An integrated content and metadata based retrieval system for art.
Lewis, Paul H; Martinez, Kirk; Abas, Fazly Salleh; Fauzi, Mohammad Faizal Ahmad; Chan, Stephen C Y; Addis, Matthew J; Boniface, Mike J; Grimwood, Paul; Stevenson, Alison; Lahanier, Christian; Stevenson, James
2004-03-01
A new approach to image retrieval is presented in the domain of museum and gallery image collections. Specialist algorithms, developed to address specific retrieval tasks, are combined with more conventional content and metadata retrieval approaches, and implemented within a distributed architecture to provide cross-collection searching and navigation in a seamless way. External systems can access the different collections using interoperability protocols and open standards, which were extended to accommodate content based as well as text based retrieval paradigms. After a brief overview of the complete system, we describe the novel design and evaluation of some of the specialist image analysis algorithms including a method for image retrieval based on sub-image queries, retrievals based on very low quality images and retrieval using canvas crack patterns. We show how effective retrieval results can be achieved by real end-users consisting of major museums and galleries, accessing the distributed but integrated digital collections.
Image/text automatic indexing and retrieval system using context vector approach
NASA Astrophysics Data System (ADS)
Qing, Kent P.; Caid, William R.; Ren, Clara Z.; McCabe, Patrick
1995-11-01
Thousands of documents and images are generated daily both on and off line on the information superhighway and other media. Storage technology has improved rapidly to handle these data but indexing this information is becoming very costly. HNC Software Inc. has developed a technology for automatic indexing and retrieval of free text and images. This technique is demonstrated and is based on the concept of `context vectors' which encode a succinct representation of the associated text and features of sub-image. In this paper, we will describe the Automated Librarian System which was designed for free text indexing and the Image Content Addressable Retrieval System (ICARS) which extends the technique from the text domain into the image domain. Both systems have the ability to automatically assign indices for a new document and/or image based on the content similarities in the database. ICARS also has the capability to retrieve images based on similarity of content using index terms, text description, and user-generated images as a query without performing segmentation or object recognition.
Scalable ranked retrieval using document images
NASA Astrophysics Data System (ADS)
Jain, Rajiv; Oard, Douglas W.; Doermann, David
2013-12-01
Despite the explosion of text on the Internet, hard copy documents that have been scanned as images still play a significant role for some tasks. The best method to perform ranked retrieval on a large corpus of document images, however, remains an open research question. The most common approach has been to perform text retrieval using terms generated by optical character recognition. This paper, by contrast, examines whether a scalable segmentation-free image retrieval algorithm, which matches sub-images containing text or graphical objects, can provide additional benefit in satisfying a user's information needs on a large, real world dataset. Results on 7 million scanned pages from the CDIP v1.0 test collection show that content based image retrieval finds a substantial number of documents that text retrieval misses, and that when used as a basis for relevance feedback can yield improvements in retrieval effectiveness.
Extraction of composite visual objects from audiovisual materials
NASA Astrophysics Data System (ADS)
Durand, Gwenael; Thienot, Cedric; Faudemay, Pascal
1999-08-01
An effective analysis of Visual Objects appearing in still images and video frames is required in order to offer fine grain access to multimedia and audiovisual contents. In previous papers, we showed how our method for segmenting still images into visual objects could improve content-based image retrieval and video analysis methods. Visual Objects are used in particular for extracting semantic knowledge about the contents. However, low-level segmentation methods for still images are not likely to extract a complex object as a whole but instead as a set of several sub-objects. For example, a person would be segmented into three visual objects: a face, hair, and a body. In this paper, we introduce the concept of Composite Visual Object. Such an object is hierarchically composed of sub-objects called Component Objects.
Content-based image retrieval on mobile devices
NASA Astrophysics Data System (ADS)
Ahmad, Iftikhar; Abdullah, Shafaq; Kiranyaz, Serkan; Gabbouj, Moncef
2005-03-01
Content-based image retrieval area possesses a tremendous potential for exploration and utilization equally for researchers and people in industry due to its promising results. Expeditious retrieval of desired images requires indexing of the content in large-scale databases along with extraction of low-level features based on the content of these images. With the recent advances in wireless communication technology and availability of multimedia capable phones it has become vital to enable query operation in image databases and retrieve results based on the image content. In this paper we present a content-based image retrieval system for mobile platforms, providing the capability of content-based query to any mobile device that supports Java platform. The system consists of light-weight client application running on a Java enabled device and a server containing a servlet running inside a Java enabled web server. The server responds to image query using efficient native code from selected image database. The client application, running on a mobile phone, is able to initiate a query request, which is handled by a servlet in the server for finding closest match to the queried image. The retrieved results are transmitted over mobile network and images are displayed on the mobile phone. We conclude that such system serves as a basis of content-based information retrieval on wireless devices and needs to cope up with factors such as constraints on hand-held devices and reduced network bandwidth available in mobile environments.
World Wide Web Based Image Search Engine Using Text and Image Content Features
NASA Astrophysics Data System (ADS)
Luo, Bo; Wang, Xiaogang; Tang, Xiaoou
2003-01-01
Using both text and image content features, a hybrid image retrieval system for Word Wide Web is developed in this paper. We first use a text-based image meta-search engine to retrieve images from the Web based on the text information on the image host pages to provide an initial image set. Because of the high-speed and low cost nature of the text-based approach, we can easily retrieve a broad coverage of images with a high recall rate and a relatively low precision. An image content based ordering is then performed on the initial image set. All the images are clustered into different folders based on the image content features. In addition, the images can be re-ranked by the content features according to the user feedback. Such a design makes it truly practical to use both text and image content for image retrieval over the Internet. Experimental results confirm the efficiency of the system.
Sub-Selective Quantization for Learning Binary Codes in Large-Scale Image Search.
Li, Yeqing; Liu, Wei; Huang, Junzhou
2018-06-01
Recently with the explosive growth of visual content on the Internet, large-scale image search has attracted intensive attention. It has been shown that mapping high-dimensional image descriptors to compact binary codes can lead to considerable efficiency gains in both storage and performing similarity computation of images. However, most existing methods still suffer from expensive training devoted to large-scale binary code learning. To address this issue, we propose a sub-selection based matrix manipulation algorithm, which can significantly reduce the computational cost of code learning. As case studies, we apply the sub-selection algorithm to several popular quantization techniques including cases using linear and nonlinear mappings. Crucially, we can justify the resulting sub-selective quantization by proving its theoretic properties. Extensive experiments are carried out on three image benchmarks with up to one million samples, corroborating the efficacy of the sub-selective quantization method in terms of image retrieval.
Visual Based Retrieval Systems and Web Mining--Introduction.
ERIC Educational Resources Information Center
Iyengar, S. S.
2001-01-01
Briefly discusses Web mining and image retrieval techniques, and then presents a summary of articles in this special issue. Articles focus on Web content mining, artificial neural networks as tools for image retrieval, content-based image retrieval systems, and personalizing the Web browsing experience using media agents. (AEF)
Complex Event Processing for Content-Based Text, Image, and Video Retrieval
2016-06-01
NY): Wiley- Interscience; 2000. Feldman R, Sanger J. The text mining handbook: advanced approaches in analyzing unstructured data. New York (NY...ARL-TR-7705 ● JUNE 2016 US Army Research Laboratory Complex Event Processing for Content-Based Text , Image, and Video Retrieval...ARL-TR-7705 ● JUNE 2016 US Army Research Laboratory Complex Event Processing for Content-Based Text , Image, and Video Retrieval
Improved image retrieval based on fuzzy colour feature vector
NASA Astrophysics Data System (ADS)
Ben-Ahmeida, Ahlam M.; Ben Sasi, Ahmed Y.
2013-03-01
One of Image indexing techniques is the Content-Based Image Retrieval which is an efficient way for retrieving images from the image database automatically based on their visual contents such as colour, texture, and shape. In this paper will be discuss how using content-based image retrieval (CBIR) method by colour feature extraction and similarity checking. By dividing the query image and all images in the database into pieces and extract the features of each part separately and comparing the corresponding portions in order to increase the accuracy in the retrieval. The proposed approach is based on the use of fuzzy sets, to overcome the problem of curse of dimensionality. The contribution of colour of each pixel is associated to all the bins in the histogram using fuzzy-set membership functions. As a result, the Fuzzy Colour Histogram (FCH), outperformed the Conventional Colour Histogram (CCH) in image retrieving, due to its speedy results, where were images represented as signatures that took less size of memory, depending on the number of divisions. The results also showed that FCH is less sensitive and more robust to brightness changes than the CCH with better retrieval recall values.
A Multimodal Search Engine for Medical Imaging Studies.
Pinho, Eduardo; Godinho, Tiago; Valente, Frederico; Costa, Carlos
2017-02-01
The use of digital medical imaging systems in healthcare institutions has increased significantly, and the large amounts of data in these systems have led to the conception of powerful support tools: recent studies on content-based image retrieval (CBIR) and multimodal information retrieval in the field hold great potential in decision support, as well as for addressing multiple challenges in healthcare systems, such as computer-aided diagnosis (CAD). However, the subject is still under heavy research, and very few solutions have become part of Picture Archiving and Communication Systems (PACS) in hospitals and clinics. This paper proposes an extensible platform for multimodal medical image retrieval, integrated in an open-source PACS software with profile-based CBIR capabilities. In this article, we detail a technical approach to the problem by describing its main architecture and each sub-component, as well as the available web interfaces and the multimodal query techniques applied. Finally, we assess our implementation of the engine with computational performance benchmarks.
Kingfisher: a system for remote sensing image database management
NASA Astrophysics Data System (ADS)
Bruzzo, Michele; Giordano, Ferdinando; Dellepiane, Silvana G.
2003-04-01
At present retrieval methods in remote sensing image database are mainly based on spatial-temporal information. The increasing amount of images to be collected by the ground station of earth observing systems emphasizes the need for database management with intelligent data retrieval capabilities. The purpose of the proposed method is to realize a new content based retrieval system for remote sensing images database with an innovative search tool based on image similarity. This methodology is quite innovative for this application, at present many systems exist for photographic images, as for example QBIC and IKONA, but they are not able to extract and describe properly remote image content. The target database is set by an archive of images originated from an X-SAR sensor (spaceborne mission, 1994). The best content descriptors, mainly texture parameters, guarantees high retrieval performances and can be extracted without losses independently of image resolution. The latter property allows DBMS (Database Management System) to process low amount of information, as in the case of quick-look images, improving time performance and memory access without reducing retrieval accuracy. The matching technique has been designed to enable image management (database population and retrieval) independently of dimensions (width and height). Local and global content descriptors are compared, during retrieval phase, with the query image and results seem to be very encouraging.
Fast content-based image retrieval using dynamic cluster tree
NASA Astrophysics Data System (ADS)
Chen, Jinyan; Sun, Jizhou; Wu, Rongteng; Zhang, Yaping
2008-03-01
A novel content-based image retrieval data structure is developed in present work. It can improve the searching efficiency significantly. All images are organized into a tree, in which every node is comprised of images with similar features. Images in a children node have more similarity (less variance) within themselves in relative to its parent. It means that every node is a cluster and each of its children nodes is a sub-cluster. Information contained in a node includes not only the number of images, but also the center and the variance of these images. Upon the addition of new images, the tree structure is capable of dynamically changing to ensure the minimization of total variance of the tree. Subsequently, a heuristic method has been designed to retrieve the information from this tree. Given a sample image, the probability of a tree node that contains the similar images is computed using the center of the node and its variance. If the probability is higher than a certain threshold, this node will be recursively checked to locate the similar images. So will its children nodes if their probability is also higher than that threshold. If no sufficient similar images were founded, a reduced threshold value would be adopted to initiate a new seeking from the root node. The search terminates when it found sufficient similar images or the threshold value is too low to give meaningful sense. Experiments have shown that the proposed dynamic cluster tree is able to improve the searching efficiency notably.
Characterizing region of interest in image using MPEG-7 visual descriptors
NASA Astrophysics Data System (ADS)
Ryu, Min-Sung; Park, Soo-Jun; Won, Chee Sun
2005-08-01
In this paper, we propose a region-based image retrieval system using EHD (Edge Histogram Descriptor) and CLD (Color Layout Descriptor) of MPEG-7 descriptors. The combined descriptor can efficiently describe edge and color features in terms of sub-image regions. That is, the basic unit for the selection of the region-of-interest (ROI) in the image is the sub-image block of the EHD, which corresponds to 16 (i.e., 4x4) non-overlapping image blocks in the image space. This implies that, to have a one-to-one region correspondence between EHD and CLD, we need to take an 8x8 inverse DCT (IDCT) for the CLD. Experimental results show that the proposed retrieval scheme can be used for image retrieval with the ROI based image retrieval for MPEG-7 indexed images.
NASA Technical Reports Server (NTRS)
Coddington, Odele; Pilewskie, Peter; Schmidt, K. Sebastian; McBride, Patrick J.; Vukicevic, Tomislava
2013-01-01
This paper presents an approach using the GEneralized Nonlinear Retrieval Analysis (GENRA) tool and general inverse theory diagnostics including the maximum likelihood solution and the Shannon information content to investigate the performance of a new spectral technique for the retrieval of cloud optical properties from surface based transmittance measurements. The cumulative retrieval information over broad ranges in cloud optical thickness (tau), droplet effective radius (r(sub e)), and overhead sun angles is quantified under two conditions known to impact transmitted radiation; the variability in land surface albedo and atmospheric water vapor content. Our conclusions are: (1) the retrieved cloud properties are more sensitive to the natural variability in land surface albedo than to water vapor content; (2) the new spectral technique is more accurate (but still imprecise) than a standard approach, in particular for tau between 5 and 60 and r(sub e) less than approximately 20 nm; and (3) the retrieved cloud properties are dependent on sun angle for clouds of tau from 5 to 10 and r(sub e) less than 10 nm, with maximum sensitivity obtained for an overhead sun.
Sharma, Harshita; Alekseychuk, Alexander; Leskovsky, Peter; Hellwich, Olaf; Anand, R S; Zerbe, Norman; Hufnagl, Peter
2012-10-04
Computer-based analysis of digitalized histological images has been gaining increasing attention, due to their extensive use in research and routine practice. The article aims to contribute towards the description and retrieval of histological images by employing a structural method using graphs. Due to their expressive ability, graphs are considered as a powerful and versatile representation formalism and have obtained a growing consideration especially by the image processing and computer vision community. The article describes a novel method for determining similarity between histological images through graph-theoretic description and matching, for the purpose of content-based retrieval. A higher order (region-based) graph-based representation of breast biopsy images has been attained and a tree-search based inexact graph matching technique has been employed that facilitates the automatic retrieval of images structurally similar to a given image from large databases. The results obtained and evaluation performed demonstrate the effectiveness and superiority of graph-based image retrieval over a common histogram-based technique. The employed graph matching complexity has been reduced compared to the state-of-the-art optimal inexact matching methods by applying a pre-requisite criterion for matching of nodes and a sophisticated design of the estimation function, especially the prognosis function. The proposed method is suitable for the retrieval of similar histological images, as suggested by the experimental and evaluation results obtained in the study. It is intended for the use in Content Based Image Retrieval (CBIR)-requiring applications in the areas of medical diagnostics and research, and can also be generalized for retrieval of different types of complex images. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1224798882787923.
2012-01-01
Background Computer-based analysis of digitalized histological images has been gaining increasing attention, due to their extensive use in research and routine practice. The article aims to contribute towards the description and retrieval of histological images by employing a structural method using graphs. Due to their expressive ability, graphs are considered as a powerful and versatile representation formalism and have obtained a growing consideration especially by the image processing and computer vision community. Methods The article describes a novel method for determining similarity between histological images through graph-theoretic description and matching, for the purpose of content-based retrieval. A higher order (region-based) graph-based representation of breast biopsy images has been attained and a tree-search based inexact graph matching technique has been employed that facilitates the automatic retrieval of images structurally similar to a given image from large databases. Results The results obtained and evaluation performed demonstrate the effectiveness and superiority of graph-based image retrieval over a common histogram-based technique. The employed graph matching complexity has been reduced compared to the state-of-the-art optimal inexact matching methods by applying a pre-requisite criterion for matching of nodes and a sophisticated design of the estimation function, especially the prognosis function. Conclusion The proposed method is suitable for the retrieval of similar histological images, as suggested by the experimental and evaluation results obtained in the study. It is intended for the use in Content Based Image Retrieval (CBIR)-requiring applications in the areas of medical diagnostics and research, and can also be generalized for retrieval of different types of complex images. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1224798882787923. PMID:23035717
NASA Astrophysics Data System (ADS)
Nosato, Hirokazu; Sakanashi, Hidenori; Takahashi, Eiichi; Murakawa, Masahiro
2015-03-01
This paper proposes a content-based image retrieval method for optical colonoscopy images that can find images similar to ones being diagnosed. Optical colonoscopy is a method of direct observation for colons and rectums to diagnose bowel diseases. It is the most common procedure for screening, surveillance and treatment. However, diagnostic accuracy for intractable inflammatory bowel diseases, such as ulcerative colitis (UC), is highly dependent on the experience and knowledge of the medical doctor, because there is considerable variety in the appearances of colonic mucosa within inflammations with UC. In order to solve this issue, this paper proposes a content-based image retrieval method based on image recognition techniques. The proposed retrieval method can find similar images from a database of images diagnosed as UC, and can potentially furnish the medical records associated with the retrieved images to assist the UC diagnosis. Within the proposed method, color histogram features and higher order local auto-correlation (HLAC) features are adopted to represent the color information and geometrical information of optical colonoscopy images, respectively. Moreover, considering various characteristics of UC colonoscopy images, such as vascular patterns and the roughness of the colonic mucosa, we also propose an image enhancement method to highlight the appearances of colonic mucosa in UC. In an experiment using 161 UC images from 32 patients, we demonstrate that our method improves the accuracy of retrieving similar UC images.
Evaluation of contents-based image retrieval methods for a database of logos on drug tablets
NASA Astrophysics Data System (ADS)
Geradts, Zeno J.; Hardy, Huub; Poortman, Anneke; Bijhold, Jurrien
2001-02-01
In this research an evaluation has been made of the different ways of contents based image retrieval of logos of drug tablets. On a database of 432 illicitly produced tablets (mostly containing MDMA), we have compared different retrieval methods. Two of these methods were available from commercial packages, QBIC and Imatch, where the implementation of the contents based image retrieval methods are not exactly known. We compared the results for this database with the MPEG-7 shape comparison methods, which are the contour-shape, bounding box and region-based shape methods. In addition, we have tested the log polar method that is available from our own research.
Landmark Image Retrieval by Jointing Feature Refinement and Multimodal Classifier Learning.
Zhang, Xiaoming; Wang, Senzhang; Li, Zhoujun; Ma, Shuai; Xiaoming Zhang; Senzhang Wang; Zhoujun Li; Shuai Ma; Ma, Shuai; Zhang, Xiaoming; Wang, Senzhang; Li, Zhoujun
2018-06-01
Landmark retrieval is to return a set of images with their landmarks similar to those of the query images. Existing studies on landmark retrieval focus on exploiting the geometries of landmarks for visual similarity matches. However, the visual content of social images is of large diversity in many landmarks, and also some images share common patterns over different landmarks. On the other side, it has been observed that social images usually contain multimodal contents, i.e., visual content and text tags, and each landmark has the unique characteristic of both visual content and text content. Therefore, the approaches based on similarity matching may not be effective in this environment. In this paper, we investigate whether the geographical correlation among the visual content and the text content could be exploited for landmark retrieval. In particular, we propose an effective multimodal landmark classification paradigm to leverage the multimodal contents of social image for landmark retrieval, which integrates feature refinement and landmark classifier with multimodal contents by a joint model. The geo-tagged images are automatically labeled for classifier learning. Visual features are refined based on low rank matrix recovery, and multimodal classification combined with group sparse is learned from the automatically labeled images. Finally, candidate images are ranked by combining classification result and semantic consistence measuring between the visual content and text content. Experiments on real-world datasets demonstrate the superiority of the proposed approach as compared to existing methods.
Content-based retrieval of historical Ottoman documents stored as textual images.
Saykol, Ediz; Sinop, Ali Kemal; Güdükbay, Ugur; Ulusoy, Ozgür; Cetin, A Enis
2004-03-01
There is an accelerating demand to access the visual content of documents stored in historical and cultural archives. Availability of electronic imaging tools and effective image processing techniques makes it feasible to process the multimedia data in large databases. In this paper, a framework for content-based retrieval of historical documents in the Ottoman Empire archives is presented. The documents are stored as textual images, which are compressed by constructing a library of symbols occurring in a document, and the symbols in the original image are then replaced with pointers into the codebook to obtain a compressed representation of the image. The features in wavelet and spatial domain based on angular and distance span of shapes are used to extract the symbols. In order to make content-based retrieval in historical archives, a query is specified as a rectangular region in an input image and the same symbol-extraction process is applied to the query region. The queries are processed on the codebook of documents and the query images are identified in the resulting documents using the pointers in textual images. The querying process does not require decompression of images. The new content-based retrieval framework is also applicable to many other document archives using different scripts.
Content-Based Medical Image Retrieval
NASA Astrophysics Data System (ADS)
Müller, Henning; Deserno, Thomas M.
This chapter details the necessity for alternative access concepts to the currently mainly text-based methods in medical information retrieval. This need is partly due to the large amount of visual data produced, the increasing variety of medical imaging data and changing user patterns. The stored visual data contain large amounts of unused information that, if well exploited, can help diagnosis, teaching and research. The chapter briefly reviews the history of image retrieval and its general methods before technologies that have been developed in the medical domain are focussed. We also discuss evaluation of medical content-based image retrieval (CBIR) systems and conclude with pointing out their strengths, gaps, and further developments. As examples, the MedGIFT project and the Image Retrieval in Medical Applications (IRMA) framework are presented.
Validating a Geographical Image Retrieval System.
ERIC Educational Resources Information Center
Zhu, Bin; Chen, Hsinchun
2000-01-01
Summarizes a prototype geographical image retrieval system that demonstrates how to integrate image processing and information analysis techniques to support large-scale content-based image retrieval. Describes an experiment to validate the performance of this image retrieval system against that of human subjects by examining similarity analysis…
NASA Astrophysics Data System (ADS)
Du, Hongbo; Al-Jubouri, Hanan; Sellahewa, Harin
2014-05-01
Content-based image retrieval is an automatic process of retrieving images according to image visual contents instead of textual annotations. It has many areas of application from automatic image annotation and archive, image classification and categorization to homeland security and law enforcement. The key issues affecting the performance of such retrieval systems include sensible image features that can effectively capture the right amount of visual contents and suitable similarity measures to find similar and relevant images ranked in a meaningful order. Many different approaches, methods and techniques have been developed as a result of very intensive research in the past two decades. Among many existing approaches, is a cluster-based approach where clustering methods are used to group local feature descriptors into homogeneous regions, and search is conducted by comparing the regions of the query image against those of the stored images. This paper serves as a review of works in this area. The paper will first summarize the existing work reported in the literature and then present the authors' own investigations in this field. The paper intends to highlight not only achievements made by recent research but also challenges and difficulties still remaining in this area.
Deeply learnt hashing forests for content based image retrieval in prostate MR images
NASA Astrophysics Data System (ADS)
Shah, Amit; Conjeti, Sailesh; Navab, Nassir; Katouzian, Amin
2016-03-01
Deluge in the size and heterogeneity of medical image databases necessitates the need for content based retrieval systems for their efficient organization. In this paper, we propose such a system to retrieve prostate MR images which share similarities in appearance and content with a query image. We introduce deeply learnt hashing forests (DL-HF) for this image retrieval task. DL-HF effectively leverages the semantic descriptiveness of deep learnt Convolutional Neural Networks. This is used in conjunction with hashing forests which are unsupervised random forests. DL-HF hierarchically parses the deep-learnt feature space to encode subspaces with compact binary code words. We propose a similarity preserving feature descriptor called Parts Histogram which is derived from DL-HF. Correlation defined on this descriptor is used as a similarity metric for retrieval from the database. Validations on publicly available multi-center prostate MR image database established the validity of the proposed approach. The proposed method is fully-automated without any user-interaction and is not dependent on any external image standardization like image normalization and registration. This image retrieval method is generalizable and is well-suited for retrieval in heterogeneous databases other imaging modalities and anatomies.
NASA Technical Reports Server (NTRS)
Zhang, Qingyuan; Middleton, Elizabeth M.; Cheng, Yen-Ben; Huemmrich, K. Fred; Cook, Bruce D.; Corp, Lawrence A.; Kustas, William P.; Russ, Andrew L.; Prueger, John H.; Yao, Tian
2016-01-01
The concept of light use efficiency (Epsilon) and the concept of fraction of photosynthetically active ration (PAR) absorbed for vegetation photosynthesis (PSN), i.e., fAPAR (sub PSN), have been widely utilized to estimate vegetation gross primary productivity (GPP). It has been demonstrated that the photochemical reflectance index (PRI) is empirically related to e. An experimental US Department of Agriculture (USDA) cornfield in Maryland was selected as our study field. We explored the potential of integrating fAPAR(sub chl) (defined as the fraction of PAR absorbed by chlorophyll) and nadir PRI (PRI(sub nadir)) to predict cornfield daily GPP. We acquired nadir or near-nadir EO-1/Hyperion satellite images that covered the cornfield and took nadir in-situ field spectral measurements. Those data were used to derive the PRI(sub nadir) and fAPAR (sub chl). The fAPAR (sub chl) is retrieved with the advanced radiative transfer model PROSAIL2 and the Metropolis approach, a type of Markov Chain Monte Carlo (MCMC) estimation procedure. We define chlorophyll light use efficiency Epsilon (sub chl) as the ratio of vegetation GPP as measured by eddy covariance techniques to PAR absorbed by chlorophyll (Epsilon(sub chl) = GPP/APAR (sub chl). Daily Epsilon (sub chl) retrieved with the EO-1 Hyperion images was regressed with a linear equation of PRI (sub nadir) Epsilon (sub chl) = Alpha × PRI (sub nadir) + Beta). The satellite Epsilon(sub chl- PRI (sub nadir) linear relationship for the cornfield was implemented to develop an integrated daily GPP model [GPP = (Alpha × PRI(sub nadir) + Beta) × fAPAR (sub chl) × PAR], which was evaluated with fAPAR (sub chl) and PRI (sub nadir) retrieved from field measurements. Daily GPP estimated with this fAPAR (sub chl-) PRI (nadir) integration model was strongly correlated with the observed tower in-situ daily GPP (R(sup 2) = 0.93); with a root mean square error (RMSE) of 1.71 g C mol-(sup -1) PPFD and coefficient of variation (CV) of 16.57%. Both seasonal Epsilon (sub chl) and PRI (sub nadir) were strongly correlated with fAPAR (sub chl ) retrieved from field measurements, which indicates that chlorophyll content strongly affects seasonal epsilon (sub chl) and PRI (sub nadir). We demonstrate the potential capacity to monitor GPP with space-based visible through shortwave infrared (VSWIR) imaging spectrometers such as NASA's soon to be decommissioned EO- 1/Hyperion and the future Hyperspectral Infrared Imager (HyspIRI).
NASA Astrophysics Data System (ADS)
Chandakkar, Parag S.; Venkatesan, Ragav; Li, Baoxin
2013-02-01
Diabetic retinopathy (DR) is a vision-threatening complication from diabetes mellitus, a medical condition that is rising globally. Unfortunately, many patients are unaware of this complication because of absence of symptoms. Regular screening of DR is necessary to detect the condition for timely treatment. Content-based image retrieval, using archived and diagnosed fundus (retinal) camera DR images can improve screening efficiency of DR. This content-based image retrieval study focuses on two DR clinical findings, microaneurysm and neovascularization, which are clinical signs of non-proliferative and proliferative diabetic retinopathy. The authors propose a multi-class multiple-instance image retrieval framework which deploys a modified color correlogram and statistics of steerable Gaussian Filter responses, for retrieving clinically relevant images from a database of DR fundus image database.
Latent Semantic Analysis as a Method of Content-Based Image Retrieval in Medical Applications
ERIC Educational Resources Information Center
Makovoz, Gennadiy
2010-01-01
The research investigated whether a Latent Semantic Analysis (LSA)-based approach to image retrieval can map pixel intensity into a smaller concept space with good accuracy and reasonable computational cost. From a large set of M computed tomography (CT) images, a retrieval query found all images for a particular patient based on semantic…
Toward privacy-preserving JPEG image retrieval
NASA Astrophysics Data System (ADS)
Cheng, Hang; Wang, Jingyue; Wang, Meiqing; Zhong, Shangping
2017-07-01
This paper proposes a privacy-preserving retrieval scheme for JPEG images based on local variance. Three parties are involved in the scheme: the content owner, the server, and the authorized user. The content owner encrypts JPEG images for privacy protection by jointly using permutation cipher and stream cipher, and then, the encrypted versions are uploaded to the server. With an encrypted query image provided by an authorized user, the server may extract blockwise local variances in different directions without knowing the plaintext content. After that, it can calculate the similarity between the encrypted query image and each encrypted database image by a local variance-based feature comparison mechanism. The authorized user with the encryption key can decrypt the returned encrypted images with plaintext content similar to the query image. The experimental results show that the proposed scheme not only provides effective privacy-preserving retrieval service but also ensures both format compliance and file size preservation for encrypted JPEG images.
Content Based Image Retrieval based on Wavelet Transform coefficients distribution
Lamard, Mathieu; Cazuguel, Guy; Quellec, Gwénolé; Bekri, Lynda; Roux, Christian; Cochener, Béatrice
2007-01-01
In this paper we propose a content based image retrieval method for diagnosis aid in medical fields. We characterize images without extracting significant features by using distribution of coefficients obtained by building signatures from the distribution of wavelet transform. The research is carried out by computing signature distances between the query and database images. Several signatures are proposed; they use a model of wavelet coefficient distribution. To enhance results, a weighted distance between signatures is used and an adapted wavelet base is proposed. Retrieval efficiency is given for different databases including a diabetic retinopathy, a mammography and a face database. Results are promising: the retrieval efficiency is higher than 95% for some cases using an optimization process. PMID:18003013
Content Based Image Retrieval by Using Color Descriptor and Discrete Wavelet Transform.
Ashraf, Rehan; Ahmed, Mudassar; Jabbar, Sohail; Khalid, Shehzad; Ahmad, Awais; Din, Sadia; Jeon, Gwangil
2018-01-25
Due to recent development in technology, the complexity of multimedia is significantly increased and the retrieval of similar multimedia content is a open research problem. Content-Based Image Retrieval (CBIR) is a process that provides a framework for image search and low-level visual features are commonly used to retrieve the images from the image database. The basic requirement in any image retrieval process is to sort the images with a close similarity in term of visually appearance. The color, shape and texture are the examples of low-level image features. The feature plays a significant role in image processing. The powerful representation of an image is known as feature vector and feature extraction techniques are applied to get features that will be useful in classifying and recognition of images. As features define the behavior of an image, they show its place in terms of storage taken, efficiency in classification and obviously in time consumption also. In this paper, we are going to discuss various types of features, feature extraction techniques and explaining in what scenario, which features extraction technique will be better. The effectiveness of the CBIR approach is fundamentally based on feature extraction. In image processing errands like object recognition and image retrieval feature descriptor is an immense among the most essential step. The main idea of CBIR is that it can search related images to an image passed as query from a dataset got by using distance metrics. The proposed method is explained for image retrieval constructed on YCbCr color with canny edge histogram and discrete wavelet transform. The combination of edge of histogram and discrete wavelet transform increase the performance of image retrieval framework for content based search. The execution of different wavelets is additionally contrasted with discover the suitability of specific wavelet work for image retrieval. The proposed algorithm is prepared and tried to implement for Wang image database. For Image Retrieval Purpose, Artificial Neural Networks (ANN) is used and applied on standard dataset in CBIR domain. The execution of the recommended descriptors is assessed by computing both Precision and Recall values and compared with different other proposed methods with demonstrate the predominance of our method. The efficiency and effectiveness of the proposed approach outperforms the existing research in term of average precision and recall values.
Content based image retrieval using local binary pattern operator and data mining techniques.
Vatamanu, Oana Astrid; Frandeş, Mirela; Lungeanu, Diana; Mihalaş, Gheorghe-Ioan
2015-01-01
Content based image retrieval (CBIR) concerns the retrieval of similar images from image databases, using feature vectors extracted from images. These feature vectors globally define the visual content present in an image, defined by e.g., texture, colour, shape, and spatial relations between vectors. Herein, we propose the definition of feature vectors using the Local Binary Pattern (LBP) operator. A study was performed in order to determine the optimum LBP variant for the general definition of image feature vectors. The chosen LBP variant is then subsequently used to build an ultrasound image database, and a database with images obtained from Wireless Capsule Endoscopy. The image indexing process is optimized using data clustering techniques for images belonging to the same class. Finally, the proposed indexing method is compared to the classical indexing technique, which is nowadays widely used.
Content-based image retrieval by matching hierarchical attributed region adjacency graphs
NASA Astrophysics Data System (ADS)
Fischer, Benedikt; Thies, Christian J.; Guld, Mark O.; Lehmann, Thomas M.
2004-05-01
Content-based image retrieval requires a formal description of visual information. In medical applications, all relevant biological objects have to be represented by this description. Although color as the primary feature has proven successful in publicly available retrieval systems of general purpose, this description is not applicable to most medical images. Additionally, it has been shown that global features characterizing the whole image do not lead to acceptable results in the medical context or that they are only suitable for specific applications. For a general purpose content-based comparison of medical images, local, i.e. regional features that are collected on multiple scales must be used. A hierarchical attributed region adjacency graph (HARAG) provides such a representation and transfers image comparison to graph matching. However, building a HARAG from an image requires a restriction in size to be computationally feasible while at the same time all visually plausible information must be preserved. For this purpose, mechanisms for the reduction of the graph size are presented. Even with a reduced graph, the problem of graph matching remains NP-complete. In this paper, the Similarity Flooding approach and Hopfield-style neural networks are adapted from the graph matching community to the needs of HARAG comparison. Based on synthetic image material build from simple geometric objects, all visually similar regions were matched accordingly showing the framework's general applicability to content-based image retrieval of medical images.
Ma, Ling; Liu, Xiabi; Gao, Yan; Zhao, Yanfeng; Zhao, Xinming; Zhou, Chunwu
2017-02-01
This paper proposes a new method of content based medical image retrieval through considering fused, context-sensitive similarity. Firstly, we fuse the semantic and visual similarities between the query image and each image in the database as their pairwise similarities. Then, we construct a weighted graph whose nodes represent the images and edges measure their pairwise similarities. By using the shortest path algorithm over the weighted graph, we obtain a new similarity measure, context-sensitive similarity measure, between the query image and each database image to complete the retrieval process. Actually, we use the fused pairwise similarity to narrow down the semantic gap for obtaining a more accurate pairwise similarity measure, and spread it on the intrinsic data manifold to achieve the context-sensitive similarity for a better retrieval performance. The proposed method has been evaluated on the retrieval of the Common CT Imaging Signs of Lung Diseases (CISLs) and achieved not only better retrieval results but also the satisfactory computation efficiency. Copyright © 2017 Elsevier Inc. All rights reserved.
Web image retrieval using an effective topic and content-based technique
NASA Astrophysics Data System (ADS)
Lee, Ching-Cheng; Prabhakara, Rashmi
2005-03-01
There has been an exponential growth in the amount of image data that is available on the World Wide Web since the early development of Internet. With such a large amount of information and image available and its usefulness, an effective image retrieval system is thus greatly needed. In this paper, we present an effective approach with both image matching and indexing techniques that improvise on existing integrated image retrieval methods. This technique follows a two-phase approach, integrating query by topic and query by example specification methods. In the first phase, The topic-based image retrieval is performed by using an improved text information retrieval (IR) technique that makes use of the structured format of HTML documents. This technique consists of a focused crawler that not only provides for the user to enter the keyword for the topic-based search but also, the scope in which the user wants to find the images. In the second phase, we use query by example specification to perform a low-level content-based image match in order to retrieve smaller and relatively closer results of the example image. From this, information related to the image feature is automatically extracted from the query image. The main objective of our approach is to develop a functional image search and indexing technique and to demonstrate that better retrieval results can be achieved.
Content-based cell pathology image retrieval by combining different features
NASA Astrophysics Data System (ADS)
Zhou, Guangquan; Jiang, Lu; Luo, Limin; Bao, Xudong; Shu, Huazhong
2004-04-01
Content Based Color Cell Pathology Image Retrieval is one of the newest computer image processing applications in medicine. Recently, some algorithms have been developed to achieve this goal. Because of the particularity of cell pathology images, the result of the image retrieval based on single characteristic is not satisfactory. A new method for pathology image retrieval by combining color, texture and morphologic features to search cell images is proposed. Firstly, nucleus regions of leukocytes in images are automatically segmented by K-mean clustering method. Then single leukocyte region is detected by utilizing thresholding algorithm segmentation and mathematics morphology. The features that include color, texture and morphologic features are extracted from single leukocyte to represent main attribute in the search query. The features are then normalized because the numerical value range and physical meaning of extracted features are different. Finally, the relevance feedback system is introduced. So that the system can automatically adjust the weights of different features and improve the results of retrieval system according to the feedback information. Retrieval results using the proposed method fit closely with human perception and are better than those obtained with the methods based on single feature.
Mobile object retrieval in server-based image databases
NASA Astrophysics Data System (ADS)
Manger, D.; Pagel, F.; Widak, H.
2013-05-01
The increasing number of mobile phones equipped with powerful cameras leads to huge collections of user-generated images. To utilize the information of the images on site, image retrieval systems are becoming more and more popular to search for similar objects in an own image database. As the computational performance and the memory capacity of mobile devices are constantly increasing, this search can often be performed on the device itself. This is feasible, for example, if the images are represented with global image features or if the search is done using EXIF or textual metadata. However, for larger image databases, if multiple users are meant to contribute to a growing image database or if powerful content-based image retrieval methods with local features are required, a server-based image retrieval backend is needed. In this work, we present a content-based image retrieval system with a client server architecture working with local features. On the server side, the scalability to large image databases is addressed with the popular bag-of-word model with state-of-the-art extensions. The client end of the system focuses on a lightweight user interface presenting the most similar images of the database highlighting the visual information which is common with the query image. Additionally, new images can be added to the database making it a powerful and interactive tool for mobile contentbased image retrieval.
Multiple Object Retrieval in Image Databases Using Hierarchical Segmentation Tree
ERIC Educational Resources Information Center
Chen, Wei-Bang
2012-01-01
The purpose of this research is to develop a new visual information analysis, representation, and retrieval framework for automatic discovery of salient objects of user's interest in large-scale image databases. In particular, this dissertation describes a content-based image retrieval framework which supports multiple-object retrieval. The…
Three-dimensional spatiotemporal features for fast content-based retrieval of focal liver lesions.
Roy, Sharmili; Chi, Yanling; Liu, Jimin; Venkatesh, Sudhakar K; Brown, Michael S
2014-11-01
Content-based image retrieval systems for 3-D medical datasets still largely rely on 2-D image-based features extracted from a few representative slices of the image stack. Most 2 -D features that are currently used in the literature not only model a 3-D tumor incompletely but are also highly expensive in terms of computation time, especially for high-resolution datasets. Radiologist-specified semantic labels are sometimes used along with image-based 2-D features to improve the retrieval performance. Since radiological labels show large interuser variability, are often unstructured, and require user interaction, their use as lesion characterizing features is highly subjective, tedious, and slow. In this paper, we propose a 3-D image-based spatiotemporal feature extraction framework for fast content-based retrieval of focal liver lesions. All the features are computer generated and are extracted from four-phase abdominal CT images. Retrieval performance and query processing times for the proposed framework is evaluated on a database of 44 hepatic lesions comprising of five pathological types. Bull's eye percentage score above 85% is achieved for three out of the five lesion pathologies and for 98% of query lesions, at least one same type of lesion is ranked among the top two retrieved results. Experiments show that the proposed system's query processing is more than 20 times faster than other already published systems that use 2-D features. With fast computation time and high retrieval accuracy, the proposed system has the potential to be used as an assistant to radiologists for routine hepatic tumor diagnosis.
NASA Astrophysics Data System (ADS)
Welter, Petra; Deserno, Thomas M.; Gülpers, Ralph; Wein, Berthold B.; Grouls, Christoph; Günther, Rolf W.
2010-03-01
The large and continuously growing amount of medical image data demands access methods with regards to content rather than simple text-based queries. The potential benefits of content-based image retrieval (CBIR) systems for computer-aided diagnosis (CAD) are evident and have been approved. Still, CBIR is not a well-established part of daily routine of radiologists. We have already presented a concept of CBIR integration for the radiology workflow in accordance with the Integrating the Healthcare Enterprise (IHE) framework. The retrieval result is composed as a Digital Imaging and Communication in Medicine (DICOM) Structured Reporting (SR) document. The use of DICOM SR provides interchange with PACS archive and image viewer. It offers the possibility of further data mining and automatic interpretation of CBIR results. However, existing standard templates do not address the domain of CBIR. We present a design of a SR template customized for CBIR. Our approach is based on the DICOM standard templates and makes use of the mammography and chest CAD SR templates. Reuse of approved SR sub-trees promises a reliable design which is further adopted to the CBIR domain. We analyze the special CBIR requirements and integrate the new concept of similar images into our template. Our approach also includes the new concept of a set of selected images for defining the processed images for CBIR. A commonly accepted pre-defined template for the presentation and exchange of results in a standardized format promotes the widespread application of CBIR in radiological routine.
Breast Histopathological Image Retrieval Based on Latent Dirichlet Allocation.
Ma, Yibing; Jiang, Zhiguo; Zhang, Haopeng; Xie, Fengying; Zheng, Yushan; Shi, Huaqiang; Zhao, Yu
2017-07-01
In the field of pathology, whole slide image (WSI) has become the major carrier of visual and diagnostic information. Content-based image retrieval among WSIs can aid the diagnosis of an unknown pathological image by finding its similar regions in WSIs with diagnostic information. However, the huge size and complex content of WSI pose several challenges for retrieval. In this paper, we propose an unsupervised, accurate, and fast retrieval method for a breast histopathological image. Specifically, the method presents a local statistical feature of nuclei for morphology and distribution of nuclei, and employs the Gabor feature to describe the texture information. The latent Dirichlet allocation model is utilized for high-level semantic mining. Locality-sensitive hashing is used to speed up the search. Experiments on a WSI database with more than 8000 images from 15 types of breast histopathology demonstrate that our method achieves about 0.9 retrieval precision as well as promising efficiency. Based on the proposed framework, we are developing a search engine for an online digital slide browsing and retrieval platform, which can be applied in computer-aided diagnosis, pathology education, and WSI archiving and management.
Image Location Estimation by Salient Region Matching.
Qian, Xueming; Zhao, Yisi; Han, Junwei
2015-11-01
Nowadays, locations of images have been widely used in many application scenarios for large geo-tagged image corpora. As to images which are not geographically tagged, we estimate their locations with the help of the large geo-tagged image set by content-based image retrieval. In this paper, we exploit spatial information of useful visual words to improve image location estimation (or content-based image retrieval performances). We proposed to generate visual word groups by mean-shift clustering. To improve the retrieval performance, spatial constraint is utilized to code the relative position of visual words. We proposed to generate a position descriptor for each visual word and build fast indexing structure for visual word groups. Experiments show the effectiveness of our proposed approach.
NASA Astrophysics Data System (ADS)
Solli, Martin; Lenz, Reiner
In this paper we describe how to include high level semantic information, such as aesthetics and emotions, into Content Based Image Retrieval. We present a color-based emotion-related image descriptor that can be used for describing the emotional content of images. The color emotion metric used is derived from psychophysical experiments and based on three variables: activity, weight and heat. It was originally designed for single-colors, but recent research has shown that the same emotion estimates can be applied in the retrieval of multi-colored images. Here we describe a new approach, based on the assumption that perceived color emotions in images are mainly affected by homogenous regions, defined by the emotion metric, and transitions between regions. RGB coordinates are converted to emotion coordinates, and for each emotion channel, statistical measurements of gradient magnitudes within a stack of low-pass filtered images are used for finding interest points corresponding to homogeneous regions and transitions between regions. Emotion characteristics are derived for patches surrounding each interest point, and saved in a bag-of-emotions, that, for instance, can be used for retrieving images based on emotional content.
A novel methodology for querying web images
NASA Astrophysics Data System (ADS)
Prabhakara, Rashmi; Lee, Ching Cheng
2005-01-01
Ever since the advent of Internet, there has been an immense growth in the amount of image data that is available on the World Wide Web. With such a magnitude of image availability, an efficient and effective image retrieval system is required to make use of this information. This research presents an effective image matching and indexing technique that improvises on existing integrated image retrieval methods. The proposed technique follows a two-phase approach, integrating query by topic and query by example specification methods. The first phase consists of topic-based image retrieval using an improved text information retrieval (IR) technique that makes use of the structured format of HTML documents. It consists of a focused crawler that not only provides for the user to enter the keyword for the topic-based search but also, the scope in which the user wants to find the images. The second phase uses the query by example specification to perform a low-level content-based image match for the retrieval of smaller and relatively closer results of the example image. Information related to the image feature is automatically extracted from the query image by the image processing system. A technique that is not computationally intensive based on color feature is used to perform content-based matching of images. The main goal is to develop a functional image search and indexing system and to demonstrate that better retrieval results can be achieved with this proposed hybrid search technique.
A novel methodology for querying web images
NASA Astrophysics Data System (ADS)
Prabhakara, Rashmi; Lee, Ching Cheng
2004-12-01
Ever since the advent of Internet, there has been an immense growth in the amount of image data that is available on the World Wide Web. With such a magnitude of image availability, an efficient and effective image retrieval system is required to make use of this information. This research presents an effective image matching and indexing technique that improvises on existing integrated image retrieval methods. The proposed technique follows a two-phase approach, integrating query by topic and query by example specification methods. The first phase consists of topic-based image retrieval using an improved text information retrieval (IR) technique that makes use of the structured format of HTML documents. It consists of a focused crawler that not only provides for the user to enter the keyword for the topic-based search but also, the scope in which the user wants to find the images. The second phase uses the query by example specification to perform a low-level content-based image match for the retrieval of smaller and relatively closer results of the example image. Information related to the image feature is automatically extracted from the query image by the image processing system. A technique that is not computationally intensive based on color feature is used to perform content-based matching of images. The main goal is to develop a functional image search and indexing system and to demonstrate that better retrieval results can be achieved with this proposed hybrid search technique.
Kurtz, Camille; Depeursinge, Adrien; Napel, Sandy; Beaulieu, Christopher F.; Rubin, Daniel L.
2014-01-01
Computer-assisted image retrieval applications can assist radiologists by identifying similar images in archives as a means to providing decision support. In the classical case, images are described using low-level features extracted from their contents, and an appropriate distance is used to find the best matches in the feature space. However, using low-level image features to fully capture the visual appearance of diseases is challenging and the semantic gap between these features and the high-level visual concepts in radiology may impair the system performance. To deal with this issue, the use of semantic terms to provide high-level descriptions of radiological image contents has recently been advocated. Nevertheless, most of the existing semantic image retrieval strategies are limited by two factors: they require manual annotation of the images using semantic terms and they ignore the intrinsic visual and semantic relationships between these annotations during the comparison of the images. Based on these considerations, we propose an image retrieval framework based on semantic features that relies on two main strategies: (1) automatic “soft” prediction of ontological terms that describe the image contents from multi-scale Riesz wavelets and (2) retrieval of similar images by evaluating the similarity between their annotations using a new term dissimilarity measure, which takes into account both image-based and ontological term relations. The combination of these strategies provides a means of accurately retrieving similar images in databases based on image annotations and can be considered as a potential solution to the semantic gap problem. We validated this approach in the context of the retrieval of liver lesions from computed tomographic (CT) images and annotated with semantic terms of the RadLex ontology. The relevance of the retrieval results was assessed using two protocols: evaluation relative to a dissimilarity reference standard defined for pairs of images on a 25-images dataset, and evaluation relative to the diagnoses of the retrieved images on a 72-images dataset. A normalized discounted cumulative gain (NDCG) score of more than 0.92 was obtained with the first protocol, while AUC scores of more than 0.77 were obtained with the second protocol. This automatical approach could provide real-time decision support to radiologists by showing them similar images with associated diagnoses and, where available, responses to therapies. PMID:25036769
A similarity learning approach to content-based image retrieval: application to digital mammography.
El-Naqa, Issam; Yang, Yongyi; Galatsanos, Nikolas P; Nishikawa, Robert M; Wernick, Miles N
2004-10-01
In this paper, we describe an approach to content-based retrieval of medical images from a database, and provide a preliminary demonstration of our approach as applied to retrieval of digital mammograms. Content-based image retrieval (CBIR) refers to the retrieval of images from a database using information derived from the images themselves, rather than solely from accompanying text indices. In the medical-imaging context, the ultimate aim of CBIR is to provide radiologists with a diagnostic aid in the form of a display of relevant past cases, along with proven pathology and other suitable information. CBIR may also be useful as a training tool for medical students and residents. The goal of information retrieval is to recall from a database information that is relevant to the user's query. The most challenging aspect of CBIR is the definition of relevance (similarity), which is used to guide the retrieval machine. In this paper, we pursue a new approach, in which similarity is learned from training examples provided by human observers. Specifically, we explore the use of neural networks and support vector machines to predict the user's notion of similarity. Within this framework we propose using a hierarchal learning approach, which consists of a cascade of a binary classifier and a regression module to optimize retrieval effectiveness and efficiency. We also explore how to incorporate online human interaction to achieve relevance feedback in this learning framework. Our experiments are based on a database consisting of 76 mammograms, all of which contain clustered microcalcifications (MCs). Our goal is to retrieve mammogram images containing similar MC clusters to that in a query. The performance of the retrieval system is evaluated using precision-recall curves computed using a cross-validation procedure. Our experimental results demonstrate that: 1) the learning framework can accurately predict the perceptual similarity reported by human observers, thereby serving as a basis for CBIR; 2) the learning-based framework can significantly outperform a simple distance-based similarity metric; 3) the use of the hierarchical two-stage network can improve retrieval performance; and 4) relevance feedback can be effectively incorporated into this learning framework to achieve improvement in retrieval precision based on online interaction with users; and 5) the retrieved images by the network can have predicting value for the disease condition of the query.
Medical Image Retrieval: A Multimodal Approach
Cao, Yu; Steffey, Shawn; He, Jianbiao; Xiao, Degui; Tao, Cui; Chen, Ping; Müller, Henning
2014-01-01
Medical imaging is becoming a vital component of war on cancer. Tremendous amounts of medical image data are captured and recorded in a digital format during cancer care and cancer research. Facing such an unprecedented volume of image data with heterogeneous image modalities, it is necessary to develop effective and efficient content-based medical image retrieval systems for cancer clinical practice and research. While substantial progress has been made in different areas of content-based image retrieval (CBIR) research, direct applications of existing CBIR techniques to the medical images produced unsatisfactory results, because of the unique characteristics of medical images. In this paper, we develop a new multimodal medical image retrieval approach based on the recent advances in the statistical graphic model and deep learning. Specifically, we first investigate a new extended probabilistic Latent Semantic Analysis model to integrate the visual and textual information from medical images to bridge the semantic gap. We then develop a new deep Boltzmann machine-based multimodal learning model to learn the joint density model from multimodal information in order to derive the missing modality. Experimental results with large volume of real-world medical images have shown that our new approach is a promising solution for the next-generation medical imaging indexing and retrieval system. PMID:26309389
Minimizing the semantic gap in biomedical content-based image retrieval
NASA Astrophysics Data System (ADS)
Guan, Haiying; Antani, Sameer; Long, L. Rodney; Thoma, George R.
2010-03-01
A major challenge in biomedical Content-Based Image Retrieval (CBIR) is to achieve meaningful mappings that minimize the semantic gap between the high-level biomedical semantic concepts and the low-level visual features in images. This paper presents a comprehensive learning-based scheme toward meeting this challenge and improving retrieval quality. The article presents two algorithms: a learning-based feature selection and fusion algorithm and the Ranking Support Vector Machine (Ranking SVM) algorithm. The feature selection algorithm aims to select 'good' features and fuse them using different similarity measurements to provide a better representation of the high-level concepts with the low-level image features. Ranking SVM is applied to learn the retrieval rank function and associate the selected low-level features with query concepts, given the ground-truth ranking of the training samples. The proposed scheme addresses four major issues in CBIR to improve the retrieval accuracy: image feature extraction, selection and fusion, similarity measurements, the association of the low-level features with high-level concepts, and the generation of the rank function to support high-level semantic image retrieval. It models the relationship between semantic concepts and image features, and enables retrieval at the semantic level. We apply it to the problem of vertebra shape retrieval from a digitized spine x-ray image set collected by the second National Health and Nutrition Examination Survey (NHANES II). The experimental results show an improvement of up to 41.92% in the mean average precision (MAP) over conventional image similarity computation methods.
Novel Algorithm for Classification of Medical Images
NASA Astrophysics Data System (ADS)
Bhushan, Bharat; Juneja, Monika
2010-11-01
Content-based image retrieval (CBIR) methods in medical image databases have been designed to support specific tasks, such as retrieval of medical images. These methods cannot be transferred to other medical applications since different imaging modalities require different types of processing. To enable content-based queries in diverse collections of medical images, the retrieval system must be familiar with the current Image class prior to the query processing. Further, almost all of them deal with the DICOM imaging format. In this paper a novel algorithm based on energy information obtained from wavelet transform for the classification of medical images according to their modalities is described. For this two types of wavelets have been used and have been shown that energy obtained in either case is quite distinct for each of the body part. This technique can be successfully applied to different image formats. The results are shown for JPEG imaging format.
Structural scene analysis and content-based image retrieval applied to bone age assessment
NASA Astrophysics Data System (ADS)
Fischer, Benedikt; Brosig, André; Deserno, Thomas M.; Ott, Bastian; Günther, Rolf W.
2009-02-01
Radiological bone age assessment is based on global or local image regions of interest (ROI), such as epiphyseal regions or the area of carpal bones. Usually, these regions are compared to a standardized reference and a score determining the skeletal maturity is calculated. For computer-assisted diagnosis, automatic ROI extraction is done so far by heuristic approaches. In this work, we apply a high-level approach of scene analysis for knowledge-based ROI segmentation. Based on a set of 100 reference images from the IRMA database, a so called structural prototype (SP) is trained. In this graph-based structure, the 14 phalanges and 5 metacarpal bones are represented by nodes, with associated location, shape, as well as texture parameters modeled by Gaussians. Accordingly, the Gaussians describing the relative positions, relative orientation, and other relative parameters between two nodes are associated to the edges. Thereafter, segmentation of a hand radiograph is done in several steps: (i) a multi-scale region merging scheme is applied to extract visually prominent regions; (ii) a graph/sub-graph matching to the SP robustly identifies a subset of the 19 bones; (iii) the SP is registered to the current image for complete scene-reconstruction (iv) the epiphyseal regions are extracted from the reconstructed scene. The evaluation is based on 137 images of Caucasian males from the USC hand atlas. Overall, an error rate of 32% is achieved, for the 6 middle distal and medial/distal epiphyses, 23% of all extractions need adjustments. On average 9.58 of the 14 epiphyseal regions were extracted successfully per image. This is promising for further use in content-based image retrieval (CBIR) and CBIR-based automatic bone age assessment.
NASA Astrophysics Data System (ADS)
Xiong, Wei; Qiu, Bo; Tian, Qi; Mueller, Henning; Xu, Changsheng
2005-04-01
Medical image retrieval is still mainly a research domain with a large variety of applications and techniques. With the ImageCLEF 2004 benchmark, an evaluation framework has been created that includes a database, query topics and ground truth data. Eleven systems (with a total of more than 50 runs) compared their performance in various configurations. The results show that there is not any one feature that performs well on all query tasks. Key to successful retrieval is rather the selection of features and feature weights based on a specific set of input features, thus on the query task. In this paper we propose a novel method based on query topic dependent image features (QTDIF) for content-based medical image retrieval. These feature sets are designed to capture both inter-category and intra-category statistical variations to achieve good retrieval performance in terms of recall and precision. We have used Gaussian Mixture Models (GMM) and blob representation to model medical images and construct the proposed novel QTDIF for CBIR. Finally, trained multi-class support vector machines (SVM) are used for image similarity ranking. The proposed methods have been tested over the Casimage database with around 9000 images, for the given 26 image topics, used for imageCLEF 2004. The retrieval performance has been compared with the medGIFT system, which is based on the GNU Image Finding Tool (GIFT). The experimental results show that the proposed QTDIF-based CBIR can provide significantly better performance than systems based general features only.
Content-based image retrieval for interstitial lung diseases using classification confidence
NASA Astrophysics Data System (ADS)
Dash, Jatindra Kumar; Mukhopadhyay, Sudipta; Prabhakar, Nidhi; Garg, Mandeep; Khandelwal, Niranjan
2013-02-01
Content Based Image Retrieval (CBIR) system could exploit the wealth of High-Resolution Computed Tomography (HRCT) data stored in the archive by finding similar images to assist radiologists for self learning and differential diagnosis of Interstitial Lung Diseases (ILDs). HRCT findings of ILDs are classified into several categories (e.g. consolidation, emphysema, ground glass, nodular etc.) based on their texture like appearances. Therefore, analysis of ILDs is considered as a texture analysis problem. Many approaches have been proposed for CBIR of lung images using texture as primitive visual content. This paper presents a new approach to CBIR for ILDs. The proposed approach makes use of a trained neural network (NN) to find the output class label of query image. The degree of confidence of the NN classifier is analyzed using Naive Bayes classifier that dynamically takes a decision on the size of the search space to be used for retrieval. The proposed approach is compared with three simple distance based and one classifier based texture retrieval approaches. Experimental results show that the proposed technique achieved highest average percentage precision of 92.60% with lowest standard deviation of 20.82%.
Combining textual and visual information for image retrieval in the medical domain.
Gkoufas, Yiannis; Morou, Anna; Kalamboukis, Theodore
2011-01-01
In this article we have assembled the experience obtained from our participation in the imageCLEF evaluation task over the past two years. Exploitation on the use of linear combinations for image retrieval has been attempted by combining visual and textual sources of images. From our experiments we conclude that a mixed retrieval technique that applies both textual and visual retrieval in an interchangeably repeated manner improves the performance while overcoming the scalability limitations of visual retrieval. In particular, the mean average precision (MAP) has increased from 0.01 to 0.15 and 0.087 for 2009 and 2010 data, respectively, when content-based image retrieval (CBIR) is performed on the top 1000 results from textual retrieval based on natural language processing (NLP).
Hepatic CT image query using Gabor features
NASA Astrophysics Data System (ADS)
Zhao, Chenguang; Cheng, Hongyan; Zhuang, Tiange
2004-07-01
A retrieval scheme for liver computerize tomography (CT) images based on Gabor texture is presented. For each hepatic CT image, we manually delineate abnormal regions within liver area. Then, a continuous Gabor transform is utilized to analyze the texture of the pathology bearing region and extract the corresponding feature vectors. For a given sample image, we compare its feature vector with those of other images. Similar images with the highest rank are retrieved. In experiments, 45 liver CT images are collected, and the effectiveness of Gabor texture for content based retrieval is verified.
NASA Astrophysics Data System (ADS)
Acton, Scott T.; Gilliam, Andrew D.; Li, Bing; Rossi, Adam
2008-02-01
Improvised explosive devices (IEDs) are common and lethal instruments of terrorism, and linking a terrorist entity to a specific device remains a difficult task. In the effort to identify persons associated with a given IED, we have implemented a specialized content based image retrieval system to search and classify IED imagery. The system makes two contributions to the art. First, we introduce a shape-based matching technique exploiting shape, color, and texture (wavelet) information, based on novel vector field convolution active contours and a novel active contour initialization method which treats coarse segmentation as an inverse problem. Second, we introduce a unique graph theoretic approach to match annotated printed circuit board images for which no schematic or connectivity information is available. The shape-based image retrieval method, in conjunction with the graph theoretic tool, provides an efficacious system for matching IED images. For circuit imagery, the basic retrieval mechanism has a precision of 82.1% and the graph based method has a precision of 98.1%. As of the fall of 2007, the working system has processed over 400,000 case images.
NASA Astrophysics Data System (ADS)
Coddington, Odele; Platnick, Steven; Pilewskie, Peter; Schmidt, Sebastian
2016-04-01
The NASA Pre-Aerosol, Cloud and ocean Ecosystem (PACE) Science Definition Team (SDT) report released in 2012 defined imager stability requirements for the Ocean Color Instrument (OCI) at the sub-percent level. While the instrument suite and measurement requirements are currently being determined, the PACE SDT report provided details on imager options and spectral specifications. The options for a threshold instrument included a hyperspectral imager from 350-800 nm, two near-infrared (NIR) channels, and three short wave infrared (SWIR) channels at 1240, 1640, and 2130 nm. Other instrument options include a variation of the threshold instrument with 3 additional spectral channels at 940, 1378, and 2250 nm and the inclusion of a spectral polarimeter. In this work, we present cloud retrieval information content studies of optical thickness, droplet effective radius, and thermodynamic phase to quantify the potential for continuing the low cloud climate data record established by the MOderate Resolution and Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) missions with the PACE OCI instrument (i.e., non-polarized cloud reflectances and in the absence of midwave and longwave infrared channels). The information content analysis is performed using the GEneralized Nonlinear Retrieval Analysis (GENRA) methodology and the Collection 6 simulated cloud reflectance data for the common MODIS/VIIRS algorithm (MODAWG) for Cloud Mask, Cloud-Top, and Optical Properties. We show that using both channels near 2 microns improves the probability of cloud phase discrimination with shortwave-only cloud reflectance retrievals. Ongoing work will extend the information content analysis, currently performed for dark ocean surfaces, to different land surface types.
Sivakamasundari, J; Natarajan, V
2015-01-01
Diabetic Retinopathy (DR) is a disorder that affects the structure of retinal blood vessels due to long-standing diabetes mellitus. Automated segmentation of blood vessel is vital for periodic screening and timely diagnosis. An attempt has been made to generate continuous retinal vasculature for the design of Content Based Image Retrieval (CBIR) application. The typical normal and abnormal retinal images are preprocessed to improve the vessel contrast. The blood vessels are segmented using evolutionary based Harmony Search Algorithm (HSA) combined with Otsu Multilevel Thresholding (MLT) method by best objective functions. The segmentation results are validated with corresponding ground truth images using binary similarity measures. The statistical, textural and structural features are obtained from the segmented images of normal and DR affected retina and are analyzed. CBIR in medical image retrieval applications are used to assist physicians in clinical decision-support techniques and research fields. A CBIR system is developed using HSA based Otsu MLT segmentation technique and the features obtained from the segmented images. Similarity matching is carried out between the features of query and database images using Euclidean Distance measure. Similar images are ranked and retrieved. The retrieval performance of CBIR system is evaluated in terms of precision and recall. The CBIR systems developed using HSA based Otsu MLT and conventional Otsu MLT methods are compared. The retrieval performance such as precision and recall are found to be 96% and 58% for CBIR system using HSA based Otsu MLT segmentation. This automated CBIR system could be recommended for use in computer assisted diagnosis for diabetic retinopathy screening.
NASA Technical Reports Server (NTRS)
Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Yang, Ping
2016-01-01
An optimal estimation (OE) retrieval method is developed to infer three ice cloud properties simultaneously: optical thickness (tau), effective radius (r(sub eff)), and cloud-top height (h). This method is based on a fast radiative transfer (RT) model and infrared (IR) observations from the MODerate resolution Imaging Spectroradiometer (MODIS). This study conducts thorough error and information content analyses to understand the error propagation and performance of retrievals from various MODIS band combinations under different cloud/atmosphere states. Specifically, the algorithm takes into account four error sources: measurement uncertainty, fast RT model uncertainty, uncertainties in ancillary datasets (e.g., atmospheric state), and assumed ice crystal habit uncertainties. It is found that the ancillary and ice crystal habit error sources dominate the MODIS IR retrieval uncertainty and cannot be ignored. The information content analysis shows that, for a given ice cloud, the use of four MODIS IR observations is sufficient to retrieve the three cloud properties. However, the selection of MODIS IR bands that provide the most information and their order of importance varies with both the ice cloud properties and the ambient atmospheric and the surface states. As a result, this study suggests the inclusion of all MODIS IR bands in practice since little a priori information is available.
NASA Technical Reports Server (NTRS)
Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Yang, Ping
2016-01-01
An optimal estimation (OE) retrieval method is developed to infer three ice cloud properties simultaneously: optical thickness (tau), effective radius (r(sub eff)), and cloud top height (h). This method is based on a fast radiative transfer (RT) model and infrared (IR) observations from the MODerate resolution Imaging Spectroradiometer (MODIS). This study conducts thorough error and information content analyses to understand the error propagation and performance of retrievals from various MODIS band combinations under different cloud/atmosphere states. Specifically, the algorithm takes into account four error sources: measurement uncertainty, fast RT model uncertainty, uncertainties in ancillary data sets (e.g., atmospheric state), and assumed ice crystal habit uncertainties. It is found that the ancillary and ice crystal habit error sources dominate the MODIS IR retrieval uncertainty and cannot be ignored. The information content analysis shows that for a given ice cloud, the use of four MODIS IR observations is sufficient to retrieve the three cloud properties. However, the selection of MODIS IR bands that provide the most information and their order of importance varies with both the ice cloud properties and the ambient atmospheric and the surface states. As a result, this study suggests the inclusion of all MODIS IR bands in practice since little a priori information is available.
Occam's razor: supporting visual query expression for content-based image queries
NASA Astrophysics Data System (ADS)
Venters, Colin C.; Hartley, Richard J.; Hewitt, William T.
2005-01-01
This paper reports the results of a usability experiment that investigated visual query formulation on three dimensions: effectiveness, efficiency, and user satisfaction. Twenty eight evaluation sessions were conducted in order to assess the extent to which query by visual example supports visual query formulation in a content-based image retrieval environment. In order to provide a context and focus for the investigation, the study was segmented by image type, user group, and use function. The image type consisted of a set of abstract geometric device marks supplied by the UK Trademark Registry. Users were selected from the 14 UK Patent Information Network offices. The use function was limited to the retrieval of images by shape similarity. Two client interfaces were developed for comparison purposes: Trademark Image Browser Engine (TRIBE) and Shape Query Image Retrieval Systems Engine (SQUIRE).
Occam"s razor: supporting visual query expression for content-based image queries
NASA Astrophysics Data System (ADS)
Venters, Colin C.; Hartley, Richard J.; Hewitt, William T.
2004-12-01
This paper reports the results of a usability experiment that investigated visual query formulation on three dimensions: effectiveness, efficiency, and user satisfaction. Twenty eight evaluation sessions were conducted in order to assess the extent to which query by visual example supports visual query formulation in a content-based image retrieval environment. In order to provide a context and focus for the investigation, the study was segmented by image type, user group, and use function. The image type consisted of a set of abstract geometric device marks supplied by the UK Trademark Registry. Users were selected from the 14 UK Patent Information Network offices. The use function was limited to the retrieval of images by shape similarity. Two client interfaces were developed for comparison purposes: Trademark Image Browser Engine (TRIBE) and Shape Query Image Retrieval Systems Engine (SQUIRE).
Supervised learning of tools for content-based search of image databases
NASA Astrophysics Data System (ADS)
Delanoy, Richard L.
1996-03-01
A computer environment, called the Toolkit for Image Mining (TIM), is being developed with the goal of enabling users with diverse interests and varied computer skills to create search tools for content-based image retrieval and other pattern matching tasks. Search tools are generated using a simple paradigm of supervised learning that is based on the user pointing at mistakes of classification made by the current search tool. As mistakes are identified, a learning algorithm uses the identified mistakes to build up a model of the user's intentions, construct a new search tool, apply the search tool to a test image, display the match results as feedback to the user, and accept new inputs from the user. Search tools are constructed in the form of functional templates, which are generalized matched filters capable of knowledge- based image processing. The ability of this system to learn the user's intentions from experience contrasts with other existing approaches to content-based image retrieval that base searches on the characteristics of a single input example or on a predefined and semantically- constrained textual query. Currently, TIM is capable of learning spectral and textural patterns, but should be adaptable to the learning of shapes, as well. Possible applications of TIM include not only content-based image retrieval, but also quantitative image analysis, the generation of metadata for annotating images, data prioritization or data reduction in bandwidth-limited situations, and the construction of components for larger, more complex computer vision algorithms.
Fesharaki, Nooshin Jafari; Pourghassem, Hossein
2013-07-01
Due to the daily mass production and the widespread variation of medical X-ray images, it is necessary to classify these for searching and retrieving proposes, especially for content-based medical image retrieval systems. In this paper, a medical X-ray image hierarchical classification structure based on a novel merging and splitting scheme and using shape and texture features is proposed. In the first level of the proposed structure, to improve the classification performance, similar classes with regard to shape contents are grouped based on merging measures and shape features into the general overlapped classes. In the next levels of this structure, the overlapped classes split in smaller classes based on the classification performance of combination of shape and texture features or texture features only. Ultimately, in the last levels, this procedure is also continued forming all the classes, separately. Moreover, to optimize the feature vector in the proposed structure, we use orthogonal forward selection algorithm according to Mahalanobis class separability measure as a feature selection and reduction algorithm. In other words, according to the complexity and inter-class distance of each class, a sub-space of the feature space is selected in each level and then a supervised merging and splitting scheme is applied to form the hierarchical classification. The proposed structure is evaluated on a database consisting of 2158 medical X-ray images of 18 classes (IMAGECLEF 2005 database) and accuracy rate of 93.6% in the last level of the hierarchical structure for an 18-class classification problem is obtained.
Hierarchical content-based image retrieval by dynamic indexing and guided search
NASA Astrophysics Data System (ADS)
You, Jane; Cheung, King H.; Liu, James; Guo, Linong
2003-12-01
This paper presents a new approach to content-based image retrieval by using dynamic indexing and guided search in a hierarchical structure, and extending data mining and data warehousing techniques. The proposed algorithms include: a wavelet-based scheme for multiple image feature extraction, the extension of a conventional data warehouse and an image database to an image data warehouse for dynamic image indexing, an image data schema for hierarchical image representation and dynamic image indexing, a statistically based feature selection scheme to achieve flexible similarity measures, and a feature component code to facilitate query processing and guide the search for the best matching. A series of case studies are reported, which include a wavelet-based image color hierarchy, classification of satellite images, tropical cyclone pattern recognition, and personal identification using multi-level palmprint and face features.
ERIC Educational Resources Information Center
Kim, Deok-Hwan; Chung, Chin-Wan
2003-01-01
Discusses the collection fusion problem of image databases, concerned with retrieving relevant images by content based retrieval from image databases distributed on the Web. Focuses on a metaserver which selects image databases supporting similarity measures and proposes a new algorithm which exploits a probabilistic technique using Bayesian…
Menon, K Venugopal; Kumar, Dinesh; Thomas, Tessamma
2014-02-01
Study Design Preliminary evaluation of new tool. Objective To ascertain whether the newly developed content-based image retrieval (CBIR) software can be used successfully to retrieve images of similar cases of adolescent idiopathic scoliosis (AIS) from a database to help plan treatment without adhering to a classification scheme. Methods Sixty-two operated cases of AIS were entered into the newly developed CBIR database. Five new cases of different curve patterns were used as query images. The images were fed into the CBIR database that retrieved similar images from the existing cases. These were analyzed by a senior surgeon for conformity to the query image. Results Within the limits of variability set for the query system, all the resultant images conformed to the query image. One case had no similar match in the series. The other four retrieved several images that were matching with the query. No matching case was left out in the series. The postoperative images were then analyzed to check for surgical strategies. Broad guidelines for treatment could be derived from the results. More precise query settings, inclusion of bending films, and a larger database will enhance accurate retrieval and better decision making. Conclusion The CBIR system is an effective tool for accurate documentation and retrieval of scoliosis images. Broad guidelines for surgical strategies can be made from the postoperative images of the existing cases without adhering to any classification scheme.
Object-Location-Aware Hashing for Multi-Label Image Retrieval via Automatic Mask Learning.
Huang, Chang-Qin; Yang, Shang-Ming; Pan, Yan; Lai, Han-Jiang
2018-09-01
Learning-based hashing is a leading approach of approximate nearest neighbor search for large-scale image retrieval. In this paper, we develop a deep supervised hashing method for multi-label image retrieval, in which we propose to learn a binary "mask" map that can identify the approximate locations of objects in an image, so that we use this binary "mask" map to obtain length-limited hash codes which mainly focus on an image's objects but ignore the background. The proposed deep architecture consists of four parts: 1) a convolutional sub-network to generate effective image features; 2) a binary "mask" sub-network to identify image objects' approximate locations; 3) a weighted average pooling operation based on the binary "mask" to obtain feature representations and hash codes that pay most attention to foreground objects but ignore the background; and 4) the combination of a triplet ranking loss designed to preserve relative similarities among images and a cross entropy loss defined on image labels. We conduct comprehensive evaluations on four multi-label image data sets. The results indicate that the proposed hashing method achieves superior performance gains over the state-of-the-art supervised or unsupervised hashing baselines.
Video and image retrieval beyond the cognitive level: the needs and possibilities
NASA Astrophysics Data System (ADS)
Hanjalic, Alan
2000-12-01
The worldwide research efforts in the are of image and video retrieval have concentrated so far on increasing the efficiency and reliability of extracting the elements of image and video semantics and so on improving the search and retrieval performance at the cognitive level of content abstraction. At this abstraction level, the user is searching for 'factual' or 'objective' content such as image showing a panorama of San Francisco, an outdoor or an indoor image, a broadcast news report on a defined topic, a movie dialog between the actors A and B or the parts of a basketball game showing fast breaks, steals and scores. These efforts, however, do not address the retrieval applications at the so-called affective level of content abstraction where the 'ground truth' is not strictly defined. Such applications are, for instance, those where subjectivity of the user plays the major role, e.g. the task of retrieving all images that the user 'likes most', and those that are based on 'recognizing emotions' in audiovisual data. Typical examples are searching for all images that 'radiate happiness', identifying all 'sad' movie fragments and looking for the 'romantic landscapes', 'sentimental' movie segments, 'movie highlights' or 'most exciting' moments of a sport event. This paper discusses the needs and possibilities for widening the current scope of research in the area of image and video search and retrieval in order to enable applications at the affective level of content abstraction.
Video and image retrieval beyond the cognitive level: the needs and possibilities
NASA Astrophysics Data System (ADS)
Hanjalic, Alan
2001-01-01
The worldwide research efforts in the are of image and video retrieval have concentrated so far on increasing the efficiency and reliability of extracting the elements of image and video semantics and so on improving the search and retrieval performance at the cognitive level of content abstraction. At this abstraction level, the user is searching for 'factual' or 'objective' content such as image showing a panorama of San Francisco, an outdoor or an indoor image, a broadcast news report on a defined topic, a movie dialog between the actors A and B or the parts of a basketball game showing fast breaks, steals and scores. These efforts, however, do not address the retrieval applications at the so-called affective level of content abstraction where the 'ground truth' is not strictly defined. Such applications are, for instance, those where subjectivity of the user plays the major role, e.g. the task of retrieving all images that the user 'likes most', and those that are based on 'recognizing emotions' in audiovisual data. Typical examples are searching for all images that 'radiate happiness', identifying all 'sad' movie fragments and looking for the 'romantic landscapes', 'sentimental' movie segments, 'movie highlights' or 'most exciting' moments of a sport event. This paper discusses the needs and possibilities for widening the current scope of research in the area of image and video search and retrieval in order to enable applications at the affective level of content abstraction.
Social Image Tag Ranking by Two-View Learning
NASA Astrophysics Data System (ADS)
Zhuang, Jinfeng; Hoi, Steven C. H.
Tags play a central role in text-based social image retrieval and browsing. However, the tags annotated by web users could be noisy, irrelevant, and often incomplete for describing the image contents, which may severely deteriorate the performance of text-based image retrieval models. In order to solve this problem, researchers have proposed techniques to rank the annotated tags of a social image according to their relevance to the visual content of the image. In this paper, we aim to overcome the challenge of social image tag ranking for a corpus of social images with rich user-generated tags by proposing a novel two-view learning approach. It can effectively exploit both textual and visual contents of social images to discover the complicated relationship between tags and images. Unlike the conventional learning approaches that usually assumes some parametric models, our method is completely data-driven and makes no assumption about the underlying models, making the proposed solution practically more effective. We formulate our method as an optimization task and present an efficient algorithm to solve it. To evaluate the efficacy of our method, we conducted an extensive set of experiments by applying our technique to both text-based social image retrieval and automatic image annotation tasks. Our empirical results showed that the proposed method can be more effective than the conventional approaches.
