's magazines. Directed content analysis on article text and images in six popular Canadian women's magazines (Chatelaine, Canadian Living, Homemakers, Flare, FASHION, ELLE Canada) from 2000-2012 with attention to risk factors, ultraviolet radiation (UV) exposure and protection behaviours, and early detection. Six popular American women's magazines were used for a between-country comparison. There were 154 articles (221 images) about skin cancer and tanning published over 13 years. Volume of coverage did not increase in a linear fashion over time. The most common risk factor reported on was UV exposure (39%), with other risk factors less frequently identified. Although 72% of articles promoted sunscreen use, little content encouraged other protection behaviours. Only 15% of articles and 1% of images discouraged indoor tanning, while 41% of articles and 53% of images promoted the tanned look as attractive. Few articles (<11%) reported on early detection. Relative to American magazines, Canadian magazines had a greater proportion of content that encouraged sunscreen use and promoted the tanned look and a lesser proportion of content on risk factors and early detection. Skin cancer and tanning messages in Canadian women's magazines had a narrow focus and provided limited information on risk factors or screening. Conflicting messages about prevention (text vs. images) may contribute to harmful UV behaviours among Canadian women.

  8. Content-based unconstrained color logo and trademark retrieval with color edge gradient co-occurrence histograms

    NASA Astrophysics Data System (ADS)

    Phan, Raymond; Androutsos, Dimitrios

    2008-01-01

    In this paper, we present a logo and trademark retrieval system for unconstrained color image databases that extends the Color Edge Co-occurrence Histogram (CECH) object detection scheme. We introduce more accurate information to the CECH, by virtue of incorporating color edge detection using vector order statistics. This produces a more accurate representation of edges in color images, in comparison to the simple color pixel difference classification of edges as seen in the CECH. Our proposed method is thus reliant on edge gradient information, and as such, we call this the Color Edge Gradient Co-occurrence Histogram (CEGCH). We use this as the main mechanism for our unconstrained color logo and trademark retrieval scheme. Results illustrate that the proposed retrieval system retrieves logos and trademarks with good accuracy, and outperforms the CECH object detection scheme with higher precision and recall.

  9. Superpixel-based structure classification for laparoscopic surgery

    NASA Astrophysics Data System (ADS)

    Bodenstedt, Sebastian; Görtler, Jochen; Wagner, Martin; Kenngott, Hannes; Müller-Stich, Beat Peter; Dillmann, Rüdiger; Speidel, Stefanie

    2016-03-01

    Minimally-invasive interventions offers multiple benefits for patients, but also entails drawbacks for the surgeon. The goal of context-aware assistance systems is to alleviate some of these difficulties. Localizing and identifying anatomical structures, maligned tissue and surgical instruments through endoscopic image analysis is paramount for an assistance system, making online measurements and augmented reality visualizations possible. Furthermore, such information can be used to assess the progress of an intervention, hereby allowing for a context-aware assistance. In this work, we present an approach for such an analysis. First, a given laparoscopic image is divided into groups of connected pixels, so-called superpixels, using the SEEDS algorithm. The content of a given superpixel is then described using information regarding its color and texture. Using a Random Forest classifier, we determine the class label of each superpixel. We evaluated our approach on a publicly available dataset for laparoscopic instrument detection and achieved a DICE score of 0.69.

  10. Modes of information delivery in radiologic anatomy education: Impact on student performance.

    PubMed

    Ketelsen, Dominik; Schrödl, Falk; Knickenberg, Inés; Heckemann, Rolf A; Hothorn, Torsten; Neuhuber, Winfried; Bautz, Werner A L; Grunewald, Markus

    2007-01-01

    This study provides a systematic assessment of different methods of delivering radiologic teaching content (lecture, printed text, and digital content delivery) under standard conditions, enabling comparison of the effectiveness of these methods. A printed atlas of sectional anatomy was used as a standard. Digital content was developed on the basis of the printed atlas. Lecturers used both the printed and the digital content to prepare lectures. Standardized teaching material thus created was presented to second-term undergraduate students who had attended the school's anatomy course, but had not received any radiology teaching. Multiple choice examinations were used to assess the students' ability to recognize anatomical structures in known as well as unknown images. In a survey, the students' subjective experience of the learning process was assessed. No difference was seen between the groups regarding examination results. Students preferred a combination of digital media and lectures by enthusiastic teachers. The shortage of teachers requires a compromise concerning the delivery of radiologic anatomy content in a medical school setting. Based on our results, we recommend a combined approach of lecture and digital content delivery.

  11. Cloud information content analysis of multi-angular measurements in the oxygen A-band: application to 3MI and MSPI

    NASA Astrophysics Data System (ADS)

    Merlin, Guillaume; Riedi, Jérôme; Labonnote, Laurent C.; Cornet, Céline; Davis, Anthony B.; Dubuisson, Phillipe; Desmons, Marine; Ferlay, Nicolas; Parol, Frédéric

    2016-10-01

    Information content analyses on cloud top altitude (CTOP) and geometrical thickness (CGT) from multi-angular A-band measurements in the case of monolayer homogeneous clouds are conducted. In the framework of future multi-angular radiometer development, we compared the potential performances of the 3MI (Multi-viewing, Multi-channel and Multi-polarization Imaging) instrument developed by EUMETSAT, which is an extension of POLDER/PARASOL instrument and MSPI (Multiangle SpectroPolarimetric Imager) developed by NASA's Jet Propulsion Laboratory. Quantitative information content estimates were realized for thin, moderately opaque and opaque clouds for different surface albedo and viewing geometry configurations. Analyses show that retrieval of CTOP is possible with a high accuracy in most of the cases investigated. Retrieval of CGT is also possible for optically thick clouds above a black surface, at least when CGT > 1-2 km and for thin clouds for CGT > 2-3 km. However, for intermediate optical thicknesses (COT ≃ 4), we show that the retrieval of CGT is not simultaneously possible with CTOP. A comparison between 3MI and MSPI shows a higher information content for MSPI's measurements, traceable to a thinner filter inside the oxygen A-band, yielding higher signal-to-noise ratio for absorption estimation. Cases of cloud scenes above bright surfaces are more complex but it is shown that the retrieval of CTOP remains possible in almost all situations while the information content on CGT appears to be insufficient in many cases, particularly for COT < 4 and CGT < 2-3 km.

  12. Magnetic Fields for All: The GPIPS Community Web-Access Portal

    NASA Astrophysics Data System (ADS)

    Carveth, Carol; Clemens, D. P.; Pinnick, A.; Pavel, M.; Jameson, K.; Taylor, B.

    2007-12-01

    The new GPIPS website portal provides community users with an intuitive and powerful interface to query the data products of the Galactic Plane Infrared Polarization Survey. The website, which was built using PHP for the front end and MySQL for the database back end, allows users to issue queries based on galactic or equatorial coordinates, GPIPS-specific identifiers, polarization information, magnitude information, and several other attributes. The returns are presented in HTML tables, with the added option of either downloading or being emailed an ASCII file including the same or more information from the database. Other functionalities of the website include providing details of the status of the Survey (which fields have been observed or are planned to be observed), techniques involved in data collection and analysis, and descriptions of the database contents and names. For this initial launch of the website, users may access the GPIPS polarization point source catalog and the deep coadd photometric point source catalog. Future planned developments include a graphics-based method for querying the database, as well as tools to combine neighboring GPIPS images into larger image files for both polarimetry and photometry. This work is partially supported by NSF grant AST-0607500.

  13. Mining Very High Resolution INSAR Data Based On Complex-GMRF Cues And Relevance Feedback

    NASA Astrophysics Data System (ADS)

    Singh, Jagmal; Popescu, Anca; Soccorsi, Matteo; Datcu, Mihai

    2012-01-01

    With the increase in number of remote sensing satellites, the number of image-data scenes in our repositories is also increasing and a large quantity of these scenes are never received and used. Thus automatic retrieval of de- sired image-data using query by image content to fully utilize the huge repository volume is becoming of great interest. Generally different users are interested in scenes containing different kind of objects and structures. So its important to analyze all the image information mining (IIM) methods so that its easier for user to select a method depending upon his/her requirement. We concentrate our study only on high-resolution SAR images and we propose to use InSAR observations instead of only one single look complex (SLC) images for mining scenes containing coherent objects such as high-rise buildings. However in case of objects with less coherence like areas with vegetation cover, SLC images exhibits better performance. We demonstrate IIM performance comparison using complex-Gauss Markov Random Fields as texture descriptor for image patches and SVM relevance- feedback.

