Montiglio, Pierre-Olivier; Wey, Tina W; Chang, Ann T; Fogarty, Sean; Sih, Andrew
2017-03-01
Despite a central line of research aimed at quantifying relationships between mating success and sexually dimorphic traits (e.g., ornaments), individual variation in sexually selected traits often explains only a modest portion of the variation in mating success. Another line of research suggests that a significant portion of the variation in mating success observed in animal populations could be explained by correlational selection, where the fitness advantage of a given trait depends on other components of an individual's phenotype and/or its environment. We tested the hypothesis that interactions between multiple traits within an individual (phenotype dependence) or between an individual's phenotype and its social environment (context dependence) can select for individual differences in behaviour (i.e., personality) and social plasticity. To quantify the importance of phenotype- and context-dependent selection on mating success, we repeatedly measured the behaviour, social environment and mating success of about 300 male stream water striders, Aquarius remigis. Rather than explaining individual differences in long-term mating success, we instead quantified how the combination of a male's phenotype interacted with the immediate social context to explain variation in hour-by-hour mating decisions. We suggest that this analysis captures more of the mechanisms leading to differences in mating success. Males differed consistently in activity, aggressiveness and social plasticity. The mating advantage of these behavioural traits depended on male morphology and varied with the number of rival males in the pool, suggesting mechanisms selecting for consistent differences in behaviour and social plasticity. Accounting for phenotype and context dependence improved the amount of variation in male mating success we explained statistically by 30-274%. Our analysis of the determinants of male mating success provides important insights into the evolutionary forces that shape phenotypic variation. In particular, our results suggest that sexual selection is likely to favour individual differences in behaviour, social plasticity (i.e., individuals adjusting their behaviour), niche preference (i.e., individuals dispersing to particular social conditions) or social niche construction (i.e., individuals modifying the social environment). The true effect of sexual traits can only be understood in interaction with the individual's phenotype and environment. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
da Rocha, Edroaldo Lummertz; Ung, Choong Yong; McGehee, Cordelia D; Correia, Cristina; Li, Hu
2016-06-02
The sequential chain of interactions altering the binary state of a biomolecule represents the 'information flow' within a cellular network that determines phenotypic properties. Given the lack of computational tools to dissect context-dependent networks and gene activities, we developed NetDecoder, a network biology platform that models context-dependent information flows using pairwise phenotypic comparative analyses of protein-protein interactions. Using breast cancer, dyslipidemia and Alzheimer's disease as case studies, we demonstrate NetDecoder dissects subnetworks to identify key players significantly impacting cell behaviour specific to a given disease context. We further show genes residing in disease-specific subnetworks are enriched in disease-related signalling pathways and information flow profiles, which drive the resulting disease phenotypes. We also devise a novel scoring scheme to quantify key genes-network routers, which influence many genes, key targets, which are influenced by many genes, and high impact genes, which experience a significant change in regulation. We show the robustness of our results against parameter changes. Our network biology platform includes freely available source code (http://www.NetDecoder.org) for researchers to explore genome-wide context-dependent information flow profiles and key genes, given a set of genes of particular interest and transcriptome data. More importantly, NetDecoder will enable researchers to uncover context-dependent drug targets. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Khan, Nymul; Maezato, Yukari; McClure, Ryan S; Brislawn, Colin J; Mobberley, Jennifer M; Isern, Nancy; Chrisler, William B; Markillie, Lye Meng; Barney, Brett M; Song, Hyun-Seob; Nelson, William C; Bernstein, Hans C
2018-01-10
The fundamental question of whether different microbial species will co-exist or compete in a given environment depends on context, composition and environmental constraints. Model microbial systems can yield some general principles related to this question. In this study we employed a naturally occurring co-culture composed of heterotrophic bacteria, Halomonas sp. HL-48 and Marinobacter sp. HL-58, to ask two fundamental scientific questions: 1) how do the phenotypes of two naturally co-existing species respond to partnership as compared to axenic growth? and 2) how do growth and molecular phenotypes of these species change with respect to competitive and commensal interactions? We hypothesized - and confirmed - that co-cultivation under glucose as the sole carbon source would result in competitive interactions. Similarly, when glucose was swapped with xylose, the interactions became commensal because Marinobacter HL-58 was supported by metabolites derived from Halomonas HL-48. Each species responded to partnership by changing both its growth and molecular phenotype as assayed via batch growth kinetics and global transcriptomics. These phenotypic responses depended on nutrient availability and so the environment ultimately controlled how they responded to each other. This simplified model community revealed that microbial interactions are context-specific and different environmental conditions dictate how interspecies partnerships will unfold.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, Nymul; Maezato, Yukari; McClure, Ryan S.
The fundamental question of whether different microbial species will co-exist or compete in a given environment depends on context, composition and environmental constraints. Model microbial systems can yield some general principles related to this question. In this study we employed a naturally occurring co-culture composed of heterotrophic bacteria, Halomonas sp. HL-48 and Marinobacter sp. HL-58, to ask two fundamental scientific questions: 1) how do the phenotypes of two naturally co-existing species respond to partnership as compared to axenic growth? and 2) how do growth and molecular phenotypes of these species change with respect to competitive and commensal interactions? We hypothesizedmore » – and confirmed – that co-cultivation under glucose as the sole carbon source would result in a competitive interactions. Similarly, when glucose was swapped with xylose, the interactions became commensal because Marinobacter HL-58 was supported by metabolites derived from Halomonas HL-48. Each species responded to partnership by changing both its growth and molecular phenotype as assayed via batch growth kinetics and global transcriptomics. These phenotypic responses depended nutrient availability and so the environment ultimately controlled how they responded to each other. This simplified model community revealed that microbial interactions are context-specific and different environmental conditions dictate how interspecies partnerships will unfold.« less
McGoey, Brechann V; Stinchcombe, John R
2009-08-01
Shade avoidance syndrome is a known adaptive response for Impatiens capensis growing in dense intraspecific competition. However, I. capensis also grow with dominant interspecific competitors in marshes. Here, we compare the I. capensis shade-avoidance phenotypes produced in the absence and presence of heterospecific competitors, as well as selection on those traits. Two treatments were established in a marsh; in one treatment all heterospecifics were removed, while in the other, all competitors remained. We compared morphological traits, light parameters, seed output and, using phenotypic selection analysis, examined directional and nonlinear selection operating in the different competitive treatments. Average phenotypes, light parameters and seed production all varied depending on competitive treatment. Phenotypic selection analyses revealed different directional, disruptive, stabilizing and correlational selection. The disparities seen in both phenotypes and selection between the treatments related to the important differences in elongation timing depending on the presence of heterospecifics, although environmental covariances between traits and fitness could also contribute. Phenotypes produced by I. capensis depend on their competitive environment, and differing selection on shade-avoidance traits between competitive environments could indirectly select for increased plasticity given gene flow between populations in different competitive contexts.
Maneuvering in the Complex Path from Genotype to Phenotype
NASA Astrophysics Data System (ADS)
Strohman, Richard
2002-04-01
Human disease phenotypes are controlled not only by genes but by lawful self-organizing networks that display system-wide dynamics. These networks range from metabolic pathways to signaling pathways that regulate hormone action. When perturbed, networks alter their output of matter and energy which, depending on the environmental context, can produce either a pathological or a normal phenotype. Study of the dynamics of these networks by approaches such as metabolic control analysis may provide new insights into the pathogenesis and treatment of complex diseases.
Personality-dependent dispersal cancelled under predation risk
Cote, Julien; Fogarty, Sean; Tymen, Blaise; Sih, Andrew; Brodin, Tomas
2013-01-01
Dispersal is a fundamental life-history trait for many ecological processes. Recent studies suggest that dispersers, in comparison to residents, display various phenotypic specializations increasing their dispersal inclination or success. Among them, dispersers are believed to be consistently more bold, exploratory, asocial or aggressive than residents. These links between behavioural types and dispersal should vary with the cause of dispersal. However, with the exception of one study, personality-dependent dispersal has not been studied in contrasting environments. Here, we used mosquitofish (Gambusia affinis) to test whether personality-dependent dispersal varies with predation risk, a factor that should induce boldness or sociability-dependent dispersal. Corroborating previous studies, we found that dispersing mosquitofish are less social than non-dispersing fish when there was no predation risk. However, personality-dependent dispersal is negated under predation risk, dispersers having similar personality types to residents. Our results suggest that adaptive dispersal decisions could commonly depend on interactions between phenotypes and ecological contexts. PMID:24197414
Optimizing complex phenotypes through model-guided multiplex genome engineering
Kuznetsov, Gleb; Goodman, Daniel B.; Filsinger, Gabriel T.; ...
2017-05-25
Here, we present a method for identifying genomic modifications that optimize a complex phenotype through multiplex genome engineering and predictive modeling. We apply our method to identify six single nucleotide mutations that recover 59% of the fitness defect exhibited by the 63-codon E. coli strain C321.ΔA. By introducing targeted combinations of changes in multiplex we generate rich genotypic and phenotypic diversity and characterize clones using whole-genome sequencing and doubling time measurements. Regularized multivariate linear regression accurately quantifies individual allelic effects and overcomes bias from hitchhiking mutations and context-dependence of genome editing efficiency that would confound other strategies.
Optimizing complex phenotypes through model-guided multiplex genome engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuznetsov, Gleb; Goodman, Daniel B.; Filsinger, Gabriel T.
Here, we present a method for identifying genomic modifications that optimize a complex phenotype through multiplex genome engineering and predictive modeling. We apply our method to identify six single nucleotide mutations that recover 59% of the fitness defect exhibited by the 63-codon E. coli strain C321.ΔA. By introducing targeted combinations of changes in multiplex we generate rich genotypic and phenotypic diversity and characterize clones using whole-genome sequencing and doubling time measurements. Regularized multivariate linear regression accurately quantifies individual allelic effects and overcomes bias from hitchhiking mutations and context-dependence of genome editing efficiency that would confound other strategies.
Phenotypic Plasticity and Cell Fate Decisions in Cancer: Insights from Dynamical Systems Theory.
Jia, Dongya; Jolly, Mohit Kumar; Kulkarni, Prakash; Levine, Herbert
2017-06-22
Waddington's epigenetic landscape, a famous metaphor in developmental biology, depicts how a stem cell progresses from an undifferentiated phenotype to a differentiated one. The concept of "landscape" in the context of dynamical systems theory represents a high-dimensional space, in which each cell phenotype is considered as an "attractor" that is determined by interactions between multiple molecular players, and is buffered against environmental fluctuations. In addition, biological noise is thought to play an important role during these cell-fate decisions and in fact controls transitions between different phenotypes. Here, we discuss the phenotypic transitions in cancer from a dynamical systems perspective and invoke the concept of "cancer attractors"-hidden stable states of the underlying regulatory network that are not occupied by normal cells. Phenotypic transitions in cancer occur at varying levels depending on the context. Using epithelial-to-mesenchymal transition (EMT), cancer stem-like properties, metabolic reprogramming and the emergence of therapy resistance as examples, we illustrate how phenotypic plasticity in cancer cells enables them to acquire hybrid phenotypes (such as hybrid epithelial/mesenchymal and hybrid metabolic phenotypes) that tend to be more aggressive and notoriously resilient to therapies such as chemotherapy and androgen-deprivation therapy. Furthermore, we highlight multiple factors that may give rise to phenotypic plasticity in cancer cells, such as (a) multi-stability or oscillatory behaviors governed by underlying regulatory networks involved in cell-fate decisions in cancer cells, and (b) network rewiring due to conformational dynamics of intrinsically disordered proteins (IDPs) that are highly enriched in cancer cells. We conclude by discussing why a therapeutic approach that promotes "recanalization", i.e., the exit from "cancer attractors" and re-entry into "normal attractors", is more likely to succeed rather than a conventional approach that targets individual molecules/pathways.
Phenotypic Evolution With and Beyond Genome Evolution.
Félix, M-A
2016-01-01
DNA does not make phenotypes on its own. In this volume entitled "Genes and Phenotypic Evolution," the present review draws the attention on the process of phenotype construction-including development of multicellular organisms-and the multiple interactions and feedbacks between DNA, organism, and environment at various levels and timescales in the evolutionary process. First, during the construction of an individual's phenotype, DNA is recruited as a template for building blocks within the cellular context and may in addition be involved in dynamical feedback loops that depend on the environmental and organismal context. Second, in the production of phenotypic variation among individuals, stochastic, environmental, genetic, and parental sources of variation act jointly. While in controlled laboratory settings, various genetic and environmental factors can be tested one at a time or in various combinations, they cannot be separated in natural populations because the environment is not controlled and the genotype can rarely be replicated. Third, along generations, genotype and environment each have specific properties concerning the origin of their variation, the hereditary transmission of this variation, and the evolutionary feedbacks. Natural selection acts as a feedback from phenotype and environment to genotype. This review integrates recent results and concrete examples that illustrate these three points. Although some themes are shared with recent calls and claims to a new conceptual framework in evolutionary biology, the viewpoint presented here only means to add flesh to the standard evolutionary synthesis. © 2016 Elsevier Inc. All rights reserved.
Fialko, Kristina
2018-05-01
Does variation in the environment in which a signal is presented affect the components of a complex, ritualized animal display? Using a signal phenotype network, Rosenthal et al. (2018) found that light and female presence alter the structure of wolf spider courtship displays, providing evidence that complex signaling behaviors may be modified depending on the social and environmental context. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.
Brown, C M; Rea, T J; Hamon, S C; Hixson, J E; Boerwinkle, E; Clark, A G; Sing, C F
2006-07-01
Apolipoproteins (apo) A-I and C-III are components of high-density lipoprotein-cholesterol (HDL-C), a quantitative trait negatively correlated with risk of cardiovascular disease (CVD). We analyzed the contribution of individual and pairwise combinations of single nucleotide polymorphisms (SNPs) in the APOA1/APOC3 genes to HDL-C variability to evaluate (1) consistency of published single-SNP studies with our single-SNP analyses; (2) consistency of single-SNP and two-SNP phenotype-genotype relationships across race-, gender-, and geographical location-dependent contexts; and (3) the contribution of single SNPs and pairs of SNPs to variability beyond that explained by plasma apo A-I concentration. We analyzed 45 SNPs in 3,831 young African-American (N=1,858) and European-American (N=1,973) females and males ascertained by the Coronary Artery Risk Development in Young Adults (CARDIA) study. We found three SNPs that significantly impact HDL-C variability in both the literature and the CARDIA sample. Single-SNP analyses identified only one of five significant HDL-C SNP genotype relationships in the CARDIA study that was consistent across all race-, gender-, and geographical location-dependent contexts. The other four were consistent across geographical locations for a particular race-gender context. The portion of total phenotypic variance explained by single-SNP genotypes and genotypes defined by pairs of SNPs was less than 3%, an amount that is miniscule compared to the contribution explained by variability in plasma apo A-I concentration. Our findings illustrate the impact of context-dependence on SNP selection for prediction of CVD risk factor variability.
Bell, Richard L.; Sable, Helen J.K.; Colombo, Giancarlo; Hyytia, Petri; Rodd, Zachary A.; Lumeng, Lawrence
2012-01-01
The purpose of this review paper is to present evidence that rat animal models of alcoholism provide an ideal platform for developing and screening medications that target alcohol abuse and dependence. The focus is on the 5 oldest international rat lines that have been selectively bred for a high alcohol-consumption phenotype. The behavioral and neurochemical phenotypes of these rat lines are reviewed and placed in the context of the clinical literature. The paper presents behavioral models for assessing the efficacy of pharmaceuticals for the treatment of alcohol abuse and dependence in rodents, with particular emphasis on rats. Drugs that have been tested for their effectiveness in reducing alcohol/ethanol consumption and/or self-administration by these rat lines and their putative site of action are summarized. The paper also presents some current and future directions for developing pharmacological treatments targeting alcohol abuse and dependence. PMID:22841890
Phenotypic Plasticity and Cell Fate Decisions in Cancer: Insights from Dynamical Systems Theory
Kulkarni, Prakash; Levine, Herbert
2017-01-01
Waddington’s epigenetic landscape, a famous metaphor in developmental biology, depicts how a stem cell progresses from an undifferentiated phenotype to a differentiated one. The concept of “landscape” in the context of dynamical systems theory represents a high-dimensional space, in which each cell phenotype is considered as an “attractor” that is determined by interactions between multiple molecular players, and is buffered against environmental fluctuations. In addition, biological noise is thought to play an important role during these cell-fate decisions and in fact controls transitions between different phenotypes. Here, we discuss the phenotypic transitions in cancer from a dynamical systems perspective and invoke the concept of “cancer attractors”—hidden stable states of the underlying regulatory network that are not occupied by normal cells. Phenotypic transitions in cancer occur at varying levels depending on the context. Using epithelial-to-mesenchymal transition (EMT), cancer stem-like properties, metabolic reprogramming and the emergence of therapy resistance as examples, we illustrate how phenotypic plasticity in cancer cells enables them to acquire hybrid phenotypes (such as hybrid epithelial/mesenchymal and hybrid metabolic phenotypes) that tend to be more aggressive and notoriously resilient to therapies such as chemotherapy and androgen-deprivation therapy. Furthermore, we highlight multiple factors that may give rise to phenotypic plasticity in cancer cells, such as (a) multi-stability or oscillatory behaviors governed by underlying regulatory networks involved in cell-fate decisions in cancer cells, and (b) network rewiring due to conformational dynamics of intrinsically disordered proteins (IDPs) that are highly enriched in cancer cells. We conclude by discussing why a therapeutic approach that promotes “recanalization”, i.e., the exit from “cancer attractors” and re-entry into “normal attractors”, is more likely to succeed rather than a conventional approach that targets individual molecules/pathways. PMID:28640191
Yin, Zheng; Zhou, Xiaobo; Bakal, Chris; Li, Fuhai; Sun, Youxian; Perrimon, Norbert; Wong, Stephen TC
2008-01-01
Background The recent emergence of high-throughput automated image acquisition technologies has forever changed how cell biologists collect and analyze data. Historically, the interpretation of cellular phenotypes in different experimental conditions has been dependent upon the expert opinions of well-trained biologists. Such qualitative analysis is particularly effective in detecting subtle, but important, deviations in phenotypes. However, while the rapid and continuing development of automated microscope-based technologies now facilitates the acquisition of trillions of cells in thousands of diverse experimental conditions, such as in the context of RNA interference (RNAi) or small-molecule screens, the massive size of these datasets precludes human analysis. Thus, the development of automated methods which aim to identify novel and biological relevant phenotypes online is one of the major challenges in high-throughput image-based screening. Ideally, phenotype discovery methods should be designed to utilize prior/existing information and tackle three challenging tasks, i.e. restoring pre-defined biological meaningful phenotypes, differentiating novel phenotypes from known ones and clarifying novel phenotypes from each other. Arbitrarily extracted information causes biased analysis, while combining the complete existing datasets with each new image is intractable in high-throughput screens. Results Here we present the design and implementation of a novel and robust online phenotype discovery method with broad applicability that can be used in diverse experimental contexts, especially high-throughput RNAi screens. This method features phenotype modelling and iterative cluster merging using improved gap statistics. A Gaussian Mixture Model (GMM) is employed to estimate the distribution of each existing phenotype, and then used as reference distribution in gap statistics. This method is broadly applicable to a number of different types of image-based datasets derived from a wide spectrum of experimental conditions and is suitable to adaptively process new images which are continuously added to existing datasets. Validations were carried out on different dataset, including published RNAi screening using Drosophila embryos [Additional files 1, 2], dataset for cell cycle phase identification using HeLa cells [Additional files 1, 3, 4] and synthetic dataset using polygons, our methods tackled three aforementioned tasks effectively with an accuracy range of 85%–90%. When our method is implemented in the context of a Drosophila genome-scale RNAi image-based screening of cultured cells aimed to identifying the contribution of individual genes towards the regulation of cell-shape, it efficiently discovers meaningful new phenotypes and provides novel biological insight. We also propose a two-step procedure to modify the novelty detection method based on one-class SVM, so that it can be used to online phenotype discovery. In different conditions, we compared the SVM based method with our method using various datasets and our methods consistently outperformed SVM based method in at least two of three tasks by 2% to 5%. These results demonstrate that our methods can be used to better identify novel phenotypes in image-based datasets from a wide range of conditions and organisms. Conclusion We demonstrate that our method can detect various novel phenotypes effectively in complex datasets. Experiment results also validate that our method performs consistently under different order of image input, variation of starting conditions including the number and composition of existing phenotypes, and dataset from different screens. In our findings, the proposed method is suitable for online phenotype discovery in diverse high-throughput image-based genetic and chemical screens. PMID:18534020
PDYN rs2281285 Variant Association with Drinking to Avoid Emotional or Somatic Discomfort
Preuss, Ulrich W.; Winham, Stacey J.; Biernacka, Joanna M.; Geske, Jennifer R.; Bakalkin, Georgy; Koller, Gabriele; Zill, Peter; Soyka, Michael; Karpyak, Victor M.
2013-01-01
Introduction One of the proposed psychobiological pathways of craving attributes the desire for drinking in the context of tension, discomfort or unpleasant emotions, to “negative” (or “relief”) craving. The aim of this study was to replicate a previously reported association of the PDYN rs2281285 variant with negative craving using a different phenotyping approach. Methods The TaqMan® Genotyping Assay was used to genotype the rs2281285 variant in 417 German alcohol-dependent subjects. The presence of negative/relief craving was assessed by asking if participants ever ingested alcohol to avoid unwanted emotional or somatic discomfort. Results The minor allele of rs2281285 was associated with an increased risk of drinking to avoid/escape unwanted emotional or somatic events (OR = 2.29, 95% CI = 1.08–4.85, p = 0.0298). Discussion Despite the use of a different phenotyping approach to the measurement of negative craving, our results confirm the association between negative craving and PDYN rs2281285. Genetic markers of negative craving may help to identify subgroups of alcohol-dependent individuals vulnerable to relapse in the context of negative emotions or somatic discomfort, leading to the development of specifically tailored treatment strategies. PMID:24223163
Yeast Phenomics: An Experimental Approach for Modeling Gene Interaction Networks that Buffer Disease
Hartman, John L.; Stisher, Chandler; Outlaw, Darryl A.; Guo, Jingyu; Shah, Najaf A.; Tian, Dehua; Santos, Sean M.; Rodgers, John W.; White, Richard A.
2015-01-01
The genome project increased appreciation of genetic complexity underlying disease phenotypes: many genes contribute each phenotype and each gene contributes multiple phenotypes. The aspiration of predicting common disease in individuals has evolved from seeking primary loci to marginal risk assignments based on many genes. Genetic interaction, defined as contributions to a phenotype that are dependent upon particular digenic allele combinations, could improve prediction of phenotype from complex genotype, but it is difficult to study in human populations. High throughput, systematic analysis of S. cerevisiae gene knockouts or knockdowns in the context of disease-relevant phenotypic perturbations provides a tractable experimental approach to derive gene interaction networks, in order to deduce by cross-species gene homology how phenotype is buffered against disease-risk genotypes. Yeast gene interaction network analysis to date has revealed biology more complex than previously imagined. This has motivated the development of more powerful yeast cell array phenotyping methods to globally model the role of gene interaction networks in modulating phenotypes (which we call yeast phenomic analysis). The article illustrates yeast phenomic technology, which is applied here to quantify gene X media interaction at higher resolution and supports use of a human-like media for future applications of yeast phenomics for modeling human disease. PMID:25668739
Laubichler, Manfred D; Prohaska, Sonja J; Stadler, Peter F
2018-01-01
Reconciling different underlying ontologies and explanatory contexts has been one of the main challenges and impediments for theory integration in biology. Here, we analyze the challenge of developing an inclusive and integrative theory of phenotypic evolution as an example for the broader challenge of developing a theory of theory integration within the life sciences and suggest a number of necessary formal steps toward the resolution of often incompatible (hidden) assumptions. Theory integration in biology requires a better formal understanding of the structure of biological theories The strategy for integrating theories crucially depends on the relationships of the underlying ontologies. © 2018 Wiley Periodicals, Inc.
Environmental change mediates mate choice for an extended phenotype, but not for mate quality.
Head, Megan L; Fox, Rebecca J; Barber, Iain
2017-01-01
Sexual cues, including extended phenotypes, are expected to be reliable indicators of male genetic quality and/or provide information on parental quality. However, the reliability of these cues may be dependent on stability of the environment, with heterogeneity affecting how selection acts on such traits. Here, we test how environmental change mediates mate choice for multiple sexual traits, including an extended phenotype--the structure of male-built nests - in stickleback fish. First, we manipulated the dissolved oxygen (DO) content of water to create high or low DO environments in which male fish built nests. Then we recorded the mate choice of females encountering these males (and their nests), under either the same or reversed DO conditions. Males in high DO environments built more compact nests than those in low DO conditions and males adjusted their nest structure in response to changing conditions. Female mate choice for extended phenotype (male nests) was environmentally dependent (females chose more compact nests in high DO conditions), while female choice for male phenotype was not (females chose large, vigorous males regardless of DO level). Examining mate choice in this dynamic context suggests that females evaluate the reliability of multiple sexual cues, taking into account environmental heterogeneity. © 2016 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
The genetic basis for survivorship in coronary artery disease
Dungan, Jennifer R.; Hauser, Elizabeth R.; Qin, Xuejun; Kraus, William E.
2013-01-01
Survivorship is a trait characterized by endurance and virility in the face of hardship. It is largely considered a psychosocial attribute developed during fatal conditions, rather than a biological trait for robustness in the context of complex, age-dependent diseases like coronary artery disease (CAD). The purpose of this paper is to present the novel phenotype, survivorship in CAD as an observed survival advantage concurrent with clinically significant CAD. We present a model for characterizing survivorship in CAD and its relationships with overlapping time- and clinically-related phenotypes. We offer an optimal measurement interval for investigating survivorship in CAD. We hypothesize genetic contributions to this construct and review the literature for evidence of genetic contribution to overlapping phenotypes in support of our hypothesis. We also present preliminary evidence of genetic effects on survival in people with clinically significant CAD from a primary case-control study of symptomatic coronary disease. Identifying gene variants that confer improved survival in the context of clinically appreciable CAD may improve our understanding of cardioprotective mechanisms acting at the gene level and potentially impact patients clinically in the future. Further, characterizing other survival-variant genetic effects may improve signal-to-noise ratio in detecting gene associations for CAD. PMID:24143143
Phenotypic responses to microbial volatiles render a mold fungus more susceptible to insect damage.
Caballero Ortiz, Silvia; Trienens, Monika; Pfohl, Katharina; Karlovsky, Petr; Holighaus, Gerrit; Rohlfs, Marko
2018-04-01
In decomposer systems, fungi show diverse phenotypic responses to volatile organic compounds of microbial origin (volatiles). The mechanisms underlying such responses and their consequences for the performance and ecological success of fungi in a multitrophic community context have rarely been tested explicitly. We used a laboratory-based approach in which we investigated a tripartite yeast-mold-insect model decomposer system to understand the possible influence of yeast-borne volatiles on the ability of a chemically defended mold fungus to resist insect damage. The volatile-exposed mold phenotype (1) did not exhibit protein kinase A-dependent morphological differentiation, (2) was more susceptible to insect foraging activity, and (3) had reduced insecticidal properties. Additionally, the volatile-exposed phenotype was strongly impaired in secondary metabolite formation and unable to activate "chemical defense" genes upon insect damage. These results suggest that volatiles can be ecologically important factors that affect the chemical-based combative abilities of fungi against insect antagonists and, consequently, the structure and dynamics of decomposer communities.
Hsieh, J; Liu, J; Kostas, S A; Chang, C; Sternberg, P W; Fire, A
1999-11-15
Context-dependent gene silencing is used by many organisms to stably modulate gene activity for large chromosomal regions. We have used tandem array transgenes as a model substrate in a screen for Caenorhabditis elegans mutants that affect context-dependent gene silencing in somatic tissues. This screen yielded multiple alleles of a previously uncharacterized gene, designated tam-1 (for tandem-array-modifier). Loss-of-function mutations in tam-1 led to a dramatic reduction in the activity of numerous highly repeated transgenes. These effects were apparently context dependent, as nonrepetitive transgenes retained activity in a tam-1 mutant background. In addition to the dramatic alterations in transgene activity, tam-1 mutants showed modest alterations in expression of a subset of endogenous cellular genes. These effects include genetic interactions that place tam-1 into a group called the class B synMuv genes (for a Synthetic Multivulva phenotype); this family plays a negative role in the regulation of RAS pathway activity in C. elegans. Loss-of-function mutants in other members of the class-B synMuv family, including lin-35, which encodes a protein similar to the tumor suppressor Rb, exhibit a hypersilencing in somatic transgenes similar to that of tam-1 mutants. Molecular analysis reveals that tam-1 encodes a broadly expressed nuclear protein with RING finger and B-box motifs.
Rendon, Nikki M; Soini, Helena A; Scotti, Melissa-Ann L; Weigel, Ellen R; Novotny, Milos V; Demas, Gregory E
2016-05-01
Chemical communication is a critical component of social behavior as it facilitates social encounters, allows for evaluation of the social partner, defines territories and resources, and advertises information such as sex and physiological state of an animal. Odors provide a key source of information about the social environment to rodents; however, studies identifying chemical compounds have thus far focused primarily on few species, particularly the house mouse. Moreover, considerably less attention has been focused on how environmental factors, reproductive phenotype, and behavioral context alter these compounds outside of reproduction. We examined the effects of photoperiod, sex, and social context on chemical communication in the seasonally breeding Siberian hamster. We sampled ventral gland secretions in both male and female hamsters before and after an aggressive encounter and identified changes in a range of volatile compounds. Next, we investigated how photoperiod, reproductive phenotype, and aggression altered ventral gland volatile compound composition across the sexes. Males exhibited a more diverse chemical composition, more sex-specific volatiles, and showed higher levels of excretion compared to females. Individual volatiles were also differentially excreted across photoperiod and reproductive phenotype, as well as differentially altered in response to an aggressive encounter. Female volatile compound composition, in contrast, did not differ across photoperiods or in response to aggression. Collectively, these data contribute to a greater understanding of context-dependent changes in chemical communication in a seasonally breeding rodent. Copyright © 2016 Elsevier Inc. All rights reserved.
Loewen, Carin A; Ganetzky, Barry
2018-04-01
Proper mitochondrial activity depends upon proteins encoded by genes in the nuclear and mitochondrial genomes that must interact functionally and physically in a precisely coordinated manner. Consequently, mito-nuclear allelic interactions are thought to be of crucial importance on an evolutionary scale, as well as for manifestation of essential biological phenotypes, including those directly relevant to human disease. Nonetheless, detailed molecular understanding of mito-nuclear interactions is still lacking, and definitive examples of such interactions in vivo are sparse. Here we describe the characterization of a mutation in Drosophila ND23 , a nuclear gene encoding a highly conserved subunit of mitochondrial complex 1. This characterization led to the discovery of a mito-nuclear interaction that affects the ND23 mutant phenotype. ND23 mutants exhibit reduced lifespan, neurodegeneration, abnormal mitochondrial morphology, and decreased ATP levels. These phenotypes are similar to those observed in patients with Leigh syndrome, which is caused by mutations in a number of nuclear genes that encode mitochondrial proteins, including the human ortholog of ND23 A key feature of Leigh syndrome, and other mitochondrial disorders, is unexpected and unexplained phenotypic variability. We discovered that the phenotypic severity of ND23 mutations varies depending on the maternally inherited mitochondrial background. Sequence analysis of the relevant mitochondrial genomes identified several variants that are likely candidates for the phenotypic interaction with mutant ND23 , including a variant affecting a mitochondrially encoded component of complex I. Thus, our work provides an in vivo demonstration of the phenotypic importance of mito-nuclear interactions in the context of mitochondrial disease. Copyright © 2018 by the Genetics Society of America.
Novel Phenotype Issues Raised in Cross-National Epidemiological Research on Drug Dependence
Anthony, James C.
2010-01-01
Stage-transition models based on the American Diagnostic and Statistical Manual (DSM) generally are applied in epidemiology and genetics research on drug dependence syndromes associated with cannabis, cocaine, and other internationally regulated drugs (IRD). Difficulties with DSM stage-transition models have surfaced during cross-national research intended to provide a truly global perspective, such as the work of the World Mental Health Surveys (WMHS) Consortium. Alternative simpler dependence-related phenotypes are possible, including population-level count process models for steps early and before coalescence of clinical features into a coherent syndrome (e.g., zero-inflated Poisson regression). Selected findings are reviewed, based on ZIP modeling of alcohol, tobacco, and IRD count processes, with an illustration that may stimulate new research on genetic susceptibility traits. The annual National Surveys on Drug Use and Health can be readily modified for this purpose, along the lines of a truly anonymous research approach that can help make NSDUH-type cross-national epidemiological surveys more useful in the context of subsequent genome wide association (GWAS) research and post-GWAS investigations with a truly global health perspective. PMID:20201862
Integration of Network Biology and Imaging to Study Cancer Phenotypes and Responses.
Tian, Ye; Wang, Sean S; Zhang, Zhen; Rodriguez, Olga C; Petricoin, Emanuel; Shih, Ie-Ming; Chan, Daniel; Avantaggiati, Maria; Yu, Guoqiang; Ye, Shaozhen; Clarke, Robert; Wang, Chao; Zhang, Bai; Wang, Yue; Albanese, Chris
2014-01-01
Ever growing "omics" data and continuously accumulated biological knowledge provide an unprecedented opportunity to identify molecular biomarkers and their interactions that are responsible for cancer phenotypes that can be accurately defined by clinical measurements such as in vivo imaging. Since signaling or regulatory networks are dynamic and context-specific, systematic efforts to characterize such structural alterations must effectively distinguish significant network rewiring from random background fluctuations. Here we introduced a novel integration of network biology and imaging to study cancer phenotypes and responses to treatments at the molecular systems level. Specifically, Differential Dependence Network (DDN) analysis was used to detect statistically significant topological rewiring in molecular networks between two phenotypic conditions, and in vivo Magnetic Resonance Imaging (MRI) was used to more accurately define phenotypic sample groups for such differential analysis. We applied DDN to analyze two distinct phenotypic groups of breast cancer and study how genomic instability affects the molecular network topologies in high-grade ovarian cancer. Further, FDA-approved arsenic trioxide (ATO) and the ND2-SmoA1 mouse model of Medulloblastoma (MB) were used to extend our analyses of combined MRI and Reverse Phase Protein Microarray (RPMA) data to assess tumor responses to ATO and to uncover the complexity of therapeutic molecular biology.
Schielzeth, Holger; Rios Villamil, Alejandro; Burri, Reto
2018-03-25
Recent developments in sequencing technologies have facilitated genomewide mapping of phenotypic variation in natural populations. Such mapping efforts face a number of challenges potentially leading to low reproducibility. However, reproducible research forms the basis of scientific progress. We here discuss the options for replication and the reasons for potential nonreproducibility. We then review the evidence for reproducible quantitative trait loci (QTL) with a focus on natural animal populations. Existing case studies of replication fall into three categories: (i) traits that have been mapped to major effect loci (including chromosomal inversion and supergenes) by independent research teams; (ii) QTL fine-mapped in discovery populations; and (iii) attempts to replicate QTL across multiple populations. Major effect loci, in particular those associated with inversions, have been successfully replicated in several cases within and across populations. Beyond such major effect variants, replication has been more successful within than across populations, suggesting that QTL discovered in natural populations may often be population-specific. This suggests that biological causes (differences in linkage patterns, allele frequencies or context-dependencies of QTL) contribute to nonreproducibility. Evidence from other fields, notably animal breeding and QTL mapping in humans, suggests that a significant fraction of QTL is indeed reproducible in direction and magnitude at least within populations. However, there is also a large number of QTL that cannot be easily reproduced. We put forward that more studies should explicitly address the causes and context-dependencies of QTL signals, in particular to disentangle linkage differences, allele frequency differences and gene-by-environment interactions as biological causes of nonreproducibility of QTL, especially between populations. © 2018 John Wiley & Sons Ltd.
A ‘synthetic-sickness’ screen for senescence re-engagement targets in mutant cancer backgrounds
Godwin, Lauren S.; Bilsland, Alan E.; Stevenson, Katrina H.; Moore, Jon D.; Wiggins, Ceri M.; Collinson, Rebecca S.; Mudd, Clare; Sadaie, Mahito; Bennett, Dorothy C.; Torrance, Christopher J.; Keith, W. Nicol
2017-01-01
Senescence is a universal barrier to immortalisation and tumorigenesis. As such, interest in the use of senescence-induction in a therapeutic context has been gaining momentum in the past few years; however, senescence and immortalisation remain underserved areas for drug discovery owing to a lack of robust senescence inducing agents and an incomplete understanding of the signalling events underlying this complex process. In order to address this issue we undertook a large-scale morphological siRNA screen for inducers of senescence phenotypes in the human melanoma cell line A375P. Following rescreen and validation in a second cancer cell line, HCT116 colorectal carcinoma, a panel of 16 of the most robust hits were selected for further validation based on significance and the potential to be targeted by drug-like molecules. Using secondary assays for detection of senescence biomarkers p21, 53BP1 and senescence associated beta-galactosidase (SAβGal) in a panel of HCT116 cell lines carrying cancer-relevant mutations, we show that partial senescence phenotypes can be induced to varying degrees in a context dependent manner, even in the absence of p21 or p53 expression. However, proliferation arrest varied among genetic backgrounds with predominantly toxic effects in p21 null cells, while cells lacking PI3K mutation failed to arrest. Furthermore, we show that the oncogene ECT2 induces partial senescence phenotypes in all mutant backgrounds tested, demonstrating a dependence on activating KRASG13D for growth suppression and a complete senescence response. These results suggest a potential mechanism to target mutant KRAS signalling through ECT2 in cancers that are reliant on activating KRAS mutations and remain refractory to current treatments. PMID:28806777
Xu, Xiang-Ru Shannon; Gantz, Valentino Matteo; Siomava, Natalia; Bier, Ethan
2017-12-23
The knirps ( kni ) locus encodes transcription factors required for induction of the L2 wing vein in Drosophila . Here, we employ diverse CRISPR/Cas9 genome editing tools to generate a series of targeted lesions within the endogenous cis-regulatory module (CRM) required for kni expression in the L2 vein primordium. Phenotypic analysis of these ' in locus ' mutations based on both expression of Kni protein and adult wing phenotypes, reveals novel unexpected features of L2-CRM function including evidence for a chromosome pairing-dependent process that promotes transcription. We also demonstrate that self-propagating active genetic elements (CopyCat elements) can efficiently delete and replace the L2-CRM with orthologous sequences from other divergent fly species. Wing vein phenotypes resulting from these trans-species enhancer replacements parallel features of the respective donor fly species. This highly sensitive phenotypic readout of enhancer function in a native genomic context reveals novel features of CRM function undetected by traditional reporter gene analysis. © 2017, Xu et al.
Siomava, Natalia
2017-01-01
The knirps (kni) locus encodes transcription factors required for induction of the L2 wing vein in Drosophila. Here, we employ diverse CRISPR/Cas9 genome editing tools to generate a series of targeted lesions within the endogenous cis-regulatory module (CRM) required for kni expression in the L2 vein primordium. Phenotypic analysis of these ‘in locus’ mutations based on both expression of Kni protein and adult wing phenotypes, reveals novel unexpected features of L2-CRM function including evidence for a chromosome pairing-dependent process that promotes transcription. We also demonstrate that self-propagating active genetic elements (CopyCat elements) can efficiently delete and replace the L2-CRM with orthologous sequences from other divergent fly species. Wing vein phenotypes resulting from these trans-species enhancer replacements parallel features of the respective donor fly species. This highly sensitive phenotypic readout of enhancer function in a native genomic context reveals novel features of CRM function undetected by traditional reporter gene analysis. PMID:29274230
Quantitative genetic methods depending on the nature of the phenotypic trait.
de Villemereuil, Pierre
2018-01-24
A consequence of the assumptions of the infinitesimal model, one of the most important theoretical foundations of quantitative genetics, is that phenotypic traits are predicted to be most often normally distributed (so-called Gaussian traits). But phenotypic traits, especially those interesting for evolutionary biology, might be shaped according to very diverse distributions. Here, I show how quantitative genetics tools have been extended to account for a wider diversity of phenotypic traits using first the threshold model and then more recently using generalized linear mixed models. I explore the assumptions behind these models and how they can be used to study the genetics of non-Gaussian complex traits. I also comment on three recent methodological advances in quantitative genetics that widen our ability to study new kinds of traits: the use of "modular" hierarchical modeling (e.g., to study survival in the context of capture-recapture approaches for wild populations); the use of aster models to study a set of traits with conditional relationships (e.g., life-history traits); and, finally, the study of high-dimensional traits, such as gene expression. © 2018 New York Academy of Sciences.
Constraints on the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity
Murren, C J; Auld, J R; Callahan, H; Ghalambor, C K; Handelsman, C A; Heskel, M A; Kingsolver, J G; Maclean, H J; Masel, J; Maughan, H; Pfennig, D W; Relyea, R A; Seiter, S; Snell-Rood, E; Steiner, U K; Schlichting, C D
2015-01-01
Phenotypic plasticity is ubiquitous and generally regarded as a key mechanism for enabling organisms to survive in the face of environmental change. Because no organism is infinitely or ideally plastic, theory suggests that there must be limits (for example, the lack of ability to produce an optimal trait) to the evolution of phenotypic plasticity, or that plasticity may have inherent significant costs. Yet numerous experimental studies have not detected widespread costs. Explicitly differentiating plasticity costs from phenotype costs, we re-evaluate fundamental questions of the limits to the evolution of plasticity and of generalists vs specialists. We advocate for the view that relaxed selection and variable selection intensities are likely more important constraints to the evolution of plasticity than the costs of plasticity. Some forms of plasticity, such as learning, may be inherently costly. In addition, we examine opportunities to offset costs of phenotypes through ontogeny, amelioration of phenotypic costs across environments, and the condition-dependent hypothesis. We propose avenues of further inquiry in the limits of plasticity using new and classic methods of ecological parameterization, phylogenetics and omics in the context of answering questions on the constraints of plasticity. Given plasticity's key role in coping with environmental change, approaches spanning the spectrum from applied to basic will greatly enrich our understanding of the evolution of plasticity and resolve our understanding of limits. PMID:25690179
Environment determines evolutionary trajectory in a constrained phenotypic space
Fraebel, David T; Mickalide, Harry; Schnitkey, Diane; Merritt, Jason; Kuhlman, Thomas E; Kuehn, Seppe
2017-01-01
Constraints on phenotypic variation limit the capacity of organisms to adapt to the multiple selection pressures encountered in natural environments. To better understand evolutionary dynamics in this context, we select Escherichia coli for faster migration through a porous environment, a process which depends on both motility and growth. We find that a trade-off between swimming speed and growth rate constrains the evolution of faster migration. Evolving faster migration in rich medium results in slow growth and fast swimming, while evolution in minimal medium results in fast growth and slow swimming. In each condition parallel genomic evolution drives adaptation through different mutations. We show that the trade-off is mediated by antagonistic pleiotropy through mutations that affect negative regulation. A model of the evolutionary process shows that the genetic capacity of an organism to vary traits can qualitatively depend on its environment, which in turn alters its evolutionary trajectory. DOI: http://dx.doi.org/10.7554/eLife.24669.001 PMID:28346136
Lamin B1 mediated demyelination: Linking Lamins, Lipids and Leukodystrophies
Padiath, Quasar S.
2016-01-01
ABSTRACT Autosomal Dominant Leukodystrophy (ADLD), a fatal adult onset demyelinating disorder, is the only human disease that has been linked to mutations of the nuclear lamina protein, lamin B1, and is primarily caused by duplications of the LMNB1 gene. Why CNS myelin is specifically targeted and the mechanisms underlying ADLD are unclear. Recent work from our group has demonstrated that over expression of lamin B1 in oligodendrocytes, the myelin producing cells in the CNS, resulted in age dependent epigenetic modifications, transcriptional down-regulation of lipogenic gene expression and significant reductions of myelin-enriched lipids. Given the high lipid content of meylin, we hypothesize that lipid loss is one of the primary drivers of the demyelination phenotype. These results can, at least partially, explain the age dependence and cell type specificity in ADLD and are discussed in the context of the existing literature, in an attempt to delineate potential pathways underlying the disease phenotype. PMID:27854160
Senescence and cancer: an evolving inflammatory paradox
Ruhland, Megan; Coussens, Lisa M.; Stewart, Sheila
2015-01-01
The senescent phenotype was first describe in 1961 as a phenomenon characterized by the cessation of cellular division. After years of debate as to whether it represented a tissue culture artifact or an important biological process, it is now appreciated that senescence plays an important role in tumorigenesis. Further, senescence is integral to normal biological processes such as embryogenesis and the maintenance of tissue homeostasis. Now with defined roles in development, wound healing, tumor promotion and tumor suppression, it is not surprising that attention has turned to refining our understanding of the mechanisms behind, and consequences of, the induction of senescence. One emerging role for senescence lies in the ability of senescence to orchestrate an inflammatory responses: factors secreted by senescent cells have been identifed in multiple contexts to modulate various aspects of immune response. As with many of the previously described roles for senescence, the type of inflammation established by the senescence phenotype is varied and dependent on context. In this review, we discuss the current state of the field with a focus on the paradoxical outcomes of the senescence-induced inflammatory responses in the context of cancer. A more complete understanding of senescence and an appreciation for its complexities will be important for eventual development of senescence-targeted therapies. PMID:26453912
Previs, Rebecca A.; Coleman, Robert L.; Harris, Adrian L.; Sood, Anil K.
2014-01-01
Over 100 years have passed since the first observation of the notched wing phenotype in Drosophila melanogaster, and significant progress has been made to characterize the role of the Notch receptor, its ligands, downstream targets, and crosstalk with other signaling pathways. The canonical Notch pathway with four Notch receptors (Notch1-4) and five ligands (DLL1, 3–4, Jagged 1–2) is an evolutionarily conserved cell signaling pathway that plays critical roles in cell-fate determination, differentiation, development, tissue patterning, cell proliferation, and death. In cancer, these roles have a critical impact on tumor behavior and response to therapy. Since the role of Notch remains tissue and context dependent, alterations within this pathway may lead to tumor suppressive or oncogenic phenotypes. Although no FDA approved therapies currently exist for the Notch pathway, multiple therapeutics (e.g., demcizumab, tarextumab, GSI MK0752, R04929097, and PF63084014) have been developed to target different aspects of this pathway for both hematologic and solid malignancies. Understanding the context-specific effects of the Notch pathway will be important for individualized therapies targeting this pathway. PMID:25388163
Social traits, social networks and evolutionary biology.
Fisher, D N; McAdam, A G
2017-12-01
The social environment is both an important agent of selection for most organisms, and an emergent property of their interactions. As an aggregation of interactions among members of a population, the social environment is a product of many sets of relationships and so can be represented as a network or matrix. Social network analysis in animals has focused on why these networks possess the structure they do, and whether individuals' network traits, representing some aspect of their social phenotype, relate to their fitness. Meanwhile, quantitative geneticists have demonstrated that traits expressed in a social context can depend on the phenotypes and genotypes of interacting partners, leading to influences of the social environment on the traits and fitness of individuals and the evolutionary trajectories of populations. Therefore, both fields are investigating similar topics, yet have arrived at these points relatively independently. We review how these approaches are diverged, and yet how they retain clear parallelism and so strong potential for complementarity. This demonstrates that, despite separate bodies of theory, advances in one might inform the other. Techniques in network analysis for quantifying social phenotypes, and for identifying community structure, should be useful for those studying the relationship between individual behaviour and group-level phenotypes. Entering social association matrices into quantitative genetic models may also reduce bias in heritability estimates, and allow the estimation of the influence of social connectedness on trait expression. Current methods for measuring natural selection in a social context explicitly account for the fact that a trait is not necessarily the property of a single individual, something the network approaches have not yet considered when relating network metrics to individual fitness. Harnessing evolutionary models that consider traits affected by genes in other individuals (i.e. indirect genetic effects) provides the potential to understand how entire networks of social interactions in populations influence phenotypes and predict how these traits may evolve. By theoretical integration of social network analysis and quantitative genetics, we hope to identify areas of compatibility and incompatibility and to direct research efforts towards the most promising areas. Continuing this synthesis could provide important insights into the evolution of traits expressed in a social context and the evolutionary consequences of complex and nuanced social phenotypes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Modeling the clinical phenotype of BTK inhibition in the mature murine immune system.
Benson, Micah J; Rodriguez, Varenka; von Schack, David; Keegan, Sean; Cook, Tim A; Edmonds, Jason; Benoit, Stephen; Seth, Nilufer; Du, Sarah; Messing, Dean; Nickerson-Nutter, Cheryl L; Dunussi-Joannopoulos, Kyri; Rankin, Andrew L; Ruzek, Melanie; Schnute, Mark E; Douhan, John
2014-07-01
Inhibitors of Bruton's tyrosine kinase (BTK) possess much promise for the treatment of oncologic and autoimmune indications. However, our current knowledge of the role of BTK in immune competence has been gathered in the context of genetic inactivation of btk in both mice and man. Using the novel BTK inhibitor PF-303, we model the clinical phenotype of BTK inhibition by systematically examining the impact of PF-303 on the mature immune system in mice. We implicate BTK in tonic BCR signaling, demonstrate dependence of the T3 B cell subset and IgM surface expression on BTK activity, and find that B1 cells survive and function independently of BTK. Although BTK inhibition does not impact humoral memory survival, Ag-driven clonal expansion of memory B cells and Ab-secreting cell generation are inhibited. These data define the role of BTK in the mature immune system and mechanistically predict the clinical phenotype of chronic BTK inhibition. Copyright © 2014 by The American Association of Immunologists, Inc.
Hsu, Mei-Yu; Yang, Moon Hee; Schnegg, Caroline I; Hwang, Soonyean; Ryu, Byungwoo; Alani, Rhoda M
2017-06-01
Melanoma is among the most virulent cancers, owing to its propensity to metastasize and its resistance to current therapies. The treatment failure is largely attributed to tumor heterogeneity, particularly subpopulations possessing stem cell-like properties, ie, melanoma stem-like cells (MSLCs). Evidence indicates that the MSLC phenotype is malleable and may be acquired by non-MSLCs through phenotypic switching upon appropriate stimuli, the so-called 'dynamic stemness'. Since the phenotypic characteristics and functional integrity of MSLCs depend on their vascular niche, using a two-dimensional (2D) melanoma-endothelium co-culture model, where the MSLC niche is recapitulated in vitro, we identified Notch3 signaling pathway as a micro-environmental cue governing MSLC phenotypic plasticity via pathway-specific gene expression arrays. Accordingly, lentiviral shRNA-mediated Notch3 knockdown (KD) in melanoma cell lines exhibiting high levels of endogenous Notch3 led to retarded/abolished tumorigenicity in vivo through both depleting MSLC fractions, evinced by MSLC marker downregulation (eg, CD133 and CD271); and impeding the MSLC niche, corroborated by the attenuated tumor angiogenesis as well as vasculogenic mimicry. In contrast, Notch3 KD affected neither tumor growth nor MSLC subsets in a melanoma cell line with relatively low endogenous Notch3 expression. Thus, Notch3 signaling may facilitate MSLC plasticity and niche morphogenesis in a cell context-dependent manner. Our findings illustrate Notch3 as a molecular switch driving melanoma heterogeneity, and provide the biological rationale for Notch inhibition as a promising therapeutic option.
Sawarkar, Ritwick; Visweswariah, Sandhya S; Nellen, Wolfgang; Nanjundiah, Vidyanand
2009-09-04
Epigenetic modifications of histones regulate gene expression and lead to the establishment and maintenance of cellular phenotypes during development. Histone acetylation depends on a balance between the activities of histone acetyltransferases and histone deacetylases (HDACs) and influences transcriptional regulation. In this study, we analyse the roles of HDACs during growth and development of one of the cellular slime moulds, the social amoeba Dictyostelium discoideum. The inhibition of HDAC activity by trichostatin A results in histone hyperacetylation and a delay in cell aggregation and differentiation. Cyclic AMP oscillations are normal in starved amoebae treated with trichostatin A but the expression of a subset of cAMP-regulated genes is delayed. Bioinformatic analysis indicates that there are four genes encoding putative HDACs in D. discoideum. Using biochemical, genetic and developmental approaches, we demonstrate that one of these four genes, hdaB, is dispensable for growth and development under laboratory conditions. A knockout of the hdaB gene results in a social context-dependent phenotype: hdaB(-) cells develop normally but sporulate less efficiently than the wild type in chimeras. We infer that HDAC activity is important for regulating the timing of gene expression during the development of D. discoideum and for defining aspects of the phenotype that mediate social behaviour in genetically heterogeneous groups.
Kyriakides, Michael; Hardwick, Rhiannon N.; Jin, Zhaosheng; Goedken, Michael J.; Holmes, Elaine; Cherrington, Nathan J.; Coen, Muireann
2014-01-01
Adverse drug reactions (ADRs) represent a significant clinical challenge with respect to patient morbidity and mortality. We investigated the hepatotoxicity and systems level metabolic phenotype of methotrexate (MTX) in the context of a prevalent liver disease; non-alcoholic steatohepatitis (NASH). A nuclear magnetic resonance spectroscopic-based metabonomic approach was employed to analyze the metabolic consequences of MTX (0, 10, 40, and 100 mg/kg) in the urine and liver of healthy rats (control diet) and in a model of NASH (methionine-choline deficient diet). Histopathological analysis confirmed baseline (0 mg/kg) liver necrosis, liver inflammation, and lipid accumulation in the NASH model. Administration of MTX (40 and 100 mg/kg) led to liver necrosis in the control cohort, whereas the NASH cohort also displayed biliary hyperplasia and liver fibrosis (100 mg/kg), providing evidence of the synergistic effect of MTX and NASH. The complementary hepatic and urinary metabolic phenotypes of the NASH model, at baseline, revealed perturbation of multiple metabolites associated with oxidative and energetic stress, and folate homeostasis. Administration of MTX in both diet cohorts showed dose-dependent metabolic consequences affecting gut microbial, energy, nucleobase, nucleoside, and folate metabolism. Furthermore, a unique panel of metabolic changes reflective of the synergistic effect of MTX and NASH was identified, including the elevation of hepatic phenylalanine, urocanate, acetate, and both urinary and hepatic formiminoglutamic acid. This systems level metabonomic analysis of the hepatotoxicity of MTX in the context of NASH provided novel mechanistic insight of potential wider clinical relevance for further understanding the role of liver pathology as a risk factor for ADRs. PMID:25145655
De, Pradip; Carlson, Jennifer H; Wu, Hui; Marcus, Adam; Leyland-Jones, Brian; Dey, Nandini
2016-07-12
Tumor cells acquire metastasis-associated (MA) phenotypes following genetic alterations in them which cause deregulation of different signaling pathways. Earlier, we reported that an upregulation of the Wnt-beta-catenin pathway (WP) is one of the genetic salient features of triple-negative breast cancer (TNBC), and WP signaling is associated with metastasis in TNBC. Using cBioPortal, here we found that collective % of alteration(s) in WP genes, CTNNB1, APC and DVL1 among breast-invasive-carcinomas was 21% as compared to 56% in PAM50 Basal. To understand the functional relevance of WP in the biology of heterogeneous/metastasizing TNBC cells, we undertook this comprehensive study using 15 cell lines in which we examined the role of WP in the context of integrin-dependent MA-phenotypes. Directional movement of tumor cells was observed by confocal immunofluorescence microscopy and quantitative confocal-video-microscopy while matrigel-invasion was studied by MMP7-specific casein-zymography. WntC59, XAV939, sulindac sulfide and beta-catenin siRNA (1) inhibited fibronectin-directed migration, (2) decreased podia-parameters and motility-descriptors, (3) altered filamentous-actin, (4) decreased matrigel-invasion and (5) inhibited cell proliferation as well as 3D clonogenic growth. Sulindac sulfide and beta-catenin siRNA decreased beta-catenin/active-beta-catenin and MMP7. LWnt3ACM-stimulated proliferation, clonogenicity, fibronectin-directed migration and matrigel-invasion were perturbed by WP-modulators, sulindac sulfide and GDC-0941. We studied a direct involvement of WP in metastasis by stimulating brain-metastasis-specific MDA-MB231BR cells to demonstrate that LWnt3ACM-stimulated proliferation, clonogenicity and migration were blocked following sulindac sulfide, GDC-0941 and beta-catenin knockdown. We present the first evidence showing a direct functional relationship between WP activation and integrin-dependent MA-phenotypes. By proving the functional relationship between WP activation and MA-phenotypes, our data mechanistically explains (1) why different components of WP are upregulated in TNBC, (2) how WP activation is associated with metastasis and (3) how integrin-dependent MA-phenotypes can be regulated by mitigating the WP.
De, Pradip; Carlson, Jennifer H.; Wu, Hui; Marcus, Adam; Leyland-Jones, Brian; Dey, Nandini
2016-01-01
Tumor cells acquire metastasis-associated (MA) phenotypes following genetic alterations in them which cause deregulation of different signaling pathways. Earlier, we reported that an upregulation of the Wnt-beta-catenin pathway (WP) is one of the genetic salient features of triple-negative breast cancer (TNBC), and WP signaling is associated with metastasis in TNBC. Using cBioPortal, here we found that collective % of alteration(s) in WP genes, CTNNB1, APC and DVL1 among breast-invasive-carcinomas was 21% as compared to 56% in PAM50 Basal. To understand the functional relevance of WP in the biology of heterogeneous/metastasizing TNBC cells, we undertook this comprehensive study using 15 cell lines in which we examined the role of WP in the context of integrin-dependent MA-phenotypes. Directional movement of tumor cells was observed by confocal immunofluorescence microscopy and quantitative confocal-video-microscopy while matrigel-invasion was studied by MMP7-specific casein-zymography. WntC59, XAV939, sulindac sulfide and beta-catenin siRNA (1) inhibited fibronectin-directed migration, (2) decreased podia-parameters and motility-descriptors, (3) altered filamentous-actin, (4) decreased matrigel-invasion and (5) inhibited cell proliferation as well as 3D clonogenic growth. Sulindac sulfide and beta-catenin siRNA decreased beta-catenin/active-beta-catenin and MMP7. LWnt3ACM-stimulated proliferation, clonogenicity, fibronection-directed migration and matrigel-invasion were perturbed by WP-modulators, sulindac sulfide and GDC-0941. We studied a direct involvement of WP in metastasis by stimulating brain-metastasis-specific MDA-MB231BR cells to demonstrate that LWnt3ACM-stimulated proliferation, clonogenicity and migration were blocked following sulindac sulfide, GDC-0941 and beta-catenin knockdown. We present the first evidence showing a direct functional relationship between WP activation and integrin-dependent MA-phenotypes. By proving the functional relationship between WP activation and MA-phenotypes, our data mechanistically explains (1) why different components of WP are upregulated in TNBC, (2) how WP activation is associated with metastasis and (3) how integrin-dependent MA-phenotypes can be regulated by mitigating the WP. PMID:27281609
Saccharomyces cerevisiae metabolism in ecological context.
Jouhten, Paula; Ponomarova, Olga; Gonzalez, Ramon; Patil, Kiran R
2016-11-01
The architecture and regulation of Saccharomyces cerevisiae metabolic network are among the best studied owing to its widespread use in both basic research and industry. Yet, several recent studies have revealed notable limitations in explaining genotype-metabolic phenotype relations in this yeast, especially when concerning multiple genetic/environmental perturbations. Apparently unexpected genotype-phenotype relations may originate in the evolutionarily shaped cellular operating principles being hidden in common laboratory conditions. Predecessors of laboratory S. cerevisiae strains, the wild and the domesticated yeasts, have been evolutionarily shaped by highly variable environments, very distinct from laboratory conditions, and most interestingly by social life within microbial communities. Here we present a brief review of the genotypic and phenotypic peculiarities of S. cerevisiae in the context of its social lifestyle beyond laboratory environments. Accounting for this ecological context and the origin of the laboratory strains in experimental design and data analysis would be essential in improving the understanding of genotype-environment-phenotype relationships. © FEMS 2016.
Saccharomyces cerevisiae metabolism in ecological context
Jouhten, Paula; Ponomarova, Olga; Gonzalez, Ramon
2016-01-01
The architecture and regulation of Saccharomyces cerevisiae metabolic network are among the best studied owing to its widespread use in both basic research and industry. Yet, several recent studies have revealed notable limitations in explaining genotype–metabolic phenotype relations in this yeast, especially when concerning multiple genetic/environmental perturbations. Apparently unexpected genotype–phenotype relations may originate in the evolutionarily shaped cellular operating principles being hidden in common laboratory conditions. Predecessors of laboratory S. cerevisiae strains, the wild and the domesticated yeasts, have been evolutionarily shaped by highly variable environments, very distinct from laboratory conditions, and most interestingly by social life within microbial communities. Here we present a brief review of the genotypic and phenotypic peculiarities of S. cerevisiae in the context of its social lifestyle beyond laboratory environments. Accounting for this ecological context and the origin of the laboratory strains in experimental design and data analysis would be essential in improving the understanding of genotype–environment–phenotype relationships. PMID:27634775
Panny, A; Glurich, I; Haws, R M; Acharya, A
2017-11-01
Standardized guidelines for the oral health management of patients with rare diseases exhibiting morphologic anomalies are currently lacking. This review considers Bardet-Biedl syndrome (BBS), a monogenic autosomal recessive nonmotile ciliopathy, as an archetypal condition. Dental anomalies are present in a majority of individuals affected by BBS due to abnormal embryonic orofacial and tooth development. Genetically encoded intrinsic oral structural anomalies and heterogeneous BBS clinical phenotypes and consequent oral comorbidities confound oral health management. Since the comorbid spectrum of BBS phenotypes spans diabetes, renal disease, obesity, sleep apnea, cardiovascular disease, and cognitive disorders, a broad spectrum of collateral oral disease may be encountered. The genetic impact of BBS on the anatomic development of oral components and oral pathology encountered in the context of various BBS phenotypes and their associated comorbidities are reviewed herein. Challenges encountered in managing patients with BBS are highlighted, emphasizing the spectrum of oral pathology associated with heterogeneous clinical phenotypic expression. Guidelines for provision of care across the spectrum of BBS clinical phenotypes are considered. Establishment of integrated medical-dental delivery models of oral care in the context of rare diseases is emphasized, including involvement of caregivers in the context of managing these patients with special needs.
Nunes, Guilherme Tavares; Bertrand, Sophie; Bugoni, Leandro
2018-01-12
Identifying associations between phenotypes and environmental parameters is crucial for understanding how natural selection acts at the individual level. In this context, genetically isolated populations can be useful models for identifying the forces selecting fitness-related traits. Here, we use a comprehensive dataset on a genetically and ecologically isolated population of the strictly marine bird, the brown booby Sula leucogaster, at the tropical and remote Saint Peter and Saint Paul Archipelago, mid-Atlantic Ocean, in order to detect phenotypic adjustments from interindividual differences in diet, foraging behaviour, and nest quality. For this, we took biometrics of all individuals of the colony breeding in 2014 and 2015 and tested their associations with nest quality, diet parameters, and foraging behaviour. While body size was not related to the foraging parameters, the body size of the females (responsible for nest acquisition and defence) was significantly associated with the nest quality, as larger females occupied high-quality nests. Our findings suggest that the small breeding area, rather than prey availability, is a limiting factor, emphasizing the role of on-land features in shaping phenotypic characteristics and fitness in land-dependent marine vertebrates.
Budka, Josh; Fujioka, Shozo; Johal, Gurmukh
2016-01-01
A small number of phytohormones dictate the pattern of plant form affecting fitness via reproductive architecture and the plant’s ability to forage for light, water, and nutrients. Individual phytohormone contributions to plant architecture have been studied extensively, often following a single component of plant architecture, such as plant height or branching. Both brassinosteroid (BR) and gibberellin (GA) affect plant height, branching, and sexual organ development in maize (Zea mays). We identified the molecular basis of the nana plant2 (na2) phenotype as a loss-of-function mutation in one of the two maize paralogs of the Arabidopsis (Arabidopsis thaliana) BR biosynthetic gene DWARF1 (DWF1). These mutants accumulate the DWF1 substrate 24-methylenecholesterol and exhibit decreased levels of downstream BR metabolites. We utilized this mutant and known GA biosynthetic mutants to investigate the genetic interactions between BR and GA. Double mutants exhibited additivity for some phenotypes and epistasis for others with no unifying pattern, indicating that BR and GA interact to affect development but in a context-dependent manner. Similar results were observed in double mutant analyses using additional BR and GA biosynthetic mutant loci. Thus, the BR and GA interactions were neither locus nor allele specific. Exogenous application of GA3 to na2 and d5, a GA biosynthetic mutant, also resulted in a diverse pattern of growth responses, including BR-dependent GA responses. These findings demonstrate that BR and GA do not interact via a single inclusive pathway in maize but rather suggest that differential signal transduction and downstream responses are affected dependent upon the developmental context. PMID:27288361
Soncin, Francesca; Mohamet, Lisa; Eckardt, Dominik; Ritson, Sarah; Eastham, Angela M; Bobola, Nicoletta; Russell, Angela; Davies, Steve; Kemler, Rolf; Merry, Catherine L R; Ward, Christopher M
2009-09-01
We have previously demonstrated that differentiation of embryonic stem (ES) cells is associated with downregulation of cell surface E-cadherin. In this study, we assessed the function of E-cadherin in mouse ES cell pluripotency and differentiation. We show that inhibition of E-cadherin-mediated cell-cell contact in ES cells using gene knockout (Ecad(-/-)), RNA interference (EcadRNAi), or a transhomodimerization-inhibiting peptide (CHAVC) results in cellular proliferation and maintenance of an undifferentiated phenotype in fetal bovine serum-supplemented medium in the absence of leukemia inhibitory factor (LIF). Re-expression of E-cadherin in Ecad(-/-), EcadRNAi, and CHAVC-treated ES cells restores cellular dependence to LIF supplementation. Although reversal of the LIF-independent phenotype in Ecad(-/-) ES cells is dependent on the beta-catenin binding domain of E-cadherin, we show that beta-catenin null (betacat(-/-)) ES cells also remain undifferentiated in the absence of LIF. This suggests that LIF-independent self-renewal of Ecad(-/-) ES cells is unlikely to be via beta-catenin signaling. Exposure of Ecad(-/-), EcadRNAi, and CHAVC-treated ES cells to the activin receptor-like kinase inhibitor SB431542 led to differentiation of the cells, which could be prevented by re-expression of E-cadherin. To confirm the role of transforming growth factor beta family signaling in the self-renewal of Ecad(-/-) ES cells, we show that these cells maintain an undifferentiated phenotype when cultured in serum-free medium supplemented with Activin A and Nodal, with fibroblast growth factor 2 required for cellular proliferation. We conclude that transhomodimerization of E-cadherin protein is required for LIF-dependent ES cell self-renewal and that multiple self-renewal signaling networks subsist in ES cells, with activity dependent upon the cellular context.
Wise, a context-dependent activator and inhibitor of Wnt signalling.
Itasaki, Nobue; Jones, C Michael; Mercurio, Sara; Rowe, Alison; Domingos, Pedro M; Smith, James C; Krumlauf, Robb
2003-09-01
We have isolated a novel secreted molecule, Wise, by a functional screen for activities that alter the anteroposterior character of neuralised Xenopus animal caps. Wise encodes a secreted protein capable of inducing posterior neural markers at a distance. Phenotypes arising from ectopic expression or depletion of Wise resemble those obtained when Wnt signalling is altered. In animal cap assays, posterior neural markers can be induced by Wnt family members, and induction of these markers by Wise requires components of the canonical Wnt pathway. This indicates that in this context Wise activates the Wnt signalling cascade by mimicking some of the effects of Wnt ligands. Activation of the pathway was further confirmed by nuclear accumulation of beta-catenin driven by Wise. By contrast, in an assay for secondary axis induction, extracellularly Wise antagonises the axis-inducing ability of Wnt8. Thus, Wise can activate or inhibit Wnt signalling in a context-dependent manner. The Wise protein physically interacts with the Wnt co-receptor, lipoprotein receptor-related protein 6 (LRP6), and is able to compete with Wnt8 for binding to LRP6. These activities of Wise provide a new mechanism for integrating inputs through the Wnt coreceptor complex to modulate the balance of Wnt signalling.
Host manipulation by cancer cells: Expectations, facts, and therapeutic implications.
Tissot, Tazzio; Arnal, Audrey; Jacqueline, Camille; Poulin, Robert; Lefèvre, Thierry; Mery, Frédéric; Renaud, François; Roche, Benjamin; Massol, François; Salzet, Michel; Ewald, Paul; Tasiemski, Aurélie; Ujvari, Beata; Thomas, Frédéric
2016-03-01
Similar to parasites, cancer cells depend on their hosts for sustenance, proliferation and reproduction, exploiting the hosts for energy and resources, and thereby impairing their health and fitness. Because of this lifestyle similarity, it is predicted that cancer cells could, like numerous parasitic organisms, evolve the capacity to manipulate the phenotype of their hosts to increase their own fitness. We claim that the extent of this phenomenon and its therapeutic implications are, however, underappreciated. Here, we review and discuss what can be regarded as cases of host manipulation in the context of cancer development and progression. We elaborate on how acknowledging the applicability of these principles can offer novel therapeutic and preventive strategies. The manipulation of host phenotype by cancer cells is one more reason to adopt a Darwinian approach in cancer research. © 2016 WILEY Periodicals, Inc.
Neurotransmitter receptors on microglia
Liu, Huan; Leak, Rehana K; Hu, Xiaoming
2016-01-01
As the resident immune cells in the central nervous system, microglia have long been hypothesised to promote neuroinflammation and exacerbate neurotoxicity. However, this traditional view has undergone recent revision as evidence has accumulated that microglia exert beneficial and detrimental effects depending on activation status, polarisation phenotype and cellular context. A variety of neurotransmitter receptors are expressed on microglia and help mediate the bidirectional communication between neurons and microglia. Here we review data supporting the importance of neurotransmitter receptors on microglia, with a special emphasis on glutamate, γ-aminobutyric acid (GABA), norepinephrine, cannabinoid and acetylcholine receptors. We summarise evidence favouring a significant role for neurotransmitter receptors in modulating microglial activation, phagocytic clearance and phenotypic polarisation. Elucidating the effects of neurotransmitter receptors on microglia and dissecting the underlying mechanisms may help accelerate the discovery of novel drugs that tap the therapeutic potential of microglia. PMID:28959464
Garvey, Colleen M.; Spiller, Erin; Lindsay, Danika; Chiang, Chun-Te; Choi, Nathan C.; Agus, David B.; Mallick, Parag; Foo, Jasmine; Mumenthaler, Shannon M.
2016-01-01
Tumor progression results from a complex interplay between cellular heterogeneity, treatment response, microenvironment and heterocellular interactions. Existing approaches to characterize this interplay suffer from an inability to distinguish between multiple cell types, often lack environmental context, and are unable to perform multiplex phenotypic profiling of cell populations. Here we present a high-throughput platform for characterizing, with single-cell resolution, the dynamic phenotypic responses (i.e. morphology changes, proliferation, apoptosis) of heterogeneous cell populations both during standard growth and in response to multiple, co-occurring selective pressures. The speed of this platform enables a thorough investigation of the impacts of diverse selective pressures including genetic alterations, therapeutic interventions, heterocellular components and microenvironmental factors. The platform has been applied to both 2D and 3D culture systems and readily distinguishes between (1) cytotoxic versus cytostatic cellular responses; and (2) changes in morphological features over time and in response to perturbation. These important features can directly influence tumor evolution and clinical outcome. Our image-based approach provides a deeper insight into the cellular dynamics and heterogeneity of tumors (or other complex systems), with reduced reagents and time, offering advantages over traditional biological assays. PMID:27452732
NASA Astrophysics Data System (ADS)
Garvey, Colleen M.; Spiller, Erin; Lindsay, Danika; Chiang, Chun-Te; Choi, Nathan C.; Agus, David B.; Mallick, Parag; Foo, Jasmine; Mumenthaler, Shannon M.
2016-07-01
Tumor progression results from a complex interplay between cellular heterogeneity, treatment response, microenvironment and heterocellular interactions. Existing approaches to characterize this interplay suffer from an inability to distinguish between multiple cell types, often lack environmental context, and are unable to perform multiplex phenotypic profiling of cell populations. Here we present a high-throughput platform for characterizing, with single-cell resolution, the dynamic phenotypic responses (i.e. morphology changes, proliferation, apoptosis) of heterogeneous cell populations both during standard growth and in response to multiple, co-occurring selective pressures. The speed of this platform enables a thorough investigation of the impacts of diverse selective pressures including genetic alterations, therapeutic interventions, heterocellular components and microenvironmental factors. The platform has been applied to both 2D and 3D culture systems and readily distinguishes between (1) cytotoxic versus cytostatic cellular responses; and (2) changes in morphological features over time and in response to perturbation. These important features can directly influence tumor evolution and clinical outcome. Our image-based approach provides a deeper insight into the cellular dynamics and heterogeneity of tumors (or other complex systems), with reduced reagents and time, offering advantages over traditional biological assays.
Hsu, Mei-Yu; Yang, Moon Hee; Schnegg, Caroline I.; Hwang, Soonyean; Ryu, Byungwoo; Alani, Rhoda M.
2016-01-01
Melanoma is among the most virulent cancers, owing to its propensity to metastasize and its resistance to current therapies. The treatment failure is largely attributed to tumor heterogeneity, particularly subpopulations possessing stem cell-like properties, i.e., melanoma stem-like cells (MSLCs). Evidence indicates that the MSLC phenotype is malleable and may be acquired by non-MSLCs through phenotypic switching upon appropriate stimuli, the so–called “dynamic stemness”. Since the phenotypic characteristics and functional integrity of MSLCs depend on their vascular niche, using a two dimensional (2D) melanoma-endothelium co-culture model, where the MSLC niche is recapitulated in vitro, we identified Notch3 signaling pathway as a micro-environmental cue governing MSLC phenotypic plasticity via pathway-specific gene expression arrays. Accordingly, lentiviral shRNA-mediated Notch3 knockdown (KD) in melanoma cell lines exhibiting high levels of endogenous Notch3 led to retarded/abolished tumorigenicity in vivo through both depleting MSLC fractions, evinced by MSLC marker down-regulation (e.g., CD133 and CD271); and impeding the MSLC niche, corroborated by the attenuated tumor angiogenesis as well as vasculogenic mimicry. In contrast, Notch3 KD affected neither tumor growth nor MSLC subsets in a melanoma cell line with relatively low endogenous Notch3 expression. Thus, Notch3 signaling may facilitate MSLC plasticity and niche morphogenesis in a cell context-dependent fashion. Our findings illustrate Notch3 as a molecular switch driving melanoma heterogeneity, and provide the biological rationale for Notch inhibition as a promising therapeutic option. PMID:28165469
Functional genomics of physiological plasticity and local adaptation in killifish.
Whitehead, Andrew; Galvez, Fernando; Zhang, Shujun; Williams, Larissa M; Oleksiak, Marjorie F
2011-01-01
Evolutionary solutions to the physiological challenges of life in highly variable habitats can span the continuum from evolution of a cosmopolitan plastic phenotype to the evolution of locally adapted phenotypes. Killifish (Fundulus sp.) have evolved both highly plastic and locally adapted phenotypes within different selective contexts, providing a comparative system in which to explore the genomic underpinnings of physiological plasticity and adaptive variation. Importantly, extensive variation exists among populations and species for tolerance to a variety of stressors, and we exploit this variation in comparative studies to yield insights into the genomic basis of evolved phenotypic variation. Notably, species of Fundulus occupy the continuum of osmotic habitats from freshwater to marine and populations within Fundulus heteroclitus span far greater variation in pollution tolerance than across all species of fish. Here, we explore how transcriptome regulation underpins extreme physiological plasticity on osmotic shock and how genomic and transcriptomic variation is associated with locally evolved pollution tolerance. We show that F. heteroclitus quickly acclimate to extreme osmotic shock by mounting a dramatic rapid transcriptomic response including an early crisis control phase followed by a tissue remodeling phase involving many regulatory pathways. We also show that convergent evolution of locally adapted pollution tolerance involves complex patterns of gene expression and genome sequence variation, which is confounded with body-weight dependence for some genes. Similarly, exploiting the natural phenotypic variation associated with other established and emerging model organisms is likely to greatly accelerate the pace of discovery of the genomic basis of phenotypic variation.
Functional Genomics of Physiological Plasticity and Local Adaptation in Killifish
Galvez, Fernando; Zhang, Shujun; Williams, Larissa M.; Oleksiak, Marjorie F.
2011-01-01
Evolutionary solutions to the physiological challenges of life in highly variable habitats can span the continuum from evolution of a cosmopolitan plastic phenotype to the evolution of locally adapted phenotypes. Killifish (Fundulus sp.) have evolved both highly plastic and locally adapted phenotypes within different selective contexts, providing a comparative system in which to explore the genomic underpinnings of physiological plasticity and adaptive variation. Importantly, extensive variation exists among populations and species for tolerance to a variety of stressors, and we exploit this variation in comparative studies to yield insights into the genomic basis of evolved phenotypic variation. Notably, species of Fundulus occupy the continuum of osmotic habitats from freshwater to marine and populations within Fundulus heteroclitus span far greater variation in pollution tolerance than across all species of fish. Here, we explore how transcriptome regulation underpins extreme physiological plasticity on osmotic shock and how genomic and transcriptomic variation is associated with locally evolved pollution tolerance. We show that F. heteroclitus quickly acclimate to extreme osmotic shock by mounting a dramatic rapid transcriptomic response including an early crisis control phase followed by a tissue remodeling phase involving many regulatory pathways. We also show that convergent evolution of locally adapted pollution tolerance involves complex patterns of gene expression and genome sequence variation, which is confounded with body-weight dependence for some genes. Similarly, exploiting the natural phenotypic variation associated with other established and emerging model organisms is likely to greatly accelerate the pace of discovery of the genomic basis of phenotypic variation. PMID:20581107
Frugivore-Mediated Selection in A Habitat Transformation Scenario
Fontúrbel, Francisco E.; Medel, Rodrigo
2017-01-01
Plant-animal interactions are strong drivers of phenotypic evolution. However, the extent to which anthropogenic habitat transformation creates new selective scenarios for plant-animal interactions is a little explored subject. We examined the effects of native forest replacement by exotic Eucalyptus trees on the frugivore-mediated phenotypic selection coefficients imposed by the relict marsupial Dromiciops gliroides upon traits involved in frugivore attraction and germination success of the mistletoe Tristerix corymbosus (Loranthaceae). We found significant gradients for seed weight and sugar content along the native - transformed habitat gradient. While selection for larger seed weight was more relevant in native habitats, fruits with intermediate sugar content were promoted in transformed habitats. The spatial habitat structure and microclimate features such as the degree of sunlight received influenced the natural selection processes, as they correlated with the phenotypic traits analysed. The response of this plant-frugivore interaction to human disturbance seemed to be context-dependent, in which extremely transformed habitats would offer new opportunities for natural selection on dispersal-related traits. Even in recent transformation events like this, human disturbance acts as a strong contemporary evolution driver. PMID:28349942
Schmitz, Oswald
2017-01-01
Predator–prey relationships are a central component of community dynamics. Classic approaches have tried to understand and predict these relationships in terms of consumptive interactions between predator and prey species, but characterizing the interaction this way is insufficient to predict the complexity and context dependency inherent in predator–prey relationships. Recent approaches have begun to explore predator–prey relationships in terms of an evolutionary-ecological game in which predator and prey adapt to each other through reciprocal interactions involving context-dependent expression of functional traits that influence their biomechanics. Functional traits are defined as any morphological, behavioral, or physiological trait of an organism associated with a biotic interaction. Such traits include predator and prey body size, predator and prey personality, predator hunting mode, prey mobility, prey anti-predator behavior, and prey physiological stress. Here, I discuss recent advances in this functional trait approach. Evidence shows that the nature and strength of many interactions are dependent upon the relative magnitude of predator and prey functional traits. Moreover, trait responses can be triggered by non-consumptive predator–prey interactions elicited by responses of prey to risk of predation. These interactions in turn can have dynamic feedbacks that can change the context of the predator–prey interaction, causing predator and prey to adapt their traits—through phenotypically plastic or rapid evolutionary responses—and the nature of their interaction. Research shows that examining predator–prey interactions through the lens of an adaptive evolutionary-ecological game offers a foundation to explain variety in the nature and strength of predator–prey interactions observed in different ecological contexts. PMID:29043073
Schmitz, Oswald
2017-01-01
Predator-prey relationships are a central component of community dynamics. Classic approaches have tried to understand and predict these relationships in terms of consumptive interactions between predator and prey species, but characterizing the interaction this way is insufficient to predict the complexity and context dependency inherent in predator-prey relationships. Recent approaches have begun to explore predator-prey relationships in terms of an evolutionary-ecological game in which predator and prey adapt to each other through reciprocal interactions involving context-dependent expression of functional traits that influence their biomechanics. Functional traits are defined as any morphological, behavioral, or physiological trait of an organism associated with a biotic interaction. Such traits include predator and prey body size, predator and prey personality, predator hunting mode, prey mobility, prey anti-predator behavior, and prey physiological stress. Here, I discuss recent advances in this functional trait approach. Evidence shows that the nature and strength of many interactions are dependent upon the relative magnitude of predator and prey functional traits. Moreover, trait responses can be triggered by non-consumptive predator-prey interactions elicited by responses of prey to risk of predation. These interactions in turn can have dynamic feedbacks that can change the context of the predator-prey interaction, causing predator and prey to adapt their traits-through phenotypically plastic or rapid evolutionary responses-and the nature of their interaction. Research shows that examining predator-prey interactions through the lens of an adaptive evolutionary-ecological game offers a foundation to explain variety in the nature and strength of predator-prey interactions observed in different ecological contexts.
Strobel, Oliver; Dadabaeva, Nigora; Felix, Klaus; Hackert, Thilo; Giese, Nathalia A; Jesenofsky, Ralf; Werner, Jens
2016-02-01
Pancreatic stellate cells (PSCs) play a critical role in pancreatic ductal adenocarcinoma (PDAC). Activated PSCs are the main source of fibrosis in chronic pancreatitis and of desmoplasia in PDAC. The majority of studies on PSC are based on in vitro experiments relying on immortalized cell lines derived from diseased human pancreas or from animal models. These PSCs are usually activated and may not represent the biological context of their tissue of origin. (1) To isolate and culture primary human PSC from different disease contexts with minimal impact on their state of activation. (2) To perform a comparative analysis of phenotypes of PSC derived from different contexts. PSCs were isolated from normal pancreas, chronic pancreatitis, and PDAC using a hybrid method of digestion and outgrowth. To minimize activation by serum compounds, cells were cultured in a low-serum environment (2.5 % fetal bovine serum (FBS)). Expression patterns of commonly used markers for PSC phenotype and activity were compared between primary PSC lines derived from different contexts and correlated to expression in their original tissues. Isolation was successful from 14 of 17 tissues (82 %). Isolated PSC displayed stable viability and phenotype in low-serum environment. Expression profiles of isolated PSC and matched original tissues were closely correlated. PDAC-derived PSC tended to have a higher status of activation if compared to PSC derived from non-cancerous tissues. Primary human PSCs isolated from different contexts and cultured in a low-serum environment maintain a phenotype that reflects the stromal activity present in their tissue of origin.
A systems model for immune cell interactions unravels the mechanism of inflammation in human skin.
Valeyev, Najl V; Hundhausen, Christian; Umezawa, Yoshinori; Kotov, Nikolay V; Williams, Gareth; Clop, Alex; Ainali, Crysanthi; Ouzounis, Christos; Tsoka, Sophia; Nestle, Frank O
2010-12-02
Inflammation is characterized by altered cytokine levels produced by cell populations in a highly interdependent manner. To elucidate the mechanism of an inflammatory reaction, we have developed a mathematical model for immune cell interactions via the specific, dose-dependent cytokine production rates of cell populations. The model describes the criteria required for normal and pathological immune system responses and suggests that alterations in the cytokine production rates can lead to various stable levels which manifest themselves in different disease phenotypes. The model predicts that pairs of interacting immune cell populations can maintain homeostatic and elevated extracellular cytokine concentration levels, enabling them to operate as an immune system switch. The concept described here is developed in the context of psoriasis, an immune-mediated disease, but it can also offer mechanistic insights into other inflammatory pathologies as it explains how interactions between immune cell populations can lead to disease phenotypes.