Combination of image descriptors for the exploration of cultural photographic collections
NASA Astrophysics Data System (ADS)
Bhowmik, Neelanjan; Gouet-Brunet, Valérie; Bloch, Gabriel; Besson, Sylvain
2017-01-01
The rapid growth of image digitization and collections in recent years makes it challenging and burdensome to organize, categorize, and retrieve similar images from voluminous collections. Content-based image retrieval (CBIR) is immensely convenient in this context. A considerable number of local feature detectors and descriptors are present in the literature of CBIR. We propose a model to anticipate the best feature combinations for image retrieval-related applications. Several spatial complementarity criteria of local feature detectors are analyzed and then engaged in a regression framework to find the optimal combination of detectors for a given dataset and are better adapted for each given image; the proposed model is also useful to optimally fix some other parameters, such as the k in k-nearest neighbor retrieval. Three public datasets of various contents and sizes are employed to evaluate the proposal, which is legitimized by improving the quality of retrieval notably facing classical approaches. Finally, the proposed image search engine is applied to the cultural photographic collections of a French museum, where it demonstrates its added value for the exploration and promotion of these contents at different levels from their archiving up to their exhibition in or ex situ.
NASA Astrophysics Data System (ADS)
Antani, Sameer K.; Natarajan, Mukil; Long, Jonathan L.; Long, L. Rodney; Thoma, George R.
2005-04-01
The article describes the status of our ongoing R&D at the U.S. National Library of Medicine (NLM) towards the development of an advanced multimedia database biomedical information system that supports content-based image retrieval (CBIR). NLM maintains a collection of 17,000 digitized spinal X-rays along with text survey data from the Second National Health and Nutritional Examination Survey (NHANES II). These data serve as a rich data source for epidemiologists and researchers of osteoarthritis and musculoskeletal diseases. It is currently possible to access these through text keyword queries using our Web-based Medical Information Retrieval System (WebMIRS). CBIR methods developed specifically for biomedical images could offer direct visual searching of these images by means of example image or user sketch. We are building a system which supports hybrid queries that have text and image-content components. R&D goals include developing algorithms for robust image segmentation for localizing and identifying relevant anatomy, labeling the segmented anatomy based on its pathology, developing suitable indexing and similarity matching methods for images and image features, and associating the survey text information for query and retrieval along with the image data. Some highlights of the system developed in MATLAB and Java are: use of a networked or local centralized database for text and image data; flexibility to incorporate new research work; provides a means to control access to system components under development; and use of XML for structured reporting. The article details the design, features, and algorithms in this third revision of this prototype system, CBIR3.
Method for indexing and retrieving manufacturing-specific digital imagery based on image content
Ferrell, Regina K.; Karnowski, Thomas P.; Tobin, Jr., Kenneth W.
2004-06-15
A method for indexing and retrieving manufacturing-specific digital images based on image content comprises three steps. First, at least one feature vector can be extracted from a manufacturing-specific digital image stored in an image database. In particular, each extracted feature vector corresponds to a particular characteristic of the manufacturing-specific digital image, for instance, a digital image modality and overall characteristic, a substrate/background characteristic, and an anomaly/defect characteristic. Notably, the extracting step includes generating a defect mask using a detection process. Second, using an unsupervised clustering method, each extracted feature vector can be indexed in a hierarchical search tree. Third, a manufacturing-specific digital image associated with a feature vector stored in the hierarchicial search tree can be retrieved, wherein the manufacturing-specific digital image has image content comparably related to the image content of the query image. More particularly, can include two data reductions, the first performed based upon a query vector extracted from a query image. Subsequently, a user can select relevant images resulting from the first data reduction. From the selection, a prototype vector can be calculated, from which a second-level data reduction can be performed. The second-level data reduction can result in a subset of feature vectors comparable to the prototype vector, and further comparable to the query vector. An additional fourth step can include managing the hierarchical search tree by substituting a vector average for several redundant feature vectors encapsulated by nodes in the hierarchical search tree.
Coloured computational imaging with single-pixel detectors based on a 2D discrete cosine transform
NASA Astrophysics Data System (ADS)
Liu, Bao-Lei; Yang, Zhao-Hua; Liu, Xia; Wu, Ling-An
2017-02-01
We propose and demonstrate a computational imaging technique that uses structured illumination based on a two-dimensional discrete cosine transform to perform imaging with a single-pixel detector. A scene is illuminated by a projector with two sets of orthogonal patterns, then by applying an inverse cosine transform to the spectra obtained from the single-pixel detector a full-colour image is retrieved. This technique can retrieve an image from sub-Nyquist measurements, and the background noise is easily cancelled to give excellent image quality. Moreover, the experimental set-up is very simple.
Jabeen, Safia; Mehmood, Zahid; Mahmood, Toqeer; Saba, Tanzila; Rehman, Amjad; Mahmood, Muhammad Tariq
2018-01-01
For the last three decades, content-based image retrieval (CBIR) has been an active research area, representing a viable solution for retrieving similar images from an image repository. In this article, we propose a novel CBIR technique based on the visual words fusion of speeded-up robust features (SURF) and fast retina keypoint (FREAK) feature descriptors. SURF is a sparse descriptor whereas FREAK is a dense descriptor. Moreover, SURF is a scale and rotation-invariant descriptor that performs better in the case of repeatability, distinctiveness, and robustness. It is robust to noise, detection errors, geometric, and photometric deformations. It also performs better at low illumination within an image as compared to the FREAK descriptor. In contrast, FREAK is a retina-inspired speedy descriptor that performs better for classification-based problems as compared to the SURF descriptor. Experimental results show that the proposed technique based on the visual words fusion of SURF-FREAK descriptors combines the features of both descriptors and resolves the aforementioned issues. The qualitative and quantitative analysis performed on three image collections, namely Corel-1000, Corel-1500, and Caltech-256, shows that proposed technique based on visual words fusion significantly improved the performance of the CBIR as compared to the feature fusion of both descriptors and state-of-the-art image retrieval techniques. PMID:29694429
Jabeen, Safia; Mehmood, Zahid; Mahmood, Toqeer; Saba, Tanzila; Rehman, Amjad; Mahmood, Muhammad Tariq
2018-01-01
For the last three decades, content-based image retrieval (CBIR) has been an active research area, representing a viable solution for retrieving similar images from an image repository. In this article, we propose a novel CBIR technique based on the visual words fusion of speeded-up robust features (SURF) and fast retina keypoint (FREAK) feature descriptors. SURF is a sparse descriptor whereas FREAK is a dense descriptor. Moreover, SURF is a scale and rotation-invariant descriptor that performs better in the case of repeatability, distinctiveness, and robustness. It is robust to noise, detection errors, geometric, and photometric deformations. It also performs better at low illumination within an image as compared to the FREAK descriptor. In contrast, FREAK is a retina-inspired speedy descriptor that performs better for classification-based problems as compared to the SURF descriptor. Experimental results show that the proposed technique based on the visual words fusion of SURF-FREAK descriptors combines the features of both descriptors and resolves the aforementioned issues. The qualitative and quantitative analysis performed on three image collections, namely Corel-1000, Corel-1500, and Caltech-256, shows that proposed technique based on visual words fusion significantly improved the performance of the CBIR as compared to the feature fusion of both descriptors and state-of-the-art image retrieval techniques.
NASA Technical Reports Server (NTRS)
Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Wind, Galina; Yang, Ping
2016-01-01
An infrared-based optimal estimation (OE-IR) algorithm for retrieving ice cloud properties is evaluated. Specifically, the implementation of the algorithm with MODerate resolution Imaging Spectroradiometer (MODIS) observations is assessed in comparison with the operational retrieval products from MODIS on the Aqua satellite (MYD06), Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), and the Imaging Infrared Radiometer (IIR); the latter two instruments fly on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite in the Afternoon Constellation (A-Train) with Aqua. The results show that OE-IR cloud optical thickness (tau) and effective radius (r(sub eff)) retrievals perform best for ice clouds having 0.5 < tau< 7 and r(sub eff) < 50microns. For global ice clouds, the averaged retrieval uncertainties of tau and r(sub eff) are 19% and 33%, respectively. For optically thick ice clouds with tau larger than 10, however, the tau and r(sub eff) retrieval uncertainties can exceed 30% and 50%, respectively. For ice cloud top height (h), the averaged global uncertainty is 0.48km. Relatively large h uncertainty (e.g., > 1km) occurs for tau < 0.5. Analysis of 1month of the OE-IR retrievals shows large tau and r(sub eff) uncertainties in storm track regions and the southern oceans where convective clouds are frequently observed, as well as in high-latitude regions where temperature differences between the surface and cloud top are more ambiguous. Generally, comparisons between the OE-IR and the operational products show consistent tau and h retrievals. However, obvious differences between the OE-IR and the MODIS Collection 6 r(sub eff) are found.
Comparing features sets for content-based image retrieval in a medical-case database
NASA Astrophysics Data System (ADS)
Muller, Henning; Rosset, Antoine; Vallee, Jean-Paul; Geissbuhler, Antoine
2004-04-01
Content-based image retrieval systems (CBIRSs) have frequently been proposed for the use in medical image databases and PACS. Still, only few systems were developed and used in a real clinical environment. It rather seems that medical professionals define their needs and computer scientists develop systems based on data sets they receive with little or no interaction between the two groups. A first study on the diagnostic use of medical image retrieval also shows an improvement in diagnostics when using CBIRSs which underlines the potential importance of this technique. This article explains the use of an open source image retrieval system (GIFT - GNU Image Finding Tool) for the retrieval of medical images in the medical case database system CasImage that is used in daily, clinical routine in the university hospitals of Geneva. Although the base system of GIFT shows an unsatisfactory performance, already little changes in the feature space show to significantly improve the retrieval results. The performance of variations in feature space with respect to color (gray level) quantizations and changes in texture analysis (Gabor filters) is compared. Whereas stock photography relies mainly on colors for retrieval, medical images need a large number of gray levels for successful retrieval, especially when executing feedback queries. The results also show that a too fine granularity in the gray levels lowers the retrieval quality, especially with single-image queries. For the evaluation of the retrieval peformance, a subset of the entire case database of more than 40,000 images is taken with a total of 3752 images. Ground truth was generated by a user who defined the expected query result of a perfect system by selecting images relevant to a given query image. The results show that a smaller number of gray levels (32 - 64) leads to a better retrieval performance, especially when using relevance feedback. The use of more scales and directions for the Gabor filters in the texture analysis also leads to improved results but response time is going up equally due to the larger feature space. CBIRSs can be of great use in managing large medical image databases. They allow to find images that might otherwise be lost for research and publications. They also give students students the possibility to navigate within large image repositories. In the future, CBIR might also become more important in case-based reasoning and evidence-based medicine to support the diagnostics because first studies show good results.
Enhancements in medicine by integrating content based image retrieval in computer-aided diagnosis
NASA Astrophysics Data System (ADS)
Aggarwal, Preeti; Sardana, H. K.
2010-02-01
Computer-aided diagnosis (CAD) has become one of the major research subjects in medical imaging and diagnostic radiology. With cad, radiologists use the computer output as a "second opinion" and make the final decisions. Retrieving images is a useful tool to help radiologist to check medical image and diagnosis. The impact of contentbased access to medical images is frequently reported but existing systems are designed for only a particular context of diagnosis. The challenge in medical informatics is to develop tools for analyzing the content of medical images and to represent them in a way that can be efficiently searched and compared by the physicians. CAD is a concept established by taking into account equally the roles of physicians and computers. To build a successful computer aided diagnostic system, all the relevant technologies, especially retrieval need to be integrated in such a manner that should provide effective and efficient pre-diagnosed cases with proven pathology for the current case at the right time. In this paper, it is suggested that integration of content-based image retrieval (CBIR) in cad can bring enormous results in medicine especially in diagnosis. This approach is also compared with other approaches by highlighting its advantages over those approaches.
Managing biomedical image metadata for search and retrieval of similar images.
Korenblum, Daniel; Rubin, Daniel; Napel, Sandy; Rodriguez, Cesar; Beaulieu, Chris
2011-08-01
Radiology images are generally disconnected from the metadata describing their contents, such as imaging observations ("semantic" metadata), which are usually described in text reports that are not directly linked to the images. We developed a system, the Biomedical Image Metadata Manager (BIMM) to (1) address the problem of managing biomedical image metadata and (2) facilitate the retrieval of similar images using semantic feature metadata. Our approach allows radiologists, researchers, and students to take advantage of the vast and growing repositories of medical image data by explicitly linking images to their associated metadata in a relational database that is globally accessible through a Web application. BIMM receives input in the form of standard-based metadata files using Web service and parses and stores the metadata in a relational database allowing efficient data query and maintenance capabilities. Upon querying BIMM for images, 2D regions of interest (ROIs) stored as metadata are automatically rendered onto preview images included in search results. The system's "match observations" function retrieves images with similar ROIs based on specific semantic features describing imaging observation characteristics (IOCs). We demonstrate that the system, using IOCs alone, can accurately retrieve images with diagnoses matching the query images, and we evaluate its performance on a set of annotated liver lesion images. BIMM has several potential applications, e.g., computer-aided detection and diagnosis, content-based image retrieval, automating medical analysis protocols, and gathering population statistics like disease prevalences. The system provides a framework for decision support systems, potentially improving their diagnostic accuracy and selection of appropriate therapies.
NASA Technical Reports Server (NTRS)
Zhang, Z.; Werner, F.; Cho, H. -M.; Wind, G.; Platnick, S.; Ackerman, A. S.; Di Girolamo, L.; Marshak, A.; Meyer, Kerry
2016-01-01
The bi-spectral method retrieves cloud optical thickness and cloud droplet effective radius simultaneously from a pair of cloud reflectance observations, one in a visible or near-infrared (VISNIR) band and the other in a shortwave infrared (SWIR) band. A cloudy pixel is usually assumed to be horizontally homogeneous in the retrieval. Ignoring sub-pixel variations of cloud reflectances can lead to a significant bias in the retrieved and re. In the literature, the retrievals of and re are often assumed to be independent and considered separately when investigating the impact of sub-pixel cloud reflectance variations on the bi-spectral method. As a result, the impact on is contributed only by the sub-pixel variation of VISNIR band reflectance and the impact on re only by the sub-pixel variation of SWIR band reflectance. In our new framework, we use the Taylor expansion of a two-variable function to understand and quantify the impacts of sub-pixel variances of VISNIR and SWIR cloud reflectances and their covariance on the and re retrievals. This framework takes into account the fact that the retrievals are determined by both VISNIR and SWIR band observations in a mutually dependent way. In comparison with previous studies, it provides a more comprehensive understanding of how sub-pixel cloud reflectance variations impact the and re retrievals based on the bi-spectral method. In particular, our framework provides a mathematical explanation of how the sub-pixel variation in VISNIR band influences the re retrieval and why it can sometimes outweigh the influence of variations in the SWIR band and dominate the error in re retrievals, leading to a potential contribution of positive bias to the re retrieval. We test our framework using synthetic cloud fields from a large-eddy simulation and real observations from Moderate Resolution Imaging Spectroradiometer. The predicted results based on our framework agree very well with the numerical simulations. Our framework can be used to estimate the retrieval uncertainty from sub-pixel reflectance variations in operational satellite cloud products and to help understand the differences in and re retrievals between two instruments.
Skin image retrieval using Gabor wavelet texture feature.
Ou, X; Pan, W; Zhang, X; Xiao, P
2016-12-01
Skin imaging plays a key role in many clinical studies. We have used many skin imaging techniques, including the recently developed capacitive contact skin imaging based on fingerprint sensors. The aim of this study was to develop an effective skin image retrieval technique using Gabor wavelet transform, which can be used on different types of skin images, but with a special focus on skin capacitive contact images. Content-based image retrieval (CBIR) is a useful technology to retrieve stored images from database by supplying query images. In a typical CBIR, images are retrieved based on colour, shape, texture, etc. In this study, texture feature is used for retrieving skin images, and Gabor wavelet transform is used for texture feature description and extraction. The results show that the Gabor wavelet texture features can work efficiently on different types of skin images. Although Gabor wavelet transform is slower compared with other image retrieval techniques, such as principal component analysis (PCA) and grey-level co-occurrence matrix (GLCM), Gabor wavelet transform is the best for retrieving skin capacitive contact images and facial images with different orientations. Gabor wavelet transform can also work well on facial images with different expressions and skin cancer/disease images. We have developed an effective skin image retrieval method based on Gabor wavelet transform, that it is useful for retrieving different types of images, namely digital colour face images, digital colour skin cancer and skin disease images, and particularly greyscale skin capacitive contact images. Gabor wavelet transform can also be potentially useful for face recognition (with different orientation and expressions) and skin cancer/disease diagnosis. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Content-Based Management of Image Databases in the Internet Age
ERIC Educational Resources Information Center
Kleban, James Theodore
2010-01-01
The Internet Age has seen the emergence of richly annotated image data collections numbering in the billions of items. This work makes contributions in three primary areas which aid the management of this data: image representation, efficient retrieval, and annotation based on content and metadata. The contributions are as follows. First,…
Medical image retrieval system using multiple features from 3D ROIs
NASA Astrophysics Data System (ADS)
Lu, Hongbing; Wang, Weiwei; Liao, Qimei; Zhang, Guopeng; Zhou, Zhiming
2012-02-01
Compared to a retrieval using global image features, features extracted from regions of interest (ROIs) that reflect distribution patterns of abnormalities would benefit more for content-based medical image retrieval (CBMIR) systems. Currently, most CBMIR systems have been designed for 2D ROIs, which cannot reflect 3D anatomical features and region distribution of lesions comprehensively. To further improve the accuracy of image retrieval, we proposed a retrieval method with 3D features including both geometric features such as Shape Index (SI) and Curvedness (CV) and texture features derived from 3D Gray Level Co-occurrence Matrix, which were extracted from 3D ROIs, based on our previous 2D medical images retrieval system. The system was evaluated with 20 volume CT datasets for colon polyp detection. Preliminary experiments indicated that the integration of morphological features with texture features could improve retrieval performance greatly. The retrieval result using features extracted from 3D ROIs accorded better with the diagnosis from optical colonoscopy than that based on features from 2D ROIs. With the test database of images, the average accuracy rate for 3D retrieval method was 76.6%, indicating its potential value in clinical application.
A neotropical Miocene pollen database employing image-based search and semantic modeling.
Han, Jing Ginger; Cao, Hongfei; Barb, Adrian; Punyasena, Surangi W; Jaramillo, Carlos; Shyu, Chi-Ren
2014-08-01
Digital microscopic pollen images are being generated with increasing speed and volume, producing opportunities to develop new computational methods that increase the consistency and efficiency of pollen analysis and provide the palynological community a computational framework for information sharing and knowledge transfer. • Mathematical methods were used to assign trait semantics (abstract morphological representations) of the images of neotropical Miocene pollen and spores. Advanced database-indexing structures were built to compare and retrieve similar images based on their visual content. A Web-based system was developed to provide novel tools for automatic trait semantic annotation and image retrieval by trait semantics and visual content. • Mathematical models that map visual features to trait semantics can be used to annotate images with morphology semantics and to search image databases with improved reliability and productivity. Images can also be searched by visual content, providing users with customized emphases on traits such as color, shape, and texture. • Content- and semantic-based image searches provide a powerful computational platform for pollen and spore identification. The infrastructure outlined provides a framework for building a community-wide palynological resource, streamlining the process of manual identification, analysis, and species discovery.
Plant leaf chlorophyll content retrieval based on a field imaging spectroscopy system.
Liu, Bo; Yue, Yue-Min; Li, Ru; Shen, Wen-Jing; Wang, Ke-Lin
2014-10-23
A field imaging spectrometer system (FISS; 380-870 nm and 344 bands) was designed for agriculture applications. In this study, FISS was used to gather spectral information from soybean leaves. The chlorophyll content was retrieved using a multiple linear regression (MLR), partial least squares (PLS) regression and support vector machine (SVM) regression. Our objective was to verify the performance of FISS in a quantitative spectral analysis through the estimation of chlorophyll content and to determine a proper quantitative spectral analysis method for processing FISS data. The results revealed that the derivative reflectance was a more sensitive indicator of chlorophyll content and could extract content information more efficiently than the spectral reflectance, which is more significant for FISS data compared to ASD (analytical spectral devices) data, reducing the corresponding RMSE (root mean squared error) by 3.3%-35.6%. Compared with the spectral features, the regression methods had smaller effects on the retrieval accuracy. A multivariate linear model could be the ideal model to retrieve chlorophyll information with a small number of significant wavelengths used. The smallest RMSE of the chlorophyll content retrieved using FISS data was 0.201 mg/g, a relative reduction of more than 30% compared with the RMSE based on a non-imaging ASD spectrometer, which represents a high estimation accuracy compared with the mean chlorophyll content of the sampled leaves (4.05 mg/g). Our study indicates that FISS could obtain both spectral and spatial detailed information of high quality. Its image-spectrum-in-one merit promotes the good performance of FISS in quantitative spectral analyses, and it can potentially be widely used in the agricultural sector.
Plant Leaf Chlorophyll Content Retrieval Based on a Field Imaging Spectroscopy System
Liu, Bo; Yue, Yue-Min; Li, Ru; Shen, Wen-Jing; Wang, Ke-Lin
2014-01-01
A field imaging spectrometer system (FISS; 380–870 nm and 344 bands) was designed for agriculture applications. In this study, FISS was used to gather spectral information from soybean leaves. The chlorophyll content was retrieved using a multiple linear regression (MLR), partial least squares (PLS) regression and support vector machine (SVM) regression. Our objective was to verify the performance of FISS in a quantitative spectral analysis through the estimation of chlorophyll content and to determine a proper quantitative spectral analysis method for processing FISS data. The results revealed that the derivative reflectance was a more sensitive indicator of chlorophyll content and could extract content information more efficiently than the spectral reflectance, which is more significant for FISS data compared to ASD (analytical spectral devices) data, reducing the corresponding RMSE (root mean squared error) by 3.3%–35.6%. Compared with the spectral features, the regression methods had smaller effects on the retrieval accuracy. A multivariate linear model could be the ideal model to retrieve chlorophyll information with a small number of significant wavelengths used. The smallest RMSE of the chlorophyll content retrieved using FISS data was 0.201 mg/g, a relative reduction of more than 30% compared with the RMSE based on a non-imaging ASD spectrometer, which represents a high estimation accuracy compared with the mean chlorophyll content of the sampled leaves (4.05 mg/g). Our study indicates that FISS could obtain both spectral and spatial detailed information of high quality. Its image-spectrum-in-one merit promotes the good performance of FISS in quantitative spectral analyses, and it can potentially be widely used in the agricultural sector. PMID:25341439
Self-adaptive relevance feedback based on multilevel image content analysis
NASA Astrophysics Data System (ADS)
Gao, Yongying; Zhang, Yujin; Fu, Yu
2001-01-01
In current content-based image retrieval systems, it is generally accepted that obtaining high-level image features is a key to improve the querying. Among the related techniques, relevance feedback has become a hot research aspect because it combines the information from the user to refine the querying results. In practice, many methods have been proposed to achieve the goal of relevance feedback. In this paper, a new scheme for relevance feedback is proposed. Unlike previous methods for relevance feedback, our scheme provides a self-adaptive operation. First, based on multi- level image content analysis, the relevant images from the user could be automatically analyzed in different levels and the querying could be modified in terms of different analysis results. Secondly, to make it more convenient to the user, the procedure of relevance feedback could be led with memory or without memory. To test the performance of the proposed method, a practical semantic-based image retrieval system has been established, and the querying results gained by our self-adaptive relevance feedback are given.
Self-adaptive relevance feedback based on multilevel image content analysis
NASA Astrophysics Data System (ADS)
Gao, Yongying; Zhang, Yujin; Fu, Yu
2000-12-01
In current content-based image retrieval systems, it is generally accepted that obtaining high-level image features is a key to improve the querying. Among the related techniques, relevance feedback has become a hot research aspect because it combines the information from the user to refine the querying results. In practice, many methods have been proposed to achieve the goal of relevance feedback. In this paper, a new scheme for relevance feedback is proposed. Unlike previous methods for relevance feedback, our scheme provides a self-adaptive operation. First, based on multi- level image content analysis, the relevant images from the user could be automatically analyzed in different levels and the querying could be modified in terms of different analysis results. Secondly, to make it more convenient to the user, the procedure of relevance feedback could be led with memory or without memory. To test the performance of the proposed method, a practical semantic-based image retrieval system has been established, and the querying results gained by our self-adaptive relevance feedback are given.
Simultenious binary hash and features learning for image retrieval
NASA Astrophysics Data System (ADS)
Frantc, V. A.; Makov, S. V.; Voronin, V. V.; Marchuk, V. I.; Semenishchev, E. A.; Egiazarian, K. O.; Agaian, S.
2016-05-01
Content-based image retrieval systems have plenty of applications in modern world. The most important one is the image search by query image or by semantic description. Approaches to this problem are employed in personal photo-collection management systems, web-scale image search engines, medical systems, etc. Automatic analysis of large unlabeled image datasets is virtually impossible without satisfactory image-retrieval technique. It's the main reason why this kind of automatic image processing has attracted so much attention during recent years. Despite rather huge progress in the field, semantically meaningful image retrieval still remains a challenging task. The main issue here is the demand to provide reliable results in short amount of time. This paper addresses the problem by novel technique for simultaneous learning of global image features and binary hash codes. Our approach provide mapping of pixel-based image representation to hash-value space simultaneously trying to save as much of semantic image content as possible. We use deep learning methodology to generate image description with properties of similarity preservation and statistical independence. The main advantage of our approach in contrast to existing is ability to fine-tune retrieval procedure for very specific application which allow us to provide better results in comparison to general techniques. Presented in the paper framework for data- dependent image hashing is based on use two different kinds of neural networks: convolutional neural networks for image description and autoencoder for feature to hash space mapping. Experimental results confirmed that our approach has shown promising results in compare to other state-of-the-art methods.
Hyperspectral remote sensing image retrieval system using spectral and texture features.
Zhang, Jing; Geng, Wenhao; Liang, Xi; Li, Jiafeng; Zhuo, Li; Zhou, Qianlan
2017-06-01
Although many content-based image retrieval systems have been developed, few studies have focused on hyperspectral remote sensing images. In this paper, a hyperspectral remote sensing image retrieval system based on spectral and texture features is proposed. The main contributions are fourfold: (1) considering the "mixed pixel" in the hyperspectral image, endmembers as spectral features are extracted by an improved automatic pixel purity index algorithm, then the texture features are extracted with the gray level co-occurrence matrix; (2) similarity measurement is designed for the hyperspectral remote sensing image retrieval system, in which the similarity of spectral features is measured with the spectral information divergence and spectral angle match mixed measurement and in which the similarity of textural features is measured with Euclidean distance; (3) considering the limited ability of the human visual system, the retrieval results are returned after synthesizing true color images based on the hyperspectral image characteristics; (4) the retrieval results are optimized by adjusting the feature weights of similarity measurements according to the user's relevance feedback. The experimental results on NASA data sets can show that our system can achieve comparable superior retrieval performance to existing hyperspectral analysis schemes.
No-reference multiscale blur detection tool for content based image retrieval
NASA Astrophysics Data System (ADS)
Ezekiel, Soundararajan; Stocker, Russell; Harrity, Kyle; Alford, Mark; Ferris, David; Blasch, Erik; Gorniak, Mark
2014-06-01
In recent years, digital cameras have been widely used for image capturing. These devices are equipped in cell phones, laptops, tablets, webcams, etc. Image quality is an important component of digital image analysis. To assess image quality for these mobile products, a standard image is required as a reference image. In this case, Root Mean Square Error and Peak Signal to Noise Ratio can be used to measure the quality of the images. However, these methods are not possible if there is no reference image. In our approach, a discrete-wavelet transformation is applied to the blurred image, which decomposes into the approximate image and three detail sub-images, namely horizontal, vertical, and diagonal images. We then focus on noise-measuring the detail images and blur-measuring the approximate image to assess the image quality. We then compute noise mean and noise ratio from the detail images, and blur mean and blur ratio from the approximate image. The Multi-scale Blur Detection (MBD) metric provides both an assessment of the noise and blur content. These values are weighted based on a linear regression against full-reference y values. From these statistics, we can compare to normal useful image statistics for image quality without needing a reference image. We then test the validity of our obtained weights by R2 analysis as well as using them to estimate image quality of an image with a known quality measure. The result shows that our method provides acceptable results for images containing low to mid noise levels and blur content.
NASA Astrophysics Data System (ADS)
Cho, Hyun-chong; Hadjiiski, Lubomir; Sahiner, Berkman; Chan, Heang-Ping; Paramagul, Chintana; Helvie, Mark; Nees, Alexis V.
2012-03-01
We designed a Content-Based Image Retrieval (CBIR) Computer-Aided Diagnosis (CADx) system to assist radiologists in characterizing masses on ultrasound images. The CADx system retrieves masses that are similar to a query mass from a reference library based on computer-extracted features that describe texture, width-to-height ratio, and posterior shadowing of a mass. Retrieval is performed with k nearest neighbor (k-NN) method using Euclidean distance similarity measure and Rocchio relevance feedback algorithm (RRF). In this study, we evaluated the similarity between the query and the retrieved masses with relevance feedback using our interactive CBIR CADx system. The similarity assessment and feedback were provided by experienced radiologists' visual judgment. For training the RRF parameters, similarities of 1891 image pairs obtained from 62 masses were rated by 3 MQSA radiologists using a 9-point scale (9=most similar). A leave-one-out method was used in training. For each query mass, 5 most similar masses were retrieved from the reference library using radiologists' similarity ratings, which were then used by RRF to retrieve another 5 masses for the same query. The best RRF parameters were chosen based on three simulated observer experiments, each of which used one of the radiologists' ratings for retrieval and relevance feedback. For testing, 100 independent query masses on 100 images and 121 reference masses on 230 images were collected. Three radiologists rated the similarity between the query and the computer-retrieved masses. Average similarity ratings without and with RRF were 5.39 and 5.64 on the training set and 5.78 and 6.02 on the test set, respectively. The average Az values without and with RRF were 0.86+/-0.03 and 0.87+/-0.03 on the training set and 0.91+/-0.03 and 0.90+/-0.03 on the test set, respectively. This study demonstrated that RRF improved the similarity of the retrieved masses.
NASA Astrophysics Data System (ADS)
Müller, Henning; Kalpathy-Cramer, Jayashree; Kahn, Charles E., Jr.; Hersh, William
2009-02-01
Content-based visual information (or image) retrieval (CBIR) has been an extremely active research domain within medical imaging over the past ten years, with the goal of improving the management of visual medical information. Many technical solutions have been proposed, and application scenarios for image retrieval as well as image classification have been set up. However, in contrast to medical information retrieval using textual methods, visual retrieval has only rarely been applied in clinical practice. This is despite the large amount and variety of visual information produced in hospitals every day. This information overload imposes a significant burden upon clinicians, and CBIR technologies have the potential to help the situation. However, in order for CBIR to become an accepted clinical tool, it must demonstrate a higher level of technical maturity than it has to date. Since 2004, the ImageCLEF benchmark has included a task for the comparison of visual information retrieval algorithms for medical applications. In 2005, a task for medical image classification was introduced and both tasks have been run successfully for the past four years. These benchmarks allow an annual comparison of visual retrieval techniques based on the same data sets and the same query tasks, enabling the meaningful comparison of various retrieval techniques. The datasets used from 2004-2007 contained images and annotations from medical teaching files. In 2008, however, the dataset used was made up of 67,000 images (along with their associated figure captions and the full text of their corresponding articles) from two Radiological Society of North America (RSNA) scientific journals. This article describes the results of the medical image retrieval task of the ImageCLEF 2008 evaluation campaign. We compare the retrieval results of both visual and textual information retrieval systems from 15 research groups on the aforementioned data set. The results show clearly that, currently, visual retrieval alone does not achieve the performance necessary for real-world clinical applications. Most of the common visual retrieval techniques have a MAP (Mean Average Precision) of around 2-3%, which is much lower than that achieved using textual retrieval (MAP=29%). Advanced machine learning techniques, together with good training data, have been shown to improve the performance of visual retrieval systems in the past. Multimodal retrieval (basing retrieval on both visual and textual information) can achieve better results than purely visual, but only when carefully applied. In many cases, multimodal retrieval systems performed even worse than purely textual retrieval systems. On the other hand, some multimodal retrieval systems demonstrated significantly increased early precision, which has been shown to be a desirable behavior in real-world systems.
NASA Astrophysics Data System (ADS)
Chmiel, P.; Ganzha, M.; Jaworska, T.; Paprzycki, M.
2017-10-01
Nowadays, as a part of systematic growth of volume, and variety, of information that can be found on the Internet, we observe also dramatic increase in sizes of available image collections. There are many ways to help users browsing / selecting images of interest. One of popular approaches are Content-Based Image Retrieval (CBIR) systems, which allow users to search for images that match their interests, expressed in the form of images (query by example). However, we believe that image search and retrieval could take advantage of semantic technologies. We have decided to test this hypothesis. Specifically, on the basis of knowledge captured in the CBIR, we have developed a domain ontology of residential real estate (detached houses, in particular). This allows us to semantically represent each image (and its constitutive architectural elements) represented within the CBIR. The proposed ontology was extended to capture not only the elements resulting from image segmentation, but also "spatial relations" between them. As a result, a new approach to querying the image database (semantic querying) has materialized, thus extending capabilities of the developed system.
Storage and retrieval of large digital images
Bradley, J.N.
1998-01-20
Image compression and viewing are implemented with (1) a method for performing DWT-based compression on a large digital image with a computer system possessing a two-level system of memory and (2) a method for selectively viewing areas of the image from its compressed representation at multiple resolutions and, if desired, in a client-server environment. The compression of a large digital image I(x,y) is accomplished by first defining a plurality of discrete tile image data subsets T{sub ij}(x,y) that, upon superposition, form the complete set of image data I(x,y). A seamless wavelet-based compression process is effected on I(x,y) that is comprised of successively inputting the tiles T{sub ij}(x,y) in a selected sequence to a DWT routine, and storing the resulting DWT coefficients in a first primary memory. These coefficients are periodically compressed and transferred to a secondary memory to maintain sufficient memory in the primary memory for data processing. The sequence of DWT operations on the tiles T{sub ij}(x,y) effectively calculates a seamless DWT of I(x,y). Data retrieval consists of specifying a resolution and a region of I(x,y) for display. The subset of stored DWT coefficients corresponding to each requested scene is determined and then decompressed for input to an inverse DWT, the output of which forms the image display. The repeated process whereby image views are specified may take the form an interaction with a computer pointing device on an image display from a previous retrieval. 6 figs.
Storage and retrieval of large digital images
Bradley, Jonathan N.
1998-01-01
Image compression and viewing are implemented with (1) a method for performing DWT-based compression on a large digital image with a computer system possessing a two-level system of memory and (2) a method for selectively viewing areas of the image from its compressed representation at multiple resolutions and, if desired, in a client-server environment. The compression of a large digital image I(x,y) is accomplished by first defining a plurality of discrete tile image data subsets T.sub.ij (x,y) that, upon superposition, form the complete set of image data I(x,y). A seamless wavelet-based compression process is effected on I(x,y) that is comprised of successively inputting the tiles T.sub.ij (x,y) in a selected sequence to a DWT routine, and storing the resulting DWT coefficients in a first primary memory. These coefficients are periodically compressed and transferred to a secondary memory to maintain sufficient memory in the primary memory for data processing. The sequence of DWT operations on the tiles T.sub.ij (x,y) effectively calculates a seamless DWT of I(x,y). Data retrieval consists of specifying a resolution and a region of I(x,y) for display. The subset of stored DWT coefficients corresponding to each requested scene is determined and then decompressed for input to an inverse DWT, the output of which forms the image display. The repeated process whereby image views are specified may take the form an interaction with a computer pointing device on an image display from a previous retrieval.
Set-relevance determines the impact of distractors on episodic memory retrieval.
Kwok, Sze Chai; Shallice, Tim; Macaluso, Emiliano
2014-09-01
We investigated the interplay between stimulus-driven attention and memory retrieval with a novel interference paradigm that engaged both systems concurrently on each trial. Participants encoded a 45-min movie on Day 1 and, on Day 2, performed a temporal order judgment task during fMRI. Each retrieval trial comprised three images presented sequentially, and the task required participants to judge the temporal order of the first and the last images ("memory probes") while ignoring the second image, which was task irrelevant ("attention distractor"). We manipulated the content relatedness and the temporal proximity between the distractor and the memory probes, as well as the temporal distance between two probes. Behaviorally, short temporal distances between the probes led to reduced retrieval performance. Distractors that at encoding were temporally close to the first probe image reduced these costs, specifically when the distractor was content unrelated to the memory probes. The imaging results associated the distractor probe temporal proximity with activation of the right ventral attention network. By contrast, the precuneus was activated for high-content relatedness between distractors and probes and in trials including a short distance between the two memory probes. The engagement of the right ventral attention network by specific types of distractors suggests a link between stimulus-driven attention control and episodic memory retrieval, whereas the activation pattern of the precuneus implicates this region in memory search within knowledge/content-based hierarchies.
SIFT Meets CNN: A Decade Survey of Instance Retrieval.
Zheng, Liang; Yang, Yi; Tian, Qi
2018-05-01
In the early days, content-based image retrieval (CBIR) was studied with global features. Since 2003, image retrieval based on local descriptors (de facto SIFT) has been extensively studied for over a decade due to the advantage of SIFT in dealing with image transformations. Recently, image representations based on the convolutional neural network (CNN) have attracted increasing interest in the community and demonstrated impressive performance. Given this time of rapid evolution, this article provides a comprehensive survey of instance retrieval over the last decade. Two broad categories, SIFT-based and CNN-based methods, are presented. For the former, according to the codebook size, we organize the literature into using large/medium-sized/small codebooks. For the latter, we discuss three lines of methods, i.e., using pre-trained or fine-tuned CNN models, and hybrid methods. The first two perform a single-pass of an image to the network, while the last category employs a patch-based feature extraction scheme. This survey presents milestones in modern instance retrieval, reviews a broad selection of previous works in different categories, and provides insights on the connection between SIFT and CNN-based methods. After analyzing and comparing retrieval performance of different categories on several datasets, we discuss promising directions towards generic and specialized instance retrieval.
A mathematical model of neuro-fuzzy approximation in image classification
NASA Astrophysics Data System (ADS)
Gopalan, Sasi; Pinto, Linu; Sheela, C.; Arun Kumar M., N.
2016-06-01
Image digitization and explosion of World Wide Web has made traditional search for image, an inefficient method for retrieval of required grassland image data from large database. For a given input query image Content-Based Image Retrieval (CBIR) system retrieves the similar images from a large database. Advances in technology has increased the use of grassland image data in diverse areas such has agriculture, art galleries, education, industry etc. In all the above mentioned diverse areas it is necessary to retrieve grassland image data efficiently from a large database to perform an assigned task and to make a suitable decision. A CBIR system based on grassland image properties and it uses the aid of a feed-forward back propagation neural network for an effective image retrieval is proposed in this paper. Fuzzy Memberships plays an important role in the input space of the proposed system which leads to a combined neural fuzzy approximation in image classification. The CBIR system with mathematical model in the proposed work gives more clarity about fuzzy-neuro approximation and the convergence of the image features in a grassland image.
NASA Astrophysics Data System (ADS)
Megherbi, Dalila B.; Yan, Yin; Tanmay, Parikh; Khoury, Jed; Woods, C. L.
2004-11-01
Recently surveillance and Automatic Target Recognition (ATR) applications are increasing as the cost of computing power needed to process the massive amount of information continues to fall. This computing power has been made possible partly by the latest advances in FPGAs and SOPCs. In particular, to design and implement state-of-the-Art electro-optical imaging systems to provide advanced surveillance capabilities, there is a need to integrate several technologies (e.g. telescope, precise optics, cameras, image/compute vision algorithms, which can be geographically distributed or sharing distributed resources) into a programmable system and DSP systems. Additionally, pattern recognition techniques and fast information retrieval, are often important components of intelligent systems. The aim of this work is using embedded FPGA as a fast, configurable and synthesizable search engine in fast image pattern recognition/retrieval in a distributed hardware/software co-design environment. In particular, we propose and show a low cost Content Addressable Memory (CAM)-based distributed embedded FPGA hardware architecture solution with real time recognition capabilities and computing for pattern look-up, pattern recognition, and image retrieval. We show how the distributed CAM-based architecture offers a performance advantage of an order-of-magnitude over RAM-based architecture (Random Access Memory) search for implementing high speed pattern recognition for image retrieval. The methods of designing, implementing, and analyzing the proposed CAM based embedded architecture are described here. Other SOPC solutions/design issues are covered. Finally, experimental results, hardware verification, and performance evaluations using both the Xilinx Virtex-II and the Altera Apex20k are provided to show the potential and power of the proposed method for low cost reconfigurable fast image pattern recognition/retrieval at the hardware/software co-design level.
NASA Technical Reports Server (NTRS)
Chu, D. A.; Remer, L. A.; Kaufman, Y. J.; Schmid, B.; Redemann, J.; Knobelspiesse, K.; Chern, J.-D.; Livingston, J.; Russell, P. B.; Xiong, X.;
2005-01-01
The Aerosol Characterization Experiment-Asia (ACE-Asia) was conducted in March-May 2001 in the western North Pacific in order to characterize the complex mix of dust, smoke, urban/industrial pollution, and background marine aerosol that is observed in that region in springtime. The Moderate Resolution Imaging Spectroradiometer (MODIS) provides a large-scale regional view of the aerosol during the ACE-Asia time period. Focusing only on aerosol retrievals over ocean, MODIS data show latitudinal and longitudinal variation in the aerosol characteristics. Typically, aerosol optical depth (tau(sub a)) values at 0.55 micrometers are highest in the 30 deg. - 50 deg. latitude band associated with dust outbreaks. Monthly mean tau(sub a) in this band ranges approx. 0.40-70, although large differences between monthly mean and median values indicate the periodic nature of these dust outbreaks. The size parameters, fine mode fraction (eta), and effective radius (r(sub eff)) vary between monthly mean values of eta = 0.47 and r(sub eff)= 0.75 micrometers in the cleanest regions far offshore to approximately eta = 0.85 and r(sub eff) =.30 micrometers in near-shore regions dominated by biomass burning smoke. The collocated MODIS retrievals with airborne, ship-based, and ground-based radiometers measurements suggest that MODIS retrievals of spectral optical depth fall well within expected error (DELTA tau(sub a) = plus or minus 0.03 plus or minus 0.05 tau(sub a)) except in situations dominated by dust, in which cases MODIS overestimate both the aerosol loading and the aerosol spectral dependence. Such behavior is consistent with issues related to particle nonsphericity. Comparisons of MODIS-derived r(sub eff) with AERONET retrievals at the few occurrences of collocations show MODIS systematically underestimates particle size by 0.2 micrometers. Multiple-year analysis of MODIS aerosol size parameters suggests systematic differences between the year 2001 and the years 2000 and 2002, which are traced to instrumental electronic cross talk. Sensitivity studies show that such calibration errors are negligible in tau(sub a) retrievals but are more pronounced in size parameter retrievals, especially for dust and sea salt.
A similarity measure method combining location feature for mammogram retrieval.
Wang, Zhiqiong; Xin, Junchang; Huang, Yukun; Li, Chen; Xu, Ling; Li, Yang; Zhang, Hao; Gu, Huizi; Qian, Wei
2018-05-28
Breast cancer, the most common malignancy among women, has a high mortality rate in clinical practice. Early detection, diagnosis and treatment can reduce the mortalities of breast cancer greatly. The method of mammogram retrieval can help doctors to find the early breast lesions effectively and determine a reasonable feature set for image similarity measure. This will improve the accuracy effectively for mammogram retrieval. This paper proposes a similarity measure method combining location feature for mammogram retrieval. Firstly, the images are pre-processed, the regions of interest are detected and the lesions are segmented in order to get the center point and radius of the lesions. Then, the method, namely Coherent Point Drift, is used for image registration with the pre-defined standard image. The center point and radius of the lesions after registration are obtained and the standard location feature of the image is constructed. This standard location feature can help figure out the location similarity between the image pair from the query image to each dataset image in the database. Next, the content feature of the image is extracted, including the Histogram of Oriented Gradients, the Edge Direction Histogram, the Local Binary Pattern and the Gray Level Histogram, and the image pair content similarity can be calculated using the Earth Mover's Distance. Finally, the location similarity and content similarity are fused to form the image fusion similarity, and the specified number of the most similar images can be returned according to it. In the experiment, 440 mammograms, which are from Chinese women in Northeast China, are used as the database. When fusing 40% lesion location feature similarity and 60% content feature similarity, the results have obvious advantages. At this time, precision is 0.83, recall is 0.76, comprehensive indicator is 0.79, satisfaction is 96.0%, mean is 4.2 and variance is 17.7. The results show that the precision and recall of this method have obvious advantage, compared with the content-based image retrieval.
A neotropical Miocene pollen database employing image-based search and semantic modeling1
Han, Jing Ginger; Cao, Hongfei; Barb, Adrian; Punyasena, Surangi W.; Jaramillo, Carlos; Shyu, Chi-Ren
2014-01-01
• Premise of the study: Digital microscopic pollen images are being generated with increasing speed and volume, producing opportunities to develop new computational methods that increase the consistency and efficiency of pollen analysis and provide the palynological community a computational framework for information sharing and knowledge transfer. • Methods: Mathematical methods were used to assign trait semantics (abstract morphological representations) of the images of neotropical Miocene pollen and spores. Advanced database-indexing structures were built to compare and retrieve similar images based on their visual content. A Web-based system was developed to provide novel tools for automatic trait semantic annotation and image retrieval by trait semantics and visual content. • Results: Mathematical models that map visual features to trait semantics can be used to annotate images with morphology semantics and to search image databases with improved reliability and productivity. Images can also be searched by visual content, providing users with customized emphases on traits such as color, shape, and texture. • Discussion: Content- and semantic-based image searches provide a powerful computational platform for pollen and spore identification. The infrastructure outlined provides a framework for building a community-wide palynological resource, streamlining the process of manual identification, analysis, and species discovery. PMID:25202648
NASA Technical Reports Server (NTRS)
Scarino, Benjamin R.; Minnis, Patrick; Chee, Thad; Bedka, Kristopher M.; Yost, Christopher R.; Palikonda, Rabindra
2017-01-01
Surface skin temperature (T(sub s)) is an important parameter for characterizing the energy exchange at the ground/water-atmosphere interface. The Satellite ClOud and Radiation Property retrieval System (SatCORPS) employs a single-channel thermal-infrared (TIR) method to retrieve T(sub s) over clear-sky land and ocean surfaces from data taken by geostationary Earth orbit (GEO) and low Earth orbit (LEO) satellite imagers. GEO satellites can provide somewhat continuous estimates of T(sub s) over the diurnal cycle in non-polar regions, while polar T(sub s) retrievals from LEO imagers, such as the Advanced Very High Resolution Radiometer (AVHRR), can complement the GEO measurements. The combined global coverage of remotely sensed T(sub s), along with accompanying cloud and surface radiation parameters, produced in near-realtime and from historical satellite data, should be beneficial for both weather and climate applications. For example, near-realtime hourly T(sub s) observations can be assimilated in high-temporal-resolution numerical weather prediction models and historical observations can be used for validation or assimilation of climate models. Key drawbacks to the utility of TIR-derived T(sub s) data include the limitation to clear-sky conditions, the reliance on a particular set of analyses/reanalyses necessary for atmospheric corrections, and the dependence on viewing and illumination angles. Therefore, T(sub s) validation with established references is essential, as is proper evaluation of T(sub s) sensitivity to atmospheric correction source. This article presents improvements on the NASA Langley GEO satellite and AVHRR TIR-based T(sub s) product that is derived using a single-channel technique. The resulting clear-sky skin temperature values are validated with surface references and independent satellite products. Furthermore, an empirically adjusted theoretical model of satellite land surface temperature (LST) angular anisotropy is tested to improve satellite LST retrievals. Application of the anisotropic correction yields reduced mean bias and improved precision of GOES-13 LST relative to independent Moderate-resolution Imaging Spectroradiometer (MYD11_L2) LST and Atmospheric Radiation Measurement Program ground station measurements. It also significantly reduces inter-satellite differences between LSTs retrieved simultaneously from two different imagers. The implementation of these universal corrections into the SatCORPS product can yield significant improvement in near-global-scale, near-realtime, satellite-based LST measurements. The immediate availability and broad coverage of these skin temperature observations should prove valuable to modelers and climate researchers looking for improved forecasts and better understanding of the global climate model.
New model for distributed multimedia databases and its application to networking of museums
NASA Astrophysics Data System (ADS)
Kuroda, Kazuhide; Komatsu, Naohisa; Komiya, Kazumi; Ikeda, Hiroaki
1998-02-01
This paper proposes a new distributed multimedia data base system where the databases storing MPEG-2 videos and/or super high definition images are connected together through the B-ISDN's, and also refers to an example of the networking of museums on the basis of the proposed database system. The proposed database system introduces a new concept of the 'retrieval manager' which functions an intelligent controller so that the user can recognize a set of image databases as one logical database. A user terminal issues a request to retrieve contents to the retrieval manager which is located in the nearest place to the user terminal on the network. Then, the retrieved contents are directly sent through the B-ISDN's to the user terminal from the server which stores the designated contents. In this case, the designated logical data base dynamically generates the best combination of such a retrieving parameter as a data transfer path referring to directly or data on the basis of the environment of the system. The generated retrieving parameter is then executed to select the most suitable data transfer path on the network. Therefore, the best combination of these parameters fits to the distributed multimedia database system.
A Novel Image Retrieval Based on Visual Words Integration of SIFT and SURF
Ali, Nouman; Bajwa, Khalid Bashir; Sablatnig, Robert; Chatzichristofis, Savvas A.; Iqbal, Zeshan; Rashid, Muhammad; Habib, Hafiz Adnan
2016-01-01
With the recent evolution of technology, the number of image archives has increased exponentially. In Content-Based Image Retrieval (CBIR), high-level visual information is represented in the form of low-level features. The semantic gap between the low-level features and the high-level image concepts is an open research problem. In this paper, we present a novel visual words integration of Scale Invariant Feature Transform (SIFT) and Speeded-Up Robust Features (SURF). The two local features representations are selected for image retrieval because SIFT is more robust to the change in scale and rotation, while SURF is robust to changes in illumination. The visual words integration of SIFT and SURF adds the robustness of both features to image retrieval. The qualitative and quantitative comparisons conducted on Corel-1000, Corel-1500, Corel-2000, Oliva and Torralba and Ground Truth image benchmarks demonstrate the effectiveness of the proposed visual words integration. PMID:27315101
Data augmentation-assisted deep learning of hand-drawn partially colored sketches for visual search
Muhammad, Khan; Baik, Sung Wook
2017-01-01
In recent years, image databases are growing at exponential rates, making their management, indexing, and retrieval, very challenging. Typical image retrieval systems rely on sample images as queries. However, in the absence of sample query images, hand-drawn sketches are also used. The recent adoption of touch screen input devices makes it very convenient to quickly draw shaded sketches of objects to be used for querying image databases. This paper presents a mechanism to provide access to visual information based on users’ hand-drawn partially colored sketches using touch screen devices. A key challenge for sketch-based image retrieval systems is to cope with the inherent ambiguity in sketches due to the lack of colors, textures, shading, and drawing imperfections. To cope with these issues, we propose to fine-tune a deep convolutional neural network (CNN) using augmented dataset to extract features from partially colored hand-drawn sketches for query specification in a sketch-based image retrieval framework. The large augmented dataset contains natural images, edge maps, hand-drawn sketches, de-colorized, and de-texturized images which allow CNN to effectively model visual contents presented to it in a variety of forms. The deep features extracted from CNN allow retrieval of images using both sketches and full color images as queries. We also evaluated the role of partial coloring or shading in sketches to improve the retrieval performance. The proposed method is tested on two large datasets for sketch recognition and sketch-based image retrieval and achieved better classification and retrieval performance than many existing methods. PMID:28859140
An end to end secure CBIR over encrypted medical database.
Bellafqira, Reda; Coatrieux, Gouenou; Bouslimi, Dalel; Quellec, Gwenole
2016-08-01
In this paper, we propose a new secure content based image retrieval (SCBIR) system adapted to the cloud framework. This solution allows a physician to retrieve images of similar content within an outsourced and encrypted image database, without decrypting them. Contrarily to actual CBIR approaches in the encrypted domain, the originality of the proposed scheme stands on the fact that the features extracted from the encrypted images are themselves encrypted. This is achieved by means of homomorphic encryption and two non-colluding servers, we however both consider as honest but curious. In that way an end to end secure CBIR process is ensured. Experimental results carried out on a diabetic retinopathy database encrypted with the Paillier cryptosystem indicate that our SCBIR achieves retrieval performance as good as if images were processed in their non-encrypted form.
A memory learning framework for effective image retrieval.
Han, Junwei; Ngan, King N; Li, Mingjing; Zhang, Hong-Jiang
2005-04-01
Most current content-based image retrieval systems are still incapable of providing users with their desired results. The major difficulty lies in the gap between low-level image features and high-level image semantics. To address the problem, this study reports a framework for effective image retrieval by employing a novel idea of memory learning. It forms a knowledge memory model to store the semantic information by simply accumulating user-provided interactions. A learning strategy is then applied to predict the semantic relationships among images according to the memorized knowledge. Image queries are finally performed based on a seamless combination of low-level features and learned semantics. One important advantage of our framework is its ability to efficiently annotate images and also propagate the keyword annotation from the labeled images to unlabeled images. The presented algorithm has been integrated into a practical image retrieval system. Experiments on a collection of 10,000 general-purpose images demonstrate the effectiveness of the proposed framework.
Using deep learning for content-based medical image retrieval
NASA Astrophysics Data System (ADS)
Sun, Qinpei; Yang, Yuanyuan; Sun, Jianyong; Yang, Zhiming; Zhang, Jianguo
2017-03-01
Content-Based medical image retrieval (CBMIR) is been highly active research area from past few years. The retrieval performance of a CBMIR system crucially depends on the feature representation, which have been extensively studied by researchers for decades. Although a variety of techniques have been proposed, it remains one of the most challenging problems in current CBMIR research, which is mainly due to the well-known "semantic gap" issue that exists between low-level image pixels captured by machines and high-level semantic concepts perceived by human[1]. Recent years have witnessed some important advances of new techniques in machine learning. One important breakthrough technique is known as "deep learning". Unlike conventional machine learning methods that are often using "shallow" architectures, deep learning mimics the human brain that is organized in a deep architecture and processes information through multiple stages of transformation and representation. This means that we do not need to spend enormous energy to extract features manually. In this presentation, we propose a novel framework which uses deep learning to retrieval the medical image to improve the accuracy and speed of a CBIR in integrated RIS/PACS.
Exploring access to scientific literature using content-based image retrieval
NASA Astrophysics Data System (ADS)
Deserno, Thomas M.; Antani, Sameer; Long, Rodney
2007-03-01
The number of articles published in the scientific medical literature is continuously increasing, and Web access to the journals is becoming common. Databases such as SPIE Digital Library, IEEE Xplore, indices such as PubMed, and search engines such as Google provide the user with sophisticated full-text search capabilities. However, information in images and graphs within these articles is entirely disregarded. In this paper, we quantify the potential impact of using content-based image retrieval (CBIR) to access this non-text data. Based on the Journal Citations Report (JCR), the journal Radiology was selected for this study. In 2005, 734 articles were published electronically in this journal. This included 2,587 figures, which yields a rate of 3.52 figures per article. Furthermore, 56.4% of these figures are composed of several individual panels, i.e. the figure combines different images and/or graphs. According to the Image Cross-Language Evaluation Forum (ImageCLEF), the error rate of automatic identification of medical images is about 15%. Therefore, it is expected that, by applying ImageCLEF-like techniques, already 95.5% of articles could be retrieved by means of CBIR. The challenge for CBIR in scientific literature, however, is the use of local texture properties to analyze individual image panels in composite illustrations. Using local features for content-based image representation, 8.81 images per article are available, and the predicted correctness rate may increase to 98.3%. From this study, we conclude that CBIR may have a high impact in medical literature research and suggest that additional research in this area is warranted.
NASA Astrophysics Data System (ADS)
Lehmann, Thomas M.; Guld, Mark O.; Thies, Christian; Fischer, Benedikt; Keysers, Daniel; Kohnen, Michael; Schubert, Henning; Wein, Berthold B.
2003-05-01
Picture archiving and communication systems (PACS) aim to efficiently provide the radiologists with all images in a suitable quality for diagnosis. Modern standards for digital imaging and communication in medicine (DICOM) comprise alphanumerical descriptions of study, patient, and technical parameters. Currently, this is the only information used to select relevant images within PACS. Since textual descriptions insufficiently describe the great variety of details in medical images, content-based image retrieval (CBIR) is expected to have a strong impact when integrated into PACS. However, existing CBIR approaches usually are limited to a distinct modality, organ, or diagnostic study. In this state-of-the-art report, we present first results implementing a general approach to content-based image retrieval in medical applications (IRMA) and discuss its integration into PACS environments. Usually, a PACS consists of a DICOM image server and several DICOM-compliant workstations, which are used by radiologists for reading the images and reporting the findings. Basic IRMA components are the relational database, the scheduler, and the web server, which all may be installed on the DICOM image server, and the IRMA daemons running on distributed machines, e.g., the radiologists" workstations. These workstations can also host the web-based front-ends of IRMA applications. Integrating CBIR and PACS, a special focus is put on (a) location and access transparency for data, methods, and experiments, (b) replication transparency for methods in development, (c) concurrency transparency for job processing and feature extraction, (d) system transparency at method implementation time, and (e) job distribution transparency when issuing a query. Transparent integration will have a certain impact on diagnostic quality supporting both evidence-based medicine and case-based reasoning.
MediaNet: a multimedia information network for knowledge representation
NASA Astrophysics Data System (ADS)
Benitez, Ana B.; Smith, John R.; Chang, Shih-Fu
2000-10-01
In this paper, we present MediaNet, which is a knowledge representation framework that uses multimedia content for representing semantic and perceptual information. The main components of MediaNet include conceptual entities, which correspond to real world objects, and relationships among concepts. MediaNet allows the concepts and relationships to be defined or exemplified by multimedia content such as images, video, audio, graphics, and text. MediaNet models the traditional relationship types such as generalization and aggregation but adds additional functionality by modeling perceptual relationships based on feature similarity. For example, MediaNet allows a concept such as car to be defined as a type of a transportation vehicle, but which is further defined and illustrated through example images, videos and sounds of cars. In constructing the MediaNet framework, we have built on the basic principles of semiotics and semantic networks in addition to utilizing the audio-visual content description framework being developed as part of the MPEG-7 multimedia content description standard. By integrating both conceptual and perceptual representations of knowledge, MediaNet has potential to impact a broad range of applications that deal with multimedia content at the semantic and perceptual levels. In particular, we have found that MediaNet can improve the performance of multimedia retrieval applications by using query expansion, refinement and translation across multiple content modalities. In this paper, we report on experiments that use MediaNet in searching for images. We construct the MediaNet knowledge base using both WordNet and an image network built from multiple example images and extracted color and texture descriptors. Initial experimental results demonstrate improved retrieval effectiveness using MediaNet in a content-based retrieval system.
Integrated approach to multimodal media content analysis
NASA Astrophysics Data System (ADS)
Zhang, Tong; Kuo, C.-C. Jay
1999-12-01
In this work, we present a system for the automatic segmentation, indexing and retrieval of audiovisual data based on the combination of audio, visual and textural content analysis. The video stream is demultiplexed into audio, image and caption components. Then, a semantic segmentation of the audio signal based on audio content analysis is conducted, and each segment is indexed as one of the basic audio types. The image sequence is segmented into shots based on visual information analysis, and keyframes are extracted from each shot. Meanwhile, keywords are detected from the closed caption. Index tables are designed for both linear and non-linear access to the video. It is shown by experiments that the proposed methods for multimodal media content analysis are effective. And that the integrated framework achieves satisfactory results for video information filtering and retrieval.
A spatiotemporal decomposition strategy for personal home video management
NASA Astrophysics Data System (ADS)
Yi, Haoran; Kozintsev, Igor; Polito, Marzia; Wu, Yi; Bouguet, Jean-Yves; Nefian, Ara; Dulong, Carole
2007-01-01
With the advent and proliferation of low cost and high performance digital video recorder devices, an increasing number of personal home video clips are recorded and stored by the consumers. Compared to image data, video data is lager in size and richer in multimedia content. Efficient access to video content is expected to be more challenging than image mining. Previously, we have developed a content-based image retrieval system and the benchmarking framework for personal images. In this paper, we extend our personal image retrieval system to include personal home video clips. A possible initial solution to video mining is to represent video clips by a set of key frames extracted from them thus converting the problem into an image search one. Here we report that a careful selection of key frames may improve the retrieval accuracy. However, because video also has temporal dimension, its key frame representation is inherently limited. The use of temporal information can give us better representation for video content at semantic object and concept levels than image-only based representation. In this paper we propose a bottom-up framework to combine interest point tracking, image segmentation and motion-shape factorization to decompose the video into spatiotemporal regions. We show an example application of activity concept detection using the trajectories extracted from the spatio-temporal regions. The proposed approach shows good potential for concise representation and indexing of objects and their motion in real-life consumer video.
CAMEL: concept annotated image libraries
NASA Astrophysics Data System (ADS)
Natsev, Apostol; Chadha, Atul; Soetarman, Basuki; Vitter, Jeffrey S.
2001-01-01
The problem of content-based image searching has received considerable attention in the last few years. Thousands of images are now available on the Internet, and many important applications require searching of images in domains such as E-commerce, medical imaging, weather prediction, satellite imagery, and so on. Yet, content-based image querying is still largely unestablished as a mainstream field, nor is it widely used by search engines. We believe that two of the major hurdles for this poor acceptance are poor retrieval quality and usability.
CAMEL: concept annotated image libraries
NASA Astrophysics Data System (ADS)
Natsev, Apostol; Chadha, Atul; Soetarman, Basuki; Vitter, Jeffrey S.
2000-12-01
The problem of content-based image searching has received considerable attention in the last few years. Thousands of images are now available on the Internet, and many important applications require searching of images in domains such as E-commerce, medical imaging, weather prediction, satellite imagery, and so on. Yet, content-based image querying is still largely unestablished as a mainstream field, nor is it widely used by search engines. We believe that two of the major hurdles for this poor acceptance are poor retrieval quality and usability.
a Clustering-Based Approach for Evaluation of EO Image Indexing
NASA Astrophysics Data System (ADS)
Bahmanyar, R.; Rigoll, G.; Datcu, M.
2013-09-01
The volume of Earth Observation data is increasing immensely in order of several Terabytes a day. Therefore, to explore and investigate the content of this huge amount of data, developing more sophisticated Content-Based Information Retrieval (CBIR) systems are highly demanded. These systems should be able to not only discover unknown structures behind the data, but also provide relevant results to the users' queries. Since in any retrieval system the images are processed based on a discrete set of their features (i.e., feature descriptors), study and assessment of the structure of feature space, build by different feature descriptors, is of high importance. In this paper, we introduce a clustering-based approach to study the content of image collections. In our approach, we claim that using both internal and external evaluation of clusters for different feature descriptors, helps to understand the structure of feature space. Moreover, the semantic understanding of users about the images also can be assessed. To validate the performance of our approach, we used an annotated Synthetic Aperture Radar (SAR) image collection. Quantitative results besides the visualization of feature space demonstrate the applicability of our approach.
TBIdoc: 3D content-based CT image retrieval system for traumatic brain injury
NASA Astrophysics Data System (ADS)
Li, Shimiao; Gong, Tianxia; Wang, Jie; Liu, Ruizhe; Tan, Chew Lim; Leong, Tze Yun; Pang, Boon Chuan; Lim, C. C. Tchoyoson; Lee, Cheng Kiang; Tian, Qi; Zhang, Zhuo
2010-03-01
Traumatic brain injury (TBI) is a major cause of death and disability. Computed Tomography (CT) scan is widely used in the diagnosis of TBI. Nowadays, large amount of TBI CT data is stacked in the hospital radiology department. Such data and the associated patient information contain valuable information for clinical diagnosis and outcome prediction. However, current hospital database system does not provide an efficient and intuitive tool for doctors to search out cases relevant to the current study case. In this paper, we present the TBIdoc system: a content-based image retrieval (CBIR) system which works on the TBI CT images. In this web-based system, user can query by uploading CT image slices from one study, retrieval result is a list of TBI cases ranked according to their 3D visual similarity to the query case. Specifically, cases of TBI CT images often present diffuse or focal lesions. In TBIdoc system, these pathological image features are represented as bin-based binary feature vectors. We use the Jaccard-Needham measure as the similarity measurement. Based on these, we propose a 3D similarity measure for computing the similarity score between two series of CT slices. nDCG is used to evaluate the system performance, which shows the system produces satisfactory retrieval results. The system is expected to improve the current hospital data management in TBI and to give better support for the clinical decision-making process. It may also contribute to the computer-aided education in TBI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yi; Xie, Huiqiao; Tang, Xiangyang, E-mail: xiangyang.tang@emory.edu
Purpose: X-ray differential phase contrast CT implemented with Talbot interferometry employs phase-stepping to extract information of x-ray attenuation, phase shift, and small-angle scattering. Since inaccuracy may exist in the absorption grating G{sub 2} due to an imperfect fabrication, the effective period of G{sub 2} can be as large as twice the nominal period, leading to a phenomenon of twin peaks that differ remarkably in their heights. In this work, the authors investigate how to retrieve and dewrap the phase signal from the phase-stepping curve (PSC) with the feature of twin peaks for x-ray phase contrast imaging. Methods: Based on themore » paraxial Fresnel–Kirchhoff theory, the analytical formulae to characterize the phenomenon of twin peaks in the PSC are derived. Then an approach to dewrap the retrieved phase signal by jointly using the phases of the first- and second-order Fourier components is proposed. Through an experimental investigation using a prototype x-ray phase contrast imaging system implemented with Talbot interferometry, the authors evaluate and verify the derived analytic formulae and the proposed approach for phase retrieval and dewrapping. Results: According to theoretical analysis, the twin-peak phenomenon in PSC is a consequence of combined effects, including the inaccuracy in absorption grating G{sub 2}, mismatch between phase grating and x-ray source spectrum, and finite size of x-ray tube’s focal spot. The proposed approach is experimentally evaluated by scanning a phantom consisting of organic materials and a lab mouse. The preliminary data show that compared to scanning G{sub 2} over only one single nominal period and correcting the measured phase signal with an intuitive phase dewrapping method that is being used in the field, stepping G{sub 2} over twice its nominal period and dewrapping the measured phase signal with the proposed approach can significantly improve the quality of x-ray differential phase contrast imaging in both radiograph and CT. Conclusions: Using the phase retrieval and dewrapping methods proposed to deal with the phenomenon of twin peaks in PSCs and phase wrapping, the performance of grating-based x-ray differential phase contrast radiography and CT can be significantly improved.« less
Enabling search over encrypted multimedia databases
NASA Astrophysics Data System (ADS)
Lu, Wenjun; Swaminathan, Ashwin; Varna, Avinash L.; Wu, Min
2009-02-01
Performing information retrieval tasks while preserving data confidentiality is a desirable capability when a database is stored on a server maintained by a third-party service provider. This paper addresses the problem of enabling content-based retrieval over encrypted multimedia databases. Search indexes, along with multimedia documents, are first encrypted by the content owner and then stored onto the server. Through jointly applying cryptographic techniques, such as order preserving encryption and randomized hash functions, with image processing and information retrieval techniques, secure indexing schemes are designed to provide both privacy protection and rank-ordered search capability. Retrieval results on an encrypted color image database and security analysis of the secure indexing schemes under different attack models show that data confidentiality can be preserved while retaining very good retrieval performance. This work has promising applications in secure multimedia management.
Alor-Hernández, Giner; Pérez-Gallardo, Yuliana; Posada-Gómez, Rubén; Cortes-Robles, Guillermo; Rodríguez-González, Alejandro; Aguilar-Laserre, Alberto A
2012-09-01
Nowadays, traditional search engines such as Google, Yahoo and Bing facilitate the retrieval of information in the format of images, but the results are not always useful for the users. This is mainly due to two problems: (1) the semantic keywords are not taken into consideration and (2) it is not always possible to establish a query using the image features. This issue has been covered in different domains in order to develop content-based image retrieval (CBIR) systems. The expert community has focussed their attention on the healthcare domain, where a lot of visual information for medical analysis is available. This paper provides a solution called iPixel Visual Search Engine, which involves semantics and content issues in order to search for digitized mammograms. iPixel offers the possibility of retrieving mammogram features using collective intelligence and implementing a CBIR algorithm. Our proposal compares not only features with similar semantic meaning, but also visual features. In this sense, the comparisons are made in different ways: by the number of regions per image, by maximum and minimum size of regions per image and by average intensity level of each region. iPixel Visual Search Engine supports the medical community in differential diagnoses related to the diseases of the breast. The iPixel Visual Search Engine has been validated by experts in the healthcare domain, such as radiologists, in addition to experts in digital image analysis.
Wavelet optimization for content-based image retrieval in medical databases.
Quellec, G; Lamard, M; Cazuguel, G; Cochener, B; Roux, C
2010-04-01
We propose in this article a content-based image retrieval (CBIR) method for diagnosis aid in medical fields. In the proposed system, images are indexed in a generic fashion, without extracting domain-specific features: a signature is built for each image from its wavelet transform. These image signatures characterize the distribution of wavelet coefficients in each subband of the decomposition. A distance measure is then defined to compare two image signatures and thus retrieve the most similar images in a database when a query image is submitted by a physician. To retrieve relevant images from a medical database, the signatures and the distance measure must be related to the medical interpretation of images. As a consequence, we introduce several degrees of freedom in the system so that it can be tuned to any pathology and image modality. In particular, we propose to adapt the wavelet basis, within the lifting scheme framework, and to use a custom decomposition scheme. Weights are also introduced between subbands. All these parameters are tuned by an optimization procedure, using the medical grading of each image in the database to define a performance measure. The system is assessed on two medical image databases: one for diabetic retinopathy follow up and one for screening mammography, as well as a general purpose database. Results are promising: a mean precision of 56.50%, 70.91% and 96.10% is achieved for these three databases, when five images are returned by the system. Copyright 2009 Elsevier B.V. All rights reserved.
Feature hashing for fast image retrieval
NASA Astrophysics Data System (ADS)
Yan, Lingyu; Fu, Jiarun; Zhang, Hongxin; Yuan, Lu; Xu, Hui
2018-03-01
Currently, researches on content based image retrieval mainly focus on robust feature extraction. However, due to the exponential growth of online images, it is necessary to consider searching among large scale images, which is very timeconsuming and unscalable. Hence, we need to pay much attention to the efficiency of image retrieval. In this paper, we propose a feature hashing method for image retrieval which not only generates compact fingerprint for image representation, but also prevents huge semantic loss during the process of hashing. To generate the fingerprint, an objective function of semantic loss is constructed and minimized, which combine the influence of both the neighborhood structure of feature data and mapping error. Since the machine learning based hashing effectively preserves neighborhood structure of data, it yields visual words with strong discriminability. Furthermore, the generated binary codes leads image representation building to be of low-complexity, making it efficient and scalable to large scale databases. Experimental results show good performance of our approach.
Spanier, A B; Caplan, N; Sosna, J; Acar, B; Joskowicz, L
2018-01-01
The goal of medical content-based image retrieval (M-CBIR) is to assist radiologists in the decision-making process by retrieving medical cases similar to a given image. One of the key interests of radiologists is lesions and their annotations, since the patient treatment depends on the lesion diagnosis. Therefore, a key feature of M-CBIR systems is the retrieval of scans with the most similar lesion annotations. To be of value, M-CBIR systems should be fully automatic to handle large case databases. We present a fully automatic end-to-end method for the retrieval of CT scans with similar liver lesion annotations. The input is a database of abdominal CT scans labeled with liver lesions, a query CT scan, and optionally one radiologist-specified lesion annotation of interest. The output is an ordered list of the database CT scans with the most similar liver lesion annotations. The method starts by automatically segmenting the liver in the scan. It then extracts a histogram-based features vector from the segmented region, learns the features' relative importance, and ranks the database scans according to the relative importance measure. The main advantages of our method are that it fully automates the end-to-end querying process, that it uses simple and efficient techniques that are scalable to large datasets, and that it produces quality retrieval results using an unannotated CT scan. Our experimental results on 9 CT queries on a dataset of 41 volumetric CT scans from the 2014 Image CLEF Liver Annotation Task yield an average retrieval accuracy (Normalized Discounted Cumulative Gain index) of 0.77 and 0.84 without/with annotation, respectively. Fully automatic end-to-end retrieval of similar cases based on image information alone, rather that on disease diagnosis, may help radiologists to better diagnose liver lesions.
Gaps in content-based image retrieval
NASA Astrophysics Data System (ADS)
Deserno, Thomas M.; Antani, Sameer; Long, Rodney
2007-03-01
Content-based image retrieval (CBIR) is a promising technology to enrich the core functionality of picture archiving and communication systems (PACS). CBIR has a potentially strong impact in diagnostics, research, and education. Research successes that are increasingly reported in the scientific literature, however, have not made significant inroads as medical CBIR applications incorporated into routine clinical medicine or medical research. The cause is often attributed without sufficient analytical reasoning to the inability of these applications in overcoming the "semantic gap". The semantic gap divides the high-level scene analysis of humans from the low-level pixel analysis of computers. In this paper, we suggest a more systematic and comprehensive view on the concept of gaps in medical CBIR research. In particular, we define a total of 13 gaps that address the image content and features, as well as the system performance and usability. In addition to these gaps, we identify 6 system characteristics that impact CBIR applicability and performance. The framework we have created can be used a posteriori to compare medical CBIR systems and approaches for specific biomedical image domains and goals and a priori during the design phase of a medical CBIR application. To illustrate the a posteriori use of our conceptual system, we apply it, initially, to the classification of three medical CBIR implementations: the content-based PACS approach (cbPACS), the medical GNU image finding tool (medGIFT), and the image retrieval in medical applications (IRMA) project. We show that systematic analysis of gaps provides detailed insight in system comparison and helps to direct future research.
A content-based retrieval of mammographic masses using the curvelet descriptor
NASA Astrophysics Data System (ADS)
Narváez, Fabian; Díaz, Gloria; Gómez, Francisco; Romero, Eduardo
2012-03-01
Computer-aided diagnosis (CAD) that uses content based image retrieval (CBIR) strategies has became an important research area. This paper presents a retrieval strategy that automatically recovers mammography masses from a virtual repository of mammographies. Unlike other approaches, we do not attempt to segment masses but instead we characterize the regions previously selected by an expert. These regions are firstly curvelet transformed and further characterized by approximating the marginal curvelet subband distribution with a generalized gaussian density (GGD). The content based retrieval strategy searches similar regions in a database using the Kullback-Leibler divergence as the similarity measure between distributions. The effectiveness of the proposed descriptor was assessed by comparing the automatically assigned label with a ground truth available in the DDSM database.1 A total of 380 masses with different shapes, sizes and margins were used for evaluation, resulting in a mean average precision rate of 89.3% and recall rate of 75.2% for the retrieval task.
Multivariate analysis: A statistical approach for computations
NASA Astrophysics Data System (ADS)
Michu, Sachin; Kaushik, Vandana
2014-10-01
Multivariate analysis is a type of multivariate statistical approach commonly used in, automotive diagnosis, education evaluating clusters in finance etc and more recently in the health-related professions. The objective of the paper is to provide a detailed exploratory discussion about factor analysis (FA) in image retrieval method and correlation analysis (CA) of network traffic. Image retrieval methods aim to retrieve relevant images from a collected database, based on their content. The problem is made more difficult due to the high dimension of the variable space in which the images are represented. Multivariate correlation analysis proposes an anomaly detection and analysis method based on the correlation coefficient matrix. Anomaly behaviors in the network include the various attacks on the network like DDOs attacks and network scanning.