  14. Lossless Compression of Classification-Map Data

    NASA Technical Reports Server (NTRS)

    Hua, Xie; Klimesh, Matthew

    2009-01-01

    A lossless image-data-compression algorithm intended specifically for application to classification-map data is based on prediction, context modeling, and entropy coding. The algorithm was formulated, in consideration of the differences between classification maps and ordinary images of natural scenes, so as to be capable of compressing classification- map data more effectively than do general-purpose image-data-compression algorithms. Classification maps are typically generated from remote-sensing images acquired by instruments aboard aircraft (see figure) and spacecraft. A classification map is a synthetic image that summarizes information derived from one or more original remote-sensing image(s) of a scene. The value assigned to each pixel in such a map is the index of a class that represents some type of content deduced from the original image data for example, a type of vegetation, a mineral, or a body of water at the corresponding location in the scene. When classification maps are generated onboard the aircraft or spacecraft, it is desirable to compress the classification-map data in order to reduce the volume of data that must be transmitted to a ground station.

  15. Neutron Radiography, Tomography, and Diffraction of Commercial Lithium-ion Polymer Batteries

    NASA Astrophysics Data System (ADS)

    Butler, Leslie G.; Lehmann, Eberhard H.; Schillinger, Burkhard

    Imaging an intact, commercial battery as it cycles and wears is proved possible with neutron imaging. The wavelength range of imaging neutrons corresponds nicely with crystallographic dimensions of the electrochemically active species and the metal elec- trodes are relatively transparent. The time scale of charge/discharge cycling is well matched to dynamic tomography as performed with a golden ratio based projection angle ordering. The hydrogen content does create scatter which tends to blur internal struc- ture. In this report, three neutron experiments will be described: 3D images of charged and discharged batteries were obtained with monochromatic neutrons at the FRM II reactor. 2D images (PSI) of fresh and worn batteries as a function of charge state may show a new wear pattern. In situ neutron diffraction (SNS) of the intact battery provides more information about the concentrations of electrochemical species within the battery as a function of charge state and wear. The combination of 2D imaging, 3D imaging, and diffraction data show how neutron imaging can contribute to battery development and wear monitoring.

  16. Astroaccesible: Bringing the study of the Universe to the visually impaired

    NASA Astrophysics Data System (ADS)

    Pérez-Montero, E.; García Gómez-Caro, E.; Sánchez Molina, Y.; Ortiz-Gil, A.; López de Lacalle, S.; Tamayo, A.

    2017-03-01

    Astroaccesible is an outreach project carried out in collaboration with the IAA-CSIC and ONCE to make astronomy more accessible to the visually impaired people so the main source of information is not based on the use of images. The activities of the project started in 2014 and since then it has received financial support from SEA in 2015 and from FECYT in 2016 making possible to extend the activity for many ONCE centres in Spain. The activities include in-person classes using adequate descriptions, high-contrast images for those people with visual remain and touching material representing basic concepts about sizes, scales and distances of astronomical bodies. To maximize the impact of the contents of the project many of the contents, summary of activities, links to resources are available through the web page of the project. This project focused on astronomy is also intended to make the scientific community more sensitive to perform more accessible explanations of their results.

  17. Content-aware dark image enhancement through channel division.

    PubMed

    Rivera, Adin Ramirez; Ryu, Byungyong; Chae, Oksam

    2012-09-01

    The current contrast enhancement algorithms occasionally result in artifacts, overenhancement, and unnatural effects in the processed images. These drawbacks increase for images taken under poor illumination conditions. In this paper, we propose a content-aware algorithm that enhances dark images, sharpens edges, reveals details in textured regions, and preserves the smoothness of flat regions. The algorithm produces an ad hoc transformation for each image, adapting the mapping functions to each image's characteristics to produce the maximum enhancement. We analyze the contrast of the image in the boundary and textured regions, and group the information with common characteristics. These groups model the relations within the image, from which we extract the transformation functions. The results are then adaptively mixed, by considering the human vision system characteristics, to boost the details in the image. Results show that the algorithm can automatically process a wide range of images-e.g., mixed shadow and bright areas, outdoor and indoor lighting, and face images-without introducing artifacts, which is an improvement over many existing methods.

  18. Design of a graphical user interface for an intelligent multimedia information system for radiology research

    NASA Astrophysics Data System (ADS)

    Taira, Ricky K.; Wong, Clement; Johnson, David; Bhushan, Vikas; Rivera, Monica; Huang, Lu J.; Aberle, Denise R.; Cardenas, Alfonso F.; Chu, Wesley W.

    1995-05-01

    With the increase in the volume and distribution of images and text available in PACS and medical electronic health-care environments it becomes increasingly important to maintain indexes that summarize the content of these multi-media documents. Such indices are necessary to quickly locate relevant patient cases for research, patient management, and teaching. The goal of this project is to develop an intelligent document retrieval system that allows researchers to request for patient cases based on document content. Thus we wish to retrieve patient cases from electronic information archives that could include a combined specification of patient demographics, low level radiologic findings (size, shape, number), intermediate-level radiologic findings (e.g., atelectasis, infiltrates, etc.) and/or high-level pathology constraints (e.g., well-differentiated small cell carcinoma). The cases could be distributed among multiple heterogeneous databases such as PACS, RIS, and HIS. Content- based retrieval systems go beyond the capabilities of simple key-word or string-based retrieval matching systems. These systems require a knowledge base to comprehend the generality/specificity of a concept (thus knowing the subclasses or related concepts to a given concept) and knowledge of the various string representations for each concept (i.e., synonyms, lexical variants, etc.). We have previously reported on a data integration mediation layer that allows transparent access to multiple heterogeneous distributed medical databases (HIS, RIS, and PACS). The data access layer of our architecture currently has limited query processing capabilities. Given a patient hospital identification number, the access mediation layer collects all documents in RIS and HIS and returns this information to a specified workstation location. In this paper we report on our efforts to extend the query processing capabilities of the system by creation of custom query interfaces, an intelligent query processing engine, and a document-content index that can be generated automatically (i.e., no manual authoring or changes to the normal clinical protocols).

  19. Temporal consistent depth map upscaling for 3DTV

    NASA Astrophysics Data System (ADS)

    Schwarz, Sebastian; Sjöström, Mârten; Olsson, Roger

    2014-03-01

    The ongoing success of three-dimensional (3D) cinema fuels increasing efforts to spread the commercial success of 3D to new markets. The possibilities of a convincing 3D experience at home, such as three-dimensional television (3DTV), has generated a great deal of interest within the research and standardization community. A central issue for 3DTV is the creation and representation of 3D content. Acquiring scene depth information is a fundamental task in computer vision, yet complex and error-prone. Dedicated range sensors, such as the Time­ of-Flight camera (ToF), can simplify the scene depth capture process and overcome shortcomings of traditional solutions, such as active or passive stereo analysis. Admittedly, currently available ToF sensors deliver only a limited spatial resolution. However, sophisticated depth upscaling approaches use texture information to match depth and video resolution. At Electronic Imaging 2012 we proposed an upscaling routine based on error energy minimization, weighted with edge information from an accompanying video source. In this article we develop our algorithm further. By adding temporal consistency constraints to the upscaling process, we reduce disturbing depth jumps and flickering artifacts in the final 3DTV content. Temporal consistency in depth maps enhances the 3D experience, leading to a wider acceptance of 3D media content. More content in better quality can boost the commercial success of 3DTV.

  20. Social Data Analytics Using Tensors and Sparse Techniques

    ERIC Educational Resources Information Center

    Zhang, Miao

    2014-01-01

    The development of internet and mobile technologies is driving an earthshaking social media revolution. They bring the internet world a huge amount of social media content, such as images, videos, comments, etc. Those massive media content and complicate social structures require the analytic expertise to transform those flood of information into…

  1. Extraction and labeling high-resolution images from PDF documents

    NASA Astrophysics Data System (ADS)

    Chachra, Suchet K.; Xue, Zhiyun; Antani, Sameer; Demner-Fushman, Dina; Thoma, George R.

    2013-12-01

    Accuracy of content-based image retrieval is affected by image resolution among other factors. Higher resolution images enable extraction of image features that more accurately represent the image content. In order to improve the relevance of search results for our biomedical image search engine, Open-I, we have developed techniques to extract and label high-resolution versions of figures from biomedical articles supplied in the PDF format. Open-I uses the open-access subset of biomedical articles from the PubMed Central repository hosted by the National Library of Medicine. Articles are available in XML and in publisher supplied PDF formats. As these PDF documents contain little or no meta-data to identify the embedded images, the task includes labeling images according to their figure number in the article after they have been successfully extracted. For this purpose we use the labeled small size images provided with the XML web version of the article. This paper describes the image extraction process and two alternative approaches to perform image labeling that measure the similarity between two images based upon the image intensity projection on the coordinate axes and similarity based upon the normalized cross-correlation between the intensities of two images. Using image identification based on image intensity projection, we were able to achieve a precision of 92.84% and a recall of 82.18% in labeling of the extracted images.

