Sample records for context fear conditioning

  1. Behavioral mechanisms of context fear generalization in mice

    PubMed Central

    Huckleberry, Kylie A.; Ferguson, Laura B.

    2016-01-01

    There is growing interest in generalization of learned contextual fear, driven in part by the hypothesis that mood and anxiety disorders stem from impaired hippocampal mechanisms of fear generalization and discrimination. However, there has been relatively little investigation of the behavioral and procedural mechanisms that might control generalization of contextual fear. We assessed the relative contribution of different contextual features to context fear generalization and characterized how two common conditioning protocols—foreground (uncued) and background (cued) contextual fear conditioning—affected context fear generalization. In one experiment, mice were fear conditioned in context A, and then tested for contextual fear both in A and in an alternate context created by changing a subset of A's elements. The results suggest that floor configuration and odor are more salient features than chamber shape. A second experiment compared context fear generalization in background and foreground context conditioning. Although foreground conditioning produced more context fear than background conditioning, the two procedures produced equal amounts of generalized fear. Finally, results indicated that the order of context tests (original first versus alternate first) significantly modulates context fear generalization, perhaps because the original and alternate contexts are differentially sensitive to extinction. Overall, results demonstrate that context fear generalization is sensitive to procedural variations and likely reflects the operation of multiple interacting psychological and neural mechanisms. PMID:27918275

  2. Reciprocal Patterns of c-Fos Expression in the Medial Prefrontal Cortex and Amygdala after Extinction and Renewal of Conditioned Fear

    ERIC Educational Resources Information Center

    Knapska, Ewelina; Maren, Stephen

    2009-01-01

    After extinction of conditioned fear, memory for the conditioning and extinction experiences becomes context dependent. Fear is suppressed in the extinction context, but renews in other contexts. This study characterizes the neural circuitry underlying the context-dependent retrieval of extinguished fear memories using c-Fos immunohistochemistry.…

  3. Relapse of extinguished fear after exposure to a dangerous context is mitigated by testing in a safe context.

    PubMed

    Goode, Travis D; Kim, Janice J; Maren, Stephen

    2015-03-01

    Aversive events can trigger relapse of extinguished fear memories, presenting a major challenge to the long-term efficacy of therapeutic interventions. Here, we examined factors regulating the relapse of extinguished fear after exposure of rats to a dangerous context. Rats received unsignaled shock in a distinct context ("dangerous" context) 24 h prior to auditory fear conditioning in another context. Fear to the auditory conditioned stimulus (CS) was subsequently extinguished either in the conditioning context ("ambiguous" context) or in a third novel context ("safe" context). Exposure to the dangerous context 30 min before a CS retention test caused relapse to the CS in the ambiguous and safe test contexts relative to nonextinguished controls. When rats were tested 24 h later (with or without short-term testing), rats tested in the ambiguous context continued to exhibit relapse, whereas rats tested in the safe context did not. Additionally, exposure of rats to the conditioning context--in place of the unsignaled shock context--did not result in relapse of fear to the CS in the safe testing context. Our work highlights the vulnerabilities of extinction recall to interference, and demonstrates the importance of context associations in the relapse of fear after extinction. © 2015 Goode et al.; Published by Cold Spring Harbor Laboratory Press.

  4. Relapse of extinguished fear after exposure to a dangerous context is mitigated by testing in a safe context

    PubMed Central

    Goode, Travis D.; Kim, Janice J.

    2015-01-01

    Aversive events can trigger relapse of extinguished fear memories, presenting a major challenge to the long-term efficacy of therapeutic interventions. Here, we examined factors regulating the relapse of extinguished fear after exposure of rats to a dangerous context. Rats received unsignaled shock in a distinct context (“dangerous” context) 24 h prior to auditory fear conditioning in another context. Fear to the auditory conditioned stimulus (CS) was subsequently extinguished either in the conditioning context (“ambiguous” context) or in a third novel context (“safe” context). Exposure to the dangerous context 30 min before a CS retention test caused relapse to the CS in the ambiguous and safe test contexts relative to nonextinguished controls. When rats were tested 24 h later (with or without short-term testing), rats tested in the ambiguous context continued to exhibit relapse, whereas rats tested in the safe context did not. Additionally, exposure of rats to the conditioning context—in place of the unsignaled shock context—did not result in relapse of fear to the CS in the safe testing context. Our work highlights the vulnerabilities of extinction recall to interference, and demonstrates the importance of context associations in the relapse of fear after extinction. PMID:25691517

  5. Differential Involvement of the Medial Prefrontal Cortex across Variants of Contextual Fear Conditioning

    ERIC Educational Resources Information Center

    Heroux, Nicholas A.; Robinson-Drummer, Patrese A.; Sanders, Hollie R.; Rosen, Jeffrey B.; Stanton, Mark E.

    2017-01-01

    The context preexposure facilitation effect (CPFE) is a contextual fear conditioning paradigm in which learning about the context, acquiring the context-shock association, and retrieving/expressing contextual fear are temporally dissociated into three distinct phases. In contrast, learning about the context and the context-shock association…

  6. Sex Differences in Context Fear Generalization and Recruitment of Hippocampus and Amygdala during Retrieval

    PubMed Central

    Keiser, Ashley A; Turnbull, Lacie M; Darian, Mara A; Feldman, Dana E; Song, Iris; Tronson, Natalie C

    2017-01-01

    Anxiety disorders are commonly associated with increased generalization of fear from a stress- or trauma-associated environment to a neutral context or environment. Differences in context-associated memory in males and females may contribute to increased susceptibility to anxiety disorders in women. Here we examined sex differences in context fear generalization and its neural correlates. We observed stronger context fear conditioning and more generalization of fear to a similar context in females than males. In addition, context preexposure increased fear conditioning in males and decreased generalization in females. Accordingly, males showed stronger cFos activity in dorsal hippocampus during memory retrieval and context generalization, whereas females showed preferential recruitment of basal amygdala. Together, these findings are consistent with previous research showing that hippocampal activity correlates with reduced context fear generalization. Differential competition between hippocampus and amygdala-dependent processes may thus contribute to sex differences in retrieval of context fear and greater generalization of fear-associated memory. PMID:27577601

  7. Contextual Change After Fear Acquisition Affects Conditioned Responding and the Time Course of Extinction Learning-Implications for Renewal Research.

    PubMed

    Sjouwerman, Rachel; Niehaus, Johanna; Lonsdorf, Tina B

    2015-01-01

    Context plays a central role in retrieving (fear) memories. Accordingly, context manipulations are inherent to most return of fear (ROF) paradigms (in particular renewal), involving contextual changes after fear extinction. Context changes are, however, also often embedded during earlier stages of ROF experiments such as context changes between fear acquisition and extinction (e.g., in ABC and ABA renewal). Previous studies using these paradigms have however focused exclusively on the context switch after extinction (i.e., renewal). Thus, the possibility of a general effect of context switch on conditioned responding that may not be conditional to preceding extinction learning remains unstudied. Hence, the current study investigated the impact of a context switch between fear acquisition and extinction on immediate conditioned responding and on the time-course of extinction learning by using a multimodal approach. A group that underwent contextual change after fear conditioning (AB; n = 36) was compared with a group without a contextual change from acquisition to extinction (AA; n = 149), while measuring physiological (skin conductance and fear potentiated startle) measures and subjective fear ratings. Contextual change between fear acquisition and extinction had a pronounced effect on both immediate conditioned responding and on the time course of extinction learning in skin conductance responses and subjective fear ratings. This may have important implications for the mechanisms underlying and the interpretation of the renewal effect (i.e., contextual switch after extinction). Consequently, future studies should incorporate designs and statistical tests that disentangle general effects of contextual change from genuine ROF effects.

  8. High-dose corticosterone after fear conditioning selectively suppresses fear renewal by reducing anxiety-like response.

    PubMed

    Wang, Hongbo; Xing, Xiaoli; Liang, Jing; Bai, Yunjing; Lui, Zhengkui; Zheng, Xigeng

    2014-09-01

    Exposure therapy is widely used to treat anxiety disorders, including posttraumatic stress disorder (PTSD). However, preventing the return of fear is still a major challenge after this behavioral treatment. An increasing number of studies suggest that high-dose glucocorticoid treatment immediately after trauma can alleviate the symptoms of PTSD in humans. Unknown is whether high-dose glucocorticoid treatment following fear conditioning suppresses the return of fear. In the present study, a typical fear renewal paradigm (AAB) was used, in which the fear response to an auditory cue can be restored in a novel context (context B) when both training and extinction occur in the same context (context A). We trained rats for auditory fear conditioning and administered corticosterone (CORT; 5 and 25mg/kg, i.p.) or vehicle with different delays (1 and 24h). Forty-eight hours after drug injection, extinction was conducted with no drug in the training context, followed by a test of tone-induced freezing behavior in the same (AAA) or a shifted (AAB) context. Both immediate and delayed administration of high-dose CORT after fear conditioning reduced fear renewal. To examine the anxiolytic effect of CORT, independent rats were trained for cued or contextual fear conditioning, followed by an injection of CORT (5 and 25mg/kg, i.p.) or vehicle at a 1 or 24h delay. One week later, anxiety-like behavior was assessed in the elevated plus maze (EPM) before and after fear expression. We found that high-dose CORT decreased anxiety-like behavior without changing tone- or context-induced freezing. These findings indicate that a single high-dose CORT administration given after fear conditioning may selectively suppress fear renewal by reducing anxiety-like behavior and not by altering the consolidation, retrieval, or extinction of fear memory. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Dentate Gyrus Contributes to Retrieval as well as Encoding: Evidence from Context Fear Conditioning, Recall, and Extinction

    PubMed Central

    Krasne, Franklin B.

    2017-01-01

    Dentate gyrus (DG) is widely thought to provide a teaching signal that enables hippocampal encoding of memories, but its role during retrieval is poorly understood. Some data and models suggest that DG plays no role in retrieval; others encourage the opposite conclusion. To resolve this controversy, we evaluated the effects of optogenetic inhibition of dorsal DG during context fear conditioning, recall, generalization, and extinction in male mice. We found that (1) inhibition during training impaired context fear acquisition; (2) inhibition during recall did not impair fear expression in the training context, unless mice had to distinguish between similar feared and neutral contexts; (3) inhibition increased generalization of fear to an unfamiliar context that was similar to a feared one and impaired fear expression in the conditioned context when it was similar to a neutral one; and (4) inhibition impaired fear extinction. These effects, as well as several seemingly contradictory published findings, could be reproduced by BACON (Bayesian Context Fear Algorithm), a physiologically realistic hippocampal model positing that acquisition and retrieval both involve coordinated activity in DG and CA3. Our findings thus suggest that DG contributes to retrieval and extinction, as well as to the initial establishment of context fear. SIGNIFICANCE STATEMENT Despite abundant evidence that the hippocampal dentate gyrus (DG) plays a critical role in memory, it remains unclear whether the role of DG relates to memory acquisition or retrieval. Using contextual fear conditioning and optogenetic inhibition, we show that DG contributes to both of these processes. Using computational simulations, we identify specific mechanisms through which the suppression of DG affects memory performance. Finally, we show that DG contributes to fear extinction learning, a process in which learned fear is attenuated through exposures to a fearful context in the absence of threat. Our data resolve a long-standing question about the role of DG in memory and provide insight into how disorders affecting DG, including aging, stress, and depression, influence cognitive processes. PMID:28546308

  10. Impaired contextual fear-conditioning in MAM rodent model of schizophrenia.

    PubMed

    Gill, Kathryn M; Miller, Sarah A; Grace, Anthony A

    2018-05-01

    The methylazoxymethanol acetate (MAM) rodent neurodevelopmental model of schizophrenia exhibits aberrant dopamine system activation attributed to hippocampal dysfunction. Context discrimination is a component of numerous behavioral and cognitive functions and relies on intact hippocampal processing. The present study explored context processing behaviors, along with dopamine system activation, during fear learning in the MAM model. Male offspring of dams treated with MAM (20mg/kg, i.p.) or saline on gestational day 17 were used for electrophysiological and behavioral experiments. Animals were tested on the immediate shock fear conditioning paradigm, with either different pre-conditioning contexts or varying amounts of context pre-exposure (0-10 sessions). Amphetamine-induced locomotor activity and dopamine neural activity was measured 1-week after fear conditioning. Saline, but not MAM animals, demonstrated enhanced fear responses following a single context pre-exposure in the conditioning context. One week following fear learning, saline rats with 2 or 7min of context pre-exposure prior to fear conditioning also demonstrated enhanced amphetamine-induced locomotor response relative to MAM animals. Dopamine neuron recordings showed fear learning-induced reductions in spontaneous dopamine neural activity in MAM rats that was further reduced by amphetamine. Apomorphine administration confirmed that reductions in dopamine neuron activity in MAM animals resulted from over excitation, or depolarization block. These data show a behavioral insensitivity to contextual stimuli in MAM rats that coincide with a less dynamic dopamine response after fear learning. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Lesions of the entorhinal cortex or fornix disrupt the context-dependence of fear extinction in rats.

    PubMed

    Ji, Jinzhao; Maren, Stephen

    2008-12-12

    Recent studies have shown that the hippocampus is critical for the context-dependent expression of extinguished fear memories. Here we used Pavlovian fear conditioning in rats to explore whether the entorhinal cortex and fornix, which are the major cortical and subcortical interfaces of the hippocampus, are also involved in the context-dependence of extinction. After pairing an auditory conditional stimulus (CS) with an aversive footshock (unconditional stimulus or US) in one context, rats received an extinction session in which the CS was presented without the US in another context. Conditional fear to the CS was then tested in either the extinction context or a third familiar context; freezing behavior served as the index of fear. Sham-operated rats exhibited little conditional freezing to the CS in the extinction context, but showed a robust renewal of fear when tested outside of the extinction context. In contrast, rats with neurotoxic lesions in the entorhinal cortex or electrolytic lesions in the fornix did not exhibit a renewal of fear when tested outside the extinction context. Impairments in freezing behavior to the auditory CS were not able to account for the observed results, insofar as rats with either entorhinal cortex or fornix lesions exhibited normal freezing behavior during the conditioning session. Thus, contextual memory retrieval requires not only the hippocampus proper, but also its cortical and subcortical interfaces.

  12. Impaired contextual modulation of memories in PTSD: an fMRI and psychophysiological study of extinction retention and fear renewal.

    PubMed

    Garfinkel, Sarah N; Abelson, James L; King, Anthony P; Sripada, Rebecca K; Wang, Xin; Gaines, Laura M; Liberzon, Israel

    2014-10-01

    Post-traumatic stress disorder (PTSD) patients display pervasive fear memories, expressed indiscriminately. Proposed mechanisms include enhanced fear learning and impaired extinction or extinction recall. Documented extinction recall deficits and failure to use safety signals could result from general failure to use contextual information, a hippocampus-dependent process. This can be probed by adding a renewal phase to standard conditioning and extinction paradigms. Human subjects with PTSD and combat controls were conditioned (skin conductance response), extinguished, and tested for extinction retention and renewal in a scanner (fMRI). Fear conditioning (light paired with shock) occurred in one context, followed by extinction in another, to create danger and safety contexts. The next day, the extinguished conditioned stimulus (CS+E) was re-presented to assess extinction recall (safety context) and fear renewal (danger context). PTSD patients showed impaired extinction recall, with increased skin conductance and heightened amygdala activity to the extinguished CS+ in the safety context. However, they also showed impaired fear renewal; in the danger context, they had less skin conductance response to CS+E and lower activity in amygdala and ventral-medial prefrontal cortex compared with combat controls. Control subjects displayed appropriate contextual modulation of memory recall, with extinction (safety) memory prevailing in the safety context, and fear memory prevailing in the danger context. PTSD patients could not use safety context to sustain suppression of extinguished fear memory, but they also less effectively used danger context to enhance fear. They did not display globally enhanced fear expression, but rather showed a globally diminished capacity to use contextual information to modulate fear expression. Copyright © 2014 the authors 0270-6474/14/3413435-09$15.00/0.

  13. Contextual fear conditioning differs for infant, adolescent, and adult rats

    PubMed Central

    Esmorís-Arranz, Francisco J.; Méndez, Cástor; Spear, Norman E.

    2009-01-01

    Contextual fear conditioning was tested in infant, adolescent, and adult rats in terms of Pavlovian conditioned suppression. When a discrete auditory conditioned stimulus (CS) was paired with footshock (unconditioned stimulus, US) within the largely olfactory context, infants and adolescents conditioned to the context with substantial effectiveness but adult rats did not. When unpaired presentations of the CS and US occurred within the context, contextual fear conditioning was strong for adults, weak for infants, but about as strong for adolescents as when pairings of CS and US occurred in the context. Nonreinforced presentations of either the CS or context markedly reduced contextual fear conditioning in infants, but, in adolescents, CS extinction had no effect on contextual fear conditioning, although context extinction significantly reduced it. Neither CS extinction nor context extinction affected responding to the CS-context compound in infants, suggesting striking discrimination between the compound and its components. Female adolescents showed the same lack of effect of component extinction on response to the compound as infants, but CS extinction reduced responding to the compound in adolescent males, a sex difference seen also in adults. Theoretical implications are discussed for the development of perceptual-cognitive processing and hippocampus role. PMID:18343048

  14. Effects of the beta-blocker propranolol on cued and contextual fear conditioning in humans.

    PubMed

    Grillon, Christian; Cordova, Jeremy; Morgan, Charles Andrew; Charney, Dennis S; Davis, Michael

    2004-09-01

    Beta-adrenergic receptors are involved in the consolidation of emotional memories. Yet, a number of studies using Pavlovian cued fear conditioning have been unable to demonstrate an effect of beta-adrenergic blockade on acquisition or retention of fear conditioning. Evidence for the involvement of beta-adrenergic receptors in emotional memories comes mostly from studies using fear inhibitory avoidance in rodents. It is possible that fear inhibitory avoidance is more akin to contextual conditioning than to cued fear conditioning, suggesting that context conditioning may be disrupted by beta-adrenergic blockade. This study investigated the effects of the beta-adrenergic blocker propranolol on cued and contextual fear conditioning in humans. Subjects were given either placebo (n=15) or 40 mg propranolol (n=15) prior to differential cued conditioning. A week later, they were tested for retention of context and cued fear conditioning using physiological (startle reflex and electrodermal activity) and subjective measures of emotional arousal. The results were consistent with the hypothesis. The skin conductance level (SCL) and the subjective measure of arousal suggested reduced emotional arousal upon returning to the conditioning context in the propranolol group, compared to the placebo group. The acquisition and retention of cued fear conditioning were not affected by propranolol. These results suggest that beta-adrenergic receptors are involved in contextual fear conditioning.

  15. Dentate Gyrus Contributes to Retrieval as well as Encoding: Evidence from Context Fear Conditioning, Recall, and Extinction.

    PubMed

    Bernier, Brian E; Lacagnina, Anthony F; Ayoub, Adam; Shue, Francis; Zemelman, Boris V; Krasne, Franklin B; Drew, Michael R

    2017-06-28

    Dentate gyrus (DG) is widely thought to provide a teaching signal that enables hippocampal encoding of memories, but its role during retrieval is poorly understood. Some data and models suggest that DG plays no role in retrieval; others encourage the opposite conclusion. To resolve this controversy, we evaluated the effects of optogenetic inhibition of dorsal DG during context fear conditioning, recall, generalization, and extinction in male mice. We found that (1) inhibition during training impaired context fear acquisition; (2) inhibition during recall did not impair fear expression in the training context, unless mice had to distinguish between similar feared and neutral contexts; (3) inhibition increased generalization of fear to an unfamiliar context that was similar to a feared one and impaired fear expression in the conditioned context when it was similar to a neutral one; and (4) inhibition impaired fear extinction. These effects, as well as several seemingly contradictory published findings, could be reproduced by BACON (Bayesian Context Fear Algorithm), a physiologically realistic hippocampal model positing that acquisition and retrieval both involve coordinated activity in DG and CA3. Our findings thus suggest that DG contributes to retrieval and extinction, as well as to the initial establishment of context fear. SIGNIFICANCE STATEMENT Despite abundant evidence that the hippocampal dentate gyrus (DG) plays a critical role in memory, it remains unclear whether the role of DG relates to memory acquisition or retrieval. Using contextual fear conditioning and optogenetic inhibition, we show that DG contributes to both of these processes. Using computational simulations, we identify specific mechanisms through which the suppression of DG affects memory performance. Finally, we show that DG contributes to fear extinction learning, a process in which learned fear is attenuated through exposures to a fearful context in the absence of threat. Our data resolve a long-standing question about the role of DG in memory and provide insight into how disorders affecting DG, including aging, stress, and depression, influence cognitive processes. Copyright © 2017 the authors 0270-6474/17/376359-13$15.00/0.

  16. Extinction after fear memory reactivation fails to eliminate renewal in rats.

    PubMed

    Goode, Travis D; Holloway-Erickson, Crystal M; Maren, Stephen

    2017-07-01

    Retrieving fear memories just prior to extinction has been reported to effectively erase fear memories and prevent fear relapse. The current study examined whether the type of retrieval procedure influences the ability of extinction to impair fear renewal, a form of relapse in which responding to a conditional stimulus (CS) returns outside of the extinction context. Rats first underwent Pavlovian fear conditioning with an auditory CS and footshock unconditional stimulus (US); freezing behavior served as the index of conditioned fear. Twenty-four hours later, the rats underwent a retrieval-extinction procedure. Specifically, 1h prior to extinction (45 CS-alone trials; 44 for rats receiving a CS reminder), fear memory was retrieved by either a single exposure to the CS alone, the US alone, a CS paired with the US, or exposure to the conditioning context itself. Over the next few days, conditional freezing to the extinguished CS was tested in the extinction and conditioning context in that order (i.e., an ABBA design). In the extinction context, rats that received a CS+US trial before extinction exhibited higher levels of conditional freezing than animals in all other groups, which did not differ from one another. In the renewal context, all groups showed renewal, and none of the reactivation procedures reduced renewal relative to a control group that did not receive a reactivation procedure prior to extinction. These data suggest retrieval-extinction procedures may have limited efficacy in preventing fear renewal. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Brain structural connectivity and context-dependent extinction memory.

    PubMed

    Hermann, Andrea; Stark, Rudolf; Blecker, Carlo R; Milad, Mohammed R; Merz, Christian J

    2017-08-01

    Extinction of conditioned fear represents an important mechanism in the treatment of anxiety disorders. Return of fear after successful extinction or exposure therapy in patients with anxiety disorders might be linked to poor temporal or contextual generalization of extinction due to individual differences in brain structural connectivity. The goal of this magnetic resonance imaging study was therefore to investigate the association of context-dependent extinction recall with brain structural connectivity. Diffusion-tensor imaging was used to determine the fractional anisotropy as a measure of white matter structural integrity of fiber tracts connecting central brain regions of the fear and extinction circuit (uncinate fasciculus, cingulum). Forty-five healthy men participated in a two-day fear conditioning experiment with fear acquisition in context A and extinction learning in context B on the first day. Extinction recall in the extinction context as well as renewal in the acquisition context and a novel context C took place one day later. Renewal of conditioned fear (skin conductance responses) in the acquisition context was associated with higher structural integrity of the hippocampal part of the cingulum. Enhanced structural integrity of the cingulum might be related to stronger hippocampal modulation of the dorsal anterior cingulate cortex, a region important for modulating conditioned fear output by excitatory projections to the amygdala. This finding underpins the crucial role of individual differences in the structural integrity of relevant fiber tracts for context-dependent extinction recall and return of fear after exposure therapy in anxiety disorders. © 2017 Wiley Periodicals, Inc.

  18. Where There is Smoke There is Fear-Impaired Contextual Inhibition of Conditioned Fear in Smokers.

    PubMed

    Haaker, Jan; Lonsdorf, Tina B; Schümann, Dirk; Bunzeck, Nico; Peters, Jan; Sommer, Tobias; Kalisch, Raffael

    2017-07-01

    The odds-ratio of smoking is elevated in populations with neuropsychiatric diseases, in particular in the highly prevalent diagnoses of post-traumatic stress and anxiety disorders. Yet, the association between smoking and a key dimensional phenotype of these disorders-maladaptive deficits in fear learning and fear inhibition-is unclear. We therefore investigated acquisition and memory of fear and fear inhibition in healthy smoking and non-smoking participants (N=349, 22% smokers). We employed a well validated paradigm of context-dependent fear and safety learning (day 1) including a memory retrieval on day 2. During fear learning, a geometrical shape was associated with an aversive electrical stimulation (classical fear conditioning, in danger context) and fear responses were extinguished within another context (extinction learning, in safe context). On day 2, the conditioned stimuli were presented again in both contexts, without any aversive stimulation. Autonomic physiological measurements of skin conductance responses as well as subjective evaluations of fear and expectancy of the aversive stimulation were acquired. We found that impairment of fear inhibition (extinction) in the safe context during learning (day 1) was associated with the amount of pack-years in smokers. During retrieval of fear memories (day 2), smokers showed an impairment of contextual (safety context-related) fear inhibition as compared with non-smokers. These effects were found in physiological as well as subjective measures of fear. We provide initial evidence that smokers as compared with non-smokers show an impairment of fear inhibition. We propose that smokers have a deficit in integrating contextual signs of safety, which is a hallmark of post-traumatic stress and anxiety disorders.

  19. Context Preexposure Prevents Forgetting of a Contextual Fear Memory: Implication for Regional Changes in Brain Activation Patterns Associated with Recent and Remote Memory Tests

    ERIC Educational Resources Information Center

    Biedenkapp, Joseph C.; Rudy, Jerry W.

    2007-01-01

    Contextual fear conditioning was maintained over a 15-day retention interval suggesting no forgetting of the conditioning experience. However, a more subtle generalization test revealed that, as the retention interval increased, rats showed enhanced generalized fear to an altered context. Preexposure to the training context prior to conditioning,…

  20. HDAC I inhibition in the dorsal and ventral hippocampus differentially modulates predator-odor fear learning and generalization.

    PubMed

    Yuan, Robin K; Hebert, Jenna C; Thomas, Arthur S; Wann, Ellen G; Muzzio, Isabel A

    2015-01-01

    Although predator odors are ethologically relevant stimuli for rodents, the molecular pathways and contribution of some brain regions involved in predator odor conditioning remain elusive. Inhibition of histone deacetylases (HDACs) in the dorsal hippocampus has been shown to enhance shock-induced contextual fear learning, but it is unknown if HDACs have differential effects along the dorso-ventral hippocampal axis during predator odor fear learning. We injected MS-275, a class I HDAC inhibitor, bilaterally in the dorsal or ventral hippocampus of mice and found that it had no effects on innate anxiety in either region. We then assessed the effects of MS-275 at different stages of fear learning along the longitudinal hippocampal axis. Animals were injected with MS-275 or vehicle after context pre-exposure (pre-conditioning injections), when a representation of the context is first formed, or after exposure to coyote urine (post-conditioning injections), when the context becomes associated with predator odor. When MS-275 was administered after context pre-exposure, dorsally injected animals showed enhanced fear in the training context but were able to discriminate it from a neutral environment. Conversely, ventrally injected animals did not display enhanced learning in the training context but generalized the fear response to a neutral context. However, when MS-275 was administered after conditioning, there were no differences between the MS-275 and vehicle control groups in either the dorsal or ventral hippocampus. Surprisingly, all groups displayed generalization to a neutral context, suggesting that predator odor exposure followed by a mild stressor such as restraint leads to fear generalization. These results may elucidate distinct functions of the dorsal and ventral hippocampus in predator odor-induced fear conditioning as well as some of the molecular mechanisms underlying fear generalization.

  1. Inception of a false memory by optogenetic manipulation of a hippocampal memory engram.

    PubMed

    Liu, Xu; Ramirez, Steve; Tonegawa, Susumu

    2014-01-05

    Memories can be easily distorted, and a lack of relevant animal models has largely hindered our understanding of false-memory formation. Here, we first identified a population of cells in the dentate gyrus (DG) of the hippocampus that bear the engrams for a specific context; these cells were naturally activated during the encoding phase of fear conditioning and their artificial reactivation using optogenetics in an unrelated context was sufficient for inducing the fear memory specific to the conditioned context. In a further study, DG or CA1 neurons activated by exposure to a particular context were labelled with channelrhodopsin-2 (ChR2). These neurons were later optically reactivated during fear conditioning in a different context. The DG experimental group showed increased freezing in the original context in which a foot shock was never delivered. The recall of this false memory was context specific, activated similar downstream regions engaged during natural fear-memory recall, and was also capable of driving an active fear response. Together, our data demonstrate that by substituting a natural conditioned stimulus with optogenetically reactivated DG cells that bear contextual memory engrams, it is possible to incept an internally and behaviourally represented false fear memory.

  2. Inception of a false memory by optogenetic manipulation of a hippocampal memory engram

    PubMed Central

    Liu, Xu; Ramirez, Steve; Tonegawa, Susumu

    2014-01-01

    Memories can be easily distorted, and a lack of relevant animal models has largely hindered our understanding of false-memory formation. Here, we first identified a population of cells in the dentate gyrus (DG) of the hippocampus that bear the engrams for a specific context; these cells were naturally activated during the encoding phase of fear conditioning and their artificial reactivation using optogenetics in an unrelated context was sufficient for inducing the fear memory specific to the conditioned context. In a further study, DG or CA1 neurons activated by exposure to a particular context were labelled with channelrhodopsin-2 (ChR2). These neurons were later optically reactivated during fear conditioning in a different context. The DG experimental group showed increased freezing in the original context in which a foot shock was never delivered. The recall of this false memory was context specific, activated similar downstream regions engaged during natural fear-memory recall, and was also capable of driving an active fear response. Together, our data demonstrate that by substituting a natural conditioned stimulus with optogenetically reactivated DG cells that bear contextual memory engrams, it is possible to incept an internally and behaviourally represented false fear memory. PMID:24298144

  3. Hippocampal damage causes retrograde but not anterograde memory loss for context fear discrimination in rats.

    PubMed

    Lee, Justin Q; Sutherland, Robert J; McDonald, Robert J

    2017-09-01

    There is a substantial body of evidence that the hippocampus (HPC) plays and essential role in context discrimination in rodents. Studies reporting anterograde amnesia (AA) used repeated, alternating, distributed conditioning and extinction sessions to measure context fear discrimination. In addition, there is uncertainty about the extent of damage to the HPC. Here, we induced conditioned fear prior to discrimination tests and rats sustained extensive, quantified pre- or post-training HPC damage. Unlike previous work, we found that extensive HPC damage spares context discrimination, we observed no AA. There must be a non-HPC system that can acquire long-term memories that support context fear discrimination. Post-training HPC damage caused retrograde amnesia (RA) for context discrimination, even when rats are fear conditioned for multiple sessions. We discuss the implications of these findings for understanding the role of HPC in long-term memory. © 2017 Wiley Periodicals, Inc.

  4. The hippocampus integrates context and shock into a configural memory in contextual fear conditioning.

    PubMed

    Chang, Shih-Dar; Liang, K C

    2017-02-01

    Contextual fear conditioning involves forming a representation for the context and associating it with a shock, which were attributed by the prevailing view to functions of the hippocampus and amygdala, respectively. Yet our recent evidence suggested that both processes require integrity of the dorsal hippocampus (DH). In view of the DH involvement in uniting multiple stimuli into a configuration, this study examined whether the DH would integrate context and shock into a shocked-context representation. Male Wistar rats were trained on a two-phase training paradigm of contextual fear conditioning. They explored a novel context on the first day to acquire a contextual representation, and received a shock in that context on the second day to form the context-shock memory. Tests of conditioned freezing given on the following days revealed two properties of configural memory-direct and mediated pattern completion: First, the contextual fear memory was retrieved in a novel context by a cue embedded in the configural set-a shock that did not elicit significant freezing on its own. Second, freezing was also elicited in a novel context by a transportation chamber that was not directly paired with the shock but could activate the fear memory inferentially. The effects were specific to the cue and not due to context generalization. Infusion of lidocaine into the DH, but not the amygdala, immediately after context-shock training impaired conditioned freezing elicited through either type of pattern completion. Our data suggest that the DH in contextual fear conditioning associates context and shock in parallel with the amygdala by incorporating the shock into an otherwise neutral context representation and turning it into a shocked-context representation. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Oxytocin differentially modulates pavlovian cue and context fear acquisition.

    PubMed

    Cavalli, Juliana; Ruttorf, Michaela; Pahi, Mario Rosero; Zidda, Francesca; Flor, Herta; Nees, Frauke

    2017-06-01

    Fear acquisition and extinction have been demonstrated as core mechanisms for the development and maintenance of mental disorders, with different contributions of processing cues vs contexts. The hypothalamic peptide oxytocin (OXT) may have a prominent role in this context, as it has been shown to affect fear learning. However, investigations have focused on cue conditioning, and fear extinction. Its differential role for cue and context fear acquisition is still not known. In a randomized, double-blind, placebo (PLC)-controlled design, we administered an intranasal dose of OXT or PLC before the acquisition of cue and context fear conditioning in healthy individuals (n = 52), and assessed brain responses, skin conductance responses and self-reports (valence/arousal/contingency). OXT compared with PLC significantly induced decreased responses in the nucleus accumbens during early cue and context acquisition, and decreased responses of the anterior cingulate cortex and insula during early as well as increased hippocampal response during late context, but not cue acquisition. The OXT group additionally showed significantly higher arousal in late cue and context acquisition. OXT modulates various aspects of cue and context conditioning, which is relevant from a mechanism-based perspective and might have implications for the treatment of fear and anxiety. © The Author (2017). Published by Oxford University Press.

  6. Contextual-specificity of short-delay extinction in humans: Renewal of fear-potentiated startle in a virtual environment

    PubMed Central

    Alvarez, Ruben P.; Johnson, Linda; Grillon, Christian

    2007-01-01

    A recent fear-potentiated startle study in rodents suggested that extinction was not context dependent when extinction was conducted after a short delay following acquisition, suggesting that extinction can lead to erasure of fear learning in some circumstances. The main objective of this study was to attempt to replicate these findings in humans by examining the context specificity of short-delay extinction in an ABA renewal procedure using virtual reality environments. A second objective was to examine whether renewal, if any, would be influenced by context conditioning. Subjects underwent differential aversive conditioning in virtual context A, which was immediately followed by extinction in virtual context B. Extinction was followed by tests of renewal in context A and B, with the order counterbalanced across subjects. Results showed that extinction was context dependent. Evidence for renewal was established using fear-potentiated startle as well as skin conductance and fear ratings. In addition, although contextual anxiety was greater in the acquisition context than in the extinction context during renewal, as assessed with startle, context conditioning did not influence the renewal effect. These data do not support the view that extinction conducted shortly after acquisition is context independent. Hence, they do not provide evidence that extinction can lead to erasure of a fear memory established via Pavlovian conditioning. PMID:17412963

  7. Oxytocin signaling in basolateral and central amygdala nuclei differentially regulates the acquisition, expression, and extinction of context-conditioned fear in rats

    PubMed Central

    Campbell-Smith, Emma J.; Holmes, Nathan M.; Lingawi, Nura W.; Panayi, Marios C.

    2015-01-01

    The present study investigated how oxytocin (OT) signaling in the central (CeA) and basolateral (BLA) amygdala affects acquisition, expression, and extinction of context-conditioned fear (freezing) in rats. In the first set of experiments, acquisition of fear to a shocked context was impaired by a preconditioning infusion of synthetic OT into the CeA (Experiment 1) or BLA (Experiment 2). In the second set of experiments, expression of context fear was enhanced by a pre- or post-extinction CeA infusion of synthetic OT (Experiments 3–6) or a selective OT receptor agonist, TGOT (Experiment 4). This enhancement of fear was blocked by coadministration of an OT receptor antagonist, OTA (Experiment 5) and context fear was suppressed by administration of the antagonist alone (Experiment 6). In the third set of experiments, expression of context fear was suppressed, not enhanced, by a preextinction BLA infusion of synthetic OT or a selective OT receptor agonist, TGOT (Experiments 7 and 8). This suppression of fear was blocked by coadministration of the OT receptor antagonist, OTA (Experiment 8). Taken together, these findings show that the involvement of the CeA and BLA in expression and extinction of context-conditioned fear is dissociable, and imply a critical role for oxytocin signaling in amygdala-based regulation of aversive learning. PMID:25878137

  8. Contextual and Auditory Fear Conditioning Continue to Emerge during the Periweaning Period in Rats

    PubMed Central

    Burman, Michael A.; Erickson, Kristen J.; Deal, Alex L.; Jacobson, Rose E.

    2014-01-01

    Anxiety disorders often emerge during childhood. Rodent models using classical fear conditioning have shown that different types of fear depend upon different neural structures and may emerge at different stages of development. For example, some work has suggested that contextual fear conditioning generally emerges later in development (postnatal day 23–24) than explicitly cued fear conditioning (postnatal day 15–17) in rats. This has been attributed to an inability of younger subjects to form a representation of the context due to an immature hippocampus. However, evidence that contextual fear can be observed in postnatal day 17 subjects and that cued fear conditioning continues to emerge past this age raises questions about the nature of this deficit. The current studies examine this question using both the context pre-exposure facilitation effect for immediate single-shock contextual fear conditioning and traditional cued fear conditioning using Sprague-Dawley rats. The data suggest that both cued and contextual fear conditioning are continuing to develop between PD 17 and 24, consistent with development occurring the in essential fear conditioning circuit. PMID:24977415

  9. Human Fear Conditioning Conducted in Full Immersion 3-Dimensional Virtual Reality

    PubMed Central

    Huff, Nicole C.; Zielinski, David J.; Fecteau, Matthew E.; Brady, Rachael; LaBar, Kevin S.