Content Based Image Retrieval and Information Theory: A General Approach.
ERIC Educational Resources Information Center
Zachary, John; Iyengar, S. S.; Barhen, Jacob
2001-01-01
Proposes an alternative real valued representation of color based on the information theoretic concept of entropy. A theoretical presentation of image entropy is accompanied by a practical description of the merits and limitations of image entropy compared to color histograms. Results suggest that image entropy is a promising approach to image…
Using an image-extended relational database to support content-based image retrieval in a PACS.
Traina, Caetano; Traina, Agma J M; Araújo, Myrian R B; Bueno, Josiane M; Chino, Fabio J T; Razente, Humberto; Azevedo-Marques, Paulo M
2005-12-01
This paper presents a new Picture Archiving and Communication System (PACS), called cbPACS, which has content-based image retrieval capabilities. The cbPACS answers range and k-nearest- neighbor similarity queries, employing a relational database manager extended to support images. The images are compared through their features, which are extracted by an image-processing module and stored in the extended relational database. The database extensions were developed aiming at efficiently answering similarity queries by taking advantage of specialized indexing methods. The main concept supporting the extensions is the definition, inside the relational manager, of distance functions based on features extracted from the images. An extension to the SQL language enables the construction of an interpreter that intercepts the extended commands and translates them to standard SQL, allowing any relational database server to be used. By now, the system implemented works on features based on color distribution of the images through normalized histograms as well as metric histograms. Metric histograms are invariant regarding scale, translation and rotation of images and also to brightness transformations. The cbPACS is prepared to integrate new image features, based on texture and shape of the main objects in the image.
Method for the reduction of image content redundancy in large image databases
Tobin, Kenneth William; Karnowski, Thomas P.
2010-03-02
A method of increasing information content for content-based image retrieval (CBIR) systems includes the steps of providing a CBIR database, the database having an index for a plurality of stored digital images using a plurality of feature vectors, the feature vectors corresponding to distinct descriptive characteristics of the images. A visual similarity parameter value is calculated based on a degree of visual similarity between features vectors of an incoming image being considered for entry into the database and feature vectors associated with a most similar of the stored images. Based on said visual similarity parameter value it is determined whether to store or how long to store the feature vectors associated with the incoming image in the database.
NASA Astrophysics Data System (ADS)
Hashimoto, M.; Nakajima, T.; Takenaka, H.; Higurashi, A.
2013-12-01
We develop a new satellite remote sensing algorithm to retrieve the properties of aerosol particles in the atmosphere. In late years, high resolution and multi-wavelength, and multiple-angle observation data have been obtained by grand-based spectral radiometers and imaging sensors on board the satellite. With this development, optimized multi-parameter remote sensing methods based on the Bayesian theory have become popularly used (Turchin and Nozik, 1969; Rodgers, 2000; Dubovik et al., 2000). Additionally, a direct use of radiation transfer calculation has been employed for non-linear remote sensing problems taking place of look up table methods supported by the progress of computing technology (Dubovik et al., 2011; Yoshida et al., 2011). We are developing a flexible multi-pixel and multi-parameter remote sensing algorithm for aerosol optical properties. In this algorithm, the inversion method is a combination of the MAP method (Maximum a posteriori method, Rodgers, 2000) and the Phillips-Twomey method (Phillips, 1962; Twomey, 1963) as a smoothing constraint for the state vector. Furthermore, we include a radiation transfer calculation code, Rstar (Nakajima and Tanaka, 1986, 1988), numerically solved each time in iteration for solution search. The Rstar-code has been directly used in the AERONET operational processing system (Dubovik and King, 2000). Retrieved parameters in our algorithm are aerosol optical properties, such as aerosol optical thickness (AOT) of fine mode, sea salt, and dust particles, a volume soot fraction in fine mode particles, and ground surface albedo of each observed wavelength. We simultaneously retrieve all the parameters that characterize pixels in each of horizontal sub-domains consisting the target area. Then we successively apply the retrieval method to all the sub-domains in the target area. We conducted numerical tests for the retrieval of aerosol properties and ground surface albedo for GOSAT/CAI imager data to test the algorithm for the land area. In this test, we simulated satellite-observed radiances for a sub-domain consisting of 5 by 5 pixels by the Rstar code assuming wavelengths of 380, 674, 870 and 1600 [nm], atmospheric condition of the US standard atmosphere, and the several aerosol and ground surface conditions. The result of the experiment showed that AOTs of fine mode and dust particles, soot fraction and ground surface albedo at the wavelength of 674 [nm] are retrieved within absolute value differences of 0.04, 0.01, 0.06 and 0.006 from the true value, respectively, for the case of dark surface, and also, for the case of blight surface, 0.06, 0.03, 0.04 and 0.10 from the true value, respectively. We will conduct more tests to study the information contents of parameters needed for aerosol and land surface remote sensing with different boundary conditions among sub-domains.
Welter, Petra; Riesmeier, Jörg; Fischer, Benedikt; Grouls, Christoph; Kuhl, Christiane; Deserno, Thomas M
2011-01-01
It is widely accepted that content-based image retrieval (CBIR) can be extremely useful for computer-aided diagnosis (CAD). However, CBIR has not been established in clinical practice yet. As a widely unattended gap of integration, a unified data concept for CBIR-based CAD results and reporting is lacking. Picture archiving and communication systems and the workflow of radiologists must be considered for successful data integration to be achieved. We suggest that CBIR systems applied to CAD should integrate their results in a picture archiving and communication systems environment such as Digital Imaging and Communications in Medicine (DICOM) structured reporting documents. A sample DICOM structured reporting template adaptable to CBIR and an appropriate integration scheme is presented. The proposed CBIR data concept may foster the promulgation of CBIR systems in clinical environments and, thereby, improve the diagnostic process.
Riesmeier, Jörg; Fischer, Benedikt; Grouls, Christoph; Kuhl, Christiane; Deserno (né Lehmann), Thomas M
2011-01-01
It is widely accepted that content-based image retrieval (CBIR) can be extremely useful for computer-aided diagnosis (CAD). However, CBIR has not been established in clinical practice yet. As a widely unattended gap of integration, a unified data concept for CBIR-based CAD results and reporting is lacking. Picture archiving and communication systems and the workflow of radiologists must be considered for successful data integration to be achieved. We suggest that CBIR systems applied to CAD should integrate their results in a picture archiving and communication systems environment such as Digital Imaging and Communications in Medicine (DICOM) structured reporting documents. A sample DICOM structured reporting template adaptable to CBIR and an appropriate integration scheme is presented. The proposed CBIR data concept may foster the promulgation of CBIR systems in clinical environments and, thereby, improve the diagnostic process. PMID:21672913
Xu, Dong; Yan, Shuicheng; Tao, Dacheng; Lin, Stephen; Zhang, Hong-Jiang
2007-11-01
Dimensionality reduction algorithms, which aim to select a small set of efficient and discriminant features, have attracted great attention for human gait recognition and content-based image retrieval (CBIR). In this paper, we present extensions of our recently proposed marginal Fisher analysis (MFA) to address these problems. For human gait recognition, we first present a direct application of MFA, then inspired by recent advances in matrix and tensor-based dimensionality reduction algorithms, we present matrix-based MFA for directly handling 2-D input in the form of gray-level averaged images. For CBIR, we deal with the relevance feedback problem by extending MFA to marginal biased analysis, in which within-class compactness is characterized only by the distances between each positive sample and its neighboring positive samples. In addition, we present a new technique to acquire a direct optimal solution for MFA without resorting to objective function modification as done in many previous algorithms. We conduct comprehensive experiments on the USF HumanID gait database and the Corel image retrieval database. Experimental results demonstrate that MFA and its extensions outperform related algorithms in both applications.
Mobile medical visual information retrieval.
Depeursinge, Adrien; Duc, Samuel; Eggel, Ivan; Müller, Henning
2012-01-01
In this paper, we propose mobile access to peer-reviewed medical information based on textual search and content-based visual image retrieval. Web-based interfaces designed for limited screen space were developed to query via web services a medical information retrieval engine optimizing the amount of data to be transferred in wireless form. Visual and textual retrieval engines with state-of-the-art performance were integrated. Results obtained show a good usability of the software. Future use in clinical environments has the potential of increasing quality of patient care through bedside access to the medical literature in context.
Retrieving the unretrievable in electronic imaging systems: emotions, themes, and stories
NASA Astrophysics Data System (ADS)
Joergensen, Corinne
1999-05-01
New paradigms such as 'affective computing' and user-based research are extending the realm of facets traditionally addressed in IR systems. This paper builds on previous research reported to the electronic imaging community concerning the need to provide access to more abstract attributes of images than those currently amenable to a variety of content-based and text-based indexing techniques. Empirical research suggest that, for visual materials, in addition to standard bibliographic data and broad subject, and in addition to such visually perceptual attributes such as color, texture, shape, and position or focal point, additional access points such as themes, abstract concepts, emotions, stories, and 'people-related' information such as social status would be useful in image retrieval. More recent research demonstrates that similar results are also obtained with 'fine arts' images, which generally have no access provided for these types of attributes. Current efforts to match image attributes as revealed in empirical research with those addressed both in current textural and content-based indexing systems are discussed, as well as the need for new representations for image attributes and for collaboration among diverse communities of researchers.
User-oriented evaluation of a medical image retrieval system for radiologists.
Markonis, Dimitrios; Holzer, Markus; Baroz, Frederic; De Castaneda, Rafael Luis Ruiz; Boyer, Célia; Langs, Georg; Müller, Henning
2015-10-01
This article reports the user-oriented evaluation of a text- and content-based medical image retrieval system. User tests with radiologists using a search system for images in the medical literature are presented. The goal of the tests is to assess the usability of the system, identify system and interface aspects that need improvement and useful additions. Another objective is to investigate the system's added value to radiology information retrieval. The study provides an insight into required specifications and potential shortcomings of medical image retrieval systems through a concrete methodology for conducting user tests. User tests with a working image retrieval system of images from the biomedical literature were performed in an iterative manner, where each iteration had the participants perform radiology information seeking tasks and then refining the system as well as the user study design itself. During these tasks the interaction of the users with the system was monitored, usability aspects were measured, retrieval success rates recorded and feedback was collected through survey forms. In total, 16 radiologists participated in the user tests. The success rates in finding relevant information were on average 87% and 78% for image and case retrieval tasks, respectively. The average time for a successful search was below 3 min in both cases. Users felt quickly comfortable with the novel techniques and tools (after 5 to 15 min), such as content-based image retrieval and relevance feedback. User satisfaction measures show a very positive attitude toward the system's functionalities while the user feedback helped identifying the system's weak points. The participants proposed several potentially useful new functionalities, such as filtering by imaging modality and search for articles using image examples. The iterative character of the evaluation helped to obtain diverse and detailed feedback on all system aspects. Radiologists are quickly familiar with the functionalities but have several comments on desired functionalities. The analysis of the results can potentially assist system refinement for future medical information retrieval systems. Moreover, the methodology presented as well as the discussion on the limitations and challenges of such studies can be useful for user-oriented medical image retrieval evaluation, as user-oriented evaluation of interactive system is still only rarely performed. Such interactive evaluations can be limited in effort if done iteratively and can give many insights for developing better systems. Copyright © 2015. Published by Elsevier Ireland Ltd.
Content-based histopathology image retrieval using CometCloud.
Qi, Xin; Wang, Daihou; Rodero, Ivan; Diaz-Montes, Javier; Gensure, Rebekah H; Xing, Fuyong; Zhong, Hua; Goodell, Lauri; Parashar, Manish; Foran, David J; Yang, Lin
2014-08-26
The development of digital imaging technology is creating extraordinary levels of accuracy that provide support for improved reliability in different aspects of the image analysis, such as content-based image retrieval, image segmentation, and classification. This has dramatically increased the volume and rate at which data are generated. Together these facts make querying and sharing non-trivial and render centralized solutions unfeasible. Moreover, in many cases this data is often distributed and must be shared across multiple institutions requiring decentralized solutions. In this context, a new generation of data/information driven applications must be developed to take advantage of the national advanced cyber-infrastructure (ACI) which enable investigators to seamlessly and securely interact with information/data which is distributed across geographically disparate resources. This paper presents the development and evaluation of a novel content-based image retrieval (CBIR) framework. The methods were tested extensively using both peripheral blood smears and renal glomeruli specimens. The datasets and performance were evaluated by two pathologists to determine the concordance. The CBIR algorithms that were developed can reliably retrieve the candidate image patches exhibiting intensity and morphological characteristics that are most similar to a given query image. The methods described in this paper are able to reliably discriminate among subtle staining differences and spatial pattern distributions. By integrating a newly developed dual-similarity relevance feedback module into the CBIR framework, the CBIR results were improved substantially. By aggregating the computational power of high performance computing (HPC) and cloud resources, we demonstrated that the method can be successfully executed in minutes on the Cloud compared to weeks using standard computers. In this paper, we present a set of newly developed CBIR algorithms and validate them using two different pathology applications, which are regularly evaluated in the practice of pathology. Comparative experimental results demonstrate excellent performance throughout the course of a set of systematic studies. Additionally, we present and evaluate a framework to enable the execution of these algorithms across distributed resources. We show how parallel searching of content-wise similar images in the dataset significantly reduces the overall computational time to ensure the practical utility of the proposed CBIR algorithms.
Image retrieval for identifying house plants
NASA Astrophysics Data System (ADS)
Kebapci, Hanife; Yanikoglu, Berrin; Unal, Gozde
2010-02-01
We present a content-based image retrieval system for plant identification which is intended for providing users with a simple method to locate information about their house plants. A plant image consists of a collection of overlapping leaves and possibly flowers, which makes the problem challenging. We studied the suitability of various well-known color, texture and shape features for this problem, as well as introducing some new ones. The features are extracted from the general plant region that is segmented from the background using the max-flow min-cut technique. Results on a database of 132 different plant images show promise (in about 72% of the queries, the correct plant image is retrieved among the top-15 results).
NASA Astrophysics Data System (ADS)
Reato, Thomas; Demir, Begüm; Bruzzone, Lorenzo
2017-10-01
This paper presents a novel class sensitive hashing technique in the framework of large-scale content-based remote sensing (RS) image retrieval. The proposed technique aims at representing each image with multi-hash codes, each of which corresponds to a primitive (i.e., land cover class) present in the image. To this end, the proposed method consists of a three-steps algorithm. The first step is devoted to characterize each image by primitive class descriptors. These descriptors are obtained through a supervised approach, which initially extracts the image regions and their descriptors that are then associated with primitives present in the images. This step requires a set of annotated training regions to define primitive classes. A correspondence between the regions of an image and the primitive classes is built based on the probability of each primitive class to be present at each region. All the regions belonging to the specific primitive class with a probability higher than a given threshold are highly representative of that class. Thus, the average value of the descriptors of these regions is used to characterize that primitive. In the second step, the descriptors of primitive classes are transformed into multi-hash codes to represent each image. This is achieved by adapting the kernel-based supervised locality sensitive hashing method to multi-code hashing problems. The first two steps of the proposed technique, unlike the standard hashing methods, allow one to represent each image by a set of primitive class sensitive descriptors and their hash codes. Then, in the last step, the images in the archive that are very similar to a query image are retrieved based on a multi-hash-code-matching scheme. Experimental results obtained on an archive of aerial images confirm the effectiveness of the proposed technique in terms of retrieval accuracy when compared to the standard hashing methods.
NASA Astrophysics Data System (ADS)
Li, Xianye; Meng, Xiangfeng; Wang, Yurong; Yang, Xiulun; Yin, Yongkai; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi
2017-09-01
A multiple-image encryption method is proposed that is based on row scanning compressive ghost imaging, (t, n) threshold secret sharing, and phase retrieval in the Fresnel domain. In the encryption process, after wavelet transform and Arnold transform of the target image, the ciphertext matrix can be first detected using a bucket detector. Based on a (t, n) threshold secret sharing algorithm, the measurement key used in the row scanning compressive ghost imaging can be decomposed and shared into two pairs of sub-keys, which are then reconstructed using two phase-only mask (POM) keys with fixed pixel values, placed in the input plane and transform plane 2 of the phase retrieval scheme, respectively; and the other POM key in the transform plane 1 can be generated and updated by the iterative encoding of each plaintext image. In each iteration, the target image acts as the input amplitude constraint in the input plane. During decryption, each plaintext image possessing all the correct keys can be successfully decrypted by measurement key regeneration, compression algorithm reconstruction, inverse wavelet transformation, and Fresnel transformation. Theoretical analysis and numerical simulations both verify the feasibility of the proposed method.
Intelligent distributed medical image management
NASA Astrophysics Data System (ADS)
Garcia, Hong-Mei C.; Yun, David Y.
1995-05-01
The rapid advancements in high performance global communication have accelerated cooperative image-based medical services to a new frontier. Traditional image-based medical services such as radiology and diagnostic consultation can now fully utilize multimedia technologies in order to provide novel services, including remote cooperative medical triage, distributed virtual simulation of operations, as well as cross-country collaborative medical research and training. Fast (efficient) and easy (flexible) retrieval of relevant images remains a critical requirement for the provision of remote medical services. This paper describes the database system requirements, identifies technological building blocks for meeting the requirements, and presents a system architecture for our target image database system, MISSION-DBS, which has been designed to fulfill the goals of Project MISSION (medical imaging support via satellite integrated optical network) -- an experimental high performance gigabit satellite communication network with access to remote supercomputing power, medical image databases, and 3D visualization capabilities in addition to medical expertise anywhere and anytime around the country. The MISSION-DBS design employs a synergistic fusion of techniques in distributed databases (DDB) and artificial intelligence (AI) for storing, migrating, accessing, and exploring images. The efficient storage and retrieval of voluminous image information is achieved by integrating DDB modeling and AI techniques for image processing while the flexible retrieval mechanisms are accomplished by combining attribute- based and content-based retrievals.
A Well-Calibrated Ocean Algorithm for Special Sensor Microwave/Imager
NASA Technical Reports Server (NTRS)
Wentz, Frank J.
1997-01-01
I describe an algorithm for retrieving geophysical parameters over the ocean from special sensor microwave/imager (SSM/I) observations. This algorithm is based on a model for the brightness temperature T(sub B) of the ocean and intervening atmosphere. The retrieved parameters are the near-surface wind speed W, the columnar water vapor V, the columnar cloud liquid water L, and the line-of-sight wind W(sub LS). I restrict my analysis to ocean scenes free of rain, and when the algorithm detects rain, the retrievals are discarded. The model and algorithm are precisely calibrated using a very large in situ database containing 37,650 SSM/I overpasses of buoys and 35,108 overpasses of radiosonde sites. A detailed error analysis indicates that the T(sub B) model rms accuracy is between 0.5 and 1 K and that the rms retrieval accuracies for wind, vapor, and cloud are 0.9 m/s, 1.2 mm, and 0.025 mm, respectively. The error in specifying the cloud temperature will introduce an additional 10% error in the cloud water retrieval. The spatial resolution for these accuracies is 50 km. The systematic errors in the retrievals are smaller than the rms errors, being about 0.3 m/s, 0.6 mm, and 0.005 mm for W, V, and L, respectively. The one exception is the systematic error in wind speed of -1.0 m/s that occurs for observations within +/-20 deg of upwind. The inclusion of the line-of-sight wind W(sub LS) in the retrieval significantly reduces the error in wind speed due to wind direction variations. The wind error for upwind observations is reduced from -3.0 to -1.0 m/s. Finally, I find a small signal in the 19-GHz, horizontal polarization (h(sub pol) T(sub B) residual DeltaT(sub BH) that is related to the effective air pressure of the water vapor profile. This information may be of some use in specifying the vertical distribution of water vapor.
Textile Retrieval Based on Image Content from CDC and Webcam Cameras in Indoor Environments.
García-Olalla, Oscar; Alegre, Enrique; Fernández-Robles, Laura; Fidalgo, Eduardo; Saikia, Surajit
2018-04-25
Textile based image retrieval for indoor environments can be used to retrieve images that contain the same textile, which may indicate that scenes are related. This makes up a useful approach for law enforcement agencies who want to find evidence based on matching between textiles. In this paper, we propose a novel pipeline that allows searching and retrieving textiles that appear in pictures of real scenes. Our approach is based on first obtaining regions containing textiles by using MSER on high pass filtered images of the RGB, HSV and Hue channels of the original photo. To describe the textile regions, we demonstrated that the combination of HOG and HCLOSIB is the best option for our proposal when using the correlation distance to match the query textile patch with the candidate regions. Furthermore, we introduce a new dataset, TextilTube, which comprises a total of 1913 textile regions labelled within 67 classes. We yielded 84.94% of success in the 40 nearest coincidences and 37.44% of precision taking into account just the first coincidence, which outperforms the current deep learning methods evaluated. Experimental results show that this pipeline can be used to set up an effective textile based image retrieval system in indoor environments.
Textile Retrieval Based on Image Content from CDC and Webcam Cameras in Indoor Environments
García-Olalla, Oscar; Saikia, Surajit
2018-01-01
Textile based image retrieval for indoor environments can be used to retrieve images that contain the same textile, which may indicate that scenes are related. This makes up a useful approach for law enforcement agencies who want to find evidence based on matching between textiles. In this paper, we propose a novel pipeline that allows searching and retrieving textiles that appear in pictures of real scenes. Our approach is based on first obtaining regions containing textiles by using MSER on high pass filtered images of the RGB, HSV and Hue channels of the original photo. To describe the textile regions, we demonstrated that the combination of HOG and HCLOSIB is the best option for our proposal when using the correlation distance to match the query textile patch with the candidate regions. Furthermore, we introduce a new dataset, TextilTube, which comprises a total of 1913 textile regions labelled within 67 classes. We yielded 84.94% of success in the 40 nearest coincidences and 37.44% of precision taking into account just the first coincidence, which outperforms the current deep learning methods evaluated. Experimental results show that this pipeline can be used to set up an effective textile based image retrieval system in indoor environments. PMID:29693590
Selecting relevant 3D image features of margin sharpness and texture for lung nodule retrieval.
Ferreira, José Raniery; de Azevedo-Marques, Paulo Mazzoncini; Oliveira, Marcelo Costa
2017-03-01
Lung cancer is the leading cause of cancer-related deaths in the world. Its diagnosis is a challenge task to specialists due to several aspects on the classification of lung nodules. Therefore, it is important to integrate content-based image retrieval methods on the lung nodule classification process, since they are capable of retrieving similar cases from databases that were previously diagnosed. However, this mechanism depends on extracting relevant image features in order to obtain high efficiency. The goal of this paper is to perform the selection of 3D image features of margin sharpness and texture that can be relevant on the retrieval of similar cancerous and benign lung nodules. A total of 48 3D image attributes were extracted from the nodule volume. Border sharpness features were extracted from perpendicular lines drawn over the lesion boundary. Second-order texture features were extracted from a cooccurrence matrix. Relevant features were selected by a correlation-based method and a statistical significance analysis. Retrieval performance was assessed according to the nodule's potential malignancy on the 10 most similar cases and by the parameters of precision and recall. Statistical significant features reduced retrieval performance. Correlation-based method selected 2 margin sharpness attributes and 6 texture attributes and obtained higher precision compared to all 48 extracted features on similar nodule retrieval. Feature space dimensionality reduction of 83 % obtained higher retrieval performance and presented to be a computationaly low cost method of retrieving similar nodules for the diagnosis of lung cancer.
Validation of High-Resolution MAIAC Aerosol Product over South America
NASA Technical Reports Server (NTRS)
Martins, V. S.; Lyapustin, A.; de Carvalho, L. A. S.; Barbosa, C. C. F.; Novo, E. M. L. M.
2017-01-01
Multiangle Implementation of Atmospheric Correction (MAIAC) is a new Moderate Resolution Imaging Spectroradiometer (MODIS) algorithm that combines time series approach and image processing to derive surface reflectance and atmosphere products, such as aerosol optical depth (AOD) and columnar water vapor (CWV). The quality assessment of MAIAC AOD at 1 km resolution is still lacking across South America. In the present study, critical assessment of MAIAC AOD(sub 550) was performed using ground-truth data from 19 Aerosol Robotic Network (AERONET) sites over South America. Additionally, we validated the MAIAC CWV retrievals using the same AERONET sites. In general, MAIAC AOD Terra/Aqua retrievals show high agreement with ground-based measurements, with a correlation coefficient (R) close to unity (R(sub Terra):0.956 and R(sub Aqua):0.949). MAIAC accuracy depends on the surface properties and comparisons revealed high confidence retrievals over cropland, forest, savanna, and grassland covers, where more than 2/3 (approximately 66%) of retrievals are within the expected error (EE = +/-(0.05 + 0.05 × AOD)) and R exceeding 0.86. However, AOD retrievals over bright surfaces show lower correlation than those over vegetated areas. Both MAIAC Terra and Aqua retrievals are similarly comparable to AERONET AOD over the MODIS lifetime (small bias offset approximately 0.006). Additionally, MAIAC CWV presents quantitative information with R approximatley 0.97 and more than 70% of retrievals within error (+/-15%). Nonetheless, the time series validation shows an upward bias trend in CWV Terra retrievals and systematic negative bias for CWV Aqua. These results contribute to a comprehensive evaluation of MAIAC AOD retrievals as a new atmospheric product for future aerosol studies over South America.
Aerosol Airmass Type Mapping Over the Urban Mexico City Region From Space-based Multi-angle Imaging
NASA Technical Reports Server (NTRS)
Patadia, F.; Kahn, R. A.; Limbacher, J. A.; Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.
2013-01-01
Using Multi-angle Imaging SpectroRadiometer (MISR) and sub-orbital measurements from the 2006 INTEX-B/MILAGRO field campaign, in this study we explore MISR's ability to map different aerosol air mass types over the Mexico City metropolitan area. The aerosol air mass distinctions are based on shape, size and single scattering albedo retrievals from the MISR Research Aerosol Retrieval algorithm. In this region, the research algorithm identifies dust-dominated aerosol mixtures based on non-spherical particle shape, whereas spherical biomass burning and urban pollution particles are distinguished by particle size. Two distinct aerosol air mass types based on retrieved particle microphysical properties, and four spatially distributed aerosol air masses, are identified in the MISR data on 6 March 2006. The aerosol air mass type identification results are supported by coincident, airborne high-spectral-resolution lidar (HSRL) measurements. Aerosol optical depth (AOD) gradients are also consistent between the MISR and sub-orbital measurements, but particles having single-scattering albedo of approx. 0.7 at 558 nm must be included in the retrieval algorithm to produce good absolute AOD comparisons over pollution-dominated aerosol air masses. The MISR standard V22 AOD product, at 17.6 km resolution, captures the observed AOD gradients qualitatively, but retrievals at this coarse spatial scale and with limited spherical absorbing particle options underestimate AOD and do not retrieve particle properties adequately over this complex urban region. However, we demonstrate how AOD and aerosol type mapping can be accomplished with MISR data over complex urban regions, provided the retrieval is performed at sufficiently high spatial resolution, and with a rich enough set of aerosol components and mixtures.
NASA Astrophysics Data System (ADS)
Gururaj, C.; Jayadevappa, D.; Tunga, Satish
2018-02-01
Medical field has seen a phenomenal improvement over the previous years. The invention of computers with appropriate increase in the processing and internet speed has changed the face of the medical technology. However there is still scope for improvement of the technologies in use today. One of the many such technologies of medical aid is the detection of afflictions of the eye. Although a repertoire of research has been accomplished in this field, most of them fail to address how to take the detection forward to a stage where it will be beneficial to the society at large. An automated system that can predict the current medical condition of a patient after taking the fundus image of his eye is yet to see the light of the day. Such a system is explored in this paper by summarizing a number of techniques for fundus image features extraction, predominantly hard exudate mining, coupled with Content Based Image Retrieval to develop an automation tool. The knowledge of the same would bring about worthy changes in the domain of exudates extraction of the eye. This is essential in cases where the patients may not have access to the best of technologies. This paper attempts at a comprehensive summary of the techniques for Content Based Image Retrieval (CBIR) or fundus features image extraction, and few choice methods of both, and an exploration which aims to find ways to combine these two attractive features, and combine them so that it is beneficial to all.
NASA Astrophysics Data System (ADS)
Gururaj, C.; Jayadevappa, D.; Tunga, Satish
2018-06-01
Medical field has seen a phenomenal improvement over the previous years. The invention of computers with appropriate increase in the processing and internet speed has changed the face of the medical technology. However there is still scope for improvement of the technologies in use today. One of the many such technologies of medical aid is the detection of afflictions of the eye. Although a repertoire of research has been accomplished in this field, most of them fail to address how to take the detection forward to a stage where it will be beneficial to the society at large. An automated system that can predict the current medical condition of a patient after taking the fundus image of his eye is yet to see the light of the day. Such a system is explored in this paper by summarizing a number of techniques for fundus image features extraction, predominantly hard exudate mining, coupled with Content Based Image Retrieval to develop an automation tool. The knowledge of the same would bring about worthy changes in the domain of exudates extraction of the eye. This is essential in cases where the patients may not have access to the best of technologies. This paper attempts at a comprehensive summary of the techniques for Content Based Image Retrieval (CBIR) or fundus features image extraction, and few choice methods of both, and an exploration which aims to find ways to combine these two attractive features, and combine them so that it is beneficial to all.
Sparks, Rachel; Madabhushi, Anant
2016-01-01
Content-based image retrieval (CBIR) retrieves database images most similar to the query image by (1) extracting quantitative image descriptors and (2) calculating similarity between database and query image descriptors. Recently, manifold learning (ML) has been used to perform CBIR in a low dimensional representation of the high dimensional image descriptor space to avoid the curse of dimensionality. ML schemes are computationally expensive, requiring an eigenvalue decomposition (EVD) for every new query image to learn its low dimensional representation. We present out-of-sample extrapolation utilizing semi-supervised ML (OSE-SSL) to learn the low dimensional representation without recomputing the EVD for each query image. OSE-SSL incorporates semantic information, partial class label, into a ML scheme such that the low dimensional representation co-localizes semantically similar images. In the context of prostate histopathology, gland morphology is an integral component of the Gleason score which enables discrimination between prostate cancer aggressiveness. Images are represented by shape features extracted from the prostate gland. CBIR with OSE-SSL for prostate histology obtained from 58 patient studies, yielded an area under the precision recall curve (AUPRC) of 0.53 ± 0.03 comparatively a CBIR with Principal Component Analysis (PCA) to learn a low dimensional space yielded an AUPRC of 0.44 ± 0.01. PMID:27264985
Dictionary Pruning with Visual Word Significance for Medical Image Retrieval
Zhang, Fan; Song, Yang; Cai, Weidong; Hauptmann, Alexander G.; Liu, Sidong; Pujol, Sonia; Kikinis, Ron; Fulham, Michael J; Feng, David Dagan; Chen, Mei
2016-01-01
Content-based medical image retrieval (CBMIR) is an active research area for disease diagnosis and treatment but it can be problematic given the small visual variations between anatomical structures. We propose a retrieval method based on a bag-of-visual-words (BoVW) to identify discriminative characteristics between different medical images with Pruned Dictionary based on Latent Semantic Topic description. We refer to this as the PD-LST retrieval. Our method has two main components. First, we calculate a topic-word significance value for each visual word given a certain latent topic to evaluate how the word is connected to this latent topic. The latent topics are learnt, based on the relationship between the images and words, and are employed to bridge the gap between low-level visual features and high-level semantics. These latent topics describe the images and words semantically and can thus facilitate more meaningful comparisons between the words. Second, we compute an overall-word significance value to evaluate the significance of a visual word within the entire dictionary. We designed an iterative ranking method to measure overall-word significance by considering the relationship between all latent topics and words. The words with higher values are considered meaningful with more significant discriminative power in differentiating medical images. We evaluated our method on two public medical imaging datasets and it showed improved retrieval accuracy and efficiency. PMID:27688597
Dictionary Pruning with Visual Word Significance for Medical Image Retrieval.
Zhang, Fan; Song, Yang; Cai, Weidong; Hauptmann, Alexander G; Liu, Sidong; Pujol, Sonia; Kikinis, Ron; Fulham, Michael J; Feng, David Dagan; Chen, Mei
2016-02-12
Content-based medical image retrieval (CBMIR) is an active research area for disease diagnosis and treatment but it can be problematic given the small visual variations between anatomical structures. We propose a retrieval method based on a bag-of-visual-words (BoVW) to identify discriminative characteristics between different medical images with Pruned Dictionary based on Latent Semantic Topic description. We refer to this as the PD-LST retrieval. Our method has two main components. First, we calculate a topic-word significance value for each visual word given a certain latent topic to evaluate how the word is connected to this latent topic. The latent topics are learnt, based on the relationship between the images and words, and are employed to bridge the gap between low-level visual features and high-level semantics. These latent topics describe the images and words semantically and can thus facilitate more meaningful comparisons between the words. Second, we compute an overall-word significance value to evaluate the significance of a visual word within the entire dictionary. We designed an iterative ranking method to measure overall-word significance by considering the relationship between all latent topics and words. The words with higher values are considered meaningful with more significant discriminative power in differentiating medical images. We evaluated our method on two public medical imaging datasets and it showed improved retrieval accuracy and efficiency.
Interactive classification and content-based retrieval of tissue images
NASA Astrophysics Data System (ADS)
Aksoy, Selim; Marchisio, Giovanni B.; Tusk, Carsten; Koperski, Krzysztof
2002-11-01
We describe a system for interactive classification and retrieval of microscopic tissue images. Our system models tissues in pixel, region and image levels. Pixel level features are generated using unsupervised clustering of color and texture values. Region level features include shape information and statistics of pixel level feature values. Image level features include statistics and spatial relationships of regions. To reduce the gap between low-level features and high-level expert knowledge, we define the concept of prototype regions. The system learns the prototype regions in an image collection using model-based clustering and density estimation. Different tissue types are modeled using spatial relationships of these regions. Spatial relationships are represented by fuzzy membership functions. The system automatically selects significant relationships from training data and builds models which can also be updated using user relevance feedback. A Bayesian framework is used to classify tissues based on these models. Preliminary experiments show that the spatial relationship models we developed provide a flexible and powerful framework for classification and retrieval of tissue images.
Partitioning medical image databases for content-based queries on a Grid.
Montagnat, J; Breton, V; E Magnin, I
2005-01-01
In this paper we study the impact of executing a medical image database query application on the grid. For lowering the total computation time, the image database is partitioned into subsets to be processed on different grid nodes. A theoretical model of the application complexity and estimates of the grid execution overhead are used to efficiently partition the database. We show results demonstrating that smart partitioning of the database can lead to significant improvements in terms of total computation time. Grids are promising for content-based image retrieval in medical databases.
Bag-of-features based medical image retrieval via multiple assignment and visual words weighting.
Wang, Jingyan; Li, Yongping; Zhang, Ying; Wang, Chao; Xie, Honglan; Chen, Guoling; Gao, Xin
2011-11-01
Bag-of-features based approaches have become prominent for image retrieval and image classification tasks in the past decade. Such methods represent an image as a collection of local features, such as image patches and key points with scale invariant feature transform (SIFT) descriptors. To improve the bag-of-features methods, we first model the assignments of local descriptors as contribution functions, and then propose a novel multiple assignment strategy. Assuming the local features can be reconstructed by their neighboring visual words in a vocabulary, reconstruction weights can be solved by quadratic programming. The weights are then used to build contribution functions, resulting in a novel assignment method, called quadratic programming (QP) assignment. We further propose a novel visual word weighting method. The discriminative power of each visual word is analyzed by the sub-similarity function in the bin that corresponds to the visual word. Each sub-similarity function is then treated as a weak classifier. A strong classifier is learned by boosting methods that combine those weak classifiers. The weighting factors of the visual words are learned accordingly. We evaluate the proposed methods on medical image retrieval tasks. The methods are tested on three well-known data sets, i.e., the ImageCLEFmed data set, the 304 CT Set, and the basal-cell carcinoma image set. Experimental results demonstrate that the proposed QP assignment outperforms the traditional nearest neighbor assignment, the multiple assignment, and the soft assignment, whereas the proposed boosting based weighting strategy outperforms the state-of-the-art weighting methods, such as the term frequency weights and the term frequency-inverse document frequency weights.
Kurtz, Camille; Beaulieu, Christopher F.; Napel, Sandy; Rubin, Daniel L.
2014-01-01
Computer-assisted image retrieval applications could assist radiologist interpretations by identifying similar images in large archives as a means to providing decision support. However, the semantic gap between low-level image features and their high level semantics may impair the system performances. Indeed, it can be challenging to comprehensively characterize the images using low-level imaging features to fully capture the visual appearance of diseases on images, and recently the use of semantic terms has been advocated to provide semantic descriptions of the visual contents of images. However, most of the existing image retrieval strategies do not consider the intrinsic properties of these terms during the comparison of the images beyond treating them as simple binary (presence/absence) features. We propose a new framework that includes semantic features in images and that enables retrieval of similar images in large databases based on their semantic relations. It is based on two main steps: (1) annotation of the images with semantic terms extracted from an ontology, and (2) evaluation of the similarity of image pairs by computing the similarity between the terms using the Hierarchical Semantic-Based Distance (HSBD) coupled to an ontological measure. The combination of these two steps provides a means of capturing the semantic correlations among the terms used to characterize the images that can be considered as a potential solution to deal with the semantic gap problem. We validate this approach in the context of the retrieval and the classification of 2D regions of interest (ROIs) extracted from computed tomographic (CT) images of the liver. Under this framework, retrieval accuracy of more than 0.96 was obtained on a 30-images dataset using the Normalized Discounted Cumulative Gain (NDCG) index that is a standard technique used to measure the effectiveness of information retrieval algorithms when a separate reference standard is available. Classification results of more than 95% were obtained on a 77-images dataset. For comparison purpose, the use of the Earth Mover's Distance (EMD), which is an alternative distance metric that considers all the existing relations among the terms, led to results retrieval accuracy of 0.95 and classification results of 93% with a higher computational cost. The results provided by the presented framework are competitive with the state-of-the-art and emphasize the usefulness of the proposed methodology for radiology image retrieval and classification. PMID:24632078
Requirements for benchmarking personal image retrieval systems
NASA Astrophysics Data System (ADS)
Bouguet, Jean-Yves; Dulong, Carole; Kozintsev, Igor; Wu, Yi
2006-01-01
It is now common to have accumulated tens of thousands of personal ictures. Efficient access to that many pictures can only be done with a robust image retrieval system. This application is of high interest to Intel processor architects. It is highly compute intensive, and could motivate end users to upgrade their personal computers to the next generations of processors. A key question is how to assess the robustness of a personal image retrieval system. Personal image databases are very different from digital libraries that have been used by many Content Based Image Retrieval Systems.1 For example a personal image database has a lot of pictures of people, but a small set of different people typically family, relatives, and friends. Pictures are taken in a limited set of places like home, work, school, and vacation destination. The most frequent queries are searched for people, and for places. These attributes, and many others affect how a personal image retrieval system should be benchmarked, and benchmarks need to be different from existing ones based on art images, or medical images for examples. The attributes of the data set do not change the list of components needed for the benchmarking of such systems as specified in2: - data sets - query tasks - ground truth - evaluation measures - benchmarking events. This paper proposed a way to build these components to be representative of personal image databases, and of the corresponding usage models.
A novel biomedical image indexing and retrieval system via deep preference learning.
Pang, Shuchao; Orgun, Mehmet A; Yu, Zhezhou
2018-05-01
The traditional biomedical image retrieval methods as well as content-based image retrieval (CBIR) methods originally designed for non-biomedical images either only consider using pixel and low-level features to describe an image or use deep features to describe images but still leave a lot of room for improving both accuracy and efficiency. In this work, we propose a new approach, which exploits deep learning technology to extract the high-level and compact features from biomedical images. The deep feature extraction process leverages multiple hidden layers to capture substantial feature structures of high-resolution images and represent them at different levels of abstraction, leading to an improved performance for indexing and retrieval of biomedical images. We exploit the current popular and multi-layered deep neural networks, namely, stacked denoising autoencoders (SDAE) and convolutional neural networks (CNN) to represent the discriminative features of biomedical images by transferring the feature representations and parameters of pre-trained deep neural networks from another domain. Moreover, in order to index all the images for finding the similarly referenced images, we also introduce preference learning technology to train and learn a kind of a preference model for the query image, which can output the similarity ranking list of images from a biomedical image database. To the best of our knowledge, this paper introduces preference learning technology for the first time into biomedical image retrieval. We evaluate the performance of two powerful algorithms based on our proposed system and compare them with those of popular biomedical image indexing approaches and existing regular image retrieval methods with detailed experiments over several well-known public biomedical image databases. Based on different criteria for the evaluation of retrieval performance, experimental results demonstrate that our proposed algorithms outperform the state-of-the-art techniques in indexing biomedical images. We propose a novel and automated indexing system based on deep preference learning to characterize biomedical images for developing computer aided diagnosis (CAD) systems in healthcare. Our proposed system shows an outstanding indexing ability and high efficiency for biomedical image retrieval applications and it can be used to collect and annotate the high-resolution images in a biomedical database for further biomedical image research and applications. Copyright © 2018 Elsevier B.V. All rights reserved.
Blue intensity matters for cell cycle profiling in fluorescence DAPI-stained images.
Ferro, Anabela; Mestre, Tânia; Carneiro, Patrícia; Sahumbaiev, Ivan; Seruca, Raquel; Sanches, João M
2017-05-01
In the past decades, there has been an amazing progress in the understanding of the molecular mechanisms of the cell cycle. This has been possible largely due to a better conceptualization of the cycle itself, but also as a consequence of technological advances. Herein, we propose a new fluorescence image-based framework targeted at the identification and segmentation of stained nuclei with the purpose to determine DNA content in distinct cell cycle stages. The method is based on discriminative features, such as total intensity and area, retrieved from in situ stained nuclei by fluorescence microscopy, allowing the determination of the cell cycle phase of both single and sub-population of cells. The analysis framework was built on a modified k-means clustering strategy and refined with a Gaussian mixture model classifier, which enabled the definition of highly accurate classification clusters corresponding to G1, S and G2 phases. Using the information retrieved from area and fluorescence total intensity, the modified k-means (k=3) cluster imaging framework classified 64.7% of the imaged nuclei, as being at G1 phase, 12.0% at G2 phase and 23.2% at S phase. Performance of the imaging framework was ascertained with normal murine mammary gland cells constitutively expressing the Fucci2 technology, exhibiting an overall sensitivity of 94.0%. Further, the results indicate that the imaging framework has a robust capacity to both identify a given DAPI-stained nucleus to its correct cell cycle phase, as well as to determine, with very high probability, true negatives. Importantly, this novel imaging approach is a non-disruptive method that allows an integrative and simultaneous quantitative analysis of molecular and morphological parameters, thus awarding the possibility of cell cycle profiling in cytological and histological samples.
Hybrid Histogram Descriptor: A Fusion Feature Representation for Image Retrieval.
Feng, Qinghe; Hao, Qiaohong; Chen, Yuqi; Yi, Yugen; Wei, Ying; Dai, Jiangyan
2018-06-15
Currently, visual sensors are becoming increasingly affordable and fashionable, acceleratingly the increasing number of image data. Image retrieval has attracted increasing interest due to space exploration, industrial, and biomedical applications. Nevertheless, designing effective feature representation is acknowledged as a hard yet fundamental issue. This paper presents a fusion feature representation called a hybrid histogram descriptor (HHD) for image retrieval. The proposed descriptor comprises two histograms jointly: a perceptually uniform histogram which is extracted by exploiting the color and edge orientation information in perceptually uniform regions; and a motif co-occurrence histogram which is acquired by calculating the probability of a pair of motif patterns. To evaluate the performance, we benchmarked the proposed descriptor on RSSCN7, AID, Outex-00013, Outex-00014 and ETHZ-53 datasets. Experimental results suggest that the proposed descriptor is more effective and robust than ten recent fusion-based descriptors under the content-based image retrieval framework. The computational complexity was also analyzed to give an in-depth evaluation. Furthermore, compared with the state-of-the-art convolutional neural network (CNN)-based descriptors, the proposed descriptor also achieves comparable performance, but does not require any training process.
Rahman, Md Mahmudur; Bhattacharya, Prabir; Desai, Bipin C
2007-01-01
A content-based image retrieval (CBIR) framework for diverse collection of medical images of different imaging modalities, anatomic regions with different orientations and biological systems is proposed. Organization of images in such a database (DB) is well defined with predefined semantic categories; hence, it can be useful for category-specific searching. The proposed framework consists of machine learning methods for image prefiltering, similarity matching using statistical distance measures, and a relevance feedback (RF) scheme. To narrow down the semantic gap and increase the retrieval efficiency, we investigate both supervised and unsupervised learning techniques to associate low-level global image features (e.g., color, texture, and edge) in the projected PCA-based eigenspace with their high-level semantic and visual categories. Specially, we explore the use of a probabilistic multiclass support vector machine (SVM) and fuzzy c-mean (FCM) clustering for categorization and prefiltering of images to reduce the search space. A category-specific statistical similarity matching is proposed in a finer level on the prefiltered images. To incorporate a better perception subjectivity, an RF mechanism is also added to update the query parameters dynamically and adjust the proposed matching functions. Experiments are based on a ground-truth DB consisting of 5000 diverse medical images of 20 predefined categories. Analysis of results based on cross-validation (CV) accuracy and precision-recall for image categorization and retrieval is reported. It demonstrates the improvement, effectiveness, and efficiency achieved by the proposed framework.
MPEG-7 audio-visual indexing test-bed for video retrieval
NASA Astrophysics Data System (ADS)
Gagnon, Langis; Foucher, Samuel; Gouaillier, Valerie; Brun, Christelle; Brousseau, Julie; Boulianne, Gilles; Osterrath, Frederic; Chapdelaine, Claude; Dutrisac, Julie; St-Onge, Francis; Champagne, Benoit; Lu, Xiaojian
2003-12-01
This paper reports on the development status of a Multimedia Asset Management (MAM) test-bed for content-based indexing and retrieval of audio-visual documents within the MPEG-7 standard. The project, called "MPEG-7 Audio-Visual Document Indexing System" (MADIS), specifically targets the indexing and retrieval of video shots and key frames from documentary film archives, based on audio-visual content like face recognition, motion activity, speech recognition and semantic clustering. The MPEG-7/XML encoding of the film database is done off-line. The description decomposition is based on a temporal decomposition into visual segments (shots), key frames and audio/speech sub-segments. The visible outcome will be a web site that allows video retrieval using a proprietary XQuery-based search engine and accessible to members at the Canadian National Film Board (NFB) Cineroute site. For example, end-user will be able to ask to point on movie shots in the database that have been produced in a specific year, that contain the face of a specific actor who tells a specific word and in which there is no motion activity. Video streaming is performed over the high bandwidth CA*net network deployed by CANARIE, a public Canadian Internet development organization.
Treelets Binary Feature Retrieval for Fast Keypoint Recognition.
Zhu, Jianke; Wu, Chenxia; Chen, Chun; Cai, Deng
2015-10-01
Fast keypoint recognition is essential to many vision tasks. In contrast to the classification-based approaches, we directly formulate the keypoint recognition as an image patch retrieval problem, which enjoys the merit of finding the matched keypoint and its pose simultaneously. To effectively extract the binary features from each patch surrounding the keypoint, we make use of treelets transform that can group the highly correlated data together and reduce the noise through the local analysis. Treelets is a multiresolution analysis tool, which provides an orthogonal basis to reflect the geometry of the noise-free data. To facilitate the real-world applications, we have proposed two novel approaches. One is the convolutional treelets that capture the image patch information locally and globally while reducing the computational cost. The other is the higher-order treelets that reflect the relationship between the rows and columns within image patch. An efficient sub-signature-based locality sensitive hashing scheme is employed for fast approximate nearest neighbor search in patch retrieval. Experimental evaluations on both synthetic data and the real-world Oxford dataset have shown that our proposed treelets binary feature retrieval methods outperform the state-of-the-art feature descriptors and classification-based approaches.
The Earth System Science Pathfinder Orbiting Carbon Observatory (OCO) Mission
NASA Technical Reports Server (NTRS)
Crisp, David
2003-01-01
A viewgraph presentation describing the Earth System Science Pathfinder Orbiting Carbon Observatory (OCO) Mission is shown. The contents include: 1) Why CO2?; 2) What Processes Control CO2 Sinks?; 3) OCO Science Team; 4) Space-Based Measurements of CO2; 5) Driving Requirement: Precise, Bias-Free Global Measurements; 6) Making Precise CO2 Measurements from Space; 7) OCO Spatial Sampling Strategy; 8) OCO Observing Modes; 9) Implementation Approach; 10) The OCO Instrument; 11) The OCO Spacecraft; 12) OCO Will Fly in the A-Train; 13) Validation Program Ensures Accuracy and Minimizes Spatially Coherent Biases; 14) Can OCO Provide the Required Precision?; 15) O2 Column Retrievals with Ground-based FTS; 16) X(sub CO2) Retrieval Simulations; 17) Impact of Albedo and Aerosol Uncertainty on X(sub CO2) Retrievals; 18) Carbon Cycle Modeling Studies: Seasonal Cycle; 19) Carbon Cycle Modeling Studies: The North-South Gradient in CO2; 20) Carbon Cycle Modeling Studies: Effect of Diurnal Biases; 21) Project Status and Schedule; and 22) Summary.
NASA Technical Reports Server (NTRS)
Houlborg, Rasmus; Anderson, Martha C.; Daughtry, C. S. T.; Kustas, W. P.; Rodell, Matthew
2010-01-01
Chlorophylls absorb photosynthetically active radiation and thus function as vital pigments for photosynthesis, which makes leaf chlorophyll content (C(sub ab) useful for monitoring vegetation productivity and an important indicator of the overall plant physiological condition. This study investigates the utility of integrating remotely sensed estimates of C(sub ab) into a thermal-based Two-Source Energy Balance (TSEB) model that estimates land-surface CO2 and energy fluxes using an analytical, light-use-efficiency (LUE) based model of canopy resistance. The LUE model component computes canopy-scale carbon assimilation and transpiration fluxes and incorporates LUE modifications from a nominal (species-dependent) value (LUE(sub n)) in response to short term variations in environmental conditions, However LUE(sub n) may need adjustment on a daily timescale to accommodate changes in plant phenology, physiological condition and nutrient status. Day to day variations in LUE(sub n) were assessed for a heterogeneous corn crop field in Maryland, U,S.A. through model calibration with eddy covariance CO2 flux tower observations. The optimized daily LUE(sub n) values were then compared to estimates of C(sub ab) integrated from gridded maps of chlorophyll content weighted over the tower flux source area. The time continuous maps of daily C(sub ab) over the study field were generated by focusing in-situ measurements with retrievals generated with an integrated radiative transfer modeling tool (accurate to within +/-10%) using at-sensor radiances in green, red and near-infrared wavelengths acquired with an aircraft imaging system. The resultant daily changes in C(sub ab) within the tower flux source area generally correlated well with corresponding changes in daily calibrated LUE(sub n) derived from the tower flux data, and hourly water, energy and carbon flux estimation accuracies from TSEB were significantly improved when using C(sub ab) for delineating spatio-temporal variations in LUE(sub n). The results demonstrate the synergy between thermal infrared and shortwave reflective wavebands in producing valuable remote sensing data for operational monitoring of carbon and water fluxes.
Document image retrieval through word shape coding.
Lu, Shijian; Li, Linlin; Tan, Chew Lim
2008-11-01
This paper presents a document retrieval technique that is capable of searching document images without OCR (optical character recognition). The proposed technique retrieves document images by a new word shape coding scheme, which captures the document content through annotating each word image by a word shape code. In particular, we annotate word images by using a set of topological shape features including character ascenders/descenders, character holes, and character water reservoirs. With the annotated word shape codes, document images can be retrieved by either query keywords or a query document image. Experimental results show that the proposed document image retrieval technique is fast, efficient, and tolerant to various types of document degradation.
Diversification of visual media retrieval results using saliency detection
NASA Astrophysics Data System (ADS)
Muratov, Oleg; Boato, Giulia; De Natale, Franesco G. B.
2013-03-01
Diversification of retrieval results allows for better and faster search. Recently there has been proposed different methods for diversification of image retrieval results mainly utilizing text information and techniques imported from natural language processing domain. However, images contain visual information that is impossible to describe in text and the use of visual features is inevitable. Visual saliency is information about the main object of an image implicitly included by humans while creating visual content. For this reason it is naturally to exploit this information for the task of diversification of the content. In this work we study whether visual saliency can be used for the task of diversification and propose a method for re-ranking image retrieval results using saliency. The evaluation has shown that the use of saliency information results in higher diversity of retrieval results.
Content-based image exploitation for situational awareness
NASA Astrophysics Data System (ADS)
Gains, David
2008-04-01
Image exploitation is of increasing importance to the enterprise of building situational awareness from multi-source data. It involves image acquisition, identification of objects of interest in imagery, storage, search and retrieval of imagery, and the distribution of imagery over possibly bandwidth limited networks. This paper describes an image exploitation application that uses image content alone to detect objects of interest, and that automatically establishes and preserves spatial and temporal relationships between images, cameras and objects. The application features an intuitive user interface that exposes all images and information generated by the system to an operator thus facilitating the formation of situational awareness.
Categorizing biomedicine images using novel image features and sparse coding representation
2013-01-01
Background Images embedded in biomedical publications carry rich information that often concisely summarize key hypotheses adopted, methods employed, or results obtained in a published study. Therefore, they offer valuable clues for understanding main content in a biomedical publication. Prior studies have pointed out the potential of mining images embedded in biomedical publications for automatically understanding and retrieving such images' associated source documents. Within the broad area of biomedical image processing, categorizing biomedical images is a fundamental step for building many advanced image analysis, retrieval, and mining applications. Similar to any automatic categorization effort, discriminative image features can provide the most crucial aid in the process. Method We observe that many images embedded in biomedical publications carry versatile annotation text. Based on the locations of and the spatial relationships between these text elements in an image, we thus propose some novel image features for image categorization purpose, which quantitatively characterize the spatial positions and distributions of text elements inside a biomedical image. We further adopt a sparse coding representation (SCR) based technique to categorize images embedded in biomedical publications by leveraging our newly proposed image features. Results we randomly selected 990 images of the JPG format for use in our experiments where 310 images were used as training samples and the rest were used as the testing cases. We first segmented 310 sample images following the our proposed procedure. This step produced a total of 1035 sub-images. We then manually labeled all these sub-images according to the two-level hierarchical image taxonomy proposed by [1]. Among our annotation results, 316 are microscopy images, 126 are gel electrophoresis images, 135 are line charts, 156 are bar charts, 52 are spot charts, 25 are tables, 70 are flow charts, and the remaining 155 images are of the type "others". A serial of experimental results are obtained. Firstly, each image categorizing results is presented, and next image categorizing performance indexes such as precision, recall, F-score, are all listed. Different features which include conventional image features and our proposed novel features indicate different categorizing performance, and the results are demonstrated. Thirdly, we conduct an accuracy comparison between support vector machine classification method and our proposed sparse representation classification method. At last, our proposed approach is compared with three peer classification method and experimental results verify our impressively improved performance. Conclusions Compared with conventional image features that do not exploit characteristics regarding text positions and distributions inside images embedded in biomedical publications, our proposed image features coupled with the SR based representation model exhibit superior performance for classifying biomedical images as demonstrated in our comparative benchmark study. PMID:24565470
NASA Astrophysics Data System (ADS)
Qin, Yi; Wang, Hongjuan; Wang, Zhipeng; Gong, Qiong; Wang, Danchen
2016-09-01
In optical interference-based encryption (IBE) scheme, the currently available methods have to employ the iterative algorithms in order to encrypt two images and retrieve cross-talk free decrypted images. In this paper, we shall show that this goal can be achieved via an analytical process if one of the two images is QR code. For decryption, the QR code is decrypted in the conventional architecture and the decryption has a noisy appearance. Nevertheless, the robustness of QR code against noise enables the accurate acquisition of its content from the noisy retrieval, as a result of which the primary QR code can be exactly regenerated. Thereafter, a novel optical architecture is proposed to recover the grayscale image by aid of the QR code. In addition, the proposal has totally eliminated the silhouette problem existing in the previous IBE schemes, and its effectiveness and feasibility have been demonstrated by numerical simulations.
A novel 3D shape descriptor for automatic retrieval of anatomical structures from medical images
NASA Astrophysics Data System (ADS)
Nunes, Fátima L. S.; Bergamasco, Leila C. C.; Delmondes, Pedro H.; Valverde, Miguel A. G.; Jackowski, Marcel P.
2017-03-01
Content-based image retrieval (CBIR) aims at retrieving from a database objects that are similar to an object provided by a query, by taking into consideration a set of extracted features. While CBIR has been widely applied in the two-dimensional image domain, the retrieval of3D objects from medical image datasets using CBIR remains to be explored. In this context, the development of descriptors that can capture information specific to organs or structures is desirable. In this work, we focus on the retrieval of two anatomical structures commonly imaged by Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) techniques, the left ventricle of the heart and blood vessels. Towards this aim, we developed the Area-Distance Local Descriptor (ADLD), a novel 3D local shape descriptor that employs mesh geometry information, namely facet area and distance from centroid to surface, to identify shape changes. Because ADLD only considers surface meshes extracted from volumetric medical images, it substantially diminishes the amount of data to be analyzed. A 90% precision rate was obtained when retrieving both convex (left ventricle) and non-convex structures (blood vessels), allowing for detection of abnormalities associated with changes in shape. Thus, ADLD has the potential to aid in the diagnosis of a wide range of vascular and cardiac diseases.
Semantics-Based Intelligent Indexing and Retrieval of Digital Images - A Case Study
NASA Astrophysics Data System (ADS)
Osman, Taha; Thakker, Dhavalkumar; Schaefer, Gerald
The proliferation of digital media has led to a huge interest in classifying and indexing media objects for generic search and usage. In particular, we are witnessing colossal growth in digital image repositories that are difficult to navigate using free-text search mechanisms, which often return inaccurate matches as they typically rely on statistical analysis of query keyword recurrence in the image annotation or surrounding text. In this chapter we present a semantically enabled image annotation and retrieval engine that is designed to satisfy the requirements of commercial image collections market in terms of both accuracy and efficiency of the retrieval process. Our search engine relies on methodically structured ontologies for image annotation, thus allowing for more intelligent reasoning about the image content and subsequently obtaining a more accurate set of results and a richer set of alternatives matchmaking the original query. We also show how our well-analysed and designed domain ontology contributes to the implicit expansion of user queries as well as presenting our initial thoughts on exploiting lexical databases for explicit semantic-based query expansion.
Water vapor retrieval from near-IR measurements of polarized scanning atmospheric corrector
NASA Astrophysics Data System (ADS)
Qie, Lili; Ning, Yuanming; Zhang, Yang; Chen, Xingfeng; Ma, Yan; Li, Zhengqiang; Cui, Wenyu
2018-02-01
Water vapor and aerosol are two key atmospheric factors effecting the remote sensing image quality. As water vapor is responsible for most of the solar radiation absorption occurring in the cloudless atmosphere, accurate measurement of water content is important to not only atmospheric correction of remote sensing images, but also many other applications such as the study of energy balance and global climate change, land surface temperature retrieval in thermal remote sensing. A multi-spectral, single-angular, polarized radiometer called Polarized Scanning Atmospheric Corrector (PSAC) were developed in China, which are designed to mount on the same satellite platform with the principle payload and provide essential parameters for principle payload image atmospheric correction. PSAC detect water vapor content via measuring atmosphere reflectance at water vapor absorbing channels (i.e. 0.91 μm) and nearby atmospheric window channel (i.e. 0.865μm). A near-IR channel ratio method was implemented to retrieve column water vapor (CWV) amount from PSAC measurements. Field experiments were performed at Yantai, in Shandong province of China, PSAC aircraft observations were acquired. The comparison between PSAC retrievals and ground-based Sun-sky radiometer measurements of CWV during the experimental flights illustrates that this method retrieves CWV with relative deviations ranging from 4% 13%. This method retrieve CWV more accurate over land than over ocean, as the water reflectance is low.
Vision Systems with the Human in the Loop
NASA Astrophysics Data System (ADS)
Bauckhage, Christian; Hanheide, Marc; Wrede, Sebastian; Käster, Thomas; Pfeiffer, Michael; Sagerer, Gerhard
2005-12-01
The emerging cognitive vision paradigm deals with vision systems that apply machine learning and automatic reasoning in order to learn from what they perceive. Cognitive vision systems can rate the relevance and consistency of newly acquired knowledge, they can adapt to their environment and thus will exhibit high robustness. This contribution presents vision systems that aim at flexibility and robustness. One is tailored for content-based image retrieval, the others are cognitive vision systems that constitute prototypes of visual active memories which evaluate, gather, and integrate contextual knowledge for visual analysis. All three systems are designed to interact with human users. After we will have discussed adaptive content-based image retrieval and object and action recognition in an office environment, the issue of assessing cognitive systems will be raised. Experiences from psychologically evaluated human-machine interactions will be reported and the promising potential of psychologically-based usability experiments will be stressed.
Creating a classification of image types in the medical literature for visual categorization
NASA Astrophysics Data System (ADS)
Müller, Henning; Kalpathy-Cramer, Jayashree; Demner-Fushman, Dina; Antani, Sameer
2012-02-01
Content-based image retrieval (CBIR) from specialized collections has often been proposed for use in such areas as diagnostic aid, clinical decision support, and teaching. The visual retrieval from broad image collections such as teaching files, the medical literature or web images, by contrast, has not yet reached a high maturity level compared to textual information retrieval. Visual image classification into a relatively small number of classes (20-100) on the other hand, has shown to deliver good results in several benchmarks. It is, however, currently underused as a basic technology for retrieval tasks, for example, to limit the search space. Most classification schemes for medical images are focused on specific areas and consider mainly the medical image types (modalities), imaged anatomy, and view, and merge them into a single descriptor or classification hierarchy. Furthermore, they often ignore other important image types such as biological images, statistical figures, flowcharts, and diagrams that frequently occur in the biomedical literature. Most of the current classifications have also been created for radiology images, which are not the only types to be taken into account. With Open Access becoming increasingly widespread particularly in medicine, images from the biomedical literature are more easily available for use. Visual information from these images and knowledge that an image is of a specific type or medical modality could enrich retrieval. This enrichment is hampered by the lack of a commonly agreed image classification scheme. This paper presents a hierarchy for classification of biomedical illustrations with the goal of using it for visual classification and thus as a basis for retrieval. The proposed hierarchy is based on relevant parts of existing terminologies, such as the IRMA-code (Image Retrieval in Medical Applications), ad hoc classifications and hierarchies used in imageCLEF (Image retrieval task at the Cross-Language Evaluation Forum) and NLM's (National Library of Medicine) OpenI. Furtheron, mappings to NLM's MeSH (Medical Subject Headings), RSNA's RadLex (Radiological Society of North America, Radiology Lexicon), and the IRMA code are also attempted for relevant image types. Advantages derived from such hierarchical classification for medical image retrieval are being evaluated through benchmarks such as imageCLEF, and R&D systems such as NLM's OpenI. The goal is to extend this hierarchy progressively and (through adding image types occurring in the biomedical literature) to have a terminology for visual image classification based on image types distinguishable by visual means and occurring in the medical open access literature.
Interactive radiographic image retrieval system.
Kundu, Malay Kumar; Chowdhury, Manish; Das, Sudeb
2017-02-01
Content based medical image retrieval (CBMIR) systems enable fast diagnosis through quantitative assessment of the visual information and is an active research topic over the past few decades. Most of the state-of-the-art CBMIR systems suffer from various problems: computationally expensive due to the usage of high dimensional feature vectors and complex classifier/clustering schemes. Inability to properly handle the "semantic gap" and the high intra-class versus inter-class variability problem of the medical image database (like radiographic image database). This yields an exigent demand for developing highly effective and computationally efficient retrieval system. We propose a novel interactive two-stage CBMIR system for diverse collection of medical radiographic images. Initially, Pulse Coupled Neural Network based shape features are used to find out the most probable (similar) image classes using a novel "similarity positional score" mechanism. This is followed by retrieval using Non-subsampled Contourlet Transform based texture features considering only the images of the pre-identified classes. Maximal information compression index is used for unsupervised feature selection to achieve better results. To reduce the semantic gap problem, the proposed system uses a novel fuzzy index based relevance feedback mechanism by incorporating subjectivity of human perception in an analytic manner. Extensive experiments were carried out to evaluate the effectiveness of the proposed CBMIR system on a subset of Image Retrieval in Medical Applications (IRMA)-2009 database consisting of 10,902 labeled radiographic images of 57 different modalities. We obtained overall average precision of around 98% after only 2-3 iterations of relevance feedback mechanism. We assessed the results by comparisons with some of the state-of-the-art CBMIR systems for radiographic images. Unlike most of the existing CBMIR systems, in the proposed two-stage hierarchical framework, main importance is given on constructing efficient and compact feature vector representation, search-space reduction and handling the "semantic gap" problem effectively, without compromising the retrieval performance. Experimental results and comparisons show that the proposed system performs efficiently in the radiographic medical image retrieval field. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Generating region proposals for histopathological whole slide image retrieval.
Ma, Yibing; Jiang, Zhiguo; Zhang, Haopeng; Xie, Fengying; Zheng, Yushan; Shi, Huaqiang; Zhao, Yu; Shi, Jun
2018-06-01
Content-based image retrieval is an effective method for histopathological image analysis. However, given a database of huge whole slide images (WSIs), acquiring appropriate region-of-interests (ROIs) for training is significant and difficult. Moreover, histopathological images can only be annotated by pathologists, resulting in the lack of labeling information. Therefore, it is an important and challenging task to generate ROIs from WSI and retrieve image with few labels. This paper presents a novel unsupervised region proposing method for histopathological WSI based on Selective Search. Specifically, the WSI is over-segmented into regions which are hierarchically merged until the WSI becomes a single region. Nucleus-oriented similarity measures for region mergence and Nucleus-Cytoplasm color space for histopathological image are specially defined to generate accurate region proposals. Additionally, we propose a new semi-supervised hashing method for image retrieval. The semantic features of images are extracted with Latent Dirichlet Allocation and transformed into binary hashing codes with Supervised Hashing. The methods are tested on a large-scale multi-class database of breast histopathological WSIs. The results demonstrate that for one WSI, our region proposing method can generate 7.3 thousand contoured regions which fit well with 95.8% of the ROIs annotated by pathologists. The proposed hashing method can retrieve a query image among 136 thousand images in 0.29 s and reach precision of 91% with only 10% of images labeled. The unsupervised region proposing method can generate regions as predictions of lesions in histopathological WSI. The region proposals can also serve as the training samples to train machine-learning models for image retrieval. The proposed hashing method can achieve fast and precise image retrieval with small amount of labels. Furthermore, the proposed methods can be potentially applied in online computer-aided-diagnosis systems. Copyright © 2018 Elsevier B.V. All rights reserved.
Content based Image Retrieval based on Different Global and Local Color Histogram Methods: A Survey
NASA Astrophysics Data System (ADS)
Suhasini, Pallikonda Sarah; Sri Rama Krishna, K.; Murali Krishna, I. V.
2017-02-01
Different global and local color histogram methods for content based image retrieval (CBIR) are investigated in this paper. Color histogram is a widely used descriptor for CBIR. Conventional method of extracting color histogram is global, which misses the spatial content, is less invariant to deformation and viewpoint changes, and results in a very large three dimensional histogram corresponding to the color space used. To address the above deficiencies, different global and local histogram methods are proposed in recent research. Different ways of extracting local histograms to have spatial correspondence, invariant colour histogram to add deformation and viewpoint invariance and fuzzy linking method to reduce the size of the histogram are found in recent papers. The color space and the distance metric used are vital in obtaining color histogram. In this paper the performance of CBIR based on different global and local color histograms in three different color spaces, namely, RGB, HSV, L*a*b* and also with three distance measures Euclidean, Quadratic and Histogram intersection are surveyed, to choose appropriate method for future research.
Tourassi, Georgia D; Harrawood, Brian; Singh, Swatee; Lo, Joseph Y; Floyd, Carey E
2007-01-01
The purpose of this study was to evaluate image similarity measures employed in an information-theoretic computer-assisted detection (IT-CAD) scheme. The scheme was developed for content-based retrieval and detection of masses in screening mammograms. The study is aimed toward an interactive clinical paradigm where physicians query the proposed IT-CAD scheme on mammographic locations that are either visually suspicious or indicated as suspicious by other cuing CAD systems. The IT-CAD scheme provides an evidence-based, second opinion for query mammographic locations using a knowledge database of mass and normal cases. In this study, eight entropy-based similarity measures were compared with respect to retrieval precision and detection accuracy using a database of 1820 mammographic regions of interest. The IT-CAD scheme was then validated on a separate database for false positive reduction of progressively more challenging visual cues generated by an existing, in-house mass detection system. The study showed that the image similarity measures fall into one of two categories; one category is better suited to the retrieval of semantically similar cases while the second is more effective with knowledge-based decisions regarding the presence of a true mass in the query location. In addition, the IT-CAD scheme yielded a substantial reduction in false-positive detections while maintaining high detection rate for malignant masses.
NASA Astrophysics Data System (ADS)
Mallepudi, Sri Abhishikth; Calix, Ricardo A.; Knapp, Gerald M.
2011-02-01
In recent years there has been a rapid increase in the size of video and image databases. Effective searching and retrieving of images from these databases is a significant current research area. In particular, there is a growing interest in query capabilities based on semantic image features such as objects, locations, and materials, known as content-based image retrieval. This study investigated mechanisms for identifying materials present in an image. These capabilities provide additional information impacting conditional probabilities about images (e.g. objects made of steel are more likely to be buildings). These capabilities are useful in Building Information Modeling (BIM) and in automatic enrichment of images. I2T methodologies are a way to enrich an image by generating text descriptions based on image analysis. In this work, a learning model is trained to detect certain materials in images. To train the model, an image dataset was constructed containing single material images of bricks, cloth, grass, sand, stones, and wood. For generalization purposes, an additional set of 50 images containing multiple materials (some not used in training) was constructed. Two different supervised learning classification models were investigated: a single multi-class SVM classifier, and multiple binary SVM classifiers (one per material). Image features included Gabor filter parameters for texture, and color histogram data for RGB components. All classification accuracy scores using the SVM-based method were above 85%. The second model helped in gathering more information from the images since it assigned multiple classes to the images. A framework for the I2T methodology is presented.
TRECVID: the utility of a content-based video retrieval evaluation
NASA Astrophysics Data System (ADS)
Hauptmann, Alexander G.
2006-01-01
TRECVID, an annual retrieval evaluation benchmark organized by NIST, encourages research in information retrieval from digital video. TRECVID benchmarking covers both interactive and manual searching by end users, as well as the benchmarking of some supporting technologies including shot boundary detection, extraction of semantic features, and the automatic segmentation of TV news broadcasts. Evaluations done in the context of the TRECVID benchmarks show that generally, speech transcripts and annotations provide the single most important clue for successful retrieval. However, automatically finding the individual images is still a tremendous and unsolved challenge. The evaluations repeatedly found that none of the multimedia analysis and retrieval techniques provide a significant benefit over retrieval using only textual information such as from automatic speech recognition transcripts or closed captions. In interactive systems, we do find significant differences among the top systems, indicating that interfaces can make a huge difference for effective video/image search. For interactive tasks efficient interfaces require few key clicks, but display large numbers of images for visual inspection by the user. The text search finds the right context region in the video in general, but to select specific relevant images we need good interfaces to easily browse the storyboard pictures. In general, TRECVID has motivated the video retrieval community to be honest about what we don't know how to do well (sometimes through painful failures), and has focused us to work on the actual task of video retrieval, as opposed to flashy demos based on technological capabilities.
Content Recognition and Context Modeling for Document Analysis and Retrieval
ERIC Educational Resources Information Center
Zhu, Guangyu
2009-01-01
The nature and scope of available documents are changing significantly in many areas of document analysis and retrieval as complex, heterogeneous collections become accessible to virtually everyone via the web. The increasing level of diversity presents a great challenge for document image content categorization, indexing, and retrieval.…
Toward semantic-based retrieval of visual information: a model-based approach
NASA Astrophysics Data System (ADS)
Park, Youngchoon; Golshani, Forouzan; Panchanathan, Sethuraman
2002-07-01
This paper center around the problem of automated visual content classification. To enable classification based image or visual object retrieval, we propose a new image representation scheme called visual context descriptor (VCD) that is a multidimensional vector in which each element represents the frequency of a unique visual property of an image or a region. VCD utilizes the predetermined quality dimensions (i.e., types of features and quantization level) and semantic model templates mined in priori. Not only observed visual cues, but also contextually relevant visual features are proportionally incorporated in VCD. Contextual relevance of a visual cue to a semantic class is determined by using correlation analysis of ground truth samples. Such co-occurrence analysis of visual cues requires transformation of a real-valued visual feature vector (e.g., color histogram, Gabor texture, etc.,) into a discrete event (e.g., terms in text). Good-feature to track, rule of thirds, iterative k-means clustering and TSVQ are involved in transformation of feature vectors into unified symbolic representations called visual terms. Similarity-based visual cue frequency estimation is also proposed and used for ensuring the correctness of model learning and matching since sparseness of sample data causes the unstable results of frequency estimation of visual cues. The proposed method naturally allows integration of heterogeneous visual or temporal or spatial cues in a single classification or matching framework, and can be easily integrated into a semantic knowledge base such as thesaurus, and ontology. Robust semantic visual model template creation and object based image retrieval are demonstrated based on the proposed content description scheme.
Content-based image retrieval with ontological ranking
NASA Astrophysics Data System (ADS)
Tsai, Shen-Fu; Tsai, Min-Hsuan; Huang, Thomas S.
2010-02-01
Images are a much more powerful medium of expression than text, as the adage says: "One picture is worth a thousand words." It is because compared with text consisting of an array of words, an image has more degrees of freedom and therefore a more complicated structure. However, the less limited structure of images presents researchers in the computer vision community a tough task of teaching machines to understand and organize images, especially when a limit number of learning examples and background knowledge are given. The advance of internet and web technology in the past decade has changed the way human gain knowledge. People, hence, can exchange knowledge with others by discussing and contributing information on the web. As a result, the web pages in the internet have become a living and growing source of information. One is therefore tempted to wonder whether machines can learn from the web knowledge base as well. Indeed, it is possible to make computer learn from the internet and provide human with more meaningful knowledge. In this work, we explore this novel possibility on image understanding applied to semantic image search. We exploit web resources to obtain links from images to keywords and a semantic ontology constituting human's general knowledge. The former maps visual content to related text in contrast to the traditional way of associating images with surrounding text; the latter provides relations between concepts for machines to understand to what extent and in what sense an image is close to the image search query. With the aid of these two tools, the resulting image search system is thus content-based and moreover, organized. The returned images are ranked and organized such that semantically similar images are grouped together and given a rank based on the semantic closeness to the input query. The novelty of the system is twofold: first, images are retrieved not only based on text cues but their actual contents as well; second, the grouping is different from pure visual similarity clustering. More specifically, the inferred concepts of each image in the group are examined in the context of a huge concept ontology to determine their true relations with what people have in mind when doing image search.
Automatic medical image annotation and keyword-based image retrieval using relevance feedback.
Ko, Byoung Chul; Lee, JiHyeon; Nam, Jae-Yeal
2012-08-01
This paper presents novel multiple keywords annotation for medical images, keyword-based medical image retrieval, and relevance feedback method for image retrieval for enhancing image retrieval performance. For semantic keyword annotation, this study proposes a novel medical image classification method combining local wavelet-based center symmetric-local binary patterns with random forests. For keyword-based image retrieval, our retrieval system use the confidence score that is assigned to each annotated keyword by combining probabilities of random forests with predefined body relation graph. To overcome the limitation of keyword-based image retrieval, we combine our image retrieval system with relevance feedback mechanism based on visual feature and pattern classifier. Compared with other annotation and relevance feedback algorithms, the proposed method shows both improved annotation performance and accurate retrieval results.
Simultaneously Discovering and Localizing Common Objects in Wild Images.