  2. High content image based analysis identifies cell cycle inhibitors as regulators of Ebola virus infection.

    PubMed

    Kota, Krishna P; Benko, Jacqueline G; Mudhasani, Rajini; Retterer, Cary; Tran, Julie P; Bavari, Sina; Panchal, Rekha G

    2012-09-25

    Viruses modulate a number of host biological responses including the cell cycle to favor their replication. In this study, we developed a high-content imaging (HCI) assay to measure DNA content and identify different phases of the cell cycle. We then investigated the potential effects of cell cycle arrest on Ebola virus (EBOV) infection. Cells arrested in G1 phase by serum starvation or G1/S phase using aphidicolin or G2/M phase using nocodazole showed much reduced EBOV infection compared to the untreated control. Release of cells from serum starvation or aphidicolin block resulted in a time-dependent increase in the percentage of EBOV infected cells. The effect of EBOV infection on cell cycle progression was found to be cell-type dependent. Infection of asynchronous MCF-10A cells with EBOV resulted in a reduced number of cells in G2/M phase with concomitant increase of cells in G1 phase. However, these effects were not observed in HeLa or A549 cells. Together, our studies suggest that EBOV requires actively proliferating cells for efficient replication. Furthermore, multiplexing of HCI based assays to detect viral infection, cell cycle status and other phenotypic changes in a single cell population will provide useful information during screening campaigns using siRNA and small molecule therapeutics.

  3. Color Imaging management in film processing

    NASA Astrophysics Data System (ADS)

    Tremeau, Alain; Konik, Hubert; Colantoni, Philippe

    2003-12-01

    The latest research projects in the laboratory LIGIV concerns capture, processing, archiving and display of color images considering the trichromatic nature of the Human Vision System (HSV). Among these projects one addresses digital cinematographic film sequences of high resolution and dynamic range. This project aims to optimize the use of content for the post-production operators and for the end user. The studies presented in this paper address the use of metadata to optimise the consumption of video content on a device of user's choice independent of the nature of the equipment that captured the content. Optimising consumption includes enhancing the quality of image reconstruction on a display. Another part of this project addresses the content-based adaptation of image display. Main focus is on Regions of Interest (ROI) operations, based on the ROI concepts of MPEG-7. The aim of this second part is to characterize and ensure the conditions of display even if display device or display media changes. This requires firstly the definition of a reference color space and the definition of bi-directional color transformations for each peripheral device (camera, display, film recorder, etc.). The complicating factor is that different devices have different color gamuts, depending on the chromaticity of their primaries and the ambient illumination under which they are viewed. To match the displayed image to the aimed appearance, all kind of production metadata (camera specification, camera colour primaries, lighting conditions) should be associated to the film material. Metadata and content build together rich content. The author is assumed to specify conditions as known from digital graphics arts. To control image pre-processing and image post-processing, these specifications should be contained in the film's metadata. The specifications are related to the ICC profiles but need additionally consider mesopic viewing conditions.

  4. Unsupervised Feature Selection Based on the Morisita Index for Hyperspectral Images

    NASA Astrophysics Data System (ADS)

    Golay, Jean; Kanevski, Mikhail

    2017-04-01

    Hyperspectral sensors are capable of acquiring images with hundreds of narrow and contiguous spectral bands. Compared with traditional multispectral imagery, the use of hyperspectral images allows better performance in discriminating between land-cover classes, but it also results in large redundancy and high computational data processing. To alleviate such issues, unsupervised feature selection techniques for redundancy minimization can be implemented. Their goal is to select the smallest subset of features (or bands) in such a way that all the information content of a data set is preserved as much as possible. The present research deals with the application to hyperspectral images of a recently introduced technique of unsupervised feature selection: the Morisita-Based filter for Redundancy Minimization (MBRM). MBRM is based on the (multipoint) Morisita index of clustering and on the Morisita estimator of Intrinsic Dimension (ID). The fundamental idea of the technique is to retain only the bands which contribute to increasing the ID of an image. In this way, redundant bands are disregarded, since they have no impact on the ID. Besides, MBRM has several advantages over benchmark techniques: in addition to its ability to deal with large data sets, it can capture highly-nonlinear dependences and its implementation is straightforward in any programming environment. Experimental results on freely available hyperspectral images show the good effectiveness of MBRM in remote sensing data processing. Comparisons with benchmark techniques are carried out and random forests are used to assess the performance of MBRM in reducing the data dimensionality without loss of relevant information. References [1] C. Traina Jr., A.J.M. Traina, L. Wu, C. Faloutsos, Fast feature selection using fractal dimension, in: Proceedings of the XV Brazilian Symposium on Databases, SBBD, pp. 158-171, 2000. [2] J. Golay, M. Kanevski, A new estimator of intrinsic dimension based on the multipoint Morisita index, Pattern Recognition 48(12), pp. 4070-4081, 2015. [3] J. Golay, M. Kanevski, Unsupervised feature selection based on the Morisita estimator of intrinsic dimension, arXiv:1608.05581, 2016.

  5. BOREAS Level-3a Landsat TM Imagery: Scaled At-sensor Radiance in BSQ Format

    NASA Technical Reports Server (NTRS)

    Nickerson, Jaime; Hall, Forrest G. (Editor); Knapp, David; Newcomer, Jeffrey A.; Cihlar, Josef

    2000-01-01

    For BOREAS, the level-3a Landsat TM data, along with the other remotely sensed images, were collected in order to provide spatially extensive information over the primary study areas. This information includes radiant energy, detailed land cover, and biophysical parameter maps such as FPAR and LAI. Although very similar in content to the level-3s Landsat TM products, the level-3a images were created to provide users with a more usable BSQ format and to provide information that permitted direct determination of per-pixel latitude and longitude coordinates. Geographically, the level-3a images cover the BOREAS NSA and SSA. Temporally, the images cover the period of 22-Jun-1984 to 30-Jul-1996. The images are available in binary, image-format files. With permission from CCRS and RSI, several of the full-resolution images are included on the BOREAS CD-ROM series. Due to copyright issues, the images not included on the CD-ROM may not be publicly available. See Sections 15 and 16 for information about how to acquire the data. Information about the images not on the CD-ROMs is provided in an inventory listing on the CD-ROMs.

  6. Automatic view synthesis by image-domain-warping.

    PubMed

    Stefanoski, Nikolce; Wang, Oliver; Lang, Manuel; Greisen, Pierre; Heinzle, Simon; Smolic, Aljosa

    2013-09-01

    Today, stereoscopic 3D (S3D) cinema is already mainstream, and almost all new display devices for the home support S3D content. S3D distribution infrastructure to the home is already established partly in the form of 3D Blu-ray discs, video on demand services, or television channels. The necessity to wear glasses is, however, often considered as an obstacle, which hinders broader acceptance of this technology in the home. Multiviewautostereoscopic displays enable a glasses free perception of S3D content for several observers simultaneously, and support head motion parallax in a limited range. To support multiviewautostereoscopic displays in an already established S3D distribution infrastructure, a synthesis of new views from S3D video is needed. In this paper, a view synthesis method based on image-domain-warping (IDW) is presented that automatically synthesizes new views directly from S3D video and functions completely. IDW relies on an automatic and robust estimation of sparse disparities and image saliency information, and enforces target disparities in synthesized images using an image warping framework. Two configurations of the view synthesizer in the scope of a transmission and view synthesis framework are analyzed and evaluated. A transmission and view synthesis system that uses IDW is recently submitted to MPEG's call for proposals on 3D video technology, where it is ranked among the four best performing proposals.

  7. A fully automatic end-to-end method for content-based image retrieval of CT scans with similar liver lesion annotations.

    PubMed

    Spanier, A B; Caplan, N; Sosna, J; Acar, B; Joskowicz, L

    2018-01-01

    The goal of medical content-based image retrieval (M-CBIR) is to assist radiologists in the decision-making process by retrieving medical cases similar to a given image. One of the key interests of radiologists is lesions and their annotations, since the patient treatment depends on the lesion diagnosis. Therefore, a key feature of M-CBIR systems is the retrieval of scans with the most similar lesion annotations. To be of value, M-CBIR systems should be fully automatic to handle large case databases. We present a fully automatic end-to-end method for the retrieval of CT scans with similar liver lesion annotations. The input is a database of abdominal CT scans labeled with liver lesions, a query CT scan, and optionally one radiologist-specified lesion annotation of interest. The output is an ordered list of the database CT scans with the most similar liver lesion annotations. The method starts by automatically segmenting the liver in the scan. It then extracts a histogram-based features vector from the segmented region, learns the features' relative importance, and ranks the database scans according to the relative importance measure. The main advantages of our method are that it fully automates the end-to-end querying process, that it uses simple and efficient techniques that are scalable to large datasets, and that it produces quality retrieval results using an unannotated CT scan. Our experimental results on 9 CT queries on a dataset of 41 volumetric CT scans from the 2014 Image CLEF Liver Annotation Task yield an average retrieval accuracy (Normalized Discounted Cumulative Gain index) of 0.77 and 0.84 without/with annotation, respectively. Fully automatic end-to-end retrieval of similar cases based on image information alone, rather that on disease diagnosis, may help radiologists to better diagnose liver lesions.

  8. Use of Digital Image Technology to 'Clearly' Depict Global Change

    NASA Astrophysics Data System (ADS)

    Molnia, B. F.; Carbo, C. L.