Phenotypic Robustness and the Assortativity Signature of Human Transcription Factor Networks
Pechenick, Dov A.; Payne, Joshua L.; Moore, Jason H.
2014-01-01
Many developmental, physiological, and behavioral processes depend on the precise expression of genes in space and time. Such spatiotemporal gene expression phenotypes arise from the binding of sequence-specific transcription factors (TFs) to DNA, and from the regulation of nearby genes that such binding causes. These nearby genes may themselves encode TFs, giving rise to a transcription factor network (TFN), wherein nodes represent TFs and directed edges denote regulatory interactions between TFs. Computational studies have linked several topological properties of TFNs — such as their degree distribution — with the robustness of a TFN's gene expression phenotype to genetic and environmental perturbation. Another important topological property is assortativity, which measures the tendency of nodes with similar numbers of edges to connect. In directed networks, assortativity comprises four distinct components that collectively form an assortativity signature. We know very little about how a TFN's assortativity signature affects the robustness of its gene expression phenotype to perturbation. While recent theoretical results suggest that increasing one specific component of a TFN's assortativity signature leads to increased phenotypic robustness, the biological context of this finding is currently limited because the assortativity signatures of real-world TFNs have not been characterized. It is therefore unclear whether these earlier theoretical findings are biologically relevant. Moreover, it is not known how the other three components of the assortativity signature contribute to the phenotypic robustness of TFNs. Here, we use publicly available DNaseI-seq data to measure the assortativity signatures of genome-wide TFNs in 41 distinct human cell and tissue types. We find that all TFNs share a common assortativity signature and that this signature confers phenotypic robustness to model TFNs. Lastly, we determine the extent to which each of the four components of the assortativity signature contributes to this robustness. PMID:25121490
iCOSSY: An Online Tool for Context-Specific Subnetwork Discovery from Gene Expression Data
Saha, Ashis; Jeon, Minji; Tan, Aik Choon; Kang, Jaewoo
2015-01-01
Pathway analyses help reveal underlying molecular mechanisms of complex biological phenotypes. Biologists tend to perform multiple pathway analyses on the same dataset, as there is no single answer. It is often inefficient for them to implement and/or install all the algorithms by themselves. Online tools can help the community in this regard. Here we present an online gene expression analytical tool called iCOSSY which implements a novel pathway-based COntext-specific Subnetwork discoverY (COSSY) algorithm. iCOSSY also includes a few modifications of COSSY to increase its reliability and interpretability. Users can upload their gene expression datasets, and discover important subnetworks of closely interacting molecules to differentiate between two phenotypes (context). They can also interactively visualize the resulting subnetworks. iCOSSY is a web server that finds subnetworks that are differentially expressed in two phenotypes. Users can visualize the subnetworks to understand the biology of the difference. PMID:26147457
The long-term evolution of multilocus traits under frequency-dependent disruptive selection.
van Doorn, G Sander; Dieckmann, Ulf
2006-11-01
Frequency-dependent disruptive selection is widely recognized as an important source of genetic variation. Its evolutionary consequences have been extensively studied using phenotypic evolutionary models, based on quantitative genetics, game theory, or adaptive dynamics. However, the genetic assumptions underlying these approaches are highly idealized and, even worse, predict different consequences of frequency-dependent disruptive selection. Population genetic models, by contrast, enable genotypic evolutionary models, but traditionally assume constant fitness values. Only a minority of these models thus addresses frequency-dependent selection, and only a few of these do so in a multilocus context. An inherent limitation of these remaining studies is that they only investigate the short-term maintenance of genetic variation. Consequently, the long-term evolution of multilocus characters under frequency-dependent disruptive selection remains poorly understood. We aim to bridge this gap between phenotypic and genotypic models by studying a multilocus version of Levene's soft-selection model. Individual-based simulations and deterministic approximations based on adaptive dynamics theory provide insights into the underlying evolutionary dynamics. Our analysis uncovers a general pattern of polymorphism formation and collapse, likely to apply to a wide variety of genetic systems: after convergence to a fitness minimum and the subsequent establishment of genetic polymorphism at multiple loci, genetic variation becomes increasingly concentrated on a few loci, until eventually only a single polymorphic locus remains. This evolutionary process combines features observed in quantitative genetics and adaptive dynamics models, and it can be explained as a consequence of changes in the selection regime that are inherent to frequency-dependent disruptive selection. Our findings demonstrate that the potential of frequency-dependent disruptive selection to maintain polygenic variation is considerably smaller than previously expected.
Gene networks associated with conditional fear in mice identified using a systems genetics approach
2011-01-01
Background Our understanding of the genetic basis of learning and memory remains shrouded in mystery. To explore the genetic networks governing the biology of conditional fear, we used a systems genetics approach to analyze a hybrid mouse diversity panel (HMDP) with high mapping resolution. Results A total of 27 behavioral quantitative trait loci were mapped with a false discovery rate of 5%. By integrating fear phenotypes, transcript profiling data from hippocampus and striatum and also genotype information, two gene co-expression networks correlated with context-dependent immobility were identified. We prioritized the key markers and genes in these pathways using intramodular connectivity measures and structural equation modeling. Highly connected genes in the context fear modules included Psmd6, Ube2a and Usp33, suggesting an important role for ubiquitination in learning and memory. In addition, we surveyed the architecture of brain transcript regulation and demonstrated preservation of gene co-expression modules in hippocampus and striatum, while also highlighting important differences. Rps15a, Kif3a, Stard7, 6330503K22RIK, and Plvap were among the individual genes whose transcript abundance were strongly associated with fear phenotypes. Conclusion Application of our multi-faceted mapping strategy permits an increasingly detailed characterization of the genetic networks underlying behavior. PMID:21410935
2011-01-01
Background Biologists studying adaptation under sexual selection have spent considerable effort assessing the relative importance of two groups of models, which hinge on the idea that females gain indirect benefits via mate discrimination. These are the good genes and genetic compatibility models. Quantitative genetic studies have advanced our understanding of these models by enabling assessment of whether the genetic architectures underlying focal phenotypes are congruent with either model. In this context, good genes models require underlying additive genetic variance, while compatibility models require non-additive variance. Currently, we know very little about how the expression of genotypes comprised of distinct parental haplotypes, or how levels and types of genetic variance underlying key phenotypes, change across environments. Such knowledge is important, however, because genotype-environment interactions can have major implications on the potential for evolutionary responses to selection. Results We used a full diallel breeding design to screen for complex genotype-environment interactions, and genetic architectures underlying key morphological traits, across two thermal environments (the lab standard 27°C, and the cooler 23°C) in the Australian field cricket, Teleogryllus oceanicus. In males, complex three-way interactions between sire and dam parental haplotypes and the rearing environment accounted for up to 23 per cent of the scaled phenotypic variance in the traits we measured (body mass, pronotum width and testes mass), and each trait harboured significant additive genetic variance in the standard temperature (27°C) only. In females, these three-way interactions were less important, with interactions between the paternal haplotype and rearing environment accounting for about ten per cent of the phenotypic variance (in body mass, pronotum width and ovary mass). Of the female traits measured, only ovary mass for crickets reared at the cooler temperature (23°C), exhibited significant levels of additive genetic variance. Conclusions Our results show that the genetics underlying phenotypic expression can be complex, context-dependent and different in each of the sexes. We discuss the implications of these results, particularly in terms of the evolutionary processes that hinge on good and compatible genes models. PMID:21791118
Natural variation in non-coding regions underlying phenotypic diversity in budding yeast
Salinas, Francisco; de Boer, Carl G.; Abarca, Valentina; García, Verónica; Cuevas, Mara; Araos, Sebastian; Larrondo, Luis F.; Martínez, Claudio; Cubillos, Francisco A.
2016-01-01
Linkage mapping studies in model organisms have typically focused their efforts in polymorphisms within coding regions, ignoring those within regulatory regions that may contribute to gene expression variation. In this context, differences in transcript abundance are frequently proposed as a source of phenotypic diversity between individuals, however, until now, little molecular evidence has been provided. Here, we examined Allele Specific Expression (ASE) in six F1 hybrids from Saccharomyces cerevisiae derived from crosses between representative strains of the four main lineages described in yeast. ASE varied between crosses with levels ranging between 28% and 60%. Part of the variation in expression levels could be explained by differences in transcription factors binding to polymorphic cis-regulations and to differences in trans-activation depending on the allelic form of the TF. Analysis on highly expressed alleles on each background suggested ASN1 as a candidate transcript underlying nitrogen consumption differences between two strains. Further promoter allele swap analysis under fermentation conditions confirmed that coding and non-coding regions explained aspartic and glutamic acid consumption differences, likely due to a polymorphism affecting Uga3 binding. Together, we provide a new catalogue of variants to bridge the gap between genotype and phenotype. PMID:26898953
Uncovering Dangerous Cheats: How Do Avian Hosts Recognize Adult Brood Parasites?
Trnka, Alfréd; Prokop, Pavol; Grim, Tomáš
2012-01-01
Background Co-evolutionary struggles between dangerous enemies (e.g., brood parasites) and their victims (hosts) lead to the emergence of sophisticated adaptations and counter-adaptations. Salient host tricks to reduce parasitism costs include, as front line defence, adult enemy discrimination. In contrast to the well studied egg stage, investigations addressing the specific cues for adult enemy recognition are rare. Previous studies have suggested barred underparts and yellow eyes may provide cues for the recognition of cuckoos Cuculus canorus by their hosts; however, no study to date has examined the role of the two cues simultaneously under a consistent experimental paradigm. Methodology/Principal Findings We modify and extend previous work using a novel experimental approach – custom-made dummies with various combinations of hypothesized recognition cues. The salient recognition cue turned out to be the yellow eye. Barred underparts, the only trait examined previously, had a statistically significant but small effect on host aggression highlighting the importance of effect size vs. statistical significance. Conclusion Relative importance of eye vs. underpart phenotypes may reflect ecological context of host-parasite interaction: yellow eyes are conspicuous from the typical direction of host arrival (from above), whereas barred underparts are poorly visible (being visually blocked by the upper part of the cuckoo's body). This visual constraint may reduce usefulness of barred underparts as a reliable recognition cue under a typical situation near host nests. We propose a novel hypothesis that recognition cues for enemy detection can vary in a context-dependent manner (e.g., depending on whether the enemy is approached from below or from above). Further we suggest a particular cue can trigger fear reactions (escape) in some hosts/populations whereas the same cue can trigger aggression (attack) in other hosts/populations depending on presence/absence of dangerous enemies that are phenotypically similar to brood parasites and costs and benefits associated with particular host responses. PMID:22624031
Recent evidence has established a role for the small GTPase RAB25, as well as related effector proteins, in enacting both pro-oncogenic and anti-oncogenic phenotypes in specific cellular contexts. Here we report the development of all-hydrocarbon stabilized peptides derived from the RAB-binding FIP-family of proteins to target RAB25. Relative to unmodified peptides, optimized stapled peptides exhibit increased structural stability, binding affinity, cell permeability, and inhibition of RAB25:FIP complex formation.
Soul, Jamie; Hardingham, Timothy E; Boot-Handford, Raymond P; Schwartz, Jean-Marc
2015-01-29
We describe a new method, PhenomeExpress, for the analysis of transcriptomic datasets to identify pathogenic disease mechanisms. Our analysis method includes input from both protein-protein interaction and phenotype similarity networks. This introduces valuable information from disease relevant phenotypes, which aids the identification of sub-networks that are significantly enriched in differentially expressed genes and are related to the disease relevant phenotypes. This contrasts with many active sub-network detection methods, which rely solely on protein-protein interaction networks derived from compounded data of many unrelated biological conditions and which are therefore not specific to the context of the experiment. PhenomeExpress thus exploits readily available animal model and human disease phenotype information. It combines this prior evidence of disease phenotypes with the experimentally derived disease data sets to provide a more targeted analysis. Two case studies, in subchondral bone in osteoarthritis and in Pax5 in acute lymphoblastic leukaemia, demonstrate that PhenomeExpress identifies core disease pathways in both mouse and human disease expression datasets derived from different technologies. We also validate the approach by comparison to state-of-the-art active sub-network detection methods, which reveals how it may enhance the detection of molecular phenotypes and provide a more detailed context to those previously identified as possible candidates.
Mutations Altering Chloroplast Ribosome Phenotype in Chlamydomonas, I. Non-Mendelian Mutations*
Gillham, Nicholas W.; Boynton, John E.; Burkholder, Barbara
1970-01-01
Uniparentally inherited mutations to antibiotic resistance and dependence in Chlamydomonas reinhardi exhibit an altered chloroplast ribosome phenotype. Genetic studies demonstrate an absolute correlation between the drug resistance or dependence and the ribosome phenotype in two such mutants. Images PMID:5289000
Germline mutations of KIT in gastrointestinal stromal tumor (GIST) and mastocytosis.
Ke, Hengning; Kazi, Julhash U; Zhao, Hui; Sun, Jianmin
2016-01-01
Somatic mutations of KIT are frequently found in mastocytosis and gastrointestinal stromal tumor (GIST), while germline mutations of KIT are rare, and only found in few cases of familial GIST and mastocytosis. Although ligand-independent activation is the common feature of KIT mutations, the phenotypes mediated by various germline KIT mutations are different. Germline KIT mutations affect different tissues such as interstitial cells of Cajal (ICC), mast cells or melanocytes, and thereby lead to GIST, mastocytosis, or abnormal pigmentation. In this review, we summarize germline KIT mutations in familial mastocytosis and GIST and discuss the possible cellular context dependent transforming activity of KIT mutations.
Sarimski, Klaus; Ebner, Sarah; Wördemann, Claudia
2012-01-01
Parents of 64 children and youths with Prader-Willi syndrome (PWS) describe their children's behaviour on the "Temperament and Atypical Behavior Scale" (TABS) and the German version of the "Developmental Behavior Checklist" (VFE). In the younger age group, there are no specific behavioural abnormalities which characterize a behavioral phenotype. In the older age group the data reveal elevated levels of abnormal behaviors (communication disturbance, social relations and disruptive behaviors). Parents stress ritualistic behaviors as especially challenging. The results concerning form and age-dependency of abnormal behaviors are discussed in the context of prevention and treatment options.
Polarization of microglia and its role in bacterial sepsis.
Michels, Monique; Sonai, Beatriz; Dal-Pizzol, Felipe
2017-02-15
Microglial polarization in response to brain inflammatory conditions is a crescent field in neuroscience. However, the effect of systemic inflammation, and specifically sepsis, is a relatively unexplored field that has great interest and relevance. Sepsis has been associated with both early and late harmful events of the central nervous system, suggesting that there is a close link between sepsis and neuroinflammation. During sepsis evolution it is supposed that microglial could exert both neurotoxic and repairing effects depending on the specific microglial phenotype assumed. In this context, here it was reviewed the role of microglial polarization during sepsis-associated brain dysfunction. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhou, Xionghui; Liu, Juan
2014-01-01
Although many methods have been proposed to reconstruct gene regulatory network, most of them, when applied in the sample-based data, can not reveal the gene regulatory relations underlying the phenotypic change (e.g. normal versus cancer). In this paper, we adopt phenotype as a variable when constructing the gene regulatory network, while former researches either neglected it or only used it to select the differentially expressed genes as the inputs to construct the gene regulatory network. To be specific, we integrate phenotype information with gene expression data to identify the gene dependency pairs by using the method of conditional mutual information. A gene dependency pair (A,B) means that the influence of gene A on the phenotype depends on gene B. All identified gene dependency pairs constitute a directed network underlying the phenotype, namely gene dependency network. By this way, we have constructed gene dependency network of breast cancer from gene expression data along with two different phenotype states (metastasis and non-metastasis). Moreover, we have found the network scale free, indicating that its hub genes with high out-degrees may play critical roles in the network. After functional investigation, these hub genes are found to be biologically significant and specially related to breast cancer, which suggests that our gene dependency network is meaningful. The validity has also been justified by literature investigation. From the network, we have selected 43 discriminative hubs as signature to build the classification model for distinguishing the distant metastasis risks of breast cancer patients, and the result outperforms those classification models with published signatures. In conclusion, we have proposed a promising way to construct the gene regulatory network by using sample-based data, which has been shown to be effective and accurate in uncovering the hidden mechanism of the biological process and identifying the gene signature for phenotypic change.
Thorsell, Annika; Nätt, Daniel
2016-08-01
It has been shown that maternal stress and malnutrition, or experience of other adverse events, during the perinatal period may alter susceptibility in the adult offspring in a time-of-exposure dependent manner. The mechanism underlying this may be epigenetic in nature. Here, we summarize some recent findings on the effects on gene-regulation following maternal malnutrition, focusing on epigenetic regulation of peptidergic activity. Numerous neuropeptides within the central nervous system are crucial components in regulation of homeostatic energy-balance, as well as affective health (i.e. health events related to affective disorders, psychiatric disorders also referred to as mood disorders). It is becoming evident that expression, and function, of these neuropeptides can be regulated via epigenetic mechanisms during fetal development, thereby contributing to the development of the adult phenotype and, possibly, modulating disease susceptibility. Here, we focus on two such neuropeptides, neuropeptide Y (NPY) and corticotropin-releasing hormone (CRH), both involved in regulation of endocrine function, energy homeostasis, as well as affective health. While a number of published studies indicate the involvement of epigenetic mechanisms in CRH-dependent regulation of the offspring adult phenotype, NPY has been much less studied in this context and needs further work.
Fisher's geometrical model emerges as a property of complex integrated phenotypic networks.
Martin, Guillaume
2014-05-01
Models relating phenotype space to fitness (phenotype-fitness landscapes) have seen important developments recently. They can roughly be divided into mechanistic models (e.g., metabolic networks) and more heuristic models like Fisher's geometrical model. Each has its own drawbacks, but both yield testable predictions on how the context (genomic background or environment) affects the distribution of mutation effects on fitness and thus adaptation. Both have received some empirical validation. This article aims at bridging the gap between these approaches. A derivation of the Fisher model "from first principles" is proposed, where the basic assumptions emerge from a more general model, inspired by mechanistic networks. I start from a general phenotypic network relating unspecified phenotypic traits and fitness. A limited set of qualitative assumptions is then imposed, mostly corresponding to known features of phenotypic networks: a large set of traits is pleiotropically affected by mutations and determines a much smaller set of traits under optimizing selection. Otherwise, the model remains fairly general regarding the phenotypic processes involved or the distribution of mutation effects affecting the network. A statistical treatment and a local approximation close to a fitness optimum yield a landscape that is effectively the isotropic Fisher model or its extension with a single dominant phenotypic direction. The fit of the resulting alternative distributions is illustrated in an empirical data set. These results bear implications on the validity of Fisher's model's assumptions and on which features of mutation fitness effects may vary (or not) across genomic or environmental contexts.
Pangle, Kevin L.; Malinich, Timothy D.; Bunnell, David B.; DeVries, Dennis R.; Ludsin, Stuart A.
2012-01-01
By shaping species interactions, adaptive phenotypic plasticity can profoundly influence ecosystems. Predicting such outcomes has proven difficult, however, owing in part to the dependence of plasticity on the environmental context. Of particular relevance are environmental factors that affect sensory performance in organisms in ways that alter the tradeoffs associated with adaptive phenotypic responses. We explored the influence of turbidity, which simultaneously and differentially affects the sensory performance of consumers at multiple trophic levels, on the indirect effect of a top predator (piscivorous fish) on a basal prey resource (zooplankton) that is mediated through changes in the plastic foraging behavior of an intermediate consumer (zooplanktivorous fish). We first generated theoretical predictions of the adaptive foraging response of a zooplanktivore across wide gradients of turbidity and predation risk by a piscivore. Our model predicted that predation risk can change the negative relationship between intermediate consumer foraging and turbidity into a humped-shaped (unimodal) one in which foraging is low in both clear and highly turbid conditions due to foraging-related risk and visual constraints, respectively. Consequently, the positive trait-mediated indirect effect (TMIE) of the top predator on the basal resource is predicted to peak at low turbidity and decline thereafter until it reaches an asymptote of zero at intermediate turbidity levels (when foraging equals that which is predicted when the top predator is absent). We used field observations and a laboratory experiment to test our model predictions. In support, we found humped-shaped relationships between planktivory and turbidity for several zooplanktivorous fishes from diverse freshwater ecosystems with predation risk. Further, our experiment demonstrated that predation risk reduced zooplanktivory by yellow perch (Perca flavescens) at a low turbidity, but had no effect on consumption at an intermediate turbidity. Together, our theoretical and empirical findings show how the environmental context can govern the strength of TMIEs by influencing consumer sensory performance and how these effects can become realized in nature over wide environmental gradients. Additionally, our hump-shaped foraging curve represents an important departure from the conventional view of turbidity's effect on planktivorous fishes, thus potentially requiring a reconceptualization of turbidity's impact on aquatic food-web interactions.
Schinwelski, M; Kierdaszuk, B; Dulski, J; Tońska, K; Kodroń, A; Sitek, E J; Bartnik, E; Kamińska, A; Kwieciński, H; Sławek, J
2015-08-01
Mutations in NADH dehydrogenase (ND) subunits of complex I lead to mitochondrial encephalomyopathies associated with various phenotypes. This report aims to present the patient's clinical symptomatology in the context of a very rare 13042G>A de novo mutation and with an emphasis on changing phenotypic expression and pronounced, long-standing response to levetiracetam.
Ironing Out the Unconventional Mechanisms of Iron Acquisition and Gene Regulation in Chlamydia
Pokorzynski, Nick D.; Thompson, Christopher C.; Carabeo, Rey A.
2017-01-01
The obligate intracellular pathogen Chlamydia trachomatis, along with its close species relatives, is known to be strictly dependent upon the availability of iron. Deprivation of iron in vitro induces an aberrant morphological phenotype termed “persistence.” This persistent phenotype develops in response to various immunological and nutritional insults and may contribute to the development of sub-acute Chlamydia-associated chronic diseases in susceptible populations. Given the importance of iron to Chlamydia, relatively little is understood about its acquisition and its role in gene regulation in comparison to other iron-dependent bacteria. Analysis of the genome sequences of a variety of chlamydial species hinted at the involvement of unconventional mechanisms, being that Chlamydia lack many conventional systems of iron homeostasis that are highly conserved in other bacteria. Herein we detail past and current research regarding chlamydial iron biology in an attempt to provide context to the rapid progress of the field in recent years. We aim to highlight recent discoveries and innovations that illuminate the strategies involved in chlamydial iron homeostasis, including the vesicular mode of acquiring iron from the intracellular environment, and the identification of a putative iron-dependent transcriptional regulator that is synthesized as a fusion with a ABC-type transporter subunit. These recent findings, along with the noted absence of iron-related homologs, indicate that Chlamydia have evolved atypical approaches to the problem of iron homeostasis, reinvigorating research into the iron biology of this pathogen. PMID:28951853
Lichtenstein, J L L; Pruitt, J N
2015-06-01
Frequency-dependent selection is thought to be a major contributor to the maintenance of phenotypic variation. We tested for frequency-dependent selection on contrasting behavioural strategies, termed here 'personalities', in three species of social spiders, each thought to represent an independent evolutionary origin of sociality. The evolution of sociality in the spider genus Anelosimus is consistently met with the emergence of two temporally stable discrete personality types: an 'aggressive' or 'docile' form. We assessed how the foraging success of each phenotype changes as a function of its representation within a colony. We did this by creating experimental colonies of various compositions (six aggressives, three aggressives and three dociles, one aggressive and five dociles, six dociles), maintaining them in a common garden for 3 weeks, and tracking the mass gained by individuals of either phenotype. We found that both the docile and aggressive phenotypes experienced their greatest mass gain in mixed colonies of mostly docile individuals. However, the performance of both phenotypes decreased as the frequency of the aggressive phenotype increased. Nearly identical patterns of phenotype-specific frequency dependence were recovered in all three species. Naturally occurring colonies of these spiders exhibit mixtures dominated by the docile phenotype, suggesting that these spiders may have evolved mechanisms to maintain the compositions that maximize the success of the colony without compromising the expected reproductive output of either phenotype. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Development, maternal effects, and behavioral plasticity.
Mateo, Jill M
2014-11-01
Behavioral, hormonal, and genetic processes interact reciprocally, and differentially affect behavior depending on ecological and social contexts. When individual differences are favored either between or within environments, developmental plasticity would be expected. Parental effects provide a rich source for phenotypic plasticity, including anatomical, physiological, and behavioral traits, because parents respond to dynamic cues in their environment and can, in turn, influence offspring accordingly. Because these inter-generational changes are plastic, parents can respond rapidly to changing environments and produce offspring whose phenotypes are well suited for current conditions more quickly than occurs with changes based on evolution through natural selection. I review studies on developmental plasticity and resulting phenotypes in Belding's ground squirrels (Urocitellus beldingi), an ideal species, given the competing demands to avoid predation while gaining sufficient weight to survive an upcoming hibernation, and the need for young to learn their survival behaviors. I will show how local environments and perceived risk of predation influence not only foraging, vigilance, and anti-predator behaviors, but also adrenal functioning, which may be especially important for obligate hibernators that face competing demands on the storage and mobilization of glucose. Mammalian behavioral development is sensitive to the social and physical environments provided by mothers during gestation and lactation. Therefore, maternal effects on offspring's phenotypes, both positive and negative, can be particularly strong. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
van Minnen, Agnes; Becker, Eni S.; van Oostrom, Iris; Speckens, Anne; Rinck, Mike; Vrijsen, Janna N.
2018-01-01
Depression risk genes in combination with childhood events have been associated with biased processing as an intermediate phenotype for depression. The aim of the present conceptual replication study was to investigate the role of biased automatic approach-avoidance tendencies as a candidate intermediate phenotype for depression, in the context of genes (5-HTTLPR polymorphism) and childhood trauma. A naturalistic remitted depressed patients sample (N = 209) performed an Approach-Avoidance Task (AAT) with facial expressions (angry, sad, happy and neutral). Childhood trauma was assessed with a questionnaire. Genotype groups were created based on allele frequency: LaLa versus S/Lg-carriers. The latter is associated with depression risk. We found that remitted S/Lg-carriers who experienced childhood trauma automatically avoided sad facial expressions relatively more than LaLa homozygotes with childhood trauma. Remitted LaLa-carriers who had not experienced childhood trauma, avoided sad faces relatively more than LaLa homozygotes with childhood trauma. We did not find a main effect of childhood trauma, nor differential avoidance of any of the other facial expressions. Although tentative, the results suggest that automatic approach-avoidance tendencies for disorder-congruent materials may be a fitting intermediate phenotype for depression. The specific pattern of tendencies, and the relation to depression, may depend on the genetic risk profile and childhood trauma, but replication is needed before firm conclusions can be drawn. PMID:29547643
Stargardt disease: towards developing a model to predict phenotype.
Heathfield, Laura; Lacerda, Miguel; Nossek, Christel; Roberts, Lisa; Ramesar, Rajkumar S
2013-10-01
Stargardt disease is an ABCA4-associated retinopathy, which generally follows an autosomal recessive inheritance pattern and is a frequent cause of macular degeneration in childhood. ABCA4 displays significant allelic heterogeneity whereby different mutations can cause retinal diseases with varying severity and age of onset. A genotype-phenotype model has been proposed linking ABCA4 mutations, purported ABCA4 functional protein activity and severity of disease, as measured by degree of visual loss and the age of onset. It has, however, been difficult to verify this model statistically in observational studies, as the number of individuals sharing any particular mutation combination is typically low. Seven founder mutations have been identified in a large number of Caucasian Afrikaner patients in South Africa, making it possible to test the genotype-phenotype model. A generalised linear model was developed to predict and assess the relative pathogenic contribution of the seven mutations to the age of onset of Stargardt disease. It is shown that the pathogenicity of an individual mutation can differ significantly depending on the genetic context in which it occurs. The results reported here may be used to identify suitable candidates for inclusion in clinical trials, as well as guide the genetic counselling of affected individuals and families.
Stargardt Disease: towards developing a model to predict phenotype
Heathfield, Laura; Lacerda, Miguel; Nossek, Christel; Roberts, Lisa; Ramesar, Rajkumar S
2013-01-01
Stargardt disease is an ABCA4-associated retinopathy, which generally follows an autosomal recessive inheritance pattern and is a frequent cause of macular degeneration in childhood. ABCA4 displays significant allelic heterogeneity whereby different mutations can cause retinal diseases with varying severity and age of onset. A genotype–phenotype model has been proposed linking ABCA4 mutations, purported ABCA4 functional protein activity and severity of disease, as measured by degree of visual loss and the age of onset. It has, however, been difficult to verify this model statistically in observational studies, as the number of individuals sharing any particular mutation combination is typically low. Seven founder mutations have been identified in a large number of Caucasian Afrikaner patients in South Africa, making it possible to test the genotype–phenotype model. A generalised linear model was developed to predict and assess the relative pathogenic contribution of the seven mutations to the age of onset of Stargardt disease. It is shown that the pathogenicity of an individual mutation can differ significantly depending on the genetic context in which it occurs. The results reported here may be used to identify suitable candidates for inclusion in clinical trials, as well as guide the genetic counselling of affected individuals and families. PMID:23695285
Doebeli, Michael; Ispolatov, Iaroslav
2010-04-23
The mechanisms for the origin and maintenance of biological diversity are not fully understood. It is known that frequency-dependent selection, generating advantages for rare types, can maintain genetic variation and lead to speciation, but in models with simple phenotypes (that is, low-dimensional phenotype spaces), frequency dependence needs to be strong to generate diversity. However, we show that if the ecological properties of an organism are determined by multiple traits with complex interactions, the conditions needed for frequency-dependent selection to generate diversity are relaxed to the point where they are easily satisfied in high-dimensional phenotype spaces. Mathematically, this phenomenon is reflected in properties of eigenvalues of quadratic forms. Because all living organisms have at least hundreds of phenotypes, this casts the potential importance of frequency dependence for the origin and maintenance of diversity in a new light.
Estimating the Effect of Competition on Trait Evolution Using Maximum Likelihood Inference.
Drury, Jonathan; Clavel, Julien; Manceau, Marc; Morlon, Hélène
2016-07-01
Many classical ecological and evolutionary theoretical frameworks posit that competition between species is an important selective force. For example, in adaptive radiations, resource competition between evolving lineages plays a role in driving phenotypic diversification and exploration of novel ecological space. Nevertheless, current models of trait evolution fit to phylogenies and comparative data sets are not designed to incorporate the effect of competition. The most advanced models in this direction are diversity-dependent models where evolutionary rates depend on lineage diversity. However, these models still treat changes in traits in one branch as independent of the value of traits on other branches, thus ignoring the effect of species similarity on trait evolution. Here, we consider a model where the evolutionary dynamics of traits involved in interspecific interactions are influenced by species similarity in trait values and where we can specify which lineages are in sympatry. We develop a maximum likelihood based approach to fit this model to combined phylogenetic and phenotypic data. Using simulations, we demonstrate that the approach accurately estimates the simulated parameter values across a broad range of parameter space. Additionally, we develop tools for specifying the biogeographic context in which trait evolution occurs. In order to compare models, we also apply these biogeographic methods to specify which lineages interact sympatrically for two diversity-dependent models. Finally, we fit these various models to morphological data from a classical adaptive radiation (Greater Antillean Anolis lizards). We show that models that account for competition and geography perform better than other models. The matching competition model is an important new tool for studying the influence of interspecific interactions, in particular competition, on phenotypic evolution. More generally, it constitutes a step toward a better integration of interspecific interactions in many ecological and evolutionary processes. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
A histone H3K36 chromatin switch coordinates DNA double-strand break repair pathway choice.
Pai, Chen-Chun; Deegan, Rachel S; Subramanian, Lakxmi; Gal, Csenge; Sarkar, Sovan; Blaikley, Elizabeth J; Walker, Carol; Hulme, Lydia; Bernhard, Eric; Codlin, Sandra; Bähler, Jürg; Allshire, Robin; Whitehall, Simon; Humphrey, Timothy C
2014-06-09
DNA double-strand break (DSB) repair is a highly regulated process performed predominantly by non-homologous end joining (NHEJ) or homologous recombination (HR) pathways. How these pathways are coordinated in the context of chromatin is unclear. Here we uncover a role for histone H3K36 modification in regulating DSB repair pathway choice in fission yeast. We find Set2-dependent H3K36 methylation reduces chromatin accessibility, reduces resection and promotes NHEJ, while antagonistic Gcn5-dependent H3K36 acetylation increases chromatin accessibility, increases resection and promotes HR. Accordingly, loss of Set2 increases H3K36Ac, chromatin accessibility and resection, while Gcn5 loss results in the opposite phenotypes following DSB induction. Further, H3K36 modification is cell cycle regulated with Set2-dependent H3K36 methylation peaking in G1 when NHEJ occurs, while Gcn5-dependent H3K36 acetylation peaks in S/G2 when HR prevails. These findings support an H3K36 chromatin switch in regulating DSB repair pathway choice.
Phenotypic Variation and FMRP Levels in Fragile X
ERIC Educational Resources Information Center
Loesch, Danuta Z.; Huggins, Richard M.; Hagerman, Randi J.
2004-01-01
Data on the relationships between cognitive and physical phenotypes, and a deficit of fragile X mental retardation 1 (FMR1) gene-specific protein product, FMRP, are presented and discussed in context with earlier findings. The previously unpublished results obtained, using standard procedures of regression and correlations, showed highly…
Cortez, IbDanelo; Bulavin, Dmitry V.; Wu, Ping; McGrath, Erica L; Cunningham, Kathryn A; Wakamiya, Maki; Papaconstantinou, John; Dineley, Kelly T
2018-01-01
A major aspect of mammalian aging is the decline in functional competence of many self-renewing cell types, including adult-born neuronal precursors. Since age-related senescence of self-renewal occurs simultaneously with chronic up-regulation of the p38MAPKalpha (p38α) signaling pathway, we used the dominant negative mouse model for attenuated p38α activity (DN-p38αAF/+ ) in which Thr180 and Tyr182 are mutated (T→A/Y→F) to prevent phosphorylation activation (DN-p38αAF/+) and kinase activity. As a result, aged DN-p38αAF/+ mice are resistant to age-dependent decline in proliferation and regeneration of several peripheral tissue progenitors when compared to wild-type littermates. Aging is the major risk factor for non-inherited forms of Alzheimer’s disease (AD); environmental and genetic risk factors that accelerate the senescence phenotype are thought to contribute to an individual’s relative risk. In the present study, we evaluated aged DN-p38αAF/+ and wildtype littermates in a series of behavioral paradigms to test if p38α mutant mice exhibit altered baseline abnormalities in neurological reflexes, locomotion, anxiety-like behavior, and age-dependent cognitive decline. While aged DN-p38αAF/+ and wildtype littermates appear equal in all tested baseline neurological and behavioral parameters, DN-p38αAF/+ exhibit superior context discrimination fear conditioning. Context discrimination is a cognitive task that is supported by proliferation and differentiation of adult-born neurons in the dentate gyrus of the hippocampus. Consistent with enhanced context discrimination in aged DN-p38αAF/+, we discovered enhanced production of adult-born neurons in the dentate gyrus of DN-p38αAF/+ mice compared to wildtype littermates. Our findings support the notion that p38α inhibition has therapeutic utility in aging diseases that affect cognition, such as AD. PMID:27765672
Cortez, IbDanelo; Bulavin, Dmitry V; Wu, Ping; McGrath, Erica L; Cunningham, Kathryn A; Wakamiya, Maki; Papaconstantinou, John; Dineley, Kelly T
2017-03-30
A major aspect of mammalian aging is the decline in functional competence of many self-renewing cell types, including adult-born neuronal precursors. Since age-related senescence of self-renewal occurs simultaneously with chronic up-regulation of the p38MAPKalpha (p38α) signaling pathway, we used the dominant negative mouse model for attenuated p38α activity (DN-p38α AF/+ ) in which Thr180 and Tyr182 are mutated (T→A/Y→F) to prevent phosphorylation activation (DN-p38α AF/+ ) and kinase activity. As a result, aged DN-p38α AF/+ mice are resistant to age-dependent decline in proliferation and regeneration of several peripheral tissue progenitors when compared to wild-type littermates. Aging is the major risk factor for non-inherited forms of Alzheimer's disease (AD); environmental and genetic risk factors that accelerate the senescence phenotype are thought to contribute to an individual's relative risk. In the present study, we evaluated aged DN-p38α AF/+ and wildtype littermates in a series of behavioral paradigms to test if p38α mutant mice exhibit altered baseline abnormalities in neurological reflexes, locomotion, anxiety-like behavior, and age-dependent cognitive decline. While aged DN-p38α AF/+ and wildtype littermates appear equal in all tested baseline neurological and behavioral parameters, DN-p38α AF/+ exhibit superior context discrimination fear conditioning. Context discrimination is a cognitive task that is supported by proliferation and differentiation of adult-born neurons in the dentate gyrus of the hippocampus. Consistent with enhanced context discrimination in aged DN-p38α AF/+ , we discovered enhanced production of adult-born neurons in the dentate gyrus of DN-p38α AF/+ mice compared to wildtype littermates. Our findings support the notion that p38α inhibition has therapeutic utility in aging diseases that affect cognition, such as AD. Copyright © 2016 Elsevier B.V. All rights reserved.
Frequency-dependent sexual selection.
O'Donald, P; Majerus, M E
1988-07-06
Sexual selection by female choice is expected to give rise to a frequency-dependent sexual advantage in favour of preferred male phenotypes: the rarer the preferred phenotypes, the more often they are chosen as mates. This 'rare-male advantage' can maintain a polymorphism when two or more phenotypes are mated preferentially: each phenotype gains an advantage when it is rarer than the others; no preferred phenotype can then be lost from the population. Expression of preference may be complete or partial. In models of complete preference, females with a preference always mate preferentially. Models of partial preference are more realistic: in these models, the probability that a female mates preferentially depends on the frequency with which she encounters the males she prefers. Two different 'encounter models' of partial preference have been derived: the O'Donald model and the Charlesworth model. The encounter models contain the complete preference model as a limiting case. In this paper, the Charlesworth model is generalized to allow for female preference of more than one male phenotype. Levels of frequency dependence can then be compared in the O'Donald and Charlesworth models. The complete preference model and both encounter models are formulated in the same genetical terms of preferences for dominant and recessive male phenotypes. Polymorphic equilibria and conditions for stability are derived for each of the three models. The models are then fitted to data of frequencies of matings observed in experiments with the two-spot ladybird. The complete preference model gives as good a fit as the encounter models to the data of these and other experiments. The O'Donald and Charlesworth encounter models are shown to produce a very similar frequency-dependent relation. Generally, as females become less choosy, they express their preference with more dependence on male frequency, whereas the resulting selection of the males becomes less frequency dependent. More choosy females are more constant in expressing their preference, producing greater frequency dependence in the selection of the males.
Optimal level of inbreeding in the common lizard.
Richard, M; Losdat, S; Lecomte, J; de Fraipont, M; Clobert, J
2009-08-07
Mate choice with regard to genetic similarity has been rarely considered as a dynamic process. We examined this possibility in breeding populations of the common lizard (Lacerta vivipara) kept for several years in semi-natural conditions. We investigated whether they displayed a pattern of mate choice according to the genetic similarity and whether it was context-dependent. Mate choice depended on genetic similarity with the partner and also on age and condition. There was no systematic avoidance of inbreeding. Females of intermediate ages, more monogamous, did not mate with genetically similar partners, whereas younger and older females, more polyandrous, did but highest clutch proportions were associated with intermediate values of pair-relatedness. These results indicate dynamic mate choice, suggesting that individuals of different phenotypes select their partners in different ways according to their genetic similarity. We consider our results in the light of diverse and apparently contradictory theories concerning genetic compatibility, and particularly, optimal inbreeding and inclusive fitness.
NIBBS-search for fast and accurate prediction of phenotype-biased metabolic systems.
Schmidt, Matthew C; Rocha, Andrea M; Padmanabhan, Kanchana; Shpanskaya, Yekaterina; Banfield, Jill; Scott, Kathleen; Mihelcic, James R; Samatova, Nagiza F
2012-01-01
Understanding of genotype-phenotype associations is important not only for furthering our knowledge on internal cellular processes, but also essential for providing the foundation necessary for genetic engineering of microorganisms for industrial use (e.g., production of bioenergy or biofuels). However, genotype-phenotype associations alone do not provide enough information to alter an organism's genome to either suppress or exhibit a phenotype. It is important to look at the phenotype-related genes in the context of the genome-scale network to understand how the genes interact with other genes in the organism. Identification of metabolic subsystems involved in the expression of the phenotype is one way of placing the phenotype-related genes in the context of the entire network. A metabolic system refers to a metabolic network subgraph; nodes are compounds and edges labels are the enzymes that catalyze the reaction. The metabolic subsystem could be part of a single metabolic pathway or span parts of multiple pathways. Arguably, comparative genome-scale metabolic network analysis is a promising strategy to identify these phenotype-related metabolic subsystems. Network Instance-Based Biased Subgraph Search (NIBBS) is a graph-theoretic method for genome-scale metabolic network comparative analysis that can identify metabolic systems that are statistically biased toward phenotype-expressing organismal networks. We set up experiments with target phenotypes like hydrogen production, TCA expression, and acid-tolerance. We show via extensive literature search that some of the resulting metabolic subsystems are indeed phenotype-related and formulate hypotheses for other systems in terms of their role in phenotype expression. NIBBS is also orders of magnitude faster than MULE, one of the most efficient maximal frequent subgraph mining algorithms that could be adjusted for this problem. Also, the set of phenotype-biased metabolic systems output by NIBBS comes very close to the set of phenotype-biased subgraphs output by an exact maximally-biased subgraph enumeration algorithm ( MBS-Enum ). The code (NIBBS and the module to visualize the identified subsystems) is available at http://freescience.org/cs/NIBBS.
NIBBS-Search for Fast and Accurate Prediction of Phenotype-Biased Metabolic Systems
Padmanabhan, Kanchana; Shpanskaya, Yekaterina; Banfield, Jill; Scott, Kathleen; Mihelcic, James R.; Samatova, Nagiza F.
2012-01-01
Understanding of genotype-phenotype associations is important not only for furthering our knowledge on internal cellular processes, but also essential for providing the foundation necessary for genetic engineering of microorganisms for industrial use (e.g., production of bioenergy or biofuels). However, genotype-phenotype associations alone do not provide enough information to alter an organism's genome to either suppress or exhibit a phenotype. It is important to look at the phenotype-related genes in the context of the genome-scale network to understand how the genes interact with other genes in the organism. Identification of metabolic subsystems involved in the expression of the phenotype is one way of placing the phenotype-related genes in the context of the entire network. A metabolic system refers to a metabolic network subgraph; nodes are compounds and edges labels are the enzymes that catalyze the reaction. The metabolic subsystem could be part of a single metabolic pathway or span parts of multiple pathways. Arguably, comparative genome-scale metabolic network analysis is a promising strategy to identify these phenotype-related metabolic subsystems. Network Instance-Based Biased Subgraph Search (NIBBS) is a graph-theoretic method for genome-scale metabolic network comparative analysis that can identify metabolic systems that are statistically biased toward phenotype-expressing organismal networks. We set up experiments with target phenotypes like hydrogen production, TCA expression, and acid-tolerance. We show via extensive literature search that some of the resulting metabolic subsystems are indeed phenotype-related and formulate hypotheses for other systems in terms of their role in phenotype expression. NIBBS is also orders of magnitude faster than MULE, one of the most efficient maximal frequent subgraph mining algorithms that could be adjusted for this problem. Also, the set of phenotype-biased metabolic systems output by NIBBS comes very close to the set of phenotype-biased subgraphs output by an exact maximally-biased subgraph enumeration algorithm ( MBS-Enum ). The code (NIBBS and the module to visualize the identified subsystems) is available at http://freescience.org/cs/NIBBS. PMID:22589706
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ha, Jung Min; Yun, Sung Ji; Kim, Young Whan
Mammalian target of rapamycin complex (mTORC) regulates various cellular processes including proliferation, growth, migration and differentiation. In this study, we showed that mTORC1 regulates platelet-derived growth factor (PDGF)-induced phenotypic conversion of vascular smooth muscle cells (VSMCs). Stimulation of contractile VSMCs with PDGF significantly reduced the expression of contractile marker proteins in a time- and dose-dependent manner. In addition, angiotensin II (AngII)-induced contraction of VSMCs was completely blocked by the stimulation of VSMCs with PDGF. PDGF-dependent suppression of VSMC marker gene expression was significantly blocked by inhibition of phosphatidylinositol 3-kinase (PI3K), extracellular signal-regulated kinase (ERK), and mTOR whereas inhibition of p38more » MAPK had no effect. In particular, inhibition of mTORC1 by rapamycin or by silencing of Raptor significantly blocked the PDGF-dependent phenotypic change of VSMCs whereas silencing of Rictor had no effect. In addition, loss of AngII-dependent contraction by PDGF was significantly retained by silencing of Raptor. Inhibition of mTORC1 by rapamycin or by silencing of Raptor significantly blocked PDGF-induced proliferation of VSMCs. Taken together, we suggest that mTORC1 plays an essential role in PDGF-dependent phenotypic changes of VSMCs. - Graphical abstract: Regulation of VSMC phenotype by PDGF-dependent activation of mTORC1. - Highlights: • The expression of contractile marker proteins was reduced by PDGF stimulation. • PDGF-dependent phenotypic conversion of VSMCs was blocked by inhibition of mTOR. • PDGF-induced proliferation of VSMCs was attenuated by inhibition of mTORC1. • mTORC1 plays a critical role in PDGF-dependent phenotypic conversion of VSMCs.« less
SNJ-1945, a calpain inhibitor, protects SH-SY5Y cells against MPP+ and rotenone
Knaryan, Varduhi H.; Samantaray, Supriti; Sookyoung, Park; Azuma, Mitsuyoshi; Inoue, Jun; Banik, Naren L.
2014-01-01
Complex pathophysiology of Parkinson’s disease (PD) involves multiple CNS cell types. Degeneration in spinal cord neurons alongside brain has been shown to be involved in PD and evidenced in experimental parkinsonism. However, the mechanisms of these degenerative pathways are not well understood. In order to unravel these mechanisms SH-SY5Y neuroblastoma cells were differentiated into dopaminergic and cholinergic phenotypes respectively and used as cell culture model following exposure to two parkinsonian neurotoxicants MPP+ and rotenone. SNJ-1945, a cell-permeable calpain inhibitor was tested for its neuroprotective efficacy. MPP+ and rotenone dose-dependently elevated the levels of intracellular free Ca2+ and induced a concomitant rise in the levels of active calpain. SNJ-1945 pre-treatment significantly protected cell viability and preserved cellular morphology following MPP+ and rotenone exposure. The neurotoxicants elevated the levels of reactive oxygen species (ROS) more profoundly in SH-SY5Y cells differentiated into dopaminergic phenotype, and this effect could be attenuated with SNJ-1945 pre-treatment. In contrast, significant levels of inflammatory mediators (cyclooxygenase-2, Cox-2 and cleaved p10 fragment of caspase-1) were upregulated in the cholinergic phenotype, which could be dose-dependently attenuated by the calpain inhibitor. Overall, SNJ-1945 was efficacious against MPP+ or rotenone-induced ROS generation, inflammatory mediators, and proteolysis. A post-treatment regimen of SNJ-1945 was also examined in cells and partial protection was attained with calpain inhibitor administration 1–3 h after exposure to MPP+ or rotenone. Taken together these results indicate that calpain inhibition is a valid target for protection against parkinsonian neurotoxicants, and SNJ-1945 is an efficacious calpain inhibitor in this context. PMID:24341912
Verdon, Megan; Morrison, R S; Hemsworth, P H
2018-05-01
This experiment examined the effects of group composition on sow aggressive behaviour and welfare. Over 6 time replicates, 360 sows (parity 1-6) were mixed into groups (10 sows per pen, 1.8 m 2 /sow) composed of animals that were predicted to be aggressive (n = 18 pens) or groups composed of animals that were randomly selected (n = 18 pens). Predicted aggressive sows were selected based on a model-pig test that has been shown to be related to the aggressive behaviour of parity 2 sows when subsequently mixed in groups. Measurements were taken on aggression delivered post-mixing, and aggression delivered around feeding, fresh skin injuries and plasma cortisol concentrations at days 2 and 24 post-mixing. Live weight gain, litter size (born alive, total born, stillborn piglets), and farrowing rate were also recorded. Manipulating the group composition based on predicted sow aggressiveness had no effect (P > 0.05) on sow aggression delivered at mixing or around feeding, fresh injuries, cortisol, weight gain from day 2 to day 24, farrowing rate, or litter size. The lack of treatment effects in the present experiment could be attributed to (1) a failure of the model-pig test to predict aggression in older sows in groups, or (2) the dependence of the expression of the aggressive phenotype on factors such as social experience and characteristics (e.g., physical size and aggressive phenotype) of pen mates. This research draws attention to the intrinsic difficulties associated with predicting behaviour across contexts, particularly when the behaviour is highly dependent on interactions with conspecifics, and highlights the social complexities involved in the presentation of a behavioural phenotype. Copyright © 2018 Elsevier B.V. All rights reserved.
Retinoblastoma function is essential for establishing lung epithelial quiescence after injury.
Mason-Richie, Nicole A; Mistry, Meenakshi J; Gettler, Caitlin A; Elayyadi, Asmaa; Wikenheiser-Brokamp, Kathryn A
2008-06-01
The retinoblastoma gene product (RB) regulates cell cycle, quiescence, and survival in a cell type-dependent and environment-dependent manner. RB function is critical in the pulmonary epithelium, as evidenced by nearly universal RB inactivation in lung cancer and increased lung cancer risk in persons with germline RB gene mutations. Lung carcinomas occur in the context of epithelial remodeling induced by cytotoxic damage. Whereas the role of RB in development and normal organ homeostasis has been extensively studied, RB function in the context of cellular injury and repair has remained largely unexplored. In the current studies, the RB gene was selectively deleted in the respiratory epithelium of the mouse. Although RB was not required for establishing or maintaining quiescence during lung homeostasis, RB was essential for establishing quiescence during epithelial repair after injury. Notably, aberrant cell cycle progression was sustained for 9 months after injury in RB-deficient lungs. Prenatal and postnatal RB ablation had similar effects, providing evidence that timing of RB loss was not critical to the outcome and that the injury-induced phenotype was not secondary to compensatory alterations occurring during development. These data show that RB is essential for repair of the respiratory epithelium after cytotoxic damage and support a critical unique role for RB in the context of epithelial remodeling after injury. Because human cancers are associated with chronic cellular damage, these findings have important new implications for RB-mediated tumor suppression.
The Yin and Yang of Innate Lymphoid Cells in Cancer.
Carrega, Paolo; Campana, Stefania; Bonaccorsi, Irene; Ferlazzo, Guido
2016-11-01
The recent appreciation of novel subsets of innate lymphoid cells (ILCs) as important regulators of tissue homeostasis, inflammation and repair, raise questions regarding the presence and role of these cells in cancer tissues. In addition to natural killer and fetal lymphoid tissue inducer (LTi) cells, the ILC family comprises non-cytolytic, cytokine-producing cells that are classified into ILC1, ILC2 and ILC3 based on phenotypic and functional characteristics. Differently from natural killer cells, which are the prototypical members of ILC1 and whose role in tumors is better established, the involvement of other ILC subsets in cancer progression or resistance is still fuzzy and in several instances controversial, since current studies indicate both context-dependent beneficial or pathogenic effects. Here, we review the current knowledge regarding the involvement of these novel ILC subsets in the context of tumor immunology, highlighting how ILC subsets might behave either as friends or foes. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.
Asynchrony of senescence among phenotypic traits in a wild mammal population
Hayward, Adam D.; Moorad, Jacob; Regan, Charlotte E.; Berenos, Camillo; Pilkington, Jill G.; Pemberton, Josephine M.; Nussey, Daniel H.
2015-01-01
The degree to which changes in lifespan are coupled to changes in senescence in different physiological systems and phenotypic traits is a central question in biogerontology. It is underpinned by deeper biological questions about whether or not senescence is a synchronised process, or whether levels of synchrony depend on species or environmental context. Understanding how natural selection shapes patterns of synchrony in senescence across physiological systems and phenotypic traits demands the longitudinal study of many phenotypes under natural conditions. Here, we examine the patterns of age-related variation in late adulthood in a wild population of Soay sheep (Ovis aries) that have been the subject of individual-based monitoring for thirty years. We examined twenty different phenotypic traits in both males and females, encompassing vital rates (survival and fecundity), maternal reproductive performance (offspring birth weight, birth date and survival), male rutting behaviour, home range measures, parasite burdens, and body mass. We initially quantified age-related variation in each trait having controlled for annual variation in the environment, among-individual variation and selective disappearance effects. We then standardised our age-specific trait means and tested whether age trajectories could be meaningfully grouped according to sex or the type of trait. Whilst most traits showed age-related declines in later life, we found striking levels of asynchrony both within and between the sexes. Of particular note, female fecundity and reproductive performance declined with age, but male annual reproductive success did not. We also discovered that whilst home range size and quality decline with age in females, home range size increases with age in males. Our findings highlight the complexity of phenotypic ageing under natural conditions and, along with emerging data from other wild populations and laboratory models, suggest that the long-standing hypothesis within evolutionary biology that fitness-related traits should senesce in a synchronous manner is seriously flawed. PMID:26277618
Predictable Phenotypes of Antibiotic Resistance Mutations.
Knopp, M; Andersson, D I
2018-05-15
Antibiotic-resistant bacteria represent a major threat to our ability to treat bacterial infections. Two factors that determine the evolutionary success of antibiotic resistance mutations are their impact on resistance level and the fitness cost. Recent studies suggest that resistance mutations commonly show epistatic interactions, which would complicate predictions of their stability in bacterial populations. We analyzed 13 different chromosomal resistance mutations and 10 host strains of Salmonella enterica and Escherichia coli to address two main questions. (i) Are there epistatic interactions between different chromosomal resistance mutations? (ii) How does the strain background and genetic distance influence the effect of chromosomal resistance mutations on resistance and fitness? Our results show that the effects of combined resistance mutations on resistance and fitness are largely predictable and that epistasis remains rare even when up to four mutations were combined. Furthermore, a majority of the mutations, especially target alteration mutations, demonstrate strain-independent phenotypes across different species. This study extends our understanding of epistasis among resistance mutations and shows that interactions between different resistance mutations are often predictable from the characteristics of the individual mutations. IMPORTANCE The spread of antibiotic-resistant bacteria imposes an urgent threat to public health. The ability to forecast the evolutionary success of resistant mutants would help to combat dissemination of antibiotic resistance. Previous studies have shown that the phenotypic effects (fitness and resistance level) of resistance mutations can vary substantially depending on the genetic context in which they occur. We conducted a broad screen using many different resistance mutations and host strains to identify potential epistatic interactions between various types of resistance mutations and to determine the effect of strain background on resistance phenotypes. Combinations of several different mutations showed a large amount of phenotypic predictability, and the majority of the mutations displayed strain-independent phenotypes. However, we also identified a few outliers from these patterns, illustrating that the choice of host organism can be critically important when studying antibiotic resistance mutations. Copyright © 2018 Knopp and Andersson.
Improving Microbial Genome Annotations in an Integrated Database Context
Chen, I-Min A.; Markowitz, Victor M.; Chu, Ken; Anderson, Iain; Mavromatis, Konstantinos; Kyrpides, Nikos C.; Ivanova, Natalia N.
2013-01-01
Effective comparative analysis of microbial genomes requires a consistent and complete view of biological data. Consistency regards the biological coherence of annotations, while completeness regards the extent and coverage of functional characterization for genomes. We have developed tools that allow scientists to assess and improve the consistency and completeness of microbial genome annotations in the context of the Integrated Microbial Genomes (IMG) family of systems. All publicly available microbial genomes are characterized in IMG using different functional annotation and pathway resources, thus providing a comprehensive framework for identifying and resolving annotation discrepancies. A rule based system for predicting phenotypes in IMG provides a powerful mechanism for validating functional annotations, whereby the phenotypic traits of an organism are inferred based on the presence of certain metabolic reactions and pathways and compared to experimentally observed phenotypes. The IMG family of systems are available at http://img.jgi.doe.gov/. PMID:23424620
Redefining meaningful age groups in the context of disease.
Geifman, Nophar; Cohen, Raphael; Rubin, Eitan
2013-12-01
Age is an important factor when considering phenotypic changes in health and disease. Currently, the use of age information in medicine is somewhat simplistic, with ages commonly being grouped into a small number of crude ranges reflecting the major stages of development and aging, such as childhood or adolescence. Here, we investigate the possibility of redefining age groups using the recently developed Age-Phenome Knowledge-base (APK) that holds over 35,000 literature-derived entries describing relationships between age and phenotype. Clustering of APK data suggests 13 new, partially overlapping, age groups. The diseases that define these groups suggest that the proposed divisions are biologically meaningful. We further show that the number of different age ranges that should be considered depends on the type of disease being evaluated. This finding was further strengthened by similar results obtained from clinical blood measurement data. The grouping of diseases that share a similar pattern of disease-related reports directly mirrors, in some cases, medical knowledge of disease-age relationships. In other cases, our results may be used to generate new and reasonable hypotheses regarding links between diseases.
Macquet, Anne-Claire; Stanton, Neville A
2014-05-01
Athletes and their coach interpret the training situations differently and this can have important implications for the development of an elite athlete's performance. It is argued that, from a schema-theoretic perspective, the difference in these interpretations needs to be better understood. A post-performance, self-confrontation, interview was conducted with a number of athletes and their coaches. The interviews revealed differences between the athlete and their coach in the information they are aware of. In comparison with athletes, coaches more frequently compared the phenotype with genotype schemata rather than just describing the phenotype schemata. Results suggest SA information elements showed some common ground but also revealed some important differences between the athlete and coach. The awareness was directed externally towards the environment and internally, towards the individual, depending on his/her role. The investigation showed that the schemata used to 'frame' the information elements were different, but compatible, between athlete and coach. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.
The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent.
Pawlett, Mark; Ritz, Karl; Dorey, Robert A; Rocks, Sophie; Ramsden, Jeremy; Harris, Jim A
2013-02-01
Nanosized zero-valent iron (nZVI) is an effective land remediation tool, but there remains little information regarding its impact upon and interactions with the soil microbial community. nZVI stabilised with sodium carboxymethyl cellulose was applied to soils of three contrasting textures and organic matter contents to determine impacts on soil microbial biomass, phenotypic (phospholipid fatty acid (PLFA)), and functional (multiple substrate-induced respiration (MSIR)) profiles. The nZVI significantly reduced microbial biomass by 29 % but only where soil was amended with 5 % straw. Effects of nZVI on MSIR profiles were only evident in the clay soils and were independent of organic matter content. PLFA profiling indicated that the soil microbial community structure in sandy soils were apparently the most, and clay soils the least, vulnerable to nZVI suggesting a protective effect imparted by clays. Evidence of nZVI bactericidal effects on Gram-negative bacteria and a potential reduction of arbuscular mycorrhizal fungi are presented. Data imply that the impact of nZVI on soil microbial communities is dependent on organic matter content and soil mineral type. Thereby, evaluations of nZVI toxicity on soil microbial communities should consider context. The reduction of AM fungi following nZVI application may have implications for land remediation.
LaBarge, Mark A; Parvin, Bahram; Lorens, James B
2014-01-01
The field of bioengineering has pioneered the application of new precision fabrication technologies to model the different geometric, physical or molecular components of tissue microenvironments on solid-state substrata. Tissue engineering approaches building on these advances are used to assemble multicellular mimetic-tissues where cells reside within defined spatial contexts. The functional responses of cells in fabricated microenvironments has revealed a rich interplay between the genome and extracellular effectors in determining cellular phenotypes, and in a number of cases has revealed the dominance of microenvironment over genotype. Precision bioengineered substrata are limited to a few aspects, whereas cell/tissue-derived microenvironments have many undefined components. Thus introducing a computational module may serve to integrate these types of platforms to create reasonable models of drug responses in human tissues. This review discusses how combinatorial microenvironment microarrays and other biomimetic microenvironments have revealed emergent properties of cells in particular microenvironmental contexts, the platforms that can measure phenotypic changes within those contexts, and the computational tools that can unify the microenvironment-imposed functional phenotypes with underlying constellations of proteins and genes. Ultimately we propose that a merger of these technologies will enable more accurate pre-clinical drug discovery. PMID:24582543
Kampmann, Martin; Bassik, Michael C.; Weissman, Jonathan S.
2013-01-01
A major challenge of the postgenomic era is to understand how human genes function together in normal and disease states. In microorganisms, high-density genetic interaction (GI) maps are a powerful tool to elucidate gene functions and pathways. We have developed an integrated methodology based on pooled shRNA screening in mammalian cells for genome-wide identification of genes with relevant phenotypes and systematic mapping of all GIs among them. We recently demonstrated the potential of this approach in an application to pathways controlling the susceptibility of human cells to the toxin ricin. Here we present the complete quantitative framework underlying our strategy, including experimental design, derivation of quantitative phenotypes from pooled screens, robust identification of hit genes using ultra-complex shRNA libraries, parallel measurement of tens of thousands of GIs from a single double-shRNA experiment, and construction of GI maps. We describe the general applicability of our strategy. Our pooled approach enables rapid screening of the same shRNA library in different cell lines and under different conditions to determine a range of different phenotypes. We illustrate this strategy here for single- and double-shRNA libraries. We compare the roles of genes for susceptibility to ricin and Shiga toxin in different human cell lines and reveal both toxin-specific and cell line-specific pathways. We also present GI maps based on growth and ricin-resistance phenotypes, and we demonstrate how such a comparative GI mapping strategy enables functional dissection of physical complexes and context-dependent pathways. PMID:23739767
Drawnel, Faye Marie; Zhang, Jitao David; Küng, Erich; Aoyama, Natsuyo; Benmansour, Fethallah; Araujo Del Rosario, Andrea; Jensen Zoffmann, Sannah; Delobel, Frédéric; Prummer, Michael; Weibel, Franziska; Carlson, Coby; Anson, Blake; Iacone, Roberto; Certa, Ulrich; Singer, Thomas; Ebeling, Martin; Prunotto, Marco
2017-05-18
Today, novel therapeutics are identified in an environment which is intrinsically different from the clinical context in which they are ultimately evaluated. Using molecular phenotyping and an in vitro model of diabetic cardiomyopathy, we show that by quantifying pathway reporter gene expression, molecular phenotyping can cluster compounds based on pathway profiles and dissect associations between pathway activities and disease phenotypes simultaneously. Molecular phenotyping was applicable to compounds with a range of binding specificities and triaged false positives derived from high-content screening assays. The technique identified a class of calcium-signaling modulators that can reverse disease-regulated pathways and phenotypes, which was validated by structurally distinct compounds of relevant classes. Our results advocate for application of molecular phenotyping in early drug discovery, promoting biological relevance as a key selection criterion early in the drug development cascade. Copyright © 2017 Elsevier Ltd. All rights reserved.
Malyshev, Igor; Malyshev, Yuri
2015-01-01
Macrophages play a key role in immunity. In this review, we consider the traditional notion of macrophage plasticity, data that do not fit into existing concepts, and a hypothesis for existence of a new switch macrophage phenotype. Depending on the microenvironment, macrophages can reprogram their phenotype toward the proinflammatory M1 phenotype or toward the anti-inflammatory M2 phenotype. Macrophage reprogramming involves well-coordinated changes in activities of signalling and posttranslational mechanisms. Macrophage reprogramming is provided by JNK-, PI3K/Akt-, Notch-, JAK/STAT-, TGF-β-, TLR/NF-κB-, and hypoxia-dependent pathways. Posttranscriptional regulation is based on micro-mRNA. We have hypothesized that, in addition to the M1 and M2 phenotypes, an M3 switch phenotype exists. This switch phenotype responds to proinflammatory stimuli with reprogramming towards the anti-inflammatory M2 phenotype or, contrarily, it responds to anti-inflammatory stimuli with reprogramming towards the proinflammatory M1 phenotype. We have found signs of such a switch phenotype in lung diseases. Understanding the mechanisms of macrophage reprogramming will assist in the selection of new therapeutic targets for correction of impaired immunity. PMID:26366410
ERIC Educational Resources Information Center
Woodcock, K.; Oliver, C.; Humphreys, G.
2009-01-01
Background: The behavioural phenotypes of Prader-Willi (PWS) and Fragile-X (FraX) syndromes both comprise repetitive behaviours with differences between the profiles. In this study we investigated the context and antecedents to the repetitive behaviours and the association with other behavioural phenotypic characteristics in order to generate…
The evolution of transcriptional regulation in eukaryotes
NASA Technical Reports Server (NTRS)
Wray, Gregory A.; Hahn, Matthew W.; Abouheif, Ehab; Balhoff, James P.; Pizer, Margaret; Rockman, Matthew V.; Romano, Laura A.
2003-01-01
Gene expression is central to the genotype-phenotype relationship in all organisms, and it is an important component of the genetic basis for evolutionary change in diverse aspects of phenotype. However, the evolution of transcriptional regulation remains understudied and poorly understood. Here we review the evolutionary dynamics of promoter, or cis-regulatory, sequences and the evolutionary mechanisms that shape them. Existing evidence indicates that populations harbor extensive genetic variation in promoter sequences, that a substantial fraction of this variation has consequences for both biochemical and organismal phenotype, and that some of this functional variation is sorted by selection. As with protein-coding sequences, rates and patterns of promoter sequence evolution differ considerably among loci and among clades for reasons that are not well understood. Studying the evolution of transcriptional regulation poses empirical and conceptual challenges beyond those typically encountered in analyses of coding sequence evolution: promoter organization is much less regular than that of coding sequences, and sequences required for the transcription of each locus reside at multiple other loci in the genome. Because of the strong context-dependence of transcriptional regulation, sequence inspection alone provides limited information about promoter function. Understanding the functional consequences of sequence differences among promoters generally requires biochemical and in vivo functional assays. Despite these challenges, important insights have already been gained into the evolution of transcriptional regulation, and the pace of discovery is accelerating.
Converging evidence for an impact of a functional NOS gene variation on anxiety-related processes
Haaker, Jan; Glotzbach-Schoon, Evelyn; Schümann, Dirk; Andreatta, Marta; Mechias, Marie-Luise; Raczka, Karolina; Gartmann, Nina; Büchel, Christian; Mühlberger, Andreas; Pauli, Paul; Reif, Andreas; Kalisch, Raffael; Lonsdorf, Tina B.
2016-01-01
Abstract Being a complex phenotype with substantial heritability, anxiety and related phenotypes are characterized by a complex polygenic basis. Thereby, one candidate pathway is neuronal nitric oxide (NO) signaling, and accordingly, rodent studies have identified NO synthase (NOS-I), encoded by NOS1, as a strong molecular candidate for modulating anxiety and hippocampus-dependent learning processes. Using a multi-dimensional and -methodological replication approach, we investigated the impact of a functional promoter polymorphism (NOS1-ex1f-VNTR) on human anxiety-related phenotypes in a total of 1019 healthy controls in five different studies. Homozygous carriers of the NOS1-ex1f short-allele displayed enhanced trait anxiety, worrying and depression scores. Furthermore, short-allele carriers were characterized by increased anxious apprehension during contextual fear conditioning. While autonomous measures (fear-potentiated startle) provided only suggestive evidence for a modulatory role of NOS1-ex1f-VNTR on (contextual) fear conditioning processes, neural activation at the amygdala/anterior hippocampus junction was significantly increased in short-allele carriers during context conditioning. Notably, this could not be attributed to morphological differences. In accordance with data from a plethora of rodent studies, we here provide converging evidence from behavioral, subjective, psychophysiological and neuroimaging studies in large human cohorts that NOS-I plays an important role in anxious apprehension but provide only limited evidence for a role in (contextual) fear conditioning. PMID:26746182
Bodily, Jason M.; Mehta, Kavi P. M.; Cruz, Linda; Meyers, Craig; Laimins, Laimonis A.
2011-01-01
Human papillomaviruses (HPVs) are the causative agents of several important genital and other mucosal cancers. The HPV16 E7 gene encodes a viral oncogene that is necessary for the continued growth of cancer cells, but its role in the normal, differentiation-dependent life cycle of the virus is not fully understood. The function of E7 in the viral life cycle was examined using a series of mutations of E7 created in the context of the complete HPV16 genome. The effect of these E7 mutations on key events of the viral life cycle, including immortalization, episomal maintenance, late promoter activation, and infectious virion synthesis, was examined. Our studies show that the pRb binding domain is indispensable for early viral activities, whereas the C-terminal zinc finger domain contributed primarily to very late events. Mutations of the casein kinase II phosphorylation site caused a complex phenotype involving both the function of E7 protein and a cis element necessary for the activation of the late promoter, identifying for the first time a promoter element important for late promoter function in the context of the viral genome. All mutant genomes tested showed reduced viral titers following growth in organotypic raft cultures. These studies clarify the role of E7 as a regulator of late events in the differentiation-dependent HPV life cycle. PMID:21697473
Effects of Clonal Reproduction on Evolutionary Lag and Evolutionary Rescue.
Orive, Maria E; Barfield, Michael; Fernandez, Carlos; Holt, Robert D
2017-10-01
Evolutionary lag-the difference between mean and optimal phenotype in the current environment-is of keen interest in light of rapid environmental change. Many ecologically important organisms have life histories that include stage structure and both sexual and clonal reproduction, yet how stage structure and clonality interplay to govern a population's rate of evolution and evolutionary lag is unknown. Effects of clonal reproduction on mean phenotype partition into two portions: one that is phenotype dependent, and another that is genotype dependent. This partitioning is governed by the association between the nonadditive genetic plus random environmental component of phenotype of clonal offspring and their parents. While clonality slows phenotypic evolution toward an optimum, it can dramatically increase population survival after a sudden step change in optimal phenotype. Increased adult survival slows phenotypic evolution but facilitates population survival after a step change; this positive effect can, however, be lost given survival-fecundity trade-offs. Simulations indicate that the benefits of increased clonality under environmental change greatly depend on the nature of that change: increasing population persistence under a step change while decreasing population persistence under a continuous linear change requiring de novo variation. The impact of clonality on the probability of persistence for species in a changing world is thus inexorably linked to the temporal texture of the change they experience.
Iron overload in myelodysplastic syndromes (MDS).
Gattermann, Norbert
2018-01-01
Iron overload (IOL) starts to develop in MDS patients before they become transfusion-dependent because ineffective erythropoiesis suppresses hepcidin production in the liver and thus leads to unrestrained intestinal iron uptake. However, the most important cause of iron overload in MDS is chronic transfusion therapy. While transfusion dependency by itself is a negative prognostic factor reflecting poor bone marrow function, the ensuing transfusional iron overload has an additional dose-dependent negative impact on the survival of patients with lower risk MDS. Cardiac dysfunction appears to be important in this context, as a consequence of chronic anemia, age-related cardiac comorbidity, and iron overload. Another potential problem is iron-related endothelial dysfunction. There is some evidence that with increasing age, high circulating iron levels worsen the atherosclerotic phenotype. Transfusional IOL also appears to aggravate bone marrow failure in MDS, through unfavorable effects on mesenchymal stromal cells as well a hematopoietic cells, particularly erythroid precursors. Patient series and clinical trials have shown that the iron chelators deferoxamine and deferasirox can improve hematopoiesis in a minority of transfusion-dependent patients. Analyses of registry data suggest that iron chelation provides a survival benefit for patients with MDS, but data from a prospective randomized clinical trial are still lacking.
Where There is Smoke There is Fear-Impaired Contextual Inhibition of Conditioned Fear in Smokers.
Haaker, Jan; Lonsdorf, Tina B; Schümann, Dirk; Bunzeck, Nico; Peters, Jan; Sommer, Tobias; Kalisch, Raffael
2017-07-01
The odds-ratio of smoking is elevated in populations with neuropsychiatric diseases, in particular in the highly prevalent diagnoses of post-traumatic stress and anxiety disorders. Yet, the association between smoking and a key dimensional phenotype of these disorders-maladaptive deficits in fear learning and fear inhibition-is unclear. We therefore investigated acquisition and memory of fear and fear inhibition in healthy smoking and non-smoking participants (N=349, 22% smokers). We employed a well validated paradigm of context-dependent fear and safety learning (day 1) including a memory retrieval on day 2. During fear learning, a geometrical shape was associated with an aversive electrical stimulation (classical fear conditioning, in danger context) and fear responses were extinguished within another context (extinction learning, in safe context). On day 2, the conditioned stimuli were presented again in both contexts, without any aversive stimulation. Autonomic physiological measurements of skin conductance responses as well as subjective evaluations of fear and expectancy of the aversive stimulation were acquired. We found that impairment of fear inhibition (extinction) in the safe context during learning (day 1) was associated with the amount of pack-years in smokers. During retrieval of fear memories (day 2), smokers showed an impairment of contextual (safety context-related) fear inhibition as compared with non-smokers. These effects were found in physiological as well as subjective measures of fear. We provide initial evidence that smokers as compared with non-smokers show an impairment of fear inhibition. We propose that smokers have a deficit in integrating contextual signs of safety, which is a hallmark of post-traumatic stress and anxiety disorders.
Bahreini, Amir; Li, Zheqi; Wang, Peilu; Levine, Kevin M; Tasdemir, Nilgun; Cao, Lan; Weir, Hazel M; Puhalla, Shannon L; Davidson, Nancy E; Stern, Andrew M; Chu, David; Park, Ben Ho; Lee, Adrian V; Oesterreich, Steffi
2017-05-23
Mutations in the estrogen receptor alpha (ERα) 1 gene (ESR1) are frequently detected in ER+ metastatic breast cancer, and there is increasing evidence that these mutations confer endocrine resistance in breast cancer patients with advanced disease. However, their functional role is not well-understood, at least in part due to a lack of ESR1 mutant models. Here, we describe the generation and characterization of genome-edited T47D and MCF7 breast cancer cell lines with the two most common ESR1 mutations, Y537S and D538G. Genome editing was performed using CRISPR and adeno-associated virus (AAV) technologies to knock-in ESR1 mutations into T47D and MCF7 cell lines, respectively. Various techniques were utilized to assess the activity of mutant ER, including transactivation, growth and chromatin-immunoprecipitation (ChIP) assays. The level of endocrine resistance was tested in mutant cells using a number of selective estrogen receptor modulators (SERMs) and degraders (SERDs). RNA sequencing (RNA-seq) was employed to study gene targets of mutant ER. Cells with ESR1 mutations displayed ligand-independent ER activity, and were resistant to several SERMs and SERDs, with cell line and mutation-specific differences with respect to magnitude of effect. The SERD AZ9496 showed increased efficacy compared to other drugs tested. Wild-type and mutant cell co-cultures demonstrated a unique evolution of mutant cells under estrogen deprivation and tamoxifen treatment. Transcriptome analysis confirmed ligand-independent regulation of ERα target genes by mutant ERα, but also identified novel target genes, some of which are involved in metastasis-associated phenotypes. Despite significant overlap in the ligand-independent genes between Y537S and D538G, the number of mutant ERα-target genes shared between the two cell lines was limited, suggesting context-dependent activity of the mutant receptor. Some genes and phenotypes were unique to one mutation within a given cell line, suggesting a mutation-specific effect. Taken together, ESR1 mutations in genome-edited breast cancer cell lines confer ligand-independent growth and endocrine resistance. These biologically relevant models can be used for further mechanistic and translational studies, including context-specific and mutation site-specific analysis of the ESR1 mutations.
Determining Multiple Sclerosis Phenotype from Electronic Medical Records.
Nelson, Richard E; Butler, Jorie; LaFleur, Joanne; Knippenberg, Kristin; C Kamauu, Aaron W; DuVall, Scott L
2016-12-01
Multiple sclerosis (MS), a central nervous system disease in which nerve signals are disrupted by scarring and demyelination, is classified into phenotypes depending on the patterns of cognitive or physical impairment progression: relapsing-remitting MS (RRMS), primary-progressive MS (PPMS), secondary-progressive MS (SPMS), or progressive-relapsing MS (PRMS). The phenotype is important in managing the disease and determining appropriate treatment. The ICD-9-CM code 340.0 is uninformative about MS phenotype, which increases the difficulty of studying the effects of phenotype on disease. To identify MS phenotype using natural language processing (NLP) techniques on progress notes and other clinical text in the electronic medical record (EMR). Patients with at least 2 ICD-9-CM codes for MS (340.0) from 1999 through 2010 were identified from nationwide EMR data in the Department of Veterans Affairs. Clinical experts were interviewed for possible keywords and phrases denoting MS phenotype in order to develop a data dictionary for NLP. For each patient, NLP was used to search EMR clinical notes, since the first MS diagnosis date for these keywords and phrases. Presence of phenotype-related keywords and phrases were analyzed in context to remove mentions that were negated (e.g., "not relapsing-remitting") or unrelated to MS (e.g., "RR" meaning "respiratory rate"). One thousand mentions of MS phenotype were validated, and all records of 150 patients were reviewed for missed mentions. There were 7,756 MS patients identified by ICD-9-CM code 340.0. MS phenotype was identified for 2,854 (36.8%) patients, with 1,836 (64.3%) of those having just 1 phenotype mentioned in their EMR clinical notes: 1,118 (39.2%) RRMS, 325 (11.4%) PPMS, 374 (13.1%) SPMS, and 19 (0.7%) PRMS. A total of 747 patients (26.2%) had 2 phenotypes, the most common being 459 patients (16.1%) with RRMS and SPMS. A total of 213 patients (7.5%) had 3 phenotypes, and 58 patients (2.0%) had 4 phenotypes mentioned in their EMR clinical notes. Positive predictive value of phenotype identification was 93.8% with sensitivity of 94.0%. Phenotype was documented for slightly more than one third of MS patients, an important but disappointing finding that sets a limit on studying the effects of phenotype on MS in general. However, for cases where the phenotype was documented, NLP accurately identified the phenotypes. Having multiple phenotypes documented is consistent with disease progression. The most common misidentification was because of ambiguity while clinicians were trying to determine phenotype. This study brings attention to the need for care providers to document MS phenotype more consistently and provides a solution for capturing phenotype from clinical text. This study was funded by Anolinx and F. Hoffman-La Roche. Nelson serves as a consultant for Anolinx. Kamauu is owner of Anolinx, which has received multiple research grants from pharmaceutical and biotechnology companies. LaFleur has received a Novartis grant for ongoing work. The views expressed in this article are those of the authors and do not necessarily reflect the position or policy of the Department of Veterans Affairs or the U.S. government. Study concept and design were contributed by Butler, LaFleur, Kamauu, DuVall, and Nelson. DuVall collected the data, and interpretation was performed by Nelson, DuVall, and Kamauu, along with Butler, LaFleur, and Knippenberg. The manuscript was written primarily by Nelson, along with Knippenberg and assisted by the other authors, and revised by Knippenberg, Nelson, and DuVall, along with the other authors.
Ewen-Campen, Ben; Mohr, Stephanie E; Hu, Yanhui; Perrimon, Norbert
2017-10-09
Single-gene knockout experiments can fail to reveal function in the context of redundancy, which is frequently observed among duplicated genes (paralogs) with overlapping functions. We discuss the complexity associated with studying paralogs and outline how recent advances in CRISPR will help address the "phenotype gap" and impact biomedical research. Copyright © 2017 Elsevier Inc. All rights reserved.
SNJ-1945, a calpain inhibitor, protects SH-SY5Y cells against MPP(+) and rotenone.
Knaryan, Varduhi H; Samantaray, Supriti; Park, Sookyoung; Azuma, Mitsuyoshi; Inoue, Jun; Banik, Naren L
2014-07-01
Complex pathophysiology of Parkinson's disease involves multiple CNS cell types. Degeneration in spinal cord neurons alongside brain has been shown to be involved in Parkinson's disease and evidenced in experimental parkinsonism. However, the mechanisms of these degenerative pathways are not well understood. To unravel these mechanisms SH-SY5Y neuroblastoma cells were differentiated into dopaminergic and cholinergic phenotypes, respectively, and used as cell culture model following exposure to two parkinsonian neurotoxicants MPP(+) and rotenone. SNJ-1945, a cell-permeable calpain inhibitor was tested for its neuroprotective efficacy. MPP(+) and rotenone dose-dependently elevated the levels of intracellular free Ca(2+) and induced a concomitant rise in the levels of active calpain. SNJ-1945 pre-treatment significantly protected cell viability and preserved cellular morphology following MPP(+) and rotenone exposure. The neurotoxicants elevated the levels of reactive oxygen species more profoundly in SH-SY5Y cells differentiated into dopaminergic phenotype, and this effect could be attenuated with SNJ-1945 pre-treatment. In contrast, significant levels of inflammatory mediators cyclooxygenase-2 (Cox-2 and cleaved p10 fragment of caspase-1) were up-regulated in the cholinergic phenotype, which could be dose-dependently attenuated by the calpain inhibitor. Overall, SNJ-1945 was efficacious against MPP(+) or rotenone-induced reactive oxygen species generation, inflammatory mediators, and proteolysis. A post-treatment regimen of SNJ-1945 was also examined in cells and partial protection was attained with calpain inhibitor administration 1-3 h after exposure to MPP(+) or rotenone. Taken together, these results indicate that calpain inhibition is a valid target for protection against parkinsonian neurotoxicants, and SNJ-1945 is an efficacious calpain inhibitor in this context. SH-SY5Y cells, differentiated as dopaminergic (TH positive) and cholinergic (ChAT positive), were used as in vitro models for Parkinson's disease. MPP+ and rotenone induced up-regulation of calpain, expression, and activity as a common mechanism of neurodegeneration. SNJ-1945, a novel calpain inhibitor, protected both the cell phenotypes against MPP+ and rotenone. © 2013 International Society for Neurochemistry.