Wang, Zhenzhen; Yuan, Junsong
2018-09-01
Motivated by the recent success of supervised and weakly supervised common object discovery, in this paper, we move forward one step further to tackle common object discovery in a fully unsupervised way. Generally, object co-localization aims at simultaneously localizing objects of the same class across a group of images. Traditional object localization/detection usually trains specific object detectors which require bounding box annotations of object instances, or at least image-level labels to indicate the presence/absence of objects in an image. Given a collection of images without any annotations, our proposed fully unsupervised method is to simultaneously discover images that contain common objects and also localize common objects in corresponding images. Without requiring to know the total number of common objects, we formulate this unsupervised object discovery as a sub-graph mining problem from a weighted graph of object proposals, where nodes correspond to object proposals, and edges represent the similarities between neighbouring proposals. The positive images and common objects are jointly discovered by finding sub-graphs of strongly connected nodes, with each sub-graph capturing one object pattern. The optimization problem can be efficiently solved by our proposed maximal-flow-based algorithm. Instead of assuming that each image contains only one common object, our proposed solution can better address wild images where each image may contain multiple common objects or even no common object. Moreover, our proposed method can be easily tailored to the task of image retrieval in which the nodes correspond to the similarity between query and reference images. Extensive experiments on PASCAL VOC 2007 and Object Discovery data sets demonstrate that even without any supervision, our approach can discover/localize common objects of various classes in the presence of scale, view point, appearance variation, and partial occlusions. We also conduct broad experiments on image retrieval benchmarks, Holidays and Oxford5k data sets, to show that our proposed method, which considers both the similarity between query and reference images and also similarities among reference images, can help to improve the retrieval results significantly.
Content-based image retrieval from a database of fracture images
NASA Astrophysics Data System (ADS)
Müller, Henning; Do Hoang, Phuong Anh; Depeursinge, Adrien; Hoffmeyer, Pierre; Stern, Richard; Lovis, Christian; Geissbuhler, Antoine
2007-03-01
This article describes the use of a medical image retrieval system on a database of 16'000 fractures, selected from surgical routine over several years. Image retrieval has been a very active domain of research for several years. It was frequently proposed for the medical domain, but only few running systems were ever tested in clinical routine. For the planning of surgical interventions after fractures, x-ray images play an important role. The fractures are classified according to exact fracture location, plus whether and to which degree the fracture is damaging articulations to see how complicated a reparation will be. Several classification systems for fractures exist and the classification plus the experience of the surgeon lead in the end to the choice of surgical technique (screw, metal plate, ...). This choice is strongly influenced by the experience and knowledge of the surgeons with respect to a certain technique. Goal of this article is to describe a prototype that supplies similar cases to an example to help treatment planning and find the most appropriate technique for a surgical intervention. Our database contains over 16'000 fracture images before and after a surgical intervention. We use an image retrieval system (GNU Image Finding Tool, GIFT) to find cases/images similar to an example case currently under observation. Problems encountered are varying illumination of images as well as strong anatomic differences between patients. Regions of interest are usually small and the retrieval system needs to focus on this region. Results show that GIFT is capable of supplying similar cases, particularly when using relevance feedback, on such a large database. Usual image retrieval is based on a single image as search target but for this application we have to select images by case as similar cases need to be found and not images. A few false positive cases often remain in the results but they can be sorted out quickly by the surgeons. Image retrieval can well be used for the planning of operations by supplying similar cases. A variety of challenges has been identified and partly solved (varying luminosity, small region of interested, case-based instead of image-based). This article mainly presents a case study to identify potential benefits and problems. Several steps for improving the system have been identified as well and will be described at the end of the paper.
Image Retrieval by Color Semantics with Incomplete Knowledge.
ERIC Educational Resources Information Center
Corridoni, Jacopo M.; Del Bimbo, Alberto; Vicario, Enrico
1998-01-01
Presents a system which supports image retrieval by high-level chromatic contents, the sensations that color accordances generate on the observer. Surveys Itten's theory of color semantics and discusses image description and query specification. Presents examples of visual querying. (AEF)
Fusion of Deep Learning and Compressed Domain features for Content Based Image Retrieval.
Liu, Peizhong; Guo, Jing-Ming; Wu, Chi-Yi; Cai, Danlin
2017-08-29
This paper presents an effective image retrieval method by combining high-level features from Convolutional Neural Network (CNN) model and low-level features from Dot-Diffused Block Truncation Coding (DDBTC). The low-level features, e.g., texture and color, are constructed by VQ-indexed histogram from DDBTC bitmap, maximum, and minimum quantizers. Conversely, high-level features from CNN can effectively capture human perception. With the fusion of the DDBTC and CNN features, the extended deep learning two-layer codebook features (DL-TLCF) is generated using the proposed two-layer codebook, dimension reduction, and similarity reweighting to improve the overall retrieval rate. Two metrics, average precision rate (APR) and average recall rate (ARR), are employed to examine various datasets. As documented in the experimental results, the proposed schemes can achieve superior performance compared to the state-of-the-art methods with either low- or high-level features in terms of the retrieval rate. Thus, it can be a strong candidate for various image retrieval related applications.
Global Contrast Based Salient Region Detection.
Cheng, Ming-Ming; Mitra, Niloy J; Huang, Xiaolei; Torr, Philip H S; Hu, Shi-Min
2015-03-01
Automatic estimation of salient object regions across images, without any prior assumption or knowledge of the contents of the corresponding scenes, enhances many computer vision and computer graphics applications. We introduce a regional contrast based salient object detection algorithm, which simultaneously evaluates global contrast differences and spatial weighted coherence scores. The proposed algorithm is simple, efficient, naturally multi-scale, and produces full-resolution, high-quality saliency maps. These saliency maps are further used to initialize a novel iterative version of GrabCut, namely SaliencyCut, for high quality unsupervised salient object segmentation. We extensively evaluated our algorithm using traditional salient object detection datasets, as well as a more challenging Internet image dataset. Our experimental results demonstrate that our algorithm consistently outperforms 15 existing salient object detection and segmentation methods, yielding higher precision and better recall rates. We also show that our algorithm can be used to efficiently extract salient object masks from Internet images, enabling effective sketch-based image retrieval (SBIR) via simple shape comparisons. Despite such noisy internet images, where the saliency regions are ambiguous, our saliency guided image retrieval achieves a superior retrieval rate compared with state-of-the-art SBIR methods, and additionally provides important target object region information.
BIRAM: a content-based image retrieval framework for medical images
NASA Astrophysics Data System (ADS)
Moreno, Ramon A.; Furuie, Sergio S.
2006-03-01
In the medical field, digital images are becoming more and more important for diagnostics and therapy of the patients. At the same time, the development of new technologies has increased the amount of image data produced in a hospital. This creates a demand for access methods that offer more than text-based queries for retrieval of the information. In this paper is proposed a framework for the retrieval of medical images that allows the use of different algorithms for the search of medical images by similarity. The framework also enables the search for textual information from an associated medical report and DICOM header information. The proposed system can be used for support of clinical decision making and is intended to be integrated with an open source picture, archiving and communication systems (PACS). The BIRAM has the following advantages: (i) Can receive several types of algorithms for image similarity search; (ii) Allows the codification of the report according to a medical dictionary, improving the indexing of the information and retrieval; (iii) The algorithms can be selectively applied to images with the appropriated characteristics, for instance, only in magnetic resonance images. The framework was implemented in Java language using a MS Access 97 database. The proposed framework can still be improved, by the use of regions of interest (ROI), indexing with slim-trees and integration with a PACS Server.
Active learning methods for interactive image retrieval.
Gosselin, Philippe Henri; Cord, Matthieu
2008-07-01
Active learning methods have been considered with increased interest in the statistical learning community. Initially developed within a classification framework, a lot of extensions are now being proposed to handle multimedia applications. This paper provides algorithms within a statistical framework to extend active learning for online content-based image retrieval (CBIR). The classification framework is presented with experiments to compare several powerful classification techniques in this information retrieval context. Focusing on interactive methods, active learning strategy is then described. The limitations of this approach for CBIR are emphasized before presenting our new active selection process RETIN. First, as any active method is sensitive to the boundary estimation between classes, the RETIN strategy carries out a boundary correction to make the retrieval process more robust. Second, the criterion of generalization error to optimize the active learning selection is modified to better represent the CBIR objective of database ranking. Third, a batch processing of images is proposed. Our strategy leads to a fast and efficient active learning scheme to retrieve sets of online images (query concept). Experiments on large databases show that the RETIN method performs well in comparison to several other active strategies.
Dhara, Ashis Kumar; Mukhopadhyay, Sudipta; Dutta, Anirvan; Garg, Mandeep; Khandelwal, Niranjan
2017-02-01
Visual information of similar nodules could assist the budding radiologists in self-learning. This paper presents a content-based image retrieval (CBIR) system for pulmonary nodules, observed in lung CT images. The reported CBIR systems of pulmonary nodules cannot be put into practice as radiologists need to draw the boundary of nodules during query formation and feature database creation. In the proposed retrieval system, the pulmonary nodules are segmented using a semi-automated technique, which requires a seed point on the nodule from the end-user. The involvement of radiologists in feature database creation is also reduced, as only a seed point is expected from radiologists instead of manual delineation of the boundary of the nodules. The performance of the retrieval system depends on the accuracy of the segmentation technique. Several 3D features are explored to improve the performance of the proposed retrieval system. A set of relevant shape and texture features are considered for efficient representation of the nodules in the feature space. The proposed CBIR system is evaluated for three configurations such as configuration-1 (composite rank of malignancy "1","2" as benign and "4","5" as malignant), configuration-2 (composite rank of malignancy "1","2", "3" as benign and "4","5" as malignant), and configuration-3 (composite rank of malignancy "1","2" as benign and "3","4","5" as malignant). Considering top 5 retrieved nodules and Euclidean distance metric, the precision achieved by the proposed method for configuration-1, configuration-2, and configuration-3 are 82.14, 75.91, and 74.27 %, respectively. The performance of the proposed CBIR system is close to the most recent technique, which is dependent on radiologists for manual segmentation of nodules. A computer-aided diagnosis (CAD) system is also developed based on CBIR paradigm. Performance of the proposed CBIR-based CAD system is close to performance of the CAD system using support vector machine.
Image-based informatics for Preclinical Biomedical Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tobin Jr, Kenneth William; Aykac, Deniz; Price, Jeffery R
2006-01-01
In 2006, the New England Journal of Medicine selected medical imaging as one of the eleven most important innovations of the past 1,000 years, primarily due to its ability to allow physicians and researchers to visualize the very nature of disease. As a result of the broad-based adoption of micro imaging technologies, preclinical researchers today are generating terabytes of image data from both anatomic and functional imaging modes. In this paper we describe our early research to apply content-based image retrieval to index and manage large image libraries generated in the study of amyloid disease in mice. Amyloidosis is associatedmore » with diseases such as Alzheimer's, type 2 diabetes, and myeloma. In particular, we will focus on results to date in the area of small animal organ segmentation and description for CT, SPECT, and PET modes and present a small set of preliminary retrieval results for a specific disease state in kidney CT cross-sections.« less
Image-based Informatics for Preclinical Biomedical Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tobin Jr, Kenneth William; Aykac, Deniz; Muthusamy Govindasamy, Vijaya Priya
2006-01-01
In 2006, the New England Journal of Medicine selected medical imaging as one of the eleven most important innovations of the past 1,000 years, primarily due to its ability to allow physicians and researchers to visualize the very nature of disease. As a result of the broad-based adoption of micro imaging technologies, preclinical researchers today are generating terabytes of image data from both anatomic and functional imaging modes. In this paper we describe our early research to apply content-based image retrieval to index and manage large image libraries generated in the study of amyloid disease in mice. Amyloidosis is associatedmore » with diseases such as Alzheimer's, type 2 diabetes, chronic inflammation and myeloma. In particular, we will focus on results to date in the area of small animal organ segmentation and description for CT, SPECT, and PET modes and present a small set of preliminary retrieval results for a specific disease state in kidney CT crosssections.« less
Content based information retrieval in forensic image databases.
Geradts, Zeno; Bijhold, Jurrien
2002-03-01
This paper gives an overview of the various available image databases and ways of searching these databases on image contents. The developments in research groups of searching in image databases is evaluated and compared with the forensic databases that exist. Forensic image databases of fingerprints, faces, shoeprints, handwriting, cartridge cases, drugs tablets, and tool marks are described. The developments in these fields appear to be valuable for forensic databases, especially that of the framework in MPEG-7, where the searching in image databases is standardized. In the future, the combination of the databases (also DNA-databases) and possibilities to combine these can result in stronger forensic evidence.
Surface reflectance retrieval from imaging spectrometer data using three atmospheric codes
NASA Astrophysics Data System (ADS)
Staenz, Karl; Williams, Daniel J.; Fedosejevs, Gunar; Teillet, Phil M.
1994-12-01
Surface reflectance retrieval from imaging spectrometer data has become important for quantitative information extraction in many application areas. In order to calculate surface reflectance from remotely measured radiance, radiative transfer codes play an important role for removal of the scattering and gaseous absorption effects of the atmosphere. The present study evaluates surface reflectances retrieved from airborne visible/infrared imaging spectrometer (AVIRIS) data using three radiative transfer codes: modified 5S (M5S), 6S, and MODTRAN2. Comparisons of the retrieved surface reflectance with ground-based reflectance were made for different target types such as asphalt, gravel, grass/soil mixture (soccer field), and water (Sooke Lake). The results indicate that the estimation of the atmospheric water vapor content is important for an accurate surface reflectance retrieval regardless of the radiative transfer code used. For the present atmospheric conditions, a difference of 0.1 in aerosol optical depth had little impact on the retrieved surface reflectance. The performance of MODTRAN2 is superior in the gas absorption regions compared to M5S and 6S.
Case retrieval in medical databases by fusing heterogeneous information.
Quellec, Gwénolé; Lamard, Mathieu; Cazuguel, Guy; Roux, Christian; Cochener, Béatrice
2011-01-01
A novel content-based heterogeneous information retrieval framework, particularly well suited to browse medical databases and support new generation computer aided diagnosis (CADx) systems, is presented in this paper. It was designed to retrieve possibly incomplete documents, consisting of several images and semantic information, from a database; more complex data types such as videos can also be included in the framework. The proposed retrieval method relies on image processing, in order to characterize each individual image in a document by their digital content, and information fusion. Once the available images in a query document are characterized, a degree of match, between the query document and each reference document stored in the database, is defined for each attribute (an image feature or a metadata). A Bayesian network is used to recover missing information if need be. Finally, two novel information fusion methods are proposed to combine these degrees of match, in order to rank the reference documents by decreasing relevance for the query. In the first method, the degrees of match are fused by the Bayesian network itself. In the second method, they are fused by the Dezert-Smarandache theory: the second approach lets us model our confidence in each source of information (i.e., each attribute) and take it into account in the fusion process for a better retrieval performance. The proposed methods were applied to two heterogeneous medical databases, a diabetic retinopathy database and a mammography screening database, for computer aided diagnosis. Precisions at five of 0.809 ± 0.158 and 0.821 ± 0.177, respectively, were obtained for these two databases, which is very promising.
A hierarchical SVG image abstraction layer for medical imaging
NASA Astrophysics Data System (ADS)
Kim, Edward; Huang, Xiaolei; Tan, Gang; Long, L. Rodney; Antani, Sameer
2010-03-01
As medical imaging rapidly expands, there is an increasing need to structure and organize image data for efficient analysis, storage and retrieval. In response, a large fraction of research in the areas of content-based image retrieval (CBIR) and picture archiving and communication systems (PACS) has focused on structuring information to bridge the "semantic gap", a disparity between machine and human image understanding. An additional consideration in medical images is the organization and integration of clinical diagnostic information. As a step towards bridging the semantic gap, we design and implement a hierarchical image abstraction layer using an XML based language, Scalable Vector Graphics (SVG). Our method encodes features from the raw image and clinical information into an extensible "layer" that can be stored in a SVG document and efficiently searched. Any feature extracted from the raw image including, color, texture, orientation, size, neighbor information, etc., can be combined in our abstraction with high level descriptions or classifications. And our representation can natively characterize an image in a hierarchical tree structure to support multiple levels of segmentation. Furthermore, being a world wide web consortium (W3C) standard, SVG is able to be displayed by most web browsers, interacted with by ECMAScript (standardized scripting language, e.g. JavaScript, JScript), and indexed and retrieved by XML databases and XQuery. Using these open source technologies enables straightforward integration into existing systems. From our results, we show that the flexibility and extensibility of our abstraction facilitates effective storage and retrieval of medical images.
Comparison of Various Similarity Measures for Average Image Hash in Mobile Phone Application
NASA Astrophysics Data System (ADS)
Farisa Chaerul Haviana, Sam; Taufik, Muhammad
2017-04-01
One of the main issue in Content Based Image Retrieval (CIBR) is similarity measures for resulting image hashes. The main key challenge is to find the most benefits distance or similarity measures for calculating the similarity in term of speed and computing costs, specially under limited computing capabilities device like mobile phone. This study we utilize twelve most common and popular distance or similarity measures technique implemented in mobile phone application, to be compared and studied. The results show that all similarity measures implemented in this study was perform equally under mobile phone application. This gives more possibilities for method combinations to be implemented for image retrieval.
NASA Technical Reports Server (NTRS)
Platnick, Steven; Zhang, Zhibo
2011-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) cloud product provides three separate 1 km resolution retrievals of cloud particle effective radii (r (sub e)), derived from 1.6, 2.1 and 3.7 micron band observations. In this study, differences among the three size retrievals for maritime water clouds (designated as r (sub e), 1.6 r (sub e), 2.1 and r (sub e),3.7) were systematically investigated through a series of case studies and global analyses. Substantial differences are found between r (sub e),3.7 and r (sub e),2.1 retrievals (delta r (sub e),3.7-2.l), with a strong dependence on cloud regime. The differences are typically small, within +/- 2 micron, over relatively spatially homogeneous coastal stratocumulus cloud regions. However, for trade wind cumulus regimes, r (sub e),3.7 was found to be substantially smaller than r (sub e),2.1, sometimes by more than 10 micron. The correlation of delta r(sub e),3.7-2.1 with key cloud parameters, including the cloud optical thickness (tau), r (sub e) and a cloud horizontal heterogeneity index (H-sigma) derived from 250 m resolution MODIS 0.86 micron band observations, were investigated using one month of MODIS Terra data. It was found that differences among the three r (sub e) retrievals for optically thin clouds (tau <5) are highly variable, ranging from - 15 micron to 10 micron, likely due to the large MODIS retrieval uncertainties when the cloud is thin. The delta r (sub e),3.7-2.1 exhibited a threshold-like dependence on both r (sub e),2.l and H-sigma. The re,3.7 is found to agree reasonably well with re,2.! when re,2.l is smaller than about 15J-Lm, but becomes increasingly smaller than re,2.1 once re,2.! exceeds this size. All three re retrievals showed little dependence when H-sigma < 0.3 (defined as standard deviation divided by the mean for the 250 m pixels within a 1 km pixel retrieval). However, for H-=sigma >0.3, both r (sub e),1.6 and r (sub e),2.1 were seen to increase quickly with H-sigma. On the other hand, r (sub e),3.7 statistics showed little dependence on H-sigma and remained relatively stable over the whole range of H-sigma values. Potential contributing causes to the substantial r (sub e),3.7 and r (sub e),2.1 differences are discussed. In particular, based on both 1-D and 3-D radiative transfer simulations, we have elucidated mechanisms by which cloud heterogeneity and 3-D radiative effects can cause large differences between r (sub e),3.7 and r (sub e),2.l retrievals for highly inhomogeneous clouds. Our results suggest that the contrast in observed delta r (sub e)3.7-2.1 between cloud regimes is correlated with increases in both cloud r (sub e) and H-sigma. We also speculate that in some highly inhomogeneous drizzling clouds, vertical structure induced by drizzle and 3-D radiative effects might operate together to cause dramatic differences between r (sub e),3.7 and r (sub e),2.1 retrievals.
NASA Technical Reports Server (NTRS)
Russell, Philip B.; Bauman, Jill J.
2000-01-01
This SAGE II Science Team task focuses on the development of a multi-wavelength, multi- sensor Look-Up-Table (LUT) algorithm for retrieving information about stratospheric aerosols from global satellite-based observations of particulate extinction. The LUT algorithm combines the 4-wavelength SAGE II extinction measurements (0.385 <= lambda <= 1.02 microns) with the 7.96 micron and 12.82 micron extinction measurements from the Cryogenic Limb Array Etalon Spectrometer (CLAES) instrument, thus increasing the information content available from either sensor alone. The algorithm uses the SAGE II/CLAES composite spectra in month-latitude-altitude bins to retrieve values and uncertainties of particle effective radius R(sub eff), surface area S, volume V and size distribution width sigma(sub g).
Multiview Locally Linear Embedding for Effective Medical Image Retrieval
Shen, Hualei; Tao, Dacheng; Ma, Dianfu
2013-01-01
Content-based medical image retrieval continues to gain attention for its potential to assist radiological image interpretation and decision making. Many approaches have been proposed to improve the performance of medical image retrieval system, among which visual features such as SIFT, LBP, and intensity histogram play a critical role. Typically, these features are concatenated into a long vector to represent medical images, and thus traditional dimension reduction techniques such as locally linear embedding (LLE), principal component analysis (PCA), or laplacian eigenmaps (LE) can be employed to reduce the “curse of dimensionality”. Though these approaches show promising performance for medical image retrieval, the feature-concatenating method ignores the fact that different features have distinct physical meanings. In this paper, we propose a new method called multiview locally linear embedding (MLLE) for medical image retrieval. Following the patch alignment framework, MLLE preserves the geometric structure of the local patch in each feature space according to the LLE criterion. To explore complementary properties among a range of features, MLLE assigns different weights to local patches from different feature spaces. Finally, MLLE employs global coordinate alignment and alternating optimization techniques to learn a smooth low-dimensional embedding from different features. To justify the effectiveness of MLLE for medical image retrieval, we compare it with conventional spectral embedding methods. We conduct experiments on a subset of the IRMA medical image data set. Evaluation results show that MLLE outperforms state-of-the-art dimension reduction methods. PMID:24349277
ERIC Educational Resources Information Center
Filippidis, Stavros K.; Tsoukalas, Ioannis A.
2009-01-01
An adaptive educational system that uses adaptive presentation is presented. In this system fragments of different images present the same content and the system can choose the one most relevant to the user based on the sequential-global dimension of Felder-Silverman's learning style theory. In order to retrieve the learning style of each student…
Image query and indexing for digital x rays
NASA Astrophysics Data System (ADS)
Long, L. Rodney; Thoma, George R.
1998-12-01
The web-based medical information retrieval system (WebMIRS) allows interned access to databases containing 17,000 digitized x-ray spine images and associated text data from National Health and Nutrition Examination Surveys (NHANES). WebMIRS allows SQL query of the text, and viewing of the returned text records and images using a standard browser. We are now working (1) to determine utility of data directly derived from the images in our databases, and (2) to investigate the feasibility of computer-assisted or automated indexing of the images to support image retrieval of images of interest to biomedical researchers in the field of osteoarthritis. To build an initial database based on image data, we are manually segmenting a subset of the vertebrae, using techniques from vertebral morphometry. From this, we will derive and add to the database vertebral features. This image-derived data will enhance the user's data access capability by enabling the creation of combined SQL/image-content queries.
NASA Technical Reports Server (NTRS)
Greenwald, Thomas J.; Christopher, Sundar A.; Chou, Joyce
1997-01-01
Satellite observations of the cloud liquid water path (LWP) are compared from special sensor microwave imager (SSM/I) measurements and GOES 8 imager solar reflectance (SR) measurements to ascertain the impact of sub-field-of-view (FOV) cloud effects on SSM/I 37 GHz retrievals. The SR retrievals also incorporate estimates of the cloud droplet effective radius derived from the GOES 8 3.9-micron channel. The comparisons consist of simultaneous collocated and full-resolution measurements and are limited to nonprecipitating marine stratocumulus in the eastern Pacific for two days in October 1995. The retrievals from these independent methods are consistent for overcast SSM/I FOVS, with RMS differences as low as 0.030 kg/sq m, although biases exist for clouds with more open spatial structure, where the RMS differences increase to 0.039 kg/sq m. For broken cloudiness within the SSM/I FOV the average beam-filling error (BFE) in the microwave retrievals is found to be about 22% (average cloud amount of 73%). This systematic error is comparable with the average random errors in the microwave retrievals. However, even larger BFEs can be expected for individual FOVs and for regions with less cloudiness. By scaling the microwave retrievals by the cloud amount within the FOV, the systematic BFE can be significantly reduced but with increased RMS differences of O.046-0.058 kg/sq m when compared to the SR retrievals. The beam-filling effects reported here are significant and are expected to impact directly upon studies that use instantaneous SSM/I measurements of cloud LWP, such as cloud classification studies and validation studies involving surface-based or in situ data.
NASA Astrophysics Data System (ADS)
Phan, Raymond; Androutsos, Dimitrios
2008-01-01
In this paper, we present a logo and trademark retrieval system for unconstrained color image databases that extends the Color Edge Co-occurrence Histogram (CECH) object detection scheme. We introduce more accurate information to the CECH, by virtue of incorporating color edge detection using vector order statistics. This produces a more accurate representation of edges in color images, in comparison to the simple color pixel difference classification of edges as seen in the CECH. Our proposed method is thus reliant on edge gradient information, and as such, we call this the Color Edge Gradient Co-occurrence Histogram (CEGCH). We use this as the main mechanism for our unconstrained color logo and trademark retrieval scheme. Results illustrate that the proposed retrieval system retrieves logos and trademarks with good accuracy, and outperforms the CECH object detection scheme with higher precision and recall.
Depeursinge, Adrien; Vargas, Alejandro; Gaillard, Frédéric; Platon, Alexandra; Geissbuhler, Antoine; Poletti, Pierre-Alexandre; Müller, Henning
2012-01-01
Clinical workflows and user interfaces of image-based computer-aided diagnosis (CAD) for interstitial lung diseases in high-resolution computed tomography are introduced and discussed. Three use cases are implemented to assist students, radiologists, and physicians in the diagnosis workup of interstitial lung diseases. In a first step, the proposed system shows a three-dimensional map of categorized lung tissue patterns with quantification of the diseases based on texture analysis of the lung parenchyma. Then, based on the proportions of abnormal and normal lung tissue as well as clinical data of the patients, retrieval of similar cases is enabled using a multimodal distance aggregating content-based image retrieval (CBIR) and text-based information search. The global system leads to a hybrid detection-CBIR-based CAD, where detection-based and CBIR-based CAD show to be complementary both on the user's side and on the algorithmic side. The proposed approach is in accordance with the classical workflow of clinicians searching for similar cases in textbooks and personal collections. The developed system enables objective and customizable inter-case similarity assessment, and the performance measures obtained with a leave-one-patient-out cross-validation (LOPO CV) are representative of a clinical usage of the system.
NASA Technical Reports Server (NTRS)
Olson, William S.
1990-01-01
A physical retrieval method for estimating precipitating water distributions and other geophysical parameters based upon measurements from the DMSP-F8 SSM/I is developed. Three unique features of the retrieval method are (1) sensor antenna patterns are explicitly included to accommodate varying channel resolution; (2) precipitation-brightness temperature relationships are quantified using the cloud ensemble/radiative parameterization; and (3) spatial constraints are imposed for certain background parameters, such as humidity, which vary more slowly in the horizontal than the cloud and precipitation water contents. The general framework of the method will facilitate the incorporation of measurements from the SSMJT, SSM/T-2 and geostationary infrared measurements, as well as information from conventional sources (e.g., radiosondes) or numerical forecast model fields.
Measurement of tag confidence in user generated contents retrieval
NASA Astrophysics Data System (ADS)
Lee, Sihyoung; Min, Hyun-Seok; Lee, Young Bok; Ro, Yong Man
2009-01-01
As online image sharing services are becoming popular, the importance of correctly annotated tags is being emphasized for precise search and retrieval. Tags created by user along with user-generated contents (UGC) are often ambiguous due to the fact that some tags are highly subjective and visually unrelated to the image. They cause unwanted results to users when image search engines rely on tags. In this paper, we propose a method of measuring tag confidence so that one can differentiate confidence tags from noisy tags. The proposed tag confidence is measured from visual semantics of the image. To verify the usefulness of the proposed method, experiments were performed with UGC database from social network sites. Experimental results showed that the image retrieval performance with confidence tags was increased.
Prototypes for Content-Based Image Retrieval in Clinical Practice
Depeursinge, Adrien; Fischer, Benedikt; Müller, Henning; Deserno, Thomas M
2011-01-01
Content-based image retrieval (CBIR) has been proposed as key technology for computer-aided diagnostics (CAD). This paper reviews the state of the art and future challenges in CBIR for CAD applied to clinical practice. We define applicability to clinical practice by having recently demonstrated the CBIR system on one of the CAD demonstration workshops held at international conferences, such as SPIE Medical Imaging, CARS, SIIM, RSNA, and IEEE ISBI. From 2009 to 2011, the programs of CADdemo@CARS and the CAD Demonstration Workshop at SPIE Medical Imaging were sought for the key word “retrieval” in the title. The systems identified were analyzed and compared according to the hierarchy of gaps for CBIR systems. In total, 70 software demonstrations were analyzed. 5 systems were identified meeting the criterions. The fields of application are (i) bone age assessment, (ii) bone fractures, (iii) interstitial lung diseases, and (iv) mammography. Bridging the particular gaps of semantics, feature extraction, feature structure, and evaluation have been addressed most frequently. In specific application domains, CBIR technology is available for clinical practice. While system development has mainly focused on bridging content and feature gaps, performance and usability have become increasingly important. The evaluation must be based on a larger set of reference data, and workflow integration must be achieved before CBIR-CAD is really established in clinical practice. PMID:21892374
Ontology of gaps in content-based image retrieval.
Deserno, Thomas M; Antani, Sameer; Long, Rodney
2009-04-01
Content-based image retrieval (CBIR) is a promising technology to enrich the core functionality of picture archiving and communication systems (PACS). CBIR has a potential for making a strong impact in diagnostics, research, and education. Research as reported in the scientific literature, however, has not made significant inroads as medical CBIR applications incorporated into routine clinical medicine or medical research. The cause is often attributed (without supporting analysis) to the inability of these applications in overcoming the "semantic gap." The semantic gap divides the high-level scene understanding and interpretation available with human cognitive capabilities from the low-level pixel analysis of computers, based on mathematical processing and artificial intelligence methods. In this paper, we suggest a more systematic and comprehensive view of the concept of "gaps" in medical CBIR research. In particular, we define an ontology of 14 gaps that addresses the image content and features, as well as system performance and usability. In addition to these gaps, we identify seven system characteristics that impact CBIR applicability and performance. The framework we have created can be used a posteriori to compare medical CBIR systems and approaches for specific biomedical image domains and goals and a priori during the design phase of a medical CBIR application, as the systematic analysis of gaps provides detailed insight in system comparison and helps to direct future research.
Yang, Liu; Jin, Rong; Mummert, Lily; Sukthankar, Rahul; Goode, Adam; Zheng, Bin; Hoi, Steven C H; Satyanarayanan, Mahadev
2010-01-01
Similarity measurement is a critical component in content-based image retrieval systems, and learning a good distance metric can significantly improve retrieval performance. However, despite extensive study, there are several major shortcomings with the existing approaches for distance metric learning that can significantly affect their application to medical image retrieval. In particular, "similarity" can mean very different things in image retrieval: resemblance in visual appearance (e.g., two images that look like one another) or similarity in semantic annotation (e.g., two images of tumors that look quite different yet are both malignant). Current approaches for distance metric learning typically address only one goal without consideration of the other. This is problematic for medical image retrieval where the goal is to assist doctors in decision making. In these applications, given a query image, the goal is to retrieve similar images from a reference library whose semantic annotations could provide the medical professional with greater insight into the possible interpretations of the query image. If the system were to retrieve images that did not look like the query, then users would be less likely to trust the system; on the other hand, retrieving images that appear superficially similar to the query but are semantically unrelated is undesirable because that could lead users toward an incorrect diagnosis. Hence, learning a distance metric that preserves both visual resemblance and semantic similarity is important. We emphasize that, although our study is focused on medical image retrieval, the problem addressed in this work is critical to many image retrieval systems. We present a boosting framework for distance metric learning that aims to preserve both visual and semantic similarities. The boosting framework first learns a binary representation using side information, in the form of labeled pairs, and then computes the distance as a weighted Hamming distance using the learned binary representation. A boosting algorithm is presented to efficiently learn the distance function. We evaluate the proposed algorithm on a mammographic image reference library with an Interactive Search-Assisted Decision Support (ISADS) system and on the medical image data set from ImageCLEF. Our results show that the boosting framework compares favorably to state-of-the-art approaches for distance metric learning in retrieval accuracy, with much lower computational cost. Additional evaluation with the COREL collection shows that our algorithm works well for regular image data sets.
Indexing the medical open access literature for textual and content-based visual retrieval.
Eggel, Ivan; Müller, Henning
2010-01-01
Over the past few years an increasing amount of scientific journals have been created in an open access format. Particularly in the medical field the number of openly accessible journals is enormous making a wide body of knowledge available for analysis and retrieval. Part of the trend towards open access publications can be linked to funding bodies such as the NIH1 (National Institutes of Health) and the Swiss National Science Foundation (SNF2) requiring funded projects to make all articles of funded research available publicly. This article describes an approach to make part of the knowledge of open access journals available for retrieval including the textual information but also the images contained in the articles. For this goal all articles of 24 journals related to medical informatics and medical imaging were crawled from the web pages of BioMed Central. Text and images of the PDF (Portable Document Format) files were indexed separately and a web-based retrieval interface allows for searching via keyword queries or by visual similarity queries. Starting point for a visual similarity query can be an image on the local hard disk that is uploaded or any image found via the textual search. Search for similar documents is also possible.
NASA Astrophysics Data System (ADS)
Mueller, Wolfgang; Mueller, Henning; Marchand-Maillet, Stephane; Pun, Thierry; Squire, David M.; Pecenovic, Zoran; Giess, Christoph; de Vries, Arjen P.
2000-10-01
While in the area of relational databases interoperability is ensured by common communication protocols (e.g. ODBC/JDBC using SQL), Content Based Image Retrieval Systems (CBIRS) and other multimedia retrieval systems are lacking both a common query language and a common communication protocol. Besides its obvious short term convenience, interoperability of systems is crucial for the exchange and analysis of user data. In this paper, we present and describe an extensible XML-based query markup language, called MRML (Multimedia Retrieval markup Language). MRML is primarily designed so as to ensure interoperability between different content-based multimedia retrieval systems. Further, MRML allows researchers to preserve their freedom in extending their system as needed. MRML encapsulates multimedia queries in a way that enable multimedia (MM) query languages, MM content descriptions, MM query engines, and MM user interfaces to grow independently from each other, reaching a maximum of interoperability while ensuring a maximum of freedom for the developer. For benefitting from this, only a few simple design principles have to be respected when extending MRML for one's fprivate needs. The design of extensions withing the MRML framework will be described in detail in the paper. MRML has been implemented and tested for the CBIRS Viper, using the user interface Snake Charmer. Both are part of the GNU project and can be downloaded at our site.
Polarimetric Signatures of Initiating Convection During MC3E
NASA Technical Reports Server (NTRS)
Emory, Amber
2012-01-01
One of the goals of the Mid-latitude Continental Convective Clouds Experiment (MC3E) field campaign was to provide constraints for space-based rainfall retrieval algorithms over land. This study used datasets collected during the 2011 field campaign to combine radiometer and ground-based radar polarimetric retrievals in order to better understand hydrometeor type, habit and distribution for initiating continental convection. Cross-track and conically scanning nadir views from the Conical Scanning Millimeter-wave Imaging Radiometer (CoSMIR) were compared with ground-based polarimetric radar retrievals along the ER-2 flight track. Polarimetric signatures for both airborne radiometers and ground-based radars were well co-located with deep convection to relate radiometric signatures with low-level polarimetric radar data for hydrometeor identification and diameter estimation. For the time period of study, Z(sub DR) values indicated no presence of hail at the surface. However, the Z(sub DR) column extended well above the melting level into the mixed phase region, suggesting a possible source of frozen drop embryos for the future formation of hail. The results shown from this study contribute ground truth datasets for GPM PR algorithm development for convective events, which is an improvement upon previous stratiform precipitation centered framework.
NASA Astrophysics Data System (ADS)
Wihardi, Y.; Setiawan, W.; Nugraha, E.
2018-01-01
On this research we try to build CBIRS based on Learning Distance/Similarity Function using Linear Discriminant Analysis (LDA) and Histogram of Oriented Gradient (HoG) feature. Our method is invariant to depiction of image, such as similarity of image to image, sketch to image, and painting to image. LDA can decrease execution time compared to state of the art method, but it still needs an improvement in term of accuracy. Inaccuracy in our experiment happen because we did not perform sliding windows search and because of low number of negative samples as natural-world images.
Developing an A Priori Database for Passive Microwave Snow Water Retrievals Over Ocean
NASA Astrophysics Data System (ADS)
Yin, Mengtao; Liu, Guosheng
2017-12-01
A physically optimized a priori database is developed for Global Precipitation Measurement Microwave Imager (GMI) snow water retrievals over ocean. The initial snow water content profiles are derived from CloudSat Cloud Profiling Radar (CPR) measurements. A radiative transfer model in which the single-scattering properties of nonspherical snowflakes are based on the discrete dipole approximate results is employed to simulate brightness temperatures and their gradients. Snow water content profiles are then optimized through a one-dimensional variational (1D-Var) method. The standard deviations of the difference between observed and simulated brightness temperatures are in a similar magnitude to the observation errors defined for observation error covariance matrix after the 1D-Var optimization, indicating that this variational method is successful. This optimized database is applied in a Bayesian retrieval snow water algorithm. The retrieval results indicated that the 1D-Var approach has a positive impact on the GMI retrieved snow water content profiles by improving the physical consistency between snow water content profiles and observed brightness temperatures. Global distribution of snow water contents retrieved from the a priori database is compared with CloudSat CPR estimates. Results showed that the two estimates have a similar pattern of global distribution, and the difference of their global means is small. In addition, we investigate the impact of using physical parameters to subset the database on snow water retrievals. It is shown that using total precipitable water to subset the database with 1D-Var optimization is beneficial for snow water retrievals.
A multimedia retrieval framework based on semi-supervised ranking and relevance feedback.
Yang, Yi; Nie, Feiping; Xu, Dong; Luo, Jiebo; Zhuang, Yueting; Pan, Yunhe
2012-04-01
We present a new framework for multimedia content analysis and retrieval which consists of two independent algorithms. First, we propose a new semi-supervised algorithm called ranking with Local Regression and Global Alignment (LRGA) to learn a robust Laplacian matrix for data ranking. In LRGA, for each data point, a local linear regression model is used to predict the ranking scores of its neighboring points. A unified objective function is then proposed to globally align the local models from all the data points so that an optimal ranking score can be assigned to each data point. Second, we propose a semi-supervised long-term Relevance Feedback (RF) algorithm to refine the multimedia data representation. The proposed long-term RF algorithm utilizes both the multimedia data distribution in multimedia feature space and the history RF information provided by users. A trace ratio optimization problem is then formulated and solved by an efficient algorithm. The algorithms have been applied to several content-based multimedia retrieval applications, including cross-media retrieval, image retrieval, and 3D motion/pose data retrieval. Comprehensive experiments on four data sets have demonstrated its advantages in precision, robustness, scalability, and computational efficiency.
Global Interior Robot Localisation by a Colour Content Image Retrieval System
NASA Astrophysics Data System (ADS)
Chaari, A.; Lelandais, S.; Montagne, C.; Ahmed, M. Ben
2007-12-01
We propose a new global localisation approach to determine a coarse position of a mobile robot in structured indoor space using colour-based image retrieval techniques. We use an original method of colour quantisation based on the baker's transformation to extract a two-dimensional colour pallet combining as well space and vicinity-related information as colourimetric aspect of the original image. We conceive several retrieving approaches bringing to a specific similarity measure [InlineEquation not available: see fulltext.] integrating the space organisation of colours in the pallet. The baker's transformation provides a quantisation of the image into a space where colours that are nearby in the original space are also nearby in the output space, thereby providing dimensionality reduction and invariance to minor changes in the image. Whereas the distance [InlineEquation not available: see fulltext.] provides for partial invariance to translation, sight point small changes, and scale factor. In addition to this study, we developed a hierarchical search module based on the logic classification of images following rooms. This hierarchical module reduces the searching indoor space and ensures an improvement of our system performances. Results are then compared with those brought by colour histograms provided with several similarity measures. In this paper, we focus on colour-based features to describe indoor images. A finalised system must obviously integrate other type of signature like shape and texture.
Registering parameters and granules of wave observations: IMAGE RPI success story
NASA Astrophysics Data System (ADS)
Galkin, I. A.; Charisi, A.; Fung, S. F.; Benson, R. F.; Reinisch, B. W.
2015-12-01
Modern metadata systems strive to help scientists locate data relevant to their research and then retrieve them quickly. Success of this mission depends on the organization and completeness of metadata. Each relevant data resource has to be registered; each content has to be described; each data file has to be accessible. Ultimately, data discoverability is about the practical ability to describe data content and location. Correspondingly, data registration has a "Parameter" level, at which content is specified by listing available observed properties (parameters), and a "Granule" level, at which download links are given to data records (granules). Until recently, both parameter- and granule-level data registrations were accomplished at NASA Virtual System Observatory easily by listing provided parameters and building Granule documents with URLs to the datafile locations, usually those at NASA CDAWeb data warehouse. With the introduction of the Virtual Wave Observatory (VWO), however, the parameter/granule concept faced a scalability challenge. The wave phenomenon content is rich with descriptors of the wave generation, propagation, interaction with propagation media, and observation processes. Additionally, the wave phenomenon content varies from record to record, reflecting changes in the constituent processes, making it necessary to generate granule documents at sub-minute resolution. We will present the first success story of registering 234,178 records of IMAGE Radio Plasma Imager (RPI) plasmagram data and Level 2 derived data products in ESPAS (near-Earth Space Data Infrastructure for e-Science), using the VWO-inspired wave ontology. The granules are arranged in overlapping display and numerical data collections. Display data include (a) auto-prospected plasmagrams of potential interest, (b) interesting plasmagrams annotated by human analysts or software, and (c) spectacular plasmagrams annotated by analysts as publication-quality examples of the RPI science. Numerical data products include plasmagram-derived records containing signatures of local and remote signal propagation, as well as field-aligned profiles of electron density in the plasmasphere. Registered granules of RPI observations are available in ESPAS for their content-targeted search and retrieval.
Kherfi, Mohammed Lamine; Ziou, Djemel
2006-04-01
In content-based image retrieval, understanding the user's needs is a challenging task that requires integrating him in the process of retrieval. Relevance feedback (RF) has proven to be an effective tool for taking the user's judgement into account. In this paper, we present a new RF framework based on a feature selection algorithm that nicely combines the advantages of a probabilistic formulation with those of using both the positive example (PE) and the negative example (NE). Through interaction with the user, our algorithm learns the importance he assigns to image features, and then applies the results obtained to define similarity measures that correspond better to his judgement. The use of the NE allows images undesired by the user to be discarded, thereby improving retrieval accuracy. As for the probabilistic formulation of the problem, it presents a multitude of advantages and opens the door to more modeling possibilities that achieve a good feature selection. It makes it possible to cluster the query data into classes, choose the probability law that best models each class, model missing data, and support queries with multiple PE and/or NE classes. The basic principle of our algorithm is to assign more importance to features with a high likelihood and those which distinguish well between PE classes and NE classes. The proposed algorithm was validated separately and in image retrieval context, and the experiments show that it performs a good feature selection and contributes to improving retrieval effectiveness.
Translation position determination in ptychographic coherent diffraction imaging.
Zhang, Fucai; Peterson, Isaac; Vila-Comamala, Joan; Diaz, Ana; Berenguer, Felisa; Bean, Richard; Chen, Bo; Menzel, Andreas; Robinson, Ian K; Rodenburg, John M
2013-06-03
Accurate knowledge of translation positions is essential in ptychography to achieve a good image quality and the diffraction limited resolution. We propose a method to retrieve and correct position errors during the image reconstruction iterations. Sub-pixel position accuracy after refinement is shown to be achievable within several tens of iterations. Simulation and experimental results for both optical and X-ray wavelengths are given. The method improves both the quality of the retrieved object image and relaxes the position accuracy requirement while acquiring the diffraction patterns.
Psychophysical studies of the performance of an image database retrieval system
NASA Astrophysics Data System (ADS)
Papathomas, Thomas V.; Conway, Tiffany E.; Cox, Ingemar J.; Ghosn, Joumana; Miller, Matt L.; Minka, Thomas P.; Yianilos, Peter N.
1998-07-01
We describe psychophysical experiments conducted to study PicHunter, a content-based image retrieval (CBIR) system. Experiment 1 studies the importance of using (a) semantic information, (2) memory of earlier input and (3) relative, rather than absolute, judgements of image similarity. The target testing paradigm is used in which a user must search for an image identical to a target. We find that the best performance comes from a version of PicHunter that uses only semantic cues, with memory and relative similarity judgements. Second best is use of both pictorial and semantic cues, with memory and relative similarity judgements. Most reports of CBIR systems provide only qualitative measures of performance based on how similar retrieved images are to a target. Experiment 2 puts PicHunter into this context with a more rigorous test. We first establish a baseline for our database by measuring the time required to find an image that is similar to a target when the images are presented in random order. Although PicHunter's performance is measurably better than this, the test is weak because even random presentation of images yields reasonably short search times. This casts doubt on the strength of results given in other reports where no baseline is established.
A unified framework of image latent feature learning on Sina microblog
NASA Astrophysics Data System (ADS)
Wei, Jinjin; Jin, Zhigang; Zhou, Yuan; Zhang, Rui
2015-10-01
Large-scale user-contributed images with texts are rapidly increasing on the social media websites, such as Sina microblog. However, the noise and incomplete correspondence between the images and the texts give rise to the difficulty in precise image retrieval and ranking. In this paper, a hypergraph-based learning framework is proposed for image ranking, which simultaneously utilizes visual feature, textual content and social link information to estimate the relevance between images. Representing each image as a vertex in the hypergraph, complex relationship between images can be reflected exactly. Then updating the weight of hyperedges throughout the hypergraph learning process, the effect of different edges can be adaptively modulated in the constructed hypergraph. Furthermore, the popularity degree of the image is employed to re-rank the retrieval results. Comparative experiments on a large-scale Sina microblog data-set demonstrate the effectiveness of the proposed approach.
Sensing more modes with fewer sub-apertures: the LIFTed Shack-Hartmann wavefront sensor.
Meimon, Serge; Fusco, Thierry; Michau, Vincent; Plantet, Cédric
2014-05-15
We propose here a novel way to analyze Shack-Hartmann wavefront sensor images in order to retrieve more modes than the two centroid coordinates per sub-aperture. To do so, we use the linearized focal-plane technique (LIFT) phase retrieval method for each sub-aperture. We demonstrate that we can increase the number of modes sensed with the same computational burden per mode. For instance, we show the ability to control a 21×21 actuator deformable mirror using a 10×10 lenslet array.
VidCat: an image and video analysis service for personal media management
NASA Astrophysics Data System (ADS)
Begeja, Lee; Zavesky, Eric; Liu, Zhu; Gibbon, David; Gopalan, Raghuraman; Shahraray, Behzad
2013-03-01
Cloud-based storage and consumption of personal photos and videos provides increased accessibility, functionality, and satisfaction for mobile users. One cloud service frontier that is recently growing is that of personal media management. This work presents a system called VidCat that assists users in the tagging, organization, and retrieval of their personal media by faces and visual content similarity, time, and date information. Evaluations for the effectiveness of the copy detection and face recognition algorithms on standard datasets are also discussed. Finally, the system includes a set of application programming interfaces (API's) allowing content to be uploaded, analyzed, and retrieved on any client with simple HTTP-based methods as demonstrated with a prototype developed on the iOS and Android mobile platforms.
Annotating image ROIs with text descriptions for multimodal biomedical document retrieval
NASA Astrophysics Data System (ADS)
You, Daekeun; Simpson, Matthew; Antani, Sameer; Demner-Fushman, Dina; Thoma, George R.
2013-01-01
Regions of interest (ROIs) that are pointed to by overlaid markers (arrows, asterisks, etc.) in biomedical images are expected to contain more important and relevant information than other regions for biomedical article indexing and retrieval. We have developed several algorithms that localize and extract the ROIs by recognizing markers on images. Cropped ROIs then need to be annotated with contents describing them best. In most cases accurate textual descriptions of the ROIs can be found from figure captions, and these need to be combined with image ROIs for annotation. The annotated ROIs can then be used to, for example, train classifiers that separate ROIs into known categories (medical concepts), or to build visual ontologies, for indexing and retrieval of biomedical articles. We propose an algorithm that pairs visual and textual ROIs that are extracted from images and figure captions, respectively. This algorithm based on dynamic time warping (DTW) clusters recognized pointers into groups, each of which contains pointers with identical visual properties (shape, size, color, etc.). Then a rule-based matching algorithm finds the best matching group for each textual ROI mention. Our method yields a precision and recall of 96% and 79%, respectively, when ground truth textual ROI data is used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tourassi, Georgia D.; Harrawood, Brian; Singh, Swatee
The purpose of this study was to evaluate image similarity measures employed in an information-theoretic computer-assisted detection (IT-CAD) scheme. The scheme was developed for content-based retrieval and detection of masses in screening mammograms. The study is aimed toward an interactive clinical paradigm where physicians query the proposed IT-CAD scheme on mammographic locations that are either visually suspicious or indicated as suspicious by other cuing CAD systems. The IT-CAD scheme provides an evidence-based, second opinion for query mammographic locations using a knowledge database of mass and normal cases. In this study, eight entropy-based similarity measures were compared with respect to retrievalmore » precision and detection accuracy using a database of 1820 mammographic regions of interest. The IT-CAD scheme was then validated on a separate database for false positive reduction of progressively more challenging visual cues generated by an existing, in-house mass detection system. The study showed that the image similarity measures fall into one of two categories; one category is better suited to the retrieval of semantically similar cases while the second is more effective with knowledge-based decisions regarding the presence of a true mass in the query location. In addition, the IT-CAD scheme yielded a substantial reduction in false-positive detections while maintaining high detection rate for malignant masses.« less
Forward and backward tone mapping of high dynamic range images based on subband architecture
NASA Astrophysics Data System (ADS)
Bouzidi, Ines; Ouled Zaid, Azza
2015-01-01
This paper presents a novel High Dynamic Range (HDR) tone mapping (TM) system based on sub-band architecture. Standard wavelet filters of Daubechies, Symlets, Coiflets and Biorthogonal were used to estimate the proposed system performance in terms of Low Dynamic Range (LDR) image quality and reconstructed HDR image fidelity. During TM stage, the HDR image is firstly decomposed in sub-bands using symmetrical analysis-synthesis filter bank. The transform coefficients are then rescaled using a predefined gain map. The inverse Tone Mapping (iTM) stage is straightforward. Indeed, the LDR image passes through the same sub-band architecture. But, instead of reducing the dynamic range, the LDR content is boosted to an HDR representation. Moreover, in our TM sheme, we included an optimization module to select the gain map components that minimize the reconstruction error, and consequently resulting in high fidelity HDR content. Comparisons with recent state-of-the-art methods have shown that our method provides better results in terms of visual quality and HDR reconstruction fidelity using objective and subjective evaluations.
[Vegetation index estimation by chlorophyll content of grassland based on spectral analysis].
Xiao, Han; Chen, Xiu-Wan; Yang, Zhen-Yu; Li, Huai-Yu; Zhu, Han
2014-11-01
Comparing the methods of existing remote sensing research on the estimation of chlorophyll content, the present paper confirms that the vegetation index is one of the most practical and popular research methods. In recent years, the increasingly serious problem of grassland degradation. This paper, firstly, analyzes the measured reflectance spectral curve and its first derivative curve in the grasslands of Songpan, Sichuan and Gongger, Inner Mongolia, conducts correlation analysis between these two spectral curves and chlorophyll content, and finds out the regulation between REP (red edge position) and grassland chlorophyll content, that is, the higher the chlorophyll content is, the higher the REIP (red-edge inflection point) value would be. Then, this paper constructs GCI (grassland chlorophyll index) and selects the most suitable band for retrieval. Finally, this paper calculates the GCI by the use of satellite hyperspectral image, conducts the verification and accuracy analysis of the calculation results compared with chlorophyll content data collected from field of twice experiments. The result shows that for grassland chlorophyll content, GCI has stronger sensitivity than other indices of chlorophyll, and has higher estimation accuracy. GCI is the first proposed to estimate the grassland chlorophyll content, and has wide application potential for the remote sensing retrieval of grassland chlorophyll content. In addition, the grassland chlorophyll content estimation method based on remote sensing retrieval in this paper provides new research ideas for other vegetation biochemical parameters' estimation, vegetation growth status' evaluation and grassland ecological environment change's monitoring.
Fahmy, Gamal; Black, John; Panchanathan, Sethuraman
2006-06-01
Today's multimedia applications demand sophisticated compression and classification techniques in order to store, transmit, and retrieve audio-visual information efficiently. Over the last decade, perceptually based image compression methods have been gaining importance. These methods take into account the abilities (and the limitations) of human visual perception (HVP) when performing compression. The upcoming MPEG 7 standard also addresses the need for succinct classification and indexing of visual content for efficient retrieval. However, there has been no research that has attempted to exploit the characteristics of the human visual system to perform both compression and classification jointly. One area of HVP that has unexplored potential for joint compression and classification is spatial frequency perception. Spatial frequency content that is perceived by humans can be characterized in terms of three parameters, which are: 1) magnitude; 2) phase; and 3) orientation. While the magnitude of spatial frequency content has been exploited in several existing image compression techniques, the novel contribution of this paper is its focus on the use of phase coherence for joint compression and classification in the wavelet domain. Specifically, this paper describes a human visual system-based method for measuring the degree to which an image contains coherent (perceptible) phase information, and then exploits that information to provide joint compression and classification. Simulation results that demonstrate the efficiency of this method are presented.
Bone age assessment by content-based image retrieval and case-based reasoning
NASA Astrophysics Data System (ADS)
Fischer, Benedikt; Welter, Petra; Grouls, Christoph; Günther, Rolf W.; Deserno, Thomas M.
2011-03-01
Skeletal maturity is assessed visually by comparing hand radiographs to a standardized reference image atlas. Most common are the methods by Greulich & Pyle and Tanner & Whitehouse. For computer-aided diagnosis (CAD), local image regions of interest (ROI) such as the epiphysis or the carpal areas are extracted and evaluated. Heuristic approaches trying to automatically extract, measure and classify bones and distances between bones suffer from the high variability of biological material and the differences in bone development resulting from age, gender and ethnic origin. Content-based image retrieval (CBIR) provides a robust solution without delineating and measuring bones. In this work, epiphyseal ROIs (eROIS) of a hand radiograph are compared to previous cases with known age, mimicking a human observer. Leaving-one-out experiments are conducted on 1,102 left hand radiographs and 15,428 metacarpal and phalangeal eROIs from the publicly available USC hand atlas. The similarity of the eROIs is assessed by a combination of cross-correlation, image distortion model, and Tamura texture features, yielding a mean error rate of 0.97 years and a variance of below 0.63 years. Furthermore, we introduce a publicly available online-demonstration system, where queries on the USC dataset as well as on uploaded radiographs are performed for instant CAD. In future, we plan to evaluate physician with CBIR-CAD against physician without CBIR-CAD rather than physician vs. CBIR-CAD.
Convex formulation of multiple instance learning from positive and unlabeled bags.
Bao, Han; Sakai, Tomoya; Sato, Issei; Sugiyama, Masashi
2018-05-24
Multiple instance learning (MIL) is a variation of traditional supervised learning problems where data (referred to as bags) are composed of sub-elements (referred to as instances) and only bag labels are available. MIL has a variety of applications such as content-based image retrieval, text categorization, and medical diagnosis. Most of the previous work for MIL assume that training bags are fully labeled. However, it is often difficult to obtain an enough number of labeled bags in practical situations, while many unlabeled bags are available. A learning framework called PU classification (positive and unlabeled classification) can address this problem. In this paper, we propose a convex PU classification method to solve an MIL problem. We experimentally show that the proposed method achieves better performance with significantly lower computation costs than an existing method for PU-MIL. Copyright © 2018 Elsevier Ltd. All rights reserved.
Using complex networks towards information retrieval and diagnostics in multidimensional imaging
NASA Astrophysics Data System (ADS)
Banerjee, Soumya Jyoti; Azharuddin, Mohammad; Sen, Debanjan; Savale, Smruti; Datta, Himadri; Dasgupta, Anjan Kr; Roy, Soumen
2015-12-01
We present a fresh and broad yet simple approach towards information retrieval in general and diagnostics in particular by applying the theory of complex networks on multidimensional, dynamic images. We demonstrate a successful use of our method with the time series generated from high content thermal imaging videos of patients suffering from the aqueous deficient dry eye (ADDE) disease. Remarkably, network analyses of thermal imaging time series of contact lens users and patients upon whom Laser-Assisted in situ Keratomileusis (Lasik) surgery has been conducted, exhibit pronounced similarity with results obtained from ADDE patients. We also propose a general framework for the transformation of multidimensional images to networks for futuristic biometry. Our approach is general and scalable to other fluctuation-based devices where network parameters derived from fluctuations, act as effective discriminators and diagnostic markers.
Using complex networks towards information retrieval and diagnostics in multidimensional imaging.
Banerjee, Soumya Jyoti; Azharuddin, Mohammad; Sen, Debanjan; Savale, Smruti; Datta, Himadri; Dasgupta, Anjan Kr; Roy, Soumen
2015-12-02
We present a fresh and broad yet simple approach towards information retrieval in general and diagnostics in particular by applying the theory of complex networks on multidimensional, dynamic images. We demonstrate a successful use of our method with the time series generated from high content thermal imaging videos of patients suffering from the aqueous deficient dry eye (ADDE) disease. Remarkably, network analyses of thermal imaging time series of contact lens users and patients upon whom Laser-Assisted in situ Keratomileusis (Lasik) surgery has been conducted, exhibit pronounced similarity with results obtained from ADDE patients. We also propose a general framework for the transformation of multidimensional images to networks for futuristic biometry. Our approach is general and scalable to other fluctuation-based devices where network parameters derived from fluctuations, act as effective discriminators and diagnostic markers.
Using complex networks towards information retrieval and diagnostics in multidimensional imaging
Banerjee, Soumya Jyoti; Azharuddin, Mohammad; Sen, Debanjan; Savale, Smruti; Datta, Himadri; Dasgupta, Anjan Kr; Roy, Soumen
2015-01-01
We present a fresh and broad yet simple approach towards information retrieval in general and diagnostics in particular by applying the theory of complex networks on multidimensional, dynamic images. We demonstrate a successful use of our method with the time series generated from high content thermal imaging videos of patients suffering from the aqueous deficient dry eye (ADDE) disease. Remarkably, network analyses of thermal imaging time series of contact lens users and patients upon whom Laser-Assisted in situ Keratomileusis (Lasik) surgery has been conducted, exhibit pronounced similarity with results obtained from ADDE patients. We also propose a general framework for the transformation of multidimensional images to networks for futuristic biometry. Our approach is general and scalable to other fluctuation-based devices where network parameters derived from fluctuations, act as effective discriminators and diagnostic markers. PMID:26626047
LandEx - Fast, FOSS-Based Application for Query and Retrieval of Land Cover Patterns
NASA Astrophysics Data System (ADS)
Netzel, P.; Stepinski, T.
2012-12-01
The amount of satellite-based spatial data is continuously increasing making a development of efficient data search tools a priority. The bulk of existing research on searching satellite-gathered data concentrates on images and is based on the concept of Content-Based Image Retrieval (CBIR); however, available solutions are not efficient and robust enough to be put to use as deployable web-based search tools. Here we report on development of a practical, deployable tool that searches classified, rather than raw image. LandEx (Landscape Explorer) is a GeoWeb-based tool for Content-Based Pattern Retrieval (CBPR) contained within the National Land Cover Dataset 2006 (NLCD2006). The USGS-developed NLCD2006 is derived from Landsat multispectral images; it covers the entire conterminous U.S. with the resolution of 30 meters/pixel and it depicts 16 land cover classes. The size of NLCD2006 is about 10 Gpixels (161,000 x 100,000 pixels). LandEx is a multi-tier GeoWeb application based on Open Source Software. Main components are: GeoExt/OpenLayers (user interface), GeoServer (OGC WMS, WCS and WPS server), and GRASS (calculation engine). LandEx performs search using query-by-example approach: user selects a reference scene (exhibiting a chosen pattern of land cover classes) and the tool produces, in real time, a map indicating a degree of similarity between the reference pattern and all local patterns across the U.S. Scene pattern is encapsulated by a 2D histogram of classes and sizes of single-class clumps. Pattern similarity is based on the notion of mutual information. The resultant similarity map can be viewed and navigated in a web browser, or it can download as a GeoTiff file for more in-depth analysis. The LandEx is available at http://sil.uc.edu
An Experimental Study on the Iso-Content-Based Angle Similarity Measure.
ERIC Educational Resources Information Center
Zhang, Jin; Rasmussen, Edie M.
2002-01-01
Retrieval performance of the iso-content-based angle similarity measure within the angle, distance, conjunction, disjunction, and ellipse retrieval models is compared with retrieval performance of the distance similarity measure and the angle similarity measure. Results show the iso-content-based angle similarity measure achieves satisfactory…
Al-Nawashi, Malek; Al-Hazaimeh, Obaida M; Saraee, Mohamad
2017-01-01
Abnormal activity detection plays a crucial role in surveillance applications, and a surveillance system that can perform robustly in an academic environment has become an urgent need. In this paper, we propose a novel framework for an automatic real-time video-based surveillance system which can simultaneously perform the tracking, semantic scene learning, and abnormality detection in an academic environment. To develop our system, we have divided the work into three phases: preprocessing phase, abnormal human activity detection phase, and content-based image retrieval phase. For motion object detection, we used the temporal-differencing algorithm and then located the motions region using the Gaussian function. Furthermore, the shape model based on OMEGA equation was used as a filter for the detected objects (i.e., human and non-human). For object activities analysis, we evaluated and analyzed the human activities of the detected objects. We classified the human activities into two groups: normal activities and abnormal activities based on the support vector machine. The machine then provides an automatic warning in case of abnormal human activities. It also embeds a method to retrieve the detected object from the database for object recognition and identification using content-based image retrieval. Finally, a software-based simulation using MATLAB was performed and the results of the conducted experiments showed an excellent surveillance system that can simultaneously perform the tracking, semantic scene learning, and abnormality detection in an academic environment with no human intervention.
Janes, AC; Ross, RS; Farmer, S; Frederick, BB; Nickerson, L; Lukas, SE; Stern, CE
2013-01-01
Nicotine dependence is a chronic and difficult to treat disorder. While environmental stimuli associated with smoking precipitate craving and relapse, it is unknown whether smoking cues are cognitively processed differently than neutral stimuli. To evaluate working memory differences between smoking-related and neutral stimuli, we conducted a delay-match-to-sample (DMS) task concurrently with functional magnetic resonance imaging (fMRI) in nicotine dependent participants. The DMS task evaluates brain activation during the encoding, maintenance, and retrieval phases of working memory. Smoking images induced significantly more subjective craving, and greater midline cortical activation during encoding in comparison to neutral stimuli that were similar in content yet lacked a smoking component. The insula, which is involved in maintaining nicotine dependence, was active during the successful retrieval of previously viewed smoking vs. neutral images. In contrast, neutral images required more prefrontal cortex-mediated active maintenance during the maintenance period. These findings indicate that distinct brain regions are involved in the different phases of working memory for smoking-related vs. neutral images. Importantly the results implicate the insula in the retrieval of smoking-related stimuli, which is relevant given the insula’s emerging role in addiction. PMID:24261848
Janes, Amy C; Ross, Robert S; Farmer, Stacey; Frederick, Blaise B; Nickerson, Lisa D; Lukas, Scott E; Stern, Chantal E
2015-03-01
Nicotine dependence is a chronic and difficult to treat disorder. While environmental stimuli associated with smoking precipitate craving and relapse, it is unknown whether smoking cues are cognitively processed differently than neutral stimuli. To evaluate working memory differences between smoking-related and neutral stimuli, we conducted a delay-match-to-sample (DMS) task concurrently with functional magnetic resonance imaging (fMRI) in nicotine-dependent participants. The DMS task evaluates brain activation during the encoding, maintenance and retrieval phases of working memory. Smoking images induced significantly more subjective craving, and greater midline cortical activation during encoding in comparison to neutral stimuli that were similar in content yet lacked a smoking component. The insula, which is involved in maintaining nicotine dependence, was active during the successful retrieval of previously viewed smoking versus neutral images. In contrast, neutral images required more prefrontal cortex-mediated active maintenance during the maintenance period. These findings indicate that distinct brain regions are involved in the different phases of working memory for smoking-related versus neutral images. Importantly, the results implicate the insula in the retrieval of smoking-related stimuli, which is relevant given the insula's emerging role in addiction. © 2013 Society for the Study of Addiction.
2011-01-01
Background Radiologists' training is based on intensive practice and can be improved with the use of diagnostic training systems. However, existing systems typically require laboriously prepared training cases and lack integration into the clinical environment with a proper learning scenario. Consequently, diagnostic training systems advancing decision-making skills are not well established in radiological education. Methods We investigated didactic concepts and appraised methods appropriate to the radiology domain, as follows: (i) Adult learning theories stress the importance of work-related practice gained in a team of problem-solvers; (ii) Case-based reasoning (CBR) parallels the human problem-solving process; (iii) Content-based image retrieval (CBIR) can be useful for computer-aided diagnosis (CAD). To overcome the known drawbacks of existing learning systems, we developed the concept of image-based case retrieval for radiological education (IBCR-RE). The IBCR-RE diagnostic training is embedded into a didactic framework based on the Seven Jump approach, which is well established in problem-based learning (PBL). In order to provide a learning environment that is as similar as possible to radiological practice, we have analysed the radiological workflow and environment. Results We mapped the IBCR-RE diagnostic training approach into the Image Retrieval in Medical Applications (IRMA) framework, resulting in the proposed concept of the IRMAdiag training application. IRMAdiag makes use of the modular structure of IRMA and comprises (i) the IRMA core, i.e., the IRMA CBIR engine; and (ii) the IRMAcon viewer. We propose embedding IRMAdiag into hospital information technology (IT) infrastructure using the standard protocols Digital Imaging and Communications in Medicine (DICOM) and Health Level Seven (HL7). Furthermore, we present a case description and a scheme of planned evaluations to comprehensively assess the system. Conclusions The IBCR-RE paradigm incorporates a novel combination of essential aspects of diagnostic learning in radiology: (i) Provision of work-relevant experiences in a training environment integrated into the radiologist's working context; (ii) Up-to-date training cases that do not require cumbersome preparation because they are provided by routinely generated electronic medical records; (iii) Support of the way adults learn while remaining suitable for the patient- and problem-oriented nature of medicine. Future work will address unanswered questions to complete the implementation of the IRMAdiag trainer. PMID:22032775
Welter, Petra; Deserno, Thomas M; Fischer, Benedikt; Günther, Rolf W; Spreckelsen, Cord
2011-10-27
Radiologists' training is based on intensive practice and can be improved with the use of diagnostic training systems. However, existing systems typically require laboriously prepared training cases and lack integration into the clinical environment with a proper learning scenario. Consequently, diagnostic training systems advancing decision-making skills are not well established in radiological education. We investigated didactic concepts and appraised methods appropriate to the radiology domain, as follows: (i) Adult learning theories stress the importance of work-related practice gained in a team of problem-solvers; (ii) Case-based reasoning (CBR) parallels the human problem-solving process; (iii) Content-based image retrieval (CBIR) can be useful for computer-aided diagnosis (CAD). To overcome the known drawbacks of existing learning systems, we developed the concept of image-based case retrieval for radiological education (IBCR-RE). The IBCR-RE diagnostic training is embedded into a didactic framework based on the Seven Jump approach, which is well established in problem-based learning (PBL). In order to provide a learning environment that is as similar as possible to radiological practice, we have analysed the radiological workflow and environment. We mapped the IBCR-RE diagnostic training approach into the Image Retrieval in Medical Applications (IRMA) framework, resulting in the proposed concept of the IRMAdiag training application. IRMAdiag makes use of the modular structure of IRMA and comprises (i) the IRMA core, i.e., the IRMA CBIR engine; and (ii) the IRMAcon viewer. We propose embedding IRMAdiag into hospital information technology (IT) infrastructure using the standard protocols Digital Imaging and Communications in Medicine (DICOM) and Health Level Seven (HL7). Furthermore, we present a case description and a scheme of planned evaluations to comprehensively assess the system. The IBCR-RE paradigm incorporates a novel combination of essential aspects of diagnostic learning in radiology: (i) Provision of work-relevant experiences in a training environment integrated into the radiologist's working context; (ii) Up-to-date training cases that do not require cumbersome preparation because they are provided by routinely generated electronic medical records; (iii) Support of the way adults learn while remaining suitable for the patient- and problem-oriented nature of medicine. Future work will address unanswered questions to complete the implementation of the IRMAdiag trainer.
In situ X-ray ptychography imaging of high-temperature CO{sub 2} acceptor particle agglomerates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Høydalsvik, Kristin; Bø Fløystad, Jostein; Esmaeili, Morteza
2014-06-16
Imaging nanoparticles under relevant reaction conditions of high temperature and gas pressure is difficult because conventional imaging techniques, like transmission electron microscopy, cannot be used. Here we demonstrate that the coherent diffractive imaging technique of X-ray ptychography can be used for in situ phase contrast imaging in structure studies at atmospheric pressure and elevated temperatures. Lithium zirconate, a candidate CO{sub 2} capture material, was studied at a pressure of one atmosphere in air and in CO{sub 2}, at temperatures exceeding 600 °C. Images with a spatial resolution better than 200 nm were retrieved, and possibilities for improving the experiment are described.
Widmer, Antoine; Schaer, Roger; Markonis, Dimitrios; Muller, Henning
2014-01-01
Wearable computing devices are starting to change the way users interact with computers and the Internet. Among them, Google Glass includes a small screen located in front of the right eye, a camera filming in front of the user and a small computing unit. Google Glass has the advantage to provide online services while allowing the user to perform tasks with his/her hands. These augmented glasses uncover many useful applications, also in the medical domain. For example, Google Glass can easily provide video conference between medical doctors to discuss a live case. Using these glasses can also facilitate medical information search by allowing the access of a large amount of annotated medical cases during a consultation in a non-disruptive fashion for medical staff. In this paper, we developed a Google Glass application able to take a photo and send it to a medical image retrieval system along with keywords in order to retrieve similar cases. As a preliminary assessment of the usability of the application, we tested the application under three conditions (images of the skin; printed CT scans and MRI images; and CT and MRI images acquired directly from an LCD screen) to explore whether using Google Glass affects the accuracy of the results returned by the medical image retrieval system. The preliminary results show that despite minor problems due to the relative stability of the Google Glass, images can be sent to and processed by the medical image retrieval system and similar images are returned to the user, potentially helping in the decision making process.
NASA Astrophysics Data System (ADS)
Zhang, Z.; Werner, F.; Cho, H.-M.; Wind, G.; Platnick, S.; Ackerman, A. S.; Di Girolamo, L.; Marshak, A.; Meyer, Kerry
2017-02-01
The so-called bi-spectral method retrieves cloud optical thickness (τ) and cloud droplet effective radius (re) simultaneously from a pair of cloud reflectance observations, one in a visible or near infrared (VIS/NIR) band and the other in a shortwave-infrared (SWIR) band. A cloudy pixel is usually assumed to be horizontally homogeneous in the retrieval. Ignoring sub-pixel variations of cloud reflectances can lead to a significant bias in the retrieved τ and re. In this study, we use the Taylor expansion of a two-variable function to understand and quantify the impacts of sub-pixel variances of VIS/NIR and SWIR cloud reflectances and their covariance on the τ and re retrievals. This framework takes into account the fact that the retrievals are determined by both VIS/NIR and SWIR band observations in a mutually dependent way. In comparison with previous studies, it provides a more comprehensive understanding of how sub-pixel cloud reflectance variations impact the τ and re retrievals based on the bi-spectral method. In particular, our framework provides a mathematical explanation of how the sub-pixel variation in VIS/NIR band influences the re retrieval and why it can sometimes outweigh the influence of variations in the SWIR band and dominate the error in re retrievals, leading to a potential contribution of positive bias to the re retrieval.
NASA Technical Reports Server (NTRS)
Zhang, Z; Werner, F.; Cho, H. -M.; Wind, Galina; Platnick, S.; Ackerman, A. S.; Di Girolamo, L.; Marshak, A.; Meyer, Kerry
2017-01-01
The so-called bi-spectral method retrieves cloud optical thickness (t) and cloud droplet effective radius (re) simultaneously from a pair of cloud reflectance observations, one in a visible or near infrared (VIS/NIR) band and the other in a shortwave-infrared (SWIR) band. A cloudy pixel is usually assumed to be horizontally homogeneous in the retrieval. Ignoring sub-pixel variations of cloud reflectances can lead to a significant bias in the retrieved t and re. In this study, we use the Taylor expansion of a two-variable function to understand and quantify the impacts of sub-pixel variances of VIS/NIR and SWIR cloud reflectances and their covariance on the t and re retrievals. This framework takes into account the fact that the retrievals are determined by both VIS/NIR and SWIR band observations in a mutually dependent way. In comparison with previous studies, it provides a more comprehensive understanding of how sub-pixel cloud reflectance variations impact the t and re retrievals based on the bi-spectral method. In particular, our framework provides a mathematical explanation of how the sub-pixel variation in VIS/NIR band influences the re retrieval and why it can sometimes outweigh the influence of variations in the SWIR band and dominate the error in re retrievals, leading to a potential contribution of positive bias to the re retrieval.
NASA Technical Reports Server (NTRS)
Minnis, P.; Sun-Mack, S.; Bedka, K. M.; Yost, C. R.; Trepte, Q. Z.; Smith, W. L., Jr.; Painemal, D.; Chen, Y.; Palikonda, R.; Dong, X.;
2016-01-01
Validation is a key component of remote sensing that can take many different forms. The NASA LaRC Satellite ClOud and Radiative Property retrieval System (SatCORPS) is applied to many different imager datasets including those from the geostationary satellites, Meteosat, Himiwari-8, INSAT-3D, GOES, and MTSAT, as well as from the low-Earth orbiting satellite imagers, MODIS, AVHRR, and VIIRS. While each of these imagers have similar sets of channels with wavelengths near 0.65, 3.7, 11, and 12 micrometers, many differences among them can lead to discrepancies in the retrievals. These differences include spatial resolution, spectral response functions, viewing conditions, and calibrations, among others. Even when analyzed with nearly identical algorithms, it is necessary, because of those discrepancies, to validate the results from each imager separately in order to assess the uncertainties in the individual parameters. This paper presents comparisons of various SatCORPS-retrieved cloud parameters with independent measurements and retrievals from a variety of instruments. These include surface and space-based lidar and radar data from CALIPSO and CloudSat, respectively, to assess the cloud fraction, height, base, optical depth, and ice water path; satellite and surface microwave radiometers to evaluate cloud liquid water path; surface-based radiometers to evaluate optical depth and effective particle size; and airborne in-situ data to evaluate ice water content, effective particle size, and other parameters. The results of comparisons are compared and contrasted and the factors influencing the differences are discussed.
NASA Technical Reports Server (NTRS)
Olson, William S.; Raymond, William H.
1990-01-01
The physical retrieval of geophysical parameters based upon remotely sensed data requires a sensor response model which relates the upwelling radiances that the sensor observes to the parameters to be retrieved. In the retrieval of precipitation water contents from satellite passive microwave observations, the sensor response model has two basic components. First, a description of the radiative transfer of microwaves through a precipitating atmosphere must be considered, because it is necessary to establish the physical relationship between precipitation water content and upwelling microwave brightness temperature. Also the spatial response of the satellite microwave sensor (or antenna pattern) must be included in the description of sensor response, since precipitation and the associated brightness temperature field can vary over a typical microwave sensor resolution footprint. A 'population' of convective cells, as well as stratiform clouds, are simulated using a computationally-efficient multi-cylinder cloud model. Ensembles of clouds selected at random from the population, distributed over a 25 km x 25 km model domain, serve as the basis for radiative transfer calculations of upwelling brightness temperatures at the SSM/I frequencies. Sensor spatial response is treated explicitly by convolving the upwelling brightness temperature by the domain-integrated SSM/I antenna patterns. The sensor response model is utilized in precipitation water content retrievals.