    2014-12-01

    Earth is dynamic and beautiful. Understanding why, when, how, and how fast its surface changes yields information and serves as a source of inspiration. The artistic use of geoscience information can inform the public about what is happening to their planet in a non-confrontational and apolitical way. While individual images may clearly depict a landscape, photographic comparisons are necessary to clearly capture and display annual, decadal, or century-scale impacts of climate and environmental change on Earth's landscapes. After years of effort to artistically communicate geoscience concepts with unenhanced individual photographs or pairs of images, the authors have partnered to maximize this process by using digital image enhancement technology. This is done, not to manipulate the inherent artistic content or information content of the photographs, but to insure that the comparative photo pairs produced are geometrically correct and unambiguous. For comparative photography, information-rich historical photographs are selected from archives, websites, and other sources. After determining the geographic location from which the historical photograph was made, the original site is identified and eventually revisited. There, the historical photos field of view is again photographed, ideally from the original location. From nearly 250 locations revisited, about 175 pairs have been produced. Every effort is made to reoccupy the original historical site. However, vegetation growth, visibility reduction, and co-seismic level change may make this impossible. Also, inherent differences in lens optics, camera construction, and image format may result in differences in the geometry of the new photograph when compared to the old. Upon selection, historical photos are cleaned, contrast stretched, brightness adjusted, and sharpened to maximize site identification and information extraction. To facilitate matching historical and new images, digital files of each are overlain in an image enhancement program. The new image is resized to match the historical photo and then, using a pixel warping tool, portions of the new image are reconfigured and matched to historical pixels to create a perfect match. Through the use of digital image technology we are able to 'clearly' convey the realities of our changing planet.

  9. Region of interest extraction based on multiscale visual saliency analysis for remote sensing images

    NASA Astrophysics Data System (ADS)

    Zhang, Yinggang; Zhang, Libao; Yu, Xianchuan

    2015-01-01

    Region of interest (ROI) extraction is an important component of remote sensing image processing. However, traditional ROI extraction methods are usually prior knowledge-based and depend on classification, segmentation, and a global searching solution, which are time-consuming and computationally complex. We propose a more efficient ROI extraction model for remote sensing images based on multiscale visual saliency analysis (MVS), implemented in the CIE L*a*b* color space, which is similar to visual perception of the human eye. We first extract the intensity, orientation, and color feature of the image using different methods: the visual attention mechanism is used to eliminate the intensity feature using a difference of Gaussian template; the integer wavelet transform is used to extract the orientation feature; and color information content analysis is used to obtain the color feature. Then, a new feature-competition method is proposed that addresses the different contributions of each feature map to calculate the weight of each feature image for combining them into the final saliency map. Qualitative and quantitative experimental results of the MVS model as compared with those of other models show that it is more effective and provides more accurate ROI extraction results with fewer holes inside the ROI.

  10. Two-Dimensional Sectioned Images and Three-Dimensional Surface Models for Learning the Anatomy of the Female Pelvis

    ERIC Educational Resources Information Center

    Shin, Dong Sun; Jang, Hae Gwon; Hwang, Sung Bae; Har, Dong-Hwan; Moon, Young Lae; Chung, Min Suk

    2013-01-01

    In the Visible Korean project, serially sectioned images of the pelvis were made from a female cadaver. Outlines of significant structures in the sectioned images were drawn and stacked to build surface models. To improve the accessibility and informational content of these data, a five-step process was designed and implemented. First, 154 pelvic…

  11. Interactive visual comparison of multimedia data through type-specific views

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burtner, Edwin R.; Bohn, Shawn J.; Payne, Deborah A.

    2013-02-05

    Analysts who work with collections of multimedia to perform information foraging understand how difficult it is to connect information across diverse sets of mixed media. The wealth of information from blogs, social media, and news sites often can provide actionable intelligence; however, many of the tools used on these sources of content are not capable of multimedia analysis because they only analyze a single media type. As such, analysts are taxed to keep a mental model of the relationships among each of the media types when generating the broader content picture. To address this need, we have developed Canopy, amore » novel visual analytic tool for analyzing multimedia. Canopy provides insight into the multimedia data relationships by exploiting the linkages found in text, images, and video co-occurring in the same document and across the collection. Canopy connects derived and explicit linkages and relationships through multiple connected visualizations to aid analysts in quickly summarizing, searching, and browsing collected information to explore relationships and align content. In this paper, we will discuss the features and capabilities of the Canopy system and walk through a scenario illustrating how this system might be used in an operational environment. Keywords: Multimedia (Image/Video/Music) Visualization.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raymund, T.D.

    Recently, several tomographic techniques for ionospheric electron density imaging have been proposed. These techniques reconstruct a vertical slice image of electron density using total electron content data. The data are measured between a low orbit beacon satellite and fixed receivers located along the projected orbital path of the satellite. By using such tomographic techniques, it may be possible to inexpensively (relative to incoherent scatter techniques) image the ionospheric electron density in a vertical plane several times per day. The satellite and receiver geometry used to measure the total electron content data causes the data to be incomplete; that is, themore » measured data do not contain enough information to completely specify the ionospheric electron density distribution in the region between the satellite and the receivers. A new algorithm is proposed which allows the incorporation of other complementary measurements, such as those from ionosondes, and also includes ways to include a priori information about the unknown electron density distribution in the reconstruction process. The algorithm makes use of two-dimensional basis functions. Illustrative application of this algorithm is made to simulated cases with good results. The technique is also applied to real total electron content (TEC) records collected in Scandinavia in conjunction with the EISCAT incoherent scatter radar. The tomographic reconstructions are compared with the incoherent scatter electron density images of the same region of the ionosphere.« less

  13. Automated segmentation of midbrain structures with high iron content.

    PubMed

    Garzón, Benjamín; Sitnikov, Rouslan; Bäckman, Lars; Kalpouzos, Grégoria

    2018-04-15

    The substantia nigra (SN), the subthalamic nucleus (STN), and the red nucleus (RN) are midbrain structures of ample interest in many neuroimaging studies, which may benefit from the availability of automated segmentation methods. The high iron content of these structures awards them high contrast in quantitative susceptibility mapping (QSM) images. We present a novel segmentation method that leverages the information of these images to produce automated segmentations of the SN, STN, and RN. The algorithm builds a map of spatial priors for the structures by non-linearly registering a set of manually-traced training labels to the midbrain. The priors are used to inform a Gaussian mixture model of the image intensities, with smoothness constraints imposed to ensure anatomical plausibility. The method was validated on manual segmentations from a sample of 40 healthy younger and older subjects. Average Dice scores were 0.81 (0.05) for the SN, 0.66 (0.14) for the STN and 0.88 (0.04) for the RN in the left hemisphere, and similar values were obtained for the right hemisphere. In all structures, volumes of manual and automatically obtained segmentations were significantly correlated. The algorithm showed lower accuracy on R 2 * and T 2 -weighted Fluid Attenuated Inversion Recovery (FLAIR) images, which are also sensitive to iron content. To illustrate an application of the method, we show that the automated segmentations were comparable to the manual ones regarding detection of age-related differences to putative iron content. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Multimedia systems for art and culture: a case study of Brihadisvara Temple

    NASA Astrophysics Data System (ADS)

    Jain, Anil K.; Goel, Sanjay; Agarwal, Sachin; Mittal, Vipin; Sharma, Hariom; Mahindru, Ranjeev

    1997-01-01

    In India a temple is not only a structure of religious significance and celebration, but it also plays an important role in the social, administrative and cultural life of the locality. Temples have served as centers for learning Indian scriptures. Music and dance were fostered and performed in the precincts of the temples. Built at the end of the 10th century, the Brihadisvara temple signified new design methodologies. We have access to a large number of images, audio and video recordings, architectural drawings and scholarly publications of this temple. A multimedia system for this temple is being designed which is intended to be used for the following purposes: (1) to inform and enrich the general public, and (2) to assist the scholars in their research. Such a system will also preserve and archive old historical documents and images. The large database consists primarily of images which can be retrieved using keywords, but the emphasis here is largely on techniques which will allow access using image content. Besides classifying images as either long shots or close-ups, deformable template matching is used for shape-based query by image content, and digital video retrieval. Further, to exploit the non-linear accessibility of video sequences, key frames are determined to aid the domain experts in getting a quick preview of the video. Our database also has images of several old, and rare manuscripts many of which are noisy and difficult to read. We have enhanced them to make them more legible. We are also investigating the optimal trade-off between image quality and compression ratios.