    2010-01-01

    Fear conditioning is a widely used paradigm in non-human animal research to investigate the neural mechanisms underlying fear and anxiety. A major challenge in conducting conditioning studies in humans is the ability to strongly manipulate or simulate the environmental contexts that are associated with conditioned emotional behaviors. In this regard, virtual reality (VR) technology is a promising tool. Yet, adapting this technology to meet experimental constraints requires special accommodations. Here we address the methodological issues involved when conducting fear conditioning in a fully immersive 6-sided VR environment and present fear conditioning data. In the real world, traumatic events occur in complex environments that are made up of many cues, engaging all of our sensory modalities. For example, cues that form the environmental configuration include not only visual elements, but aural, olfactory, and even tactile. In rodent studies of fear conditioning animals are fully immersed in a context that is rich with novel visual, tactile and olfactory cues. However, standard laboratory tests of fear conditioning in humans are typically conducted in a nondescript room in front of a flat or 2D computer screen and do not replicate the complexity of real world experiences. On the other hand, a major limitation of clinical studies aimed at reducing (extinguishing) fear and preventing relapse in anxiety disorders is that treatment occurs after participants have acquired a fear in an uncontrolled and largely unknown context. Thus the experimenters are left without information about the duration of exposure, the true nature of the stimulus, and associated background cues in the environment1. In the absence of this information it can be difficult to truly extinguish a fear that is both cue and context-dependent. Virtual reality environments address these issues by providing the complexity of the real world, and at the same time allowing experimenters to constrain fear conditioning and extinction parameters to yield empirical data that can suggest better treatment options and/or analyze mechanistic hypotheses. In order to test the hypothesis that fear conditioning may be richly encoded and context specific when conducted in a fully immersive environment, we developed distinct virtual reality 3-D contexts in which participants experienced fear conditioning to virtual snakes or spiders. Auditory cues co-occurred with the CS in order to further evoke orienting responses and a feeling of "presence" in subjects 2 . Skin conductance response served as the dependent measure of fear acquisition, memory retention and extinction. PMID:20736913

  10. Oxytocin Signaling in Basolateral and Central Amygdala Nuclei Differentially Regulates the Acquisition, Expression, and Extinction of Context-Conditioned Fear in Rats

    ERIC Educational Resources Information Center

    Campbell-Smith, Emma J.; Holmes, Nathan M.; Lingawi, Nura W.; Panayi, Marios C.; Westbrook, R. Frederick

    2015-01-01

    The present study investigated how oxytocin (OT) signaling in the central (CeA) and basolateral (BLA) amygdala affects acquisition, expression, and extinction of context-conditioned fear (freezing) in rats. In the first set of experiments, acquisition of fear to a shocked context was impaired by a preconditioning infusion of synthetic OT into the…

  11. In Search for Boundary Conditions of Reconsolidation: A Failure of Fear Memory Interference

    PubMed Central

    Schroyens, Natalie; Beckers, Tom; Kindt, Merel

    2017-01-01

    The presentation of a fear memory cue can result in mere memory retrieval, destabilization of the reactivated memory trace, or the formation of an extinction memory. The interaction between the degree of novelty during reactivation and previous learning conditions is thought to determine the outcome of a reactivation session. This study aimed to evaluate whether contextual novelty can prevent cue-induced destabilization and disruption of a fear memory acquired by non-asymptotic learning. To this end, fear memory was reactivated in a novel context or in the original context of learning, and fear memory reactivation was followed by the administration of propranolol, an amnestic drug. Remarkably, fear memory was not impaired by post-reactivation propranolol administration or extinction training under the usual conditions used in our lab, irrespective of the reactivation context. These unexpected findings are discussed in the light of our current experimental parameters and alleged boundary conditions on memory destabilization. PMID:28469565

  12. Contextual Fear Conditioning in Humans: Cortical-Hippocampal and Amygdala Contributions

    PubMed Central

    Alvarez, Ruben P.; Biggs, Arter; Chen, Gang; Pine, Daniel S.; Grillon, Christian

    2008-01-01

    Functional imaging studies of cued fear conditioning in humans have largely confirmed findings in animals, but it is unclear whether the brain mechanisms that underlie contextual fear conditioning in animals are also preserved in humans. We investigated this issue using fMRI and virtual reality contexts. Subjects underwent differential context conditioning in which they were repeatedly exposed to two contexts (CXT+ and CXT-) in semi-random order, with contexts counterbalanced across participants. An un-signaled footshock was consistently paired with the CXT+, and no shock was ever delivered in the CXT-. Evidence for context conditioning was established using skin conductance and anxiety ratings. Consistent with animal models centrally implicating the hippocampus and amygdala in a network supporting context conditioning, CXT+ compared to CXT- significantly activated right anterior hippocampus and bilateral amygdala. In addition, context conditioning was associated with activation in posterior orbitofrontal cortex, medial dorsal thalamus, anterior insula, subgenual anterior cingulate, and parahippocampal, inferior frontal and parietal cortices. Structural equation modeling was used to assess interactions among the core brain regions mediating context conditioning. The derived model indicated that medial amygdala was the source of key efferent and afferent connections including input from orbitofrontal cortex. These results provide evidence that similar brain mechanisms may underlie contextual fear conditioning across species. PMID:18550763

  13. Understanding the contributions of visual stimuli to contextual fear conditioning: A proof-of-concept study using LCD screens.

    PubMed

    Murawski, Nathen J; Asok, Arun

    2017-01-10

    The precise contribution of visual information to contextual fear learning and discrimination has remained elusive. To better understand this contribution, we coupled the context pre-exposure facilitation effect (CPFE) fear conditioning paradigm with presentations of distinct visual scenes displayed on 4 LCD screens surrounding a conditioning chamber. Adult male Long-Evans rats received non-reinforced context pre-exposure on Day 1, an immediate 1.5mA foot shock on Day 2, and a non-reinforced context test on Day 3. Rats were pre-exposed to either digital Context (dCtx) A, dCtx B, a distinct Ctx C, or no context on Day 1. Digital context A and B were identical except for the visual image displayed on the LCD screens. Immediate shock and retention testing occurred in dCtx A. Rats pre-exposed dCtx A showed the CPFE with significantly higher levels of freezing compared to controls. Rats pre-exposed to Context B failed to show the CPFE, with freezing that did not highly differ from controls. These results suggest that visual information contributes to contextual fear learning and that visual components of the context can be manipulated via LCD screens. Our approach offers a simple modification to contextual fear conditioning paradigms whereby the visual features of a context can be manipulated to better understand the factors that contribute to contextual fear discrimination and generalization. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Extensive Extinction in Multiple Contexts Eliminates the Renewal of Conditioned Fear in Rats

    ERIC Educational Resources Information Center

    Thomas, Brian L.; Vurbic, Drina; Novak, Cheryl

    2009-01-01

    Two studies examined whether nonreinforcement of a stimulus in multiple contexts, instead of a single context, would decrease renewal of conditioned fear in rats (as assessed by conditioned suppression of lever pressing). In Experiment 1, renewal was measured after 36 nonreinforced CS trials delivered during six extinction sessions in a single…

  15. [The Manifestation of the Anxiety during Fear Conditioning in Wistar Rats].

    PubMed

    Pavlova, I V; Rysakova, M P

    2015-01-01

    In order to identify the correlation between anxiety and conditioned fear, the behavior of the same male Wistar rats was compared in three anxiety tests (open field, light-dark box and elevated plus-maze) and in Pavlovian auditory fear conditioning paradigm using correlation, factor and variance analyses. The correlation between anxiety/bravery and locomotion indexes in different tests was not revealed. Positive correlations between grooming, urinations and defecations, rearing in three tests were revealed. These data suggest that animals reacted to various tests differently, resulting, apparently in the emergence of different anxiety levels, specific for each test. Vegetative reactions, inclination to exploration and substituting behavior were more stable characteristics of rats. Anxiety behavior in elevated plus-maze correlated to freezing response to context after fear conditioning, while high-anxiety rats had higher level of freezing to context than low-anxiety rats. The higher freezing response to sound after fear conditioning was found in rats with middle locomotor activity in open field. Conditioned fear to the context and to the sound was associated with different forms of rat anxiety during different tests.

  16. Effects of 7-nitroindazole, a selective neural nitric oxide synthase inhibitor, on context-shock associative learning in a two-process contextual fear conditioning paradigm.

    PubMed

    Chen, Weihai; Yan, Minmin; Wang, Yan; Wang, Xiaqing; Yuan, Jiajin; Li, Ming

    2016-10-01

    Nitric oxide (NO) is an important retrograde neuronal intracellular messenger which plays an important role in synaptic plasticity and is involved in learning and memory. However, evidence that NO is particularly important for the acquisition of contextual fear conditioning is mixed. Also, little is known about at which stages of the contextual fear conditioning does NO make its contribution. In the present study, we used 7-nitroindazole to temporarily inhibit neural nitric oxide synthase at either the pre-exposure stage or conditioning stage in a two-process paradigm and examined the potential contribution that NO makes to the contextually conditioned fear. Results showed that the expression of contextual fear memory was significantly impaired in rats treated with 7-nitroindazole (30mg/kg, i.p.) prior to the pairing of context-shock (p=0.034, n=8), but not after the conditioning phase (p=0.846, n=8). In addition, the expression of contextual fear memory and reconsolidation was not significantly impaired by 7-nitroindazole administered prior to the context pre-exposure stage or prior to another context-shock learning. These findings suggest that NO is specifically involved in the acquisition but not the consolidation, retrieval or reconsolidation of contextual fear memory. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Rats with ventral hippocampal damage are impaired at various forms of learning including conditioned inhibition, spatial navigation, and discriminative fear conditioning to similar contexts.

    PubMed

    McDonald, Robert J; Balog, R J; Lee, Justin Q; Stuart, Emily E; Carrels, Brianna B; Hong, Nancy S

    2018-10-01

    The ventral hippocampus (vHPC) has been implicated in learning and memory functions that seem to differ from its dorsal counterpart. The goal of this series of experiments was to provide further insight into the functional contributions of the vHPC. Our previous work implicated the vHPC in spatial learning, inhibitory learning, and fear conditioning to context. However, the specific role of vHPC on these different forms of learning are not clear. Accordingly, we assessed the effects of neurotoxic lesions of the ventral hippocampus on retention of a conditioned inhibitory association, early versus late spatial navigation in the water task, and discriminative fear conditioning to context under high ambiguity conditions. The results showed that the vHPC was necessary for the expression of conditioned inhibition, early spatial learning, and discriminative fear conditioning to context when the paired and unpaired contexts have high cue overlap. We argue that this pattern of effects, combined with previous work, suggests a key role for vHPC in the utilization of broad contextual representations for inhibition and discriminative memory in high ambiguity conditions. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Counterconditioned Fear Responses Exhibit Greater Renewal than Extinguished Fear Responses

    ERIC Educational Resources Information Center

    Holmes, Nathan M.; Leung, Hiu T.; Westbrook, R. Frederick

    2016-01-01

    This series of experiments used rats to compare counterconditioning and extinction of conditioned fear responses (freezing) with respect to the effects of a context shift. In each experiment, a stimulus was paired with shock in context A, extinguished or counterconditioned through pairings with sucrose in context B, and then tested for renewal…

  19. Behavioral techniques for attenuating the expression of fear associations in an animal model of anxiety.

    PubMed

    Laborda, Mario A; Polack, Cody W; Miguez, Gonzalo; Miller, Ralph R

    2014-09-01

    Recent data indicate that extinguished fear often returns when the testing conditions differ from those of treatment. Several manipulations including extensive extinction training, extinction in multiple contexts, and spacing the extinction trials and sessions reduce the return of fear. Moreover, extensive extinction and extinction in multiple contexts summate in reducing return of fear, and the spacing of the extinction trials and the spacing of extinction sessions summate in reducing return of fear. Here we evaluated whether these techniques also attenuate the context specificity of latent inhibition, and whether they summate to further decrease fear responding at test. In two experiments, with rats as subjects in a lick suppression preparation, we assessed the effects of massive CS preexposure, CS preexposure in multiple contexts, and of spacing the CS-preexposure trials and sessions, in reducing the context specificity of latent inhibition. Fear responding was attenuated by all four manipulations. Moreover, extensive CS preexposure in multiple contexts, and conjoint spacing of the CS-preexposure trials and sessions, were more effective in reducing the context specificity of latent inhibition than each manipulation alone. Our experimental designs evaluated degrees of context specificity of latent inhibition but omitted groups in which latent inhibition was assessed without a context shift away from the context of latent inhibition treatment. This precluded us from drawing conclusions concerning absolute (as opposed to relative) levels of recovery from latent inhibition. Techniques effective in decreasing the return of conditioned fear following extinction are also effective in decreasing the context specificity of latent inhibition in an animal model of anxiety. Fear and anxiety disorders might be prevented in anxious human participants with the same techniques used here, but that is still an empirical question. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Consequences of adolescent ethanol exposure in male Sprague-Dawley rats on fear conditioning and extinction in adulthood

    NASA Astrophysics Data System (ADS)

    Broadwater, Margaret A.

    Some evidence suggests that adolescents are more vulnerable than adults to alcohol-induced cognitive deficits and that these deficits may persist into adulthood. Five experiments were conducted to assess long-term consequences of ethanol exposure on tone and context Pavlovian fear conditioning in male Sprague-Dawley rats. Experiment 1 examined age-related differences in sensitivity to ethanol-induced disruptions of fear conditioning to a pre-conditioning ethanol challenge. Experiments 2 examined fear conditioning 22 days after early-mid adolescent (P28-48) or adult (P70-90) exposure to 4 g/kg i.g. ethanol or water given every other day (total of 11 exposures). In Experiment 3, mid-late adolescents (P35-55) were exposed in the same manner to assess whether timing of ethanol exposure within the adolescent period would differentially affect later fear conditioning. Experiment 4 assessed the influence of prior adolescent or adult ethanol exposure on the disrupting effects of a pre-conditioning ethanol challenge. In Experiment 5, neurogenesis (doublecortin---DCX) and cholinergic (choline acetyltransferase---ChAT) markers were measured to assess potential long-term ethanol-induced changes in neural mechanisms important for learning and memory. Results indicated that the long-lasting behavioral effects of ethanol exposure varied depending on exposure age, with early-mid adolescent exposed animals showing attenuated context fear retention (a relatively hippocampal-dependent task), whereas mid-late adolescent and adult exposed animals showed slower context extinction (thought to be reliant on the mPFC). Early-mid adolescent ethanol-exposed animals also had significantly less DCX and ChAT expression than their water-exposed counterparts, possibly contributing to deficits in context fear. Tone fear was not influenced by prior ethanol exposure at any age. In terms of age differences in ethanol sensitivity, adolescents were less sensitive than adults to ethanol-induced disruption of context fear retention; however, acute ethanol-induced disruptions of context fear did not differ as a function of prior ethanol exposure at either exposure age in adulthood. Together these results reflect differential influence of ethanol on the brain as it changes throughout ontogeny, with the hippocampus seemingly vulnerable to early adolescent exposure, whereas the mPFC may be more affected by ethanol exposure in mid-adolescence through adulthood. These data have implications for alcohol use not only throughout adolescence, but also in adulthood.

  1. Activity of the anterior cingulate cortex and ventral hippocampus underlie increases in contextual fear generalization.

    PubMed

    Cullen, Patrick K; Gilman, T Lee; Winiecki, Patrick; Riccio, David C; Jasnow, Aaron M

    2015-10-01

    Memories for context become less specific with time resulting in animals generalizing fear from training contexts to novel contexts. Though much attention has been given to the neural structures that underlie the long-term consolidation of a context fear memory, very little is known about the mechanisms responsible for the increase in fear generalization that occurs as the memory ages. Here, we examine the neural pattern of activation underlying the expression of a generalized context fear memory in male C57BL/6J mice. Animals were context fear conditioned and tested for fear in either the training context or a novel context at recent and remote time points. Animals were sacrificed and fluorescent in situ hybridization was performed to assay neural activation. Our results demonstrate activity of the prelimbic, infralimbic, and anterior cingulate (ACC) cortices as well as the ventral hippocampus (vHPC) underlie expression of a generalized fear memory. To verify the involvement of the ACC and vHPC in the expression of a generalized fear memory, animals were context fear conditioned and infused with 4% lidocaine into the ACC, dHPC, or vHPC prior to retrieval to temporarily inactivate these structures. The results demonstrate that activity of the ACC and vHPC is required for the expression of a generalized fear memory, as inactivation of these regions returned the memory to a contextually precise form. Current theories of time-dependent generalization of contextual memories do not predict involvement of the vHPC. Our data suggest a novel role of this region in generalized memory, which should be incorporated into current theories of time-dependent memory generalization. We also show that the dorsal hippocampus plays a prolonged role in contextually precise memories. Our findings suggest a possible interaction between the ACC and vHPC controls the expression of fear generalization. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Role of the amygdala GABA-A receptors in ACPA-induced deficits during conditioned fear learning.

    PubMed

    Nasehi, Mohammad; Roghani, Farnaz; Ebrahimi-Ghiri, Mohaddeseh; Zarrindast, Mohammad-Reza

    2017-05-01

    The basolateral amygdala (BLA) is a key structure for the emotional processing and storage of memories associated with emotional events, especially fear. On the other hand, endocannabinoids and CB1 receptors play a key role in learning and memory partly through long-term synaptic depression of GABAergic synapses in the BLA. The aim of this study was to explore the effects of GABA-A receptor agonist and antagonist in the fear-related memory acquisition deficits induced by ACPA (a selective CB1 cannabinoid receptor agonist). This study used context and tone fear conditioning paradigms to assess fear-related memory in male NMRI mice. Our results showed that the pre-training intraperitoneal administration of ACPA (0.5mg/kg) or (0.1 and 0.5mg/kg) decreased the percentage of freezing time in the contextual and tone fear conditioning, respectively. This indicated an impaired context- or tone-dependent fear memory acquisition. Moreover, the pre-training intra-BLA microinjection of GABA-A receptor agonist, muscimol, at 0.05 and 0.5μg/mouse impaired context-dependent fear memory, while the same doses of GABA-A antagonist, bicuculline, impaired tone-dependent fear memory. However, a subthreshold dose of muscimol or bicuculline increased the effect of ACPA at 0.1 and 0.5 or 0.05mg/kg on context- or tone-dependent fear memory, respectively. In addition, bicuculline at the lower dose increased the ACPA response on locomotor activity compared to its respective group. Such findings highlighted an interaction between BLA GABAergic and cannabinoidergic systems during the acquisition phase of conditioned fear memories. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Exposure to a fearful context during periods of memory plasticity impairs extinction via hyperactivation of frontal-amygdalar circuits

    PubMed Central

    Stafford, James M.; Maughan, DeeAnna K.; Ilioi, Elena C.; Lattal, K. Matthew

    2013-01-01

    An issue of increasing theoretical and translational importance is to understand the conditions under which learned fear can be suppressed, or even eliminated. Basic research has pointed to extinction, in which an organism is exposed to a fearful stimulus (such as a context) in the absence of an expected aversive outcome (such as a shock). This extinction process results in the suppression of fear responses, but is generally thought to leave the original fearful memory intact. Here, we investigate the effects of extinction during periods of memory lability on behavioral responses and on expression of the immediate–early gene c-Fos within fear conditioning and extinction circuits. Our results show that long-term extinction is impaired when it occurs during time periods during which the memory should be most vulnerable to disruption (soon after conditioning or retrieval). These behavioral effects are correlated with hyperactivation of medial prefrontal cortex and amygdala subregions associated with fear expression rather than fear extinction. These findings demonstrate that behavioral experiences during periods of heightened fear prevent extinction and prolong the conditioned fear response. PMID:23422280

  4. Early Extinction after Fear Conditioning Yields a Context-Independent and Short-Term Suppression of Conditional Freezing in Rats

    ERIC Educational Resources Information Center

    Chang, Chun-hui; Maren, Stephen

    2009-01-01

    Extinction of Pavlovian fear conditioning in rats is a useful model for therapeutic interventions in humans with anxiety disorders. Recently, we found that delivering extinction trials soon (15 min) after fear conditioning yields a short-term suppression of fear, but little long-term extinction. Here, we explored the possible mechanisms underlying…

  5. Contextual fear conditioning depresses infralimbic excitability.

    PubMed

    Soler-Cedeño, Omar; Cruz, Emmanuel; Criado-Marrero, Marangelie; Porter, James T

    2016-04-01

    Patients with posttraumatic stress disorder (PTSD) show hypo-active ventromedial prefrontal cortices (vmPFC) that correlate with their impaired ability to discriminate between safe and dangerous contexts and cues. Previously, we found that auditory fear conditioning depresses the excitability of neurons populating the homologous structure in rodents, the infralimbic cortex (IL). However, it is undetermined if IL depression was mediated by the cued or contextual information. The objective of this study was to examine whether contextual information was sufficient to depress IL neuronal excitability. After exposing rats to context-alone, pseudoconditioning, or contextual fear conditioning, we used whole-cell current-clamp recordings to examine the excitability of IL neurons in prefrontal brain slices. We found that contextual fear conditioning reduced IL neuronal firing in response to depolarizing current steps. In addition, neurons from contextual fear conditioned animals showed increased slow afterhyperpolarization potentials (sAHPs). Moreover, the observed changes in IL excitability correlated with contextual fear expression, suggesting that IL depression may contribute to the encoding of contextual fear. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Age differences in fear retention and extinction in male Sprague-Dawley rats: Effects of ethanol challenge during conditioning

    PubMed Central

    Broadwater, Margaret; Spear, Linda P.

    2013-01-01

    Pavlovian fear conditioning is an ideal model to investigate how learning and memory are influenced by alcohol use during adolescence because the neural mechanisms involved have been studied extensively. In Exp 1, adolescent and adult male Sprague-Dawley rats were non-injected or injected with saline, 1 or 1.5 g/kg ethanol intraperitoneally 10 minutes prior to tone or context conditioning. Twenty-four hours later, animals were tested for tone or context retention and extinction, with examination of extinction retention conducted 24 hours thereafter. In Exp 2, a context extinction session was inserted between the tone conditioning and the tone fear retention/extinction days to reduce pre-CS baseline freezing levels at test. Basal levels of acquisition, fear retention, extinction, and extinction retention after tone conditioning were similar between adolescent and adult rats. In contrast adolescents showed faster context extinction than adults, while again not differing from adults during context acquisition, retention or extinction retention. In terms of ethanol effects, adolescents were less sensitive to ethanol-induced context retention deficits than adults. No age differences emerged in terms of tone fear retention, with ethanol disrupting tone fear retention at both ages in Exp1, but at neither age in Exp 2, a difference seemingly due to group differences in pre-CS freezing during tone testing in Exp 1, but not Exp 2. These results suggest that age differences in the acute effects of ethanol on cognitive function are task-specific, and provide further evidence for age differences cognitive functioning in a task thought to be hippocampally-related. PMID:23810415

  7. Post-conditioning experience with acute or chronic inflammatory pain reduces contextual fear conditioning in the rat

    PubMed Central

    Johnston, Ian N.; Maier, Steven F.; Rudy, Jerry W.; Watkins, Linda R.

    2017-01-01

    There is evidence that pain can impact cognitive function in people. The present study evaluated whether Pavlovian fear conditioning in rats would be reduced if conditioning were followed by persistent inflammatory pain induced by a subcutaneous injection of dilute formalin or complete Freund's adjuvant (CFA) on the dorsal lumbar surface of the back. Formalin-induced pain specifically impaired contextual fear conditioning but not auditory cue conditioning (Experiment 1A). Moreover, formalin pain only impaired contextual fear conditioning if it was initiated within 1 h of conditioning and did not have a significant effect if initiated 2, 8 or 32 h after (Experiments 1A and 1B). Experiment 2 showed that formalin pain initiated after a session of context pre-exposure reduced the ability of that pre-exposure to facilitate contextual fear when the rat was limited to a brief exposure to the context during conditioning. Similar impairments in context- but not CS-fear conditioning were also observed if the rats received an immediate post-conditioning injection with CFA (Experiment 3). Finally, we confirmed that formalin and CFA injected s.c. on the back induced pain-indicative behaviours, hyperalgesia and allodynia with a similar timecourse to intraplantar injections (Experiment 4). These results suggest that persistent pain impairs learning in a hippocampus-dependent task, and may disrupt processes that encode experiences into long-term memory. PMID:21920390

  8. Immediate extinction promotes the return of fear.

    PubMed

    Merz, Christian J; Hamacher-Dang, Tanja C; Wolf, Oliver T

    2016-05-01

    Accumulating evidence indicates that immediate extinction is less effective than delayed extinction in attenuating the return of fear. This line of fear conditioning research impacts the proposed onset of psychological interventions after threatening situations. In the present study, forty healthy men were investigated in a differential fear conditioning paradigm with fear acquisition in context A, extinction in context B, followed by retrieval testing in both contexts 24h later to test fear renewal. Differently coloured lights served as conditioned stimuli (CS): two CS (CS+) were paired with an electrical stimulation that served as unconditioned stimulus, the third CS was never paired (CS-). Extinction took place immediately after fear acquisition or 24h later. One CS+ was extinguished whereas the second CS+ remained unextinguished to control for different time intervals between fear acquisition and retrieval testing. Immediate extinction led to larger skin conductance responses during fear retrieval to both the extinguished and unextinguished CS relative to the CS-, indicating a stronger return of fear compared to delayed extinction. Taken together, immediate extinction is less potent than delayed extinction and is associated with a stronger renewal effect. Thus, the time-point of psychological interventions relative to the offset of threatening situations needs to be carefully considered to prevent relapses. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Inhibition of projections from the basolateral amygdala to the entorhinal cortex disrupts the acquisition of contextual fear

    PubMed Central

    Sparta, Dennis R.; Smithuis, Jim; Stamatakis, Alice M.; Jennings, Joshua H.; Kantak, Pranish A.; Ung, Randall L.; Stuber, Garret D.

    2014-01-01

    The development of excessive fear and/or stress responses to environmental cues such as contexts associated with a traumatic event is a hallmark of post-traumatic stress disorder (PTSD). The basolateral amygdala (BLA) has been implicated as a key structure mediating contextual fear conditioning. In addition, the hippocampus has an integral role in the encoding and processing of contexts associated with strong, salient stimuli such as fear. Given that both the BLA and hippocampus play an important role in the regulation of contextual fear conditioning, examining the functional connectivity between these two structures may elucidate a role for this pathway in the development of PTSD. Here, we used optogenetic strategies to demonstrate that the BLA sends a strong glutamatergic projection to the hippocampal formation through the entorhinal cortex (EC). Next, we photoinhibited glutamatergic fibers from the BLA terminating in the EC during the acquisition or expression of contextual fear conditioning. In mice that received optical inhibition of the BLA-to-EC pathway during the acquisition session, we observed a significant decrease in freezing behavior in a context re-exposure session. In contrast, we observed no differences in freezing behavior in mice that were only photoinhibited during the context re-exposure session. These data demonstrate an important role for the BLA-to-EC glutamatergic pathway in the acquisition of contextual fear conditioning. PMID:24834031

  10. Optogenetic stimulation of a hippocampal engram activates fear memory recall.

    PubMed

    Liu, Xu; Ramirez, Steve; Pang, Petti T; Puryear, Corey B; Govindarajan, Arvind; Deisseroth, Karl; Tonegawa, Susumu

    2012-03-22

    A specific memory is thought to be encoded by a sparse population of neurons. These neurons can be tagged during learning for subsequent identification and manipulation. Moreover, their ablation or inactivation results in reduced memory expression, suggesting their necessity in mnemonic processes. However, the question of sufficiency remains: it is unclear whether it is possible to elicit the behavioural output of a specific memory by directly activating a population of neurons that was active during learning. Here we show in mice that optogenetic reactivation of hippocampal neurons activated during fear conditioning is sufficient to induce freezing behaviour. We labelled a population of hippocampal dentate gyrus neurons activated during fear learning with channelrhodopsin-2 (ChR2) and later optically reactivated these neurons in a different context. The mice showed increased freezing only upon light stimulation, indicating light-induced fear memory recall. This freezing was not detected in non-fear-conditioned mice expressing ChR2 in a similar proportion of cells, nor in fear-conditioned mice with cells labelled by enhanced yellow fluorescent protein instead of ChR2. Finally, activation of cells labelled in a context not associated with fear did not evoke freezing in mice that were previously fear conditioned in a different context, suggesting that light-induced fear memory recall is context specific. Together, our findings indicate that activating a sparse but specific ensemble of hippocampal neurons that contribute to a memory engram is sufficient for the recall of that memory. Moreover, our experimental approach offers a general method of mapping cellular populations bearing memory engrams.

  11. Optogenetic stimulation of a hippocampal engram activates fear memory recall

    PubMed Central

    Liu, Xu; Ramirez, Steve; Pang, Petti T.; Puryear, Corey B.; Govindarajan, Arvind; Deisseroth, Karl; Tonegawa, Susumu

    2012-01-01

    A specific memory is thought to be encoded by a sparse population of neurons1,2. These neurons can be tagged during learning for subsequent identification3 and manipulation4,5,6. Moreover, their ablation or inactivation results in reduced memory expression, suggesting their necessity in mnemonic processes. However, a critical question of sufficiency remains: can one elicit the behavioral output of a specific memory by directly activating a population of neurons that was active during learning? Here we show that optogenetic reactivation of hippocampal neurons activated during fear conditioning is sufficient to induce freezing behavior. We labeled a population of hippocampal dentate gyrus neurons activated during fear learning with channelrhodopsin-2 (ChR2)7,8 and later optically reactivated these neurons in a different context. The mice showed increased freezing only upon light stimulation, indicating light-induced fear memory recall. This freezing was not detected in non-fear conditioned mice expressing ChR2 in a similar proportion of cells, nor in fear conditioned mice with cells labeled by EYFP instead of ChR2. Finally, activation of cells labeled in a context not associated with fear did not evoke freezing in mice that were previously fear conditioned in a different context, suggesting that light-induced fear memory recall is context-specific. Together, our findings indicate that activating a sparse but specific ensemble of hippocampal neurons that contribute to a memory engram is sufficient for the recall of that memory. Moreover, our experimental approach offers a general method of mapping cellular populations bearing memory engrams. PMID:22441246

  12. Tracking the fear memory engram: discrete populations of neurons within amygdala, hypothalamus, and lateral septum are specifically activated by auditory fear conditioning

    PubMed Central

    Wilson, Yvette M.; Gunnersen, Jenny M.; Murphy, Mark

    2015-01-01

    Memory formation is thought to occur via enhanced synaptic connectivity between populations of neurons in the brain. However, it has been difficult to localize and identify the neurons that are directly involved in the formation of any specific memory. We have previously used fos-tau-lacZ (FTL) transgenic mice to identify discrete populations of neurons in amygdala and hypothalamus, which were specifically activated by fear conditioning to a context. Here we have examined neuronal activation due to fear conditioning to a more specific auditory cue. Discrete populations of learning-specific neurons were identified in only a small number of locations in the brain, including those previously found to be activated in amygdala and hypothalamus by context fear conditioning. These populations, each containing only a relatively small number of neurons, may be directly involved in fear learning and memory. PMID:26179231

  13. Activation of the Infralimbic Cortex in a Fear Context Enhances Extinction Learning

    ERIC Educational Resources Information Center

    Thompson, Brittany M.; Baratta, Michael V.; Biedenkapp, Joseph C.; Rudy, Jerry W.; Watkins, Linda R.; Maier, Steven F.

    2010-01-01

    Activation of the infralimbic region (IL) of the medial prefrontal cortex (mPFC) reduces conditioned fear in a variety of situations, and the IL is thought to play an important role in the extinction of conditioned fear. Here we report a series of experiments using contextual fear conditioning in which the IL is activated with the GABAa antagonist…

  14. Systemic or Intra-Amygdala Injection of a Benzodiazepine (Midazolam) Impairs Extinction but Spares Re-Extinction of Conditioned Fear Responses

    ERIC Educational Resources Information Center

    Hart, Genevra; Harris, Justin A.; Westbrook, R. Frederick

    2009-01-01

    Rats were subjected to one or two cycles of fear conditioning and extinction, injected with a benzodiazepine, midazolam, before the first or second extinction, and tested for long-term inhibition of fear responses (freezing). In Experiment 1, inhibition of context-conditioned fear was spared when midazolam was injected before the second…

  15. Fear conditioning in mouse lines genetically selected for binge-like ethanol drinking.

    PubMed

    Crabbe, John C; Schlumbohm, Jason P; Hack, Wyatt; Barkley-Levenson, Amanda M; Metten, Pamela; Lattal, K Matthew

    2016-05-01

    The comorbidity of substance- and alcohol-use disorders (AUD) with other psychiatric conditions, especially those related to stress such as post-traumatic stress disorder (PTSD), is well-established. Binge-like intoxication is thought to be a crucial stage in the development of the chronic relapsing nature of the addictions, and self-medication through binge-like drinking is commonly seen in PTSD patients. We have selectively bred two separate High Drinking in the Dark (HDID-1 and HDID-2) mouse lines to reach high blood ethanol concentrations (BECs) after a 4-h period of access to 20% ethanol starting shortly after the onset of circadian dark. As an initial step toward the eventual goal of employing binge-prone HDID mice to study PTSD-like behavior including alcohol binge drinking, we sought first to determine their ability to acquire conditioned fear. We asked whether these mice acquired, generalized, or extinguished conditioned freezing to a greater or lesser extent than unselected control HS/Npt mice. In two experiments, we trained groups of 16 adult male mice in a standard conditioned fear protocol. Mice were tested for context-elicited freezing, and then, in a novel context, for cue-induced freezing. After extinction tests, renewal of conditioned fear was tested in the original context. Mice of all three genotypes showed typical fear responding. Context paired with shock elicited freezing behavior in a control experiment, but cue unpaired with shock did not. These studies indicate that fear learning per se does not appear to be influenced by genes causing predisposition to binge drinking, suggesting distinct neural mechanisms. However, HDID mice are shown to be a suitable model for studying the role of conditioned fear specifically in binge-like drinking. Published by Elsevier Inc.

  16. Fear conditioning in mouse lines genetically selected for binge-like ethanol drinking

    PubMed Central

    Crabbe, John C.; Schlumbohm, Jason P.; Hack, Wyatt; Barkley-Levenson, Amanda M.; Metten, Pamela; Lattal, K. Matthew

    2016-01-01

    The comorbidity of substance- and alcohol-use disorders (AUD) with other psychiatric conditions, especially those related to stress such as post-traumatic stress disorder (PTSD), is well-established. Binge-like intoxication is thought to be a crucial stage in the development of the chronic relapsing nature of the addictions, and self-medication through binge-like drinking is commonly seen in PTSD patients. We have selectively bred two separate High Drinking in the Dark (HDID-1 and HDID-2) mouse lines to reach high blood ethanol concentrations (BECs) after a 4-h period of access to 20% ethanol starting shortly after the onset of circadian dark. As an initial step toward the eventual goal of employing binge-prone HDID mice to study PTSD-like behavior including alcohol binge drinking, we sought first to determine their ability to acquire conditioned fear. We asked whether these mice acquired, generalized, or extinguished conditioned freezing to a greater or lesser extent than unselected control HS/Npt mice. In two experiments, we trained groups of 16 adult male mice in a standard conditioned fear protocol. Mice were tested for context-elicited freezing, and then, in a novel context, for cue-induced freezing. After extinction tests, renewal of conditioned fear was tested in the original context. Mice of all three genotypes showed typical fear responding Context paired with shock elicited freezing behavior in a control experiment, but cue unpaired with shock did not. These studies indicate that fear learning per se does not appear to be influenced by genes causing predisposition to binge drinking, suggesting distinct neural mechanisms. However, HDID mice are shown to be a suitable model for studying the role of conditioned fear specifically in binge-like drinking. PMID:27139234

  17. Potent Attenuation of Context Fear by Extinction Training Contiguous with Acquisition

    ERIC Educational Resources Information Center

    Bernier, Brian E.; Lacagnina, Anthony F.; Drew, Michael R.

    2015-01-01

    Studies on the behavioral mechanisms underlying contextual fear conditioning (CFC) have demonstrated the importance of preshock context exposure in the formation of aversive context memories. However, there has been comparatively little investigation of the effects of context exposure immediately after the shock. Some models predict that…

  18. The endocannabinoid system in the rat dorsolateral periaqueductal grey mediates fear-conditioned analgesia and controls fear expression in the presence of nociceptive tone

    PubMed Central

    Olango, WM; Roche, M; Ford, GK; Harhen, B; Finn, DP

    2012-01-01

    BACKGROUND AND PURPOSE Endocannabinoids in the midbrain periaqueductal grey (PAG) modulate nociception and unconditioned stress-induced analgesia; however, their role in fear-conditioned analgesia (FCA) has not been examined. The present study examined the role of the endocannabinoid system in the dorsolateral (dl) PAG in formalin-evoked nociceptive behaviour, conditioned fear and FCA in rats. EXPERIMENTAL APPROACH Rats received intra-dlPAG administration of the CB1 receptor antagonist/inverse agonist rimonabant, or vehicle, before re-exposure to a context paired 24 h previously with foot shock. Formalin-evoked nociceptive behaviour and fear-related behaviours (freezing and 22 kHz ultrasonic vocalization) were assessed. In a separate cohort, levels of endocannabinoids [2-arachidonoyl glycerol (2-AG) and N-arachidonoyl ethanolamide (anandamide; AEA)] and the related N-acylethanolamines (NAEs) [N-palmitoyl ethanolamide (PEA) and N-oleoyl ethanolamide (OEA)] were measured in dlPAG tissue following re-exposure to conditioned context in the presence or absence of formalin-evoked nociceptive tone. KEY RESULTS Re-exposure of rats to the context previously associated with foot shock resulted in FCA. Intra-dlPAG administration of rimonabant significantly attenuated FCA and fear-related behaviours expressed in the presence of nociceptive tone. Conditioned fear without formalin-evoked nociceptive tone was associated with increased levels of 2-AG, AEA, PEA and OEA in the dlPAG. FCA was specifically associated with an increase in AEA levels in the dlPAG. CONCLUSIONS AND IMPLICATIONS Conditioned fear to context mobilises endocannabinoids and NAEs in the dlPAG. These data support a role for endocannabinoids in the dlPAG in mediating the potent suppression of pain responding which occurs during exposure to conditioned aversive contexts. LINKED ARTICLES This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7 PMID:21564082

  19. Cholinergic blockade frees fear extinction from its contextual dependency

    PubMed Central

    Zelikowsky, Moriel; Hast, Timothy A.; Bennett, Rebecca Z.; Merjanian, Michael; Nocera, Nathaniel A.; Ponnusamy, Ravikumar; Fanselow, Michael S.

    2012-01-01

    Background Fears that are maladaptive or inappropriate can be reduced through extinction training. However, extinction is highly context-sensitive, resulting in the renewal of fear following shifts in context, and limiting the clinical efficacy of extinction training. Lesion and inactivation studies have shown that the contextualization of extinction depends on the hippocampus. Parallel studies have found that intrahippocampal scopolamine blocks contextual fear conditioning. Importantly, this effect was replicated using a non-invasive technique in which a low dose of scopolamine was administered systemically. We aimed to transfer the effects of this non-invasive approach to block the contextualization of fear extinction. Methods Rats were tone fear conditioned and extinguished under various systemic doses of scopolamine or the saline vehicle. They were subsequently tested (off drug) for tone fear in a context that was the same (controls) or shifted (renewal group) with respect to the extinction context. Results The lowest dose of scopolamine produced a significant attenuation of fear renewal when renewal was tested either in the original training context or a novel context. The drug also slowed the rate of long-term extinction memory formation, which was readily overcome by extending extinction training. Scopolamine only gave this effect when it was administered during, but not after extinction training. Higher doses of scopolamine severely disrupted extinction learning. Conclusions We discovered that disrupting contextual processing during extinction with the cholinergic antagonist scopolamine blocked subsequent fear renewal. Low doses of scopolamine may be a clinically promising adjunct to exposure therapy by making extinction more relapse-resistant. PMID:22981655

  20. Early life stress in rats sex-dependently affects remote endocrine rather than behavioral consequences of adult exposure to contextual fear conditioning.

    PubMed

    Fuentes, Sílvia; Daviu, Núria; Gagliano, Humberto; Belda, Xavier; Armario, Antonio; Nadal, Roser

    2018-05-30

    Exposure to electric foot-shocks can induce in rodents contextual fear conditioning, generalization of fear to other contexts and sensitization of the hypothalamic-pituitary-adrenal (HPA) axis to further stressors. All these aspects are relevant for the study of post-traumatic stress disorder. In the present work we evaluated in rats the sex differences and the role of early life stress (ELS) in fear memories, generalization and sensitization. During the first postnatal days subjects were exposed to restriction of nesting material along with exposure to a "substitute" mother. In the adulthood they were exposed to (i) a contextual fear conditioning to evaluate long-term memory and extinction and (ii) to a novel environment to study cognitive fear generalization and HPA axis heterotypic sensitization. ELS did not alter acquisition, expression or extinction of context fear conditioned behavior (freezing) in either sex, but reduced activity in novel environments only in males. Fear conditioning associated hypoactivity in novel environments (cognitive generalization) was greater in males than females but was not specifically affected by ELS. Although overall females showed greater basal and stress-induced levels of ACTH and corticosterone, an interaction between ELS, shock exposure and sex was found regarding HPA hormones. In males, ELS did not affect ACTH response in any situation, whereas in females, ELS reduced both shock-induced sensitization of ACTH and its conditioned response to the shock context. Also, shock-induced sensitization of corticosterone was only observed in males and ELS specifically reduced corticosterone response to stressors in males but not females. In conclusion, ELS seems to have only a minor impact on shock-induced behavioral conditioning, while affecting the unconditioned and conditioned responses of HPA hormones in a sex-dependent manner. Copyright © 2018. Published by Elsevier Inc.