Reversible integer wavelet transform for blind image hiding method
Bibi, Nargis; Mahmood, Zahid; Akram, Tallha; Naqvi, Syed Rameez
2017-01-01
In this article, a blind data hiding reversible methodology to embed the secret data for hiding purpose into cover image is proposed. The key advantage of this research work is to resolve the privacy and secrecy issues raised during the data transmission over the internet. Firstly, data is decomposed into sub-bands using the integer wavelets. For decomposition, the Fresnelet transform is utilized which encrypts the secret data by choosing a unique key parameter to construct a dummy pattern. The dummy pattern is then embedded into an approximated sub-band of the cover image. Our proposed method reveals high-capacity and great imperceptibility of the secret embedded data. With the utilization of family of integer wavelets, the proposed novel approach becomes more efficient for hiding and retrieving process. It retrieved the secret hidden data from the embedded data blindly, without the requirement of original cover image. PMID:28498855
System for pathology categorization and retrieval in chest radiographs
NASA Astrophysics Data System (ADS)
Avni, Uri; Greenspan, Hayit; Konen, Eli; Sharon, Michal; Goldberger, Jacob
2011-03-01
In this paper we present an overview of a system we have been developing for the past several years for efficient image categorization and retrieval in large radiograph archives. The methodology is based on local patch representation of the image content, using a bag of visual words approach and similarity-based categorization with a kernel based SVM classifier. We show an application to pathology-level categorization of chest x-ray data, the most popular examination in radiology. Our study deals with pathology detection and identification of individual pathologies including right and left pleural effusion, enlarged heart and cases of enlarged mediastinum. The input from a radiologist provided a global label for the entire image (healthy/pathology), and the categorization was conducted on the entire image, with no need for segmentation algorithms or any geometrical rules. An automatic diagnostic-level categorization, even on such an elementary level as healthy vs pathological, provides a useful tool for radiologists on this popular and important examination. This is a first step towards similarity-based categorization, which has a major clinical implications for computer-assisted diagnostics.
Integration of CBIR in radiological routine in accordance with IHE
NASA Astrophysics Data System (ADS)
Welter, Petra; Deserno, Thomas M.; Fischer, Benedikt; Wein, Berthold B.; Ott, Bastian; Günther, Rolf W.
2009-02-01
Increasing use of digital imaging processing leads to an enormous amount of imaging data. The access to picture archiving and communication systems (PACS), however, is solely textually, leading to sparse retrieval results because of ambiguous or missing image descriptions. Content-based image retrieval (CBIR) systems can improve the clinical diagnostic outcome significantly. However, current CBIR systems are not able to integrate their results with clinical workflow and PACS. Existing communication standards like DICOM and HL7 leave many options for implementation and do not ensure full interoperability. We present a concept of the standardized integration of a CBIR system for the radiology workflow in accordance with the Integrating the Healthcare Enterprise (IHE) framework. This is based on the IHE integration profile 'Post-Processing Workflow' (PPW) defining responsibilities as well as standardized communication and utilizing the DICOM Structured Report (DICOM SR). Because nowadays most of PACS and RIS systems are not yet fully IHE compliant to PPW, we also suggest an intermediate approach with the concepts of the CAD-PACS Toolkit. The integration is independent of the particular PACS and RIS system. Therefore, it supports the widespread application of CBIR in radiological routine. As a result, the approach is exemplarily applied to the Image Retrieval in Medical Applications (IRMA) framework.
Broadband Phase Retrieval for Image-Based Wavefront Sensing
NASA Technical Reports Server (NTRS)
Dean, Bruce H.
2007-01-01
A focus-diverse phase-retrieval algorithm has been shown to perform adequately for the purpose of image-based wavefront sensing when (1) broadband light (typically spanning the visible spectrum) is used in forming the images by use of an optical system under test and (2) the assumption of monochromaticity is applied to the broadband image data. Heretofore, it had been assumed that in order to obtain adequate performance, it is necessary to use narrowband or monochromatic light. Some background information, including definitions of terms and a brief description of pertinent aspects of image-based phase retrieval, is prerequisite to a meaningful summary of the present development. Phase retrieval is a general term used in optics to denote estimation of optical imperfections or aberrations of an optical system under test. The term image-based wavefront sensing refers to a general class of algorithms that recover optical phase information, and phase-retrieval algorithms constitute a subset of this class. In phase retrieval, one utilizes the measured response of the optical system under test to produce a phase estimate. The optical response of the system is defined as the image of a point-source object, which could be a star or a laboratory point source. The phase-retrieval problem is characterized as image-based in the sense that a charge-coupled-device camera, preferably of scientific imaging quality, is used to collect image data where the optical system would normally form an image. In a variant of phase retrieval, denoted phase-diverse phase retrieval [which can include focus-diverse phase retrieval (in which various defocus planes are used)], an additional known aberration (or an equivalent diversity function) is superimposed as an aid in estimating unknown aberrations by use of an image-based wavefront-sensing algorithm. Image-based phase-retrieval differs from such other wavefront-sensing methods, such as interferometry, shearing interferometry, curvature wavefront sensing, and Shack-Hartmann sensing, all of which entail disadvantages in comparison with image-based methods. The main disadvantages of these non-image based methods are complexity of test equipment and the need for a wavefront reference.
NASA Astrophysics Data System (ADS)
Bell, A.; Tang, G.; Yang, P.; Wu, D.
2017-12-01
Due to their high spatial and temporal coverage, cirrus clouds have a profound role in regulating the Earth's energy budget. Variability of their radiative, geometric, and microphysical properties can pose significant uncertainties in global climate model simulations if not adequately constrained. Thus, the development of retrieval methodologies able to accurately retrieve ice cloud properties and present associated uncertainties is essential. The effectiveness of cirrus cloud retrievals relies on accurate a priori understanding of ice radiative properties, as well as the current state of the atmosphere. Current studies have implemented information content theory analyses prior to retrievals to quantify the amount of information that should be expected on parameters to be retrieved, as well as the relative contribution of information provided by certain measurement channels. Through this analysis, retrieval algorithms can be designed in a way to maximize the information in measurements, and therefore ensure enough information is present to retrieve ice cloud properties. In this study, we present such an information content analysis to quantify the amount of information to be expected in retrievals of cirrus ice water path and particle effective diameter using sub-millimeter and thermal infrared radiometry. Preliminary results show these bands to be sensitive to changes in ice water path and effective diameter, and thus lend confidence their ability to simultaneously retrieve these parameters. Further quantification of sensitivity and the information provided from these bands can then be used to design and optimal retrieval scheme. While this information content analysis is employed on a theoretical retrieval combining simulated radiance measurements, the methodology could in general be applicable to any instrument or retrieval approach.
NASA Astrophysics Data System (ADS)
Smith, W. L., Jr.; Spangenberg, D.; Fleeger, C.; Sun-Mack, S.; Chen, Y.; Minnis, P.
2016-12-01
Determining accurate cloud properties horizontally and vertically over a full range of time and space scales is currently next to impossible using data from either active or passive remote sensors or from modeling systems. Passive satellite imagers provide horizontal and temporal resolution of clouds, but little direct information on vertical structure. Active sensors provide vertical resolution but limited spatial and temporal coverage. Cloud models embedded in NWP can produce realistic clouds but often not at the right time or location. Thus, empirical techniques that integrate information from multiple observing and modeling systems are needed to more accurately characterize clouds and their impacts. Such a strategy is employed here in a new cloud water content profiling technique developed for application to satellite imager cloud retrievals based on VIS, IR and NIR radiances. Parameterizations are developed to relate imager retrievals of cloud top phase, optical depth, effective radius and temperature to ice and liquid water content profiles. The vertical structure information contained in the parameterizations is characterized climatologically from cloud model analyses, aircraft observations, ground-based remote sensing data, and from CloudSat and CALIPSO. Thus, realistic cloud-type dependent vertical structure information (including guidance on cloud phase partitioning) circumvents poor assumptions regarding vertical homogeneity that plague current passive satellite retrievals. This paper addresses mixed phase cloud conditions for clouds with glaciated tops including those associated with convection and mid-latitude storm systems. Novel outcomes of our approach include (1) simultaneous retrievals of ice and liquid water content and path, which are validated with active sensor, microwave and in-situ data, and yield improved global cloud climatologies, and (2) new estimates of super-cooled LWC, which are demonstrated in aviation safety applications and validated with icing PIREPS. The initial validation is encouraging for single-layer cloud conditions. More work is needed to test and refine the method for global application in a wider range of cloud conditions. A brief overview of our current method, applications, verification, and plans for future work will be presented.
Research of image retrieval technology based on color feature
NASA Astrophysics Data System (ADS)
Fu, Yanjun; Jiang, Guangyu; Chen, Fengying
2009-10-01
Recently, with the development of the communication and the computer technology and the improvement of the storage technology and the capability of the digital image equipment, more and more image resources are given to us than ever. And thus the solution of how to locate the proper image quickly and accurately is wanted.The early method is to set up a key word for searching in the database, but now the method has become very difficult when we search much more picture that we need. In order to overcome the limitation of the traditional searching method, content based image retrieval technology was aroused. Now, it is a hot research subject.Color image retrieval is the important part of it. Color is the most important feature for color image retrieval. Three key questions on how to make use of the color characteristic are discussed in the paper: the expression of color, the abstraction of color characteristic and the measurement of likeness based on color. On the basis, the extraction technology of the color histogram characteristic is especially discussed. Considering the advantages and disadvantages of the overall histogram and the partition histogram, a new method based the partition-overall histogram is proposed. The basic thought of it is to divide the image space according to a certain strategy, and then calculate color histogram of each block as the color feature of this block. Users choose the blocks that contain important space information, confirming the right value. The system calculates the distance between the corresponding blocks that users choosed. Other blocks merge into part overall histograms again, and the distance should be calculated. Then accumulate all the distance as the real distance between two pictures. The partition-overall histogram comprehensive utilizes advantages of two methods above, by choosing blocks makes the feature contain more spatial information which can improve performance; the distances between partition-overall histogram make rotating and translation does not change. The HSV color space is used to show color characteristic of image, which is suitable to the visual characteristic of human. Taking advance of human's feeling to color, it quantifies color sector with unequal interval, and get characteristic vector. Finally, it matches the similarity of image with the algorithm of the histogram intersection and the partition-overall histogram. Users can choose a demonstration image to show inquired vision require, and also can adjust several right value through the relevance-feedback method to obtain the best result of search.An image retrieval system based on these approaches is presented. The result of the experiments shows that the image retrieval based on partition-overall histogram can keep the space distribution information while abstracting color feature efficiently, and it is superior to the normal color histograms in precision rate while researching. The query precision rate is more than 95%. In addition, the efficient block expression will lower the complicate degree of the images to be searched, and thus the searching efficiency will be increased. The image retrieval algorithms based on the partition-overall histogram proposed in the paper is efficient and effective.
X-ray phase contrast tomography from whole organ down to single cells
NASA Astrophysics Data System (ADS)
Krenkel, Martin; Töpperwien, Mareike; Bartels, Matthias; Lingor, Paul; Schild, Detlev; Salditt, Tim
2014-09-01
We use propagation based hard x-ray phase contrast tomography to explore the three dimensional structure of neuronal tissues from the organ down to sub-cellular level, based on combinations of synchrotron radiation and laboratory sources. To this end a laboratory based microfocus tomography setup has been built in which the geometry was optimized for phase contrast imaging and tomography. By utilizing phase retrieval algorithms, quantitative reconstructions can be obtained that enable automatic renderings without edge artifacts. A high brightness liquid metal microfocus x-ray source in combination with a high resolution detector yielding a resolution down to 1.5 μm. To extend the method to nanoscale resolution we use a divergent x-ray waveguide beam geometry at the synchrotron. Thus, the magnification can be easily tuned by placing the sample at different defocus distances. Due to the small Fresnel numbers in this geometry the measured images are of holographic nature which poses a challenge in phase retrieval.
PIRIA: a general tool for indexing, search, and retrieval of multimedia content
NASA Astrophysics Data System (ADS)
Joint, Magali; Moellic, Pierre-Alain; Hede, P.; Adam, P.
2004-05-01
The Internet is a continuously expanding source of multimedia content and information. There are many products in development to search, retrieve, and understand multimedia content. But most of the current image search/retrieval engines, rely on a image database manually pre-indexed with keywords. Computers are still powerless to understand the semantic meaning of still or animated image content. Piria (Program for the Indexing and Research of Images by Affinity), the search engine we have developed brings this possibility closer to reality. Piria is a novel search engine that uses the query by example method. A user query is submitted to the system, which then returns a list of images ranked by similarity, obtained by a metric distance that operates on every indexed image signature. These indexed images are compared according to several different classifiers, not only Keywords, but also Form, Color and Texture, taking into account geometric transformations and variance like rotation, symmetry, mirroring, etc. Form - Edges extracted by an efficient segmentation algorithm. Color - Histogram, semantic color segmentation and spatial color relationship. Texture - Texture wavelets and local edge patterns. If required, Piria is also able to fuse results from multiple classifiers with a new classification of index categories: Single Indexer Single Call (SISC), Single Indexer Multiple Call (SIMC), Multiple Indexers Single Call (MISC) or Multiple Indexers Multiple Call (MIMC). Commercial and industrial applications will be explored and discussed as well as current and future development.
Multimedia content description framework
NASA Technical Reports Server (NTRS)
Bergman, Lawrence David (Inventor); Mohan, Rakesh (Inventor); Li, Chung-Sheng (Inventor); Smith, John Richard (Inventor); Kim, Michelle Yoonk Yung (Inventor)
2003-01-01
A framework is provided for describing multimedia content and a system in which a plurality of multimedia storage devices employing the content description methods of the present invention can interoperate. In accordance with one form of the present invention, the content description framework is a description scheme (DS) for describing streams or aggregations of multimedia objects, which may comprise audio, images, video, text, time series, and various other modalities. This description scheme can accommodate an essentially limitless number of descriptors in terms of features, semantics or metadata, and facilitate content-based search, index, and retrieval, among other capabilities, for both streamed or aggregated multimedia objects.
NASA Astrophysics Data System (ADS)
Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Yang, Ping
2016-05-01
An optimal estimation (OE) retrieval method is developed to infer three ice cloud properties simultaneously: optical thickness (τ), effective radius (reff), and cloud top height (h). This method is based on a fast radiative transfer (RT) model and infrared (IR) observations from the MODerate resolution Imaging Spectroradiometer (MODIS). This study conducts thorough error and information content analyses to understand the error propagation and performance of retrievals from various MODIS band combinations under different cloud/atmosphere states. Specifically, the algorithm takes into account four error sources: measurement uncertainty, fast RT model uncertainty, uncertainties in ancillary data sets (e.g., atmospheric state), and assumed ice crystal habit uncertainties. It is found that the ancillary and ice crystal habit error sources dominate the MODIS IR retrieval uncertainty and cannot be ignored. The information content analysis shows that for a given ice cloud, the use of four MODIS IR observations is sufficient to retrieve the three cloud properties. However, the selection of MODIS IR bands that provide the most information and their order of importance varies with both the ice cloud properties and the ambient atmospheric and the surface states. As a result, this study suggests the inclusion of all MODIS IR bands in practice since little a priori information is available.
Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Yang, Ping
2016-05-27
An optimal estimation (OE) retrieval method is developed to infer three ice cloud properties simultaneously: optical thickness ( τ ), effective radius ( r eff ), and cloud-top height ( h ). This method is based on a fast radiative transfer (RT) model and infrared (IR) observations from the MODerate resolution Imaging Spectroradiometer (MODIS). This study conducts thorough error and information content analyses to understand the error propagation and performance of retrievals from various MODIS band combinations under different cloud/atmosphere states. Specifically, the algorithm takes into account four error sources: measurement uncertainty, fast RT model uncertainty, uncertainties in ancillary datasets (e.g., atmospheric state), and assumed ice crystal habit uncertainties. It is found that the ancillary and ice crystal habit error sources dominate the MODIS IR retrieval uncertainty and cannot be ignored. The information content analysis shows that, for a given ice cloud, the use of four MODIS IR observations is sufficient to retrieve the three cloud properties. However, the selection of MODIS IR bands that provide the most information and their order of importance varies with both the ice cloud properties and the ambient atmospheric and the surface states. As a result, this study suggests the inclusion of all MODIS IR bands in practice since little a priori information is available.
NASA Astrophysics Data System (ADS)
Siadat, Mohammad-Reza; Soltanian-Zadeh, Hamid; Fotouhi, Farshad A.; Elisevich, Kost
2003-01-01
This paper presents the development of a human brain multimedia database for surgical candidacy determination in temporal lobe epilepsy. The focus of the paper is on content-based image management, navigation and retrieval. Several medical image-processing methods including our newly developed segmentation method are utilized for information extraction/correlation and indexing. The input data includes T1-, T2-Weighted MRI and FLAIR MRI and ictal and interictal SPECT modalities with associated clinical data and EEG data analysis. The database can answer queries regarding issues such as the correlation between the attribute X of the entity Y and the outcome of a temporal lobe epilepsy surgery. The entity Y can be a brain anatomical structure such as the hippocampus. The attribute X can be either a functionality feature of the anatomical structure Y, calculated with SPECT modalities, such as signal average, or a volumetric/morphological feature of the entity Y such as volume or average curvature. The outcome of the surgery can be any surgery assessment such as memory quotient. A determination is made regarding surgical candidacy by analysis of both textual and image data. The current database system suggests a surgical determination for the cases with relatively small hippocampus and high signal intensity average on FLAIR images within the hippocampus. This indication pretty much fits with the surgeons" expectations/observations. Moreover, as the database gets more populated with patient profiles and individual surgical outcomes, using data mining methods one may discover partially invisible correlations between the contents of different modalities of data and the outcome of the surgery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, R; Jee, K; Sharp, G
Purpose: Studies show that WEPL can be determined from modulated dose rate functions (DRF). However, the previous calibration method based on statistics of the DRF is sensitive to energy mixing of protons due to scattering through different materials (termed as range mixing here), causing inaccuracies in the determination of WEPL. This study intends to explore time-domain features of the DRF to reduce the effect of range mixing in proton radiography (pRG) by this technique. Methods: An amorphous silicon flat panel (PaxScan™ 4030CB, Varian Medical Systems, Inc., Palo Alto, CA) was placed behind phantoms to measure DRFs from a proton beammore » modulated by a specially designed modulator wheel. The performance of two methods, the previously used method based on the root mean square (RMS) and the new approach based on time-domain features of the DRF, are compared for retrieving WEPL and RSP from pRG of a Gammex phantom. Results: Calibration by T{sub 80} (the time point for 80% of the major peak) was more robust to range mixing and produced WEPL with improved accuracy. The error of RSP was reduced from 8.2% to 1.7% for lung equivalent material, with the mean error for all other materials reduced from 1.2% to 0.7%. The mean error of the full width at half maximum (FWHM) of retrieved inserts was decreased from 25.85% to 5.89% for the RMS and T{sub 80} method respectively. Monte Carlo simulations in simplified cases also demonstrated that the T{sub 80} method is less sensitive to range mixing than the RMS method. Conclusion: WEPL images have been retrieved based on single flat panel measured DRFs, with inaccuracies reduced by exploiting time-domain features as the calibration parameter. The T{sub 80} method is validated to be less sensitive to range mixing and can thus retrieve the WEPL values in proximity of interfaces with improved numerical and spatial accuracy for proton radiography.« less
NASA Astrophysics Data System (ADS)
Hashimoto, M.; Nakajima, T.; Morimoto, S.; Takenaka, H.
2014-12-01
We have developed a new satellite remote sensing algorithm to retrieve the aerosol optical characteristics using multi-wavelength and multi-pixel information of satellite imagers (MWP method). In this algorithm, the inversion method is a combination of maximum a posteriori (MAP) method (Rodgers, 2000) and the Phillips-Twomey method (Phillips, 1962; Twomey, 1963) as a smoothing constraint for the state vector. Furthermore, with the progress of computing technique, this method has being combined with the direct radiation transfer calculation numerically solved by each iteration step of the non-linear inverse problem, without using LUT (Look Up Table) with several constraints.Retrieved parameters in our algorithm are aerosol optical properties, such as aerosol optical thickness (AOT) of fine and coarse mode particles, a volume soot fraction in fine mode particles, and ground surface albedo of each observed wavelength. We simultaneously retrieve all the parameters that characterize pixels in each of horizontal sub-domains consisting the target area. Then we successively apply the retrieval method to all the sub-domains in the target area.We conducted numerical tests for the retrieval of aerosol properties and ground surface albedo for GOSAT/CAI imager data to test the algorithm for the land area. The result of the experiment showed that AOTs of fine mode and coarse mode, soot fraction and ground surface albedo are successfully retrieved within expected accuracy. We discuss the accuracy of the algorithm for various land surface types. Then, we applied this algorithm to GOSAT/CAI imager data, and we compared retrieved and surface-observed AOTs at the CAI pixel closest to an AERONET (Aerosol Robotic Network) or SKYNET site in each region. Comparison at several sites in urban area indicated that AOTs retrieved by our method are in agreement with surface-observed AOT within ±0.066.Our future work is to extend the algorithm for analysis of AGEOS-II/GLI and GCOM/C-SGLI data.
Atmospheric Precorrected Differential Absorption technique to retrieve columnar water vapor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlaepfer, D.; Itten, K.I.; Borel, C.C.
1998-09-01
Differential absorption techniques are suitable to retrieve the total column water vapor contents from imaging spectroscopy data. A technique called Atmospheric Precorrected Differential Absorption (APDA) is derived directly from simplified radiative transfer equations. It combines a partial atmospheric correction with a differential absorption technique. The atmospheric path radiance term is iteratively corrected during the retrieval of water vapor. This improves the results especially over low background albedos. The error of the method for various ground reflectance spectra is below 7% for most of the spectra. The channel combinations for two test cases are then defined, using a quantitative procedure, whichmore » is based on MODTRAN simulations and the image itself. An error analysis indicates that the influence of aerosols and channel calibration is minimal. The APDA technique is then applied to two AVIRIS images acquired in 1991 and 1995. The accuracy of the measured water vapor columns is within a range of {+-}5% compared to ground truth radiosonde data.« less
Intelligent Interfaces for Mining Large-Scale RNAi-HCS Image Databases
Lin, Chen; Mak, Wayne; Hong, Pengyu; Sepp, Katharine; Perrimon, Norbert
2010-01-01
Recently, High-content screening (HCS) has been combined with RNA interference (RNAi) to become an essential image-based high-throughput method for studying genes and biological networks through RNAi-induced cellular phenotype analyses. However, a genome-wide RNAi-HCS screen typically generates tens of thousands of images, most of which remain uncategorized due to the inadequacies of existing HCS image analysis tools. Until now, it still requires highly trained scientists to browse a prohibitively large RNAi-HCS image database and produce only a handful of qualitative results regarding cellular morphological phenotypes. For this reason we have developed intelligent interfaces to facilitate the application of the HCS technology in biomedical research. Our new interfaces empower biologists with computational power not only to effectively and efficiently explore large-scale RNAi-HCS image databases, but also to apply their knowledge and experience to interactive mining of cellular phenotypes using Content-Based Image Retrieval (CBIR) with Relevance Feedback (RF) techniques. PMID:21278820
Wavelet-based associative memory
NASA Astrophysics Data System (ADS)
Jones, Katharine J.
2004-04-01
Faces provide important characteristics of a person"s identification. In security checks, face recognition still remains the method in continuous use despite other approaches (i.e. fingerprints, voice recognition, pupil contraction, DNA scanners). With an associative memory, the output data is recalled directly using the input data. This can be achieved with a Nonlinear Holographic Associative Memory (NHAM). This approach can also distinguish between strongly correlated images and images that are partially or totally enclosed by others. Adaptive wavelet lifting has been used for Content-Based Image Retrieval. In this paper, adaptive wavelet lifting will be applied to face recognition to achieve an associative memory.
Wang, Ling; Zhao, Geng-Xing; Zhu, Xi-Cun; Wang, Rui-Yan; Chang, Chun-Yan
2013-10-01
Taking Qixia City of Shandong, China as the study area, and based on the Landsat-5 TM and ALOS AVNIR-2 images, the canopy retrieval reflectance of apple trees at blossom stage was acquired. In combining with the measured reflectance of sample trees, the nitrogen-sensitive spectral indices were constructed and selected. By using the sensitive spectral indices as the independent variables, the nitrogen retrieval models were established, and the model with the best accuracy was used for spatial retrieve. The correlations between the spectral indices and the nitrogen nutritional status were in the order of canopy > leaf > flower. The sensitive indices were mainly composed of green, red, and near infrared bands. The accuracy of the retrieval models was in the order of support vector regression > multi-variable stepwise regression > one-variable regression. The retrieval results based on different images were similar, and showed that the leaf nitrogen content was mainly of grades 3-4 (27-33 g x kg(-1)), and the canopy nitrogen nutrient indices were mainly of grades 2-4 (TM: 38-47 g x kg(-1); ALOS: 32-41 g x kg(-1)). The spatial distribution of the retrieval nitrogen nutritional status based on different images also showed the similar trend, i. e., the nitrogen nutritional status was higher in the north and south than that in the middle part of the study area, and the areas with the high grades of leaf nitrogen and canopy nitrogen were mainly located in Sujiadian Town and Songshan subdistrict in the northwest, Zangjiazhuang Town and Tingkou Town in the northeast, and Shewopo Town in the south, which were consistent with the distribution of the key towns for apple production in Qixia City. This study provided a feasible method for the acquisition of nitrogen nutritional status of apple trees on macroscopic scale, and also, provided reference for other similar remote sensing retrievals.
NASA Astrophysics Data System (ADS)
Yuan, Sheng; Yang, Yangrui; Liu, Xuemei; Zhou, Xin; Wei, Zhenzhuo
2018-01-01
An optical image transformation and encryption scheme is proposed based on double random-phase encoding (DRPE) and compressive ghost imaging (CGI) techniques. In this scheme, a secret image is first transformed into a binary image with the phase-retrieval-based DRPE technique, and then encoded by a series of random amplitude patterns according to the ghost imaging (GI) principle. Compressive sensing, corrosion and expansion operations are implemented to retrieve the secret image in the decryption process. This encryption scheme takes the advantage of complementary capabilities offered by the phase-retrieval-based DRPE and GI-based encryption techniques. That is the phase-retrieval-based DRPE is used to overcome the blurring defect of the decrypted image in the GI-based encryption, and the CGI not only reduces the data amount of the ciphertext, but also enhances the security of DRPE. Computer simulation results are presented to verify the performance of the proposed encryption scheme.
IAU Working Group on Wide-Field Imaging.
NASA Astrophysics Data System (ADS)
MacGillivray, H. T.
1991-01-01
Contents: 1. Introduction - The IAU Working Group on Wide-Field Imaging (R. M. West). 2. Reports from the Sub-Sections of the Working Group - a. Sky surveys and patrols (R. M. West). b. Photographic techniques (D. F. Malin). c. Digitization techniques (H. T. MacGillivray). d. Archival and retrieval of wide-field data (B. Lasker). 3. Meeting of the Organising Committee (R. M. West). 4. Wide-field plate archives (M. Tsvetkov). 5. Reproduction of the Palomar Observatory Sky Surveys (R. J. Brucato). 6. Status of the St ScI scan-distribution program (B. Lasker). 7. Pixel addition - pushing Schmidt plates to B = 25 (M. R. S. Hawkins). 8. Photometry from Estar film (S. Phillipps, Q. Parker). 9. ASCHOT - Astrophysical Schmidt Orbital Telescope (H. Lorenz). 10. The Hitchhiker parallel CCD camera (J. Davies, M. Disney, S. Driver, I. Morgan, S. Phillipps).
Xu, Yingying; Lin, Lanfen; Hu, Hongjie; Wang, Dan; Zhu, Wenchao; Wang, Jian; Han, Xian-Hua; Chen, Yen-Wei
2018-01-01
The bag of visual words (BoVW) model is a powerful tool for feature representation that can integrate various handcrafted features like intensity, texture, and spatial information. In this paper, we propose a novel BoVW-based method that incorporates texture and spatial information for the content-based image retrieval to assist radiologists in clinical diagnosis. This paper presents a texture-specific BoVW method to represent focal liver lesions (FLLs). Pixels in the region of interest (ROI) are classified into nine texture categories using the rotation-invariant uniform local binary pattern method. The BoVW-based features are calculated for each texture category. In addition, a spatial cone matching (SCM)-based representation strategy is proposed to describe the spatial information of the visual words in the ROI. In a pilot study, eight radiologists with different clinical experience performed diagnoses for 20 cases with and without the top six retrieved results. A total of 132 multiphase computed tomography volumes including five pathological types were collected. The texture-specific BoVW was compared to other BoVW-based methods using the constructed dataset of FLLs. The results show that our proposed model outperforms the other three BoVW methods in discriminating different lesions. The SCM method, which adds spatial information to the orderless BoVW model, impacted the retrieval performance. In the pilot trial, the average diagnosis accuracy of the radiologists was improved from 66 to 80% using the retrieval system. The preliminary results indicate that the texture-specific features and the SCM-based BoVW features can effectively characterize various liver lesions. The retrieval system has the potential to improve the diagnostic accuracy and the confidence of the radiologists.
Exploring context and content links in social media: a latent space method.
Qi, Guo-Jun; Aggarwal, Charu; Tian, Qi; Ji, Heng; Huang, Thomas S
2012-05-01
Social media networks contain both content and context-specific information. Most existing methods work with either of the two for the purpose of multimedia mining and retrieval. In reality, both content and context information are rich sources of information for mining, and the full power of mining and processing algorithms can be realized only with the use of a combination of the two. This paper proposes a new algorithm which mines both context and content links in social media networks to discover the underlying latent semantic space. This mapping of the multimedia objects into latent feature vectors enables the use of any off-the-shelf multimedia retrieval algorithms. Compared to the state-of-the-art latent methods in multimedia analysis, this algorithm effectively solves the problem of sparse context links by mining the geometric structure underlying the content links between multimedia objects. Specifically for multimedia annotation, we show that an effective algorithm can be developed to directly construct annotation models by simultaneously leveraging both context and content information based on latent structure between correlated semantic concepts. We conduct experiments on the Flickr data set, which contains user tags linked with images. We illustrate the advantages of our approach over the state-of-the-art multimedia retrieval techniques.
Visual analytics for semantic queries of TerraSAR-X image content
NASA Astrophysics Data System (ADS)
Espinoza-Molina, Daniela; Alonso, Kevin; Datcu, Mihai
2015-10-01
With the continuous image product acquisition of satellite missions, the size of the image archives is considerably increasing every day as well as the variety and complexity of their content, surpassing the end-user capacity to analyse and exploit them. Advances in the image retrieval field have contributed to the development of tools for interactive exploration and extraction of the images from huge archives using different parameters like metadata, key-words, and basic image descriptors. Even though we count on more powerful tools for automated image retrieval and data analysis, we still face the problem of understanding and analyzing the results. Thus, a systematic computational analysis of these results is required in order to provide to the end-user a summary of the archive content in comprehensible terms. In this context, visual analytics combines automated analysis with interactive visualizations analysis techniques for an effective understanding, reasoning and decision making on the basis of very large and complex datasets. Moreover, currently several researches are focused on associating the content of the images with semantic definitions for describing the data in a format to be easily understood by the end-user. In this paper, we present our approach for computing visual analytics and semantically querying the TerraSAR-X archive. Our approach is mainly composed of four steps: 1) the generation of a data model that explains the information contained in a TerraSAR-X product. The model is formed by primitive descriptors and metadata entries, 2) the storage of this model in a database system, 3) the semantic definition of the image content based on machine learning algorithms and relevance feedback, and 4) querying the image archive using semantic descriptors as query parameters and computing the statistical analysis of the query results. The experimental results shows that with the help of visual analytics and semantic definitions we are able to explain the image content using semantic terms and the relations between them answering questions such as what is the percentage of urban area in a region? or what is the distribution of water bodies in a city?
New approach for cognitive analysis and understanding of medical patterns and visualizations
NASA Astrophysics Data System (ADS)
Ogiela, Marek R.; Tadeusiewicz, Ryszard
2003-11-01
This paper presents new opportunities for applying linguistic description of the picture merit content and AI methods to undertake tasks of the automatic understanding of images semantics in intelligent medical information systems. A successful obtaining of the crucial semantic content of the medical image may contribute considerably to the creation of new intelligent multimedia cognitive medical systems. Thanks to the new idea of cognitive resonance between stream of the data extracted from the image using linguistic methods and expectations taken from the representaion of the medical knowledge, it is possible to understand the merit content of the image even if teh form of the image is very different from any known pattern. This article proves that structural techniques of artificial intelligence may be applied in the case of tasks related to automatic classification and machine perception based on semantic pattern content in order to determine the semantic meaning of the patterns. In the paper are described some examples presenting ways of applying such techniques in the creation of cognitive vision systems for selected classes of medical images. On the base of scientific research described in the paper we try to build some new systems for collecting, storing, retrieving and intelligent interpreting selected medical images especially obtained in radiological and MRI examinations.
Attention-based image similarity measure with application to content-based information retrieval
NASA Astrophysics Data System (ADS)
Stentiford, Fred W. M.
2003-01-01
Whilst storage and capture technologies are able to cope with huge numbers of images, image retrieval is in danger of rendering many repositories valueless because of the difficulty of access. This paper proposes a similarity measure that imposes only very weak assumptions on the nature of the features used in the recognition process. This approach does not make use of a pre-defined set of feature measurements which are extracted from a query image and used to match those from database images, but instead generates features on a trial and error basis during the calculation of the similarity measure. This has the significant advantage that features that determine similarity can match whatever image property is important in a particular region whether it be a shape, a texture, a colour or a combination of all three. It means that effort is expended searching for the best feature for the region rather than expecting that a fixed feature set will perform optimally over the whole area of an image and over every image in a database. The similarity measure is evaluated on a problem of distinguishing similar shapes in sets of black and white symbols.
Psychophysical experiments on the PicHunter image retrieval system
NASA Astrophysics Data System (ADS)
Papathomas, Thomas V.; Cox, Ingemar J.; Yianilos, Peter N.; Miller, Matt L.; Minka, Thomas P.; Conway, Tiffany E.; Ghosn, Joumana
2001-01-01
Psychophysical experiments were conducted on PicHunter, a content-based image retrieval (CBIR) experimental prototype with the following properties: (1) Based on a model of how users respond, it uses Bayes's rule to predict what target users want, given their actions. (2) It possesses an extremely simple user interface. (3) It employs an entropy- based scheme to improve convergence. (4) It introduces a paradigm for assessing the performance of CBIR systems. Experiments 1-3 studied human judgment of image similarity to obtain data for the model. Experiment 4 studied the importance of using: (a) semantic information, (b) memory of earlier input, and (c) relative and absolute judgments of similarity. Experiment 5 tested an approach that we propose for comparing performances of CBIR systems objectively. Finally, experiment 6 evaluated the most informative display-updating scheme that is based on entropy minimization, and confirmed earlier simulation results. These experiments represent one of the first attempts to quantify CBIR performance based on psychophysical studies, and they provide valuable data for improving CBIR algorithms. Even though they were designed with PicHunter in mind, their results can be applied to any CBIR system and, more generally, to any system that involves judgment of image similarity by humans.
Automated semantic indexing of figure captions to improve radiology image retrieval.
Kahn, Charles E; Rubin, Daniel L
2009-01-01
We explored automated concept-based indexing of unstructured figure captions to improve retrieval of images from radiology journals. The MetaMap Transfer program (MMTx) was used to map the text of 84,846 figure captions from 9,004 peer-reviewed, English-language articles to concepts in three controlled vocabularies from the UMLS Metathesaurus, version 2006AA. Sampling procedures were used to estimate the standard information-retrieval metrics of precision and recall, and to evaluate the degree to which concept-based retrieval improved image retrieval. Precision was estimated based on a sample of 250 concepts. Recall was estimated based on a sample of 40 concepts. The authors measured the impact of concept-based retrieval to improve upon keyword-based retrieval in a random sample of 10,000 search queries issued by users of a radiology image search engine. Estimated precision was 0.897 (95% confidence interval, 0.857-0.937). Estimated recall was 0.930 (95% confidence interval, 0.838-1.000). In 5,535 of 10,000 search queries (55%), concept-based retrieval found results not identified by simple keyword matching; in 2,086 searches (21%), more than 75% of the results were found by concept-based search alone. Concept-based indexing of radiology journal figure captions achieved very high precision and recall, and significantly improved image retrieval.
An intelligent framework for medical image retrieval using MDCT and multi SVM.
Balan, J A Alex Rajju; Rajan, S Edward
2014-01-01
Volumes of medical images are rapidly generated in medical field and to manage them effectively has become a great challenge. This paper studies the development of innovative medical image retrieval based on texture features and accuracy. The objective of the paper is to analyze the image retrieval based on diagnosis of healthcare management systems. This paper traces the development of innovative medical image retrieval to estimate both the image texture features and accuracy. The texture features of medical images are extracted using MDCT and multi SVM. Both the theoretical approach and the simulation results revealed interesting observations and they were corroborated using MDCT coefficients and SVM methodology. All attempts to extract the data about the image in response to the query has been computed successfully and perfect image retrieval performance has been obtained. Experimental results on a database of 100 trademark medical images show that an integrated texture feature representation results in 98% of the images being retrieved using MDCT and multi SVM. Thus we have studied a multiclassification technique based on SVM which is prior suitable for medical images. The results show the retrieval accuracy of 98%, 99% for different sets of medical images with respect to the class of image.
Conjunctive patches subspace learning with side information for collaborative image retrieval.
Zhang, Lining; Wang, Lipo; Lin, Weisi
2012-08-01
Content-Based Image Retrieval (CBIR) has attracted substantial attention during the past few years for its potential practical applications to image management. A variety of Relevance Feedback (RF) schemes have been designed to bridge the semantic gap between the low-level visual features and the high-level semantic concepts for an image retrieval task. Various Collaborative Image Retrieval (CIR) schemes aim to utilize the user historical feedback log data with similar and dissimilar pairwise constraints to improve the performance of a CBIR system. However, existing subspace learning approaches with explicit label information cannot be applied for a CIR task, although the subspace learning techniques play a key role in various computer vision tasks, e.g., face recognition and image classification. In this paper, we propose a novel subspace learning framework, i.e., Conjunctive Patches Subspace Learning (CPSL) with side information, for learning an effective semantic subspace by exploiting the user historical feedback log data for a CIR task. The CPSL can effectively integrate the discriminative information of labeled log images, the geometrical information of labeled log images and the weakly similar information of unlabeled images together to learn a reliable subspace. We formally formulate this problem into a constrained optimization problem and then present a new subspace learning technique to exploit the user historical feedback log data. Extensive experiments on both synthetic data sets and a real-world image database demonstrate the effectiveness of the proposed scheme in improving the performance of a CBIR system by exploiting the user historical feedback log data.
Is there a need for biomedical CBIR systems in clinical practice? Outcomes from a usability study
NASA Astrophysics Data System (ADS)
Antani, Sameer; Xue, Zhiyun; Long, L. Rodney; Bennett, Deborah; Ward, Sarah; Thoma, George R.
2011-03-01
Articles in the literature routinely describe advances in Content Based Image Retrieval (CBIR) and its potential for improving clinical practice, biomedical research and education. Several systems have been developed to address particular needs, however, surprisingly few are found to be in routine practical use. Our collaboration with the National Cancer Institute (NCI) has identified a need to develop tools to annotate and search a collection of over 100,000 cervigrams and related, anonymized patient data. One such tool developed for a projected need for retrieving similar patient images is the prototype CBIR system, called CervigramFinder, which retrieves images based on the visual similarity of particular regions on the cervix. In this article we report the outcomes from a usability study conducted at a primary meeting of practicing experts. We used the study to not only evaluate the system for software errors and ease of use, but also to explore its "user readiness", and to identify obstacles that hamper practical use of such systems, in general. Overall, the participants in the study found the technology interesting and bearing great potential; however, several challenges need to be addressed before the technology can be adopted.
NASA Astrophysics Data System (ADS)
Wang, C.; Platnick, S. E.; Meyer, K.; Zhang, Z.
2014-12-01
We developed an optimal estimation (OE)-based method using infrared (IR) observations to retrieve ice cloud optical thickness (COT), cloud effective radius (CER), and cloud top height (CTH) simultaneously. The OE-based retrieval is coupled with a fast IR radiative transfer model (RTM) that simulates observations of different sensors, and corresponding Jacobians in cloudy atmospheres. Ice cloud optical properties are calculated using the MODIS Collection 6 (C6) ice crystal habit (severely roughened hexagonal column aggregates). The OE-based method can be applied to various IR space-borne and airborne sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and the enhanced MODIS Airborne Simulator (eMAS), by optimally selecting IR bands with high information content. Four major error sources (i.e., the measurement error, fast RTM error, model input error, and pre-assumed ice crystal habit error) are taken into account in our OE retrieval method. We show that measurement error and fast RTM error have little impact on cloud retrievals, whereas errors from the model input and pre-assumed ice crystal habit significantly increase retrieval uncertainties when the cloud is optically thin. Comparisons between the OE-retrieved ice cloud properties and other operational cloud products (e.g., the MODIS C6 and CALIOP cloud products) are shown.
Content-based retrieval using MPEG-7 visual descriptor and hippocampal neural network
NASA Astrophysics Data System (ADS)
Kim, Young Ho; Joung, Lyang-Jae; Kang, Dae-Seong
2005-12-01
As development of digital technology, many kinds of multimedia data are used variously and requirements for effective use by user are increasing. In order to transfer information fast and precisely what user wants, effective retrieval method is required. As existing multimedia data are impossible to apply the MPEG-1, MPEG-2 and MPEG-4 technologies which are aimed at compression, store and transmission. So MPEG-7 is introduced as a new technology for effective management and retrieval for multimedia data. In this paper, we extract content-based features using color descriptor among the MPEG-7 standardization visual descriptor, and reduce feature data applying PCA(Principal Components Analysis) technique. We remodel the cerebral cortex and hippocampal neural networks as a principle of a human's brain and it can label the features of the image-data which are inputted according to the order of hippocampal neuron structure to reaction-pattern according to the adjustment of a good impression in Dentate gyrus region and remove the noise through the auto-associate- memory step in the CA3 region. In the CA1 region receiving the information of the CA3, it can make long-term or short-term memory learned by neuron. Hippocampal neural network makes neuron of the neural network separate and combine dynamically, expand the neuron attaching additional information using the synapse and add new features according to the situation by user's demand. When user is querying, it compares feature value stored in long-term memory first and it learns feature vector fast and construct optimized feature. So the speed of index and retrieval is fast. Also, it uses MPEG-7 standard visual descriptors as content-based feature value, it improves retrieval efficiency.
Iterative retrieval of surface emissivity and temperature for a hyperspectral sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borel, C.C.
1997-11-01
The central problem of temperature-emissivity separation is that we obtain N spectral measurements of radiance and need to find N + 1 unknowns (N emissivities and one temperature). To solve this problem in the presence of the atmosphere we need to find even more unknowns: N spectral transmissions {tau}{sub atmo}({lambda}) up-welling path radiances L{sub path}{up_arrow}({lambda}) and N down-welling path radiances L{sub path}{down_arrow}({lambda}). Fortunately there are radiative transfer codes such as MODTRAN 3 and FASCODE available to get good estimates of {tau}{sub atmo}({lambda}), L{sub path}{up_arrow}({lambda}) and L{sub path}{down_arrow}({lambda}) in the order of a few percent. With the growing use of hyperspectralmore » imagers, e.g. AVIRIS in the visible and short-wave infrared there is hope of using such instruments in the mid-wave and thermal IR (TIR) some day. We believe that this will enable us to get around using the present temperature - emissivity separation (TES) algorithms using methods which take advantage of the many channels available in hyperspectral imagers. The first idea we had is to take advantage of the simple fact that a typical surface emissivity spectrum is rather smooth compared to spectral features introduced by the atmosphere. Thus iterative solution techniques can be devised which retrieve emissivity spectra {epsilon} based on spectral smoothness. To make the emissivities realistic, atmospheric parameters are varied using approximations, look-up tables derived from a radiative transfer code and spectral libraries. By varying the surface temperature over a small range a series of emissivity spectra are calculated. The one with the smoothest characteristic is chosen. The algorithm was tested on synthetic data using MODTRAN and the Salisbury emissivity database.« less
Information content in Medline record fields.
Kostoff, Ronald N; Block, Joel A; Stump, Jesse A; Pfeil, Kirstin M
2004-06-30
The authors have been conducting text mining analyses (extraction of useful information from text) of Medline records, using Abstracts as the main data source. For literature-based discovery, and other text mining applications as well, all records in a discipline need to be evaluated for determining prior art. Many Medline records do not contain Abstracts, but typically contain Titles and Mesh terms. Substitution of these fields for Abstracts in the non-Abstract records would restore the missing literature to some degree. Determine how well the information content of Title and Mesh fields approximates that of Abstracts in Medline records. Select historical Medline records related to Raynaud's Phenomenon that contain Abstracts. Determine the information content in the Abstract fields through text mining. Then, determine the information content in the Title fields, the Mesh fields, and the combined Title-Mesh fields, and compare with the information content in the Abstracts. Four metrics were used to compare the information content related to Raynaud's Phenomenon in the different fields: total number of phrases; number of unique phrases; content of factors from factor analyses; content of clusters from multi-link clustering. The Abstract field contains almost an order of magnitude more phrases than the other fields, and slightly more than an order of magnitude more unique phrases than the other fields. Each field used a factor matrix with 14 factors, and the combination of all 56 factors for the four fields represented 27 separate, but not unique, themes. These themes could be placed in two major categories, with two sub-categories per major category: Auto-immunity (antibodies, inflammation) and circulation (peripheral vessel circulation, coronary vessel circulation). All four sub-categories included representation from each field. Thus, while the focus of the representation of each field in each sub-category was moderately different, the four sub-category structure could be identified by analyzing the total factors in each field. In the cluster comparison phase of the study, the phrases used to create the clusters were the most important phrases identified for each factor. Thus, the factor matrix served as a filter for words used for clustering. While clusters were generated for all four fields, the Title hierarchy tended to be fragmented due to sparsity of the co-occurrence matrix that underlies the clusters. Therefore, the Title clusters were examined at only the lower levels of aggregation. The Abstract, Mesh, and Mesh + Title fields had the same first level taxonomy categories, auto-immunity and circulation. At the second level, the Abstract, Mesh, and Mesh + Title fields had the autoimmune diseases and antibodies sub-category in common. The Abstract and Mesh fields shared fascia inflammation as the other auto-immunity sub-category, while the other Mesh + Title sub-category focuses on vinyl chloride poisoning from industrial contact, and consequences of antineoplastic agents. However, in both cases, even though the words may be different, inflammation may be the common theme. For taxonomy generation, especially at the higher levels, each of the four fields has a similar thematic structure. At very detailed levels, the Mesh and Title fields run out of phrases relative to the Abstract field. Therefore, selection of field (s) to be employed for taxonomy generation depends on the objectives of the study, particularly the level of categorization required for the taxonomy. For information retrieval, or literature-based discovery, selection of the appropriate field again depends on the study objectives. If large queries, or large numbers of concepts or themes are desired, then the field with the largest number of technical phrases would be desirable. If queries or concepts represented by the more accepted popular terminology is adequate, then the smaller fields may be sufficient. Because of its established and controlled vocabulary, the Mesh field lags the Title or Abss the Title or Abstract fields in currency. Thus, the Title or Abstract fields would retrieve records with the most explicitly stated current concepts, but the Mesh field would capture a larger swath of fields that contained a concept of interest but perhaps had a wider range of specific terminology in the Abstract or Title text. In addition, this study provides the first validated estimate of the disparity in information retrieved through text mining limited to Titles and Mesh terms relative to entire Abstracts. As much of the older biomedical literature was entered into electronic databases without associated Abstracts, literature-based discovery exercises that search the older medical literature may miss a substantial proportion of relevant information. On the basis of this study, it may be estimated that up to a log order more information may be retrieved when complete Abstracts are searched.
Brain CT image similarity retrieval method based on uncertain location graph.
Pan, Haiwei; Li, Pengyuan; Li, Qing; Han, Qilong; Feng, Xiaoning; Gao, Linlin
2014-03-01
A number of brain computed tomography (CT) images stored in hospitals that contain valuable information should be shared to support computer-aided diagnosis systems. Finding the similar brain CT images from the brain CT image database can effectively help doctors diagnose based on the earlier cases. However, the similarity retrieval for brain CT images requires much higher accuracy than the general images. In this paper, a new model of uncertain location graph (ULG) is presented for brain CT image modeling and similarity retrieval. According to the characteristics of brain CT image, we propose a novel method to model brain CT image to ULG based on brain CT image texture. Then, a scheme for ULG similarity retrieval is introduced. Furthermore, an effective index structure is applied to reduce the searching time. Experimental results reveal that our method functions well on brain CT images similarity retrieval with higher accuracy and efficiency.
Sub-pixel mapping of hyperspectral imagery using super-resolution
NASA Astrophysics Data System (ADS)
Sharma, Shreya; Sharma, Shakti; Buddhiraju, Krishna M.
2016-04-01
With the development of remote sensing technologies, it has become possible to obtain an overview of landscape elements which helps in studying the changes on earth's surface due to climate, geological, geomorphological and human activities. Remote sensing measures the electromagnetic radiations from the earth's surface and match the spectral similarity between the observed signature and the known standard signatures of the various targets. However, problem lies when image classification techniques assume pixels to be pure. In hyperspectral imagery, images have high spectral resolution but poor spatial resolution. Therefore, the spectra obtained is often contaminated due to the presence of mixed pixels and causes misclassification. To utilise this high spectral information, spatial resolution has to be enhanced. Many factors make the spatial resolution one of the most expensive and hardest to improve in imaging systems. To solve this problem, post-processing of hyperspectral images is done to retrieve more information from the already acquired images. The algorithm to enhance spatial resolution of the images by dividing them into sub-pixels is known as super-resolution and several researches have been done in this domain.In this paper, we propose a new method for super-resolution based on ant colony optimization and review the popular methods of sub-pixel mapping of hyperspectral images along with their comparative analysis.
Building generic anatomical models using virtual model cutting and iterative registration.
Xiao, Mei; Soh, Jung; Meruvia-Pastor, Oscar; Schmidt, Eric; Hallgrímsson, Benedikt; Sensen, Christoph W
2010-02-08
Using 3D generic models to statistically analyze trends in biological structure changes is an important tool in morphometrics research. Therefore, 3D generic models built for a range of populations are in high demand. However, due to the complexity of biological structures and the limited views of them that medical images can offer, it is still an exceptionally difficult task to quickly and accurately create 3D generic models (a model is a 3D graphical representation of a biological structure) based on medical image stacks (a stack is an ordered collection of 2D images). We show that the creation of a generic model that captures spatial information exploitable in statistical analyses is facilitated by coupling our generalized segmentation method to existing automatic image registration algorithms. The method of creating generic 3D models consists of the following processing steps: (i) scanning subjects to obtain image stacks; (ii) creating individual 3D models from the stacks; (iii) interactively extracting sub-volume by cutting each model to generate the sub-model of interest; (iv) creating image stacks that contain only the information pertaining to the sub-models; (v) iteratively registering the corresponding new 2D image stacks; (vi) averaging the newly created sub-models based on intensity to produce the generic model from all the individual sub-models. After several registration procedures are applied to the image stacks, we can create averaged image stacks with sharp boundaries. The averaged 3D model created from those image stacks is very close to the average representation of the population. The image registration time varies depending on the image size and the desired accuracy of the registration. Both volumetric data and surface model for the generic 3D model are created at the final step. Our method is very flexible and easy to use such that anyone can use image stacks to create models and retrieve a sub-region from it at their ease. Java-based implementation allows our method to be used on various visualization systems including personal computers, workstations, computers equipped with stereo displays, and even virtual reality rooms such as the CAVE Automated Virtual Environment. The technique allows biologists to build generic 3D models of their interest quickly and accurately.
Computer-aided diagnostics of screening mammography using content-based image retrieval
NASA Astrophysics Data System (ADS)
Deserno, Thomas M.; Soiron, Michael; de Oliveira, Júlia E. E.; de A. Araújo, Arnaldo
2012-03-01
Breast cancer is one of the main causes of death among women in occidental countries. In the last years, screening mammography has been established worldwide for early detection of breast cancer, and computer-aided diagnostics (CAD) is being developed to assist physicians reading mammograms. A promising method for CAD is content-based image retrieval (CBIR). Recently, we have developed a classification scheme of suspicious tissue pattern based on the support vector machine (SVM). In this paper, we continue moving towards automatic CAD of screening mammography. The experiments are based on in total 10,509 radiographs that have been collected from different sources. From this, 3,375 images are provided with one and 430 radiographs with more than one chain code annotation of cancerous regions. In different experiments, this data is divided into 12 and 20 classes, distinguishing between four categories of tissue density, three categories of pathology and in the 20 class problem two categories of different types of lesions. Balancing the number of images in each class yields 233 and 45 images remaining in each of the 12 and 20 classes, respectively. Using a two-dimensional principal component analysis, features are extracted from small patches of 128 x 128 pixels and classified by means of a SVM. Overall, the accuracy of the raw classification was 61.6 % and 52.1 % for the 12 and the 20 class problem, respectively. The confusion matrices are assessed for detailed analysis. Furthermore, an implementation of a SVM-based CBIR system for CADx in screening mammography is presented. In conclusion, with a smarter patch extraction, the CBIR approach might reach precision rates that are helpful for the physicians. This, however, needs more comprehensive evaluation on clinical data.
Investigation of passive atmospheric sounding using millimeter and submillimeter wavelength channels
NASA Technical Reports Server (NTRS)
Gasiewski, A. J.; Adelberg, L. K.; Kunkee, D. B.; Jackson, D. M.
1993-01-01
Progress by investigators at the Georgia Institute of Technology in the development of techniques for passive microwave retrieval of water vapor, cloud, and precipitation parameters using millimeter- and sub-millimeter wavelength channels is reviewed. Channels of particular interest are in the tropospheric transmission windows at 90, 166, 220, 340, and 410 GHz and centered around the water vapor lines at 183 and 325 GHz. Collectively, these channels have potential application in high-resolution mapping (e.g., from geosynchronous orbit), remote sensing of cloud and precipitation parameters, and retrieval of water vapor profiles. During the period from 1 Jan. 1993 through 30 Jun. 1993 the Millimeter-wave Imaging Radiometer (MIR) completed data flights during a two-month long deployment in conjunction with TOGA/COARE. Coincident data was collected from several other ground-based, airborne, and satellite sensors, including the NASA/MSFC AMPR, MIT MTS, DMSP SSM/T-2 satellite, collocated radiosondes, ground- and aircraft-based radiometers and cloud lidars, airborne infrared imagers, solar flux probes, and airborne cloud particle sampling probes.
NASA Astrophysics Data System (ADS)
Coddington, O. M.; Vukicevic, T.; Schmidt, K. S.; Platnick, S.
2017-08-01
We rigorously quantify the probability of liquid or ice thermodynamic phase using only shortwave spectral channels specific to the National Aeronautics and Space Administration's Moderate Resolution Imaging Spectroradiometer, Visible Infrared Imaging Radiometer Suite, and the notional future Plankton, Aerosol, Cloud, ocean Ecosystem imager. The results show that two shortwave-infrared channels (2135 and 2250 nm) provide more information on cloud thermodynamic phase than either channel alone; in one case, the probability of ice phase retrieval increases from 65 to 82% by combining 2135 and 2250 nm channels. The analysis is performed with a nonlinear statistical estimation approach, the GEneralized Nonlinear Retrieval Analysis (GENRA). The GENRA technique has previously been used to quantify the retrieval of cloud optical properties from passive shortwave observations, for an assumed thermodynamic phase. Here we present the methodology needed to extend the utility of GENRA to a binary thermodynamic phase space (i.e., liquid or ice). We apply formal information content metrics to quantify our results; two of these (mutual and conditional information) have not previously been used in the field of cloud studies.
Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Yang, Ping
2018-01-01
An optimal estimation (OE) retrieval method is developed to infer three ice cloud properties simultaneously: optical thickness (τ), effective radius (reff), and cloud-top height (h). This method is based on a fast radiative transfer (RT) model and infrared (IR) observations from the MODerate resolution Imaging Spectroradiometer (MODIS). This study conducts thorough error and information content analyses to understand the error propagation and performance of retrievals from various MODIS band combinations under different cloud/atmosphere states. Specifically, the algorithm takes into account four error sources: measurement uncertainty, fast RT model uncertainty, uncertainties in ancillary datasets (e.g., atmospheric state), and assumed ice crystal habit uncertainties. It is found that the ancillary and ice crystal habit error sources dominate the MODIS IR retrieval uncertainty and cannot be ignored. The information content analysis shows that, for a given ice cloud, the use of four MODIS IR observations is sufficient to retrieve the three cloud properties. However, the selection of MODIS IR bands that provide the most information and their order of importance varies with both the ice cloud properties and the ambient atmospheric and the surface states. As a result, this study suggests the inclusion of all MODIS IR bands in practice since little a priori information is available. PMID:29707470
Content-based image retrieval applied to bone age assessment
NASA Astrophysics Data System (ADS)
Fischer, Benedikt; Brosig, André; Welter, Petra; Grouls, Christoph; Günther, Rolf W.; Deserno, Thomas M.
2010-03-01
Radiological bone age assessment is based on local image regions of interest (ROI), such as the epiphysis or the area of carpal bones. These are compared to a standardized reference and scores determining the skeletal maturity are calculated. For computer-aided diagnosis, automatic ROI extraction and analysis is done so far mainly by heuristic approaches. Due to high variations in the imaged biological material and differences in age, gender and ethnic origin, automatic analysis is difficult and frequently requires manual interactions. On the contrary, epiphyseal regions (eROIs) can be compared to previous cases with known age by content-based image retrieval (CBIR). This requires a sufficient number of cases with reliable positioning of the eROI centers. In this first approach to bone age assessment by CBIR, we conduct leaving-oneout experiments on 1,102 left hand radiographs and 15,428 metacarpal and phalangeal eROIs from the USC hand atlas. The similarity of the eROIs is assessed by cross-correlation of 16x16 scaled eROIs. The effects of the number of eROIs, two age computation methods as well as the number of considered CBIR references are analyzed. The best results yield an error rate of 1.16 years and a standard deviation of 0.85 years. As the appearance of the hand varies naturally by up to two years, these results clearly demonstrate the applicability of the CBIR approach for bone age estimation.
New frontiers for intelligent content-based retrieval
NASA Astrophysics Data System (ADS)
Benitez, Ana B.; Smith, John R.
2001-01-01
In this paper, we examine emerging frontiers in the evolution of content-based retrieval systems that rely on an intelligent infrastructure. Here, we refer to intelligence as the capabilities of the systems to build and maintain situational or world models, utilize dynamic knowledge representation, exploit context, and leverage advanced reasoning and learning capabilities. We argue that these elements are essential to producing effective systems for retrieving audio-visual content at semantic levels matching those of human perception and cognition. In this paper, we review relevant research on the understanding of human intelligence and construction of intelligent system in the fields of cognitive psychology, artificial intelligence, semiotics, and computer vision. We also discus how some of the principal ideas form these fields lead to new opportunities and capabilities for content-based retrieval systems. Finally, we describe some of our efforts in these directions. In particular, we present MediaNet, a multimedia knowledge presentation framework, and some MPEG-7 description tools that facilitate and enable intelligent content-based retrieval.
New frontiers for intelligent content-based retrieval
NASA Astrophysics Data System (ADS)
Benitez, Ana B.; Smith, John R.
2000-12-01
In this paper, we examine emerging frontiers in the evolution of content-based retrieval systems that rely on an intelligent infrastructure. Here, we refer to intelligence as the capabilities of the systems to build and maintain situational or world models, utilize dynamic knowledge representation, exploit context, and leverage advanced reasoning and learning capabilities. We argue that these elements are essential to producing effective systems for retrieving audio-visual content at semantic levels matching those of human perception and cognition. In this paper, we review relevant research on the understanding of human intelligence and construction of intelligent system in the fields of cognitive psychology, artificial intelligence, semiotics, and computer vision. We also discus how some of the principal ideas form these fields lead to new opportunities and capabilities for content-based retrieval systems. Finally, we describe some of our efforts in these directions. In particular, we present MediaNet, a multimedia knowledge presentation framework, and some MPEG-7 description tools that facilitate and enable intelligent content-based retrieval.
Automated Semantic Indexing of Figure Captions to Improve Radiology Image Retrieval
Kahn, Charles E.; Rubin, Daniel L.
2009-01-01
Objective We explored automated concept-based indexing of unstructured figure captions to improve retrieval of images from radiology journals. Design The MetaMap Transfer program (MMTx) was used to map the text of 84,846 figure captions from 9,004 peer-reviewed, English-language articles to concepts in three controlled vocabularies from the UMLS Metathesaurus, version 2006AA. Sampling procedures were used to estimate the standard information-retrieval metrics of precision and recall, and to evaluate the degree to which concept-based retrieval improved image retrieval. Measurements Precision was estimated based on a sample of 250 concepts. Recall was estimated based on a sample of 40 concepts. The authors measured the impact of concept-based retrieval to improve upon keyword-based retrieval in a random sample of 10,000 search queries issued by users of a radiology image search engine. Results Estimated precision was 0.897 (95% confidence interval, 0.857–0.937). Estimated recall was 0.930 (95% confidence interval, 0.838–1.000). In 5,535 of 10,000 search queries (55%), concept-based retrieval found results not identified by simple keyword matching; in 2,086 searches (21%), more than 75% of the results were found by concept-based search alone. Conclusion Concept-based indexing of radiology journal figure captions achieved very high precision and recall, and significantly improved image retrieval. PMID:19261938
A content-based news video retrieval system: NVRS
NASA Astrophysics Data System (ADS)
Liu, Huayong; He, Tingting
2009-10-01
This paper focus on TV news programs and design a content-based news video browsing and retrieval system, NVRS, which is convenient for users to fast browsing and retrieving news video by different categories such as political, finance, amusement, etc. Combining audiovisual features and caption text information, the system automatically segments a complete news program into separate news stories. NVRS supports keyword-based news story retrieval, category-based news story browsing and generates key-frame-based video abstract for each story. Experiments show that the method of story segmentation is effective and the retrieval is also efficient.
Progressive content-based retrieval of image and video with adaptive and iterative refinement
NASA Technical Reports Server (NTRS)
Li, Chung-Sheng (Inventor); Turek, John Joseph Edward (Inventor); Castelli, Vittorio (Inventor); Chen, Ming-Syan (Inventor)
1998-01-01
A method and apparatus for minimizing the time required to obtain results for a content based query in a data base. More specifically, with this invention, the data base is partitioned into a plurality of groups. Then, a schedule or sequence of groups is assigned to each of the operations of the query, where the schedule represents the order in which an operation of the query will be applied to the groups in the schedule. Each schedule is arranged so that each application of the operation operates on the group which will yield intermediate results that are closest to final results.
A novel image retrieval algorithm based on PHOG and LSH
NASA Astrophysics Data System (ADS)
Wu, Hongliang; Wu, Weimin; Peng, Jiajin; Zhang, Junyuan
2017-08-01
PHOG can describe the local shape of the image and its relationship between the spaces. The using of PHOG algorithm to extract image features in image recognition and retrieval and other aspects have achieved good results. In recent years, locality sensitive hashing (LSH) algorithm has been superior to large-scale data in solving near-nearest neighbor problems compared with traditional algorithms. This paper presents a novel image retrieval algorithm based on PHOG and LSH. First, we use PHOG to extract the feature vector of the image, then use L different LSH hash table to reduce the dimension of PHOG texture to index values and map to different bucket, and finally extract the corresponding value of the image in the bucket for second image retrieval using Manhattan distance. This algorithm can adapt to the massive image retrieval, which ensures the high accuracy of the image retrieval and reduces the time complexity of the retrieval. This algorithm is of great significance.
Physical Validation of TRMM TMI and PR Monthly Rain Products Over Oklahoma
NASA Technical Reports Server (NTRS)
Fisher, Brad L.
2004-01-01
The Tropical Rainfall Measuring Mission (TRMM) provides monthly rainfall estimates using data collected by the TRMM satellite. These estimates cover a substantial fraction of the earth's surface. The physical validation of TRMM estimates involves corroborating the accuracy of spaceborne estimates of areal rainfall by inferring errors and biases from ground-based rain estimates. The TRMM error budget consists of two major sources of error: retrieval and sampling. Sampling errors are intrinsic to the process of estimating monthly rainfall and occur because the satellite extrapolates monthly rainfall from a small subset of measurements collected only during satellite overpasses. Retrieval errors, on the other hand, are related to the process of collecting measurements while the satellite is overhead. One of the big challenges confronting the TRMM validation effort is how to best estimate these two main components of the TRMM error budget, which are not easily decoupled. This four-year study computed bulk sampling and retrieval errors for the TRMM microwave imager (TMI) and the precipitation radar (PR) by applying a technique that sub-samples gauge data at TRMM overpass times. Gridded monthly rain estimates are then computed from the monthly bulk statistics of the collected samples, providing a sensor-dependent gauge rain estimate that is assumed to include a TRMM equivalent sampling error. The sub-sampled gauge rain estimates are then used in conjunction with the monthly satellite and gauge (without sub- sampling) estimates to decouple retrieval and sampling errors. The computed mean sampling errors for the TMI and PR were 5.9% and 7.796, respectively, in good agreement with theoretical predictions. The PR year-to-year retrieval biases exceeded corresponding TMI biases, but it was found that these differences were partially due to negative TMI biases during cold months and positive TMI biases during warm months.
QBIC project: querying images by content, using color, texture, and shape
NASA Astrophysics Data System (ADS)
Niblack, Carlton W.; Barber, Ron; Equitz, Will; Flickner, Myron D.; Glasman, Eduardo H.; Petkovic, Dragutin; Yanker, Peter; Faloutsos, Christos; Taubin, Gabriel
1993-04-01
In the query by image content (QBIC) project we are studying methods to query large on-line image databases using the images' content as the basis of the queries. Examples of the content we use include color, texture, and shape of image objects and regions. Potential applications include medical (`Give me other images that contain a tumor with a texture like this one'), photo-journalism (`Give me images that have blue at the top and red at the bottom'), and many others in art, fashion, cataloging, retailing, and industry. Key issues include derivation and computation of attributes of images and objects that provide useful query functionality, retrieval methods based on similarity as opposed to exact match, query by image example or user drawn image, the user interfaces, query refinement and navigation, high dimensional database indexing, and automatic and semi-automatic database population. We currently have a prototype system written in X/Motif and C running on an RS/6000 that allows a variety of queries, and a test database of over 1000 images and 1000 objects populated from commercially available photo clip art images. In this paper we present the main algorithms for color texture, shape and sketch query that we use, show example query results, and discuss future directions.
Integrating user profile in medical CBIR systems to answer perceptual similarity queries
NASA Astrophysics Data System (ADS)
Bugatti, Pedro H.; Kaster, Daniel S.; Ponciano-Silva, Marcelo; Traina, Agma J. M.; Traina, Caetano, Jr.
2011-03-01
Techniques for Content-Based Image Retrieval (CBIR) have been intensively explored due to the increase in the amount of captured images and the need of fast retrieval of them. The medical field is a specific example that generates a large flow of information, especially digital images employed for diagnosing. One issue that still remains unsolved deals with how to reach the perceptual similarity. That is, to achieve an effective retrieval, one must characterize and quantify the perceptual similarity regarding the specialist in the field. Therefore, the present paper was conceived to fill in this gap creating a consistent support to perform similarity queries over medical images, maintaining the semantics of a given query desired by the user. CBIR systems relying in relevance feedback techniques usually request the users to label relevant images. In this paper, we present a simple but highly effective strategy to survey user profiles, taking advantage of such labeling to implicitly gather the user perceptual similarity. The user profiles maintain the settings desired for each user, allowing tuning the similarity assessment, which encompasses dynamically changing the distance function employed through an interactive process. Experiments using computed tomography lung images show that the proposed approach is effective in capturing the users' perception.
Extraction and labeling high-resolution images from PDF documents
NASA Astrophysics Data System (ADS)
Chachra, Suchet K.; Xue, Zhiyun; Antani, Sameer; Demner-Fushman, Dina; Thoma, George R.
2013-12-01
Accuracy of content-based image retrieval is affected by image resolution among other factors. Higher resolution images enable extraction of image features that more accurately represent the image content. In order to improve the relevance of search results for our biomedical image search engine, Open-I, we have developed techniques to extract and label high-resolution versions of figures from biomedical articles supplied in the PDF format. Open-I uses the open-access subset of biomedical articles from the PubMed Central repository hosted by the National Library of Medicine. Articles are available in XML and in publisher supplied PDF formats. As these PDF documents contain little or no meta-data to identify the embedded images, the task includes labeling images according to their figure number in the article after they have been successfully extracted. For this purpose we use the labeled small size images provided with the XML web version of the article. This paper describes the image extraction process and two alternative approaches to perform image labeling that measure the similarity between two images based upon the image intensity projection on the coordinate axes and similarity based upon the normalized cross-correlation between the intensities of two images. Using image identification based on image intensity projection, we were able to achieve a precision of 92.84% and a recall of 82.18% in labeling of the extracted images.
A cloud-based multimodality case file for mobile devices.
Balkman, Jason D; Loehfelm, Thomas W
2014-01-01
Recent improvements in Web and mobile technology, along with the widespread use of handheld devices in radiology education, provide unique opportunities for creating scalable, universally accessible, portable image-rich radiology case files. A cloud database and a Web-based application for radiologic images were developed to create a mobile case file with reasonable usability, download performance, and image quality for teaching purposes. A total of 75 radiology cases related to breast, thoracic, gastrointestinal, musculoskeletal, and neuroimaging subspecialties were included in the database. Breast imaging cases are the focus of this article, as they best demonstrate handheld display capabilities across a wide variety of modalities. This case subset also illustrates methods for adapting radiologic content to cloud platforms and mobile devices. Readers will gain practical knowledge about storage and retrieval of cloud-based imaging data, an awareness of techniques used to adapt scrollable and high-resolution imaging content for the Web, and an appreciation for optimizing images for handheld devices. The evaluation of this software demonstrates the feasibility of adapting images from most imaging modalities to mobile devices, even in cases of full-field digital mammograms, where high resolution is required to represent subtle pathologic features. The cloud platform allows cases to be added and modified in real time by using only a standard Web browser with no application-specific software. Challenges remain in developing efficient ways to generate, modify, and upload radiologic and supplementary teaching content to this cloud-based platform. Online supplemental material is available for this article. ©RSNA, 2014.
NASA Astrophysics Data System (ADS)
Malenovsky, Zbynek; Homolova, Lucie; Janoutova, Ruzena; Landier, Lucas; Gastellu-Etchegorry, Jean-Philippe; Berthelot, Beatrice; Huck, Alexis
2016-08-01
In this study we investigated importance of the space- borne instrument Sentinel-2 red edge spectral bands and reconstructed red edge position (REP) for retrieval of the three eco-physiological plant parameters, leaf and canopy chlorophyll content and leaf area index (LAI), in case of maize agricultural fields and beech and spruce forest stands. Sentinel-2 spectral bands and REP of the investigated vegetation canopies were simulated in the Discrete Anisotropic Radiative Transfer (DART) model. Their potential for estimation of the plant parameters was assessed through training support vector regressions (SVR) and examining their P-vector matrices indicating significance of each input. The trained SVR were then applied on Sentinel-2 simulated images and the acquired estimates were cross-compared with results from high spatial resolution airborne retrievals. Results showed that contribution of REP was significant for canopy chlorophyll content, but less significant for leaf chlorophyll content and insignificant for leaf area index estimations. However, the red edge spectral bands contributed strongly to the retrievals of all parameters, especially canopy and leaf chlorophyll content. Application of SVR on Sentinel-2 simulated images demonstrated, in general, an overestimation of leaf chlorophyll content and an underestimation of LAI when compared to the reciprocal airborne estimates. In the follow-up investigation, we will apply the trained SVR algorithms on real Sentinel-2 multispectral images acquired during vegetation seasons 2015 and 2016.
The state of the art of medical imaging technology: from creation to archive and back.
Gao, Xiaohong W; Qian, Yu; Hui, Rui
2011-01-01
Medical imaging has learnt itself well into modern medicine and revolutionized medical industry in the last 30 years. Stemming from the discovery of X-ray by Nobel laureate Wilhelm Roentgen, radiology was born, leading to the creation of large quantities of digital images as opposed to film-based medium. While this rich supply of images provides immeasurable information that would otherwise not be possible to obtain, medical images pose great challenges in archiving them safe from corrupted, lost and misuse, retrievable from databases of huge sizes with varying forms of metadata, and reusable when new tools for data mining and new media for data storing become available. This paper provides a summative account on the creation of medical imaging tomography, the development of image archiving systems and the innovation from the existing acquired image data pools. The focus of this paper is on content-based image retrieval (CBIR), in particular, for 3D images, which is exemplified by our developed online e-learning system, MIRAGE, home to a repository of medical images with variety of domains and different dimensions. In terms of novelties, the facilities of CBIR for 3D images coupled with image annotation in a fully automatic fashion have been developed and implemented in the system, resonating with future versatile, flexible and sustainable medical image databases that can reap new innovations.
The State of the Art of Medical Imaging Technology: from Creation to Archive and Back
Gao, Xiaohong W; Qian, Yu; Hui, Rui
2011-01-01
Medical imaging has learnt itself well into modern medicine and revolutionized medical industry in the last 30 years. Stemming from the discovery of X-ray by Nobel laureate Wilhelm Roentgen, radiology was born, leading to the creation of large quantities of digital images as opposed to film-based medium. While this rich supply of images provides immeasurable information that would otherwise not be possible to obtain, medical images pose great challenges in archiving them safe from corrupted, lost and misuse, retrievable from databases of huge sizes with varying forms of metadata, and reusable when new tools for data mining and new media for data storing become available. This paper provides a summative account on the creation of medical imaging tomography, the development of image archiving systems and the innovation from the existing acquired image data pools. The focus of this paper is on content-based image retrieval (CBIR), in particular, for 3D images, which is exemplified by our developed online e-learning system, MIRAGE, home to a repository of medical images with variety of domains and different dimensions. In terms of novelties, the facilities of CBIR for 3D images coupled with image annotation in a fully automatic fashion have been developed and implemented in the system, resonating with future versatile, flexible and sustainable medical image databases that can reap new innovations. PMID:21915232
NASA Astrophysics Data System (ADS)
Ong, Swee Khai; Lim, Wee Keong; Soo, Wooi King
2013-04-01
Trademark, a distinctive symbol, is used to distinguish products or services provided by a particular person, group or organization from other similar entries. As trademark represents the reputation and credit standing of the owner, it is important to differentiate one trademark from another. Many methods have been proposed to identify, classify and retrieve trademarks. However, most methods required features database and sample sets for training prior to recognition and retrieval process. In this paper, a new feature on wavelet coefficients, the localized wavelet energy, is introduced to extract features of trademarks. With this, unsupervised content-based symmetrical trademark image retrieval is proposed without the database and prior training set. The feature analysis is done by an integration of the proposed localized wavelet energy and quadtree decomposed regional symmetrical vector. The proposed framework eradicates the dependence on query database and human participation during the retrieval process. In this paper, trademarks for soccer games sponsors are the intended trademark category. Video frames from soccer telecast are extracted and processed for this study. Reasonably good localization and retrieval results on certain categories of trademarks are achieved. A distinctive symbol is used to distinguish products or services provided by a particular person, group or organization from other similar entries.
Classification of document page images based on visual similarity of layout structures
NASA Astrophysics Data System (ADS)
Shin, Christian K.; Doermann, David S.