  15. No-reference multiscale blur detection tool for content based image retrieval

    NASA Astrophysics Data System (ADS)

    Ezekiel, Soundararajan; Stocker, Russell; Harrity, Kyle; Alford, Mark; Ferris, David; Blasch, Erik; Gorniak, Mark

    2014-06-01

    In recent years, digital cameras have been widely used for image capturing. These devices are equipped in cell phones, laptops, tablets, webcams, etc. Image quality is an important component of digital image analysis. To assess image quality for these mobile products, a standard image is required as a reference image. In this case, Root Mean Square Error and Peak Signal to Noise Ratio can be used to measure the quality of the images. However, these methods are not possible if there is no reference image. In our approach, a discrete-wavelet transformation is applied to the blurred image, which decomposes into the approximate image and three detail sub-images, namely horizontal, vertical, and diagonal images. We then focus on noise-measuring the detail images and blur-measuring the approximate image to assess the image quality. We then compute noise mean and noise ratio from the detail images, and blur mean and blur ratio from the approximate image. The Multi-scale Blur Detection (MBD) metric provides both an assessment of the noise and blur content. These values are weighted based on a linear regression against full-reference y values. From these statistics, we can compare to normal useful image statistics for image quality without needing a reference image. We then test the validity of our obtained weights by R2 analysis as well as using them to estimate image quality of an image with a known quality measure. The result shows that our method provides acceptable results for images containing low to mid noise levels and blur content.

  16. Image Segmentation Analysis for NASA Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Tilton, James C.

    2010-01-01

    NASA collects large volumes of imagery data from satellite-based Earth remote sensing sensors. Nearly all of the computerized image analysis of this data is performed pixel-by-pixel, in which an algorithm is applied directly to individual image pixels. While this analysis approach is satisfactory in many cases, it is usually not fully effective in extracting the full information content from the high spatial resolution image data that s now becoming increasingly available from these sensors. The field of object-based image analysis (OBIA) has arisen in recent years to address the need to move beyond pixel-based analysis. The Recursive Hierarchical Segmentation (RHSEG) software developed by the author is being used to facilitate moving from pixel-based image analysis to OBIA. The key unique aspect of RHSEG is that it tightly intertwines region growing segmentation, which produces spatially connected region objects, with region object classification, which groups sets of region objects together into region classes. No other practical, operational image segmentation approach has this tight integration of region growing object finding with region classification This integration is made possible by the recursive, divide-and-conquer implementation utilized by RHSEG, in which the input image data is recursively subdivided until the image data sections are small enough to successfully mitigat the combinatorial explosion caused by the need to compute the dissimilarity between each pair of image pixels. RHSEG's tight integration of region growing object finding and region classification is what enables the high spatial fidelity of the image segmentations produced by RHSEG. This presentation will provide an overview of the RHSEG algorithm and describe how it is currently being used to support OBIA or Earth Science applications such as snow/ice mapping and finding archaeological sites from remotely sensed data.

  17. RADIANCE AND PHOTON NOISE: Imaging in geometrical optics, physical optics, quantum optics and radiology.

    PubMed

    Barrett, Harrison H; Myers, Kyle J; Caucci, Luca

    2014-08-17

    A fundamental way of describing a photon-limited imaging system is in terms of a Poisson random process in spatial, angular and wavelength variables. The mean of this random process is the spectral radiance. The principle of conservation of radiance then allows a full characterization of the noise in the image (conditional on viewing a specified object). To elucidate these connections, we first review the definitions and basic properties of radiance as defined in terms of geometrical optics, radiology, physical optics and quantum optics. The propagation and conservation laws for radiance in each of these domains are reviewed. Then we distinguish four categories of imaging detectors that all respond in some way to the incident radiance, including the new category of photon-processing detectors. The relation between the radiance and the statistical properties of the detector output is discussed and related to task-based measures of image quality and the information content of a single detected photon.

  18. RADIANCE AND PHOTON NOISE: Imaging in geometrical optics, physical optics, quantum optics and radiology

    PubMed Central

    Barrett, Harrison H.; Myers, Kyle J.; Caucci, Luca

    2016-01-01

    A fundamental way of describing a photon-limited imaging system is in terms of a Poisson random process in spatial, angular and wavelength variables. The mean of this random process is the spectral radiance. The principle of conservation of radiance then allows a full characterization of the noise in the image (conditional on viewing a specified object). To elucidate these connections, we first review the definitions and basic properties of radiance as defined in terms of geometrical optics, radiology, physical optics and quantum optics. The propagation and conservation laws for radiance in each of these domains are reviewed. Then we distinguish four categories of imaging detectors that all respond in some way to the incident radiance, including the new category of photon-processing detectors. The relation between the radiance and the statistical properties of the detector output is discussed and related to task-based measures of image quality and the information content of a single detected photon. PMID:27478293

  19. Use of Visual Cues by Adults With Traumatic Brain Injuries to Interpret Explicit and Inferential Information.

    PubMed

    Brown, Jessica A; Hux, Karen; Knollman-Porter, Kelly; Wallace, Sarah E

    2016-01-01

    Concomitant visual and cognitive impairments following traumatic brain injuries (TBIs) may be problematic when the visual modality serves as a primary source for receiving information. Further difficulties comprehending visual information may occur when interpretation requires processing inferential rather than explicit content. The purpose of this study was to compare the accuracy with which people with and without severe TBI interpreted information in contextually rich drawings. Fifteen adults with and 15 adults without severe TBI. Repeated-measures between-groups design. Participants were asked to match images to sentences that either conveyed explicit (ie, main action or background) or inferential (ie, physical or mental inference) information. The researchers compared accuracy between participant groups and among stimulus conditions. Participants with TBI demonstrated significantly poorer accuracy than participants without TBI extracting information from images. In addition, participants with TBI demonstrated significantly higher response accuracy when interpreting explicit rather than inferential information; however, no significant difference emerged between sentences referencing main action versus background information or sentences providing physical versus mental inference information for this participant group. Difficulties gaining information from visual environmental cues may arise for people with TBI given their difficulties interpreting inferential content presented through the visual modality.

  20. Fair Balance and Adequate Provision in Direct-to-Consumer Prescription Drug Online Banner Advertisements: A Content Analysis

    PubMed Central

    2016-01-01

    Background The current direct-to-consumer advertising (DTCA) guidelines were developed with print, television, and radio media in mind, and there are no specific guidelines for online banner advertisements. Objective This study evaluates how well Internet banner ads comply with existing Food and Drug Administration (FDA) guidelines for DTCA in other media. Methods A content analysis was performed of 68 banner advertisements. A coding sheet was developed based on (1) FDA guidance documents for consumer-directed prescription drug advertisements and (2) previous DTCA content analyses. Specifically, the presence of a brief summary detailing the drug’s risks and side effects or of a “major statement” identifying the drug’s major risks, and the number and type of provisions made available to consumers for comprehensive information about the drug were coded. In addition, the criterion of “fair balance,” the FDA’s requirement that prescription drug ads balance information relating to the drug’s risks with information relating to its benefits, was measured by numbering the benefit and risk facts identified in the ads and by examining the presentation of risk and benefit information. Results Every ad in the sample included a brief summary of risk information and at least one form of adequate provision as required by the FDA for broadcast ads that do not give audiences a brief summary of a drug’s risks. No ads included a major statement. There were approximately 7.18 risk facts for every benefit fact. Most of the risks (98.85%, 1292/1307) were presented in the scroll portion of the ad, whereas most of the benefits (66.5%, 121/182) were presented in the main part of the ad. Out of 1307 risk facts, 1292 were qualitative and 15 were quantitative. Out of 182 benefit facts, 181 were qualitative and 1 was quantitative. The majority of ads showed neutral images during the disclosure of benefit and risk facts. Only 9% (6/68) of the ads displayed positive images and none displayed negative images when presenting risks facts. When benefit facts were being presented, 7% (5/68) showed only positive images. No ads showed negative images when the benefit facts were being presented. Conclusions In the face of ambiguous regulatory guidelines for online banner promotion, drug companies appear to make an attempt to adapt to regulatory guidelines designed for traditional media. However, banner ads use various techniques of presentation to present the advertised drug in the best possible light. The FDA should formalize requirements that drug companies provide a brief summary and include multiple forms of adequate provision in banner ads. PMID:26892749

  1. fMR-adaptation indicates selectivity to audiovisual content congruency in distributed clusters in human superior temporal cortex.

    PubMed

    van Atteveldt, Nienke M; Blau, Vera C; Blomert, Leo; Goebel, Rainer

    2010-02-02

    Efficient multisensory integration is of vital importance for adequate interaction with the environment. In addition to basic binding cues like temporal and spatial coherence, meaningful multisensory information is also bound together by content-based associations. Many functional Magnetic Resonance Imaging (fMRI) studies propose the (posterior) superior temporal cortex (STC) as the key structure for integrating meaningful multisensory information. However, a still unanswered question is how superior temporal cortex encodes content-based associations, especially in light of inconsistent results from studies comparing brain activation to semantically matching (congruent) versus nonmatching (incongruent) multisensory inputs. Here, we used fMR-adaptation (fMR-A) in order to circumvent potential problems with standard fMRI approaches, including spatial averaging and amplitude saturation confounds. We presented repetitions of audiovisual stimuli (letter-speech sound pairs) and manipulated the associative relation between the auditory and visual inputs (congruent/incongruent pairs). We predicted that if multisensory neuronal populations exist in STC and encode audiovisual content relatedness, adaptation should be affected by the manipulated audiovisual relation. The results revealed an occipital-temporal network that adapted independently of the audiovisual relation. Interestingly, several smaller clusters distributed over superior temporal cortex within that network, adapted stronger to congruent than to incongruent audiovisual repetitions, indicating sensitivity to content congruency. These results suggest that the revealed clusters contain multisensory neuronal populations that encode content relatedness by selectively responding to congruent audiovisual inputs, since unisensory neuronal populations are assumed to be insensitive to the audiovisual relation. These findings extend our previously revealed mechanism for the integration of letters and speech sounds and demonstrate that fMR-A is sensitive to multisensory congruency effects that may not be revealed in BOLD amplitude per se.