Carr, Brian I.; Giannini, Edoardo G.; Farinati, Fabio; Ciccarese, Francesca; Rapaccini, Gian Ludovico; Marco, Maria Di; Benvegnù, Luisa; Zoli, Marco; Borzio, Franco; Caturelli, Eugenio; Chiaramonte, Maria; Trevisani, Franco
2014-01-01
Background Previous work has shown that 2 general processes contribute to hepatocellular cancer (HCC) prognosis. They are: a. liver damage, monitored by indices such as blood bilirubin, prothrombin time and AST; as well as b. tumor biology, monitored by indices such as tumor size, tumor number, presence of PVT and blood AFP levels. These 2 processes may affect one another, with prognostically significant interactions between multiple tumor and host parameters. These interactions form a context that provide personalization of the prognostic meaning of these factors for every patient. Thus, a given level of bilirubin or tumor diameter might have a different significance in different personal contexts. We previously applied Network Phenotyping Strategy (NPS) to characterize interactions between liver function indices of Asian HCC patients and recognized two clinical phenotypes, S and L, differing in tumor size and tumor nodule numbers. Aims To validate the applicability of the NPS-based HCC S/L classification on an independent European HCC cohort, for which survival information was additionally available. Methods Four sets of peripheral blood parameters, including AFP-platelets, derived from routine blood parameter levels and tumor indices from the ITA.LI.CA database, were analyzed using NPS, a graph-theory based approach, which compares personal patterns of complete relationships between clinical data values to reference patterns with significant association to disease outcomes. Results Without reference to the actual tumor sizes, patients were classified by NPS into 2 subgroups with S and L phenotypes. These two phenotypes were recognized using solely the HCC screening test results, consisting of eight common blood parameters, paired by their significant correlations, including an AFP-Platelets relationship. These trends were combined with patient age, gender and self-reported alcoholism into NPS personal patient profiles. We subsequently validated (using actual scan data) that patients in L phenotype group had 1.5x larger mean tumor masses relative to S, p=6×10−16. Importantly, with the new data, liver test pattern-identified S-phenotype patients had typically 1.7 × longer survival compared to L-phenotype. NPS integrated the liver, tumor and basic demographic factors. Cirrhosis associated thrombocytopenia was typical for smaller S-tumors. In L-tumor phenotype, typical platelet levels increased with the tumor mass. Hepatic inflammation and tumor factors contributed to more aggressive L tumors, with parenchymal destruction and shorter survival. Summary NPS provides integrative interpretation for HCC behavior, identifying two tumor and survival phenotypes by clinical parameter patterns. The NPS classifier is provided as an Excel tool. The NPS system shows the importance of considering each tumor marker and parameter in the total context of all the other parameters of an individual patient. PMID:25023357
The differential view of genotype–phenotype relationships
Orgogozo, Virginie; Morizot, Baptiste; Martin, Arnaud
2015-01-01
An integrative view of diversity and singularity in the living world requires a better understanding of the intricate link between genotypes and phenotypes. Here we re-emphasize the old standpoint that the genotype–phenotype (GP) relationship is best viewed as a connection between two differences, one at the genetic level and one at the phenotypic level. As of today, predominant thinking in biology research is that multiple genes interact with multiple environmental variables (such as abiotic factors, culture, or symbionts) to produce the phenotype. Often, the problem of linking genotypes and phenotypes is framed in terms of genotype and phenotype maps, and such graphical representations implicitly bring us away from the differential view of GP relationships. Here we show that the differential view of GP relationships is a useful explanatory framework in the context of pervasive pleiotropy, epistasis, and environmental effects. In such cases, it is relevant to view GP relationships as differences embedded into differences. Thinking in terms of differences clarifies the comparison between environmental and genetic effects on phenotypes and helps to further understand the connection between genotypes and phenotypes. PMID:26042146
Finding Our Way through Phenotypes
Deans, Andrew R.; Lewis, Suzanna E.; Huala, Eva; Anzaldo, Salvatore S.; Ashburner, Michael; Balhoff, James P.; Blackburn, David C.; Blake, Judith A.; Burleigh, J. Gordon; Chanet, Bruno; Cooper, Laurel D.; Courtot, Mélanie; Csösz, Sándor; Cui, Hong; Dahdul, Wasila; Das, Sandip; Dececchi, T. Alexander; Dettai, Agnes; Diogo, Rui; Druzinsky, Robert E.; Dumontier, Michel; Franz, Nico M.; Friedrich, Frank; Gkoutos, George V.; Haendel, Melissa; Harmon, Luke J.; Hayamizu, Terry F.; He, Yongqun; Hines, Heather M.; Ibrahim, Nizar; Jackson, Laura M.; Jaiswal, Pankaj; James-Zorn, Christina; Köhler, Sebastian; Lecointre, Guillaume; Lapp, Hilmar; Lawrence, Carolyn J.; Le Novère, Nicolas; Lundberg, John G.; Macklin, James; Mast, Austin R.; Midford, Peter E.; Mikó, István; Mungall, Christopher J.; Oellrich, Anika; Osumi-Sutherland, David; Parkinson, Helen; Ramírez, Martín J.; Richter, Stefan; Robinson, Peter N.; Ruttenberg, Alan; Schulz, Katja S.; Segerdell, Erik; Seltmann, Katja C.; Sharkey, Michael J.; Smith, Aaron D.; Smith, Barry; Specht, Chelsea D.; Squires, R. Burke; Thacker, Robert W.; Thessen, Anne; Fernandez-Triana, Jose; Vihinen, Mauno; Vize, Peter D.; Vogt, Lars; Wall, Christine E.; Walls, Ramona L.; Westerfeld, Monte; Wharton, Robert A.; Wirkner, Christian S.; Woolley, James B.; Yoder, Matthew J.; Zorn, Aaron M.; Mabee, Paula
2015-01-01
Despite a large and multifaceted effort to understand the vast landscape of phenotypic data, their current form inhibits productive data analysis. The lack of a community-wide, consensus-based, human- and machine-interpretable language for describing phenotypes and their genomic and environmental contexts is perhaps the most pressing scientific bottleneck to integration across many key fields in biology, including genomics, systems biology, development, medicine, evolution, ecology, and systematics. Here we survey the current phenomics landscape, including data resources and handling, and the progress that has been made to accurately capture relevant data descriptions for phenotypes. We present an example of the kind of integration across domains that computable phenotypes would enable, and we call upon the broader biology community, publishers, and relevant funding agencies to support efforts to surmount today's data barriers and facilitate analytical reproducibility. PMID:25562316
Finding our way through phenotypes.
Deans, Andrew R; Lewis, Suzanna E; Huala, Eva; Anzaldo, Salvatore S; Ashburner, Michael; Balhoff, James P; Blackburn, David C; Blake, Judith A; Burleigh, J Gordon; Chanet, Bruno; Cooper, Laurel D; Courtot, Mélanie; Csösz, Sándor; Cui, Hong; Dahdul, Wasila; Das, Sandip; Dececchi, T Alexander; Dettai, Agnes; Diogo, Rui; Druzinsky, Robert E; Dumontier, Michel; Franz, Nico M; Friedrich, Frank; Gkoutos, George V; Haendel, Melissa; Harmon, Luke J; Hayamizu, Terry F; He, Yongqun; Hines, Heather M; Ibrahim, Nizar; Jackson, Laura M; Jaiswal, Pankaj; James-Zorn, Christina; Köhler, Sebastian; Lecointre, Guillaume; Lapp, Hilmar; Lawrence, Carolyn J; Le Novère, Nicolas; Lundberg, John G; Macklin, James; Mast, Austin R; Midford, Peter E; Mikó, István; Mungall, Christopher J; Oellrich, Anika; Osumi-Sutherland, David; Parkinson, Helen; Ramírez, Martín J; Richter, Stefan; Robinson, Peter N; Ruttenberg, Alan; Schulz, Katja S; Segerdell, Erik; Seltmann, Katja C; Sharkey, Michael J; Smith, Aaron D; Smith, Barry; Specht, Chelsea D; Squires, R Burke; Thacker, Robert W; Thessen, Anne; Fernandez-Triana, Jose; Vihinen, Mauno; Vize, Peter D; Vogt, Lars; Wall, Christine E; Walls, Ramona L; Westerfeld, Monte; Wharton, Robert A; Wirkner, Christian S; Woolley, James B; Yoder, Matthew J; Zorn, Aaron M; Mabee, Paula
2015-01-01
Despite a large and multifaceted effort to understand the vast landscape of phenotypic data, their current form inhibits productive data analysis. The lack of a community-wide, consensus-based, human- and machine-interpretable language for describing phenotypes and their genomic and environmental contexts is perhaps the most pressing scientific bottleneck to integration across many key fields in biology, including genomics, systems biology, development, medicine, evolution, ecology, and systematics. Here we survey the current phenomics landscape, including data resources and handling, and the progress that has been made to accurately capture relevant data descriptions for phenotypes. We present an example of the kind of integration across domains that computable phenotypes would enable, and we call upon the broader biology community, publishers, and relevant funding agencies to support efforts to surmount today's data barriers and facilitate analytical reproducibility.
Feng, Yan; Mitchison, Timothy J; Bender, Andreas; Young, Daniel W; Tallarico, John A
2009-07-01
Multi-parameter phenotypic profiling of small molecules provides important insights into their mechanisms of action, as well as a systems level understanding of biological pathways and their responses to small molecule treatments. It therefore deserves more attention at an early step in the drug discovery pipeline. Here, we summarize the technologies that are currently in use for phenotypic profiling--including mRNA-, protein- and imaging-based multi-parameter profiling--in the drug discovery context. We think that an earlier integration of phenotypic profiling technologies, combined with effective experimental and in silico target identification approaches, can improve success rates of lead selection and optimization in the drug discovery process.
Hodgins-Davis, Andrea; Adomas, Aleksandra B.; Warringer, Jonas; Townsend, Jeffrey P.
2012-01-01
Genetic variation for plastic phenotypes potentially contributes phenotypic variation to populations that can be selected during adaptation to novel ecological contexts. However, the basis and extent of plastic variation that manifests in diverse environments remains elusive. Here, we characterize copper reaction norms for mRNA abundance among five Saccharomyces cerevisiae strains to 1) describe population variation across the full range of ecologically relevant copper concentrations, from starvation to toxicity, and 2) to test the hypothesis that plastic networks exhibit increased population variation for gene expression. We find that although the vast majority of the variation is small in magnitude (considerably <2-fold), not just some, but most genes demonstrate variable expression across environments, across genetic backgrounds, or both. Plastically expressed genes included both genes regulated directly by copper-binding transcription factors Mac1 and Ace1 and genes indirectly responding to the downstream metabolic consequences of the copper gradient, particularly genes involved in copper, iron, and sulfur homeostasis. Copper-regulated gene networks exhibited more similar behavior within the population in environments where those networks have a large impact on fitness. Nevertheless, expression variation in genes like Cup1, important to surviving copper stress, was linked with variation in mitotic fitness and in the breadth of differential expression across the genome. By revealing a broader and deeper range of population variation, our results provide further evidence for the interconnectedness of genome-wide mRNA levels, their dependence on environmental context and genetic background, and the abundance of variation in gene expression that can contribute to future evolution. PMID:23019066
The Pleiotropic MET Receptor Network: Circuit Development and the Neural-Medical Interface of Autism
Eagleson, Kathie L.; Xie, Zhihui; Levitt, Pat
2016-01-01
People with autism spectrum disorder (ASD) and other neurodevelopmental disorders (NDDs) are behaviorally and medically heterogeneous. The combination of polygenicity and gene pleiotropy - the influence of one gene on distinct phenotypes - raises questions of how specific genes and their protein products interact to contribute to NDDs. A preponderance of evidence supports developmental and pathophysiological roles for the MET receptor tyrosine kinase, a multi-functional receptor that mediates distinct biological responses depending upon cell context. MET influences neuron architecture and synapse maturation in the forebrain, and regulates homeostasis in gastrointestinal and immune systems, both commonly disrupted in NDDs. Peak expression of synapse-enriched MET is conserved across rodent and primate forebrain, yet regional differences in primate neocortex are pronounced, with enrichment in circuits that participate in social information processing. A functional risk allele in the MET promoter, enriched in subgroups of children with ASD, reduces transcription and disrupts socially-relevant neural circuits structurally and functionally. In mice, circuit-specific deletion of Met causes distinct atypical behaviors. MET activation increases dendritic complexity and nascent synapse number, but synapse maturation requires reductions in MET. MET mediates its specific biological effects through different intracellular signaling pathways, and has a complex protein interactome that is enriched in ASD and other NDD candidates. The interactome is co-regulated in developing human neocortex. We suggest that a gene as pleiotropic and highly regulated as MET, together with its interactome, is biologically relevant in normal and pathophysiological contexts, impacting central and peripheral phenotypes that contribute to NDD risk and clinical symptoms. PMID:27837921
Labarge, Mark A; Parvin, Bahram; Lorens, James B
2014-04-01
The field of bioengineering has pioneered the application of new precision fabrication technologies to model the different geometric, physical or molecular components of tissue microenvironments on solid-state substrata. Tissue engineering approaches building on these advances are used to assemble multicellular mimetic-tissues where cells reside within defined spatial contexts. The functional responses of cells in fabricated microenvironments have revealed a rich interplay between the genome and extracellular effectors in determining cellular phenotypes and in a number of cases have revealed the dominance of microenvironment over genotype. Precision bioengineered substrata are limited to a few aspects, whereas cell/tissue-derived microenvironments have many undefined components. Thus, introducing a computational module may serve to integrate these types of platforms to create reasonable models of drug responses in human tissues. This review discusses how combinatorial microenvironment microarrays and other biomimetic microenvironments have revealed emergent properties of cells in particular microenvironmental contexts, the platforms that can measure phenotypic changes within those contexts, and the computational tools that can unify the microenvironment-imposed functional phenotypes with underlying constellations of proteins and genes. Ultimately we propose that a merger of these technologies will enable more accurate pre-clinical drug discovery. Copyright © 2014 Elsevier B.V. All rights reserved.
Rudolph, Marc D; Miranda-Domínguez, Oscar; Cohen, Alexandra O; Breiner, Kaitlyn; Steinberg, Laurence; Bonnie, Richard J; Scott, Elizabeth S; Taylor-Thompson, Kim; Chein, Jason; Fettich, Karla C; Richeson, Jennifer A; Dellarco, Danielle V; Galván, Adriana; Casey, B J; Fair, Damien A
2017-04-01
Developmental differences regarding decision making are often reported in the absence of emotional stimuli and without context, failing to explain why some individuals are more likely to have a greater inclination toward risk. The current study (N=212; 10-25y) examined the influence of emotional context on underlying functional brain connectivity over development and its impact on risk preference. Using functional imaging data in a neutral brain-state we first identify the "brain age" of a given individual then validate it with an independent measure of cortical thickness. We then show, on average, that "brain age" across the group during the teen years has the propensity to look younger in emotional contexts. Further, we show this phenotype (i.e. a younger brain age in emotional contexts) relates to a group mean difference in risk perception - a pattern exemplified greatest in young-adults (ages 18-21). The results are suggestive of a specified functional brain phenotype that relates to being at "risk to be risky." Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Rudolph, Marc D.; Miranda-Dominguez, Oscar; Cohen, Alexandra O.; Breiner, Kaitlyn; Steinberg, Laurence; Bonnie, Richard J.; Scott, Elizabeth S.; Taylor-Thompson, Kim A.; Chein, Jason; Fettich, Karla C.; Richeson, Jennifer A.; Dellarco, Danielle V.; Galván, Adriana; Casey, BJ; Fair, Damien A.
2017-01-01
Developmental differences regarding decision making are often reported in the absence of emotional stimuli and without context, failing to explain why some individuals are more likely to have a greater inclination toward risk. The current study (N=212; 10–25y) examined the influence of emotional context on underlying functional brain connectivity over development and its impact on risk preference. Using functional imaging data in a neutral brain-state we first identify the “brain age” of a given individual then validate it with an independent measure of cortical thickness. We then show, on average, that “brain age” across the group during the teen years has the propensity to look younger in emotional contexts. Further, we show this phenotype (i.e. a younger brain age in emotional contexts) relates to a group mean difference in risk perception – a pattern exemplified greatest in young-adults (ages 18–21). The results are suggestive of a specified functional brain phenotype that relates to being at “risk to be risky.” PMID:28279917
Phenex: ontological annotation of phenotypic diversity.
Balhoff, James P; Dahdul, Wasila M; Kothari, Cartik R; Lapp, Hilmar; Lundberg, John G; Mabee, Paula; Midford, Peter E; Westerfield, Monte; Vision, Todd J
2010-05-05
Phenotypic differences among species have long been systematically itemized and described by biologists in the process of investigating phylogenetic relationships and trait evolution. Traditionally, these descriptions have been expressed in natural language within the context of individual journal publications or monographs. As such, this rich store of phenotype data has been largely unavailable for statistical and computational comparisons across studies or integration with other biological knowledge. Here we describe Phenex, a platform-independent desktop application designed to facilitate efficient and consistent annotation of phenotypic similarities and differences using Entity-Quality syntax, drawing on terms from community ontologies for anatomical entities, phenotypic qualities, and taxonomic names. Phenex can be configured to load only those ontologies pertinent to a taxonomic group of interest. The graphical user interface was optimized for evolutionary biologists accustomed to working with lists of taxa, characters, character states, and character-by-taxon matrices. Annotation of phenotypic data using ontologies and globally unique taxonomic identifiers will allow biologists to integrate phenotypic data from different organisms and studies, leveraging decades of work in systematics and comparative morphology.
Exploring Genetic Attributions Underlying Radiotherapy-Induced Fatigue in Prostate Cancer Patients.
Hashemi, Sepehr; Fernandez Martinez, Juan Luis; Saligan, Leorey; Sonis, Stephen
2017-09-01
Despite numerous proposed mechanisms, no definitive pathophysiology underlying radiotherapy-induced fatigue (RIF) has been established. However, the dysregulation of a set of 35 genes was recently validated to predict development of fatigue in prostate cancer patients receiving radiotherapy. To hypothesize novel pathways, and provide genetic targets for currently proposed pathways implicated in RIF development through analysis of the previously validated gene set. The gene set was analyzed for all phenotypic attributions implicated in the phenotype of fatigue. Initially, a "directed" approach was used by querying specific fatigue-related sub-phenotypes against all known phenotypic attributions of the gene set. Then, an "undirected" approach, reviewing the entirety of the literature referencing the 35 genes, was used to increase analysis sensitivity. The dysregulated genes attribute to neural, immunological, mitochondrial, muscular, and metabolic pathways. In addition, certain genes suggest phenotypes not previously emphasized in the context of RIF, such as ionizing radiation sensitivity, DNA damage, and altered DNA repair frequency. Several genes also associated with prostate cancer depression, possibly emphasizing variable radiosensitivity by RIF-prone patients, which may have palliative care implications. Despite the relevant findings, many of the 35 RIF-predictive genes are poorly characterized, warranting their investigation. The implications of herein presented RIF pathways are purely theoretical until specific end-point driven experiments are conducted in more congruent contexts. Nevertheless, the presented attributions are informative, directing future investigation to definitively elucidate RIF's pathoetiology. This study demonstrates an arguably comprehensive method of approaching known differential expression underlying a complex phenotype, to correlate feasible pathophysiology. Copyright © 2017 American Academy of Hospice and Palliative Medicine. All rights reserved.
Proliferative reactive gliosis is compatible with glial metabolic support and neuronal function
2011-01-01
Background The response of mammalian glial cells to chronic degeneration and trauma is hypothesized to be incompatible with support of neuronal function in the central nervous system (CNS) and retina. To test this hypothesis, we developed an inducible model of proliferative reactive gliosis in the absence of degenerative stimuli by genetically inactivating the cyclin-dependent kinase inhibitor p27Kip1 (p27 or Cdkn1b) in the adult mouse and determined the outcome on retinal structure and function. Results p27-deficient Müller glia reentered the cell cycle, underwent aberrant migration, and enhanced their expression of intermediate filament proteins, all of which are characteristics of Müller glia in a reactive state. Surprisingly, neuroglial interactions, retinal electrophysiology, and visual acuity were normal. Conclusion The benign outcome of proliferative reactive Müller gliosis suggests that reactive glia display context-dependent, graded and dynamic phenotypes and that reactivity in itself is not necessarily detrimental to neuronal function. PMID:21985191
Optimal level of inbreeding in the common lizard
Richard, M.; Losdat, S.; Lecomte, J.; de Fraipont, M.; Clobert, J.
2009-01-01
Mate choice with regard to genetic similarity has been rarely considered as a dynamic process. We examined this possibility in breeding populations of the common lizard (Lacerta vivipara) kept for several years in semi-natural conditions. We investigated whether they displayed a pattern of mate choice according to the genetic similarity and whether it was context-dependent. Mate choice depended on genetic similarity with the partner and also on age and condition. There was no systematic avoidance of inbreeding. Females of intermediate ages, more monogamous, did not mate with genetically similar partners, whereas younger and older females, more polyandrous, did but highest clutch proportions were associated with intermediate values of pair-relatedness. These results indicate dynamic mate choice, suggesting that individuals of different phenotypes select their partners in different ways according to their genetic similarity. We consider our results in the light of diverse and apparently contradictory theories concerning genetic compatibility, and particularly, optimal inbreeding and inclusive fitness. PMID:19419985
A Conserved Role for Girdin in Basal Body Positioning and Ciliogenesis.
Nechipurenko, Inna V; Olivier-Mason, Anique; Kazatskaya, Anna; Kennedy, Julie; McLachlan, Ian G; Heiman, Maxwell G; Blacque, Oliver E; Sengupta, Piali
2016-09-12
Primary cilia are ubiquitous sensory organelles that mediate diverse signaling pathways. Cilia position on the cell surface is determined by the location of the basal body (BB) that templates the cilium. The mechanisms that regulate BB positioning in the context of ciliogenesis are largely unknown. Here we show that the conserved signaling and scaffolding protein Girdin localizes to the proximal regions of centrioles and regulates BB positioning and ciliogenesis in Caenorhabditis elegans sensory neurons and human RPE-1 cells. Girdin depletion alters localization of the intercentriolar linker and ciliary rootlet component rootletin, and rootletin knockdown in RPE-1 cells mimics Girdin-dependent phenotypes. C. elegans Girdin also regulates localization of the apical junction component AJM-1, suggesting that in nematodes Girdin may position BBs via rootletin- and AJM-1-dependent anchoring to the cytoskeleton and plasma membrane, respectively. Together, our results describe a conserved role for Girdin in BB positioning and ciliogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.
Ho, Beng-Choon; Wassink, Thomas H.; Ziebell, Steven; Andreasen, Nancy C.
2011-01-01
Marijuana exposure during the critical period of adolescent brain maturation may disrupt neuro-modulatory influences of endocannabinoids and increase schizophrenia susceptibility. Cannabinoid receptor 1 (CB1/CNR1) is the principal brain receptor mediating marijuana effects. No study to-date has systematically investigated the impact of CNR1 on quantitative phenotypic features in schizophrenia and inter-relationships with marijuana misuse. We genotyped 235 schizophrenia patients using 12 tag single nucleotide polymorphisms (tSNPs) that account for most of CB1 coding region genetic variability. Patients underwent a high-resolution anatomic brain magnetic resonance scan and cognitive assessment. Almost a quarter of the sample met DSM marijuana abuse (14%) or dependence (8%) criteria. Effects of CNR1 tSNPs and marijuana abuse/dependence on brain volumes and neurocognition were assessed using ANCOVA, including co-morbid alcohol/non-marijuana illicit drug misuse as covariates. Significant main effects of CNR1 tSNPs (rs7766029, rs12720071, and rs9450898) were found in white matter (WM) volumes. Patients with marijuana abuse/dependence had smaller fronto-temporal WM volumes than patients without heavy marijuana use. More interestingly, there were significant rs12720071 genotype-by-marijuana use interaction effects on WM volumes and neurocognitive impairment; suggestive of gene-environment interactions for conferring phenotypic abnormalities in schizophrenia. In this comprehensive evaluation of genetic variants distributed across the CB1 locus, CNR1 genetic polymorphisms were associated with WM brain volume variation among schizophrenia patients. Our findings suggest that heavy cannabis use in the context of specific CNR1 genotypes may contribute to greater WM volume deficits and cognitive impairment, which could in turn increase schizophrenia risk. PMID:21420833
Schuster-Gossler, K; Bilinski, P; Sado, T; Ferguson-Smith, A; Gossler, A
1998-06-01
We have isolated a novel mouse gene (Gtl2) from the site of a gene trap integration (Gtl2lacZ) that gave rise to developmentally regulated lacZ expression, and a dominant parental-origin-dependent phenotype. Heterozygous Gtl2lacZ mice that inherited the transgene from the father showed a proportionate dwarfism phenotype, whereas the penetrance and expressivity of the phenotype was strongly reduced in Gtl2lacZ mice that inherited the transgene from the mother. Gtl2 expression is highly similar to the beta-galactosidase staining pattern, and is down-regulated but not abolished in mice carrying the Gtl2lacZ insertion. In early postimplantation embryos, Gtl2 is expressed in the visceral yolk sac and embryonic ectoderm. During subsequent development and organogenesis, Gtl2 transcripts are abundant in the paraxial mesoderm closely correlated with myogenic differentiation, in parts of the central nervous system, and in the epithelial ducts of developing excretory organs. The Gtl2 gene gives rise to various differentially spliced transcripts, which contain multiple small open reading frames (ORF). However, none of the ATG codons of these ORFs is in the context of a strong Kozak consensus sequence for initiation of translation, suggesting that Gtl2 might function as an RNA. Nuclear Gtl2 RNA was detected in a temporally and spatially regulated manner, and partially processed Gtl2 transcripts were readily detected in Northern blot hybridizations of polyadenylated RNA, suggesting that primary Gtl2 transcripts are differently processed in various cell types during development. Gtl2 transcript levels are present in parthenogenic embryos but may be reduced, consistent with the pattern of inheritance of the Gtl2lacZ phenotype.
Brain imaging in the context of food perception and eating.
Hollmann, Maurice; Pleger, Burkhard; Villringer, Arno; Horstmann, Annette
2013-02-01
Eating behavior depends heavily on brain function. In recent years, brain imaging has proved to be a powerful tool to elucidate brain function and brain structure in the context of eating. In this review, we summarize recent findings in the fast growing body of literature in the field and provide an overview of technical aspects as well as the basic brain mechanisms identified with imaging. Furthermore, we highlight findings linking neural processing of eating-related stimuli with obesity. The consumption of food is based on a complex interplay between homeostatic and hedonic mechanisms. Several hormones influence brain activity to regulate food intake and interact with the brain's reward circuitry, which is partly mediated by dopamine signaling. Additionally, it was shown that food stimuli trigger cognitive control mechanisms that incorporate internal goals into food choice. The brain mechanisms observed in this context are strongly influenced by genetic factors, sex and personality traits. Overall, a complex picture arises from brain-imaging findings, because a multitude of factors influence human food choice. Although several key mechanisms have been identified, there is no comprehensive model that is able to explain the behavioral observations to date. Especially a careful characterization of patients according to genotypes and phenotypes could help to better understand the current and future findings in neuroimaging studies.
NASA Astrophysics Data System (ADS)
Kageyama, Daisuke; Anbutsu, Hisashi; Shimada, Masakazu; Fukatsu, Takema
2007-04-01
Symbiont-induced male-killing phenotypes have been found in a variety of insects. Conventionally, these phenotypes have been divided into two categories according to the timing of action: early male killing at embryonic stages and late male killing at late larval stages. In Drosophila species, endosymbiotic bacteria of the genus Spiroplasma have been known to cause early male killing. Here, we report that a spiroplasma strain normally causing early male killing also induces late male killing depending on the maternal host age: male-specific mortality of larvae and pupae was more frequently observed in the offspring of young females. As the lowest spiroplasma density and occasional male production were also associated with newly emerged females, we proposed the density-dependent hypothesis for the expression of early and late male-killing phenotypes. Our finding suggested that (1) early and late male-killing phenotypes can be caused by the same symbiont and probably by the same mechanism; (2) late male killing may occur as an attenuated expression of early male killing; (3) expression of early and late male-killing phenotypes may be dependent on the symbiont density, and thus, could potentially be affected by the host immunity and regulation; and (4) early male killing and late male killing could be alternative strategies adopted by microbial reproductive manipulators.
Redefining Aging in HIV Infection Using Phenotypes.
Stoff, David M; Goodkin, Karl; Jeste, Dilip; Marquine, Maria
2017-10-01
This article critically reviews the utility of "phenotypes" as behavioral descriptors in aging/HIV research that inform biological underpinnings and treatment development. We adopt a phenotypic redefinition of aging conceptualized within a broader context of HIV infection and of aging. Phenotypes are defined as dimensions of behavior, closely related to fundamental mechanisms, and, thus, may be more informative than chronological age. Primary emphasis in this review is given to comorbid aging and cognitive aging, though other phenotypes (i.e., disability, frailty, accelerated aging, successful aging) are also discussed in relation to comorbid aging and cognitive aging. The main findings that emerged from this review are as follows: (1) the phenotypes, comorbid aging and cognitive aging, are distinct from each other, yet overlapping; (2) associative relationships are the rule in HIV for comorbid and cognitive aging phenotypes; and (3) HIV behavioral interventions for both comorbid aging and cognitive aging have been limited. Three paths for research progress are identified for phenotype-defined aging/HIV research (i.e., clinical and behavioral specification, biological mechanisms, intervention targets), and some important research questions are suggested within each of these research paths.
PCAN: phenotype consensus analysis to support disease-gene association.
Godard, Patrice; Page, Matthew
2016-12-07
Bridging genotype and phenotype is a fundamental biomedical challenge that underlies more effective target discovery and patient-tailored therapy. Approaches that can flexibly and intuitively, integrate known gene-phenotype associations in the context of molecular signaling networks are vital to effectively prioritize and biologically interpret genes underlying disease traits of interest. We describe Phenotype Consensus Analysis (PCAN); a method to assess the consensus semantic similarity of phenotypes in a candidate gene's signaling neighborhood. We demonstrate that significant phenotype consensus (p < 0.05) is observable for ~67% of 4,549 OMIM disease-gene associations, using a combination of high quality String interactions + Metabase pathways and use Joubert Syndrome to demonstrate the ease with which a significant result can be interrogated to highlight discriminatory traits linked to mechanistically related genes. We advocate phenotype consensus as an intuitive and versatile method to aid disease-gene association, which naturally lends itself to the mechanistic deconvolution of diverse phenotypes. We provide PCAN to the community as an R package ( http://bioconductor.org/packages/PCAN/ ) to allow flexible configuration, extension and standalone use or integration to supplement existing gene prioritization workflows.
Pepper, A E; Seong-Kim, M; Hebst, S M; Ivey, K N; Kwak, S J; Broyles, D E
2001-09-01
The interaction of light perception with development is the subject of intensive genetic analysis in the model plant Arabidopsis. We performed genetic screens in low white light-a threshold condition in which photomorphogenetic signaling pathways are only partially active-for ethyl methane sulfonate-generated mutants with altered developmental phenotypes. Recessive mutants with exaggerated developmental responses were obtained in eight complementation groups designated shl for seedlings hyperresponsive to light. shl1, shl2, shl5, and shl3 shl4 (double mutant) seedlings showed limited or no phenotypic effects in darkness, but showed significantly enhanced inhibition of hypocotyl elongation in low-white, red, far-red, blue, and green light across a range of fluences. These results reflect developmental hyper-responsiveness to signals generated by both phytochrome and cryptochrome photoreceptors. The shl11 mutant retained significant phenotypic effects on hypocotyl length in both the phyA mutant and phyB mutant backgrounds but may be dependent on CRY1 for phenotypic expression in blue light. The shl2 phenotype was partially dependent on PHYB, PHYA, and CRY1 in red, far-red, and blue light, respectively. shl2 and, in particular, shl1 were partially dependent on HY5 activity for their light-hyperresponsive phenotypes. The SHL genes act (genetically) as light-dependent negative regulators of photomorphogenesis, possibly in a downstream signaling or developmental pathway that is shared by CRY1, PHYA, and PHYB and other photoreceptors (CRY2, PHYC, PHYD, and PHYE).
Promiscuity resolves constraints on social mate choice imposed by population viscosity.
While, Geoffrey M; Uller, Tobias; Bordogna, Genevieve; Wapstra, Erik
2014-02-01
Population viscosity can have major consequences for adaptive evolution, in particular for phenotypes involved in social interactions. For example, population viscosity increases the probability of mating with close kin, resulting in selection for mechanisms that circumvent the potential negative consequences of inbreeding. Female promiscuity is often suggested to be one such mechanism. However, whether avoidance of genetically similar partners is a major selective force shaping patterns of promiscuity remains poorly supported by empirical data. Here, we show (i) that fine-scale genetic structure constrains social mate choice in a pair-bonding lizard, resulting in individuals pairing with genetically similar individuals, (ii) that these constraints are circumvented by multiple mating with less related individuals and (iii) that this results in increased heterozygosity of offspring. Despite this, we did not detect any significant effects of heterozygosity on offspring or adult fitness or a strong relationship between pair relatedness and female multiple mating. We discuss these results within the context of incorporating the genetic context dependence of mating strategies into a holistic understanding of mating system evolution. © 2013 John Wiley & Sons Ltd.
Weemen, Mieke
2017-01-01
Somatic embryogenesis is an example of induced cellular totipotency, where embryos develop from vegetative cells rather than from gamete fusion. Somatic embryogenesis can be induced in vitro by exposing explants to growth regulators and/or stress treatments. The BABY BOOM (BBM) and LEAFY COTYLEDON1 (LEC1) and LEC2 transcription factors are key regulators of plant cell totipotency, as ectopic overexpression of either transcription factor induces somatic embryo formation from Arabidopsis (Arabidopsis thaliana) seedlings without exogenous growth regulators or stress treatments. Although LEC and BBM proteins regulate the same developmental process, it is not known whether they function in the same molecular pathway. We show that BBM transcriptionally regulates LEC1 and LEC2, as well as the two other LAFL genes, FUSCA3 (FUS3) and ABSCISIC ACID INSENSITIVE3 (ABI3). LEC2 and ABI3 quantitatively regulate BBM-mediated somatic embryogenesis, while FUS3 and LEC1 are essential for this process. BBM-mediated somatic embryogenesis is dose and context dependent, and the context-dependent phenotypes are associated with differential LAFL expression. We also uncover functional redundancy for somatic embryogenesis among other Arabidopsis BBM-like proteins and show that one of these proteins, PLETHORA2, also regulates LAFL gene expression. Our data place BBM upstream of other major regulators of plant embryo identity and totipotency. PMID:28830937
Implications of sex-specific selection for the genetic basis of disease.
Morrow, Edward H; Connallon, Tim
2013-12-01
Mutation and selection are thought to shape the underlying genetic basis of many common human diseases. However, both processes depend on the context in which they occur, such as environment, genetic background, or sex. Sex has widely known effects on phenotypic expression of genotype, but an analysis of how it influences the evolutionary dynamics of disease-causing variants has not yet been explored. We develop a simple population genetic model of disease susceptibility and evaluate it using a biologically plausible empirically based distribution of fitness effects among contributing mutations. The model predicts that alleles under sex-differential selection, including sexually antagonistic alleles, will disproportionately contribute to genetic variation for disease predisposition, thereby generating substantial sexual dimorphism in the genetic architecture of complex (polygenic) diseases. This is because such alleles evolve into higher population frequencies for a given effect size, relative to alleles experiencing equally strong purifying selection in both sexes. Our results provide a theoretical justification for expecting a sexually dimorphic genetic basis for variation in complex traits such as disease. Moreover, they suggest that such dimorphism is interesting - not merely something to control for - because it reflects the action of natural selection in molding the evolution of common disease phenotypes.
Domain Specificity of MAP3K Family Members, MLK and Tak1, for JNK Signaling in Drosophila
Stronach, Beth; Lennox, Ashley L.; Garlena, Rebecca A.
2014-01-01
A highly diverse set of protein kinases functions as early responders in the mitogen- and stress-activated protein kinase (MAPK/SAPK) signaling pathways. For instance, humans possess 14 MAPK kinase kinases (MAP3Ks) that activate Jun kinase (JNK) signaling downstream. A major challenge is to decipher the selective and redundant functions of these upstream MAP3Ks. Taking advantage of the relative simplicity of Drosophila melanogaster as a model system, we assessed MAP3K signaling specificity in several JNK-dependent processes during development and stress response. Our approach was to generate molecular chimeras between two MAP3K family members, the mixed lineage kinase, Slpr, and the TGF-β activated kinase, Tak1, which share 32% amino acid identity across the kinase domain but otherwise differ in sequence and domain structure, and then test the contributions of various domains for protein localization, complementation of mutants, and activation of signaling. We found that overexpression of the wild-type kinases stimulated JNK signaling in alternate contexts, so cells were capable of responding to both MAP3Ks, but with distinct outcomes. Relative to wild-type, the catalytic domain swaps compensated weakly or not at all, despite having a shared substrate, the JNK kinase Hep. Tak1 C-terminal domain-containing constructs were inhibitory in Tak1 signaling contexts, including tumor necrosis factor-dependent cell death and innate immune signaling; however, depressing antimicrobial gene expression did not necessarily cause phenotypic susceptibility to infection. These same constructs were neutral in the context of Slpr-dependent developmental signaling, reflecting differential subcellular protein localization and by inference, point of activation. Altogether, our findings suggest that the selective deployment of a particular MAP3K can be attributed in part to its inherent sequence differences, cellular localization, and binding partner availability. PMID:24429281
A Functional Imaging Study of Self-Regulatory Capacities in Persons Who Stutter
Liu, Jie; Wang, Zhishun; Huo, Yuankai; Davidson, Stephanie M.; Klahr, Kristin; Herder, Carl L.; Sikora, Chamonix O.; Peterson, Bradley S.
2014-01-01
Developmental stuttering is a disorder of speech fluency with an unknown pathogenesis. The similarity of its phenotype and natural history with other childhood neuropsychiatric disorders of frontostriatal pathology suggests that stuttering may have a closely related pathogenesis. We investigated in this study the potential involvement of frontostriatal circuits in developmental stuttering. We collected functional magnetic resonance imaging data from 46 persons with stuttering and 52 fluent controls during performance of the Simon Spatial Incompatibility Task. We examined differences between the two groups of blood-oxygen-level-dependent activation associated with two neural processes, the resolution of cognitive conflict and the context-dependent adaptation to changes in conflict. Stuttering speakers and controls did not differ on behavioral performance on the task. In the presence of conflict-laden stimuli, however, stuttering speakers activated more strongly the cingulate cortex, left anterior prefrontal cortex, right medial frontal cortex, left supplementary motor area, right caudate nucleus, and left parietal cortex. The magnitude of activation in the anterior cingulate cortex correlated inversely in stuttering speakers with symptom severity. Stuttering speakers also showed blunted activation during context-dependent adaptation in the left dorsolateral prefrontal cortex, a brain region that mediates cross-temporal contingencies. Frontostriatal hyper-responsivity to conflict resembles prior findings in other disorders of frontostriatal pathology, and therefore likely represents a general mechanism supporting functional compensation for an underlying inefficiency of neural processing in these circuits. The reduced activation of dorsolateral prefrontal cortex likely represents the inadequate readiness of stuttering speakers to execute a sequence of motor responses. PMID:24587104
Converging evidence for an impact of a functional NOS gene variation on anxiety-related processes.
Kuhn, Manuel; Haaker, Jan; Glotzbach-Schoon, Evelyn; Schümann, Dirk; Andreatta, Marta; Mechias, Marie-Luise; Raczka, Karolina; Gartmann, Nina; Büchel, Christian; Mühlberger, Andreas; Pauli, Paul; Reif, Andreas; Kalisch, Raffael; Lonsdorf, Tina B
2016-05-01
Being a complex phenotype with substantial heritability, anxiety and related phenotypes are characterized by a complex polygenic basis. Thereby, one candidate pathway is neuronal nitric oxide (NO) signaling, and accordingly, rodent studies have identified NO synthase (NOS-I), encoded by NOS1, as a strong molecular candidate for modulating anxiety and hippocampus-dependent learning processes. Using a multi-dimensional and -methodological replication approach, we investigated the impact of a functional promoter polymorphism (NOS1-ex1f-VNTR) on human anxiety-related phenotypes in a total of 1019 healthy controls in five different studies. Homozygous carriers of the NOS1-ex1f short-allele displayed enhanced trait anxiety, worrying and depression scores. Furthermore, short-allele carriers were characterized by increased anxious apprehension during contextual fear conditioning. While autonomous measures (fear-potentiated startle) provided only suggestive evidence for a modulatory role of NOS1-ex1f-VNTR on (contextual) fear conditioning processes, neural activation at the amygdala/anterior hippocampus junction was significantly increased in short-allele carriers during context conditioning. Notably, this could not be attributed to morphological differences. In accordance with data from a plethora of rodent studies, we here provide converging evidence from behavioral, subjective, psychophysiological and neuroimaging studies in large human cohorts that NOS-I plays an important role in anxious apprehension but provide only limited evidence for a role in (contextual) fear conditioning. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Wakschlag, Lauren S; Perlman, Susan B; Blair, R James; Leibenluft, Ellen; Briggs-Gowan, Margaret J; Pine, Daniel S
2018-02-01
The arrival of the Journal's 175th anniversary occurs at a time of recent advances in research, providing an ideal opportunity to present a neurodevelopmental roadmap for understanding, preventing, and treating psychiatric disorders. Such a roadmap is particularly relevant for early-childhood-onset neurodevelopmental conditions, which emerge when experience-dependent neuroplasticity is at its peak. Employing a novel developmental specification approach, this review places recent neurodevelopmental research on early childhood disruptive behavior within the historical context of the Journal. The authors highlight irritability and callous behavior as two core exemplars of early disruptive behavior. Both phenotypes can be reliably differentiated from normative variation as early as the first years of life. Both link to discrete pathophysiology: irritability with disruptions in prefrontal regulation of emotion, and callous behavior with abnormal fear processing. Each phenotype also possesses clinical and predictive utility. Based on a nomologic net of evidence, the authors conclude that early disruptive behavior is neurodevelopmental in nature and should be reclassified as an early-childhood-onset neurodevelopmental condition in DSM-5. Rapid translation from neurodevelopmental discovery to clinical application has transformative potential for psychiatric approaches of the millennium. [AJP at 175: Remembering Our Past As We Envision Our Future November 1938: Electroencephalographic Analyses of Behavior Problem Children Herbert Jasper and colleagues found that brain abnormalities revealed by EEG are a potential causal factor in childhood behavioral disorders. (Am J Psychiatry 1938; 95:641-658 )].
Muylaert, Isabella; Zhao, Zhiyuan; Andersson, Torbjörn; Elias, Per
2012-09-28
We have used oriS-dependent transient replication assays to search for species-specific interactions within the herpes simplex virus replisome. Hybrid replisomes derived from herpes simplex virus type 1 (HSV-1) and equine herpesvirus type 1 (EHV-1) failed to support DNA replication in cells. Moreover, the replisomes showed a preference for their cognate origin of replication. The results demonstrate that the herpesvirus replisome behaves as a molecular machine relying on functionally important interactions. We then searched for functional interactions in the replisome context by subjecting HSV-1 UL8 protein to extensive mutagenesis. 52 mutants were made by replacing single or clustered charged amino acids with alanines. Four mutants showed severe replication defects. Mutant A23 exhibited a lethal phenotype, and mutants A49, A52 and A53 had temperature-sensitive phenotypes. Mutants A49 and A53 did not interact with UL52 primase as determined by co-immunoprecipitation experiments. Using GFP-tagged UL8, we demonstrate that all mutants were unable to support formation of ICP8-containing nuclear replication foci. Extended mutagenesis suggested that a highly conserved motif corresponding to mutant A49 serves an important role for establishing a physical contact between UL8 and UL52. The replication-defective mutations affected conserved amino acids, and similar phenotypes were observed when the corresponding mutations were introduced into EHV-1 UL8.
IRS and TOR nutrient-signaling pathways act via juvenile hormone to influence honey bee caste fate.
Mutti, Navdeep S; Dolezal, Adam G; Wolschin, Florian; Mutti, Jasdeep S; Gill, Kulvinder S; Amdam, Gro V
2011-12-01
Regardless of genetic makeup, a female honey bee becomes a queen or worker depending on the food she receives as a larva. For decades, it has been known that nutrition and juvenile hormone (JH) signaling determine the caste fate of the individual bee. However, it is still largely unclear how these factors are connected. To address this question, we suppressed nutrient sensing by RNA interference (RNAi)-mediated gene knockdown of IRS (insulin receptor substrate) and TOR (target of rapamycin) in larvae reared on queen diet. The treatments affected several layers of organismal organization that could play a role in the response to differential nutrition between castes. These include transcript profiles, proteomic patterns, lipid levels, DNA methylation response and morphological features. Most importantly, gene knockdown abolished a JH peak that signals queen development and resulted in a worker phenotype. Application of JH rescued the queen phenotype in either knockdown, which demonstrates that the larval response to JH remains intact and can drive normal developmental plasticity even when IRS or TOR transcript levels are reduced. We discuss our results in the context of other recent findings on honey bee caste and development and propose that IRS is an alternative substrate for the Egfr (epidermal growth factor receptor) in honey bees. Overall, our study describes how the interplay of nutritional and hormonal signals affects many levels of organismal organization to build different phenotypes from identical genotypes.
IRS and TOR nutrient-signaling pathways act via juvenile hormone to influence honey bee caste fate
Mutti, Navdeep S.; Dolezal, Adam G.; Wolschin, Florian; Mutti, Jasdeep S.; Gill, Kulvinder S.; Amdam, Gro V.
2011-01-01
SUMMARY Regardless of genetic makeup, a female honey bee becomes a queen or worker depending on the food she receives as a larva. For decades, it has been known that nutrition and juvenile hormone (JH) signaling determine the caste fate of the individual bee. However, it is still largely unclear how these factors are connected. To address this question, we suppressed nutrient sensing by RNA interference (RNAi)-mediated gene knockdown of IRS (insulin receptor substrate) and TOR (target of rapamycin) in larvae reared on queen diet. The treatments affected several layers of organismal organization that could play a role in the response to differential nutrition between castes. These include transcript profiles, proteomic patterns, lipid levels, DNA methylation response and morphological features. Most importantly, gene knockdown abolished a JH peak that signals queen development and resulted in a worker phenotype. Application of JH rescued the queen phenotype in either knockdown, which demonstrates that the larval response to JH remains intact and can drive normal developmental plasticity even when IRS or TOR transcript levels are reduced. We discuss our results in the context of other recent findings on honey bee caste and development and propose that IRS is an alternative substrate for the Egfr (epidermal growth factor receptor) in honey bees. Overall, our study describes how the interplay of nutritional and hormonal signals affects many levels of organismal organization to build different phenotypes from identical genotypes. PMID:22071189
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talhouk, Rabih S., E-mail: rtalhouk@aub.edu.lb; Fares, Mohamed-Bilal; Rahme, Gilbert J.
Connexins (Cx), gap junction (GJ) proteins, are regarded as tumor suppressors, and Cx43 expression is often down regulated in breast tumors. We assessed the effect of Cx43 over-expression in 2D and 3D cultures of two breast adenocarcinoma cell lines: MCF-7 and MDA-MB-231. While Cx43 over-expression decreased proliferation of 2D and 3D cultures of MCF-7 by 56% and 80% respectively, MDA-MB-231 growth was not altered in 2D cultures, but exhibited 35% reduction in 3D cultures. C-terminus truncated Cx43 did not alter proliferation. Untransfected MCF-7 cells formed spherical aggregates in 3D cultures, and MDA-MB-231 cells formed stellar aggregates. However, MCF-7 cells over-expressingmore » Cx43 formed smaller sized clusters and Cx43 expressing MDA-MB-231 cells lost their stellar morphology. Extravasation ability of both MCF-7 and MDA-MB-231 cells was reduced by 60% and 30% respectively. On the other hand, silencing Cx43 in MCF10A cells, nonneoplastic human mammary cell line, increased proliferation in both 2D and 3D cultures, and disrupted acinar morphology. Although Cx43 over-expression did not affect total levels of β-catenin, α-catenin and ZO-2, it decreased nuclear levels of β-catenin in 2D and 3D cultures of MCF-7 cells, and in 3D cultures of MDA-MB-231 cells. Cx43 associated at the membrane with α-catenin, β-catenin and ZO-2 in 2D and 3D cultures of MCF-7 cells, and only in 3D conditions in MDA-MB-231 cells. This study suggests that Cx43 exerts tumor suppressive effects in a context-dependent manner where GJ assembly with α-catenin, β-catenin and ZO-2 may be implicated in reducing growth rate, invasiveness, and, malignant phenotype of 2D and 3D cultures of MCF-7 cells, and 3D cultures of MDA-MB-231 cells, by sequestering β-catenin away from nucleus. - Highlights: • Cx43 over-expressing MCF-7 and MDA-MB-231 were grown in 2D and 3D cultures. • Proliferation and growth morphology were affected in a context dependent manner. • Extravasation ability of both MCF-7 and MDA-MB-231 cells was reduced. • Cx43-mediated gap junction complex assembly correlated with observed changes. • We propose that membranous Cx43 sequesters β-catenin away from the nucleus.« less
Cancel, Jesse D; Larsen, Paul B
2002-08-01
Ethylene signaling in Arabidopsis begins at a family of five ethylene receptors that regulate activity of a downstream mitogen-activated protein kinase kinase kinase, CTR1. Triple and quadruple loss-of-function ethylene receptor mutants display a constitutive ethylene response phenotype, indicating they function as negative regulators in this pathway. No ethylene-related phenotype has been described for single loss-of-function receptor mutants, although it was reported that etr1 loss-of-function mutants display a growth defect limiting plant size. In actuality, this apparent growth defect results from enhanced responsiveness to ethylene; a phenotype manifested in all tissues tested. The phenotype displayed by etr1 loss-of-function mutants was rescued by treatment with an inhibitor of ethylene perception, indicating that it is ethylene dependent. Identification of an ethylene-dependent phenotype for a loss-of-function receptor mutant gave a unique opportunity for genetic and biochemical analysis of upstream events in ethylene signaling, including demonstration that the dominant ethylene-insensitive phenotype of etr2-1 is partially dependent on ETR1. This work demonstrates that mutational loss of the ethylene receptor ETR1 alters responsiveness to ethylene in Arabidopsis and that enhanced ethylene response in Arabidopsis not only results in increased sensitivity but exaggeration of response.
Cancel, Jesse D.; Larsen, Paul B.
2002-01-01
Ethylene signaling in Arabidopsis begins at a family of five ethylene receptors that regulate activity of a downstream mitogen-activated protein kinase kinase kinase, CTR1. Triple and quadruple loss-of-function ethylene receptor mutants display a constitutive ethylene response phenotype, indicating they function as negative regulators in this pathway. No ethylene-related phenotype has been described for single loss-of-function receptor mutants, although it was reported that etr1 loss-of-function mutants display a growth defect limiting plant size. In actuality, this apparent growth defect results from enhanced responsiveness to ethylene; a phenotype manifested in all tissues tested. The phenotype displayed by etr1 loss-of-function mutants was rescued by treatment with an inhibitor of ethylene perception, indicating that it is ethylene dependent. Identification of an ethylene-dependent phenotype for a loss-of-function receptor mutant gave a unique opportunity for genetic and biochemical analysis of upstream events in ethylene signaling, including demonstration that the dominant ethylene-insensitive phenotype of etr2-1 is partially dependent on ETR1. This work demonstrates that mutational loss of the ethylene receptor ETR1 alters responsiveness to ethylene in Arabidopsis and that enhanced ethylene response in Arabidopsis not only results in increased sensitivity but exaggeration of response. PMID:12177468
Integrating Ecological and Evolutionary Context in the Study of Maternal Stress.
Sheriff, Michael J; Bell, Alison; Boonstra, Rudy; Dantzer, Ben; Lavergne, Sophia G; McGhee, Katie E; MacLeod, Kirsty J; Winandy, Laurane; Zimmer, Cedric; Love, Oliver P
2017-09-01
Maternal stress can prenatally influence offspring phenotypes and there are an increasing number of ecological studies that are bringing to bear biomedical findings to natural systems. This is resulting in a shift from the perspective that maternal stress is unanimously costly, to one in which maternal stress may be beneficial to offspring. However, this adaptive perspective is in its infancy with much progress to still be made in understanding the role of maternal stress in natural systems. Our aim is to emphasize the importance of the ecological and evolutionary context within which adaptive hypotheses of maternal stress can be evaluated. We present five primary research areas where we think future research can make substantial progress: (1) understanding maternal and offspring control mechanisms that modulate exposure between maternal stress and subsequent offspring phenotype response; (2) understanding the dynamic nature of the interaction between mothers and their environment; (3) integrating offspring phenotypic responses and measuring both maternal and offspring fitness outcomes under real-life (either free-living or semi-natural) conditions; (4) empirically testing these fitness outcomes across relevant spatial and temporal environmental contexts (both pre- and post-natal environments); (5) examining the role of maternal stress effects in human-altered environments-i.e., do they limit or enhance fitness. To make progress, it is critical to understand the role of maternal stress in an ecological context and to do that, we must integrate across physiology, behavior, genetics, and evolution. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Body Temperature Measurements for Metabolic Phenotyping in Mice
Meyer, Carola W.; Ootsuka, Youichirou; Romanovsky, Andrej A.
2017-01-01
Endothermic organisms rely on tightly balanced energy budgets to maintain a regulated body temperature and body mass. Metabolic phenotyping of mice, therefore, often includes the recording of body temperature. Thermometry in mice is conducted at various sites, using various devices and measurement practices, ranging from single-time probing to continuous temperature imaging. Whilst there is broad agreement that body temperature data is of value, procedural considerations of body temperature measurements in the context of metabolic phenotyping are missing. Here, we provide an overview of the various methods currently available for gathering body temperature data from mice. We explore the scope and limitations of thermometry in mice, with the hope of assisting researchers in the selection of appropriate approaches, and conditions, for comprehensive mouse phenotypic analyses. PMID:28824441
Evolutionary Plasticity of AmrZ Regulation in Pseudomonas
Dougherty, Kevin; Diaz, Beatriz; Murillo, Rachel
2018-01-01
ABSTRACT amrZ encodes a master regulator protein conserved across pseudomonads, which can be either a positive or negative regulator of swimming motility depending on the species examined. To better understand plasticity in the regulatory function of AmrZ, we characterized the mode of regulation for this protein for two different motility-related phenotypes in Pseudomonas stutzeri. As in Pseudomonas syringae, AmrZ functions as a positive regulator of swimming motility within P. stutzeri, which suggests that the functions of this protein with regard to swimming motility have switched at least twice across pseudomonads. Shifts in mode of regulation cannot be explained by changes in AmrZ sequence alone. We further show that AmrZ acts as a positive regulator of colony spreading within this strain and that this regulation is at least partially independent of swimming motility. Closer investigation of mechanistic shifts in dual-function regulators like AmrZ could provide unique insights into how transcriptional pathways are rewired between closely related species. IMPORTANCE Microbes often display finely tuned patterns of gene regulation across different environments, with major regulatory changes controlled by a small group of “master” regulators within each cell. AmrZ is a master regulator of gene expression across pseudomonads and can be either a positive or negative regulator for a variety of pathways depending on the strain and genomic context. Here, we demonstrate that the phenotypic outcomes of regulation of swimming motility by AmrZ have switched at least twice independently in pseudomonads, so that AmrZ promotes increased swimming motility in P. stutzeri and P. syringae but represses this phenotype in Pseudomonas fluorescens and Pseudomonas aeruginosa. Since examples of switches in regulatory mode are relatively rare, further investigation into the mechanisms underlying shifts in regulator function for AmrZ could provide unique insights into the evolution of bacterial regulatory proteins. PMID:29669886
Camacho, Carlos; Canal, David; Potti, Jaime
2016-08-08
Habitat selection may have profound evolutionary consequences, but they strongly depend on the underlying preference mechanism, including genetically-determined, natal habitat and phenotype-dependent preferences. It is known that different mechanisms may operate at the same time, yet their relative contribution to population differentiation remains largely unexplored empirically mainly because of the difficulty of finding suitable study systems. Here, we investigate the role of early experience and genetic background in determining the outcome of settlement by pied flycatchers (Ficedula hypoleuca) breeding in two habitat patches between which dispersal and subsequent reproductive performance is influenced by phenotype (body size). For this, we conducted a cross-fostering experiment in a two-patch system: an oakwood and a conifer plantation separated by only 1 km. Experimental birds mostly returned to breed in the forest patch where they were raised, whether it was that of their genetic or their foster parents, indicating that decisions on where to settle are determined by individuals' experience in their natal site, rather than by their genetic background. Nevertheless, nearly a third (27.6 %) moved away from the rearing habitat and, as previously observed in unmanipulated individuals, dispersal between habitats was phenotype-dependent. Pied flycatchers breeding in the oak and the pine forests are differentiated by body size, and analyses of genetic variation at microsatellite loci now provide evidence of subtle genetic differentiation between the two populations. This suggests that phenotype-dependent dispersal may contribute to population structure despite the short distance and widespread exchange of birds between the study plots. Taken together, the current and previous findings that pied flycatchers do not always settle in the habitat to which they are best suited suggest that their strong tendency to return to the natal patch regardless of their body size might lead to maladaptive settlement decisions and thus constrain the potential of phenotype-dependent dispersal to promote microgeographic adaptation.
Tolerance and Exhaustion: Defining Mechanisms of T cell Dysfunction
Schietinger, Andrea; Greenberg, Philip D.
2013-01-01
CD8 T cell activation and differentiation is tightly controlled, and dependent on the context in which naïve T cells encounter antigen, can either result in functional memory or T cell dysfunction, including exhaustion, tolerance, anergy, or senescence. With the identification of phenotypic and functional traits shared in different settings of T cell dysfunction, distinctions between such dysfunctional `states' have become blurred. Here, we discuss distinct states of CD8 T cell dysfunction, with emphasis on (i) T cell tolerance to self-antigens (self-tolerance), (ii) T cell exhaustion during chronic infections, and (iii) tumor-induced T cell dysfunction. We highlight recent findings on cellular and molecular characteristics defining these states, cell-intrinsic regulatory mechanisms that induce and maintain them, and strategies that can lead to their reversal. PMID:24210163
Stromal-dependent tumor promotion by MIF family members.
Mitchell, Robert A; Yaddanapudi, Kavitha
2014-12-01
Solid tumors are composed of a heterogeneous population of cells that interact with each other and with soluble and insoluble factors that, when combined, strongly influence the relative proliferation, differentiation, motility, matrix remodeling, metabolism and microvessel density of malignant lesions. One family of soluble factors that is becoming increasingly associated with pro-tumoral phenotypes within tumor microenvironments is that of the migration inhibitory factor family which includes its namesake, MIF, and its only known family member, D-dopachrome tautomerase (D-DT). This review seeks to highlight our current understanding of the relative contributions of a variety of immune and non-immune tumor stromal cell populations and, within those contexts, will summarize the literature associated with MIF and/or D-DT. Copyright © 2014 Elsevier Inc. All rights reserved.
Context-sensitive network-based disease genetics prediction and its implications in drug discovery
Chen, Yang; Xu, Rong
2017-01-01
Abstract Motivation: Disease phenotype networks play an important role in computational approaches to identifying new disease-gene associations. Current disease phenotype networks often model disease relationships based on pairwise similarities, therefore ignore the specific context on how two diseases are connected. In this study, we propose a new strategy to model disease associations using context-sensitive networks (CSNs). We developed a CSN-based phenome-driven approach for disease genetics prediction, and investigated the translational potential of the predicted genes in drug discovery. Results: We constructed CSNs by directly connecting diseases with associated phenotypes. Here, we constructed two CSNs using different data sources; the two networks contain 26 790 and 13 822 nodes respectively. We integrated the CSNs with a genetic functional relationship network and predicted disease genes using a network-based ranking algorithm. For comparison, we built Similarity-Based disease Networks (SBN) using the same disease phenotype data. In a de novo cross validation for 3324 diseases, the CSN-based approach significantly increased the average rank from top 12.6 to top 8.8% for all tested genes comparing with the SBN-based approach (p
2011-01-01
Background Renewed interest in plant × environment interactions has risen in the post-genomic era. In this context, high-throughput phenotyping platforms have been developed to create reproducible environmental scenarios in which the phenotypic responses of multiple genotypes can be analysed in a reproducible way. These platforms benefit hugely from the development of suitable databases for storage, sharing and analysis of the large amount of data collected. In the model plant Arabidopsis thaliana, most databases available to the scientific community contain data related to genetic and molecular biology and are characterised by an inadequacy in the description of plant developmental stages and experimental metadata such as environmental conditions. Our goal was to develop a comprehensive information system for sharing of the data collected in PHENOPSIS, an automated platform for Arabidopsis thaliana phenotyping, with the scientific community. Description PHENOPSIS DB is a publicly available (URL: http://bioweb.supagro.inra.fr/phenopsis/) information system developed for storage, browsing and sharing of online data generated by the PHENOPSIS platform and offline data collected by experimenters and experimental metadata. It provides modules coupled to a Web interface for (i) the visualisation of environmental data of an experiment, (ii) the visualisation and statistical analysis of phenotypic data, and (iii) the analysis of Arabidopsis thaliana plant images. Conclusions Firstly, data stored in the PHENOPSIS DB are of interest to the Arabidopsis thaliana community, particularly in allowing phenotypic meta-analyses directly linked to environmental conditions on which publications are still scarce. Secondly, data or image analysis modules can be downloaded from the Web interface for direct usage or as the basis for modifications according to new requirements. Finally, the structure of PHENOPSIS DB provides a useful template for the development of other similar databases related to genotype × environment interactions. PMID:21554668
2017-10-01
bouts of mechanical loading amplified amyloid and tau phenotypes, suggesting a dependence of these Alzheimer’s associated outcomes to injury dose or...and tau phenotypes suggests a dose dependence of Ad-associated outcomes with the frequency and/or severity of injury. o What was the impact on
The evolution of phenotypic correlations and ‘developmental memory’
Watson, Richard A.; Wagner, Günter P.; Pavlicev, Mihaela; Weinreich, Daniel M.; Mills, Rob
2014-01-01
Development introduces structured correlations among traits that may constrain or bias the distribution of phenotypes produced. Moreover, when suitable heritable variation exists, natural selection may alter such constraints and correlations, affecting the phenotypic variation available to subsequent selection. However, exactly how the distribution of phenotypes produced by complex developmental systems can be shaped by past selective environments is poorly understood. Here we investigate the evolution of a network of recurrent non-linear ontogenetic interactions, such as a gene regulation network, in various selective scenarios. We find that evolved networks of this type can exhibit several phenomena that are familiar in cognitive learning systems. These include formation of a distributed associative memory that can ‘store’ and ‘recall’ multiple phenotypes that have been selected in the past, recreate complete adult phenotypic patterns accurately from partial or corrupted embryonic phenotypes, and ‘generalise’ (by exploiting evolved developmental modules) to produce new combinations of phenotypic features. We show that these surprising behaviours follow from an equivalence between the action of natural selection on phenotypic correlations and associative learning, well-understood in the context of neural networks. This helps to explain how development facilitates the evolution of high-fitness phenotypes and how this ability changes over evolutionary time. PMID:24351058
Mungall, Christopher J.; McMurry, Julie A.; Köhler, Sebastian; Balhoff, James P.; Borromeo, Charles; Brush, Matthew; Carbon, Seth; Conlin, Tom; Dunn, Nathan; Engelstad, Mark; Foster, Erin; Gourdine, J.P.; Jacobsen, Julius O.B.; Keith, Dan; Laraway, Bryan; Lewis, Suzanna E.; NguyenXuan, Jeremy; Shefchek, Kent; Vasilevsky, Nicole; Yuan, Zhou; Washington, Nicole; Hochheiser, Harry; Groza, Tudor; Smedley, Damian; Robinson, Peter N.; Haendel, Melissa A.
2017-01-01
The correlation of phenotypic outcomes with genetic variation and environmental factors is a core pursuit in biology and biomedicine. Numerous challenges impede our progress: patient phenotypes may not match known diseases, candidate variants may be in genes that have not been characterized, model organisms may not recapitulate human or veterinary diseases, filling evolutionary gaps is difficult, and many resources must be queried to find potentially significant genotype–phenotype associations. Non-human organisms have proven instrumental in revealing biological mechanisms. Advanced informatics tools can identify phenotypically relevant disease models in research and diagnostic contexts. Large-scale integration of model organism and clinical research data can provide a breadth of knowledge not available from individual sources and can provide contextualization of data back to these sources. The Monarch Initiative (monarchinitiative.org) is a collaborative, open science effort that aims to semantically integrate genotype–phenotype data from many species and sources in order to support precision medicine, disease modeling, and mechanistic exploration. Our integrated knowledge graph, analytic tools, and web services enable diverse users to explore relationships between phenotypes and genotypes across species. PMID:27899636
Mungall, Christopher J.; McMurry, Julie A.; Köhler, Sebastian; ...
2016-11-29
The correlation of phenotypic outcomes with genetic variation and environmental factors is a core pursuit in biology and biomedicine. Numerous challenges impede our progress: patient phenotypes may not match known diseases, candidate variants may be in genes that have not been characterized, model organisms may not recapitulate human or veterinary diseases, filling evolutionary gaps is difficult, and many resources must be queried to find potentially significant genotype-phenotype associations. Nonhuman organisms have proven instrumental in revealing biological mechanisms. Advanced informatics tools can identify phenotypically relevant disease models in research and diagnostic contexts. Large-scale integration of model organism and clinical research datamore » can provide a breadth of knowledge not available from individual sources and can provide contextualization of data back to these sources. The Monarch Initiative (monarchinitiative.org) is a collaborative, open science effort that aims to semantically integrate genotype-phenotype data from many species and sources in order to support precision medicine, disease modeling, and mechanistic exploration. Our integrated knowledge graph, analytic tools, and web services enable diverse users to explore relationships between phenotypes and genotypes across species.« less
Lancaster, Lesley T; McAdam, Andrew G; Hipsley, Christy A; Sinervo, Barry R
2014-08-01
Genetically determined polymorphisms incorporating multiple traits can persist in nature under chronic, fluctuating, and sometimes conflicting selection pressures. Balancing selection among morphs preserves equilibrium frequencies, while correlational selection maintains favorable trait combinations within each morph. Under negative frequency-dependent selection, females should mate (often disassortatively) with rare male morphotypes to produce conditionally fit offspring. Conversely, under correlational selection, females should mate assortatively to preserve coadapted gene complexes and avoid ontogenetic conflict. Using controlled breeding designs, we evaluated consequences of assortative mating patterns in color-polymorphic side-blotched lizards (Uta stansburiana), to identify conflict between these sources of selection. Females who mated disassortatively, and to conditionally high-quality males in the context of frequency-dependent selection, experienced highest fertility rates. In contrast, assortatively mated females experienced higher fetal viability rates. The trade-off between fertility and egg viability resulted in no overall fitness benefit to either assortative or disassortative mating patterns. These results suggest that ongoing conflict between correlational and frequency dependent selection in polymorphic populations may generate a trade-off between rare-morph advantage and phenotypic integration and between assortative and disassortative mating decisions. More generally, interactions among multiple sources of diversity-promoting selection can alter adaptations and dynamics predicted to arise under any of these regimes alone.
Evolutionary genetics of maternal effects
Wolf, Jason B.; Wade, Michael J.
2016-01-01
Maternal genetic effects (MGEs), where genes expressed by mothers affect the phenotype of their offspring, are important sources of phenotypic diversity in a myriad of organisms. We use a single‐locus model to examine how MGEs contribute patterns of heritable and nonheritable variation and influence evolutionary dynamics in randomly mating and inbreeding populations. We elucidate the influence of MGEs by examining the offspring genotype‐phenotype relationship, which determines how MGEs affect evolutionary dynamics in response to selection on offspring phenotypes. This approach reveals important results that are not apparent from classic quantitative genetic treatments of MGEs. We show that additive and dominance MGEs make different contributions to evolutionary dynamics and patterns of variation, which are differentially affected by inbreeding. Dominance MGEs make the offspring genotype‐phenotype relationship frequency dependent, resulting in the appearance of negative frequency‐dependent selection, while additive MGEs contribute a component of parent‐of‐origin dependent variation. Inbreeding amplifies the contribution of MGEs to the additive genetic variance and, therefore enhances their evolutionary response. Considering evolutionary dynamics of allele frequency change on an adaptive landscape, we show that this landscape differs from the mean fitness surface, and therefore, under some condition, fitness peaks can exist but not be “available” to the evolving population. PMID:26969266
NASA Astrophysics Data System (ADS)
Todd, Amber; Romine, William L.; Correa-Menendez, Josefina
2017-07-01
Identifying contingencies between constructs in a multi-faceted learning progression (LP) is a challenging task. Often, there is not enough evidence in the literature to support connections, and once identified, they are difficult to empirically test. Here, we use causal model search to evaluate how connections between ideas in a genetics LP change over time in the context of an introductory biology course. We identify primary and secondary hub ideas and connections between concepts before and after instruction to illustrate how students moved from a phenotypic grounding of genetics knowledge to a more genotypic grounding of their genetics knowledge after instruction. We discuss our results in light of conceptual change and illustrate the importance of understanding students' idea structures within a domain.
Teles, Magda C; Cardoso, Sara D; Oliveira, Rui F
2016-01-01
Social living animals need to adjust the expression of their behavior to their status within the group and to changes in social context and this ability (social plasticity) has an impact on their Darwinian fitness. At the proximate level social plasticity must rely on neuroplasticity in the brain social decision-making network (SDMN) that underlies the expression of social behavior, such that the same neural circuit may underlie the expression of different behaviors depending on social context. Here we tested this hypothesis in zebrafish by characterizing the gene expression response in the SDMN to changes in social status of a set of genes involved in different types of neural plasticity: bdnf, involved in changes in synaptic strength; npas4, involved in contextual learning and dependent establishment of GABAergic synapses; neuroligins (nlgn1 and nlgn2) as synaptogenesis markers; and genes involved in adult neurogenesis (wnt3 and neurod). Four social phenotypes were experimentally induced: Winners and Losers of a real-opponent interaction; Mirror-fighters, that fight their own image in a mirror and thus do not experience a change in social status despite the expression of aggressive behavior; and non-interacting fish, which were used as a reference group. Our results show that each social phenotype (i.e., Winners, Losers, and Mirror-fighters) present specific patterns of gene expression across the SDMN, and that different neuroplasticity genes are differentially expressed in different nodes of the network (e.g., BDNF in the dorsolateral telencephalon, which is a putative teleost homolog of the mammalian hippocampus). Winners expressed unique patterns of gene co-expression across the SDMN, whereas in Losers and Mirror-fighters the co-expression patterns were similar in the dorsal regions of the telencephalon and in the supracommissural nucleus of the ventral telencephalic area, but differents in the remaining regions of the ventral telencephalon. These results indicate that social plasticity relies on multiple neuroplasticity mechanisms across the SDMN, and that there is not a single neuromolecular module underlying this type of behavioral flexibility.
Teles, Magda C.; Cardoso, Sara D.; Oliveira, Rui F.
2016-01-01
Social living animals need to adjust the expression of their behavior to their status within the group and to changes in social context and this ability (social plasticity) has an impact on their Darwinian fitness. At the proximate level social plasticity must rely on neuroplasticity in the brain social decision-making network (SDMN) that underlies the expression of social behavior, such that the same neural circuit may underlie the expression of different behaviors depending on social context. Here we tested this hypothesis in zebrafish by characterizing the gene expression response in the SDMN to changes in social status of a set of genes involved in different types of neural plasticity: bdnf, involved in changes in synaptic strength; npas4, involved in contextual learning and dependent establishment of GABAergic synapses; neuroligins (nlgn1 and nlgn2) as synaptogenesis markers; and genes involved in adult neurogenesis (wnt3 and neurod). Four social phenotypes were experimentally induced: Winners and Losers of a real-opponent interaction; Mirror-fighters, that fight their own image in a mirror and thus do not experience a change in social status despite the expression of aggressive behavior; and non-interacting fish, which were used as a reference group. Our results show that each social phenotype (i.e., Winners, Losers, and Mirror-fighters) present specific patterns of gene expression across the SDMN, and that different neuroplasticity genes are differentially expressed in different nodes of the network (e.g., BDNF in the dorsolateral telencephalon, which is a putative teleost homolog of the mammalian hippocampus). Winners expressed unique patterns of gene co-expression across the SDMN, whereas in Losers and Mirror-fighters the co-expression patterns were similar in the dorsal regions of the telencephalon and in the supracommissural nucleus of the ventral telencephalic area, but differents in the remaining regions of the ventral telencephalon. These results indicate that social plasticity relies on multiple neuroplasticity mechanisms across the SDMN, and that there is not a single neuromolecular module underlying this type of behavioral flexibility. PMID:26909029
Paradoxical Roles of Antioxidant Enzymes: Basic Mechanisms and Health Implications
Lei, Xin Gen; Zhu, Jian-Hong; Cheng, Wen-Hsing; Bao, Yongping; Ho, Ye-Shih; Reddi, Amit R.; Holmgren, Arne; Arnér, Elias S. J.
2015-01-01
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from aerobic metabolism, as a result of accidental electron leakage as well as regulated enzymatic processes. Because ROS/RNS can induce oxidative injury and act in redox signaling, enzymes metabolizing them will inherently promote either health or disease, depending on the physiological context. It is thus misleading to consider conventionally called antioxidant enzymes to be largely, if not exclusively, health protective. Because such a notion is nonetheless common, we herein attempt to rationalize why this simplistic view should be avoided. First we give an updated summary of physiological phenotypes triggered in mouse models of overexpression or knockout of major antioxidant enzymes. Subsequently, we focus on a series of striking cases that demonstrate “paradoxical” outcomes, i.e., increased fitness upon deletion of antioxidant enzymes or disease triggered by their overexpression. We elaborate mechanisms by which these phenotypes are mediated via chemical, biological, and metabolic interactions of the antioxidant enzymes with their substrates, downstream events, and cellular context. Furthermore, we propose that novel treatments of antioxidant enzyme-related human diseases may be enabled by deliberate targeting of dual roles of the pertaining enzymes. We also discuss the potential of “antioxidant” nutrients and phytochemicals, via regulating the expression or function of antioxidant enzymes, in preventing, treating, or aggravating chronic diseases. We conclude that “paradoxical” roles of antioxidant enzymes in physiology, health, and disease derive from sophisticated molecular mechanisms of redox biology and metabolic homeostasis. Simply viewing antioxidant enzymes as always being beneficial is not only conceptually misleading but also clinically hazardous if such notions underpin medical treatment protocols based on modulation of redox pathways. PMID:26681794
Paradoxical Roles of Antioxidant Enzymes: Basic Mechanisms and Health Implications.
Lei, Xin Gen; Zhu, Jian-Hong; Cheng, Wen-Hsing; Bao, Yongping; Ho, Ye-Shih; Reddi, Amit R; Holmgren, Arne; Arnér, Elias S J
2016-01-01
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from aerobic metabolism, as a result of accidental electron leakage as well as regulated enzymatic processes. Because ROS/RNS can induce oxidative injury and act in redox signaling, enzymes metabolizing them will inherently promote either health or disease, depending on the physiological context. It is thus misleading to consider conventionally called antioxidant enzymes to be largely, if not exclusively, health protective. Because such a notion is nonetheless common, we herein attempt to rationalize why this simplistic view should be avoided. First we give an updated summary of physiological phenotypes triggered in mouse models of overexpression or knockout of major antioxidant enzymes. Subsequently, we focus on a series of striking cases that demonstrate "paradoxical" outcomes, i.e., increased fitness upon deletion of antioxidant enzymes or disease triggered by their overexpression. We elaborate mechanisms by which these phenotypes are mediated via chemical, biological, and metabolic interactions of the antioxidant enzymes with their substrates, downstream events, and cellular context. Furthermore, we propose that novel treatments of antioxidant enzyme-related human diseases may be enabled by deliberate targeting of dual roles of the pertaining enzymes. We also discuss the potential of "antioxidant" nutrients and phytochemicals, via regulating the expression or function of antioxidant enzymes, in preventing, treating, or aggravating chronic diseases. We conclude that "paradoxical" roles of antioxidant enzymes in physiology, health, and disease derive from sophisticated molecular mechanisms of redox biology and metabolic homeostasis. Simply viewing antioxidant enzymes as always being beneficial is not only conceptually misleading but also clinically hazardous if such notions underpin medical treatment protocols based on modulation of redox pathways. Copyright © 2016 the American Physiological Society.
Eagleson, Kathie L; Xie, Zhihui; Levitt, Pat
2017-03-01
People with autism spectrum disorder and other neurodevelopmental disorders (NDDs) are behaviorally and medically heterogeneous. The combination of polygenicity and gene pleiotropy-the influence of one gene on distinct phenotypes-raises questions of how specific genes and their protein products interact to contribute to NDDs. A preponderance of evidence supports developmental and pathophysiological roles for the MET receptor tyrosine kinase, a multifunctional receptor that mediates distinct biological responses depending upon cell context. MET influences neuron architecture and synapse maturation in the forebrain and regulates homeostasis in gastrointestinal and immune systems, both commonly disrupted in NDDs. Peak expression of synapse-enriched MET is conserved across rodent and primate forebrain, yet regional differences in primate neocortex are pronounced, with enrichment in circuits that participate in social information processing. A functional risk allele in the MET promoter, enriched in subgroups of children with autism spectrum disorder, reduces transcription and disrupts socially relevant neural circuits structurally and functionally. In mice, circuit-specific deletion of Met causes distinct atypical behaviors. MET activation increases dendritic complexity and nascent synapse number, but synapse maturation requires reductions in MET. MET mediates its specific biological effects through different intracellular signaling pathways and has a complex protein interactome that is enriched in autism spectrum disorder and other NDD candidates. The interactome is coregulated in developing human neocortex. We suggest that a gene as pleiotropic and highly regulated as MET, together with its interactome, is biologically relevant in normal and pathophysiological contexts, affecting central and peripheral phenotypes that contribute to NDD risk and clinical symptoms. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Platform for combined analysis of functional and biomolecular phenotypes of the same cell.
Kelbauskas, L; Ashili, S; Zeng, J; Rezaie, A; Lee, K; Derkach, D; Ueberroth, B; Gao, W; Paulson, T; Wang, H; Tian, Y; Smith, D; Reid, B; Meldrum, Deirdre R
2017-03-16
Functional and molecular cell-to-cell variability is pivotal at the cellular, tissue and whole-organism levels. Yet, the ultimate goal of directly correlating the function of the individual cell with its biomolecular profile remains elusive. We present a platform for integrated analysis of functional and transcriptional phenotypes in the same single cells. We investigated changes in the cellular respiration and gene expression diversity resulting from adaptation to repeated episodes of acute hypoxia in a premalignant progression model. We find differential, progression stage-specific alterations in phenotypic heterogeneity and identify cells with aberrant phenotypes. To our knowledge, this study is the first demonstration of an integrated approach to elucidate how heterogeneity at the transcriptional level manifests in the physiologic profile of individual cells in the context of disease progression.
Context-dependent catalepsy intensification is due to classical conditioning and sensitization.
Amtage, J; Schmidt, W J
2003-11-01
Haloperidol-induced catalepsy represents a model of neuroleptic-induced Parkinsonism. Daily administration of haloperidol, followed by testing for catalepsy on a bar and grid, results in a day-to-day increase in catalepsy that is completely context dependent, resulting in a strong placebo effect and in a failure of expression after a change in context. The aim of this study was to analyse the associative learning process that underlies context dependency. Catalepsy intensification was induced by a daily threshold dose of 0.25 mg/kg haloperidol. Extinction training and retesting under haloperidol revealed that sensitization was composed of two components: a context-conditioning component, which can be extinguished, and a context-dependent sensitization component, which cannot be extinguished. Context dependency of catalepsy thus follows precisely the same rules as context dependency of psychostimulant-induced sensitization. Catalepsy sensitization is therefore due to conditioning and sensitization.
Dynamic Transcription Factor Networks in Epithelial-Mesenchymal Transition in Breast Cancer Models
Siletz, Anaar; Schnabel, Michael; Kniazeva, Ekaterina; Schumacher, Andrew J.; Shin, Seungjin; Jeruss, Jacqueline S.; Shea, Lonnie D.
2013-01-01
The epithelial-mesenchymal transition (EMT) is a complex change in cell differentiation that allows breast carcinoma cells to acquire invasive properties. EMT involves a cascade of regulatory changes that destabilize the epithelial phenotype and allow mesenchymal features to manifest. As transcription factors (TFs) are upstream effectors of the genome-wide expression changes that result in phenotypic change, understanding the sequential changes in TF activity during EMT provides rich information on the mechanism of this process. Because molecular interactions will vary as cells progress from an epithelial to a mesenchymal differentiation program, dynamic networks are needed to capture the changing context of molecular processes. In this study we applied an emerging high-throughput, dynamic TF activity array to define TF activity network changes in three cell-based models of EMT in breast cancer based on HMLE Twist ER and MCF-7 mammary epithelial cells. The TF array distinguished conserved from model-specific TF activity changes in the three models. Time-dependent data was used to identify pairs of TF activities with significant positive or negative correlation, indicative of interdependent TF activity throughout the six-day study period. Dynamic TF activity patterns were clustered into groups of TFs that change along a time course of gene expression changes and acquisition of invasive capacity. Time-dependent TF activity data was combined with prior knowledge of TF interactions to construct dynamic models of TF activity networks as epithelial cells acquire invasive characteristics. These analyses show EMT from a unique and targetable vantage and may ultimately contribute to diagnosis and therapy. PMID:23593114
Dynamic transcription factor networks in epithelial-mesenchymal transition in breast cancer models.
Siletz, Anaar; Schnabel, Michael; Kniazeva, Ekaterina; Schumacher, Andrew J; Shin, Seungjin; Jeruss, Jacqueline S; Shea, Lonnie D
2013-01-01
The epithelial-mesenchymal transition (EMT) is a complex change in cell differentiation that allows breast carcinoma cells to acquire invasive properties. EMT involves a cascade of regulatory changes that destabilize the epithelial phenotype and allow mesenchymal features to manifest. As transcription factors (TFs) are upstream effectors of the genome-wide expression changes that result in phenotypic change, understanding the sequential changes in TF activity during EMT provides rich information on the mechanism of this process. Because molecular interactions will vary as cells progress from an epithelial to a mesenchymal differentiation program, dynamic networks are needed to capture the changing context of molecular processes. In this study we applied an emerging high-throughput, dynamic TF activity array to define TF activity network changes in three cell-based models of EMT in breast cancer based on HMLE Twist ER and MCF-7 mammary epithelial cells. The TF array distinguished conserved from model-specific TF activity changes in the three models. Time-dependent data was used to identify pairs of TF activities with significant positive or negative correlation, indicative of interdependent TF activity throughout the six-day study period. Dynamic TF activity patterns were clustered into groups of TFs that change along a time course of gene expression changes and acquisition of invasive capacity. Time-dependent TF activity data was combined with prior knowledge of TF interactions to construct dynamic models of TF activity networks as epithelial cells acquire invasive characteristics. These analyses show EMT from a unique and targetable vantage and may ultimately contribute to diagnosis and therapy.
A Phenotypic Based Target Screening Approach Delivers New Antitubercular CTP Synthetase Inhibitors.
Esposito, Marta; Szadocka, Sára; Degiacomi, Giulia; Orena, Beatrice S; Mori, Giorgia; Piano, Valentina; Boldrin, Francesca; Zemanová, Júlia; Huszár, Stanislav; Barros, David; Ekins, Sean; Lelièvre, Joel; Manganelli, Riccardo; Mattevi, Andrea; Pasca, Maria Rosalia; Riccardi, Giovanna; Ballell, Lluis; Mikušová, Katarína; Chiarelli, Laurent R
2017-06-09
Despite its great potential, the target-based approach has been mostly unsuccessful in tuberculosis drug discovery, while whole cell phenotypic screening has delivered several active compounds. However, for many of these hits, the cellular target has not yet been identified, thus preventing further target-based optimization of the compounds. In this context, the newly validated drug target CTP synthetase PyrG was exploited to assess a target-based approach of already known, but untargeted, antimycobacterial compounds. To this purpose the publically available GlaxoSmithKline antimycobacterial compound set was assayed, uncovering a series of 4-(pyridin-2-yl)thiazole derivatives which efficiently inhibit the Mycobacterium tuberculosis PyrG enzyme activity, one of them showing low activity against the human CTP synthetase. The three best compounds were ATP binding site competitive inhibitors, with K i values ranging from 3 to 20 μM, but did not show any activity against a small panel of different prokaryotic and eukaryotic kinases, thus demonstrating specificity for the CTP synthetases. Metabolic labeling experiments demonstrated that the compounds directly interfere not only with CTP biosynthesis, but also with other CTP dependent biochemical pathways, such as lipid biosynthesis. Moreover, using a M. tuberculosis pyrG conditional knock-down strain, it was shown that the activity of two compounds is dependent on the intracellular concentration of the CTP synthetase. All these results strongly suggest a role of PyrG as a target of these compounds, thus strengthening the value of this kind of approach for the identification of new scaffolds for drug development.
ERIC Educational Resources Information Center
Lahey, Benjamin B.; Waldman, Irwin D.
2012-01-01
Background: A better understanding of the nature and etiology of conduct disorder (CD) can inform nosology and vice versa. We posit that any prevalent form of psychopathology, including CD, can be best understood if it is studied in the context of other correlated forms of child and adolescent psychopathology using formal models to guide inquiry.…
Bidwell, L C; McGeary, J E; Gray, J C; Palmer, R H C; Knopik, V S; MacKillop, J
2015-11-01
Nicotine dependence (ND) is a heterogeneous phenotype with complex genetic influences that may vary across ethnicities. The use of intermediate phenotypes may clarify genetic influences and reveal specific etiological pathways. Prior work in European Americans has found that the four Primary Dependence Motives (PDM) subscales (Automaticity, Craving, Loss of Control, and Tolerance) of the Wisconsin Inventory of Smoking Motives represent core features of nicotine dependence and are promising intermediate phenotypes for understanding genetic pathways to ND. However, no studies have examined PDM as an intermediate phenotype in African American smokers, an ethnic population that displays unique patterns of smoking and genetic variation. In the current study, 268 African American daily smokers completed a phenotypic assessment and provided a sample of DNA. Associations among haplotypes in the NCAM1-TTC12-ANKK1-DRD2 gene cluster, a dopamine-related gene region associated with ND, PDM intermediate phenotypes, and ND were examined. Dopamine-related genetic variation in the DBH and COMT genes was also considered on an exploratory basis. Mediational analysis was used to test the indirect pathway from genetic variation to smoking motives to nicotine dependence. NCAM1-TTC12-ANKK1-DRD2 region variation was significantly associated with the Automaticity subscale and, further, Automaticity significantly mediated associations among NCAM1-TTC12-ANKK1-DRD2 cluster variants and ND. DBH was also significantly associated with Automaticity, Craving, and Tolerance; Automaticity and Tolerance also served as mediators of the DBH-ND relationship. These results suggest that PDM, Automaticity in particular, may be a viable intermediate phenotype for understanding dopamine-related genetic influences on ND in African American smokers. Findings support a model in which putatively dopaminergic variants exert influence on ND through an effect on patterns of automatic routinized smoking. Copyright © 2015 Elsevier Inc. All rights reserved.