  1. A bout of voluntary running enhances context conditioned fear, its extinction, and its reconsolidation

    PubMed Central

    Siette, Joyce; Reichelt, Amy C.; Westbrook, R. Frederick

    2014-01-01

    Three experiments used rats to examine the effect of a single bout of voluntary activity (wheel running) on the acquisition, extinction, and reconsolidation of context conditioned fear. In Experiment 1, rats provided with access to a wheel for 3 h immediately before or after a shocked exposure to a context froze more when tested in that context than rats provided with access to the wheels 6 h after the shocked exposure or rats not provided with access to the wheels. In Experiment 2, rats provided with access to the wheels immediately before or after a nonshocked exposure to the conditioned context froze less when tested in that context than rats provided with access to the wheels 6 h after the nonshocked exposure or rats not provided with access to the wheels. In Experiment 3, rats provided with access to wheels immediately after an extended nonshocked exposure to the conditioned context again froze less, whereas rats provided with access to the wheels after a brief nonshocked exposure froze more on the subsequent test than sedentary controls. These results show that a single bout of running can enhance acquisition, extinction, and reconsolidation of context conditioned fear. PMID:24429425

  2. A bout of voluntary running enhances context conditioned fear, its extinction, and its reconsolidation.

    PubMed

    Siette, Joyce; Reichelt, Amy C; Westbrook, R Frederick

    2014-01-15

    Three experiments used rats to examine the effect of a single bout of voluntary activity (wheel running) on the acquisition, extinction, and reconsolidation of context conditioned fear. In Experiment 1, rats provided with access to a wheel for 3 h immediately before or after a shocked exposure to a context froze more when tested in that context than rats provided with access to the wheels 6 h after the shocked exposure or rats not provided with access to the wheels. In Experiment 2, rats provided with access to the wheels immediately before or after a nonshocked exposure to the conditioned context froze less when tested in that context than rats provided with access to the wheels 6 h after the nonshocked exposure or rats not provided with access to the wheels. In Experiment 3, rats provided with access to wheels immediately after an extended nonshocked exposure to the conditioned context again froze less, whereas rats provided with access to the wheels after a brief nonshocked exposure froze more on the subsequent test than sedentary controls. These results show that a single bout of running can enhance acquisition, extinction, and reconsolidation of context conditioned fear.

  3. Isoflurane causes anterograde but not retrograde amnesia for pavlovian fear conditioning.

    PubMed

    Dutton, Robert C; Maurer, Anya J; Sonner, James M; Fanselow, Michael S; Laster, Michael J; Eger, Edmond I

    2002-05-01

    Production of retrograde amnesia by anesthetics would indicate that these drugs can disrupt mechanisms that stabilize memory. Such disruption would allow suppression of memory of previous untoward events. The authors examined whether isoflurane provides retrograde amnesia for classic (Pavlovian) fear conditioning. Rats were trained to fear tone by applying three (three-trial) or one (one-trial) tone-shock pairs while breathing various constant concentrations of isoflurane. Immediately after training, isoflurane administration was either discontinued, maintained unchanged, or rapidly increased to 1.0 minimum alveolar concentration for 1 h longer. Groups of rats were similarly trained to fear context while breathing isoflurane by applying shocks (without tones) in a distinctive environment. The next day, memory for the conditioned stimuli was determined by presenting the tone or context (without shock) and measuring the proportion of time each rat froze (appeared immobile). For each conditioning procedure, the effects of the three posttraining isoflurane treatments were compared. Rapid increases in posttraining isoflurane administration did not suppress conditioned fear for any of the training procedures. In contrast, isoflurane administration during conditioning dose-dependently suppressed conditioning (P < 0.05). Training to tone was more resistant to the effects of isoflurane than training to context (P < 0.05), and the three-trial learning procedure was more was more resistant than the one-trial procedure (P < 0.05). Isoflurane provided intense dose-dependent anterograde but not retrograde amnesia for classic fear conditioning. Isoflurane appears to disrupt memory processes that occur at or within a few minutes of the conditioning procedure.

  4. Preventing Return of Fear in an Animal Model of Anxiety: Additive Effects of Massive Extinction and Extinction in Multiple Contexts

    PubMed Central

    Laborda, Mario A.; Miller, Ralph R.

    2013-01-01

    Fear conditioning and experimental extinction have been presented as models of anxiety disorders and exposure therapy, respectively. Moreover, the return of fear serves as a model of relapse after exposure therapy. Here we present two experiments, with rats as subjects in a lick suppression preparation, in which we assessed the additive effects of two different treatments to attenuate the return of fear. First, we evaluated whether two phenomena known to generate return of fear (i.e., spontaneous recovery and renewal) summate to produce a stronger reappearance of extinguished fear. At test, rats evaluated outside the extinction context following a long delay after extinction (i.e., a delayed context shift) exhibited greater return of extinguished fear than rats evaluated outside the extinction context alone, but return of extinguished fear following a delayed context shift did not significantly differ from the return of fear elicited in rats tested following a long delay after extinction alone. Additionally, extinction in multiple contexts and a massive extinction treatment each attenuated the strong return of fear produced by a delayed context shift. Moreover, the conjoint action of these treatments was significantly more successful in preventing the reappearance of extinguished fear, suggesting that extensive cue exposure administered in several different therapeutic settings has the potential to reduce relapse after therapy for anxiety disorders, more than either manipulation alone. PMID:23611075

  5. Modulation of cannabinoid signaling by hippocampal 5-HT4 serotonergic system in fear conditioning.

    PubMed

    Nasehi, Mohammad; Farrahizadeh, Maryam; Ebrahimi-Ghiri, Mohaddeseh; Zarrindast, Mohammad-Reza

    2016-09-01

    Behavioral studies have suggested a key role for the cannabinoid system in the modulation of conditioned fear memory. Likewise, much of the literature has revealed that the serotonergic system affects Pavlovian fear conditioning and extinction. A high level of functional overlap between the serotonin and cannabinoid systems has also been reported. To clarify the interaction between the hippocampal serotonin (5-HT4) receptor and the cannabinoid CB1 receptor in the acquisition of fear memory, the effects of 5-HT4 agents, arachidonylcyclopropylamide (ACPA; CB1 receptor agonist), and the combined use of these drugs on fear learning were studied in a fear conditioning task in adult male NMRI mice. Pre-training intraperitoneal administration of ACPA (0.1 mg/kg) decreased the percentage of freezing time in both context- and tone-dependent fear conditions, suggesting impairment of the acquisition of fear memory. Pre-training, intra-hippocampal (CA1) microinjection of RS67333, a 5-HT4 receptor agonist, at doses of 0.1 and 0.2 or 0.2 µg/mouse impaired contextual and tone fear memory, respectively. A subthreshold dose of RS67333 (0.005 µg/mouse) did not alter the ACPA response in either condition. Moreover, intra-CA1 microinjection of RS23597 as a 5-HT4 receptor antagonist did not alter context-dependent fear memory acquisition, but it did impair tone-dependent fear memory acquisition. However, a subthreshold dose of the RS23597 (0.01 µg/mouse) potentiated ACPA-induced fear memory impairment in both conditions. Therefore, we suggest that the blockade of hippocampal 5-HT4 serotonergic system modulates cannabinoid signaling induced by the activation of CB1 receptors in conditioned fear. © The Author(s) 2016.

  6. Extinction learning is slower, weaker and less context specific after alcohol

    PubMed Central

    Bisby, James A.; King, John A.; Sulpizio, Valentina; Degeilh, Fanny; Valerie Curran, H.; Burgess, Neil

    2015-01-01

    Alcohol is frequently involved in psychological trauma and often used by individuals to reduce fear and anxiety. We examined the effects of alcohol on fear acquisition and extinction within a virtual environment. Healthy volunteers were administered alcohol (0.4 g/kg) or placebo and underwent acquisition and extinction from different viewpoints of a virtual courtyard, in which the conditioned stimulus, paired with a mild electric shock, was centrally located. Participants returned the following day to test fear recall from both viewpoints of the courtyard. Skin conductance responses were recorded as an index of conditioned fear. Successful fear acquisition under alcohol contrasted with impaired extinction learning evidenced by persistent conditioned responses (Experiment 1). Participants’ impairments in extinction under alcohol correlated with impairments in remembering object-locations in the courtyard seen from one viewpoint when tested from the other viewpoint. Alcohol-induced extinction impairments were overcome by increasing the number of extinction trials (Experiment 2). However, a test of fear recall the next day showed persistent fear in the alcohol group across both viewpoints. Thus, alcohol impaired extinction rather than acquisition of fear, suggesting that extinction is more dependent than acquisition on alcohol-sensitive representations of spatial context. Overall, extinction learning under alcohol was slower, weaker and less context-specific, resulting in persistent fear at test that generalized to the extinction viewpoint. The selective effect on extinction suggests an effect of alcohol on prefrontal involvement, while the reduced context-specificity implicates the hippocampus. These findings have important implications for the use of alcohol by individuals with clinical anxiety disorders. PMID:26234587

  7. Tracking the fear memory engram: discrete populations of neurons within amygdala, hypothalamus, and lateral septum are specifically activated by auditory fear conditioning.

    PubMed

    Butler, Christopher W; Wilson, Yvette M; Gunnersen, Jenny M; Murphy, Mark

    2015-08-01

    Memory formation is thought to occur via enhanced synaptic connectivity between populations of neurons in the brain. However, it has been difficult to localize and identify the neurons that are directly involved in the formation of any specific memory. We have previously used fos-tau-lacZ (FTL) transgenic mice to identify discrete populations of neurons in amygdala and hypothalamus, which were specifically activated by fear conditioning to a context. Here we have examined neuronal activation due to fear conditioning to a more specific auditory cue. Discrete populations of learning-specific neurons were identified in only a small number of locations in the brain, including those previously found to be activated in amygdala and hypothalamus by context fear conditioning. These populations, each containing only a relatively small number of neurons, may be directly involved in fear learning and memory. © 2015 Butler et al.; Published by Cold Spring Harbor Laboratory Press.

  8. Intracellular signalling and plasma hormone profiles associated with the expression of unconditioned and conditioned fear and anxiety in female rats.

    PubMed

    Simone, Jonathan J; McCormick, Cheryl M

    2017-02-01

    There is considerable overlap in the neural regions and intracellular signalling pathways implicated in anxiety and fear, although less is known in females. Here, we investigated whether unconditioned and conditioned fear are associated with distinct patterns of expression of extracellular signal-regulated kinase-1 and -2 (ERK1/2), protein kinase B (Akt), and calcineurin (CaN) (proteins that are key regulators of the expression of and/or memory processes of fear and anxiety) in the dorsal and ventral hippocampus, medial prefrontal cortex, and amygdala (important regions in neural fear circuitry) of adult female rats, and used a multivariate approach to find patterns of signalling that might discriminate between the different states of fear. To isolate fear to the conditioned cue from generalized fear to the test context, rats were conditioned to an auditory tone (i.e. tone paired with footshock) and twenty-four hours later exposed to a novel context in the presence or absence of the conditioned cue. A third group that was exposed to the conditioning context without undergoing fear conditioning was included to control for unconditioned responses to the testing procedures, which are anxiogenic. A discriminate function analysis and MANOVA determined that hippocampal signalling best discriminated the three groups from each other. The addition of values for plasma concentrations of corticosterone and progesterone (as indices of activation of the hypothalamic-pituitary-adrenal stress axis) to statistical analyses increased the separation of the three groups. There was high degree of association among the three signalling molecules in the four brain regions within each group. There was an absence of the associations between the medial prefrontal cortex and the amygdala in the cued fear recall group that were strong for the non-conditioned group. These results demonstrated unique neuronal and hormonal signalling profiles associated with unconditioned, generalized, and conditioned fear expression in females and highlight the importance of including appropriate comparisons to best discriminate between these different emotional states. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Distinct Contributions of Median Raphe Nucleus to Contextual Fear Conditioning and Fear-Potentiated Startle

    PubMed Central

    Silva, R. C. B.; Cruz, A. P. M.; Avanzi, V.; Landeira-Fernandez, J.; Brandão, M. L.

    2002-01-01

    Ascending 5-HT projections from the median raphe nucleus (MRN), probably to the hippocampus, are implicated in the acquisition of contextual fear (background stimuli), as assessed by freezing behavior. Foreground cues like light, used as a conditioned stimulus (CS) in classical fear conditioning, also cause freezing through thalamic transmission to the amygdala. As the MRN projects to the hippocampus and amygdala, the role of this raphe nucleus in fear conditioning to explicit cues remains to be explained. Here we analyzed the behavior of rats with MRN electrolytic lesions in a contextual conditioning situation and in a fear-potentiated startle procedure. The animals received MRN electrolytic lesions either before or on the day after two consecutive training sessions in which they were submitted to 10 conditioning trials, each in an experimental chamber (same context) where they. received foot-shocks (0.6 mA, 1 sec) paired to a 4-sec light CS. Seven to ten days later, the animals were submitted to testing sessions for assessing conditioned fear when they were placed for five shocks, and the duration of contextual freezing was recorded. The animals were then submitted to a fear-potentiated startle in response to a 4-sec light-CS, followed by white noise (100 dB, 50 ms). Control rats (sham) tested in the same context showed more freezing than did rats with pre- or post-training MRN lesions. Startle was clearly potentiated in the presence of light CS in the sham-lesioned animals. Whereas pretraining lesions reduced both freezing and fear-potentiated startle, the post-training lesions reduced only freezing to context, without changing the fear-potentiated startle. In a second experiment, neurotoxic lesions of the MRN with local injections of N-methyl-D-aspartate or the activation of 5-HT1A somatodendritic auto-receptors of the MRN by microinjections of the 5-HT1A receptor agonist 8-hydroxy- 2-(di-n-propylamino)tetralin (8-OH-DPAT) before the training sessions also reduced the amount of freezing and the fear-potentiated startle. Freezing is a prominent response of contextual fear conditioning, but does not seem to be crucial for the enhancement of the startle reflex by explicit aversive cues. As fear-potentiated startle may be produced in posttraining lesioned rats that are unable to freeze to fear contextual stimuli, dissociable systems seem to be recruited in each condition. Thus, contextual fear and fear-potentiated startle are conveyed by distinct 5-HT-mediated circuits of the MRN. PMID:12959153

  10. Medial prefrontal pathways for the contextual regulation of extinguished fear in humans

    PubMed Central

    Åhs, Fredrik; Kragel, Philip A.; Zielinski, David J.; Brady, Rachael; LaBar, Kevin S.

    2015-01-01

    The maintenance of anxiety disorders is thought to depend, in part, on deficits in extinction memory, possibly due to reduced contextual control of extinction that leads to fear renewal. Animal studies suggest that the neural circuitry responsible fear renewal includes the hippocampus, amygdala, and dorsomedial (dmPFC) and ventromedial (vmPFC) prefrontal cortex. However, the neural mechanisms of context-dependent fear renewal in humans remain poorly understood. We used functional magnetic resonance imaging (fMRI), combined with psychophysiology and immersive virtual reality, to elucidate how the hippocampus, amygdala, and dmPFC and vmPFC interact to drive the context-dependent renewal of extinguished fear. Healthy human participants encountered dynamic fear-relevant conditioned stimuli (CSs) while navigating through 3-D virtual reality environments in the MRI scanner. Conditioning and extinction were performed in two different virtual contexts. Twenty-four hours later, participants were exposed to the CSs without reinforcement while navigating through both contexts in the MRI scanner. Participants showed enhanced skin conductance responses (SCRs) to the previously-reinforced CS+ in the acquisition context on Day 2, consistent with fear renewal, and sustained responses in the dmPFC. In contrast, participants showed low SCRs to the CSs in the extinction context on Day 2, consistent with extinction recall, and enhanced vmPFC activation to the non-reinforced CS−. Structural equation modeling revealed that the dmPFC fully mediated the effect of the hippocampus on right amygdala activity during fear renewal, whereas the vmPFC partially mediated the effect of the hippocampus on right amygdala activity during extinction recall. These results indicate dissociable contextual influences of the hippocampus on prefrontal pathways, which, in turn, determine the level of reactivation of fear associations. PMID:26220745

  11. An Intact Social Cognitive Process in Schizophrenia: Situational Context Effects on Perception of Facial Affect

    PubMed Central

    Lee, Junghee; Kern, Robert S.; Harvey, Philippe-Olivier; Horan, William P.; Kee, Kimmy S.; Ochsner, Kevin; Penn, David L.; Green, Michael F.

    2013-01-01

    Background Impaired facial affect recognition is the most consistent social cognitive finding in schizophrenia. Although social situations provide powerful constraints on our perception, little is known about how situational context modulates facial affect recognition in schizophrenia. Methods Study 1 was a single-site study with 34 schizophrenia patients and 22 healthy controls. Study 2 was a 2-site study with 68 schizophrenia patients and 28 controls. Both studies administered a Situational Context Facial Affect Recognition Task with 2 conditions: a situational context condition and a no-context condition. For the situational context condition, a briefly shown face was preceded by a sentence describing either a fear- or surprise-inducing event. In the no-context condition, a face was presented without a sentence. For both conditions, subjects rated how fearful or surprised the face appeared on a 9-point Likert scale. Results For the situational context condition of study 1, both patients and controls rated faces as more afraid when they were paired with fear-inducing sentences and as more surprised when they were paired with surprise-inducing sentences. The degree of modulation was comparable across groups. For the no-context condition, patients rated faces comparably to controls. The findings of study 2 replicated those from study 1. Conclusions Despite previous abnormalities in other types of context paradigms, this study found intact situational context processing in schizophrenia, suggesting that patients benefit from situational context when interpreting ambiguous facial expression. This area of relative social cognitive strength in schizophrenia has implications for social cognitive training programs. PMID:22532704

  12. Instructed fear learning, extinction, and recall: additive effects of cognitive information on emotional learning of fear.

    PubMed

    Javanbakht, Arash; Duval, Elizabeth R; Cisneros, Maria E; Taylor, Stephan F; Kessler, Daniel; Liberzon, Israel

    2017-08-01

    The effects of instruction on learning of fear and safety are rarely studied. We aimed to examine the effects of cognitive information and experience on fear learning. Fourty healthy participants, randomly assigned to three groups, went through fear conditioning, extinction learning, and extinction recall with two conditioned stimuli (CS+). Information was presented about the presence or absence of conditioned stimulus-unconditioned stimulus (CS-US) contingency at different stages of the experiment. Information about the CS-US contingency prior to fear conditioning enhanced fear response and reduced extinction recall. Information about the absence of CS-US contingency promoted extinction learning and recall, while omission of this information prior to recall resulted in fear renewal. These findings indicate that contingency information can facilitate fear expression during fear learning, and can facilitate extinction learning and recall. Information seems to function as an element of the larger context in which conditioning occurs.

  13. Threatening social context facilitates pain-related fear learning.

    PubMed

    Karos, Kai; Meulders, Ann; Vlaeyen, Johan W S

    2015-03-01

    This study investigated the effects of a threatening and a safe social context on learning pain-related fear, a key factor in the development and maintenance of chronic pain. We measured self-reported pain intensity, pain expectancy, pain-related fear (verbal ratings and eyeblink startle responses), and behavioral measures of avoidance (movement-onset latency and duration) using an established differential voluntary movement fear conditioning paradigm. Participants (N = 42) performed different movements with a joystick: during fear acquisition, movement in one direction (CS+) was followed by a painful stimulus (pain-US) whereas movement in another direction (CS-) was not. For participants in the threat group, an angry face was continuously presented in the background during the task, whereas in the safe group, a happy face was presented. During the extinction phase the pain-US was omitted. As compared to the safe social context, a threatening social context led to increased contextual fear and facilitated differentiation between CS+ and CS- movements regarding self-reported pain expectancy, fear of pain, eyeblink startle responses, and movement-onset latency. In contrast, self-reported pain intensity was not affected by social context. These data support the modulation of pain-related fear by social context. A threatening social context leads to stronger acquisition of (pain-related) fear and simultaneous contextual fear but does not affect pain intensity ratings. This knowledge may aid in the prevention of chronic pain and anxiety disorders and shows that social context might modulate pain-related fear without immediately affecting pain intensity itself. Copyright © 2015 American Pain Society. Published by Elsevier Inc. All rights reserved.

  14. Prior fear conditioning does not impede enhanced active avoidance in serotonin transporter knockout rats.

    PubMed

    Schipper, Pieter; Henckens, Marloes J A G; Borghans, Bart; Hiemstra, Marlies; Kozicz, Tamas; Homberg, Judith R

    2017-05-30

    Stressors can be actively or passively coped with, and adequate adaption of the coping response to environmental conditions can reduce their potential deleterious effects. One major factor influencing stress coping behaviour is serotonin transporter (5-HTT) availability. Abolishment of 5-HTT is known to impair fear extinction but facilitates acquisition of signalled active avoidance (AA), a behavioural task in which an animal learns to avoid an aversive stimulus that is predicted by a cue. Flexibility in adapting coping behaviour to the nature of the stressor shapes resilience to stress-related disorders. Therefore, we investigated the relation between 5-HTT expression and ability to adapt a learned coping response to changing environmental conditions. To this end, we first established and consolidated a cue-conditioned passive fear response in 5-HTT -/- and wildtype rats. Next, we used the conditioned stimulus (CS) to signal oncoming shocks during signalled AA training in 5-HTT -/- and wildtype rats to study their capability to acquire an active coping response to the CS following fear conditioning. Finally, we investigated the behavioural response to the CS in a novel environment and measured freezing, exploration and self-grooming, behaviours reflective of stress coping strategy. We found that fear conditioned and sham conditioned 5-HTT -/- animals acquired the signalled AA response faster than wildtypes, while prior conditioning briefly delayed AA learning similarly in both genotypes. Subsequent exposure to the CS in the novel context reduced freezing and increased locomotion in 5-HTT -/- compared to wildtype rats. This indicates that improved AA performance in 5-HTT -/- rats resulted in a weaker residual passive fear response to the CS in a novel context. Fear conditioning prior to AA training did not affect freezing upon re-encountering the CS, although it did reduce locomotion in 5-HTT -/- rats. We conclude that independent of 5-HTT signalling, prior fear conditioning does not greatly impair the acquisition of subsequent active coping behaviour when the situation allows for it. Abolishment of 5-HTT results in a more active coping style in case of novelty-induced fear and upon CS encounter in a novel context after AA learning. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Distinct Contributions of the Basolateral Amygdala and the Medial Prefrontal Cortex to Learning and Relearning Extinction of Context Conditioned Fear

    ERIC Educational Resources Information Center

    Laurent, Vincent; Westbrook, R. Frederick

    2008-01-01

    We studied the roles of the basolateral amygdala (BLA) and the medial prefrontal cortex (mPFC) in learning and relearning to inhibit context conditioned fear (freezing) in extinction. In Experiment 1, pre-extinction BLA infusion of the NMDA receptor (NMDAr) antagonist, ifenprodil, impaired the development and retention of inhibition but…

  16. A face versus non-face context influences amygdala responses to masked fearful eye whites.

    PubMed

    Kim, M Justin; Solomon, Kimberly M; Neta, Maital; Davis, F Caroline; Oler, Jonathan A; Mazzulla, Emily C; Whalen, Paul J

    2016-12-01

    The structure of the mask stimulus is crucial in backward masking studies and we recently demonstrated such an effect when masking faces. Specifically, we showed that activity of the amygdala is increased to fearful facial expressions masked with neutral faces and decreased to fearful expressions masked with a pattern mask-but critically both masked conditions discriminated fearful expressions from happy expressions. Given this finding, we sought to test whether masked fearful eye whites would produce a similar profile of amygdala response in a face vs non-face context. During functional magnetic resonance imaging scanning sessions, 30 participants viewed fearful or happy eye whites masked with either neutral faces or pattern images. Results indicated amygdala activity was increased to fearful vs happy eye whites in the face mask condition, but decreased to fearful vs happy eye whites in the pattern mask condition-effectively replicating and expanding our previous report. Our data support the idea that the amygdala is responsive to fearful eye whites, but that the nature of this activity observed in a backward masking design depends on the mask stimulus. © The Author (2016). Published by Oxford University Press.

  17. Not all stressors are equal: behavioral and endocrine evidence for development of contextual fear conditioning after a single session of footshocks but not of immobilization.

    PubMed

    Daviu, Núria; Delgado-Morales, Raúl; Nadal, Roser; Armario, Antonio

    2012-01-01

    Exposure of animals to footshocks (FS) in absence of any specific cue results in the development of fear to the compartment where shocks were given (contextual fear conditioning), and this is usually evaluated by time spent freezing. However, the extent to which contextual fear conditioning always develops when animals are exposed to other stressors is not known. In the present work we firstly demonstrated, using freezing, that exposure of adult rats to a single session of FS resulted in short-term and long-term contextual fear conditioning (freezing) that was paralleled by increased hypothalamic-pituitary-adrenal (HPA) activation. In contrast, using a similar design, no HPA or behavioral evidence for such conditioning was found after exposure to immobilization on boards (IMO), despite this stressor being of similar severity as FS on the basis of standard physiological measures of stress, including HPA activation. In a final experiment we directly compared the exposure to the two stressors in the same type of context and tested for the development of conditioning to the context and to a specific cue for IMO (the board). We observed the expected high levels of freezing and the conditioned HPA activation after FS, but not after IMO, regardless of the presence of the board during testing. Therefore, it can be concluded that development of fear conditioning to context or particular cues, as evaluated by either behavioral or endocrine measures, appears to be dependent on the nature of the aversive stimuli, likely to be related to biologically preparedness to establish specific associations.

  18. Fear conditioning to subliminal fear relevant and non fear relevant stimuli.

    PubMed

    Lipp, Ottmar V; Kempnich, Clare; Jee, Sang Hoon; Arnold, Derek H

    2014-01-01

    A growing body of evidence suggests that conscious visual awareness is not a prerequisite for human fear learning. For instance, humans can learn to be fearful of subliminal fear relevant images--images depicting stimuli thought to have been fear relevant in our evolutionary context, such as snakes, spiders, and angry human faces. Such stimuli could have a privileged status in relation to manipulations used to suppress usually salient images from awareness, possibly due to the existence of a designated sub-cortical 'fear module'. Here we assess this proposition, and find it wanting. We use binocular masking to suppress awareness of images of snakes and wallabies (particularly cute, non-threatening marsupials). We find that subliminal presentations of both classes of image can induce differential fear conditioning. These data show that learning, as indexed by fear conditioning, is neither contingent on conscious visual awareness nor on subliminal conditional stimuli being fear relevant.

  19. Chronic stress disrupts fear extinction and enhances amygdala and hippocampal Fos expression in an animal model of post-traumatic stress disorder.

    PubMed

    Hoffman, Ann N; Lorson, Nickolaus G; Sanabria, Federico; Foster Olive, M; Conrad, Cheryl D

    2014-07-01

    Chronic stress may impose a vulnerability to develop maladaptive fear-related behaviors after a traumatic event. Whereas previous work found that chronic stress impairs the acquisition and recall of extinguished fear, it is unknown how chronic stress impacts nonassociative fear, such as in the absence of the conditioned stimulus (CS) or in a novel context. Male rats were subjected to chronic stress (STR; wire mesh restraint 6 h/d/21d) or undisturbed (CON), then tested on fear acquisition (3 tone-footshock pairings), and two extinction sessions (15 tones/session) within the same context. Then each group was tested (6 tones) in the same context (SAME) or a novel context (NOVEL), and brains were processed for functional activation using Fos immunohistochemistry. Compared to CON, STR showed facilitated fear acquisition, resistance to CS extinction on the first extinction day, and robust recovery of fear responses on the second extinction day. STR also showed robust freezing to the context alone during the first extinction day compared to CON. When tested in the same or a novel context, STR exhibited higher freezing to context than did CON, suggesting that STR-induced fear was independent of context. In support of this, STR showed increased Fos-like expression in the basolateral amygdala and CA1 region of the hippocampus in both the SAME and NOVEL contexts. Increased Fos-like expression was also observed in the central amygdala in STR-NOVEL vs. CON-NOVEL. These data demonstrate that chronic stress enhances fear learning and impairs extinction, and affects nonassociative processes as demonstrated by enhanced fear in a novel context. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Fear memory for cue and context: opposite and time-dependent effects of a physiological dose of corticosterone in male BALB/c and C57BL/6J mice.

    PubMed

    Diamantopoulou, Anastasia; Oitzl, Melly S; Grauer, Ettie

    2012-07-23

    Highly emotional, stress reactive BALB/c mice secrete more corticosterone in response to fear conditioning than the low stress reactive C57BL/6J mice. Fear memory to cue and context differs between the strains. We injected corticosterone at physiological concentrations (250 μg/kg i.p.) 30 min before fear conditioning. Fear memory was tested 48 and 72 h later. Although corticosterone had little effect on acquisition, it differentially affected fear memories in strain dependent manner: while BALB/c mice decreased freezing during cue and context episodes, C57BL/6J mice showed an overall increase in freezing. BALB/c mice showed extinction over days while no such extinction was seen in C57BL/6J mice. Evaluation of these data in the perspective of previous studies using the same fear conditioning paradigm with corticosterone injections 5 min before or immediately after acquisition, revealed the impact of corticosterone during conditioning on the strength of fear memories. In C57BL/6J mice the overall increase in fear memories was higher if corticosterone was injected 30 min pre acquisition than if injected 5 min pre. In contrast, BALB/c mice showed reduced fear memories when injected 30 min pre compared to that seen 5 min pre acquisition. Both strains showed decreased fear memories compared to vehicle if corticosterone was administered immediately after acquisition. We conclude that the timing of physiologically relevant, stress levels increase in corticosterone is essential for the processing of aversive events and the formation of fear memories. However, the quality of the effect depends on the genetic background. These findings contribute to the understanding of the etiology of stress-related disorders. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Exposure to a Fearful Context during Periods of Memory Plasticity Impairs Extinction via Hyperactivation of Frontal-Amygdalar Circuits

    ERIC Educational Resources Information Center

    Stafford, James M.; Maughan, DeeAnna K.; Ilioi, Elena C.; Lattal, K. Matthew

    2013-01-01

    An issue of increasing theoretical and translational importance is to understand the conditions under which learned fear can be suppressed, or even eliminated. Basic research has pointed to extinction, in which an organism is exposed to a fearful stimulus (such as a context) in the absence of an expected aversive outcome (such as a shock). This…

  2. Systemic or Intra-Amygdala Infusion of the Benzodiazepine, Midazolam, Impairs Learning, but Facilitates Re-Learning to Inhibit Fear Responses in Extinction

    ERIC Educational Resources Information Center

    Hart, Genevra; Harris, Justin A.; Westbrook, R. Frederick

    2010-01-01

    A series of experiments used rats to study the effect of a systemic or intra-amygdala infusion of the benzodiazepine, midazolam, on learning and re-learning to inhibit context conditioned fear (freezing) responses. Rats were subjected to two context-conditioning episodes followed by extinction under drug or vehicle, or to two cycles of context…

  3. Single dose of l-dopa makes extinction memories context-independent and prevents the return of fear

    PubMed Central

    Haaker, Jan; Gaburro, Stefano; Sah, Anupam; Gartmann, Nina; Lonsdorf, Tina B.; Meier, Kolja; Singewald, Nicolas; Pape, Hans-Christian; Morellini, Fabio; Kalisch, Raffael

    2013-01-01

    Traumatic events can engender persistent excessive fear responses to trauma reminders that may return even after successful treatment. Extinction, the laboratory analog of behavior therapy, does not erase conditioned fear memories but generates competing, fear-inhibitory “extinction memories” that, however, are tied to the context in which extinction occurred. Accordingly, a dominance of fear over extinction memory expression—and, thus, return of fear—is often observed if extinguished fear stimuli are encountered outside the extinction (therapy) context. We show that postextinction administration of the dopamine precursor l-dopa makes extinction memories context-independent, thus strongly reducing the return of fear in both mice and humans. Reduced fear is accompanied by decreased amygdala and enhanced ventromedial prefrontal cortex activation in both species. In humans, ventromedial prefrontal cortex activity is predicted by enhanced resting-state functional coupling of the area with the dopaminergic midbrain during the postextinction consolidation phase. Our data suggest that dopamine-dependent boosting of extinction memory consolidation is a promising avenue to improving anxiety therapy. PMID:23754384

  4. Creating a false memory in the hippocampus.

    PubMed

    Ramirez, Steve; Liu, Xu; Lin, Pei-Ann; Suh, Junghyup; Pignatelli, Michele; Redondo, Roger L; Ryan, Tomás J; Tonegawa, Susumu

    2013-07-26

    Memories can be unreliable. We created a false memory in mice by optogenetically manipulating memory engram-bearing cells in the hippocampus. Dentate gyrus (DG) or CA1 neurons activated by exposure to a particular context were labeled with channelrhodopsin-2. These neurons were later optically reactivated during fear conditioning in a different context. The DG experimental group showed increased freezing in the original context, in which a foot shock was never delivered. The recall of this false memory was context-specific, activated similar downstream regions engaged during natural fear memory recall, and was also capable of driving an active fear response. Our data demonstrate that it is possible to generate an internally represented and behaviorally expressed fear memory via artificial means.

  5. Body temperature as a conditional response measure for pavlovian fear conditioning.

    PubMed

    Godsil, B P; Quinn, J J; Fanselow, M S

    2000-01-01

    On six days rats were exposed to each of two contexts. They received an electric shock in one context and nothing in the other. Rats were tested later in each environment without shock. The rats froze and defecated more often in the shock-paired environment; they also exhibited a significantly larger elevation in rectal temperature in that environment. The rats discriminated between each context, and we suggest that the elevation in temperature is the consequence of associative learning. Thus, body temperature can be used as a conditional response measure in Pavlovian fear conditioning experiments that use footshock as the unconditional stimulus.

  6. Not all stressors are equal: behavioral and endocrine evidence for development of contextual fear conditioning after a single session of footshocks but not of immobilization

    PubMed Central

    Daviu, Núria; Delgado-Morales, Raúl; Nadal, Roser; Armario, Antonio

    2012-01-01

    Exposure of animals to footshocks (FS) in absence of any specific cue results in the development of fear to the compartment where shocks were given (contextual fear conditioning), and this is usually evaluated by time spent freezing. However, the extent to which contextual fear conditioning always develops when animals are exposed to other stressors is not known. In the present work we firstly demonstrated, using freezing, that exposure of adult rats to a single session of FS resulted in short-term and long-term contextual fear conditioning (freezing) that was paralleled by increased hypothalamic-pituitary-adrenal (HPA) activation. In contrast, using a similar design, no HPA or behavioral evidence for such conditioning was found after exposure to immobilization on boards (IMO), despite this stressor being of similar severity as FS on the basis of standard physiological measures of stress, including HPA activation. In a final experiment we directly compared the exposure to the two stressors in the same type of context and tested for the development of conditioning to the context and to a specific cue for IMO (the board). We observed the expected high levels of freezing and the conditioned HPA activation after FS, but not after IMO, regardless of the presence of the board during testing. Therefore, it can be concluded that development of fear conditioning to context or particular cues, as evaluated by either behavioral or endocrine measures, appears to be dependent on the nature of the aversive stimuli, likely to be related to biologically preparedness to establish specific associations. PMID:23112767

  7. Excitatory strength of expressive faces: effects of happy and fear expressions and context on the extinction of a conditioned fear response.

    PubMed

    Lanzetta, J T; Orr, S P

    1986-01-01

    In a recent study, Orr and Lanzetta (1984) showed that the excitatory properties of fear facial expressions previously described (Lanzetta & Orr, 1981; Orr & Lanzetta, 1980) do not depend on associative mechanisms; even in the absence of reinforcement, fear faces intensify the emotional reaction to a previously conditioned stimulus and disrupt extinction of an acquired fear response. In conjunction with the findings on acquisition, the failure to obtain extinction suggests that fear faces have some of the functional properties of "prepared" (fear-relevant) stimuli. In the present study we compared the magnitude of conditioned fear responses to happy and fear faces when a potent danger signal, the shock electrodes, are attached or unattached. If fear faces are functionally analogous to prepared stimuli, then, even in the absence of veridical support for an expectation of shock, they should retain excitatory strength, whereas happy faces should not. The results are consistent with this view of fear expressions. In the absence of reinforcement, and with shock electrodes removed, conditioned fear responses and basal levels of arousal were of greater magnitude for the fear-face condition than for the happy-face condition.

  8. Associations among Context-Specific Maternal Protective Behavior, Toddler Fearful Temperament, and Maternal Accuracy and Goals

    PubMed Central

    Kiel, Elizabeth J.; Buss, Kristin A.

    2011-01-01

    Maternal protective responses to temperamentally fearful toddlers have previously been found to relate to increased risk for children’s development of anxiety-spectrum problems. Not all protective behavior is “overprotective,” and not all mothers respond to toddlers’ fear with protection. Therefore, the current study aimed to identify conditions under which an association between fearful temperament and protective maternal behavior occurs. Participants included 117 toddlers and their mothers, who were observed in a variety of laboratory tasks. Mothers predicted their toddlers’ fear reactions in these tasks and reported the importance of parent-centered goals for their children’s shyness. Protective behavior displayed in low-threat, but not high-threat, contexts related to concurrently observed fearful temperament and to mother-reported shy/inhibited behavior one year later. The relation between fearful temperament and protective behavior in low-threat, but not high-threat, contexts was strengthened by maternal accuracy in anticipating children’s fear and maternal parent-centered goals for children’s shyness. PMID:23226924

  9. Context Effects on Habituation to Disgust-Relevant Stimuli

    ERIC Educational Resources Information Center

    Viar-Paxton, Megan A.; Olatunji, Bunmi O.

    2012-01-01

    Although exposure-based treatments appear to be efficacious for the treatment of anxiety-related disorders, many individuals experience a renewal of the original fear response at follow-up. In an effort to prevent fear renewal, researchers have begun to use exposure of the conditioned stimulus in different contexts during extinction. Although…

  10. A Different Recruitment of the Lateral and Basolateral Amygdala Promotes Contextual or Elemental Conditioned Association in Pavlovian Fear Conditioning

    ERIC Educational Resources Information Center

    Calandreau, Ludovic; Desmedt, Aline; Decorte, Laurence; Jaffard, Robert

    2005-01-01

    Convergent data suggest dissociated roles for the lateral (LA) and basolateral (BLA) amygdaloid nuclei in fear conditioning, depending on whether a discrete conditioned stimulus (CS)-unconditional stimulus (US) or context-US association is considered. Here, we show that pretraining inactivation of the BLA selectively impaired conditioning to…

  11. Flexibility in the face of fear: Hippocampal-prefrontal regulation of fear and avoidance.

    PubMed

    Moscarello, Justin M; Maren, Stephen

    2018-02-01

    Generating appropriate defensive behaviors in the face of threat is essential to survival. Although many of these behaviors are 'hard-wired', they are also flexible. For example, Pavlovian fear conditioning generates learned defensive responses, such as conditioned freezing, that can be suppressed through extinction. The expression of extinguished responses is highly context-dependent, allowing animals to engage behavioral responses appropriate to the contexts in which threats are encountered. Likewise, animals and humans will avoid noxious outcomes if given the opportunity. In instrumental avoidance learning, for example, animals overcome conditioned defensive responses, including freezing, in order to actively avoid aversive stimuli. Recent work has greatly advanced understanding of the neural basis of these phenomena and has revealed common circuits involved in the regulation of fear. Specifically, the hippocampus and medial prefrontal cortex play pivotal roles in gating fear reactions and instrumental actions, mediated by the amygdala and nucleus accumbens, respectively. Because an inability to adaptively regulate fear and defensive behavior is a central component of many anxiety disorders, the brain circuits that promote flexible responses to threat are of great clinical significance.

  12. Age and adolescent social stress effects on fear extinction in female rats.

    PubMed

    McCormick, C M; Mongillo, D L; Simone, J J

    2013-11-01

    We previously observed that social instability stress (SS: daily 1 h isolation and change of cage partners for 16 days) in adolescence, but not in adulthood, decreased context and cue memory after fear conditioning in male rats. Effects of stress are typically sex-specific, and so here we investigated adolescent and adult SS effects in females on the strength of acquired contextual and cued fear conditioning, as well as extinction learning, beginning either the day after the stress procedure or four weeks later. For SS in adolescence, SS females spent more time freezing (fear measure) during extinction than did controls, whereas SS in adulthood had no effect on any measure of fear conditioning. The results also indicated an effect of age: females in late adolescence show more rapid extinction of cue and better memory of extinction of context compared to adult females, which may indicate resilience to acute footshock in adolescence. Thus fear circuitry continues to mature into late adolescence, which may underlie the heightened plasticity in response to chronic stressors of adolescents compared to adults.

  13. MOLECULAR MECHANISMS OF FEAR LEARNING AND MEMORY

    PubMed Central

    Johansen, Joshua P.; Cain, Christopher K.; Ostroff, Linnaea E.; LeDoux, Joseph E.