  2. Digital Image Processing Overview For Helmet Mounted Displays

    NASA Astrophysics Data System (ADS)

    Parise, Michael J.

    1989-09-01

    Digital image processing provides a means to manipulate an image and presents a user with a variety of display formats that are not available in the analog image processing environment. When performed in real time and presented on a Helmet Mounted Display, system capability and flexibility are greatly enhanced. The information content of a display can be increased by the addition of real time insets and static windows from secondary sensor sources, near real time 3-D imaging from a single sensor can be achieved, graphical information can be added, and enhancement techniques can be employed. Such increased functionality is generating a considerable amount of interest in the military and commercial markets. This paper discusses some of these image processing techniques and their applications.

  3. Annotating image ROIs with text descriptions for multimodal biomedical document retrieval

    NASA Astrophysics Data System (ADS)

    You, Daekeun; Simpson, Matthew; Antani, Sameer; Demner-Fushman, Dina; Thoma, George R.

    2013-01-01

    Regions of interest (ROIs) that are pointed to by overlaid markers (arrows, asterisks, etc.) in biomedical images are expected to contain more important and relevant information than other regions for biomedical article indexing and retrieval. We have developed several algorithms that localize and extract the ROIs by recognizing markers on images. Cropped ROIs then need to be annotated with contents describing them best. In most cases accurate textual descriptions of the ROIs can be found from figure captions, and these need to be combined with image ROIs for annotation. The annotated ROIs can then be used to, for example, train classifiers that separate ROIs into known categories (medical concepts), or to build visual ontologies, for indexing and retrieval of biomedical articles. We propose an algorithm that pairs visual and textual ROIs that are extracted from images and figure captions, respectively. This algorithm based on dynamic time warping (DTW) clusters recognized pointers into groups, each of which contains pointers with identical visual properties (shape, size, color, etc.). Then a rule-based matching algorithm finds the best matching group for each textual ROI mention. Our method yields a precision and recall of 96% and 79%, respectively, when ground truth textual ROI data is used.

  4. An evaluation of websites to help neurosurgical trainees learn histopathology.

    PubMed

    Jeffree, R L

    2013-10-01

    Knowledge of histopathology is essential for good neurosurgical practice but current pressures on neurosurgical trainees' time restrict opportunities to learn histopathology by traditional methods. The internet offers a possible alternative resource. The aim of this project was to assess the existing, free, internet-based resources for learning histology and histopathology, from the perspective of a neurosurgical trainee. English language websites were evaluated by an expert, and by neurosurgical trainees, for the range of content, academic credibility, quality of the histopathological images, quality of supporting content, educational features and the usability. Thirty-nine websites were examined in detail by the author. Although many websites were useful, no individual website met all the requirements. Five neuropathology websites were clearly superior to the others. These were then assessed by neurosurgical trainees. The results of the assessment, a brief resume of each website, and the characteristics of a good website for the surgical trainees to learn pathology are discussed. The best websites featured a large number of high-quality images, accurate, detailed clinical and pathophysiological information, labelling or description of individual images, and organisation by organ system. Free internet sites can offer a valuable learning resource to supplement textbooks and clinical pathology sessions.

  5. Geographical topic learning for social images with a deep neural network

    NASA Astrophysics Data System (ADS)

    Feng, Jiangfan; Xu, Xin

    2017-03-01

    The use of geographical tagging in social-media images is becoming a part of image metadata and a great interest for geographical information science. It is well recognized that geographical topic learning is crucial for geographical annotation. Existing methods usually exploit geographical characteristics using image preprocessing, pixel-based classification, and feature recognition. How to effectively exploit the high-level semantic feature and underlying correlation among different types of contents is a crucial task for geographical topic learning. Deep learning (DL) has recently demonstrated robust capabilities for image tagging and has been introduced into geoscience. It extracts high-level features computed from a whole image component, where the cluttered background may dominate spatial features in the deep representation. Therefore, a method of spatial-attentional DL for geographical topic learning is provided and we can regard it as a special case of DL combined with various deep networks and tuning tricks. Results demonstrated that the method is discriminative for different types of geographical topic learning. In addition, it outperforms other sequential processing models in a tagging task for a geographical image dataset.

  6. Analysis of the impact of digital watermarking on computer-aided diagnosis in medical imaging.

    PubMed

    Garcia-Hernandez, Jose Juan; Gomez-Flores, Wilfrido; Rubio-Loyola, Javier

    2016-01-01

    Medical images (MI) are relevant sources of information for detecting and diagnosing a large number of illnesses and abnormalities. Due to their importance, this study is focused on breast ultrasound (BUS), which is the main adjunct for mammography to detect common breast lesions among women worldwide. On the other hand, aiming to enhance data security, image fidelity, authenticity, and content verification in e-health environments, MI watermarking has been widely used, whose main goal is to embed patient meta-data into MI so that the resulting image keeps its original quality. In this sense, this paper deals with the comparison of two watermarking approaches, namely spread spectrum based on the discrete cosine transform (SS-DCT) and the high-capacity data-hiding (HCDH) algorithm, so that the watermarked BUS images are guaranteed to be adequate for a computer-aided diagnosis (CADx) system, whose two principal outcomes are lesion segmentation and classification. Experimental results show that HCDH algorithm is highly recommended for watermarking medical images, maintaining the image quality and without introducing distortion into the output of CADx. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Analytical Tools for Cloudscope Ice Measurement

    NASA Technical Reports Server (NTRS)

    Arnott, W. Patrick

    1998-01-01

    The cloudscope is a ground or aircraft instrument for viewing ice crystals impacted on a sapphire window. It is essentially a simple optical microscope with an attached compact CCD video camera whose output is recorded on a Hi-8 mm video cassette recorder equipped with digital time and date recording capability. In aircraft operation the window is at a stagnation point of the flow so adiabatic compression heats the window to sublimate the ice crystals so that later impacting crystals can be imaged as well. A film heater is used for ground based operation to provide sublimation, and it can also be used to provide extra heat for aircraft operation. The compact video camera can be focused manually by the operator, and a beam splitter - miniature bulb combination provide illumination for night operation. Several shutter speeds are available to accommodate daytime illumination conditions by direct sunlight. The video images can be directly used to qualitatively assess the crystal content of cirrus clouds and contrails. Quantitative size spectra are obtained with the tools described in this report. Selected portions of the video images are digitized using a PCI bus frame grabber to form a short movie segment or stack using NIH (National Institute of Health) Image software with custom macros developed at DRI. The stack can be Fourier transform filtered with custom, easy to design filters to reduce most objectionable video artifacts. Particle quantification of each slice of the stack is performed using digital image analysis. Data recorded for each particle include particle number and centroid, frame number in the stack, particle area, perimeter, equivalent ellipse maximum and minimum radii, ellipse angle, and pixel number. Each valid particle in the stack is stamped with a unique number. This output can be used to obtain a semiquantitative appreciation of the crystal content. The particle information becomes the raw input for a subsequent program (FORTRAN) that synthesizes each slice and separates the new from the sublimating particles. The new particle information is used to generate quantitative particle concentration, area, and mass size spectra along with total concentration, solar extinction coefficient, and ice water content. This program directly creates output in html format for viewing with a web browser.

  8. Lunar Resources Using Moderate Spectral Resolution Visible and Near-infrared Spectroscopy: Al/si and Soil Maturity

    NASA Technical Reports Server (NTRS)

    Fischer, Erich M.; Pieters, Carle M.; Head, James W.

    1992-01-01

    Modern visible and near-infrared detectors are critically important for the accurate identification and relative abundance measurement of lunar minerals; however, even a very small number of well-placed visible and near-infrared bandpass channels provide a significant amount of general information about crucial lunar resources. The Galileo Solid State Imaging system (SSI) multispectral data are an important example of this. Al/Si and soil maturity will be discussed as examples of significant general lunar resource information that can be gleaned from moderate spectral resolution visible and near-infrared data with relative ease. Because quantitative-albedo data are necessary for these kinds of analyses, data such as those obtained by Galileo SSI are critical. SSI obtained synoptic digital multispectral image data for both the nearside and farside of the Moon during the first Galileo Earth-Moon encounter in December 1990. The data consist of images through seven filters with bandpasses ranging from 0.40 microns in the ultraviolet to 0.99 microns in the near-infrared. Although these data are of moderate spectral resolution, they still provide information for the following lunar resources: (1) titanium content of mature mare soils based upon the 0.40/0.56-micron (UV/VIS) ratio; (2) mafic mineral abundance based upon the 0.76/0.99-micron ratio; and (3) the maturity or exposure age of the soils based upon the 0.56-0.76-micron continuum and the 0.76/0.99-micron ratio. Within constraints, these moderate spectral resolution visible and near-infrared reflectance data can also provide elemental information such as Al/Si for mature highland soils.