Phenotyping maize for adaptation to drought
Araus, Jose L.; Serret, María D.; Edmeades, Gregory O.
2012-01-01
The need of a better adaptation of crops to drought is an issue of increasing urgency. However, enhancing the tolerance of maize has, therefore, proved to be somewhat elusive in terms of plant breeding. In that context, proper phenotyping remains as one of the main factors limiting breeding advance. Topics covered by this review include the conceptual framework for identifying secondary traits associated with yield response to drought and how to measure these secondary traits in practice. PMID:22934056
Macrophage polarization at the crossroad between HIV-1 infection and cancer development.
Alfano, Massimo; Graziano, Francesca; Genovese, Luca; Poli, Guido
2013-06-01
Mononuclear phagocytes play a fundamental role in the tissue homeostasis and innate defenses against viruses and other microbial pathogens. In addition, they are likely involved in several steps of cancer development. Circulating monocytes and tissue macrophages are target cells of viral infections, including human cytomegalovirus, human herpes virus 8, and the HIV, and alterations of their functional and phenotypic properties are likely involved in many tissue-degenerative diseases, including atherosclerosis and cancer. Different tissue microenvironments as well as their pathological alterations can profoundly affect the polarization state of macrophages toward the extreme phenotypes conventionally termed M1 and M2. Thus, targeting disease-associated macrophages is considered a potential approach particularly in the context of cancer-associated tumor-associated macrophages, supporting malignant cell growth and progression toward a metastatic phenotype. Of note is the fact that tumor-associated macrophages isolated from established tumors display phenotypic and functional features similar to those of in vitro-derived M2-polarized cells. Concerning HIV-1 infection, viral eradication strategies in the context of combination antiretroviral therapy should also consider the possibility to deplete, at least transiently, certain mononuclear phagocytes subsets, although the possibility of distinguishing those that are either infected or pathogenically altered remains a goal of future research. In the present review, we will focus on the recent literature concerning the role of human macrophage polarization in viral infections and cancer.
Introduction: contexts and concepts of adaptability and plasticity in 20th-century plant science.
Baranski, Marci; Peirson, B R Erick
2015-04-01
Nowhere is the problem of understanding the complex linkages between organisms and their environments more apparent than in the science of plants. Today, efforts by scientists to predict and manage the biological consequences of shifting global and regional climates depend on understanding how organisms respond morphologically, physiologically, and behaviorally to changes in their environments. Investigating organismal "adaptability" (or "plasticity") is rarely straightforward, prompting controversy and discourse among and between ecologists and agricultural scientists. Concepts like agro-climatic adaptation, phenotypic plasticity, and genotype-environment interaction (GxE) are key to those debates, and their complex histories have imbued them with assumptions and meanings that are consequential but often opaque. This special section explores the diverse ways in which organismal adaptability has been conceptualized and investigated in the second half of the 20th century, and the multifarious political, economic, environmental, and intellectual contexts in which those conceptions have emerged and evolved. The papers in this section bring together perspectives from the histories of agriculture, population ecology, evolutionary theory, and plant physiology, cutting across Asian, North American, and British contexts. As a whole, this section highlights not only the diversity of meanings of "adaptability" and "plasticity," but also the complex linkages between those meanings, the scientific practices and technologies in which they are embedded, and the ends toward which those practices and technologies are employed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhang, Chengjin; Frazier, Jared M.; Chen, Hao; Liu, Yao; Lee, Ju-Ahng; Cole, Gregory J.
2014-01-01
Alcohol is a teratogen that has diverse effects on brain and craniofacial development, leading to a constellation of developmental disorders referred to as fetal alcohol spectrum disorder (FASD). The molecular basis of ethanol insult remains poorly understood, as does the relationship between molecular and behavioral changes as a consequence of prenatal ethanol exposure. Zebrafish embryos were exposed to a range of ethanol concentrations (0.5–5.0%) during defined developmental stages, and examined for morphological phenotypes characteristic of FASD. Embryos were also analyzed by in situ hybridization for changes in expression of defined cell markers for neural cell types that are sonic hedgehog-dependent. We show that transient binge-like ethanol exposures during defined developmental stages, such as early gastrulation and early neurulation, result in a range of phenotypes and changes in expression of Shh-dependent genes. The severity of fetal alcohol syndrome (FAS) morphological phenotypes, such as microphthalmia, depends on the embryonic stage and concentration of alcohol exposure, as does diminution of retinal Pax6a or forebrain and hindbrain GAD1 gene expression. We also show that changes in eye and brain morphology correlate with changes in Pax6a and GAD1 gene expression. Our results therefore show that transient binge-like ethanol exposures in zebrafish embryos produce the stereotypical morphological phenotypes of FAS, with the severity of phenotypes depending on the developmental stage and alcohol concentration of exposure. PMID:24929233
Diversity and function of bacterial microbiota in the mosquito holobiont
2013-01-01
Mosquitoes (Diptera: Culicidae) have been shown to host diverse bacterial communities that vary depending on the sex of the mosquito, the developmental stage, and ecological factors. Some studies have suggested a potential role of microbiota in the nutritional, developmental and reproductive biology of mosquitoes. Here, we present a review of the diversity and functions of mosquito-associated bacteria across multiple variation factors, emphasizing recent findings. Mosquito microbiota is considered in the context of possible extended phenotypes conferred on the insect hosts that allow niche diversification and rapid adaptive evolution in other insects. These kinds of observations have prompted the recent development of new mosquito control methods based on the use of symbiotically-modified mosquitoes to interfere with pathogen transmission or reduce the host life span and reproduction. New opportunities for exploiting bacterial function for vector control are highlighted. PMID:23688194
An organismic critique of molecular darwinism.
Wicken, J S
1985-12-21
The molecular darwinian approach to the emergence of life treats the competition between RNA sequences for nucleotide resources as the primordial selective process in prebiotic evolution, which prescribes possible pathways for the subsequent elaboration of organizational relationships. Since success in this competition is determined by the "phenotypic" properties of RNA strands in the absence of organizational context, the genesis of biotic organization is dependent upon the establishment of co-operative, hypercyclic interactions between competing RNA sequences. The thesis of this paper is that hypercycle theory is based on unwarranted assumptions about the conditions of prebiotic evolution, and that the implications of these assumptions run counter to both empirical evidence and to the rational by which natural selection operates in evolution generally. An organismic alternative to hypercycle theory is suggested, based on the catalytic microsphere and the thermodynamics of selection.
Martin, Elizabeth M.; Stýblo, Miroslav; Fry, Rebecca C
2017-01-01
Chronic exposure to arsenic has been associated with the development of diabetes mellitus (DM), a disease characterized by hyperglycemia resulting from dysregulation of glucose homeostasis. This review summarizes four major mechanisms by which arsenic induces diabetes, namely inhibition of insulin-dependent glucose uptake, pancreatic β-cell damage, pancreatic β-cell dysfunction and stimulation of liver gluconeogenesis that are supported by both in vivo and in vitro studies. Additionally, the role of polymorphic variants associated with arsenic toxicity and disease susceptibility, as well as epigenetic modifications associated with arsenic exposure, are considered in the context of arsenic-associated DM. Taken together, in vitro, in vivo and human genetic/epigenetic studies support that arsenic has the potential to induce DM phenotypes and impair key pathways involved in the regulation of glucose homeostasis. PMID:28470093
Martin, Elizabeth M; Stýblo, Miroslav; Fry, Rebecca C
2017-05-01
Chronic exposure to arsenic has been associated with the development of diabetes mellitus (DM), a disease characterized by hyperglycemia resulting from dysregulation of glucose homeostasis. This review summarizes four major mechanisms by which arsenic induces diabetes, namely inhibition of insulin-dependent glucose uptake, pancreatic β-cell damage, pancreatic β-cell dysfunction and stimulation of liver gluconeogenesis that are supported by both in vivo and in vitro studies. Additionally, the role of polymorphic variants associated with arsenic toxicity and disease susceptibility, as well as epigenetic modifications associated with arsenic exposure, are considered in the context of arsenic-associated DM. Taken together, in vitro, in vivo and human genetic/epigenetic studies support that arsenic has the potential to induce DM phenotypes and impair key pathways involved in the regulation of glucose homeostasis.
Marks, Christopher; Nickles, Natalie E; Wise, Tom; Mavroidis, Spiro
This study investigated the effect of mismatching incubation and posthatch temperatures in northern bobwhite quail hatchlings. Quail embryos were incubated at 35.5° or 37.5°C. Metabolic rates were then measured in hatchlings acclimated to either the same or the opposite temperature treatment. While hatchlings expressed higher oxygen consumption when posthatch temperature did not match incubation temperature, the effect of mismatching temperatures was significant only when posthatch temperature was higher than incubation temperature. Our data suggest that bobwhite quail hatchlings may express increased metabolism due to mismatches between incubation and posthatch temperatures. More specifically, the nature or direction of the mismatch can determine the magnitude of the metabolic effect. These findings highlight the importance of considering the context of specific conditions experienced throughout ontogeny when observing phenotypic outcomes.
Harnessing CRISPR-Cas systems for bacterial genome editing.
Selle, Kurt; Barrangou, Rodolphe
2015-04-01
Manipulation of genomic sequences facilitates the identification and characterization of key genetic determinants in the investigation of biological processes. Genome editing via clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) constitutes a next-generation method for programmable and high-throughput functional genomics. CRISPR-Cas systems are readily reprogrammed to induce sequence-specific DNA breaks at target loci, resulting in fixed mutations via host-dependent DNA repair mechanisms. Although bacterial genome editing is a relatively unexplored and underrepresented application of CRISPR-Cas systems, recent studies provide valuable insights for the widespread future implementation of this technology. This review summarizes recent progress in bacterial genome editing and identifies fundamental genetic and phenotypic outcomes of CRISPR targeting in bacteria, in the context of tool development, genome homeostasis, and DNA repair. Copyright © 2015 Elsevier Ltd. All rights reserved.
Context-Dependent Learning in People With Parkinson's Disease.
Lee, Ya-Yun; Winstein, Carolee J; Gordon, James; Petzinger, Giselle M; Zelinski, Elizabeth M; Fisher, Beth E
2016-01-01
Context-dependent learning is a phenomenon in which people demonstrate superior performance in the context in which they originally learned a skill but perform less well in a novel context. This study investigated context-dependent learning in people with Parkinson's disease (PD) and age-matched nondisabled adults. All participants practiced 3 finger sequences, each embedded within a unique context (colors and locations on a computer screen). One day after practice, the participants were tested either under the sequence-context associations remained the same as during practice, or the sequence-context associations were changed (SWITCH). Compared with nondisabled adults, people with PD demonstrated significantly greater decrement in performance (especially movement time) under the SWITCH condition, suggesting that individuals with PD are more context dependent than nondisabled adults.
Phenotypic and Genotypic Eligible Methods for Salmonella Typhimurium Source Tracking
Ferrari, Rafaela G.; Panzenhagen, Pedro H. N.; Conte-Junior, Carlos A.
2017-01-01
Salmonellosis is one of the most common causes of foodborne infection and a leading cause of human gastroenteritis. Throughout the last decade, Salmonella enterica serotype Typhimurium (ST) has shown an increase report with the simultaneous emergence of multidrug-resistant isolates, as phage type DT104. Therefore, to successfully control this microorganism, it is important to attribute salmonellosis to the exact source. Studies of Salmonella source attribution have been performed to determine the main food/food-production animals involved, toward which, control efforts should be correctly directed. Hence, the election of a ST subtyping method depends on the particular problem that efforts must be directed, the resources and the data available. Generally, before choosing a molecular subtyping, phenotyping approaches such as serotyping, phage typing, and antimicrobial resistance profiling are implemented as a screening of an investigation, and the results are computed using frequency-matching models (i.e., Dutch, Hald and Asymmetric Island models). Actually, due to the advancement of molecular tools as PFGE, MLVA, MLST, CRISPR, and WGS more precise results have been obtained, but even with these technologies, there are still gaps to be elucidated. To address this issue, an important question needs to be answered: what are the currently suitable subtyping methods to source attribute ST. This review presents the most frequently applied subtyping methods used to characterize ST, analyses the major available microbial subtyping attribution models and ponders the use of conventional phenotyping methods, as well as, the most applied genotypic tools in the context of their potential applicability to investigates ST source tracking. PMID:29312260
Phenotypic and Genotypic Eligible Methods for Salmonella Typhimurium Source Tracking.
Ferrari, Rafaela G; Panzenhagen, Pedro H N; Conte-Junior, Carlos A
2017-01-01
Salmonellosis is one of the most common causes of foodborne infection and a leading cause of human gastroenteritis. Throughout the last decade, Salmonella enterica serotype Typhimurium (ST) has shown an increase report with the simultaneous emergence of multidrug-resistant isolates, as phage type DT104. Therefore, to successfully control this microorganism, it is important to attribute salmonellosis to the exact source. Studies of Salmonella source attribution have been performed to determine the main food/food-production animals involved, toward which, control efforts should be correctly directed. Hence, the election of a ST subtyping method depends on the particular problem that efforts must be directed, the resources and the data available. Generally, before choosing a molecular subtyping, phenotyping approaches such as serotyping, phage typing, and antimicrobial resistance profiling are implemented as a screening of an investigation, and the results are computed using frequency-matching models (i.e., Dutch, Hald and Asymmetric Island models). Actually, due to the advancement of molecular tools as PFGE, MLVA, MLST, CRISPR, and WGS more precise results have been obtained, but even with these technologies, there are still gaps to be elucidated. To address this issue, an important question needs to be answered: what are the currently suitable subtyping methods to source attribute ST. This review presents the most frequently applied subtyping methods used to characterize ST, analyses the major available microbial subtyping attribution models and ponders the use of conventional phenotyping methods, as well as, the most applied genotypic tools in the context of their potential applicability to investigates ST source tracking.
Lahey, Benjamin B.; Waldman, Irwin D.
2011-01-01
Background A better understanding of the nature and etiology of conduct disorder (CD) can inform nosology and vice-versa. We posit that any prevalent form of psychopathology, including CD, can be best understood if it is studied in the context of other correlated forms of child and adolescent psychopathology using formal models to guide inquiry. Methods Review of both cross-sectional and longitudinal studies of the place of CD in the phenotypic and causal structure of prevalent psychopathology, with an emphasis on similarities and differences between CD and oppositional defiant disorder (ODD). Papers were located using Web of Science by topic searches with no restriction on year of publication. Results Although some important nosologic questions remain unanswered, the dimensional phenotype of CD is well defined. CD differs from other disorders in its correlates, associated impairment, and course. Nonetheless, it is robustly correlated with many other prevalent dimensions of psychopathology both concurrently and predictively, including both other “externalizing” disorders and some “internalizing” disorders. Based on emerging evidence, we hypothesize that these concurrent and predictive correlations result primarily from widespread genetic pleiotropy, with some genetic factors nonspecifically influencing risk for multiple correlated dimensions of psychopathology. In contrast, environmental influences mostly act to differentiate dimensions of psychopathology from one another both concurrently and over time. CD and ODD share half of their genetic influences, but their genetic etiologies are distinct in other ways. Unlike most other dimensions of psychopathology, half of the genetic influences on CD appear to be unique to CD. In contrast, ODD broadly shares nearly all of its genetic influences with other disorders and has little unique genetic variance. Conclusions CD is a relatively distinct syndrome at both phenotypic and etiologic levels, but much is revealed by studying CD in the context of its causal and phenotypic associations with other disorders over time. Advancing and refining formal causal models that specify the common and unique causes and biological mechanisms underlying each correlated dimension of psychopathology should facilitate research on the fundamental nature and nosology of CD. PMID:22211395
Platform for combined analysis of functional and biomolecular phenotypes of the same cell
Kelbauskas, L.; Ashili, S.; Zeng, J.; Rezaie, A.; Lee, K.; Derkach, D.; Ueberroth, B.; Gao, W.; Paulson, T.; Wang, H.; Tian, Y.; Smith, D.; Reid, B.; Meldrum, Deirdre R.
2017-01-01
Functional and molecular cell-to-cell variability is pivotal at the cellular, tissue and whole-organism levels. Yet, the ultimate goal of directly correlating the function of the individual cell with its biomolecular profile remains elusive. We present a platform for integrated analysis of functional and transcriptional phenotypes in the same single cells. We investigated changes in the cellular respiration and gene expression diversity resulting from adaptation to repeated episodes of acute hypoxia in a premalignant progression model. We find differential, progression stage-specific alterations in phenotypic heterogeneity and identify cells with aberrant phenotypes. To our knowledge, this study is the first demonstration of an integrated approach to elucidate how heterogeneity at the transcriptional level manifests in the physiologic profile of individual cells in the context of disease progression. PMID:28300162
Melanoma cells revive an embryonic transcriptional network to dictate phenotypic heterogeneity.
Vandamme, Niels; Berx, Geert
2014-01-01
Compared to the overwhelming amount of literature describing how epithelial-to-mesenchymal transition (EMT)-inducing transcription factors orchestrate cellular plasticity in embryogenesis and epithelial cells, the functions of these factors in non-epithelial contexts, such as melanoma, are less clear. Melanoma is an aggressive tumor arising from melanocytes, endowed with unique features of cellular plasticity. The reversible phenotype-switching between differentiated and invasive phenotypes is increasingly appreciated as a mechanism accounting for heterogeneity in melanoma and is driven by oncogenic signaling and environmental cues. This phenotypic switch is coupled with an intriguing and somewhat counterintuitive signaling switch of EMT-inducing transcription factors. In contrast to carcinomas, different EMT-inducing transcription factors have antagonizing effects in melanoma. Balancing between these different EMT transcription factors is likely the key to successful metastatic spread of melanoma.
β-Catenin C-terminal signals suppress p53 and are essential for artery formation
Riascos-Bernal, Dario F.; Chinnasamy, Prameladevi; Cao, Longyue (Lily); Dunaway, Charlene M.; Valenta, Tomas; Basler, Konrad; Sibinga, Nicholas E. S.
2016-01-01
Increased activity of the tumour suppressor p53 is incompatible with embryogenesis, but how p53 is controlled is not fully understood. Differential requirements for p53 inhibitors Mdm2 and Mdm4 during development suggest that these control mechanisms are context-dependent. Artery formation requires investment of nascent endothelial tubes by smooth muscle cells (SMCs). Here, we find that embryos lacking SMC β-catenin suffer impaired arterial maturation and die by E12.5, with increased vascular wall p53 activity. β-Catenin-deficient SMCs show no change in p53 levels, but greater p53 acetylation and activity, plus impaired growth and survival. In vivo, SMC p53 inactivation suppresses phenotypes caused by loss of β-catenin. Mechanistically, β-catenin C-terminal interactions inhibit Creb-binding protein-dependent p53 acetylation and p53 transcriptional activity, and are required for artery formation. Thus in SMCs, the β-catenin C-terminus indirectly represses p53, and this function is essential for embryogenesis. These findings have implications for angiogenesis, tissue engineering and vascular disease. PMID:27499244
Liu, Cui; Yu, Yanbao; Liu, Feng; Wei, Xin; Wrobel, John A.; Gunawardena, Harsha P.; Zhou, Li; Jin, Jian; Chen, Xian
2015-01-01
Immune cells develop endotoxin tolerance (ET) after prolonged stimulation. ET increases the level of a repression mark H3K9me2 in the transcriptional-silent chromatin specifically associated with pro-inflammatory genes. However, it is not clear what proteins are functionally involved in this process. Here we show that a novel chromatin activity based chemoproteomic (ChaC) approach can dissect the functional chromatin protein complexes that regulate ET-associated inflammation. Using UNC0638 that binds the enzymatically active H3K9-specific methyltransferase G9a/GLP, ChaC reveals that G9a is constitutively active at a G9a-dependent mega-dalton repressome in primary endotoxin-tolerant macrophages. G9a/GLP broadly impacts the ET-specific reprogramming of the histone code landscape, chromatin remodeling, and the activities of select transcription factors. We discover that the G9a-dependent epigenetic environment promotes the transcriptional repression activity of c-Myc for gene-specific co-regulation of chronic inflammation. ChaC may be also applicable to dissect other functional protein complexes in the context of phenotypic chromatin architectures. PMID:25502336
Mathematical modeling and numerical simulation of the mitotic spindle orientation system.
Ibrahim, Bashar
2018-05-21
The mitotic spindle orientation and position is crucial for the fidelity of chromosome segregation during asymmetric cell division to generate daughter cells with different sizes or fates. This mechanism is best understood in the budding yeast Saccharomyces cerevisiae, named the spindle position checkpoint (SPOC). The SPOC inhibits cells from exiting mitosis until the mitotic spindle is properly oriented along the mother-daughter polarity axis. Despite many experimental studies, the mechanisms underlying SPOC regulation remains elusive and unexplored theoretically. Here, a minimal mathematical is developed to describe SPOC activation and silencing having autocatalytic feedback-loop. Numerical simulations of the nonlinear ordinary differential equations (ODEs) model accurately reproduce the phenotype of SPOC mechanism. Bifurcation analysis of the nonlinear ODEs reveals the orientation dependency on spindle pole bodies, and how this dependence is altered by parameter values. These results provide for systems understanding on the molecular organization of spindle orientation system via mathematical modeling. The presented mathematical model is easy to understand and, within the above mentioned context, can be used as a base for further development of quantitative models in asymmetric cell-division. Copyright © 2018. Published by Elsevier Inc.
Petri, Robert Michael; Hackel, Alexander; Hahnel, Katrin; Dumitru, Claudia Alexandra; Bruderek, Kirsten; Flohe, Stefanie B; Paschen, Annette; Lang, Stephan; Brandau, Sven
2017-09-12
The interaction of mesenchymal stromal cells (MSCs) with natural killer (NK) cells is traditionally thought of as a static inhibitory model, whereby resting MSCs inhibit NK cell effector function. Here, we use a dynamic in vitro system of poly(I:C) stimulation to model the interaction of NK cells and tissue-resident MSCs in the context of infection or tissue injury. The experiments suggest a time-dependent system of regulation and feedback, where, at early time points, activated MSCs secrete type I interferon to enhance NK cell effector function, while at later time points TGF-β and IL-6 limit NK cell effector function and terminate inflammatory responses by induction of a regulatory senescent-like NK cell phenotype. Importantly, feedback of these regulatory NK cells to MSCs promotes survival, proliferation, and pro-angiogenic properties. Our data provide additional insight into the interaction of stromal cells and innate immune cells and suggest a model of time-dependent MSC polarization and licensing. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
The tumor suppressor functions of p27(kip1) include control of the mesenchymal/amoeboid transition.
Berton, Stefania; Belletti, Barbara; Wolf, Katarina; Canzonieri, Vincenzo; Lovat, Francesca; Vecchione, Andrea; Colombatti, Alfonso; Friedl, Peter; Baldassarre, Gustavo
2009-09-01
In many human cancers, p27 downregulation correlates with a worse prognosis, suggesting that p27 levels could represent an important determinant in cell transformation and cancer development. Using a mouse model system based on v-src-induced transformation, we show here that p27 absence is always linked to a more aggressive phenotype. When cultured in three-dimensional contexts, v-src-transformed p27-null fibroblasts undergo a morphological switch from an elongated to a rounded cell shape, accompanied by amoeboid-like morphology and motility. Importantly, the acquisition of the amoeboid motility is associated with a greater ability to move and colonize distant sites in vivo. The reintroduction of different p27 mutants in v-src-transformed p27-null cells demonstrates that the control of cell proliferation and motility represents two distinct functions of p27, both necessary for it to fully act as a tumor suppressor. Thus, we highlight here a new p27 function in driving cell plasticity that is associated with its C-terminal portion and does not depend on the control of cyclin-dependent kinase activity.
Wallin, Jeffrey J.; Guan, Jane; Edgar, Kyle A.; Zhou, Wei; Francis, Ross; Torres, Anthony C.; Haverty, Peter M.; Eastham-Anderson, Jeffrey; Arena, Sabrina; Bardelli, Alberto; Griffin, Sue; Goodall, John E.; Grimshaw, Kyla M.; Hoeflich, Klaus P.; Torrance, Christopher; Belvin, Marcia; Friedman, Lori S.
2012-01-01
The PTEN/PI3K pathway is commonly mutated in cancer and therefore represents an attractive target for therapeutic intervention. To investigate the primary phenotypes mediated by increased pathway signaling in a clean, patient-relevant context, an activating PIK3CA mutation (H1047R) was knocked-in to an endogenous allele of the MCF10A non-tumorigenic human breast epithelial cell line. Introduction of an endogenously mutated PIK3CA allele resulted in a marked epithelial-mesenchymal transition (EMT) and invasive phenotype, compared to isogenic wild-type cells. The invasive phenotype was linked to enhanced PIP3 production via a S6K-IRS positive feedback mechanism. Moreover, potent and selective inhibitors of PI3K were highly effective in reversing this phenotype, which is optimally revealed in 3-dimensional cell culture. In contrast, inhibition of Akt or mTOR exacerbated the invasive phenotype. Our results suggest that invasion is a core phenotype mediated by increased PTEN/PI3K pathway activity and that therapeutic agents targeting different nodes of the PI3K pathway may have dramatic differences in their ability to reverse or promote cancer metastasis. PMID:22570710
Phenotypic analysis of a novel chordin mutant in medaka.
Takashima, Shigeo; Shimada, Atsuko; Kobayashi, Daisuke; Yokoi, Hayato; Narita, Takanori; Jindo, Tomoko; Kage, Takahiro; Kitagawa, Tadao; Kimura, Tetsuaki; Sekimizu, Koshin; Miyake, Akimitsu; Setiamarga, Davin H E; Murakami, Ryohei; Tsuda, Sachiko; Ooki, Shinya; Kakihara, Ken; Hojo, Motoki; Naruse, Kiyoshi; Mitani, Hiroshi; Shima, Akihiro; Ishikawa, Yuji; Araki, Kazuo; Saga, Yumiko; Takeda, Hiroyuki
2007-08-01
We have isolated and characterized a ventralized mutant in medaka (the Japanese killifish; Oryzias latipes), which turned out to have a mutation in the chordin gene. The mutant exhibits ventralization of the body axis, malformation of axial bones, over-bifurcation of yolk sac blood vessels, and laterality defects in internal organs. The mutant exhibits variability of phenotypes, depending on the culture temperature, from embryos with a slightly ventralized phenotype to those without any head and trunk structures. Taking advantages of these variable and severe phenotypes, we analyzed the role of Chordin-dependent tissues such as the notochord and Kupffer's vesicle (KV) in the establishment of left-right axis in fish. The results demonstrate that, in the absence of the notochord and KV, the medaka lateral plate mesoderm autonomously and bilaterally expresses spaw gene in a default state. (c) 2007 Wiley-Liss, Inc.
Cocaine locomotor activation, sensitization and place preference in six inbred strains of mice
2011-01-01
Background The expanding set of genomics tools available for inbred mouse strains has renewed interest in phenotyping larger sets of strains. The present study aims to explore phenotypic variability among six commonly-used inbred mouse strains to both the rewarding and locomotor stimulating effects of cocaine in a place conditioning task, including several strains or substrains that have not yet been characterized for some or all of these behaviors. Methods C57BL/6J (B6), BALB/cJ (BALB), C3H/HeJ (C3H), DBA/2J (D2), FVB/NJ (FVB) and 129S1/SvImJ (129) mice were tested for conditioned place preference to 20 mg/kg cocaine. Results Place preference was observed in most strains with the exception of D2 and 129. All strains showed a marked increase in locomotor activity in response to cocaine. In BALB mice, however, locomotor activation was context-dependent. Locomotor sensitization to repeated exposure to cocaine was most significant in 129 and D2 mice but was absent in FVB mice. Conclusions Genetic correlations suggest that no significant correlation between conditioned place preference, acute locomotor activation, and locomotor sensitization exists among these strains indicating that separate mechanisms underlie the psychomotor and rewarding effects of cocaine. PMID:21806802
On the role of extrinsic noise in microRNA-mediated bimodal gene expression
2018-01-01
Several studies highlighted the relevance of extrinsic noise in shaping cell decision making and differentiation in molecular networks. Bimodal distributions of gene expression levels provide experimental evidence of phenotypic differentiation, where the modes of the distribution often correspond to different physiological states of the system. We theoretically address the presence of bimodal phenotypes in the context of microRNA (miRNA)-mediated regulation. MiRNAs are small noncoding RNA molecules that downregulate the expression of their target mRNAs. The nature of this interaction is titrative and induces a threshold effect: below a given target transcription rate almost no mRNAs are free and available for translation. We investigate the effect of extrinsic noise on the system by introducing a fluctuating miRNA-transcription rate. We find that the presence of extrinsic noise favours the presence of bimodal target distributions which can be observed for a wider range of parameters compared to the case with intrinsic noise only and for lower miRNA-target interaction strength. Our results suggest that combining threshold-inducing interactions with extrinsic noise provides a simple and robust mechanism for obtaining bimodal populations without requiring fine tuning. Furthermore, we characterise the protein distribution’s dependence on protein half-life. PMID:29664903
Urdy, S; Goudemand, N; Pantalacci, S
2016-01-01
The core of Evo-Devo lies in the intuition that the way tissues grow during embryonic development, the way they sustain their structure and function throughout lifetime, and the way they evolve are closely linked. Epithelial tissues are ubiquitous in metazoans, covering the gut and internal branched organs, as well as the skin and its derivatives (ie, teeth). Here, we discuss in vitro, in vivo, and in silico studies on epithelial tissues to illustrate the conserved, dynamical, and complex aspects of their development. We then explore the implications of the dynamical and nonlinear nature of development on the evolution of their size and shape at the phenotypic and genetic levels. In rare cases, when the interplay between signaling and mechanics is well understood at the cell level, it is becoming clear that the structure of development leads to covariation of characters, an integration which in turn provides some predictable structure to evolutionary changes. We suggest that such nonlinear systems are prone to genetic drift, cryptic genetic variation, and context-dependent mutational effects. We argue that experimental and theoretical studies at the cell level are critical to our understanding of the phenotypic and genetic evolution of epithelial tissues, including carcinomas. © 2016 Elsevier Inc. All rights reserved.
Barik, Debashis; Ball, David A; Peccoud, Jean; Tyson, John J
2016-12-01
The cell division cycle of eukaryotes is governed by a complex network of cyclin-dependent protein kinases (CDKs) and auxiliary proteins that govern CDK activities. The control system must function reliably in the context of molecular noise that is inevitable in tiny yeast cells, because mistakes in sequencing cell cycle events are detrimental or fatal to the cell or its progeny. To assess the effects of noise on cell cycle progression requires not only extensive, quantitative, experimental measurements of cellular heterogeneity but also comprehensive, accurate, mathematical models of stochastic fluctuations in the CDK control system. In this paper we provide a stochastic model of the budding yeast cell cycle that accurately accounts for the variable phenotypes of wild-type cells and more than 20 mutant yeast strains simulated in different growth conditions. We specifically tested the role of feedback regulations mediated by G1- and SG2M-phase cyclins to minimize the noise in cell cycle progression. Details of the model are informed and tested by quantitative measurements (by fluorescence in situ hybridization) of the joint distributions of mRNA populations in yeast cells. We use the model to predict the phenotypes of ~30 mutant yeast strains that have not yet been characterized experimentally.
Allele-Skewed DNA Modification in the Brain: Relevance to a Schizophrenia GWAS
Gagliano, Sarah A.; Ptak, Carolyn; Mak, Denise Y.F.; Shamsi, Mehrdad; Oh, Gabriel; Knight, Joanne; Boutros, Paul C.; Petronis, Arturas
2016-01-01
Numerous recent studies have suggested that phenotypic effects of DNA sequence variants can be mediated or modulated by their epigenetic marks, such as allele-skewed DNA modification (ASM). Using Affymetrix SNP microarrays, we performed a comprehensive search of ASM effects in human post-mortem brain and sperm samples (total n = 256) from individuals with major psychosis and control individuals. Depending on the phenotypic category of the brain samples, 1.4%–7.5% of interrogated SNPs exhibited ASM effects. Next, we investigated ASM in the context of genetic studies of schizophrenia and detected that brain ASM SNPs were significantly overrepresented among sub-threshold SNPs from a schizophrenia genome-wide association study (GWAS). Brain ASM SNPs showed a much stronger enrichment in a schizophrenia GWAS than in 17 large GWASs of non-psychiatric diseases and traits, arguing that ASM effects are at least partially tissue specific. Studies of germline and control brain ASM SNPs supported a causal association between ASM and schizophrenia. Finally, significantly higher proportions of ASM SNPs than of non-ASM SNPs were detected at loci exhibiting epigenetic signatures of enhancers and promoters, and they were overrepresented within transcription factor binding regions and DNase I hypersensitive sites. All of these findings collectively indicate that ASM SNPs should be prioritized in follow-up GWASs. PMID:27087318
Ball, David A.
2016-01-01
The cell division cycle of eukaryotes is governed by a complex network of cyclin-dependent protein kinases (CDKs) and auxiliary proteins that govern CDK activities. The control system must function reliably in the context of molecular noise that is inevitable in tiny yeast cells, because mistakes in sequencing cell cycle events are detrimental or fatal to the cell or its progeny. To assess the effects of noise on cell cycle progression requires not only extensive, quantitative, experimental measurements of cellular heterogeneity but also comprehensive, accurate, mathematical models of stochastic fluctuations in the CDK control system. In this paper we provide a stochastic model of the budding yeast cell cycle that accurately accounts for the variable phenotypes of wild-type cells and more than 20 mutant yeast strains simulated in different growth conditions. We specifically tested the role of feedback regulations mediated by G1- and SG2M-phase cyclins to minimize the noise in cell cycle progression. Details of the model are informed and tested by quantitative measurements (by fluorescence in situ hybridization) of the joint distributions of mRNA populations in yeast cells. We use the model to predict the phenotypes of ~30 mutant yeast strains that have not yet been characterized experimentally. PMID:27935947
Bristow, Michael R; Kao, David P; Breathett, Khadijah K; Altman, Natasha L; Gorcsan, John; Gill, Edward A; Lowes, Brian D; Gilbert, Edward M; Quaife, Robert A; Mann, Douglas L
2017-11-01
Diagnosis, prognosis, treatment, and development of new therapies for diseases or syndromes depend on a reliable means of identifying phenotypes associated with distinct predictive probabilities for these various objectives. Left ventricular ejection fraction (LVEF) provides the current basis for combined functional and structural phenotyping in heart failure by classifying patients as those with heart failure with reduced ejection fraction (HFrEF) and those with heart failure with preserved ejection fraction (HFpEF). Recently the utility of LVEF as the major phenotypic determinant of heart failure has been challenged based on its load dependency and measurement variability. We review the history of the development and adoption of LVEF as a critical measurement of LV function and structure and demonstrate that, in chronic heart failure, load dependency is not an important practical issue, and we provide hemodynamic and molecular biomarker evidence that LVEF is superior or equal to more unwieldy methods of identifying phenotypes of ventricular remodeling. We conclude that, because it reliably measures both left ventricular function and structure, LVEF remains the best current method of assessing pathologic remodeling in heart failure in both individual clinical and multicenter group settings. Because of the present and future importance of left ventricular phenotyping in heart failure, LVEF should be measured by using the most accurate technology and methodologic refinements available, and improved characterization methods should continue to be sought. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
The Potential Role of Senescence As a Modulator of Platelets and Tumorigenesis
Valenzuela, Claudio A.; Quintanilla, Ricardo; Moore-Carrasco, Rodrigo; Brown, Nelson E.
2017-01-01
In addition to thrombus formation, alterations in platelet function are frequently observed in cancer patients. Importantly, both thrombus and tumor formation are influenced by age, although the mechanisms through which physiological aging modulates these processes remain poorly understood. In this context, the potential effects of senescent cells on platelet function represent pathophysiological mechanisms that deserve further exploration. Cellular senescence has traditionally been viewed as a barrier to tumorigenesis. However, far from being passive bystanders, senescent cells are metabolically active and able to secrete a variety of soluble and insoluble factors. This feature, known as the senescence-associated secretory phenotype (SASP), may provide senescent cells with the capacity to modify the tissue environment and, paradoxically, promote proliferation and neoplastic transformation of neighboring cells. In fact, the SASP-dependent ability of senescent cells to enhance tumorigenesis has been confirmed in cellular systems involving epithelial cells and fibroblasts, leaving open the question as to whether similar interactions can be extended to other cellular contexts. In this review, we discuss the diverse functions of platelets in tumorigenesis and suggest the possibility that senescent cells might also influence tumorigenesis through their ability to modulate the functional status of platelets through the SASP. PMID:28894697
Cognitive Phenotypes and the Evolution of Animal Decisions.
Mendelson, Tamra C; Fitzpatrick, Courtney L; Hauber, Mark E; Pence, Charles H; Rodríguez, Rafael L; Safran, Rebecca J; Stern, Caitlin A; Stevens, Jeffrey R
2016-11-01
Despite the clear fitness consequences of animal decisions, the science of animal decision making in evolutionary biology is underdeveloped compared with decision science in human psychology. Specifically, the field lacks a conceptual framework that defines and describes the relevant components of a decision, leading to imprecise language and concepts. The 'judgment and decision-making' (JDM) framework in human psychology is a powerful tool for framing and understanding human decisions, and we apply it here to components of animal decisions, which we refer to as 'cognitive phenotypes'. We distinguish multiple cognitive phenotypes in the context of a JDM framework and highlight empirical approaches to characterize them as evolvable traits. Copyright © 2016 Elsevier Ltd. All rights reserved.
In Vitro Assays for Mouse Müller Cell Phenotyping Through microRNA Profiling in the Damaged Retina.
Reyes-Aguirre, Luis I; Quintero, Heberto; Estrada-Leyva, Brenda; Lamas, Mónica
2018-01-01
microRNA profiling has identified cell-specific expression patterns that could represent molecular signatures triggering the acquisition of a specific phenotype; in other words, of cellular identity and its associated function. Several groups have hypothesized that retinal cell phenotyping could be achieved through the determination of the global pattern of miRNA expression across specific cell types in the adult retina. This is especially relevant for Müller glia in the context of retinal damage, as these cells undergo dramatic changes of gene expression in response to injury, that render them susceptible to acquire a progenitor-like phenotype and be a source of new neurons.We describe a method that combines an experimental protocol for excitotoxic-induced retinal damage through N-methyl-D-aspartate subretinal injection with magnetic-activated cell sorting (MACS) of Müller cells and RNA isolation for microRNA profiling. Comparison of microRNA patterns of expression should allow Müller cell phenotyping under different experimental conditions.
Phenotypic Plasticity of Cuticular Hydrocarbon Profiles in Insects.
Otte, Tobias; Hilker, Monika; Geiselhardt, Sven
2018-03-01
The insect integument is covered by cuticular hydrocarbons (CHCs) which provide protection against environmental stresses, but are also used for communication. Here we review current knowledge on environmental and insect-internal factors which shape phenotypic plasticity of solitary living insects, especially herbivorous ones. We address the dynamics of changes which may occur within minutes, but may also last weeks, depending on the species and conditions. Two different modes of changes are suggested, i.e. stepwise and gradual. A switch between two distinct environments (e.g. host plant switch by phytophagous insects) results in stepwise formation of two distinct adaptive phenotypes, while a gradual environmental change (e.g. temperature gradients) induces a gradual change of numerous adaptive CHC phenotypes. We further discuss the ecological and evolutionary consequences of phenotypic plasticity of insect CHC profiles by addressing the question at which conditions is CHC phenotypic plasticity beneficial. The high plasticity of CHC profiles might be a trade-off for insects using CHCs for communication. We discuss how insects cope with the challenge to produce and "understand" a highly plastic, environmentally dependent CHC pattern that conveys reliable and comprehensible information. Finally, we outline how phenotypic plasticity of CHC profiles may promote speciation in insects that rely on CHCs for mate recognition.
Heredity and self-organization: partners in the generation and evolution of phenotypes.
Malagon, Nicolas; Larsen, Ellen
2015-01-01
In this review we examine the role of self-organization in the context of the evolution of morphogenesis. We provide examples to show that self-organized behavior is ubiquitous, and suggest it is a mechanism that can permit high levels of biodiversity without the invention of ever-increasing numbers of genes. We also examine the implications of self-organization for understanding the "internal descriptions" of organisms and the concept of a genotype-phenotype map. Copyright © 2015 Elsevier Inc. All rights reserved.
2010-01-01
One of the important challenges to post-genomic biology is relating observed phenotypic alterations to the underlying collective alterations in genes. Current inferential methods, however, invariably omit large bodies of information on the relationships between genes. We present a method that takes account of such information - expressed in terms of the topology of a correlation network - and we apply the method in the context of current procedures for gene set enrichment analysis. PMID:20187943
McKenzie, David J; Belão, Thiago C; Killen, Shaun S; Rantin, F Tadeu
2015-12-01
The African sharptooth catfish Clarias gariepinus has bimodal respiration, it has a suprabranchial air-breathing organ alongside substantial gills. We used automated bimodal respirometry to reveal that undisturbed juvenile catfish (N=29) breathed air continuously in normoxia, with a marked diurnal cycle. Air breathing and routine metabolic rate (RMR) increased in darkness when, in the wild, this nocturnal predator forages. Aquatic hypoxia (20% air saturation) greatly increased overall reliance on air breathing. We investigated whether two measures of risk taking to breathe air, namely absolute rates of aerial O2 uptake (ṀO2,air) and the percentage of RMR obtained from air (%ṀO2,air), were influenced by individual standard metabolic rate (SMR) and boldness. In particular, whether any influence varied with resource availability (normoxia versus hypoxia) or relative fear of predation (day versus night). Individual SMR, derived from respirometry, had an overall positive influence on ṀO2,air across all contexts but a positive influence on %ṀO2,air only in hypoxia. Thus, a pervasive effect of SMR on air breathing became most acute in hypoxia, when individuals with higher O2 demand took proportionally more risks. Boldness was estimated as time required to resume air breathing after a fearful stimulus in daylight normoxia (Tres). Although Tres had no overall influence on ṀO2,air or %ṀO2,air, there was a negative relationship between Tres and %ṀO2,air in daylight, in normoxia and hypoxia. There were two Tres response groups, 'bold' phenotypes with Tres below 75 min (N=13) which, in daylight, breathed proportionally more air than 'shy' phenotypes with Tres above 115 min (N=16). Therefore, individual boldness influenced air breathing when fear of predation was high. Thus, individual energy demand and personality did not have parallel influences on the emergent tendency to take risks to obtain a resource; their influences varied in strength with context. © 2015. Published by The Company of Biologists Ltd.
Pizzari, Tommaso; Jensen, Per; Cornwallis, Charles K.
2004-01-01
The phenotype-linked fertility hypothesis predicts that male sexual ornaments signal fertilizing efficiency and that the coevolution of male ornaments and female preference for such ornaments is driven by female pursuit of fertility benefits. In addition, directional testicular asymmetry frequently observed in birds has been suggested to reflect fertilizing efficiency and to covary with ornament expression. However, the idea of a phenotypic relationship between male ornaments and fertilizing efficiency is often tested in populations where environmental effects mask the underlying genetic associations between ornaments and fertilizing efficiency implied by this idea. Here, we adopt a novel design, which increases genetic diversity through the crossing of two divergent populations while controlling for environmental effects, to test: (i) the phenotypic relationship between male ornaments and both, gonadal (testicular mass) and gametic (sperm quality) components of fertilizing efficiency; and (ii) the extent to which these components are phenotypically integrated in the fowl, Gallus gallus. We show that consistent with theory, the testosterone-dependent expression of a male ornament, the comb, predicted testicular mass. However, despite their functional inter-dependence, testicular mass and sperm quality were not phenotypically integrated. Consistent with this result, males of one parental population invested more in testicular and comb mass, whereas males of the other parental population had higher sperm quality. We found no evidence that directional testicular asymmetry covaried with ornament expression. These results shed new light on the evolutionary relationship between male fertilizing efficiency and ornaments. Although testosterone-dependent ornaments may covary with testicular mass and thus reflect sperm production rate, the lack of phenotypic integration between gonadal and gametic traits reveals that the expression of an ornament is unlikely to reflect the overall fertilizing efficiency of a male. PMID:15002771
UCSC Xena | Informatics Technology for Cancer Research (ITCR)
UCSC Xena securely analyzes and visualizes your private functional genomics data set in the context of public and shared genomic/phenotypic data sets such as TCGA, ICGC, TARGET, GTEx, and GA4GH (TOIL).
Slabáková, Eva; Kharaishvili, Gvantsa; Smějová, Monika; Pernicová, Zuzana; Suchánková, Tereza; Remšík, Ján; Lerch, Stanislav; Straková, Nicol; Bouchal, Jan; Král, Milan; Culig, Zoran; Kozubík, Alois; Souček, Karel
2015-11-03
Plasticity of cancer cells, manifested by transitions between epithelial and mesenchymal phenotypes, represents a challenging issue in the treatment of neoplasias. Both epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) are implicated in the processes of metastasis formation and acquisition of stem cell-like properties. Mouse double minute (MDM) 2 and MDMX are important players in cancer progression, as they act as regulators of p53, but their function in EMT and metastasis may be contradictory. Here, we show that the EMT phenotype in multiple cellular models and in clinical prostate and breast cancer samples is associated with a decrease in MDM2 and increase in MDMX expression. Modulation of EMT-accompanying changes in MDM2 expression in benign and transformed prostate epithelial cells influences their migration capacity and sensitivity to docetaxel. Analysis of putative mechanisms of MDM2 expression control demonstrates that in the context of defective p53 function, MDM2 expression is regulated by EMT-inducing transcription factors Slug and Twist. These results provide an alternative context-specific role of MDM2 in EMT, cell migration, metastasis, and therapy resistance.
Importance of Context Dependence in the Measurement of Reading Skills.
ERIC Educational Resources Information Center
Oaster, T. R. F.; Thomas, Rick D.
Past reading research suggests that measures of reading comprehension should be made context dependent. Reading comprehension test questions that are context dependent are best answered by examinees only after the accompanying passages have been read. Recently, there has been some disagreement concerning the exact importance of context dependence…
Chaos and unpredictability in evolution.
Doebeli, Michael; Ispolatov, Iaroslav
2014-05-01
The possibility of complicated dynamic behavior driven by nonlinear feedbacks in dynamical systems has revolutionized science in the latter part of the last century. Yet despite examples of complicated frequency dynamics, the possibility of long-term evolutionary chaos is rarely considered. The concept of "survival of the fittest" is central to much evolutionary thinking and embodies a perspective of evolution as a directional optimization process exhibiting simple, predictable dynamics. This perspective is adequate for simple scenarios, when frequency-independent selection acts on scalar phenotypes. However, in most organisms many phenotypic properties combine in complicated ways to determine ecological interactions, and hence frequency-dependent selection. Therefore, it is natural to consider models for evolutionary dynamics generated by frequency-dependent selection acting simultaneously on many different phenotypes. Here we show that complicated, chaotic dynamics of long-term evolutionary trajectories in phenotype space is very common in a large class of such models when the dimension of phenotype space is large, and when there are selective interactions between the phenotypic components. Our results suggest that the perspective of evolution as a process with simple, predictable dynamics covers only a small fragment of long-term evolution. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Gutiérrez, Jayson
2009-01-01
The way in which the information contained in genotypes is translated into complex phenotypic traits (i.e. embryonic expression patterns) depends on its decoding by a multilayered hierarchy of biomolecular systems (regulatory networks). Each layer of this hierarchy displays its own regulatory schemes (i.e. operational rules such as +/− feedback) and associated control parameters, resulting in characteristic variational constraints. This process can be conceptualized as a mapping issue, and in the context of highly-dimensional genotype-phenotype mappings (GPMs) epistatic events have been shown to be ubiquitous, manifested in non-linear correspondences between changes in the genotype and their phenotypic effects. In this study I concentrate on epistatic phenomena pervading levels of biological organization above the genetic material, more specifically the realm of molecular networks. At this level, systems approaches to studying GPMs are specially suitable to shed light on the mechanistic basis of epistatic phenomena. To this aim, I constructed and analyzed ensembles of highly-modular (fully interconnected) networks with distinctive topologies, each displaying dynamic behaviors that were categorized as either arbitrary or functional according to early patterning processes in the Drosophila embryo. Spatio-temporal expression trajectories in virtual syncytial embryos were simulated via reaction-diffusion models. My in silico mutational experiments show that: 1) the average fitness decay tendency to successively accumulated mutations in ensembles of functional networks indicates the prevalence of positive epistasis, whereas in ensembles of arbitrary networks negative epistasis is the dominant tendency; and 2) the evaluation of epistatic coefficients of diverse interaction orders indicates that, both positive and negative epistasis are more prevalent in functional networks than in arbitrary ones. Overall, I conclude that the phenotypic and fitness effects of multiple perturbations are strongly conditioned by both the regulatory architecture (i.e. pattern of coupled feedback structures) and the dynamic nature of the spatio-temporal expression trajectories displayed by the simulated networks. PMID:19738908
Jang, Shyh-Ing; Ong, Hwei Ling; Liu, Xibao; Alevizos, Ilias; Ambudkar, Indu S.
2016-01-01
The signaling pathways involved in the generation and maintenance of exocrine gland acinar cells have not yet been established. Primary human salivary gland epithelial cells, derived from salivary gland biopsies, acquired an acinar-like phenotype when the [Ca2+] in the serum-free medium (keratinocyte growth medium, KGM) was increased from 0.05 mm (KGM-L) to 1.2 mm (KGM-H). Here we examined the mechanism underlying this Ca2+-dependent generation of the acinar cell phenotype. Compared with cells in KGM-L, those in KGM-H display enhancement of Orai1, STIM1, STIM2, and nuclear factor of activated T cells 1 (NFAT1) expression together with an increase in store-operated Ca2+ entry (SOCE), SOCE-dependent nuclear translocation of pGFP-NFAT1, and NFAT-dependent but not NFκB-dependent gene expression. Importantly, AQP5, an acinar-specific protein critical for function, is up-regulated in KGM-H via SOCE/NFAT-dependent gene expression. We identified critical NFAT binding motifs in the AQP5 promoter that are involved in Ca2+-dependent up-regulation of AQP5. These important findings reveal that the Ca2+-induced switch of salivary epithelial cells to an acinar-like phenotype involves remodeling of SOCE and NFAT signaling, which together control the expression of proteins critically relevant for acinar cell function. Our data provide a novel strategy for generating and maintaining acinar cells in culture. PMID:26903518
Tiedt, Hannes O; Benjamin, Beate; Niedeggen, Michael; Lueschow, Andreas
2018-02-22
In rare cases, patients with Alzheimer disease (AD) present at an early age and with a family history suggestive of an autosomal dominant mode of inheritance. Mutations of the presenilin-1 (PSEN1) gene are the most common causes of dementia in these patients. Early-onset and particularly familial AD patients frequently present with variable non-amnestic cognitive symptoms such as visual, language or behavioural changes as well as non-cognitive, e.g. motor, symptoms. To investigate the phenotypic variability in carriers of the PSEN1 S170F mutation. We report a family with 4 patients carrying the S170F mutation of whom 2 underwent detailed clinical examinations. We discuss our current findings in the context of previously reported S170F cases. The clinical phenotype was consistent regarding initial memory impairment and early onset in the late twenties found in all S170F patients. There were frequent non-amnestic cognitive changes and, at early stages of the disease, indications of a more pronounced disturbance of visuospatial abilities as compared to face and object recognition. Non-cognitive symptoms most often included myoclonus and cerebellar ataxia. A review of the available case reports indicates some phenotypic variability associated with the S170F mutation including different constellations of symptoms such as parkinsonism and delusions. The variable clinical findings associated with the S170F mutation highlight the relevance of atypical phenotypes in the context of research and under a clinical perspective. CSF sampling and detection of Aβ species may be essential to indicate AD pathology in unclear cases presenting with cognitive and motor symptoms at a younger age. © 2018 S. Karger AG, Basel.
Quantile-Specific Penetrance of Genes Affecting Lipoproteins, Adiposity and Height
Williams, Paul T.
2012-01-01
Quantile-dependent penetrance is proposed to occur when the phenotypic expression of a SNP depends upon the population percentile of the phenotype. To illustrate the phenomenon, quantiles of height, body mass index (BMI), and plasma lipids and lipoproteins were compared to genetic risk scores (GRS) derived from single nucleotide polymorphisms (SNP)s having established genome-wide significance: 180 SNPs for height, 32 for BMI, 37 for low-density lipoprotein (LDL)-cholesterol, 47 for high-density lipoprotein (HDL)-cholesterol, 52 for total cholesterol, and 31 for triglycerides in 1930 subjects. Both phenotypes and GRSs were adjusted for sex, age, study, and smoking status. Quantile regression showed that the slope of the genotype-phenotype relationships increased with the percentile of BMI (P = 0.002), LDL-cholesterol (P = 3×10−8), HDL-cholesterol (P = 5×10−6), total cholesterol (P = 2.5×10−6), and triglyceride distribution (P = 7.5×10−6), but not height (P = 0.09). Compared to a GRS's phenotypic effect at the 10th population percentile, its effect at the 90th percentile was 4.2-fold greater for BMI, 4.9-fold greater for LDL-cholesterol, 1.9-fold greater for HDL-cholesterol, 3.1-fold greater for total cholesterol, and 3.3-fold greater for triglycerides. Moreover, the effect of the rs1558902 (FTO) risk allele was 6.7-fold greater at the 90th than the 10th percentile of the BMI distribution, and that of the rs3764261 (CETP) risk allele was 2.4-fold greater at the 90th than the 10th percentile of the HDL-cholesterol distribution. Conceptually, it maybe useful to distinguish environmental effects on the phenotype that in turn alters a gene's phenotypic expression (quantile-dependent penetrance) from environmental effects affecting the gene's phenotypic expression directly (gene-environment interaction). PMID:22235250
Context-sensitive network-based disease genetics prediction and its implications in drug discovery.
Chen, Yang; Xu, Rong
2017-04-01
Disease phenotype networks play an important role in computational approaches to identifying new disease-gene associations. Current disease phenotype networks often model disease relationships based on pairwise similarities, therefore ignore the specific context on how two diseases are connected. In this study, we propose a new strategy to model disease associations using context-sensitive networks (CSNs). We developed a CSN-based phenome-driven approach for disease genetics prediction, and investigated the translational potential of the predicted genes in drug discovery. We constructed CSNs by directly connecting diseases with associated phenotypes. Here, we constructed two CSNs using different data sources; the two networks contain 26 790 and 13 822 nodes respectively. We integrated the CSNs with a genetic functional relationship network and predicted disease genes using a network-based ranking algorithm. For comparison, we built Similarity-Based disease Networks (SBN) using the same disease phenotype data. In a de novo cross validation for 3324 diseases, the CSN-based approach significantly increased the average rank from top 12.6 to top 8.8% for all tested genes comparing with the SBN-based approach ( p
Turning Escherichia coli into a Frataxin-Dependent Organism
Roche, Béatrice; Agrebi, Rym; Huguenot, Allison; Ollagnier de Choudens, Sandrine; Barras, Frédéric; Py, Béatrice
2015-01-01
Fe-S bound proteins are ubiquitous and contribute to most basic cellular processes. A defect in the ISC components catalyzing Fe-S cluster biogenesis leads to drastic phenotypes in both eukaryotes and prokaryotes. In this context, the Frataxin protein (FXN) stands out as an exception. In eukaryotes, a defect in FXN results in severe defects in Fe-S cluster biogenesis, and in humans, this is associated with Friedreich’s ataxia, a neurodegenerative disease. In contrast, prokaryotes deficient in the FXN homolog CyaY are fully viable, despite the clear involvement of CyaY in ISC-catalyzed Fe-S cluster formation. The molecular basis of the differing importance in the contribution of FXN remains enigmatic. Here, we have demonstrated that a single mutation in the scaffold protein IscU rendered E. coli viability strictly dependent upon a functional CyaY. Remarkably, this mutation changed an Ile residue, conserved in prokaryotes at position 108, into a Met residue, conserved in eukaryotes. We found that in the double mutant IscUIM ΔcyaY, the ISC pathway was completely abolished, becoming equivalent to the ΔiscU deletion strain and recapitulating the drastic phenotype caused by FXN deletion in eukaryotes. Biochemical analyses of the “eukaryotic-like” IscUIM scaffold revealed that it exhibited a reduced capacity to form Fe-S clusters. Finally, bioinformatic studies of prokaryotic IscU proteins allowed us to trace back the source of FXN-dependency as it occurs in present-day eukaryotes. We propose an evolutionary scenario in which the current mitochondrial Isu proteins originated from the IscUIM version present in the ancestor of the Rickettsiae. Subsequent acquisition of SUF, the second Fe-S cluster biogenesis system, in bacteria, was accompanied by diminished contribution of CyaY in prokaryotic Fe-S cluster biogenesis, and increased tolerance to change in the amino acid present at the 108th position of the scaffold. PMID:25996492
Structural Modeling Insights into Human VKORC1 Phenotypes
Czogalla, Katrin J.; Watzka, Matthias; Oldenburg, Johannes
2015-01-01
Vitamin K 2,3-epoxide reductase complex subunit 1 (VKORC1) catalyses the reduction of vitamin K and its 2,3-epoxide essential to sustain γ-carboxylation of vitamin K-dependent proteins. Two different phenotypes are associated with mutations in human VKORC1. The majority of mutations cause resistance to 4-hydroxycoumarin- and indandione-based vitamin K antagonists (VKA) used in the prevention and therapy of thromboembolism. Patients with these mutations require greater doses of VKA for stable anticoagulation than patients without mutations. The second phenotype, a very rare autosomal-recessive bleeding disorder caused by combined deficiency of vitamin K dependent clotting factors type 2 (VKCFD2) arises from a homozygous Arg98Trp mutation. The bleeding phenotype can be corrected by vitamin K administration. Here, we summarize published experimental data and in silico modeling results in order to rationalize the mechanisms of VKA resistance and VKCFD2. PMID:26287237
Semi-supervised Learning for Phenotyping Tasks.
Dligach, Dmitriy; Miller, Timothy; Savova, Guergana K
2015-01-01
Supervised learning is the dominant approach to automatic electronic health records-based phenotyping, but it is expensive due to the cost of manual chart review. Semi-supervised learning takes advantage of both scarce labeled and plentiful unlabeled data. In this work, we study a family of semi-supervised learning algorithms based on Expectation Maximization (EM) in the context of several phenotyping tasks. We first experiment with the basic EM algorithm. When the modeling assumptions are violated, basic EM leads to inaccurate parameter estimation. Augmented EM attenuates this shortcoming by introducing a weighting factor that downweights the unlabeled data. Cross-validation does not always lead to the best setting of the weighting factor and other heuristic methods may be preferred. We show that accurate phenotyping models can be trained with only a few hundred labeled (and a large number of unlabeled) examples, potentially providing substantial savings in the amount of the required manual chart review.
Context-dependent memory: colour versus odour.
Pointer, S C; Bond, N W
1998-06-01
An olfactory stimulus and a visual stimulus were employed in a context-dependent memory study using a prose passage as the to-be-remembered item. Ninety-five university students (aged 17-35 years) learned the passage of prose in the presence of one of the stimuli and were then asked to recall the passage with the original context either reinstated or not reinstated. The results revealed a significant context-dependent memory effect for the olfactory cue but not for the visual cue. They demonstrate support for the effectiveness of odours as context cues and it is suggested that context-dependent memory processes may underlie the formation and retrieval of odour-evoked autobiographical memories.
Johnson, Zachary V.; Young, Larry J.
2017-01-01
Oxytocin- and vasopressin-related systems are present in invertebrate and vertebrate bilaterian animals, including humans, and exhibit conserved neuroanatomical and functional properties. In vertebrates, these systems innervate conserved neural networks that regulate social learning and behavior, including conspecific recognition, social attachment, and parental behavior. Individual and species-level variation in central organization of oxytocin and vasopressin systems has been linked to individual and species variation in social learning and behavior. In humans, genetic polymorphisms in the genes encoding oxytocin and vasopressin peptides and/or their respective target receptors have been associated with individual variation in social recognition, social attachment phenotypes, parental behavior, and psychiatric phenotypes such as autism. Here we describe both conserved and variable features of central oxytocin and vasopressin systems in the context of social behavioral diversity, with a particular focus on neural networks that modulate social learning, behavior, and salience of sociosensory stimuli during species-typical social contexts. PMID:28434591
Lessons learned from family history in ocular genetics.
Marino, Meghan J
2015-07-01
Given the vast genetic and phenotypic heterogeneity seen in ocular genetic disorders, considering a patient's clinical phenotype in the context of the family history is essential. Clinicians can improve patient care by appropriately incorporating a patient's family history into their evaluation. Obtaining, reviewing, and accurately interpreting the pedigree are skills geneticists and genetic counselors possess. However, with the field of ophthalmic genetics vastly growing, it is becoming essential for ophthalmologists to understand the utility of the pedigree and develop their abilities in eliciting this information. By not considering a patient's clinical history in the context of the family history, diagnoses can be missed or inaccurate. The purpose of this review is to inform ophthalmologists on the importance of the family history and highlight how the pedigree can aid in establishing an accurate genetic diagnosis. This review also provides to ophthalmologists helpful tips on eliciting and interpreting a patient's family history.
Phenotype, biochemical features, genotype and treatment outcome of pyridoxine-dependent epilepsy.
Al Teneiji, Amal; Bruun, Theodora U J; Cordeiro, Dawn; Patel, Jaina; Inbar-Feigenberg, Michal; Weiss, Shelly; Struys, Eduard; Mercimek-Mahmutoglu, Saadet
2017-04-01
We report treatment outcome of eleven patients with pyridoxine-dependent epilepsy caused by pathogenic variants in ALDH7A1 (PDE-ALDH7A1). We developed a clinical severity score to compare phenotype with biochemical features, genotype and delays in the initiation of pyridoxine. Clinical severity score included 1) global developmental delay/ intellectual disability; 2) age of seizure onset prior to pyridoxine; 3) current seizures on treatment. Phenotype scored 1-3 = mild; 4-6 = moderate; and 7-9 = severe. Five patients had mild, four patients had moderate, and two patients had severe phenotype. Phenotype ranged from mild to severe in eight patients (no lysine-restricted diet in the infantile period) with more than 10-fold elevated urine or plasma α-AASA levels. Phenotype ranged from mild to moderate in patients with homozygous truncating variants and from moderate to severe in patients with homozygous missense variants. There was no correlation between severity of the phenotype and the degree of α-AASA elevation in urine or genotype. All patients were on pyridoxine, nine patients were on arginine and five patients were on the lysine-restricted diet. 73% of the patients became seizure free on pyridoxine. 25% of the patients had a mild phenotype on pyridoxine monotherapy. Whereas, 100% of the patients, on the lysine-restricted diet initiated within their first 7 months of life, had a mild phenotype. Early initiation of lysine-restricted diet and/or arginine therapy likely improved neurodevelopmental outcome in young patients with PDE-ALDH7A1.
Bester, Michael C; Jacobson, Dan; Bauer, Florian F
2012-01-01
The outer cell wall of the yeast Saccharomyces cerevisiae serves as the interface with the surrounding environment and directly affects cell-cell and cell-surface interactions. Many of these interactions are facilitated by specific adhesins that belong to the Flo protein family. Flo mannoproteins have been implicated in phenotypes such as flocculation, substrate adhesion, biofilm formation, and pseudohyphal growth. Genetic data strongly suggest that individual Flo proteins are responsible for many specific cellular adhesion phenotypes. However, it remains unclear whether such phenotypes are determined solely by the nature of the expressed FLO genes or rather as the result of a combination of FLO gene expression and other cell wall properties and cell wall proteins. Mss11 has been shown to be a central element of FLO1 and FLO11 gene regulation and acts together with the cAMP-PKA-dependent transcription factor Flo8. Here we use genome-wide transcription analysis to identify genes that are directly or indirectly regulated by Mss11. Interestingly, many of these genes encode cell wall mannoproteins, in particular, members of the TIR and DAN families. To examine whether these genes play a role in the adhesion properties associated with Mss11 expression, we assessed deletion mutants of these genes in wild-type and flo11Δ genetic backgrounds. This analysis shows that only FLO genes, in particular FLO1/10/11, appear to significantly impact on such phenotypes. Thus adhesion-related phenotypes are primarily dependent on the balance of FLO gene expression.
Heritability of tic disorders: a twin-family study.
Zilhão, N R; Olthof, M C; Smit, D J A; Cath, D C; Ligthart, L; Mathews, C A; Delucchi, K; Boomsma, D I; Dolan, C V
2017-04-01
Genetic-epidemiological studies that estimate the contributions of genetic factors to variation in tic symptoms are scarce. We estimated the extent to which genetic and environmental influences contribute to tics, employing various phenotypic definitions ranging between mild and severe symptomatology, in a large population-based adult twin-family sample. In an extended twin-family design, we analysed lifetime tic data reported by adult mono- and dizygotic twins (n = 8323) and their family members (n = 7164; parents and siblings) from 7311 families in the Netherlands Twin Register. We measured tics by the abbreviated version of the Schedule for Tourette and Other Behavioral Syndromes. Heritability was estimated by genetic structural equation modeling for four tic disorder definitions: three dichotomous and one trichotomous phenotype, characterized by increasingly strictly defined criteria. Prevalence rates of the different tic disorders in our sample varied between 0.3 and 4.5% depending on tic disorder definition. Tic frequencies decreased with increasing age. Heritability estimates varied between 0.25 and 0.37, depending on phenotypic definitions. None of the phenotypes showed evidence of assortative mating, effects of shared environment or non-additive genetic effects. Heritabilities of mild and severe tic phenotypes were estimated to be moderate. Overlapping confidence intervals of the heritability estimates suggest overlapping genetic liabilities between the various tic phenotypes. The most lenient phenotype (defined only by tic characteristics, excluding criteria B, C and D of DSM-IV) rendered sufficiently reliable heritability estimates. These findings have implications in phenotypic definitions for future genetic studies.
Kweon, Ohgew; Kim, Seong-Jae; Blom, Jochen; Kim, Sung-Kwan; Kim, Bong-Soo; Baek, Dong-Heon; Park, Su Inn; Sutherland, John B; Cerniglia, Carl E
2015-02-14
The bacterial genus Mycobacterium is of great interest in the medical and biotechnological fields. Despite a flood of genome sequencing and functional genomics data, significant gaps in knowledge between genome and phenome seriously hinder efforts toward the treatment of mycobacterial diseases and practical biotechnological applications. In this study, we propose the use of systematic, comparative functional pan-genomic analysis to build connections between genomic dynamics and phenotypic evolution in polycyclic aromatic hydrocarbon (PAH) metabolism in the genus Mycobacterium. Phylogenetic, phenotypic, and genomic information for 27 completely genome-sequenced mycobacteria was systematically integrated to reconstruct a mycobacterial phenotype network (MPN) with a pan-genomic concept at a network level. In the MPN, mycobacterial phenotypes show typical scale-free relationships. PAH degradation is an isolated phenotype with the lowest connection degree, consistent with phylogenetic and environmental isolation of PAH degraders. A series of functional pan-genomic analyses provide conserved and unique types of genomic evidence for strong epistatic and pleiotropic impacts on evolutionary trajectories of the PAH-degrading phenotype. Under strong natural selection, the detailed gene gain/loss patterns from horizontal gene transfer (HGT)/deletion events hypothesize a plausible evolutionary path, an epistasis-based birth and pleiotropy-dependent death, for PAH metabolism in the genus Mycobacterium. This study generated a practical mycobacterial compendium of phenotypic and genomic changes, focusing on the PAH-degrading phenotype, with a pan-genomic perspective of the evolutionary events and the environmental challenges. Our findings suggest that when selection acts on PAH metabolism, only a small fraction of possible trajectories is likely to be observed, owing mainly to a combination of the ambiguous phenotypic effects of PAHs and the corresponding pleiotropy- and epistasis-dependent evolutionary adaptation. Evolutionary constraints on the selection of trajectories, like those seen in PAH-degrading phenotypes, are likely to apply to the evolution of other phenotypes in the genus Mycobacterium.
Prediction of Ionizing Radiation Resistance in Bacteria Using a Multiple Instance Learning Model.
Aridhi, Sabeur; Sghaier, Haïtham; Zoghlami, Manel; Maddouri, Mondher; Nguifo, Engelbert Mephu
2016-01-01
Ionizing-radiation-resistant bacteria (IRRB) are important in biotechnology. In this context, in silico methods of phenotypic prediction and genotype-phenotype relationship discovery are limited. In this work, we analyzed basal DNA repair proteins of most known proteome sequences of IRRB and ionizing-radiation-sensitive bacteria (IRSB) in order to learn a classifier that correctly predicts this bacterial phenotype. We formulated the problem of predicting bacterial ionizing radiation resistance (IRR) as a multiple-instance learning (MIL) problem, and we proposed a novel approach for this purpose. We provide a MIL-based prediction system that classifies a bacterium to either IRRB or IRSB. The experimental results of the proposed system are satisfactory with 91.5% of successful predictions.
Developmental effects of the protein kinase inhibitor kenpaullone on the sea urchin embryo.
Anello, Letizia; Cavalieri, Vincenzo; Di Bernardo, Maria
2018-01-01
The selection and validation of bioactive compounds require multiple approaches, including in-depth analyses of their biological activity in a whole-animal context. We exploited the sea urchin embryo in a rapid, medium-scale range screening to test the effects of the small synthetic kinase inhibitor kenpaullone. We show that sea urchin embryos specifically respond to this molecule depending on both dose and timing of administration. Phenotypic effects of kenpaullone are not immediately visible, since this molecule affects neither the fertilization nor the spatial arrangement of blastomeres at early developmental stages. Nevertheless, kenpaullone exposure from the beginning of embryogenesis profoundly perturbs specification, detachment from the epithelium, and migration of the primary mesenchyme cells, thus affecting the whole embryonic epithelial mesenchymal transition process. Our results reaffirm the sea urchin embryo as an excellent and sensitive in vivo system, which provides straightforward and rapid response to external stimuli. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez-Aguilar, Jose Manuel; Shan, Jufang; LeVine, Michael V.
With recent progress in determination of G protein-coupled receptor (GPCR) structure with crystallography, a variety of other experimental approaches (e.g., NMR spectroscopy, fluorescent-based assays, mass spectrometry techniques) are also being used to characterize state-specific and ligand-specific conformational states. MD simulations offer a powerful complementary approach to elucidate the dynamic features associated with ligand-specific GPCR conformations. To shed light on the conformational elements and dynamics of the important aspect of GPCR functional selectivity, we carried out unbiased microsecond-length MD simulations of the human serotonin 2A receptor (5-HT 2AR) in the absence of ligand and bound to four distinct serotonergic agonists. Themore » 5-HT 2AR is a suitable system to study the structural features involved in the ligand-dependent conformational heterogeneity of GPCRs because it is well-characterized experimentally and exhibits a strong agonist-specific phenotype in that some 5-HT 2AR agonists induce LSD-like hallucinations, while others lack this psychoactive property entirely. Here we report evidence for structural and dynamic differences in 5-HT 2AR interacting with such pharmacologically distinct ligands, hallucinogens, and nonhallucinogens obtained from all-atom MD simulations. Differential ligand binding contacts were identified for structurally similar hallucinogens and nonhallucinogens and found to correspond to different conformations in the intracellular loop 2 (ICL2). From the different ICL2 conformations, functional selective phenotypes are suggested through effects on dimerization and/or distinct direct interaction with effector proteins. Lastly, the findings are presented in the context of currently proposed hallucinogenesis mechanisms, and ICL2 is proposed as a fine-tuning selective switch that can differentiates modes of 5-HT 2AR activation.« less
Perez-Aguilar, Jose Manuel; Shan, Jufang; LeVine, Michael V.; ...
2014-10-14
With recent progress in determination of G protein-coupled receptor (GPCR) structure with crystallography, a variety of other experimental approaches (e.g., NMR spectroscopy, fluorescent-based assays, mass spectrometry techniques) are also being used to characterize state-specific and ligand-specific conformational states. MD simulations offer a powerful complementary approach to elucidate the dynamic features associated with ligand-specific GPCR conformations. To shed light on the conformational elements and dynamics of the important aspect of GPCR functional selectivity, we carried out unbiased microsecond-length MD simulations of the human serotonin 2A receptor (5-HT 2AR) in the absence of ligand and bound to four distinct serotonergic agonists. Themore » 5-HT 2AR is a suitable system to study the structural features involved in the ligand-dependent conformational heterogeneity of GPCRs because it is well-characterized experimentally and exhibits a strong agonist-specific phenotype in that some 5-HT 2AR agonists induce LSD-like hallucinations, while others lack this psychoactive property entirely. Here we report evidence for structural and dynamic differences in 5-HT 2AR interacting with such pharmacologically distinct ligands, hallucinogens, and nonhallucinogens obtained from all-atom MD simulations. Differential ligand binding contacts were identified for structurally similar hallucinogens and nonhallucinogens and found to correspond to different conformations in the intracellular loop 2 (ICL2). From the different ICL2 conformations, functional selective phenotypes are suggested through effects on dimerization and/or distinct direct interaction with effector proteins. Lastly, the findings are presented in the context of currently proposed hallucinogenesis mechanisms, and ICL2 is proposed as a fine-tuning selective switch that can differentiates modes of 5-HT 2AR activation.« less
Androgenic signaling systems and their role in behavioral evolution.
Fuxjager, Matthew J; Schuppe, Eric R
2018-06-05
Sex steroids mediate the organization and activation of masculine reproductive phenotypes in diverse vertebrate taxa. However, the effects of sex steroid action in this context vary tremendously, in that steroid action influences reproductive physiology and behavior in markedly different ways (even among closely related species). This leads to the idea that the mechanisms underlying sex steroid action similarly differ across vertebrates in a manner that supports diversification of important sexual traits. Here, we highlight the Evolutionary Potential Hypothesis as a framework for understanding how androgen-dependent reproductive behavior evolves. This idea posits that the cellular mechanisms underlying androgenic action can independently evolve within a given target tissue to adjust the hormone's functional effects. The result is a seemingly endless number of permutations in androgenic signaling pathways that can be mapped onto the incredible diversity of reproductive phenotypes. One reason this hypothesis is important is because it shifts current thinking about the evolution of steroid-dependent traits away from an emphasis on circulating steroid levels and toward a focus on molecular mechanisms of hormone action. To this end, we also provide new empirical data suggesting that certain cellular modulators of androgen action-namely, the co-factors that dynamically adjust transcritpional effects of steroid action either up or down-are also substrates on which evolution can act. We then close the review with a detailed look at a case study in the golden-collared manakin (Manacus vitellinus). Work in this tropical bird shows how androgenic signaling systems are modified in specific parts of the skeletal muscle system to enhance motor performance necessary to produce acrobatic courtship displays. Altogether, this paper seeks to develop a platform to better understand how steroid action influences the evolution of complex animal behavior. Copyright © 2018 Elsevier Ltd. All rights reserved.
Two regulatory RNA elements affect TisB-dependent depolarization and persister formation.
Berghoff, Bork A; Hoekzema, Mirthe; Aulbach, Lena; Wagner, E Gerhart H
2017-03-01
Bacterial survival strategies involve phenotypic diversity which is generated by regulatory factors and noisy expression of effector proteins. The question of how bacteria exploit regulatory RNAs to make decisions between phenotypes is central to a general understanding of these universal regulators. We investigated the TisB/IstR-1 toxin-antitoxin system of Escherichia coli to appreciate the role of the RNA antitoxin IstR-1 in TisB-dependent depolarization of the inner membrane and persister formation. Persisters are phenotypic variants that have become transiently drug-tolerant by arresting growth. The RNA antitoxin IstR-1 sets a threshold for TisB-dependent depolarization under DNA-damaging conditions, resulting in two sub-populations: polarized and depolarized cells. Furthermore, our data indicate that an inhibitory 5' UTR structure in the tisB mRNA serves as a regulatory RNA element that delays TisB translation to avoid inappropriate depolarization when DNA damage is low. Investigation of the persister sub-population further revealed that both regulatory RNA elements affect persister levels as well as persistence time. This work provides an intriguing example of how bacteria exploit regulatory RNAs to control phenotypic heterogeneity. © 2016 John Wiley & Sons Ltd.
De, Pradip; Carlson, Jennifer H; Jepperson, Tyler; Willis, Scooter; Leyland-Jones, Brian; Dey, Nandini
2017-01-10
The acquisition of integrin-directed metastasis-associated (ID-MA) phenotypes by Triple-Negative Breast Cancer (TNBC) cells is caused by an upregulation of the Wnt-beta-catenin pathway (WP). We reported that WP is one of the salient genetic features of TNBC. RAC-GTPases, small G-proteins which transduce signals from cell surface proteins including integrins, have been implicated in tumorigenesis and metastasis by their role in essential cellular functions like motility. The collective percentage of alteration(s) in RAC1 in ER+ve BC was lower as compared to ER-ve BC (35% vs 57%) (brca/tcga/pub2015). High expression of RAC1 was associated with poor outcome for RFS with HR=1.48 [CI: 1.15-1.9] p=0.0019 in the Hungarian ER-veBC cohort. Here we examined how WP signals are transduced via RAC1 in the context of ID-MA phenotypes in TNBC. Using pharmacological agents (sulindac sulfide), genetic tools (beta-catenin siRNA), WP modulators (Wnt-C59, XAV939), RAC1 inhibitors (NSC23766, W56) and WP stimulations (LWnt3ACM, Wnt3A recombinant) in a panel of 6-7 TNBC cell lines, we studied fibronectin-directed (1) migration, (2) matrigel invasion, (3) RAC1 and Cdc42 activation, (4) actin dynamics (confocal microscopy) and (5) podia-parameters. An attenuation of WP, which (a) decreased cellular levels of beta-catenin, as well as its nuclear active-form, (b) decreased fibronectin-induced migration, (c) decreased invasion, (d) altered actin dynamics and (e) decreased podia-parameters was successful in blocking fibronectin-mediated RAC1/Cdc42 activity. Both Wnt-antagonists and RAC1 inhibitors blocked fibronectin-induced RAC1 activation and inhibited the fibronectin-induced ID-MA phenotypes following specific WP stimulation by LWnt3ACM as well as Wnt3A recombinant protein. To test a direct involvement of RAC1-activation in WP-mediated ID-MA phenotypes, we stimulated brain-metastasis specific MDA-MB231BR cells with LWnt3ACM. LWnt3ACM-stimulated fibronectin-directed migration was blocked by RAC1 inhibition in MDA-MB231BR cells. In the light of our previous report that WP upregulation causes ID-MA phenotypes in TNBC tumor cells, here we provide the first mechanism based evidence to demonstrate that WP upregulation signals ID-MA tumor cell phenotypes in a RAC1-GTPase dependent manner involving exchange-factors like TIAM1 and VAV2. Our study demonstrates for the first time that beta-catenin-RAC1 cascade signals integrin-directed metastasis-associated tumor cell phenotypes in TNBC.
Environmental and genetic modulation of the phenotypic expression of antibiotic resistance
Andersson, Dan I
2017-01-01
Abstract Antibiotic resistance can be acquired by mutation or horizontal transfer of a resistance gene, and generally an acquired mechanism results in a predictable increase in phenotypic resistance. However, recent findings suggest that the environment and/or the genetic context can modify the phenotypic expression of specific resistance genes/mutations. An important implication from these findings is that a given genotype does not always result in the expected phenotype. This dissociation of genotype and phenotype has important consequences for clinical bacteriology and for our ability to predict resistance phenotypes from genetics and DNA sequences. A related problem concerns the degree to which the genes/mutations currently identified in vitro can fully explain the in vivo resistance phenotype, or whether there is a significant additional amount of presently unknown mutations/genes (genetic ‘dark matter’) that could contribute to resistance in clinical isolates. Finally, a very important question is whether/how we can identify the genetic features that contribute to making a successful pathogen, and predict why some resistant clones are very successful and spread globally? In this review, we describe different environmental and genetic factors that influence phenotypic expression of antibiotic resistance genes/mutations and how this information is needed to understand why particular resistant clones spread worldwide and to what extent we can use DNA sequences to predict evolutionary success. PMID:28333270
Mutations in ash1 and trx enhance P-element-dependent silencing in Drosophila melanogaster.
McCracken, Allen; Locke, John
2016-08-01
In Drosophila melanogaster, the mini-w(+) transgene in Pci is normally expressed throughout the adult eye; however, when other P or KP elements are present, a variegated-eye phenotype results, indicating random w(+) silencing during development called P-element-dependent silencing (PDS). Mutant Su(var)205 and Su(var)3-7 alleles act as haplo-suppressors/triplo-enhancers of this variegated phenotype, indicating that these heterochromatic modifiers act dose dependently in PDS. Previously, we recovered a spontaneous mutation of P{lacW}ci(Dplac) called P{lacW}ci(DplacE1) (E1) that variegated in the absence of P elements, presumably due to the insertion of an adjacent gypsy element. From a screen for genetic modifiers of E1 variegation, we describe here the isolation of five mutations in ash1 and three in trx that enhance the E1 variegated phenotype in a dose-dependent and cumulative manner. These mutant alleles enhance PDS at E1, and in E1/P{lacW}ci(Dplac), but suppress position effect variegation (PEV) at In(1)w(m)(4). This opposite action is consistent with a model where ASH1 and TRX mark transcriptionally active chromatin domains. If ASH1 or TRX function is lost or reduced, heterochromatin can spread into these domains creating a sink that diverts heterochromatic proteins from other variegating locations, which then may express a suppressed phenotype.
Data and animal management software for large-scale phenotype screening.
Ching, Keith A; Cooke, Michael P; Tarantino, Lisa M; Lapp, Hilmar
2006-04-01
The mouse N-ethyl-N-nitrosourea (ENU) mutagenesis program at the Genomics Institute of the Novartis Research Foundation (GNF) uses MouseTRACS to analyze phenotype screens and manage animal husbandry. MouseTRACS is a Web-based laboratory informatics system that electronically records and organizes mouse colony operations, prints cage cards, tracks inventory, manages requests, and reports Institutional Animal Care and Use Committee (IACUC) protocol usage. For efficient phenotype screening, MouseTRACS identifies mutants, visualizes data, and maps mutations. It displays and integrates phenotype and genotype data using likelihood odds ratio (LOD) plots of genetic linkage between genotype and phenotype. More detailed mapping intervals show individual single nucleotide polymorphism (SNP) markers in the context of phenotype. In addition, dynamically generated pedigree diagrams and inventory reports linked to screening results summarize the inheritance pattern and the degree of penetrance. MouseTRACS displays screening data in tables and uses standard charts such as box plots, histograms, scatter plots, and customized charts looking at clustered mice or cross pedigree comparisons. In summary, MouseTRACS enables the efficient screening, analysis, and management of thousands of animals to find mutant mice and identify novel gene functions. MouseTRACS is available under an open source license at http://www.mousetracs.sourceforge.net.
At, Jotheeswaran; Bryce, Renata; Prina, Matthew; Acosta, Daisy; Ferri, Cleusa P; Guerra, Mariella; Huang, Yueqin; Rodriguez, Juan J Llibre; Salas, Aquiles; Sosa, Ana Luisa; Williams, Joseph D; Dewey, Michael E; Acosta, Isaac; Liu, Zhaorui; Beard, John; Prince, Martin
2015-06-10
In countries with high incomes, frailty indicators predict adverse outcomes in older people, despite a lack of consensus on definition or measurement. We tested the predictive validity of physical and multidimensional frailty phenotypes in settings in Latin America, India, and China. Population-based cohort studies were conducted in catchment area sites in Cuba, Dominican Republic, Venezuela, Mexico, Peru, India, and China. Seven frailty indicators, namely gait speed, self-reported exhaustion, weight loss, low energy expenditure, undernutrition, cognitive, and sensory impairment were assessed to estimate frailty phenotypes. Mortality and onset of dependence were ascertained after a median of 3.9 years. Overall, 13,924 older people were assessed at baseline, with 47,438 person-years follow-up for mortality and 30,689 for dependence. Both frailty phenotypes predicted the onset of dependence and mortality, even adjusting for chronic diseases and disability, with little heterogeneity of effect among sites. However, population attributable fractions (PAF) summarising etiologic force were highest for the aggregate effect of the individual indicators, as opposed to either the number of indicators or the dichotomised frailty phenotypes. The aggregate of all seven indicators provided the best overall prediction (weighted mean PAF 41.8 % for dependence and 38.3 % for mortality). While weight loss, underactivity, slow walking speed, and cognitive impairment predicted both outcomes, whereas undernutrition predicted only mortality and sensory impairment only dependence. Exhaustion predicted neither outcome. Simply assessed frailty indicators identify older people at risk of dependence and mortality, beyond information provided by chronic disease diagnoses and disability. Frailty is likely to be multidimensional. A better understanding of the construct and pathways to adverse outcomes could inform multidimensional assessment and intervention to prevent or manage dependence in frail older people, with potential to add life to years, and years to life.