    2011-01-01

    Pavlovian fear conditioning is a useful behavioral paradigm for exploring the molecular mechanisms of learning and memory because a well-defined response to a specific environmental stimulus is produced through associative learning processes. Synaptic plasticity in the lateral nucleus of the amygdala (LA) underlies this form of associative learning. Here we summarize the molecular mechanisms that contribute to this synaptic plasticity in the context of auditory fear conditioning, the form of fear conditioning best understood at the molecular level. We discuss the neurotransmitter systems and signaling cascades that contribute to three phases of auditory fear conditioning: acquisition, consolidation, and reconsolidation. These studies suggest that multiple intracellular signaling pathways, including those triggered by activation of Hebbian processes and neuromodulatory receptors, interact to produce neural plasticity in the LA and behavioral fear conditioning. Together, this research illustrates the power of fear conditioning as a model system for characterizing the mechanisms of learning and memory in mammals, and potentially for understanding fear related disorders, such as PTSD and phobias. PMID:22036561

  14. Cholinergic effects on fear conditioning I: the degraded contingency effect is disrupted by atropine but reinstated by physostigmine.

    PubMed

    Carnicella, Sebastien; Pain, Laure; Oberling, Philippe

    2005-04-01

    The cholinergic system has been shown to modulate contextual fear conditioning. However, with the exception of trace conditioning studies, most of the available data have focussed on independent context, i.e., context that do not compete with the conditioned stimulus to control for the conditioned response (interactive context). In the present series of experiments, the effects of the muscarinic antagonist, atropine, were assessed when contextual fear memory interacts with cued fear memory to regulate conditioned response, using a Pavlovian degraded contingency preparation in rats. This preparation not only afforded an insight into simple Pavlovian associations but also enabled us to test for the processes of competition that made use of these associations to make an appropriate response to a stimulus [degraded contingency effect (DCE)]. In experiment 1, three doses of atropine [2.5, 5.0, and 10.0 mg/kg, intraperitoneally (i.p.)] were evaluated on male Sprague-Dawley rats. In experiment 2, physostigmine (0.037-0.3 mg/kg, i.p.) was injected after the administration of 5 mg/kg of atropine. Experiment 1A and its partial replication (experiment 1B) showed that at asymptotic level of training, atropine did not alter contextual and cued fear memories when the subjects were directly tested for them, whereas it suppressed the DCE for a 5 mg/kg dose. Indeed, atropine-induced suppression of the DCE was found to be an inverted U-shaped dose-response curve. Experiment 2 showed that physostigmine caused a dose-dependent reversal of the atropine-induced alleviation of the DCE, without altering the expression of simple cued and contextual fear memories. These results evidence at asymptotic level of training a cholinergic modulation of the processing of interactive context, but not of independent ones. They are discussed in the framework of the mechanisms that are involved in both types of contextual processing.

  15. Cortisol increases the return of fear by strengthening amygdala signaling in men.

    PubMed

    Kinner, Valerie L; Wolf, Oliver T; Merz, Christian J

    2018-05-01

    Relapses represent a major limitation to the long-term remission of pathological fear and anxiety. Stress modulates the acquisition and expression of fear memories and appears to promote fear recovery in patients with anxiety disorders. However, the neural correlates underlying stress hormone effects on the return of fear in humans remain unexplored. Likewise, little is known about the interactions between sex and stress hormones on return of fear phenomena. In this functional magnetic resonance imaging study, 32 men and 32 women were exposed to a fear renewal paradigm with fear acquisition in context A and extinction in context B. On the following day, participants received either cortisol or placebo 40 min before return of fear was tested in both contexts in a renewal and reinstatement test. Cortisol increased differential conditioned skin conductance responses in the extinction context B following reinstatement in men but not in women. On the neural level, this effect was characterized by enhanced fear-related activation in the right amygdala in men, while an activation decrement in this region was observed after cortisol treatment in women. Our results revealed that cortisol promotes the return of fear in men by strengthening a key node of the fear network - the amygdala. We thereby provide novel insights into a sex-specific mechanism mediating stress-induced fear recovery which may translate into different relapse risks and treatment strategies for men and women. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Involvement of the prelimbic cortex in contextual fear conditioning with temporal and spatial discontinuity.

    PubMed

    Santos, Thays Brenner; Kramer-Soares, Juliana Carlota; Favaro, Vanessa Manchim; Oliveira, Maria Gabriela Menezes

    2017-10-01

    Time plays an important role in conditioning, it is not only possible to associate stimuli with events that overlap, as in delay fear conditioning, but it is also possible to associate stimuli that are discontinuous in time, as shown in trace conditioning for a discrete stimuli. The environment itself can be a powerful conditioned stimulus (CS) and be associated to unconditioned stimulus (US). Thus, the aim of the present study was to determine the parameters in which contextual fear conditioning occurs by the maintenance of a contextual representation over short and long time intervals. The results showed that a contextual representation can be maintained and associated after 5s, even in the absence of a 15s re-exposure to the training context before US delivery. The same effect was not observed with a 24h interval of discontinuity. Furthermore, optimal conditioned response with a 5s interval is produced only when the contexts (of pre-exposure and shock) match. As the pre-limbic cortex (PL) is necessary for the maintenance of a continuous representation of a stimulus, the involvement of the PL in this temporal and contextual processing was investigated. The reversible inactivation of the PL by muscimol infusion impaired the acquisition of contextual fear conditioning with a 5s interval, but not with a 24h interval, and did not impair delay fear conditioning. The data provided evidence that short and long intervals of discontinuity have different mechanisms, thus contributing to a better understanding of PL involvement in contextual fear conditioning and providing a model that considers both temporal and contextual factors in fear conditioning. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Conditioning- and Time-Dependent Increases in Context Fear and Generalization

    ERIC Educational Resources Information Center

    Poulos, Andrew M.; Mehta, Nehali; Lu, Bryan; Amir, Dorsa; Livingston, Briana; Santarelli, Anthony; Zhuravka, Irina; Fanselow, Michael S.

    2016-01-01

    A prominent feature of fear memories and anxiety disorders is that they endure across extended periods of time. Here, we examine how the severity of the initial fear experience influences incubation, generalization, and sensitization of contextual fear memories across time. Adult rats were presented with either five, two, one, or zero shocks (1.2…

  18. A Bayesian context fear learning algorithm/automaton

    PubMed Central

    Krasne, Franklin B.; Cushman, Jesse D.; Fanselow, Michael S.

    2015-01-01

    Contextual fear conditioning is thought to involve the synaptic plasticity-dependent establishment in hippocampus of representations of to-be-conditioned contexts which can then become associated with USs in the amygdala. A conceptual and computational model of this process is proposed in which contextual attributes are assumed to be sampled serially and randomly during contextual exposures. Given this assumption, moment-to-moment information about such attributes will often be quite different from one exposure to another and, in particular, between exposures during which representations are created, exposures during which conditioning occurs, and during recall sessions. This presents challenges to current conceptual models of hippocampal function. In order to meet these challenges, our model's hippocampus was made to operate in different modes during representation creation and recall, and non-hippocampal machinery was constructed that controlled these hippocampal modes. This machinery uses a comparison between contextual information currently observed and information associated with existing hippocampal representations of familiar contexts to compute the Bayesian Weight of Evidence that the current context is (or is not) a known one, and it uses this value to assess the appropriateness of creation or recall modes. The model predicts a number of known phenomena such as the immediate shock deficit, spurious fear conditioning to contexts that are absent but similar to actually present ones, and modulation of conditioning by pre-familiarization with contexts. It also predicts a number of as yet unknown phenomena. PMID:26074792

  19. Dorsal periaqueductal gray-amygdala pathway conveys both innate and learned fear responses in rats

    PubMed Central

    Kim, Eun Joo; Horovitz, Omer; Pellman, Blake A.; Tan, Lancy Mimi; Li, Qiuling; Richter-Levin, Gal; Kim, Jeansok J.

    2013-01-01

    The periaqueductal gray (PAG) and amygdala are known to be important for defensive responses, and many contemporary fear-conditioning models present the PAG as downstream of the amygdala, directing the appropriate behavior (i.e., freezing or fleeing). However, empirical studies of this circuitry are inconsistent and warrant further examination. Hence, the present study investigated the functional relationship between the PAG and amygdala in two different settings, fear conditioning and naturalistic foraging, in rats. In fear conditioning, electrical stimulation of the dorsal PAG (dPAG) produced unconditional responses (URs) composed of brief activity bursts followed by freezing and 22-kHz ultrasonic vocalization. In contrast, stimulation of ventral PAG and the basolateral amygdalar complex (BLA) evoked freezing and/or ultrasonic vocalization. Whereas dPAG stimulation served as an effective unconditional stimulus for fear conditioning to tone and context conditional stimuli, neither ventral PAG nor BLA stimulation supported fear conditioning. The conditioning effect of dPAG, however, was abolished by inactivation of the BLA. In a foraging task, dPAG and BLA stimulation evoked only fleeing toward the nest. Amygdalar lesion/inactivation blocked the UR of dPAG stimulation, but dPAG lesions did not block the UR of BLA stimulation. Furthermore, in vivo recordings demonstrated that electrical priming of the dPAG can modulate plasticity of subiculum–BLA synapses, providing additional evidence that the amygdala is downstream of the dPAG. These results suggest that the dPAG conveys unconditional stimulus information to the BLA, which directs both innate and learned fear responses, and that brain stimulation-evoked behaviors are modulated by context. PMID:23959880

  20. Molecular mechanisms of fear learning and memory.

    PubMed

    Johansen, Joshua P; Cain, Christopher K; Ostroff, Linnaea E; LeDoux, Joseph E

    2011-10-28

    Pavlovian fear conditioning is a particularly useful behavioral paradigm for exploring the molecular mechanisms of learning and memory because a well-defined response to a specific environmental stimulus is produced through associative learning processes. Synaptic plasticity in the lateral nucleus of the amygdala (LA) underlies this form of associative learning. Here, we summarize the molecular mechanisms that contribute to this synaptic plasticity in the context of auditory fear conditioning, the form of fear conditioning best understood at the molecular level. We discuss the neurotransmitter systems and signaling cascades that contribute to three phases of auditory fear conditioning: acquisition, consolidation, and reconsolidation. These studies suggest that multiple intracellular signaling pathways, including those triggered by activation of Hebbian processes and neuromodulatory receptors, interact to produce neural plasticity in the LA and behavioral fear conditioning. Collectively, this body of research illustrates the power of fear conditioning as a model system for characterizing the mechanisms of learning and memory in mammals and potentially for understanding fear-related disorders, such as PTSD and phobias. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Context Fear Learning Specifically Activates Distinct Populations of Neurons in Amygdala and Hypothalamus

    ERIC Educational Resources Information Center

    Trogrlic, Lidia; Wilson, Yvette M.; Newman, Andrew G.; Murphy, Mark

    2011-01-01

    The identity and distribution of neurons that are involved in any learning or memory event is not known. In previous studies, we identified a discrete population of neurons in the lateral amygdala that show learning-specific activation of a c-"fos"-regulated transgene following context fear conditioning. Here, we have extended these studies to…

  2. Early-life exposure to fibroblast growth factor-2 facilitates context-dependent long-term memory in developing rats.

    PubMed

    Graham, Bronwyn M; Richardson, Rick

    2010-06-01

    Fibroblast growth factor-2 (FGF2) is a potent neurotrophic factor that is involved in brain development and the formation of long-term memory. It has recently been shown that acute FGF2, administered at the time of learning, enhances long-term memory for contextual fear conditioning as well as extinction of conditioned fear in developing rats. As other research has shown that administering FGF2 on the first day of life leads to long-term morphological changes in the hippocampus, in the present study we investigated whether early life exposure to FGF2 affects contextual fear conditioning, and renewal following extinction, later in life. Experiment 1 demonstrated that a single injection of FGF2 on Postnatal Day (PND) 1 did not lead to any detectable changes in contextual fear conditioning in PND 16 or PND 23 rats. Experiments 2 and 3 demonstrated that 5 days of injections of FGF2 (from PND 1-5) facilitated contextual fear conditioning in PND 16 and PND 23 rats. Experiment 4 demonstrated that the observed facilitation of memory was not due to FGF2 increasing rats' sensitivity to foot shock. Experiment 5 showed that early life exposure to FGF2 did not affect learning about a discrete conditioned stimulus, but did allow PND 16 rats to use contextual information in more complex ways, leading to context-dependent extinction of conditioned fear. These results further implicate FGF2 as a critical signal involved in the development of learning and memory.

  3. Reactivating fear memory under propranolol resets pre-trauma levels of dendritic spines in basolateral amygdala but not dorsal hippocampus neurons

    PubMed Central

    Vetere, Gisella; Piserchia, Valentina; Borreca, Antonella; Novembre, Giovanni; Aceti, Massimiliano; Ammassari-Teule, Martine

    2013-01-01

    Fear memory enhances connectivity in cortical and limbic circuits but whether treatments disrupting fear reset connectivity to pre-trauma level is unknown. Here we report that C56BL/6J mice exposed to a tone-shock association in context A (conditioning), and briefly re-exposed to the same tone-shock association in context B (reactivation), exhibit strong freezing to the tone alone delivered 48 h later in context B (long term fear memory). This intense fear response is associated with a massive increase in dendritic spines and phospho-Erk (p-ERK) signaling in basolateral amygdala (BLA) but neurons. We then show that propranolol (a central/peripheral β-adrenergic receptor blocker) administered before, but not after, the reactivation trial attenuates long term fear memory assessed drug free 48 h later, and completely prevents the increase in spines and p-ERK signaling in BLA neurons. An increase in spines, but not of p-ERK, was also detected in the dorsal hippocampus (DH) of the conditioned mice. DH spines, however, were unaffected by propranolol suggesting their independence from the ERK/β-ARs cascade. We conclude that propranolol selectively blocks dendritic spines and p-ERK signaling enhancement in the BLA; its effect on fear memory is, however, less pronounced suggesting that the persistence of spines at other brain sites decreases the sensitivity of the fear memory trace to treatments selectively targeting β ARs in the BLA. PMID:24391566

  4. Caffeine impairs the acquisition and retention, but not the consolidation of Pavlovian conditioned freezing in mice

    PubMed Central

    Dubroqua, Sylvain; Low, Samuel R.L.; Yee, Benjamin K.; Singer, Philipp

    2014-01-01

    Rationale The psychoactive substance, caffeine may improve cognitive performance, but its direct impact on learning and memory remains ill-defined. Conflicting reports suggest that caffeine may impair as well as enhance Pavlovian fear conditioning in animals, and its effect may vary across different phases of learning. Objectives To dissect the effect of a motor-stimulant dose of caffeine (30 mg/kg i.p.) on acquisition, retrieval or consolidation of conditioned fear in C57BL/6 mice. Methods Fear conditioning was evaluated in a conditioned freezing paradigm comprising 3 tone-shock pairings and a two-way active avoidance paradigm lasting two consecutive days with 80 conditioning trials per test session. Results Conditioning to both the discrete tone conditioned stimulus (CS) and the context was markedly impaired by caffeine. The deficits were similarly evident when caffeine was administered prior to acquisition or retrieval (48 and 72 h after conditioning); and the most severe impairment was seen in animals given caffeine before acquisition and before retrieval. A comparable deficit was observed in the conditioned active avoidance test. By contrast, caffeine administered immediately following acquisition neither affected the expression of tone freezing nor context freezing. Conclusions The present study challenges the previous report that caffeine primarily disrupts hippocampus-dependent conditioning to the context. At the relevant dose range, acute caffeine likely exerts more widespread impacts beyond the hippocampus, including amygdala and striatum that are anatomically connected to the hippocampus; and together they support the acquisition and retention of fear memories to discrete stimuli as well as diffused contextual cues. PMID:25172668

  5. Extinction of relapsed fear does not require the basolateral amygdala.

    PubMed

    Lingawi, Nura W; Westbrook, R Frederick; Laurent, Vincent

    2017-03-01

    It is well established that extinguished fears are restored with the passage of time or a change in physical context. These fear restoration phenomena are believed to mimic the conditions under which relapse occurs in patients that have been treated for anxiety disorders by means of cue-exposure therapy. Here, we used a rodent model to extinguish relapsed fear and assess whether this new extinction prevents further relapse. We found that activity in the basolateral amygdala (BLA) is required to initially extinguish conditioned fear, but this activity was not necessary to subsequently extinguish relapsed fear. That is, extinction of spontaneously recovered or renewed fear was spared by BLA inactivation. Yet, this BLA-independent learning of extinction did not protect against further relapse: extinction of relapsed fear conducted without BLA activity was still likely to return after the passage of time or a shift in physical context. These findings have important clinical implications. They indicate that pharmacological agents with anxiolytic properties may disrupt initial cue-exposure therapy but may be useful when therapy is again needed due to relapse. However, they also suggest that these agents will not protect against further relapse, implying the need for developing drugs that target other brain regions involved in fear inhibition. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Inactivation of the Infralimbic but Not the Prelimbic Cortex Impairs Consolidation and Retrieval of Fear Extinction

    ERIC Educational Resources Information Center

    Laurent, Vincent; Westbrook, R. Frederick

    2009-01-01

    Rats were subjected to one or two cycles of context fear conditioning and extinction to study the roles of the prelimbic cortex (PL) and infralimbic cortex (IL) in learning and relearning to inhibit fear responses. Inactivation of the PL depressed fear responses across the first or second extinction but did not impair learning or relearning fear…

  7. The impact of cue learning, trait anxiety and genetic variation in the serotonin 1A receptor on contextual fear.

    PubMed

    Baas, Johanna M P; Heitland, Ivo

    2015-12-01

    In everyday life, aversive events are usually associated with certain predictive cues. Normally, the acquisition of these contingencies enables organisms to appropriately respond to threat. Presence of a threat cue clearly signals 'danger', whereas absence of such cues signals a period of 'safety'. Failure to identify threat cues may lead to chronic states of anxious apprehension in the context in which the threat has been imminent, which may be instrumental in the pathogenesis of anxiety disorders. In this study, existing data from 150 healthy volunteers in a cue and context virtual reality fear conditioning paradigm were reanalyzed. The aim was to further characterize the impact of cue acquisition and trait anxiety, and of a single nucleotide polymorphism in the serotonin 1A receptor gene (5-HTR1A, rs6295), on cued fear and contextual anxiety before and after fear contingencies were explicitly introduced. Fear conditioned responding was quantified with fear potentiation of the eyeblink startle reflex and subjective fear ratings. First, we replicated previous findings that the inability to identify danger cues during acquisition leads to heightened anxious apprehension in the threat context. Second, in subjects who did not identify the danger cue initially, contextual fear was associated with trait anxiety after the contingencies were explicitly instructed. Third, genetic variability within 5-HTR1A (rs6295) was associated with contextual fear independent of awareness or trait anxiety. These findings confirm that failure to acquire cue contingencies impacts contextual fear responding, in association with trait anxiety. The observed 5-HTR1A effect is in line with models of anxiety, but needs further replication. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Intact renewal after extinction of conditioned suppression with lesions of either the retrosplenial cortex or dorsal hippocampus.

    PubMed

    Todd, Travis P; Jiang, Matthew Y; DeAngeli, Nicole E; Bucci, David J

    2017-03-01

    Extinction of fear to a Pavlovian conditioned stimulus (CS) is known to be context-specific. When the CS is tested outside the context of extinction, fear returns, or renews. Several studies have demonstrated that renewal depends upon the hippocampus, although there are also studies where renewal was not impacted by hippocampal damage, suggesting that under some conditions context encoding and/or retrieval of extinction depends upon other regions. One candidate region is the retrosplenial cortex (RSC), which is known to contribute to contextual and spatial learning and memory. Using a conditioned-suppression paradigm, Experiment 1 tested the impact of pre-training RSC lesions on renewal of extinguished fear. Consistent with previous studies, lesions of the RSC did not impact acquisition or extinction of conditioned fear to the CS. Further, there was no evidence that RSC lesions impaired renewal, indicating that contextual encoding and/or retrieval of extinction does not depend upon the RSC. In Experiment 2, post-extinction lesions of either the RSC or dorsal hippocampus (DH) also had no impact on renewal. However, in Experiment 3, both RSC and DH lesions did impair performance in an object-in-place procedure, an index of place memory. RSC and DH contributions to extinction and renewal are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Low-dose systemic scopolamine disrupts context conditioning in rats.

    PubMed

    Luyten, Laura; Nuyts, Shauni; Beckers, Tom

    2017-06-01

    Cholinergic neurotransmission plays a key role in learning and memory. Prior research with rats indicated that a low dose of pre-training scopolamine (0.1 mg/kg), a cholinergic receptor antagonist, did not affect cued fear conditioning, but did block renewal when injected before extinguishing a conditioned tone, opening up opportunities to pharmacologically improve exposure therapy for anxiety patients. Before translating these findings to the clinic, it is important to carefully examine how scopolamine affects contextual fear memories. Here, we investigated the effects of scopolamine on encoding of contextual anxiety and its generalization in male Wistar rats. We found a profound disruption of context conditioning, suggesting that, even at a low dose, systemic scopolamine may influence contextual encoding in the hippocampus, particularly when the context is the best predictor for the presence of shocks.

  10. Changes in cutaneous and body temperature during and after conditioned fear to context in the rat.

    PubMed

    Vianna, Daniel M L; Carrive, Pascal

    2005-05-01

    Infrared thermography was used to image changes in cutaneous temperature during a conditioned fear response to context. Changes in heart rate, arterial pressure, activity and body (i.p.) temperature were recorded at the same time by radio-telemetry, in addition to freezing immobility. A marked drop in tail and paws temperature (-5.3 and -7.5 degrees C, respectively, down to room temperature), which lasted for the entire duration of the response (30 min), was observed in fear-conditioned rats. In sham-conditioned rats, the drop was on average half the magnitude and duration. In contrast, temperature of the eye, head and back increased (between + 0.8 and + 1.5 degrees C), with no difference between the two groups of rats. There was a similar increase in body temperature although it was slightly higher and delayed in the fear-conditioned animals. Finally, ending of the fear response was associated with a gradual decrease in body temperature and a rebound increase in the temperature of the tail (+ 3.3 degrees C above baseline). This study shows that fear, and to some extent arousal, evokes a strong cutaneous vasoconstriction that is restricted to the tail and paws. This regionally specific reduction in blood flow may be part of a preparatory response to a possible fight and flight to reduce blood loss in the most exposed parts of the rat's body in case of injury. The data also show that the tail is the main part of the body used for dissipating internal heat accumulated during fear once the animal has returned to a safe environment.

  11. Muscarinic receptors in amygdala control trace fear conditioning.

    PubMed

    Baysinger, Amber N; Kent, Brianne A; Brown, Thomas H

    2012-01-01

    Intelligent behavior requires transient memory, which entails the ability to retain information over short time periods. A newly-emerging hypothesis posits that endogenous persistent firing (EPF) is the neurophysiological foundation for aspects or types of transient memory. EPF is enabled by the activation of muscarinic acetylcholine receptors (mAChRs) and is triggered by suprathreshold stimulation. EPF occurs in several brain regions, including the lateral amygdala (LA). The present study examined the role of amygdalar mAChRs in trace fear conditioning, a paradigm that requires transient memory. If mAChR-dependent EPF selectively supports transient memory, then blocking amygdalar mAChRs should impair trace conditioning, while sparing delay and context conditioning, which presumably do not rely upon transient memory. To test the EPF hypothesis, LA was bilaterally infused, prior to trace or delay conditioning, with either a mAChR antagonist (scopolamine) or saline. Computerized video analysis quantified the amount of freezing elicited by the cue and by the training context. Scopolamine infusion profoundly reduced freezing in the trace conditioning group but had no significant effect on delay or context conditioning. This pattern of results was uniquely anticipated by the EPF hypothesis. The present findings are discussed in terms of a systems-level theory of how EPF in LA and several other brain regions might help support trace fear conditioning.

  12. Early life programming of fear conditioning and extinction in adult male rats.

    PubMed

    Stevenson, Carl W; Spicer, Clare H; Mason, Rob; Marsden, Charles A

    2009-12-28

    The early rearing environment programs corticolimbic function and neuroendocrine stress reactivity in adulthood. Although early environmental programming of innate fear has been previously examined, its impact on fear learning and memory later in life remains poorly understood. Here we examined the role of the early rearing environment in programming fear conditioning and extinction in adult male rats. Pups were subjected to maternal separation (MS; 360 min), brief handling (H; 15 min), or animal facility rearing (AFR) on post-natal days 2-14. As adults, animals were tested in a 3-day fear learning and memory paradigm which assessed the acquisition, expression and extinction of fear conditioning to an auditory cue; the recall of extinction was also assessed. In addition, contextual fear was assessed prior to cued extinction and its recall. We found that the acquisition of fear conditioning to the cue was modestly impaired by MS. However, no early rearing group differences were observed in cue-induced fear expression. In contrast, both the rate of extinction and extinction recall were attenuated by H. Finally, although contextual fear was reduced after extinction to the cue, no differences in context-induced fear were observed between the early rearing groups. These results add to a growing body of evidence supporting an important role for early environmental programming of fear conditioning and extinction. They also indicate that different early rearing conditions can program varying effects on distinct fear learning and memory processes in adulthood.

  13. Reduced Consolidation, Reinstatement, and Renewal of Conditioned Fear Memory by Repetitive Treatment of Radix Polygalae in Mice

    PubMed Central

    Shin, Jung-Won; Park, Hyunwoo; Cho, Yoonju; Lee, Suck; Yoon, Jiwon; Maeng, Sungho

    2017-01-01

    The therapeutic goal for the treatment of posttraumatic stress disorder (PTSD) is to promote extinction and to prevent the relapse of fearful memories. Research has identified pharmacological treatments that may regulate the formation and extinction of fear memories, but not many reagents that block the relapse of extinguished fear are known. Radix Polygalae (RP) is an Asian herb used for sedation, and its ingredients have anxiolytic and antidepressant properties. As various neurological effects have been identified, we tested whether RP affects the relapse of fear. Freezing in response to a conditioned context and cues was used to measure the effects of RP in mice. In cohort 1 (n = 30), consolidation, extinction, and reinstatement were tested during the course of 18 days of treatment. In cohort 2 (n = 30), consolidation, extinction, and renewal were tested during 10 days of treatment. The consolidation, extinction, reinstatement, and possibly the renewal of context-induced freezing were inhibited due to the administration of RP in animal subjects. However, the effects of RP on the freezing responses of subjects elicited by conditioned auditory cues were less obvious. Because it effectively suppresses the consolidation of fear memories, RP may be used for primary and secondary prevention of symptoms in PTSD patients. Additionally, because it effectively suppresses the reinstatement and renewal of fear memories, RP may be applied for the prevention of fear relapse in PTSD patients who have undergone exposure therapy. PMID:28620325

  14. Voluntary exercise during extinction of auditory fear conditioning reduces the relapse of fear associated with potentiated activity of striatal direct pathway neurons

    PubMed Central

    Mika, Agnieszka; Bouchet, Courtney A.; Bunker, Preston; Hellwinkel, Justin E.; Spence, Katie G.; Day, Heidi E.W.; Campeau, Serge; Fleshner, Monika

    2015-01-01

    Relapse of previously extinguished fear presents a significant, pervasive obstacle to the successful long-term treatment of anxiety and trauma-related disorders. Thus, identification of a novel means to enhance fear extinction to stand the passage of time and generalize across contexts is of the utmost importance. Acute bouts of exercise can be used as inexpensive, noninvasive treatment strategies to reduce anxiety, and have been shown to enhance memory for extinction when performed in close temporal proximity to the extinction session. However, it is unclear whether acute exercise can be used to prevent relapse of fear, and the neural mechanisms underlying this potential effect are unknown. The current study therefore examined whether acute exercise during extinction of auditory fear can protect against the later relapse of fear. Male, F344 rats lacking an extended history of wheel running were conditioned to fear a tone CS and subsequently extinguished within either a freely mobile running wheel, a locked wheel, or a control context lacking a wheel. Rats exposed to fear extinction within a freely mobile wheel ran during fear extinction, and demonstrated reduced fear as well as attenuated corticosterone levels during re-exposure to the extinguished CS during the relapse test in a novel context 1 week later. Examination of cfos mRNA patterns elicited by re-exposure to the extinguished CS during the relapse test revealed that acute exercise during extinction decreased activation of brain circuits classically involved in driving fear expression and interestingly, increased activity within neurons of the direct striatal pathway involved in reward signaling. These data suggest that exercise during extinction reduces relapse through a mechanism involving the direct pathway of the striatum. It is suggested that a positive affective state could become associated with the CS during exercise during extinction, thus resulting in a relapse-resistant extinction memory. PMID:26454156

  15. Voluntary exercise during extinction of auditory fear conditioning reduces the relapse of fear associated with potentiated activity of striatal direct pathway neurons.

    PubMed

    Mika, Agnieszka; Bouchet, Courtney A; Bunker, Preston; Hellwinkel, Justin E; Spence, Katie G; Day, Heidi E W; Campeau, Serge; Fleshner, Monika; Greenwood, Benjamin N

    2015-11-01

    Relapse of previously extinguished fear presents a significant, pervasive obstacle to the successful long-term treatment of anxiety and trauma-related disorders. Thus, identification of a novel means to enhance fear extinction to stand the passage of time and generalize across contexts is of the utmost importance. Acute bouts of exercise can be used as inexpensive, noninvasive treatment strategies to reduce anxiety, and have been shown to enhance memory for extinction when performed in close temporal proximity to the extinction session. However, it is unclear whether acute exercise can be used to prevent relapse of fear, and the neural mechanisms underlying this potential effect are unknown. The current study therefore examined whether acute exercise during extinction of auditory fear can protect against the later relapse of fear. Male F344 rats lacking an extended history of wheel running were conditioned to fear a tone CS and subsequently extinguished within either a freely mobile running wheel, a locked wheel, or a control context lacking a wheel. Rats exposed to fear extinction within a freely mobile wheel ran during fear extinction, and demonstrated reduced fear as well as attenuated corticosterone levels during re-exposure to the extinguished CS during the relapse test in a novel context 1week later. Examination of cfos mRNA patterns elicited by re-exposure to the extinguished CS during the relapse test revealed that acute exercise during extinction decreased activation of brain circuits classically involved in driving fear expression and interestingly, increased activity within neurons of the direct striatal pathway involved in reward signaling. These data suggest that exercise during extinction reduces relapse through a mechanism involving the direct pathway of the striatum. It is suggested that a positive affective state could become associated with the CS during exercise during extinction, thus resulting in a relapse-resistant extinction memory. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Basic Mechanisms Underlying Postchemotherapy Cognitive Impairment

    DTIC Science & Technology

    2010-04-01

    Anagnostaras et al., 2001; Gerlai, 2001; Maren, 2008). None of the drug treatments affected either context- or cue-specific fear conditioning (data not shown...The grant proposal focused on using spontaneous alternation and fear conditioning as the two methods to assess the effects of drug treatment on...treat other conditions . Thus, the pathway to begin to use these drugs to treat post-chemotherapy cognitive impairment might be short

  17. Elevated Arc/Arg 3.1 protein expression in the basolateral amygdala following auditory trace-cued fear conditioning.

    PubMed

    Chau, Lily S; Prakapenka, Alesia; Fleming, Stephen A; Davis, Ashley S; Galvez, Roberto

    2013-11-01

    The underlying neuronal mechanisms of learning and memory have been heavily explored using associative learning paradigms. Two of the more commonly employed learning paradigms have been contextual and delay fear conditioning. In fear conditioning, a subject learns to associate a neutral stimulus (conditioned stimulus; CS), such as a tone or the context of the room, with a fear provoking stimulus (unconditioned stimulus; US), such as a mild footshock. Utilizing these two paradigms, various analyses have elegantly demonstrated that the amygdala plays a role in both fear-related associative learning paradigms. However, the amygdala's involvement in trace fear conditioning, a forebrain-dependent fear associative learning paradigm that has been suggested to tap into higher cognitive processes, has not been closely investigated. Furthermore, to our knowledge, the specific amygdala nuclei involved with trace fear conditioning has not been examined. The present study used Arc expression as an activity marker to determine the amygdala's involvement in trace fear associative learning and to further explore involvement of specific amygdalar nuclei. Arc is an immediate early gene that has been shown to be associated with neuronal activation and is believed to be necessary for neuronal plasticity. Findings from the present study demonstrated that trace-conditioned mice, compared to backward-conditioned (stimulation-control), delay-conditioned and naïve mice, exhibited elevated amygdalar Arc expression in the basolateral (BLA) but not the central (CeA) or the lateral amygdala (LA). These findings are consistent with previous reports demonstrating that the amygdala plays a critical role in trace conditioning. Furthermore, these findings parallel studies demonstrating hippocampal-BLA activation following contextual fear conditioning, suggesting that trace fear conditioning and contextual fear conditioning may involve similar amygdala nuclei. Together, findings from this study demonstrate similarities in the pathway for trace and contextual fear conditioning, and further suggest possible underlying mechanisms for acquisition and consolidation of these two types of fear-related learning. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Kappa Opioid Receptors Mediate where Fear Is Expressed Following Extinction Training

    ERIC Educational Resources Information Center

    Cole, Sindy; Richardson, Rick; McNally, Gavan P.

    2011-01-01

    Six experiments used a within-subjects renewal design to examine the involvement of kappa opioid receptors (KORs) in regulating the expression and recovery of extinguished fear. Rats were trained to fear a tone conditioned stimulus (CS) via pairings with foot shock in a distinctive context (A). This was followed by extinction training of the CS in…

  19. Selective Control of Fear Expression by Optogenetic Manipulation of Infralimbic Cortex after Extinction

    PubMed Central

    Kim, Hyung-Su; Cho, Hye-Yeon; Augustine, George J; Han, Jin-Hee

    2016-01-01

    Evidence from rodent and human studies has identified the ventromedial prefrontal cortex, specifically the infralimbic cortex (IL), as a critical brain structure in the extinction of conditioned fear. However, how IL activity controls fear expression at the time of extinction memory retrieval is unclear and controversial. To address this issue, we used optogenetics to precisely manipulate the activity of genetically targeted cells and to examine the real-time contribution of IL activity to expression of auditory-conditioned fear extinction in mice. We found that inactivation of IL, but not prelimbic cortex, impaired extinction retrieval. Conversely, photostimulation of IL excitatory neurons robustly enhanced the inhibition of fear expression after extinction, but not before extinction. Moreover, this effect was specific to the conditioned stimulus (CS): IL activity had no effect on expression of fear in response to the conditioned context after auditory fear extinction. Thus, in contrast to the expectation from a generally held view, artificial activation of IL produced no significant effect on expression of non-extinguished conditioned fear. Therefore, our data provide compelling evidence that IL activity is critical for expression of fear extinction and establish a causal role for IL activity in controlling fear expression in a CS-specific manner after extinction. PMID:26354044

  20. Temporary inhibition of dorsal or ventral hippocampus by muscimol: distinct effects on measures of innate anxiety on the elevated plus maze, but similar disruption of contextual fear conditioning.

    PubMed

    Zhang, Wei-Ning; Bast, Tobias; Xu, Yan; Feldon, Joram

    2014-04-01

    Studies in rats, involving hippocampal lesions and hippocampal drug infusions, have implicated the hippocampus in the modulation of anxiety-related behaviors and conditioned fear. The ventral hippocampus is considered to be more important for anxiety- and fear-related behaviors than the dorsal hippocampus. In the present study, we compared the role of dorsal and ventral hippocampus in innate anxiety and classical fear conditioning in Wistar rats, examining the effects of temporary pharmacological inhibition by the GABA-A agonist muscimol (0.5 ug/0.5 ul/side) in the elevated plus maze and on fear conditioning to a tone and the conditioning context. In the elevated plus maze, dorsal and ventral hippocampal muscimol caused distinct behavioral changes. The effects of ventral hippocampal muscimol were consistent with suppression of locomotion, possibly accompanied by anxiolytic effects, whereas the pattern of changes caused by dorsal hippocampal muscimol was consistent with anxiogenic effects. In contrast, dorsal and ventral hippocampal muscimol caused similar effects in the fear conditioning experiments, disrupting contextual, but not tone, fear conditioning. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Context-Dependent Encoding of Fear and Extinction Memories in a Large-Scale Network Model of the Basal Amygdala

    PubMed Central

    Vlachos, Ioannis; Herry, Cyril; Lüthi, Andreas; Aertsen, Ad; Kumar, Arvind

    2011-01-01

    The basal nucleus of the amygdala (BA) is involved in the formation of context-dependent conditioned fear and extinction memories. To understand the underlying neural mechanisms we developed a large-scale neuron network model of the BA, composed of excitatory and inhibitory leaky-integrate-and-fire neurons. Excitatory BA neurons received conditioned stimulus (CS)-related input from the adjacent lateral nucleus (LA) and contextual input from the hippocampus or medial prefrontal cortex (mPFC). We implemented a plasticity mechanism according to which CS and contextual synapses were potentiated if CS and contextual inputs temporally coincided on the afferents of the excitatory neurons. Our simulations revealed a differential recruitment of two distinct subpopulations of BA neurons during conditioning and extinction, mimicking the activation of experimentally observed cell populations. We propose that these two subgroups encode contextual specificity of fear and extinction memories, respectively. Mutual competition between them, mediated by feedback inhibition and driven by contextual inputs, regulates the activity in the central amygdala (CEA) thereby controlling amygdala output and fear behavior. The model makes multiple testable predictions that may advance our understanding of fear and extinction memories. PMID:21437238

  2. A model of amygdala-hippocampal-prefrontal interaction in fear conditioning and extinction in animals

    PubMed Central

    Moustafa, Ahmed A.; Gilbertson, Mark W.; Orr, Scott P.; Herzallah, Mohammad M.; Servatius, Richard. J.; Myers, Catherine E.

    2012-01-01

    Empirical research has shown that the amygdala, hippocampus, and ventromedial prefrontal cortex (vmPFC) are involved in fear conditioning. However, the functional contribution of each brain area and the nature of their interactions are not clearly understood. Here, we extend existing neural network models of the functional roles of the hippocampus in classical conditioning to include interactions with the amygdala and prefrontal cortex. We apply the model to fear conditioning, in which animals learn physiological (e.g. heart rate) and behavioral (e.g. freezing) responses to stimuli that have been paired with a highly aversive event (e.g. electrical shock). The key feature of our model is that learning of these conditioned responses in the central nucleus of the amygdala is modulated by two separate processes, one from basolateral amygdala and signaling a positive prediction error, and one from the vmPFC, via the intercalated cells of the amygdala, and signaling a negative prediction error. In addition, we propose that hippocampal input to both vmPFC and basolateral amygdala is essential for contextual modulation of fear acquisition and extinction. The model is sufficient to account for a body of data from various animal fear conditioning paradigms, including acquisition, extinction, reacquisition, and context specificity effects. Consistent with studies on lesioned animals, our model shows that damage to the vmPFC impairs extinction, while damage to the hippocampus impairs extinction in a different context (e.g., a different conditioning chamber from that used in initial training in animal experiments). We also discuss model limitations and predictions, including the effects of number of training trials on fear conditioning. PMID:23164732

  3. Low-dose systemic scopolamine disrupts context conditioning in rats

    PubMed Central

    Luyten, Laura; Nuyts, Shauni; Beckers, Tom

    2017-01-01

    Cholinergic neurotransmission plays a key role in learning and memory. Prior research with rats indicated that a low dose of pre-training scopolamine (0.1 mg/kg), a cholinergic receptor antagonist, did not affect cued fear conditioning, but did block renewal when injected before extinguishing a conditioned tone, opening up opportunities to pharmacologically improve exposure therapy for anxiety patients. Before translating these findings to the clinic, it is important to carefully examine how scopolamine affects contextual fear memories. Here, we investigated the effects of scopolamine on encoding of contextual anxiety and its generalization in male Wistar rats. We found a profound disruption of context conditioning, suggesting that, even at a low dose, systemic scopolamine may influence contextual encoding in the hippocampus, particularly when the context is the best predictor for the presence of shocks. PMID:28417664

  4. Memory retrieval after contextual fear conditioning induces c-Fos and JunB expression in CA1 hippocampus.

    PubMed

    Strekalova, T; Zörner, B; Zacher, C; Sadovska, G; Herdegen, T; Gass, P

    2003-02-01

    Using specific polyclonal antisera against c-Fos, JunB, c-Jun and JunD, we tried to identify the candidate transcription factors of the immediate early gene family which may contribute to the molecular processes during contextual memory reconsolidation. For that purpose we analyzed the expression of these proteins in the hippocampus after contextual memory retrieval in a mouse model of fear conditioning. A single exposure to a foot shock of 0.8 mA was sufficient to induce robust contextual fear conditioning in C57BI/6N mice. In these mice context dependent memory retrieval evoked a marked induction of c-Fos and JunB, but not of c-Jun and JunD, in pyramidal CA1 neurons of the dorsal hippocampus. In contrast, mice exposed and re-exposed only to the context, without foot shock, did not show behavioral signs of contextual fear conditioning and exhibited significantly less expression of c-Fos and JunB in CA1 neurons. Mice which received a foot shock but were not re-exposed to the context revealed no immediate early gene induction. These results demonstrate that contextual memory retrieval is associated with de novo synthesis of specific members of the Fos/Jun transcription factor family. Therefore we suggest that these genes may contribute to plasticity and reconsolidation accompanying the retrieval process. The specific activation of CA1 neurons during the retrieval of contextual fear associations supports the postulated concept of a mnemonic role of this hippocampal subsector during the retrieval of contextual informations.