1999-12-01
Searching for documents by their type or genre is a natural way to enhance the effectiveness of document retrieval. The layout of a document contains a significant amount of information that can be used to classify a document's type in the absence of domain specific models. A document type or genre can be defined by the user based primarily on layout structure. Our classification approach is based on 'visual similarity' of the layout structure by building a supervised classifier, given examples of the class. We use image features, such as the percentages of tex and non-text (graphics, image, table, and ruling) content regions, column structures, variations in the point size of fonts, the density of content area, and various statistics on features of connected components which can be derived from class samples without class knowledge. In order to obtain class labels for training samples, we conducted a user relevance test where subjects ranked UW-I document images with respect to the 12 representative images. We implemented our classification scheme using the OC1, a decision tree classifier, and report our findings.
NASA Astrophysics Data System (ADS)
Niblack, Carlton W.; Zhu, Xiaoming; Hafner, James L.; Breuel, Tom; Ponceleon, Dulce B.; Petkovic, Dragutin; Flickner, Myron D.; Upfal, Eli; Nin, Sigfredo I.; Sull, Sanghoon; Dom, Byron E.; Yeo, Boon-Lock; Srinivasan, Savitha; Zivkovic, Dan; Penner, Mike
1997-12-01
QBICTM (Query By Image Content) is a set of technologies and associated software that allows a user to search, browse, and retrieve image, graphic, and video data from large on-line collections. This paper discusses current research directions of the QBIC project such as indexing for high-dimensional multimedia data, retrieval of gray level images, and storyboard generation suitable for video. It describes aspects of QBIC software including scripting tools, application interfaces, and available GUIs, and gives examples of applications and demonstration systems using it.
Plastic modulation of episodic memory networks in the aging brain with cognitive decline.
Bai, Feng; Yuan, Yonggui; Yu, Hui; Zhang, Zhijun
2016-07-15
Social-cognitive processing has been posited to underlie general functions such as episodic memory. Episodic memory impairment is a recognized hallmark of amnestic mild cognitive impairment (aMCI) who is at a high risk for dementia. Three canonical networks, self-referential processing, executive control processing and salience processing, have distinct roles in episodic memory retrieval processing. It remains unclear whether and how these sub-networks of the episodic memory retrieval system would be affected in aMCI. This task-state fMRI study constructed systems-level episodic memory retrieval sub-networks in 28 aMCI and 23 controls using two computational approaches: a multiple region-of-interest based approach and a voxel-level functional connectivity-based approach, respectively. These approaches produced the remarkably similar findings that the self-referential processing network made critical contributions to episodic memory retrieval in aMCI. More conspicuous alterations in self-referential processing of the episodic memory retrieval network were identified in aMCI. In order to complete a given episodic memory retrieval task, increases in cooperation between the self-referential processing network and other sub-networks were mobilized in aMCI. Self-referential processing mediate the cooperation of the episodic memory retrieval sub-networks as it may help to achieve neural plasticity and may contribute to the prevention and treatment of dementia. Copyright © 2016 Elsevier B.V. All rights reserved.
Secure image retrieval with multiple keys
NASA Astrophysics Data System (ADS)
Liang, Haihua; Zhang, Xinpeng; Wei, Qiuhan; Cheng, Hang
2018-03-01
This article proposes a secure image retrieval scheme under a multiuser scenario. In this scheme, the owner first encrypts and uploads images and their corresponding features to the cloud; then, the user submits the encrypted feature of the query image to the cloud; next, the cloud compares the encrypted features and returns encrypted images with similar content to the user. To find the nearest neighbor in the encrypted features, an encryption with multiple keys is proposed, in which the query feature of each user is encrypted by his/her own key. To improve the key security and space utilization, global optimization and Gaussian distribution are, respectively, employed to generate multiple keys. The experiments show that the proposed encryption can provide effective and secure image retrieval for each user and ensure confidentiality of the query feature of each user.
Scalable Integrated Region-Based Image Retrieval Using IRM and Statistical Clustering.
ERIC Educational Resources Information Center
Wang, James Z.; Du, Yanping
Statistical clustering is critical in designing scalable image retrieval systems. This paper presents a scalable algorithm for indexing and retrieving images based on region segmentation. The method uses statistical clustering on region features and IRM (Integrated Region Matching), a measure developed to evaluate overall similarity between images…
NASA Technical Reports Server (NTRS)
Zhang, Zhibo; Dong, Xiquan; Xi, Baike; Song, Hua; Ma, Po-Lun; Ghan, Steven J.; Platnick, Steven; Minnis, Patrick
2017-01-01
From April 2009 to December 2010, the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program carried out an observational field campaign on Graciosa Island, targeting the marine boundary layer (MBL) clouds over the Azores region. In this paper, we present an inter-comparison of the MBL cloud properties, namely, cloud liquid water path (LWP), cloud optical thickness (COT) and cloud-droplet effective radius (CER), among retrievals from the ARM mobile facility (AMF) and two Moderate Resolution Spectroradiometer (MODIS) cloud products (GSFC-MODIS and CERES-MODIS). A total of 63 daytime single-layer MBL cloud cases are selected for inter-comparison. Comparison of collocated retrievals indicates that the two MODIS cloud products agree well on both COT and CER retrievals, with the correlation coefficient R greater than 0.95 despite their significant difference in spatial sampling. In both MODIS products, the CER retrievals based on the 2.1 micrometers band (CER(sub 2.1)) is significantly smaller than that based on the 3.7 micrometers band (CER(sub 3.7)). The GSFC-MODIS cloud product is collocated and compared with ground-based ARM observations at several temporal spatial scales. In general, the correlation increases with more precise collocation. For the 63 selected MBL cloud cases, the GSFC-MODIS LWP and COT retrievals agree reasonably well with the ground-based observations with no apparent bias and correlation coefficient R around 0.85 and 0.70, respectively. However, GSFC-MODIS CER(sub 3.7) and CER(sub 2.1) retrievals have a lower correlation (R is approximately 0.5) with the ground-based retrievals. For the 63 selected cases, they are on average larger than ground observations by about 1.5 micrometers and 3.0 micrometers, respectively. Taking into account that the MODIS CER retrievals are only sensitive to cloud top reduces the bias only by 0.5 micrometers.
Photon-assisted electron energy loss spectroscopy and ultrafast imaging.
Howie, Archie
2009-08-01
A variety of ways is described in which photons can be used not only for ultrafast electron microscopy but also to enormously widen the energy range of spatially-resolved electron spectroscopy. Periodic chains of femtosecond laser pulses are a particularly important and accurately timed source for single-shot imaging and diffraction as well as for several forms of pump-probe microscopy at even higher spatial resolution and sub-picosecond timing. Many exciting new fields are opened up for study by these developments. Ultrafast, single shot diffraction with intense pulses of X-rays supplemented by phase retrieval techniques may eventually offer a challenging alternative and purely photon-based route to dynamic imaging at high spatial resolution.
The effects of retrieval ease on health issue judgments: implications for campaign strategies.
Chang, Chingching
2010-12-01
This paper examines the effects of retrieving information about a health ailment on judgments of the perceived severity of the disease and self-efficacy regarding prevention and treatment. The literature on metacognition suggests that recall tasks render two types of information accessible: the retrieved content, and the subjective experience of retrieving the content. Both types of information can influence judgments. Content-based thinking models hold that the more instances of an event people can retrieve, the higher they will estimate the frequency of the event to be. In contrast, experience-based thinking models suggest that when people experience difficulty in retrieving information regarding an event, they rate the event as less likely to occur. In the first experiment, ease of retrieval was manipulated by asking participants to list either a high or low number of consequences of an ailment. As expected, retrieval difficulty resulted in lower perceived disease severity. In the second experiment, ease of retrieval was manipulated by varying the number of disease prevention or treatment measures participants attempted to list. As predicted, retrieval difficulty resulted in lower self-efficacy regarding prevention and treatment. In experiment three, when information regarding a health issue was made accessible by exposure to public service announcements (PSAs), ease-of-retrieval effects were attenuated. Finally, in experiment four, exposure to PSAs encouraged content-based judgments when the issue was of great concern.
Efficient Retrieval of Massive Ocean Remote Sensing Images via a Cloud-Based Mean-Shift Algorithm.
Yang, Mengzhao; Song, Wei; Mei, Haibin
2017-07-23
The rapid development of remote sensing (RS) technology has resulted in the proliferation of high-resolution images. There are challenges involved in not only storing large volumes of RS images but also in rapidly retrieving the images for ocean disaster analysis such as for storm surges and typhoon warnings. In this paper, we present an efficient retrieval of massive ocean RS images via a Cloud-based mean-shift algorithm. Distributed construction method via the pyramid model is proposed based on the maximum hierarchical layer algorithm and used to realize efficient storage structure of RS images on the Cloud platform. We achieve high-performance processing of massive RS images in the Hadoop system. Based on the pyramid Hadoop distributed file system (HDFS) storage method, an improved mean-shift algorithm for RS image retrieval is presented by fusion with the canopy algorithm via Hadoop MapReduce programming. The results show that the new method can achieve better performance for data storage than HDFS alone and WebGIS-based HDFS. Speedup and scaleup are very close to linear changes with an increase of RS images, which proves that image retrieval using our method is efficient.
Efficient Retrieval of Massive Ocean Remote Sensing Images via a Cloud-Based Mean-Shift Algorithm
Song, Wei; Mei, Haibin
2017-01-01
The rapid development of remote sensing (RS) technology has resulted in the proliferation of high-resolution images. There are challenges involved in not only storing large volumes of RS images but also in rapidly retrieving the images for ocean disaster analysis such as for storm surges and typhoon warnings. In this paper, we present an efficient retrieval of massive ocean RS images via a Cloud-based mean-shift algorithm. Distributed construction method via the pyramid model is proposed based on the maximum hierarchical layer algorithm and used to realize efficient storage structure of RS images on the Cloud platform. We achieve high-performance processing of massive RS images in the Hadoop system. Based on the pyramid Hadoop distributed file system (HDFS) storage method, an improved mean-shift algorithm for RS image retrieval is presented by fusion with the canopy algorithm via Hadoop MapReduce programming. The results show that the new method can achieve better performance for data storage than HDFS alone and WebGIS-based HDFS. Speedup and scaleup are very close to linear changes with an increase of RS images, which proves that image retrieval using our method is efficient. PMID:28737699
Audio-based queries for video retrieval over Java enabled mobile devices
NASA Astrophysics Data System (ADS)
Ahmad, Iftikhar; Cheikh, Faouzi Alaya; Kiranyaz, Serkan; Gabbouj, Moncef
2006-02-01
In this paper we propose a generic framework for efficient retrieval of audiovisual media based on its audio content. This framework is implemented in a client-server architecture where the client application is developed in Java to be platform independent whereas the server application is implemented for the PC platform. The client application adapts to the characteristics of the mobile device where it runs such as screen size and commands. The entire framework is designed to take advantage of the high-level segmentation and classification of audio content to improve speed and accuracy of audio-based media retrieval. Therefore, the primary objective of this framework is to provide an adaptive basis for performing efficient video retrieval operations based on the audio content and types (i.e. speech, music, fuzzy and silence). Experimental results approve that such an audio based video retrieval scheme can be used from mobile devices to search and retrieve video clips efficiently over wireless networks.
NASA Technical Reports Server (NTRS)
Biswas, Sayak K.; Jones, Linwood; Roberts, Jason; Ruf, Christopher; Ulhorn, Eric; Miller, Timothy
2012-01-01
The Hurricane Imaging Radiometer (HIRAD) is a new airborne synthetic aperture passive microwave radiometer capable of wide swath imaging of the ocean surface wind speed under heavy precipitation e.g. in tropical cyclones. It uses interferometric signal processing to produce upwelling brightness temperature (Tb) images at its four operating frequencies 4, 5, 6 and 6.6 GHz [1,2]. HIRAD participated in NASA s Genesis and Rapid Intensification Processes (GRIP) mission during 2010 as its first science field campaign. It produced Tb images with 70 km swath width and 3 km resolution from a 20 km altitude. From this, ocean surface wind speed and column averaged atmospheric liquid water content can be retrieved across the swath. The column averaged liquid water then could be related to an average rain rate. The retrieval algorithm (and the HIRAD instrument itself) is a direct descendant of the nadir-only Stepped Frequency Microwave Radiometer that is used operationally by the NOAA Hurricane Research Division to monitor tropical cyclones [3,4]. However, due to HIRAD s slant viewing geometry (compared to nadir viewing SFMR) a major modification is required in the algorithm. Results based on the modified algorithm from the GRIP campaign will be presented in the paper.
NASA Astrophysics Data System (ADS)
Taira, Ricky K.; Wong, Clement; Johnson, David; Bhushan, Vikas; Rivera, Monica; Huang, Lu J.; Aberle, Denise R.; Cardenas, Alfonso F.; Chu, Wesley W.
1995-05-01
With the increase in the volume and distribution of images and text available in PACS and medical electronic health-care environments it becomes increasingly important to maintain indexes that summarize the content of these multi-media documents. Such indices are necessary to quickly locate relevant patient cases for research, patient management, and teaching. The goal of this project is to develop an intelligent document retrieval system that allows researchers to request for patient cases based on document content. Thus we wish to retrieve patient cases from electronic information archives that could include a combined specification of patient demographics, low level radiologic findings (size, shape, number), intermediate-level radiologic findings (e.g., atelectasis, infiltrates, etc.) and/or high-level pathology constraints (e.g., well-differentiated small cell carcinoma). The cases could be distributed among multiple heterogeneous databases such as PACS, RIS, and HIS. Content- based retrieval systems go beyond the capabilities of simple key-word or string-based retrieval matching systems. These systems require a knowledge base to comprehend the generality/specificity of a concept (thus knowing the subclasses or related concepts to a given concept) and knowledge of the various string representations for each concept (i.e., synonyms, lexical variants, etc.). We have previously reported on a data integration mediation layer that allows transparent access to multiple heterogeneous distributed medical databases (HIS, RIS, and PACS). The data access layer of our architecture currently has limited query processing capabilities. Given a patient hospital identification number, the access mediation layer collects all documents in RIS and HIS and returns this information to a specified workstation location. In this paper we report on our efforts to extend the query processing capabilities of the system by creation of custom query interfaces, an intelligent query processing engine, and a document-content index that can be generated automatically (i.e., no manual authoring or changes to the normal clinical protocols).
Content-aware network storage system supporting metadata retrieval
NASA Astrophysics Data System (ADS)
Liu, Ke; Qin, Leihua; Zhou, Jingli; Nie, Xuejun
2008-12-01
Nowadays, content-based network storage has become the hot research spot of academy and corporation[1]. In order to solve the problem of hit rate decline causing by migration and achieve the content-based query, we exploit a new content-aware storage system which supports metadata retrieval to improve the query performance. Firstly, we extend the SCSI command descriptor block to enable system understand those self-defined query requests. Secondly, the extracted metadata is encoded by extensible markup language to improve the universality. Thirdly, according to the demand of information lifecycle management (ILM), we store those data in different storage level and use corresponding query strategy to retrieval them. Fourthly, as the file content identifier plays an important role in locating data and calculating block correlation, we use it to fetch files and sort query results through friendly user interface. Finally, the experiments indicate that the retrieval strategy and sort algorithm have enhanced the retrieval efficiency and precision.
A novel method for efficient archiving and retrieval of biomedical images using MPEG-7
NASA Astrophysics Data System (ADS)
Meyer, Joerg; Pahwa, Ash
2004-10-01
Digital archiving and efficient retrieval of radiological scans have become critical steps in contemporary medical diagnostics. Since more and more images and image sequences (single scans or video) from various modalities (CT/MRI/PET/digital X-ray) are now available in digital formats (e.g., DICOM-3), hospitals and radiology clinics need to implement efficient protocols capable of managing the enormous amounts of data generated daily in a typical clinical routine. We present a method that appears to be a viable way to eliminate the tedious step of manually annotating image and video material for database indexing. MPEG-7 is a new framework that standardizes the way images are characterized in terms of color, shape, and other abstract, content-related criteria. A set of standardized descriptors that are automatically generated from an image is used to compare an image to other images in a database, and to compute the distance between two images for a given application domain. Text-based database queries can be replaced with image-based queries using MPEG-7. Consequently, image queries can be conducted without any prior knowledge of the keys that were used as indices in the database. Since the decoding and matching steps are not part of the MPEG-7 standard, this method also enables searches that were not planned by the time the keys were generated.
Anavi, Yaron; Kogan, Ilya; Gelbart, Elad; Geva, Ofer; Greenspan, Hayit
2015-08-01
In this work various approaches are investigated for X-ray image retrieval and specifically chest pathology retrieval. Given a query image taken from a data set of 443 images, the objective is to rank images according to similarity. Different features, including binary features, texture features, and deep learning (CNN) features are examined. In addition, two approaches are investigated for the retrieval task. One approach is based on the distance of image descriptors using the above features (hereon termed the "descriptor"-based approach); the second approach ("classification"-based approach) is based on a probability descriptor, generated by a pair-wise classification of each two classes (pathologies) and their decision values using an SVM classifier. Best results are achieved using deep learning features in a classification scheme.
Tagare, Hemant D.; Jaffe, C. Carl; Duncan, James
1997-01-01
Abstract Information contained in medical images differs considerably from that residing in alphanumeric format. The difference can be attributed to four characteristics: (1) the semantics of medical knowledge extractable from images is imprecise; (2) image information contains form and spatial data, which are not expressible in conventional language; (3) a large part of image information is geometric; (4) diagnostic inferences derived from images rest on an incomplete, continuously evolving model of normality. This paper explores the differentiating characteristics of text versus images and their impact on design of a medical image database intended to allow content-based indexing and retrieval. One strategy for implementing medical image databases is presented, which employs object-oriented iconic queries, semantics by association with prototypes, and a generic schema. PMID:9147338
NASA Astrophysics Data System (ADS)
Eweys, Omar Ali; Elwan, Abeer A.; Borham, Taha I.
2017-12-01
This manuscript proposes an approach for estimating soil moisture content over corn fields using C-band SAR data acquired by RADARSAT-2 satellite. An image based approach is employed to remove the vegetation contribution to the satellite signals. In particular, the absolute difference between like and cross polarized signals (ADLC) is employed for segmenting the canopy growth cycle into tiny stages. Each stage is represented by a Cumulative Distribution Function (CDF) of the like polarized signals. For periods of bare soils and vegetation cover, CDFs are compared and the vegetation contribution is quantified. The portion which represent the soil contributions (σHHsoil°) to the satellite signals; are employed for inversely running Oh model and the water cloud model for estimating soil moisture, canopy water content and canopy height respectively. The proposed approach shows satisfactory performance where high correlation of determination (R2) is detected between the field observations and the corresponding retrieved soil moisture, canopy water content and canopy height (R2 = 0.64, 0.97 and 0.98 respectively). Soil moisture retrieval is associated with root mean square error (RMSE) of 0.03 m3 m-3 while estimating canopy water content and canopy height have RMSE of 0.38 kg m-2 and 0.166 m respectively.
Discriminative Multi-View Interactive Image Re-Ranking.
Li, Jun; Xu, Chang; Yang, Wankou; Sun, Changyin; Tao, Dacheng
2017-07-01
Given an unreliable visual patterns and insufficient query information, content-based image retrieval is often suboptimal and requires image re-ranking using auxiliary information. In this paper, we propose a discriminative multi-view interactive image re-ranking (DMINTIR), which integrates user relevance feedback capturing users' intentions and multiple features that sufficiently describe the images. In DMINTIR, heterogeneous property features are incorporated in the multi-view learning scheme to exploit their complementarities. In addition, a discriminatively learned weight vector is obtained to reassign updated scores and target images for re-ranking. Compared with other multi-view learning techniques, our scheme not only generates a compact representation in the latent space from the redundant multi-view features but also maximally preserves the discriminative information in feature encoding by the large-margin principle. Furthermore, the generalization error bound of the proposed algorithm is theoretically analyzed and shown to be improved by the interactions between the latent space and discriminant function learning. Experimental results on two benchmark data sets demonstrate that our approach boosts baseline retrieval quality and is competitive with the other state-of-the-art re-ranking strategies.
NASA Technical Reports Server (NTRS)
Prabhakara, C.; Dalu, G.; Liberti, G. L.; Nucciarone, J. J.; Suhasini, R.
1991-01-01
The brightness temperature (T sub b) measured at 37 GHz shows fairly strong emission from rain, and only slight effects caused by scattering by ice above the rain clouds. At frequencies below 37 GHz, were the fov is larger and the volume extinction coefficient is weaker, it is found that the observations do not yield appreciable additional information about rain. At 85 GHz (fov = 15 km), where the volume extinction is considerably larger, direct information about rain below the clouds is usually masked. Based on the above ideas, 37 GHz observations with a 30 km fov from SMMR and SSM/I are selected to develop an empirical method for the estimation of rain rate. In this method, the statistics of the observed T sub b's at 37 GHz in a rain storm are related to the rain rate statistics in that storm. The underestimation of rain rate, arising from the inability of the radiometer to respond sensitively to rain rate above a given threshold, is rectified in this technique with the aid of two parameters that depend on the total water vapor content in the atmosphere. The retrieved rain rates compare favorably with radar observations and monthly mean global maps of rain derived from this technique over the oceans.
Content-based TV sports video retrieval using multimodal analysis
NASA Astrophysics Data System (ADS)
Yu, Yiqing; Liu, Huayong; Wang, Hongbin; Zhou, Dongru
2003-09-01
In this paper, we propose content-based video retrieval, which is a kind of retrieval by its semantical contents. Because video data is composed of multimodal information streams such as video, auditory and textual streams, we describe a strategy of using multimodal analysis for automatic parsing sports video. The paper first defines the basic structure of sports video database system, and then introduces a new approach that integrates visual stream analysis, speech recognition, speech signal processing and text extraction to realize video retrieval. The experimental results for TV sports video of football games indicate that the multimodal analysis is effective for video retrieval by quickly browsing tree-like video clips or inputting keywords within predefined domain.
Xia, Lang; Mao, Kebiao; Ma, Ying; Zhao, Fen; Jiang, Lipeng; Shen, Xinyi; Qin, Zhihao
2014-01-01
A practical algorithm was proposed to retrieve land surface temperature (LST) from Visible Infrared Imager Radiometer Suite (VIIRS) data in mid-latitude regions. The key parameter transmittance is generally computed from water vapor content, while water vapor channel is absent in VIIRS data. In order to overcome this shortcoming, the water vapor content was obtained from Moderate Resolution Imaging Spectroradiometer (MODIS) data in this study. The analyses on the estimation errors of vapor content and emissivity indicate that when the water vapor errors are within the range of ±0.5 g/cm2, the mean retrieval error of the present algorithm is 0.634 K; while the land surface emissivity errors range from −0.005 to +0.005, the mean retrieval error is less than 1.0 K. Validation with the standard atmospheric simulation shows the average LST retrieval error for the twenty-three land types is 0.734 K, with a standard deviation value of 0.575 K. The comparison between the ground station LST data indicates the retrieval mean accuracy is −0.395 K, and the standard deviation value is 1.490 K in the regions with vegetation and water cover. Besides, the retrieval results of the test data have also been compared with the results measured by the National Oceanic and Atmospheric Administration (NOAA) VIIRS LST products, and the results indicate that 82.63% of the difference values are within the range of −1 to 1 K, and 17.37% of the difference values are within the range of ±2 to ±1 K. In a conclusion, with the advantages of multi-sensors taken fully exploited, more accurate results can be achieved in the retrieval of land surface temperature. PMID:25397919
Do, Bao H; Wu, Andrew; Biswal, Sandip; Kamaya, Aya; Rubin, Daniel L
2010-11-01
Storing and retrieving radiology cases is an important activity for education and clinical research, but this process can be time-consuming. In the process of structuring reports and images into organized teaching files, incidental pathologic conditions not pertinent to the primary teaching point can be omitted, as when a user saves images of an aortic dissection case but disregards the incidental osteoid osteoma. An alternate strategy for identifying teaching cases is text search of reports in radiology information systems (RIS), but retrieved reports are unstructured, teaching-related content is not highlighted, and patient identifying information is not removed. Furthermore, searching unstructured reports requires sophisticated retrieval methods to achieve useful results. An open-source, RadLex(®)-compatible teaching file solution called RADTF, which uses natural language processing (NLP) methods to process radiology reports, was developed to create a searchable teaching resource from the RIS and the picture archiving and communication system (PACS). The NLP system extracts and de-identifies teaching-relevant statements from full reports to generate a stand-alone database, thus converting existing RIS archives into an on-demand source of teaching material. Using RADTF, the authors generated a semantic search-enabled, Web-based radiology archive containing over 700,000 cases with millions of images. RADTF combines a compact representation of the teaching-relevant content in radiology reports and a versatile search engine with the scale of the entire RIS-PACS collection of case material. ©RSNA, 2010
Considering Combined or Separated Roughness and Vegetation Effects in Soil Moisture Retrievals
NASA Technical Reports Server (NTRS)
Parrens, Marie; Wigernon, Jean-Pierre; Richaume, Philippe; Al Bitar, Ahmad; Mialon, Arnaud; Fernandez-Moran, Roberto; Al-Yarri, Amen; O'Neill, Peggy; Kerr, Yann
2016-01-01
For more than six years, the Soil Moisture and Ocean Salinity (SMOS) mission has provided multi angular and full-polarization brightness temperature (TB) measurements at L-band. Geophysical products such as soil moisture (SM) and vegetation optical depth at nadir (tau(sub nad)) are retrieved by an operational algorithm using TB observations at different angles of incidence and polarizations. However, the quality of the retrievals depends on several surface effects, such as vegetation, soil roughness and texture, etc. In the microwave forward emission model used in the retrievals (L-band Microwave Emission Model, L-MEB),soil roughness is modeled with a semi-empirical equation using four main parameters (Q(sub r), H(sub r), N(sub rp), with p = H or V polarizations). At present, these parameters are calibrated with data provided by airborne studies and in situ measurements made at a local scale that is not necessarily representative of the large SMOS footprints (43 km on average) at global scale. In this study, we evaluate the impact of the calibrated values of N(sub rp) and H(sub r) on the SM and tau(sub nad) retrievals based on SMOS TB measurements (SMOS Level 3 product) over the Soil Climate Analysis Network (SCAN) network located in North America over five years (2011-2015). In this study, Qr was set equal to zero and we assumed that N(sub rH)= N(sub rV). The retrievals were performed by varying N(sub rp) from -1 to 2 by steps of 1 and H(sub r) from 0 to 0.6 by steps of 0.1. At satellite scale, the results show that combining vegetation and roughness effects in a single parameter provides the best results in terms of soil moisture retrievals, as evaluated against the in situ SM data. Even though our retrieval approach was very simplified, as we did not account for pixel heterogeneity, the accuracy we obtained in the SM retrievals was almost systematically better than those of the Level 3 product. Improved results were also obtained in terms of optical depth retrievals. These new results may have key consequences in terms of calibration of roughness effects within the algorithms of the SMOS (ESA) and the SMAP (NASA) space missions.
NASA Astrophysics Data System (ADS)
Rahman, Md M.; Antani, Sameer K.; Demner-Fushman, Dina; Thoma, George R.
2015-03-01
This paper presents a novel approach to biomedical image retrieval by mapping image regions to local concepts and represent images in a weighted entropy-based concept feature space. The term concept refers to perceptually distinguishable visual patches that are identified locally in image regions and can be mapped to a glossary of imaging terms. Further, the visual significance (e.g., visualness) of concepts is measured as Shannon entropy of pixel values in image patches and is used to refine the feature vector. Moreover, the system can assist user in interactively select a Region-Of-Interest (ROI) and search for similar image ROIs. Further, a spatial verification step is used as a post-processing step to improve retrieval results based on location information. The hypothesis that such approaches would improve biomedical image retrieval, is validated through experiments on a data set of 450 lung CT images extracted from journal articles from four different collections.
NASA Astrophysics Data System (ADS)
Zhou, Xianfeng; Huang, Wenjiang; Kong, Weiping; Ye, Huichun; Luo, Juhua; Chen, Pengfei
2016-11-01
Timely and accurate assessment of canopy nitrogen content (CNC) provides valuable insight into rapid and real-time nitrogen status monitoring in crops. A semi-empirical approach based on spectral index was extensively used for nitrogen content estimation. However, in many cases, due to specific vegetation types or local conditions, the applicability and robustness of established spectral indices for nitrogen retrieval were limited. The objective of this study was to investigate the optimal spectral index for winter wheat (Triticum aestivum L.) CNC estimation using Pushbroom Hyperspectral Imager (PHI) airborne hyperspectral data. Data collected from two different field experiments that were conducted during the major growth stages of winter wheat in 2002 and 2003 were used. Our results showed that a significant linear relationship existed between nitrogen and chlorophyll content at the canopy level, and it was not affected by cultivars, growing conditions and nutritional status of winter wheat. Nevertheless, it varied with growth stages. Periods around heading stage mainly worsened the relationship and CNC estimation, and CNC assessment for growth stages before and after heading could improve CNC retrieval accuracy to some extent. CNC assessment with PHI airborne hyperspectra suggested that spectral indices based on red-edge band including narrowband and broadband CIred-edge, NDVI-like and ND705 showed convincing results in CNC retrieval. NDVI-like and ND705 were sensitive to detect CNC changes less than 5 g/m2, narrowband and broadband CIred-edge were sensitive to a wide range of CNC variations. Further evaluation of CNC retrieval using field measured hyperspectra indicated that NDVI-like was robust and exhibited the highest accuracy in CNC assessment, and spectral indices (CIred-edge and CIgreen) that established on narrow or broad bands showed no obvious difference in CNC assessment. Overall, our study suggested that NDVI-like was the optimal indicator for winter wheat CNC retrieval.
NASA Astrophysics Data System (ADS)
Coutris, Pierre; Leroy, Delphine; Fontaine, Emmanuel; Schwarzenboeck, Alfons; Strapp, J. Walter
2016-04-01
A new method to retrieve cloud water content from in-situ measured 2D particle images from optical array probes (OAP) is presented. With the overall objective to build a statistical model of crystals' mass as a function of their size, environmental temperature and crystal microphysical history, this study presents the methodology to retrieve the mass of crystals sorted by size from 2D images using a numerical optimization approach. The methodology is validated using two datasets of in-situ measurements gathered during two airborne field campaigns held in Darwin, Australia (2014), and Cayenne, France (2015), in the frame of the High Altitude Ice Crystals (HAIC) / High Ice Water Content (HIWC) projects. During these campaigns, a Falcon F-20 research aircraft equipped with state-of-the art microphysical instrumentation sampled numerous mesoscale convective systems (MCS) in order to study dynamical and microphysical properties and processes of high ice water content areas. Experimentally, an isokinetic evaporator probe, referred to as IKP-2, provides a reference measurement of the total water content (TWC) which equals ice water content, (IWC) when (supercooled) liquid water is absent. Two optical array probes, namely 2D-S and PIP, produce 2D images of individual crystals ranging from 50 μm to 12840 μm from which particle size distributions (PSD) are derived. Mathematically, the problem is formulated as an inverse problem in which the crystals' mass is assumed constant over a size class and is computed for each size class from IWC and PSD data: PSD.m = IW C This problem is solved using numerical optimization technique in which an objective function is minimized. The objective function is defined as follows: 2 J(m)=∥P SD.m - IW C ∥ + λ.R (m) where the regularization parameter λ and the regularization function R(m) are tuned based on data characteristics. The method is implemented in two steps. First, the method is developed on synthetic crystal populations in order to evaluate the behavior of the iterative algorithm, the influence of data noise on the quality of the results, and to set up a regularization strategy. Therefore, 3D synthetic crystals have been generated and numerically processed to recreate the noise caused by 2D projections of randomly oriented 3D crystals and by the discretization of the PSD into size classes of predefined width. Subsequently, the method is applied to the experimental datasets and the comparison between the retrieved TWC (this methodology) and the measured ones (IKP-2 data) will enable the evaluation of the consistency and accuracy of the mass solution retrieved by the numerical optimization approach as well as preliminary assessment of the influence of temperature and dynamical parameters on crystals' masses.
NASA Astrophysics Data System (ADS)
Blank, J.; Ungermann, J.; Guggenmoser, T.; Kaufmann, M.; Riese, M.
2012-04-01
The Gimballed Limb Observer for Radiance Imaging in the Atmosphere (GLORIA) is an aircraft based infrared limb-sounder. This presentation will give an overview of the retrieval techniques used for the analysis of data produced by the GLORIA instrument. For data processing, the JUelich RApid Spectral SImulation Code 2 (JURASSIC2) was developed. It consists of a set of programs to retrieve atmospheric profiles from GLORIA measurements. The GLORIA Michelson interferometer can run with a wide range of parameters. In the dynamics mode, spectra are generate with a medium spectral and a very high temporal and spatial resolution. Each sample can contain thousands of spectral lines for each contributing trace gas. In the JURASSIC retrieval code this is handled by using a radiative transport model based on the Emissivity Growth Approximation. Deciding which samples should be included in the retrieval is a non-trivial task and requires specific domain knowledge. To ease this problem we developed an automatic selection program by analysing the Shannon information content. By taking into account data for all relevant trace gases and instrument effects, optimal integrated spectral windows are computed. This includes considerations for cross-influence of trace gases, which has non-obvious consequence for the contribution of spectral samples. We developed methods to assess the influence of spectral windows on the retrieval. While we can not exhaustively search the whole range of possible spectral sample combinations, it is possible to optimize information content using a genetic algorithm. The GLORIA instrument is mounted with a viewing direction perpendicular to the flight direction. A gimbal frame makes it possible to move the instrument 45° to both direction. By flying on a circular path, it is possible to generate images of an area of interest from a wide range of angles. These can be analyzed in a 3D-tomographic fashion, which yields superior spatial resolution along line of site. Usually limb instruments have a resolution of several hundred kilometers. In studies we have shown to get a resolution of 35km in all horizontal directions. Even when only linear flight patterns can be realized, resolutions of ≈70km can be obtained. This technique can be used to observe features of the Upper Troposphere Lower Stratosphere (UTLS), where important mixing processes take place. Especially tropopause folds are difficult to image, as their main features need to be along line of flight when using common 1D approach.
NASA Technical Reports Server (NTRS)
Dominquez, Jesus A.; Tate, Lanetra C.; Wright, M. Clara; Caraccio, Anne
2013-01-01
Accomplishing the best-performing composite matrix (resin) requires that not only the processing method but also the cure cycle generate low-void-content structures. If voids are present, the performance of the composite matrix will be significantly reduced. This is usually noticed by significant reductions in matrix-dominated properties, such as compression and shear strength. Voids in composite materials are areas that are absent of the composite components: matrix and fibers. The characteristics of the voids and their accurate estimation are critical to determine for high performance composite structures. One widely used method of performing void analysis on a composite structure sample is acquiring optical micrographs or Scanning Electron Microscope (SEM) images of lateral sides of the sample and retrieving the void areas within the micrographs/images using an image analysis technique. Segmentation for the retrieval and subsequent computation of void areas within the micrographs/images is challenging as the gray-scaled values of the void areas are close to the gray-scaled values of the matrix leading to the need of manually performing the segmentation based on the histogram of the micrographs/images to retrieve the void areas. The use of an algorithm developed by NASA and based on Fuzzy Reasoning (FR) proved to overcome the difficulty of suitably differentiate void and matrix image areas with similar gray-scaled values leading not only to a more accurate estimation of void areas on composite matrix micrographs but also to a faster void analysis process as the algorithm is fully autonomous.
Small angle x-ray scattering with edge-illumination
NASA Astrophysics Data System (ADS)
Modregger, Peter; Cremona, Tiziana P.; Benarafa, Charaf; Schittny, Johannes C.; Olivo, Alessandro; Endrizzi, Marco
2016-08-01
Sensitivity to sub-pixel sample features has been demonstrated as a valuable capability of phase contrast x-ray imaging. Here, we report on a method to obtain angular-resolved small angle x-ray scattering distributions with edge-illumination- based imaging utilizing incoherent illumination from an x-ray tube. Our approach provides both the three established image modalities (absorption, differential phase and scatter strength), plus a number of additional contrasts related to unresolved sample features. The complementarity of these contrasts is experimentally validated by using different materials in powder form. As a significant application example we show that the extended complementary contrasts could allow the diagnosis of pulmonary emphysema in a murine model. In support of this, we demonstrate that the properties of the retrieved scattering distributions are consistent with the expectation of increased feature sizes related to pulmonary emphysema. Combined with the simplicity of implementation of edge-illumination, these findings suggest a high potential for exploiting extended sub-pixel contrasts in the diagnosis of lung diseases and beyond.
Wavefront Sensing for WFIRST with a Linear Optical Model
NASA Technical Reports Server (NTRS)
Jurling, Alden S.; Content, David A.
2012-01-01
In this paper we develop methods to use a linear optical model to capture the field dependence of wavefront aberrations in a nonlinear optimization-based phase retrieval algorithm for image-based wavefront sensing. The linear optical model is generated from a ray trace model of the system and allows the system state to be described in terms of mechanical alignment parameters rather than wavefront coefficients. This approach allows joint optimization over images taken at different field points and does not require separate convergence of phase retrieval at individual field points. Because the algorithm exploits field diversity, multiple defocused images per field point are not required for robustness. Furthermore, because it is possible to simultaneously fit images of many stars over the field, it is not necessary to use a fixed defocus to achieve adequate signal-to-noise ratio despite having images with high dynamic range. This allows high performance wavefront sensing using in-focus science data. We applied this technique in a simulation model based on the Wide Field Infrared Survey Telescope (WFIRST) Intermediate Design Reference Mission (IDRM) imager using a linear optical model with 25 field points. We demonstrate sub-thousandth-wave wavefront sensing accuracy in the presence of noise and moderate undersampling for both monochromatic and polychromatic images using 25 high-SNR target stars. Using these high-quality wavefront sensing results, we are able to generate upsampled point-spread functions (PSFs) and use them to determine PSF ellipticity to high accuracy in order to reduce the systematic impact of aberrations on the accuracy of galactic ellipticity determination for weak-lensing science.
Blurry-frame detection and shot segmentation in colonoscopy videos
NASA Astrophysics Data System (ADS)
Oh, JungHwan; Hwang, Sae; Tavanapong, Wallapak; de Groen, Piet C.; Wong, Johnny
2003-12-01
Colonoscopy is an important screening procedure for colorectal cancer. During this procedure, the endoscopist visually inspects the colon. Human inspection, however, is not without error. We hypothesize that colonoscopy videos may contain additional valuable information missed by the endoscopist. Video segmentation is the first necessary step for the content-based video analysis and retrieval to provide efficient access to the important images and video segments from a large colonoscopy video database. Based on the unique characteristics of colonoscopy videos, we introduce a new scheme to detect and remove blurry frames, and segment the videos into shots based on the contents. Our experimental results show that the average precision and recall of the proposed scheme are over 90% for the detection of non-blurry images. The proposed method of blurry frame detection and shot segmentation is extensible to the videos captured from other endoscopic procedures such as upper gastrointestinal endoscopy, enteroscopy, cystoscopy, and laparoscopy.
NASA Astrophysics Data System (ADS)
Che, Chang; Yu, Xiaoyang; Sun, Xiaoming; Yu, Boyang
2017-12-01
In recent years, Scalable Vocabulary Tree (SVT) has been shown to be effective in image retrieval. However, for general images where the foreground is the object to be recognized while the background is cluttered, the performance of the current SVT framework is restricted. In this paper, a new image retrieval framework that incorporates a robust distance metric and information fusion is proposed, which improves the retrieval performance relative to the baseline SVT approach. First, the visual words that represent the background are diminished by using a robust Hausdorff distance between different images. Second, image matching results based on three image signature representations are fused, which enhances the retrieval precision. We conducted intensive experiments on small-scale to large-scale image datasets: Corel-9, Corel-48, and PKU-198, where the proposed Hausdorff metric and information fusion outperforms the state-of-the-art methods by about 13, 15, and 15%, respectively.
Validation and Uncertainty Estimates for MODIS Collection 6 "Deep Blue" Aerosol Data
NASA Technical Reports Server (NTRS)
Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.; Jeong, M.-J.
2013-01-01
The "Deep Blue" aerosol optical depth (AOD) retrieval algorithm was introduced in Collection 5 of the Moderate Resolution Imaging Spectroradiometer (MODIS) product suite, and complemented the existing "Dark Target" land and ocean algorithms by retrieving AOD over bright arid land surfaces, such as deserts. The forthcoming Collection 6 of MODIS products will include a "second generation" Deep Blue algorithm, expanding coverage to all cloud-free and snow-free land surfaces. The Deep Blue dataset will also provide an estimate of the absolute uncertainty on AOD at 550 nm for each retrieval. This study describes the validation of Deep Blue Collection 6 AOD at 550 nm (Tau(sub M)) from MODIS Aqua against Aerosol Robotic Network (AERONET) data from 60 sites to quantify these uncertainties. The highest quality (denoted quality assurance flag value 3) data are shown to have an absolute uncertainty of approximately (0.086+0.56Tau(sub M))/AMF, where AMF is the geometric air mass factor. For a typical AMF of 2.8, this is approximately 0.03+0.20Tau(sub M), comparable in quality to other satellite AOD datasets. Regional variability of retrieval performance and comparisons against Collection 5 results are also discussed.
NASA Technical Reports Server (NTRS)
Munchak, S. Joseph; Meneghini, Robert; Grecu, Mircea; Olson, William S.
2016-01-01
The Global Precipitation Measurement satellite's Microwave Imager (GMI) and Dual-frequency Precipitation Radar (DPR) are designed to provide the most accurate instantaneous precipitation estimates currently available from space. The GPM Combined Algorithm (CORRA) plays a key role in this process by retrieving precipitation profiles that are consistent with GMI and DPR measurements; therefore, it is desirable that the forward models in CORRA use the same geophysical input parameters. This study explores the feasibility of using internally consistent emissivity and surface backscatter cross-sectional (sigma(sub 0)) models for water surfaces in CORRA. An empirical model for DPR Ku and Ka sigma(sub 0) as a function of 10m wind speed and incidence angle is derived from GMI-only wind retrievals under clear-sky conditions. This allows for the sigma(sub 0) measurements, which are also influenced by path-integrated attenuation (PIA) from precipitation, to be used as input to CORRA and for wind speed to be retrieved as output. Comparisons to buoy data give a wind rmse of 3.7 m/s for Ku+GMI and 3.2 m/s for Ku+Ka+GMI retrievals under precipitation (compared to 1.3 m/s for clear-sky GMI-only), and there is a reduction in bias from GANAL background data (-10%) to the Ku+GMI (-3%) and Ku+Ka+GMI (-5%) retrievals. Ku+GMI retrievals of precipitation increase slightly in light (less than 1 mm/h) and decrease in moderate to heavy precipitation (greater than 1 mm/h). The Ku+Ka+GMI retrievals, being additionally constrained by the Ka reflectivity, increase only slightly in moderate and heavy precipitation at low wind speeds (less than 5 m/s) relative to retrievals using the surface reference estimate of PIA as input.
Compressed domain indexing of losslessly compressed images
NASA Astrophysics Data System (ADS)
Schaefer, Gerald
2001-12-01
Image retrieval and image compression have been pursued separately in the past. Only little research has been done on a synthesis of the two by allowing image retrieval to be performed directly in the compressed domain of images without the need to uncompress them first. In this paper methods for image retrieval in the compressed domain of losslessly compressed images are introduced. While most image compression techniques are lossy, i.e. discard visually less significant information, lossless techniques are still required in fields like medical imaging or in situations where images must not be changed due to legal reasons. The algorithms in this paper are based on predictive coding methods where a pixel is encoded based on the pixel values of its (already encoded) neighborhood. The first method is based on an understanding that predictively coded data is itself indexable and represents a textural description of the image. The second method operates directly on the entropy encoded data by comparing codebooks of images. Experiments show good image retrieval results for both approaches.
Toward translational incremental similarity-based reasoning in breast cancer grading
NASA Astrophysics Data System (ADS)
Tutac, Adina E.; Racoceanu, Daniel; Leow, Wee-Keng; Müller, Henning; Putti, Thomas; Cretu, Vladimir
2009-02-01
One of the fundamental issues in bridging the gap between the proliferation of Content-Based Image Retrieval (CBIR) systems in the scientific literature and the deficiency of their usage in medical community is based on the characteristic of CBIR to access information by images or/and text only. Yet, the way physicians are reasoning about patients leads intuitively to a case representation. Hence, a proper solution to overcome this gap is to consider a CBIR approach inspired by Case-Based Reasoning (CBR), which naturally introduces medical knowledge structured by cases. Moreover, in a CBR system, the knowledge is incrementally added and learned. The purpose of this study is to initiate a translational solution from CBIR algorithms to clinical practice, using a CBIR/CBR hybrid approach. Therefore, we advance the idea of a translational incremental similarity-based reasoning (TISBR), using combined CBIR and CBR characteristics: incremental learning of medical knowledge, medical case-based structure of the knowledge (CBR), image usage to retrieve similar cases (CBIR), similarity concept (central for both paradigms). For this purpose, three major axes are explored: the indexing, the cases retrieval and the search refinement, applied to Breast Cancer Grading (BCG), a powerful breast cancer prognosis exam. The effectiveness of this strategy is currently evaluated over cases provided by the Pathology Department of Singapore National University Hospital, for the indexing. With its current accuracy, TISBR launches interesting perspectives for complex reasoning in future medical research, opening the way to a better knowledge traceability and a better acceptance rate of computer-aided diagnosis assistance among practitioners.
Hamit, Murat; Yun, Weikang; Yan, Chuanbo; Kutluk, Abdugheni; Fang, Yang; Alip, Elzat
2015-06-01
Image feature extraction is an important part of image processing and it is an important field of research and application of image processing technology. Uygur medicine is one of Chinese traditional medicine and researchers pay more attention to it. But large amounts of Uygur medicine data have not been fully utilized. In this study, we extracted the image color histogram feature of herbal and zooid medicine of Xinjiang Uygur. First, we did preprocessing, including image color enhancement, size normalizition and color space transformation. Then we extracted color histogram feature and analyzed them with statistical method. And finally, we evaluated the classification ability of features by Bayes discriminant analysis. Experimental results showed that high accuracy for Uygur medicine image classification was obtained by using color histogram feature. This study would have a certain help for the content-based medical image retrieval for Xinjiang Uygur medicine.
NASA Astrophysics Data System (ADS)
Chou, Cheng-Ying; Anastasio, Mark A.
2016-04-01
In propagation-based X-ray phase-contrast (PB XPC) imaging, the measured image contains a mixture of absorption- and phase-contrast. To obtain separate images of the projected absorption and phase (i.e., refractive) properties of a sample, phase retrieval methods can be employed. It has been suggested that phase-retrieval can always improve image quality in PB XPC imaging. However, when objective (task-based) measures of image quality are employed, this is not necessarily true and phase retrieval can be detrimental. In this work, signal detection theory is utilized to quantify the performance of a Hotelling observer (HO) for detecting a known signal in a known background. Two cases are considered. In the first case, the HO acts directly on the measured intensity data. In the second case, the HO acts on either the retrieved phase or absorption image. We demonstrate that the performance of the HO is superior when acting on the measured intensity data. The loss of task-specific information induced by phase-retrieval is quantified by computing the efficiency of the HO as the ratio of the test statistic signal-to-noise ratio (SNR) for the two cases. The effect of the system geometry on this efficiency is systematically investigated. Our findings confirm that phase-retrieval can impair signal detection performance in XPC imaging.
A flower image retrieval method based on ROI feature.
Hong, An-Xiang; Chen, Gang; Li, Jun-Li; Chi, Zhe-Ru; Zhang, Dan
2004-07-01
Flower image retrieval is a very important step for computer-aided plant species recognition. In this paper, we propose an efficient segmentation method based on color clustering and domain knowledge to extract flower regions from flower images. For flower retrieval, we use the color histogram of a flower region to characterize the color features of flower and two shape-based features sets, Centroid-Contour Distance (CCD) and Angle Code Histogram (ACH), to characterize the shape features of a flower contour. Experimental results showed that our flower region extraction method based on color clustering and domain knowledge can produce accurate flower regions. Flower retrieval results on a database of 885 flower images collected from 14 plant species showed that our Region-of-Interest (ROI) based retrieval approach using both color and shape features can perform better than a method based on the global color histogram proposed by Swain and Ballard (1991) and a method based on domain knowledge-driven segmentation and color names proposed by Das et al.(1999).
NASA Technical Reports Server (NTRS)
Zhang, Zhibo; Ackerman, Andrew S.; Feingold, Graham; Platnick, Steven; Pincus, Robert; Xue, Huiwen
2012-01-01
This study investigates effects of drizzle and cloud horizontal inhomogeneity on cloud effective radius (re) retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS). In order to identify the relative importance of various factors, we developed a MODIS cloud property retrieval simulator based on the combination of large-eddy simulations (LES) and radiative transfer computations. The case studies based on synthetic LES cloud fields indicate that at high spatial resolution (100 m) 3-D radiative transfer effects, such as illumination and shadowing, can induce significant differences between retrievals ofre based on reflectance at 2.1 m (re,2.1) and 3.7 m (re,3.7). It is also found that 3-D effects tend to have stronger impact onre,2.1 than re,3.7, leading to positive difference between the two (re,3.72.1) from illumination and negative re,3.72.1from shadowing. The cancellation of opposing 3-D effects leads to overall reasonable agreement betweenre,2.1 and re,3.7 at high spatial resolution as far as domain averages are concerned. At resolutions similar to MODIS, however, re,2.1 is systematically larger than re,3.7when averaged over the LES domain, with the difference exhibiting a threshold-like dependence on bothre,2.1and an index of the sub-pixel variability in reflectance (H), consistent with MODIS observations. In the LES cases studied, drizzle does not strongly impact reretrievals at either wavelength. It is also found that opposing 3-D radiative transfer effects partly cancel each other when cloud reflectance is aggregated from high spatial resolution to MODIS resolution, resulting in a weaker net impact of 3-D radiative effects onre retrievals. The large difference at MODIS resolution between re,3.7 and re,2.1 for highly inhomogeneous pixels with H 0.4 can be largely attributed to what we refer to as the plane-parallelrebias, which is attributable to the impact of sub-pixel level horizontal variability of cloud optical thickness onre retrievals and is greater for re,2.1 than re,3.7. These results suggest that there are substantial uncertainties attributable to 3-D radiative effects and plane-parallelre bias in the MODIS re,2.1retrievals for pixels with strong sub-pixel scale variability, and theH index can be used to identify these uncertainties.
A review of EO image information mining
NASA Astrophysics Data System (ADS)
Quartulli, Marco; Olaizola, Igor G.
2013-01-01
We analyze the state of the art of content-based retrieval in Earth observation image archives focusing on complete systems showing promise for operational implementation. The different paradigms at the basis of the main system families are introduced. The approaches taken are considered, focusing in particular on the phases after primitive feature extraction. The solutions envisaged for the issues related to feature simplification and synthesis, indexing, semantic labeling are reviewed. The methodologies for query specification and execution are evaluated. Conclusions are drawn on the state of published research in Earth observation (EO) mining.
Multimedia systems for art and culture: a case study of Brihadisvara Temple
NASA Astrophysics Data System (ADS)
Jain, Anil K.; Goel, Sanjay; Agarwal, Sachin; Mittal, Vipin; Sharma, Hariom; Mahindru, Ranjeev
1997-01-01
In India a temple is not only a structure of religious significance and celebration, but it also plays an important role in the social, administrative and cultural life of the locality. Temples have served as centers for learning Indian scriptures. Music and dance were fostered and performed in the precincts of the temples. Built at the end of the 10th century, the Brihadisvara temple signified new design methodologies. We have access to a large number of images, audio and video recordings, architectural drawings and scholarly publications of this temple. A multimedia system for this temple is being designed which is intended to be used for the following purposes: (1) to inform and enrich the general public, and (2) to assist the scholars in their research. Such a system will also preserve and archive old historical documents and images. The large database consists primarily of images which can be retrieved using keywords, but the emphasis here is largely on techniques which will allow access using image content. Besides classifying images as either long shots or close-ups, deformable template matching is used for shape-based query by image content, and digital video retrieval. Further, to exploit the non-linear accessibility of video sequences, key frames are determined to aid the domain experts in getting a quick preview of the video. Our database also has images of several old, and rare manuscripts many of which are noisy and difficult to read. We have enhanced them to make them more legible. We are also investigating the optimal trade-off between image quality and compression ratios.
MetaSEEk: a content-based metasearch engine for images
NASA Astrophysics Data System (ADS)
Beigi, Mandis; Benitez, Ana B.; Chang, Shih-Fu
1997-12-01
Search engines are the most powerful resources for finding information on the rapidly expanding World Wide Web (WWW). Finding the desired search engines and learning how to use them, however, can be very time consuming. The integration of such search tools enables the users to access information across the world in a transparent and efficient manner. These systems are called meta-search engines. The recent emergence of visual information retrieval (VIR) search engines on the web is leading to the same efficiency problem. This paper describes and evaluates MetaSEEk, a content-based meta-search engine used for finding images on the Web based on their visual information. MetaSEEk is designed to intelligently select and interface with multiple on-line image search engines by ranking their performance for different classes of user queries. User feedback is also integrated in the ranking refinement. We compare MetaSEEk with a base line version of meta-search engine, which does not use the past performance of the different search engines in recommending target search engines for future queries.
Supervised graph hashing for histopathology image retrieval and classification.
Shi, Xiaoshuang; Xing, Fuyong; Xu, KaiDi; Xie, Yuanpu; Su, Hai; Yang, Lin
2017-12-01
In pathology image analysis, morphological characteristics of cells are critical to grade many diseases. With the development of cell detection and segmentation techniques, it is possible to extract cell-level information for further analysis in pathology images. However, it is challenging to conduct efficient analysis of cell-level information on a large-scale image dataset because each image usually contains hundreds or thousands of cells. In this paper, we propose a novel image retrieval based framework for large-scale pathology image analysis. For each image, we encode each cell into binary codes to generate image representation using a novel graph based hashing model and then conduct image retrieval by applying a group-to-group matching method to similarity measurement. In order to improve both computational efficiency and memory requirement, we further introduce matrix factorization into the hashing model for scalable image retrieval. The proposed framework is extensively validated with thousands of lung cancer images, and it achieves 97.98% classification accuracy and 97.50% retrieval precision with all cells of each query image used. Copyright © 2017 Elsevier B.V. All rights reserved.
A picture tells a thousand words: A content analysis of concussion-related images online.
Ahmed, Osman H; Lee, Hopin; Struik, Laura L
2016-09-01
Recently image-sharing social media platforms have become a popular medium for sharing health-related images and associated information. However within the field of sports medicine, and more specifically sports related concussion, the content of images and meta-data shared through these popular platforms have not been investigated. The aim of this study was to analyse the content of concussion-related images and its accompanying meta-data on image-sharing social media platforms. We retrieved 300 images from Pinterest, Instagram and Flickr by using a standardised search strategy. All images were screened and duplicate images were removed. We excluded images if they were: non-static images; illustrations; animations; or screenshots. The content and characteristics of each image was evaluated using a customised coding scheme to determine major content themes, and images were referenced to the current international concussion management guidelines. From 300 potentially relevant images, 176 images were included for analysis; 70 from Pinterest, 63 from Flickr, and 43 from Instagram. Most images were of another person or a scene (64%), with the primary content depicting injured individuals (39%). The primary purposes of the images were to share a concussion-related incident (33%) and to dispense education (19%). For those images where it could be evaluated, the majority (91%) were found to reflect the Sports Concussion Assessment Tool 3 (SCAT3) guidelines. The ability to rapidly disseminate rich information though photos, images, and infographics to a wide-reaching audience suggests that image-sharing social media platforms could be used as an effective communication tool for sports concussion. Public health strategies could direct educative content to targeted populations via the use of image-sharing platforms. Further research is required to understand how image-sharing platforms can be used to effectively relay evidence-based information to patients and sports medicine clinicians. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gundreddy, Rohith Reddy; Tan, Maxine; Qui, Yuchen; Zheng, Bin
2015-03-01
The purpose of this study is to develop and test a new content-based image retrieval (CBIR) scheme that enables to achieve higher reproducibility when it is implemented in an interactive computer-aided diagnosis (CAD) system without significantly reducing lesion classification performance. This is a new Fourier transform based CBIR algorithm that determines image similarity of two regions of interest (ROI) based on the difference of average regional image pixel value distribution in two Fourier transform mapped images under comparison. A reference image database involving 227 ROIs depicting the verified soft-tissue breast lesions was used. For each testing ROI, the queried lesion center was systematically shifted from 10 to 50 pixels to simulate inter-user variation of querying suspicious lesion center when using an interactive CAD system. The lesion classification performance and reproducibility as the queried lesion center shift were assessed and compared among the three CBIR schemes based on Fourier transform, mutual information and Pearson correlation. Each CBIR scheme retrieved 10 most similar reference ROIs and computed a likelihood score of the queried ROI depicting a malignant lesion. The experimental results shown that three CBIR schemes yielded very comparable lesion classification performance as measured by the areas under ROC curves with the p-value greater than 0.498. However, the CBIR scheme using Fourier transform yielded the highest invariance to both queried lesion center shift and lesion size change. This study demonstrated the feasibility of improving robustness of the interactive CAD systems by adding a new Fourier transform based image feature to CBIR schemes.
The remains of the day in dissociative amnesia.
Staniloiu, Angelica; Markowitsch, Hans J
2012-04-10
Memory is not a unity, but is divided along a content axis and a time axis, respectively. Along the content dimension, five long-term memory systems are described, according to their hierarchical ontogenetic and phylogenetic organization. These memory systems are assumed to be accompanied by different levels of consciousness. While encoding is based on a hierarchical arrangement of memory systems from procedural to episodic-autobiographical memory, retrieval allows independence in the sense that no matter how information is encoded, it can be retrieved in any memory system. Thus, we illustrate the relations between various long-term memory systems by reviewing the spectrum of abnormalities in mnemonic processing that may arise in the dissociative amnesia-a condition that is usually characterized by a retrieval blockade of episodic-autobiographical memories and occurs in the context of psychological trauma, without evidence of brain damage on conventional structural imaging. Furthermore, we comment on the functions of implicit memories in guiding and even adaptively molding the behavior of patients with dissociative amnesia and preserving, in the absence of autonoetic consciousness, the so-called "internal coherence of life".
NASA Astrophysics Data System (ADS)
Garay, M. J.; Bull, M. A.; Witek, M. L.; Diner, D. J.; Seidel, F.
2017-12-01
Since early 2000, the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite has been providing operational Level 2 (swath-based) aerosol optical depth (AOD) and particle property retrievals at 17.6 km spatial resolution and atmospherically corrected land surface products at 1.1 km resolution. A major, multi-year development effort has led to the release of updated operational MISR Level 2 aerosol and land surface retrieval products. The spatial resolution of the aerosol product has been increased to 4.4 km, allowing more detailed characterization of aerosol spatial variability, especially near local sources and in urban areas. The product content has been simplified and updated to include more robust measures of retrieval uncertainty and other fields to benefit users. The land surface product has also been updated to incorporate the Version 23 aerosol product as input and to improve spatial coverage, particularly over mountainous terrain and snow/ice-covered surfaces. We will describe the major upgrades incorporated in Version 23, present validation of the aerosol product, and describe some of the applications enabled by these product updates.
The Remains of the Day in Dissociative Amnesia
Staniloiu, Angelica; Markowitsch, Hans J.
2012-01-01
Memory is not a unity, but is divided along a content axis and a time axis, respectively. Along the content dimension, five long-term memory systems are described, according to their hierarchical ontogenetic and phylogenetic organization. These memory systems are assumed to be accompanied by different levels of consciousness. While encoding is based on a hierarchical arrangement of memory systems from procedural to episodic-autobiographical memory, retrieval allows independence in the sense that no matter how information is encoded, it can be retrieved in any memory system. Thus, we illustrate the relations between various long-term memory systems by reviewing the spectrum of abnormalities in mnemonic processing that may arise in the dissociative amnesia—a condition that is usually characterized by a retrieval blockade of episodic-autobiographical memories and occurs in the context of psychological trauma, without evidence of brain damage on conventional structural imaging. Furthermore, we comment on the functions of implicit memories in guiding and even adaptively molding the behavior of patients with dissociative amnesia and preserving, in the absence of autonoetic consciousness, the so-called “internal coherence of life”. PMID:24962768
Roughness effects on thermal-infrared emissivities estimated from remotely sensed images
NASA Astrophysics Data System (ADS)
Mushkin, Amit; Danilina, Iryna; Gillespie, Alan R.; Balick, Lee K.; McCabe, Matthew F.
2007-10-01
Multispectral thermal-infrared images from the Mauna Loa caldera in Hawaii, USA are examined to study the effects of surface roughness on remotely retrieved emissivities. We find up to a 3% decrease in spectral contrast in ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) 90-m/pixel emissivities due to sub-pixel surface roughness variations on the caldera floor. A similar decrease in spectral contrast of emissivities extracted from MASTER (MODIS/ASTER Airborne Simulator) ~12.5-m/pixel data can be described as a function of increasing surface roughness, which was measured remotely from ASTER 15-m/pixel stereo images. The ratio between ASTER stereo images provides a measure of sub-pixel surface-roughness variations across the scene. These independent roughness estimates complement a radiosity model designed to quantify the unresolved effects of multiple scattering and differential solar heating due to sub-pixel roughness elements and to compensate for both sub-pixel temperature dispersion and cavity radiation on TIR measurements.
Image information content and patient exposure.
Motz, J W; Danos, M
1978-01-01
Presently, patient exposure and x-ray tube kilovoltage are determined by image visibility requirements on x-ray film. With the employment of image-processing techniques, image visibility may be manipulated and the exposure may be determined only by the desired information content, i.e., by the required degree of tissue-density descrimination and spatial resolution. This work gives quantitative relationships between the image information content and the patient exposure, give estimates of the minimum exposures required for the detection of image signals associated with particular radiological exams. Also, for subject thickness larger than approximately 5 cm, the results show that the maximum information content may be obtained at a single kilovoltage and filtration with the simultaneous employment of image-enhancement and antiscatter techniques. This optimization may be used either to reduce the patient exposure or to increase the retrieved information.
NASA Technical Reports Server (NTRS)
Dong, Xiquan; Minnis Patrick; Xi, Baike; Sun-Mack, Sunny; Chen, Yan
2008-01-01
Overcast stratus cloud properties derived for the Clouds and the Earth's Radiant Energy system (CERES) Project using Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) data are compared with observations taken at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site from March 2000 through December 2004. Retrievals from ARM surface-based data were averaged over a 1-hour interval centered at the time of each satellite overpass, and the CERES-MODIS cloud properties were averaged within a 30-km x 30 km box centered on the ARM SGP site. Two datasets were analyzed: all of the data (ALL) which include multilayered, single-layered, and slightly broken stratus decks and a subset, single-layered unbroken decks (SL). The CERES-MODIS effective cloud heights were determined from effective cloud temperature using a lapse rate method with the surface temperature specified as the 24-h mean surface air temperature. For SL stratus, they are, on average, within the ARM radar-lidar estimated cloud boundaries and are 0.534 +/- 0.542 km and 0.108 +/- 0.480 km lower than the cloud physical tops and centers, respectively, and are comparable for day and night observations. The mean differences and standard deviations are slightly larger for ALL data, but not statistically different to those of SL data. The MODIS-derived effective cloud temperatures are 2.7 +/- 2.4 K less than the surface-observed SL cloud center temperatures with very high correlations (0.86-0.97). Variations in the height differences are mainly caused by uncertainties in the surface air temperatures, lapse rates, and cloud-top height variability. The biases are mainly the result of the differences between effective and physical cloud top, which are governed by cloud liquid water content and viewing zenith angle, and the selected lapse rate, -7.1 K km(exp -1). Based on a total of 43 samples, the means and standard deviations of the differences between the daytime Terra and surface retrievals of effective radius r(sub e), optical depth, and liquid water path for SL stratu are 0.1 +/- 1.9 micrometers (1.2 +/- 23.5%), -1.3 +/- 9.5 (-3.6 +/-26.2%), and 0.6 +/- 49.9 gm (exp -2) (0.3 +/- 27%), respectively, while the corresponding correlation coefficients are 0.44, 0.87, and 0.89. For Aqua, they are 0.2 +/- 1.9 micrometers (2.5 +/- 23.4%), 2.5 +/- 7.8 (7.8 +/- 24.3%), and 28.1 +/- 52.7 gm (exp -2) (17.2 +/- 32.2%), as well as 0.35, 0.96, and 0.93 from a total of 21 cases. The results for ALL cases are comparable. Although a bias in R(sub e) was expected because the satellite retrieval of effective radius only represents the top of the cloud, the surface-based radar retrievals revealed that the vertical profile of r(sub e) is highly variable with smaller droplets occurring at cloud top in some cases. The larger bias in optical depth and liquid water path for Aqua is due, at least partially, to differences in the Terra and Aqua MODIS visible channel calibrations. methods for improving the cloud-top height and microphysical property retrievals are suggested.
Hippocampal activation during retrieval of spatial context from episodic and semantic memory.
Hoscheidt, Siobhan M; Nadel, Lynn; Payne, Jessica; Ryan, Lee
2010-10-15
The hippocampus, a region implicated in the processing of spatial information and episodic memory, is central to the debate concerning the relationship between episodic and semantic memory. Studies of medial temporal lobe amnesic patients provide evidence that the hippocampus is critical for the retrieval of episodic but not semantic memory. On the other hand, recent neuroimaging studies of intact individuals report hippocampal activation during retrieval of both autobiographical memories and semantic information that includes historical facts, famous faces, and categorical information, suggesting that episodic and semantic memory may engage the hippocampus during memory retrieval in similar ways. Few studies have matched episodic and semantic tasks for the degree to which they include spatial content, even though spatial content may be what drives hippocampal activation during semantic retrieval. To examine this issue, we conducted a functional magnetic resonance imaging (fMRI) study in which retrieval of spatial and nonspatial information was compared during an episodic and semantic recognition task. Results show that the hippocampus (1) participates preferentially in the retrieval of episodic memories; (2) is also engaged by retrieval of semantic memories, particularly those that include spatial information. These data suggest that sharp dissociations between episodic and semantic memory may be overly simplistic and that the hippocampus plays a role in the retrieval of spatial content whether drawn from a memory of one's own life experiences or real-world semantic knowledge. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Merlin, Guillaume; Riedi, Jérôme; Labonnote, Laurent C.; Cornet, Céline; Davis, Anthony B.; Dubuisson, Phillipe; Desmons, Marine; Ferlay, Nicolas; Parol, Frédéric
2016-10-01
Information content analyses on cloud top altitude (CTOP) and geometrical thickness (CGT) from multi-angular A-band measurements in the case of monolayer homogeneous clouds are conducted. In the framework of future multi-angular radiometer development, we compared the potential performances of the 3MI (Multi-viewing, Multi-channel and Multi-polarization Imaging) instrument developed by EUMETSAT, which is an extension of POLDER/PARASOL instrument and MSPI (Multiangle SpectroPolarimetric Imager) developed by NASA's Jet Propulsion Laboratory. Quantitative information content estimates were realized for thin, moderately opaque and opaque clouds for different surface albedo and viewing geometry configurations. Analyses show that retrieval of CTOP is possible with a high accuracy in most of the cases investigated. Retrieval of CGT is also possible for optically thick clouds above a black surface, at least when CGT > 1-2 km and for thin clouds for CGT > 2-3 km. However, for intermediate optical thicknesses (COT ≃ 4), we show that the retrieval of CGT is not simultaneously possible with CTOP. A comparison between 3MI and MSPI shows a higher information content for MSPI's measurements, traceable to a thinner filter inside the oxygen A-band, yielding higher signal-to-noise ratio for absorption estimation. Cases of cloud scenes above bright surfaces are more complex but it is shown that the retrieval of CTOP remains possible in almost all situations while the information content on CGT appears to be insufficient in many cases, particularly for COT < 4 and CGT < 2-3 km.
Data-Base Software For Tracking Technological Developments
NASA Technical Reports Server (NTRS)
Aliberti, James A.; Wright, Simon; Monteith, Steve K.
1996-01-01
Technology Tracking System (TechTracS) computer program developed for use in storing and retrieving information on technology and related patent information developed under auspices of NASA Headquarters and NASA's field centers. Contents of data base include multiple scanned still images and quick-time movies as well as text. TechTracS includes word-processing, report-editing, chart-and-graph-editing, and search-editing subprograms. Extensive keyword searching capabilities enable rapid location of technologies, innovators, and companies. System performs routine functions automatically and serves multiple users.
Chen, Yang; Ren, Xiaofeng; Zhang, Guo-Qiang; Xu, Rong
2013-01-01
Visual information is a crucial aspect of medical knowledge. Building a comprehensive medical image base, in the spirit of the Unified Medical Language System (UMLS), would greatly benefit patient education and self-care. However, collection and annotation of such a large-scale image base is challenging. To combine visual object detection techniques with medical ontology to automatically mine web photos and retrieve a large number of disease manifestation images with minimal manual labeling effort. As a proof of concept, we first learnt five organ detectors on three detection scales for eyes, ears, lips, hands, and feet. Given a disease, we used information from the UMLS to select affected body parts, ran the pretrained organ detectors on web images, and combined the detection outputs to retrieve disease images. Compared with a supervised image retrieval approach that requires training images for every disease, our ontology-guided approach exploits shared visual information of body parts across diseases. In retrieving 2220 web images of 32 diseases, we reduced manual labeling effort to 15.6% while improving the average precision by 3.9% from 77.7% to 81.6%. For 40.6% of the diseases, we improved the precision by 10%. The results confirm the concept that the web is a feasible source for automatic disease image retrieval for health image database construction. Our approach requires a small amount of manual effort to collect complex disease images, and to annotate them by standard medical ontology terms.
Ni, Zhuoya; Liu, Zhigang; Li, Zhao-Liang; Nerry, Françoise; Huo, Hongyuan; Sun, Rui; Yang, Peiqi; Zhang, Weiwei
2016-04-06
Significant research progress has recently been made in estimating fluorescence in the oxygen absorption bands, however, quantitative retrieval of fluorescence data is still affected by factors such as atmospheric effects. In this paper, top-of-atmosphere (TOA) radiance is generated by the MODTRAN 4 and SCOPE models. Based on simulated data, sensitivity analysis is conducted to assess the sensitivities of four indicators-depth_absorption_band, depth_nofs-depth_withfs, radiance and Fs/radiance-to atmospheric parameters (sun zenith angle (SZA), sensor height, elevation, visibility (VIS) and water content) in the oxygen absorption bands. The results indicate that the SZA and sensor height are the most sensitive parameters and that variations in these two parameters result in large variations calculated as the variation value/the base value in the oxygen absorption depth in the O₂-A and O₂-B bands (111.4% and 77.1% in the O₂-A band; and 27.5% and 32.6% in the O₂-B band, respectively). A comparison of fluorescence retrieval using three methods (Damm method, Braun method and DOAS) and SCOPE Fs indicates that the Damm method yields good results and that atmospheric correction can improve the accuracy of fluorescence retrieval. Damm method is the improved 3FLD method but considering atmospheric effects. Finally, hyperspectral airborne images combined with other parameters (SZA, VIS and water content) are exploited to estimate fluorescence using the Damm method and 3FLD method. The retrieval fluorescence is compared with the field measured fluorescence, yielding good results (R² = 0.91 for Damm vs. SCOPE SIF; R² = 0.65 for 3FLD vs. SCOPE SIF). Five types of vegetation, including ailanthus, elm, mountain peach, willow and Chinese ash, exhibit consistent associations between the retrieved fluorescence and field measured fluorescence.
Ni, Zhuoya; Liu, Zhigang; Li, Zhao-Liang; Nerry, Françoise; Huo, Hongyuan; Sun, Rui; Yang, Peiqi; Zhang, Weiwei
2016-01-01
Significant research progress has recently been made in estimating fluorescence in the oxygen absorption bands, however, quantitative retrieval of fluorescence data is still affected by factors such as atmospheric effects. In this paper, top-of-atmosphere (TOA) radiance is generated by the MODTRAN 4 and SCOPE models. Based on simulated data, sensitivity analysis is conducted to assess the sensitivities of four indicators—depth_absorption_band, depth_nofs-depth_withfs, radiance and Fs/radiance—to atmospheric parameters (sun zenith angle (SZA), sensor height, elevation, visibility (VIS) and water content) in the oxygen absorption bands. The results indicate that the SZA and sensor height are the most sensitive parameters and that variations in these two parameters result in large variations calculated as the variation value/the base value in the oxygen absorption depth in the O2-A and O2-B bands (111.4% and 77.1% in the O2-A band; and 27.5% and 32.6% in the O2-B band, respectively). A comparison of fluorescence retrieval using three methods (Damm method, Braun method and DOAS) and SCOPE Fs indicates that the Damm method yields good results and that atmospheric correction can improve the accuracy of fluorescence retrieval. Damm method is the improved 3FLD method but considering atmospheric effects. Finally, hyperspectral airborne images combined with other parameters (SZA, VIS and water content) are exploited to estimate fluorescence using the Damm method and 3FLD method. The retrieval fluorescence is compared with the field measured fluorescence, yielding good results (R2 = 0.91 for Damm vs. SCOPE SIF; R2 = 0.65 for 3FLD vs. SCOPE SIF). Five types of vegetation, including ailanthus, elm, mountain peach, willow and Chinese ash, exhibit consistent associations between the retrieved fluorescence and field measured fluorescence. PMID:27058542
NASA Astrophysics Data System (ADS)
Kemp, Z. D. C.
2018-04-01
Determining the phase of a wave from intensity measurements has many applications in fields such as electron microscopy, visible light optics, and medical imaging. Propagation based phase retrieval, where the phase is obtained from defocused images, has shown significant promise. There are, however, limitations in the accuracy of the retrieved phase arising from such methods. Sources of error include shot noise, image misalignment, and diffraction artifacts. We explore the use of artificial neural networks (ANNs) to improve the accuracy of propagation based phase retrieval algorithms applied to simulated intensity measurements. We employ a phase retrieval algorithm based on the transport-of-intensity equation to obtain the phase from simulated micrographs of procedurally generated specimens. We then train an ANN with pairs of retrieved and exact phases, and use the trained ANN to process a test set of retrieved phase maps. The total error in the phase is significantly reduced using this method. We also discuss a variety of potential extensions to this work.
Natural texture retrieval based on perceptual similarity measurement
NASA Astrophysics Data System (ADS)
Gao, Ying; Dong, Junyu; Lou, Jianwen; Qi, Lin; Liu, Jun
2018-04-01
A typical texture retrieval system performs feature comparison and might not be able to make human-like judgments of image similarity. Meanwhile, it is commonly known that perceptual texture similarity is difficult to be described by traditional image features. In this paper, we propose a new texture retrieval scheme based on texture perceptual similarity. The key of the proposed scheme is that prediction of perceptual similarity is performed by learning a non-linear mapping from image features space to perceptual texture space by using Random Forest. We test the method on natural texture dataset and apply it on a new wallpapers dataset. Experimental results demonstrate that the proposed texture retrieval scheme with perceptual similarity improves the retrieval performance over traditional image features.
Rahman, Md Mahmudur; Antani, Sameer K; Demner-Fushman, Dina; Thoma, George R
2015-10-01
This article presents an approach to biomedical image retrieval by mapping image regions to local concepts where images are represented in a weighted entropy-based concept feature space. The term "concept" refers to perceptually distinguishable visual patches that are identified locally in image regions and can be mapped to a glossary of imaging terms. Further, the visual significance (e.g., visualness) of concepts is measured as the Shannon entropy of pixel values in image patches and is used to refine the feature vector. Moreover, the system can assist the user in interactively selecting a region-of-interest (ROI) and searching for similar image ROIs. Further, a spatial verification step is used as a postprocessing step to improve retrieval results based on location information. The hypothesis that such approaches would improve biomedical image retrieval is validated through experiments on two different data sets, which are collected from open access biomedical literature.
Rahman, Md. Mahmudur; Antani, Sameer K.; Demner-Fushman, Dina; Thoma, George R.