Cuthbertson, Carmen C; Kucharska-Newton, Anna; Faurot, Keturah R; Stürmer, Til; Jonsson Funk, Michele; Palta, Priya; Windham, B Gwen; Thai, Sydney; Lund, Jennifer L
2018-07-01
Frailty is a geriatric syndrome characterized by weakness and weight loss and is associated with adverse health outcomes. It is often an unmeasured confounder in pharmacoepidemiologic and comparative effectiveness studies using administrative claims data. Among the Atherosclerosis Risk in Communities (ARIC) Study Visit 5 participants (2011-2013; n = 3,146), we conducted a validation study to compare a Medicare claims-based algorithm of dependency in activities of daily living (or dependency) developed as a proxy for frailty with a reference standard measure of phenotypic frailty. We applied the algorithm to the ARIC participants' claims data to generate a predicted probability of dependency. Using the claims-based algorithm, we estimated the C-statistic for predicting phenotypic frailty. We further categorized participants by their predicted probability of dependency (<5%, 5% to <20%, and ≥20%) and estimated associations with difficulties in physical abilities, falls, and mortality. The claims-based algorithm showed good discrimination of phenotypic frailty (C-statistic = 0.71; 95% confidence interval [CI] = 0.67, 0.74). Participants classified with a high predicted probability of dependency (≥20%) had higher prevalence of falls and difficulty in physical ability, and a greater risk of 1-year all-cause mortality (hazard ratio = 5.7 [95% CI = 2.5, 13]) than participants classified with a low predicted probability (<5%). Sensitivity and specificity varied across predicted probability of dependency thresholds. The Medicare claims-based algorithm showed good discrimination of phenotypic frailty and high predictive ability with adverse health outcomes. This algorithm can be used in future Medicare claims analyses to reduce confounding by frailty and improve study validity.
Accoceberry, Isabelle; Rougeron, Amandine; Biteau, Nicolas; Chevrel, Pauline; Fitton-Ouhabi, Valérie; Noël, Thierry
2018-01-01
A strain of the opportunistic pathogenic yeast Candida lusitaniae was genetically modified for use as a cellular model for assessing by allele replacement the impact of lanosterol C14α-demethylase ERG11 mutations on azole resistance. Candida lusitaniae was chosen because it is susceptible to azole antifungals, it belongs to the CTG clade of yeast, which includes most of the Candida species pathogenic for humans, and it is haploid and easily amenable to genetic transformation and molecular modeling. In this work, allelic replacement is targeted at the ERG11 locus by the reconstitution of a functional auxotrophic marker in the 3' intergenic region of ERG11 Homologous and heterologous ERG11 alleles are expressed from the resident ERG11 promoter of C. lusitaniae , allowing accurate comparison of the phenotypic change in azole susceptibility. As a proof of concept, we successfully expressed in C. lusitaniae different ERG11 alleles, either bearing or not bearing mutations retrieved from a clinical context, from two phylogenetically distant yeasts, C. albicans and Kluyveromyces marxianus Candida lusitaniae constitutes a high-fidelity expression system, giving specific Erg11p-dependent fluconazole MICs very close to those observed with the ERG11 donor strain. This work led us to characterize the phenotypic effect of two kinds of mutation: mutation conferring decreased fluconazole susceptibility in a species-specific manner and mutation conferring fluconazole resistance in several yeast species. In particular, a missense mutation affecting amino acid K143 of Erg11p in Candida species, and the equivalent position K151 in K. marxianus , plays a critical role in fluconazole resistance. Copyright © 2017 American Society for Microbiology.
Attention and working memory deficits in a perinatal nicotine exposure mouse model.
Zhang, Lin; Spencer, Thomas J; Biederman, Joseph; Bhide, Pradeep G
2018-01-01
Cigarette smoking by pregnant women is associated with a significant increase in the risk for cognitive disorders in their children. Preclinical models confirm this risk by showing that exposure of the developing brain to nicotine produces adverse behavioral outcomes. Here we describe behavioral phenotypes resulting from perinatal nicotine exposure in a mouse model, and discuss our findings in the context of findings from previously published studies using preclinical models of developmental nicotine exposure. Female C57Bl/6 mice received drinking water containing nicotine (100μg/ml) + saccharin (2%) starting 3 weeks prior to breeding and continuing throughout pregnancy, and until 3 weeks postpartum. Over the same period, female mice in two control groups received drinking water containing saccharin (2%) or plain drinking water. Offspring from each group were weaned at 3-weeks of age and subjected to behavioral analyses at 3 months of age. We examined spontaneous locomotor activity, anxiety-like behavior, spatial working memory, object based attention, recognition memory and impulsive-like behavior. We found significant deficits in attention and working memory only in male mice, and no significant changes in the other behavioral phenotypes in male or female mice. Exposure to saccharin alone did not produce significant changes in either sex. The perinatal nicotine exposure produced significant deficits in attention and working memory in a sex-dependent manner in that the male but not female offspring displayed these behaviors. These behavioral phenotypes are associated with attention deficit hyperactivity disorder (ADHD) and have been reported in other studies that used pre- or perinatal nicotine exposure. Therefore, we suggest that preclinical models of developmental nicotine exposure could be useful tools for modeling ADHD and related disorders.
Intermediate cannabis dependence phenotypes and the FAAH C385A variant: an exploratory analysis
Selling, Rebecca E.; Hutchison, Kent E.
2010-01-01
Rationale Cannabis dependence is a growing problem among individuals who use marijuana frequently, and genetic differences make some users more liable to progress to dependence. The identification of intermediate phenotypes of cannabis dependence may aid candidate genetic analysis. Promising intermediate phenotypes include craving for marijuana, withdrawal symptoms after abstinence, and sensitivity to its acute effects. A single nucleotide polymorphism (SNP) in the gene encoding for fatty acid amide hydrolase (FAAH) has demonstrated association with substance use disorder diagnoses, but has not been studied with respect to these narrower phenotypes. FAAH is an enzyme that inactivates anandamide, an endogenous agonist for CB1 receptors (to which Δ9-tetrahydrocannabinol binds). CB1 binding modulates mesocorticolimbic dopamine release, which underlies many facets of addiction. Objectives The SNP, FAAH C385A (rs324420), was examined to determine whether its variance was associated with changes in craving and withdrawal after marijuana abstinence, craving after cue exposure, or sensitivity to the acute effects of marijuana. Materials and methods Forty daily marijuana users abstained for 24 h, were presented with a cue-elicited craving paradigm and smoked a marijuana cigarette in the laboratory. Results C385A variance was significantly associated with changes in withdrawal after abstinence, and happiness after smoking marijuana in the predicted directions, was associated with changes in heart rate after smoking in the opposite of the predicted direction, and was not associated with changes in craving or other acute effects. Conclusions These data lend support to some previous association studies of C385A, but suggest that further refinement of these intermediate phenotypes is necessary. PMID:19002671
RNAi pathways contribute to developmental history-dependent phenotypic plasticity in C. elegans
Hall, Sarah E.; Chirn, Gung-Wei; Lau, Nelson C.; Sengupta, Piali
2013-01-01
Early environmental experiences profoundly influence adult phenotypes through complex mechanisms that are poorly understood. We previously showed that adult Caenorhabditis elegans that transiently passed through the stress-induced dauer larval stage (post-dauer adults) exhibit significant changes in gene expression profiles, chromatin states, and life history traits when compared with adults that bypassed the dauer stage (control adults). These wild-type, isogenic animals of equivalent developmental stages exhibit different signatures of molecular marks that reflect their distinct developmental trajectories. To gain insight into the mechanisms that contribute to these developmental history-dependent phenotypes, we profiled small RNAs from post-dauer and control adults by deep sequencing. RNA interference (RNAi) pathways are known to regulate genome-wide gene expression both at the chromatin and post-transcriptional level. By quantifying changes in endogenous small interfering RNA (endo-siRNA) levels in post-dauer as compared with control animals, our analyses identified a subset of genes that are likely targets of developmental history-dependent reprogramming through a complex RNAi-mediated mechanism. Mutations in specific endo-siRNA pathways affect expected gene expression and chromatin state changes for a subset of genes in post-dauer animals, as well as disrupt their increased brood size phenotype. We also find that both chromatin state and endo-siRNA distribution in dauers are unique, and suggest that remodeling in dauers provides a template for the subsequent establishment of adult post-dauer profiles. Our results indicate a role for endo-siRNA pathways as a contributing mechanism to early experience-dependent phenotypic plasticity in adults, and describe how developmental history can program adult physiology and behavior via epigenetic mechanisms. PMID:23329696
Mapping biological process relationships and disease perturbations within a pathway network.
Stoney, Ruth; Robertson, David L; Nenadic, Goran; Schwartz, Jean-Marc
2018-01-01
Molecular interaction networks are routinely used to map the organization of cellular function. Edges represent interactions between genes, proteins, or metabolites. However, in living cells, molecular interactions are dynamic, necessitating context-dependent models. Contextual information can be integrated into molecular interaction networks through the inclusion of additional molecular data, but there are concerns about completeness and relevance of this data. We developed an approach for representing the organization of human cellular processes using pathways as the nodes in a network. Pathways represent spatial and temporal sets of context-dependent interactions, generating a high-level network when linked together, which incorporates contextual information without the need for molecular interaction data. Analysis of the pathway network revealed linked communities representing functional relationships, comparable to those found in molecular networks, including metabolism, signaling, immunity, and the cell cycle. We mapped a range of diseases onto this network and find that pathways associated with diseases tend to be functionally connected, highlighting the perturbed functions that result in disease phenotypes. We demonstrated that disease pathways cluster within the network. We then examined the distribution of cancer pathways and showed that cancer pathways tend to localize within the signaling, DNA processes and immune modules, although some cancer-associated nodes are found in other network regions. Altogether, we generated a high-confidence functional network, which avoids some of the shortcomings faced by conventional molecular models. Our representation provides an intuitive functional interpretation of cellular organization, which relies only on high-quality pathway and Gene Ontology data. The network is available at https://data.mendeley.com/datasets/3pbwkxjxg9/1.
Lastrucci, Claire; Bénard, Alan; Balboa, Luciana; Pingris, Karine; Souriant, Shanti; Poincloux, Renaud; Al Saati, Talal; Rasolofo, Voahangy; González-Montaner, Pablo; Inwentarz, Sandra; Moraña, Eduardo Jose; Kondova, Ivanela; Verreck, Frank AW; Sasiain, Maria del Carmen; Neyrolles, Olivier; Maridonneau-Parini, Isabelle; Lugo-Villarino, Geanncarlo; Cougoule, Céline
2015-01-01
The human CD14+ monocyte compartment is composed by two subsets based on CD16 expression. We previously reported that this compartment is perturbed in tuberculosis (TB) patients, as reflected by the expansion of CD16+ monocytes along with disease severity. Whether this unbalance is beneficial or detrimental to host defense remains to be elucidated. Here in the context of active TB, we demonstrate that human monocytes are predisposed to differentiate towards an anti-inflammatory (M2-like) macrophage activation program characterized by the CD16+CD163+MerTK+pSTAT3+ phenotype and functional properties such as enhanced protease-dependent motility, pathogen permissivity and immunomodulation. This process is dependent on STAT3 activation, and loss-of-function experiments point towards a detrimental role in host defense against TB. Importantly, we provide a critical correlation between the abundance of the CD16+CD163+MerTK+pSTAT3+ cells and the progression of the disease either at the local level in a non-human primate tuberculous granuloma context, or at the systemic level through the detection of the soluble form of CD163 in human sera. Collectively, this study argues for the pathogenic role of the CD16+CD163+MerTK+pSTAT3+ monocyte-to-macrophage differentiation program and its potential as a target for TB therapy, and promotes the detection of circulating CD163 as a potential biomarker for disease progression and monitoring of treatment efficacy. PMID:26482950
Neural correlates of context-independent and context-dependent self-knowledge.
Martial, Charlotte; Stawarczyk, David; D'Argembeau, Arnaud
2018-05-25
The self-concept consists of both a general (context-independent) self-representation and a set of context-dependent selves that represent personal attributes in particular contexts (e.g., as a student, as a daughter). To date, however, neuroimaging studies have focused on general self-representations, such that little is known about the neural correlates of context-dependent self-knowledge. The present study aimed at investigating this issue by examining the neural correlates of both kinds of self-knowledge. Participants judged the extent to which trait adjectives described their own personality or the personality of a close friend, either in a specific context (i.e., as a student) or in general. We found that both kinds of self-judgments were associated with common activation in the medial prefrontal cortex (MPFC), as compared to judgments about others. Interestingly, however, there were also notable differences between self-judgments, with context-independent judgments being associated with higher activity in the MPFC, whereas context-dependent judgments were associated with greater activation in posterior brain regions (i.e., the posterior cingulate/retrosplenial cortex). These findings show that context-independent and context-dependent self-referential judgments recruit both common and distinct brain regions, thereby supporting the view that the self-concept is a multi-dimensional knowledge structure that includes a general self-representation and a set of context-specific selves. Copyright © 2018 Elsevier Inc. All rights reserved.
Time to first cigarette after waking predicts cotinine levels
Muscat, Joshua E.; Stellman, Steven D.; Caraballo, Ralph S.; Richie, John P.
2010-01-01
There is wide variability in cotinine levels per cigarette smoked. We hypothesized that in addition to smoking frequency, other behavioral measures of nicotine dependence such as the time to first cigarette after waking are associated with cotinine levels. To test this hypothesis, we measured plasma and urinary cotinine in a community-based study of 252 black and white daily cigarette smokers. Results: Among one pack per day smokers, plasma cotinine levels varied from 16 to 1180 (ng/ml), a 74-fold difference. Two nicotine dependence phenotypes were discerned by time after waking. Subjects in the ‘low’ dependent phenotype smoked > 30 minutes after waking and nearly all smoked ≤20 cigarettes per day. Cotinine levels increased linearly with cigarette consumption in this group. Subjects in the ‘high’ dependent phenotype smoked ≤30 minutes after waking, but had a wide range in the frequency of daily cigarettes (6-70). Compared with the low dependent phenotype, there were relatively small differences in cotinine by cigarette frequency with evidence of a plateau effect in heavy smokers (∼30). After adjusting for cigarette frequency, the levels of cotinine by time to first cigarette were: (≤ 5 minutes): 437 (95% confidence limits [CL] (380-494); (6-30 minutes): 352 (95% CL 291-413); (31-60 minutes): 229 (95% CL 140-317); (>60 minutes): 215 (95% CL 110-321). Similar findings were observed for urinary cotinine. These findings suggest that the time to first cigarette is a strong predictor of nicotine uptake and should be considered in the design of smoking interventions. PMID:19959690
Winham, Stacey J.; Preuss, Ulrich W.; Geske, Jennifer R.; Zill, Peter; Heit, John A.; Bakalkin, Georgy; Biernacka, Joanna M.; Karpyak, Victor M.
2015-01-01
We previously demonstrated that prodynorphin (PDYN) haplotypes and single nucleotide polymorphism (SNP) rs2281285 are associated with alcohol dependence and the propensity to drink in negative emotional states, and recent studies suggest that PDYN gene effects on substance dependence risk may be sex-related. We examined sex-dependent associations of PDYN variation with alcohol dependence and related phenotypes, including negative craving, time until relapse after treatment and the length of sobriety episodes before seeking treatment, in discovery and validation cohorts of European ancestry. We found a significant haplotype-by-sex interaction (p = 0.03), suggesting association with alcohol dependence in males (p = 1E-4) but not females. The rs2281285 G allele increased risk for alcohol dependence in males in the discovery cohort (OR = 1.49, p = 0.002), with a similar trend in the validation cohort (OR = 1.35, p = 0.086). However, rs2281285 showed a trend towards association with increased negative craving in females in both the discovery (beta = 10.16, p = 0.045) and validation samples (OR = 7.11, p = 0.066). In the discovery cohort, rs2281285 was associated with time until relapse after treatment in females (HR = 1.72, p = 0.037); in the validation cohort, it was associated with increased length of sobriety episodes before treatment in males (beta = 13.49, p = 0.001). Our findings suggest that sex-dependent effects of PDYN variants in alcohol dependence are phenotype-specific. PMID:26502829
Winham, Stacey J; Preuss, Ulrich W; Geske, Jennifer R; Zill, Peter; Heit, John A; Bakalkin, Georgy; Biernacka, Joanna M; Karpyak, Victor M
2015-10-27
We previously demonstrated that prodynorphin (PDYN) haplotypes and single nucleotide polymorphism (SNP) rs2281285 are associated with alcohol dependence and the propensity to drink in negative emotional states, and recent studies suggest that PDYN gene effects on substance dependence risk may be sex-related. We examined sex-dependent associations of PDYN variation with alcohol dependence and related phenotypes, including negative craving, time until relapse after treatment and the length of sobriety episodes before seeking treatment, in discovery and validation cohorts of European ancestry. We found a significant haplotype-by-sex interaction (p = 0.03), suggesting association with alcohol dependence in males (p = 1E-4) but not females. The rs2281285 G allele increased risk for alcohol dependence in males in the discovery cohort (OR = 1.49, p = 0.002), with a similar trend in the validation cohort (OR = 1.35, p = 0.086). However, rs2281285 showed a trend towards association with increased negative craving in females in both the discovery (beta = 10.16, p = 0.045) and validation samples (OR = 7.11, p = 0.066). In the discovery cohort, rs2281285 was associated with time until relapse after treatment in females (HR = 1.72, p = 0.037); in the validation cohort, it was associated with increased length of sobriety episodes before treatment in males (beta = 13.49, p = 0.001). Our findings suggest that sex-dependent effects of PDYN variants in alcohol dependence are phenotype-specific.
Next generation phenotyping using narrative reports in a rare disease clinical data warehouse.
Garcelon, Nicolas; Neuraz, Antoine; Salomon, Rémi; Bahi-Buisson, Nadia; Amiel, Jeanne; Picard, Capucine; Mahlaoui, Nizar; Benoit, Vincent; Burgun, Anita; Rance, Bastien
2018-05-31
Secondary use of data collected in Electronic Health Records opens perspectives for increasing our knowledge of rare diseases. The clinical data warehouse (named Dr. Warehouse) at the Necker-Enfants Malades Children's Hospital contains data collected during normal care for thousands of patients. Dr. Warehouse is oriented toward the exploration of clinical narratives. In this study, we present our method to find phenotypes associated with diseases of interest. We leveraged the frequency and TF-IDF to explore the association between clinical phenotypes and rare diseases. We applied our method in six use cases: phenotypes associated with the Rett, Lowe, Silver Russell, Bardet-Biedl syndromes, DOCK8 deficiency and Activated PI3-kinase Delta Syndrome (APDS). We asked domain experts to evaluate the relevance of the top-50 (for frequency and TF-IDF) phenotypes identified by Dr. Warehouse and computed the average precision and mean average precision. Experts concluded that between 16 and 39 phenotypes could be considered as relevant in the top-50 phenotypes ranked by descending frequency discovered by Dr. Warehouse (resp. between 11 and 41 for TF-IDF). Average precision ranges from 0.55 to 0.91 for frequency and 0.52 to 0.95 for TF-IDF. Mean average precision was 0.79. Our study suggests that phenotypes identified in clinical narratives stored in Electronic Health Record can provide rare disease specialists with candidate phenotypes that can be used in addition to the literature. Clinical Data Warehouses can be used to perform Next Generation Phenotyping, especially in the context of rare diseases. We have developed a method to detect phenotypes associated with a group of patients using medical concepts extracted from free-text clinical narratives.
Heritability of Tic Disorders: a Twin-Family Study
Zilhao, Nuno R.; Olthof, Maria C.; Smit, Dirk J.A.; Cath, Danielle C.; Ligthart, Lannie; Mathews, Carol A.; Delucchi, Kevin; Boomsma, Dorret I.; Dolan, Conor V.
2017-01-01
Background Genetic-epidemiological studies that estimate the contributions of genetic factors to variation in tic symptoms are scarce. We estimated the extent to which genetic and environmental influences contribute to tics, employing various phenotypic definitions ranging between mild and severe symptomatology, in a large population-based adult twin-family sample. Methods In an extended twin-family design, we analyzed lifetime tic data reported by adult mono- and dizygotic twins (n= 8,323) and their family members (n=7,164; parents and siblings) from 7,311 families in the Netherlands Twin Register (NTR). We measured tics by the abbreviated version of the Schedule for Tourette and Other Behavioral Syndromes (STOBS) (TSAICG, 2007). Heritability was estimated by genetic Structural Equation Modeling (SEM) for four tic disorder definitions: three dichotomous and one trichotomous phenotype, characterized by increasingly strictly defined criteria. Results Prevalence rates of the different tic disorders in our sample varied between 0.3 and 4.5% depending on tic disorder definition. Tic frequencies decreased with increasing age. Heritability estimates varied between .25 and .37, depending on phenotypic definitions. None of the phenotypes showed evidence of assortative mating, effects of shared environment, or non-additive genetic effects. Conclusions Heritabilities of mild and severe tic phenotypes were estimated to be moderate. Overlapping confidence intervals of the heritability estimates suggest overlapping genetic liabilities between the various tic phenotypes. The most lenient phenotype (defined only by tic characteristics, excluding criteria B, C and D of DSMIV) rendered sufficiently reliable heritability estimates. These findings have implications in phenotypic definitions for future genetic studies. PMID:27974054
Dubroqua, Sylvain; Boison, Detlev; Feldon, Joram; Möhler, Hanns; Yee, Benjamin K.
2011-01-01
Behavioural characterisation of transgenic mice has been instrumental in search of therapeutic targets for the modulation of cognitive function. However, little effort has been devoted to phenotypic characterisation across environmental conditions and genomic differences such as sex and strain, which is essential to translational research. The present study is an effort in this direction. It scrutinised the stability and robustness of the phenotype of enhanced Pavlovian conditioning reported in mice with forebrain neuronal deletion of glycine transporter 1 by evaluating the possible presence of sex and circadian dependency, and its consistency across aversive and appetitive conditioning paradigms. The Pavlovian phenotype was essentially unaffected by the time of testing between the two circadian phases, but it was modified by sex in both conditioning paradigms. We observed that the effect size of the phenotype was strongest in female mice tested during the dark phase in the aversive paradigm. Critically, the presence of the phenotype in female mutants was accompanied by an increase in resistance to extinction. Similarly, enhanced conditioned responding once again emerged solely in female mutants in the appetitive conditioning experiment, which was again associated with an increased resistance to extinction across days, but male mutants exhibited an opposite trend towards facilitation of extinction. The present study has thus added hitherto unknown qualifications and specifications of a previously reported memory enhancing phenotype in this mouse line by identifying the determinants of the magnitude and direction of the expressed phenotype. This in-depth comparative approach is of value to the interpretation of behavioural findings in general. PMID:21596148
Yu, Yao; Tu, Kang; Zheng, Siyuan; Li, Yun; Ding, Guohui; Ping, Jie; Hao, Pei; Li, Yixue
2009-08-25
In the post-genomic era, the development of high-throughput gene expression detection technology provides huge amounts of experimental data, which challenges the traditional pipelines for data processing and analyzing in scientific researches. In our work, we integrated gene expression information from Gene Expression Omnibus (GEO), biomedical ontology from Medical Subject Headings (MeSH) and signaling pathway knowledge from sigPathway entries to develop a context mining tool for gene expression analysis - GEOGLE. GEOGLE offers a rapid and convenient way for searching relevant experimental datasets, pathways and biological terms according to multiple types of queries: including biomedical vocabularies, GDS IDs, gene IDs, pathway names and signature list. Moreover, GEOGLE summarizes the signature genes from a subset of GDSes and estimates the correlation between gene expression and the phenotypic distinction with an integrated p value. This approach performing global searching of expression data may expand the traditional way of collecting heterogeneous gene expression experiment data. GEOGLE is a novel tool that provides researchers a quantitative way to understand the correlation between gene expression and phenotypic distinction through meta-analysis of gene expression datasets from different experiments, as well as the biological meaning behind. The web site and user guide of GEOGLE are available at: http://omics.biosino.org:14000/kweb/workflow.jsp?id=00020.
Context dependent anti-aliasing image reconstruction
NASA Technical Reports Server (NTRS)
Beaudet, Paul R.; Hunt, A.; Arlia, N.
1989-01-01
Image Reconstruction has been mostly confined to context free linear processes; the traditional continuum interpretation of digital array data uses a linear interpolator with or without an enhancement filter. Here, anti-aliasing context dependent interpretation techniques are investigated for image reconstruction. Pattern classification is applied to each neighborhood to assign it a context class; a different interpolation/filter is applied to neighborhoods of differing context. It is shown how the context dependent interpolation is computed through ensemble average statistics using high resolution training imagery from which the lower resolution image array data is obtained (simulation). A quadratic least squares (LS) context-free image quality model is described from which the context dependent interpolation coefficients are derived. It is shown how ensembles of high-resolution images can be used to capture the a priori special character of different context classes. As a consequence, a priori information such as the translational invariance of edges along the edge direction, edge discontinuity, and the character of corners is captured and can be used to interpret image array data with greater spatial resolution than would be expected by the Nyquist limit. A Gibb-like artifact associated with this super-resolution is discussed. More realistic context dependent image quality models are needed and a suggestion is made for using a quality model which now is finding application in data compression.
Sakaguchi, Kouhei; Ohno, Ryoko; Yoshida, Kentaro
2017-01-01
Triploid wheat hybrids between tetraploid wheat and Aegilops tauschii sometimes show abnormal growth phenotypes, and the growth abnormalities inhibit generation of wheat synthetic hexaploids. In type II necrosis, one of the growth abnormalities, necrotic cell death accompanied by marked growth repression occurs only under low temperature conditions. At normal temperature, the type II necrosis lines show grass-clump dwarfism with no necrotic symptoms, excess tillers, severe dwarfism and delayed flowering. Here, we report comparative expression analyses to elucidate the molecular mechanisms of the temperature-dependent phenotypic plasticity in the triploid wheat hybrids. We compared gene and small RNA expression profiles in crown tissues to characterize the temperature-dependent phenotypic plasticity. No up-regulation of defense-related genes was observed under the normal temperature, and down-regulation of wheat APETALA1-like MADS-box genes, considered to act as flowering promoters, was found in the grass-clump dwarf lines. Some microRNAs, including miR156, were up-regulated, whereas the levels of transcripts of the miR156 target genes SPLs, known to inhibit tiller and branch number, were reduced in crown tissues of the grass-clump dwarf lines at the normal temperature. Unusual expression of the miR156/SPLs module could explain the grass-clump dwarf phenotype. Dramatic alteration of gene expression profiles, including miRNA levels, in crown tissues is associated with the temperature-dependent phenotypic plasticity in type II necrosis/grass-clump dwarf wheat hybrids. PMID:28463975
Shi, Feng; Long, Xiaochun; Hendershot, Allison; Miano, Joseph M.; Sottile, Jane
2014-01-01
Smooth muscle cells are maintained in a differentiated state in the vessel wall, but can be modulated to a synthetic phenotype following injury. Smooth muscle phenotypic modulation is thought to play an important role in the pathology of vascular occlusive diseases. Phenotypically modulated smooth muscle cells exhibit increased proliferative and migratory properties that accompany the downregulation of smooth muscle cell marker proteins. Extracellular matrix proteins, including fibronectin, can regulate the smooth muscle phenotype when used as adhesive substrates. However, cells produce and organize a 3-dimensional fibrillar extracellular matrix, which can affect cell behavior in distinct ways from the protomeric 2-dimensional matrix proteins that are used as adhesive substrates. We previously showed that the deposition/polymerization of fibronectin into the extracellular matrix can regulate the deposition and organization of other extracellular matrix molecules in vitro. Further, our published data show that the presence of a fibronectin polymerization inhibitor results in increased expression of smooth muscle cell differentiation proteins and inhibits vascular remodeling in vivo. In this manuscript, we used an in vitro cell culture system to determine the mechanism by which fibronectin polymerization affects smooth muscle phenotypic modulation. Our data show that fibronectin polymerization decreases the mRNA levels of multiple smooth muscle differentiation genes, and downregulates the levels of smooth muscle α-actin and calponin proteins by a Rac1-dependent mechanism. The expression of smooth muscle genes is transcriptionally regulated by fibronectin polymerization, as evidenced by the increased activity of luciferase reporter constructs in the presence of a fibronectin polymerization inhibitor. Fibronectin polymerization also promotes smooth muscle cell growth, and decreases the levels of actin stress fibers. These data define a Rac1-dependent pathway wherein fibronectin polymerization promotes the SMC synthetic phenotype by modulating the expression of smooth muscle cell differentiation proteins. PMID:24752318
Stasiewicz, Paul R.; Brandon, Thomas H.; Bradizza, Clara M.
2013-01-01
Pavlovian conditioning models have led to cue-exposure treatments for drug abuse. However, conditioned responding to drug stimuli can return (be renewed) following treatment. Animal research and a previous study of social drinkers indicated that extinction is highly context dependent but that renewal could be reduced by the inclusion of a cue from the extinction context. This study extends this research to a clinical sample. Alcohol-dependent outpatients (N = 143) completed an extinction trial to reduce craving and salivation responses to alcohol cues. They were then randomized to renewal tests in either the same context as extinction, a different context, the different context containing an extinction cue, or the different context with cue plus a manipulation to increase the salience of the cue. Contrary to predictions, the different context did not produce the expected renewal effect. Although the generalization of extinction effects beyond the cue-exposure context is a positive clinical finding, it is inconsistent with basic research findings on the context dependence of extinction. Possible explanations for this inconsistency are discussed. PMID:17563145
Stasiewicz, Paul R; Brandon, Thomas H; Bradizza, Clara M
2007-06-01
Pavlovian conditioning models have led to cue-exposure treatments for drug abuse. However, conditioned responding to drug stimuli can return (be renewed) following treatment. Animal research and a previous study of social drinkers indicated that extinction is highly context dependent but that renewal could be reduced by the inclusion of a cue from the extinction context. This study extends this research to a clinical sample. Alcohol-dependent outpatients (N = 143) completed an extinction trial to reduce craving and salivation responses to alcohol cues. They were then randomized to renewal tests in either the same context as extinction, a different context, the different context containing an extinction cue, or the different context with cue plus a manipulation to increase the salience of the cue. Contrary to predictions, the different context did not produce the expected renewal effect. Although the generalization of extinction effects beyond the cue-exposure context is a positive clinical finding, it is inconsistent with basic research findings on the context dependence of extinction. Possible explanations for this inconsistency are discussed.
Moore, Jason H; Williams, Scott M
2005-06-01
Epistasis plays an important role in the genetic architecture of common human diseases and can be viewed from two perspectives, biological and statistical, each derived from and leading to different assumptions and research strategies. Biological epistasis is the result of physical interactions among biomolecules within gene regulatory networks and biochemical pathways in an individual such that the effect of a gene on a phenotype is dependent on one or more other genes. In contrast, statistical epistasis is defined as deviation from additivity in a mathematical model summarizing the relationship between multilocus genotypes and phenotypic variation in a population. The goal of this essay is to review definitions and examples of biological and statistical epistasis and to explore the relationship between the two. Specifically, we present and discuss the following two questions in the context of human health and disease. First, when does statistical evidence of epistasis in human populations imply underlying biomolecular interactions in the etiology of disease? Second, when do biomolecular interactions produce patterns of statistical epistasis in human populations? Answers to these two reciprocal questions will provide an important framework for using genetic information to improve our ability to diagnose, prevent and treat common human diseases. We propose that systems biology will provide the necessary information for addressing these questions and that model systems such as bacteria, yeast and digital organisms will be a useful place to start.
Miles, Lee B; Darido, Charbel; Kaslin, Jan; Heath, Joan K; Jane, Stephen M; Dworkin, Sebastian
2017-12-14
The grainyhead-like (grhl) transcription factors play crucial roles in craniofacial development, epithelial morphogenesis, neural tube closure, and dorso-ventral patterning. By utilising the zebrafish to differentially regulate expression of family members grhl2b and grhl3, we show that both genes regulate epithelial migration, particularly convergence-extension (CE) type movements, during embryogenesis. Genetic deletion of grhl3 via CRISPR/Cas9 results in failure to complete epiboly and pre-gastrulation embryonic rupture, whereas morpholino (MO)-mediated knockdown of grhl3 signalling leads to aberrant neural tube morphogenesis at the midbrain-hindbrain boundary (MHB), a phenotype likely due to a compromised overlying enveloping layer (EVL). Further disruptions of grhl3-dependent pathways (through co-knockdown of grhl3 with target genes spec1 and arhgef19) confirm significant MHB morphogenesis and neural tube closure defects. Concomitant MO-mediated disruption of both grhl2b and grhl3 results in further extensive CE-like defects in body patterning, notochord and somite morphogenesis. Interestingly, over-expression of either grhl2b or grhl3 also leads to numerous phenotypes consistent with disrupted cellular migration during gastrulation, including embryo dorsalisation, axial duplication and impaired neural tube migration leading to cyclopia. Taken together, our study ascribes novel roles to the Grhl family in the context of embryonic development and morphogenesis.
Antarctic climate change: extreme events disrupt plastic phenotypic response in Adélie penguins.
Lescroël, Amélie; Ballard, Grant; Grémillet, David; Authier, Matthieu; Ainley, David G
2014-01-01
In the context of predicted alteration of sea ice cover and increased frequency of extreme events, it is especially timely to investigate plasticity within Antarctic species responding to a key environmental aspect of their ecology: sea ice variability. Using 13 years of longitudinal data, we investigated the effect of sea ice concentration (SIC) on the foraging efficiency of Adélie penguins (Pygoscelis adeliae) breeding in the Ross Sea. A 'natural experiment' brought by the exceptional presence of giant icebergs during 5 consecutive years provided unprecedented habitat variation for testing the effects of extreme events on the relationship between SIC and foraging efficiency in this sea-ice dependent species. Significant levels of phenotypic plasticity were evident in response to changes in SIC in normal environmental conditions. Maximum foraging efficiency occurred at relatively low SIC, peaking at 6.1% and decreasing with higher SIC. The 'natural experiment' uncoupled efficiency levels from SIC variations. Our study suggests that lower summer SIC than currently observed would benefit the foraging performance of Adélie penguins in their southernmost breeding area. Importantly, it also provides evidence that extreme climatic events can disrupt response plasticity in a wild seabird population. This questions the predictive power of relationships built on past observations, when not only the average climatic conditions are changing but the frequency of extreme climatic anomalies is also on the rise.
Antarctic Climate Change: Extreme Events Disrupt Plastic Phenotypic Response in Adélie Penguins
Lescroël, Amélie; Ballard, Grant; Grémillet, David; Authier, Matthieu; Ainley, David G.
2014-01-01
In the context of predicted alteration of sea ice cover and increased frequency of extreme events, it is especially timely to investigate plasticity within Antarctic species responding to a key environmental aspect of their ecology: sea ice variability. Using 13 years of longitudinal data, we investigated the effect of sea ice concentration (SIC) on the foraging efficiency of Adélie penguins (Pygoscelis adeliae) breeding in the Ross Sea. A ‘natural experiment’ brought by the exceptional presence of giant icebergs during 5 consecutive years provided unprecedented habitat variation for testing the effects of extreme events on the relationship between SIC and foraging efficiency in this sea-ice dependent species. Significant levels of phenotypic plasticity were evident in response to changes in SIC in normal environmental conditions. Maximum foraging efficiency occurred at relatively low SIC, peaking at 6.1% and decreasing with higher SIC. The ‘natural experiment’ uncoupled efficiency levels from SIC variations. Our study suggests that lower summer SIC than currently observed would benefit the foraging performance of Adélie penguins in their southernmost breeding area. Importantly, it also provides evidence that extreme climatic events can disrupt response plasticity in a wild seabird population. This questions the predictive power of relationships built on past observations, when not only the average climatic conditions are changing but the frequency of extreme climatic anomalies is also on the rise. PMID:24489657
Performance of in silico tools for the evaluation of p16INK4a (CDKN2A) variants in CAGI.
Carraro, Marco; Minervini, Giovanni; Giollo, Manuel; Bromberg, Yana; Capriotti, Emidio; Casadio, Rita; Dunbrack, Roland; Elefanti, Lisa; Fariselli, Pietro; Ferrari, Carlo; Gough, Julian; Katsonis, Panagiotis; Leonardi, Emanuela; Lichtarge, Olivier; Menin, Chiara; Martelli, Pier Luigi; Niroula, Abhishek; Pal, Lipika R; Repo, Susanna; Scaini, Maria Chiara; Vihinen, Mauno; Wei, Qiong; Xu, Qifang; Yang, Yuedong; Yin, Yizhou; Zaucha, Jan; Zhao, Huiying; Zhou, Yaoqi; Brenner, Steven E; Moult, John; Tosatto, Silvio C E
2017-09-01
Correct phenotypic interpretation of variants of unknown significance for cancer-associated genes is a diagnostic challenge as genetic screenings gain in popularity in the next-generation sequencing era. The Critical Assessment of Genome Interpretation (CAGI) experiment aims to test and define the state of the art of genotype-phenotype interpretation. Here, we present the assessment of the CAGI p16INK4a challenge. Participants were asked to predict the effect on cellular proliferation of 10 variants for the p16INK4a tumor suppressor, a cyclin-dependent kinase inhibitor encoded by the CDKN2A gene. Twenty-two pathogenicity predictors were assessed with a variety of accuracy measures for reliability in a medical context. Different assessment measures were combined in an overall ranking to provide more robust results. The R scripts used for assessment are publicly available from a GitHub repository for future use in similar assessment exercises. Despite a limited test-set size, our findings show a variety of results, with some methods performing significantly better. Methods combining different strategies frequently outperform simpler approaches. The best predictor, Yang&Zhou lab, uses a machine learning method combining an empirical energy function measuring protein stability with an evolutionary conservation term. The p16INK4a challenge highlights how subtle structural effects can neutralize otherwise deleterious variants. © 2017 Wiley Periodicals, Inc.
Tregenza, Tom; Wedell, Nina; Hosken, David J; Ward, Paul I
2003-02-01
Direct costs and benefits to females of multiple mating have been shown to have large effects on female fecundity and longevity in several species. However, with the exception of studies examining genetic benefits of polyandry, little attention has been paid to the possible effects on offspring of multiple mating by females. We propose that nongenetic effects of maternal matings on offspring fitness are best viewed in the same context as other maternal phenotype effects on offspring that are well known even in species lacking parental care. Hence, matings can exert effects on offspring in the same way as other maternal environment variables, and are likely to interact with such effects. We have conducted a study using yellow dung flies (Scathophaga stercoraria), in which we independently manipulated female mating rate, number of mates and maternal thermal environment and measured subsequent fecundity, hatching success, and offspring life-history traits. To distinguish between direct effects of matings and potential genetic benefits of polyandry we split broods and reared offspring at three different temperature regimes. This allowed us to demonstrate that although we could not detect any simple benefits or costs to matings, there are effects of maternal environment on offspring and these effects interact with female mating regime affecting offspring fitness. Such interactions between female phenotype and the costs and benefits of matings have potentially broad implications for understanding female behavior.
Eckert, Andrew J; Wegrzyn, Jill L; Pande, Barnaly; Jermstad, Kathleen D; Lee, Jennifer M; Liechty, John D; Tearse, Brandon R; Krutovsky, Konstantin V; Neale, David B
2009-09-01
Forest trees exhibit remarkable adaptations to their environments. The genetic basis for phenotypic adaptation to climatic gradients has been established through a long history of common garden, provenance, and genecological studies. The identities of genes underlying these traits, however, have remained elusive and thus so have the patterns of adaptive molecular diversity in forest tree genomes. Here, we report an analysis of diversity and divergence for a set of 121 cold-hardiness candidate genes in coastal Douglas fir (Pseudotsuga menziesii var. menziesii). Application of several different tests for neutrality, including those that incorporated demographic models, revealed signatures of selection consistent with selective sweeps at three to eight loci, depending upon the severity of a bottleneck event and the method used to detect selection. Given the high levels of recombination, these candidate genes are likely to be closely linked to the target of selection if not the genes themselves. Putative homologs in Arabidopsis act primarily to stabilize the plasma membrane and protect against denaturation of proteins at freezing temperatures. These results indicate that surveys of nucleotide diversity and divergence, when framed within the context of further association mapping experiments, will come full circle with respect to their utility in the dissection of complex phenotypic traits into their genetic components.
Context-dependent plasticity in the subcortical encoding of linguistic pitch patterns
Lau, Joseph C. Y.; Wong, Patrick C. M.
2016-01-01
We examined the mechanics of online experience-dependent auditory plasticity by assessing the influence of prior context on the frequency-following responses (FFRs), which reflect phase-locked responses from neural ensembles within the subcortical auditory system. FFRs were elicited to a Cantonese falling lexical pitch pattern from 24 native speakers of Cantonese in a variable context, wherein the falling pitch pattern randomly occurred in the context of two other linguistic pitch patterns; in a patterned context, wherein, the falling pitch pattern was presented in a predictable sequence along with two other pitch patterns, and in a repetitive context, wherein the falling pitch pattern was presented with 100% probability. We found that neural tracking of the stimulus pitch contour was most faithful and accurate when listening context was patterned and least faithful when the listening context was variable. The patterned context elicited more robust pitch tracking relative to the repetitive context, suggesting that context-dependent plasticity is most robust when the context is predictable but not repetitive. Our study demonstrates a robust influence of prior listening context that works to enhance online neural encoding of linguistic pitch patterns. We interpret these results as indicative of an interplay between contextual processes that are responsive to predictability as well as novelty in the presentation context. NEW & NOTEWORTHY Human auditory perception in dynamic listening environments requires fine-tuning of sensory signal based on behaviorally relevant regularities in listening context, i.e., online experience-dependent plasticity. Our finding suggests what partly underlie online experience-dependent plasticity are interplaying contextual processes in the subcortical auditory system that are responsive to predictability as well as novelty in listening context. These findings add to the literature that looks to establish the neurophysiological bases of auditory system plasticity, a central issue in auditory neuroscience. PMID:27832606
Context-dependent plasticity in the subcortical encoding of linguistic pitch patterns.
Lau, Joseph C Y; Wong, Patrick C M; Chandrasekaran, Bharath
2017-02-01
We examined the mechanics of online experience-dependent auditory plasticity by assessing the influence of prior context on the frequency-following responses (FFRs), which reflect phase-locked responses from neural ensembles within the subcortical auditory system. FFRs were elicited to a Cantonese falling lexical pitch pattern from 24 native speakers of Cantonese in a variable context, wherein the falling pitch pattern randomly occurred in the context of two other linguistic pitch patterns; in a patterned context, wherein, the falling pitch pattern was presented in a predictable sequence along with two other pitch patterns, and in a repetitive context, wherein the falling pitch pattern was presented with 100% probability. We found that neural tracking of the stimulus pitch contour was most faithful and accurate when listening context was patterned and least faithful when the listening context was variable. The patterned context elicited more robust pitch tracking relative to the repetitive context, suggesting that context-dependent plasticity is most robust when the context is predictable but not repetitive. Our study demonstrates a robust influence of prior listening context that works to enhance online neural encoding of linguistic pitch patterns. We interpret these results as indicative of an interplay between contextual processes that are responsive to predictability as well as novelty in the presentation context. Human auditory perception in dynamic listening environments requires fine-tuning of sensory signal based on behaviorally relevant regularities in listening context, i.e., online experience-dependent plasticity. Our finding suggests what partly underlie online experience-dependent plasticity are interplaying contextual processes in the subcortical auditory system that are responsive to predictability as well as novelty in listening context. These findings add to the literature that looks to establish the neurophysiological bases of auditory system plasticity, a central issue in auditory neuroscience. Copyright © 2017 the American Physiological Society.
Hyperactivity with Agitative-Like Behavior in a Mouse Tauopathy Model.
Jul, Pia; Volbracht, Christiane; de Jong, Inge E M; Helboe, Lone; Elvang, Anders Brandt; Pedersen, Jan Torleif
2016-01-01
Tauopathies, such as Alzheimer's disease (AD) and frontotemporal dementia (FTD), are characterized by formation of neurofibrillary tangles consisting of hyperphosphorylated tau. In addition to memory loss, patients experience behavioral symptoms such as agitation, aggression, depression, and insomnia. We explored the behavioral phenotype of a mouse model (rTg4510) carrying the human tau P301L mutation found in a familial form of FTD. We tested these mice in locomotor activity assays as well as in the Morris water maze to access spatial memory. In addition to cognitive impairments, rTg4510 mice exhibited a hyperactivity phenotype which correlated with progression of tau pathology and was dependent on P301L tau transgene expression. The hyperactive phenotype was characterized by significantly increased locomotor activity in a novel and in a simulated home cage environment together with a disturbed day/night cycle. The P301L-tau-dependent hyperactivity and agitative-like phenotype suggests that these mice may form a correlate to some of the behavioral disturbances observed in advanced AD and FTD.
Immunotherapy and patients treated for cancer with microsatellite instability.
Colle, Raphaël; Cohen, Romain; Cochereau, Delphine; Duval, Alex; Lascols, Olivier; Lopez-Trabada, Daniel; Afchain, Pauline; Trouilloud, Isabelle; Parc, Yann; Lefevre, Jérémie H; Fléjou, Jean-François; Svrcek, Magali; André, Thierry
2017-01-01
Microsatellite instability (MSI) is a tumor phenotype linked to somatic or germline (Lynch syndrome) inactivating alterations of DNA mismatch repair genes. A broad spectrum of neoplasms exhibits MSI phenotype, mainly colorectal cancer, endometrial cancer, and gastric cancer. MSI tumors are characterized by dense immune infiltration and high load of tumor neo-antigens. Growing evidence is accumulating on the efficacy of immune checkpoint inhibition for patients treated for MSI solid tumors. We present a comprehensive overview of MSI phenotype, its biological landscape and current diagnostic methods. Then we focus on MSI as a predictive biomarker of response to immune checkpoint inhibition in the context of colorectal cancer and non-colorectal tumors. Copyright © 2016 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.
The evolution of multivariate maternal effects.
Kuijper, Bram; Johnstone, Rufus A; Townley, Stuart
2014-04-01
There is a growing interest in predicting the social and ecological contexts that favor the evolution of maternal effects. Most predictions focus, however, on maternal effects that affect only a single character, whereas the evolution of maternal effects is poorly understood in the presence of suites of interacting traits. To overcome this, we simulate the evolution of multivariate maternal effects (captured by the matrix M) in a fluctuating environment. We find that the rate of environmental fluctuations has a substantial effect on the properties of M: in slowly changing environments, offspring are selected to have a multivariate phenotype roughly similar to the maternal phenotype, so that M is characterized by positive dominant eigenvalues; by contrast, rapidly changing environments favor Ms with dominant eigenvalues that are negative, as offspring favor a phenotype which substantially differs from the maternal phenotype. Moreover, when fluctuating selection on one maternal character is temporally delayed relative to selection on other traits, we find a striking pattern of cross-trait maternal effects in which maternal characters influence not only the same character in offspring, but also other offspring characters. Additionally, when selection on one character contains more stochastic noise relative to selection on other traits, large cross-trait maternal effects evolve from those maternal traits that experience the smallest amounts of noise. The presence of these cross-trait maternal effects shows that individual maternal effects cannot be studied in isolation, and that their study in a multivariate context may provide important insights about the nature of past selection. Our results call for more studies that measure multivariate maternal effects in wild populations.
The Evolution of Multivariate Maternal Effects
Kuijper, Bram; Johnstone, Rufus A.; Townley, Stuart
2014-01-01
There is a growing interest in predicting the social and ecological contexts that favor the evolution of maternal effects. Most predictions focus, however, on maternal effects that affect only a single character, whereas the evolution of maternal effects is poorly understood in the presence of suites of interacting traits. To overcome this, we simulate the evolution of multivariate maternal effects (captured by the matrix M) in a fluctuating environment. We find that the rate of environmental fluctuations has a substantial effect on the properties of M: in slowly changing environments, offspring are selected to have a multivariate phenotype roughly similar to the maternal phenotype, so that M is characterized by positive dominant eigenvalues; by contrast, rapidly changing environments favor Ms with dominant eigenvalues that are negative, as offspring favor a phenotype which substantially differs from the maternal phenotype. Moreover, when fluctuating selection on one maternal character is temporally delayed relative to selection on other traits, we find a striking pattern of cross-trait maternal effects in which maternal characters influence not only the same character in offspring, but also other offspring characters. Additionally, when selection on one character contains more stochastic noise relative to selection on other traits, large cross-trait maternal effects evolve from those maternal traits that experience the smallest amounts of noise. The presence of these cross-trait maternal effects shows that individual maternal effects cannot be studied in isolation, and that their study in a multivariate context may provide important insights about the nature of past selection. Our results call for more studies that measure multivariate maternal effects in wild populations. PMID:24722346
SuperPhy: predictive genomics for the bacterial pathogen Escherichia coli.
Whiteside, Matthew D; Laing, Chad R; Manji, Akiff; Kruczkiewicz, Peter; Taboada, Eduardo N; Gannon, Victor P J
2016-04-12
Predictive genomics is the translation of raw genome sequence data into a phenotypic assessment of the organism. For bacterial pathogens, these phenotypes can range from environmental survivability, to the severity of human disease. Significant progress has been made in the development of generic tools for genomic analyses that are broadly applicable to all microorganisms; however, a fundamental missing component is the ability to analyze genomic data in the context of organism-specific phenotypic knowledge, which has been accumulated from decades of research and can provide a meaningful interpretation of genome sequence data. In this study, we present SuperPhy, an online predictive genomics platform ( http://lfz.corefacility.ca/superphy/ ) for Escherichia coli. The platform integrates the analytical tools and genome sequence data for all publicly available E. coli genomes and facilitates the upload of new genome sequences from users under public or private settings. SuperPhy provides real-time analyses of thousands of genome sequences with results that are understandable and useful to a wide community, including those in the fields of clinical medicine, epidemiology, ecology, and evolution. SuperPhy includes identification of: 1) virulence and antimicrobial resistance determinants 2) statistical associations between genotypes, biomarkers, geospatial distribution, host, source, and phylogenetic clade; 3) the identification of biomarkers for groups of genomes on the based presence/absence of specific genomic regions and single-nucleotide polymorphisms and 4) in silico Shiga-toxin subtype. SuperPhy is a predictive genomics platform that attempts to provide an essential link between the vast amounts of genome information currently being generated and phenotypic knowledge in an organism-specific context.
Van Doorslaer, Koenraad; DeSalle, Rob; Einstein, Mark H; Burk, Robert D
2015-06-01
In order to complete their life cycle, papillomaviruses have evolved to manipulate a plethora of cellular pathways. The products of the human Alphapapillomavirus E6 proteins specifically interact with and target PDZ containing proteins for degradation. This viral phenotype has been suggested to play a role in viral oncogenesis. To analyze the association of HPV E6 mediated PDZ-protein degradation with cervical oncogenesis, a high-throughput cell culture assay was developed. Degradation of an epitope tagged human MAGI1 isoform was visualized by immunoblot. The correlation between HPV E6-induced degradation of hMAGI1 and epidemiologically determined HPV oncogenicity was evaluated using a Bayesian approach within a phylogenetic context. All tested oncogenic types degraded the PDZ-containing protein hMAGI1d; however, E6 proteins isolated from several related albeit non-oncogenic viral types were equally efficient at degrading hMAGI1. The relationship between both traits (oncogenicity and PDZ degradation potential) is best explained by a model in which the potential to degrade PDZ proteins was acquired prior to the oncogenic phenotype. This analysis provides evidence that the ancestor of both oncogenic and non-oncogenic HPVs acquired the potential to degrade human PDZ-containing proteins. This suggests that HPV E6 directed degradation of PDZ-proteins represents an ancient ecological niche adaptation. Phylogenetic modeling indicates that this phenotype is not specifically correlated with oncogenic risk, but may act as an enabling phenotype. The role of PDZ protein degradation in HPV fitness and oncogenesis needs to be interpreted in the context of Alphapapillomavirus evolution.
Van Doorslaer, Koenraad; DeSalle, Rob; Einstein, Mark H.; Burk, Robert D.
2015-01-01
In order to complete their life cycle, papillomaviruses have evolved to manipulate a plethora of cellular pathways. The products of the human Alphapapillomavirus E6 proteins specifically interact with and target PDZ containing proteins for degradation. This viral phenotype has been suggested to play a role in viral oncogenesis. To analyze the association of HPV E6 mediated PDZ-protein degradation with cervical oncogenesis, a high-throughput cell culture assay was developed. Degradation of an epitope tagged human MAGI1 isoform was visualized by immunoblot. The correlation between HPV E6-induced degradation of hMAGI1 and epidemiologically determined HPV oncogenicity was evaluated using a Bayesian approach within a phylogenetic context. All tested oncogenic types degraded the PDZ-containing protein hMAGI1d; however, E6 proteins isolated from several related albeit non-oncogenic viral types were equally efficient at degrading hMAGI1. The relationship between both traits (oncogenicity and PDZ degradation potential) is best explained by a model in which the potential to degrade PDZ proteins was acquired prior to the oncogenic phenotype. This analysis provides evidence that the ancestor of both oncogenic and non-oncogenic HPVs acquired the potential to degrade human PDZ-containing proteins. This suggests that HPV E6 directed degradation of PDZ-proteins represents an ancient ecological niche adaptation. Phylogenetic modeling indicates that this phenotype is not specifically correlated with oncogenic risk, but may act as an enabling phenotype. The role of PDZ protein degradation in HPV fitness and oncogenesis needs to be interpreted in the context of Alphapapillomavirus evolution. PMID:26086730
Epistasis can accelerate adaptive diversification in haploid asexual populations.
Griswold, Cortland K
2015-03-07
A fundamental goal of the biological sciences is to determine processes that facilitate the evolution of diversity. These processes can be separated into ecological, physiological, developmental and genetic. An ecological process that facilitates diversification is frequency-dependent selection caused by competition. Models of frequency-dependent adaptive diversification have generally assumed a genetic basis of phenotype that is non-epistatic. Here, we present a model that indicates diversification is accelerated by an epistatic basis of phenotype in combination with a competition model that invokes frequency-dependent selection. Our model makes use of a genealogical model of epistasis and insights into the effects of balancing selection on the genealogical structure of a population to understand how epistasis can facilitate diversification. The finding that epistasis facilitates diversification may be informative with respect to empirical results that indicate an epistatic basis of phenotype in experimental bacterial populations that experienced adaptive diversification. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Csala, Iren; Egervari, Luca; Dome, Peter; Faludi, Gabor; Dome, Balazs; Lazary, Judit
2015-06-03
Neuronal nicotinic acetylcholinergic receptors (nAChR) and especially α4β2 nAChRs are the major targets for cessation medications and also for some promising antidepressant agents. Furthermore, depressive symptoms pose multifacet difficulties during cessation therapy. However, gene encoding for the β2 subunit of nAChRs has been poorly investigated in association with depression. Since both nicotine dependence (ND) and depressive phenotype are complex disorders, we investigated the effects of a significant early life experience, maternal bonding style (MB) and CHRNB2 gene SNPs on smoking-related depression. We recruited two hundred and thirty-two treatment-seeking smokers in our study. Phenotypic variants were evaluated using the Fagerstrom Test for Nicotine Dependence (FTND), the Zung Self-Rating Depression Scale (ZSDS) and the Parental Bonding Instrument (PBI). Besides the total score (TS) of ZSDS, impulsivity (ZSDS-I) and suicidal ideation (ZSDS-S) were distinguished as phenotypic variable. DNAs were extracted from buccal mucosa samples and one SNP in promoter and two SNPs in 3' UTR of CHRNB2 gene were genotyped. GLM and ANOVA tests were performed for genotype associations and interaction analyses. Maternal bonding had a significant impact on depressive phenotypes. Low care, high protection and affectionless control (ALC) were associated with ZSDS-TS and all subphenotypes of ZSDS. One SNP, the rs2072660 in 3' UTR, had a significant effect on the FTND score (p=0.010). Direct association of CHRNB2 variants and depressive phenotypes were not significant. However, in interaction with ALC, rs2072660 was significantly associated with ZSDS-S (p=0.005). MB had no significant effect on smoking-related phenotype. Our results highlight the important role of 3' UTR in the CHRNB2 gene in the shared molecular background of ND and depressive phenotype. Parental bonding style can be suggested as a significant environmental factor in further GxE studies of depression. The presented significant GxE interaction on smoking-related suicidal subphenotype may help establish further investigations on development of more effective and safer smoking cessation and antidepressant agents. Copyright © 2015 Elsevier Inc. All rights reserved.
Epigenetic Inheritance and the Intergenerational Transfer of Experience
ERIC Educational Resources Information Center
Harper, Lawrence
2005-01-01
Currently, behavioral development is thought to result from the interplay among genetic inheritance, congenital characteristics, cultural contexts, and parental practices as they directly impact the individual. Evolutionary ecology points to another contributor, epigenetic inheritance, the transmission to offspring of parental phenotypic responses…
Altered autophagy in human adipose tissues in obesity
USDA-ARS?s Scientific Manuscript database
Context: Autophagy is a housekeeping mechanism, involved in metabolic regulation and stress response, shown recently to regulate lipid droplets biogenesis/breakdown and adipose tissue phenotype. Objective: We hypothesized that in human obesity autophagy may be altered in adipose tissue in a fat d...
Lövdén, Martin; Schaefer, Sabine; Noack, Hannes; Kanowski, Martin; Kaufmann, Jörn; Tempelmann, Claus; Bodammer, Nils Christian; Kühn, Simone; Heinze, Hans-Jochen; Lindenberger, Ulman; Düzel, Emrah; Bäckman, Lars
2011-06-01
Recent evidence indicates experience-dependent brain volume changes in humans, but the functional and histological nature of such changes is unknown. Here, we report that adult men performing a cognitively demanding spatial navigation task every other day over 4 months display increases in hippocampal N-acetylaspartate (NAA) as measured with magnetic resonance spectroscopy. Unlike measures of brain volume, changes in NAA are sensitive to metabolic and functional aspects of neural and glia tissue and unlikely to reflect changes in microvasculature. Training-induced changes in NAA were, however, absent in carriers of the Met substitution in the brain-derived neurotrophic factor (BDNF) gene, which is known to reduce activity-dependent secretion of BDNF. Among BDNF Val homozygotes, increases in NAA were strongly related to the degree of practice-related improvement in navigation performance and normalized to pretraining levels 4 months after the last training session. We conclude that changes in demands on spatial navigation can alter hippocampal NAA concentrations, confirming epidemiological studies suggesting that mental experience may have direct effects on neural integrity and cognitive performance. BDNF genotype moderates these plastic changes, in line with the contention that gene-context interactions shape the ontogeny of complex phenotypes.
Interactions between genetic variation and cellular environment in skeletal muscle gene expression.
Taylor, D Leland; Knowles, David A; Scott, Laura J; Ramirez, Andrea H; Casale, Francesco Paolo; Wolford, Brooke N; Guan, Li; Varshney, Arushi; Albanus, Ricardo D'Oliveira; Parker, Stephen C J; Narisu, Narisu; Chines, Peter S; Erdos, Michael R; Welch, Ryan P; Kinnunen, Leena; Saramies, Jouko; Sundvall, Jouko; Lakka, Timo A; Laakso, Markku; Tuomilehto, Jaakko; Koistinen, Heikki A; Stegle, Oliver; Boehnke, Michael; Birney, Ewan; Collins, Francis S
2018-01-01
From whole organisms to individual cells, responses to environmental conditions are influenced by genetic makeup, where the effect of genetic variation on a trait depends on the environmental context. RNA-sequencing quantifies gene expression as a molecular trait, and is capable of capturing both genetic and environmental effects. In this study, we explore opportunities of using allele-specific expression (ASE) to discover cis-acting genotype-environment interactions (GxE)-genetic effects on gene expression that depend on an environmental condition. Treating 17 common, clinical traits as approximations of the cellular environment of 267 skeletal muscle biopsies, we identify 10 candidate environmental response expression quantitative trait loci (reQTLs) across 6 traits (12 unique gene-environment trait pairs; 10% FDR per trait) including sex, systolic blood pressure, and low-density lipoprotein cholesterol. Although using ASE is in principle a promising approach to detect GxE effects, replication of such signals can be challenging as validation requires harmonization of environmental traits across cohorts and a sufficient sampling of heterozygotes for a transcribed SNP. Comprehensive discovery and replication will require large human transcriptome datasets, or the integration of multiple transcribed SNPs, coupled with standardized clinical phenotyping.
Complexity: the organizing principle at the interface of biological (dis)order.
Bhat, Ramray; Pally, Dharma
2017-07-01
The term complexity means several things to biologists.When qualifying morphological phenotype, on the one hand, it is used to signify the sheer complicatedness of living systems, especially as a result of the multicomponent aspect of biological form. On the other hand, it has been used to represent the intricate nature of the connections between constituents that make up form: a more process-based explanation. In the context of evolutionary arguments, complexity has been defined, in a quantifiable fashion, as the amount of information, an informatic template such as a sequence of nucleotides or amino acids stores about its environment. In this perspective, we begin with a brief review of the history of complexity theory. We then introduce a developmental and an evolutionary understanding of what it means for biological systems to be complex.We propose that the complexity of living systems can be understood through two interdependent structural properties: multiscalarity of interconstituent mechanisms and excitability of the biological materials. The answer to whether a system becomes more or less complex over time depends on the potential for its constituents to interact in novel ways and combinations to give rise to new structures and functions, as well as on the evolution of excitable properties that would facilitate the exploration of interconstituent organization in the context of their microenvironments and macroenvironments.
“Dynamic Range” of Inferred Phenotypic HIV Drug Resistance Values in Clinical Practice
Swenson, Luke C.; Pollock, Graham; Wynhoven, Brian; Mo, Theresa; Dong, Winnie; Hogg, Robert S.; Montaner, Julio S. G.; Harrigan, P. Richard
2011-01-01
Background ‘Virtual’ or inferred phenotypes (vPhenotypes) are commonly used to assess resistance to antiretroviral agents in patients failing therapy. In this study, we provide a clinical context for understanding vPhenotype values. Methods All HIV-infected persons enrolled in the British Columbia Drug Treatment Program with a baseline plasma viral load (pVL) and follow-up genotypic resistance and pVL results were included up to October 29, 2008 (N = 5,277). Change from baseline pVL was determined as a function of Virco vPhenotype, and the “dynamic range” (defined here by the 10th and 90th percentiles for fold-change in IC50 amongst all patients) was estimated from the distribution of vPhenotye fold-changes across the cohort. Results The distribution of vPhenotypes from a large cohort of HIV patients who have failed therapy are presented for all available antiretroviral agents. A maximum change in IC50 of at least 13-fold was observed for all drugs. The dideoxy drugs, tenofovir and most PIs exhibited small “dynamic ranges” with values of <4-fold change observed in >99% of samples. In contrast, zidovudine, lamivudine, emtricitabine and the non-nucleoside reverse transcriptase inihibitors (excluding etravirine) had large dynamic ranges. Conclusion We describe the populational distribution of vPhenotypes such that vPhenotype results can be interpreted relative to other patients in a drug-specific manner. PMID:21390218
Gluckman, Peter D; Lillycrop, Karen A; Vickers, Mark H; Pleasants, Anthony B; Phillips, Emma S; Beedle, Alan S; Burdge, Graham C; Hanson, Mark A
2007-07-31
Developmental plasticity in response to environmental cues can take the form of polyphenism, as for the discrete morphs of some insects, or of an apparently continuous spectrum of phenotype, as for most mammalian traits. The metabolic phenotype of adult rats, including the propensity to obesity, hyperinsulinemia, and hyperphagia, shows plasticity in response to prenatal nutrition and to neonatal administration of the adipokine leptin. Here, we report that the effects of neonatal leptin on hepatic gene expression and epigenetic status in adulthood are directionally dependent on the animal's nutritional status in utero. These results demonstrate that, during mammalian development, the direction of the response to one cue can be determined by previous exposure to another, suggesting the potential for a discontinuous distribution of environmentally induced phenotypes, analogous to the phenomenon of polyphenism.
Linkage analyses of cannabis dependence, craving, and withdrawal in the San Francisco family study.
Ehlers, Cindy L; Gizer, Ian R; Vieten, Cassandra; Wilhelmsen, Kirk C
2010-04-05
Cannabis is the most widely used illicit drug in the United States. There is ample evidence that cannabis use has a heritable component, yet the genes underlying cannabis use disorders are yet to be completely identified. This study's aims were to map susceptibility loci for cannabis use and dependence and two narrower cannabis-related phenotypes of "craving" and "withdrawal" using a family study design. Participants were 2,524 adults participating in the University of California San Francisco (UCSF) Family Alcoholism Study. DSM-IV diagnoses of cannabis dependence, as well as indices of cannabis craving and withdrawal, were obtained using a modified version of the Semi-Structured Assessment for the Genetics of Alcoholism (SSAGA). Genotypes were determined for a panel of 791 microsatellite polymorphisms. Multipoint variance component LOD scores were obtained using SOLAR. Genome-wide significance for linkage (LOD > 3.0) was not found for the DSM-IV cannabis dependence diagnosis; however, linkage analyses of cannabis "craving" and the cannabis withdrawal symptom of "nervous, tense, restless, or irritable" revealed five sites with LOD scores over 3.0 on chromosomes 1, 3, 6, 7, and 9. These results identify new regions of the genome associated with cannabis use phenotypes as well as corroborate the importance of several chromosome regions highlighted in previous linkage analyses for other substance dependence phenotypes.
Chromosome 15q25.1 genetic markers associated with level of response to alcohol in humans.
Joslyn, Geoff; Brush, Gerry; Robertson, Margaret; Smith, Tom L; Kalmijn, Jelger; Schuckit, Marc; White, Raymond L
2008-12-23
As with other genetically complex common psychiatric and medical conditions, multiple genetic and environmental components contribute to alcohol use disorders (AUDs), which can confound attempts to identify genetic components. Intermediate phenotypes are often more closely correlated with underlying biology and have often proven invaluable in genetic studies. Level of response (LR) to alcohol is an intermediate phenotype for AUDs, and individuals with a low LR are at increased risk. A high rate of concurrent alcohol and nicotine use and dependence suggests that these conditions may share biochemical and genetic mechanisms. Genetic association studies indicate that a genetic locus, which includes the CHRNA5-CHRNA3-CHRNB4 gene cluster, plays a role in nicotine consumption and dependence. Genetic association with alcohol dependence was also recently shown. We show here that two of the markers from the nicotine studies also show an association (multiple testing corrected P < 0.025) with several LR phenotypes in a sample of 367 siblings. Additional markers in the region were analyzed and shown to be located in a 250-kb expanse of high linkage disequilibrium containing three additional genes. These findings indicate that LR intermediate phenotypes have utility in genetic approaches to AUDs and will prove valuable in the identification of other genetic loci conferring susceptibility to AUDs.
Aoki, Yutaka; Helzlsouer, Kathy J.; Strickland, Paul T.
2014-01-01
Context: Cholinesterase (ChE) specific activity is the ratio of ChE activity to ChE mass and, as a biomarker of exposure to cholinesterase inhibitors, has a potential advantage over simple ChE activity. Objective: To examine the association of several potential correlates (serum arylesterase/paraoxonase activity, serum albumin, sex, age, month of blood collection, and smoking) with plasma ChE specific activity. Methods: We analyzed data from 195 cancer-free controls from a nested case-control study, accounting for potential confounding. Results: Arylesterase activity had an independent, statistically significant positive association with ChE specific activity, and its magnitude was the greatest for the arylesterase phenotype corresponding to the QQ PON1192 genotype followed by phenotypes corresponding to QR and RR genotypes. Serum albumin was positively associated with ChE specific activity. Conclusions: Plasma arylesterase activity was positively associated with plasma ChE specific activity. This observation is consistent with protection conferred by a metabolic phenotype resulting in reduced internal dose. PMID:24473115
An experimental phylogeny to benchmark ancestral sequence reconstruction
Randall, Ryan N.; Radford, Caelan E.; Roof, Kelsey A.; Natarajan, Divya K.; Gaucher, Eric A.
2016-01-01
Ancestral sequence reconstruction (ASR) is a still-burgeoning method that has revealed many key mechanisms of molecular evolution. One criticism of the approach is an inability to validate its algorithms within a biological context as opposed to a computer simulation. Here we build an experimental phylogeny using the gene of a single red fluorescent protein to address this criticism. The evolved phylogeny consists of 19 operational taxonomic units (leaves) and 17 ancestral bifurcations (nodes) that display a wide variety of fluorescent phenotypes. The 19 leaves then serve as ‘modern' sequences that we subject to ASR analyses using various algorithms and to benchmark against the known ancestral genotypes and ancestral phenotypes. We confirm computer simulations that show all algorithms infer ancient sequences with high accuracy, yet we also reveal wide variation in the phenotypes encoded by incorrectly inferred sequences. Specifically, Bayesian methods incorporating rate variation significantly outperform the maximum parsimony criterion in phenotypic accuracy. Subsampling of extant sequences had minor effect on the inference of ancestral sequences. PMID:27628687
Challenges Facing Crop Production And (Some) Potential Solutions
NASA Astrophysics Data System (ADS)
Schnable, P. S.
2017-12-01
To overcome some of the myriad challenges facing sustainable crop production we are seeking to develop statistical models that will predict crop performance in diverse agronomic environments. Crop phenotypes such as yield and drought tolerance are controlled by genotype, environment (considered broadly) and their interaction (GxE). As a consequence of the next generation sequencing revolution genotyping data are now available for a wide diversity of accessions in each of the major crops. The necessary volumes of phenotypic data, however, remain limiting and our understanding of molecular basis of GxE is minimal. To address this limitation, we are collaborating with engineers to construct new sensors and robots to automatically collect large volumes of phenotypic data. Two types of high-throughput, high-resolution, field-based phenotyping systems and new sensors will be described. Some of these technologies will be introduced within the context of the Genomes to Fields Initiative. Progress towards developing predictive models will be briefly summarized. An administrative structure that fosters transdisciplinary collaborations will be briefly described.
Kagawa, Rina; Kawazoe, Yoshimasa; Shinohara, Emiko; Imai, Takeshi; Ohe, Kazuhiko
2017-01-01
Phenotyping is an automated technique for identifying patients diagnosed with a particular disease based on electronic health records (EHRs). To evaluate phenotyping algorithms, which should be reproducible, the annotation of EHRs as a gold standard is critical. However, we have found that the different types of EHRs cannot be definitively annotated into CASEs or CONTROLs. The influence of such "possible patients" on phenotyping algorithms is unknown. To assess these issues, for four chronic diseases, we annotated EHRs by using information not directly referring to the diseases and developed two types of phenotyping algorithms for each disease. We confirmed that each disease included different types of possible patients. The performance of phenotyping algorithms differed depending on whether possible patients were considered as CASEs, and this was independent of the type of algorithms. Our results indicate that researchers must share annotation criteria for classifying the possible patients to reproduce phenotyping algorithms.
Third Prader-Willi syndrome phenotype due to maternal uniparental disomy 15 with mosaic trisomy 15.
Olander, E; Stamberg, J; Steinberg, L; Wulfsberg, E A
2000-07-31
We report on a boy with mosaicism for trisomy 15 and Prader-Willi syndrome (PWS) due to maternal isodisomy for chromosome 15. His phenotype is consistent with PWS and trisomy 15 mosaicism. Although our patient is unusual in having maternal isodisomy rather than the more common maternal heterodisomy, we think that his more severe PWS phenotype is due to his trisomy 15 mosaicism rather than to homozygosity for deleterious chromosome 15 genes. We propose that individuals with PWS have one of three similar but distinctive phenotypes depending on the cause of their condition. Patients with paternal deletions have the typical PWS phenotype, patients with maternal UPD have a slightly milder phenotype with better cognitive function, and those with maternal UPD and mosaic trisomy 15 have the most severe phenotype with a high incidence of congenital heart disease. These phenotype-genotype differences are useful to guide the work-up of patients with suspected PWS and to provide prognostic counseling for families.
Stress Disrupts Context-Dependent Memory
ERIC Educational Resources Information Center
Schwabe, Lars; Bohringer, Andreas; Wolf, Oliver T.
2009-01-01
Memory is facilitated when the retrieval context resembles the learning context. The brain structures underlying contextual influences on memory are susceptible to stress. Whether stress interferes with context-dependent memory is still unknown. We exposed healthy adults to stress or a control procedure before they learned an object-location task…
ERIC Educational Resources Information Center
Ozdemir, Devrim; Doolittle, Peter
2015-01-01
The purpose of this study was to investigate the effects of context-dependency of seductive details on recall and transfer in multimedia learning environments. Seductive details were interesting yet irrelevant sentences in the instructional text. Two experiments were conducted. The purpose of Experiment 1 was to identify context-dependent and…
Body Temperature Measurements for Metabolic Phenotyping in Mice.
Meyer, Carola W; Ootsuka, Youichirou; Romanovsky, Andrej A
2017-01-01
Key Points Rectal probing is subject to procedural bias. This method is suitable for first-line phenotyping, provided probe depth and measurement duration are standardized. It is also useful for detecting individuals with out-of-range body temperatures (during hypothermia, torpor).The colonic temperature attained by inserting the probe >2 cm deep is a measure of deep (core) body temperature.IR imaging of the skin is useful for detecting heat leaks and autonomous thermoregulatory alterations, but it does not measure body temperature.Temperature of the hairy or shaved skin covering the inter-scapular brown adipose tissue can be used as a measure of BAT thermogenesis. However, obtaining such measurements of sufficient quality is very difficult, and interpreting them can be tricky. Temperature differences between the inter-scapular and lumbar areas can be a better measure of the thermogenic activity of inter-scapular brown adipose tissue.Implanted probes for precise determination of BAT temperature (changes) should be fixed close to the Sulzer's vein. For measurement of BAT thermogenesis, core body temperature and BAT temperature should be recorded simultaneously.Tail temperature is suitable to compare the presence or absence of vasoconstriction or vasodilation.Continuous, longitudinal monitoring of core body temperature is preferred over single probing, as the readings are taken in a non-invasive, physiological context.Combining core body temperature measurements with metabolic rate measurements yields insights into the interplay between heat production and heat loss (thermal conductance), potentially revealing novel thermoregulatory phenotypes. Endothermic organisms rely on tightly balanced energy budgets to maintain a regulated body temperature and body mass. Metabolic phenotyping of mice, therefore, often includes the recording of body temperature. Thermometry in mice is conducted at various sites, using various devices and measurement practices, ranging from single-time probing to continuous temperature imaging. Whilst there is broad agreement that body temperature data is of value, procedural considerations of body temperature measurements in the context of metabolic phenotyping are missing. Here, we provide an overview of the various methods currently available for gathering body temperature data from mice. We explore the scope and limitations of thermometry in mice, with the hope of assisting researchers in the selection of appropriate approaches, and conditions, for comprehensive mouse phenotypic analyses.
Border, Shana E
2018-01-01
Abstract Natural selection has been shown to drive population differentiation and speciation. The role of sexual selection in this process is controversial; however, most of the work has centered on mate choice while the role of male–male competition in speciation is relatively understudied. Here, we outline how male–male competition can be a source of diversifying selection on male competitive phenotypes, and how this can contribute to the evolution of reproductive isolation. We highlight how negative frequency-dependent selection (advantage of rare phenotype arising from stronger male–male competition between similar male phenotypes compared with dissimilar male phenotypes) and disruptive selection (advantage of extreme phenotypes) drives the evolution of diversity in competitive traits such as weapon size, nuptial coloration, or aggressiveness. We underscore that male–male competition interacts with other life-history functions and that variable male competitive phenotypes may represent alternative adaptive options. In addition to competition for mates, aggressive interference competition for ecological resources can exert selection on competitor signals. We call for a better integration of male–male competition with ecological interference competition since both can influence the process of speciation via comparable but distinct mechanisms. Altogether, we present a more comprehensive framework for studying the role of male–male competition in speciation, and emphasize the need for better integration of insights gained from other fields studying the evolutionary, behavioral, and physiological consequences of agonistic interactions. PMID:29492042
Otte, Kathrin A; Schrank, Isabella; Fröhlich, Thomas; Arnold, Georg J; Laforsch, Christian
2015-08-01
Phenotypic plasticity, the ability of one genotype to express different phenotypes in response to changing environmental conditions, is one of the most common phenomena characterizing the living world and is not only relevant for the ecology but also for the evolution of species. Daphnia, the water flea, is a textbook example for predator-induced phenotypic plastic defences; however, the analysis of molecular mechanisms underlying these inducible defences is still in its early stages. We exposed Daphnia magna to chemical cues of the predator Triops cancriformis to identify key processes underlying plastic defensive trait formation. To get a more comprehensive idea of this phenomenon, we studied four genotypes with five biological replicates each, originating from habitats characterized by different predator composition, ranging from predator-free habitats to habitats containing T. cancriformis. We analysed the morphologies as well as proteomes of predator-exposed and control animals. Three genotypes showed morphological changes when the predator was present. Using a high-throughput proteomics approach, we found 294 proteins which were significantly altered in their abundance after predator exposure in a general or genotype-dependent manner. Proteins connected to genotype-dependent responses were related to the cuticle, protein synthesis and calcium binding, whereas the yolk protein vitellogenin increased in abundance in all genotypes, indicating their involvement in a more general response. Furthermore, genotype-dependent responses at the proteome level were most distinct for the only genotype that shares its habitat with Triops. Altogether, our study provides new insights concerning genotype-dependent and general molecular processes involved in predator-induced phenotypic plasticity in D. magna. © 2015 John Wiley & Sons Ltd.
Brain-derived neurotrophic factor Val66Met polymorphism and alcohol-related phenotypes.
Nedic, Gordana; Perkovic, Matea Nikolac; Sviglin, Korona Nenadic; Muck-Seler, Dorotea; Borovecki, Fran; Pivac, Nela
2013-01-10
Alcoholism is a chronic psychiatric disorder affecting neural pathways that regulate motivation, stress, reward and arousal. Brain-derived neurotrophic factor (BDNF) regulates mood, response to stress and interacts with neurotransmitters and stress systems involved in reward pathways and addiction. Aim of the study was to evaluate the association between a single nucleotide polymorphism (BDNF Val66Met or rs6265) and alcohol related phenotypes in Caucasian patients. In ethnically homogenous Caucasian subjects of the Croatian origin, the BDNF Val66Met genotype distribution was determined in 549 male and 126 female patients with alcohol dependence and in 655 male and 259 female healthy non-alcoholic control subjects. Based on the structured clinical interview, additional detailed clinical interview, the Brown-Goodwin Scale, the Hamilton Rating Scale for Depression and the Clinical Global Impression scores, alcoholic patients were subdivided into those with or without comorbid depression, aggression, delirium tremens, withdrawal syndrome, early/late onset of alcohol abuse, prior suicidal attempt during lifetime, current suicidal behavior, and severity of alcohol dependence. The results showed no significant association between BDNF Val66Met variants and alcohol dependence and/or any of the alcohol related phenotypes in either Caucasian women, or men, with alcohol dependence. There are few limitations of the study. The overall study sample size was large (N=1589) but not well-powered to detect differences in BDNF Val66Met genotype distribution between studied groups. Healthy control women were older than female alcoholic patients. Only one BDNF polymorphism (rs6265) was studied. In conclusion, these data do not support the view that BDNF Val66Met polymorphism correlates with the specific alcohol related phenotypes in ethnically homogenous medication-free Caucasian subjects with alcohol dependence. Copyright © 2012 Elsevier Inc. All rights reserved.
Joost, Stéphane; Kalbermatten, Michael; Bezault, Etienne; Seehausen, Ole
2012-01-01
When searching for loci possibly under selection in the genome, an alternative to population genetics theoretical models is to establish allele distribution models (ADM) for each locus to directly correlate allelic frequencies and environmental variables such as precipitation, temperature, or sun radiation. Such an approach implementing multiple logistic regression models in parallel was implemented within a computing program named MATSAM: . Recently, this application was improved in order to support qualitative environmental predictors as well as to permit the identification of associations between genomic variation and individual phenotypes, allowing the detection of loci involved in the genetic architecture of polymorphic characters. Here, we present the corresponding methodological developments and compare the results produced by software implementing population genetics theoretical models (DFDIST: and BAYESCAN: ) and ADM (MATSAM: ) in an empirical context to detect signatures of genomic divergence associated with speciation in Lake Victoria cichlid fishes.
Jin, Ling; Carpenter, Dale; Moerdyk-Schauwecker, Megan; Vanarsdall, Adam L; Osorio, Nelson; Hsiang, Chinhui; Jones, Clinton; Wechsler, Steven L
2010-01-01
Latency-associated transcript (LAT) deletion mutants of herpes simplex virus type 1 (HSV-1) have reduced reactivation phenotypes. Thus, LAT plays an essential role in the latency-reactivation cycle of HSV-1. We have shown that LAT has antiapoptosis activity and demonstrated that the chimeric virus, dLAT-cpIAP, resulting from replacing LAT with the baculovirus antiapoptosis gene cpIAP, has a wild-type HSV-1 reactivation phenotype in mice and rabbits. Thus, LAT can be replaced by an alternative antiapoptosis gene, confirming that LAT’s antiapoptosis activity plays an important role in the mechanism by which LAT enhances the virus’ reactivation phenotype. However, because cpIAP interferes with both of the major apoptosis pathways, these studies did not address whether LAT’s proreactivation phenotype function was due to blocking the extrinsic (Fas-ligand–, caspase-8–, or caspase-10–dependent pathway) or the intrinsic (mitochondria-, caspase-9–dependent pathway) pathway, or whether both pathways must be blocked. Here we constructed an HSV-1 LAT(−) mutant that expresses cellular FLIP (cellular FLICE-like inhibitory protein) under control of the LAT promoter and in place of LAT nucleotides 76 to 1667. Mice were ocularly infected with this mutant, designated dLAT-FLIP, and the reactivation phenotype was determined using the trigeminal ganglia explant model. dLAT-FLIP had a reactivation phenotype similar to wild-type virus and significantly higher than the LAT(−) mutant dLAT2903. Thus, the LAT function responsible for enhancing the reactivation phenotype could be replaced with an antiapoptosis gene that primarily blocks the extrinsic signaling apoptosis pathway. PMID:18989818
SAP is required for the development of innate phenotype in H2-M3-restricted CD8+ T cells1
Bediako, Yaw; Bian, Yao; Zhang, Hong; Cho, Hoonsik; Stein, Paul L.; Wang, Chyung-Ru
2012-01-01
H2-M3-restricted T cells have a pre-activated surface phenotype, rapidly expand and produce cytokines upon stimulation and as such, are classified as innate T cells. Unlike most innate T cells, M3-restricted T cells also express CD8αβ co-receptors and a diverse TCR repertoire: hallmarks of conventional MHC Ia-restricted CD8+ T cells. Although iNKT cells are also innate lymphocytes, they are selected exclusively on hematopoietic cells (HC), while M3-restricted T cells can be selected on either hematopoietic or thymic epithelial cells (TEC). Moreover, their phenotypes differ depending on what cells mediate their selection. Though there is a clear correlation between selection on HC and development of innate phenotype, the underlying mechanism remains unclear. SAP is required for the development of iNKT cells and mediates signals from SLAM receptors that are exclusively expressed on HC. Based on their dual selection pathway, M3-restricted T cells present a unique model for studying the development of innate T cell phenotype. Using both polyclonal and transgenic mouse models we demonstrate that while M3-restricted T cells are capable of developing in the absence of SAP, SAP is required for HC-mediated selection, development of pre-activated phenotype and heightened effector functions of M3-restricted T cells. These findings are significant because they directly demonstrate the need for SAP in HC-mediated acquisition of innate T cell phenotype and suggest that due to their SAP-dependent HC-mediated selection, M3-restricted T cells develop a pre-activated phenotype and an intrinsic ability to proliferate faster upon stimulation, allowing for an important role in the early response to infection. PMID:23041566
Ecological studies of polyploidy in the 100 years following its discovery
Ramsey, Justin; Ramsey, Tara S.