  5. A dissociation between renewal and contextual fear conditioning in juvenile rats.

    PubMed

    Park, Chun Hui J; Ganella, Despina E; Kim, Jee Hyun

    2017-05-01

    We investigated whether juvenile rats do not express renewal following extinction of conditioned fear due to their inability to form a long-term contextual fear memory. In experiment 1, postnatal day (P) 18 and 25 rats received 3 white-noise and footshock pairings, followed by 60 white-noise alone presentations the next day. When tested in a different context to extinction, P25 rats displayed renewal whereas P18 rats did not. Experiments 2A and 2B surprisingly showed that P18 and P25 rats do not show differences in contextual and cued fear, regardless of the conditioning-test intervals and the number of white-noise-footshock pairings received. Finally, we observed age differences in contextual fear when P25 rats were weaned at P21 in experiment 3. These results indicate that the developmental dissociation observed in renewal of extinguished fear is not related to the widely believed late emergence of contextual fear learning. © 2017 Wiley Periodicals, Inc.

  6. Involvement of the Lateral Septal Area in the Expression of Fear Conditioning to Context

    ERIC Educational Resources Information Center

    Reis, Daniel G.; Scopinho, America A.; Guimaraes, Francisco S.; Correa, Fernando M. A.; Resstel, Leonardo B. M.

    2010-01-01

    Considering the evidence that the lateral septal area (LSA) modulates defensive responses, the aim of the present study is to verify if this structure is also involved in contextual fear conditioning responses. Neurotransmission in the LSA was reversibly inhibited by bilateral microinjections of cobalt chloride (CoCl[subscript 2], 1 mM) 10 min…

  7. The Future of Contextual Fear Learning for PTSD Research: A Methodological Review of Neuroimaging Studies.

    PubMed

    Glenn, Daniel E; Risbrough, Victoria B; Simmons, Alan N; Acheson, Dean T; Stout, Daniel M

    2017-10-21

    There has been a great deal of recent interest in human models of contextual fear learning, particularly due to the use of such paradigms for investigating neural mechanisms related to the etiology of posttraumatic stress disorder. However, the construct of "context" in fear conditioning research is broad, and the operational definitions and methods used to investigate contextual fear learning in humans are wide ranging and lack specificity, making it difficult to interpret findings about neural activity. Here we will review neuroimaging studies of contextual fear acquisition in humans. We will discuss the methodology associated with four broad categories of how contextual fear learning is manipulated in imaging studies (colored backgrounds, static picture backgrounds, virtual reality, and configural stimuli) and highlight findings for the primary neural circuitry involved in each paradigm. Additionally, we will offer methodological recommendations for human studies of contextual fear acquisition, including using stimuli that distinguish configural learning from discrete cue associations and clarifying how context is experimentally operationalized.

  8. Enhancing dopaminergic signaling and histone acetylation promotes long-term rescue of deficient fear extinction.

    PubMed

    Whittle, N; Maurer, V; Murphy, C; Rainer, J; Bindreither, D; Hauschild, M; Scharinger, A; Oberhauser, M; Keil, T; Brehm, C; Valovka, T; Striessnig, J; Singewald, N

    2016-12-06

    Extinction-based exposure therapy is used to treat anxiety- and trauma-related disorders; however, there is the need to improve its limited efficacy in individuals with impaired fear extinction learning and to promote greater protection against return-of-fear phenomena. Here, using 129S1/SvImJ mice, which display impaired fear extinction acquisition and extinction consolidation, we revealed that persistent and context-independent rescue of deficient fear extinction in these mice was associated with enhanced expression of dopamine-related genes, such as dopamine D1 (Drd1a) and -D2 (Drd2) receptor genes in the medial prefrontal cortex (mPFC) and amygdala, but not hippocampus. Moreover, enhanced histone acetylation was observed in the promoter of the extinction-regulated Drd2 gene in the mPFC, revealing a potential gene-regulatory mechanism. Although enhancing histone acetylation, via administering the histone deacetylase (HDAC) inhibitor MS-275, does not induce fear reduction during extinction training, it promoted enduring and context-independent rescue of deficient fear extinction consolidation/retrieval once extinction learning was initiated as shown following a mild conditioning protocol. This was associated with enhanced histone acetylation in neurons of the mPFC and amygdala. Finally, as a proof-of-principle, mimicking enhanced dopaminergic signaling by L-dopa treatment rescued deficient fear extinction and co-administration of MS-275 rendered this effect enduring and context-independent. In summary, current data reveal that combining dopaminergic and epigenetic mechanisms is a promising strategy to improve exposure-based behavior therapy in extinction-impaired individuals by initiating the formation of an enduring and context-independent fear-inhibitory memory.

  9. NMDA receptor antagonism disrupts the acquisition and retention of the Context Preexposure Facilitation Effect in adolescent rats

    PubMed Central

    Heroux, Nicholas A.; Robinson-Drummer, Patrese A.; Rosen, Jeffrey B.; Stanton, Mark E.

    2016-01-01

    The context preexposure facilitation effect (CPFE) is a contextual fear conditioning paradigm in which learning about the context, acquiring the context-shock association, and retrieving/expressing contextual fear are temporally dissociated. The current study investigated the involvement of NMDA receptors in contextual fear acquisition, retention, and expression across all phases of the CPFE in adolescent rats. In Experiment 1 systemic injections of 0.1 mg/kg MK-801, a non-competitive NMDA receptor antagonist, given before multiple context preexposure disrupted the acquisition of a context representation. In Experiment 2, pre-training MK-801 disrupted both immediate acquisition of contextual fear measured by postshock freezing, as well as retention test freezing 24 hours later. Experiment 3 showed that expression of contextual fear via a 24hr retention freezing test does not depend on NMDA receptors, indicating that MK-801 disrupts learning rather than performance of freezing behavior. In Experiment 4, consolidation of contextual information was partially disrupted by post-preexposure MK-801 whereas consolidation of contextual fear was not disrupted by post-training MK-801. Finally, Experiment 5 employed a dose-response design and found that a pre-training dose of 0.1 mg/kg MK-801 disrupted both postshock and retention test freezing while lower pre-training doses of MK-801 (0.025 or 0.05 mg/kg) only disrupted retention freezing. This is the first study to distinguish the role of NMDA receptors in acquisition (post-shock freezing), retention, expression, and consolidation of context vs. context-shock learning using the CPFE paradigm in adolescent rats. The findings provide a foundation for similar developmental studies examining these effects from early ontogeny through adulthood. PMID:26711910

  10. Origins of common fears in South African children.

    PubMed

    Muris, Peter; du Plessis, Michelle; Loxton, Helene

    2008-12-01

    The present study examined the origins of common childhood fears within a South African context. Six-hundred-and-fifty-five 10- to 14-year-old children were given a brief fear list that helped them to identify their most intense fear and then completed a brief questionnaire for assessing the origins of fears that was based on Rachman's [Rachman, S. (1977). The conditioning theory of fear acquisition: A critical examination. Behaviour Research and Therapy, 15, 375-387; Rachman, S. (1991). Neoconditioning and the classical theory of fear acquisition. Clinical Psychology Review, 17, 47-67] three-pathways theory. More precisely, children were asked to report whether they had experienced conditioning, modeling, and negative information experiences in relation to their most feared stimulus or situation, and also had to indicate to what extent such experiences had actually played a role in the onset and/or intensification of their fears. Results showed that children most frequently reported indirect learning experiences (i.e., modeling and negative information) in relation to their fears, whereas conditioning was clearly less often mentioned. The majority of the children had no precise idea of how their fear had actually begun, but a substantial proportion of them reported various learning experiences in relation to the onset and intensification of fears. Significant cultural differences were not only observed in the prevalence of common fears, but also in the pathways reported for the origins of fears. The results are briefly discussed in terms of the living conditions of South African children from various cultural backgrounds.

  11. Differences in extinction of conditioned fear in C57BL/6 substrains are unrelated to expression of alpha-synuclein.

    PubMed

    Siegmund, Anja; Langnaese, Kristina; Wotjak, Carsten T

    2005-02-28

    C57BL/6 mice are commonly used as background strains for genetically modified mice, and little attention is usually paid to the notification of the specific substrain. However, it is known that C57BL/6NCrl (B6N) and C57BL/6JOlaHsd (B6JOla) mice differ in the course of extinction of conditioned fear (Stiedl O, Radulovic J, Lohmann R, Birkenfeld K, Palve M, Kammermeier J, et al. Strain and substrain differences in context- and tone-dependent fear conditioning of inbred mice. Behav Brain Res 1999;104:1-12), as well as in the expression of alpha-synuclein (Specht CG, Schoepfer R. Deletion of the alpha-synuclein locus in a subpopulation of C57BL/6J inbred mice. BMC Neurosci 2001;2:11). We tested for a causal relationship between the two findings by employing B6N (expressing alpha-synuclein), B6JOla (not expressing alpha-syn) and the third strain C57BL/6JCrl (B6Jax, expressing alpha-syn). We show that alpha-syn does not account for differences in extinction in a fear conditioning task, as its expression did not covary with the decrease of freezing on repeated non-reinforced tone and context exposure in the three strains: B6Jax exhibited fastest extinction followed by B6JOla. In contrast, B6N showed persistent fear over the course of extinction training. The differences in extinction between B6JOla and B6N were unrelated to sensorimotor processing (pain threshold and basal tone reaction) and innate fear (light-dark test). However, B6Jax displayed less innate fear than B6JOla and B6N. Our results of marked differences in innate and conditioned fear in three B6 substrains illustrate the necessity of a strict adherence to an exact mouse strain nomenclature.

  12. Identification and Characterization of the V(D)J Recombination Activating Gene 1 in Long-Term Memory of Context Fear Conditioning

    PubMed Central

    Castro-Pérez, Edgardo; Soto-Soto, Emilio; Pérez-Carambot, Marizabeth; Dionisio-Santos, Dawling; Saied-Santiago, Kristian; Ortiz-Zuazaga, Humberto G.; Peña de Ortiz, Sandra

    2016-01-01

    An increasing body of evidence suggests that mechanisms related to the introduction and repair of DNA double strand breaks (DSBs) may be associated with long-term memory (LTM) processes. Previous studies from our group suggested that factors known to function in DNA recombination/repair machineries, such as DNA ligases, polymerases, and DNA endonucleases, play a role in LTM. Here we report data using C57BL/6 mice showing that the V(D)J recombination-activating gene 1 (RAG1), which encodes a factor that introduces DSBs in immunoglobulin and T-cell receptor genes, is induced in the amygdala, but not in the hippocampus, after context fear conditioning. Amygdalar induction of RAG1 mRNA, measured by real-time PCR, was not observed in context-only or shock-only controls, suggesting that the context fear conditioning response is related to associative learning processes. Furthermore, double immunofluorescence studies demonstrated the neuronal localization of RAG1 protein in amygdalar sections prepared after perfusion and fixation. In functional studies, intra-amygdalar injections of RAG1 gapmer antisense oligonucleotides, given 1 h prior to conditioning, resulted in amygdalar knockdown of RAG1 mRNA and a significant impairment in LTM, tested 24 h after training. Overall, these findings suggest that the V(D)J recombination-activating gene 1, RAG1, may play a role in LTM consolidation. PMID:26843989

  13. Deficient fear extinction memory in posttraumatic stress disorder.

    PubMed

    Wicking, Manon; Steiger, Frauke; Nees, Frauke; Diener, Slawomira J; Grimm, Oliver; Ruttorf, Michaela; Schad, Lothar R; Winkelmann, Tobias; Wirtz, Gustav; Flor, Herta

    2016-12-01

    Posttraumatic stress disorder (PTSD) might be maintained by deficient extinction memory. We used a cued fear conditioning design with extinction and a post-extinction phase to provoke the return of fear and examined the role of the interplay of amygdala, hippocampus and prefrontal regions. We compared 18 PTSD patients with two healthy control groups: 18 trauma-exposed subjects without PTSD (nonPTSD) and 18 healthy controls (HC) without trauma experience. They underwent a three-day ABC-conditioning procedure in a functional magnetic resonance imaging scanner. Two geometric shapes that served as conditioned stimuli (CS) were presented in the context of virtual reality scenes. Electric painful stimuli were delivered after one of the two shapes (CS+) during acquisition (in context A), while the other (CS-) was never paired with pain. Extinction was performed in context B and extinction memory was tested in a novel context C. The PTSD patients showed significantly higher differential skin conductance responses than the non-PTSD and HC and higher differential amygdala and hippocampus activity than the HC in context C. In addition, elevated arousal to the CS+ during extinction and to the CS- throughout the experiment was present in the PTSD patients but self-reported differential valence or contingency were not different. During extinction recall, differential amygdala activity correlated positively with the intensity of numbing and ventromedial prefrontal cortex activity correlated positively with behavioral avoidance. PTSD patients show heightened return of fear in neural and peripheral measures. In addition, self-reported arousal was high to both danger (CS+) and safety (CS-) cues. These results suggest that a deficient maintenance of extinction and a failure to identify safety signals might contribute to PTSD symptoms, whereas non-PTSD subjects seem to show normal responses. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Glutamate receptors in the medial geniculate nucleus are necessary for expression and extinction of conditioned fear in rats.

    PubMed

    Orsini, Caitlin A; Maren, Stephen

    2009-11-01

    Auditory fear conditioning requires anatomical projections from the medial geniculate nucleus (MGN) of the thalamus to the amygdala. Several lines of work indicate that the MGN is a critical sensory relay for auditory information during conditioning, but is not itself involved in the encoding of long-term fear memories. In the present experiments, we examined whether the MGN plays a similar role in the extinction of conditioned fear. Twenty-four hours after Pavlovian fear conditioning, rats received bilateral intra-thalamic infusions of either with NBQX (an AMPA receptor antagonist; Experiment 1) or MK-801 (an NMDA receptor antagonist; Experiment 1), anisomycin (a protein synthesis inhibitor; Experiment 2) or U0126 (a MEK inhibitor; Experiment 3) immediately prior to an extinction session in a novel context. The next day rats received a tone test in a drug-free state to assess their extinction memory; freezing served as an index of fear. Glutamate receptor antagonism prevented both the expression and extinction of conditioned fear. In contrast, neither anisomycin nor U0126 affected extinction. These results suggest that the MGN is a critical sensory relay for auditory information during extinction training, but is not itself a site of plasticity underlying the formation of the extinction memory.

  15. Enhancing dopaminergic signaling and histone acetylation promotes long-term rescue of deficient fear extinction

    PubMed Central

    Whittle, N; Maurer, V; Murphy, C; Rainer, J; Bindreither, D; Hauschild, M; Scharinger, A; Oberhauser, M; Keil, T; Brehm, C; Valovka, T; Striessnig, J; Singewald, N

    2016-01-01

    Extinction-based exposure therapy is used to treat anxiety- and trauma-related disorders; however, there is the need to improve its limited efficacy in individuals with impaired fear extinction learning and to promote greater protection against return-of-fear phenomena. Here, using 129S1/SvImJ mice, which display impaired fear extinction acquisition and extinction consolidation, we revealed that persistent and context-independent rescue of deficient fear extinction in these mice was associated with enhanced expression of dopamine-related genes, such as dopamine D1 (Drd1a) and -D2 (Drd2) receptor genes in the medial prefrontal cortex (mPFC) and amygdala, but not hippocampus. Moreover, enhanced histone acetylation was observed in the promoter of the extinction-regulated Drd2 gene in the mPFC, revealing a potential gene-regulatory mechanism. Although enhancing histone acetylation, via administering the histone deacetylase (HDAC) inhibitor MS-275, does not induce fear reduction during extinction training, it promoted enduring and context-independent rescue of deficient fear extinction consolidation/retrieval once extinction learning was initiated as shown following a mild conditioning protocol. This was associated with enhanced histone acetylation in neurons of the mPFC and amygdala. Finally, as a proof-of-principle, mimicking enhanced dopaminergic signaling by L-dopa treatment rescued deficient fear extinction and co-administration of MS-275 rendered this effect enduring and context-independent. In summary, current data reveal that combining dopaminergic and epigenetic mechanisms is a promising strategy to improve exposure-based behavior therapy in extinction-impaired individuals by initiating the formation of an enduring and context-independent fear-inhibitory memory. PMID:27922638

  16. Sex differences in the behavioural and hypothalamic-pituitary-adrenal response to contextual fear conditioning in rats.

    PubMed

    Daviu, Núria; Andero, Raül; Armario, Antonio; Nadal, Roser

    2014-11-01

    In recent years, special attention is being paid to sex differences in susceptibility to disease. In this regard, there is evidence that male rats present higher levels of both cued and contextual fear conditioning than females. However, little is known about the concomitant hypothalamic-pituitary-adrenal (HPA) axis response to those situations which are critical in emotional memories. Here, we studied the behavioural and HPA responses of male and female Wistar rats to context fear conditioning using electric footshock as the aversive stimulus. Fear-conditioned rats showed a much greater ACTH and corticosterone response than those merely exposed to the fear conditioning chamber without receiving shocks. Moreover, males presented higher levels of freezing whereas HPA axis response was greater in females. Accordingly, during the fear extinction tests, female rats consistently showed less freezing and higher extinction rate, but greater HPA activation than males. Exposure to an open-field resulted in lower activity/exploration in fear-conditioned males, but not in females, suggesting greater conditioned cognitive generalization in males than females. It can be concluded that important sex differences in fear conditioning are observed in both freezing and HPA activation, but the two sets of variables are affected in the opposite direction: enhanced behavioural impact in males, but enhanced HPA responsiveness in females. Thus, the role of sex differences on fear-related stimuli may depend on the variables chosen to evaluate it, the greater responsiveness of the HPA axis in females perhaps being an important factor to be further explored. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Immediate extinction causes a less durable loss of performance than delayed extinction following either fear or appetitive conditioning.

    PubMed

    Woods, Amanda M; Bouton, Mark E

    2008-12-01

    Five experiments with rat subjects compared the effects of immediate and delayed extinction on the durability of extinction learning. Three experiments examined extinction of fear conditioning (using the conditioned emotional response method), and two experiments examined extinction of appetitive conditioning (using the food-cup entry method). In all experiments, conditioning and extinction were accomplished in single sessions, and retention testing took place 24 h after extinction. In both fear and appetitive conditioning, immediate extinction (beginning 10 min after conditioning) caused a faster loss of responding than delayed extinction (beginning 24 h after conditioning). However, immediate extinction was less durable than delayed extinction: There was stronger spontaneous recovery during the final retention test. There was also substantial renewal of responding when the physical context was changed between immediate extinction and testing (Experiment 1). The results suggest that, in these two widely used conditioning preparations, immediate extinction does not erase or depotentiate the original learning, and instead creates a less permanent reduction in conditioned responding. Results did not support the possibility that the strong recovery after immediate extinction was due to a mismatch in the recent "context" provided by the presence or absence of a recent conditioning experience. Several other accounts are considered.

  18. Extinction of Learned Fear Induces Hippocampal Place Cell Remapping

    PubMed Central

    Wang, Melissa E.; Yuan, Robin K.; Keinath, Alexander T.; Ramos Álvarez, Manuel M.

    2015-01-01

    The extinction of learned fear is a hippocampus-dependent process thought to embody new learning rather than erasure of the original fear memory, although it is unknown how these competing contextual memories are represented in the hippocampus. We previously demonstrated that contextual fear conditioning results in hippocampal place cell remapping and long-term stabilization of novel representations. Here we report that extinction learning also induces place cell remapping in C57BL/6 mice. Specifically, we observed cells that preferentially remapped during different stages of learning. While some cells remapped in both fear conditioning and extinction, others responded predominantly during extinction, which may serve to modify previous representations as well as encode new safe associations. Additionally, we found cells that remapped primarily during fear conditioning, which could facilitate reacquisition of the original fear association. Moreover, we also observed cells that were stable throughout learning, which may serve to encode the static aspects of the environment. The short-term remapping observed during extinction was not found in animals that did not undergo fear conditioning, or when extinction was conducted outside of the conditioning context. Finally, conditioning and extinction produced an increase in spike phase locking to the theta and gamma frequencies. However, the degree of remapping seen during conditioning and extinction only correlated with gamma synchronization. Our results suggest that the extinction learning is a complex process that involves both modification of pre-existing memories and formation of new ones, and these traces coexist within the same hippocampal representation. PMID:26085635

  19. Context and Auditory Fear are Differentially Regulated by HDAC3 Activity in the Lateral and Basal Subnuclei of the Amygdala

    PubMed Central

    Kwapis, Janine L; Alaghband, Yasaman; López, Alberto J; White, André O; Campbell, Rianne R; Dang, Richard T; Rhee, Diane; Tran, Ashley V; Carl, Allison E; Matheos, Dina P; Wood, Marcelo A

    2017-01-01

    Histone acetylation is a fundamental epigenetic mechanism that is dynamically regulated during memory formation. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) compete to modulate histone acetylation, allowing for rapid changes in acetylation in response to a learning event. HDACs are known to be powerful negative regulators of memory formation, but it is not clear whether this function depends on HDAC enzymatic activity per se. Here, we tested whether the enzymatic activity of an individual Class I HDAC, HDAC3, has a role in fear memory formation in subregions of the hippocampus and amygdala. We found that fear conditioning drove expression of the immediate early genes cFos and Nr4a2 in the hippocampus, which coincided with reduced HDAC3 occupancy at these promoters. Using a dominant-negative, deacetylase-dead point mutant virus (AAV-HDAC3(Y298H)-v5), we found that selectively blocking HDAC3 deacetylase activity in either the dorsal hippocampus or basal nucleus of the amygdala enhanced context fear without affecting tone fear. Blocking HDAC3 activity in the lateral nucleus of the amygdala, on the other hand, enhanced tone, but not context fear memory. These results show for the first time that the enzymatic activity of HDAC3 functions to negatively regulate fear memory formation. Further, HDAC3 activity regulates different aspects of fear memory in the basal and lateral subregions of the amygdala. Thus, the deacetylase activity of HDAC3 is a powerful negative regulator of fear memory formation in multiple subregions of the fear circuit. PMID:27924874

  20. Immunization against social fear learning.

    PubMed

    Golkar, Armita; Olsson, Andreas

    2016-06-01

    Social fear learning offers an efficient way to transmit information about potential threats; little is known, however, about the learning processes that counteract the social transmission of fear. In three separate experiments, we found that safety information transmitted from another individual (i.e., demonstrator) during preexposure prevented subsequent observational fear learning (Experiments 1-3), and this effect was maintained in a new context involving direct threat confrontation (Experiment 3). This protection from observational fear learning was specific to conditions in which information about both safety and danger was transmitted from the same demonstrator (Experiments 2-3) and was unaffected by increasing the number of the safety demonstrators (Experiment 3). Collectively, these findings demonstrate that observational preexposure can limit social transmission of fear. Future research is needed to better understand the conditions under which such effects generalize across individual demonstrators. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  1. Repeatedly Reactivated Memories Become More Resistant to Hippocampal Damage

    ERIC Educational Resources Information Center

    Lehmann, Hugo; McNamara, Kathryn C.

    2011-01-01

    We examined whether repeated reactivations of a context memory would prevent the typical amnesic effects of post-training damage to the hippocampus (HPC). Rats were given a single contextual fear-conditioning session followed by 10 reactivations, involving a brief return to the conditioning context (no shock). Subsequently, the rats received sham…

  2. Enhanced discrimination between threatening and safe contexts in high-anxious individuals

    PubMed Central

    Glotzbach-Schoon, Evelyn; Tadda, Regina; Andreatta, Marta; Tröger, Christian; Ewald, Heike; Grillon, Christian; Pauli, Paul; Mühlberger, Andreas

    2014-01-01

    Trait anxiety, a stable personality trait associated with increased fear responses to threat, is regarded as a risk factor for the development and maintenance of anxiety disorders. Although the effect of trait anxiety has been examined with regard to explicit threat cues, little is known about the effect of trait anxiety on contextual threat learning. To assess this issue, extreme groups of low and high trait anxiety underwent a contextual fear conditioning protocol using virtual reality. Two virtual office rooms served as the conditioned contexts. One virtual office room (CXT+) was paired with unpredictable electrical stimuli. In the other virtual office room, no electrical stimuli were delivered (CXT−). High-anxious participants tended to show faster acquisition of startle potentiation in the CXT+ versus the CXT− than low-anxious participants. This enhanced contextual fear learning might function as a risk factor for anxiety disorders that are characterized by sustained anxiety. PMID:23384512

  3. Extinction of Conditioned Fear is Better Learned and Recalled in the Morning than in the Evening

    PubMed Central

    Pace-Schott, Edward F.; Spencer, Rebecca M.C.; Vijayakumar, Shilpa; Ahmed, Nafis; Verga, Patrick W.; Orr, Scott P.; Pitman, Roger K.; Milad, Mohammed R.

    2013-01-01

    Sleep helps emotional memories consolidate and may promote generalization of fear extinction memory. We examined whether extinction learning and memory might differ in the morning and evening due, potentially, to circadian and/or sleep-homeostatic factors. Healthy men (N=109) in 6 groups completed a 2-session protocol. In Session 1, fear conditioning was followed by extinction learning. Partial reinforcement with mild electric shock produced conditioned skin conductance responses (SCR) to 2 differently colored lamps (CS+), but not a third color (CS−), within the computer image of a room (conditioning context). One CS+ (CS+E) but not the other (CS+U) was immediately extinguished by un-reinforced presentations in a different room (extinction context). Delay durations of 3 hr (within AM or PM), 12 hr (morning-to-evening or evening-to-morning) or 24 hr (morning-to-morning or evening-to-evening) followed. In Session 2, extinction recall and contextual fear renewal were tested. We observed no significant effects of the delay interval on extinction memory but did observe an effect of time-of-day. Fear extinction was significantly better if learned in the morning (p=.002). Collapsing across CS+ type, there was smaller morning differential SCR at both extinction recall (p=.003) and fear renewal (p=.005). Morning extinction recall showed better generalization from the CS+E to CS+U with the response to the CS+U significantly larger than to the CS+E only in the evening (p=.028). Thus, extinction is learned faster and its memory is better generalized in the morning. Cortisol and testosterone showed the expected greater salivary levels in the morning when higher testosterone/cortisol ratio also predicting better extinction learning. Circadian factors may promote morning extinction. Alternatively, evening homeostatic sleep pressure may impede extinction and favor recall of conditioned fear. PMID:23992769

  4. Extinction of conditioned fear is better learned and recalled in the morning than in the evening.

    PubMed

    Pace-Schott, Edward F; Spencer, Rebecca M C; Vijayakumar, Shilpa; Ahmed, Nafis A K; Verga, Patrick W; Orr, Scott P; Pitman, Roger K; Milad, Mohammed R

    2013-11-01

    Sleep helps emotional memories consolidate and may promote generalization of fear extinction memory. We examined whether extinction learning and memory might differ in the morning and evening due, potentially, to circadian and/or sleep-homeostatic factors. Healthy men (N = 109) in 6 groups completed a 2-session protocol. In Session 1, fear conditioning was followed by extinction learning. Partial reinforcement with mild electric shock produced conditioned skin conductance responses (SCRs) to 2 differently colored lamps (CS+), but not a third color (CS-), within the computer image of a room (conditioning context). One CS+ (CS + E) but not the other (CS + U) was immediately extinguished by un-reinforced presentations in a different room (extinction context). Delay durations of 3 h (within AM or PM), 12 h (morning-to-evening or evening-to-morning) or 24 h (morning-to-morning or evening-to-evening) followed. In Session 2, extinction recall and contextual fear renewal were tested. We observed no significant effects of the delay interval on extinction memory but did observe an effect of time-of-day. Fear extinction was significantly better if learned in the morning (p = .002). Collapsing across CS + type, there was smaller morning differential SCR at both extinction recall (p = .003) and fear renewal (p = .005). Morning extinction recall showed better generalization from the CS + E to CS + U with the response to the CS + U significantly larger than to the CS + E only in the evening (p = .028). Thus, extinction is learned faster and its memory is better generalized in the morning. Cortisol and testosterone showed the expected greater salivary levels in the morning when higher testosterone/cortisol ratio also predicted better extinction learning. Circadian factors may promote morning extinction. Alternatively, evening homeostatic sleep pressure may impede extinction and favor recall of conditioned fear. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Differential Dynamics of Amino Acid Release in the Amygdala and Olfactory Cortex during Odor Fear Acquisition as Revealed with Simultaneous High Temporal Resolution Microdialysis

    ERIC Educational Resources Information Center

    Hegoburu, Chloe; Sevelinges, Yannick; Thevenet, Marc; Gervais, Remi; Parrot, Sandrine; Mouly, Anne-Marie

    2009-01-01

    Although the amygdala seems to be essential to the formation and storage of fear memories, it might store only some aspects of the aversive event and facilitate the storage of more specific sensory aspects in cortical areas. We addressed the time course of amygdala and cortical activation in the context of odor fear conditioning in rats. Using…

  6. Lack of renewal effect in extinction of naturally acquired conditioned eyeblink responses, but possible dependency on physical context.

    PubMed

    Claassen, J; Mazilescu, L; Thieme, A; Bracha, V; Timmann, D

    2016-01-01

    Context dependency of extinction is well known and has extensively been studied in fear conditioning, but has rarely been assessed in eyeblink conditioning. One way to demonstrate context dependency of extinction is the renewal effect. ABA paradigms are most commonly used to show the renewal effect of extinguished learned fear: if acquisition takes place in context A, and extinction takes place in context B (extinction phase), learned responses will recover in subsequent extinction trials presented in context A (renewal phase). The renewal effect of the visual threat eyeblink response (VTER), a conditioned eyeblink response, which is naturally acquired in early infancy, was examined in a total of 48 young and healthy participants with two experiments using an ABA paradigm. Twenty paired trials were performed in context A (baseline trials), followed by 50 extinction trials in context B (extinction phase) and 50 extinction trials in context A (renewal phase). In 24 participants, contexts A and B were two different rooms, and in the other 24 participants, two different background colors (orange and blue) and noises were used. To rule out spontaneous recovery, an AAA design was used for comparison. There were significant effects of extinction in both experiments. No significant renewal effects were observed. In experiment 2, however, extinction was significantly less using orange background during extinction compared to the blue background. The present findings suggest that extinction of conditioned eyeblinks depends on the physical context. Findings add to the animal literature that context can play a role in the acquisition of classically conditioned eyeblink responses. Future studies, however, need to be performed to confirm the present findings. Lack of renewal effect may be explained by the highly overlearned character of the VTER.

  7. Appetitive context conditioning proactively, but transiently, interferes with expression of counterconditioned context fear

    PubMed Central

    Holmes, Nathan M.

    2014-01-01

    Four experiments used rats to study appetitive–aversive transfer. Rats trained to eat a palatable food in a distinctive context and shocked in that context ate and did not freeze when tested 1 d later but froze and did not eat when tested 14 d later. These results were associatively mediated (Experiments 1 and 2), observed when rats were or were not food deprived (Experiments 1 and 2), and were not due to latent inhibition (Experiment 3). In contrast, rats trained to eat in the context and shocked there 13 d later froze and did not eat when tested 1 d after the shocked exposure. However, rats that received an additional eating session in the context 1 d before the shocked exposure ate and did not freeze when tested 1 d after the shocked exposure (Experiment 4). The results show that appetitive conditioning transiently interferes with aversive conditioning. They are discussed in terms of a weak context–shock association becoming stronger with the lapse of time (so-called fear incubation) or of the interference by the context–food association becoming weaker with the lapse of time. PMID:25320352

  8. Adult Hippocampal Neurogenesis Modulates Fear Learning through Associative and Nonassociative Mechanisms

    PubMed Central

    Seo, Dong-oh; Carillo, Mary Ann; Chih-Hsiung Lim, Sean; Tanaka, Kenji F.

    2015-01-01

    Adult hippocampal neurogenesis is believed to support hippocampus-dependent learning and emotional regulation. These putative functions of adult neurogenesis have typically been studied in isolation, and little is known about how they interact to produce adaptive behavior. We used trace fear conditioning as a model system to elucidate mechanisms through which adult hippocampal neurogenesis modulates processing of aversive experience. To achieve a specific ablation of neurogenesis, we generated transgenic mice that express herpes simplex virus thymidine kinase specifically in neural progenitors and immature neurons. Intracerebroventricular injection of the prodrug ganciclovir caused a robust suppression of neurogenesis without suppressing gliogenesis. Neurogenesis ablation via this method or targeted x-irradiation caused an increase in context conditioning in trace but not delay fear conditioning. Data suggest that this phenotype represents opposing effects of neurogenesis ablation on associative and nonassociative components of fear learning. Arrest of neurogenesis sensitizes mice to nonassociative effects of fear conditioning, as evidenced by increased anxiety-like behavior in the open field after (but not in the absence of) fear conditioning. In addition, arrest of neurogenesis impairs associative trace conditioning, but this impairment can be masked by nonassociative fear. The results suggest that adult neurogenesis modulates emotional learning via two distinct but opposing mechanisms: it supports associative trace conditioning while also buffering against the generalized fear and anxiety caused by fear conditioning. SIGNIFICANCE STATEMENT The role of adult hippocampal neurogenesis in fear learning is controversial, with some studies suggesting neurogenesis is needed for aspects of fear learning and others suggesting it is dispensable. We generated transgenic mice in which neural progenitors can be selectively and inducibly ablated. Our data suggest that adult neurogenesis supports fear learning through two distinct mechanisms: it supports the ability to learn associations between traumatic events (unconditioned stimuli) and predictors (conditioned stimuli) while also buffering against nonassociative, anxiogenic effects of a traumatic experience. As a result, arrest of neurogenesis can enhance or impair learned fear depending on intensity of the traumatic experience and the extent to which it recruits associative versus nonassociative learning. PMID:26269640

  9. A single footshock causes long-lasting hypoactivity in unknown environments that is dependent on the development of contextual fear conditioning.

    PubMed

    Daviu, Núria; Fuentes, Silvia; Nadal, Roser; Armario, Antonio

    2010-09-01

    Exposure to a single session of footshocks induces long-lasting inhibition of activity in unknown environments that markedly differ from the shock context. Interestingly, these effects are not necessarily associated to an enhanced anxiety and interpretation of this hypoactivity remains unclear. In the present experiment we further studied this phenomenon in male Sprague-Dawley rats. In a first experiment, a session of three shocks resulted in hypoactivity during exposure, 6-12days later, to three different unknown environments. This altered behaviour was not accompanied by a greater hypothalamic-pituitary-adrenal (HPA) activation, although greater HPA activation paralleling higher levels of freezing was observed in the shock context. In a second experiment we used a single shock and two procedures, one with pre-exposure to the context before the shock and another with immediate shock that did not induce contextual fear conditioning. Hypoactivity and a certain level of generalization of fear (freezing) to the unknown environments only appeared in the group that developed fear conditioning, but no evidence for enhanced anxiety in the elevated plus-maze was found in any group. The results suggest that if animals are able to associate an aversive experience with a distinct unknown environment, they would display more cautious behaviour in any unknown environment and such strategy persists despite repeated experience with different environments. This long-lasting cautious behaviour was not associated to greater HPA response to the unknown environment that was however observed in the shock context. The present findings raised some concerns about interpretation of long-lasting behavioural changes caused by brief stressors. Copyright 2010 Elsevier Inc. All rights reserved.

  10. Fear Conditioning is Disrupted by Damage to the Postsubiculum

    PubMed Central

    Robinson, Siobhan; Bucci, David J.

    2011-01-01

    The hippocampus plays a central role in spatial and contextual learning and memory, however relatively little is known about the specific contributions of parahippocampal structures that interface with the hippocampus. The postsubiculum (PoSub) is reciprocally connected with a number of hippocampal, parahippocampal and subcortical structures that are involved in spatial learning and memory. In addition, behavioral data suggest that PoSub is needed for optimal performance during tests of spatial memory. Together, these data suggest that PoSub plays a prominent role in spatial navigation. Currently it is unknown whether the PoSub is needed for other forms of learning and memory that also require the formation of associations among multiple environmental stimuli. To address this gap in the literature we investigated the role of PoSub in Pavlovian fear conditioning. In Experiment 1 male rats received either lesions of PoSub or Sham surgery prior to training in a classical fear conditioning procedure. On the training day a tone was paired with foot shock three times. Conditioned fear to the training context was evaluated 24 hr later by placing rats back into the conditioning chamber without presenting any tones or shocks. Auditory fear was assessed on the third day by presenting the auditory stimulus in a novel environment (no shock). PoSub-lesioned rats exhibited impaired acquisition of the conditioned fear response as well as impaired expression of contextual and auditory fear conditioning. In Experiment 2, PoSub lesions were made 1 day after training to specifically assess the role of PoSub in fear memory. No deficits in the expression of contextual fear were observed, but freezing to the tone was significantly reduced in PoSub-lesioned rats compared to shams. Together, these results indicate that PoSub is necessary for normal acquisition of conditioned fear, and that PoSub contributes to the expression of auditory but not contextual fear memory. PMID:22076971

  11. Acute and chronic effects of selective serotonin reuptake inhibitor treatment on fear conditioning: implications for underlying fear circuits.

    PubMed

    Burghardt, N S; Bauer, E P

    2013-09-05

    Selective serotonin reuptake inhibitors (SSRIs) are widely used for the treatment of a spectrum of anxiety disorders, yet paradoxically they may increase symptoms of anxiety when treatment is first initiated. Despite extensive research over the past 30 years focused on SSRI treatment, the precise mechanisms by which SSRIs exert these opposing acute and chronic effects on anxiety remain unknown. By testing the behavioral effects of SSRI treatment on Pavlovian fear conditioning, a well characterized model of emotional learning, we have the opportunity to identify how SSRIs affect the functioning of specific brain regions, including the amygdala, bed nucleus of the stria terminalis (BNST) and hippocampus. In this review, we first define different stages of learning involved in cued and context fear conditioning and describe the neural circuits underlying these processes. We examine the results of numerous rodent studies investigating how acute SSRI treatment modulates fear learning and relate these effects to the known functions of serotonin in specific brain regions. With these findings, we propose a model by which acute SSRI administration, by altering neural activity in the extended amygdala and hippocampus, enhances both acquisition and expression of cued fear conditioning, but impairs the expression of contextual fear conditioning. Finally, we review the literature examining the effects of chronic SSRI treatment on fear conditioning in rodents and describe how downregulation of N-methyl-d-aspartate (NMDA) receptors in the amygdala and hippocampus may mediate the impairments in fear learning and memory that are reported. While long-term SSRI treatment effectively reduces symptoms of anxiety, their disruptive effects on fear learning should be kept in mind when combining chronic SSRI treatment and learning-based therapies, such as cognitive behavioral therapy. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Nucleus accumbens carbachol disrupts olfactory and contextual fear-potentiated startle and attenuates baseline startle reactivity.