  9. Galileo imaging observations of Lunar Maria and related deposits

    NASA Astrophysics Data System (ADS)

    Greeley, Ronald; Kadel, Steven D.; Williams, David A.; Gaddis, Lisa R.; Head, James W.; McEwen, Alfred S.; Murchie, Scott L.; Nagel, Engelbert; Neukum, Gerhard; Pieters, Carle M.; Sunshine, Jessica M.; Wagner, Roland; Belton, Michael J. S.

    The Galileo spacecraft imaged parts of the western limb and far side of the Moon in December 1990. Ratios of 0.41/0.56 μm filter images from the Solid State Imaging (SSI) experiment provided information on the titanium content of mare deposits; ratios of the 0.76/0.99 μm images indicated 1 μm absorptions associated with Fe2+ in mafic minerals. Mare ages were derived from crater statistics obtained from Lunar Orbiter images. Results on mare compositions in western Oceanus Procellarum and the Humorum basin are consistent with previous Earth-based observations, thus providing confidence in the use of Galileo data to extract compositional information. Mare units in the Grimaldi and Riccioli basins range in age from 3.25 to 3.48 Ga and consist of medium- to medium-high titanium (<4 to 7% TiO2) content lavas. The Schiller-Zucchius basin shows a higher 0.76/0.99 μm ratio than the surrounding highlands, indicating a potentially higher mafic mineral content consistent with previous interpretations that the area includes mare deposits blanketed by highland ejecta and light plains materials. The oldest mare materials in the Orientale basin occur in south-central Mare Orientale and are 3.7 Ga old; youngest mare materials are in Lacus Autumni and are 2.85 Ga old; these units are medium- to medium-high titanium (<4 to 7% TiO2) basalts. Thus, volcanism was active in Orientale for 0.85 Ga, but lavas were relatively constant in composition. Galileo data suggest that Mendel-Rydberg mare is similar to Mare Orientale; cryptomare are present as well. Thus, the mare lavas on the western limb and far side (to 178°E) are remarkably uniform in composition, being generally of medium- to medium-high titanium content and having relatively low 0.76/0.99 μm ratios. This region of the Moon is between two postulated large impact structures, the Procellarum and the South Pole-Aitken basins, and may have a relatively thick crust. In areas underlain by an inferred thinner crust, i.e., zones within large basins (as at Apollo), titanium content is often higher. However, no mare deposits with titanium abundances approaching those of the high-titanium (9 to 14% TiO2) Apollo 11 and 17 basalts nor of the high-titanium regions of central Oceanus Procellarum are seen on the western limb or eastern far side. Light plains deposits are generally indistinct from the surrounding highlands in the SSI data and are inferred to be derived primarily from the same material that forms the highlands. Some of the light plains are too young to be related to basin-forming impacts, suggesting possible volcanic origin. Dark mantle deposit compositions derived from SSI data are consistent with Earth-based observations of similar near-side deposits and are interpreted to be pyroclastic materials. However, the moderate albedo and 1 μm absorption of the dark mantle deposit on the southwest margin of the Orientale basin suggest it is a local pyroclastic deposit contaminated with underlying highland materials from the Orientale impact.

  10. Representation-based user interfaces for the audiovisual library of the year 2000

    NASA Astrophysics Data System (ADS)

    Aigrain, Philippe; Joly, Philippe; Lepain, Philippe; Longueville, Veronique

    1995-03-01

    The audiovisual library of the future will be based on computerized access to digitized documents. In this communication, we address the user interface issues which will arise from this new situation. One cannot simply transfer a user interface designed for the piece by piece production of some audiovisual presentation and make it a tool for accessing full-length movies in an electronic library. One cannot take a digital sound editing tool and propose it as a means to listen to a musical recording. In our opinion, when computers are used as mediations to existing contents, document representation-based user interfaces are needed. With such user interfaces, a structured visual representation of the document contents is presented to the user, who can then manipulate it to control perception and analysis of these contents. In order to build such manipulable visual representations of audiovisual documents, one needs to automatically extract structural information from the documents contents. In this communication, we describe possible visual interfaces for various temporal media, and we propose methods for the economically feasible large scale processing of documents. The work presented is sponsored by the Bibliotheque Nationale de France: it is part of the program aiming at developing for image and sound documents an experimental counterpart to the digitized text reading workstation of this library.

  11. A Web simulation of medical image reconstruction and processing as an educational tool.

    PubMed

    Papamichail, Dimitrios; Pantelis, Evaggelos; Papagiannis, Panagiotis; Karaiskos, Pantelis; Georgiou, Evangelos

    2015-02-01

    Web educational resources integrating interactive simulation tools provide students with an in-depth understanding of the medical imaging process. The aim of this work was the development of a purely Web-based, open access, interactive application, as an ancillary learning tool in graduate and postgraduate medical imaging education, including a systematic evaluation of learning effectiveness. The pedagogic content of the educational Web portal was designed to cover the basic concepts of medical imaging reconstruction and processing, through the use of active learning and motivation, including learning simulations that closely resemble actual tomographic imaging systems. The user can implement image reconstruction and processing algorithms under a single user interface and manipulate various factors to understand the impact on image appearance. A questionnaire for pre- and post-training self-assessment was developed and integrated in the online application. The developed Web-based educational application introduces the trainee in the basic concepts of imaging through textual and graphical information and proceeds with a learning-by-doing approach. Trainees are encouraged to participate in a pre- and post-training questionnaire to assess their knowledge gain. An initial feedback from a group of graduate medical students showed that the developed course was considered as effective and well structured. An e-learning application on medical imaging integrating interactive simulation tools was developed and assessed in our institution.

  12. Informatics in radiology: RADTF: a semantic search-enabled, natural language processor-generated radiology teaching file.

    PubMed

    Do, Bao H; Wu, Andrew; Biswal, Sandip; Kamaya, Aya; Rubin, Daniel L

    2010-11-01

    Storing and retrieving radiology cases is an important activity for education and clinical research, but this process can be time-consuming. In the process of structuring reports and images into organized teaching files, incidental pathologic conditions not pertinent to the primary teaching point can be omitted, as when a user saves images of an aortic dissection case but disregards the incidental osteoid osteoma. An alternate strategy for identifying teaching cases is text search of reports in radiology information systems (RIS), but retrieved reports are unstructured, teaching-related content is not highlighted, and patient identifying information is not removed. Furthermore, searching unstructured reports requires sophisticated retrieval methods to achieve useful results. An open-source, RadLex(®)-compatible teaching file solution called RADTF, which uses natural language processing (NLP) methods to process radiology reports, was developed to create a searchable teaching resource from the RIS and the picture archiving and communication system (PACS). The NLP system extracts and de-identifies teaching-relevant statements from full reports to generate a stand-alone database, thus converting existing RIS archives into an on-demand source of teaching material. Using RADTF, the authors generated a semantic search-enabled, Web-based radiology archive containing over 700,000 cases with millions of images. RADTF combines a compact representation of the teaching-relevant content in radiology reports and a versatile search engine with the scale of the entire RIS-PACS collection of case material. ©RSNA, 2010

  13. Magnetic resonance guided optical spectroscopy imaging of human breast cancer using a combined frequency domain and continuous wave approach

    NASA Astrophysics Data System (ADS)

    Mastanduno, Michael A.; Davis, Scott C.; Jiang, Shudong; diFlorio-Alexander, Roberta; Pogue, Brian W.; Paulsen, Keith D.

    2012-03-01

    Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is used to image high-risk patients for breast cancer because of its higher sensitivity to tumors (approaching 100%) than traditional x-ray mammography. We focus on Near Infrared Spectroscopy (NIRS) as an emerging functional and molecular imaging technique that non-invasively quantifies optical properties of total hemoglobin, oxygen saturation, water content, scattering, and lipid concentration to increase the relatively low specificity of DCE-MRI. Our optical imaging system combines six frequency domain wavelengths, measured using PMT detectors with three continuous wave wavelengths measured using CCD/spectrometers. We present methods on combining the synergistic attributes of DCE-MR and NIRS for in-vivo imaging of breast cancer in three dimensions using a custom optical MR breast coil and diffusion based light modeling software, NIRFAST. We present results from phantom studies, healthy subjects, and breast cancer patients. Preliminary results show contrast recovery within 10% in phantoms and spatial resolution less than 5mm. Images from healthy subjects were recovered with properties similar to literature values and previous studies. Patient images have shown elevated total hemoglobin values and water fraction, agreeing with histology and previous results. The additional information gained from NIRS may improve the ability to distinguish between malignant and benign lesions during MR imaging. These dual modality instruments will provide complex anatomical and molecular prognostic information, and may decrease the number of biopsies, thereby improving patient care.