2015-01-01
Abstract. This article presents an approach to biomedical image retrieval by mapping image regions to local concepts where images are represented in a weighted entropy-based concept feature space. The term “concept” refers to perceptually distinguishable visual patches that are identified locally in image regions and can be mapped to a glossary of imaging terms. Further, the visual significance (e.g., visualness) of concepts is measured as the Shannon entropy of pixel values in image patches and is used to refine the feature vector. Moreover, the system can assist the user in interactively selecting a region-of-interest (ROI) and searching for similar image ROIs. Further, a spatial verification step is used as a postprocessing step to improve retrieval results based on location information. The hypothesis that such approaches would improve biomedical image retrieval is validated through experiments on two different data sets, which are collected from open access biomedical literature. PMID:26730398
A Cognitive Semiotic Study of Students' Reading a Textless Image versus a Verbal Image
ERIC Educational Resources Information Center
Ali, Roaa Hasan; Aslaadi, Shatha
2016-01-01
This study explores fourth year college students' content retrieval from reading textless versus verbal images. Furthermore, it examines the extent to which the respondents comprehend and understand them. The procedures include selecting an image from the internet, designing a written test with its rubrics and exposing it to jury members to…
Architecture for biomedical multimedia information delivery on the World Wide Web
NASA Astrophysics Data System (ADS)
Long, L. Rodney; Goh, Gin-Hua; Neve, Leif; Thoma, George R.
1997-10-01
Research engineers at the National Library of Medicine are building a prototype system for the delivery of multimedia biomedical information on the World Wide Web. This paper discuses the architecture and design considerations for the system, which will be used initially to make images and text from the third National Health and Nutrition Examination Survey (NHANES) publicly available. We categorized our analysis as follows: (1) fundamental software tools: we analyzed trade-offs among use of conventional HTML/CGI, X Window Broadway, and Java; (2) image delivery: we examined the use of unconventional TCP transmission methods; (3) database manager and database design: we discuss the capabilities and planned use of the Informix object-relational database manager and the planned schema for the HNANES database; (4) storage requirements for our Sun server; (5) user interface considerations; (6) the compatibility of the system with other standard research and analysis tools; (7) image display: we discuss considerations for consistent image display for end users. Finally, we discuss the scalability of the system in terms of incorporating larger or more databases of similar data, and the extendibility of the system for supporting content-based retrieval of biomedical images. The system prototype is called the Web-based Medical Information Retrieval System. An early version was built as a Java applet and tested on Unix, PC, and Macintosh platforms. This prototype used the MiniSQL database manager to do text queries on a small database of records of participants in the second NHANES survey. The full records and associated x-ray images were retrievable and displayable on a standard Web browser. A second version has now been built, also a Java applet, using the MySQL database manager.
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Hong, Gang; Ayers, Kirk; Smith, William L., Jr.; Yost, Christopher R.; Heymsfield, Andrew J.; Heymsfield, Gerald M.; Hlavka, Dennis L.; King, Michael D.; Korn, Errol;
2012-01-01
Retrievals of ice cloud properties using infrared measurements at 3.7, 6.7, 7.3, 8.5, 10.8, and 12.0 microns can provide consistent results regardless of solar illumination, but are limited to cloud optical thicknesses tau < approx.6. This paper investigates the variations in radiances at these wavelengths over a deep convective cloud system for their potential to extend retrievals of tau and ice particle size D(sub e) to optically thick clouds. Measurements from the Moderate Resolution Imaging Spectroradiometer Airborne Simulator--ASTER, the Scanning High-resolution Interferometer Sounder, the Cloud Physics Lidar (CPL), and the Cloud Radar System (CRS) aboard the NASA ER-2 aircraft during the NASA TC4 (Tropical Composition, Cloud and Climate Coupling) experiment flight during 5 August 2007, are used to examine the retrieval capabilities of infrared radiances over optically thick ice clouds. Simulations based on coincident in-situ measurements and combined cloud tau from CRS and CPL measurements are comparable to the observations. They reveal that brightness temperatures at these bands and their differences (BTD) are sensitive to tau up to approx.20 and that for ice clouds having tau > 20, the 3.7 - 10.8 microns and 3.7 - 6.7 microns BTDs are the most sensitive to D(sub e). Satellite imagery appears consistent with these results. Keywords: clouds; optical depth; particle size; satellite; TC4; multispectral thermal infrared
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Hong, Gang; Ayers, Jeffrey Kirk; Smith, William L.; Yost, Christopher R.; Heymsfield, Andrew J.; Heymsfield, Gerald M.; Hlavka, Dennis L.; King, Michael D.; Korn, Errol M.;
2012-01-01
Retrievals of ice cloud properties using infrared measurements at 3.7, 6.7, 7.3, 8.5, 10.8, and 12.0 microns can provide consistent results regardless of solar illumination, but are limited to cloud optical thicknesses tau < approx.6. This paper investigates the variations in radiances at these wavelengths over a deep convective cloud system for their potential to extend retrievals of tau and ice particle size D(sub e) to optically thick clouds. Measurements from the Moderate Resolution Imaging Spectroradiometer Airborne Simulator--ASTER, the Scanning High-resolution Interferometer Sounder, the Cloud Physics Lidar (CPL), and the Cloud Radar System (CRS) aboard the NASA ER-2 aircraft during the NASA TC4 (Tropical Composition, Cloud and Climate Coupling) experiment flight during 5 August 2007, are used to examine the retrieval capabilities of infrared radiances over optically thick ice clouds. Simulations based on coincident in-situ measurements and combined cloud tau from CRS and CPL measurements are comparable to the observations. They reveal that brightness temperatures at these bands and their differences (BTD) are sensitive to tau up to approx.20 and that for ice clouds having tau > 20, the 3.7 - 10.8 microns and 3.7 - 6.7 microns BTDs are the most sensitive to D(sub e). Satellite imagery appears consistent with these results. Keywords: clouds; optical depth; particle size; satellite; TC4; multispectral thermal infrared
Fast perceptual image hash based on cascade algorithm
NASA Astrophysics Data System (ADS)
Ruchay, Alexey; Kober, Vitaly; Yavtushenko, Evgeniya
2017-09-01
In this paper, we propose a perceptual image hash algorithm based on cascade algorithm, which can be applied in image authentication, retrieval, and indexing. Image perceptual hash uses for image retrieval in sense of human perception against distortions caused by compression, noise, common signal processing and geometrical modifications. The main disadvantage of perceptual hash is high time expenses. In the proposed cascade algorithm of image retrieval initializes with short hashes, and then a full hash is applied to the processed results. Computer simulation results show that the proposed hash algorithm yields a good performance in terms of robustness, discriminability, and time expenses.
Global-Context Based Salient Region Detection in Nature Images
NASA Astrophysics Data System (ADS)
Bao, Hong; Xu, De; Tang, Yingjun
Visually saliency detection provides an alternative methodology to image description in many applications such as adaptive content delivery and image retrieval. One of the main aims of visual attention in computer vision is to detect and segment the salient regions in an image. In this paper, we employ matrix decomposition to detect salient object in nature images. To efficiently eliminate high contrast noise regions in the background, we integrate global context information into saliency detection. Therefore, the most salient region can be easily selected as the one which is globally most isolated. The proposed approach intrinsically provides an alternative methodology to model attention with low implementation complexity. Experiments show that our approach achieves much better performance than that from the existing state-of-art methods.
Tobin, Kenneth W; Karnowski, Thomas P; Chaum, Edward
2013-08-06
A method for diagnosing diseases having retinal manifestations including retinal pathologies includes the steps of providing a CBIR system including an archive of stored digital retinal photography images and diagnosed patient data corresponding to the retinal photography images, the stored images each indexed in a CBIR database using a plurality of feature vectors, the feature vectors corresponding to distinct descriptive characteristics of the stored images. A query image of the retina of a patient is obtained. Using image processing, regions or structures in the query image are identified. The regions or structures are then described using the plurality of feature vectors. At least one relevant stored image from the archive based on similarity to the regions or structures is retrieved, and an eye disease or a disease having retinal manifestations in the patient is diagnosed based on the diagnosed patient data associated with the relevant stored image(s).
NASA Astrophysics Data System (ADS)
Atkins, M. Stella; Hwang, Robert; Tang, Simon
2001-05-01
We have implemented a prototype system consisting of a Java- based image viewer and a web server extension component for transmitting Magnetic Resonance Images (MRI) to an image viewer, to test the performance of different image retrieval techniques. We used full-resolution images, and images compressed/decompressed using the Set Partitioning in Hierarchical Trees (SPIHT) image compression algorithm. We examined the SPIHT decompression algorithm using both non- progressive and progressive transmission, focusing on the running times of the algorithm, client memory usage and garbage collection. We also compared the Java implementation with a native C++ implementation of the non- progressive SPIHT decompression variant. Our performance measurements showed that for uncompressed image retrieval using a 10Mbps Ethernet, a film of 16 MR images can be retrieved and displayed almost within interactive times. The native C++ code implementation of the client-side decoder is twice as fast as the Java decoder. If the network bandwidth is low, the high communication time for retrieving uncompressed images may be reduced by use of SPIHT-compressed images, although the image quality is then degraded. To provide diagnostic quality images, we also investigated the retrieval of up to 3 images on a MR film at full-resolution, using progressive SPIHT decompression. The Java-based implementation of progressive decompression performed badly, mainly due to the memory requirements for maintaining the image states, and the high cost of execution of the Java garbage collector. Hence, in systems where the bandwidth is high, such as found in a hospital intranet, SPIHT image compression does not provide advantages for image retrieval performance.
Web Image Retrieval Using Self-Organizing Feature Map.
ERIC Educational Resources Information Center
Wu, Qishi; Iyengar, S. Sitharama; Zhu, Mengxia
2001-01-01
Provides an overview of current image retrieval systems. Describes the architecture of the SOFM (Self Organizing Feature Maps) based image retrieval system, discussing the system architecture and features. Introduces the Kohonen model, and describes the implementation details of SOFM computation and its learning algorithm. Presents a test example…
Data Mining and Knowledge Discovery tools for exploiting big Earth-Observation data
NASA Astrophysics Data System (ADS)
Espinoza Molina, D.; Datcu, M.
2015-04-01
The continuous increase in the size of the archives and in the variety and complexity of Earth-Observation (EO) sensors require new methodologies and tools that allow the end-user to access a large image repository, to extract and to infer knowledge about the patterns hidden in the images, to retrieve dynamically a collection of relevant images, and to support the creation of emerging applications (e.g.: change detection, global monitoring, disaster and risk management, image time series, etc.). In this context, we are concerned with providing a platform for data mining and knowledge discovery content from EO archives. The platform's goal is to implement a communication channel between Payload Ground Segments and the end-user who receives the content of the data coded in an understandable format associated with semantics that is ready for immediate exploitation. It will provide the user with automated tools to explore and understand the content of highly complex images archives. The challenge lies in the extraction of meaningful information and understanding observations of large extended areas, over long periods of time, with a broad variety of EO imaging sensors in synergy with other related measurements and data. The platform is composed of several components such as 1.) ingestion of EO images and related data providing basic features for image analysis, 2.) query engine based on metadata, semantics and image content, 3.) data mining and knowledge discovery tools for supporting the interpretation and understanding of image content, 4.) semantic definition of the image content via machine learning methods. All these components are integrated and supported by a relational database management system, ensuring the integrity and consistency of Terabytes of Earth Observation data.
Parallel Regulation of Memory and Emotion Supports the Suppression of Intrusive Memories
Anderson, Michael C.
2017-01-01
Intrusive memories often take the form of distressing images that emerge into a person's awareness, unbidden. A fundamental goal of clinical neuroscience is to understand the mechanisms allowing people to control these memory intrusions and reduce their emotional impact. Mnemonic control engages a right frontoparietal network that interrupts episodic retrieval by modulating hippocampal activity; less is known, however, about how this mechanism contributes to affect regulation. Here we report evidence in humans (males and females) that stopping episodic retrieval to suppress an unpleasant image triggers parallel inhibition of mnemonic and emotional content. Using fMRI, we found that regulation of both mnemonic and emotional content was driven by a shared frontoparietal inhibitory network and was predicted by a common profile of medial temporal lobe downregulation involving the anterior hippocampus and the amygdala. Critically, effective connectivity analysis confirmed that reduced amygdala activity was not merely an indirect consequence of hippocampal suppression; rather, both the hippocampus and the amygdala were targeted by a top-down inhibitory control signal originating from the dorsolateral prefrontal cortex. This negative coupling was greater when unwanted memories intruded into awareness and needed to be purged. Together, these findings support the broad principle that retrieval suppression is achieved by regulating hippocampal processes in tandem with domain-specific brain regions involved in reinstating specific content, in an activity-dependent fashion. SIGNIFICANCE STATEMENT Upsetting events sometimes trigger intrusive images that cause distress and that may contribute to psychiatric disorders. People often respond to intrusions by suppressing their retrieval, excluding them from awareness. Here we examined whether suppressing aversive images might also alter emotional responses to them, and the mechanisms underlying such changes. We found that the better people were at suppressing intrusions, the more it reduced their emotional responses to suppressed images. These dual effects on memory and emotion originated from a common right prefrontal cortical mechanism that downregulated the hippocampus and amygdala in parallel. Thus, suppressing intrusions affected emotional content. Importantly, participants who did not suppress intrusions well showed increased negative affect, suggesting that suppression deficits render people vulnerable to psychiatric disorders. PMID:28559378
Retrieval of the atmospheric compounds using a spectral optical thickness information
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ioltukhovski, A.A.
A spectral inversion technique for retrieval of the atmospheric gases and aerosols contents is proposed. This technique based upon the preliminary measurement or retrieval of the spectral optical thickness. The existence of a priori information about the spectral cross sections for some of the atmospheric components allows to retrieve the relative contents of these components in the atmosphere. Method of smooth filtration makes possible to estimate contents of atmospheric aerosols with known cross sections and to filter out other aerosols; this is done independently from their relative contribution to the optical thickness.
Modelling plant species distribution in alpine grasslands using airborne imaging spectroscopy
Pottier, Julien; Malenovský, Zbyněk; Psomas, Achilleas; Homolová, Lucie; Schaepman, Michael E.; Choler, Philippe; Thuiller, Wilfried; Guisan, Antoine; Zimmermann, Niklaus E.
2014-01-01
Remote sensing using airborne imaging spectroscopy (AIS) is known to retrieve fundamental optical properties of ecosystems. However, the value of these properties for predicting plant species distribution remains unclear. Here, we assess whether such data can add value to topographic variables for predicting plant distributions in French and Swiss alpine grasslands. We fitted statistical models with high spectral and spatial resolution reflectance data and tested four optical indices sensitive to leaf chlorophyll content, leaf water content and leaf area index. We found moderate added-value of AIS data for predicting alpine plant species distribution. Contrary to expectations, differences between species distribution models (SDMs) were not linked to their local abundance or phylogenetic/functional similarity. Moreover, spectral signatures of species were found to be partly site-specific. We discuss current limits of AIS-based SDMs, highlighting issues of scale and informational content of AIS data. PMID:25079495
Distributed file management for remote clinical image-viewing stations
NASA Astrophysics Data System (ADS)
Ligier, Yves; Ratib, Osman M.; Girard, Christian; Logean, Marianne; Trayser, Gerhard
1996-05-01
The Geneva PACS is based on a distributed architecture, with different archive servers used to store all the image files produced by digital imaging modalities. Images can then be visualized on different display stations with the Osiris software. Image visualization require to have the image file physically present on the local station. Thus, images must be transferred from archive servers to local display stations in an acceptable way, which means fast and user friendly where the notion of file must be hidden to users. The transfer of image files is done according to different schemes including prefetching and direct image selection. Prefetching allows the retrieval of previous studies of a patient in advance. A direct image selection is also provided in order to retrieve images on request. When images are transferred locally on the display station, they are stored in Papyrus files, each file containing a set of images. File names are used by the Osiris viewing software to open image sequences. But file names alone are not explicit enough to properly describe the content of the file. A specific utility has been developed to present a list of patients, and for each patient a list of exams which can be selected and automatically displayed. The system has been successfully tested in different clinical environments. It will be soon extended on a hospital wide basis.
Document image database indexing with pictorial dictionary
NASA Astrophysics Data System (ADS)
Akbari, Mohammad; Azimi, Reza
2010-02-01
In this paper we introduce a new approach for information retrieval from Persian document image database without using Optical Character Recognition (OCR).At first an attribute called subword upper contour label is defined then, a pictorial dictionary is constructed based on this attribute for the subwords. By this approach we address two issues in document image retrieval: keyword spotting and retrieval according to the document similarities. The proposed methods have been evaluated on a Persian document image database. The results have proved the ability of this approach in document image information retrieval.
Multi-instance learning based on instance consistency for image retrieval
NASA Astrophysics Data System (ADS)
Zhang, Miao; Wu, Zhize; Wan, Shouhong; Yue, Lihua; Yin, Bangjie
2017-07-01
Multiple-instance learning (MIL) has been successfully utilized in image retrieval. Existing approaches cannot select positive instances correctly from positive bags which may result in a low accuracy. In this paper, we propose a new image retrieval approach called multiple instance learning based on instance-consistency (MILIC) to mitigate such issue. First, we select potential positive instances effectively in each positive bag by ranking instance-consistency (IC) values of instances. Then, we design a feature representation scheme, which can represent the relationship among bags and instances, based on potential positive instances to convert a bag into a single instance. Finally, we can use a standard single-instance learning strategy, such as the support vector machine, for performing object-based image retrieval. Experimental results on two challenging data sets show the effectiveness of our proposal in terms of accuracy and run time.
NASA Technical Reports Server (NTRS)
Bauman, J. J.; Russell, P. B.
2000-01-01
Volcanic signatures in the stratospheric aerosol layer are revealed by two independent techniques which retrieve aerosol information from global satellite-based observations of particulate extinction. Both techniques combine the 4-wavelength Stratospheric Aerosol and Gas Experiment (SAGE) II extinction measurements (0.385 <= lambda <= 1.02 microns) with the 7.96 micron and 12.82 micron extinction measurements from the Cryogenic Limb Array Etalon Spectrometer (CLAES) instrument. The algorithms use the SAGE II/CLAES composite extinction spectra in month-latitude-altitude bins to retrieve values and uncertainties of particle effective radius R(sub eff), surface area S, volume V and size distribution width sigma(sub R). The first technique is a multi-wavelength Look-Up-Table (LUT) algorithm which retrieves values and uncertainties of R(sub eff) by comparing ratios of extinctions from SAGE II and CLAES (e.g., E(sub lambda)/E(sub 1.02) to pre-computed extinction ratios which are based on a range of unimodal lognormal size distributions. The pre-computed ratios are presented as a function of R(sub eff) for a given sigma(sub g); thus the comparisons establish the range of R(sub eff) consistent with the measured spectra for that sigma(sub g). The fact that no solutions are found for certain sigma(sub g) values provides information on the acceptable range of sigma(sub g), which is found to evolve in response to volcanic injections and removal periods. Analogous comparisons using absolute extinction spectra and error bars establish the range of S and V. The second technique is a Parameter Search Technique (PST) which estimates R(sub eff) and sigma(sub g) within a month-latitude-altitude bin by minimizing the chi-squared values obtained by comparing the SAGE II/CLAES extinction spectra and error bars with spectra calculated by varying the lognormal fitting parameters: R(sub eff), sigma(sub g), and the total number of particles N(sub 0). For both techniques, possible biases in retrieved-parameters caused by assuming a unimodal functional form are removed using correction factors computed from representative in situ measurements of bimodal size distributions. Some interesting features revealed by the LUT and PST retrievals include: (1) Increases in S and V (but not R(sub eff)) after the Ruiz and Kelut injections, (2) Increases in S, V, R(sub eff) after Pinatubo, (3) Post-Pinatubo increases in S, V, and R(sub eff) that are more rapid in the tropics than elsewhere, (4) Mid-latitude post-Pinatubo increases in R(sub eff) that lag increases in S and V, (5) S and V returning to pre-Pinatubo values sooner than R(sub eff) does, (6) Sharp increases in sigma(sub g), after Pinatubo and slight increases in sigma(sub g) after Ruiz, Etna, Kelut, Spurr and Rabaul, and (7) Gradual declines in the heights at which R(sub eff), S and V peak after Pinatubo.
[Estimation of forest canopy chlorophyll content based on PROSPECT and SAIL models].
Yang, Xi-guang; Fan, Wen-yi; Yu, Ying
2010-11-01
The forest canopy chlorophyll content directly reflects the health and stress of forest. The accurate estimation of the forest canopy chlorophyll content is a significant foundation for researching forest ecosystem cycle models. In the present paper, the inversion of the forest canopy chlorophyll content was based on PROSPECT and SAIL models from the physical mechanism angle. First, leaf spectrum and canopy spectrum were simulated by PROSPECT and SAIL models respectively. And leaf chlorophyll content look-up-table was established for leaf chlorophyll content retrieval. Then leaf chlorophyll content was converted into canopy chlorophyll content by Leaf Area Index (LAD). Finally, canopy chlorophyll content was estimated from Hyperion image. The results indicated that the main effect bands of chlorophyll content were 400-900 nm, the simulation of leaf and canopy spectrum by PROSPECT and SAIL models fit better with the measured spectrum with 7.06% and 16.49% relative error respectively, the RMSE of LAI inversion was 0. 542 6 and the forest canopy chlorophyll content was estimated better by PROSPECT and SAIL models with precision = 77.02%.
NASA Astrophysics Data System (ADS)
Prigent, Catherine; Wang, Die; Aires, Filipe; Jimenez, Carlos
2017-04-01
The meteorological observations from satellites in the microwave domain are currently limited to below 190 GHz. However, the next generation of European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Polar System-Second Generation-EPS-SG will carry an instrument, the Ice Cloud Imager (ICI), with frequencies up to 664 GHz, to improve the characterization of the cloud frozen phase. In this paper, a statistical retrieval of cloud parameters for ICI is developed, trained on a synthetic database derived from the coupling of a mesoscale cloud model and radiative transfer calculations. The hydrometeor profiles simulated with the Weather Research and Forecasting model (WRF) for twelve diverse European mid-latitude situations are used to simulate the brightness temperatures with the Atmospheric Radiative Transfer Simulator (ARTS) to prepare the retrieval database. The WRF+ARTS simulations have been compared to the Special Sensor Microwave Imager/Sounder (SSMIS) observations up to 190 GHz: this successful evaluation gives us confidence in the simulations at the ICI channels from 183 to 664 GHz. Statistical analyses have been performed on this simulated retrieval database, showing that it is not only physically realistic but also statistically satisfactory for retrieval purposes. A first Neural Network (NN) classifier is used to detect the cloud presence. A second NN is developed to retrieve the liquid and ice integrated cloud quantities over sea and land separately. The detection and retrieval of the hydrometeor quantities (i.e., ice, snow, graupel, rain, and liquid cloud) are performed with ICI-only, and with ICI combined with observations from the MicroWave Imager (MWI, with frequencies from 19 to 190 GHz, also on board MetOp-SG). The ICI channels have been optimized for the detection and quantification of the cloud frozen phases: adding the MWI channels improves the performance of the vertically integrated hydrometeor contents, especially for the cloud liquid phases. The relative error for the retrieved integrated frozen water content (FWP, i.e., ice+snow+graupel) is below 40% for 0.1kg/m2 < FWP < 0.5kg/m2 and below 20% for FWP > 0.5 kg/m2.
Cognitive search model and a new query paradigm
NASA Astrophysics Data System (ADS)
Xu, Zhonghui
2001-06-01
This paper proposes a cognitive model in which people begin to search pictures by using semantic content and find a right picture by judging whether its visual content is a proper visualization of the semantics desired. It is essential that human search is not just a process of matching computation on visual feature but rather a process of visualization of the semantic content known. For people to search electronic images in the way as they manually do in the model, we suggest that querying be a semantic-driven process like design. A query-by-design paradigm is prosed in the sense that what you design is what you find. Unlike query-by-example, query-by-design allows users to specify the semantic content through an iterative and incremental interaction process so that a retrieval can start with association and identification of the given semantic content and get refined while further visual cues are available. An experimental image retrieval system, Kuafu, has been under development using the query-by-design paradigm and an iconic language is adopted.
NASA Astrophysics Data System (ADS)
Wu, Z.; Gao, K.; Wang, Z. L.; Shao, Q. G.; Hu, R. F.; Wei, C. X.; Zan, G. B.; Wali, F.; Luo, R. H.; Zhu, P. P.; Tian, Y. C.
2017-06-01
In X-ray grating-based phase contrast imaging, information retrieval is necessary for quantitative research, especially for phase tomography. However, numerous and repetitive processes have to be performed for tomographic reconstruction. In this paper, we report a novel information retrieval method, which enables retrieving phase and absorption information by means of a linear combination of two mutually conjugate images. Thanks to the distributive law of the multiplication as well as the commutative law and associative law of the addition, the information retrieval can be performed after tomographic reconstruction, thus simplifying the information retrieval procedure dramatically. The theoretical model of this method is established in both parallel beam geometry for Talbot interferometer and fan beam geometry for Talbot-Lau interferometer. Numerical experiments are also performed to confirm the feasibility and validity of the proposed method. In addition, we discuss its possibility in cone beam geometry and its advantages compared with other methods. Moreover, this method can also be employed in other differential phase contrast imaging methods, such as diffraction enhanced imaging, non-interferometric imaging, and edge illumination.
Opposing effects of negative emotion on amygdalar and hippocampal memory for items and associations
Horner, Aidan J.; Hørlyck, Lone D.; Burgess, Neil
2016-01-01
Although negative emotion can strengthen memory of an event it can also result in memory disturbances, as in post-traumatic stress disorder (PTSD). We examined the effects of negative item content on amygdalar and hippocampal function in memory for the items themselves and for the associations between them. During fMRI, we examined encoding and retrieval of paired associates made up of all four combinations of neutral and negative images. At test, participants were cued with an image and, if recognised, had to retrieve the associated (target) image. The presence of negative images increased item memory but reduced associative memory. At encoding, subsequent item recognition correlated with amygdala activity, while subsequent associative memory correlated with hippocampal activity. Hippocampal activity was reduced by the presence of negative images, during encoding and correct associative retrieval. In contrast, amygdala activity increased for correctly retrieved negative images, even when cued by a neutral image. Our findings support a dual representation account, whereby negative emotion up-regulates the amygdala to strengthen item memory but down-regulates the hippocampus to weaken associative representations. These results have implications for the development and treatment of clinical disorders in which diminished associations between emotional stimuli and their context contribute to negative symptoms, as in PTSD. PMID:26969864
Intelligent web image retrieval system
NASA Astrophysics Data System (ADS)
Hong, Sungyong; Lee, Chungwoo; Nah, Yunmook
2001-07-01
Recently, the web sites such as e-business sites and shopping mall sites deal with lots of image information. To find a specific image from these image sources, we usually use web search engines or image database engines which rely on keyword only retrievals or color based retrievals with limited search capabilities. This paper presents an intelligent web image retrieval system. We propose the system architecture, the texture and color based image classification and indexing techniques, and representation schemes of user usage patterns. The query can be given by providing keywords, by selecting one or more sample texture patterns, by assigning color values within positional color blocks, or by combining some or all of these factors. The system keeps track of user's preferences by generating user query logs and automatically add more search information to subsequent user queries. To show the usefulness of the proposed system, some experimental results showing recall and precision are also explained.
Learning semantic and visual similarity for endomicroscopy video retrieval.
Andre, Barbara; Vercauteren, Tom; Buchner, Anna M; Wallace, Michael B; Ayache, Nicholas
2012-06-01
Content-based image retrieval (CBIR) is a valuable computer vision technique which is increasingly being applied in the medical community for diagnosis support. However, traditional CBIR systems only deliver visual outputs, i.e., images having a similar appearance to the query, which is not directly interpretable by the physicians. Our objective is to provide a system for endomicroscopy video retrieval which delivers both visual and semantic outputs that are consistent with each other. In a previous study, we developed an adapted bag-of-visual-words method for endomicroscopy retrieval, called "Dense-Sift," that computes a visual signature for each video. In this paper, we present a novel approach to complement visual similarity learning with semantic knowledge extraction, in the field of in vivo endomicroscopy. We first leverage a semantic ground truth based on eight binary concepts, in order to transform these visual signatures into semantic signatures that reflect how much the presence of each semantic concept is expressed by the visual words describing the videos. Using cross-validation, we demonstrate that, in terms of semantic detection, our intuitive Fisher-based method transforming visual-word histograms into semantic estimations outperforms support vector machine (SVM) methods with statistical significance. In a second step, we propose to improve retrieval relevance by learning an adjusted similarity distance from a perceived similarity ground truth. As a result, our distance learning method allows to statistically improve the correlation with the perceived similarity. We also demonstrate that, in terms of perceived similarity, the recall performance of the semantic signatures is close to that of visual signatures and significantly better than those of several state-of-the-art CBIR methods. The semantic signatures are thus able to communicate high-level medical knowledge while being consistent with the low-level visual signatures and much shorter than them. In our resulting retrieval system, we decide to use visual signatures for perceived similarity learning and retrieval, and semantic signatures for the output of an additional information, expressed in the endoscopist own language, which provides a relevant semantic translation of the visual retrieval outputs.
Large scale track analysis for wide area motion imagery surveillance
NASA Astrophysics Data System (ADS)
van Leeuwen, C. J.; van Huis, J. R.; Baan, J.
2016-10-01
Wide Area Motion Imagery (WAMI) enables image based surveillance of areas that can cover multiple square kilometers. Interpreting and analyzing information from such sources, becomes increasingly time consuming as more data is added from newly developed methods for information extraction. Captured from a moving Unmanned Aerial Vehicle (UAV), the high-resolution images allow detection and tracking of moving vehicles, but this is a highly challenging task. By using a chain of computer vision detectors and machine learning techniques, we are capable of producing high quality track information of more than 40 thousand vehicles per five minutes. When faced with such a vast number of vehicular tracks, it is useful for analysts to be able to quickly query information based on region of interest, color, maneuvers or other high-level types of information, to gain insight and find relevant activities in the flood of information. In this paper we propose a set of tools, combined in a graphical user interface, which allows data analysts to survey vehicles in a large observed area. In order to retrieve (parts of) images from the high-resolution data, we developed a multi-scale tile-based video file format that allows to quickly obtain only a part, or a sub-sampling of the original high resolution image. By storing tiles of a still image according to a predefined order, we can quickly retrieve a particular region of the image at any relevant scale, by skipping to the correct frames and reconstructing the image. Location based queries allow a user to select tracks around a particular region of interest such as landmark, building or street. By using an integrated search engine, users can quickly select tracks that are in the vicinity of locations of interest. Another time-reducing method when searching for a particular vehicle, is to filter on color or color intensity. Automatic maneuver detection adds information to the tracks that can be used to find vehicles based on their behavior.
Multimedia content analysis, management and retrieval: trends and challenges
NASA Astrophysics Data System (ADS)
Hanjalic, Alan; Sebe, Nicu; Chang, Edward
2006-01-01
Recent advances in computing, communications and storage technology have made multimedia data become prevalent. Multimedia has gained enormous potential in improving the processes in a wide range of fields, such as advertising and marketing, education and training, entertainment, medicine, surveillance, wearable computing, biometrics, and remote sensing. Rich content of multimedia data, built through the synergies of the information contained in different modalities, calls for new and innovative methods for modeling, processing, mining, organizing, and indexing of this data for effective and efficient searching, retrieval, delivery, management and sharing of multimedia content, as required by the applications in the abovementioned fields. The objective of this paper is to present our views on the trends that should be followed when developing such methods, to elaborate on the related research challenges, and to introduce the new conference, Multimedia Content Analysis, Management and Retrieval, as a premium venue for presenting and discussing these methods with the scientific community. Starting from 2006, the conference will be held annually as a part of the IS&T/SPIE Electronic Imaging event.
The Route to an Integrative Associative Memory Is Influenced by Emotion
Murray, Brendan D.; Kensinger, Elizabeth A.
2014-01-01
Though the hippocampus typically has been implicated in processes related to associative binding, special types of associations – such as those created by integrative mental imagery – may be supported by processes implemented in other medial temporal-lobe or sensory processing regions. Here, we investigated what neural mechanisms underlie the formation and subsequent retrieval of integrated mental images, and whether those mechanisms differ based on the emotionality of the integration (i.e., whether it contains an emotional item or not). Participants viewed pairs of words while undergoing a functional MRI scan. They were instructed to imagine the two items separately from one another (“non-integrative” study) or as a single, integrated mental image (“integrative” study). They provided ratings of how successful they were at generating vivid images that fit the instructions. They were then given a surprise associative recognition test, also while undergoing an fMRI scan. The cuneus showed parametric correspondence to increasing imagery success selectively during encoding and retrieval of emotional integrations, while the parahippocampal gyri and prefrontal cortices showed parametric correspondence during the encoding and retrieval of non-emotional integrations. Connectivity analysis revealed that selectively during negative integration, left amygdala activity was negatively correlated with frontal and hippocampal activity. These data indicate that individuals utilize two different neural routes for forming and retrieving integrations depending on their emotional content, and they suggest a potentially disruptive role for the amygdala on frontal and medial-temporal regions during negative integration. PMID:24427267
A graph-based approach for the retrieval of multi-modality medical images.
Kumar, Ashnil; Kim, Jinman; Wen, Lingfeng; Fulham, Michael; Feng, Dagan
2014-02-01
In this paper, we address the retrieval of multi-modality medical volumes, which consist of two different imaging modalities, acquired sequentially, from the same scanner. One such example, positron emission tomography and computed tomography (PET-CT), provides physicians with complementary functional and anatomical features as well as spatial relationships and has led to improved cancer diagnosis, localisation, and staging. The challenge of multi-modality volume retrieval for cancer patients lies in representing the complementary geometric and topologic attributes between tumours and organs. These attributes and relationships, which are used for tumour staging and classification, can be formulated as a graph. It has been demonstrated that graph-based methods have high accuracy for retrieval by spatial similarity. However, naïvely representing all relationships on a complete graph obscures the structure of the tumour-anatomy relationships. We propose a new graph structure derived from complete graphs that structurally constrains the edges connected to tumour vertices based upon the spatial proximity of tumours and organs. This enables retrieval on the basis of tumour localisation. We also present a similarity matching algorithm that accounts for different feature sets for graph elements from different imaging modalities. Our method emphasises the relationships between a tumour and related organs, while still modelling patient-specific anatomical variations. Constraining tumours to related anatomical structures improves the discrimination potential of graphs, making it easier to retrieve similar images based on tumour location. We evaluated our retrieval methodology on a dataset of clinical PET-CT volumes. Our results showed that our method enabled the retrieval of multi-modality images using spatial features. Our graph-based retrieval algorithm achieved a higher precision than several other retrieval techniques: gray-level histograms as well as state-of-the-art methods such as visual words using the scale- invariant feature transform (SIFT) and relational matrices representing the spatial arrangements of objects. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Guo, Yanjuan; Tian, Baijun; Kahn, Ralph A.; Kalashnikova, Olga; Wong, Sun; Waliser, Duane E.
2013-01-01
In this study, Moderate Resolution Imaging Spectroradiometer (MODIS) fine mode fraction and Multi-angle Imaging SpectroRadiometer (MISR) nonspherical fraction data are used to derive dust and smoke aerosol optical thickness (T(sub dust) and T(sub smoke)) over the tropical Atlantic in a complementary way: due to its wider swath, MODIS has 3-4 times greater sampling than MISR, but MISR dust discrimination is based on particle shape retrievals, whereas an empirical scheme is used for MODIS. MODIS and MISR show very similar dust and smoke winter climatologies. T(sub dust) is the dominant aerosol component over the tropical Atlantic, accounting for 40-70 percent of the total aerosol optical thickness (AOT), whereas T(sub smoke) is significantly smaller than T(sub dust). The consistency and high correlation between these climatologies and their daily variations lends confidence to their use for investigating the relative dust and smoke contributions to the total AOT variation associated with the Madden-Julian Oscillation (MJO). The temporal evolution and spatial patterns of the tdus anomalies associated with the MJO are consistent between MODIS and MISR: the magnitude of MJO-realted T(sub dust) anomalies is comparable to or even larger than that of the total T, while the T(sub smoke) anomaly represents about 15 percent compared to the total, which is quite different from their relative magnitudes to the total T on the climatological time scale. This suggests that dust and smoke are not influenced by the MJO in the same way. Based on correlation analysis, dust is strongly influenced by the MJO-modulated trade wind and precipitation anomalies, and can last as long as one MJO phase, whereas smoke is less affected.
A Query Expansion Framework in Image Retrieval Domain Based on Local and Global Analysis
Rahman, M. M.; Antani, S. K.; Thoma, G. R.
2011-01-01
We present an image retrieval framework based on automatic query expansion in a concept feature space by generalizing the vector space model of information retrieval. In this framework, images are represented by vectors of weighted concepts similar to the keyword-based representation used in text retrieval. To generate the concept vocabularies, a statistical model is built by utilizing Support Vector Machine (SVM)-based classification techniques. The images are represented as “bag of concepts” that comprise perceptually and/or semantically distinguishable color and texture patches from local image regions in a multi-dimensional feature space. To explore the correlation between the concepts and overcome the assumption of feature independence in this model, we propose query expansion techniques in the image domain from a new perspective based on both local and global analysis. For the local analysis, the correlations between the concepts based on the co-occurrence pattern, and the metrical constraints based on the neighborhood proximity between the concepts in encoded images, are analyzed by considering local feedback information. We also analyze the concept similarities in the collection as a whole in the form of a similarity thesaurus and propose an efficient query expansion based on the global analysis. The experimental results on a photographic collection of natural scenes and a biomedical database of different imaging modalities demonstrate the effectiveness of the proposed framework in terms of precision and recall. PMID:21822350
Improving Concept-Based Web Image Retrieval by Mixing Semantically Similar Greek Queries
ERIC Educational Resources Information Center
Lazarinis, Fotis
2008-01-01
Purpose: Image searching is a common activity for web users. Search engines offer image retrieval services based on textual queries. Previous studies have shown that web searching is more demanding when the search is not in English and does not use a Latin-based language. The aim of this paper is to explore the behaviour of the major search…
Bidgood, W D; Bray, B; Brown, N; Mori, A R; Spackman, K A; Golichowski, A; Jones, R H; Korman, L; Dove, B; Hildebrand, L; Berg, M
1999-01-01
To support clinically relevant indexing of biomedical images and image-related information based on the attributes of image acquisition procedures and the judgments (observations) expressed by observers in the process of image interpretation. The authors introduce the notion of "image acquisition context," the set of attributes that describe image acquisition procedures, and present a standards-based strategy for utilizing the attributes of image acquisition context as indexing and retrieval keys for digital image libraries. The authors' indexing strategy is based on an interdependent message/terminology architecture that combines the Digital Imaging and Communication in Medicine (DICOM) standard, the SNOMED (Systematized Nomenclature of Human and Veterinary Medicine) vocabulary, and the SNOMED DICOM microglossary. The SNOMED DICOM microglossary provides context-dependent mapping of terminology to DICOM data elements. The capability of embedding standard coded descriptors in DICOM image headers and image-interpretation reports improves the potential for selective retrieval of image-related information. This favorably affects information management in digital libraries.
NASA Astrophysics Data System (ADS)
Chao, Woodrew; Ho, Bruce K. T.; Chao, John T.; Sadri, Reza M.; Huang, Lu J.; Taira, Ricky K.
1995-05-01
Our tele-medicine/PACS archive system is based on a three-tier distributed hierarchical architecture, including magnetic disk farms, optical jukebox, and tape jukebox sub-systems. The hierarchical storage management (HSM) architecture, built around a low cost high performance platform [personal computers (PC) and Microsoft Windows NT], presents a very scaleable and distributed solution ideal for meeting the needs of client/server environments such as tele-medicine, tele-radiology, and PACS. These image based systems typically require storage capacities mirroring those of film based technology (multi-terabyte with 10+ years storage) and patient data retrieval times at near on-line performance as demanded by radiologists. With the scaleable architecture, storage requirements can be easily configured to meet the needs of the small clinic (multi-gigabyte) to those of a major hospital (multi-terabyte). The patient data retrieval performance requirement was achieved by employing system intelligence to manage migration and caching of archived data. Relevant information from HIS/RIS triggers prefetching of data whenever possible based on simple rules. System intelligence embedded in the migration manger allows the clustering of patient data onto a single tape during data migration from optical to tape medium. Clustering of patient data on the same tape eliminates multiple tape loading and associated seek time during patient data retrieval. Optimal tape performance can then be achieved by utilizing the tape drives high performance data streaming capabilities thereby reducing typical data retrieval delays associated with streaming tape devices.
Data discretization for novel resource discovery in large medical data sets.
Benoît, G.; Andrews, J. E.
2000-01-01
This paper is motivated by the problems of dealing with large data sets in information retrieval. The authors suggest an information retrieval framework based on mathematical principles to organize and permit end-user manipulation of a retrieval set. By adjusting through the interface the weights and types of relationships between query and set members, it is possible to expose unanticipated, novel relationships between the query/document pair. The retrieval set as a whole is parsed into discrete concept-oriented subsets (based on within-set similarity measures) and displayed on screen as interactive "graphic nodes" in an information space, distributed at first based on the vector model (similarity measure of set to query). The result is a visualized map wherein it is possible to identify main concept regions and multiple sub-regions as dimensions of the same data. Users may examine the membership within sub-regions. Based on this framework, a data visualization user interface was designed to encourage users to work with the data on multiple levels to find novel relationships between the query and retrieval set members. Space constraints prohibit addressing all aspects of this project. PMID:11079845
A secure online image trading system for untrusted cloud environments.
Munadi, Khairul; Arnia, Fitri; Syaryadhi, Mohd; Fujiyoshi, Masaaki; Kiya, Hitoshi
2015-01-01
In conventional image trading systems, images are usually stored unprotected on a server, rendering them vulnerable to untrusted server providers and malicious intruders. This paper proposes a conceptual image trading framework that enables secure storage and retrieval over Internet services. The process involves three parties: an image publisher, a server provider, and an image buyer. The aim is to facilitate secure storage and retrieval of original images for commercial transactions, while preventing untrusted server providers and unauthorized users from gaining access to true contents. The framework exploits the Discrete Cosine Transform (DCT) coefficients and the moment invariants of images. Original images are visually protected in the DCT domain, and stored on a repository server. Small representation of the original images, called thumbnails, are generated and made publicly accessible for browsing. When a buyer is interested in a thumbnail, he/she sends a query to retrieve the visually protected image. The thumbnails and protected images are matched using the DC component of the DCT coefficients and the moment invariant feature. After the matching process, the server returns the corresponding protected image to the buyer. However, the image remains visually protected unless a key is granted. Our target application is the online market, where publishers sell their stock images over the Internet using public cloud servers.
Steganalysis based on reducing the differences of image statistical characteristics
NASA Astrophysics Data System (ADS)
Wang, Ran; Niu, Shaozhang; Ping, Xijian; Zhang, Tao
2018-04-01
Compared with the process of embedding, the image contents make a more significant impact on the differences of image statistical characteristics. This makes the image steganalysis to be a classification problem with bigger withinclass scatter distances and smaller between-class scatter distances. As a result, the steganalysis features will be inseparate caused by the differences of image statistical characteristics. In this paper, a new steganalysis framework which can reduce the differences of image statistical characteristics caused by various content and processing methods is proposed. The given images are segmented to several sub-images according to the texture complexity. Steganalysis features are separately extracted from each subset with the same or close texture complexity to build a classifier. The final steganalysis result is figured out through a weighted fusing process. The theoretical analysis and experimental results can demonstrate the validity of the framework.
Every factor helps: Rapid Ptychographic Reconstruction
NASA Astrophysics Data System (ADS)
Nashed, Youssef
2015-03-01
Recent advances in microscopy, specifically higher spatial resolution and data acquisition rates, require faster and more robust phase retrieval reconstruction methods. Ptychography is a phase retrieval technique for reconstructing the complex transmission function of a specimen from a sequence of diffraction patterns in visible light, X-ray, and electron microscopes. As technical advances allow larger fields to be imaged, computational challenges arise for reconstructing the correspondingly larger data volumes. Waiting to postprocess datasets offline results in missed opportunities. Here we present a parallel method for real-time ptychographic phase retrieval. It uses a hybrid parallel strategy to divide the computation between multiple graphics processing units (GPUs). A final specimen reconstruction is then achieved by different techniques to merge sub-dataset results into a single complex phase and amplitude image. Results are shown on a simulated specimen and real datasets from X-ray experiments conducted at a synchrotron light source.
NASA Technical Reports Server (NTRS)
Staenz, K.; Williams, D. J.; Fedosejevs, G.; Teillet, P. M.
1995-01-01
Surface reflectance retrieval from imaging spectrometer data as acquired with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has become important for quantitative analysis. In order to calculate surface reflectance from remotely measured radiance, radiative transfer codes such as 5S and MODTRAN2 play an increasing role for removal of scattering and absorption effects of the atmosphere. Accurate knowledge of the exo-atmospheric solar irradiance (E(sub 0)) spectrum at the spectral resolution of the sensor is important for this purpose. The present study investigates the impact of differences in the solar irradiance function, as implemented in a modified version of 5S (M5S), 6S, and MODTRAN2, and as proposed by Green and Gao, on the surface reflectance retrieved from AVIRIS data. Reflectance measured in situ is used as a basis of comparison.
Sobieranski, Antonio C; Inci, Fatih; Tekin, H Cumhur; Yuksekkaya, Mehmet; Comunello, Eros; Cobra, Daniel; von Wangenheim, Aldo; Demirci, Utkan
2017-01-01
In this paper, an irregular displacement-based lensless wide-field microscopy imaging platform is presented by combining digital in-line holography and computational pixel super-resolution using multi-frame processing. The samples are illuminated by a nearly coherent illumination system, where the hologram shadows are projected into a complementary metal-oxide semiconductor-based imaging sensor. To increase the resolution, a multi-frame pixel resolution approach is employed to produce a single holographic image from multiple frame observations of the scene, with small planar displacements. Displacements are resolved by a hybrid approach: (i) alignment of the LR images by a fast feature-based registration method, and (ii) fine adjustment of the sub-pixel information using a continuous optimization approach designed to find the global optimum solution. Numerical method for phase-retrieval is applied to decode the signal and reconstruct the morphological details of the analyzed sample. The presented approach was evaluated with various biological samples including sperm and platelets, whose dimensions are in the order of a few microns. The obtained results demonstrate a spatial resolution of 1.55 µm on a field-of-view of ≈30 mm2. PMID:29657866
Informatics in radiology: use of CouchDB for document-based storage of DICOM objects.
Rascovsky, Simón J; Delgado, Jorge A; Sanz, Alexander; Calvo, Víctor D; Castrillón, Gabriel
2012-01-01
Picture archiving and communication systems traditionally have depended on schema-based Structured Query Language (SQL) databases for imaging data management. To optimize database size and performance, many such systems store a reduced set of Digital Imaging and Communications in Medicine (DICOM) metadata, discarding informational content that might be needed in the future. As an alternative to traditional database systems, document-based key-value stores recently have gained popularity. These systems store documents containing key-value pairs that facilitate data searches without predefined schemas. Document-based key-value stores are especially suited to archive DICOM objects because DICOM metadata are highly heterogeneous collections of tag-value pairs conveying specific information about imaging modalities, acquisition protocols, and vendor-supported postprocessing options. The authors used an open-source document-based database management system (Apache CouchDB) to create and test two such databases; CouchDB was selected for its overall ease of use, capability for managing attachments, and reliance on HTTP and Representational State Transfer standards for accessing and retrieving data. A large database was created first in which the DICOM metadata from 5880 anonymized magnetic resonance imaging studies (1,949,753 images) were loaded by using a Ruby script. To provide the usual DICOM query functionality, several predefined "views" (standard queries) were created by using JavaScript. For performance comparison, the same queries were executed in both the CouchDB database and a SQL-based DICOM archive. The capabilities of CouchDB for attachment management and database replication were separately assessed in tests of a similar, smaller database. Results showed that CouchDB allowed efficient storage and interrogation of all DICOM objects; with the use of information retrieval algorithms such as map-reduce, all the DICOM metadata stored in the large database were searchable with only a minimal increase in retrieval time over that with the traditional database management system. Results also indicated possible uses for document-based databases in data mining applications such as dose monitoring, quality assurance, and protocol optimization. RSNA, 2012
Image acquisition unit for the Mayo/IBM PACS project
NASA Astrophysics Data System (ADS)
Reardon, Frank J.; Salutz, James R.
1991-07-01
The Mayo Clinic and IBM Rochester, Minnesota, have jointly developed a picture archiving, distribution and viewing system for use with Mayo's CT and MRI imaging modalities. Images are retrieved from the modalities and sent over the Mayo city-wide token ring network to optical storage subsystems for archiving, and to server subsystems for viewing on image review stations. Images may also be retrieved from archive and transmitted back to the modalities. The subsystems that interface to the modalities and communicate to the other components of the system are termed Image Acquisition Units (LAUs). The IAUs are IBM Personal System/2 (PS/2) computers with specially developed software. They operate independently in a network of cooperative subsystems and communicate with the modalities, archive subsystems, image review server subsystems, and a central subsystem that maintains information about the content and location of images. This paper provides a detailed description of the function and design of the Image Acquisition Units.
Improvements for retrieval of cloud droplet size by the POLDER instrument
NASA Astrophysics Data System (ADS)
Shang, H.; Husi, L.; Bréon, F. M.; Ma, R.; Chen, L.; Wang, Z.
2017-12-01
The principles of cloud droplet size retrieval via Polarization and Directionality of the Earth's Reflectance (POLDER) requires that clouds be horizontally homogeneous. The retrieval is performed by combining all measurements from an area of 150 km × 150 km to compensate for POLDER's insufficient directional sampling. Using POLDER-like data simulated with the RT3 model, we investigate the impact of cloud horizontal inhomogeneity and directional sampling on the retrieval and analyze which spatial resolution is potentially accessible from the measurements. Case studies show that the sub-grid-scale variability in droplet effective radius (CDR) can significantly reduce valid retrievals and introduce small biases to the CDR ( 1.5µm) and effective variance (EV) estimates. Nevertheless, the sub-grid-scale variations in EV and cloud optical thickness (COT) only influence the EV retrievals and not the CDR estimate. In the directional sampling cases studied, the retrieval using limited observations is accurate and is largely free of random noise. Several improvements have been made to the original POLDER droplet size retrieval. For example, measurements in the primary rainbow region (137-145°) are used to ensure retrievals of large droplet (>15 µm) and to reduce the uncertainties caused by cloud heterogeneity. A premium resoltion of 0.8° is determined by considering successful retrievals and cloud horizontal homogeneity. The improved algorithm is applied to measurements of POLDER in 2008, and we further compared our retrievals with cloud effective radii estimations of Moderate Resolution Imaging Spectroradiometer (MODIS). The results indicate that in global scale, the cloud effective radii and effective variance is larger in the central ocean than inland and coast areas. Over heavy polluted regions, the cloud droplets has small effective radii and narraw distribution due to the influence of aerosol particles.
Phase retrieval of images using Gaussian radial bases.
Trahan, Russell; Hyland, David
2013-12-20
Here, the possibility of a noniterative solution to the phase retrieval problem is explored. A new look is taken at the phase retrieval problem that reveals that knowledge of a diffraction pattern's frequency components is enough to recover the image without projective iterations. This occurs when the image is formed using Gaussian bases that give the convenience of a continuous Fourier transform existing in a compact form where square pixels do not. The Gaussian bases are appropriate when circular apertures are used to detect the diffraction pattern because of their optical transfer functions, as discussed briefly. An algorithm is derived that is capable of recovering an image formed by Gaussian bases from only the Fourier transform's modulus, without background constraints. A practical example is shown.
NASA Technical Reports Server (NTRS)
Carey, Lawrence D.; Petersen, Walter A.
2011-01-01
The estimation of rain drop size distribution (DSD) parameters from polarimetric radar observations is accomplished by first establishing a relationship between differential reflectivity (Z(sub dr)) and the central tendency of the rain DSD such as the median volume diameter (D0). Since Z(sub dr) does not provide a direct measurement of DSD central tendency, the relationship is typically derived empirically from rain drop and radar scattering models (e.g., D0 = F[Z (sub dr)] ). Past studies have explored the general sensitivity of these models to temperature, radar wavelength, the drop shape vs. size relation, and DSD variability. Much progress has been made in recent years in measuring the drop shape and DSD variability using surface-based disdrometers, such as the 2D Video disdrometer (2DVD), and documenting their impact on polarimetric radar techniques. In addition to measuring drop shape, another advantage of the 2DVD over earlier impact type disdrometers is its ability to resolve drop diameters in excess of 5 mm. Despite this improvement, the sampling limitations of a disdrometer, including the 2DVD, make it very difficult to adequately measure the maximum drop diameter (D(sub max)) present in a typical radar resolution volume. As a result, D(sub max) must still be assumed in the drop and radar models from which D0 = F[Z(sub dr)] is derived. Since scattering resonance at C-band wavelengths begins to occur in drop diameters larger than about 5 mm, modeled C-band radar parameters, particularly Z(sub dr), can be sensitive to D(sub max) assumptions. In past C-band radar studies, a variety of D(sub max) assumptions have been made, including the actual disdrometer estimate of D(sub max) during a typical sampling period (e.g., 1-3 minutes), D(sub max) = C (where C is constant at values from 5 to 8 mm), and D(sub max) = M*D0 (where the constant multiple, M, is fixed at values ranging from 2.5 to 3.5). The overall objective of this NASA Global Precipitation Measurement Mission (GPM/PMM Science Team)-funded study is to document the sensitivity of DSD measurements, including estimates of D0, from C-band Z(sub dr) and reflectivity to this range of D(sub max) assumptions. For this study, GPM Ground Validation 2DVD's were operated under the scanning domain of the UAHuntsville ARMOR C-band dual-polarimetric radar. Approximately 7500 minutes of DSD data were collected and processed to create gamma size distribution parameters using a truncated method of moments approach. After creating the gamma parameter datasets the DSD's were then used as input to a T-matrix model for computation of polarimetric radar moments at C-band. All necessary model parameterizations, such as temperature, drop shape, and drop fall mode, were fixed at typically accepted values while the D(sub max) assumption was allowed to vary in sensitivity tests. By hypothesizing a DSD model with D(sub max) (fit) from which the empirical fit to D0 = F[Z(sub dr)] was derived via non-linear least squares regression and a separate reference DSD model with D(sub max) (truth), bias and standard error in D0 retrievals were estimated in the presence of Z(sub dr) measurement error and hypothesized mismatch in D(sub max) assumptions. Although the normalized standard error for D0 = F[Z(sub dr)r] can increase slightly (as much as from 11% to 16% for all 7500 DSDs) when the D(sub max) (fit) does not match D(sub max) (truth), the primary impact of uncertainty in D(sub max) is a potential increase in normalized bias error in D0 (from 0% to as much as 10% over all 7500 DSDs, depending on the extent of the mismatch between D(sub max) (fit) and D(sub max) (truth)). For DSDs characterized by large Z(sub dr) (Z(sub dr) > 1.5 to 2.0 dB), the normalized bias error for D0 estimation at C-band is sometimes unacceptably large (> 10%), again depending on the extent of the hypothesized D(sub max) mismatch. Modeled errors in D0 retrievals from Z(sub dr) at C-band are demonstrated in detail and comparedo similar modeled retrieval errors at S-band and X-band where the sensitivity to D(sub max) is expected to be less. The impact of D(sub max) assumptions to the retrieval of other DSD parameters such as Nw, the liquid water content normalized intercept parameter, are also explored. Likely implications for DSD retrievals using C-band polarimetric radar for GPM are assessed by considering current community knowledge regarding D(sub max) and quantifying the statistical distribution of Z(sub dr) from ARMOR over a large variety of meteorological conditions. Based on these results and the prevalence of C-band polarimetric radars worldwide, a call for more emphasis on constraining our observational estimate of D(sub max) within a typical radar resolution volume is made
Grilli, Matthew D
2017-11-01
Identity representations are higher-order knowledge structures that organise autobiographical memories on the basis of personality and role-based themes of one's self-concept. In two experiments, the extent to which different types of personal semantic content are reflected in these higher-order networks of memories was investigated. Healthy, young adult participants generated identity representations that varied in remoteness of formation and verbally reflected on these themes in an open-ended narrative task. The narrative responses were scored for retrieval of episodic, experience-near personal semantic and experience-far (i.e., abstract) personal semantic contents. Results revealed that to reflect on remotely formed identity representations, experience-far personal semantic contents were retrieved more than experience-near personal semantic contents. In contrast, to reflect on recently formed identity representations, experience-near personal semantic contents were retrieved more than experience-far personal semantic contents. Although episodic memory contents were retrieved less than both personal semantic content types to reflect on remotely formed identity representations, this content type was retrieved at a similar frequency as experience-far personal semantic content to reflect on recently formed identity representations. These findings indicate that the association of personal semantic content to identity representations is robust and related to time since acquisition of these knowledge structures.
X-Ray Phase Imaging for Breast Cancer Detection
2012-09-01
the Gerchberg-Saxton algorithm in the Fresnel diffraction regime, and is much more robust against image noise than the TIE-based method. For details...developed efficient coding with the software modules for the image registration, flat-filed correction , and phase retrievals. In addition, we...X, Liu H. 2010. Performance analysis of the attenuation-partition based iterative phase retrieval algorithm for in-line phase-contrast imaging
Surface retrievals from Hyperion EO1 using a new, fast, 1D-Var based retrieval code
NASA Astrophysics Data System (ADS)
Thelen, Jean-Claude; Havemann, Stephan; Wong, Gerald
2015-05-01
We have developed a new algorithm for the simultaneous retrieval of the atmospheric profiles (temperature, humidity, ozone and aerosol) and the surface reflectance from hyperspectral radiance measurements obtained from air/space-borne, hyperspectral imagers such as Hyperion EO-1. The new scheme, proposed here, consists of a fast radiative transfer code, based on empirical orthogonal functions (EOFs), in conjunction with a 1D-Var retrieval scheme. The inclusion of an 'exact' scattering code based on spherical harmonics, allows for an accurate treatment of Rayleigh scattering and scattering by aerosols, water droplets and ice-crystals, thus making it possible to also retrieve cloud and aerosol optical properties, although here we will concentrate on non-cloudy scenes. We successfully tested this new approach using hyperspectral images taken by Hyperion EO-1, an experimental pushbroom imaging spectrometer operated by NASA.
Particle tracking and extended object imaging by interferometric super resolution microscopy
NASA Astrophysics Data System (ADS)
Gdor, Itay; Yoo, Seunghwan; Wang, Xiaolei; Daddysman, Matthew; Wilton, Rosemarie; Ferrier, Nicola; Hereld, Mark; Cossairt, Oliver (Ollie); Katsaggelos, Aggelos; Scherer, Norbert F.
2018-02-01
An interferometric fluorescent microscope and a novel theoretic image reconstruction approach were developed and used to obtain super-resolution images of live biological samples and to enable dynamic real time tracking. The tracking utilizes the information stored in the interference pattern of both the illuminating incoherent light and the emitted light. By periodically shifting the interferometer phase and a phase retrieval algorithm we obtain information that allow localization with sub-2 nm axial resolution at 5 Hz.
Algorithm for retrieving vegetative canopy and leaf parameters from multi- and hyperspectral imagery
NASA Astrophysics Data System (ADS)
Borel, Christoph
2009-05-01
In recent years hyper-spectral data has been used to retrieve information about vegetative canopies such as leaf area index and canopy water content. For the environmental scientist these two parameters are valuable, but there is potentially more information to be gained as high spatial resolution data becomes available. We developed an Amoeba (Nelder-Mead or Simplex) based program to invert a vegetative canopy radiosity model coupled with a leaf (PROSPECT5) reflectance model and modeled for the background reflectance (e.g. soil, water, leaf litter) to a measured reflectance spectrum. The PROSPECT5 leaf model has five parameters: leaf structure parameter Nstru, chlorophyll a+b concentration Cab, carotenoids content Car, equivalent water thickness Cw and dry matter content Cm. The canopy model has two parameters: total leaf area index (LAI) and number of layers. The background reflectance model is either a single reflectance spectrum from a spectral library() derived from a bare area pixel on an image or a linear mixture of soil spectra. We summarize the radiosity model of a layered canopy and give references to the leaf/needle models. The method is then tested on simulated and measured data. We investigate the uniqueness, limitations and accuracy of the retrieved parameters on canopy parameters (low, medium and high leaf area index) spectral resolution (32 to 211 band hyperspectral), sensor noise and initial conditions.
Automated Dermoscopy Image Analysis of Pigmented Skin Lesions
Baldi, Alfonso; Quartulli, Marco; Murace, Raffaele; Dragonetti, Emanuele; Manganaro, Mario; Guerra, Oscar; Bizzi, Stefano
2010-01-01
Dermoscopy (dermatoscopy, epiluminescence microscopy) is a non-invasive diagnostic technique for the in vivo observation of pigmented skin lesions (PSLs), allowing a better visualization of surface and subsurface structures (from the epidermis to the papillary dermis). This diagnostic tool permits the recognition of morphologic structures not visible by the naked eye, thus opening a new dimension in the analysis of the clinical morphologic features of PSLs. In order to reduce the learning-curve of non-expert clinicians and to mitigate problems inherent in the reliability and reproducibility of the diagnostic criteria used in pattern analysis, several indicative methods based on diagnostic algorithms have been introduced in the last few years. Recently, numerous systems designed to provide computer-aided analysis of digital images obtained by dermoscopy have been reported in the literature. The goal of this article is to review these systems, focusing on the most recent approaches based on content-based image retrieval systems (CBIR). PMID:24281070
Norris, Peter M.; da Silva, Arlindo M.
2018-01-01
Part 1 of this series presented a Monte Carlo Bayesian method for constraining a complex statistical model of global circulation model (GCM) sub-gridcolumn moisture variability using high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) cloud data, thereby permitting parameter estimation and cloud data assimilation for large-scale models. This article performs some basic testing of this new approach, verifying that it does indeed reduce mean and standard deviation biases significantly with respect to the assimilated MODIS cloud optical depth, brightness temperature and cloud-top pressure and that it also improves the simulated rotational–Raman scattering cloud optical centroid pressure (OCP) against independent (non-assimilated) retrievals from the Ozone Monitoring Instrument (OMI). Of particular interest, the Monte Carlo method does show skill in the especially difficult case where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach allows non-gradient-based jumps into regions of non-zero cloud probability. In the example provided, the method is able to restore marine stratocumulus near the Californian coast, where the background state has a clear swath. This article also examines a number of algorithmic and physical sensitivities of the new method and provides guidance for its cost-effective implementation. One obvious difficulty for the method, and other cloud data assimilation methods as well, is the lack of information content in passive-radiometer-retrieved cloud observables on cloud vertical structure, beyond cloud-top pressure and optical thickness, thus necessitating strong dependence on the background vertical moisture structure. It is found that a simple flow-dependent correlation modification from Riishojgaard provides some help in this respect, by better honouring inversion structures in the background state. PMID:29618848
NASA Technical Reports Server (NTRS)
Norris, Peter M.; da Silva, Arlindo M.
2016-01-01
Part 1 of this series presented a Monte Carlo Bayesian method for constraining a complex statistical model of global circulation model (GCM) sub-gridcolumn moisture variability using high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) cloud data, thereby permitting parameter estimation and cloud data assimilation for large-scale models. This article performs some basic testing of this new approach, verifying that it does indeed reduce mean and standard deviation biases significantly with respect to the assimilated MODIS cloud optical depth, brightness temperature and cloud-top pressure and that it also improves the simulated rotational-Raman scattering cloud optical centroid pressure (OCP) against independent (non-assimilated) retrievals from the Ozone Monitoring Instrument (OMI). Of particular interest, the Monte Carlo method does show skill in the especially difficult case where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach allows non-gradient-based jumps into regions of non-zero cloud probability. In the example provided, the method is able to restore marine stratocumulus near the Californian coast, where the background state has a clear swath. This article also examines a number of algorithmic and physical sensitivities of the new method and provides guidance for its cost-effective implementation. One obvious difficulty for the method, and other cloud data assimilation methods as well, is the lack of information content in passive-radiometer-retrieved cloud observables on cloud vertical structure, beyond cloud-top pressure and optical thickness, thus necessitating strong dependence on the background vertical moisture structure. It is found that a simple flow-dependent correlation modification from Riishojgaard provides some help in this respect, by better honouring inversion structures in the background state.
Norris, Peter M; da Silva, Arlindo M
2016-07-01
Part 1 of this series presented a Monte Carlo Bayesian method for constraining a complex statistical model of global circulation model (GCM) sub-gridcolumn moisture variability using high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) cloud data, thereby permitting parameter estimation and cloud data assimilation for large-scale models. This article performs some basic testing of this new approach, verifying that it does indeed reduce mean and standard deviation biases significantly with respect to the assimilated MODIS cloud optical depth, brightness temperature and cloud-top pressure and that it also improves the simulated rotational-Raman scattering cloud optical centroid pressure (OCP) against independent (non-assimilated) retrievals from the Ozone Monitoring Instrument (OMI). Of particular interest, the Monte Carlo method does show skill in the especially difficult case where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach allows non-gradient-based jumps into regions of non-zero cloud probability. In the example provided, the method is able to restore marine stratocumulus near the Californian coast, where the background state has a clear swath. This article also examines a number of algorithmic and physical sensitivities of the new method and provides guidance for its cost-effective implementation. One obvious difficulty for the method, and other cloud data assimilation methods as well, is the lack of information content in passive-radiometer-retrieved cloud observables on cloud vertical structure, beyond cloud-top pressure and optical thickness, thus necessitating strong dependence on the background vertical moisture structure. It is found that a simple flow-dependent correlation modification from Riishojgaard provides some help in this respect, by better honouring inversion structures in the background state.
Unified modeling language and design of a case-based retrieval system in medical imaging.
LeBozec, C.; Jaulent, M. C.; Zapletal, E.; Degoulet, P.
1998-01-01
One goal of artificial intelligence research into case-based reasoning (CBR) systems is to develop approaches for designing useful and practical interactive case-based environments. Explaining each step of the design of the case-base and of the retrieval process is critical for the application of case-based systems to the real world. We describe herein our approach to the design of IDEM--Images and Diagnosis from Examples in Medicine--a medical image case-based retrieval system for pathologists. Our approach is based on the expressiveness of an object-oriented modeling language standard: the Unified Modeling Language (UML). We created a set of diagrams in UML notation illustrating the steps of the CBR methodology we used. The key aspect of this approach was selecting the relevant objects of the system according to user requirements and making visualization of cases and of the components of the case retrieval process. Further evaluation of the expressiveness of the design document is required but UML seems to be a promising formalism, improving the communication between the developers and users. Images Figure 6 Figure 7 PMID:9929346
Microfluidic Imaging Flow Cytometry by Asymmetric-detection Time-stretch Optical Microscopy (ATOM).
Tang, Anson H L; Lai, Queenie T K; Chung, Bob M F; Lee, Kelvin C M; Mok, Aaron T Y; Yip, G K; Shum, Anderson H C; Wong, Kenneth K Y; Tsia, Kevin K
2017-06-28
Scaling the number of measurable parameters, which allows for multidimensional data analysis and thus higher-confidence statistical results, has been the main trend in the advanced development of flow cytometry. Notably, adding high-resolution imaging capabilities allows for the complex morphological analysis of cellular/sub-cellular structures. This is not possible with standard flow cytometers. However, it is valuable for advancing our knowledge of cellular functions and can benefit life science research, clinical diagnostics, and environmental monitoring. Incorporating imaging capabilities into flow cytometry compromises the assay throughput, primarily due to the limitations on speed and sensitivity in the camera technologies. To overcome this speed or throughput challenge facing imaging flow cytometry while preserving the image quality, asymmetric-detection time-stretch optical microscopy (ATOM) has been demonstrated to enable high-contrast, single-cell imaging with sub-cellular resolution, at an imaging throughput as high as 100,000 cells/s. Based on the imaging concept of conventional time-stretch imaging, which relies on all-optical image encoding and retrieval through the use of ultrafast broadband laser pulses, ATOM further advances imaging performance by enhancing the image contrast of unlabeled/unstained cells. This is achieved by accessing the phase-gradient information of the cells, which is spectrally encoded into single-shot broadband pulses. Hence, ATOM is particularly advantageous in high-throughput measurements of single-cell morphology and texture - information indicative of cell types, states, and even functions. Ultimately, this could become a powerful imaging flow cytometry platform for the biophysical phenotyping of cells, complementing the current state-of-the-art biochemical-marker-based cellular assay. This work describes a protocol to establish the key modules of an ATOM system (from optical frontend to data processing and visualization backend), as well as the workflow of imaging flow cytometry based on ATOM, using human cells and micro-algae as the examples.
A multi-image approach to CADx of breast cancer with integration into PACS
NASA Astrophysics Data System (ADS)
Elter, Matthias; Wittenberg, Thomas; Schulz-Wendtland, Rüdiger; Deserno, Thomas M.
2009-02-01
While screening mammography is accepted as the most adequate technique for the early detection of breast cancer, its low positive predictive value leads to many breast biopsies performed on benign lesions. Therefore, we have previously developed a knowledge-based system for computer-aided diagnosis (CADx) of mammographic lesions. It supports the radiologist in the discrimination of benign and malignant lesions. So far, our approach operates on the lesion level and employs the paradigm of content-based image retrieval (CBIR). Similar lesions with known diagnosis are retrieved automatically from a library of references. However, radiologists base their diagnostic decisions on additional resources, such as related mammographic projections, other modalities (e.g. ultrasound, MRI), and clinical data. Nonetheless, most CADx systems disregard the relation between the craniocaudal (CC) and mediolateral-oblique (MLO) views of conventional mammography. Therefore, we extend our approach to the full case level: (i) Multi-frame features are developed that jointly describe a lesion in different views of mammography. Taking into account the geometric relation between different images, these features can also be extracted from multi-modal data; (ii) the CADx system architecture is extended appropriately; (iii) the CADx system is integrated into the radiology information system (RIS) and the picture archiving and communication system (PACS). Here, the framework for image retrieval in medical applications (IRMA) is used to support access to the patient's health care record. Of particular interest is the application of the proposed CADx system to digital breast tomosynthesis (DBT), which has the potential to succeed digital mammography as the standard technique for breast cancer screening. The proposed system is a natural extension of CADx approaches that integrate only two modalities. However, we are still collecting a large enough database of breast lesions with images from multiple modalities to evaluate the benefits of the proposed approach on.
Estimates of surface humidity and latent heat fluxes over oceans from SSM/I data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, S.H.; Atlas, R.M.; Shie, C.L.
1995-08-01
Monthly averages of daily latent heat fluxes over the oceans for February and August 1988 are estimated using a stability-dependent bulk scheme. Daily fluxes are computed from daily SSM/I (Special Sensor Microwave/Imager) wind speeds and EOF-retrieved SSM/I surface humidity, National Meteorological Center sea surface temperatures, and the European Centre for Medium-Range Weather Forecasts analyzed 2-m temperatures. Daily surface specific humidity (Q) is estimated from SSM/I precipitable water of total (W) and a 500-m bottom layer (W{sub B}) using an EOF (empirical orthogonal function) method. This method has six W-based categories of EOFs (independent of geographical locations) and is developed usingmore » 23 177 FGGE IIb humidity soundings over the global oceans. For 1200 FGGE IIb humidity soundings, the accuracy of EOF-retrieved Q is 0.75 g kg{sup -1} for the case without errors in W and W{sub B} and increases to 1.16 g kg{sup -1} for the case with errors in W and W{sub B}. Compared to 342 collocated radiosonde observations, the EOF-retrieved SSM/I Q has an accuracy of 1.7 g kg{sup -1}. The method improves upon the humidity retrieval of Liu and is competitive with that of Schulz et al. The SSM/I surface humidity and latent heat fluxes of these two months agree reasonably well with those of COADS (Comprehensive Ocean-Atmosphere Data Set). Compared to the COADS, the sea-air humidity difference of SSM/I has a positive bias of approximately 1-3 g kg{sup -1} (an overestimation of flux) over the wintertime eastern equatorial Pacific Ocean, it has a negative bias of about 1-2 g kg{sup -1} (an underestimation of flux). The results further suggest that the two monthly flux estimates, computed from daily and monthly mean data, do not differ significantly over the oceans. 35 refs., 12 figs., 4 tabs.« less
NASA Technical Reports Server (NTRS)
Limbacher, James A.; Kahn, Ralph A.
2017-01-01
As aerosol amount and type are key factors in the 'atmospheric correction' required for remote-sensing chlorophyll alpha concentration (Chl) retrievals, the Multi-angle Imaging SpectroRadiometer (MISR) can contribute to ocean color analysis despite a lack of spectral channels optimized for this application. Conversely, an improved ocean surface constraint should also improve MISR aerosol-type products, especially spectral single-scattering albedo (SSA) retrievals. We introduce a coupled, self-consistent retrieval of Chl together with aerosol over dark water. There are time-varying MISR radiometric calibration errors that significantly affect key spectral reflectance ratios used in the retrievals. Therefore, we also develop and apply new calibration corrections to the MISR top-of-atmosphere (TOA) reflectance data, based on comparisons with coincident MODIS (Moderate Resolution Imaging Spectroradiometer) observations and trend analysis of the MISR TOA bidirectional reflectance factors (BRFs) over three pseudo-invariant desert sites. We run the MISR research retrieval algorithm (RA) with the corrected MISR reflectances to generate MISR-retrieved Chl and compare the MISR Chl values to a set of 49 coincident SeaBASS (SeaWiFS Bio-optical Archive and Storage System) in situ observations. Where Chl(sub in situ) less than 1.5 mg m(exp -3), the results from our Chl model are expected to be of highest quality, due to algorithmic assumption validity. Comparing MISR RA Chl to the 49 coincident SeaBASS observations, we report a correlation coefficient (r) of 0.86, a root-mean-square error (RMSE) of 0.25, and a median absolute error (MAE) of 0.10. Statistically, a two-sample Kolmogorov- Smirnov test indicates that it is not possible to distinguish between MISR Chl and available SeaBASS in situ Chl values (p greater than 0.1). We also compare MODIS-Terra and MISR RA Chl statistically, over much broader regions. With about 1.5 million MISR-MODIS collocations having MODIS Chl less than 1.5 mg m(exp -3), MISR and MODIS show very good agreement: r = 0.96, MAE = 0.09, and RMSE = 0.15. The new dark water aerosol/Chl RA can retrieve Chl in low-Chl, case I waters, independent of other imagers such as MODIS, via a largely physical algorithm, compared to the commonly applied statistical ones. At a minimum, MISR's multi-angle data should help reduce uncertainties in the MODIS-Terra ocean color retrieval where coincident measurements are made, while also allowing for a more robust retrieval of particle properties such as spectral single-scattering albedo.
NASA Technical Reports Server (NTRS)
Evans, K. Franklin
2004-01-01
This grant supported the principal investigator's analysis of data obtained during CRYSTAL-FACE by two submillimeter-wave radiometers: the Far-Infrared Sensor for Cirrus (FIRSC) and the Conical Scanning Submillimeter-wave Imaging Radiometer (CoSSIR). The PI led the overall FIRSC investigation, though Co-I Michael Vanek led the instrument component at NASA Langley. The overall CoSSIR investigation was led by James Wang at NASA Goddard, but the cirrus retrieval and validation was performed at the University of Colorado. The goal of this research was to demonstrate the submillimeter-wave cirrus cloud remote sensing technique, provide retrievals of ice water path (IWP) and median mass particle diameter (D(sub me)), and perform validation of the cirrus retrievals using other CRYSTAL-FACE datasets.