2014-01-01
Polyploidy is a mutation with profound phenotypic consequences and thus hypothesized to have transformative effects in plant ecology. This is most often considered in the context of geographical and environmental distributions—as achieved from divergence of physiological and life-history traits—but may also include species interactions and biological invasion. This paper presents a historical overview of hypotheses and empirical data regarding the ecology of polyploids. Early researchers of polyploidy (1910s–1930s) were geneticists by training but nonetheless savvy to its phenotypic effects, and speculated on the importance of genome duplication to adaptation and crop improvement. Cytogenetic studies in the 1930s–1950s indicated that polyploids are larger (sturdier foliage, thicker stems and taller stature) than diploids while cytogeographic surveys suggested that polyploids and diploids have allopatric or parapatric distributions. Although autopolyploidy was initially regarded as common, influential writings by North American botanists in the 1940s and 1950s argued for the principle role of allopolyploidy; according to this view, genome duplication was significant for providing a broader canvas for hybridization rather than for its phenotypic effects per se. The emphasis on allopolyploidy had a chilling effect on nascent ecological work, in part due to taxonomic challenges posed by interspecific hybridization. Nonetheless, biosystematic efforts over the next few decades (1950s–1970s) laid the foundation for ecological research by documenting cytotype distributions and identifying phenotypic correlates of polyploidy. Rigorous investigation of polyploid ecology was achieved in the 1980s and 1990s by population biologists who leveraged flow cytometry for comparative work in autopolyploid complexes. These efforts revealed multi-faceted ecological and phenotypic differences, some of which may be direct consequences of genome duplication. Several classical hypotheses about the ecology of polyploids remain untested, however, and allopolyploidy—regarded by most botanists as the primary mode of genome duplication—is largely unstudied in an ecological context. PMID:24958925
Hormone signaling and phenotypic plasticity in nematode development and evolution.
Sommer, Ralf J; Ogawa, Akira
2011-09-27
Phenotypic plasticity refers to the ability of an organism to adopt different phenotypes depending on environmental conditions. In animals and plants, the progression of juvenile development and the formation of dormant stages are often associated with phenotypic plasticity, indicating the importance of phenotypic plasticity for life-history theory. Phenotypic plasticity has long been emphasized as a crucial principle in ecology and as facilitator of phenotypic evolution. In nematodes, several examples of phenotypic plasticity have been studied at the genetic and developmental level. In addition, the influence of different environmental factors has been investigated under laboratory conditions. These studies have provided detailed insight into the molecular basis of phenotypic plasticity and its ecological and evolutionary implications. Here, we review recent studies on the formation of dauer larvae in Caenorhabditis elegans, the evolution of nematode parasitism and the generation of a novel feeding trait in Pristionchus pacificus. These examples reveal a conserved and co-opted role of an endocrine signaling module involving the steroid hormone dafachronic acid. We will discuss how hormone signaling might facilitate life-history and morphological evolution. Copyright © 2011 Elsevier Ltd. All rights reserved.
Assessing visual requirements for social context-dependent activation of the songbird song system
Hara, Erina; Kubikova, Lubica; Hessler, Neal A.; Jarvis, Erich D.
2008-01-01
Social context has been shown to have a profound influence on brain activation in a wide range of vertebrate species. Best studied in songbirds, when males sing undirected song, the level of neural activity and expression of immediate early genes (IEGs) in several song nuclei is dramatically higher or lower than when they sing directed song to other birds, particularly females. This differential social context-dependent activation is independent of auditory input and is not simply dependent on the motor act of singing. These findings suggested that the critical sensory modality driving social context-dependent differences in the brain could be visual cues. Here, we tested this hypothesis by examining IEG activation in song nuclei in hemispheres to which visual input was normal or blocked. We found that covering one eye blocked visually induced IEG expression throughout both contralateral visual pathways of the brain, and reduced activation of the contralateral ventral tegmental area, a non-visual midbrain motivation-related area affected by social context. However, blocking visual input had no effect on the social context-dependent activation of the contralateral song nuclei during female-directed singing. Our findings suggest that individual sensory modalities are not direct driving forces for the social context differences in song nuclei during singing. Rather, these social context differences in brain activation appear to depend more on the general sense that another individual is present. PMID:18826930
Context-Dependent Functional Divergence of the Notch Ligands DLL1 and DLL4 In Vivo
Preuße, Kristina; Tveriakhina, Lena; Schuster-Gossler, Karin; Gaspar, Cláudia; Rosa, Alexandra Isabel; Henrique, Domingos; Gossler, Achim; Stauber, Michael
2015-01-01
Notch signalling is a fundamental pathway that shapes the developing embryo and sustains adult tissues by direct communication between ligand and receptor molecules on adjacent cells. Among the ligands are two Delta paralogues, DLL1 and DLL4, that are conserved in mammals and share a similar structure and sequence. They activate the Notch receptor partly in overlapping expression domains where they fulfil redundant functions in some processes (e.g. maintenance of the crypt cell progenitor pool). In other processes, however, they appear to act differently (e.g. maintenance of foetal arterial identity) raising the questions of how similar DLL1 and DLL4 really are and which mechanism causes the apparent context-dependent divergence. By analysing mice that conditionally overexpress DLL1 or DLL4 from the same genomic locus (Hprt) and mice that express DLL4 instead of DLL1 from the endogenous Dll1 locus (Dll1Dll4ki), we found functional differences that are tissue-specific: while DLL1 and DLL4 act redundantly during the maintenance of retinal progenitors, their function varies in the presomitic mesoderm (PSM) where somites form in a Notch-dependent process. In the anterior PSM, every cell expresses both Notch receptors and ligands, and DLL1 is the only activator of Notch while DLL4 is not endogenously expressed. Transgenic DLL4 cannot replace DLL1 during somitogenesis and in heterozygous Dll1Dll4ki/+ mice, the Dll1Dll4ki allele causes a dominant segmentation phenotype. Testing several aspects of the complex Notch signalling system in vitro, we found that both ligands have a similar trans-activation potential but that only DLL4 is an efficient cis-inhibitor of Notch signalling, causing a reduced net activation of Notch. These differential cis-inhibitory properties are likely to contribute to the functional divergence of DLL1 and DLL4. PMID:26114479
Differential effects of AMPK agonists on cell growth and metabolism
Vincent, Emma E.; Coelho, Paula P.; Blagih, Julianna; Griss, Takla; Viollet, Benoit; Jones, Russell G.
2016-01-01
As a sensor of cellular energy status, the AMP-activated protein kinase (AMPK) is believed to act in opposition to the metabolic phenotypes favored by proliferating tumor cells. Consequently, compounds known to activate AMPK have been proposed as cancer therapeutics. However, the extent to which the anti-neoplastic properties of these agonists are mediated by AMPK is unclear. Here we examined the AMPK-dependence of six commonly used AMPK agonists (metformin, phenformin, AICAR, 2DG, salicylate and A-769662) and their influence on cellular processes often deregulated in tumor cells. We demonstrate that the majority of these agonists display AMPK-independent effects on cell proliferation and metabolism with only the synthetic activator, A-769662, exerting AMPK-dependent effects on these processes. We find that A-769662 promotes an AMPK-dependent increase in mitochondrial spare respiratory capacity (SRC). Finally, contrary to the view of AMPK activity being tumor suppressive, we find A-769662 confers a selective proliferative advantage to tumor cells growing under nutrient deprivation. Our results indicate that many of the anti-growth properties of these agonists cannot be attributed to AMPK activity in cells, and thus any observed effects using these agonists should be confirmed using AMPK-deficient cells. Ultimately, our data urge caution, not only regarding the type of AMPK agonist proposed for cancer treatment, but also the context in which they are used. PMID:25241895
Differential effects of AMPK agonists on cell growth and metabolism.
Vincent, E E; Coelho, P P; Blagih, J; Griss, T; Viollet, B; Jones, R G
2015-07-01
As a sensor of cellular energy status, the AMP-activated protein kinase (AMPK) is believed to act in opposition to the metabolic phenotypes favored by proliferating tumor cells. Consequently, compounds known to activate AMPK have been proposed as cancer therapeutics. However, the extent to which the anti-neoplastic properties of these agonists are mediated by AMPK is unclear. Here we examined the AMPK dependence of six commonly used AMPK agonists (metformin, phenformin, 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), 2-deoxy-D-glucose (2DG), salicylate and A-769662) and their influence on cellular processes often deregulated in tumor cells. We demonstrate that the majority of these agonists display AMPK-independent effects on cell proliferation and metabolism with only the synthetic activator, A-769662, exerting AMPK-dependent effects on these processes. We find that A-769662 promotes an AMPK-dependent increase in mitochondrial spare respiratory capacity. Finally, contrary to the view of AMPK activity being tumor suppressive, we find that A-769662 confers a selective proliferative advantage to tumor cells growing under nutrient deprivation. Our results indicate that many of the antigrowth properties of these agonists cannot be attributed to AMPK activity in cells, and thus any observed effects using these agonists should be confirmed using AMPK-deficient cells. Ultimately, our data urge caution not only regarding the type of AMPK agonist proposed for cancer treatment but also the context in which they are used.
Loss of the Mechanotransducer Zyxin Promotes a Synthetic Phenotype of Vascular Smooth Muscle Cells
Ghosh, Subhajit; Kollar, Branislav; Nahar, Taslima; Suresh Babu, Sahana; Wojtowicz, Agnieszka; Sticht, Carsten; Gretz, Norbert; Wagner, Andreas H; Korff, Thomas; Hecker, Markus
2015-01-01
Background Exposure of vascular smooth muscle cells (VSMCs) to excessive cyclic stretch such as in hypertension causes a shift in their phenotype. The focal adhesion protein zyxin can transduce such biomechanical stimuli to the nucleus of both endothelial cells and VSMCs, albeit with different thresholds and kinetics. However, there is no distinct vascular phenotype in young zyxin-deficient mice, possibly due to functional redundancy among other gene products belonging to the zyxin family. Analyzing zyxin function in VSMCs at the cellular level might thus offer a better mechanistic insight. We aimed to characterize zyxin-dependent changes in gene expression in VSMCs exposed to biomechanical stretch and define the functional role of zyxin in controlling the resultant VSMC phenotype. Methods and Results DNA microarray analysis was used to identify genes and pathways that were zyxin regulated in static and stretched human umbilical artery–derived and mouse aortic VSMCs. Zyxin-null VSMCs showed a remarkable shift to a growth-promoting, less apoptotic, promigratory and poorly contractile phenotype with ≈90% of the stretch-responsive genes being zyxin dependent. Interestingly, zyxin-null cells already seemed primed for such a synthetic phenotype, with mechanical stretch further accentuating it. This could be accounted for by higher RhoA activity and myocardin-related transcription factor-A mainly localized to the nucleus of zyxin-null VSMCs, and a condensed and localized accumulation of F-actin upon stretch. Conclusions At the cellular level, zyxin is a key regulator of stretch-induced gene expression. Loss of zyxin drives VSMCs toward a synthetic phenotype, a process further consolidated by exaggerated stretch. PMID:26071033
A functional U-statistic method for association analysis of sequencing data.
Jadhav, Sneha; Tong, Xiaoran; Lu, Qing
2017-11-01
Although sequencing studies hold great promise for uncovering novel variants predisposing to human diseases, the high dimensionality of the sequencing data brings tremendous challenges to data analysis. Moreover, for many complex diseases (e.g., psychiatric disorders) multiple related phenotypes are collected. These phenotypes can be different measurements of an underlying disease, or measurements characterizing multiple related diseases for studying common genetic mechanism. Although jointly analyzing these phenotypes could potentially increase the power of identifying disease-associated genes, the different types of phenotypes pose challenges for association analysis. To address these challenges, we propose a nonparametric method, functional U-statistic method (FU), for multivariate analysis of sequencing data. It first constructs smooth functions from individuals' sequencing data, and then tests the association of these functions with multiple phenotypes by using a U-statistic. The method provides a general framework for analyzing various types of phenotypes (e.g., binary and continuous phenotypes) with unknown distributions. Fitting the genetic variants within a gene using a smoothing function also allows us to capture complexities of gene structure (e.g., linkage disequilibrium, LD), which could potentially increase the power of association analysis. Through simulations, we compared our method to the multivariate outcome score test (MOST), and found that our test attained better performance than MOST. In a real data application, we apply our method to the sequencing data from Minnesota Twin Study (MTS) and found potential associations of several nicotine receptor subunit (CHRN) genes, including CHRNB3, associated with nicotine dependence and/or alcohol dependence. © 2017 WILEY PERIODICALS, INC.
Schurdak, Mark E; Pei, Fen; Lezon, Timothy R; Carlisle, Diane; Friedlander, Robert; Taylor, D Lansing; Stern, Andrew M
2018-01-01
Designing effective therapeutic strategies for complex diseases such as cancer and neurodegeneration that involve tissue context-specific interactions among multiple gene products presents a major challenge for precision medicine. Safe and selective pharmacological modulation of individual molecular entities associated with a disease often fails to provide efficacy in the clinic. Thus, development of optimized therapeutic strategies for individual patients with complex diseases requires a more comprehensive, systems-level understanding of disease progression. Quantitative systems pharmacology (QSP) is an approach to drug discovery that integrates computational and experimental methods to understand the molecular pathogenesis of a disease at the systems level more completely. Described here is the chemogenomic component of QSP for the inference of biological pathways involved in the modulation of the disease phenotype. The approach involves testing sets of compounds of diverse mechanisms of action in a disease-relevant phenotypic assay, and using the mechanistic information known for the active compounds, to infer pathways and networks associated with the phenotype. The example used here is for monogenic Huntington's disease (HD), which due to the pleiotropic nature of the mutant phenotype has a complex pathogenesis. The overall approach, however, is applicable to any complex disease.
Cook, James P; Mahajan, Anubha; Morris, Andrew P
2017-02-01
Linear mixed models are increasingly used for the analysis of genome-wide association studies (GWAS) of binary phenotypes because they can efficiently and robustly account for population stratification and relatedness through inclusion of random effects for a genetic relationship matrix. However, the utility of linear (mixed) models in the context of meta-analysis of GWAS of binary phenotypes has not been previously explored. In this investigation, we present simulations to compare the performance of linear and logistic regression models under alternative weighting schemes in a fixed-effects meta-analysis framework, considering designs that incorporate variable case-control imbalance, confounding factors and population stratification. Our results demonstrate that linear models can be used for meta-analysis of GWAS of binary phenotypes, without loss of power, even in the presence of extreme case-control imbalance, provided that one of the following schemes is used: (i) effective sample size weighting of Z-scores or (ii) inverse-variance weighting of allelic effect sizes after conversion onto the log-odds scale. Our conclusions thus provide essential recommendations for the development of robust protocols for meta-analysis of binary phenotypes with linear models.
Benign hepatocellular nodules of healthy liver: focal nodular hyperplasia and hepatocellular adenoma
Roncalli, Massimo; Sciarra, Amedeo; Tommaso, Luca Di
2016-01-01
Owing to the progress of imaging techniques, benign hepatocellular nodules are increasingly discovered in the clinical practice. This group of lesions mostly arises in the context of a putatively normal healthy liver and includes either pseudotumoral and tumoral nodules. Focal nodular hyperplasia and hepatocellular adenoma are prototypical examples of these two categories of nodules. In this review we aim to report the main pathological criteria of differential diagnosis between focal nodular hyperplasia and hepatocellular adenoma, which mainly rests upon morphological and phenotypical features. We also emphasize that for a correct diagnosis the clinical context such as sex, age, assumption of oral contraceptives, associated metabolic or vascular disturbances is of paramount importance. While focal nodular hyperplasia is a single entity epidemiologically more frequent than adenoma, the latter is representative of a more heterogeneous group which has been recently and extensively characterized from a clinical, morphological, phenotypical and molecular profile. The use of the liver biopsy in addition to imaging and the clinical context are important diagnostic tools of these lesions. In this review we will survey their systematic pathobiology and propose a diagnostic algorithm helpful to increase the diagnostic accuracy of not dedicated liver pathologists. The differential diagnosis between so-called typical and atypical adenoma and well differentiated hepatocellular carcinoma will also be discussed. PMID:27189732
Smoking, haptoglobin and fertility in humans
Bottini, N; Magrini, A; MacMurray, J; Cosmi, E; Nicotra, M; Gloria-Bottini, F; Bergamaschi, A
2003-01-01
A prospective study on two samples of consecutive puerperae (total n° 667) from two populations has been carried out in order to investigate the possible effect of smoking habit on relationship between fertility and haptoglobin phenotype. In both populations the negative association previously reported between age of pueperae and Haptoglobin *1/*1 phenotype is present only in women with smoking habit pointing to an interaction between Hp and smoke on human fertility. This suggests that the effects of smoke on fertility are dependent on the Hp phenotype.
Genome-wide association study of alcohol dependence
Treutlein, Jens; Cichon, Sven; Ridinger, Monika; Wodarz, Norbert; Soyka, Michael; Zill, Peter; Maier, Wolfgang; Moessner, Rainald; Gaebel, Wolfgang; Dahmen, Norbert; Fehr, Christoph; Scherbaum, Norbert; Steffens, Michael; Ludwig, Kerstin U.; Frank, Josef; Wichmann, H.- Erich; Schreiber, Stefan; Dragano, Nico; Sommer, Wolfgang; Leonardi-Essmann, Fernando; Lourdusamy, Anbarasu; Gebicke-Haerter, Peter; Wienker, Thomas F.; Sullivan, Patrick F.; Nöthen, Markus M.; Kiefer, Falk; Spanagel, Rainer; Mann, Karl; Rietschel, Marcella
2014-01-01
Context Identification of genes contributing to alcohol dependence will improve our understanding of the mechanisms underlying this disorder. Objective To identify susceptibility genes for alcohol dependence through a genome-wide association study (GWAS) and follow-up study in a population of German male inpatients with an early age at onset. Design The GWAS included 487 male inpatients with DSM-IV alcohol dependence with an age at onset below 28 years and 1,358 population based control individuals. The follow-up study included 1,024 male inpatients and 996 age-matched male controls. All subjects were of German descent. The GWAS tested 524,396 single nucleotide polymorphisms (SNPs). All SNPs with p<10-4 were subjected to the follow-up study. In addition, nominally significant SNPs from those genes that had also shown expression changes in rat brains after chronic alcohol consumption were selected for the follow-up step. Results The GWAS produced 121 SNPs with nominal p<10-4. These, together with 19 additional SNPs from homologs of rat genes showing differential expression, were genotyped in the follow-up sample. Fifteen SNPs showed significant association with the same allele as in the GWAS. In the combined analysis, two closely linked intergenic SNPs met genome-wide significance (rs7590720 p=9.72×10-9; rs1344694 p=1.69×10-8). They are located on chromosome 2q35, a region which has been implicated in linkage studies for alcohol phenotypes. Nine SNPs were located in genes, including CDH13 and ADH1C genes which have been reported to be associated with alcohol dependence. Conclusion This is the first GWAS and follow-up study to identify a genome-wide significant association in alcohol dependence. Further independent studies are required to confirm these findings. PMID:19581569
Context-dependent control of attention capture: Evidence from proportion congruent effects.
Crump, Matthew J C; Milliken, Bruce; Leboe-McGowan, Jason; Leboe-McGowan, Launa; Gao, Xiaoqing
2018-06-01
There are several independent demonstrations that attentional phenomena can be controlled in a context-dependent manner by cues associated with differing attentional control demands. The present set of experiments provide converging evidence that attention-capture phenomena can be modulated in a context-dependent fashion. We determined whether methods from the proportion congruent literature (listwide and item- and context-specific proportion congruent designs) that are known to modulate distractor interference effects in Stroop and flanker tasks are capable of modulating attention capture by salient feature singletons. Across experiments we found evidence that attention capture can be modulated by listwide, item-specific, and context-specific manipulations of proportion congruent. We discuss challenges associated with interpreting results from proportion congruent studies but propose that our findings converge with existing work that has demonstrated context-dependent control of attention capture. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Jiang, Hua; Liu, Sha; Zhang, Yong-Ling; Wan, Jun-Hui; Li, Ru; Li, Dong-Zhi
2015-01-01
We describe a new case of a β-thalassemia (β-thal) heterozygote with the mutation IVS-II-654 (C>T) presenting with a transfusion-dependent phenotype. Multiplex ligation-dependent probe amplification (MLPA) and array comparative genomic hybridization (CGH) analyses of the α-globin gene cluster revealed a full duplication of the α-globin genes including the upstream regulatory element. The duplicated allele and the normal allele in trans resulted in a total of six active α-globin genes. The severe clinical phenotype seemed to be related to the considerable excess of the α- and β-globin deficit caused by the presence of the β-thal. α-Globin cluster duplication should be considered in patients heterozygous for β-thal who show a more severe phenotype than β-thal trait.
Role of the dorsolateral prefrontal cortex in context-dependent motor performance.
Lee, Y-Y; Winstein, C J; Fisher, B E
2016-04-01
Context-dependent motor performance is a phenomenon in which people perform better in the environmental context where they originally practised a task. Some animal and computer simulation studies have suggested that context-dependent performance may be associated with neural activation of the dorsolateral prefrontal cortex (DLPFC). This study aimed to determine the role of the DLPFC in context-dependent motor performance by perturbing the neural processing of the DLPFC with repetitive transcranial magnetic stimulation (rTMS) in healthy adults. Thirty healthy adults were recruited into the Control, rTMS DLPFC and rTMS Vertex groups. The participants practised three finger sequences associated with a specific incidental context (a coloured circle and a location on the computer screen). One day following practice, the rTMS groups received 1 Hz rTMS prior to the testing conditions in which the sequence-context associations remained the same as practice (SAME) or changed (SWITCH). All three groups improved significantly over practice on day 1. The second day testing results showed that the DLPFC group had a significantly lower decrease in motor performance under the SWITCH condition than the Control and Vertex groups. This finding suggests a specific role of the DLPFC in context-dependent motor performance. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Development, awareness and inductive selectivity.
Hayes, Brett K; Lim, Melissa
2013-05-01
Two studies examined whether adults and children could learn to make context-dependent inferences about novel stimuli and the role of awareness of context cues in such learning. Participants were trained to match probes to targets on the basis of shape or color with the relevant dimension shifting according to item context. A selective induction test then examined context-dependent responding in a more complex matching task. Awareness of the role of context was assessed using a behavioral task and explicit questions. Experiment 1 showed that after training with the procedure described by Sloutsky and Fisher (2008), only a minority of adults showed evidence of context-dependent responding in the selective induction test. Experiment 2 used a modified training protocol that promoted attention to context cues. This led to reliable selective induction in a majority of adults and a sizeable proportion of 4- to 6-year-olds. Crucially, in both age groups, selective induction was dependent on awareness of context. Hence, children as young as 4 can learn to make selective inferences about novel stimuli, but only when they are aware of the relevant context cues. These results challenge previous claims that selective induction in children is the product of implicit learning.
Bateman, Richard M; Hilton, Jason; Rudall, Paula J
2006-01-01
Recent attempts to address the long-debated 'origin' of the angiosperms depend on a phylogenetic framework derived from a matrix of taxa versus characters; most assume that empirical rigour is proportional to the size of the matrix. Sequence-based genotypic approaches increase the number of characters (nucleotides and indels) in the matrix but are confined to the highly restricted spectrum of extant species, whereas morphology-based approaches increase the number of phylogenetically informative taxa (including fossils) at the expense of accessing only a restricted spectrum of phenotypic characters. The two approaches are currently delivering strongly contrasting hypotheses of relationship. Most molecular studies indicate that all extant gymnosperms form a natural group, suggesting surprisingly early divergence of the lineage that led to angiosperms, whereas morphology-only phylogenies indicate that a succession of (mostly extinct) gymnosperms preceded a later angiosperm origin. Causes of this conflict include: (i) the vast phenotypic and genotypic lacuna, largely reflecting pre-Cenozoic extinctions, that separates early-divergent living angiosperms from their closest relatives among the living gymnosperms; (ii) profound uncertainty regarding which (a) extant and (b) extinct angiosperms are most closely related to gymnosperms; and (iii) profound uncertainty regarding which (a) extant and (b) extinct gymnosperms are most closely related to angiosperms, and thus best serve as 'outgroups' dictating the perceived evolutionary polarity of character transitions among the early-divergent angiosperms. These factors still permit a remarkable range of contrasting, yet credible, hypotheses regarding the order of acquisition of the many phenotypic characters, reproductive and vegetative, that distinguish 'classic' angiospermy from 'classic' gymnospermy. The flower remains ill-defined and its mode (or modes) of origin remains hotly disputed; some definitions and hypotheses of evolutionary relationships preclude a role for the flower in delimiting the angiosperms. We advocate maintenance of parallel, reciprocally illuminating programmes of morphological and molecular phylogeny reconstruction, respectively supported by homology testing through additional taxa (especially fossils) and evolutionary-developmental genetic studies that explore genes potentially responsible for major phenotypic transitions.
Genetic variants and early cigarette smoking and nicotine dependence phenotypes in adolescents.
O'Loughlin, Jennifer; Sylvestre, Marie-Pierre; Labbe, Aurélie; Low, Nancy C; Roy-Gagnon, Marie-Hélène; Dugas, Erika N; Karp, Igor; Engert, James C
2014-01-01
While the heritability of cigarette smoking and nicotine dependence (ND) is well-documented, the contribution of specific genetic variants to specific phenotypes has not been closely examined. The objectives of this study were to test the associations between 321 tagging single-nucleotide polymorphisms (SNPs) that capture common genetic variation in 24 genes, and early smoking and ND phenotypes in novice adolescent smokers, and to assess if genetic predictors differ across these phenotypes. In a prospective study of 1294 adolescents aged 12-13 years recruited from ten Montreal-area secondary schools, 544 participants who had smoked at least once during the 7-8 year follow-up provided DNA. 321 single-nucleotide polymorphisms (SNPs) in 24 candidate genes were tested for an association with number of cigarettes smoked in the past 3 months, and with five ND phenotypes (a modified version of the Fagerstrom Tolerance Questionnaire, the ICD-10 and three clusters of ND symptoms representing withdrawal symptoms, use of nicotine for self-medication, and a general ND/craving symptom indicator). The pattern of SNP-gene associations differed across phenotypes. Sixteen SNPs in seven genes (ANKK1, CHRNA7, DDC, DRD2, COMT, OPRM1, SLC6A3 (also known as DAT1)) were associated with at least one phenotype with a p-value <0.01 using linear mixed models. After permutation and FDR adjustment, none of the associations remained statistically significant, although the p-values for the association between rs557748 in OPRM1 and the ND/craving and self-medication phenotypes were both 0.076. Because the genetic predictors differ, specific cigarette smoking and ND phenotypes should be distinguished in genetic studies in adolescents. Fifteen of the 16 top-ranked SNPs identified in this study were from loci involved in dopaminergic pathways (ANKK1/DRD2, DDC, COMT, OPRM1, and SLC6A3). Dopaminergic pathways may be salient during early smoking and the development of ND.
Somatic clonal evolution: A selection-centric perspective.
Scott, Jacob; Marusyk, Andriy
2017-04-01
It is generally accepted that the initiation and progression of cancers is the result of somatic clonal evolution. Despite many peculiarities, evolution within populations of somatic cells should obey the same Darwinian principles as evolution within natural populations, i.e. variability of heritable phenotypes provides the substrate for context-specific selection forces leading to increased population frequencies of phenotypes, which are better adapted to their environment. Yet, within cancer biology, the more prevalent way to view evolution is as being entirely driven by the accumulation of "driver" mutations. Context-specific selection forces are either ignored, or viewed as constraints from which tumor cells liberate themselves during the course of malignant progression. In this review, we will argue that explicitly focusing on selection forces acting on the populations of neoplastic cells as the driving force of somatic clonal evolution might provide for a more accurate conceptual framework compared to the mutation-centric driver gene paradigm. Whereas little can be done to counteract the "bad luck" of stochastic occurrences of cancer-related mutations, changes in selective pressures and the phenotypic adaptations they induce can, in principle, be exploited to limit the incidence of cancers and to increase the efficiency of existing and future therapies. This article is part of a Special Issue entitled: Evolutionary principles - heterogeneity in cancer?, edited by Dr. Robert A. Gatenby. Copyright © 2017 Elsevier B.V. All rights reserved.
Friedrich, Anne; Garnier, Nicolas; Gagnière, Nicolas; Nguyen, Hoan; Albou, Laurent-Philippe; Biancalana, Valérie; Bettler, Emmanuel; Deléage, Gilbert; Lecompte, Odile; Muller, Jean; Moras, Dino; Mandel, Jean-Louis; Toursel, Thierry; Moulinier, Luc; Poch, Olivier
2010-02-01
Understanding how genetic alterations affect gene products at the molecular level represents a first step in the elucidation of the complex relationships between genotypic and phenotypic variations, and is thus a major challenge in the postgenomic era. Here, we present SM2PH-db (http://decrypthon.igbmc.fr/sm2ph), a new database designed to investigate structural and functional impacts of missense mutations and their phenotypic effects in the context of human genetic diseases. A wealth of up-to-date interconnected information is provided for each of the 2,249 disease-related entry proteins (August 2009), including data retrieved from biological databases and data generated from a Sequence-Structure-Evolution Inference in Systems-based approach, such as multiple alignments, three-dimensional structural models, and multidimensional (physicochemical, functional, structural, and evolutionary) characterizations of mutations. SM2PH-db provides a robust infrastructure associated with interactive analysis tools supporting in-depth study and interpretation of the molecular consequences of mutations, with the more long-term goal of elucidating the chain of events leading from a molecular defect to its pathology. The entire content of SM2PH-db is regularly and automatically updated thanks to a computational grid data federation facilities provided in the context of the Decrypthon program. (c) 2009 Wiley-Liss, Inc.
Singh, G; Wu, B; Baek, M S; Camargo, A; Nguyen, A; Slusher, N A; Srinivasan, R; Wiener-Kronish, J P; Lynch, S V
2010-10-01
Pseudomonas aeruginosa is an opportunistic pathogen that can, like other bacterial species, exist in antimicrobial resistant sessile biofilms and as free-swimming, planktonic cells. Specific virulence factors are typically associated with each lifestyle and several two component response regulators have been shown to reciprocally regulate transition between biofilm-associated chronic, and free-swimming acute infections. Quorum sensing (QS) signal molecules belonging to the las and rhl systems are known to regulate virulence gene expression by P. aeruginosa. However the impact of a recently described family of novel quorum sensing signals produced by the Pseudomonas Quinolone Signal (PQS) biosynthetic pathway, on the transition between these modes of infection is less clear. Using clonal isolates from a patient developing ventilator-associated pneumonia, we demonstrated that clinical observations were mirrored by an in vitro temporal shift in isolate phenotype from a non-secreting, to a Type III cytotoxin secreting (TTSS) phenotype and further, that this phenotypic change was PQS-dependent. While intracellular type III cytotoxin levels were unaffected by PQS concentration, cytotoxin secretion was dependent on this signal molecule. Elevated PQS concentrations were associated with inhibition of cytotoxin secretion coincident with expression of virulence factors such as elastase and pyoverdin. In contrast, low concentrations or the inability to biosynthesize PQS resulted in a reversal of this phenotype. These data suggest that expression of specific P. aeruginosa virulence factors appears to be reciprocally regulated and that an additional level of PQS-dependent post-translational control, specifically governing type III cytotoxin secretion, exists in this species. Copyright 2010 Elsevier Ltd. All rights reserved.
The usability axiom of medical information systems.
Pantazi, Stefan V; Kushniruk, Andre; Moehr, Jochen R
2006-12-01
In this article we begin by connecting the concept of simplicity of user interfaces of information systems with that of usability, and the concept of complexity of the problem-solving in information systems with the concept of usefulness. We continue by stating "the usability axiom" of medical information technology: information systems must be, at the same time, usable and useful. We then try to show why, given existing technology, the axiom is a paradox and we continue with analysing and reformulating it several times, from more fundamental information processing perspectives. We underline the importance of the concept of representation and demonstrate the need for context-dependent representations. By means of thought experiments and examples, we advocate the need for context-dependent information processing and argue for the relevance of algorithmic information theory and case-based reasoning in this context. Further, we introduce the notion of concept spaces and offer a pragmatic perspective on context-dependent representations. We conclude that the efficient management of concept spaces may help with the solution to the medical information technology paradox. Finally, we propose a view of informatics centred on the concepts of context-dependent information processing and management of concept spaces that aligns well with existing knowledge centric definitions of informatics in general and medical informatics in particular. In effect, our view extends M. Musen's proposal and proposes a definition of Medical Informatics as context-dependent medical information processing. The axiom that medical information systems must be, at the same time, useful and usable, is a paradox and its investigation by means of examples and thought experiments leads to the recognition of the crucial importance of context-dependent information processing. On the premise that context-dependent information processing equates to knowledge processing, this view defines Medical Informatics as a context-dependent medical information processing which aligns well with existing knowledge centric definitions of our field.
Feldman, Chris R; Brodie, Edmund D; Brodie, Edmund D; Pfrender, Michael E
2010-11-07
Detailing the genetic basis of adaptive variation in natural populations is a first step towards understanding the process of adaptive evolution, yet few ecologically relevant traits have been characterized at the genetic level in wild populations. Traits that mediate coevolutionary interactions between species are ideal for studying adaptation because of the intensity of selection and the well-characterized ecological context. We have previously described the ecological context, evolutionary history and partial genetic basis of tetrodotoxin (TTX) resistance in garter snakes (Thamnophis). Derived mutations in a voltage-gated sodium channel gene (Na(v)1.4) in three garter snake species are associated with resistance to TTX, the lethal neurotoxin found in their newt prey (Taricha). Here we evaluate the contribution of Na(v)1.4 alleles to TTX resistance in two of those species from central coastal California. We measured the phenotypes (TTX resistance) and genotypes (Na(v)1.4 and microsatellites) in a local sample of Thamnophis atratus and Thamnophis sirtalis. Allelic variation in Na(v)1.4 explains 23 per cent of the variation in TTX resistance in T. atratus while variation in a haphazard sample of the genome (neutral microsatellite markers) shows no association with the phenotype. Similarly, allelic variation in Na(v)1.4 correlates almost perfectly with TTX resistance in T. sirtalis, but neutral variation does not. These strong correlations suggest that Na(v)1.4 is a major effect locus. The simple genetic architecture of TTX resistance in garter snakes may significantly impact the dynamics of phenotypic coevolution. Fixation of a few alleles of major effect in some garter snake populations may have led to the evolution of extreme phenotypes and an 'escape' from the arms race with newts.
Inferring fitness landscapes and selection on phenotypic states from single-cell genealogical data
Kussell, Edo
2017-01-01
Recent advances in single-cell time-lapse microscopy have revealed non-genetic heterogeneity and temporal fluctuations of cellular phenotypes. While different phenotypic traits such as abundance of growth-related proteins in single cells may have differential effects on the reproductive success of cells, rigorous experimental quantification of this process has remained elusive due to the complexity of single cell physiology within the context of a proliferating population. We introduce and apply a practical empirical method to quantify the fitness landscapes of arbitrary phenotypic traits, using genealogical data in the form of population lineage trees which can include phenotypic data of various kinds. Our inference methodology for fitness landscapes determines how reproductivity is correlated to cellular phenotypes, and provides a natural generalization of bulk growth rate measures for single-cell histories. Using this technique, we quantify the strength of selection acting on different cellular phenotypic traits within populations, which allows us to determine whether a change in population growth is caused by individual cells’ response, selection within a population, or by a mixture of these two processes. By applying these methods to single-cell time-lapse data of growing bacterial populations that express a resistance-conferring protein under antibiotic stress, we show how the distributions, fitness landscapes, and selection strength of single-cell phenotypes are affected by the drug. Our work provides a unified and practical framework for quantitative measurements of fitness landscapes and selection strength for any statistical quantities definable on lineages, and thus elucidates the adaptive significance of phenotypic states in time series data. The method is applicable in diverse fields, from single cell biology to stem cell differentiation and viral evolution. PMID:28267748
Brinks, V; de Kloet, E R; Oitzl, M S
2009-04-01
Corticosterone, the naturally occurring glucocorticoid of rodents is secreted in response to stressors and is known for its facilitating and detrimental effects on emotional learning and memory. The large variability in the action of corticosterone on processing of emotional memories is postulated to depend on genetic background and the spatio-temporal domain in which the hormone operates. To address this hypothesis, mice of two strains with distinct corticosterone secretory patterns and behavioural phenotype (BALB/c and C57BL/6J) were treated with corticosterone (250 microg/kg, i.p.), either 5 min before or directly after acquisition in a fear conditioning task. As the paradigm allowed assessing in one experimental procedure both context- and cue-related fear behaviour, we were able to detect generalization and specificity of fear. BALB/c showed generalized strong fear memory, while C57BL/6J mice discriminated between freezing during context- and cue episodes. Corticosterone had opposite effects on fear memory depending on the strain and time of injection. Corticosterone after acquisition did not affect C57BL/6J mice, but destabilized consolidation and facilitated extinction in BALB/c. Corticosterone 5 min before acquisition strengthened stress-associated signals: BALB/c no longer showed lower fear memory, while C57BL/6J mice displayed increased fear memory and impaired extinction in cue episodes. We propose that corticosterone-induced facilitation of fear memory in C57BL/6J mice can be used to study the development of fear memories, corticosterone administration in BALB/c mice presents a model to examine treatment. We conclude that genetic background and time of corticosterone action are modifiers of fear memory with interesting translational implications for anxiety-related diseases.
Design of synthetic bacterial communities for predictable plant phenotypes
Herrera Paredes, Sur; Gao, Tianxiang; Law, Theresa F.; Finkel, Omri M.; Mucyn, Tatiana; Teixeira, Paulo José Pereira Lima; Salas González, Isaí; Feltcher, Meghan E.; Powers, Matthew J.; Shank, Elizabeth A.; Jones, Corbin D.; Jojic, Vladimir; Dangl, Jeffery L.; Castrillo, Gabriel
2018-01-01
Specific members of complex microbiota can influence host phenotypes, depending on both the abiotic environment and the presence of other microorganisms. Therefore, it is challenging to define bacterial combinations that have predictable host phenotypic outputs. We demonstrate that plant–bacterium binary-association assays inform the design of small synthetic communities with predictable phenotypes in the host. Specifically, we constructed synthetic communities that modified phosphate accumulation in the shoot and induced phosphate starvation–responsive genes in a predictable fashion. We found that bacterial colonization of the plant is not a predictor of the plant phenotypes we analyzed. Finally, we demonstrated that characterizing a subset of all possible bacterial synthetic communities is sufficient to predict the outcome of untested bacterial consortia. Our results demonstrate that it is possible to infer causal relationships between microbiota membership and host phenotypes and to use these inferences to rationally design novel communities. PMID:29462153
When should we expect microbial phenotypic traits to predict microbial abundances?
Fox, Jeremy W
2012-01-01
Species' phenotypic traits may predict their relative abundances. Intuitively, this is because locally abundant species have traits making them well-adapted to local abiotic and biotic conditions, while locally rare species are not as well-adapted. But this intuition may not be valid. If competing species vary in how well-adapted they are to local conditions, why doesn't the best-adapted species simply exclude the others entirely? But conversely, if species exhibit niche differences that allow them to coexist, then by definition there is no single best adapted species. Rather, demographic rates depend on species' relative abundances, so that phenotypic traits conferring high adaptedness do not necessarily confer high abundance. I illustrate these points using a simple theoretical model incorporating adjustable levels of "adaptedness" and "niche differences." Even very small niche differences can weaken or even reverse the expected correlation between adaptive traits and abundance. Conversely, adaptive traits confer high abundance when niche differences are very strong. Future work should be directed toward understanding the link between phenotypic traits and frequency-dependence of demographic rates.
Lee, Jessica J Y; Gottlieb, Michael M; Lever, Jake; Jones, Steven J M; Blau, Nenad; van Karnebeek, Clara D M; Wasserman, Wyeth W
2018-05-01
Phenomics is the comprehensive study of phenotypes at every level of biology: from metabolites to organisms. With high throughput technologies increasing the scope of biological discoveries, the field of phenomics has been developing rapid and precise methods to collect, catalog, and analyze phenotypes. Such methods have allowed phenotypic data to be widely used in medical applications, from assisting clinical diagnoses to prioritizing genomic diagnoses. To channel the benefits of phenomics into the field of inborn errors of metabolism (IEM), we have recently launched IEMbase, an expert-curated knowledgebase of IEM and their disease-characterizing phenotypes. While our efforts with IEMbase have realized benefits, taking full advantage of phenomics requires a comprehensive curation of IEM phenotypes in core phenomics projects, which is dependent upon contributions from the IEM clinical and research community. Here, we assess the inclusion of IEM biochemical phenotypes in a core phenomics project, the Human Phenotype Ontology. We then demonstrate the utility of biochemical phenotypes using a text-based phenomics method to predict gene-disease relationships, showing that the prediction of IEM genes is significantly better using biochemical rather than clinical profiles. The findings herein provide a motivating goal for the IEM community to expand the computationally accessible descriptions of biochemical phenotypes associated with IEM in phenomics resources.
Collective Motion in Bacterial Populations with Mixed Phenotypic Behaviors
NASA Astrophysics Data System (ADS)
Hoeger, Kentaro; Strickland, Ben; Shoup, Daniel; Ursell, Tristan
The motion of large, densely packed groups of organisms is often qualitatively distinct from the motion of individuals, yet hinges on individual properties and behaviors. Collective motion of bacteria depends strongly on the phenotypic behaviors of individual cells, the physical interactions between cells, and the geometry of their environment, often with multiple phenotypes coexisting in a population. Thus, to characterize how these selectively important interactions affect group traits, such as cell dispersal, spatial segregation of phenotypes, and material transport in groups, we use a library of Bacillus subtilis mutants that modulate chemotaxis, motility, and biofilm formation. By mixing phenotypes and observing bacterial behaviors and motion at single cell resolution, we probe collective motion as a function of phenotypic mixture and environmental geometry. Our work demonstrates that collective microbial motion exhibits a transition, from `turbulence' to semiballistic burrowing, as phenotypic composition varies. This work illuminates the role that individual cell behaviors play in the emergence of collective motion, and may signal qualitatively distinct regimes of material transport in bacterial populations. University of Oregon.
Influence of mom and dad: quantitative genetic models for maternal effects and genomic imprinting.
Santure, Anna W; Spencer, Hamish G
2006-08-01
The expression of an imprinted gene is dependent on the sex of the parent it was inherited from, and as a result reciprocal heterozygotes may display different phenotypes. In contrast, maternal genetic terms arise when the phenotype of an offspring is influenced by the phenotype of its mother beyond the direct inheritance of alleles. Both maternal effects and imprinting may contribute to resemblance between offspring of the same mother. We demonstrate that two standard quantitative genetic models for deriving breeding values, population variances and covariances between relatives, are not equivalent when maternal genetic effects and imprinting are acting. Maternal and imprinting effects introduce both sex-dependent and generation-dependent effects that result in differences in the way additive and dominance effects are defined for the two approaches. We use a simple example to demonstrate that both imprinting and maternal genetic effects add extra terms to covariances between relatives and that model misspecification may over- or underestimate true covariances or lead to extremely variable parameter estimation. Thus, an understanding of various forms of parental effects is essential in correctly estimating quantitative genetic variance components.
Linkage analyses of cannabis dependence, craving, and withdrawal in the San Francisco Family Study
Ehlers, Cindy L.; Gizer, Ian R.; Vieten, Cassandra; Wilhelmsen, Kirk C.
2010-01-01
Cannabis is the most widely used illicit drug in the United States. There is ample evidence that cannabis use has a heritable component, yet the genes underlying cannabis use disorders are yet to be completely identified. This study's aims were to map susceptibility loci for cannabis use and dependence and two narrower cannabis-related phenotypes of “craving” and “withdrawal” using a family study design. Participants were 2524 adults participating in the University of California San Francisco (UCSF) Family Alcoholism Study. DSM-IV diagnoses of cannabis dependence, as well as indices of cannabis craving and withdrawal, were obtained using a modified version of the Semi-Structured Assessment for the Genetics of Alcoholism (SSAGA). Genotypes were determined for a panel of 791 microsatellite polymorphisms. Multipoint variance component LOD scores were obtained using SOLAR. Genome-wide significance for linkage (LOD > 3.0) was not found for the DSM-IV cannabis dependence diagnosis, however, linkage analyses of cannabis “craving” and the cannabis withdrawal symptom of “nervous, tense, restless or irritable” revealed five sites with LOD scores over 3.0 on chromosomes 1, 3, 6, 7, 9. These results identify new regions of the genome associated with cannabis use phenotypes as well as corroborate the importance of several chromosome regions highlighted in previous linkage analyses for other substance dependence phenotypes. PMID:19937978
Booij, Tijmen H; Klop, Maarten J D; Yan, Kuan; Szántai-Kis, Csaba; Szokol, Balint; Orfi, Laszlo; van de Water, Bob; Keri, Gyorgy; Price, Leo S
2016-10-01
3D tissue cultures provide a more physiologically relevant context for the screening of compounds, compared with 2D cell cultures. Cells cultured in 3D hydrogels also show complex phenotypes, increasing the scope for phenotypic profiling. Here we describe a high-content screening platform that uses invasive human prostate cancer cells cultured in 3D in standard 384-well assay plates to study the activity of potential therapeutic small molecules and antibody biologics. Image analysis tools were developed to process 3D image data to measure over 800 phenotypic parameters. Multiparametric analysis was used to evaluate the effect of compounds on tissue morphology. We applied this screening platform to measure the activity and selectivity of inhibitors of the c-Met and epidermal growth factor (EGF) receptor (EGFR) tyrosine kinases in 3D cultured prostate carcinoma cells. c-Met and EGFR activity was quantified based on the phenotypic profiles induced by their respective ligands, hepatocyte growth factor and EGF. The screening method was applied to a novel collection of 80 putative inhibitors of c-Met and EGFR. Compounds were identified that induced phenotypic profiles indicative of selective inhibition of c-Met, EGFR, or bispecific inhibition of both targets. In conclusion, we describe a fully scalable high-content screening platform that uses phenotypic profiling to discriminate selective and nonselective (off-target) inhibitors in a physiologically relevant 3D cell culture setting. © 2016 Society for Laboratory Automation and Screening.
Cadle-Davidson, Lance; Gadoury, David; Fresnedo-Ramírez, Jonathan; Yang, Shanshan; Barba, Paola; Sun, Qi; Demmings, Elizabeth M; Seem, Robert; Schaub, Michelle; Nowogrodzki, Anna; Kasinathan, Hema; Ledbetter, Craig; Reisch, Bruce I
2016-10-01
The genomics era brought unprecedented opportunities for genetic analysis of host resistance, but it came with the challenge that accurate and reproducible phenotypes are needed so that genomic results appropriately reflect biology. Phenotyping host resistance by natural infection in the field can produce variable results due to the uncontrolled environment, uneven distribution and genetics of the pathogen, and developmentally regulated resistance among other factors. To address these challenges, we developed highly controlled, standardized methodologies for phenotyping powdery mildew resistance in the context of a phenotyping center, receiving samples of up to 140 grapevine progeny per F 1 family. We applied these methodologies to F 1 families segregating for REN1- or REN2-mediated resistance and validated that some but not all bioassays identified the REN1 or REN2 locus. A point-intercept method (hyphal transects) to quantify colony density objectively at 8 or 9 days postinoculation proved to be the phenotypic response most reproducibly predicted by these resistance loci. Quantitative trait locus (QTL) mapping with genotyping-by-sequencing maps defined the REN1 and REN2 loci at relatively high resolution. In the reference PN40024 genome under each QTL, nucleotide-binding site-leucine-rich repeat candidate resistance genes were identified-one gene for REN1 and two genes for REN2. The methods described here for centralized resistance phenotyping and high-resolution genetic mapping can inform strategies for breeding resistance to powdery mildews and other pathogens on diverse, highly heterozygous hosts.
Distinct downstream targets manifest p53-dependent pathologies in mice.
Pant, V; Xiong, S; Chau, G; Tsai, K; Shetty, G; Lozano, G
2016-11-03
Mdm2, the principal negative regulator of p53, is critical for survival, a fact clearly demonstrated by the p53-dependent death of germline or conditional mice following deletion of Mdm2. On the other hand, Mdm2 hypomorphic (Mdm2 Puro/Δ7-12 ) or heterozygous (Mdm2 +/- ) mice that express either 30 or 50% of normal Mdm2 levels, respectively, are viable but present distinct phenotypes because of increased p53 activity. Mdm2 levels are also transcriptionally regulated by p53. We evaluated the significance of this reciprocal relationship in a new hypomorphic mouse model inheriting an aberrant Mdm2 allele with insertion of the neomycin cassette and deletion of 184-bp sequence in intron 3. These mice also carry mutations in the Mdm2 P2-promoter and thus express suboptimal levels of Mdm2 entirely encoded from the P1-promoter. Resulting mice exhibit abnormalities in skin pigmentation and reproductive tissue architecture, and are subfertile. Notably, all these phenotypes are rescued on a p53-null background. Furthermore, these phenotypes depend on distinct p53 downstream activities as genetic ablation of the pro-apoptotic gene Puma reverts the reproductive abnormalities but not skin hyperpigmentation, whereas deletion of cell cycle arrest gene p21 does not rescue either phenotype. Moreover, p53-mediated upregulation of Kitl influences skin pigmentation. Altogether, these data emphasize tissue-specific p53 activities that regulate cell fate.
ERIC Educational Resources Information Center
Knapska, Ewelina; Maren, Stephen
2009-01-01
After extinction of conditioned fear, memory for the conditioning and extinction experiences becomes context dependent. Fear is suppressed in the extinction context, but renews in other contexts. This study characterizes the neural circuitry underlying the context-dependent retrieval of extinguished fear memories using c-Fos immunohistochemistry.…
Phenotypic screening in cancer drug discovery - past, present and future.
Moffat, John G; Rudolph, Joachim; Bailey, David
2014-08-01
There has been a resurgence of interest in the use of phenotypic screens in drug discovery as an alternative to target-focused approaches. Given that oncology is currently the most active therapeutic area, and also one in which target-focused approaches have been particularly prominent in the past two decades, we investigated the contribution of phenotypic assays to oncology drug discovery by analysing the origins of all new small-molecule cancer drugs approved by the US Food and Drug Administration (FDA) over the past 15 years and those currently in clinical development. Although the majority of these drugs originated from target-based discovery, we identified a significant number whose discovery depended on phenotypic screening approaches. We postulate that the contribution of phenotypic screening to cancer drug discovery has been hampered by a reliance on 'classical' nonspecific drug effects such as cytotoxicity and mitotic arrest, exacerbated by a paucity of mechanistically defined cellular models for therapeutically translatable cancer phenotypes. However, technical and biological advances that enable such mechanistically informed phenotypic models have the potential to empower phenotypic drug discovery in oncology.
Axelrod, Kevin; Sanchez, Alvaro; Gore, Jeff
2015-08-24
Microorganisms often exhibit a history-dependent phenotypic response after exposure to a stimulus which can be imperative for proper function. However, cells frequently experience unexpected environmental perturbations that might induce phenotypic switching. How cells maintain phenotypic states in the face of environmental fluctuations remains an open question. Here, we use environmental perturbations to characterize the resilience of phenotypic states in a synthetic gene network near a critical transition. We find that far from the critical transition an environmental perturbation may induce little to no phenotypic switching, whereas close to the critical transition the same perturbation can cause many cells to switch phenotypic states. This loss of resilience was observed for perturbations that interact directly with the gene circuit as well as for a variety of generic perturbations-such as salt, ethanol, or temperature shocks-that alter the state of the cell more broadly. We obtain qualitatively similar findings in natural gene circuits, such as the yeast GAL network. Our findings illustrate how phenotypic memory can become destabilized by environmental variability near a critical transition.
Genome size in Anthurium evaluated in the context of karyotypes and phenotypes
USDA-ARS?s Scientific Manuscript database
Anthurium is an important horticultural flower crop from family Araceae in order Alismatales, a monocot lineage considered to have diverged from other monocots prior to the divergence of the cereals lineage. Currently there is a virtual lack of molecular-genetic resources that would greatly augment...
Jansson, Erik Karl Håkan; Clemens, Laura Emily; Riess, Olaf; Nguyen, Huu Phuc
2014-01-01
Huntington disease (HD) is an inherited neurodegenerative disease characterized by motor, cognitive, psychiatric and metabolic symptoms. Animal models of HD show phenotypes that can be divided into similar categories, with the metabolic phenotype of certain models being characterized by obesity. Although interesting in terms of modeling metabolic symptoms of HD, the obesity phenotype can be problematic as it might confound the results of certain behavioral tests. This concerns the assessment of cognitive function in particular, as tests for such phenotypes are often based on food depriving the animals and having them perform tasks for food rewards. The BACHD rat is a recently established animal model of HD, and in order to ensure that behavioral characterization of these rats is done in a reliable way, a basic understanding of their physiology is needed. Here, we show that BACHD rats are obese and suffer from discrete developmental deficits. When assessing the motivation to lever push for a food reward, BACHD rats were found to be less motivated than wild type rats, although this phenotype was dependent on the food deprivation strategy. Specifically, the phenotype was present when rats of both genotypes were deprived to 85% of their respective free-feeding body weight, but not when deprivation levels were adjusted in order to match the rats' apparent hunger levels. The study emphasizes the importance of considering metabolic abnormalities as a confounding factor when performing behavioral characterization of HD animal models.
Riess, Olaf; Nguyen, Huu Phuc
2014-01-01
Huntington disease (HD) is an inherited neurodegenerative disease characterized by motor, cognitive, psychiatric and metabolic symptoms. Animal models of HD show phenotypes that can be divided into similar categories, with the metabolic phenotype of certain models being characterized by obesity. Although interesting in terms of modeling metabolic symptoms of HD, the obesity phenotype can be problematic as it might confound the results of certain behavioral tests. This concerns the assessment of cognitive function in particular, as tests for such phenotypes are often based on food depriving the animals and having them perform tasks for food rewards. The BACHD rat is a recently established animal model of HD, and in order to ensure that behavioral characterization of these rats is done in a reliable way, a basic understanding of their physiology is needed. Here, we show that BACHD rats are obese and suffer from discrete developmental deficits. When assessing the motivation to lever push for a food reward, BACHD rats were found to be less motivated than wild type rats, although this phenotype was dependent on the food deprivation strategy. Specifically, the phenotype was present when rats of both genotypes were deprived to 85% of their respective free-feeding body weight, but not when deprivation levels were adjusted in order to match the rats' apparent hunger levels. The study emphasizes the importance of considering metabolic abnormalities as a confounding factor when performing behavioral characterization of HD animal models. PMID:25144554
Toward a Unified Theory of Context Dependence.
ERIC Educational Resources Information Center
Hanna, Gerald S.; Oaster, Thomas R.
1978-01-01
Traces a major source of confusion in the literature on passage dependence and integrates the relevant concepts into a general theory of context dependence. Sample items and data illustrate practical applications of the theory. (AA)
Itzhak, Yossef; Roger-Sánchez, Concepción; Kelley, Jonathan B; Anderson, Karen L
2010-03-01
The conditioned place preference (CPP) paradigm entails appetitive learning and is utilized to investigate the motivational effects of drug and natural reward in rodents. However, a typical CPP design does not allow dissociation between cue- and context-dependent appetitive learning. In humans, context and cues that had been associated with drug reward can elicit conditioned response and drug craving. Therefore, we investigated (a) methods by which to discriminate between cue- and context-dependent appetitive learning, and (b) the role of the neuronal nitric oxide synthase (nNOS) gene in appetitive learning. Wild-type (WT) and nNOS knockout (KO) mice were trained by cocaine (20 mg/kg) in a discrete context paired with a light cue (a compound context-cue stimulus). In test 1, approach behaviour to either the training context or to the cue in a novel context was determined. WT mice showed robust preference for both cocaine-associated context and cue. nNOS KO mice acquired approach behaviour for the cocaine-associated context but not cue. This finding suggests that the nNOS gene is required for cue-dependent appetitive learning. On the following day (test 2), mice were tested for approach behaviour to the compound context-cue stimulus. Context but not cue exposure in test 1 reduced approach behaviour to the compound context-cue stimulus in test 2, suggesting that repeated context but not cue exposures diminished the conditioned response. Hence, this modified CPP paradigm is useful for the investigation of approach behaviour for both drug-associated context and cue, and allows further investigation of mechanisms underlying cue- and context-dependent appetitive learning.
Breeding to adapt agriculture to climate change: affordable phenotyping solutions.
Araus, José L; Kefauver, Shawn C
2018-05-28
Breeding is one of the central pillars of adaptation of crops to climate change. However, phenotyping is a key bottleneck that is limiting breeding efficiency. The awareness of phenotyping as a breeding limitation is not only sustained by the lack of adequate approaches, but also by the perception that phenotyping is an expensive activity. Phenotyping is not just dependent on the choice of appropriate traits and tools (e.g. sensors) but relies on how these tools are deployed on their carrying platforms, the speed and volume of data extraction and analysis (throughput), the handling of spatial variability and characterization of environmental conditions, and finally how all the information is integrated and processed. Affordable high throughput phenotyping aims to achieve reasonably priced solutions for all the components comprising the phenotyping pipeline. This mini-review will cover current and imminent solutions for all these components, from the increasing use of conventional digital RGB cameras, within the category of sensors, to open-access cloud-structured data processing and the use of smartphones. Emphasis will be placed on field phenotyping, which is really the main application for day-to-day phenotyping. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chow, Stephanie S.; Romo, Ranulfo; Brody, Carlos D.
2010-01-01
In a complex world, a sensory cue may prompt different actions in different contexts. A laboratory example of context-dependent sensory processing is the two-stimulus-interval discrimination task. In each trial, a first stimulus (f1) must be stored in short-term memory and later compared with a second stimulus (f2), for the animal to come to a binary decision. Prefrontal cortex (PFC) neurons need to interpret the f1 information in one way (perhaps with a positive weight) and the f2 information in an opposite way (perhaps with a negative weight), although they come from the very same secondary somatosensory cortex (S2) neurons; therefore, a functional sign inversion is required. This task thus provides a clear example of context-dependent processing. Here we develop a biologically plausible model of a context-dependent signal transformation of the stimulus encoding from S2 to PFC. To ground our model in experimental neurophysiology, we use neurophysiological data recorded by R. Romo’s laboratory from both cortical area S2 and PFC in monkeys performing the task. Our main goal is to use experimentally observed context-dependent modulations of firing rates in cortical area S2 as the basis for a model that achieves a context-dependent inversion of the sign of S2 to PFC connections. This is done without requiring any changes in connectivity (Salinas, 2004b). We (1) characterize the experimentally observed context-dependent firing rate modulation in area S2, (2) construct a model that results in the sign transformation, and (3) characterize the robustness and consequent biological plausibility of the model. PMID:19494146
Neurocarta: aggregating and sharing disease-gene relations for the neurosciences.
Portales-Casamar, Elodie; Ch'ng, Carolyn; Lui, Frances; St-Georges, Nicolas; Zoubarev, Anton; Lai, Artemis Y; Lee, Mark; Kwok, Cathy; Kwok, Willie; Tseng, Luchia; Pavlidis, Paul
2013-02-26
Understanding the genetic basis of diseases is key to the development of better diagnoses and treatments. Unfortunately, only a small fraction of the existing data linking genes to phenotypes is available through online public resources and, when available, it is scattered across multiple access tools. Neurocarta is a knowledgebase that consolidates information on genes and phenotypes across multiple resources and allows tracking and exploring of the associations. The system enables automatic and manual curation of evidence supporting each association, as well as user-enabled entry of their own annotations. Phenotypes are recorded using controlled vocabularies such as the Disease Ontology to facilitate computational inference and linking to external data sources. The gene-to-phenotype associations are filtered by stringent criteria to focus on the annotations most likely to be relevant. Neurocarta is constantly growing and currently holds more than 30,000 lines of evidence linking over 7,000 genes to 2,000 different phenotypes. Neurocarta is a one-stop shop for researchers looking for candidate genes for any disorder of interest. In Neurocarta, they can review the evidence linking genes to phenotypes and filter out the evidence they're not interested in. In addition, researchers can enter their own annotations from their experiments and analyze them in the context of existing public annotations. Neurocarta's in-depth annotation of neurodevelopmental disorders makes it a unique resource for neuroscientists working on brain development.
TGF-ß Regulates Cathepsin Activation during Normal and Pathogenic Development.
Flanagan-Steet, Heather; Christian, Courtney; Lu, Po-Nien; Aarnio-Peterson, Megan; Sanman, Laura; Archer-Hartmann, Stephanie; Azadi, Parastoo; Bogyo, Matthew; Steet, Richard A
2018-03-13
Cysteine cathepsins play roles during development and disease beyond their function in lysosomal protein turnover. Here, we leverage a fluorescent activity-based probe (ABP), BMV109, to track cysteine cathepsins in normal and diseased zebrafish embryos. Using this probe in a model of mucolipidosis II, we show that loss of carbohydrate-dependent lysosomal sorting alters the activity of several cathepsin proteases. The data support a pathogenic mechanism where TGF-ß signals enhance the proteolytic processing of pro-Ctsk by modulating the expression of chondroitin 4-sulfate (C4-S). In MLII, elevated C4-S corresponds with TGF-ß-mediated increases in chst11 expression. Inhibiting chst11 impairs the proteolytic activation of Ctsk and alleviates the MLII phenotypes. These findings uncover a regulatory loop between TGF-ß signaling and Ctsk activation that is altered in the context of lysosomal disease. This work highlights the power of ABPs to identify mechanisms underlying pathogenic development in living animals. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Lucas, Jared M.; Heinlein, Cynthia; Kim, Tom; Hernandez, Susana A.; Malik, Muzdah S.; True, Lawrence D.; Morrissey, Colm; Corey, Eva; Montgomery, Bruce; Mostaghel, Elahe; Clegg, Nigel; Coleman, Ilsa; Brown, Christopher M.; Schneider, Eric L.; Craik, Charles; Simon, Julian; Bedalov, Tony; Nelson, Peter S.
2014-01-01
TMPRSS2 is an androgen-regulated cell surface serine protease expressed predominantly in prostate epithelium. TMPRSS2 is expressed highly in localized high-grade prostate cancers and in the majority of human prostate cancer metastasis. Through the generation of mouse models with a targeted deletion of Tmprss2, we demonstrate that the activity of this protease regulates cancer cell invasion and metastasis to distant organs. By screening combinatorial peptide libraries we identified a spectrum of TMPRSS2 substrates that include pro-hepatocyte growth factor (HGF). HGF activated by TMPRSS2 promoted c-Met receptor tyrosine kinase signaling, and initiated a pro-invasive EMT phenotype. Chemical library screens identified a potent bioavailable TMPRSS2 inhibitor that suppressed prostate cancer metastasis in vivo. Together, these findings provide a mechanistic link between androgen-regulated signaling programs and prostate cancer metastasis that operate via context-dependent interactions with extracellular constituents of the tumor microenvironment. PMID:25122198
A novel de novo mutation in ATP1A3 and childhood-onset schizophrenia
Smedemark-Margulies, Niklas; Brownstein, Catherine A.; Vargas, Sigella; Tembulkar, Sahil K.; Towne, Meghan C.; Shi, Jiahai; Gonzalez-Cuevas, Elisa; Liu, Kevin X.; Bilguvar, Kaya; Kleiman, Robin J.; Han, Min-Joon; Torres, Alcy; Berry, Gerard T.; Yu, Timothy W.; Beggs, Alan H.; Agrawal, Pankaj B.; Gonzalez-Heydrich, Joseph
2016-01-01
We describe a child with onset of command auditory hallucinations and behavioral regression at 6 yr of age in the context of longer standing selective mutism, aggression, and mild motor delays. His genetic evaluation included chromosomal microarray analysis and whole-exome sequencing. Sequencing revealed a previously unreported heterozygous de novo mutation c.385G>A in ATP1A3, predicted to result in a p.V129M amino acid change. This gene codes for a neuron-specific isoform of the catalytic α-subunit of the ATP-dependent transmembrane sodium–potassium pump. Heterozygous mutations in this gene have been reported as causing both sporadic and inherited forms of alternating hemiplegia of childhood and rapid-onset dystonia parkinsonism. We discuss the literature on phenotypes associated with known variants in ATP1A3, examine past functional studies of the role of ATP1A3 in neuronal function, and describe a novel clinical presentation associated with mutation of this gene. PMID:27626066
Zhou, Jizhong; He, Zhili; Yang, Yunfeng; Deng, Ye; Tringe, Susannah G; Alvarez-Cohen, Lisa
2015-01-27
Understanding the structure, functions, activities and dynamics of microbial communities in natural environments is one of the grand challenges of 21st century science. To address this challenge, over the past decade, numerous technologies have been developed for interrogating microbial communities, of which some are amenable to exploratory work (e.g., high-throughput sequencing and phenotypic screening) and others depend on reference genes or genomes (e.g., phylogenetic and functional gene arrays). Here, we provide a critical review and synthesis of the most commonly applied "open-format" and "closed-format" detection technologies. We discuss their characteristics, advantages, and disadvantages within the context of environmental applications and focus on analysis of complex microbial systems, such as those in soils, in which diversity is high and reference genomes are few. In addition, we discuss crucial issues and considerations associated with applying complementary high-throughput molecular technologies to address important ecological questions. Copyright © 2015 Zhou et al.
He, Zhili; Yang, Yunfeng; Deng, Ye; Tringe, Susannah G.; Alvarez-Cohen, Lisa
2015-01-01
ABSTRACT Understanding the structure, functions, activities and dynamics of microbial communities in natural environments is one of the grand challenges of 21st century science. To address this challenge, over the past decade, numerous technologies have been developed for interrogating microbial communities, of which some are amenable to exploratory work (e.g., high-throughput sequencing and phenotypic screening) and others depend on reference genes or genomes (e.g., phylogenetic and functional gene arrays). Here, we provide a critical review and synthesis of the most commonly applied “open-format” and “closed-format” detection technologies. We discuss their characteristics, advantages, and disadvantages within the context of environmental applications and focus on analysis of complex microbial systems, such as those in soils, in which diversity is high and reference genomes are few. In addition, we discuss crucial issues and considerations associated with applying complementary high-throughput molecular technologies to address important ecological questions. PMID:25626903
Zhou, Jizhong; He, Zhili; Yang, Yunfeng; ...
2015-01-27
Understanding the structure, functions, activities and dynamics of microbial communities in natural environments is one of the grand challenges of 21st century science. To address this challenge, over the past decade, numerous technologies have been developed for interrogating microbial communities, of which some are amenable to exploratory work (e.g., high-throughput sequencing and phenotypic screening) and others depend on reference genes or genomes (e.g., phylogenetic and functional gene arrays). Here, we provide a critical review and synthesis of the most commonly applied “open-format” and “closed-format” detection technologies. We discuss their characteristics, advantages, and disadvantages within the context of environmental applications andmore » focus on analysis of complex microbial systems, such as those in soils, in which diversity is high and reference genomes are few. In addition, we discuss crucial issues and considerations associated with applying complementary high-throughput molecular technologies to address important ecological questions.« less
Hines, William C.; Yaswen, Paul; Bissell, Mina J.
2015-04-21
When trying to explore the biology and etiology of human cancers, clinically relevant human culture models are essential. Current breast tumour models, such as those from oncogenically transformed primary breast cells, produce predominantly basal-like properties, whereas the more common phenotype expressed by the vast majority of breast tumours are luminal. Reasons for this puzzling, yet important phenomenon, are not understood. We show here that luminal epithelial cells are significantly more resistant to viral transduction than their myoepithelial counterparts. Here, we suggest that this is a significant barrier to generating luminal cell lines and experimental tumours in vivo and to accuratemore » interpretation of results. We show that the resistance is due to lower affinity of luminal cells for virus attachment, which can be overcome by pretreating cells—or virus—with neuraminidase. We present an analytical method for quantifying transductional differences between cell types and an optimized protocol for transducing unsorted primary human breast cells in context.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bugel, Sean M., E-mail: Sean.Bugel@oregonstate.edu; Wehmas, Leah C., E-mail: wehmasl@onid.oregonstate.edu; La Du, Jane K., E-mail: Jane.LaDu@oregonstate.edu
The zebrafish is a powerful alternative model used to link phenotypes with molecular effects to discover drug mode of action. Using a zebrafish embryo-larval toxicity bioassay, we evaluated the effects of tamoxifen — a widely used anti-estrogen chemotherapeutic. Zebrafish exposed to ≥ 10 μM tamoxifen exhibited a unique necrotic caudal fin phenotype that was rapidly induced regardless of developmental life-stage when treatment was applied. To define tamoxifen's bioactivity resulting in this phenotype, targeted gene expression was used to evaluate 100 transcripts involved in tissue remodeling, calcium signaling, cell cycle and cell death, growth factors, angiogenesis and hypoxia. The most robustlymore » misregulated transcripts in the tail were matrix metalloproteinases mmp9 and mmp13a, induced 127 and 1145 fold, respectively. Expression of c-fos, c-jun, and ap1s1 were also moderately elevated (3–7 fold), consistent with AP-1 activity — a transcription factor that regulates MMP expression. Immunohistochemistry confirmed high levels of induction for MMP13a in affected caudal fin skin epithelial tissue. The necrotic caudal fin phenotype was significantly attenuated or prevented by three functionally unique MMP inhibitors: EDTA (metal chelator), GM 6001 (broad MMP inhibitor), and SR 11302 (AP-1 transcription factor inhibitor), suggesting MMP-dependence. SR 11302 also inhibited induction of mmp9, mmp13a, and a putative MMP target, igfbp1a. Overall, our studies suggest that tamoxifen's effect is the result of perturbation of the MMP system in the skin leading to ectopic expression, cytotoxicity, and the necrotic caudal fin phenotype. These studies help advance our understanding of tamoxifen's non-classical mode of action and implicate a possible role for MMPs in tissues such as skin. - Highlights: • Tamoxifen rapidly induced a unique necrotic caudal fin phenotype in zebrafish. • Apoptosis co-localized temporally and spatially in the necrotic tail. • The necrotic fin phenotype was p53, GPER and ER independent. • The necrotic fin phenotype was dependent on ectopic MMP induction and activity in the skin. • The necrotic fin phenotype occurred at concentrations exceeding anti-estrogenic effects.« less
Vengalil, Seena; Preethish-Kumar, Veeramani; Polavarapu, Kiran; Mahadevappa, Manjunath; Sekar, Deepha; Purushottam, Meera; Thomas, Priya Treesa; Nashi, Saraswathi; Nalini, Atchayaram
2017-01-01
Studies of cases of Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) confirmed by multiplex ligation-dependent probe amplification (MLPA) have determined the clinical characteristics, genotype, and relations between the reading frame and phenotype for different countries. This is the first such study from India. A retrospective genotype-phenotype analysis of 317 MLPA-confirmed patients with DMD or BMD who visited the neuromuscular clinic of a quaternary referral center in southern India. The 317 patients comprised 279 cases of DMD (88%), 32 of BMD (10.1%), and 6 of intermediate phenotype (1.9%). Deletions accounted for 91.8% of cases, with duplications causing the remaining 8.2%. There were 254 cases of DMD (91%) with deletions and 25 (9%) due to duplications, and 31 cases (96.8%) of BMD with deletions and 1 (3.2%) due to duplication. All six cases of intermediate type were due to deletions. The most-common mutation was a single-exon deletion. Deletions of six or fewer exons constituted 68.8% of cases. The deletion of exon 50 was the most common. The reading-frame rule held in 90% of DMD and 94% of BMD cases. A tendency toward a lower IQ and earlier wheelchair dependence was observed with distal exon deletions, though a significant correlation was not found. The reading-frame rule held in 90% to 94% of children, which is consistent with reports from other parts of the world. However, testing by MLPA is a limitation, and advanced sequencing methods including analysis of the structure of mutant dystrophin is needed for more-accurate assessments of the genotype-phenotype correlation.
Grove, Lisa M; Southern, Brian D; Jin, Tong H; White, Kimberly E; Paruchuri, Sailaja; Harel, Efrat; Wei, Ying; Rahaman, Shaik O; Gladson, Candece L; Ding, Qiang; Craik, Charles S; Chapman, Harold A; Olman, Mitchell A
2014-05-02
The urokinase-type plasminogen activator receptor (uPAR) is a glycosylphosphatidylinositol-linked membrane protein with no cytosolic domain that localizes to lipid raft microdomains. Our laboratory and others have documented that lung fibroblasts from patients with idiopathic pulmonary fibrosis (IPF) exhibit a hypermotile phenotype. This study was undertaken to elucidate the molecular mechanism whereby uPAR ligation with its cognate ligand, urokinase, induces a motile phenotype in human lung fibroblasts. We found that uPAR ligation with the urokinase receptor binding domain (amino-terminal fragment) leads to enhanced migration of fibroblasts on fibronectin in a protease-independent, lipid raft-dependent manner. Ligation of uPAR with the amino-terminal fragment recruited α5β1 integrin and the acylated form of the Src family kinase, Fyn, to lipid rafts. The biological consequences of this translocation were an increase in fibroblast motility and a switch of the integrin-initiated signal pathway for migration away from the lipid raft-independent focal adhesion kinase pathway and toward a lipid raft-dependent caveolin-Fyn-Shc pathway. Furthermore, an integrin homologous peptide as well as an antibody that competes with β1 for uPAR binding have the ability to block this effect. In addition, its relative insensitivity to cholesterol depletion suggests that the interactions of α5β1 integrin and uPAR drive the translocation of α5β1 integrin-acylated Fyn signaling complexes into lipid rafts upon uPAR ligation through protein-protein interactions. This signal switch is a novel pathway leading to the hypermotile phenotype of IPF patient-derived fibroblasts, seen with uPAR ligation. This uPAR dependent, fibrotic matrix-selective, and profibrotic fibroblast phenotype may be amenable to targeted therapeutics designed to ameliorate IPF.
Kazachkova, Yana; Batushansky, Albert; Cisneros, Aroldo; Tel-Zur, Noemi; Fait, Aaron; Barak, Simon
2013-07-01
Comparative studies of the stress-tolerant Arabidopsis (Arabidopsis thaliana) halophytic relative, Eutrema salsugineum, have proven a fruitful approach to understanding natural stress tolerance. Here, we performed comparative phenotyping of Arabidopsis and E. salsugineum vegetative development under control and salt-stress conditions, and then compared the metabolic responses of the two species on different growth platforms in a defined leaf developmental stage. Our results reveal both growth platform-dependent and -independent phenotypes and metabolic responses. Leaf emergence was affected in a similar way in both species grown in vitro but the effects observed in Arabidopsis occurred at higher salt concentrations in E. salsugineum. No differences in leaf emergence were observed on soil. A new effect of a salt-mediated reduction in E. salsugineum leaf area was unmasked. On soil, leaf area reduction in E. salsugineum was mainly due to a fall in cell number, whereas both cell number and cell size contributed to the decrease in Arabidopsis leaf area. Common growth platform-independent leaf metabolic signatures such as high raffinose and malate, and low fumarate contents that could reflect core stress tolerance mechanisms, as well as growth platform-dependent metabolic responses were identified. In particular, the in vitro growth platform led to repression of accumulation of many metabolites including sugars, sugar phosphates, and amino acids in E. salsugineum compared with the soil system where these same metabolites accumulated to higher levels in E. salsugineum than in Arabidopsis. The observation that E. salsugineum maintains salt tolerance despite growth platform-specific phenotypes and metabolic responses suggests a considerable degree of phenotypic and metabolic adaptive plasticity in this extremophile.
Epigenetics and Developmental Plasticity Across Species
Champagne, Frances A.
2012-01-01
Plasticity is a typical feature of development and can lead to divergent phenotypes. There is increasing evidence that epigenetic mechanisms, such as DNA methylation, are present across species, are modifiable by the environment, and are involved in developmental plasticity. Thus, in the context of the concept of developmental homology, epigenetic mechanisms may serve to create a process homology between species by providing a common molecular pathway through which environmental experiences shape development, ultimately leading to phenotypic diversity. This article will highlight evidence derived from across-species investigations of epigenetics, development, and plasticity which may contribute to our understanding of the homology that exists between species and between ancestors and descendants. PMID:22711291
van Boxtel, Coco; van Heerden, Johan H.; Nordholt, Niclas; Schmidt, Phillipp
2017-01-01
Natural selection has shaped the strategies for survival and growth of microorganisms. The success of microorganisms depends not only on slow evolutionary tuning but also on the ability to adapt to unpredictable changes in their environment. In principle, adaptive strategies range from purely deterministic mechanisms to those that exploit the randomness intrinsic to many cellular and molecular processes. Depending on the environment and selective pressures, particular strategies can lie somewhere along this continuum. In recent years, non-genetic cell-to-cell differences have received a lot of attention, not least because of their potential impact on the ability of microbial populations to survive in dynamic environments. Using several examples, we describe the origins of spontaneous and induced mechanisms of phenotypic adaptation. We identify some of the commonalities of these examples and consider the potential role of chance and constraints in microbial phenotypic adaptation. PMID:28701503
Actin cytoskeleton as a putative target of the neem limonoid Azadirachtin A.
Anuradha, Aritakula; Annadurai, Ramaswamy S; Shashidhara, L S
2007-06-01
Limonoids isolated from the Indian neem tree (Azadirachta indica) have been gaining global acceptance in agricultural applications and in contemporary medicine for their myriad but discrete properties. However, their mode of action is still not very well understood. We have studied the mode of action of Azadirachtin A, the major limonoid of neem seed extracts, using Drosophila melanogaster as the model system. Azadirachtin A induces moderate-to-severe phenotypes in different tissues in a dose-dependent manner. At the cellular level, Azadirachtin A induces depolymerization of Actin leading to arrest of cells and subsequently apoptosis in a caspase-independent manner. Azadirachtin A-induced phenotypes were rescued by the over-expression of Cyclin E in a tissue-dependent manner. Cyclin E, which caused global rescue of Azadirachtin A-induced phenotypes, also effected rearrangement of the actin filaments. These results suggest that probably actin is a target of Azadirachtin A activity.
Receptor control in mesenchymal stem cell engineering
NASA Astrophysics Data System (ADS)
Dalby, Matthew J.; García, Andrés J.; Salmeron-Sanchez, Manuel
2018-03-01
Materials science offers a powerful tool to control mesenchymal stem cell (MSC) growth and differentiation into functional phenotypes. A complex interplay between the extracellular matrix and growth factors guides MSC phenotypes in vivo. In this Review, we discuss materials-based bioengineering approaches to direct MSC fate in vitro and in vivo, mimicking cell-matrix-growth factor crosstalk. We first scrutinize MSC-matrix interactions and how the properties of a material can be tailored to support MSC growth and differentiation in vitro, with an emphasis on MSC self-renewal mechanisms. We then highlight important growth factor signalling pathways and investigate various materials-based strategies for growth factor presentation and delivery. Integrin-growth factor crosstalk in the context of MSC engineering is introduced, and bioinspired material designs with the potential to control the MSC niche phenotype are considered. Finally, we summarize important milestones on the road to MSC engineering for regenerative medicine.
Ponti, Giovanni; Martorana, Davide; Pellacani, Giovanni; Ruini, Cristel; Loschi, Pietro; Baccarani, Alessio; De Santis, Giorgio; Pollio, Annamaria; Neri, Tauro Maria; Mandel, Victor Desmond; Maiorana, Antonio; Maccio, Livia; Maccaferri, Monia; Tomasi, Aldo
2014-06-01
Von Recklinghausen disease is a syndrome characterized by a wide phenotypic variability giving rise to both, cutaneous and visceral benign and malignant neoplasms. The first include cutaneous neurofibromas, subcutaneous and plexiform neurofibromas. The latter can undergo malignant transformation and/or determine elephantiasis neuromatosa. Visceral tumors may include malignant peripheral nerve sheet tumors, gastrointestinal stromal tumors, cerebral gliomas and abdominal neurofibromas. In the present study, the authors discuss the clinical and biomolecular characterization of a cohort of 20 families with a diagnosis of type 1 neurofibromatosis. Clinically, the cohort includes three probands with elephantiasis neuromatosa and a peculiarly high incidence of breast and gastrointestinal cancer. Among the 14 NF1 mutations documented, 10 encoding for a truncated protein have been associated to particularly aggressive clinical phenotypes including elephantiasis neuromatosa, malignant peripheral nerve sheet tumors, breast cancer, gastrointestinal stromal tumors. This effect on protein synthesis, rather than the type of NF1 mutation, is the key to the explanation of the genotype-phenotype correlations in the context of neurofibromatosis type 1. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Zimmer, Cédric; Larriva, Maria; Boogert, Neeltje J.; Spencer, Karen A.
2017-01-01
An interesting aspect of developmental programming is the existence of transgenerational effects that influence offspring characteristics and performance later in life. These transgenerational effects have been hypothesized to allow individuals to cope better with predictable environmental fluctuations and thus facilitate adaptation to changing environments. Here, we test for the first time how early-life stress drives developmental programming and transgenerational effects of maternal exposure to early-life stress on several phenotypic traits in their offspring in a functionally relevant context using a fully factorial design. We manipulated pre- and/or post-natal stress in both Japanese quail mothers and offspring and examined the consequences for several stress-related traits in the offspring generation. We show that pre-natal stress experienced by the mother did not simply affect offspring phenotype but resulted in the inheritance of the same stress-coping traits in the offspring across all phenotypic levels that we investigated, shaping neuroendocrine, physiological and behavioural traits. This may serve mothers to better prepare their offspring to cope with later environments where the same stressors are experienced. PMID:28387355
An XML-based interchange format for genotype-phenotype data.
Whirl-Carrillo, M; Woon, M; Thorn, C F; Klein, T E; Altman, R B
2008-02-01
Recent advances in high-throughput genotyping and phenotyping have accelerated the creation of pharmacogenomic data. Consequently, the community requires standard formats to exchange large amounts of diverse information. To facilitate the transfer of pharmacogenomics data between databases and analysis packages, we have created a standard XML (eXtensible Markup Language) schema that describes both genotype and phenotype data as well as associated metadata. The schema accommodates information regarding genes, drugs, diseases, experimental methods, genomic/RNA/protein sequences, subjects, subject groups, and literature. The Pharmacogenetics and Pharmacogenomics Knowledge Base (PharmGKB; www.pharmgkb.org) has used this XML schema for more than 5 years to accept and process submissions containing more than 1,814,139 SNPs on 20,797 subjects using 8,975 assays. Although developed in the context of pharmacogenomics, the schema is of general utility for exchange of genotype and phenotype data. We have written syntactic and semantic validators to check documents using this format. The schema and code for validation is available to the community at http://www.pharmgkb.org/schema/index.html (last accessed: 8 October 2007). (c) 2007 Wiley-Liss, Inc.
Gao, Shan; Chen, Weiyang; Zeng, Yingxin; Jing, Haiming; Zhang, Nan; Flavel, Matthew; Jois, Markandeya; Han, Jing-Dong J; Xian, Bo; Li, Guojun
2018-04-18
Traditional toxicological studies have relied heavily on various animal models to understand the effect of various compounds in a biological context. Considering the great cost, complexity and time involved in experiments using higher order organisms. Researchers have been exploring alternative models that avoid these disadvantages. One example of such a model is the nematode Caenorhabditis elegans. There are some advantages of C. elegans, such as small size, short life cycle, well defined genome, ease of maintenance and efficient reproduction. As these benefits allow large scale studies to be initiated with relative ease, the problem of how to efficiently capture, organize and analyze the resulting large volumes of data must be addressed. We have developed a new method for quantitative screening of chemicals using C. elegans. 33 features were identified for each chemical treatment. The compounds with different toxicities were shown to alter the phenotypes of C. elegans in distinct and detectable patterns. We found that phenotypic profiling revealed conserved functions to classify and predict the toxicity of different chemicals. Our results demonstrate the power of phenotypic profiling in C. elegans under different chemical environments.