    PubMed

    Cousens, Graham A; Skrobacz, Cheryl G; Blumenthal, Anna

    2011-01-20

    Although the nucleus accumbens (NAc) typically is not considered a primary component of the circuitry underlying either the acquisition or retrieval of conditioned fear, evidence suggests that this region may play some role in modulating fear-related behaviors. The goal of the present study was to explore a potential role for NAc cholinergic receptors in the expression of fear-potentiated startle (FPS) and baseline startle reactivity. Intra-NAc infusion of the broad-acting cholinergic receptor agonist, carbachol, suppressed FPS elicited by re-exposure to both a discrete odor previously paired with footshock and the conditioning context. Although carbachol elevated spontaneous motor activity, activity bouts did not account for startle suppression in carbachol-treated Ss. In addition, intra-NAc carbachol suppressed baseline startle over a range of acoustic pulse intensities in the absence of explicit fear conditioning. Collectively, these findings suggest that NAc cholinergic receptors play a role in the modulation of baseline startle reactivity, rather than in the retrieval of learned fear, and that this role is independent of overt motor activity. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Short-term inhibition of 11β-hydroxysteroid dehydrogenase type 1 reversibly improves spatial memory but persistently impairs contextual fear memory in aged mice

    PubMed Central

    Wheelan, Nicola; Webster, Scott P.; Kenyon, Christopher J.; Caughey, Sarah; Walker, Brian R.; Holmes, Megan C.; Seckl, Jonathan R.; Yau, Joyce L.W.

    2015-01-01

    High glucocorticoid levels induced by stress enhance the memory of fearful events and may contribute to the development of anxiety and posttraumatic stress disorder. In contrast, elevated glucocorticoids associated with ageing impair spatial memory. We have previously shown that pharmacological inhibition of the intracellular glucocorticoid-amplifying enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) improves spatial memory in aged mice. However, it is not known whether inhibition of 11β-HSD1 will have any beneficial effects on contextual fear memories in aged mice. Here, we examined the effects of UE2316, a selective 11β-HSD1 inhibitor which accesses the brain, on both spatial and contextual fear memories in aged mice using a vehicle-controlled crossover study design. Short-term UE2316 treatment improved spatial memory in aged mice, an effect which was reversed when UE2316 was substituted with vehicle. In contrast, contextual fear memory induced by foot-shock conditioning was significantly reduced by UE2316 in a non-reversible manner. When the order of treatment was reversed following extinction of the original fear memory, and a second foot-shock conditioning was given in a novel context, UE2316 treated aged mice (previously on vehicle) now showed increased fear memory compared to vehicle-treated aged mice (previously on UE2316). Renewal of the original extinguished fear memory triggered by exposure to a new environmental context may explain these effects. Thus 11β-HSD1 inhibition reverses spatial memory impairments with ageing while reducing the strength and persistence of new contextual fear memories. Potentially this could help prevent anxiety-related disorders in vulnerable elderly individuals. PMID:25497454

  14. Short-term inhibition of 11β-hydroxysteroid dehydrogenase type 1 reversibly improves spatial memory but persistently impairs contextual fear memory in aged mice.

    PubMed

    Wheelan, Nicola; Webster, Scott P; Kenyon, Christopher J; Caughey, Sarah; Walker, Brian R; Holmes, Megan C; Seckl, Jonathan R; Yau, Joyce L W

    2015-04-01

    High glucocorticoid levels induced by stress enhance the memory of fearful events and may contribute to the development of anxiety and posttraumatic stress disorder. In contrast, elevated glucocorticoids associated with ageing impair spatial memory. We have previously shown that pharmacological inhibition of the intracellular glucocorticoid-amplifying enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) improves spatial memory in aged mice. However, it is not known whether inhibition of 11β-HSD1 will have any beneficial effects on contextual fear memories in aged mice. Here, we examined the effects of UE2316, a selective 11β-HSD1 inhibitor which accesses the brain, on both spatial and contextual fear memories in aged mice using a vehicle-controlled crossover study design. Short-term UE2316 treatment improved spatial memory in aged mice, an effect which was reversed when UE2316 was substituted with vehicle. In contrast, contextual fear memory induced by foot-shock conditioning was significantly reduced by UE2316 in a non-reversible manner. When the order of treatment was reversed following extinction of the original fear memory, and a second foot-shock conditioning was given in a novel context, UE2316 treated aged mice (previously on vehicle) now showed increased fear memory compared to vehicle-treated aged mice (previously on UE2316). Renewal of the original extinguished fear memory triggered by exposure to a new environmental context may explain these effects. Thus 11β-HSD1 inhibition reverses spatial memory impairments with ageing while reducing the strength and persistence of new contextual fear memories. Potentially this could help prevent anxiety-related disorders in vulnerable elderly individuals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research--past, present, and future.

    PubMed

    Rauch, Scott L; Shin, Lisa M; Phelps, Elizabeth A

    2006-08-15

    The prevailing neurocircuitry models of anxiety disorders have been amygdalocentric in form. The bases for such models have progressed from theoretical considerations, extrapolated from research in animals, to in vivo human imaging data. For example, one current model of posttraumatic stress disorder (PTSD) has been highly influenced by knowledge from rodent fear conditioning research. Given the phenomenological parallels between fear conditioning and the pathogenesis of PTSD, we have proposed that PTSD is characterized by exaggerated amygdala responses (subserving exaggerated acquisition of fear associations and expression of fear responses) and deficient frontal cortical function (mediating deficits in extinction and the capacity to suppress attention/response to trauma-related stimuli), as well as deficient hippocampal function (mediating deficits in appreciation of safe contexts and explicit learning/memory). Neuroimaging studies have yielded convergent findings in support of this model. However, to date, neuroimaging investigations of PTSD have not principally employed conditioning and extinction paradigms per se. The recent development of such imaging probes now sets the stage for directly testing hypotheses regarding the neural substrates of fear conditioning and extinction abnormalities in PTSD.

  16. Long-term memory deficits in Pavlovian fear conditioning in Ca2+/calmodulin kinase kinase alpha-deficient mice.

    PubMed

    Blaeser, Frank; Sanders, Matthew J; Truong, Nga; Ko, Shanelle; Wu, Long Jun; Wozniak, David F; Fanselow, Michael S; Zhuo, Min; Chatila, Talal A

    2006-12-01

    Signaling by the Ca(2+)/calmodulin kinase (CaMK) cascade has been implicated in neuronal gene transcription, synaptic plasticity, and long-term memory consolidation. The CaM kinase kinase alpha (CaMKKalpha) isoform is an upstream component of the CaMK cascade whose function in different behavioral and learning and memory paradigms was analyzed by targeted gene disruption in mice. CaMKKalpha mutants exhibited normal long-term spatial memory formation and cued fear conditioning but showed deficits in context fear during both conditioning and long-term follow-up testing. They also exhibited impaired activation of the downstream kinase CaMKIV/Gr and its substrate, the transcription factor cyclic AMP-responsive element binding protein (CREB) upon fear conditioning. Unlike CaMKIV/Gr-deficient mice, the CaMKKalpha mutants exhibited normal long-term potentiation and normal levels of anxiety-like behavior. These results demonstrate a selective role for CaMKKalpha in contextual fear memory and suggest that different combinations of upstream and downstream components of the CaMK cascade may serve distinct physiological functions.

  17. Adolescent and Adult Rats Differ in the Amnesic Effects of Acute Ethanol in Two Hippocampus-Dependent Tasks: Trace and Contextual Fear Conditioning

    PubMed Central

    Hunt, Pamela S.; Barnet, Robert C.

    2015-01-01

    Experience-produced deficits in trace conditioning and context conditioning have been useful tools for examining the role of the hippocampus in learning. It has also been suggested that learning in these tasks is especially vulnerable to neurotoxic effects of alcohol during key developmental periods such as adolescence. In five experiments we systematically examined the presence and source of age-dependent vulnerability to the memory-disrupting effects of acute ethanol in trace conditioning and contextual fear conditioning. In Experiment 1a pre-training ethanol disrupted trace conditioning more strongly in adolescent (postnatal day, PD30-35) than adult rats (PD65-75). In Experiment 1b when pre-training ethanol was accompanied by pre-test ethanol no deficit in trace conditioning was observed in adolescents, suggesting that state-dependent retrieval failure mediated ethanol's disruption of trace conditioning at this age. Experiments 2a and 2b examined the effect of ethanol pretreatment on context conditioning. Here, adult but not adolescent rats were impaired in conditioned freezing to context cues. Experiment 2c explored state-dependency of this effect. Pre-training ethanol continued to disrupt context conditioning in adults even when ethanol was also administered prior to test. Collectively these findings reveal clear age-dependent and task-dependent vulnerabilities in ethanol's disruptive effects on hippocampus-dependent memory. Adolescents were more disrupted by ethanol in trace conditioning than adults, and adults were more disrupted by ethanol in context conditioning than adolescents. We suggest that adolescents may be more susceptible to changes in internal state (state-dependent retrieval failure) than adults and that ethanol disrupted performance in trace and context conditioning through different mechanisms. Relevance of these findings to theories of hippocampus function is discussed. PMID:26192910

  18. Disconnection of the Perirhinal and Postrhinal Cortices Impairs Recognition of Objects in Context But Not Contextual Fear Conditioning

    PubMed Central

    2017-01-01

    The perirhinal cortex (PER) is known to process object information, whereas the rodent postrhinal cortex (POR), homolog to the parahippocampal cortex in primates, is thought to process spatial information. A number of studies, however, provide evidence that both areas are involved in processing contextual information. In this study, we tested the hypothesis that the rat POR relies on object information received from the PER to form complex representations of context. Using three fear-conditioning (FC) paradigms (signaled, unsignaled, and renewal) and two context-guided object recognition tasks (with 3D and 2D objects), we examined the effects of crossed excitotoxic lesions to the POR and the contralateral PER. Performance of rats with crossed lesions was compared with that of rats with ipsilateral POR plus PER lesions and sham-operated rats. We found that rats with contralateral PER–POR lesions were impaired in object–context recognition but not in contextual FC. Therefore, interaction between the POR and PER is necessary for context-guided exploratory behavior but not for associating fear with context. Our results provide evidence for the hypothesis that the POR relies on object and pattern information from the PER to encode representations of context. The association of fear with a context, however, may be supported by alternate cortical and/or subcortical pathways when PER–POR interaction is not available. Our results suggest that contextual FC may represent a special case of context-guided behavior. SIGNIFICANCE STATEMENT Representations of context are important for perception, memory, decision making, and other cognitive processes. Moreover, there is extensive evidence that the use of contextual representations to guide appropriate behavior is disrupted in neuropsychiatric and neurological disorders including developmental disorders, schizophrenia, affective disorders, and Alzheimer's disease. Many of these disorders are accompanied by changes in parahippocampal and hippocampal structures. Understanding how context is represented in the brain and how parahippocampal structures are involved will enhance our understanding and treatment of the cognitive and behavioral symptoms associated with neurological disorders and neuropsychiatric disease. PMID:28411272

  19. Disconnection of the Perirhinal and Postrhinal Cortices Impairs Recognition of Objects in Context But Not Contextual Fear Conditioning.

    PubMed

    Heimer-McGinn, Victoria R; Poeta, Devon L; Aghi, Krishan; Udawatta, Methma; Burwell, Rebecca D

    2017-05-03

    The perirhinal cortex (PER) is known to process object information, whereas the rodent postrhinal cortex (POR), homolog to the parahippocampal cortex in primates, is thought to process spatial information. A number of studies, however, provide evidence that both areas are involved in processing contextual information. In this study, we tested the hypothesis that the rat POR relies on object information received from the PER to form complex representations of context. Using three fear-conditioning (FC) paradigms (signaled, unsignaled, and renewal) and two context-guided object recognition tasks (with 3D and 2D objects), we examined the effects of crossed excitotoxic lesions to the POR and the contralateral PER. Performance of rats with crossed lesions was compared with that of rats with ipsilateral POR plus PER lesions and sham-operated rats. We found that rats with contralateral PER-POR lesions were impaired in object-context recognition but not in contextual FC. Therefore, interaction between the POR and PER is necessary for context-guided exploratory behavior but not for associating fear with context. Our results provide evidence for the hypothesis that the POR relies on object and pattern information from the PER to encode representations of context. The association of fear with a context, however, may be supported by alternate cortical and/or subcortical pathways when PER-POR interaction is not available. Our results suggest that contextual FC may represent a special case of context-guided behavior. SIGNIFICANCE STATEMENT Representations of context are important for perception, memory, decision making, and other cognitive processes. Moreover, there is extensive evidence that the use of contextual representations to guide appropriate behavior is disrupted in neuropsychiatric and neurological disorders including developmental disorders, schizophrenia, affective disorders, and Alzheimer's disease. Many of these disorders are accompanied by changes in parahippocampal and hippocampal structures. Understanding how context is represented in the brain and how parahippocampal structures are involved will enhance our understanding and treatment of the cognitive and behavioral symptoms associated with neurological disorders and neuropsychiatric disease. Copyright © 2017 the authors 0270-6474/17/374819-11$15.00/0.

  20. Context and explicit threat cue modulation of the startle reflex: Preliminary evidence of distinctions between adolescents with principal fear disorders versus distress disorders

    PubMed Central

    Waters, Allison M.; Nazarian, Maria; Mineka, Susan; Zinbarg, Richard E.; Griffith, James W.; Naliboff, Bruce; Ornitz, Edward M.; Craske, Michelle G.

    2014-01-01

    Anxiety and depression are prevalent, impairing disorders. High comorbidity has raised questions about how to define and classify them. Structural models emphasise distinctions between “fear” and “distress” disorders while other initiatives propose they be defined by neurobiological indicators that cut across disorders. This study examined startle reflex (SR) modulation in adolescents with principal fear disorders (specific phobia; social phobia) (n = 20), distress disorders (unipolar depressive disorders, dysthymia, generalized anxiety disorder; post-traumatic stress disorder) (n = 9), and controls (n = 29) during (a) baseline conditions, (b) threat context conditions (presence of contraction pads over the biceps muscle), and (c) an explicit threat cue paradigm involving phases that signalled safety from aversive stimuli (early and late stages of safe phases; early stages of danger phases) and phases that signalled immediate danger of an aversive stimulus (late stages of danger phases). Adolescents with principal fear disorders showed larger SRs than other groups throughout safe phases and early stages of danger phases. SRs did not differ between groups during late danger phases. Adolescents with principal distress disorders showed attenuated SRs during baseline and context conditions compared to other groups. Preliminary findings support initiatives to redefine emotional disorders based on neurobiological functioning. PMID:24679992

  1. Chronic treatment with fluoxetine prevents the return of extinguished auditory-cued conditioned fear.

    PubMed

    Deschaux, Olivier; Spennato, Guillaume; Moreau, Jean-Luc; Garcia, René

    2011-05-01

    We have recently shown that post-extinction exposure of rats to a sub-threshold reminder shock can reactivate extinguished context-related freezing and found that chronic treatment with fluoxetine before fear extinction prevents this phenomenon. In the present study, we examined whether these findings would be confirmed with auditory fear conditioning. Rats were initially submitted to a session of five tone-shock pairings with either a 0.7- or 0.1-mA shock and underwent, 3 days later, a session of 20 tone-alone trials. At the beginning of this latter session, we observed cue-conditioned freezing in rats that received the strong, but not the weak, shock. At the end, both groups (strong and weak shocks) displayed similar low levels of freezing, indicating fear extinction in rats exposed to the strong shock. These rats exhibited again high levels of cue-evoked freezing when exposed to three tone-shock pairings with 0.1-mA shock. This reemergence of cue-conditioned fear was completely abolished by chronic (over a 21-day period) fluoxetine treatment which spared, when administered before the initial fear conditioning, the original tone-shock association. These data extend our previous findings and suggest that chronic fluoxetine treatment favor extinction memory by dampening the reactivation of the original tone-shock association.

  2. Gene networks associated with conditional fear in mice identified using a systems genetics approach

    PubMed Central

    2011-01-01

    Background Our understanding of the genetic basis of learning and memory remains shrouded in mystery. To explore the genetic networks governing the biology of conditional fear, we used a systems genetics approach to analyze a hybrid mouse diversity panel (HMDP) with high mapping resolution. Results A total of 27 behavioral quantitative trait loci were mapped with a false discovery rate of 5%. By integrating fear phenotypes, transcript profiling data from hippocampus and striatum and also genotype information, two gene co-expression networks correlated with context-dependent immobility were identified. We prioritized the key markers and genes in these pathways using intramodular connectivity measures and structural equation modeling. Highly connected genes in the context fear modules included Psmd6, Ube2a and Usp33, suggesting an important role for ubiquitination in learning and memory. In addition, we surveyed the architecture of brain transcript regulation and demonstrated preservation of gene co-expression modules in hippocampus and striatum, while also highlighting important differences. Rps15a, Kif3a, Stard7, 6330503K22RIK, and Plvap were among the individual genes whose transcript abundance were strongly associated with fear phenotypes. Conclusion Application of our multi-faceted mapping strategy permits an increasingly detailed characterization of the genetic networks underlying behavior. PMID:21410935

  3. Consequences of ethanol exposure on cued and contextual fear conditioning and extinction in adulthood differ depending on timing of exposure

    PubMed Central

    Broadwater, Margaret; Spear, Linda P.

    2013-01-01

    Some evidence suggests that adolescents are more sensitive than adults to ethanol-induced cognitive deficits and that these effects may be long-lasting. The purpose of Exp 1 was to determine if early-mid adolescent [Postnatal day (P) 28-48] intermittent ethanol exposure would affect later learning and memory in a Pavlovian fear conditioning paradigm differently than comparable exposures in adulthood (P70-90). In Exp 2 animals were exposed to ethanol during mid-late adolescence (P35-55) to assess whether age of initiation within the adolescent period would influence learning and memory differentially. Male Sprague-Dawley rats were given 4 g/kg i.g. ethanol (25%) or water every 48 hours for a total of 11 exposures. After a 22 day non-ethanol period, animals were fear conditioned to a context (relatively hippocampal-dependent task) or tone (amygdala-dependent task), followed by retention tests and extinction (mPFC-dependent) of this conditioning. Despite similar acquisition, a deficit in context fear retention was evident in animals exposed to ethanol in early adolescence, an effect not observed after a comparable ethanol exposure in mid-late adolescence or adulthood. In contrast, animals that were exposed to ethanol in mid-late adolescence or adulthood showed enhanced resistance to context extinction. Together these findings suggest that repeated ethanol imparts long-lasting consequences on learning and memory, with outcomes that differ depending on age of exposure. These results may reflect differential influence of ethanol on the brain as it changes throughout ontogeny and may have implications for alcohol use not only throughout the developmental period of adolescence, but also in adulthood. PMID:23938333

  4. Prior exposure to a single stress session facilitates subsequent contextual fear conditioning in rats. Evidence for a role of corticosterone.

    PubMed

    Cordero, M Isabel; Venero, Cesar; Kruyt, Nyika D; Sandi, Carmen

    2003-11-01

    Previous studies showed that exposure of rats to chronic restraint stress for 21 days enhances subsequent contextual fear conditioning. Since recent evidence suggest that this effect is not dependent on stress-induced neurodegenerative processes, but to elevated training-elicited glucocorticoid release in chronically stressed animals, we aimed to explore here whether a single exposure to restraint stress, which is not expected to induce neuronal damage, would also affect contextual fear conditioning. We also questioned whether post-training corticosterone levels might be associated with any potential effect of stress on fear conditioning. Adult male Wistar rats were exposed to acute restraint stress for 2 h and, two days later, trained in the contextual fear conditioning task, under training conditions involving either moderate (0.4 mA shock) or high (1 mA shock) stress levels. The results showed that acute stress enhanced conditioned freezing at both training conditions, although data from the 1 mA shock intensity experiment only approached significance. Stressed animals were shown to display higher post-training corticosterone levels. Furthermore, the facilitating effect of prior stress was not evident when animals were trained in the hippocampal-independent auditory-cued conditioning task. Therefore, these findings support the idea that stress experiences preceding exposure to new types of stressors facilitate the development of contextual fear conditioning. They also indicate that not only repeated, but also a single exposure to aversive stimulation is sufficient to facilitate context-dependent fear conditioning, and suggest that increased glucocorticoid release at training might be implicated in the mechanisms mediating the memory facilitating effects induced by prior stress experiences.

  5. Differential expression of the immediate early genes c-Fos, Arc, Egr-1, and Npas4 during long-term memory formation in the context preexposure facilitation effect (CPFE).

    PubMed

    Heroux, Nicholas A; Osborne, Brittany F; Miller, Lauren A; Kawan, Malak; Buban, Katelyn N; Rosen, Jeffrey B; Stanton, Mark E

    2018-01-01

    The context preexposure facilitation effect (CPFE) is a contextual fear conditioning paradigm in which learning about the context, acquiring the context-shock association, and retrieving/expressing contextual fear are temporally dissociated into three distinct phases (context preexposure, immediate-shock training, and retention). The current study examined changes in the expression of plasticity-associated immediate early genes (IEGs) during context and contextual fear memory formation on the preexposure and training days of the CPFE, respectively. Using adolescent Long-Evans rats, preexposure and training day expression of the IEGs c-Fos, Arc, Egr-1, and Npas4 in the medial prefrontal cortex (mPFC), dorsal hippocampus (dHPC), and basolateral amygdala (BLA) was analyzed using qPCR as an extension of previous studies from our lab examining Egr-1 via in situ hybridization (Asok, Schreiber, Jablonski, Rosen, & Stanton, 2013; Schreiber, Asok, Jablonski, Rosen, & Stanton, 2014). In Expt. 1, context preexposure induced expression of c-Fos, Arc, Egr-1 and Npas4 significantly above that of home-cage (HC) controls in all three regions. In Expt. 2, immediate-shock was followed by a post-shock freezing test, resulting in increased mPFC c-Fos expression in a group preexposed to the training context but not a control group preexposed to an alternate context, indicating expression related to associative learning. This was not seen with other IEGs in mPFC or with any IEG in dHPC or BLA. Finally, when the post-shock freezing test was omitted in Expt. 3, training-related increases were observed in prefrontal c-Fos, Arc, Egr-1, and Npas4, hippocampal c-Fos, and amygdalar Egr-1 expression. These results indicate that context exposure in a post-shock freezing test re-engages IEG expression that may obscure associatively-induced expression during contextual fear conditioning. Additionally, these studies suggest a key role for long-term synaptic plasticity in the mPFC in supporting the CPFE. Copyright © 2017. Published by Elsevier Inc.

  6. Systems Reconsolidation Reveals a Selective Role for the Anterior Cingulate Cortex in Generalized Contextual Fear Memory Expression

    PubMed Central

    Einarsson, Einar Ö; Pors, Jennifer; Nader, Karim

    2015-01-01

    After acquisition, hippocampus-dependent memories undergo a systems consolidation process, during which they become independent of the hippocampus and dependent on the anterior cingulate cortex (ACC) for memory expression. However, consolidated remote memories can become transiently hippocampus-dependent again following memory reactivation. How this systems reconsolidation affects the role of the ACC in remote memory expression is not known. Using contextual fear conditioning, we show that the expression of 30-day-old remote memory can transiently be supported by either the ACC or the dorsal hippocampus following memory reactivation, and that the ACC specifically mediates expression of remote generalized contextual fear memory. We found that suppression of neural activity in the ACC with the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) impaired the expression of remote, but not recent, contextual fear memory. Fear expression was not affected by this treatment if preceded by memory reactivation 6 h earlier, nor was it affected by suppression of neural activity in the dorsal hippocampus with the GABA-receptor agonist muscimol. However, simultaneous targeting of both the ACC and the dorsal hippocampus 6 h after memory reactivation disrupted contextual fear memory expression. Second, we observed that expression of a 30-day-old generalized contextual fear memory in a novel context was not affected by memory reactivation 6 h earlier. However, intra-ACC CNQX infusion before testing impaired contextual fear expression in the novel context, but not the original training context. Together, these data suggest that although the dorsal hippocampus may be recruited during systems reconsolidation, the ACC remains necessary for the expression of generalized contextual fear memory. PMID:25091528

  7. Systems reconsolidation reveals a selective role for the anterior cingulate cortex in generalized contextual fear memory expression.

    PubMed

    Einarsson, Einar Ö; Pors, Jennifer; Nader, Karim

    2015-01-01

    After acquisition, hippocampus-dependent memories undergo a systems consolidation process, during which they become independent of the hippocampus and dependent on the anterior cingulate cortex (ACC) for memory expression. However, consolidated remote memories can become transiently hippocampus-dependent again following memory reactivation. How this systems reconsolidation affects the role of the ACC in remote memory expression is not known. Using contextual fear conditioning, we show that the expression of 30-day-old remote memory can transiently be supported by either the ACC or the dorsal hippocampus following memory reactivation, and that the ACC specifically mediates expression of remote generalized contextual fear memory. We found that suppression of neural activity in the ACC with the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) impaired the expression of remote, but not recent, contextual fear memory. Fear expression was not affected by this treatment if preceded by memory reactivation 6 h earlier, nor was it affected by suppression of neural activity in the dorsal hippocampus with the GABA-receptor agonist muscimol. However, simultaneous targeting of both the ACC and the dorsal hippocampus 6 h after memory reactivation disrupted contextual fear memory expression. Second, we observed that expression of a 30-day-old generalized contextual fear memory in a novel context was not affected by memory reactivation 6 h earlier. However, intra-ACC CNQX infusion before testing impaired contextual fear expression in the novel context, but not the original training context. Together, these data suggest that although the dorsal hippocampus may be recruited during systems reconsolidation, the ACC remains necessary for the expression of generalized contextual fear memory.

  8. Adolescent nicotine exposure disrupts context conditioning in adulthood in rats.

    PubMed

    Spaeth, Andrea M; Barnet, Robert C; Hunt, Pamela S; Burk, Joshua A

    2010-10-01

    Despite the prevalence of smoking among adolescents, few studies have assessed the effects of adolescent nicotine exposure on learning in adulthood. In particular, it remains unclear whether adolescent nicotine exposure has effects on hippocampus-dependent learning that persist into adulthood. The present experiment examined whether there were effects of adolescent nicotine exposure on context conditioning, a form of learning dependent on the integrity of the hippocampus, when tested during adulthood. Rats were exposed to nicotine during adolescence (postnatal days [PD] 28-42) via osmotic minipump (0, 3.0 or 6.0mg/kg/day). Context conditioning occurred in early adulthood (PD 65-70). Animals were exposed to an experimental context and were given 10 unsignaled footshocks or no shock. Additional groups were included to test the effects of adolescent nicotine on delay conditioning, a form of learning that is not dependent upon the hippocampus. Conditioning was assessed using a lick suppression paradigm. For animals in the context conditioning groups, adolescent nicotine resulted in significantly less suppression of drinking in the presence of context cues compared with vehicle-pretreated animals. For animals in the delay conditioning groups, there was a trend for adolescent nicotine (3.0mg/kg/day) to suppress drinking compared to vehicle-pretreated animals. There were no differences in extinction of contextual fear or cued fear between rats previously exposed to vehicle or nicotine. The data indicate that adolescent nicotine administration impairs context conditioning when animals are trained and tested as adults. The present data suggest that adolescent nicotine exposure may disrupt hippocampus-dependent learning when animals are tested during adulthood. (c) 2010 Elsevier Inc. All rights reserved.

  9. Inhibition of Vicariously Learned Fear in Children Using Positive Modeling and Prior Exposure

    PubMed Central

    2015-01-01

    One of the challenges to conditioning models of fear acquisition is to explain how different individuals can experience similar learning events and only some of them subsequently develop fear. Understanding factors moderating the impact of learning events on fear acquisition is key to understanding the etiology and prevention of fear in childhood. This study investigates these moderators in the context of vicarious (observational) learning. Two experiments tested predictions that the acquisition or inhibition of fear via vicarious learning is driven by associative learning mechanisms similar to direct conditioning. In Experiment 1, 3 groups of children aged 7 to 9 years received 1 of 3 inhibitive information interventions—psychoeducation, factual information, or no information (control)—prior to taking part in a vicarious fear learning procedure. In Experiment 2, 3 groups of children aged 7 to 10 years received 1 of 3 observational learning interventions—positive modeling (immunization), observational familiarity (latent inhibition), or no prevention (control)—before vicarious fear learning. Results indicated that observationally delivered manipulations inhibited vicarious fear learning, while preventions presented via written information did not. These findings confirm that vicarious learning shares some of the characteristics of direct conditioning and can explain why not all individuals will develop fear following a vicarious learning event. They also suggest that the modality of inhibitive learning is important and should match the fear learning pathway for increased chances of inhibition. Finally, the results demonstrate that positive modeling is likely to be a particularly effective method for preventing fear-related observational learning in children. PMID:26653136

  10. Inhibition of vicariously learned fear in children using positive modeling and prior exposure.

    PubMed

    Askew, Chris; Reynolds, Gemma; Fielding-Smith, Sarah; Field, Andy P

    2016-02-01

    One of the challenges to conditioning models of fear acquisition is to explain how different individuals can experience similar learning events and only some of them subsequently develop fear. Understanding factors moderating the impact of learning events on fear acquisition is key to understanding the etiology and prevention of fear in childhood. This study investigates these moderators in the context of vicarious (observational) learning. Two experiments tested predictions that the acquisition or inhibition of fear via vicarious learning is driven by associative learning mechanisms similar to direct conditioning. In Experiment 1, 3 groups of children aged 7 to 9 years received 1 of 3 inhibitive information interventions-psychoeducation, factual information, or no information (control)-prior to taking part in a vicarious fear learning procedure. In Experiment 2, 3 groups of children aged 7 to 10 years received 1 of 3 observational learning interventions-positive modeling (immunization), observational familiarity (latent inhibition), or no prevention (control)-before vicarious fear learning. Results indicated that observationally delivered manipulations inhibited vicarious fear learning, while preventions presented via written information did not. These findings confirm that vicarious learning shares some of the characteristics of direct conditioning and can explain why not all individuals will develop fear following a vicarious learning event. They also suggest that the modality of inhibitive learning is important and should match the fear learning pathway for increased chances of inhibition. Finally, the results demonstrate that positive modeling is likely to be a particularly effective method for preventing fear-related observational learning in children. (c) 2016 APA, all rights reserved).

  11. Appetitive Context Conditioning Proactively, but Transiently, Interferes with Expression of Counterconditioned Context Fear

    ERIC Educational Resources Information Center

    Holmes, Nathan M.; Westbrook, R. Frederick

    2014-01-01

    Four experiments used rats to study appetitive-aversive transfer. Rats trained to eat a palatable food in a distinctive context and shocked in that context ate and did not freeze when tested 1 d later but froze and did not eat when tested 14 d later. These results were associatively mediated (Experiments 1 and 2), observed when rats were or were…

  12. Allopregnanolone induces state-dependent fear via the bed nucleus of the stria terminalis

    PubMed Central

    Acca, Gillian M.; Mathew, Abel S.; Jin, Jingji; Maren, Stephen; Nagaya, Naomi

    2017-01-01

    Gonadal steroids and their metabolites have been shown to be important modulators of emotional behavior. Allopregnanolone (ALLO), for example, is a metabolite of progesterone that has been linked to anxiety-related disorders such as posttraumatic stress disorder. In rodents, it has been shown to reduce anxiety in a number of behavioral paradigms including Pavlovian fear conditioning. We have recently found that expression of conditioned contextual (but not auditory) freezing in rats can be suppressed by infusion of ALLO into the bed nucleus of the stria terminalis (BNST). To further explore the nature of this effect, we infused ALLO into the BNST of male rats prior to both conditioning and testing. We found that suppression of contextual fear occurred when the hormone was present during either conditioning or testing but not during both procedures, suggesting that ALLO acts in a state-dependent manner within the BNST. A shift in interoceptive context during testing for animals conditioned under ALLO provided further support for this mechanism of hormonal action on contextual fear. Interestingly, infusions of ALLO into the basolateral amygdala produced a state-independent suppression of both conditioned contextual and auditory freezing. Altogether, these results suggest that ALLO can influence the acquisition and expression of fear memories by both state-dependent and state-independent mechanisms. PMID:28104355

  13. Stirring images: fear, not happiness or arousal, makes art more sublime.

    PubMed

    Eskine, Kendall J; Kacinik, Natalie A; Prinz, Jesse J

    2012-10-01

    Which emotions underlie our positive experiences of art? Although recent evidence from neuroscience suggests that emotions play a critical role in art perception, no research to date has explored the extent to which specific emotional states affect aesthetic experiences or whether general physiological arousal is sufficient. Participants were assigned to one of five conditions-sitting normally, engaging in 15 or 30 jumping jacks, or viewing a happy or scary video-prior to rating abstract works of art. Only the fear condition resulted in significantly more positive judgments about the art. These striking findings provide the first evidence that fear uniquely inspires positively valenced aesthetic judgments. The results are discussed in the context of embodied cognition.

  14. Modulation of cannabinoid signaling by amygdala α2-adrenergic system in fear conditioning.

    PubMed

    Nasehi, Mohammad; Zamanparvar, Majid; Ebrahimi-Ghiri, Mohaddeseh; Zarrindast, Mohammad-Reza

    2016-03-01

    The noradrenergic system plays a critical role in the modulation of emotional state, primarily related to anxiety, arousal, and stress. Growing evidence suggests that the endocannabinoid system mediates stress responses and emotional homeostasis, in part, by targeting noradrenergic circuits. In addition, there is an interaction between the cannabinoid and noradrenergic system that has significant functional and behavioral implications. Considering the importance of these systems in forming memories for fearful events, we have investigated the involvement of basolateral amygdala (BLA) α2-adrenoceptors on ACPA (as selective cannabinoid CB1 agonist)-induced inhibition of the acquisition of contextual and auditory conditioned fear. A contextual and auditory fear conditioning apparatus for assess fear memory in adult male NMRI mice was used. Pre-training, intraperitoneal administration of ACPA decreased the percentage freezing time in contextual (at doses of 0.05 and 0.1mg/kg) and auditory (at dose of 0.1 mg/kg) in the fear conditioning task, indicating memory acquisition deficit. The same result was observed with intra-BLA microinjection of clonidine (0.001-0.5 μg/mouse, for both memories), as α2-adrenoceptor agonist and yohimbine (at doses of 0.005 and 0.05 for contextual and at dose of 0.05 μg/mouse for auditory fear memory), as α2-adrenoceptor antagonist. In addition, intra-BLA microinjection of clonidine (0.0005 μg/mouse) did not alter ACPA response in both conditions, while the same dose of yohimbine potentiated ACPA response at the lower dose on contextual fear memory. It is concluded that BLA α2-adrenergic receptors may be involved in context- but not tone-dependent fear memory impairment induced by activation of CB1 receptors. Copyright © 2015. Published by Elsevier B.V.

  15. Novelty and fear conditioning induced gene expression in high and low states of anxiety.

    PubMed

    Donley, Melanie P; Rosen, Jeffrey B

    2017-09-01

    Emotional states influence how stimuli are interpreted. High anxiety states in humans lead to more negative, threatening interpretations of novel information, typically accompanied by activation of the amygdala. We developed a handling protocol that induces long-lasting high and low anxiety-like states in rats to explore the role of state anxiety on brain activation during exposure to a novel environment and fear conditioning. In situ hybridization of the inducible transcription factor Egr-1 found increased gene expression in the lateral nucleus of the amygdala (LA) following exposure to a novel environment and contextual fear conditioning in high anxiety-like rats. In contrast, low state anxiety-like rats did not generate Egr-1 increases in LA when placed in a novel chamber. Egr-1 expression was also examined in the dorsal hippocampus and prefrontal cortex. In CA1 of the hippocampus and medial prefrontal cortex (mPFC), Egr-1 expression increased in response to novel context exposure and fear conditioning, independent of state anxiety level. Furthermore, in mPFC, Egr-1 in low anxiety-like rats was increased more with fear conditioning than novel exposure. The current series of experiments show that brain areas involved in fear and anxiety-like states do not respond uniformly to novelty during high and low states of anxiety. © 2017 Donley and Rosen; Published by Cold Spring Harbor Laboratory Press.

  16. No fear, no panic: probing negation as a means for emotion regulation

    PubMed Central

    Deutsch, Roland; Platte, Petra; Pauli, Paul

    2013-01-01

    This electroencephalographic study investigated if negating one’s emotion results in paradoxical effects or leads to effective emotional downregulation. Healthy participants were asked to downregulate their emotions to happy and fearful faces by using negated emotional cue words (e.g. no fun, no fear). Cue words were congruent with the emotion depicted in the face and presented prior to each face. Stimuli were presented in blocks of happy and fearful faces. Blocks of passive stimulus viewing served as control condition. Active regulation reduced amplitudes of early event-related brain potentials (early posterior negativity, but not N170) and the late positive potential for fearful faces. A fronto-central negativity peaking at about 250 ms after target face onset showed larger amplitude modulations during downregulation of fearful and happy faces. Behaviorally, negating was more associated with reappraisal than with suppression. Our results suggest that in an emotional context, negation processing could be quite effective for emotional downregulation but that its effects depend on the type of the negated emotion (pleasant vs unpleasant). Results are discussed in the context of dual process models of cognition and emotion regulation. PMID:22490924

  17. False context fear memory in rats.

    PubMed

    Bae, Sarah E; Holmes, Nathan M; Westbrook, R Frederick

    2015-10-01

    Four experiments used rats to study false context fear memories. In Experiment 1, rats were pre-exposed to a distinctive chamber (context A) or to a control environment (context C), shocked after a delay in a second chamber (context B) and tested either in B or A. Rats pre-exposed to A froze just as much as control rats in B but more than control rats in A. In Experiment 2, rats were pre-exposed to A or C, subjected to an immediate shock in B and tested in B or A. Rats pre-exposed to A froze when tested in A but did not freeze when tested in B and control rats did not freeze in either A or B. The false fear memory to the pre-exposed A was contingent on its similarity with the shocked B. In Experiment 3, rats pre-exposed to A and subjected to immediate shock in B froze when tested in A but did not freeze when tested in C and rats pre-exposed to C did not freeze when tested either in A or C. In Experiment 4, rats pre-exposed to A and subjected to immediate shock in B froze more when tested in A than rats whose pre-exposure to A began with an immediate shock. The results were discussed in terms of a dual systems explanation of context fear conditioning: a hippocampal-dependent process that forms a unitary representation of context and an amygdala-based process which associates this representation with shock. © 2015 Bae et al.; Published by Cold Spring Harbor Laboratory Press.

  18. Synaptic plasticity associated with a memory engram in the basolateral amygdala.

    PubMed

    Nonaka, Ayako; Toyoda, Takeshi; Miura, Yuki; Hitora-Imamura, Natsuko; Naka, Masamitsu; Eguchi, Megumi; Yamaguchi, Shun; Ikegaya, Yuji; Matsuki, Norio; Nomura, Hiroshi

    2014-07-09

    Synaptic plasticity is a cellular mechanism putatively underlying learning and memory. However, it is unclear whether learning induces synaptic modification globally or only in a subset of neurons in associated brain regions. In this study, we genetically identified neurons activated during contextual fear learning and separately recorded synaptic efficacy from recruited and nonrecruited neurons in the mouse basolateral amygdala (BLA). We found that the fear learning induces presynaptic potentiation, which was reflected by an increase in the miniature EPSC frequency and by a decrease in the paired-pulse ratio. Changes occurred only in the cortical synapses targeting the BLA neurons that were recruited into the fear memory trace. Furthermore, we found that fear learning reorganizes the neuronal ensemble responsive to the conditioning context in conjunction with the synaptic plasticity. In particular, the neuronal activity during learning was associated with the neuronal recruitment into the context-responsive ensemble. These findings suggest that synaptic plasticity in a subset of BLA neurons contributes to fear memory expression through ensemble reorganization. Copyright © 2014 the authors 0270-6474/14/349305-05$15.00/0.