Transmission electron microscopy study of the MgS–Tm{sub 2}S{sub 3} system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varadé-López, R., E-mail: rebeca.varade@ucm.es; Ávila-Brande, D., E-mail: davilabr@ucm.es; Urones-Garrote, E., E-mail: esteban.urones@pdi.ucm.es
2015-09-15
This work presents the structural–microstructural characterization of the NaCl-derivative MgS–Tm{sub 2}S{sub 3} system, which can be formulated by the expression Mg{sub (1−x)}Tm{sub (2/3)x}□{sub (1/3)x}S (□→cation vacancy). Transmission electron microscopy observations show the transition between NaCl-type and spinel-type structures when 0 ≤x≤ 0.75. The increase of Tm content in the solid solution provokes the increase of the spinel-type phase proportion, which intergrows with the NaCl-type crystals. When x≥0.75, some phases derived from NaCl-type structure through the chemical twinning at the unit cell level crystallographic operation are observed, such as CT-MgTm{sub 2}S{sub 4} and CT-MgTm{sub 4}S{sub 7}. The existence and nature ofmore » the extended defects observed along the c direction of these structures are characterized by means of Scanning-Transmission electron microscopy high-angle dark field imaging, which allows observing the presence of quasi ordered crystals with new possible complex stoichiometries at atomic resolution. - Graphical abstract: HAADF-STEM image of a disordered CT-MgYb{sub 2}S{sub 4} crystal. The disordered twin-slab sequences are marked by arrows. - Highlights: • Structural evolution of the Mg{sub (1−x)}Tm{sub (2/3)x}□{sub (1/3)x}S system was characterized by means of TEM. • The increase in Tm content provokes the transition from NaCl to spinel-type structure up to x=0.75. • Chemical twinned phases CT-MgTm{sub 2}S{sub 4} and CT-MgTm{sub 4}S{sub 7} are observed at high Tm contents. • Extended defects in CT-crystals are characterized with atomic resolution STEM-HAADF images.« less
Content-based video retrieval by example video clip
NASA Astrophysics Data System (ADS)
Dimitrova, Nevenka; Abdel-Mottaleb, Mohamed
1997-01-01
This paper presents a novel approach for video retrieval from a large archive of MPEG or Motion JPEG compressed video clips. We introduce a retrieval algorithm that takes a video clip as a query and searches the database for clips with similar contents. Video clips are characterized by a sequence of representative frame signatures, which are constructed from DC coefficients and motion information (`DC+M' signatures). The similarity between two video clips is determined by using their respective signatures. This method facilitates retrieval of clips for the purpose of video editing, broadcast news retrieval, or copyright violation detection.
Optically secured information retrieval using two authenticated phase-only masks.
Wang, Xiaogang; Chen, Wen; Mei, Shengtao; Chen, Xudong
2015-10-23
We propose an algorithm for jointly designing two phase-only masks (POMs) that allow for the encryption and noise-free retrieval of triple images. The images required for optical retrieval are first stored in quick-response (QR) codes for noise-free retrieval and flexible readout. Two sparse POMs are respectively calculated from two different images used as references for authentication based on modified Gerchberg-Saxton algorithm (GSA) and pixel extraction, and are then used as support constraints in a modified double-phase retrieval algorithm (MPRA), together with the above-mentioned QR codes. No visible information about the target images or the reference images can be obtained from each of these authenticated POMs. This approach allows users to authenticate the two POMs used for image reconstruction without visual observation of the reference images. It also allows user to friendly access and readout with mobile devices.
Optically secured information retrieval using two authenticated phase-only masks
Wang, Xiaogang; Chen, Wen; Mei, Shengtao; Chen, Xudong
2015-01-01
We propose an algorithm for jointly designing two phase-only masks (POMs) that allow for the encryption and noise-free retrieval of triple images. The images required for optical retrieval are first stored in quick-response (QR) codes for noise-free retrieval and flexible readout. Two sparse POMs are respectively calculated from two different images used as references for authentication based on modified Gerchberg-Saxton algorithm (GSA) and pixel extraction, and are then used as support constraints in a modified double-phase retrieval algorithm (MPRA), together with the above-mentioned QR codes. No visible information about the target images or the reference images can be obtained from each of these authenticated POMs. This approach allows users to authenticate the two POMs used for image reconstruction without visual observation of the reference images. It also allows user to friendly access and readout with mobile devices. PMID:26494213
Optically secured information retrieval using two authenticated phase-only masks
NASA Astrophysics Data System (ADS)
Wang, Xiaogang; Chen, Wen; Mei, Shengtao; Chen, Xudong
2015-10-01
We propose an algorithm for jointly designing two phase-only masks (POMs) that allow for the encryption and noise-free retrieval of triple images. The images required for optical retrieval are first stored in quick-response (QR) codes for noise-free retrieval and flexible readout. Two sparse POMs are respectively calculated from two different images used as references for authentication based on modified Gerchberg-Saxton algorithm (GSA) and pixel extraction, and are then used as support constraints in a modified double-phase retrieval algorithm (MPRA), together with the above-mentioned QR codes. No visible information about the target images or the reference images can be obtained from each of these authenticated POMs. This approach allows users to authenticate the two POMs used for image reconstruction without visual observation of the reference images. It also allows user to friendly access and readout with mobile devices.
NASA Astrophysics Data System (ADS)
Li, Wei; Chen, Ting; Zhang, Wenjun; Shi, Yunyu; Li, Jun
2012-04-01
In recent years, Music video data is increasing at an astonishing speed. Shot segmentation and keyframe extraction constitute a fundamental unit in organizing, indexing, retrieving video content. In this paper a unified framework is proposed to detect the shot boundaries and extract the keyframe of a shot. Music video is first segmented to shots by illumination-invariant chromaticity histogram in independent component (IC) analysis feature space .Then we presents a new metric, image complexity, to extract keyframe in a shot which is computed by ICs. Experimental results show the framework is effective and has a good performance.
Dependence of Adaptive Cross-correlation Algorithm Performance on the Extended Scene Image Quality
NASA Technical Reports Server (NTRS)
Sidick, Erkin
2008-01-01
Recently, we reported an adaptive cross-correlation (ACC) algorithm to estimate with high accuracy the shift as large as several pixels between two extended-scene sub-images captured by a Shack-Hartmann wavefront sensor. It determines the positions of all extended-scene image cells relative to a reference cell in the same frame using an FFT-based iterative image-shifting algorithm. It works with both point-source spot images as well as extended scene images. We have demonstrated previously based on some measured images that the ACC algorithm can determine image shifts with as high an accuracy as 0.01 pixel for shifts as large 3 pixels, and yield similar results for both point source spot images and extended scene images. The shift estimate accuracy of the ACC algorithm depends on illumination level, background, and scene content in addition to the amount of the shift between two image cells. In this paper we investigate how the performance of the ACC algorithm depends on the quality and the frequency content of extended scene images captured by a Shack-Hatmann camera. We also compare the performance of the ACC algorithm with those of several other approaches, and introduce a failsafe criterion for the ACC algorithm-based extended scene Shack-Hatmann sensors.
NASA Astrophysics Data System (ADS)
Wang, Dongdong; Liang, Shunlin; He, Tao; Yu, Yunyue
2013-11-01
surface albedo (LSA), part of the Visible Infrared Imaging Radiometer Suite (VIIRS) surface albedo environmental data record (EDR), is an essential variable regulating shortwave energy exchange between the land surface and the atmosphere. Two sub-algorithms, the dark pixel sub-algorithm (DPSA) and the bright pixel sub-algorithm (BPSA), were proposed for retrieving LSA from VIIRS data. The BPSA estimates LSA directly from VIIRS top-of-atmosphere (TOA) reflectance through simulation of atmospheric radiative transfer. Several changes have been made to improve the BPSA since the deployment of VIIRS. A database of the Moderate Resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF) is collected and converted to bidirectional reflectance at VIIRS bands. The converted reflectance is then used as input to the atmospheric radiative transfer model to generate a look-up table (LUT) of regression coefficients with consideration of surface BRDF. Before its implementation in the operational system, the new BPSA is tested on the local infrastructure. The incorporation of the surface BRDF improves the accuracy of LSA estimation and reduces the temporal variation of LSA over stable surfaces. VIIRS LSA retrievals agree well with the MODIS albedo products. Comparison with field measurements at seven Surface Radiation (SURFRAD) Network sites shows that VIIRS LSA retrieved from the LUT with surface BRDF has an R2 value of 0.80 and root mean square error of 0.049, better than MODIS albedo products. The VIIRS results have a slight negative bias of 0.004, whereas the MODIS albedo is underestimated with a larger negative bias of 0.026.
Cloud Motion Vectors from MISR using Sub-pixel Enhancements
NASA Technical Reports Server (NTRS)
Davies, Roger; Horvath, Akos; Moroney, Catherine; Zhang, Banglin; Zhu, Yanqiu
2007-01-01
The operational retrieval of height-resolved cloud motion vectors by the Multiangle Imaging SpectroRadiometer on the Terra satellite has been significantly improved by using sub-pixel approaches to co-registration and disparity assessment, and by imposing stronger quality control based on the agreement between independent forward and aft triplet retrievals. Analysis of the fore-aft differences indicates that CMVs pass the basic operational quality control 67% of the time, with rms differences - in speed of 2.4 m/s, in direction of 17 deg, and in height assignment of 290 m. The use of enhanced quality control thresholds reduces these rms values to 1.5 m/s, 17 deg and 165 m, respectively, at the cost of reduced coverage to 45%. Use of the enhanced thresholds also eliminates a tendency for the rms differences to increase with height. Comparison of CMVs from an earlier operational version that had slightly weaker quality control, with 6-hour forecast winds from the Global Modeling and Assimilation Office yielded very low bias values and an rms vector difference that ranged from 5 m/s for low clouds to 10 m/s for high clouds.
NASA Astrophysics Data System (ADS)
Merlin, G.; Riedi, J.; Labonnote, L. C.; Cornet, C.; Davis, A. B.; Dubuisson, P.; Desmons, M.; Ferlay, N.; Parol, F.
2015-12-01
The vertical distribution of cloud cover has a significant impact on a large number of meteorological and climatic processes. Cloud top altitude and cloud geometrical thickness are then essential. Previous studies established the possibility of retrieving those parameters from multi-angular oxygen A-band measurements. Here we perform a study and comparison of the performances of future instruments. The 3MI (Multi-angle, Multi-channel and Multi-polarization Imager) instrument developed by EUMETSAT, which is an extension of the POLDER/PARASOL instrument, and MSPI (Multi-angles Spectro-Polarimetric Imager) develoloped by NASA's Jet Propulsion Laboratory will measure total and polarized light reflected by the Earth's atmosphere-surface system in several spectral bands (from UV to SWIR) and several viewing geometries. Those instruments should provide opportunities to observe the links between the cloud structures and the anisotropy of the reflected solar radiation into space. Specific algorithms will need be developed in order to take advantage of the new capabilities of this instrument. However, prior to this effort, we need to understand, through a theoretical Shannon information content analysis, the limits and advantages of these new instruments for retrieving liquid and ice cloud properties, and especially, in this study, the amount of information coming from the A-Band channel on the cloud top altitude (CTOP) and geometrical thickness (CGT). We compare the information content of 3MI A-Band in two configurations and that of MSPI. Quantitative information content estimates show that the retrieval of CTOP with a high accuracy is possible in almost all cases investigated. The retrieval of CGT seems less easy but possible for optically thick clouds above a black surface, at least when CGT > 1-2 km.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Line, Michael R.; Yung, Yuk L., E-mail: mrl@gps.caltech.edu
2013-12-10
Chemical disequilibrium has recently become a relevant topic in the study of the atmospheres of transiting extrasolar planets, brown dwarfs, and directly imaged exoplanets. We present a new way of assessing whether or not a Jovian-like atmosphere is in chemical disequilibrium from observations of detectable or inferred gases such as H{sub 2}O, CH{sub 4}, CO, and H{sub 2}. Our hypothesis, based on previous kinetic modeling studies, is that cooler atmospheres will show stronger signs of disequilibrium than hotter atmospheres. We verify this with chemistry-transport models and show that planets with temperatures less than ∼1200 K are likely to show themore » strongest signs of disequilibrium due to the vertical quenching of CO, and that our new approach is able to capture this process. We also find that in certain instances a planetary composition may appear in equilibrium when it actually is not due to the degeneracy in the shape of the vertical mixing ratio profiles. We determine the state of disequilibrium in eight exoplanets using the results from secondary eclipse temperature and abundance retrievals. We find that all of the planets in our sample are consistent with thermochemical equilibrium to within 3σ. Future observations are needed to further constrain the abundances in order to definitively identify disequilibrium in exoplanet atmospheres.« less
High-order distance-based multiview stochastic learning in image classification.
Yu, Jun; Rui, Yong; Tang, Yuan Yan; Tao, Dacheng
2014-12-01
How do we find all images in a larger set of images which have a specific content? Or estimate the position of a specific object relative to the camera? Image classification methods, like support vector machine (supervised) and transductive support vector machine (semi-supervised), are invaluable tools for the applications of content-based image retrieval, pose estimation, and optical character recognition. However, these methods only can handle the images represented by single feature. In many cases, different features (or multiview data) can be obtained, and how to efficiently utilize them is a challenge. It is inappropriate for the traditionally concatenating schema to link features of different views into a long vector. The reason is each view has its specific statistical property and physical interpretation. In this paper, we propose a high-order distance-based multiview stochastic learning (HD-MSL) method for image classification. HD-MSL effectively combines varied features into a unified representation and integrates the labeling information based on a probabilistic framework. In comparison with the existing strategies, our approach adopts the high-order distance obtained from the hypergraph to replace pairwise distance in estimating the probability matrix of data distribution. In addition, the proposed approach can automatically learn a combination coefficient for each view, which plays an important role in utilizing the complementary information of multiview data. An alternative optimization is designed to solve the objective functions of HD-MSL and obtain different views on coefficients and classification scores simultaneously. Experiments on two real world datasets demonstrate the effectiveness of HD-MSL in image classification.
Simulation of urban land surface temperature based on sub-pixel land cover in a coastal city
NASA Astrophysics Data System (ADS)
Zhao, Xiaofeng; Deng, Lei; Feng, Huihui; Zhao, Yanchuang
2014-11-01
The sub-pixel urban land cover has been proved to have obvious correlations with land surface temperature (LST). Yet these relationships have seldom been used to simulate LST. In this study we provided a new approach of urban LST simulation based on sub-pixel land cover modeling. Landsat TM/ETM+ images of Xiamen city, China on both the January of 2002 and 2007 were used to acquire land cover and then extract the transformation rule using logistic regression. The transformation possibility was taken as its percent in the same pixel after normalization. And cellular automata were used to acquire simulated sub-pixel land cover on 2007 and 2017. On the other hand, the correlations between retrieved LST and sub-pixel land cover achieved by spectral mixture analysis in 2002 were examined and a regression model was built. Then the regression model was used on simulated 2007 land cover to model the LST of 2007. Finally the LST of 2017 was simulated for urban planning and management. The results showed that our method is useful in LST simulation. Although the simulation accuracy is not quite satisfactory, it provides an important idea and a good start in the modeling of urban LST.
Fused methods for visual saliency estimation
NASA Astrophysics Data System (ADS)
Danko, Amanda S.; Lyu, Siwei
2015-02-01
In this work, we present a new model of visual saliency by combing results from existing methods, improving upon their performance and accuracy. By fusing pre-attentive and context-aware methods, we highlight the abilities of state-of-the-art models while compensating for their deficiencies. We put this theory to the test in a series of experiments, comparatively evaluating the visual saliency maps and employing them for content-based image retrieval and thumbnail generation. We find that on average our model yields definitive improvements upon recall and f-measure metrics with comparable precisions. In addition, we find that all image searches using our fused method return more correct images and additionally rank them higher than the searches using the original methods alone.
Document Indexing for Image-Based Optical Information Systems.
ERIC Educational Resources Information Center
Thiel, Thomas J.; And Others
1991-01-01
Discussion of image-based information retrieval systems focuses on indexing. Highlights include computerized information retrieval; multimedia optical systems; optical mass storage and personal computers; and a case study that describes an optical disk system which was developed to preserve, access, and disseminate military documents. (19…
Cai, Jia; Tang, Yi
2018-02-01
Canonical correlation analysis (CCA) is a powerful statistical tool for detecting the linear relationship between two sets of multivariate variables. Kernel generalization of it, namely, kernel CCA is proposed to describe nonlinear relationship between two variables. Although kernel CCA can achieve dimensionality reduction results for high-dimensional data feature selection problem, it also yields the so called over-fitting phenomenon. In this paper, we consider a new kernel CCA algorithm via randomized Kaczmarz method. The main contributions of the paper are: (1) A new kernel CCA algorithm is developed, (2) theoretical convergence of the proposed algorithm is addressed by means of scaled condition number, (3) a lower bound which addresses the minimum number of iterations is presented. We test on both synthetic dataset and several real-world datasets in cross-language document retrieval and content-based image retrieval to demonstrate the effectiveness of the proposed algorithm. Numerical results imply the performance and efficiency of the new algorithm, which is competitive with several state-of-the-art kernel CCA methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
Multi-view information fusion for automatic BI-RADS description of mammographic masses
NASA Astrophysics Data System (ADS)
Narvaez, Fabián; Díaz, Gloria; Romero, Eduardo
2011-03-01
Most CBIR-based CAD systems (Content Based Image Retrieval systems for Computer Aided Diagnosis) identify lesions that are eventually relevant. These systems base their analysis upon a single independent view. This article presents a CBIR framework which automatically describes mammographic masses with the BI-RADS lexicon, fusing information from the two mammographic views. After an expert selects a Region of Interest (RoI) at the two views, a CBIR strategy searches similar masses in the database by automatically computing the Mahalanobis distance between shape and texture feature vectors of the mammography. The strategy was assessed in a set of 400 cases, for which the suggested descriptions were compared with the ground truth provided by the data base. Two information fusion strategies were evaluated, allowing a retrieval precision rate of 89.6% in the best scheme. Likewise, the best performance obtained for shape, margin and pathology description, using a ROC methodology, was reported as AUC = 0.86, AUC = 0.72 and AUC = 0.85, respectively.
NASA Technical Reports Server (NTRS)
Joseph, Alicia T.; O'Neil, P. E.; vanderVelde, R.; Gish, T.
2008-01-01
A methodology is presented to correct backscatter (sigma(sup 0)) observations for the effect of vegetation. The proposed methodology is based on the concept that the ratio of the surface scattering over the total amount of scattering (sigma(sup 0)(sub soil)/sigma(sup 0)) is only affected by the vegetation and can be described as a function of the vegetation water content. Backscatter observations sigma(sup 0) from the soil are not influenced by vegetation. Under bare soil conditions (sigma(sup 0)(sub soil)/sigma(sup 0)) equals 1. Under low to moderate biomass and soil moisture conditions, vegetation affects the observed sigma(sup 0) through absorption of the surface scattering and contribution of direct scattering by the vegetation itself. Therefore, the contribution of the surface scattering is smaller than the observed total amount of scattering and decreases as the biomass increases. For dense canopies scattering interactions between the soil surface and vegetation elements (e.g. leaves and stems) also become significant. Because these higher order scattering mechanisms are influenced by the soil surface, an increase in (sigma(sup 0)(sub soil)/sigma(sup 0)) may be observed as the biomass increases under densely vegetated conditions. This methodology is applied within the framework of time series based approach for the retrieval of soil moisture. The data set used for this investigation has been collected during a campaign conducted at USDA's Optimizing Production Inputs for Economic and Environmental Enhancement OPE-3) experimental site in Beltsville, Maryland (USA). This campaign took place during the corn growth cycle from May 10th to 0ctober 2nd, 2002. In this period the corn crops reached a vegetation water content of 5.1 kg m(exp -2) at peak biomass and a soil moisture range varying between 0.00 to 0.26 cubic cm/cubic cm. One of the deployed microwave instruments operated was a multi-frequency (C-band (4.75 GHz) and L-band (1.6 GHz)) quad-polarized (HH, HV, VV, VH) radar which was mounted on a 20 meter long boom. In the OPE-3 field campaign, radar observations were collected once a week at nominal times of 8 am, 10 am, 12 noon and 2 pm. During each data run the radar acquired sixty independent measurements within an azimuth of 120 degrees from a boom height of 12.2 m and at three different incidence angles (15,35, and 55 degrees). The sixty observations were averaged to provide one backscatter value for the study area and its accuracy is estimated to be 51.0 dB. For this investigation the C-band observations have been used. Application of the proposed methodology to the selected data set showed a well-defined relationship between (sigma(sup 0)(sub soil)/sigma(sup 0)) and the vegetation water content. It is found that this relationship can be described with two experimentally determined parameters, which depend on the sensing configuration (e.g. incidence angle and polarization). Through application of the proposed vegetation correction methodology and the obtained parameterizations, the soil moisture retrieval accuracy within the framework of a time series based approach is improved from 0.033 to 0.032 cubic cm/cubic cm, from 0.049 to 0.033 cubic cm/cubic cm and from 0.079 to 0.047 cubic cm/cubic cm for incidence angles of 15,35 and 55 degrees, respectively. Improvement in soil moisture retrieval due to vegetation correction is greater at larger incidence angles (due to the increased path length and larger vegetation effects on the surface signal at the larger angles).
Practical life log video indexing based on content and context
NASA Astrophysics Data System (ADS)
Tancharoen, Datchakorn; Yamasaki, Toshihiko; Aizawa, Kiyoharu
2006-01-01
Today, multimedia information has gained an important role in daily life and people can use imaging devices to capture their visual experiences. In this paper, we present our personal Life Log system to record personal experiences in form of wearable video and environmental data; in addition, an efficient retrieval system is demonstrated to recall the desirable media. We summarize the practical video indexing techniques based on Life Log content and context to detect talking scenes by using audio/visual cues and semantic key frames from GPS data. Voice annotation is also demonstrated as a practical indexing method. Moreover, we apply body media sensors to record continuous life style and use body media data to index the semantic key frames. In the experiments, we demonstrated various video indexing results which provided their semantic contents and showed Life Log visualizations to examine personal life effectively.
Introducing keytagging, a novel technique for the protection of medical image-based tests.
Rubio, Óscar J; Alesanco, Álvaro; García, José
2015-08-01
This paper introduces keytagging, a novel technique to protect medical image-based tests by implementing image authentication, integrity control and location of tampered areas, private captioning with role-based access control, traceability and copyright protection. It relies on the association of tags (binary data strings) to stable, semistable or volatile features of the image, whose access keys (called keytags) depend on both the image and the tag content. Unlike watermarking, this technique can associate information to the most stable features of the image without distortion. Thus, this method preserves the clinical content of the image without the need for assessment, prevents eavesdropping and collusion attacks, and obtains a substantial capacity-robustness tradeoff with simple operations. The evaluation of this technique, involving images of different sizes from various acquisition modalities and image modifications that are typical in the medical context, demonstrates that all the aforementioned security measures can be implemented simultaneously and that the algorithm presents good scalability. In addition to this, keytags can be protected with standard Cryptographic Message Syntax and the keytagging process can be easily combined with JPEG2000 compression since both share the same wavelet transform. This reduces the delays for associating keytags and retrieving the corresponding tags to implement the aforementioned measures to only ≃30 and ≃90ms respectively. As a result, keytags can be seamlessly integrated within DICOM, reducing delays and bandwidth when the image test is updated and shared in secure architectures where different users cooperate, e.g. physicians who interpret the test, clinicians caring for the patient and researchers. Copyright © 2015 Elsevier Inc. All rights reserved.
Semantics of User Interface for Image Retrieval: Possibility Theory and Learning Techniques.
ERIC Educational Resources Information Center
Crehange, M.; And Others
1989-01-01
Discusses the need for a rich semantics for the user interface in interactive image retrieval and presents two methods for building such interfaces: possibility theory applied to fuzzy data retrieval, and a machine learning technique applied to learning the user's deep need. Prototypes developed using videodisks and knowledge-based software are…
Mining biomedical images towards valuable information retrieval in biomedical and life sciences
Ahmed, Zeeshan; Zeeshan, Saman; Dandekar, Thomas
2016-01-01
Biomedical images are helpful sources for the scientists and practitioners in drawing significant hypotheses, exemplifying approaches and describing experimental results in published biomedical literature. In last decades, there has been an enormous increase in the amount of heterogeneous biomedical image production and publication, which results in a need for bioimaging platforms for feature extraction and analysis of text and content in biomedical images to take advantage in implementing effective information retrieval systems. In this review, we summarize technologies related to data mining of figures. We describe and compare the potential of different approaches in terms of their developmental aspects, used methodologies, produced results, achieved accuracies and limitations. Our comparative conclusions include current challenges for bioimaging software with selective image mining, embedded text extraction and processing of complex natural language queries. PMID:27538578
A Hybrid Probabilistic Model for Unified Collaborative and Content-Based Image Tagging.
Zhou, Ning; Cheung, William K; Qiu, Guoping; Xue, Xiangyang
2011-07-01
The increasing availability of large quantities of user contributed images with labels has provided opportunities to develop automatic tools to tag images to facilitate image search and retrieval. In this paper, we present a novel hybrid probabilistic model (HPM) which integrates low-level image features and high-level user provided tags to automatically tag images. For images without any tags, HPM predicts new tags based solely on the low-level image features. For images with user provided tags, HPM jointly exploits both the image features and the tags in a unified probabilistic framework to recommend additional tags to label the images. The HPM framework makes use of the tag-image association matrix (TIAM). However, since the number of images is usually very large and user-provided tags are diverse, TIAM is very sparse, thus making it difficult to reliably estimate tag-to-tag co-occurrence probabilities. We developed a collaborative filtering method based on nonnegative matrix factorization (NMF) for tackling this data sparsity issue. Also, an L1 norm kernel method is used to estimate the correlations between image features and semantic concepts. The effectiveness of the proposed approach has been evaluated using three databases containing 5,000 images with 371 tags, 31,695 images with 5,587 tags, and 269,648 images with 5,018 tags, respectively.
Phase retrieval using regularization method in intensity correlation imaging
NASA Astrophysics Data System (ADS)
Li, Xiyu; Gao, Xin; Tang, Jia; Lu, Changming; Wang, Jianli; Wang, Bin
2014-11-01
Intensity correlation imaging(ICI) method can obtain high resolution image with ground-based low precision mirrors, in the imaging process, phase retrieval algorithm should be used to reconstituted the object's image. But the algorithm now used(such as hybrid input-output algorithm) is sensitive to noise and easy to stagnate. However the signal-to-noise ratio of intensity interferometry is low especially in imaging astronomical objects. In this paper, we build the mathematical model of phase retrieval and simplified it into a constrained optimization problem of a multi-dimensional function. New error function was designed by noise distribution and prior information using regularization method. The simulation results show that the regularization method can improve the performance of phase retrieval algorithm and get better image especially in low SNR condition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebner, M.A.
1996-08-01
Physical/chemical factors in U metal and hydride combustion, particularly pyrophoricity in ambient environment, were evaluated for BMI-SPEC and UAl{sub x} plate fuels. Some metal fuels may be highly reactive (spontaneously igniting in air) due to high specific surface area, high decay heat, or a high U hydride content from corrosion during underwater storage. However, for the BMI-SPEC and the aluminum plate fuels, this reactivity is too low to present a realistic threat of uncontrolled spontaneous combustion at ambient conditions. While residual U hydride is expected in these corroded fuels, the hydride levels are expected to be too low and themore » configuration too unfavorable to ignite the fuel meat when the fuels are retrieved from the basin and dried. Furthermore the composition and microstructure of the UAl{sub x} fuels further mitigate that risk.« less
NASA Technical Reports Server (NTRS)
Wilcox, Eric M.; Harshvardhan; Platnick, Steven
2009-01-01
Two independent satellite retrievals of cloud liquid water path (LWP) from the NASA Aqua satellite are used to diagnose the impact of absorbing biomass burning aerosol overlaying boundary-layer marine water clouds on the Moderate Resolution Imaging Spectrometer (MODIS) retrievals of cloud optical thickness (tau) and cloud droplet effective radius (r(sub e)). In the MODIS retrieval over oceans, cloud reflectance in the 0.86-micrometer and 2.13-micrometer bands is used to simultaneously retrieve tau and r(sub e). A low bias in the MODIS tau retrieval may result from reductions in the 0.86-micrometer reflectance, which is only very weakly absorbed by clouds, owing to absorption by aerosols in cases where biomass burning aerosols occur above water clouds. MODIS LWP, derived from the product of the retrieved tau and r(sub e), is compared with LWP ocean retrievals from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E), determined from cloud microwave emission that is transparent to aerosols. For the coastal Atlantic southern African region investigated in this study, a systematic difference between AMSR-E and MODIS LWP retrievals is found for stratocumulus clouds over three biomass burning months in 2005 and 2006 that is consistent with above-cloud absorbing aerosols. Biomass burning aerosol is detected using the ultraviolet aerosol index from the Ozone Monitoring Instrument (OMI) on the Aura satellite. The LWP difference (AMSR-E minus MODIS) increases both with increasing tau and increasing OMI aerosol index. During the biomass burning season the mean LWP difference is 14 g per square meters, which is within the 15-20 g per square meter range of estimated uncertainties in instantaneous LWP retrievals. For samples with only low amounts of overlaying smoke (OMI AI less than or equal to 1) the difference is 9.4, suggesting that the impact of smoke aerosols on the mean MODIS LWP is 5.6 g per square meter. Only for scenes with OMI aerosol index greater than 2 does the average LWP difference and the estimated bias in MODIS cloud optical thickness attributable to the impact of overlaying biomass burning aerosol exceed the instantaneous uncertainty in the retrievals.
ERIC Educational Resources Information Center
Haga, Hirohide; Kaneda, Shigeo
2005-01-01
This article describes the survey of the usability of a novel content-based video retrieval system. This system combines video streaming and an electronic bulletin board system (BBS). Comments submitted to the BBS are used to index video data. Following the development of the prototype system an experimental survey with ten subjects was performed.…
Precise and Efficient Retrieval of Captioned Images: The MARIE Project.
ERIC Educational Resources Information Center
Rowe, Neil C.
1999-01-01
The MARIE project explores knowledge-based information retrieval of captioned images of the kind found in picture libraries and on the Internet. MARIE's five-part approach exploits the idea that images are easier to understand with context, especially descriptive text near them, but it also does image analysis. Experiments show MARIE prototypes…
Liu, Changgeng; Thapa, Damber; Yao, Xincheng
2017-01-01
Guidestar hologram based digital adaptive optics (DAO) is one recently emerging active imaging modality. It records each complex distorted line field reflected or scattered from the sample by an off-axis digital hologram, measures the optical aberration from a separate off-axis digital guidestar hologram, and removes the optical aberration from the distorted line fields by numerical processing. In previously demonstrated DAO systems, the optical aberration was directly retrieved from the guidestar hologram by taking its Fourier transform and extracting the phase term. For the direct retrieval method (DRM), when the sample is not coincident with the guidestar focal plane, the accuracy of the optical aberration retrieved by DRM undergoes a fast decay, leading to quality deterioration of corrected images. To tackle this problem, we explore here an image metrics-based iterative method (MIM) to retrieve the optical aberration from the guidestar hologram. Using an aberrated objective lens and scattering samples, we demonstrate that MIM can improve the accuracy of the retrieved aberrations from both focused and defocused guidestar holograms, compared to DRM, to improve the robustness of the DAO. PMID:28380937
Ammonia plays an important role in many biogeochemical processes, yet atmospheric mixing ratios arc not well known. Recently, methods have been developed for retrieving NH3 from space-based observations, but they have not been compared to in situ measurements. We have ...
Decoding the content of recollection within the core recollection network and beyond.
Thakral, Preston P; Wang, Tracy H; Rugg, Michael D
2017-06-01
Recollection - retrieval of qualitative information about a past event - is associated with enhanced neural activity in a consistent set of neural regions (the 'core recollection network') seemingly regardless of the nature of the recollected content. Here, we employed multi-voxel pattern analysis (MVPA) to assess whether retrieval-related functional magnetic resonance imaging (fMRI) activity in core recollection regions - including the hippocampus, angular gyrus, medial prefrontal cortex, retrosplenial/posterior cingulate cortex, and middle temporal gyrus - contain information about studied content and thus demonstrate retrieval-related 'reinstatement' effects. During study, participants viewed objects and concrete words that were subjected to different encoding tasks. Test items included studied words, the names of studied objects, or unstudied words. Participants judged whether the items were recollected, familiar, or new by making 'remember', 'know', and 'new' responses, respectively. The study history of remembered test items could be reliably decoded using MVPA in most regions, as well as from the dorsolateral prefrontal cortex, a region where univariate recollection effects could not be detected. The findings add to evidence that members of the core recollection network, as well as at least one neural region where mean signal is insensitive to recollection success, carry information about recollected content. Importantly, the study history of recognized items endorsed with a 'know' response could be decoded with equal accuracy. The results thus demonstrate a striking dissociation between mean signal and multi-voxel indices of recollection. Moreover, they converge with prior findings in suggesting that, as it is operationalized by classification-based MVPA, reinstatement is not uniquely a signature of recollection. Copyright © 2016 Elsevier Ltd. All rights reserved.
Anatomy of an Extensible Open Source PACS.
Valente, Frederico; Silva, Luís A Bastião; Godinho, Tiago Marques; Costa, Carlos
2016-06-01
The conception and deployment of cost effective Picture Archiving and Communication Systems (PACS) is a concern for small to medium medical imaging facilities, research environments, and developing countries' healthcare institutions. Financial constraints and the specificity of these scenarios contribute to a low adoption rate of PACS in those environments. Furthermore, with the advent of ubiquitous computing and new initiatives to improve healthcare information technologies and data sharing, such as IHE and XDS-i, a PACS must adapt quickly to changes. This paper describes Dicoogle, a software framework that enables developers and researchers to quickly prototype and deploy new functionality taking advantage of the embedded Digital Imaging and Communications in Medicine (DICOM) services. This full-fledged implementation of a PACS archive is very amenable to extension due to its plugin-based architecture and out-of-the-box functionality, which enables the exploration of large DICOM datasets and associated metadata. These characteristics make the proposed solution very interesting for prototyping, experimentation, and bridging functionality with deployed applications. Besides being an advanced mechanism for data discovery and retrieval based on DICOM object indexing, it enables the detection of inconsistencies in an institution's data and processes. Several use cases have benefited from this approach such as radiation dosage monitoring, Content-Based Image Retrieval (CBIR), and the use of the framework as support for classes targeting software engineering for clinical contexts.
Image Re-Ranking Based on Topic Diversity.
Qian, Xueming; Lu, Dan; Wang, Yaxiong; Zhu, Li; Tang, Yuan Yan; Wang, Meng
2017-08-01
Social media sharing Websites allow users to annotate images with free tags, which significantly contribute to the development of the web image retrieval. Tag-based image search is an important method to find images shared by users in social networks. However, how to make the top ranked result relevant and with diversity is challenging. In this paper, we propose a topic diverse ranking approach for tag-based image retrieval with the consideration of promoting the topic coverage performance. First, we construct a tag graph based on the similarity between each tag. Then, the community detection method is conducted to mine the topic community of each tag. After that, inter-community and intra-community ranking are introduced to obtain the final retrieved results. In the inter-community ranking process, an adaptive random walk model is employed to rank the community based on the multi-information of each topic community. Besides, we build an inverted index structure for images to accelerate the searching process. Experimental results on Flickr data set and NUS-Wide data sets show the effectiveness of the proposed approach.
NASA Technical Reports Server (NTRS)
Kahn, Ralph; Petzold, Andreas; Wendisch, Manfred; Bierwirth, Eike; Dinter, Tilman; Fiebig, Marcus; Schladitz, Alexander; von Hoyningen-Huene, Wolfgang
2008-01-01
Coincident observations made over the Moroccan desert during the SAhara Mineral dUst experiMent (SAMUM) 2006 field campaign are used both to validate aerosol amount and type retrieved from Multi-angle Imaging SpectroRadiometer (MISR) observations, and to place the sub-orbital aerosol measurements into the satellite's larger regional context. On three moderately dusty days for which coincident observations were made, MISR mid-visible aerosol optical thickness (AOT) agrees with field measurements point-by-point to within 0.05 to 0.1. This is about as well as can be expected given spatial sampling differences; the space-based observations capture AOT trends and variability over an extended region. The field data also validate MISR's ability to distinguish and to map aerosol air masses, from the combination of retrieved constraints on particle size, shape, and single-scattering albedo. For the three study days, the satellite observations (a) highlight regional gradients in the mix of dust and background spherical particles, (b) identify a dust plume most likely part of a density flow, and (c) show an air mass containing a higher proportion of small, spherical particles than the surroundings, that appears to be aerosol pollution transported from several thousand kilometers away.
NASA Astrophysics Data System (ADS)
Lee, Moosung; Lee, Eeksung; Jung, JaeHwang; Yu, Hyeonseung; Kim, Kyoohyun; Yoon, Jonghee; Lee, Shinhwa; Jeong, Yong; Park, YongKeun
2017-02-01
Imaging brain tissues is an essential part of neuroscience because understanding brain structure provides relevant information about brain functions and alterations associated with diseases. Magnetic resonance imaging and positron emission tomography exemplify conventional brain imaging tools, but these techniques suffer from low spatial resolution around 100 μm. As a complementary method, histopathology has been utilized with the development of optical microscopy. The traditional method provides the structural information about biological tissues to cellular scales, but relies on labor-intensive staining procedures. With the advances of illumination sources, label-free imaging techniques based on nonlinear interactions, such as multiphoton excitations and Raman scattering, have been applied to molecule-specific histopathology. Nevertheless, these techniques provide limited qualitative information and require a pulsed laser, which is difficult to use for pathologists with no laser training. Here, we present a label-free optical imaging of mouse brain tissues for addressing structural alteration in Alzheimer's disease. To achieve the mesoscopic, unlabeled tissue images with high contrast and sub-micrometer lateral resolution, we employed holographic microscopy and an automated scanning platform. From the acquired hologram of the brain tissues, we could retrieve scattering coefficients and anisotropies according to the modified scattering-phase theorem. This label-free imaging technique enabled direct access to structural information throughout the tissues with a sub-micrometer lateral resolution and presented a unique means to investigate the structural changes in the optical properties of biological tissues.
Large-scale retrieval for medical image analytics: A comprehensive review.
Li, Zhongyu; Zhang, Xiaofan; Müller, Henning; Zhang, Shaoting
2018-01-01
Over the past decades, medical image analytics was greatly facilitated by the explosion of digital imaging techniques, where huge amounts of medical images were produced with ever-increasing quality and diversity. However, conventional methods for analyzing medical images have achieved limited success, as they are not capable to tackle the huge amount of image data. In this paper, we review state-of-the-art approaches for large-scale medical image analysis, which are mainly based on recent advances in computer vision, machine learning and information retrieval. Specifically, we first present the general pipeline of large-scale retrieval, summarize the challenges/opportunities of medical image analytics on a large-scale. Then, we provide a comprehensive review of algorithms and techniques relevant to major processes in the pipeline, including feature representation, feature indexing, searching, etc. On the basis of existing work, we introduce the evaluation protocols and multiple applications of large-scale medical image retrieval, with a variety of exploratory and diagnostic scenarios. Finally, we discuss future directions of large-scale retrieval, which can further improve the performance of medical image analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Zhang, Zhibo; Werner, Frank; Miller, Daniel; Platnick, Steven; Ackerman, Andrew; DiGirolamo, Larry; Meyer, Kerry; Marshak, Alexander; Wind, Galina; Zhao, Guangyu
2016-01-01
Theory: A novel framework based on 2-D Tayler expansion for quantifying the uncertainty in MODIS retrievals caused by sub-pixel reflectance inhomogeneity. (Zhang et al. 2016). How cloud vertical structure influences MODIS LWP retrievals. (Miller et al. 2016). Observation: Analysis of failed MODIS cloud property retrievals. (Cho et al. 2015). Cloud property retrievals from 15m resolution ASTER observations. (Werner et al. 2016). Modeling: LES-Satellite observation simulator (Zhang et al. 2012, Miller et al. 2016).
NASA Astrophysics Data System (ADS)
Zhang, Jialin; Chen, Qian; Sun, Jiasong; Li, Jiaji; Zuo, Chao
2018-01-01
Lensfree holography provides a new way to effectively bypass the intrinsical trade-off between the spatial resolution and field-of-view (FOV) of conventional lens-based microscopes. Unfortunately, due to the limited sensor pixel-size, unpredictable disturbance during image acquisition, and sub-optimum solution to the phase retrieval problem, typical lensfree microscopes only produce compromised imaging quality in terms of lateral resolution and signal-to-noise ratio (SNR). In this paper, we propose an adaptive pixel-super-resolved lensfree imaging (APLI) method to address the pixel aliasing problem by Z-scanning only, without resorting to subpixel shifting or beam-angle manipulation. Furthermore, an automatic positional error correction algorithm and adaptive relaxation strategy are introduced to enhance the robustness and SNR of reconstruction significantly. Based on APLI, we perform full-FOV reconstruction of a USAF resolution target across a wide imaging area of {29.85 mm2 and achieve half-pitch lateral resolution of 770 nm, surpassing 2.17 times of the theoretical Nyquist-Shannon sampling resolution limit imposed by the sensor pixel-size (1.67 μm). Full-FOV imaging result of a typical dicot root is also provided to demonstrate its promising potential applications in biologic imaging.
Classifying magnetic resonance image modalities with convolutional neural networks
NASA Astrophysics Data System (ADS)
Remedios, Samuel; Pham, Dzung L.; Butman, John A.; Roy, Snehashis
2018-02-01
Magnetic Resonance (MR) imaging allows the acquisition of images with different contrast properties depending on the acquisition protocol and the magnetic properties of tissues. Many MR brain image processing techniques, such as tissue segmentation, require multiple MR contrasts as inputs, and each contrast is treated differently. Thus it is advantageous to automate the identification of image contrasts for various purposes, such as facilitating image processing pipelines, and managing and maintaining large databases via content-based image retrieval (CBIR). Most automated CBIR techniques focus on a two-step process: extracting features from data and classifying the image based on these features. We present a novel 3D deep convolutional neural network (CNN)- based method for MR image contrast classification. The proposed CNN automatically identifies the MR contrast of an input brain image volume. Specifically, we explored three classification problems: (1) identify T1-weighted (T1-w), T2-weighted (T2-w), and fluid-attenuated inversion recovery (FLAIR) contrasts, (2) identify pre vs postcontrast T1, (3) identify pre vs post-contrast FLAIR. A total of 3418 image volumes acquired from multiple sites and multiple scanners were used. To evaluate each task, the proposed model was trained on 2137 images and tested on the remaining 1281 images. Results showed that image volumes were correctly classified with 97.57% accuracy.
Coherent diffractive imaging of solid state reactions in zinc oxide crystals
NASA Astrophysics Data System (ADS)
Leake, Steven J.; Harder, Ross; Robinson, Ian K.
2011-11-01
We investigated the doping of zinc oxide (ZnO) microcrystals with iron and nickel via in situ coherent x-ray diffractive imaging (CXDI) in vacuum. Evaporated thin metal films were deposited onto the ZnO microcrystals. A single crystal was selected and tracked through annealing cycles. A solid state reaction was observed in both iron and nickel experiments using CXDI. A combination of the shrink wrap and guided hybrid-input-output phasing methods were applied to retrieve the electron density. The resolution was 33 nm (half order) determined via the phase retrieval transfer function. The resulting images are nevertheless sensitive to sub-angstrom displacements. The exterior of the microcrystal was found to degrade dramatically. The annealing of ZnO microcrystals coated with metal thin films proved an unsuitable doping method. In addition the observed defect structure of one crystal was attributed to the presence of an array of defects and was found to change upon annealing.
Modelling Subjectivity in Visual Perception of Orientation for Image Retrieval.
ERIC Educational Resources Information Center
Sanchez, D.; Chamorro-Martinez, J.; Vila, M. A.
2003-01-01
Discussion of multimedia libraries and the need for storage, indexing, and retrieval techniques focuses on the combination of computer vision and data mining techniques to model high-level concepts for image retrieval based on perceptual features of the human visual system. Uses fuzzy set theory to measure users' assessments and to capture users'…
Phase Retrieval Using a Genetic Algorithm on the Systematic Image-Based Optical Alignment Testbed
NASA Technical Reports Server (NTRS)
Taylor, Jaime R.
2003-01-01
NASA s Marshall Space Flight Center s Systematic Image-Based Optical Alignment (SIBOA) Testbed was developed to test phase retrieval algorithms and hardware techniques. Individuals working with the facility developed the idea of implementing phase retrieval by breaking the determination of the tip/tilt of each mirror apart from the piston motion (or translation) of each mirror. Presented in this report is an algorithm that determines the optimal phase correction associated only with the piston motion of the mirrors. A description of the Phase Retrieval problem is first presented. The Systematic Image-Based Optical Alignment (SIBOA) Testbeb is then described. A Discrete Fourier Transform (DFT) is necessary to transfer the incoming wavefront (or estimate of phase error) into the spatial frequency domain to compare it with the image. A method for reducing the DFT to seven scalar/matrix multiplications is presented. A genetic algorithm is then used to search for the phase error. The results of this new algorithm on a test problem are presented.
Event-related fMRI studies of false memory: An Activation Likelihood Estimation meta-analysis.
Kurkela, Kyle A; Dennis, Nancy A
2016-01-29
Over the last two decades, a wealth of research in the domain of episodic memory has focused on understanding the neural correlates mediating false memories, or memories for events that never happened. While several recent qualitative reviews have attempted to synthesize this literature, methodological differences amongst the empirical studies and a focus on only a sub-set of the findings has limited broader conclusions regarding the neural mechanisms underlying false memories. The current study performed a voxel-wise quantitative meta-analysis using activation likelihood estimation to investigate commonalities within the functional magnetic resonance imaging (fMRI) literature studying false memory. The results were broken down by memory phase (encoding, retrieval), as well as sub-analyses looking at differences in baseline (hit, correct rejection), memoranda (verbal, semantic), and experimental paradigm (e.g., semantic relatedness and perceptual relatedness) within retrieval. Concordance maps identified significant overlap across studies for each analysis. Several regions were identified in the general false retrieval analysis as well as multiple sub-analyses, indicating their ubiquitous, yet critical role in false retrieval (medial superior frontal gyrus, left precentral gyrus, left inferior parietal cortex). Additionally, several regions showed baseline- and paradigm-specific effects (hit/perceptual relatedness: inferior and middle occipital gyrus; CRs: bilateral inferior parietal cortex, precuneus, left caudate). With respect to encoding, analyses showed common activity in the left middle temporal gyrus and anterior cingulate cortex. No analysis identified a common cluster of activation in the medial temporal lobe. Copyright © 2015 Elsevier Ltd. All rights reserved.
Medial Temporal Lobe Contributions to Cued Retrieval of Items and Contexts
Hannula, Deborah E.; Libby, Laura A.; Yonelinas, Andrew P.; Ranganath, Charan
2013-01-01
Several models have proposed that different regions of the medial temporal lobes contribute to different aspects of episodic memory. For instance, according to one view, the perirhinal cortex represents specific items, parahippocampal cortex represents information regarding the context in which these items were encountered, and the hippocampus represents item-context bindings. Here, we used event-related functional magnetic resonance imaging (fMRI) to test a specific prediction of this model – namely, that successful retrieval of items from context cues will elicit perirhinal recruitment and that successful retrieval of contexts from item cues will elicit parahippocampal cortex recruitment. Retrieval of the bound representation in either case was expected to elicit hippocampal engagement. To test these predictions, we had participants study several item-context pairs (i.e., pictures of objects and scenes, respectively), and then had them attempt to recall items from associated context cues and contexts from associated item cues during a scanned retrieval session. Results based on both univariate and multivariate analyses confirmed a role for hippocampus in content-general relational memory retrieval, and a role for parahippocampal cortex in successful retrieval of contexts from item cues. However, we also found that activity differences in perirhinal cortex were correlated with successful cued recall for both items and contexts. These findings provide partial support for the above predictions and are discussed with respect to several models of medial temporal lobe function. PMID:23466350
Searching for Images: The Analysis of Users' Queries for Image Retrieval in American History.
ERIC Educational Resources Information Center
Choi, Youngok; Rasmussen, Edie M.
2003-01-01
Studied users' queries for visual information in American history to identify the image attributes important for retrieval and the characteristics of users' queries for digital images, based on queries from 38 faculty and graduate students. Results of pre- and post-test questionnaires and interviews suggest principle categories of search terms.…
Retrieval of radiology reports citing critical findings with disease-specific customization.
Lacson, Ronilda; Sugarbaker, Nathanael; Prevedello, Luciano M; Ivan, Ip; Mar, Wendy; Andriole, Katherine P; Khorasani, Ramin
2012-01-01
Communication of critical results from diagnostic procedures between caregivers is a Joint Commission national patient safety goal. Evaluating critical result communication often requires manual analysis of voluminous data, especially when reviewing unstructured textual results of radiologic findings. Information retrieval (IR) tools can facilitate this process by enabling automated retrieval of radiology reports that cite critical imaging findings. However, IR tools that have been developed for one disease or imaging modality often need substantial reconfiguration before they can be utilized for another disease entity. THIS PAPER: 1) describes the process of customizing two Natural Language Processing (NLP) and Information Retrieval/Extraction applications - an open-source toolkit, A Nearly New Information Extraction system (ANNIE); and an application developed in-house, Information for Searching Content with an Ontology-Utilizing Toolkit (iSCOUT) - to illustrate the varying levels of customization required for different disease entities and; 2) evaluates each application's performance in identifying and retrieving radiology reports citing critical imaging findings for three distinct diseases, pulmonary nodule, pneumothorax, and pulmonary embolus. Both applications can be utilized for retrieval. iSCOUT and ANNIE had precision values between 0.90-0.98 and recall values between 0.79 and 0.94. ANNIE had consistently higher precision but required more customization. Understanding the customizations involved in utilizing NLP applications for various diseases will enable users to select the most suitable tool for specific tasks.
Retrieval of Radiology Reports Citing Critical Findings with Disease-Specific Customization
Lacson, Ronilda; Sugarbaker, Nathanael; Prevedello, Luciano M; Ivan, IP; Mar, Wendy; Andriole, Katherine P; Khorasani, Ramin
2012-01-01
Background: Communication of critical results from diagnostic procedures between caregivers is a Joint Commission national patient safety goal. Evaluating critical result communication often requires manual analysis of voluminous data, especially when reviewing unstructured textual results of radiologic findings. Information retrieval (IR) tools can facilitate this process by enabling automated retrieval of radiology reports that cite critical imaging findings. However, IR tools that have been developed for one disease or imaging modality often need substantial reconfiguration before they can be utilized for another disease entity. Purpose: This paper: 1) describes the process of customizing two Natural Language Processing (NLP) and Information Retrieval/Extraction applications – an open-source toolkit, A Nearly New Information Extraction system (ANNIE); and an application developed in-house, Information for Searching Content with an Ontology-Utilizing Toolkit (iSCOUT) – to illustrate the varying levels of customization required for different disease entities and; 2) evaluates each application’s performance in identifying and retrieving radiology reports citing critical imaging findings for three distinct diseases, pulmonary nodule, pneumothorax, and pulmonary embolus. Results: Both applications can be utilized for retrieval. iSCOUT and ANNIE had precision values between 0.90-0.98 and recall values between 0.79 and 0.94. ANNIE had consistently higher precision but required more customization. Conclusion: Understanding the customizations involved in utilizing NLP applications for various diseases will enable users to select the most suitable tool for specific tasks. PMID:22934127
Comparing fusion techniques for the ImageCLEF 2013 medical case retrieval task.
G Seco de Herrera, Alba; Schaer, Roger; Markonis, Dimitrios; Müller, Henning
2015-01-01
Retrieval systems can supply similar cases with a proven diagnosis to a new example case under observation to help clinicians during their work. The ImageCLEFmed evaluation campaign proposes a framework where research groups can compare case-based retrieval approaches. This paper focuses on the case-based task and adds results of the compound figure separation and modality classification tasks. Several fusion approaches are compared to identify the approaches best adapted to the heterogeneous data of the task. Fusion of visual and textual features is analyzed, demonstrating that the selection of the fusion strategy can improve the best performance on the case-based retrieval task. Copyright © 2014 Elsevier Ltd. All rights reserved.
Qualification of a Null Lens Using Image-Based Phase Retrieval
NASA Technical Reports Server (NTRS)
Bolcar, Matthew R.; Aronstein, David L.; Hill, Peter C.; Smith, J. Scott; Zielinski, Thomas P.
2012-01-01
In measuring the figure error of an aspheric optic using a null lens, the wavefront contribution from the null lens must be independently and accurately characterized in order to isolate the optical performance of the aspheric optic alone. Various techniques can be used to characterize such a null lens, including interferometry, profilometry and image-based methods. Only image-based methods, such as phase retrieval, can measure the null-lens wavefront in situ - in single-pass, and at the same conjugates and in the same alignment state in which the null lens will ultimately be used - with no additional optical components. Due to the intended purpose of a Dull lens (e.g., to null a large aspheric wavefront with a near-equal-but-opposite spherical wavefront), characterizing a null-lens wavefront presents several challenges to image-based phase retrieval: Large wavefront slopes and high-dynamic-range data decrease the capture range of phase-retrieval algorithms, increase the requirements on the fidelity of the forward model of the optical system, and make it difficult to extract diagnostic information (e.g., the system F/#) from the image data. In this paper, we present a study of these effects on phase-retrieval algorithms in the context of a null lens used in component development for the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission. Approaches for mitigation are also discussed.
Hypertext Image Retrieval: The Evolution of an Application.
ERIC Educational Resources Information Center
Roberts, G. Louis; Kenney, Carol E.
1991-01-01
Describes the development and implementation of a full-text image retrieval system at the Boeing Commercial Airplane Group. The conversion of card formats to a microcomputer-based system using HyperCard is described; the online system architecture is explained; and future plans are discussed, including conversion to digital images. (LRW)
Macedo, Alessandra A; Pessotti, Hugo C; Almansa, Luciana F; Felipe, Joaquim C; Kimura, Edna T
2016-07-01
The analyses of several systems for medical-imaging processing typically support the extraction of image attributes, but do not comprise some information that characterizes images. For example, morphometry can be applied to find new information about the visual content of an image. The extension of information may result in knowledge. Subsequently, results of mappings can be applied to recognize exam patterns, thus improving the accuracy of image retrieval and allowing a better interpretation of exam results. Although successfully applied in breast lesion images, the morphometric approach is still poorly explored in thyroid lesions due to the high subjectivity thyroid examinations. This paper presents a theoretical-practical study, considering Computer Aided Diagnosis (CAD) and Morphometry, to reduce the semantic discontinuity between medical image features and human interpretation of image content. The proposed method aggregates the content of microscopic images characterized by morphometric information and other image attributes extracted by traditional object extraction algorithms. This method carries out segmentation, feature extraction, image labeling and classification. Morphometric analysis was included as an object extraction method in order to verify the improvement of its accuracy for automatic classification of microscopic images. To validate this proposal and verify the utility of morphometric information to characterize thyroid images, a CAD system was created to classify real thyroid image-exams into Papillary Cancer, Goiter and Non-Cancer. Results showed that morphometric information can improve the accuracy and precision of image retrieval and the interpretation of results in computer-aided diagnosis. For example, in the scenario where all the extractors are combined with the morphometric information, the CAD system had its best performance (70% of precision in Papillary cases). Results signalized a positive use of morphometric information from images to reduce semantic discontinuity between human interpretation and image characterization. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Tiede, Dirk; Baraldi, Andrea; Sudmanns, Martin; Belgiu, Mariana; Lang, Stefan
2017-01-01
ABSTRACT Spatiotemporal analytics of multi-source Earth observation (EO) big data is a pre-condition for semantic content-based image retrieval (SCBIR). As a proof of concept, an innovative EO semantic querying (EO-SQ) subsystem was designed and prototypically implemented in series with an EO image understanding (EO-IU) subsystem. The EO-IU subsystem is automatically generating ESA Level 2 products (scene classification map, up to basic land cover units) from optical satellite data. The EO-SQ subsystem comprises a graphical user interface (GUI) and an array database embedded in a client server model. In the array database, all EO images are stored as a space-time data cube together with their Level 2 products generated by the EO-IU subsystem. The GUI allows users to (a) develop a conceptual world model based on a graphically supported query pipeline as a combination of spatial and temporal operators and/or standard algorithms and (b) create, save and share within the client-server architecture complex semantic queries/decision rules, suitable for SCBIR and/or spatiotemporal EO image analytics, consistent with the conceptual world model. PMID:29098143
A multi-sensor data-driven methodology for all-sky passive microwave inundation retrieval
NASA Astrophysics Data System (ADS)
Takbiri, Zeinab; Ebtehaj, Ardeshir M.; Foufoula-Georgiou, Efi
2017-06-01
We present a multi-sensor Bayesian passive microwave retrieval algorithm for flood inundation mapping at high spatial and temporal resolutions. The algorithm takes advantage of observations from multiple sensors in optical, short-infrared, and microwave bands, thereby allowing for detection and mapping of the sub-pixel fraction of inundated areas under almost all-sky conditions. The method relies on a nearest-neighbor search and a modern sparsity-promoting inversion method that make use of an a priori dataset in the form of two joint dictionaries. These dictionaries contain almost overlapping observations by the Special Sensor Microwave Imager and Sounder (SSMIS) on board the Defense Meteorological Satellite Program (DMSP) F17 satellite and the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Aqua and Terra satellites. Evaluation of the retrieval algorithm over the Mekong Delta shows that it is capable of capturing to a good degree the inundation diurnal variability due to localized convective precipitation. At longer timescales, the results demonstrate consistency with the ground-based water level observations, denoting that the method is properly capturing inundation seasonal patterns in response to regional monsoonal rain. The calculated Euclidean distance, rank-correlation, and also copula quantile analysis demonstrate a good agreement between the outputs of the algorithm and the observed water levels at monthly and daily timescales. The current inundation products are at a resolution of 12.5 km and taken twice per day, but a higher resolution (order of 5 km and every 3 h) can be achieved using the same algorithm with the dictionary populated by the Global Precipitation Mission (GPM) Microwave Imager (GMI) products.
Estimating surface soil moisture from SMAP observations using a Neural Network technique.
Kolassa, J; Reichle, R H; Liu, Q; Alemohammad, S H; Gentine, P; Aida, K; Asanuma, J; Bircher, S; Caldwell, T; Colliander, A; Cosh, M; Collins, C Holifield; Jackson, T J; Martínez-Fernández, J; McNairn, H; Pacheco, A; Thibeault, M; Walker, J P
2018-01-01
A Neural Network (NN) algorithm was developed to estimate global surface soil moisture for April 2015 to March 2017 with a 2-3 day repeat frequency using passive microwave observations from the Soil Moisture Active Passive (SMAP) satellite, surface soil temperatures from the NASA Goddard Earth Observing System Model version 5 (GEOS-5) land modeling system, and Moderate Resolution Imaging Spectroradiometer-based vegetation water content. The NN was trained on GEOS-5 soil moisture target data, making the NN estimates consistent with the GEOS-5 climatology, such that they may ultimately be assimilated into this model without further bias correction. Evaluated against in situ soil moisture measurements, the average unbiased root mean square error (ubRMSE), correlation and anomaly correlation of the NN retrievals were 0.037 m 3 m -3 , 0.70 and 0.66, respectively, against SMAP core validation site measurements and 0.026 m 3 m -3 , 0.58 and 0.48, respectively, against International Soil Moisture Network (ISMN) measurements. At the core validation sites, the NN retrievals have a significantly higher skill than the GEOS-5 model estimates and a slightly lower correlation skill than the SMAP Level-2 Passive (L2P) product. The feasibility of the NN method was reflected by a lower ubRMSE compared to the L2P retrievals as well as a higher skill when ancillary parameters in physically-based retrievals were uncertain. Against ISMN measurements, the skill of the two retrieval products was more comparable. A triple collocation analysis against Advanced Microwave Scanning Radiometer 2 (AMSR2) and Advanced Scatterometer (ASCAT) soil moisture retrievals showed that the NN and L2P retrieval errors have a similar spatial distribution, but the NN retrieval errors are generally lower in densely vegetated regions and transition zones.
Comparing the performance of two CBIRS indexing schemes
NASA Astrophysics Data System (ADS)
Mueller, Wolfgang; Robbert, Guenter; Henrich, Andreas
2003-01-01
Content based image retrieval (CBIR) as it is known today has to deal with a number of challenges. Quickly summarized, the main challenges are firstly, to bridge the semantic gap between high-level concepts and low-level features using feedback, secondly to provide performance under adverse conditions. High-dimensional spaces, as well as a demanding machine learning task make the right way of indexing an important issue. When indexing multimedia data, most groups opt for extraction of high-dimensional feature vectors from the data, followed by dimensionality reduction like PCA (Principal Components Analysis) or LSI (Latent Semantic Indexing). The resulting vectors are indexed using spatial indexing structures such as kd-trees or R-trees, for example. Other projects, such as MARS and Viper propose the adaptation of text indexing techniques, notably the inverted file. Here, the Viper system is the most direct adaptation of text retrieval techniques to quantized vectors. However, while the Viper query engine provides decent performance together with impressive user-feedback behavior, as well as the possibility for easy integration of long-term learning algorithms, and support for potentially infinite feature vectors, there has been no comparison of vector-based methods and inverted-file-based methods under similar conditions. In this publication, we compare a CBIR query engine that uses inverted files (Bothrops, a rewrite of the Viper query engine based on a relational database), and a CBIR query engine based on LSD (Local Split Decision) trees for spatial indexing using the same feature sets. The Benchathlon initiative works on providing a set of images and ground truth for simulating image queries by example and corresponding user feedback. When performing the Benchathlon benchmark on a CBIR system (the System Under Test, SUT), a benchmarking harness connects over internet to the SUT, performing a number of queries using an agreed-upon protocol, the multimedia retrieval markup language (MRML). Using this benchmark one can measure the quality of retrieval, as well as the overall (speed) performance of the benchmarked system. Our Benchmarks will draw on the Benchathlon"s work for documenting the retrieval performance of both inverted file-based and LSD tree based techniques. However in addition to these results, we will present statistics, that can be obtained only inside the system under test. These statistics will include the number of complex mathematical operations, as well as the amount of data that has to be read from disk during operation of a query.
Old document image segmentation using the autocorrelation function and multiresolution analysis
NASA Astrophysics Data System (ADS)
Mehri, Maroua; Gomez-Krämer, Petra; Héroux, Pierre; Mullot, Rémy
2013-01-01
Recent progress in the digitization of heterogeneous collections of ancient documents has rekindled new challenges in information retrieval in digital libraries and document layout analysis. Therefore, in order to control the quality of historical document image digitization and to meet the need of a characterization of their content using intermediate level metadata (between image and document structure), we propose a fast automatic layout segmentation of old document images based on five descriptors. Those descriptors, based on the autocorrelation function, are obtained by multiresolution analysis and used afterwards in a specific clustering method. The method proposed in this article has the advantage that it is performed without any hypothesis on the document structure, either about the document model (physical structure), or the typographical parameters (logical structure). It is also parameter-free since it automatically adapts to the image content. In this paper, firstly, we detail our proposal to characterize the content of old documents by extracting the autocorrelation features in the different areas of a page and at several resolutions. Then, we show that is possible to automatically find the homogeneous regions defined by similar indices of autocorrelation without knowledge about the number of clusters using adapted hierarchical ascendant classification and consensus clustering approaches. To assess our method, we apply our algorithm on 316 old document images, which encompass six centuries (1200-1900) of French history, in order to demonstrate the performance of our proposal in terms of segmentation and characterization of heterogeneous corpus content. Moreover, we define a new evaluation metric, the homogeneity measure, which aims at evaluating the segmentation and characterization accuracy of our methodology. We find a 85% of mean homogeneity accuracy. Those results help to represent a document by a hierarchy of layout structure and content, and to define one or more signatures for each page, on the basis of a hierarchical representation of homogeneous blocks and their topology.
NASA Technical Reports Server (NTRS)
Poulakidas, A.; Srinivasan, A.; Egecioglu, O.; Ibarra, O.; Yang, T.
1996-01-01
Wavelet transforms, when combined with quantization and a suitable encoding, can be used to compress images effectively. In order to use them for image library systems, a compact storage scheme for quantized coefficient wavelet data must be developed with a support for fast subregion retrieval. We have designed such a scheme and in this paper we provide experimental studies to demonstrate that it achieves good image compression ratios, while providing a natural indexing mechanism that facilitates fast retrieval of portions of the image at various resolutions.
Sampling Analysis of Aerosol Retrievals by Single-track Spaceborne Instrument for Climate Research
NASA Astrophysics Data System (ADS)
Geogdzhayev, I. V.; Cairns, B.; Alexandrov, M. D.; Mishchenko, M. I.
2012-12-01
We examine to what extent the reduced sampling of along-track instruments such as Cloud-Aerosol LIdar with Orthogonal Polarisation (CALIOP) and Aerosol Polarimetry Sensor (APS) affects the statistical accuracy of a satellite climatology of retrieved aerosol optical thickness (AOT) by sub-sampling the retrievals from a wide-swath imaging instrument (MODerate resolution Imaging Spectroradiometer (MODIS)). Owing to its global coverage, longevity, and extensive characterization versus ground based data, the MODIS level-2 aerosol product is an instructive testbed for assessing sampling effects on climatic means derived from along-track instrument data. The advantage of using daily pixel-level aerosol retrievals from MODIS is that limitations caused by the presence of clouds are implicit in the sample, so that their seasonal and regional variations are captured coherently. However, imager data can exhibit cross-track variability of monthly global mean AOTs caused by a scattering-angle dependence. We found that single along-track values can deviate from the imager mean by 15% over land and by more than 20% over ocean. This makes it difficult to separate natural variability from viewing-geometry artifacts complicating direct comparisons of an along-track sub-sample with the full imager data. To work around this problem, we introduce "flipped-track" sampling which, by design, is statistically equivalent to along-track sampling and while closely approximating the imager in terms of angular artifacts. We show that the flipped-track variability of global monthly mean AOT is much smaller than the cross-track one for the 7-year period considered. Over the ocean flipped-track standard error is 85% less than the cross-track one (absolute values 0.0012 versus 0.0079), and over land it is about one third of the cross-track value (0.0054 versus 0.0188) on average. This allows us to attribute the difference between the two errors to the viewing-geometry artifacts and obtain an upper limit on AOT errors caused by along-track sampling. Our results show that using along-track subsets of MODIS aerosol data directly to analyze the sampling adequacy of single-track instruments can lead to false conclusions owing to the apparent enhancement of natural aerosol variability by the track-to-track artifacts. The analysis based on the statistics of the flipped-track means yields better estimates because it allows for better separation of the viewing-geometry artifacts and true natural variability. Published assessments estimate that a global AOT change of 0.01 would yield a climatically important flux change of 0.25 W/m2. Since the standard error estimates that we have obtained are comfortably below 0.01, we conclude that along-track instruments flown on a sun-synchronous orbiting platform have sufficient spatial sampling for estimating aerosol effects on climate. Since AOT is believed to be the most variable characteristic of tropospheric aerosols, our results imply that pixel-wide along-track coverage also provides adequate statistical representation of the global distribution of aerosol microphysical parameters.
Mutual information based feature selection for medical image retrieval
NASA Astrophysics Data System (ADS)
Zhi, Lijia; Zhang, Shaomin; Li, Yan
2018-04-01
In this paper, authors propose a mutual information based method for lung CT image retrieval. This method is designed to adapt to different datasets and different retrieval task. For practical applying consideration, this method avoids using a large amount of training data. Instead, with a well-designed training process and robust fundamental features and measurements, the method in this paper can get promising performance and maintain economic training computation. Experimental results show that the method has potential practical values for clinical routine application.
Content-based video indexing and searching with wavelet transformation
NASA Astrophysics Data System (ADS)
Stumpf, Florian; Al-Jawad, Naseer; Du, Hongbo; Jassim, Sabah
2006-05-01
Biometric databases form an essential tool in the fight against international terrorism, organised crime and fraud. Various government and law enforcement agencies have their own biometric databases consisting of combination of fingerprints, Iris codes, face images/videos and speech records for an increasing number of persons. In many cases personal data linked to biometric records are incomplete and/or inaccurate. Besides, biometric data in different databases for the same individual may be recorded with different personal details. Following the recent terrorist atrocities, law enforcing agencies collaborate more than before and have greater reliance on database sharing. In such an environment, reliable biometric-based identification must not only determine who you are but also who else you are. In this paper we propose a compact content-based video signature and indexing scheme that can facilitate retrieval of multiple records in face biometric databases that belong to the same person even if their associated personal data are inconsistent. We shall assess the performance of our system using a benchmark audio visual face biometric database that has multiple videos for each subject but with different identity claims. We shall demonstrate that retrieval of relatively small number of videos that are nearest, in terms of the proposed index, to any video in the database results in significant proportion of that individual biometric data.
NASA Technical Reports Server (NTRS)
Werner, Frank; Wind, Galina; Zhang, Zhibo; Platnick, Steven; Di Girolamo, Larry; Zhao, Guangyu; Amarasinghe, Nandana; Meyer, Kerry
2016-01-01
A research-level retrieval algorithm for cloud optical and microphysical properties is developed for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard the Terra satellite. It is based on the operational MODIS algorithm. This paper documents the technical details of this algorithm and evaluates the retrievals for selected marine boundary layer cloud scenes through comparisons with the operational MODIS Data Collection 6 (C6) cloud product. The newly developed, ASTERspecific cloud masking algorithm is evaluated through comparison with an independent algorithm reported in Zhao and Di Girolamo (2006). To validate and evaluate the cloud optical thickness (tau) and cloud effective radius (r(sub eff)) from ASTER, the high-spatial-resolution ASTER observations are first aggregated to the same 1000m resolution as MODIS. Subsequently, tau(sub aA) and r(sub eff, aA) retrieved from the aggregated ASTER radiances are compared with the collocated MODIS retrievals. For overcast pixels, the two data sets agree very well with Pearson's product-moment correlation coefficients of R greater than 0.970. However, for partially cloudy pixels there are significant differences between r(sub eff, aA) and the MODIS results which can exceed 10 micrometers. Moreover, it is shown that the numerous delicate cloud structures in the example marine boundary layer scenes, resolved by the high-resolution ASTER retrievals, are smoothed by the MODIS observations. The overall good agreement between the research-level ASTER results and the operational MODIS C6 products proves the feasibility of MODIS-like retrievals from ASTER reflectance measurements and provides the basis for future studies concerning the scale dependency of satellite observations and three-dimensional radiative effects.
Mining biomedical images towards valuable information retrieval in biomedical and life sciences.
Ahmed, Zeeshan; Zeeshan, Saman; Dandekar, Thomas
2016-01-01
Biomedical images are helpful sources for the scientists and practitioners in drawing significant hypotheses, exemplifying approaches and describing experimental results in published biomedical literature. In last decades, there has been an enormous increase in the amount of heterogeneous biomedical image production and publication, which results in a need for bioimaging platforms for feature extraction and analysis of text and content in biomedical images to take advantage in implementing effective information retrieval systems. In this review, we summarize technologies related to data mining of figures. We describe and compare the potential of different approaches in terms of their developmental aspects, used methodologies, produced results, achieved accuracies and limitations. Our comparative conclusions include current challenges for bioimaging software with selective image mining, embedded text extraction and processing of complex natural language queries. © The Author(s) 2016. Published by Oxford University Press.
Analysis of perceived similarity between pairs of microcalcification clusters in mammograms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Juan; Jing, Hao; Wernick, Miles N.
2014-05-15
Purpose: Content-based image retrieval aims to assist radiologists by presenting example images with known pathology that are visually similar to the case being evaluated. In this work, the authors investigate several fundamental issues underlying the similarity ratings between pairs of microcalcification (MC) lesions on mammograms as judged by radiologists: the degree of variability in the similarity ratings, the impact of this variability on agreement between readers in retrieval of similar lesions, and the factors contributing to the readers’ similarity ratings. Methods: The authors conduct a reader study on a set of 1000 image pairs of MC lesions, in which amore » group of experienced breast radiologists rated the degree of similarity between each image pair. The image pairs are selected, from among possible pairings of 222 cases (110 malignant, 112 benign), based on quantitative image attributes (features) and the results of a preliminary reader study. Next, the authors apply analysis of variance (ANOVA) to quantify the level of variability in the readers’ similarity ratings, and study how the variability in individual reader ratings affects consistency between readers. The authors also measure the extent to which readers agree on images which are most similar to a given query, for which the Dice coefficient is used. To investigate how the similarity ratings potentially relate to the attributes underlying the cases, the authors study the fraction of perceptually similar images that also share the same benign or malignant pathology as the query image; moreover, the authors apply multidimensional scaling (MDS) to embed the cases according to their mutual perceptual similarity in a two-dimensional plot, which allows the authors to examine the manner in which similar lesions relate to one another in terms of benign or malignant pathology and clustered MCs. Results: The ANOVA results show that the coefficient of determination in the reader similarity ratings is 0.59. The variability level in the similarity ratings is proved to be a limiting factor, leading to only moderate correlation between the readers in their readings. The Dice coefficient, measuring agreement between readers in retrieval of similar images, can vary from 0.45 to 0.64 with different levels of similarity for individual readers, but is higher for average ratings from a group of readers (from 0.59 to 0.78). More importantly, the fraction of retrieved cases that match the benign or malignant pathology of the query image was found to increase with the degree of similarity among the retrieved images, reaching average value as high as 0.69 for the radiologists (p-value <10{sup −4} compared to random guessing). Moreover, MDS embedding of all the cases shows that cases having the same pathology tend to cluster together, and that neighboring cases in the plot tend to be similar in their clustered MCs. Conclusions: While individual readers exhibit substantial variability in their similarity ratings, similarity ratings averaged from a group of readers can achieve a high level of intergroup consistency and agreement in retrieval of similar images. More importantly, perceptually similar cases are also likely to be similar in their underlying benign or malignant pathology and image features of clustered MCs, which could be of diagnostic value in computer-aided diagnosis for lesions with clustered MCs.« less
ESO/ST-ECF Data Analysis Workshop, 5th, Garching, Germany, Apr. 26, 27, 1993, Proceedings
NASA Astrophysics Data System (ADS)
Grosbol, Preben; de Ruijsscher, Resy
1993-01-01
Various papers on astronomical data analysis are presented. Individual optics addressed include: surface photometry of early-type galaxies, wavelet transform and adaptive filtering, package for surface photometry of galaxies, calibration of large-field mosaics, surface photometry of galaxies with HST, wavefront-supported image deconvolution, seeing effects on elliptical galaxies, multiple algorithms deconvolution program, enhancement of Skylab X-ray images, MIDAS procedures for the image analysis of E-S0 galaxies, photometric data reductions under MIDAS, crowded field photometry with deconvolved images, the DENIS Deep Near Infrared Survey. Also discussed are: analysis of astronomical time series, detection of low-amplitude stellar pulsations, new SOT method for frequency analysis, chaotic attractor reconstruction and applications to variable stars, reconstructing a 1D signal from irregular samples, automatic analysis for time series with large gaps, prospects for content-based image retrieval, redshift survey in the South Galactic Pole Region.
Abd El Aziz, Mohamed; Selim, I M; Xiong, Shengwu
2017-06-30
This paper presents a new approach for the automatic detection of galaxy morphology from datasets based on an image-retrieval approach. Currently, there are several classification methods proposed to detect galaxy types within an image. However, in some situations, the aim is not only to determine the type of galaxy within the queried image, but also to determine the most similar images for query image. Therefore, this paper proposes an image-retrieval method to detect the type of galaxies within an image and return with the most similar image. The proposed method consists of two stages, in the first stage, a set of features is extracted based on shape, color and texture descriptors, then a binary sine cosine algorithm selects the most relevant features. In the second stage, the similarity between the features of the queried galaxy image and the features of other galaxy images is computed. Our experiments were performed using the EFIGI catalogue, which contains about 5000 galaxies images with different types (edge-on spiral, spiral, elliptical and irregular). We demonstrate that our proposed approach has better performance compared with the particle swarm optimization (PSO) and genetic algorithm (GA) methods.
Unified modeling language and design of a case-based retrieval system in medical imaging.
LeBozec, C; Jaulent, M C; Zapletal, E; Degoulet, P
1998-01-01
One goal of artificial intelligence research into case-based reasoning (CBR) systems is to develop approaches for designing useful and practical interactive case-based environments. Explaining each step of the design of the case-base and of the retrieval process is critical for the application of case-based systems to the real world. We describe herein our approach to the design of IDEM--Images and Diagnosis from Examples in Medicine--a medical image case-based retrieval system for pathologists. Our approach is based on the expressiveness of an object-oriented modeling language standard: the Unified Modeling Language (UML). We created a set of diagrams in UML notation illustrating the steps of the CBR methodology we used. The key aspect of this approach was selecting the relevant objects of the system according to user requirements and making visualization of cases and of the components of the case retrieval process. Further evaluation of the expressiveness of the design document is required but UML seems to be a promising formalism, improving the communication between the developers and users.