Protein Interactome of Muscle Invasive Bladder Cancer
Bhat, Akshay; Heinzel, Andreas; Mayer, Bernd; Perco, Paul; Mühlberger, Irmgard; Husi, Holger; Merseburger, Axel S.; Zoidakis, Jerome; Vlahou, Antonia; Schanstra, Joost P.; Mischak, Harald; Jankowski, Vera
2015-01-01
Muscle invasive bladder carcinoma is a complex, multifactorial disease caused by disruptions and alterations of several molecular pathways that result in heterogeneous phenotypes and variable disease outcome. Combining this disparate knowledge may offer insights for deciphering relevant molecular processes regarding targeted therapeutic approaches guided by molecular signatures allowing improved phenotype profiling. The aim of the study is to characterize muscle invasive bladder carcinoma on a molecular level by incorporating scientific literature screening and signatures from omics profiling. Public domain omics signatures together with molecular features associated with muscle invasive bladder cancer were derived from literature mining to provide 286 unique protein-coding genes. These were integrated in a protein-interaction network to obtain a molecular functional map of the phenotype. This feature map educated on three novel disease-associated pathways with plausible involvement in bladder cancer, namely Regulation of actin cytoskeleton, Neurotrophin signalling pathway and Endocytosis. Systematic integration approaches allow to study the molecular context of individual features reported as associated with a clinical phenotype and could potentially help to improve the molecular mechanistic description of the disorder. PMID:25569276
Rolin, Gwenae L; Binda, Delphine; Tissot, Marion; Viennet, Céline; Saas, Philippe; Muret, Patrice; Humbert, Philippe
2014-11-07
Skin wound healing is finely regulated by both matrix synthesis and degradation which are governed by dermal fibroblast activity. Actually, fibroblasts synthesize numerous extracellular matrix proteins (i.e., collagens), remodeling enzymes and their inhibitors. Moreover, they differentiate into myofibroblasts and are able to develop endogenous forces at the wound site. Such forces are crucial during skin wound healing and have been widely investigated. However, few studies have focused on the effect of exogenous mechanical tension on the dermal fibroblast phenotype, which is the objective of the present paper. To this end, an exogenous, defined, cyclic and uniaxial mechanical strain was applied to fibroblasts cultured as scratch-wounded monolayers. Results showed that fibroblasts' response was characterized by both an increase in procollagen type-I and TIMP-1 synthesis, and a decrease in MMP-1 synthesis. The monitoring of scratch-wounded monolayers did not show any decrease in kinetics of the filling up when mechanical tension was applied. Additional results obtained with proliferating fibroblasts and confluent monolayer indicated that mechanical tension-induced response of fibroblasts depends on their culture conditions. In conclusion, mechanical tension leads to the differentiation of dermal fibroblasts and may increase their wound-healing capacities. So, the exogenous uniaxial and cyclic mechanical tension reported in the present study may be considered in order to improve skin wound healing. Copyright © 2014 Elsevier Ltd. All rights reserved.
Interactive visual exploration and refinement of cluster assignments.
Kern, Michael; Lex, Alexander; Gehlenborg, Nils; Johnson, Chris R
2017-09-12
With ever-increasing amounts of data produced in biology research, scientists are in need of efficient data analysis methods. Cluster analysis, combined with visualization of the results, is one such method that can be used to make sense of large data volumes. At the same time, cluster analysis is known to be imperfect and depends on the choice of algorithms, parameters, and distance measures. Most clustering algorithms don't properly account for ambiguity in the source data, as records are often assigned to discrete clusters, even if an assignment is unclear. While there are metrics and visualization techniques that allow analysts to compare clusterings or to judge cluster quality, there is no comprehensive method that allows analysts to evaluate, compare, and refine cluster assignments based on the source data, derived scores, and contextual data. In this paper, we introduce a method that explicitly visualizes the quality of cluster assignments, allows comparisons of clustering results and enables analysts to manually curate and refine cluster assignments. Our methods are applicable to matrix data clustered with partitional, hierarchical, and fuzzy clustering algorithms. Furthermore, we enable analysts to explore clustering results in context of other data, for example, to observe whether a clustering of genomic data results in a meaningful differentiation in phenotypes. Our methods are integrated into Caleydo StratomeX, a popular, web-based, disease subtype analysis tool. We show in a usage scenario that our approach can reveal ambiguities in cluster assignments and produce improved clusterings that better differentiate genotypes and phenotypes.
Social reward among juvenile mice
Panksepp, J B; Lahvis, G P
2007-01-01
Mammalian social relationships, such as mother–offspring attachments and pair bonds, can directly affect reproductive output. However, conspecifics approach one another in a comparatively broad range of contexts, so conceivably there are motivations for social congregation other than those underlying reproduction, parental care or territoriality. Here, we show that reward mediated by social contact is a fundamental aspect of juvenile mouse sociality. Employing a novel social conditioned place preference (SCPP) procedure, we demonstrate that social proximity is rewarding for juvenile mice from three inbred strains (A/J, C57BL/6J and DBA/2J), while mice from a fourth strain (BALB/cJ) are much less responsive to social contact. Importantly, this strain-dependent difference was not related to phenotypic variability in exploratory behavior or contextual learning nor influenced by the genetic background associated with maternal care or social conditioning. Furthermore, the SCPP phenotype was expressed early in development (postnatal day 25) and did not require a specific sex composition within the conditioning group. Finally, SCPP responses resulted from an interaction between two specifiable processes: one component of the interaction facilitated approach toward environments that were associated with social salience, whereas a second component mediated avoidance of environmental cues that predicted social isolation. We have thus identified a genetically prescribed process that can attribute value onto conditions predicting a general form of social contact. To our knowledge, this is the first definitive evidence to show that genetic variation can influence a form of social valuation not directly related to a reproductive behavior. PMID:17212648
Malinova, Irina
2017-01-01
An Arabidopsis double knock-out mutant lacking cytosolic disproportionating enzyme 2 (DPE2) and the plastidial phosphorylase (PHS1) revealed a dwarf-growth phenotype, reduced starch content, an uneven distribution of starch within the plant rosette, and a reduced number of starch granules per chloroplast under standard growth conditions. In contrast, the wild type contained 5–7 starch granules per chloroplast. Mature and old leaves of the double mutant were essentially starch free and showed plastidial disintegration. Several analyses revealed that the number of starch granules per chloroplast was affected by the dark phase. So far, it was unclear if it was the dark phase per se or starch degradation in the dark that was connected to the observed decrease in the number of starch granules per chloroplast. Therefore, in the background of the double mutant dpe2/phs1, a triple mutant was generated lacking the initial starch degrading enzyme glucan, water dikinase (GWD). The triple mutant showed improved plant growth, a starch-excess phenotype, and a homogeneous starch distribution. Furthermore, the number of starch granules per chloroplast was increased and was similar to wild type. However, starch granule morphology was only slightly affected by the lack of GWD as in the triple mutant and, like in dpe2/phs1, more spherical starch granules were observed. The characterized triple mutant was discussed in the context of the generation of starch granules and the formation of starch granule morphology. PMID:29155859
Malinova, Irina; Fettke, Joerg
2017-01-01
An Arabidopsis double knock-out mutant lacking cytosolic disproportionating enzyme 2 (DPE2) and the plastidial phosphorylase (PHS1) revealed a dwarf-growth phenotype, reduced starch content, an uneven distribution of starch within the plant rosette, and a reduced number of starch granules per chloroplast under standard growth conditions. In contrast, the wild type contained 5-7 starch granules per chloroplast. Mature and old leaves of the double mutant were essentially starch free and showed plastidial disintegration. Several analyses revealed that the number of starch granules per chloroplast was affected by the dark phase. So far, it was unclear if it was the dark phase per se or starch degradation in the dark that was connected to the observed decrease in the number of starch granules per chloroplast. Therefore, in the background of the double mutant dpe2/phs1, a triple mutant was generated lacking the initial starch degrading enzyme glucan, water dikinase (GWD). The triple mutant showed improved plant growth, a starch-excess phenotype, and a homogeneous starch distribution. Furthermore, the number of starch granules per chloroplast was increased and was similar to wild type. However, starch granule morphology was only slightly affected by the lack of GWD as in the triple mutant and, like in dpe2/phs1, more spherical starch granules were observed. The characterized triple mutant was discussed in the context of the generation of starch granules and the formation of starch granule morphology.
Cabalén, María E; Cabral, María F; Sanmarco, Liliana M; Andrada, Marta C; Onofrio, Luisina I; Ponce, Nicolás E; Aoki, María P; Gea, Susana; Cano, Roxana C
2016-03-22
Chronic obesity and Chagas disease (caused by the protozoan Trypanosoma cruzi) represent serious public health concerns. The interrelation between parasite infection, adipose tissue, immune system and metabolism in an obesogenic context, has not been entirely explored. A novel diet-induced obesity model (DIO) was developed in C57BL/6 wild type mice to examine the effect of chronic infection (DIO+I) on metabolic parameters and on obesity-related disorders. Dyslipidemia, hyperleptinemia, and cardiac/hepatic steatosis were strongly developed in DIO mice. Strikingly, although these metabolic alterations were collectively improved by infection, plasmatic apoB100 levels remain significantly increased in DIO+I, suggesting the presence of pro-atherogenic small and dense LDL particles. Moreover, acute insulin resistance followed by chronic hyperglycemia with hypoinsulinemia was found, evidencing an infection-related-diabetes progression. These lipid and glucose metabolic changes seemed to be highly dependent on TLR4 expression since TLR4-/- mice were protected from obesity and its complications. Notably, chronic infection promoted a strong increase in MCP-1 producing macrophages with a M2 (F4/80+CD11c-CD206+) phenotype associated to oxidative stress in visceral adipose tissue of DIO+I mice. Importantly, infection reduced lipid content but intensified inflammatory infiltrates in target tissues. Thus, parasite persistence in an obesogenic environment and the resulting host immunometabolic dysregulation may contribute to diabetes/atherosclerosis progression.
Rethinking Regenerative Medicine: A Macrophage-Centered Approach
Brown, Bryan N.; Sicari, Brian M.; Badylak, Stephen F.
2014-01-01
Regenerative medicine, a multi-disciplinary approach that seeks to restore form and function to damaged or diseased tissues and organs, has evolved significantly during the past decade. By adapting and integrating fundamental knowledge from cell biology, polymer science, and engineering, coupled with an increasing understanding of the mechanisms which underlie the pathogenesis of specific diseases, regenerative medicine has the potential for innovative and transformative therapies for heretofore unmet medical needs. However, the translation of novel technologies from the benchtop to animal models and clinical settings is non-trivial and requires an understanding of the mechanisms by which the host will respond to these novel therapeutic approaches. The role of the innate immune system, especially the role of macrophages, in the host response to regenerative medicine based strategies has recently received considerable attention. Macrophage phenotype and function have been suggested as critical and determinant factors in downstream outcomes. The constructive and regulatory, and in fact essential, role of macrophages in positive outcomes represents a significant departure from the classical paradigms of host–biomaterial interactions, which typically consider activation of the host immune system as a detrimental event. It appears desirable that emerging regenerative medicine approaches should not only accommodate but also promote the involvement of the immune system to facilitate positive outcomes. Herein, we describe the current understanding of macrophage phenotype as it pertains to regenerative medicine and suggest that improvement of our understanding of context-dependent macrophage polarization will lead to concurrent improvement in outcomes. PMID:25408693
Context-dependent effects of background colour in free recall with spatially grouped words.
Sakai, Tetsuya; Isarida, Toshiko K; Isarida, Takeo
2010-10-01
Three experiments investigated context-dependent effects of background colour in free recall with groups of items. Undergraduates (N=113) intentionally studied 24 words presented in blocks of 6 on a computer screen with two different background colours. The two background colours were changed screen-by-screen randomly (random condition) or alternately (alternation condition) during the study period. A 30-second filled retention interval was imposed before an oral free-recall test. A signal for free recall was presented throughout the test on one of the colour background screens presented at study. Recalled words were classified as same- or different-context words according to whether the background colours at study and test were the same or different. The random condition produced significant context-dependent effects, whereas the alternation condition showed no context-dependent effects, regardless of whether the words were presented once or twice. Furthermore, the words presented on the same screen were clustered in recall, whereas the words presented against the same background colour but on different screens were not clustered. The present results imply: (1) background colours can cue spatially massed words; (2) background colours act as temporally local context; and (3) predictability of the next background colour modulates the context-dependent effect.
Kittelmann, Sebastian; Buffry, Alexandra D; Franke, Franziska A; Almudi, Isabel; Yoth, Marianne; Sabaris, Gonzalo; Couso, Juan Pablo; Nunes, Maria D S; Frankel, Nicolás; Gómez-Skarmeta, José Luis; Pueyo-Marques, Jose; Arif, Saad; McGregor, Alistair P
2018-05-01
Convergent phenotypic evolution is often caused by recurrent changes at particular nodes in the underlying gene regulatory networks (GRNs). The genes at such evolutionary 'hotspots' are thought to maximally affect the phenotype with minimal pleiotropic consequences. This has led to the suggestion that if a GRN is understood in sufficient detail, the path of evolution may be predictable. The repeated evolutionary loss of larval trichomes among Drosophila species is caused by the loss of shavenbaby (svb) expression. svb is also required for development of leg trichomes, but the evolutionary gain of trichomes in the 'naked valley' on T2 femurs in Drosophila melanogaster is caused by reduced microRNA-92a (miR-92a) expression rather than changes in svb. We compared the expression and function of components between the larval and leg trichome GRNs to investigate why the genetic basis of trichome pattern evolution differs in these developmental contexts. We found key differences between the two networks in both the genes employed, and in the regulation and function of common genes. These differences in the GRNs reveal why mutations in svb are unlikely to contribute to leg trichome evolution and how instead miR-92a represents the key evolutionary switch in this context. Our work shows that variability in GRNs across different developmental contexts, as well as whether a morphological feature is lost versus gained, influence the nodes at which a GRN evolves to cause morphological change. Therefore, our findings have important implications for understanding the pathways and predictability of evolution.
Friggens, N C; Blanc, F; Berry, D P; Puillet, L
2017-12-01
As the environments in which livestock are reared become more variable, animal robustness becomes an increasingly valuable attribute. Consequently, there is increasing focus on managing and breeding for it. However, robustness is a difficult phenotype to properly characterise because it is a complex trait composed of multiple components, including dynamic elements such as the rates of response to, and recovery from, environmental perturbations. In this review, the following definition of robustness is used: the ability, in the face of environmental constraints, to carry on doing the various things that the animal needs to do to favour its future ability to reproduce. The different elements of this definition are discussed to provide a clearer understanding of the components of robustness. The implications for quantifying robustness are that there is no single measure of robustness but rather that it is the combination of multiple and interacting component mechanisms whose relative value is context dependent. This context encompasses both the prevailing environment and the prevailing selection pressure. One key issue for measuring robustness is to be clear on the use to which the robustness measurements will employed. If the purpose is to identify biomarkers that may be useful for molecular phenotyping or genotyping, the measurements should focus on the physiological mechanisms underlying robustness. However, if the purpose of measuring robustness is to quantify the extent to which animals can adapt to limiting conditions then the measurements should focus on the life functions, the trade-offs between them and the animal's capacity to increase resource acquisition. The time-related aspect of robustness also has important implications. Single time-point measurements are of limited value because they do not permit measurement of responses to (and recovery from) environmental perturbations. The exception being single measurements of the accumulated consequence of a good (or bad) adaptive capacity, such as productive longevity and lifetime efficiency. In contrast, repeated measurements over time have a high potential for quantification of the animal's ability to cope with environmental challenges. Thus, we should be able to quantify differences in adaptive capacity from the data that are increasingly becoming available with the deployment of automated monitoring technology on farm. The challenge for future management and breeding will be how to combine various proxy measures to obtain reliable estimates of robustness components in large populations. A key aspect for achieving this is to define phenotypes from consideration of their biological properties and not just from available measures.
Pérez-Ruiz, Juan Manuel; Naranjo, Belén; Ojeda, Valle; Guinea, Manuel; Cejudo, Francisco Javier
2017-11-07
Thiol-dependent redox regulation allows the rapid adaptation of chloroplast function to unpredictable changes in light intensity. Traditionally, it has been considered that chloroplast redox regulation relies on photosynthetically reduced ferredoxin (Fd), thioredoxins (Trxs), and an Fd-dependent Trx reductase (FTR), the Fd-FTR-Trxs system, which links redox regulation to light. More recently, a plastid-localized NADPH-dependent Trx reductase (NTR) with a joint Trx domain, termed NTRC, was identified. NTRC efficiently reduces 2-Cys peroxiredoxins (Prxs), thus having antioxidant function, but also participates in redox regulation of metabolic pathways previously established to be regulated by Trxs. Thus, the NTRC, 2-Cys Prxs, and Fd-FTR-Trxs redox systems may act concertedly, but the nature of the relationship between them is unknown. Here we show that decreased levels of 2-Cys Prxs suppress the phenotype of the Arabidopsis thaliana ntrc KO mutant. The excess of oxidized 2-Cys Prxs in NTRC-deficient plants drains reducing power from chloroplast Trxs, which results in low efficiency of light energy utilization and impaired redox regulation of Calvin-Benson cycle enzymes. Moreover, the dramatic phenotype of the ntrc-trxf1f2 triple mutant, lacking NTRC and f -type Trxs, was also suppressed by decreased 2-Cys Prxs contents, as the ntrc-trxf1f2-Δ2cp mutant partially recovered the efficiency of light energy utilization and exhibited WT rate of CO 2 fixation and growth phenotype. The suppressor phenotype was not caused by compensatory effects of additional chloroplast antioxidant systems. It is proposed that the Fd-FTR-Trx and NTRC redox systems are linked by the redox balance of 2-Cys Prxs, which is crucial for chloroplast function. Copyright © 2017 the Author(s). Published by PNAS.
Hartman, Jessica K; Beames, Tyler; Parks, Bethany; Doheny, Daniel; Song, Gina; Efremenko, Alina; Yoon, Miyoung; Foley, Briana; Deisenroth, Chad; McMullen, Patrick D; Clewell, Rebecca A
2018-05-18
Rising obesity rates worldwide have socio-economic ramifications. While genetics, diet, and lack of exercise are major contributors to obesity, environmental factors may enhance susceptibility through disruption of hormone homeostasis and metabolic processes. The obesogen hypothesis contends that chemical exposure early in development may enhance adipocyte differentiation, thereby increasing the number of adipocytes and predisposing for obesity and metabolic disease. We previously developed a primary human adipose stem cell (hASC) assay to evaluate the effect of environmental chemicals on PPARG-dependent adipogenesis. Here, the assay was modified to determine the effects of chemicals on the glucocorticoid receptor (GR) pathway. In differentiation cocktail lacking the glucocorticoid agonist dexamethasone (DEX), hASCs do not differentiate into adipocytes. In the presence of GR agonists, adipocyte maturation was observed using phenotypic makers for lipid accumulation, adipokine secretion, and expression of key genes. To evaluate the role of environmental compounds on adipocyte differentiation, progenitor cells were treated with 19 prioritized compounds previously identified by ToxPi as having GR-dependent bioactivity, and multiplexed assays were used to confirm a GR-dependent mode of action. Five chemicals were found to be strong agonists. The assay was also modified to evaluate GR-antagonists, and 8/10 of the hypothesized antagonists inhibited adipogenesis. The in vitro bioactivity data was put into context with extrapolated human steady state concentrations (Css) and clinical exposure data (Cmax). These data support using a human adipose-derived stem cell differentiation assay to test the potential of chemicals to alter human GR-dependent adipogenesis. Copyright © 2017. Published by Elsevier Inc.
Lee, Ya-Yun; Fisher, Beth E
2017-05-22
Compared with age-matched non-disabled adults, people with Parkinson's disease (PD) demonstrated greater context-dependent learning, a phenomenon in which an individual shows inferior motor performance when the testing environmental context is different from the original practice context. Additionally, enhanced context- dependency has been shown to be associated with an increased activation of the dorsolateral prefrontal cortex (DLPFC). This study aimed to determine whether context-dependent learning in people with PD could be reduced by decreasing DLPFC activation with low frequency repetitive transcranial magnetic stimulation (rTMS). Quasi-experimental pre-post test controlled study. University laboratory. Twenty-seven participants (18 individuals with PD and 9 age-matched non- disabled adults) were recruited into the PD, PD_rTMS (PD participants who received low frequency rTMS), and Control groups. All participants practiced a finger sequence task containing 3 sequences embedded within specific contexts (colored circles and spatial location on a computer screen) on the first day. On day 2, the participants were tested under the SWITCH and SAME conditions. In the SWITCH condition, the sequence-context association changed from that of practice; in the SAME condition, the sequence-context association remained the same as practice. The PD_rTMS group received 1 Hz rTMS applied over the left DLPFC on the second day before the testing conditions. Switch cost, the performance difference between the SWITCH and SAME conditions, was calculated to indicate context-dependency. All participants improved throughout practice on the first day. Analysis of the switch cost revealed a significant group main effect (p = 0.050). Post-hoc analysis revealed that the PD_rTMS group had significantly smaller switch cost than the PD group (p = 0.031) but not the Control group. Low frequency rTMS applied over DLPFC reduced context-dependency in people with PD. The findings provide a preliminary evidence of using low frequency rTMS as an adjuvant intervention approach to facilitate individuals with PD to generalize a learned motor task from one environmental context to another.
Toscano, Benjamin J; Gownaris, Natasha J; Heerhartz, Sarah M; Monaco, Cristián J
2016-09-01
Behavioral traits and diet were traditionally thought to be highly plastic within individuals. This view was espoused in the widespread use of optimality models, which broadly predict that individuals can modify behavioral traits and diet across ecological contexts to maximize fitness. Yet, research conducted over the past 15 years supports an alternative view; fundamental behavioral traits (e.g., activity level, exploration, sociability, boldness and aggressiveness) and diet often vary among individuals and this variation persists over time and across contexts. This phenomenon has been termed animal personality with regard to behavioral traits and individual specialization with regard to diet. While these aspects of individual-level phenotypic variation have been thus far studied in isolation, emerging evidence suggests that personality and individual specialization may covary, or even be causally related. Building on this work, we present the overarching hypothesis that animal personality can drive specialization through individual differences in various aspects of consumer foraging behavior. Specifically, we suggest pathways by which consumer personality traits influence foraging activity, risk-dependent foraging, roles in social foraging groups, spatial aspects of foraging and physiological drivers of foraging, which in turn can lead to consistent individual differences in food resource use. These pathways provide a basis for generating testable hypotheses directly linking animal personality to ecological dynamics, a major goal in contemporary behavioral ecology.
Yan, Hua; Jahanshahi, Maryam; Horvath, Elizabeth A; Liu, Hsiu-Yu; Pfleger, Cathie M
2010-08-10
The Ras signaling pathway allows cells to translate external cues into diverse biological responses. Depending on context and the threshold reached, Ras signaling can promote growth, proliferation, differentiation, or cell survival. Failure to maintain precise control of Ras can have adverse physiological consequences. Indeed, excess Ras signaling disrupts developmental patterning and causes developmental disorders [1, 2], and in mature tissues, it can lead to cancer [3-5]. We identify Rabex-5 as a new component of Ras signaling crucial for achieving proper pathway outputs in multiple contexts in vivo. We show that Drosophila Rabex-5 restricts Ras signaling to establish organism size, wing vein pattern, and eye versus antennal fate. Rabex-5 has both Rab5 guanine nucleotide exchange factor (GEF) activity that regulates endocytic trafficking [6] and ubiquitin ligase activity [7, 8]. Surprisingly, overexpression studies demonstrate that Rabex-5 ubiquitin ligase activity, not its Rab5 GEF activity, is required to restrict wing vein specification and to suppress the eye phenotypes of oncogenic Ras expression. Furthermore, genetic interaction experiments indicate that Rabex-5 acts at the step of Ras, and tissue culture studies show that Rabex-5 promotes Ras ubiquitination. Together, these findings reveal a new mechanism for attenuating Ras signaling in vivo and suggest an important role for Rabex-5-mediated Ras ubiquitination in pathway homeostasis. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Preference for Male Traits Differ in Two Female Morphs of the Tree Lizard, Urosaurus ornatus
Lattanzio, Matthew S.; Metro, Kevin J.; Miles, Donald B.
2014-01-01
Non-random female mating preferences may contribute to the maintenance of phenotypic variation in color polymorphic species. However, the effect of female preference depends on the types of male traits used as signals by receptive females. If preference signals derive from discrete male traits (i.e., morph-specific), female preferences may rapidly fix to a morph. However, female preference signals may also include condition-dependent male traits. In this scenario, female preference may differ depending on the social context (i.e., male morph availability). Male tree lizards (Urosaurus ornatus) exhibit a dewlap color polymorphism that covaries with mating behavior. Blue morph males are aggressive and defend territories, yellow males are less aggressive and defend smaller territories, and orange males are typically nomadic. Female U. ornatus are also polymorphic in dewlap color, but the covariation between dewlap color and female behavior is unknown. We performed an experiment to determine how female mate choice depends on the visual and chemical signals produced by males. We also tested whether female morphs differ in their preferences for these signals. Female preferences involved both male dewlap color and size of the ventral color patch. However, the female morphs responded to these signals differently and depended on the choice between the types of male morphs. Our experiment revealed that females may be capable of distinguishing among the male morphs using chemical signals alone. Yellow females exhibit preferences based on both chemical and visual signals, which may be a strategy to avoid ultra-dominant males. In contrast, orange females may prefer dominant males. We conclude that female U. ornatus morphs differ in mating behavior. Our findings also provide evidence for a chemical polymorphism among male lizards in femoral pore secretions. PMID:25033282
Discrete Circuits Support Generalized versus Context-Specific Vocal Learning in the Songbird.
Tian, Lucas Y; Brainard, Michael S
2017-12-06
Motor skills depend on the reuse of individual gestures in multiple sequential contexts (e.g., a single phoneme in different words). Yet optimal performance requires that a given gesture be modified appropriately depending on the sequence in which it occurs. To investigate the neural architecture underlying such context-dependent modifications, we studied Bengalese finch song, which, like speech, consists of variable sequences of "syllables." We found that when birds are instructed to modify a syllable in one sequential context, learning generalizes across contexts; however, if unique instruction is provided in different contexts, learning is specific for each context. Using localized inactivation of a cortical-basal ganglia circuit specialized for song, we show that this balance between generalization and specificity reflects a hierarchical organization of neural substrates. Primary motor circuitry encodes a core syllable representation that contributes to generalization, while top-down input from cortical-basal ganglia circuitry biases this representation to enable context-specific learning. Copyright © 2017 Elsevier Inc. All rights reserved.
Genotype-phenotype associations in obesity dependent on definition of the obesity phenotype.
Kring, Sofia Inez Iqbal; Larsen, Lesli Hingstrup; Holst, Claus; Toubro, Søren; Hansen, Torben; Astrup, Arne; Pedersen, Oluf; Sørensen, Thorkild I A
2008-01-01
In previous studies of associations of variants in the genes UCP2, UCP3, PPARG2, CART, GRL, MC4R, MKKS, SHP, GHRL, and MCHR1 with obesity, we have used a case-control approach with cases defined by a threshold for BMI. In the present study, we assess the association of seven abdominal, peripheral, and overall obesity phenotypes, which were analyzed quantitatively, and thirteen candidate gene polymorphisms in these ten genes in the same cohort. Obese Caucasian men (n = 234, BMI >or= 31.0 kg/m(2)) and a randomly sampled non-obese group (n = 323), originally identified at the draft board examinations, were re-examined at median ages of 47.0 or 49.0 years by anthropometry and DEXA scanning. Obesity phenotypes included BMI, fat body mass index, waist circumference, waist for given BMI, intra-abdominal adipose tissue, hip circumference and lower body fat mass (%). Using logistic regression models, we estimated the odds for defined genotypes (dominant or recessive genetic transmission) in relation to z-scores of the phenotypes. The minor (rare) allele for SHP 512G>C (rs6659176) was associated with increased hip circumference. The minor allele for UCP2 Ins45bp was associated with increased BMI, increased abdominal obesity, and increased hip circumference. The minor allele for UCP2 -866G>A (rs6593669) was associated with borderline increased fat body mass index. The minor allele for MCHR1 100213G>A (rs133072) was associated with reduced abdominal obesity. None of the other genotype-phenotype combinations showed appreciable associations. If replicated in independent studies with focus on the specific phenotypes, our explorative studies suggest significant associations between some candidate gene polymorphisms and distinct obesity phenotypes, predicting beneficial and detrimental effects, depending on compartments for body fat accumulation. Copyright 2008 S. Karger AG, Basel.
Effects of reward context on feedback processing as indexed by time-frequency analysis.
Watts, Adreanna T M; Bernat, Edward M
2018-05-11
The role of reward context has been investigated as an important factor in feedback processing. Previous work has demonstrated that the amplitude of the feedback negativity (FN) depends on the value of the outcome relative to the range of possible outcomes in a given context, not the objective value of the outcome. However, some research has shown that the FN does not scale with loss magnitude in loss-only contexts, suggesting that some contexts do not show a pattern of context dependence. Methodologically, time-frequency decomposition techniques have proven useful for isolating time-domain ERP activity as separable processes indexed in delta (< 3 Hz) and theta (3-7 Hz). Thus, the current study assessed the role of context in a modified gambling feedback task using time-frequency analysis to better isolate the underlying processes. Results revealed that theta was more context dependent and reflected a binary evaluation of bad versus good outcomes in the gain and even contexts. Delta was more context independent: good outcomes scaled linearly with reward magnitude and good-bad differences scaled with context valence. Our findings reveal that theta and delta are differentially sensitive to context and that context valence may play a critical role in determining how the brain processes feedback. © 2018 Society for Psychophysiological Research.
Burks, Tyesha N; Marx, Ruth; Powell, Laura; Rucker, Jasma; Bedja, Djahida; Heacock, Elisa; Smith, Barbara J; Foster, D Brian; Kass, David; O'Rourke, Brian; Walston, Jeremy D; Abadir, Peter M
2015-05-20
Although the effects of aging and inflammation on the health of the cardiac muscle are well documented, the combined effects of aging and chronic inflammation on cardiac muscle are largely unknown. The renin-angiotensin system (RAS) has been linked independently to both aging and inflammation, but is understudied in the context of their collective effect. Thus, we investigated localized cardiac angiotensin II type I and type II receptors (AT(1)R, AT(2)R), downstream effectors, and phenotypic outcomes using mouse models of the combination of aging and inflammation and compared it to a model of aging and a model of inflammation. We show molecular distinction in the combined effect of aging and inflammation as compared to each independently. The combination maintained an increased AT(1)R:AT(2)R and expression of Nox2 and exhibited the lowest activity of antioxidants. Despite signaling pathway differences, the combined effect shared phenotypic similarities with aging including oxidative damage, fibrosis, and hypertrophy. These phenotypic similarities have dubbed inflammatory conditions as premature aging, but they are, in fact, molecularly distinct. Moreover, treatment with an AT(1)R blocker, losartan, selectively reversed the signaling changes and ameliorated adverse phenotypic effects in the combination of aging and inflammation as well as each independently.
Burks, Tyesha N.; Marx, Ruth; Powell, Laura; Rucker, Jasma; Bedja, Djahida; Heacock, Elisa; Smith, Barbara J.; Foster, D. Brian; Kass, David; O'Rourke, Brian; Walston, Jeremy D.; Abadir, Peter M.
2015-01-01
Although the effects of aging and inflammation on the health of the cardiac muscle are well documented, the combined effects of aging and chronic inflammation on cardiac muscle are largely unknown. The renin-angiotensin system (RAS) has been linked independently to both aging and inflammation, but is understudied in the context of their collective effect. Thus, we investigated localized cardiac angiotensin II type I and type II receptors (AT1R, AT2R), downstream effectors, and phenotypic outcomes using mouse models of the combination of aging and inflammation and compared it to a model of aging and a model of inflammation. We show molecular distinction in the combined effect of aging and inflammation as compared to each independently. The combination maintained an increased AT1R:AT2R and expression of Nox2 and exhibited the lowest activity of antioxidants. Despite signaling pathway differences, the combined effect shared phenotypic similarities with aging including oxidative damage, fibrosis, and hypertrophy. These phenotypic similarities have dubbed inflammatory conditions as premature aging, but they are, in fact, molecularly distinct. Moreover, treatment with an AT1R blocker, losartan, selectively reversed the signaling changes and ameliorated adverse phenotypic effects in the combination of aging and inflammation as well as each independently. PMID:26221650
Shaping eosinophil identity in the tissue contexts of development, homeostasis, and disease.
Abdala-Valencia, Hiam; Coden, Mackenzie E; Chiarella, Sergio E; Jacobsen, Elizabeth A; Bochner, Bruce S; Lee, James J; Berdnikovs, Sergejs
2018-04-14
Eosinophils play homeostatic roles in different tissues and are found in several organs at a homeostatic baseline, though their tissue numbers increase significantly in development and disease. The morphological, phenotypical, and functional plasticity of recruited eosinophils are influenced by the dynamic tissue microenvironment changes between homeostatic, morphogenetic, and disease states. Activity of the epithelial-mesenchymal interface, extracellular matrix, hormonal inputs, metabolic state of the environment, as well as epithelial and mesenchymal-derived innate cytokines and growth factors all have the potential to regulate the attraction, retention, in situ hematopoiesis, phenotype, and function of eosinophils. This review examines the reciprocal relationship between eosinophils and such tissue factors, specifically addressing: (1) tissue microenvironments associated with the presence and activity of eosinophils; (2) non-immune tissue ligands regulatory for eosinophil accumulation, hematopoiesis, phenotype, and function (with an emphasis on the extracellular matrix and epithelial-mesenchymal interface); (3) the contribution of eosinophils to regulating tissue biology; (4) eosinophil phenotypic heterogeneity in different tissue microenvironments, classifying eosinophils as progenitors, steady state eosinophils, and Type 1 and 2 activated phenotypes. An appreciation of eosinophil regulation by non-immune tissue factors is necessary for completing the picture of eosinophil immune activation and understanding the functional contribution of these cells to development, homeostasis, and disease. ©2018 Society for Leukocyte Biology.
Constructing Adverse Outcome Pathways: a Demonstration of ...
Adverse outcome pathway (AOP) provides a conceptual framework to evaluate and integrate chemical toxicity and its effects across the levels of biological organization. As such, it is essential to develop a resource-efficient and effective approach to extend molecular initiating events (MIEs) of chemicals to their downstream phenotypes of a greater regulatory relevance. A number of ongoing public phenomics (high throughput phenotyping) efforts have been generating abundant phenotypic data annotated with ontology terms. These phenotypes can be analyzed semantically and linked to MIEs of interest, all in the context of a knowledge base integrated from a variety of ontologies for various species and knowledge domains. In such analyses, two phenotypic profiles (PPs; anchored by genes or diseases) each characterized by multiple ontology terms are compared for their semantic similarities within a common ontology graph, but across boundaries of species and knowledge domains. Taking advantage of publicly available ontologies and software tool kits, we have implemented an OS-Mapping (Ontology-based Semantics Mapping) approach as a Java application, and constructed a network of 19383 PPs as nodes with edges weighed by their pairwise semantic similarity scores. Individual PPs were assembled from public phenomics data. Out of possible 1.87×108 pairwise connections among these nodes, about 71% of them have similarity scores between 0.2 and the maximum possible of 1.0.
Asarnow, Daniel; Rojo-Arreola, Liliana; Suzuki, Brian M; Caffrey, Conor R; Singh, Rahul
2015-05-01
Neglected tropical diseases (NTDs) caused by helminths constitute some of the most common infections of the world's poorest people. The etiological agents are complex and recalcitrant to standard techniques of molecular biology. Drug screening against helminths has often been phenotypic and typically involves manual description of drug effect and efficacy. A key challenge is to develop automated, quantitative approaches to drug screening against helminth diseases. The quantal dose-response calculator (QDREC) constitutes a significant step in this direction. It can be used to automatically determine quantitative dose-response characteristics and half-maximal effective concentration (EC50) values using image-based readouts from phenotypic screens, thereby allowing rigorous comparisons of the efficacies of drug compounds. QDREC has been developed and validated in the context of drug screening for schistosomiasis, one of the most important NTDs. However, it is equally applicable to general phenotypic screening involving helminths and other complex parasites. QDREC is publically available at: http://haddock4.sfsu.edu/qdrec2/. Source code and datasets are at: http://tintin.sfsu.edu/projects/phenotypicAssays.html. rahul@sfsu.edu. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Foucher, Isabelle; Volovitch, Michel; Frain, Monique; Kim, J Julie; Souberbielle, Jean-Claude; Gan, Lixia; Unterman, Terry G; Prochiantz, Alain; Trembleau, Alain
2002-09-01
Transgenic mice expressing the homeobox gene Hoxa5 under the control of Hoxb2 regulatory elements present a growth arrest during weeks two and three of postnatal development, resulting in proportionate dwarfism. These mice present a liver phenotype illustrated by a 12-fold increase in liver insulin-like growth factor binding protein 1 (IGFBP1) mRNA and a 50% decrease in liver insulin-like growth factor 1 (IGF1) mRNA correlated with a 50% decrease in circulating IGF1. We show that the Hoxa5 transgene is expressed in the liver of these mice, leading to an overexpression of total (endogenous plus transgene) Hoxa5 mRNA in this tissue. We have used several cell lines to investigate a possible physiological interaction of Hoxa5 with the main regulator of IGFBP1 promoter activity, the Forkhead box transcription factor FKHR. In HepG2 cells, Hoxa5 has little effect by itself but inhibits the FKHR-dependent activation of the IGFBP1 promoter. In HuF cells, Hoxa5 cooperates with FKHR to dramatically enhance IGFBP1 promoter activity. This context-dependent physiological interaction probably corresponds to the existence of a direct interaction between Hoxa5 and FKHR and FoxA2/HNF3beta, as demonstrated by pull-down experiments achieved either in vitro or after cellular co-expression. In conclusion, we propose that the impaired growth observed in this transgenic line relates to a liver phenotype best explained by a direct interaction between Hoxa5 and liver-specific Forkhead box transcription factors, in particular FKHR but also Foxa2/HNF3beta. Because Hoxa5 and homeogenes of the same paralog group are normally expressed in the liver, the present results raise the possibility that homeoproteins, in addition to their established role during early development, regulate systemic physiological functions.
McCool, Brian A.; Chappell, Ann M.
2015-01-01
Inbred mouse strains provide significant opportunities to understand the genetic mechanisms controlling ethanol-directed behaviors and neurobiology. They have been specifically employed to understand cellular mechanisms contributing to ethanol consumption, acute intoxication, and sensitivities to chronic effects. However, limited ethanol consumption by some strains has restricted our understanding of clinically relevant endpoints such as dependence-related ethanol intake. Previous work with a novel tastant-substitution procedure using monosodium glutamate (MSG or umami flavor) has shown that the procedure greatly enhances ethanol consumption by mouse strains that express limited drinking phenotypes using other methods. In the current study, we employ this MSG-substitution procedure to examine how ethanol dependence, induced with passive vapor inhalation, modifies ethanol drinking in C57BL/6J and DBA/2J mice. These strains represent ‘high’ and ‘low’ drinking phenotypes, respectively. We found that the MSG substitution greatly facilitates ethanol drinking in both strains, and likewise, ethanol dependence increased ethanol consumption regardless of strain. However, DBA/2J mice exhibited greater sensitivity dependence-enhanced drinking, as represented by consumption behaviors directed at lower ethanol concentrations and relative to baseline intake levels. DBA/2J mice also exhibited significant withdrawal-associated anxiety-like behavior while C57BL/6J mice did not. These findings suggest that the MSG-substitution procedure can be employed to examine dependence-enhanced ethanol consumption across a range of drinking phenotypes, and that C57BL/6J and DBA/2J mice may represent unique neurobehavioral pathways for developing dependence-enhanced ethanol consumption. PMID:25659650
Wurtmann, Elisabeth J.; Ratushny, Alexander V.; Pan, Min; Beer, Karlyn D.; Aitchison, John D.; Baliga, Nitin S.
2014-01-01
Summary It is known that environmental context influences the degree of regulation at the transcriptional and post-transcriptional levels. However, the principles governing the differential usage and interplay of regulation at these two levels are not clear. Here, we show that the integration of transcriptional and post-transcriptional regulatory mechanisms in a characteristic network motif drives efficient environment-dependent state transitions. Through phenotypic screening, systems analysis, and rigorous experimental validation, we discovered an RNase (VNG2099C) in Halobacterium salinarum that is transcriptionally co-regulated with genes of the aerobic physiologic state but acts on transcripts of the anaerobic state. Through modeling and experimentation we show that this arrangement generates an efficient state-transition switch, within which RNase-repression of a transcriptional positive autoregulation (RPAR) loop is critical for shutting down ATP-consuming active potassium uptake to reserve energy required for salinity adaptation under aerobic, high potassium, or dark conditions. Subsequently, we discovered that many Escherichia coli operons with energy-associated functions are also putatively controlled by RPAR indicating that this network motif may have evolved independently in phylogenetically distant organisms. Thus, our data suggest that interplay of transcriptional and post-transcriptional regulation in the RPAR motifis a generalized principle for efficient environment-dependent state transitions across prokaryotes. PMID:24612392
Environment-dependent striatal gene expression in the BACHD rat model for Huntington disease.
Novati, Arianna; Hentrich, Thomas; Wassouf, Zinah; Weber, Jonasz J; Yu-Taeger, Libo; Déglon, Nicole; Nguyen, Huu Phuc; Schulze-Hentrich, Julia M
2018-04-11
Huntington disease (HD) is an autosomal dominant neurodegenerative disorder caused by a mutation in the huntingtin (HTT) gene which results in progressive neurodegeneration in the striatum, cortex, and eventually most brain areas. Despite being a monogenic disorder, environmental factors influence HD characteristics. Both human and mouse studies suggest that mutant HTT (mHTT) leads to gene expression changes that harbor potential to be modulated by the environment. Yet, the underlying mechanisms integrating environmental cues into the gene regulatory program have remained largely unclear. To better understand gene-environment interactions in the context of mHTT, we employed RNA-seq to examine effects of maternal separation (MS) and environmental enrichment (EE) on striatal gene expression during development of BACHD rats. We integrated our results with striatal consensus modules defined on HTT-CAG length and age-dependent co-expression gene networks to relate the environmental factors with disease progression. While mHTT was the main determinant of expression changes, both MS and EE were capable of modulating these disturbances, resulting in distinctive and in several cases opposing effects of MS and EE on consensus modules. This bivalent response to maternal separation and environmental enrichment may aid in explaining their distinct effects observed on disease phenotypes in animal models of HD and related neurodegenerative disorders.
Filice, David C S; Long, Tristan A F
2017-05-01
Female mate choice is a complex decision-making process that involves many context-dependent factors. In Drosophila melanogaster , a model species for the study of sexual selection, indirect genetic effects (IGEs) of general social interactions can influence female mate choice behaviors, but the potential impacts of IGEs associated with mating experiences are poorly understood. Here, we examined whether the IGEs associated with a previous mating experience had an effect on subsequent female mate choice behaviors and quantified the degree of additive genetic variation associated with this effect. Females from 21 different genetic backgrounds were housed with males from one of two distinct genetic backgrounds for either a short (3 hr) or long (48 hr) exposure period and their subsequent mate choice behaviors were scored. We found that the genetic identity of a previous mate significantly influenced a female's subsequent interest in males and preference of males. Additionally, a hemiclonal analysis revealed significant additive genetic variation associated with experience-dependent mate choice behaviors, indicating a genotype-by-environment interaction for both of these parameters. We discuss the significance of these results with regard to the evolution of plasticity in female mate choice behaviors and the maintenance of variation in harmful male traits.
Micro-scale environmental variation amplifies physiological variation among individual mussels.
Jimenez, Ana Gabriela; Jayawardene, Sarah; Alves, Shaina; Dallmer, Jeremiah; Dowd, W Wesley
2015-12-07
The contributions of temporal and spatial environmental variation to physiological variation remain poorly resolved. Rocky intertidal zone populations are subjected to thermal variation over the tidal cycle, superimposed with micro-scale variation in individuals' body temperatures. Using the sea mussel (Mytilus californianus), we assessed the consequences of this micro-scale environmental variation for physiological variation among individuals, first by examining the latter in field-acclimatized animals, second by abolishing micro-scale environmental variation via common garden acclimation, and third by restoring this variation using a reciprocal outplant approach. Common garden acclimation reduced the magnitude of variation in tissue-level antioxidant capacities by approximately 30% among mussels from a wave-protected (warm) site, but it had no effect on antioxidant variation among mussels from a wave-exposed (cool) site. The field-acclimatized level of antioxidant variation was restored only when protected-site mussels were outplanted to a high, thermally stressful site. Variation in organismal oxygen consumption rates reflected antioxidant patterns, decreasing dramatically among protected-site mussels after common gardening. These results suggest a highly plastic relationship between individuals' genotypes and their physiological phenotypes that depends on recent environmental experience. Corresponding context-dependent changes in the physiological mean-variance relationships within populations complicate prediction of responses to shifts in environmental variability that are anticipated with global change. © 2015 The Author(s).
Sugahara, Ryosuke; Sato, Ayami; Uchida, Asuka; Shiozawa, Shinya; Sato, Chiaki; Virgona, Nantiga; Yano, Tomohiro
2015-01-01
Prostate cancer is one of the most frequently occurring cancers and often acquires the potential of androgen-independent growth as a malignant phenotype. Androgen-independent prostate cancer has severe chemoresistance towards conventional chemotherapeutic agents, so a new treatment approach is required for curing such prostate cancer. In this context, the present study was undertaken to check if annatto tocotrienol (main component δ-tocotrienol) could suppress cell growth in human prostate cancer (PC3, androgen-independent type) cells via the inhibition of Src and Stat3. The tocotrienol showed cytotoxic effects on PC3 cells in a dose-dependent manner, and the effect depended on G1 arrest in the cell cycle and subsequent induction of apoptosis. In a cytotoxic dose, the tocotrienol suppressed cellular growth via the simultaneous inhibition of Src and Stat3. Similarly, the treatment combination of both Src and Stat3 inhibitors induced cytotoxic effects in PC3 cells in an additive manner compared to each by itself. With respect to cell cycle regulation and the induction of apoptosis, the combination treatment showed a similar effect to that of the tocotrienol treatment. These results suggest that annatto tocotrienol effectively induces cytotoxicity in androgen-independent prostate cancer cells via the suppression of Src and Stat3.
USDA-ARS?s Scientific Manuscript database
Some introduced species rapidly spread to cover large novel habitats beyond their native range mediated by a high degree of phenotypic plasticity and/or rapid evolutionary responses. In this context, clonality has been described as a significant factor contributing to invasiveness. We studied the ab...
Stereotypies as a manifestation of acute hyperglycemia without ketosis.
Baizabal-Carvallo, José Fidel; Ondo, William G
2012-04-15
Acute hyperglycemia without ketosis is recognized to induce movement disorders characterized by hemichorea, hemiballismus, or hemidystonia. A video-case of hyperkinetic movement disorder resembling stereotypies in the context of uncompensated hyperglycemia without ketosis is presented, expanding the clinical phenotype of this disorder. Copyright © 2011 Elsevier B.V. All rights reserved.
Human Facial Expressions as Adaptations:Evolutionary Questions in Facial Expression Research
SCHMIDT, KAREN L.; COHN, JEFFREY F.
2007-01-01
The importance of the face in social interaction and social intelligence is widely recognized in anthropology. Yet the adaptive functions of human facial expression remain largely unknown. An evolutionary model of human facial expression as behavioral adaptation can be constructed, given the current knowledge of the phenotypic variation, ecological contexts, and fitness consequences of facial behavior. Studies of facial expression are available, but results are not typically framed in an evolutionary perspective. This review identifies the relevant physical phenomena of facial expression and integrates the study of this behavior with the anthropological study of communication and sociality in general. Anthropological issues with relevance to the evolutionary study of facial expression include: facial expressions as coordinated, stereotyped behavioral phenotypes, the unique contexts and functions of different facial expressions, the relationship of facial expression to speech, the value of facial expressions as signals, and the relationship of facial expression to social intelligence in humans and in nonhuman primates. Human smiling is used as an example of adaptation, and testable hypotheses concerning the human smile, as well as other expressions, are proposed. PMID:11786989
Linkage Analyses of Stimulant Dependence, Craving and Heavy Use in American Indians
Ehlers, Cindy L.; Gizer, Ian R.; Gilder, David A.; Wilhelmsen, Kirk C.
2011-01-01
Amphetamine-type substances are the second most widely used illicit drugs in the United States. There is evidence to suggest that stimulant use (cocaine and methamphetamine) has a heritable component, yet the areas of the genome underlying these use disorders are yet to be identified. This study’s aims were to map loci linked to stimulant dependence, heavy use, and craving in an American Indian community at high risk for substance dependence. DSM diagnosis of stimulant dependence, as well as indices of stimulant “craving” and “heavy use”, were obtained using the Semi-Structured Assessment for the Genetics of Alcoholism (SSAGA). Genotypes were determined for a panel of 791 micro-satellite polymorphisms in 381 members of multiplex families using SOLAR. Stimulant dependence, stimulant “craving” and “heavy stimulant use”, were all found to be heritable. Analyses of multipoint variance component LOD scores, failed to yield evidence of linkage for stimulant dependence. For the stimulant “craving” phenotype, linkage analysis revealed a locus that had a LOD score of 3.02 on chromosome 15q25.3-26.1 near the nicotinic receptor gene cluster. A LOD score of 2.05 was found at this same site for “heavy stimulant use”. Additional loci with LOD scores above 2.00 were found for stimulant “craving” on chromosomes 12p13.33-13.32 and 18q22.3. These results corroborate the importance of “craving” as an important phenotype that is associated with regions on chromosome 12, 15 and 18, that have been highlighted in prior segregation studies in this and other populations for substance dependence-related phenotypes. PMID:21812097
The physical basis of how prion conformations determine strain phenotypes
NASA Astrophysics Data System (ADS)
Tanaka, Motomasa; Collins, Sean R.; Toyama, Brandon H.; Weissman, Jonathan S.
2006-08-01
A principle that has emerged from studies of protein aggregation is that proteins typically can misfold into a range of different aggregated forms. Moreover, the phenotypic and pathological consequences of protein aggregation depend critically on the specific misfolded form. A striking example of this is the prion strain phenomenon, in which prion particles composed of the same protein cause distinct heritable states. Accumulating evidence from yeast prions such as [PSI+] and mammalian prions argues that differences in the prion conformation underlie prion strain variants. Nonetheless, it remains poorly understood why changes in the conformation of misfolded proteins alter their physiological effects. Here we present and experimentally validate an analytical model describing how [PSI+] strain phenotypes arise from the dynamic interaction among the effects of prion dilution, competition for a limited pool of soluble protein, and conformation-dependent differences in prion growth and division rates. Analysis of three distinct prion conformations of yeast Sup35 (the [PSI+] protein determinant) and their in vivo phenotypes reveals that the Sup35 amyloid causing the strongest phenotype surprisingly shows the slowest growth. This slow growth, however, is more than compensated for by an increased brittleness that promotes prion division. The propensity of aggregates to undergo breakage, thereby generating new seeds, probably represents a key determinant of their physiological impact for both infectious (prion) and non-infectious amyloids.
Parental effects and the evolution of phenotypic memory.
Kuijper, B; Johnstone, R A
2016-02-01
Despite growing evidence for nongenetic inheritance, the ecological conditions that favour the evolution of heritable parental or grandparental effects remain poorly understood. Here, we systematically explore the evolution of parental effects in a patch-structured population with locally changing environments. When selection favours the production of a mix of offspring types, this mix differs according to the parental phenotype, implying that parental effects are favoured over selection for bet-hedging in which the mixture of offspring phenotypes produced does not depend on the parental phenotype. Positive parental effects (generating a positive correlation between parental and offspring phenotype) are favoured in relatively stable habitats and when different types of local environment are roughly equally abundant, and can give rise to long-term parental inheritance of phenotypes. By contrast, unstable habitats can favour negative parental effects (generating a negative correlation between parental and offspring phenotype), and under these circumstances, even slight asymmetries in the abundance of local environmental states select for marked asymmetries in transmission fidelity. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Neumeyer, Courtney H; Gerlach, Jamie L; Ruggiero, Kristin M; Covi, Joseph A
2015-03-01
The brine shrimp, Artemia (Crustacea, Anostraca), is a zooplankton that is commonly used in both basic and applied research. Unfortunately, Artemia embryos are often cultured under conditions that alter early development, and reports based on these cultures oversimplify or fail to describe morphological phenotypes. This is due in part to the lack of a comprehensive developmental model that is applicable to observations of live specimens. The objective of this study was to build and test a descriptive model of post-diapause development in Artemia franciscana using observations made with a standard dissecting microscope. The working model presented is the first to comprehensively place all known "abnormal" embryonic and naupliar phenotypes within the context of a classic hatching profile. Contrary to previous reports, embryos and nauplii with aberrant phenotypes often recover and develop normally. Oval prenauplii may emerge as normal prenauplii (E2 stage). A delay of this transition leads to incomplete hatching or direct hatching of first instar larvae with a curved thoracoabdomen. When hatching is incomplete, retained cuticular remnants are shed during the next molt, and a "normal" second instar larva is produced. By differentiating between molting events and gross embryonic patterning in live embryos, this new model facilitates fine time-scale analyses of chemical and environmental impacts on early development. A small increase in salinity within what is commonly believed to be a permissive range (20‰-35‰) produced aberrant morphology by delaying emergence without slowing development. A similar effect was observed by decreasing culture density within a range commonly applied in toxicological studies. These findings clearly demonstrate that morphological data from end-point studies are highly dependent on the time points chosen. An alternate assessment method is proposed, and the potential impact of heavy metals, hexachlorobenzene, Mirex, and cis-nonachlor detected in commercial embryos is discussed. © 2014 Wiley Periodicals, Inc.
The unforeseen challenge: from genotype-to-phenotype in cell populations
NASA Astrophysics Data System (ADS)
Braun, Erez
2015-02-01
Biological cells present a paradox, in that they show simultaneous stability and flexibility, allowing them to adapt to new environments and to evolve over time. The emergence of stable cell states depends on genotype-to-phenotype associations, which essentially reflect the organization of gene regulatory modes. The view taken here is that cell-state organization is a dynamical process in which the molecular disorder manifests itself in a macroscopic order. The genome does not determine the ordered cell state; rather, it participates in this process by providing a set of constraints on the spectrum of regulatory modes, analogous to boundary conditions in physical dynamical systems. We have developed an experimental framework, in which cell populations are exposed to unforeseen challenges; novel perturbations they had not encountered before along their evolutionary history. This approach allows an unbiased view of cell dynamics, uncovering the potential of cells to evolve and develop adapted stable states. In the last decade, our experiments have revealed a coherent set of observations within this framework, painting a picture of the living cell that in many ways is not aligned with the conventional one. Of particular importance here, is our finding that adaptation of cell-state organization is essentially an efficient exploratory dynamical process rather than one founded on random mutations. Based on our framework, a set of concepts underlying cell-state organization—exploration evolving by global, non-specific, dynamics of gene activity—is presented here. These concepts have significant consequences for our understanding of the emergence and stabilization of a cell phenotype in diverse biological contexts. Their implications are discussed for three major areas of biological inquiry: evolution, cell differentiation and cancer. There is currently no unified theoretical framework encompassing the emergence of order, a stable state, in the living cell. Hopefully, the integrated picture described here will provide a modest contribution towards a physics theory of the cell.
Tourlakis, Marina E.; Zhang, Siyi; Ball, Heather L.; Gandhi, Rikesh; Liu, Hongrui; Zhong, Jian; Yuan, Julie S.; Guidos, Cynthia J.; Durie, Peter R.; Rommens, Johanna M.
2015-01-01
Genetic models of ribosome dysfunction show selective organ failure, highlighting a gap in our understanding of cell-type specific responses to translation insufficiency. Translation defects underlie a growing list of inherited and acquired cancer-predisposition syndromes referred to as ribosomopathies. We sought to identify molecular mechanisms underlying organ failure in a recessive ribosomopathy, with particular emphasis on the pancreas, an organ with a high and reiterative requirement for protein synthesis. Biallelic loss of function mutations in SBDS are associated with the ribosomopathy Shwachman-Diamond syndrome, which is typified by pancreatic dysfunction, bone marrow failure, skeletal abnormalities and neurological phenotypes. Targeted disruption of Sbds in the murine pancreas resulted in p53 stabilization early in the postnatal period, specifically in acinar cells. Decreased Myc expression was observed and atrophy of the adult SDS pancreas could be explained by the senescence of acinar cells, characterized by induction of Tgfβ, p15Ink4b and components of the senescence-associated secretory program. This is the first report of senescence, a tumour suppression mechanism, in association with SDS or in response to a ribosomopathy. Genetic ablation of p53 largely resolved digestive enzyme synthesis and acinar compartment hypoplasia, but resulted in decreased cell size, a hallmark of decreased translation capacity. Moreover, p53 ablation resulted in expression of acinar dedifferentiation markers and extensive apoptosis. Our findings indicate a protective role for p53 and senescence in response to Sbds ablation in the pancreas. In contrast to the pancreas, the Tgfβ molecular signature was not detected in fetal bone marrow, liver or brain of mouse models with constitutive Sbds ablation. Nevertheless, as observed with the adult pancreas phenotype, disease phenotypes of embryonic tissues, including marked neuronal cell death due to apoptosis, were determined to be p53-dependent. Our findings therefore point to cell/tissue-specific responses to p53-activation that include distinction between apoptosis and senescence pathways, in the context of translation disruption. PMID:26057580
Tourlakis, Marina E; Zhang, Siyi; Ball, Heather L; Gandhi, Rikesh; Liu, Hongrui; Zhong, Jian; Yuan, Julie S; Guidos, Cynthia J; Durie, Peter R; Rommens, Johanna M
2015-06-01
Genetic models of ribosome dysfunction show selective organ failure, highlighting a gap in our understanding of cell-type specific responses to translation insufficiency. Translation defects underlie a growing list of inherited and acquired cancer-predisposition syndromes referred to as ribosomopathies. We sought to identify molecular mechanisms underlying organ failure in a recessive ribosomopathy, with particular emphasis on the pancreas, an organ with a high and reiterative requirement for protein synthesis. Biallelic loss of function mutations in SBDS are associated with the ribosomopathy Shwachman-Diamond syndrome, which is typified by pancreatic dysfunction, bone marrow failure, skeletal abnormalities and neurological phenotypes. Targeted disruption of Sbds in the murine pancreas resulted in p53 stabilization early in the postnatal period, specifically in acinar cells. Decreased Myc expression was observed and atrophy of the adult SDS pancreas could be explained by the senescence of acinar cells, characterized by induction of Tgfβ, p15(Ink4b) and components of the senescence-associated secretory program. This is the first report of senescence, a tumour suppression mechanism, in association with SDS or in response to a ribosomopathy. Genetic ablation of p53 largely resolved digestive enzyme synthesis and acinar compartment hypoplasia, but resulted in decreased cell size, a hallmark of decreased translation capacity. Moreover, p53 ablation resulted in expression of acinar dedifferentiation markers and extensive apoptosis. Our findings indicate a protective role for p53 and senescence in response to Sbds ablation in the pancreas. In contrast to the pancreas, the Tgfβ molecular signature was not detected in fetal bone marrow, liver or brain of mouse models with constitutive Sbds ablation. Nevertheless, as observed with the adult pancreas phenotype, disease phenotypes of embryonic tissues, including marked neuronal cell death due to apoptosis, were determined to be p53-dependent. Our findings therefore point to cell/tissue-specific responses to p53-activation that include distinction between apoptosis and senescence pathways, in the context of translation disruption.
Badyaev, Alexander V; Potticary, Ahva L; Morrison, Erin S
2017-08-01
Evolution of adaptation requires both generation of novel phenotypic variation and retention of a locally beneficial subset of this variation. Such retention can be facilitated by genetic assimilation, the accumulation of genetic and molecular mechanisms that stabilize induced phenotypes and assume progressively greater control over their reliable production. A particularly strong inference into genetic assimilation as an evolutionary process requires a system where it is possible to directly evaluate the extent to which an induced phenotype is progressively incorporated into preexisting developmental pathways. Evolution of diet-dependent pigmentation in birds-where external carotenoids are coopted into internal metabolism to a variable degree before being integrated with a feather's developmental processes-provides such an opportunity. Here we combine a metabolic network view of carotenoid evolution with detailed empirical study of feather modifications to show that the effect of physical properties of carotenoids on feather structure depends on their metabolic modification, their environmental recurrence, and biochemical redundancy, as predicted by the genetic assimilation hypothesis. Metabolized carotenoids caused less stochastic variation in feather structure and were more closely integrated with feather growth than were dietary carotenoids of the same molecular weight. These patterns were driven by the recurrence of organism-carotenoid associations: commonly used dietary carotenoids and biochemically redundant derived carotenoids caused less stochastic variation in feather structure than did rarely used or biochemically unique compounds. We discuss implications of genetic assimilation processes for the evolutionary diversification of diet-dependent animal coloration.
Axelrod, Kevin; Sanchez, Alvaro; Gore, Jeff
2015-01-01
Microorganisms often exhibit a history-dependent phenotypic response after exposure to a stimulus which can be imperative for proper function. However, cells frequently experience unexpected environmental perturbations that might induce phenotypic switching. How cells maintain phenotypic states in the face of environmental fluctuations remains an open question. Here, we use environmental perturbations to characterize the resilience of phenotypic states in a synthetic gene network near a critical transition. We find that far from the critical transition an environmental perturbation may induce little to no phenotypic switching, whereas close to the critical transition the same perturbation can cause many cells to switch phenotypic states. This loss of resilience was observed for perturbations that interact directly with the gene circuit as well as for a variety of generic perturbations-such as salt, ethanol, or temperature shocks-that alter the state of the cell more broadly. We obtain qualitatively similar findings in natural gene circuits, such as the yeast GAL network. Our findings illustrate how phenotypic memory can become destabilized by environmental variability near a critical transition. DOI: http://dx.doi.org/10.7554/eLife.07935.001 PMID:26302311
Quantifying male attractiveness.
McNamara, John M; Houston, Alasdair I; Marques Dos Santos, Miguel; Kokko, Hanna; Brooks, Rob
2003-01-01
Genetic models of sexual selection are concerned with a dynamic process in which female preference and male trait values coevolve. We present a rigorous method for characterizing evolutionary endpoints of this process in phenotypic terms. In our phenotypic characterization the mate-choice strategy of female population members determines how attractive females should find each male, and a population is evolutionarily stable if population members are actually behaving in this way. This provides a justification of phenotypic explanations of sexual selection and the insights into sexual selection that they provide. Furthermore, the phenotypic approach also has enormous advantages over a genetic approach when computing evolutionarily stable mate-choice strategies, especially when strategies are allowed to be complex time-dependent preference rules. For simplicity and clarity our analysis deals with haploid mate-choice genetics and a male trait that is inherited phenotypically, for example by vertical cultural transmission. The method is, however, easily extendible to other cases. An example illustrates that the sexy son phenomenon can occur when there is phenotypic inheritance of the male trait. PMID:14561306
Preemptive spatial competition under a reproduction-mortality constraint.
Allstadt, Andrew; Caraco, Thomas; Korniss, G
2009-06-21
Spatially structured ecological interactions can shape selection pressures experienced by a population's different phenotypes. We study spatial competition between phenotypes subject to antagonistic pleiotropy between reproductive effort and mortality rate. The constraint we invoke reflects a previous life-history analysis; the implied dependence indicates that although propagation and mortality rates both vary, their ratio is fixed. We develop a stochastic invasion approximation predicting that phenotypes with higher propagation rates will invade an empty environment (no biotic resistance) faster, despite their higher mortality rate. However, once population density approaches demographic equilibrium, phenotypes with lower mortality are favored, despite their lower propagation rate. We conducted a set of pairwise invasion analyses by simulating an individual-based model of preemptive competition. In each case, the phenotype with the lowest mortality rate and (via antagonistic pleiotropy) the lowest propagation rate qualified as evolutionarily stable among strategies simulated. This result, for a fixed propagation to mortality ratio, suggests that a selective response to spatial competition can extend the time scale of the population's dynamics, which in turn decelerates phenotypic evolution.
Benjamin H. Letcher; Jason A Coombs; Keith H. Nislow
2011-01-01
Phenotypic variation in body size can result from within-cohort variation in birth dates, among-individual growth variation and size-selective processes. We explore the relative effects of these processes on the maintenance of wide observed body size variation in stream-dwelling brook trout (Salvelinus fontinalis). Based on the analyses of multiple...
DuFort, Christopher C; Hingorani, Sunil R
2016-06-13
A recent study finds that impaired TGFβ signaling can initiate a positive feedback loop between increasing ECM stiffness and epithelial cell contractility in pancreas cancer. Even more surprising is the possibility that this phenotype can liberate the epithelium from dependence on the genetic events that transformed it. Copyright © 2016 Elsevier Inc. All rights reserved.
Petit, Emilie I; Michalak, Zuzanna; Cox, Rachel; O'Tuathaigh, Colm M P; Clarke, Niamh; Tighe, Orna; Talbot, Konrad; Blake, Derek; Joel, Josephine; Shaw, Alexander; Sheardown, Steven A; Morrison, Alastair D; Wilson, Stephen; Shapland, Ellen M; Henshall, David C; Kew, James N; Kirby, Brian P; Waddington, John L
2017-01-01
Dysbindin-1, a protein that regulates aspects of early and late brain development, has been implicated in the pathobiology of schizophrenia. As the functional roles of the three major isoforms of dysbindin-1, (A, B, and C) remain unknown, we generated a novel mutant mouse, dys-1A−/−, with selective loss of dysbindin-1A and investigated schizophrenia-related phenotypes in both males and females. Loss of dysbindin-1A resulted in heightened initial exploration and disruption in subsequent habituation to a novel environment, together with heightened anxiety-related behavior in a stressful environment. Loss of dysbindin-1A was not associated with disruption of either long-term (olfactory) memory or spontaneous alternation behavior. However, dys-1A−/− showed enhancement in delay-dependent working memory under high levels of interference relative to controls, ie, impairment in sensitivity to the disruptive effect of such interference. These findings in dys-1A−/− provide the first evidence for differential functional roles for dysbindin-1A vs dysbindin-1C isoforms among phenotypes relevant to the pathobiology of schizophrenia. Future studies should investigate putative sex differences in these phenotypic effects. PMID:27986973
Petit, Emilie I; Michalak, Zuzanna; Cox, Rachel; O'Tuathaigh, Colm M P; Clarke, Niamh; Tighe, Orna; Talbot, Konrad; Blake, Derek; Joel, Josephine; Shaw, Alexander; Sheardown, Steven A; Morrison, Alastair D; Wilson, Stephen; Shapland, Ellen M; Henshall, David C; Kew, James N; Kirby, Brian P; Waddington, John L
2017-05-01
Dysbindin-1, a protein that regulates aspects of early and late brain development, has been implicated in the pathobiology of schizophrenia. As the functional roles of the three major isoforms of dysbindin-1, (A, B, and C) remain unknown, we generated a novel mutant mouse, dys-1A -/- , with selective loss of dysbindin-1A and investigated schizophrenia-related phenotypes in both males and females. Loss of dysbindin-1A resulted in heightened initial exploration and disruption in subsequent habituation to a novel environment, together with heightened anxiety-related behavior in a stressful environment. Loss of dysbindin-1A was not associated with disruption of either long-term (olfactory) memory or spontaneous alternation behavior. However, dys-1A -/- showed enhancement in delay-dependent working memory under high levels of interference relative to controls, ie, impairment in sensitivity to the disruptive effect of such interference. These findings in dys-1A -/- provide the first evidence for differential functional roles for dysbindin-1A vs dysbindin-1C isoforms among phenotypes relevant to the pathobiology of schizophrenia. Future studies should investigate putative sex differences in these phenotypic effects.
Individual-based models for adaptive diversification in high-dimensional phenotype spaces.
Ispolatov, Iaroslav; Madhok, Vaibhav; Doebeli, Michael
2016-02-07
Most theories of evolutionary diversification are based on equilibrium assumptions: they are either based on optimality arguments involving static fitness landscapes, or they assume that populations first evolve to an equilibrium state before diversification occurs, as exemplified by the concept of evolutionary branching points in adaptive dynamics theory. Recent results indicate that adaptive dynamics may often not converge to equilibrium points and instead generate complicated trajectories if evolution takes place in high-dimensional phenotype spaces. Even though some analytical results on diversification in complex phenotype spaces are available, to study this problem in general we need to reconstruct individual-based models from the adaptive dynamics generating the non-equilibrium dynamics. Here we first provide a method to construct individual-based models such that they faithfully reproduce the given adaptive dynamics attractor without diversification. We then show that a propensity to diversify can be introduced by adding Gaussian competition terms that generate frequency dependence while still preserving the same adaptive dynamics. For sufficiently strong competition, the disruptive selection generated by frequency-dependence overcomes the directional evolution along the selection gradient and leads to diversification in phenotypic directions that are orthogonal to the selection gradient. Copyright © 2015 Elsevier Ltd. All rights reserved.
Motor impairment: a new ethanol withdrawal phenotype in mice
Philibin, Scott D.; Cameron, Andy J.; Metten, Pamela; Crabbe, John C.
2015-01-01
Alcoholism is a complex disorder with genetic and environmental risk factors. The presence of withdrawal symptoms is one criterion for alcohol dependence. Genetic animal models have followed a reductionist approach by quantifying various effects of ethanol withdrawal separately. Different ethanol withdrawal symptoms may have distinct genetic etiologies, and therefore differentiating distinct neurobiological mechanisms related to separate signs of withdrawal would increase our understanding of various aspects of the complex phenotype. This study establishes motor incoordination as a new phenotype of alcohol withdrawal in mice. Mice were made physically dependent on ethanol by exposure to ethanol vapor for 72 h. The effects of ethanol withdrawal in mice from different genetic backgrounds were measured on the accelerating rotarod, a simple motor task. Ethanol withdrawal disrupted accelerating rotarod behavior in mice. The disruptive effects of withdrawal suggest a performance rather than a learning deficit. Inbred strain comparisons suggest genetic differences in magnitude of this withdrawal phenotype. The withdrawal-induced deficits were not correlated with the selection response difference in handling convulsion severity in selectively bred Withdrawal Seizure-Prone and Withdrawal Seizure-Resistant lines. The accelerating rotarod seems to be a simple behavioral measure of ethanol withdrawal that is suitable for comparing genotypes. PMID:18690115
Thyroid Hormone Differentially Modulates Warburg Phenotype in Breast Cancer Cells
Suhane, Sonal; Ramanujan, V Krishnan
2011-01-01
Sustenance of cancer cells in vivo critically depends on a variety of genetic and metabolic adaptations. Aerobic glycolysis or Warburg effect has been a defining biochemical hallmark of transformed cells for more than five decades although a clear molecular basis of this observation is emerging only in recent years. In this study, we present our findings that thyroid hormone exerts its non-genomic and genomic actions in two model human breast cancer cell lines differentially. By laying a clear foundation for experimentally monitoring the Warburg phenotype in living cancer cells, we demonstrate that thyroid hormone-induced modulation of bioenergetic profiles in these two model cell lines depends on the degree of Warburg phenotype that they display. Further we also show that thyroid hormone can sensitize mitochondria in aggressive, triple-negative breast cancer cells favorably to increase the chemotherapeutic efficacy in these cells. Even though the role of thyroid hormone in modulating mitochondrial metabolism has been known, the current study accentuates the critical role it plays in modulating Warburg phenotype in breast cancer cells. The clinical significance of this finding is the possibility to devise strategies for metabolically modulating aggressive triple-negative tumors so as to enhance their chemosensitivity in vivo. PMID:21945435
Physiological Effect of XoxG(4) on Lanthanide-Dependent Methanotrophy
Zheng, Yue; Huang, Jing; Zhao, Feng; ...
2018-03-27
ABSTRACT A recent surprising discovery of the activity of rare earth metals (lanthanides) as enzyme cofactors as well as transcriptional regulators has overturned the traditional assumption of biological inertia of these metals. However, so far, examples of such activities have been limited to alcohol dehydrogenases. Here we describe the physiological effects of a mutation in xoxG , a gene encoding a novel cytochrome, XoxG(4), and compare these to the effects of mutation in XoxF, a lanthanide-dependent methanol dehydrogenase, at the enzyme activity level and also at the community function level, using Methylomonas sp. strain LW13 as a model organism. Throughmore » comparative phenotypic characterization, we establish XoxG as the second protein directly involved in lanthanide-dependent metabolism, likely as a dedicated electron acceptor from XoxF. However, mutation in XoxG caused a phenotype that was dramatically different from the phenotype of the mutant in XoxF, suggesting a secondary function for this cytochrome, in metabolism of methane. We also purify XoxG(4) and demonstrate that this protein is a true cytochrome c , based on the typical absorption spectra, and we demonstrate that XoxG can be directly reduced by a purified XoxF, supporting one of its proposed physiological functions. Overall, our data continue to suggest the complex nature of the interplay between the calcium-dependent and lanthanide-dependent alcohol oxidation systems, while they also suggest that addressing the roles of these alternative systems is essential at the enzyme and community function level, in addition to the gene transcription level. IMPORTANCE The lanthanide-dependent biochemistry of living organisms remains a barely tapped area of knowledge. So far, only a handful of lanthanide-dependent alcohol dehydrogenases have been described, and their regulation by lanthanides has been demonstrated at the transcription level. Little information is available regarding the concentrations of lanthanides that could support sufficient enzymatic activities to support specific metabolisms, and so far, no other redox proteins involved in lanthanide-dependent methanotrophy have been demonstrated. The research presented here provides enzyme activity-level data on lanthanide-dependent methanotrophy in a model methanotroph. Additionally, we identify a second protein important for lanthanide-dependent metabolism in this organism, XoxG(4), a novel cytochrome. XoxG(4) appears to have multiple functions in methanotrophy, one function as an electron acceptor from XoxF and another function remaining unknown. On the basis of the dramatic phenotype of the XoxG(4) mutant, this function must be crucial for methanotrophy.« less
Physiological Effect of XoxG(4) on Lanthanide-Dependent Methanotrophy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Yue; Huang, Jing; Zhao, Feng
ABSTRACT A recent surprising discovery of the activity of rare earth metals (lanthanides) as enzyme cofactors as well as transcriptional regulators has overturned the traditional assumption of biological inertia of these metals. However, so far, examples of such activities have been limited to alcohol dehydrogenases. Here we describe the physiological effects of a mutation in xoxG , a gene encoding a novel cytochrome, XoxG(4), and compare these to the effects of mutation in XoxF, a lanthanide-dependent methanol dehydrogenase, at the enzyme activity level and also at the community function level, using Methylomonas sp. strain LW13 as a model organism. Throughmore » comparative phenotypic characterization, we establish XoxG as the second protein directly involved in lanthanide-dependent metabolism, likely as a dedicated electron acceptor from XoxF. However, mutation in XoxG caused a phenotype that was dramatically different from the phenotype of the mutant in XoxF, suggesting a secondary function for this cytochrome, in metabolism of methane. We also purify XoxG(4) and demonstrate that this protein is a true cytochrome c , based on the typical absorption spectra, and we demonstrate that XoxG can be directly reduced by a purified XoxF, supporting one of its proposed physiological functions. Overall, our data continue to suggest the complex nature of the interplay between the calcium-dependent and lanthanide-dependent alcohol oxidation systems, while they also suggest that addressing the roles of these alternative systems is essential at the enzyme and community function level, in addition to the gene transcription level. IMPORTANCE The lanthanide-dependent biochemistry of living organisms remains a barely tapped area of knowledge. So far, only a handful of lanthanide-dependent alcohol dehydrogenases have been described, and their regulation by lanthanides has been demonstrated at the transcription level. Little information is available regarding the concentrations of lanthanides that could support sufficient enzymatic activities to support specific metabolisms, and so far, no other redox proteins involved in lanthanide-dependent methanotrophy have been demonstrated. The research presented here provides enzyme activity-level data on lanthanide-dependent methanotrophy in a model methanotroph. Additionally, we identify a second protein important for lanthanide-dependent metabolism in this organism, XoxG(4), a novel cytochrome. XoxG(4) appears to have multiple functions in methanotrophy, one function as an electron acceptor from XoxF and another function remaining unknown. On the basis of the dramatic phenotype of the XoxG(4) mutant, this function must be crucial for methanotrophy.« less
Cox, Benjamin R; Olney, Jeffrey J; Lowery-Gionta, Emily G; Sprow, Gretchen M; Rinker, Jennifer A; Navarro, Montserrat; Kash, Thomas L; Thiele, Todd E
2013-10-01
Recently, procedures have been developed to model specific facets of human alcohol abuse disorders, including those that model excessive binge-like drinking (i.e., "drinking-in-the-dark," or DID procedures) and excessive dependence-like drinking (i.e., intermittent ethanol [EtOH] vapor exposure). Similar neuropeptide systems modulate excessive EtOH drinking stemming from both procedures, raising the possibility that both paradigms are actually modeling the same phenotypes and triggering the same central neuroplasticity. Therefore, the goal of this present project was to study the effects of a history of binge-like EtOH drinking, using DID procedures, on phenotypes that have previously been described with procedures to model dependence-like drinking. Male C57BL/6J mice first experienced 0 to 10 four-day binge-like drinking episodes (3 days of rest between episodes). Beginning 24 hours after the final binge-like drinking session, mice were tested for anxiety-like behaviors (with elevated plus maze [EPM] and open-field locomotor activity tests), ataxia with the rotarod test, and sensitivity to handling-induced convulsions (HICs). One week later, mice began a 40-day 2-bottle (water vs. EtOH) voluntary consumption test with concentration ranging from 10 to 20% (v/v) EtOH. A prior history of binge-like EtOH drinking significantly increased subsequent voluntary EtOH consumption and preference, effects most robust in groups that initially experienced 6 or 10 binge-like drinking episodes and completely absent in mice that experienced 1 binge-like drinking episode. Conversely, a history of binge-like EtOH drinking did not influence anxiety-like behaviors, ataxia, or HICs. Excessive EtOH drinking stemming from DID procedures does not initially induce phenotypes consistent with a dependence-like state. However, the subsequent increases in voluntary EtOH consumption and preference that become more robust following repeated episodes of binge-like EtOH drinking may reflect the early stages of EtOH dependence, suggesting that DID procedures may be ideal for studying the transition to EtOH dependence. Copyright © 2013 by the Research Society on Alcoholism.
Cox, Benjamin R.; Olney, Jeffrey J.; Lowery-Gionta, Emily G.; Sprow, Gretchen M.; Rinker, Jennifer A.; Navarro, Montserrat; Kash, Thomas L.; Thiele, Todd E.
2013-01-01
Background Recently, procedures have been developed to model specific facets of human alcohol abuse disorders, including those that model excessive binge-like drinking (i.e., “drinking in the dark”, or DID procedures) and excessive dependence-like drinking (i.e., intermittent ethanol vapor exposure). Similar neuropeptide systems modulate excessive ethanol drinking stemming from both procedures, raising the possibility that both paradigms are actually modeling the same phenotypes and triggering the same central neuroplasticity. Therefore, the goal of the present project was to study the effects of a history of binge-like ethanol drinking, using DID procedures, on phenotypes that have previously been described with procedures to model dependence-like drinking. Methods Male C57BL/6J mice first experienced 0 to 10 4-day binge-like drinking episodes (3 days of rest between episodes). Beginning 24-h after the final binge-like drinking session, mice were tested for anxiety-like behaviors (with elevated plus maze (EPM) and open-field locomotor activity tests), ataxia with the rotarod test, and sensitivity to handling-induced convulsions (HICs). One week later, mice began a 40-day 2-bottle (water versus ethanol) voluntary consumption test with concentration ranging from 10 to 20% (v/v) ethanol. Results A prior history of binge-like ethanol drinking significantly increased subsequent voluntary ethanol consumption and preference, effects most robust in groups that initially experienced 6 or 10 binge-like drinking episodes and completely absent in mice that experienced 1 binge-like drinking episode. Conversely, a history of binge-like ethanol drinking did not influence anxiety-like behaviors, ataxia, or HICs. Conclusions Excessive ethanol drinking stemming from DID procedures does not initially induce phenotypes consistent with a dependence-like state. However, the subsequent increases of voluntary ethanol consumption and preference that become more robust following repeated episodes of binge-like ethanol drinking may reflect the early stages of ethanol dependence, suggesting that DID procedures may be ideal for studying the transition to ethanol dependence. PMID:23647551
Roux, F; Bergelson, J
2016-01-01
In the context of global change, predicting the responses of plant communities in an ever-changing biotic environment calls for a multipronged approach at the interface of evolutionary genetics and community ecology. However, our understanding of the genetic basis of natural variation involved in mediating biotic interactions, and associated adaptive dynamics of focal plants in their natural communities, is still in its infancy. Here, we review the genetic and molecular bases of natural variation in the response to biotic interactions (viruses, bacteria, fungi, oomycetes, herbivores, and plants) in the model plant Arabidopsis thaliana as well as the adaptive value of these bases. Among the 60 identified genes are a number that encode nucleotide-binding site leucine-rich repeat (NBS-LRR)-type proteins, consistent with early examples of plant defense genes. However, recent studies have revealed an extensive diversity in the molecular mechanisms of defense. Many types of genetic variants associate with phenotypic variation in biotic interactions, even among the genes of large effect that tend to be identified. In general, we found that (i) balancing selection rather than directional selection explains the observed patterns of genetic diversity within A. thaliana and (ii) the cost/benefit tradeoffs of adaptive alleles can be strongly dependent on both genomic and environmental contexts. Finally, because A. thaliana rarely interacts with only one biotic partner in nature, we highlight the benefit of exploring diffuse biotic interactions rather than tightly associated host-enemy pairs. This challenge would help to improve our understanding of coevolutionary quantitative genetics within the context of realistic community complexity. © 2016 Elsevier Inc. All rights reserved.
Earley, Lauriel F.; Minko, Irina G.; Christov, Plamen P.; Rizzo, Carmelo J.; Lloyd, R. Stephen
2013-01-01
DNA exposures to electrophilic methylating agents that are commonly used during chemotherapeutic treatments cause diverse chemical modifications of nucleobases, with reaction at N7-dG being the most abundant. Although this base modification frequently results in destabilization of the glycosyl bond and spontaneous depurination, the adduct can react with hydroxide ion to yield a stable, ring-opened MeFapy-dG and this lesion has been reported to persist in animal tissues. Results from prior in vitro replication bypass investigations of the MeFapy-dG adduct had revealed complex spectra of replication errors that differed depending on the identity of DNA polymerase and the local sequence context. In this study, a series of nine site-specifically modified MeFapy-dG-containing oligodeoxynucleotides were engineered into a shuttle vector and subjected to replication in primate cells. In all nine sequence contexts examined, MeFapy-dG was shown to be associated with a strong mutator phenotype, predominantly causing base substitutions, with G to T transversions being most common. Single and dinucleotide deletions were also found in a subset of the sequence contexts. Interestingly, single-nucleotide deletions occurred not only at the adducted site, but also one nucleotide downstream of the adduct. Standard models for primer-template misalignment could account for some, but not all mutations observed. These data demonstrate that in addition to mutagenesis predicted from replication of DNAs containing O6-Me-dG and O4-Me-dT, the MeFapy-dG adduct likely contributes to mutagenic events following chemotherapeutic treatments. PMID:23763662
Context dependent prediction and category encoding for DPCM image compression
NASA Technical Reports Server (NTRS)
Beaudet, Paul R.
1989-01-01
Efficient compression of image data requires the understanding of the noise characteristics of sensors as well as the redundancy expected in imagery. Herein, the techniques of Differential Pulse Code Modulation (DPCM) are reviewed and modified for information-preserving data compression. The modifications include: mapping from intensity to an equal variance space; context dependent one and two dimensional predictors; rationale for nonlinear DPCM encoding based upon an image quality model; context dependent variable length encoding of 2x2 data blocks; and feedback control for constant output rate systems. Examples are presented at compression rates between 1.3 and 2.8 bits per pixel. The need for larger block sizes, 2D context dependent predictors, and the hope for sub-bits-per-pixel compression which maintains spacial resolution (information preserving) are discussed.
Epigenetics and developmental plasticity across species.
Champagne, Frances A
2013-01-01
Plasticity is a typical feature of development and can lead to divergent phenotypes. There is increasing evidence that epigenetic mechanisms, such as DNA methylation, are present across species, are modifiable by the environment, and are involved in developmental plasticity. Thus, in the context of the concept of developmental homology, epigenetic mechanisms may serve to create a process homology between species by providing a common molecular pathway through which environmental experiences shape development, ultimately leading to phenotypic diversity. This article will highlight evidence derived from across-species investigations of epigenetics, development, and plasticity which may contribute to our understanding of the homology that exists between species and between ancestors and descendants. Copyright © 2012 Wiley Periodicals, Inc.