  14. High content analysis of phagocytic activity and cell morphology with PuntoMorph.

    PubMed

    Al-Ali, Hassan; Gao, Han; Dalby-Hansen, Camilla; Peters, Vanessa Ann; Shi, Yan; Brambilla, Roberta

    2017-11-01

    Phagocytosis is essential for maintenance of normal homeostasis and healthy tissue. As such, it is a therapeutic target for a wide range of clinical applications. The development of phenotypic screens targeting phagocytosis has lagged behind, however, due to the difficulties associated with image-based quantification of phagocytic activity. We present a robust algorithm and cell-based assay system for high content analysis of phagocytic activity. The method utilizes fluorescently labeled beads as a phagocytic substrate with defined physical properties. The algorithm employs statistical modeling to determine the mean fluorescence of individual beads within each image, and uses the information to conduct an accurate count of phagocytosed beads. In addition, the algorithm conducts detailed and sophisticated analysis of cellular morphology, making it a standalone tool for high content screening. We tested our assay system using microglial cultures. Our results recapitulated previous findings on the effects of microglial stimulation on cell morphology and phagocytic activity. Moreover, our cell-level analysis revealed that the two phenotypes associated with microglial activation, specifically cell body hypertrophy and increased phagocytic activity, are not highly correlated. This novel finding suggests the two phenotypes may be under the control of distinct signaling pathways. We demonstrate that our assay system outperforms preexisting methods for quantifying phagocytic activity in multiple dimensions including speed, accuracy, and resolution. We provide a framework to facilitate the development of high content assays suitable for drug screening. For convenience, we implemented our algorithm in a standalone software package, PuntoMorph. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. A burnout prediction model based around char morphology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao Wu; Edward Lester; Michael Cloke

    Several combustion models have been developed that can make predictions about coal burnout and burnout potential. Most of these kinetic models require standard parameters such as volatile content and particle size to make a burnout prediction. This article presents a new model called the char burnout (ChB) model, which also uses detailed information about char morphology in its prediction. The input data to the model is based on information derived from two different image analysis techniques. One technique generates characterization data from real char samples, and the other predicts char types based on characterization data from image analysis of coalmore » particles. The pyrolyzed chars in this study were created in a drop tube furnace operating at 1300{sup o}C, 200 ms, and 1% oxygen. Modeling results were compared with a different carbon burnout kinetic model as well as the actual burnout data from refiring the same chars in a drop tube furnace operating at 1300{sup o}C, 5% oxygen, and residence times of 200, 400, and 600 ms. A good agreement between ChB model and experimental data indicates that the inclusion of char morphology in combustion models could well improve model predictions. 38 refs., 5 figs., 6 tabs.« less

  16. A novel content-based medical image retrieval method based on query topic dependent image features (QTDIF)

    NASA Astrophysics Data System (ADS)

    Xiong, Wei; Qiu, Bo; Tian, Qi; Mueller, Henning; Xu, Changsheng

    2005-04-01

    Medical image retrieval is still mainly a research domain with a large variety of applications and techniques. With the ImageCLEF 2004 benchmark, an evaluation framework has been created that includes a database, query topics and ground truth data. Eleven systems (with a total of more than 50 runs) compared their performance in various configurations. The results show that there is not any one feature that performs well on all query tasks. Key to successful retrieval is rather the selection of features and feature weights based on a specific set of input features, thus on the query task. In this paper we propose a novel method based on query topic dependent image features (QTDIF) for content-based medical image retrieval. These feature sets are designed to capture both inter-category and intra-category statistical variations to achieve good retrieval performance in terms of recall and precision. We have used Gaussian Mixture Models (GMM) and blob representation to model medical images and construct the proposed novel QTDIF for CBIR. Finally, trained multi-class support vector machines (SVM) are used for image similarity ranking. The proposed methods have been tested over the Casimage database with around 9000 images, for the given 26 image topics, used for imageCLEF 2004. The retrieval performance has been compared with the medGIFT system, which is based on the GNU Image Finding Tool (GIFT). The experimental results show that the proposed QTDIF-based CBIR can provide significantly better performance than systems based general features only.

  17. A JPEG backward-compatible HDR image compression

    NASA Astrophysics Data System (ADS)

    Korshunov, Pavel; Ebrahimi, Touradj

    2012-10-01

    High Dynamic Range (HDR) imaging is expected to become one of the technologies that could shape next generation of consumer digital photography. Manufacturers are rolling out cameras and displays capable of capturing and rendering HDR images. The popularity and full public adoption of HDR content is however hindered by the lack of standards in evaluation of quality, file formats, and compression, as well as large legacy base of Low Dynamic Range (LDR) displays that are unable to render HDR. To facilitate wide spread of HDR usage, the backward compatibility of HDR technology with commonly used legacy image storage, rendering, and compression is necessary. Although many tone-mapping algorithms were developed for generating viewable LDR images from HDR content, there is no consensus on which algorithm to use and under which conditions. This paper, via a series of subjective evaluations, demonstrates the dependency of perceived quality of the tone-mapped LDR images on environmental parameters and image content. Based on the results of subjective tests, it proposes to extend JPEG file format, as the most popular image format, in a backward compatible manner to also deal with HDR pictures. To this end, the paper provides an architecture to achieve such backward compatibility with JPEG and demonstrates efficiency of a simple implementation of this framework when compared to the state of the art HDR image compression.

  18. General Staining and Segmentation Procedures for High Content Imaging and Analysis.

    PubMed

    Chambers, Kevin M; Mandavilli, Bhaskar S; Dolman, Nick J; Janes, Michael S

    2018-01-01

    Automated quantitative fluorescence microscopy, also known as high content imaging (HCI), is a rapidly growing analytical approach in cell biology. Because automated image analysis relies heavily on robust demarcation of cells and subcellular regions, reliable methods for labeling cells is a critical component of the HCI workflow. Labeling of cells for image segmentation is typically performed with fluorescent probes that bind DNA for nuclear-based cell demarcation or with those which react with proteins for image analysis based on whole cell staining. These reagents, along with instrument and software settings, play an important role in the successful segmentation of cells in a population for automated and quantitative image analysis. In this chapter, we describe standard procedures for labeling and image segmentation in both live and fixed cell samples. The chapter will also provide troubleshooting guidelines for some of the common problems associated with these aspects of HCI.

  19. Progressive transmission of pseudo-color images. Appendix 1: Item 4. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Hadenfeldt, Andrew C.

    1991-01-01

    The transmission of digital images can require considerable channel bandwidth. The cost of obtaining such a channel can be prohibitive, or the channel might simply not be available. In this case, progressive transmission (PT) can be useful. PT presents the user with a coarse initial image approximation, and then proceeds to refine it. In this way, the user tends to receive information about the content of the image sooner than if a sequential transmission method is used. PT finds application in image data base browsing, teleconferencing, medical and other applications. A PT scheme is developed for use with a particular type of image data, the pseudo-color or color mapped image. Such images consist of a table of colors called a colormap, plus a 2-D array of index values which indicate which colormap entry is to be used to display a given pixel. This type of image presents some unique problems for a PT coder, and techniques for overcoming these problems are developed. A computer simulation of the color mapped PT scheme is developed to evaluate its performance. Results of simulation using several test images are presented.

  20. A new Fourier transform based CBIR scheme for mammographic mass classification: a preliminary invariance assessment

    NASA Astrophysics Data System (ADS)

    Gundreddy, Rohith Reddy; Tan, Maxine; Qui, Yuchen; Zheng, Bin

    2015-03-01

    The purpose of this study is to develop and test a new content-based image retrieval (CBIR) scheme that enables to achieve higher reproducibility when it is implemented in an interactive computer-aided diagnosis (CAD) system without significantly reducing lesion classification performance. This is a new Fourier transform based CBIR algorithm that determines image similarity of two regions of interest (ROI) based on the difference of average regional image pixel value distribution in two Fourier transform mapped images under comparison. A reference image database involving 227 ROIs depicting the verified soft-tissue breast lesions was used. For each testing ROI, the queried lesion center was systematically shifted from 10 to 50 pixels to simulate inter-user variation of querying suspicious lesion center when using an interactive CAD system. The lesion classification performance and reproducibility as the queried lesion center shift were assessed and compared among the three CBIR schemes based on Fourier transform, mutual information and Pearson correlation. Each CBIR scheme retrieved 10 most similar reference ROIs and computed a likelihood score of the queried ROI depicting a malignant lesion. The experimental results shown that three CBIR schemes yielded very comparable lesion classification performance as measured by the areas under ROC curves with the p-value greater than 0.498. However, the CBIR scheme using Fourier transform yielded the highest invariance to both queried lesion center shift and lesion size change. This study demonstrated the feasibility of improving robustness of the interactive CAD systems by adding a new Fourier transform based image feature to CBIR schemes.

Top