  19. Social buffering enhances extinction of conditioned fear responses in male rats.

    PubMed

    Mikami, Kaori; Kiyokawa, Yasushi; Takeuchi, Yukari; Mori, Yuji

    2016-09-01

    In social species, the phenomenon in which the presence of conspecific animals mitigates stress responses is called social buffering. We previously reported that social buffering in male rats ameliorated behavioral fear responses, as well as hypothalamic-pituitary-adrenal axis activation, elicited by an auditory conditioned stimulus (CS). However, after social buffering, it is not clear whether rats exhibit fear responses when they are re-exposed to the same CS in the absence of another rat. In the present study, we addressed this issue using an experimental model of extinction. High stress levels during extinction training impaired extinction, suggesting that extinction is enhanced when stress levels during extinction training are low. Therefore, we hypothesized that rats that had received social buffering during extinction training would not show fear responses to a CS, even in the absence of another rat, because social buffering had enhanced the extinction of conditioned fear responses. To test this, we subjected male fear-conditioned rats to extinction training either alone or with a non-conditioned male rat. The subjects were then individually re-exposed to the CS in a recall test. When the subjects individually underwent extinction training, no responses were suppressed in the recall test. Conversely, when the subjects received social buffering during extinction training, freezing and Fos expression in the paraventricular nucleus of the hypothalamus and lateral amygdala were suppressed. Additionally, the effects of social buffering were absent when the recall test was conducted in a different context from the extinction training. The present results suggest that social buffering enhances extinction of conditioned fear responses. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Differential modulation of changes in hippocampal-septal synaptic excitability by the amygdala as a function of either elemental or contextual fear conditioning in mice.

    PubMed

    Desmedt, A; Garcia, R; Jaffard, R

    1998-01-01

    Recent data obtained using a classic fear conditioning paradigm showed a dissociation between the retention of associations relative to contextual information (dependent on the hippocampal formation) and the retention of elemental associations (dependent on the amygdala). Furthermore, it was reported that conditioned emotional responses (CERs) could be dissociated from the recollection of the learning experience (declarative memory) in humans and from modifications of the hippocampal-septal excitability in animals. Our aim was to determine whether these two systems ("behavioral expression" system and "factual memory" system) interact by examining the consequences of amygdalar lesions (1) on the modifications of hippocampal-septal excitability and (2) on the behavioral expression of fear (freezing) resulting from an aversive conditioning during reexposure to conditional stimuli (CSs). During conditioning, to modulate the predictive nature of the context and of a discrete stimulus (tone) on the unconditional stimulus (US) occurrence, the phasic discrete CS was paired with the US or randomly distributed with regard to the US. After the lesion, the CER was dramatically reduced during reexposure to the CSs, whatever the type of acquisition. However, the changes in hippocampal-septal excitability persisted but were altered. For controls, a decrease in septal excitability was observed during reexposure to the conditioning context only for the "unpaired group" (predictive context case). Conversely, among lesioned subjects this decrease was observed in the "paired group" (predictive discrete CS case), whereas this decrease was significantly reduced in the unpaired group with respect to the matched control group. The amplitude and the direction of these modifications suggest a differential modulation of hippocampal-septal excitability by the amygdala to amplify the contribution of the more predictive association signaling the occurrence of the aversive event.

  1. Design of a Neurally Plausible Model of Fear Learning

    PubMed Central

    Krasne, Franklin B.; Fanselow, Michael S.; Zelikowsky, Moriel

    2011-01-01

    A neurally oriented conceptual and computational model of fear conditioning manifested by freezing behavior (FRAT), which accounts for many aspects of delay and context conditioning, has been constructed. Conditioning and extinction are the result of neuromodulation-controlled LTP at synapses of thalamic, cortical, and hippocampal afferents on principal cells and inhibitory interneurons of lateral and basal amygdala. The phenomena accounted for by the model (and simulated by the computational version) include conditioning, secondary reinforcement, blocking, the immediate shock deficit, extinction, renewal, and a range of empirically valid effects of pre- and post-training ablation or inactivation of hippocampus or amygdala nuclei. PMID:21845175

  2. Midazolam treatment before re-exposure to contextual fear reduces freezing behavior and amygdala activity differentially in high- and low-anxiety rats.

    PubMed

    Skórzewska, Anna; Lehner, Małgorzata; Wisłowska-Stanek, Aleksandra; Turzyńska, Danuta; Sobolewska, Alicja; Krząścik, Paweł; Płaźnik, Adam

    2015-02-01

    The aim of this study was to examine the effects of benzodiazepine (midazolam) administration on rat conditioned fear responses and on local brain activity (c-Fos and CRF expressions) of low- (LR) and high- (HR)anxiety rats after the first and second contextual fear test sessions. The animals were divided into LR and HR groups based on the duration of their conditioned freezing response in the first contextual fear test. The fear-re-conditioned LR and HR animals (28 days later) had increased freezing durations compared with those durations during the first conditioned fear test. These behavioral effects were accompanied by increased c-Fos expression in the medial amygdala (MeA), the basolateral amygdala (BLA), and the paraventricular hypothalamic nuclei and elevated CRF expression in the MeA. All these behavioral and immunochemical effects of fear re-conditioning were stronger in the LR group compared with the effects in the HR group. Moreover, in the LR rats, the re-conditioning led to decreased CRF expression in the primary motor cortex (M1) and to increased CRF expression in the BLA. The pretreatment of rats with midazolam before the second exposure to the aversive context significantly attenuated the conditioned fear response, lowered the serum corticosterone concentration, decreased c-Fos and CRF expressions in the MeA and in the BLA, and increased CRF complex density in M1 area only in the LR group. These studies have demonstrated that LR rats are more sensitive to re-exposure to fear stimuli and that midazolam pretreatment was associated with modified brain activity in the amygdala and in the prefrontal cortex in this group of animals. The current data may facilitate a better understanding of the neurobiological mechanisms responsible for individual differences in the psychopathological processes accompanying some anxiety disorders characterized by stronger reactivity to re-exposure to stressful challenges, e.g., posttraumatic stress disorder. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Social transmission of Pavlovian fear: fear-conditioning by-proxy in related female rats.

    PubMed

    Jones, Carolyn E; Riha, Penny D; Gore, Andrea C; Monfils, Marie-H

    2014-05-01

    Pairing a previously neutral conditioned stimulus (CS; e.g., a tone) to an aversive unconditioned stimulus (US; e.g., a foot-shock) leads to associative learning such that the tone alone will elicit a conditioned response (e.g., freezing). Individuals can also acquire fear from a social context, such as through observing the fear expression of a conspecific. In the current study, we examined the influence of kinship/familiarity on social transmission of fear in female rats. Rats were housed in triads with either sisters or non-related females. One rat from each cage was fear conditioned to a tone CS+ shock US. On day two, the conditioned rat was returned to the chamber accompanied by one of her cage mates. Both rats were allowed to behave freely, while the tone was played in the absence of the foot-shock. The previously untrained rat is referred to as the fear-conditioned by-proxy (FCbP) animal, as she would freeze based on observations of her cage-mate's response rather than due to direct personal experience with the foot-shock. The third rat served as a cage-mate control. The third day, long-term memory tests to the CS were performed. Consistent with our previous application of this paradigm in male rats (Bruchey et al. in Behav Brain Res 214(1):80-84, 2010), our results revealed that social interactions between the fear conditioned and FCbP rats on day two contribute to freezing displayed by the FCbP rats on day three. In this experiment, prosocial behavior occurring at the termination of the cue on day two was significantly greater between sisters than their non-sister counterparts, and this behavior resulted in increased freezing on day three. Our results suggest that familiarity and/or kinship influences the social transmission of fear in female rats.

  4. The Extinction and Return of Fear of Public Speaking.

    PubMed

    Laborda, Mario A; Schofield, Casey A; Johnson, Emily M; Schubert, Jessica R; George-Denn, Daniel; Coles, Meredith E; Miller, Ralph R

    2016-11-01

    Prior studies indicate extinguished fear often partially returns when participants are later tested outside the extinction context. Cues carried from the extinction context to the test context sometimes reduce return of fear, but it is unclear whether such extinction cues (ECs) reduce return of fear of public speaking. Here we assessed return of fear of public speaking, and whether either of two types of ECs can attenuate it. Participants gave speeches of increasing difficulty during an exposure practice session and were tested 2 days later in a different context. Testing occurred in the presence of physical ECs, after mentally rehearsing the exposure session, or without either reminder. Practice reduced fear of public speaking, but fear partially returned at test. Neither physical nor mental ECs reduced partial return of fear of public speaking. The return of extinguished fear of public speaking, although small, was reliable, but not appreciably sensitive to presence of ECs. © The Author(s) 2016.

  5. COCAINE AND PAVLOVIAN FEAR CONDITIONING: DOSE-EFFECT ANALYSIS

    PubMed Central

    Wood, Suzanne C.; Fay, Jonathon; Sage, Jennifer R.; Anagnostaras, Stephan G.

    2007-01-01

    Emerging evidence suggests that cocaine and other drugs of abuse can interfere with many aspects of cognitive functioning. The authors examined the effects of 0.1 – 15 mg/kg of cocaine on Pavlovian contextual and cued fear conditioning in mice. As expected, pre-training cocaine dose-dependently produced hyperactivity and disrupted freezing. Surprisingly, when the mice were tested off-drug later, the group pre-treated with a moderate dose of cocaine (15 mg/kg) displayed significantly less contextual and cued memory, compared to saline control animals. Conversely, mice pre-treated with a very low dose of cocaine (0.1 mg/kg) showed significantly enhanced fear memory for both context and tone, compared to controls. These results were not due to cocaine’s anesthetic effects, as shock reactivity was unaffected by cocaine. The data suggest that despite cocaine’s reputation as a performance-enhancing and anxiogenic drug, this effect is seen only at very low doses, whereas a moderate dose disrupts hippocampus and amygdala-dependent fear conditioning. PMID:17098299

  6. Cocaine and Pavlovian fear conditioning: dose-effect analysis.

    PubMed

    Wood, Suzanne C; Fay, Jonathan; Sage, Jennifer R; Anagnostaras, Stephan G

    2007-01-25

    Emerging evidence suggests that cocaine and other drugs of abuse can interfere with many aspects of cognitive functioning. The authors examined the effects of 0.1-15mg/kg of cocaine on Pavlovian contextual and cued fear conditioning in mice. As expected, pre-training cocaine dose-dependently produced hyperactivity and disrupted freezing. Surprisingly, when the mice were tested off-drug later, the group pre-treated with a moderate dose of cocaine (15mg/kg) displayed significantly less contextual and cued memory, compared to saline control animals. Conversely, mice pre-treated with a very low dose of cocaine (0.1mg/kg) showed significantly enhanced fear memory for both context and tone, compared to controls. These results were not due to cocaine's anesthetic effects, as shock reactivity was unaffected by cocaine. The data suggest that despite cocaine's reputation as a performance-enhancing and anxiogenic drug, this effect is seen only at very low doses, whereas a moderate dose disrupts hippocampus and amygdala-dependent fear conditioning.

  7. Impact and characteristics of positive and fearful emotional messages during infant social referencing.

    PubMed

    Kim, Geunyoung; Walden, Tedra A; Knieps, Linda J

    2010-04-01

    Studies of infant social referencing have indicated that infants might be more influenced by vocal information contained in emotional messages than by facial expression, especially during fearful message conditions. The present study investigated the characteristics of emotional channels that parents used during social referencing, and corresponding infants' behavioral changes. Results of Study 1 indicated that parents used more vocal information during positive message conditions. Unlike previous findings, infants' behavioral change was related to the frequency of vocal information during positive condition. For fearful messages, infants were more influenced by the number of multi-modal channels used and the frequency of visual information. Study 2 further showed that the intensity of vocal tone was related to infant regulation only during positive message conditions. The results imply that understanding of social context is important to make sense of parent-infant's emotional interaction. Copyright 2010 Elsevier Inc. All rights reserved.

  8. An experimental demonstration that fear, but not disgust, is associated with return of fear in phobias.

    PubMed

    Edwards, Sarah; Salkovskis, Paul M

    2006-01-01

    It has been suggested that disgust, rather than anxiety, may be important in some phobias. Correlational studies have been ambiguous, indicating either that disgust increases phobic anxiety or that phobic anxiety potentiates disgust. In the experimental study reported here, disgust and phobic anxiety were manipulated in the context of habituation to phobic stimuli. Spider fearful participants were randomly allocated to conditions in which neutral, disgusting, and phobic anxiety provoking stimuli were introduced into a video-based spider phobic habituation sequence. Exposure to the phobic stimulus resulted in a return of self-reported fear and disgust levels. However, exposure to disgusting stimulus increased disgust levels, but not anxiety levels. Results are most consistent with the hypothesis that fear enhances the disgust response in phobias, but that disgust alone does not enhance the fear response. Previously observed links between disgust and spider phobia may be a consequence of fear enhancing disgust.

  9. High Current Anxiety Symptoms, But Not a Past Anxiety Disorder Diagnosis, are Associated with Impaired Fear Extinction

    PubMed Central

    Duits, Puck; Cath, Danielle C.; Heitland, Ivo; Baas, Johanna M. P.

    2016-01-01

    Although impaired fear extinction has repeatedly been demonstrated in patients with anxiety disorders, little is known about whether these impairments persist after treatment. The current comparative exploratory study investigated fear extinction in 26 patients treated for their anxiety disorder in the years preceding the study as compared to 17 healthy control subjects. Fear-potentiated startle and subjective fear were measured in a cue and context fear conditioning paradigm within a virtual reality environment. Results indicated no differences in fear extinction between treated anxiety patients and control subjects. However, scores on the Beck Anxiety Inventory across all participants revealed impaired extinction of fear potentiated startle in subjects with high compared to low anxiety symptoms over the past week. Taken together, this exploratory study found no support for impaired fear extinction in treated anxiety patients, and implies that current anxiety symptoms rather than previous patient status determine the success of extinction. PMID:26955364

  10. Dissociation between Complete Hippocampal Context Memory Formation and Context Fear Acquisition

    ERIC Educational Resources Information Center

    Leake, Jessica; Zinn, Raphael; Corbit, Laura; Vissel, Bryce

    2017-01-01

    Rodents require a minimal time period to explore a context prior to footshock to display plateau-level context fear at test. To investigate whether this rapid fear plateau reflects complete memory formation within that short time-frame, we used the immediate-early gene product Arc as an indicator of hippocampal context memory formation-related…

  11. Early-life inflammation with LPS delays fear extinction in adult rodents.

    PubMed

    Doenni, V M; Song, C M; Hill, M N; Pittman, Q J

    2017-07-01

    A large body of evidence has been brought forward connecting developmental immune activation to abnormal fear and anxiety levels. Anxiety disorders have extremely high lifetime prevalence, yet susceptibility factors that contribute to their emergence are poorly understood. In this research we investigated whether an inflammatory insult early in life can alter the response to fear conditioning in adulthood. Fear learning and extinction are important and adaptive behaviors, mediated largely by the amygdala and its interconnectivity with cortico-limbic circuits. Male and female rat pups were given LPS (100μg/kg i.p.) or saline at postnatal day 14; LPS activated cFos expression in the central amygdala 2.5h after exposure, but not the basal or lateral nuclei. When tested in adulthood, acquisition of an auditory cued or contextual learned fear memory was largely unaffected as was the extinction of fear to a conditioned context. However, we detected a deficit in auditory fear extinction in male and female rats that experienced early-life inflammation, such that there is a significant delay in fear extinction processes resulting in more sustained fear behaviors in response to a conditioned cue. This response was specific to extinction training and did not persist into extinction recall. The effect could not be explained by differences in pain threshold (unaltered) or in baseline anxiety, which was elevated in adolescent females only and unaltered in adolescent males and adult males and females. This research provides further evidence for the involvement of the immune system during development in the shaping of fear and anxiety related behaviors. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Corticosterone facilitates extinction of fear memory in BALB/c mice but strengthens cue related fear in C57BL/6 mice.

    PubMed

    Brinks, V; de Kloet, E R; Oitzl, M S

    2009-04-01

    Corticosterone, the naturally occurring glucocorticoid of rodents is secreted in response to stressors and is known for its facilitating and detrimental effects on emotional learning and memory. The large variability in the action of corticosterone on processing of emotional memories is postulated to depend on genetic background and the spatio-temporal domain in which the hormone operates. To address this hypothesis, mice of two strains with distinct corticosterone secretory patterns and behavioural phenotype (BALB/c and C57BL/6J) were treated with corticosterone (250 microg/kg, i.p.), either 5 min before or directly after acquisition in a fear conditioning task. As the paradigm allowed assessing in one experimental procedure both context- and cue-related fear behaviour, we were able to detect generalization and specificity of fear. BALB/c showed generalized strong fear memory, while C57BL/6J mice discriminated between freezing during context- and cue episodes. Corticosterone had opposite effects on fear memory depending on the strain and time of injection. Corticosterone after acquisition did not affect C57BL/6J mice, but destabilized consolidation and facilitated extinction in BALB/c. Corticosterone 5 min before acquisition strengthened stress-associated signals: BALB/c no longer showed lower fear memory, while C57BL/6J mice displayed increased fear memory and impaired extinction in cue episodes. We propose that corticosterone-induced facilitation of fear memory in C57BL/6J mice can be used to study the development of fear memories, corticosterone administration in BALB/c mice presents a model to examine treatment. We conclude that genetic background and time of corticosterone action are modifiers of fear memory with interesting translational implications for anxiety-related diseases.

  13. Fear Conditioning in an Abdominal Pain Model: Neural Responses during Associative Learning and Extinction in Healthy Subjects

    PubMed Central

    Kattoor, Joswin; Gizewski, Elke R.; Kotsis, Vassilios; Benson, Sven; Gramsch, Carolin; Theysohn, Nina; Maderwald, Stefan; Forsting, Michael; Schedlowski, Manfred; Elsenbruch, Sigrid

    2013-01-01

    Fear conditioning is relevant for elucidating the pathophysiology of anxiety, but may also be useful in the context of chronic pain syndromes which often overlap with anxiety. Thus far, no fear conditioning studies have employed aversive visceral stimuli from the lower gastrointestinal tract. Therefore, we implemented a fear conditioning paradigm to analyze the conditioned response to rectal pain stimuli using fMRI during associative learning, extinction and reinstatement. In N = 21 healthy humans, visual conditioned stimuli (CS+) were paired with painful rectal distensions as unconditioned stimuli (US), while different visual stimuli (CS−) were presented without US. During extinction, all CSs were presented without US, whereas during reinstatement, a single, unpaired US was presented. In region-of-interest analyses, conditioned anticipatory neural activation was assessed along with perceived CS-US contingency and CS unpleasantness. Fear conditioning resulted in significant contingency awareness and valence change, i.e., learned unpleasantness of a previously neutral stimulus. This was paralleled by anticipatory activation of the anterior cingulate cortex, the somatosensory cortex and precuneus (all during early acquisition) and the amygdala (late acquisition) in response to the CS+. During extinction, anticipatory activation of the dorsolateral prefrontal cortex to the CS− was observed. In the reinstatement phase, a tendency for parahippocampal activation was found. Fear conditioning with rectal pain stimuli is feasible and leads to learned unpleasantness of previously neutral stimuli. Within the brain, conditioned anticipatory activations are seen in core areas of the central fear network including the amygdala and the anterior cingulate cortex. During extinction, conditioned responses quickly disappear, and learning of new predictive cue properties is paralleled by prefrontal activation. A tendency for parahippocampal activation during reinstatement could indicate a reactivation of the old memory trace. Together, these findings contribute to our understanding of aversive visceral learning and memory processes relevant to the pathophysiology of chronic abdominal pain. PMID:23468832

  14. No effect of glucose administration in a novel contextual fear generalization protocol in rats

    PubMed Central

    Luyten, L; Schroyens, N; Luyck, K; Fanselow, M S; Beckers, T

    2016-01-01

    The excessive transfer of fear acquired for one particular context to similar situations has been implicated in the development and maintenance of anxiety disorders, such as post-traumatic stress disorder. Recent evidence suggests that glucose ingestion improves the retention of context conditioning. It has been speculated that glucose might exert that effect by ameliorating hippocampal functioning, and may hold promise as a therapeutic add-on in traumatized patients because improved retention of contextual fear could help to restrict its generalization. However, direct data regarding the effect of glucose on contextual generalization are lacking. Here, we introduce a new behavioral protocol to study such contextual fear generalization in rats. In adult Wistar rats, our procedure yields a gradient of generalization, with progressively less freezing when going from the original training context, over a perceptually similar generalization context, to a markedly dissimilar context. Moreover, we find a flattening of the gradient when the training-test interval is prolonged with 1 week. We next examine the effect of systemic glucose administration on contextual generalization with this novel procedure. Our data do not sustain generalization-reducing effects of glucose and question its applicability in traumatic situations. In summary, we have developed a replicable contextual generalization procedure for rats and demonstrate how it is a valuable tool to examine the neurobiological correlates and test pharmacological interventions pertaining to an important mechanism in the etiology of pathological anxiety. PMID:27676444

  15. Allopregnanolone induces state-dependent fear via the bed nucleus of the stria terminalis.

    PubMed

    Acca, Gillian M; Mathew, Abel S; Jin, Jingji; Maren, Stephen; Nagaya, Naomi

    2017-03-01

    Gonadal steroids and their metabolites have been shown to be important modulators of emotional behavior. Allopregnanolone (ALLO), for example, is a metabolite of progesterone that has been linked to anxiety-related disorders such as posttraumatic stress disorder. In rodents, it has been shown to reduce anxiety in a number of behavioral paradigms including Pavlovian fear conditioning. We have recently found that expression of conditioned contextual (but not auditory) freezing in rats can be suppressed by infusion of ALLO into the bed nucleus of the stria terminalis (BNST). To further explore the nature of this effect, we infused ALLO into the BNST of male rats prior to both conditioning and testing. We found that suppression of contextual fear occurred when the hormone was present during either conditioning or testing but not during both procedures, suggesting that ALLO acts in a state-dependent manner within the BNST. A shift in interoceptive context during testing for animals conditioned under ALLO provided further support for this mechanism of hormonal action on contextual fear. Interestingly, infusions of ALLO into the basolateral amygdala produced a state-independent suppression of both conditioned contextual and auditory freezing. Altogether, these results suggest that ALLO can influence the acquisition and expression of fear memories by both state-dependent and state-independent mechanisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Context conditioning and behavioral avoidance in a virtual reality environment: effect of predictability.

    PubMed

    Grillon, Christian; Baas, Johanna M P; Cornwell, Brian; Johnson, Linda

    2006-10-01

    Sustained anxiety can be modeled using context conditioning, which can be studied in a virtual reality environment. Unpredictable stressors increase context conditioning in animals. This study examined context conditioning to predictable and unpredictable shocks in humans using behavioral avoidance, potentiated startle, and subjective reports of anxiety. Subjects were guided through three virtual rooms (no-shock, predictable, unpredictable contexts). Eight-sec duration colored lights served as conditioned stimuli (CS). During acquisition, no shock was administered in the no-shock context. Shocks were paired with the CS in the predictable context and were administered randomly in the unpredictable context. No shock was administered during extinction. Startle stimuli were delivered during CS and between CS to assess cued and context conditioning, respectively. To assess avoidance, subjects freely navigated into two of the three contexts to retrieve money. Startle between CS was potentiated in the unpredictable context compared to the two other contexts. Following acquisition, subjects showed a strong preference for the no-shock context and avoidance of the unpredictable context. Consistent with animal data, context conditioning is increased by unpredictability. These data support virtual reality as a tool to extend research on physiological and behavioral signs of fear and anxiety in humans.

  17. Dual Functions of Perirhinal Cortex in Fear Conditioning

    PubMed Central

    Kent, Brianne A.; Brown, Thomas H.

    2012-01-01

    The present review examines the role of perirhinal cortex (PRC) in Pavlovian fear conditioning. The focus is on rats, partly because so much is known, behaviorally and neurobiologically, about fear conditioning in these animals. In addition, the neuroanatomy and neurophysiology of rat PRC have been described in considerable detail at the cellular and systems levels. The evidence suggests that PRC can serve at least two types of mnemonic functions in Pavlovian fear conditioning. The first function, termed "stimulus unitization," refers to the ability to treat two or more separate items or stimulus elements as a single entity. Supporting evidence for this perceptual function comes from studies of context conditioning as well as delay conditioning to discontinuous auditory cues. In a delay paradigm, the conditional stimulus (CS) and unconditional stimulus (US) overlap temporally and co-terminate. The second PRC function entails a type of "transient memory." Supporting evidence comes from studies of trace cue conditioning, where there is a temporal gap or trace interval between the CS offset and the US onset. For learning to occur, there must be a transient CS representation during the trace interval. We advance a novel neurophysiological mechanism for this transient representation. These two hypothesized functions of PRC are consistent with inferences based on non-aversive forms of learning. PMID:22903623

  18. Immediate-Early Gene Transcriptional Activation in Hippocampus Ca1 and Ca3 Does Not Accurately Reflect Rapid, Pattern Completion-Based Retrieval of Context Memory

    ERIC Educational Resources Information Center

    Pevzner, Aleksandr; Guzowski, John F.

    2015-01-01

    No studies to date have examined whether immediate-early gene (IEG) activation is driven by context memory recall. To address this question, we utilized the context preexposure facilitation effect (CPFE) paradigm. In CPFE, animals acquire contextual fear conditioning through hippocampus-dependent rapid retrieval of a previously formed contextual…

  19. Juvenile female rats, but not male rats, show renewal, reinstatement, and spontaneous recovery following extinction of conditioned fear.

    PubMed

    Park, Chun Hui J; Ganella, Despina E; Kim, Jee Hyun

    2017-12-01

    Anxiety disorders emerge early, and girls are significantly more likely to develop anxiety compared to boys. However, sex differences in fear during development are poorly understood. Therefore, we investigated juvenile male and female rats in the relapse behaviors following extinction of conditioned fear. In all experiments, 18-d-old rats first received three white-noise-footshock pairings on day 1. On day 2, extinction involved 60 white-noise alone trials. In experiment 1, we examined renewal by testing the rats in either the same or different context as extinction on day 3. Male rats did not show renewal, however, female rats showed renewal. Experiment 2 investigated reinstatement by giving rats either a mild reminder footshock or context exposure on day 3. When tested the next day, male rats did not show reinstatement, whereas female rats showed reinstatement. Experiment 3 investigated spontaneous recovery by testing the rats either 1 or 5 d following extinction. Male rats did not show any spontaneous recovery whereas female rats did. Taken together, fear regulation appear to be different in males versus females from early in development, which may explain why girls are more prone to suffer from anxiety disorders compared to boys. © 2017 Park et al.; Published by Cold Spring Harbor Laboratory Press.

  20. The effect of the mGlu5 negative allosteric modulator MTEP and NMDA receptor partial agonist D-cycloserine on Pavlovian conditioned fear.

    PubMed

    Handford, Charlotte E; Tan, Shawn; Lawrence, Andrew J; Kim, Jee Hyun

    2014-09-01

    The metabotropic glutamate receptor 5 (mGlu5) and N-methyl-D-aspartate (NMDA) receptor are critical for processes underlying synaptic plasticity, such as long-term potentiation. mGlu5 signaling increases neuronal excitability and potentiates NMDA receptor currents in the amygdala and the hippocampus. The present study examined the involvement of mGlu5 in the acquisition and consolidation of conditioned fear to a tone and context in mice, and explored the functional relationship between mGlu5 and NMDA receptors in this regard. Experiment 1 showed that systemic administration of the mGlu5 negative allosteric modulator 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP) prior to conditioning significantly attenuated cue-elicited freezing during fear conditioning, which suggests that mGlu5 is necessary for the formation of a tone-shock association. This effect was dose-related (Experiment 2) and not due to any effects of MTEP on shock sensitivity or state-dependency (Experiment 3). Post-conditioning injection of MTEP had no effects (Experiment 4). Although post-conditioning injection of the NMDA receptor partial agonist D-cycloserine (DCS) alone facilitated consolidation of conditioned fear (Experiment 6), it was not able to rescue the acquisition deficit caused by MTEP (Experiment 5). Taken together, these findings indicate a crucial role for mGlu5 signaling in acquisition and NMDA receptor signaling in consolidation of conditioned fear.

  1. A novel perceptual discrimination training task: Reducing fear overgeneralization in the context of fear learning.

    PubMed

    Ginat-Frolich, Rivkah; Klein, Zohar; Katz, Omer; Shechner, Tomer

    2017-06-01

    Generalization is an adaptive learning mechanism, but it can be maladaptive when it occurs in excess. A novel perceptual discrimination training task was therefore designed to moderate fear overgeneralization. We hypothesized that improvement in basic perceptual discrimination would translate into lower fear overgeneralization in affective cues. Seventy adults completed a fear-conditioning task prior to being allocated into training or placebo groups. Predesignated geometric shape pairs were constructed for the training task. A target shape from each pair was presented. Thereafter, participants in the training group were shown both shapes and asked to identify the image that differed from the target. Placebo task participants only indicated the location of each shape on the screen. All participants then viewed new geometric pairs and indicated whether they were identical or different. Finally, participants completed a fear generalization test consisting of perceptual morphs ranging from the CS + to the CS-. Fear-conditioning was observed through physiological and behavioural measures. Furthermore, the training group performed better than the placebo group on the assessment task and exhibited decreased fear generalization in response to threat/safety cues. The findings offer evidence for the effectiveness of the novel discrimination training task, setting the stage for future research with clinical populations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The hypocretin/orexin system mediates the extinction of fear memories.

    PubMed

    Flores, África; Valls-Comamala, Victòria; Costa, Giulia; Saravia, Rocío; Maldonado, Rafael; Berrendero, Fernando

    2014-11-01

    Anxiety disorders are often associated with an inability to extinguish learned fear responses. The hypocretin/orexin system is involved in the regulation of emotional states and could also participate in the consolidation and extinction of aversive memories. Using hypocretin receptor-1 and hypocretin receptor-2 antagonists, hypocretin-1 and hypocretin-2 peptides, and hypocretin receptor-1 knockout mice, we investigated the role of the hypocretin system in cue- and context-dependent fear conditioning and extinction. Hypocretins were crucial for the consolidation of fear conditioning, and this effect was mainly observed in memories with a high emotional component. Notably, after the acquisition of fear memory, hypocretin receptor-1 blockade facilitated fear extinction, whereas hypocretin-1 administration impaired this extinction process. The extinction-facilitating effects of the hypocretin receptor-1 antagonist SB334867 were associated with increased expression of cFos in the basolateral amygdala and the infralimbic cortex. Intra-amygdala, but neither intra-infralimbic prefrontal cortex nor intra-dorsohippocampal infusion of SB334867 enhanced fear extinction. These results reveal a key role for hypocretins in the extinction of aversive memories and suggest that hypocretin receptor-1 blockade could represent a novel therapeutic target for the treatment of diseases associated with inappropriate retention of fear, such as post-traumatic stress disorder and phobias.

  3. The Hypocretin/Orexin System Mediates the Extinction of Fear Memories

    PubMed Central

    Flores, África; Valls-Comamala, Victòria; Costa, Giulia; Saravia, Rocío; Maldonado, Rafael; Berrendero, Fernando

    2014-01-01

    Anxiety disorders are often associated with an inability to extinguish learned fear responses. The hypocretin/orexin system is involved in the regulation of emotional states and could also participate in the consolidation and extinction of aversive memories. Using hypocretin receptor-1 and hypocretin receptor-2 antagonists, hypocretin-1 and hypocretin-2 peptides, and hypocretin receptor-1 knockout mice, we investigated the role of the hypocretin system in cue- and context-dependent fear conditioning and extinction. Hypocretins were crucial for the consolidation of fear conditioning, and this effect was mainly observed in memories with a high emotional component. Notably, after the acquisition of fear memory, hypocretin receptor-1 blockade facilitated fear extinction, whereas hypocretin-1 administration impaired this extinction process. The extinction-facilitating effects of the hypocretin receptor-1 antagonist SB334867 were associated with increased expression of cFos in the basolateral amygdala and the infralimbic cortex. Intra-amygdala, but neither intra-infralimbic prefrontal cortex nor intra-dorsohippocampal infusion of SB334867 enhanced fear extinction. These results reveal a key role for hypocretins in the extinction of aversive memories and suggest that hypocretin receptor-1 blockade could represent a novel therapeutic target for the treatment of diseases associated with inappropriate retention of fear, such as post-traumatic stress disorder and phobias. PMID:24930888

  4. In the face of fear: Anxiety sensitizes defensive responses to fearful faces

    PubMed Central

    Grillon, Christian; Charney, Danielle R.

    2011-01-01

    Fearful faces readily activate the amygdala. Yet, whether fearful faces evoke fear is unclear. Startle studies show no potentiation of startle by fearful faces, suggesting that such stimuli do not activate defense mechanisms. However, the response to biologically relevant stimuli may be sensitized by anxiety. The present study tested the hypothesis that startle would not be potentiated by fearful faces in a safe context, but that startle would be larger during fearful faces compared to neutral faces in a threat-of-shock context. Subjects viewed fearful and neutral faces in alternating periods of safety and threat of shock. Acoustic startle stimuli were presented in the presence and absence of the faces. Startle was transiently potentiated by fearful faces compared to neutral faces in the threat periods. This suggests that although fearful faces do not prompt behavioral mobilization in an innocuous context, they can do so in an anxiogenic one. PMID:21824155

  5. An update on contextual fear memory mechanisms: Transition between Amygdala and Hippocampus.

    PubMed

    Chaaya, Nicholas; Battle, Andrew R; Johnson, Luke R

    2018-05-09

    Context is an ever-present combination of discrete environmental elements capable of influencing many psychological processes. When context is associated with an aversive stimulus, a permanent contextual fear memory is formed. Context is hypothesized to greatly influence the treatability of various fear-based pathologies, in particular, post-traumatic stress disorder (PTSD). In order to understand how contextual fear memories are encoded and impact underlying fear pathology, delineation of the underlying neural circuitry of contextual fear memory consolidation and maintenance is essential. Past understandings of contextual fear suggest that the hippocampus only creates a unitary, or single, representation of context. This representation is sent to the amygdala, which creates the associative contextual fear memory. In contrast, here we review new evidence from the literature showing contextual fear memories to be consolidated and maintained by both amygdala and hippocampus. Based on this evidence, we revise the current model of contextual fear memory consolidation, highlighting a larger role for hippocampus. This new model may better explain the role of the hippocampus in PTSD. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Long-Lasting Increase of Corticosterone After Fear Memory Reactivation: Anxiolytic Effects and Network Activity Modulation in the Ventral Hippocampus

    PubMed Central

    Albrecht, Anne; Çalışkan, Gürsel; Oitzl, Melly S; Heinemann, Uwe; Stork, Oliver

    2013-01-01

    Pathological fear and anxiety can be studied, in rodents, with fear conditioning and exposure to reminder cues. These paradigms are thought to critically involve the ventral hippocampus, which also serves as key site of glucocorticoid action in the brain. Here, we demonstrate a long-lasting reduction of kainate-induced gamma oscillations in slice preparations of the ventral hippocampal area CA3, 30 days after a single fear conditioning training. Reduction of gamma power was sensitive to corticosterone application and associated with a decrease in glucocorticoid and mineralocorticoid receptor mRNA expression across strata of the ventral hippocampal CA3. A fear reactivation session 24 h after the initial conditioning normalized receptor expression levels and attenuated the corticosterone-mediated recovery of gamma oscillations. It moreover increased both baseline and stimulus-induced corticosterone plasma levels and evoked a generalization of fear memory to the background context. Reduced ventral hippocampal gamma oscillation in both fear reactivated and non-reactivated mice were associated with a decrease of anxiety-like behavior in an elevated plus maze. Taking advantage of the circadian fluctuation in corticosterone, we demonstrated the association of high endogenous basal corticosterone plasma concentrations during morning hours with reduced anxiety-like behavior in fear reactivated mice. The anxiolytic effect of the hormone was verified with local applications to the ventral hippocampus. Our data suggest that corticosterone acting on ventral hippocampal network activity has anxiolytic-like effects following fear exposure, highlighting its potential therapeutic value for anxiety disorders. PMID:22968818

  7. Relapse of Extinguished Fear after Exposure to a Dangerous Context Is Mitigated by Testing in a Safe Context

    ERIC Educational Resources Information Center

    Goode, Travis D.; Kim, Janice J.; Maren, Stephen

    2015-01-01

    Aversive events can trigger relapse of extinguished fear memories, presenting a major challenge to the long-term efficacy of therapeutic interventions. Here, we examined factors regulating the relapse of extinguished fear after exposure of rats to a dangerous context. Rats received unsignaled shock in a distinct context ("dangerous"…

  8. Estradiol regulates responsiveness of the dorsal premammillary nucleus of the hypothalamus and affects fear- and anxiety-like behaviors in female rats.

    PubMed

    Litvin, Yoav; Cataldo, Giuseppe; Pfaff, Donald W; Kow, Lee-Ming

    2014-07-01

    Research suggests a causal link between estrogens and mood. Here, we began by examining the effects of estradiol (E2 ) on rat innate and conditioned defensive behaviors in response to cat odor. Second, we utilized whole-cell patch clamp electrophysiological techniques to assess noradrenergic effects on neurons within the dorsal premammillary nucleus of the hypothalamus (PMd), a nucleus implicated in fear reactivity, and their regulation by E2 . Our results show that E2 increased general arousal and modified innate defensive reactivity to cat odor. When ovariectomized females treated with E2 as opposed to oil were exposed to cat odor, they showed elevations in risk assessment and reductions in freezing, indicating a shift from passive to active coping. In addition, animals previously exposed to cat odor showed clear cue + context conditioning 24 h later. However, although E2 persisted in its effects on general arousal in the conditioning task, its effects on fear disappeared. In the patch clamp experiments noradrenergic compounds that typically induce fear clearly excited PMd neurons, producing depolarizations and action potentials. E2 treatment shifted some excitatory effects of noradrenergic agonists to inhibitory, possibly by differentially affecting α- and β-adrenoreceptors. In summary, our results implicate E2 in general arousal and fear reactivity, and suggest these may be governed by changes in noradrenergic responsivity in the PMd. These effects of E2 may have ethological relevance, serving to promote mate seeking even in contexts of ambiguous threat and shed light on the involvement of estrogen in mood and its associated disorders. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. High-affinity α4β2 nicotinic receptors mediate the impairing effects of acute nicotine on contextual fear extinction.

    PubMed

    Kutlu, Munir Gunes; Holliday, Erica; Gould, Thomas J

    2016-02-01

    Previously, studies from our lab have shown that while acute nicotine administered prior to training and testing enhances contextual fear conditioning, acute nicotine injections prior to extinction sessions impair extinction of contextual fear. Although there is also strong evidence showing that the acute nicotine's enhancing effects on contextual fear conditioning require high-affinity α4β2 nicotinic acetylcholine receptors (nAChRs), it is unknown which nAChR subtypes are involved in the acute nicotine-induced impairment of contextual fear extinction. In this study, we investigated the effects of acute nicotine administration on contextual fear extinction in knock-out (KO) mice lacking α4, β2 or α7 subtypes of nAChRs and their wild-type (WT) littermates. Both KO and WT mice were first trained and tested for contextual fear conditioning and received a daily contextual extinction session for 4 days. Subjects received intraperitoneal injections of nicotine (0.18 mg/kg) or saline 2-4 min prior to each extinction session. Our results showed that the mice that lack α4 and β2 subtypes of nAChRs showed normal contextual fear extinction but not the acute nicotine-induced impairment while the mice that lack the α7 subtype showed both normal contextual extinction and nicotine-induced impairment of contextual extinction. In addition, control experiments showed that acute nicotine-induced impairment of contextual fear extinction persisted when nicotine administration was ceased and repeated acute nicotine administrations alone did not induce freezing behavior in the absence of context-shock learning. These results clearly demonstrate that high-affinity α4β2 nAChRs are necessary for the effects of acute nicotine on contextual fear extinction. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. High-affinity α4β2 nicotinic receptors mediate the impairing effects of acute nicotine on contextual fear extinction

    PubMed Central

    Kutlu, Munir Gunes; Holliday, Erica; Gould, Thomas J.