Parallel processing by cortical inhibition enables context-dependent behavior.
Kuchibhotla, Kishore V; Gill, Jonathan V; Lindsay, Grace W; Papadoyannis, Eleni S; Field, Rachel E; Sten, Tom A Hindmarsh; Miller, Kenneth D; Froemke, Robert C
2017-01-01
Physical features of sensory stimuli are fixed, but sensory perception is context dependent. The precise mechanisms that govern contextual modulation remain unknown. Here, we trained mice to switch between two contexts: passively listening to pure tones and performing a recognition task for the same stimuli. Two-photon imaging showed that many excitatory neurons in auditory cortex were suppressed during behavior, while some cells became more active. Whole-cell recordings showed that excitatory inputs were affected only modestly by context, but inhibition was more sensitive, with PV + , SOM + , and VIP + interneurons balancing inhibition and disinhibition within the network. Cholinergic modulation was involved in context switching, with cholinergic axons increasing activity during behavior and directly depolarizing inhibitory cells. Network modeling captured these findings, but only when modulation coincidently drove all three interneuron subtypes, ruling out either inhibition or disinhibition alone as sole mechanism for active engagement. Parallel processing of cholinergic modulation by cortical interneurons therefore enables context-dependent behavior.
Claassen, J; Mazilescu, L; Thieme, A; Bracha, V; Timmann, D
2016-01-01
Context dependency of extinction is well known and has extensively been studied in fear conditioning, but has rarely been assessed in eyeblink conditioning. One way to demonstrate context dependency of extinction is the renewal effect. ABA paradigms are most commonly used to show the renewal effect of extinguished learned fear: if acquisition takes place in context A, and extinction takes place in context B (extinction phase), learned responses will recover in subsequent extinction trials presented in context A (renewal phase). The renewal effect of the visual threat eyeblink response (VTER), a conditioned eyeblink response, which is naturally acquired in early infancy, was examined in a total of 48 young and healthy participants with two experiments using an ABA paradigm. Twenty paired trials were performed in context A (baseline trials), followed by 50 extinction trials in context B (extinction phase) and 50 extinction trials in context A (renewal phase). In 24 participants, contexts A and B were two different rooms, and in the other 24 participants, two different background colors (orange and blue) and noises were used. To rule out spontaneous recovery, an AAA design was used for comparison. There were significant effects of extinction in both experiments. No significant renewal effects were observed. In experiment 2, however, extinction was significantly less using orange background during extinction compared to the blue background. The present findings suggest that extinction of conditioned eyeblinks depends on the physical context. Findings add to the animal literature that context can play a role in the acquisition of classically conditioned eyeblink responses. Future studies, however, need to be performed to confirm the present findings. Lack of renewal effect may be explained by the highly overlearned character of the VTER.
Hesse, Andrew N; Bevilacqua, Jennifer; Shankar, Kritika; Reddi, Honey V
2018-05-16
Epilepsy is a diverse neurological condition with extreme genetic and phenotypic heterogeneity. The introduction of next-generation sequencing into the clinical laboratory has made it possible to investigate hundreds of associated genes simultaneously for a patient, even in the absence of a clearly defined syndrome. This has resulted in the detection of rare and novel mutations at a rate well beyond our ability to characterize their effects. This retrospective study reviews genotype data in the context of available phenotypic information on 305 patients spanning the epileptic spectrum to identify established and novel patterns of correlation. Our epilepsy panel comprising 377 genes was used to sequence 305 patients referred for genetic testing. Qualifying variants were annotated with phenotypic data obtained from either the test requisition form or supporting clinical documentation. Observed phenotypes were compared with established phenotypes in OMIM, published literature and the ILAEs 2010 report on genetic testing to assess congruity with known gene aberrations. We identified a number of novel and recognized genetic variants consistent with established epileptic phenotypes. Forty-one pathogenic or predicted deleterious variants were detected in 39 patients with accompanying clinical documentation. Twenty-five of these variants across 15 genes were novel. Furthermore, evaluation of phenotype data for 194 patients with variants of unknown significance in genes with autosomal dominant and X-linked disease inheritance elucidated potentially disease-causing variants that were not currently characterized in the literature. Assessment of key genotype-phenotype correlations from our cohort provide insight into variant classification, as well as the importance of including ILAE recommended genes as part of minimum panel content for comprehensive epilepsy tests. Many of the reported VUSs are likely genuine pathogenic variants driving the observed phenotypes, but not enough evidence is available for assertive classifications. Similar studies will provide more utility via mounting independent genotype-phenotype data from unrelated patients. The possible outcome would be a better molecular diagnostic product, with fewer indeterminate reports containing only VUSs. Copyright © 2018. Published by Elsevier B.V.
Voss, J D; Goodson, M S; Leon, J C
2018-05-01
We propose the idea of "phenotype diffusion," which is a rapid convergence of an observed trait in some human and animal populations. The words phenotype and diffusion both imply observations independent of mechanism as phenotypes are observed traits with multiple possible genetic mechanisms and diffusion is an observed state of being widely distributed. Recognizing shared changes in phenotype in multiple species does not by itself reveal a particular mechanism such as a shared exposure, shared adaptive need, particular stochastic process or a transmission pathway. Instead, identifying phenotype diffusion suggests the mechanism should be explored to help illuminate the ways human and animal health are connected and new opportunities for optimizing these links. Using the plurality of obesity epidemics across multiple species as a prototype for shared changes in phenotype, the goal of this review was to explore eco-evolutionary theories that could inform further investigation. First, evolutionary changes described by hologenome evolution, pawnobe evolution, transposable element (TE) thrust and the drifty gene hypothesis will be discussed within the context of the selection asymmetries among human and animal populations. Secondly, the ecology of common source exposures (bovine milk, xenohormesis and "obesogens"), niche evolution and the hygiene hypothesis will be summarized. Finally, we synthesize these considerations. For example, many agricultural breeds have been aggressively selected for weight gain, microbiota (e.g., adenovirus 36, toxoplasmosis) associated with (or infecting) these breeds cause experimental weight gain in other animals, and these same microbes are associated with human obesity. We propose applications of phenotype diffusion could include zoonotic biosurveillance, biocontainment, antibiotic stewardship and environmental priorities. The One Health field is focused on the connections between the health of humans, animals and the environment, and so identification of phenotype diffusion is highly relevant for practitioners (public health officials, physicians and veterinarians) in this field. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.
Warner, Daniel A
2014-11-01
Environmental factors strongly influence phenotypic variation within populations. The environment contributes to this variation in two ways: (1) by acting as a determinant of phenotypic variation (i.e., plastic responses) and (2) as an agent of selection that "chooses" among existing phenotypes. Understanding how these two environmental forces contribute to phenotypic variation is a major goal in the field of evolutionary biology and a primary objective of my research program. The objective of this article is to provide a framework to guide studies of environmental sources of phenotypic variation (specifically, developmental plasticity and maternal effects, and their adaptive significance). Two case studies from my research on reptiles are used to illustrate the general approaches I have taken to address these conceptual topics. Some key points for advancing our understanding of environmental influences on phenotypic variation include (1) merging laboratory-based research that identifies specific environmental effects with field studies to validate ecological relevance; (2) using controlled experimental approaches that mimic complex environments found in nature; (3) integrating data across biological fields (e.g., genetics, morphology, physiology, behavior, and ecology) under an evolutionary framework to provide novel insights into the underlying mechanisms that generate phenotypic variation; (4) assessing fitness consequences using measurements of survival and/or reproductive success across ontogeny (from embryos to adults) and under multiple ecologically-meaningful contexts; and (5) quantifying the strength and form of natural selection in multiple populations over multiple periods of time to understand the spatial and temporal consistency of phenotypic selection. Research programs that focus on organisms that are amenable to these approaches will provide the most promise for advancing our understanding of the environmental factors that generate the remarkable phenotypic diversity observed within populations. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Lewis, Richard F.
2003-01-01
Accurate motor control requires adaptive processes that correct for gradual and rapid perturbations in the properties of the controlled object. The ability to quickly switch between different movement synergies using sensory cues, referred to as context-dependent adaptation, is a subject of considerable interest at present. The potential function of the cerebellum in context-dependent adaptation remains uncertain, but the data reviewed below suggest that it may play a fundamental role in this process.
Elhadad, N.; Claassen, J.; Perotte, R.; Goldstein, A.; Hripcsak, G.
2018-01-01
We study the question of how to represent or summarize raw laboratory data taken from an electronic health record (EHR) using parametric model selection to reduce or cope with biases induced through clinical care. It has been previously demonstrated that the health care process (Hripcsak and Albers, 2012, 2013), as defined by measurement context (Hripcsak and Albers, 2013; Albers et al., 2012) and measurement patterns (Albers and Hripcsak, 2010, 2012), can influence how EHR data are distributed statistically (Kohane and Weber, 2013; Pivovarov et al., 2014). We construct an algorithm, PopKLD, which is based on information criterion model selection (Burnham and Anderson, 2002; Claeskens and Hjort, 2008), is intended to reduce and cope with health care process biases and to produce an intuitively understandable continuous summary. The PopKLD algorithm can be automated and is designed to be applicable in high-throughput settings; for example, the output of the PopKLD algorithm can be used as input for phenotyping algorithms. Moreover, we develop the PopKLD-CAT algorithm that transforms the continuous PopKLD summary into a categorical summary useful for applications that require categorical data such as topic modeling. We evaluate our methodology in two ways. First, we apply the method to laboratory data collected in two different health care contexts, primary versus intensive care. We show that the PopKLD preserves known physiologic features in the data that are lost when summarizing the data using more common laboratory data summaries such as mean and standard deviation. Second, for three disease-laboratory measurement pairs, we perform a phenotyping task: we use the PopKLD and PopKLD-CAT algorithms to define high and low values of the laboratory variable that are used for defining a disease state. We then compare the relationship between the PopKLD-CAT summary disease predictions and the same predictions using empirically estimated mean and standard deviation to a gold standard generated by clinical review of patient records. We find that the PopKLD laboratory data summary is substantially better at predicting disease state. The PopKLD or PopKLD-CAT algorithms are not meant to be used as phenotyping algorithms, but we use the phenotyping task to show what information can be gained when using a more informative laboratory data summary. In the process of evaluation our method we show that the different clinical contexts and laboratory measurements necessitate different statistical summaries. Similarly, leveraging the principle of maximum entropy we argue that while some laboratory data only have sufficient information to estimate a mean and standard deviation, other laboratory data captured in an EHR contain substantially more information than can be captured in higher-parameter models. PMID:29369797
Albers, D J; Elhadad, N; Claassen, J; Perotte, R; Goldstein, A; Hripcsak, G
2018-02-01
We study the question of how to represent or summarize raw laboratory data taken from an electronic health record (EHR) using parametric model selection to reduce or cope with biases induced through clinical care. It has been previously demonstrated that the health care process (Hripcsak and Albers, 2012, 2013), as defined by measurement context (Hripcsak and Albers, 2013; Albers et al., 2012) and measurement patterns (Albers and Hripcsak, 2010, 2012), can influence how EHR data are distributed statistically (Kohane and Weber, 2013; Pivovarov et al., 2014). We construct an algorithm, PopKLD, which is based on information criterion model selection (Burnham and Anderson, 2002; Claeskens and Hjort, 2008), is intended to reduce and cope with health care process biases and to produce an intuitively understandable continuous summary. The PopKLD algorithm can be automated and is designed to be applicable in high-throughput settings; for example, the output of the PopKLD algorithm can be used as input for phenotyping algorithms. Moreover, we develop the PopKLD-CAT algorithm that transforms the continuous PopKLD summary into a categorical summary useful for applications that require categorical data such as topic modeling. We evaluate our methodology in two ways. First, we apply the method to laboratory data collected in two different health care contexts, primary versus intensive care. We show that the PopKLD preserves known physiologic features in the data that are lost when summarizing the data using more common laboratory data summaries such as mean and standard deviation. Second, for three disease-laboratory measurement pairs, we perform a phenotyping task: we use the PopKLD and PopKLD-CAT algorithms to define high and low values of the laboratory variable that are used for defining a disease state. We then compare the relationship between the PopKLD-CAT summary disease predictions and the same predictions using empirically estimated mean and standard deviation to a gold standard generated by clinical review of patient records. We find that the PopKLD laboratory data summary is substantially better at predicting disease state. The PopKLD or PopKLD-CAT algorithms are not meant to be used as phenotyping algorithms, but we use the phenotyping task to show what information can be gained when using a more informative laboratory data summary. In the process of evaluation our method we show that the different clinical contexts and laboratory measurements necessitate different statistical summaries. Similarly, leveraging the principle of maximum entropy we argue that while some laboratory data only have sufficient information to estimate a mean and standard deviation, other laboratory data captured in an EHR contain substantially more information than can be captured in higher-parameter models. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Holistic and component plant phenotyping using temporal image sequence.
Das Choudhury, Sruti; Bashyam, Srinidhi; Qiu, Yumou; Samal, Ashok; Awada, Tala
2018-01-01
Image-based plant phenotyping facilitates the extraction of traits noninvasively by analyzing large number of plants in a relatively short period of time. It has the potential to compute advanced phenotypes by considering the whole plant as a single object (holistic phenotypes) or as individual components, i.e., leaves and the stem (component phenotypes), to investigate the biophysical characteristics of the plants. The emergence timing, total number of leaves present at any point of time and the growth of individual leaves during vegetative stage life cycle of the maize plants are significant phenotypic expressions that best contribute to assess the plant vigor. However, image-based automated solution to this novel problem is yet to be explored. A set of new holistic and component phenotypes are introduced in this paper. To compute the component phenotypes, it is essential to detect the individual leaves and the stem. Thus, the paper introduces a novel method to reliably detect the leaves and the stem of the maize plants by analyzing 2-dimensional visible light image sequences captured from the side using a graph based approach. The total number of leaves are counted and the length of each leaf is measured for all images in the sequence to monitor leaf growth. To evaluate the performance of the proposed algorithm, we introduce University of Nebraska-Lincoln Component Plant Phenotyping Dataset (UNL-CPPD) and provide ground truth to facilitate new algorithm development and uniform comparison. The temporal variation of the component phenotypes regulated by genotypes and environment (i.e., greenhouse) are experimentally demonstrated for the maize plants on UNL-CPPD. Statistical models are applied to analyze the greenhouse environment impact and demonstrate the genetic regulation of the temporal variation of the holistic phenotypes on the public dataset called Panicoid Phenomap-1. The central contribution of the paper is a novel computer vision based algorithm for automated detection of individual leaves and the stem to compute new component phenotypes along with a public release of a benchmark dataset, i.e., UNL-CPPD. Detailed experimental analyses are performed to demonstrate the temporal variation of the holistic and component phenotypes in maize regulated by environment and genetic variation with a discussion on their significance in the context of plant science.
USDA-ARS?s Scientific Manuscript database
Escherichia coli O111 is an emerging non-O157:H7 Shiga toxin-producing E. coli (STEC). We previously reported that outbreak and environmental, but not sporadic case, strains of STEC O111 share a distinct aggregation phenotype (M. E. Diodati, A. H. Bates, M. B. Cooley, S. Walker, R. E. Mandrell, and ...
Hunt, Pamela S.; Barnet, Robert C.
2015-01-01
Experience-produced deficits in trace conditioning and context conditioning have been useful tools for examining the role of the hippocampus in learning. It has also been suggested that learning in these tasks is especially vulnerable to neurotoxic effects of alcohol during key developmental periods such as adolescence. In five experiments we systematically examined the presence and source of age-dependent vulnerability to the memory-disrupting effects of acute ethanol in trace conditioning and contextual fear conditioning. In Experiment 1a pre-training ethanol disrupted trace conditioning more strongly in adolescent (postnatal day, PD30-35) than adult rats (PD65-75). In Experiment 1b when pre-training ethanol was accompanied by pre-test ethanol no deficit in trace conditioning was observed in adolescents, suggesting that state-dependent retrieval failure mediated ethanol's disruption of trace conditioning at this age. Experiments 2a and 2b examined the effect of ethanol pretreatment on context conditioning. Here, adult but not adolescent rats were impaired in conditioned freezing to context cues. Experiment 2c explored state-dependency of this effect. Pre-training ethanol continued to disrupt context conditioning in adults even when ethanol was also administered prior to test. Collectively these findings reveal clear age-dependent and task-dependent vulnerabilities in ethanol's disruptive effects on hippocampus-dependent memory. Adolescents were more disrupted by ethanol in trace conditioning than adults, and adults were more disrupted by ethanol in context conditioning than adolescents. We suggest that adolescents may be more susceptible to changes in internal state (state-dependent retrieval failure) than adults and that ethanol disrupted performance in trace and context conditioning through different mechanisms. Relevance of these findings to theories of hippocampus function is discussed. PMID:26192910
ERIC Educational Resources Information Center
Silliman, Elaine R.; Berninger, Virginia W.
2011-01-01
Professionals across disciplines who assess and teach students with language problems should develop their own standards for best professional practices to improve the diagnostic and treatment (instructional) services in schools and nonschool settings rather than assessing only for eligibility for categories of special education services according…
USDA-ARS?s Scientific Manuscript database
Waxy mutants, in which endosperm starch contains ~100% amylopectin rather than the wild-type composition of ~70% amylopectin and ~30% amylose, occur in many domesticated cereals. The cultivation of waxy varieties of broomcorn (proso) millet (Panicum miliaceum L.) is restricted to east Asia, where t...
Kagawa, Rina; Kawazoe, Yoshimasa; Ida, Yusuke; Shinohara, Emiko; Tanaka, Katsuya; Imai, Takeshi; Ohe, Kazuhiko
2017-07-01
Phenotyping is an automated technique that can be used to distinguish patients based on electronic health records. To improve the quality of medical care and advance type 2 diabetes mellitus (T2DM) research, the demand for T2DM phenotyping has been increasing. Some existing phenotyping algorithms are not sufficiently accurate for screening or identifying clinical research subjects. We propose a practical phenotyping framework using both expert knowledge and a machine learning approach to develop 2 phenotyping algorithms: one is for screening; the other is for identifying research subjects. We employ expert knowledge as rules to exclude obvious control patients and machine learning to increase accuracy for complicated patients. We developed phenotyping algorithms on the basis of our framework and performed binary classification to determine whether a patient has T2DM. To facilitate development of practical phenotyping algorithms, this study introduces new evaluation metrics: area under the precision-sensitivity curve (AUPS) with a high sensitivity and AUPS with a high positive predictive value. The proposed phenotyping algorithms based on our framework show higher performance than baseline algorithms. Our proposed framework can be used to develop 2 types of phenotyping algorithms depending on the tuning approach: one for screening, the other for identifying research subjects. We develop a novel phenotyping framework that can be easily implemented on the basis of proper evaluation metrics, which are in accordance with users' objectives. The phenotyping algorithms based on our framework are useful for extraction of T2DM patients in retrospective studies.
ERIC Educational Resources Information Center
Petrov, Alexander A.
2011-01-01
Context effects in category rating on a 7-point scale are shown to reverse direction depending on feedback. Context (skewed stimulus frequencies) was manipulated between and feedback within subjects in two experiments. The diverging predictions of prototype- and exemplar-based scaling theories were tested using two representative models: ANCHOR…
McCool, Brian A; Chappell, Ann M
2015-03-01
Inbred mouse strains provide significant opportunities to understand the genetic mechanisms controlling ethanol-directed behaviors and neurobiology. They have been specifically employed to understand cellular mechanisms contributing to ethanol consumption, acute intoxication, and sensitivities to chronic effects. However, limited ethanol consumption by some strains has restricted our understanding of clinically relevant endpoints such as dependence-related ethanol intake. Previous work with a novel tastant-substitution procedure using monosodium glutamate (MSG or umami flavor) has shown that the procedure greatly enhances ethanol consumption by mouse strains that express limited drinking phenotypes using other methods. In the current study, we employ this MSG-substitution procedure to examine how ethanol dependence, induced with passive vapor inhalation, modifies ethanol drinking in C57BL/6J and DBA/2J mice. These strains represent 'high' and 'low' drinking phenotypes, respectively. We found that the MSG substitution greatly facilitates ethanol drinking in both strains, and likewise, ethanol dependence increased ethanol consumption regardless of strain. However, DBA/2J mice exhibited greater sensitivity dependence-enhanced drinking, as represented by consumption behaviors directed at lower ethanol concentrations and relative to baseline intake levels. DBA/2J mice also exhibited significant withdrawal-associated anxiety-like behavior while C57BL/6J mice did not. These findings suggest that the MSG-substitution procedure can be employed to examine dependence-enhanced ethanol consumption across a range of drinking phenotypes, and that C57BL/6J and DBA/2J mice may represent unique neurobehavioral pathways for developing dependence-enhanced ethanol consumption. Copyright © 2015 Elsevier Inc. All rights reserved.
Sheehan, Michael J; Nachman, Michael W
2014-09-16
Facial recognition plays a key role in human interactions, and there has been great interest in understanding the evolution of human abilities for individual recognition and tracking social relationships. Individual recognition requires sufficient cognitive abilities and phenotypic diversity within a population for discrimination to be possible. Despite the importance of facial recognition in humans, the evolution of facial identity has received little attention. Here we demonstrate that faces evolved to signal individual identity under negative frequency-dependent selection. Faces show elevated phenotypic variation and lower between-trait correlations compared with other traits. Regions surrounding face-associated single nucleotide polymorphisms show elevated diversity consistent with frequency-dependent selection. Genetic variation maintained by identity signalling tends to be shared across populations and, for some loci, predates the origin of Homo sapiens. Studies of human social evolution tend to emphasize cognitive adaptations, but we show that social evolution has shaped patterns of human phenotypic and genetic diversity as well.
Phenome-Wide Association Studies as a Tool to Advance Precision Medicine
Denny, Joshua C.; Bastarache, Lisa; Roden, Dan M.
2017-01-01
Beginning in the early 2000s, the accumulation of biospecimens linked to electronic health records (EHRs) made possible genome-phenome studies (i.e., comparative analyses of genetic variants and phenotypes) using only data collected as a by-product of typical health care. In addition to disease and trait genetics, EHRs proved a valuable resource for analyzing pharmacogenetic traits and developing reverse genetics approaches such as phenome-wide association studies (PheWASs). PheWASs are designed to survey which of many phenotypes may be associated with a given genetic variant. PheWAS methods have been validated through replication of hundreds of known genotype-phenotype associations, and their use has differentiated between true pleiotropy and clinical comorbidity, added context to genetic discoveries, and helped define disease subtypes, and may also help repurpose medications. PheWAS methods have also proven to be useful with research-collected data. Future efforts that integrate broad, robust collection of phenotype data (e.g., EHR data) with purpose-collected research data in combination with a greater understanding of EHR data will create a rich resource for increasingly more efficient and detailed genome-phenome analysis to usher in new discoveries in precision medicine. PMID:27147087
Transcriptome analysis of a wild bird reveals physiological responses to the urban environment
Watson, Hannah; Videvall, Elin; Andersson, Martin N.; Isaksson, Caroline
2017-01-01
Identifying the molecular basis of environmentally induced phenotypic variation presents exciting opportunities for furthering our understanding of how ecological processes and the environment can shape the phenotype. Urban and rural environments present free-living organisms with different challenges and opportunities, which have marked consequences for the phenotype, yet little is known about responses at the molecular level. We characterised transcriptomes from an urban and a rural population of great tits Parus major, demonstrating striking differences in gene expression profiles in both blood and liver tissues. Differentially expressed genes had functions related to immune and inflammatory responses, detoxification, protection against oxidative stress, lipid metabolism, and regulation of gene expression. Many genes linked to stress responses were expressed at higher levels in the urban birds, in accordance with our prediction that urban animals are exposed to greater environmental stress. This is one of the first studies to reveal transcriptional differences between urban- and rural-dwelling animals and suggests an important role for epigenetics in mediating environmentally induced physiological variation. The study provides valuable resources for developing further in-depth studies of the mechanisms driving phenotypic variation in the urban context at larger spatial and temporal scales. PMID:28290496
Scattoni, Maria Luisa; Crawley, Jacqueline; Ricceri, Laura
2009-01-01
In neonatal mice ultrasonic vocalizations have been studied both as an early communicative behavior of the pup-mother dyad and as a sign of an aversive affective state. Adult mice of both sexes produce complex ultrasonic vocalization patterns in different experimental/social contexts. All these vocalizations are becoming an increasingly valuable assay for behavioral phenotyping throughout the mouse life-span and alterations of the ultrasound patterns have been reported in several mouse models of neurodevelopmental disorders. Here we also show that the modulation of vocalizations by maternal cues (maternal potentiation paradigm) – originally identified and investigated in rats - can be measured in C57Bl/6 mouse pups with appropriate modifications of the rat protocol and can likely be applied to mouse behavioral phenotyping. In addition we suggest that a detailed qualitative evaluation of neonatal calls together with analysis of adult mouse vocalization patterns in both sexes in social settings, may lead to a greater understanding of the communication value of vocalizations in mice. Importantly, both neonatal and adult USV altered patterns can be determined during the behavioural phenotyping of mouse models of human neurodevelopmental and neuropsychiatric disorders, starting from those in which deficits in communication are a primary symptom. PMID:18771687
What can aquatic gastropods tell us about phenotypic plasticity? A review and meta-analysis
Bourdeau, P E; Butlin, R K; Brönmark, C; Edgell, T C; Hoverman, J T; Hollander, J
2015-01-01
There have been few attempts to synthesise the growing body of literature on phenotypic plasticity to reveal patterns and generalities about the extent and magnitude of plastic responses. Here, we conduct a review and meta-analysis of published literature on phenotypic plasticity in aquatic (marine and freshwater) gastropods, a common system for studying plasticity. We identified 96 studies, using pre-determined search terms, published between 1985 and November 2013. The literature was dominated by studies of predator-induced shell form, snail growth rates and life history parameters of a few model taxa, accounting for 67% of all studies reviewed. Meta-analyses indicated average plastic responses in shell thickness, shell shape, and growth and fecundity of freshwater species was at least three times larger than in marine species. Within marine gastropods, species with planktonic development had similar average plastic responses to species with benthic development. We discuss these findings in the context of the role of costs and limits of phenotypic plasticity and environmental heterogeneity as important constraints on the evolution of plasticity. We also consider potential publication biases and discuss areas for future research, indicating well-studied areas and important knowledge gaps. PMID:26219231
Reprogramming to developmental plasticity in cancer stem cells.
O'Brien-Ball, Caitlin; Biddle, Adrian
2017-10-15
During development and throughout adult life, sub-populations of cells exist that exhibit phenotypic plasticity - the ability to differentiate into multiple lineages. This behaviour is important in embryogenesis, is exhibited in a more limited context by adult stem cells, and can be re-activated in cancer cells to drive important processes underlying tumour progression. A well-studied mechanism of phenotypic plasticity is the epithelial-to-mesenchymal transition (EMT), a process which has been observed in both normal and cancerous cells. The epigenetic and metabolic modifications necessary to facilitate phenotypic plasticity are first seen in development and can be re-activated both in normal regeneration and in cancer. In cancer, the re-activation of these mechanisms enables tumour cells to acquire a cancer stem cell (CSC) phenotype with enhanced ability to survive in hostile environments, resist therapeutic interventions, and undergo metastasis. However, recent research has suggested that plasticity may also expose weaknesses in cancer cells that could be exploited for future therapeutic development. More research is needed to identify developmental mechanisms that are active in cancer, so that these may be targeted to reduce tumour growth and metastasis and overcome therapeutic resistance. Copyright © 2017 Elsevier Inc. All rights reserved.
The genetics of alcoholism: identifying specific genes through family studies.
Edenberg, Howard J; Foroud, Tatiana
2006-09-01
Alcoholism is a complex disorder with both genetic and environmental risk factors. Studies in humans have begun to elucidate the genetic underpinnings of the risk for alcoholism. Here we briefly review strategies for identifying individual genes in which variations affect the risk for alcoholism and related phenotypes, in the context of one large study that has successfully identified such genes. The Collaborative Study on the Genetics of Alcoholism (COGA) is a family-based study that has collected detailed phenotypic data on individuals in families with multiple alcoholic members. A genome-wide linkage approach led to the identification of chromosomal regions containing genes that influenced alcoholism risk and related phenotypes. Subsequently, single nucleotide polymorphisms (SNPs) were genotyped in positional candidate genes located within the linked chromosomal regions, and analyzed for association with these phenotypes. Using this sequential approach, COGA has detected association with GABRA2, CHRM2 and ADH4; these associations have all been replicated by other researchers. COGA has detected association to additional genes including GABRG3, TAS2R16, SNCA, OPRK1 and PDYN, results that are awaiting confirmation. These successes demonstrate that genes contributing to the risk for alcoholism can be reliably identified using human subjects.
Chochois, Vincent; Vogel, John P; Rebetzke, Gregory J; Watt, Michelle
2015-07-01
Seedling roots enable plant establishment. Their small phenotypes are measured routinely. Adult root systems are relevant to yield and efficiency, but phenotyping is challenging. Root length exceeds the volume of most pots. Field studies measure partial adult root systems through coring or use seedling roots as adult surrogates. Here, we phenotyped 79 diverse lines of the small grass model Brachypodium distachyon to adults in 50-cm-long tubes of soil with irrigation; a subset of 16 lines was droughted. Variation was large (total biomass, ×8; total root length [TRL], ×10; and root mass ratio, ×6), repeatable, and attributable to genetic factors (heritabilities ranged from approximately 50% for root growth to 82% for partitioning phenotypes). Lines were dissected into seed-borne tissues (stem and primary seminal axile roots) and stem-borne tissues (tillers and coleoptile and leaf node axile roots) plus branch roots. All lines developed one seminal root that varied, with branch roots, from 31% to 90% of TRL in the well-watered condition. With drought, 100% of TRL was seminal, regardless of line because nodal roots were almost always inhibited in drying topsoil. Irrigation stimulated nodal roots depending on genotype. Shoot size and tillers correlated positively with roots with irrigation, but partitioning depended on genotype and was plastic with drought. Adult root systems of B. distachyon have genetic variation to exploit to increase cereal yields through genes associated with partitioning among roots and their responsiveness to irrigation. Whole-plant phenotypes could enhance gain for droughted environments because root and shoot traits are coselected. © 2015 American Society of Plant Biologists. All Rights Reserved.
Haptoglobin Phenotype Modifies Serum Iron Levels and the Effect of Smoking on Parkinson Disease Risk
Costa-Mallen, Paola; Zabetian, Cyrus P.; Agarwal, Pinky; Hu, Shu-Ching; Yearout, Dora; Samii, Ali; Leverenz, James B.; Roberts, John W.; Checkoway, Harvey
2015-01-01
Introduction Haptoglobin is a hemoglobin-binding protein that exists in three functionally different phenotypes, and haptoglobin phenotype 2-1 has previously been associated with Parkinson disease (PD) risk, with mechanisms not elucidated. Some evidence is emerging that low levels of serum iron may increase PD risk. In this study we investigated whether PD patients have lower serum iron and ferritin than controls, and whether this is dependent on haptoglobin phenotype. We also investigated the effect of Hp phenotype as a modifier of the effect of smoking on PD risk. Methods The study population consisted of 128 PD patients and 226 controls. Serum iron, ferritin, and haptoglobin phenotype were determined, and compared between PD cases and controls. Stratified analysis by haptoglobin phenotype was performed to determine effect of haptoglobin phenotype on serum iron parameter differences between PD cases and controls and to investigate its role in the protective effect of smoking on PD risk. Results PD cases had lower serum iron than controls (83.28 ug/100ml vs 94.00 ug/100 ml, p 0.006), and in particular among subjects with phenotype 2-1. The protective effect of smoking on PD risk resulted stronger in subjects with phenotype 1-1 and 2-2, and weakest among subjects with phenotype 2-1. Ferritin levels were higher in PD cases than controls among subjects of White ethnicity. Conclusions Our results report for the first time that the haptoglobin phenotype may be a contributor of iron levels abnormalities in PD patients. The mechanisms for these haptoglobin-phenotype specific effects will have to be further elucidated. PMID:26228081
Uniparental disomy and prenatal phenotype
Li, Xiaofei; Liu, Yan; Yue, Song; Wang, Li; Zhang, Tiejuan; Guo, Cuixia; Hu, Wenjie; Kagan, Karl-Oliver; Wu, Qingqing
2017-01-01
Abstract Rationale: Uniparental disomy (UPD) gives a description of the inheritance of both homologues of a chromosome pair from the same parent. The consequences of UPD depend on the specific chromosome/segment involved and its parental origin. Patient concerns: We report prenatal phenotypes of 2 rare cases of UPD. Diagnoses: The prenatal phenotype of case 1 included sonographic markers such as enlarged nuchal translucency (NT), absent nasal bone, short femur and humerus length, and several structural malformations involving Dandy–Walker malformation and congenital heart defects. The prenatal phenotype of Case 2 are sonographic markers, including enlarged NT, thickened nuchal fold, ascites, and polyhydramnios without apparent structural malformations. Interventions: Conventional G-band karyotype appears normal in case 1, while it shows normal chromosomes with a small supernumerary marker chromosome (sSMC) in case 2. Genetic etiology was left unknown until single-nucleotide polymorphism-based array (SNP-array) was performed, and segmental paternal UPD 22 was identified in case 1 and segmental paternal UPD 14 was found in case 2. Outcomes: The parents of case 1 chose termination of pregnancy. The neonate of case 2 was born prematurely with a bellshaped small thorax and died within a day. Lessons: UPD cases are rare and the phenotypes are different, which depend on the origin and affected chromosomal part. If a fetus shows multiple anomalies that cannot be attributed to a common aneuploidy or a genetic syndrome, or manifests some features possibly related to an UPD syndrome, such as detection of sSMC, SNP-array should be considered. PMID:29137034
Uniparental disomy and prenatal phenotype: Two case reports and review.
Li, Xiaofei; Liu, Yan; Yue, Song; Wang, Li; Zhang, Tiejuan; Guo, Cuixia; Hu, Wenjie; Kagan, Karl-Oliver; Wu, Qingqing
2017-11-01
Uniparental disomy (UPD) gives a description of the inheritance of both homologues of a chromosome pair from the same parent. The consequences of UPD depend on the specific chromosome/segment involved and its parental origin. We report prenatal phenotypes of 2 rare cases of UPD. The prenatal phenotype of case 1 included sonographic markers such as enlarged nuchal translucency (NT), absent nasal bone, short femur and humerus length, and several structural malformations involving Dandy-Walker malformation and congenital heart defects. The prenatal phenotype of Case 2 are sonographic markers, including enlarged NT, thickened nuchal fold, ascites, and polyhydramnios without apparent structural malformations. Conventional G-band karyotype appears normal in case 1, while it shows normal chromosomes with a small supernumerary marker chromosome (sSMC) in case 2. Genetic etiology was left unknown until single-nucleotide polymorphism-based array (SNP-array) was performed, and segmental paternal UPD 22 was identified in case 1 and segmental paternal UPD 14 was found in case 2. The parents of case 1 chose termination of pregnancy. The neonate of case 2 was born prematurely with a bellshaped small thorax and died within a day. UPD cases are rare and the phenotypes are different, which depend on the origin and affected chromosomal part. If a fetus shows multiple anomalies that cannot be attributed to a common aneuploidy or a genetic syndrome, or manifests some features possibly related to an UPD syndrome, such as detection of sSMC, SNP-array should be considered.
Lucarelli, Marco; Bruno, Sabina Maria; Pierandrei, Silvia; Ferraguti, Giampiero; Stamato, Antonella; Narzi, Fabiana; Amato, Annalisa; Cimino, Giuseppe; Bertasi, Serenella; Quattrucci, Serena; Strom, Roberto
2015-01-01
Cystic fibrosis (CF) is a monogenic disease caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The genotype–phenotype relationship in this disease is still unclear, and diagnostic, prognostic and therapeutic challenges persist. We enrolled 610 patients with different forms of CF and studied them from a clinical, biochemical, microbiological and genetic point of view. Overall, there were 125 different mutated alleles (11 with novel mutations and 10 with complex mutations) and 225 genotypes. A strong correlation between mutational patterns at the genotypic level and phenotypic macrocategories emerged. This specificity appears to largely depend on rare and individual mutations, as well as on the varying prevalence of common alleles in different clinical macrocategories. However, 19 genotypes appeared to underlie different clinical forms of the disease. The dissection of the pathway from the CFTR mutated genotype to the clinical phenotype allowed to identify at least two components of the variability usually found in the genotype–phenotype relationship. One component seems to depend on the genetic variation of CFTR, the other component on the cumulative effect of variations in other genes and cellular pathways independent from CFTR. The experimental dissection of the overall biological CFTR pathway appears to be a powerful approach for a better comprehension of the genotype–phenotype relationship. However, a change from an allele-oriented to a genotypic-oriented view of CFTR genetics is mandatory, as well as a better assessment of sources of variability within the CFTR pathway. PMID:25910067
Choi, Lin; DeNieu, Michael; Sonnenschein, Anne; Hummel, Kristen; Marier, Christian; Victory, Andrew; Porter, Cody; Mammel, Anna; Holms, Julie; Sivaratnam, Gayatri
2017-01-01
For a given gene, different mutations influence organismal phenotypes to varying degrees. However, the expressivity of these variants not only depends on the DNA lesion associated with the mutation, but also on factors including the genetic background and rearing environment. The degree to which these factors influence related alleles, genes, or pathways similarly, and whether similar developmental mechanisms underlie variation in the expressivity of a single allele across conditions and among alleles is poorly understood. Besides their fundamental biological significance, these questions have important implications for the interpretation of functional genetic analyses, for example, if these factors alter the ordering of allelic series or patterns of complementation. We examined the impact of genetic background and rearing environment for a series of mutations spanning the range of phenotypic effects for both the scalloped and vestigial genes, which influence wing development in Drosophila melanogaster. Genetic background and rearing environment influenced the phenotypic outcome of mutations, including intra-genic interactions, particularly for mutations of moderate expressivity. We examined whether cellular correlates (such as cell proliferation during development) of these phenotypic effects matched the observed phenotypic outcome. While cell proliferation decreased with mutations of increasingly severe effects, surprisingly it did not co-vary strongly with the degree of background dependence. We discuss these findings and propose a phenomenological model to aid in understanding the biology of genes, and how this influences our interpretation of allelic effects in genetic analysis. PMID:29166655
NASA Astrophysics Data System (ADS)
Fu, Feng; Nowak, Martin A.; Christakis, Nicholas A.; Fowler, James H.
2012-11-01
Biologists have devoted much attention to assortative mating or homogamy, the tendency for sexual species to mate with similar others. In contrast, there has been little theoretical work on the broader phenomenon of homophily, the tendency for individuals to interact with similar others. Yet this behaviour is also widely observed in nature. Here, we model how natural selection can give rise to homophily when individuals engage in social interaction in a population with multiple observable phenotypes. Payoffs to interactions depend on whether or not individuals have the same or different phenotypes, and each individual has a preference that determines how likely they are to interact with others of their own phenotype (homophily) or of opposite phenotypes (heterophily). The results show that homophily tends to evolve under a wide variety of conditions, helping to explain its ubiquity in nature.
Adams, David; Baldock, Richard; Bhattacharya, Shoumo; Copp, Andrew J; Dickinson, Mary; Greene, Nicholas D E; Henkelman, Mark; Justice, Monica; Mohun, Timothy; Murray, Stephen A; Pauws, Erwin; Raess, Michael; Rossant, Janet; Weaver, Tom; West, David
2013-05-01
Identifying genes that are important for embryo development is a crucial first step towards understanding their many functions in driving the ordered growth, differentiation and organogenesis of embryos. It can also shed light on the origins of developmental disease and congenital abnormalities. Current international efforts to examine gene function in the mouse provide a unique opportunity to pinpoint genes that are involved in embryogenesis, owing to the emergence of embryonic lethal knockout mutants. Through internationally coordinated efforts, the International Knockout Mouse Consortium (IKMC) has generated a public resource of mouse knockout strains and, in April 2012, the International Mouse Phenotyping Consortium (IMPC), supported by the EU InfraCoMP programme, convened a workshop to discuss developing a phenotyping pipeline for the investigation of embryonic lethal knockout lines. This workshop brought together over 100 scientists, from 13 countries, who are working in the academic and commercial research sectors, including experts and opinion leaders in the fields of embryology, animal imaging, data capture, quality control and annotation, high-throughput mouse production, phenotyping, and reporter gene analysis. This article summarises the outcome of the workshop, including (1) the vital scientific importance of phenotyping embryonic lethal mouse strains for basic and translational research; (2) a common framework to harmonise international efforts within this context; (3) the types of phenotyping that are likely to be most appropriate for systematic use, with a focus on 3D embryo imaging; (4) the importance of centralising data in a standardised form to facilitate data mining; and (5) the development of online tools to allow open access to and dissemination of the phenotyping data.
Whole genome sequencing of one complex pedigree illustrates challenges with genomic medicine.
Fang, Han; Wu, Yiyang; Yang, Hui; Yoon, Margaret; Jiménez-Barrón, Laura T; Mittelman, David; Robison, Reid; Wang, Kai; Lyon, Gholson J
2017-02-23
Human Phenotype Ontology (HPO) has risen as a useful tool for precision medicine by providing a standardized vocabulary of phenotypic abnormalities to describe presentations of human pathologies; however, there have been relatively few reports combining whole genome sequencing (WGS) and HPO, especially in the context of structural variants. We illustrate an integrative analysis of WGS and HPO using an extended pedigree, which involves Prader-Willi Syndrome (PWS), hereditary hemochromatosis (HH), and dysautonomia-like symptoms. A comprehensive WGS pipeline was used to ensure reliable detection of genomic variants. Beyond variant filtering, we pursued phenotypic prioritization of candidate genes using Phenolyzer. Regarding PWS, WGS confirmed a 5.5 Mb de novo deletion of the parental allele at 15q11.2 to 15q13.1. Phenolyzer successfully returned the diagnosis of PWS, and pinpointed clinically relevant genes in the deletion. Further, Phenolyzer revealed how each of the genes is linked with the phenotypes represented by HPO terms. For HH, WGS identified a known disease variant (p.C282Y) in HFE of an affected female. Analysis of HPO terms alone fails to provide a correct diagnosis, but Phenolyzer successfully revealed the phenotype-genotype relationship using a disease-centric approach. Finally, Phenolyzer also revealed the complexity behind dysautonomia-like symptoms, and seven variants that might be associated with the phenotypes were identified by manual filtering based on a dominant inheritance model. The integration of WGS and HPO can inform comprehensive molecular diagnosis for patients, eliminate false positives and reveal novel insights into undiagnosed diseases. Due to extreme heterogeneity and insufficient knowledge of human diseases, it is also important that phenotypic and genomic data are standardized and shared simultaneously.
Scheid, Adam D; Van Keulen, Virginia P; Felts, Sara J; Neier, Steven C; Middha, Sumit; Nair, Asha A; Techentin, Robert W; Gilbert, Barry K; Jen, Jin; Neuhauser, Claudia; Zhang, Yuji; Pease, Larry R
2018-03-01
Human immunity exhibits remarkable heterogeneity among individuals, which engenders variable responses to immune perturbations in human populations. Population studies reveal that, in addition to interindividual heterogeneity, systemic immune signatures display longitudinal stability within individuals, and these signatures may reliably dictate how given individuals respond to immune perturbations. We hypothesize that analyzing relationships among these signatures at the population level may uncover baseline immune phenotypes that correspond with response outcomes to immune stimuli. To test this, we quantified global gene expression in peripheral blood CD4 + cells from healthy individuals at baseline and following CD3/CD28 stimulation at two time points 1 mo apart. Systemic CD4 + cell baseline and poststimulation molecular immune response signatures (MIRS) were defined by identifying genes expressed at levels that were stable between time points within individuals and differential among individuals in each state. Iterative differential gene expression analyses between all possible phenotypic groupings of at least three individuals using the baseline and stimulated MIRS gene sets revealed shared baseline and response phenotypic groupings, indicating the baseline MIRS contained determinants of immune responsiveness. Furthermore, significant numbers of shared phenotype-defining sets of determinants were identified in baseline data across independent healthy cohorts. Combining the cohorts and repeating the analyses resulted in identification of over 6000 baseline immune phenotypic groups, implying that the MIRS concept may be useful in many immune perturbation contexts. These findings demonstrate that patterns in complex gene expression variability can be used to define immune phenotypes and discover determinants of immune responsiveness. Copyright © 2018 by The American Association of Immunologists, Inc.
Replication of Salmonella enterica Serovar Typhimurium in Human Monocyte-Derived Macrophages
Lathrop, Stephanie K.; Binder, Kelsey A.; Starr, Tregei; Cooper, Kendal G.; Chong, Audrey; Carmody, Aaron B.
2015-01-01
Salmonella enterica serovar Typhimurium is a common cause of food-borne gastrointestinal illness, but additionally it causes potentially fatal bacteremia in some immunocompromised patients. In mice, systemic spread and replication of the bacteria depend upon infection of and replication within macrophages, but replication in human macrophages is not widely reported or well studied. In order to assess the ability of Salmonella Typhimurium to replicate in human macrophages, we infected primary monocyte-derived macrophages (MDM) that had been differentiated under conditions known to generate different phenotypes. We found that replication in MDM depends greatly upon the phenotype of the cells, as M1-skewed macrophages did not allow replication, while M2a macrophages and macrophages differentiated with macrophage colony-stimulating factor (M-CSF) alone (termed M0) did. We describe how additional conditions that alter the macrophage phenotype or the gene expression of the bacteria affect the outcome of infection. In M0 MDM, the temporal expression of representative genes from Salmonella pathogenicity islands 1 and 2 (SPI1 and SPI2) and the importance of the PhoP/Q two-component regulatory system are similar to what has been shown in mouse macrophages. However, in contrast to mouse macrophages, where replication is SPI2 dependent, we observed early SPI2-independent replication in addition to later SPI2-dependent replication in M0 macrophages. Only SPI2-dependent replication was associated with death of the host cell at later time points. Altogether, our results reveal a very nuanced interaction between Salmonella and human macrophages. PMID:25895967
Replication of Salmonella enterica Serovar Typhimurium in Human Monocyte-Derived Macrophages.
Lathrop, Stephanie K; Binder, Kelsey A; Starr, Tregei; Cooper, Kendal G; Chong, Audrey; Carmody, Aaron B; Steele-Mortimer, Olivia
2015-07-01
Salmonella enterica serovar Typhimurium is a common cause of food-borne gastrointestinal illness, but additionally it causes potentially fatal bacteremia in some immunocompromised patients. In mice, systemic spread and replication of the bacteria depend upon infection of and replication within macrophages, but replication in human macrophages is not widely reported or well studied. In order to assess the ability of Salmonella Typhimurium to replicate in human macrophages, we infected primary monocyte-derived macrophages (MDM) that had been differentiated under conditions known to generate different phenotypes. We found that replication in MDM depends greatly upon the phenotype of the cells, as M1-skewed macrophages did not allow replication, while M2a macrophages and macrophages differentiated with macrophage colony-stimulating factor (M-CSF) alone (termed M0) did. We describe how additional conditions that alter the macrophage phenotype or the gene expression of the bacteria affect the outcome of infection. In M0 MDM, the temporal expression of representative genes from Salmonella pathogenicity islands 1 and 2 (SPI1 and SPI2) and the importance of the PhoP/Q two-component regulatory system are similar to what has been shown in mouse macrophages. However, in contrast to mouse macrophages, where replication is SPI2 dependent, we observed early SPI2-independent replication in addition to later SPI2-dependent replication in M0 macrophages. Only SPI2-dependent replication was associated with death of the host cell at later time points. Altogether, our results reveal a very nuanced interaction between Salmonella and human macrophages. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Cerqueira, Antonio; Martín, Alberto; Symonds, Catherine E; Odajima, Junko; Dubus, Pierre; Barbacid, Mariano; Santamaría, David
2014-04-01
The Cip/Kip family, namely, p21(Cip1), p27(Kip1), and p57(Kip2), are stoichiometric cyclin-dependent kinase inhibitors (CKIs). Paradoxically, they have been proposed to also act as positive regulators of Cdk4/6-cyclin D by stabilizing these heterodimers. Loss of p21(Cip1) and p27(Kip1) reduces Cdk4/6-cyclin D complexes, although with limited phenotypic consequences compared to the embryonic lethality of Cdk4/6 or triple cyclin D deficiency. This milder phenotype was attributed to Cdk2 compensatory mechanisms. To address this controversy using a genetic approach, we generated Cdk2(-/-) p21(-/-) p27(-/-) mice. Triple-knockout mouse embryonic fibroblasts (MEFs) displayed minimal levels of D-type cyclins and Cdk4/6-cyclin D complexes. p57(Kip2) downregulation in the absence of p21(Cip1) and p27(Kip1) aggravated this phenotype, yet MEFs lacking all Cip/Kip proteins exhibited increased retinoblastoma phosphorylation, together with enhanced proliferation and transformation capacity. In vivo, Cdk2 ablation induced partial perinatal lethality in p21(-/-) p27(-/-) mice, suggesting partial Cdk2-dependent compensation. However, Cdk2(-/-) p21(-/-) p27(-/-) survivors displayed all phenotypes described for p27(-/-) mice, including organomegalia and pituitary tumors. Thus, Cip/Kip deficiency does not impair interphasic Cdk activity even in the absence of Cdk2, suggesting that their Cdk-cyclin assembly function is dispensable for homeostatic control in most cell types.
Cancer Drug Addiction is Relayed by an ERK2-Dependent Phenotype Switch
Kong, Xiangjun; Kuilman, Thomas; Shahrabi, Aida; Boshuizen, Julia; Kemper, Kristel; Song, Ji-Ying; Niessen, Hans W.M.; Rozeman, Elisa A.; Geukes Foppen, Marnix H.; Blank, Christian U.; Peeper, Daniel S.
2017-01-01
Drug addiction denotes the dependency of tumors on the same therapeutic drugs to which they have acquired resistance. Observations from cultured cells1–3, animal models4 and patients5–7 raise the possibility that cancer drug addiction can instigate a potential cancer vulnerability, which may be used therapeutically. However, for this trait to become of clinical interest, it is imperative to first define the underlying mechanism. Therefore, we performed an unbiased CRISPR-Cas9 knockout screen to functionally mine the genome of melanoma cells that are both resistant and addicted to BRAF inhibition for “addiction genes”. Here, we describe a signaling pathway comprising ERK2, JUNB and FRA1, disruption of which allows tumor cells to reverse addiction and survive upon treatment discontinuation. This occurred both in culture and mice, and was irrespective of the acquired drug resistance mechanism. In melanoma and lung cancer cells, death induced by drug withdrawal was preceded by a specific ERK2-dependent phenotype switch, alongside transcriptional reprogramming reminiscent of EMT. In melanoma, this caused shutdown of the lineage survival oncoprotein MITF, restoration of which reversed both phenotype switching and drug addiction-associated lethality. In melanoma patients who had progressed on BRAF inhibition, treatment cessation was followed by increased expression of the phenotype switch-associated receptor tyrosine kinase AXL. Drug discontinuation synergized with the melanoma chemotherapeutic dacarbazine by further suppressing MITF and its prosurvival target BCL2 while inducing DNA damage. Our results uncover a pathway driving cancer drug addiction, which may guide alternating therapeutic strategies for enhanced clinical responses of drug-resistant cancers. PMID:28976960
Streatfield, S J; Weber, A; Kinsman, E A; Häusler, R E; Li, J; Post-Beittenmiller, D; Kaiser, W M; Pyke, K A; Flügge, U I; Chory, J
1999-09-01
The Arabidopsis chlorophyll a/b binding protein (CAB) gene underexpressed 1 (cue1) mutant underexpresses light-regulated nuclear genes encoding chloroplast-localized proteins. cue1 also exhibits mesophyll-specific chloroplast and cellular defects, resulting in reticulate leaves. Both the gene underexpression and the leaf cell morphology phenotypes are dependent on light intensity. In this study, we determine that CUE1 encodes the plastid inner envelope phosphoenolpyruvate/phosphate translocator (PPT) and define amino acid residues that are critical for translocator function. The biosynthesis of aromatics is compromised in cue1, and the reticulate phenotype can be rescued by feeding aromatic amino acids. Determining that CUE1 encodes PPT indicates the in vivo role of the translocator in metabolic partitioning and reveals a mesophyll cell-specific requirement for the translocator in Arabidopsis leaves. The nuclear gene expression defects in cue1 suggest that a light intensity-dependent interorganellar signal is modulated through metabolites dependent on a plastid supply of phosphoenolpyruvate.
Cathepsin B is a novel gender-dependent determinant of cholesterol absorption from the intestine[S
Wong, Winifred P. S.; Altemus, Jessica B.; Hester, James F.; Chan, Ernest R.; Côté, Jean-François; Serre, David; Sehayek, Ephraim
2013-01-01
We used a mouse C57BL/6J×CASA/Rk intercross to map a locus on chromosome 14 that displayed a gender-dependent effect on cholesterol absorption from the intestine. Studies in congenic animals revealed a complex locus with multiple operating genetic determinants resulting in alternating gender-dependent phenotypic effects. Fine-mapping narrowed the locus to a critical 6.3 Mb interval. Female subcongenics, but not males, of the critical interval displayed a decrease of 33% in cholesterol absorption. RNA-Seq analysis of female subcongenic jejunum revealed that cysteine protease cathepsin B (Ctsb) is a candidate to explain the interval effect. Consistent with the phenotype in critical interval subcongenics, female Ctsb knockout mice, but not males, displayed a decrease of 31% in cholesterol absorption. Although studies in Ctsb knockouts revealed a gender-dependent effect on cholesterol absorption, further fine-mapping dismissed a role for Ctsb in determining the effect of the critical 6.3 Mb interval on cholesterol absorption. PMID:23248330
Kasugamycin-dependent mutants of Escherichia coli.
Dabbs, E R
1978-01-01
Kasugamycin-dependent mutants have been isolated from Escherichia coli B. They were obtained through mutagenesis with ethyl methane sulfonate or nitrosoguanidine in conjunction with an antibiotic underlay technique. In the case of nitrosoguanidine, dependent mutants were obtained at a frequency of about 3% of survivors growing up in the selection. In the case of ethyl methane sulfonate, the corresponding value was 1%. Nineteen mutants showing a kasugamycin-dependent phenotype were studied. In terms of response to various temperatures and antibiotic concentrations, they were very heterogeneous, although most fell into two general classes. Genetic analysis indicated that in at least some cases, the kasugamycin-dependent phenotype was the product of two mutations. Two-dimensional gel electropherograms revealed alterations in the ribosomal proteins of seven mutants. One mutant had an alteration in protein S13, and one had an alteration in protein L14. Three showed changes in protein S9. Each of two mutants had changes in two proteins, S18 and L11. Three of these mutants additionally had protein S18 occurring in a partly altered, partly unaltered form. Images PMID:363701
Antanaviciute, Agne; Watson, Christopher M; Harrison, Sally M; Lascelles, Carolina; Crinnion, Laura; Markham, Alexander F; Bonthron, David T; Carr, Ian M
2015-12-01
Exome sequencing has become a de facto standard method for Mendelian disease gene discovery in recent years, yet identifying disease-causing mutations among thousands of candidate variants remains a non-trivial task. Here we describe a new variant prioritization tool, OVA (ontology variant analysis), in which user-provided phenotypic information is exploited to infer deeper biological context. OVA combines a knowledge-based approach with a variant-filtering framework. It reduces the number of candidate variants by considering genotype and predicted effect on protein sequence, and scores the remainder on biological relevance to the query phenotype.We take advantage of several ontologies in order to bridge knowledge across multiple biomedical domains and facilitate computational analysis of annotations pertaining to genes, diseases, phenotypes, tissues and pathways. In this way, OVA combines information regarding molecular and physical phenotypes and integrates both human and model organism data to effectively prioritize variants. By assessing performance on both known and novel disease mutations, we show that OVA performs biologically meaningful candidate variant prioritization and can be more accurate than another recently published candidate variant prioritization tool. OVA is freely accessible at http://dna2.leeds.ac.uk:8080/OVA/index.jsp. Supplementary data are available at Bioinformatics online. umaan@leeds.ac.uk. © The Author 2015. Published by Oxford University Press.
Genetic, Phenotypic, and Interferon Biomarker Status in ADAR1-Related Neurological Disease.
Rice, Gillian I; Kitabayashi, Naoki; Barth, Magalie; Briggs, Tracy A; Burton, Annabel C E; Carpanelli, Maria Luisa; Cerisola, Alfredo M; Colson, Cindy; Dale, Russell C; Danti, Federica Rachele; Darin, Niklas; De Azua, Begoña; De Giorgis, Valentina; De Goede, Christian G L; Desguerre, Isabelle; De Laet, Corinne; Eslahi, Atieh; Fahey, Michael C; Fallon, Penny; Fay, Alex; Fazzi, Elisa; Gorman, Mark P; Gowrinathan, Nirmala Rani; Hully, Marie; Kurian, Manju A; Leboucq, Nicolas; Lin, Jean-Pierre S-M; Lines, Matthew A; Mar, Soe S; Maroofian, Reza; Martí-Sanchez, Laura; McCullagh, Gary; Mojarrad, Majid; Narayanan, Vinodh; Orcesi, Simona; Ortigoza-Escobar, Juan Dario; Pérez-Dueñas, Belén; Petit, Florence; Ramsey, Keri M; Rasmussen, Magnhild; Rivier, François; Rodríguez-Pombo, Pilar; Roubertie, Agathe; Stödberg, Tommy I; Toosi, Mehran Beiraghi; Toutain, Annick; Uettwiller, Florence; Ulrick, Nicole; Vanderver, Adeline; Waldman, Amy; Livingston, John H; Crow, Yanick J
2017-06-01
We investigated the genetic, phenotypic, and interferon status of 46 patients from 37 families with neurological disease due to mutations in ADAR1 . The clinicoradiological phenotype encompassed a spectrum of Aicardi-Goutières syndrome, isolated bilateral striatal necrosis, spastic paraparesis with normal neuroimaging, a progressive spastic dystonic motor disorder, and adult-onset psychological difficulties with intracranial calcification. Homozygous missense mutations were recorded in five families. We observed a p.Pro193Ala variant in the heterozygous state in 22 of 23 families with compound heterozygous mutations. We also ascertained 11 cases from nine families with a p.Gly1007Arg dominant-negative mutation, which occurred de novo in four patients, and was inherited in three families in association with marked phenotypic variability. In 50 of 52 samples from 34 patients, we identified a marked upregulation of type I interferon-stimulated gene transcripts in peripheral blood, with a median interferon score of 16.99 (interquartile range [IQR]: 10.64-25.71) compared with controls (median: 0.93, IQR: 0.57-1.30). Thus, mutations in ADAR1 are associated with a variety of clinically distinct neurological phenotypes presenting from early infancy to adulthood, inherited either as an autosomal recessive or dominant trait. Testing for an interferon signature in blood represents a useful biomarker in this context. Georg Thieme Verlag KG Stuttgart · New York.
Beyond BMI: Conceptual Issues Related to Overweight and Obese Patients
Müller, Manfred James; Braun, Wiebke; Enderle, Janna; Bosy-Westphal, Anja
2016-01-01
BMI is widely used as a measure of weight status and disease risks; it defines overweight and obesity based on statistical criteria. BMI is a score; neither is it biologically sound nor does it reflect a suitable phenotype worthwhile to study. Because of its limited value, BMI cannot provide profound insight into obesity biology and its co-morbidity. Alternative assessments of weight status include detailed phenotyping by body composition analysis (BCA). However, predicting disease risks, fat mass, and fat-free mass as assessed by validated techniques (i.e., densitometry, dual energy X ray absorptiometry, and bioelectrical impedance analysis) does not exceed the value of BMI. Going beyond BMI and descriptive BCA, the concept of functional body composition (FBC) integrates body components into regulatory systems. FBC refers to the masses of body components, organs, and tissues as well as to their inter-relationships within the context of endocrine, metabolic and immune functions. FBC can be used to define specific phenotypes of obesity, e.g. the sarcopenic-obese patient. Well-characterized obesity phenotypes are a precondition for targeted research (e.g., on the genomics of obesity) and patient-centered care (e.g., adequate treatment of individual obese phenotypes such as the sarcopenic-obese patient). FBC contributes to a future definition of overweight and obesity based on physiological criteria rather than on body weight alone. PMID:27286962
Efficient Mitochondrial Glutamine Targeting Prevails Over Glioblastoma Metabolic Plasticity.
Oizel, Kristell; Chauvin, Cynthia; Oliver, Lisa; Gratas, Catherine; Geraldo, Fanny; Jarry, Ulrich; Scotet, Emmanuel; Rabe, Marion; Alves-Guerra, Marie-Clotilde; Teusan, Raluca; Gautier, Fabien; Loussouarn, Delphine; Compan, Vincent; Martinou, Jean-Claude; Vallette, François M; Pecqueur, Claire
2017-10-15
Purpose: Glioblastoma (GBM) is the most common and malignant form of primary human brain tumor in adults, with an average survival at diagnosis of 18 months. Metabolism is a new attractive therapeutic target in cancer; however, little is known about metabolic heterogeneity and plasticity within GBM tumors. We therefore aimed to investigate metabolic phenotyping of primary cultures in the context of molecular tumor heterogeneity to provide a proof of concept for personalized metabolic targeting of GBM. Experimental Design: We have analyzed extensively several primary GBM cultures using transcriptomics, metabolic phenotyping assays, and mitochondrial respirometry. Results: We found that metabolic phenotyping clearly identifies 2 clusters, GLN High and GLN Low , mainly based on metabolic plasticity and glutamine (GLN) utilization. Inhibition of glutamine metabolism slows the in vitro and in vivo growth of GLN High GBM cultures despite metabolic adaptation to nutrient availability, in particular by increasing pyruvate shuttling into mitochondria. Furthermore, phenotypic and molecular analyses show that highly proliferative GLN High cultures are CD133 neg and display a mesenchymal signature in contrast to CD133 pos GLN Low GBM cells. Conclusions: Our results show that metabolic phenotyping identified an essential metabolic pathway in a GBM cell subtype, and provide a proof of concept for theranostic metabolic targeting. Clin Cancer Res; 23(20); 6292-304. ©2017 AACR . ©2017 American Association for Cancer Research.
Neuroanatomical phenotyping of the mouse brain with three-dimensional autofluorescence imaging
Wong, Michael D.; Dazai, Jun; Altaf, Maliha; Mark Henkelman, R.; Lerch, Jason P.; Nieman, Brian J.
2012-01-01
The structural organization of the brain is important for normal brain function and is critical to understand in order to evaluate changes that occur during disease processes. Three-dimensional (3D) imaging of the mouse brain is necessary to appreciate the spatial context of structures within the brain. In addition, the small scale of many brain structures necessitates resolution at the ∼10 μm scale. 3D optical imaging techniques, such as optical projection tomography (OPT), have the ability to image intact large specimens (1 cm3) with ∼5 μm resolution. In this work we assessed the potential of autofluorescence optical imaging methods, and specifically OPT, for phenotyping the mouse brain. We found that both specimen size and fixation methods affected the quality of the OPT image. Based on these findings we developed a specimen preparation method to improve the images. Using this method we assessed the potential of optical imaging for phenotyping. Phenotypic differences between wild-type male and female mice were quantified using computer-automated methods. We found that optical imaging of the endogenous autofluorescence in the mouse brain allows for 3D characterization of neuroanatomy and detailed analysis of brain phenotypes. This will be a powerful tool for understanding mouse models of disease and development and is a technology that fits easily within the workflow of biology and neuroscience labs. PMID:22718750
Rapid loss of behavioral plasticity and immunocompetence under intense sexual selection.
van Lieshout, Emile; McNamara, Kathryn B; Simmons, Leigh W
2014-09-01
Phenotypic plasticity allows animals to maximize fitness by conditionally expressing the phenotype best adapted to their environment. Although evidence for such adjustment in reproductive tactics is common, little is known about how phenotypic plasticity evolves in response to sexual selection. We examined the effect of sexual selection intensity on phenotypic plasticity in mating behavior using the beetle Callosobruchus maculatus. Male genital spines harm females during mating and females exhibit copulatory kicking, an apparent resistance trait aimed to dislodge mating males. After exposing individuals from male- and female-biased experimental evolution lines to male- and female-biased sociosexual environments, we examined behavioral plasticity in matings with standard partners. While females from female-biased lines kicked sooner after exposure to male-biased sociosexual contexts, in male-biased lines this plasticity was lost. Ejaculate size did not diverge in response to selection history, but males from both treatments exhibited plasticity consistent with sperm competition intensity models, reducing size as the number of competitors increased. Analysis of immunocompetence revealed reduced immunity in both sexes in male-biased lines, pointing to increased reproductive costs under high sexual selection. These results highlight how male and female reproductive strategies are shaped by interactions between phenotypically plastic and genetic mechanisms of sexual trait expression. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
A neuronal network model for context-dependence of pitch change perception.
Huang, Chengcheng; Englitz, Bernhard; Shamma, Shihab; Rinzel, John
2015-01-01
Many natural stimuli have perceptual ambiguities that can be cognitively resolved by the surrounding context. In audition, preceding context can bias the perception of speech and non-speech stimuli. Here, we develop a neuronal network model that can account for how context affects the perception of pitch change between a pair of successive complex tones. We focus especially on an ambiguous comparison-listeners experience opposite percepts (either ascending or descending) for an ambiguous tone pair depending on the spectral location of preceding context tones. We developed a recurrent, firing-rate network model, which detects frequency-change-direction of successively played stimuli and successfully accounts for the context-dependent perception demonstrated in behavioral experiments. The model consists of two tonotopically organized, excitatory populations, E up and E down, that respond preferentially to ascending or descending stimuli in pitch, respectively. These preferences are generated by an inhibitory population that provides inhibition asymmetric in frequency to the two populations; context dependence arises from slow facilitation of inhibition. We show that contextual influence depends on the spectral distribution of preceding tones and the tuning width of inhibitory neurons. Further, we demonstrate, using phase-space analysis, how the facilitated inhibition from previous stimuli and the waning inhibition from the just-preceding tone shape the competition between the E up and E down populations. In sum, our model accounts for contextual influences on the pitch change perception of an ambiguous tone pair by introducing a novel decoding strategy based on direction-selective units. The model's network architecture and slow facilitating inhibition emerge as predictions of neuronal mechanisms for these perceptual dynamics. Since the model structure does not depend on the specific stimuli, we show that it generalizes to other contextual effects and stimulus types.
Alexander, Matthew R; Murgai, Meera; Moehle, Christopher W; Owens, Gary K
2012-04-02
Smooth muscle cell (SMC) phenotypic modulation in atherosclerosis and in response to PDGF in vitro involves repression of differentiation marker genes and increases in SMC proliferation, migration, and matrix synthesis. However, SMCs within atherosclerotic plaques can also express a number of proinflammatory genes, and in cultured SMCs the inflammatory cytokine IL-1β represses SMC marker gene expression and induces inflammatory gene expression. Studies herein tested the hypothesis that IL-1β modulates SMC phenotype to a distinct inflammatory state relative to PDGF-DD. Genome-wide gene expression analysis of IL-1β- or PDGF-DD-treated SMCs revealed that although both stimuli repressed SMC differentiation marker gene expression, IL-1β distinctly induced expression of proinflammatory genes, while PDGF-DD primarily induced genes involved in cell proliferation. Promoters of inflammatory genes distinctly induced by IL-1β exhibited over-representation of NF-κB binding sites, and NF-κB inhibition in SMCs reduced IL-1β-induced upregulation of proinflammatory genes as well as repression of SMC differentiation marker genes. Interestingly, PDGF-DD-induced SMC marker gene repression was not NF-κB dependent. Finally, immunofluorescent staining of mouse atherosclerotic lesions revealed the presence of cells positive for the marker of an IL-1β-stimulated inflammatory SMC, chemokine (C-C motif) ligand 20 (CCL20), but not the PDGF-DD-induced gene, regulator of G protein signaling 17 (RGS17). Results demonstrate that IL-1β- but not PDGF-DD-induced phenotypic modulation of SMC is characterized by NF-κB-dependent activation of proinflammatory genes, suggesting the existence of a distinct inflammatory SMC phenotype. In addition, studies provide evidence for the possible utility of CCL20 and RGS17 as markers of inflammatory and proliferative state SMCs within atherosclerotic plaques in vivo.
Phenotypic and genetic relations between the HEXACO dimensions and trait emotional intelligence.
Veselka, Livia; Petrides, K V; Schermer, Julie Aitken; Cherkas, Lynn F; Spector, Tim D; Vernon, Philip A
2010-02-01
The present study investigated the location of trait emotional intelligence (trait EI or trait emotional self-efficacy) within the context of the HEXACO model - a more comprehensive personality framework than the conventional Big Five structure. A total of 666 MZ and 526 DZ adult twin pairs from the United Kingdom completed the short form of the Trait Emotional Intelligence Questionnaire (TEIQue-SF) and the short form of the HEXACO Personality Inventory (HEXACO-60). Many significant phenotypic correlations between the TEIQue-SF and the HEXACO-60 were obtained, which were strongest for HEXACO Extraversion, and weakest for HEXACO Honesty-Humility. As was expected, Emotionality was the only HEXACO dimension to correlate negatively with TEIQue-SF scores. Bivariate behavioral genetic analyses revealed that all phenotypic correlations were attributable to common genetic and common nonshared environmental factors. The study confirms the validity of trait EI as a constellation of emotional self-perceptions located at the lower levels of personality.
Ruiz-Linares, Andrés; Adhikari, Kaustubh; Acuña-Alonzo, Victor; Quinto-Sanchez, Mirsha; Jaramillo, Claudia; Arias, William; Fuentes, Macarena; Pizarro, María; Everardo, Paola; de Avila, Francisco; Gómez-Valdés, Jorge; León-Mimila, Paola; Hunemeier, Tábita; Ramallo, Virginia; Silva de Cerqueira, Caio C.; Burley, Mari-Wyn; Konca, Esra; de Oliveira, Marcelo Zagonel; Veronez, Mauricio Roberto; Rubio-Codina, Marta; Attanasio, Orazio; Gibbon, Sahra; Ray, Nicolas; Gallo, Carla; Poletti, Giovanni; Rosique, Javier; Schuler-Faccini, Lavinia; Salzano, Francisco M.; Bortolini, Maria-Cátira; Canizales-Quinteros, Samuel; Rothhammer, Francisco; Bedoya, Gabriel; Balding, David; Gonzalez-José, Rolando
2014-01-01
The current genetic makeup of Latin America has been shaped by a history of extensive admixture between Africans, Europeans and Native Americans, a process taking place within the context of extensive geographic and social stratification. We estimated individual ancestry proportions in a sample of 7,342 subjects ascertained in five countries (Brazil, Chile, Colombia, México and Perú). These individuals were also characterized for a range of physical appearance traits and for self-perception of ancestry. The geographic distribution of admixture proportions in this sample reveals extensive population structure, illustrating the continuing impact of demographic history on the genetic diversity of Latin America. Significant ancestry effects were detected for most phenotypes studied. However, ancestry generally explains only a modest proportion of total phenotypic variation. Genetically estimated and self-perceived ancestry correlate significantly, but certain physical attributes have a strong impact on self-perception and bias self-perception of ancestry relative to genetically estimated ancestry. PMID:25254375
Ruiz-Linares, Andrés; Adhikari, Kaustubh; Acuña-Alonzo, Victor; Quinto-Sanchez, Mirsha; Jaramillo, Claudia; Arias, William; Fuentes, Macarena; Pizarro, María; Everardo, Paola; de Avila, Francisco; Gómez-Valdés, Jorge; León-Mimila, Paola; Hunemeier, Tábita; Ramallo, Virginia; Silva de Cerqueira, Caio C; Burley, Mari-Wyn; Konca, Esra; de Oliveira, Marcelo Zagonel; Veronez, Mauricio Roberto; Rubio-Codina, Marta; Attanasio, Orazio; Gibbon, Sahra; Ray, Nicolas; Gallo, Carla; Poletti, Giovanni; Rosique, Javier; Schuler-Faccini, Lavinia; Salzano, Francisco M; Bortolini, Maria-Cátira; Canizales-Quinteros, Samuel; Rothhammer, Francisco; Bedoya, Gabriel; Balding, David; Gonzalez-José, Rolando
2014-09-01
The current genetic makeup of Latin America has been shaped by a history of extensive admixture between Africans, Europeans and Native Americans, a process taking place within the context of extensive geographic and social stratification. We estimated individual ancestry proportions in a sample of 7,342 subjects ascertained in five countries (Brazil, Chile, Colombia, México and Perú). These individuals were also characterized for a range of physical appearance traits and for self-perception of ancestry. The geographic distribution of admixture proportions in this sample reveals extensive population structure, illustrating the continuing impact of demographic history on the genetic diversity of Latin America. Significant ancestry effects were detected for most phenotypes studied. However, ancestry generally explains only a modest proportion of total phenotypic variation. Genetically estimated and self-perceived ancestry correlate significantly, but certain physical attributes have a strong impact on self-perception and bias self-perception of ancestry relative to genetically estimated ancestry.
Phenotypic variability in unicellular organisms: from calcium signalling to social behaviour
Vogel, David; Nicolis, Stamatios C.; Perez-Escudero, Alfonso; Nanjundiah, Vidyanand; Sumpter, David J. T.; Dussutour, Audrey
2015-01-01
Historically, research has focused on the mean and often neglected the variance. However, variability in nature is observable at all scales: among cells within an individual, among individuals within a population and among populations within a species. A fundamental quest in biology now is to find the mechanisms that underlie variability. Here, we investigated behavioural variability in a unique unicellular organism, Physarum polycephalum. We combined experiments and models to show that variability in cell signalling contributes to major differences in behaviour underpinning some aspects of social interactions. First, following thousands of cells under various contexts, we identified distinct behavioural phenotypes: ‘slow–regular–social’, ‘fast–regular–social’ and ‘fast–irregular–asocial’. Second, coupling chemical analysis and behavioural assays we found that calcium signalling is responsible for these behavioural phenotypes. Finally, we show that differences in signalling and behaviour led to alternative social strategies. Our results have considerable implications for our understanding of the emergence of variability in living organisms. PMID:26609088
'Junk' DNA and long-term phenotypic evolution in Silene section Elisanthe (Caryophyllaceae).
Meagher, Thomas R; Costich, Denise E
2004-01-01
Nuclear DNA content variation over orders of magnitude across species has been attributed to 'junk' repetitive DNA with limited adaptive significance. By contrast, our previous work on Silene latifolia showed that DNA content is negatively correlated with flower size, a character of clear adaptive relevance. The present paper explores this relationship in a broader phylogenetic context to investigate the long-term evolutionary impacts of DNA content variation. The relationship between nuclear DNA content and phenotype variation was determined for four closely related species of Silene section Elisanthe (Caryophyllaceae). In addition to a consistent sexual dimorphism in DNA content across all of the species, we found DNA content variation among populations within, as well as among, species. We also found a general trend towards a negative correlation between DNA content and flower and leaf size over all four species, within males and females as well as overall. These results indicate that repetitive DNA may play a role in long-term phenotypic evolution. PMID:15801614
Phenotypic variability in unicellular organisms: from calcium signalling to social behaviour.
Vogel, David; Nicolis, Stamatios C; Perez-Escudero, Alfonso; Nanjundiah, Vidyanand; Sumpter, David J T; Dussutour, Audrey
2015-11-22
Historically, research has focused on the mean and often neglected the variance. However, variability in nature is observable at all scales: among cells within an individual, among individuals within a population and among populations within a species. A fundamental quest in biology now is to find the mechanisms that underlie variability. Here, we investigated behavioural variability in a unique unicellular organism, Physarum polycephalum. We combined experiments and models to show that variability in cell signalling contributes to major differences in behaviour underpinning some aspects of social interactions. First, following thousands of cells under various contexts, we identified distinct behavioural phenotypes: 'slow-regular-social', 'fast-regular-social' and 'fast-irregular-asocial'. Second, coupling chemical analysis and behavioural assays we found that calcium signalling is responsible for these behavioural phenotypes. Finally, we show that differences in signalling and behaviour led to alternative social strategies. Our results have considerable implications for our understanding of the emergence of variability in living organisms. © 2015 The Author(s).
Lee, Myon-Hee; Yoon, Dong Suk
2017-01-01
Stem cells have the ability to self-renew and to generate differentiated cell types. A regulatory network that controls this balance is critical for stem cell homeostasis and normal animal development. Particularly, Ras-ERK/MAPK signaling pathway is critical for stem cell self-renewal and differentiation in mammals, including humans. Aberrant regulation of Ras-ERK/MAPK signaling pathway results in either stem cell or overproliferation. Therefore, the identification of Ras-ERK/MAPK signaling pathway-associated regulators is critical to understand the mechanism of stem cell (possibly cancer stem cell) control. In this report, using the nematode C. elegans mutants, we developed a methodology for a phenotype-based RNAi screening that identifies stem cell regulator genes associated with Ras-ERK/MAPK signaling within the context of a whole organism. Importantly, this phenotype-based RNAi screening can be applied for other stem cell-associated signaling pathways such as Wnt/β-catenin and Notch using the C. elegans.
Chen, Shuang; Liu, Baoqin; Kong, Dehui; Li, Si; Li, Chao; Wang, Huaqin; Sun, Yingxian
2015-01-01
Plasticity of vascular smooth muscle cells (VSMCs) plays a central role in the onset and progression of proliferative vascular diseases. In adult tissue, VSMCs exist in a physiological contractile-quiescent phenotype, which is defined by lack of the ability of proliferation and migration, while high expression of contractile marker proteins. After injury to the vessel, VSMC shifts from a contractile phenotype to a pathological synthetic phenotype, associated with increased proliferation, migration and matrix secretion. It has been demonstrated that PDGF-BB is a critical mediator of VSMCs phenotypic switch. Atorvastatin calcium, a selective inhibitor of 3-hydroxy-3-methyl-glutaryl l coenzyme A (HMG-CoA) reductase, exhibits various protective effects against VSMCs. In this study, we investigated the effects of atorvastatin calcium on phenotype modulation of PDGF-BB-induced VSMCs and the related intracellular signal transduction pathways. Treatment of VSMCs with atorvastatin calcium showed dose-dependent inhibition of PDGF-BB-induced proliferation. Atorvastatin calcium co-treatment inhibited the phenotype modulation and cytoskeleton rearrangements and improved the expression of contractile phenotype marker proteins such as α-SM actin, SM22α and calponin in comparison with PDGF-BB alone stimulated VSMCs. Although Akt phosphorylation was strongly elicited by PDGF-BB, Akt activation was attenuated when PDGF-BB was co-administrated with atorvastatin calcium. In conclusion, atorvastatin calcium inhibits phenotype modulation of PDGF-BB-induced VSMCs and activation of the Akt signaling pathway, indicating that Akt might play a vital role in the modulation of phenotype.
Gami, Minaxi S; Iser, Wendy B; Hanselman, Keaton B; Wolkow, Catherine A
2006-01-01
Background In the nematode, Caenorhabditis elegans, a conserved insulin-like signaling pathway controls larval development, stress resistance and adult lifespan. AGE-1, a homolog of the p110 catalytic subunit of phosphoinositide 3-kinases (PI3K) comprises the major known effector pathway downstream of the insulin receptor, DAF-2. Phospholipid products of AGE-1/PI3K activate AKT/PKB kinase signaling via PDK-1. AKT/PKB signaling antagonizes nuclear translocation of the DAF-16/FOXO transcription factor. Reduced AGE-1/PI3K signaling permits DAF-16 to direct dauer larval arrest and promote long lifespan in adult animals. In order to study the downstream effectors of AGE-1/PI3K signaling in C. elegans, we conducted a genetic screen for mutations that suppress the constitutive dauer arrest phenotype of age-1(mg109) animals. Results This report describes mutations recovered in a screen for suppressors of the constitutive dauer arrest (daf-C) phenotype of age-1(mg109). Two mutations corresponded to alleles of daf-16. Two mutations were gain-of-function alleles in the genes, akt-1 and pdk-1, encoding phosphoinositide-dependent serine/threonine kinases. A fifth mutation, mg227, located on chromosome X, did not correspond to any known dauer genes, suggesting that mg227 may represent a new component of the insulin pathway. Genetic epistasis analysis by RNAi showed that reproductive development in age-1(mg109);akt-1(mg247) animals was dependent on the presence of pdk-1. Similarly, reproductive development in age-1(mg109);pdk-1(mg261) animals was dependent on akt-1. However, reproductive development in age-1(mg109); mg227 animals required only akt-1, and pdk-1 activity was dispensable in this background. Interestingly, while mg227 suppressed dauer arrest in age-1(mg109) animals, it enhanced the long lifespan phenotype. In contrast, akt-1(mg247) and pdk-1(mg261) did not affect lifespan or stress resistance, while both daf-16 alleles fully suppressed these phenotypes. Conclusion A screen for suppressors of PI3K mutant phenotypes identified activating mutations in two known pathway components, providing insights into their regulation. In particular, the interdependence of akt-1 and pdk-1, even in activated forms, supports the existence of AGE-1-independent pathways for these phospholipid-dependent kinases. Phenotypic analysis of these alleles shows that the larval and adult outputs of AGE-1/PI3K are fully separable in these mutants. PMID:17020605
Value Representations by Rank Order in a Distributed Network of Varying Context Dependency
ERIC Educational Resources Information Center
Mullett, Timothy L.; Tunney, Richard J.
2013-01-01
We report the results of a human fMRI experiment investigating the influence of context upon value judgement. Trials were separated into high and low value blocks such that it is possible to investigate the effect of a change in surrounding trials upon the encoding of financial value. The ventral striatum was dependent upon "local context", with…
The Emergence of Selective Attention through Probabilistic Associations between Stimuli and Actions.
Simione, Luca; Nolfi, Stefano
2016-01-01
In this paper we show how a multilayer neural network trained to master a context-dependent task in which the action co-varies with a certain stimulus in a first context and with a second stimulus in an alternative context exhibits selective attention, i.e. filtering out of irrelevant information. This effect is rather robust and it is observed in several variations of the experiment in which the characteristics of the network as well as of the training procedure have been varied. Our result demonstrates how the filtering out of irrelevant information can originate spontaneously as a consequence of the regularities present in context-dependent training set and therefore does not necessarily depend on specific architectural constraints. The post-evaluation of the network in an instructed-delay experimental scenario shows how the behaviour of the network is consistent with the data collected in neuropsychological studies. The analysis of the network at the end of the training process indicates how selective attention originates as a result of the effects caused by relevant and irrelevant stimuli mediated by context-dependent and context-independent bidirectional associations between stimuli and actions that are extracted by the network during the learning.
Convergent balancing selection on an antimicrobial peptide in Drosophila
Unckless, Robert L.; Howick, Virginia M.; Lazzaro, Brian P.
2015-01-01
Summary Genes of the immune system often evolve rapidly and adaptively, presumably driven by antagonistic interactions with pathogens [1–4]. Those genes encoding secreted antimicrobial peptides (AMPs), however, have failed to exhibit conventional signatures of strong adaptive evolution, especially in arthropods (e.g., [5, 6]) and often segregate for null alleles and gene deletions [3, 4, 7, 8]. Furthermore, quantitative genetic studies have failed to associate naturally occurring polymorphism in AMP genes with variation in resistance to infection [9–11]. Both the lack of signatures of positive selection in AMPs and lack of association between genotype and immune phenotypes have yielded an interpretation that AMP genes evolve under relaxed evolutionary constraint, with enough functional redundancy that variation in, or even loss of, any particular peptide would have little effect on overall resistance [12, 13]. In stark contrast to the current paradigm, we identified a naturally occurring amino acid polymorphism in the antimicrobial peptide, Diptericin, that is highly predictive of resistance to bacterial infection in Drosophila melanogaster [13]. The identical amino acid polymorphism arose in parallel in the sister species D. simulans, by independent mutation with equivalent phenotypic effect. Convergent substitutions to arginine at the same amino acid residue have evolved at least five times across the Drosophila genus. We hypothesize that the alternative alleles are maintained by balancing selection through context-dependent or fluctuating selection. This pattern of evolution appears to be common in antimicrobial peptides, but is invisible to conventional screens for adaptive evolution that are predicated on elevated rates of amino acid divergence. PMID:26776733