    2015-01-01

    Previously, studies from our lab have shown that while acute nicotine administered prior to training and testing enhances contextual fear conditioning, acute nicotine injections prior to extinction sessions impair extinction of contextual fear. Although there is also strong evidence showing that the acute nicotine’s enhancing effects on contextual fear conditioning require high-affinity α4β2 nicotinic acetylcholine receptors (nAChRs), it is unknown which nAChR subtypes are involved in the acute nicotine-induced impairment of contextual fear extinction. In this study, we investigated the effects of acute nicotine administration on contextual fear extinction in knock-out (KO) mice lacking α4, β2 or α7 subtypes of nAChRs and their wild-type (WT) littermates. Both KO and WT mice were first trained and tested for contextual fear conditioning and received a daily contextual extinction session for 4 days. Subjects received intraperitoneal injections of nicotine (0.18 mg/kg) or saline 2–4 mins prior to each extinction session. Our results showed that the that mice lack α4 and β2 subtypes of nAChRs showed normal contextual fear extinction but not the acute nicotine-induced impairment while the mice that lack the α7 subtype showed both normal contextual extinction and nicotine-induced impairment of contextual extinction. In addition, control experiments showed that acute nicotine-induced impairment of contextual fear extinction persisted when nicotine administration was ceased and repeated acute nicotine administrations alone did not induce freezing behavior in the absence of context-shock learning. These results clearly demonstrate that high-affinity α4β2 nAChRs are necessary for the effects of acute nicotine on contextual fear extinction. PMID:26688111

  11. Morphine prevents the development of stress-enhanced fear learning.

    PubMed

    Szczytkowski-Thomson, Jennifer L; Lebonville, Christina L; Lysle, Donald T

    2013-01-01

    The current study investigates the pharmacotherapeutic use of morphine as a preventative treatment for stress-enhanced fear learning, an animal model that closely mimics symptoms of post-traumatic stress disorder (PTSD). PTSD is a chronic and debilitating anxiety disorder characterized by exaggerated fear and/or anxiety that may develop as a result of exposure to a traumatic event. In this model, rats are exposed to a severe stressor (15 foot shocks) in one environment (Context A) and then subsequently exposed to a milder form of the same stressor (single foot shock) in a different environment (Context B). Animals that did not receive prior shock treatment exhibit fear responsiveness to Context B in line with the severity of the single shock given in this context. Animals that had received prior shock treatment in Context A exhibit an exaggerated learned fear response to Context B. Furthermore, animals receiving a single dose of morphine immediately following the severe stressor in Context A continue to show an enhanced fear response in Context B. However, animals receiving repeated morphine administration (three injections) after exposure to the severe stressor in Context A or a single dose of morphine at 48 h after the severe stressor no longer exhibit an enhancement in fear learning to Context B. These results are consistent with clinical studies suggesting that morphine treatment following a severe stressor may be useful in preventing or reducing the severity of PTSD in at-risk populations. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Anxiety symptoms and children's eye gaze during fear learning.

    PubMed

    Michalska, Kalina J; Machlin, Laura; Moroney, Elizabeth; Lowet, Daniel S; Hettema, John M; Roberson-Nay, Roxann; Averbeck, Bruno B; Brotman, Melissa A; Nelson, Eric E; Leibenluft, Ellen; Pine, Daniel S

    2017-11-01

    The eye region of the face is particularly relevant for decoding threat-related signals, such as fear. However, it is unclear if gaze patterns to the eyes can be influenced by fear learning. Previous studies examining gaze patterns in adults find an association between anxiety and eye gaze avoidance, although no studies to date examine how associations between anxiety symptoms and eye-viewing patterns manifest in children. The current study examined the effects of learning and trait anxiety on eye gaze using a face-based fear conditioning task developed for use in children. Participants were 82 youth from a general population sample of twins (aged 9-13 years), exhibiting a range of anxiety symptoms. Participants underwent a fear conditioning paradigm where the conditioned stimuli (CS+) were two neutral faces, one of which was randomly selected to be paired with an aversive scream. Eye tracking, physiological, and subjective data were acquired. Children and parents reported their child's anxiety using the Screen for Child Anxiety Related Emotional Disorders. Conditioning influenced eye gaze patterns in that children looked longer and more frequently to the eye region of the CS+ than CS- face; this effect was present only during fear acquisition, not at baseline or extinction. Furthermore, consistent with past work in adults, anxiety symptoms were associated with eye gaze avoidance. Finally, gaze duration to the eye region mediated the effect of anxious traits on self-reported fear during acquisition. Anxiety symptoms in children relate to face-viewing strategies deployed in the context of a fear learning experiment. This relationship may inform attempts to understand the relationship between pediatric anxiety symptoms and learning. © 2017 Association for Child and Adolescent Mental Health.

  13. Neonatal alcohol exposure disrupts hippocampal neurogenesis and contextual fear conditioning in adult rats

    PubMed Central

    Hamilton, G.F.; Murawski, N.J.; St. Cyr, S.A.; Jablonski, S.A.; Schiffino, F.L.; Stanton, M.E.; Klintsova, A.Y.

    2011-01-01

    Developmental alcohol exposure can permanently alter brain structures and produce functional impairments in many aspects of behavior, including learning and memory. This study evaluates the effect of neonatal alcohol exposure on adult neurogenesis in the dentate gyrus of the hippocampus and the implications of such exposure for hippocampus-dependent contextual fear conditioning. Alcohol-exposed rats (AE) received 5.25 g/kg/day of alcohol on postnatal days (PD) 4-9 (third trimester in humans), in a binge-like manner. Two control groups were included: sham-intubated (SI) and suckle-control (SC). Animals were housed in social cages (3/cage) after weaning. On PD80, animals were injected with 200 mg/kg BrdU. Half of the animals were sacrificed two hours later. The remainder were sacrificed on PD114 to evaluate cell survival; separate AE, SI, and SC rats not injected with BrdU were tested for the context preexposure facilitation effect (CPFE; ∼PD117). There was no difference in the number of BrdU+ cells in AE, SI and SC groups on PD80. On PD114, cell survival was significantly decreased in AE rats, demonstrating that developmental alcohol exposure damages new cells' ability to incorporate into the network and survive. Behaviorally tested SC and SI groups preexposed to the training context 24h prior to receiving a 1.5mA 2s footshock froze significantly more during the context test than their counterparts preexposed to an alternate context. AE rats failed to show the CPFE. The current study shows the detrimental, long-lasting effects of developmental alcohol exposure on hippocampal adult neurogenesis and contextual fear conditioning. PMID:21816390

  14. Novelty-Induced Arousal Enhances Memory for Cued Classical Fear Conditioning: Interactions between Peripheral Adrenergic and Brainstem Glutamatergic Systems

    ERIC Educational Resources Information Center

    King, Stanley O., II; Williams, Cedric L.

    2009-01-01

    Exposure to novel contexts produce heightened states of arousal and biochemical changes in the brain to consolidate memory. However, processes permitting simple exposure to unfamiliar contexts to elevate sympathetic output and to improve memory are poorly understood. This shortcoming was addressed by examining how novelty-induced changes in…

  15. The prelimbic cortex uses contextual cues to modulate responding towards predictive stimuli during fear renewal.

    PubMed

    Sharpe, Melissa; Killcross, Simon

    2015-02-01

    Previous research suggests the prelimbic (PL) cortex is involved in expression of conditioned fear (Burgos-Robles, Vidal-Gonzalez, & Quirk, 2009; Corcoran & Quirk, 2007). However, there is a long history of research in the appetitive domain which implicates this region in using higher-order cues to modulate a behavioural response (Birrell & Brown, 2000; Floresco, Block, & Tse, 2008; Marquis, Killcross, & Haddon, 2007; Sharpe & Killcross, 2014). For example, the PL cortex is necessary to allow animals to use contextual cues to disambiguate response conflict in ambiguous circumstances (Marquis et al., 2007). Using an ABA fear renewal procedure, we assessed the role of the PL cortex in using contextual cues to modulate a response towards a conditioned stimulus (CS) in an aversive setting. We found that pre-training lesions of the PL cortex did not impact on the expression or extinction of conditioned fear. Rather, they selectively abolished renewal. Functional inactivation of the PL cortex during extinction did not disrupt the subsequent renewal of conditioned fear or the ability of animals to exhibit fear towards a CS during the extinction session. However, PL inactivation during the renewal test session disrupted the ability of animals to demonstrate a reinstatement of responding in the renewal context. An analysis of orienting responses showed that renewal deficits were accompanied by a lack of change in attentional responding towards the CS. These data suggest the PL cortex uses contextual cues to modulate both a behavioural and an attentional response during aversive procedures. We argue that the role of the PL cortex in the expression of conditioned fear is to use higher-order information to modulate responding towards predictive cues in ambiguous circumstance. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Predicting the fear of assault at school and while going to and from school in an adolescent population.

    PubMed

    Alvarez, A; Bachman, R

    1997-01-01

    Recent research investigating the fear of crime has shown that when crime and behavior-specific measures of fear are utilized, the young are more likely than the elderly to be the most fearful. Research investigating the etiology of fear within adolescent populations, however, remains very limited. Using a sample of over 10,000 junior high and high school students from a supplement to the National Crime Victimization Survey, this paper examines the factors contributing to students' fear of assault both at school and while going to and from school. Results indicate that recent victimization experiences, the presence of a violent subculture at the school (e.g., gang presence and attacks on teachers) and availability of drugs/alcohol were related to fear in both contexts. The predictability of fear from individual characteristics, however, was context specific. Contrary to findings from earlier research, it was found that young females were not more fearful than their male counterparts in all contexts. While they were more fearful of an attack while going to and from school, there were no differences in fear levels while at school between males and females after controlling for other environmental and experiential factors. Conclusions largely support the contention that fear is a rational calculation based on objective criteria. Moreover, results underscore the need for more specificity when operationalizing the context and content of fearfulness.

  17. Lmo4 in the Basolateral Complex of the Amygdala Modulates Fear Learning

    PubMed Central

    Maiya, Rajani; Kharazia, Viktor; Lasek, Amy W.; Heberlein, Ulrike

    2012-01-01

    Pavlovian fear conditioning is an associative learning paradigm in which mice learn to associate a neutral conditioned stimulus with an aversive unconditioned stimulus. In this study, we demonstrate a novel role for the transcriptional regulator Lmo4 in fear learning. LMO4 is predominantly expressed in pyramidal projection neurons of the basolateral complex of the amygdala (BLC). Mice heterozygous for a genetrap insertion in the Lmo4 locus (Lmo4gt/+), which express 50% less Lmo4 than their wild type (WT) counterparts display enhanced freezing to both the context and the cue in which they received the aversive stimulus. Small-hairpin RNA-mediated knockdown of Lmo4 in the BLC, but not the dentate gyrus region of the hippocampus recapitulated this enhanced conditioning phenotype, suggesting an adult- and brain region-specific role for Lmo4 in fear learning. Immunohistochemical analyses revealed an increase in the number of c-Fos positive puncta in the BLC of Lmo4gt/+ mice in comparison to their WT counterparts after fear conditioning. Lastly, we measured anxiety-like behavior in Lmo4gt/+ mice and in mice with BLC-specific downregulation of Lmo4 using the elevated plus maze, open field, and light/dark box tests. Global or BLC-specific knockdown of Lmo4 did not significantly affect anxiety-like behavior. These results suggest a selective role for LMO4 in the BLC in modulating learned but not unlearned fear. PMID:22509321

  18. Cognitive emotion regulation fails the stress test

    PubMed Central

    Raio, Candace M.; Orederu, Temidayo A.; Palazzolo, Laura; Shurick, Ashley A.; Phelps, Elizabeth A.

    2013-01-01

    Cognitive emotion regulation has been widely shown in the laboratory to be an effective way to alter the nature of emotional responses. Despite its success in experimental contexts, however, we often fail to use these strategies in everyday life where stress is pervasive. The successful execution of cognitive regulation relies on intact executive functioning and engagement of the prefrontal cortex, both of which are rapidly impaired by the deleterious effects of stress. Because it is specifically under stressful conditions that we may benefit most from such deliberate forms of emotion regulation, we tested the efficacy of cognitive regulation after stress exposure. Participants first underwent fear-conditioning, where they learned that one stimulus (CS+) predicted an aversive outcome but another predicted a neutral outcome (CS−). Cognitive regulation training directly followed where participants were taught to regulate fear responses to the aversive stimulus. The next day, participants underwent an acute stress induction or a control task before repeating the fear-conditioning task using these newly acquired regulation skills. Skin conductance served as an index of fear arousal, and salivary α-amylase and cortisol concentrations were assayed as neuroendocrine markers of stress response. Although groups showed no differences in fear arousal during initial fear learning, nonstressed participants demonstrated robust fear reduction following regulation training, whereas stressed participants showed no such reduction. Our results suggest that stress markedly impairs the cognitive regulation of emotion and highlights critical limitations of this technique to control affective responses under stress. PMID:23980142

  19. D-cycloserine enhances generalization of fear extinction in children.

    PubMed

    Byrne, Simon P; Rapee, Ronald M; Richardson, Rick; Malhi, Gin S; Jones, Michael; Hudson, Jennifer L

    2015-06-01

    For exposure therapy to be successful, it is essential that fear extinction learning extends beyond the treatment setting. D-cycloserine (DCS) may facilitate treatment gains by increasing generalization of extinction learning, however, its effects have not been tested in children. We examined whether DCS enhanced generalization of fear extinction learning across different stimuli and contexts among children with specific phobias. The study was a double-blind placebo-controlled randomized controlled trial among dog or spider phobic children aged 6-14. Participants ingested either 50 mg of DCS (n = 18) or placebo (n = 17) before receiving a single prolonged exposure session to their feared stimulus. Return of fear was examined 1 week later to a different stimulus (a different dog or spider), presented in both the original treatment context and an alternate context. Avoidance and fear were measured with Behavior Approach Tests (BATs), where the child was asked to increase proximity to the stimulus while reporting their fear level. There were no differences in BAT performance between groups during the exposure session or when a new stimulus was later presented in the treatment context. However, when the new stimulus was presented in a different context, relative to placebo, the DCS group showed less avoidance (P = .03) and less increase in fear (P = .04) with moderate effect sizes. DCS enabled children to better retain their fear extinction learning. This new learning generalized to different stimuli and contexts. © 2015 Wiley Periodicals, Inc.

  20. Increased perceived self-efficacy facilitates the extinction of fear in healthy participants

    PubMed Central

    Zlomuzica, Armin; Preusser, Friederike; Schneider, Silvia; Margraf, Jürgen

    2015-01-01

    Self-efficacy has been proposed as an important element of a successful cognitive behavioral treatment (CBT). Positive changes in perceived self-efficacy have been linked to an improved adaptive emotional and behavioral responding in the context of anxiety-provoking situations. Furthermore, a positive influence of increased self-efficacy on cognitive functions has been confirmed. The present study examined the effect of verbal persuasion on perceived self-efficacy and fear extinction. Healthy participants were subjected to a standardized differential fear conditioning paradigm. After fear acquisition, half of the participants received a verbal persuasion aimed at increasing perceived self-efficacy. The extinction of fear was assessed immediately thereafter on both the implicit and explicit level. Our results suggest that an increased perceived self-efficacy was associated with enhanced extinction, evidenced on the psychophysiological level and accompanied by more pronounced decrements in conditioned negative valence. Changes in extinction were not due to a decrease in overall emotional reactivity to conditioned stimuli (CS). In addition, debriefing participants about the false positive feedback did not affect the processing of already extinguished conditioned responses during a subsequent continued extinction phase. Our results suggest that positive changes in perceived self-efficacy can be beneficial for emotional learning. Findings are discussed with respect to strategies aimed at increasing extinction learning in the course of exposure-based treatments. PMID:26528152

  1. Enduring deficits in contextual and auditory fear conditioning after adolescent, not adult, social instability stress in male rats.

    PubMed

    Morrissey, Mark D; Mathews, Iva Z; McCormick, Cheryl M

    2011-01-01

    Adolescence is a time of developmental changes and reorganization in the brain and stress systems, thus, adolescents may be more vulnerable than adults to the effects of chronic mild stressors. Most studies, however, have not directly compared stress experienced in adolescence to the same stress experience in adulthood. In the present study, adolescent (n=46) and adult (n=48) male rats underwent 16 days of social instability stress (daily 1h isolation and change of cage partners) or were non-stress controls. Rats were then tested on the strength of acquired contextual and cued fear conditioning, as well as extinction learning, beginning either the day after the stress procedure or 3 weeks later. No difference was found among the groups during the Training Phase of conditioning. Irrespective of the time between the social stress experience and fear conditioning, rats stressed in adolescence had decreased context and cue memory, and cue generalization compared to control rats, as measured by the percentage of time spent freezing in tests. Social instability stress in adulthood had no effect on any measure of fear conditioning. The results support the hypothesis that adolescence is a time of heightened vulnerability to stressors. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Reinstatement of an Extinguished Fear Conditioned Response in Infant Rats

    ERIC Educational Resources Information Center

    Revillo, Damian A.; Trebucq, Gastón; Paglini, Maria G.; Arias, Carlos

    2016-01-01

    Although it is currently accepted that the extinction effect reflects new context-dependent learning, this is not so clear during infancy, because some studies did not find recovery of the extinguished conditioned response (CR) in rodents during this ontogenetic stage. However, recent studies have shown the return of an extinguished CR in infant…

  3. Sex differences in conditioned stimulus discrimination during context-dependent fear learning and its retrieval in humans: the role of biological sex, contraceptives and menstrual cycle phases.

    PubMed

    Lonsdorf, Tina B; Haaker, Jan; Schümann, Dirk; Sommer, Tobias; Bayer, Janine; Brassen, Stefanie; Bunzeck, Nico; Gamer, Matthias; Kalisch, Raffael

    2015-11-01

    Anxiety disorders are more prevalent in women than in men. Despite this sexual dimorphism, most experimental studies are conducted in male participants and studies focusing on sex differences are sparse. In addition, the role of hormonal contraceptives and menstrual cycle phase in fear conditioning and extinction processes remain largely unknown. We investigated sex differences in context-dependent fear acquisition and extinction (day 1) and their retrieval/expression (day 2). Skin conductance responses (SCRs), fear and unconditioned stimulus expectancy ratings were obtained. We included 377 individuals (261 women) in our study. Robust sex differences were observed in all dependent measures. Women generally displayed higher subjective ratings but smaller SCRs than men and showed reduced excitatory/inhibitory conditioned stimulus (CS+/CS-) discrimination in all dependent measures. Furthermore, women using hormonal contraceptives showed reduced SCR CS discrimination on day 2 than men and free-cycling women, while menstrual cycle phase had no effect. Possible limitations include the simultaneous testing of up to 4 participants in cubicles, which might have introduced a social component, and not assessing postexperimental contingency awareness. The response pattern in women shows striking similarity to previously reported sex differences in patients with anxiety. Our results suggest that pronounced deficits in associative discrimination learning and subjective expression of safety information (CS- responses) might underlie higher prevalence and higher symptom rates seen in women with anxiety disorders. The data call for consideration of biological sex and hormonal contraceptive use in future studies and may suggest that targeting inhibitory learning during therapy might aid precision medicine.

  4. Intergenerational transmission of emotional trauma through amygdala-dependent mother-to-infant transfer of specific fear

    PubMed Central

    Debiec, Jacek; Sullivan, Regina Marie

    2014-01-01

    Emotional trauma is transmitted across generations. For example, children witnessing their parent expressing fear to specific sounds or images begin to express fear to those cues. Within normal range, this is adaptive, although pathological fear, such as occurs in posttraumatic stress disorder or specific phobias, is also socially transmitted to children and is thus of clinical concern. Here, using a rodent model, we report a mother-to-infant transfer of fear to a novel peppermint odor, which is dependent on the mother expressing fear to that smell in pups’ presence. Examination of pups’ neural activity using c-Fos early gene expression and 14C 2-deoxyglucose autoradiography during mother-to-infant fear transmission revealed lateral and basal amygdala nuclei activity, with a causal role highlighted by pharmacological inactivation of pups’ amygdala preventing the fear transmission. Maternal presence was not needed for fear transmission, because an elevation of pups’ corticosterone induced by the odor of the frightened mother along with a novel peppermint odor was sufficient to produce pups’ subsequent aversion to that odor. Disruption of axonal tracts from the Grueneberg ganglion, a structure implicated in alarm chemosignaling, or blockade of pups’ alarm odor-induced corticosterone increase prevented transfer of fear. These memories are acquired at younger ages compared with amygdala-dependent odor-shock conditioning and are more enduring following minimal conditioning. Our results provide clues to understanding transmission of specific fears across generations and its dependence upon maternal induction of pups’ stress response paired with the cue to induce amygdala-dependent learning plasticity. Results are discussed within the context of caregiver emotional responses and adaptive vs. pathological fears social transmission. PMID:25071168

  5. Dorsal and ventral hippocampal adult-born neurons contribute to context fear memory.

    PubMed

    Huckleberry, Kylie A; Shue, Francis; Copeland, Taylor; Chitwood, Raymond A; Yin, Weiling; Drew, Michael R

    2018-06-02

    The hippocampus contains one of the few neurogenic niches within the adult brain-the subgranular zone of the dentate gyrus. The functional significance of adult-born neurons in this region has been characterized using context fear conditioning, a Pavlovian paradigm in which animals learn to associate a location with danger. Ablation or silencing of adult-born neurons impairs both acquisition and recall of contextual fear conditioning, suggesting that these neurons contribute importantly to hippocampal memory. Lesion studies indicate that CFC depends on neural activity in both the dorsal and ventral hippocampus, subregions with unique extrahippocampal connectivity and behavioral functions. Because most studies of adult neurogenesis have relied on methods that permanently ablate neurogenesis throughout the entire hippocampus, little is known about how the function of adult-born neurons varies along the dorsal-ventral axis. Using a Nestin-CreER T2 mouse line to target the optogenetic silencer Archaerhodopsin to adult-born neurons, we compared the contribution of dorsal and ventral adult-born neurons to acquisition, recall, and generalization of CFC. Acquisition of CFC was impaired when either dorsal or ventral adult-born neurons were silenced during training. Silencing dorsal or ventral adult-born neurons during test sessions decreased context-evoked freezing but did not impair freezing in a hippocampus-independent tone-shock freezing paradigm. Silencing adult-born neurons modestly reduced generalization of fear. Our data indicate that adult-born neurons in the dorsal and ventral hippocampus contribute to both memory acquisition and recall. The comparatively large behavioral effects of silencing a small number of adult-born neurons suggest that these neurons make a unique and powerful contribution to hippocampal function.

  6. ABA Renewal Involves Enhancements in Both GluA2-Lacking AMPA Receptor Activity and GluA1 Phosphorylation in the Lateral Amygdala

    PubMed Central

    Park, Sungmo; Kim, Jihye; An, Bobae; Lee, Hyun Woo; Lee, Seungbok; Kim, Hyun; Lee, Justin C.; Lee, Sukwon; Choi, Sukwoo

    2014-01-01

    Fear renewal, the context-specific relapse of fear following fear extinction, is a leading animal model of post-traumatic stress disorders (PTSD) and fear-related disorders. Although fear extinction can diminish fear responses, this effect is restricted to the context where the extinction is carried out, and the extinguished fear strongly relapses when assessed in the original acquisition context (ABA renewal) or in a context distinct from the conditioning and extinction contexts (ABC renewal). We have previously identified Ser831 phosphorylation of GluA1 subunit in the lateral amygdala (LA) as a key molecular mechanism for ABC renewal. However, molecular mechanisms underlying ABA renewal remain to be elucidated. Here, we found that both the excitatory synaptic efficacy and GluA2-lacking AMPAR activity at thalamic input synapses onto the LA (T-LA synapses) were enhanced upon ABA renewal. GluA2-lacking AMPAR activity was also increased during low-threshold potentiation, a potential cellular substrate of renewal, at T-LA synapses. The microinjection of 1-naphtylacetyl-spermine (NASPM), a selective blocker of GluA2-lacking AMPARs, into the LA attenuated ABA renewal, suggesting a critical role of GluA2-lacking AMPARs in ABA renewal. We also found that Ser831 phosphorylation of GluA1 in the LA was increased upon ABA renewal. We developed a short peptide mimicking the Ser831-containing C-tail region of GluA1, which can be phosphorylated upon renewal (GluA1S); thus, the phosphorylated GluA1S may compete with Ser831-phosphorylated GluA1. This GluA1S peptide blocked the low-threshold potentiation when dialyzed into a recorded neuron. The microinjection of a cell-permeable form of GluA1S peptide into the LA attenuated ABA renewal. In support of the GluA1S experiments, a GluA1D peptide (in which the serine at 831 is replaced with a phosphomimetic amino acid, aspartate) attenuated ABA renewal when microinjected into the LA. These findings suggest that enhancements in both the GluA2-lacking AMPAR activity and GluA1 phosphorylation at Ser831 are required for ABA renewal. PMID:24925360

  7. ABA renewal involves enhancements in both GluA2-lacking AMPA receptor activity and GluA1 phosphorylation in the lateral amygdala.

    PubMed

    Park, Kyungjoon; Song, Beomjong; Kim, Jeongyeon; Hong, Ingie; Song, Sangho; Lee, Junuk; Park, Sungmo; Kim, Jihye; An, Bobae; Lee, Hyun Woo; Lee, Seungbok; Kim, Hyun; Lee, Justin C; Lee, Sukwon; Choi, Sukwoo

    2014-01-01

    Fear renewal, the context-specific relapse of fear following fear extinction, is a leading animal model of post-traumatic stress disorders (PTSD) and fear-related disorders. Although fear extinction can diminish fear responses, this effect is restricted to the context where the extinction is carried out, and the extinguished fear strongly relapses when assessed in the original acquisition context (ABA renewal) or in a context distinct from the conditioning and extinction contexts (ABC renewal). We have previously identified Ser831 phosphorylation of GluA1 subunit in the lateral amygdala (LA) as a key molecular mechanism for ABC renewal. However, molecular mechanisms underlying ABA renewal remain to be elucidated. Here, we found that both the excitatory synaptic efficacy and GluA2-lacking AMPAR activity at thalamic input synapses onto the LA (T-LA synapses) were enhanced upon ABA renewal. GluA2-lacking AMPAR activity was also increased during low-threshold potentiation, a potential cellular substrate of renewal, at T-LA synapses. The microinjection of 1-naphtylacetyl-spermine (NASPM), a selective blocker of GluA2-lacking AMPARs, into the LA attenuated ABA renewal, suggesting a critical role of GluA2-lacking AMPARs in ABA renewal. We also found that Ser831 phosphorylation of GluA1 in the LA was increased upon ABA renewal. We developed a short peptide mimicking the Ser831-containing C-tail region of GluA1, which can be phosphorylated upon renewal (GluA1S); thus, the phosphorylated GluA1S may compete with Ser831-phosphorylated GluA1. This GluA1S peptide blocked the low-threshold potentiation when dialyzed into a recorded neuron. The microinjection of a cell-permeable form of GluA1S peptide into the LA attenuated ABA renewal. In support of the GluA1S experiments, a GluA1D peptide (in which the serine at 831 is replaced with a phosphomimetic amino acid, aspartate) attenuated ABA renewal when microinjected into the LA. These findings suggest that enhancements in both the GluA2-lacking AMPAR activity and GluA1 phosphorylation at Ser831 are required for ABA renewal.

  8. Divergent effects of brain interleukin-1ß in mediating fever, lethargy, anorexia and conditioned fear memory.

    PubMed

    Baartman, Tamzyn L; Swanepoel, Tanya; Barrientos, Ruth M; Laburn, Helen P; Mitchell, Duncan; Harden, Lois M

    2017-05-01

    The influence of brain interleukin-1 (IL-1ß) on memory processes includes both detrimental and beneficial effects. To further explore the dynamics of brain IL-1ß in mediating learning and memory during acute sickness, we injected species-homologous rat IL-1ß (100ng/5μl) or vehicle (0.1% bovine serum albumin, 5μl) directly into the cisterna magna (i.c.m.) of male Sprague-Dawley rats. We measured, in parallel, body temperature, food intake, body mass, cage activity, as well as learning and memory using contextual fear conditioning. To investigate the effects of IL-1ß on learning and memory processes we used: (1) a retrograde experiment that involved injecting rats i.c.m. with IL-1ß immediately after training in the novel context, and (2) an anterograde experiment that involved injecting rats i.c.m. with IL-1ß two hours before training in the novel context. In addition, hypothalamic and hippocampal concentrations of IL-1β were measured at several time points following injection. Administration of IL-1ß induced fever, lethargy and anorexia for∼two-to-three days and increased the concentration of IL-1ß in the hippocampus and hypothalamus for at least eight hours. Training in the context immediately before IL-1ß administration (retrograde experiment), did not impair contextual and auditory fear memory. However, when training in the context occurred concurrently with elevated hippocampal IL-1ß levels, two hours after IL-1ß administration (anterograde experiment), contextual, but not auditory, fear memory was impaired. Our results show that there are instances where memory consolidation can occur concurrently with elevated levels of IL-1ß in the hippocampus, fever, anorexia and lethargy during acute short-term sickness. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Extinction of fear is facilitated by social presence: Synergism with prefrontal oxytocin.

    PubMed

    Brill-Maoz, Naama; Maroun, Mouna

    2016-04-01

    This study addressed the question of whether extinction in pairs would have a beneficial effect on extinction of fear conditioning. To that end, we established an experimental setting for extinction in which we trained animals to extinguish contextual fear memory in pairs. Taking advantage of the role of oxytocin (OT) in the medial prefrontal cortex (mPFC) in the mediation of memory extinction and social interaction, we also sought to study its role in social interaction-induced effects on extinction. Our results clearly show that the social presence of another animal in the extinction context facilitates extinction, and that this facilitation is mediated through mPFC-OT. Our results suggest that social interaction may be a positive regulator of fear inhibition, implying that social interaction may be an easy, accessible therapeutic tool for the treatment of fear-associated disorders. Copyright © 2016. Published by Elsevier Ltd.

  10. Absence of verbal recall or memory for symptom acquisition in fear and trauma exposure: a conceptual case for fear conditioning and learned nonuse in assessment and treatment.

    PubMed

    Seifert, A Ronald

    2012-01-01

    Absence of memory or verbal recall for symptom acquisition in fear and trauma exposure, as well as absence of successful coping behavior for life events, is associated with a number of diagnoses, including traumatic brain injury, posttraumatic stress disorder, pain, and anxiety. The difficulty with diagnosis and treatment planning based on the absence of recall, memory, and successful coping behavior is threefold: (1) these assessments do not distinguish between disruption of behavior and lack of capacity, (2) the absence of verbal recall and memory complicates cognitive-based treatment, and (3) a confounding issue is the same absent behavior can be observed at different times and contexts. While memory of the specific details of the initial traumatic event(s) may not be available to verbal report, the existence of time- and context-dependent relationships for the initial as well as subsequent experiences is arguable. The absence of memory or lack of verbal recall does not rule out measurable physiological bodily responses for the initial trauma(s), nor does it help to establish the effects of subsequent experiences for symptom expression. Also, the absence of memory must include the prospect of fear-based learning that does not require or involve the cortex. It is posited that the literatures of fear conditioning and learned nonuse provide complementary illustrations of how the time and context of the initial trauma(s) and subsequent experiences affect behavior, which is not dependent on the effected individual being able to provide a memory-based verbal report. The replicated clinical application demonstrates that, without scientific demonstration, neither neuroanatomy nor verbal report can be assumed sufficient to predict overt behavior or physiologic responses. For example, while commonly assumed to be predictively so, autonomic nervous system innervation is insufficient to define the unique stimulus- and context-dependent physiological responses of an individual. By recording simultaneous physiological responses to the controlled presentation of a context-dependent stimulus, the unique relationships of physiology and overt behaviors for the individual can be demonstrated. Using this process also allows more complex virtual reality or other in vivo stimulus assessments to be incorporated for the development of individually tailored assessments and therapeutic plans. Thus, with or without memory or verbal recall, the use of multiple time- and context-specific simultaneous physiological measures and overt behavior can guide clinical effort as well as serve to objectively assess the ongoing treatment and its outcome.

  11. Long-term stabilization of place cell remapping produced by a fearful experience

    PubMed Central

    Wang, Melissa E.; Wann, Ellen G.; Yuan, Robin K.; Ramos Álvarez, Manuel M.; Stead, Squire M.; Muzzio, Isabel A.

    2012-01-01

    Fear is an emotional response to danger that is highly conserved throughout evolution because it is critical for survival. Accordingly, episodic memory for fearful locations is widely studied using contextual fear conditioning, a hippocampus-dependent task (Kim and Fanselow, 1992; Phillips and LeDoux, 1992). The hippocampus has been implicated in episodic emotional memory and is thought to integrate emotional stimuli within a spatial framework. Physiological evidence supporting the role of the hippocampus in contextual fear indicates that pyramidal cells in this region, which fire in specific locations as an animal moves through an environment, shift their preferred firing locations shortly after the presentation of an aversive stimulus (Moita et al., 2004). However, the long-term physiological mechanisms through which emotional memories are encoded by the hippocampus are unknown. Here we show that during and directly after a fearful experience, new hippocampal representations are established and persist in the long term. We recorded from the same place cells in mouse hippocampal area CA1 over several days during predator odor contextual fear conditioning and found that a subset of cells changed their preferred firing locations in response to the fearful stimulus. Furthermore, the newly formed representations of the fearful context stabilized in the long term. Our results demonstrate that place cells respond to the presence of an aversive stimulus, modify their firing patterns during emotional learning, and stabilize a long-term spatial representation in response to a fearful encounter. The persistent nature of these representations may contribute to the enduring quality of emotional memories. PMID:23136419

  12. Extinction training during the reconsolidation window prevents recovery of fear.

    PubMed

    Schiller, Daniela; Raio, Candace M; Phelps, Elizabeth A

    2012-08-24

    Fear is maladaptive when it persists long after circumstances have become safe. It is therefore crucial to develop an approach that persistently prevents the return of fear. Pavlovian fear-conditioning paradigms are commonly employed to create a controlled, novel fear association in the laboratory. After pairing an innocuous stimulus (conditioned stimulus, CS) with an aversive outcome (unconditioned stimulus, US) we can elicit a fear response (conditioned response, or CR) by presenting just the stimulus alone. Once fear is acquired, it can be diminished using extinction training, whereby the conditioned stimulus is repeatedly presented without the aversive outcome until fear is no longer expressed. This inhibitory learning creates a new, safe representation for the CS, which competes for expression with the original fear memory. Although extinction is effective at inhibiting fear, it is not permanent. Fear can spontaneously recover with the passage of time. Exposure to stress or returning to the context of initial learning can also cause fear to resurface. Our protocol addresses the transient nature of extinction by targeting the reconsolidation window to modify emotional memory in a more permanent manner. Ample evidence suggests that reactivating a consolidated memory returns it to a labile state, during which the memory is again susceptible to interference. This window of opportunity appears to open shortly after reactivation and close approximately 6 hrs later, although this may vary depending on the strength and age of the memory. By allowing new information to incorporate into the original memory trace, this memory may be updated as it reconsolidates. Studies involving non-human animals have successfully blocked the expression of fear memory by introducing pharmacological manipulations within the reconsolidation window, however, most agents used are either toxic to humans or show equivocal effects when used in human studies. Our protocol addresses these challenges by offering an effective, yet non-invasive, behavioral manipulation that is safe for humans. By prompting fear memory retrieval prior to extinction, we essentially trigger the reconsolidation process, allowing new safety information (i.e., extinction) to be incorporated while the fear memory is still susceptible to interference. A recent study employing this behavioral manipulation in rats has successfully blocked fear memory using these temporal parameters. Additional studies in humans have demonstrated that introducing new information after the retrieval of previously consolidated motor, episodic, or declarative memories leads to interference with the original memory trace. We outline below a novel protocol used to block fear recovery in humans.

  13. Role of ventrolateral periaqueductal gray neurons in the behavioral and cardiovascular responses to contextual conditioned fear and poststress recovery.

    PubMed

    Walker, P; Carrive, P

    2003-01-01

    We have previously shown that conditioned fear to context increases Fos expression in the caudal ventrolateral region of the periaqueductal gray in the rat. To understand the reason for this activation and its role in the expression of the contextual fear response, the ventrolateral periaqueductal gray was temporarily blocked with bilateral microinjections (0.4 microl) of the GABA agonist muscimol (0.2 mM) or the glutamate antagonist kynurenic acid (0.1 M). Cardiovascular changes and activity were recorded by radio-telemetry and the microinjections were made immediately before testing the conditioned response in the aversive context. Muscimol and kynurenic acid had the same effects: when compared to saline controls, freezing immobility and ultrasonic vocalizations were reduced and replaced by marked locomotor activity, and the increase in heart rate was enhanced; however, the increase in arterial blood pressure remained the same. Interesting changes were also observed when animals were returned to the safe context of their home box after fear (recovery). Basically, the recovery response was either prevented or delayed: instead of returning to resting immobility, the rats remained agitated in their home box with a moderately elevated activity, heart rate and blood pressure. However, the effect of ventrolateral periaqueductal gray blockade on heart rate, arterial pressure and activity did not appear to be specific to the fear response or its recovery because they were also observed in animals returned to the safe context of their home box immediately after injection. The later response was also a recovery response from the milder stress of handling and the injection procedure.We discuss the results by arguing that the ventrolateral periaqueductal gray is involved in the immobility component of both the fear response and poststress recovery responses. To explain our interpretation we consider the findings in relation to the classic descending defence-arousal system and the hyporeactive-hypotensive immobility pattern that has been attributed to the ventrolateral periaqueductal gray. We propose that there is a dual activation of the defence-arousal system and of the ventrolateral periaqueductal gray during fear, with the ventrolateral periaqueductal gray acting as a brake on the defence-arousal system. The role of this brake is to impose immobility and hold off active defence responses such as fight and flight. The result of this combination of arousal and immobility is a hyperreactive freezing immobility associated with ultrasonic vocalizations, and a pressor response accompanied with a slow rise in heart rate. Basically, the animal is tense and ready for action but temporarily immobilised. The ventrolateral periaqueductal gray also acts to impose immobility during recovery; however, this is without coactivation of the defence-arousal system. The result is a return to resting immobility, associated with a return to baseline blood pressure and heart rate. This is an active process that insures a faster and complete return to rest. We conclude that the ventrolateral periaqueductal gray is an immobility center involved not only in the fear response but also in poststress recovery responses.

  14. Sex Differences in the Generalization of Fear as a Function of Retention Intervals

    ERIC Educational Resources Information Center

    Lynch, Joseph, III; Cullen, Patrick K.; Jasnow, Aaron M.; Riccio, David C.

    2013-01-01

    In previous studies using male rodents, context change disrupted a fear response at a short, but not a long, retention interval. Here, we examined the effects of context changes on fear responses as a function of time in male and female rats. Males displayed context discrimination at all intervals, whereas females exhibited generalization by 5 d.…

  15. How Context Influences Our Perception of Emotional Faces: A Behavioral Study on the Kuleshov Effect.

    PubMed

    Calbi, Marta; Heimann, Katrin; Barratt, Daniel; Siri, Francesca; Umiltà, Maria A; Gallese, Vittorio

    2017-01-01

    Facial expressions are of major importance in understanding the mental and emotional states of others. So far, most studies on the perception and comprehension of emotions have used isolated facial expressions as stimuli; for example, photographs of actors displaying facial expressions corresponding to one of the so called 'basic emotions.' However, our real experience during social interactions is different: facial expressions of emotion are mostly perceived in a wider context, constituted by body language, the surrounding environment, and our beliefs and expectations. Already in the early twentieth century, the Russian filmmaker Lev Kuleshov argued that such context, established by intermediate shots of strong emotional content, could significantly change our interpretation of facial expressions in film. Prior experiments have shown behavioral effects pointing in this direction, but have only used static images as stimuli. Our study used a more ecological design with participants watching film sequences of neutral faces, crosscut with scenes of strong emotional content (evoking happiness or fear, plus neutral stimuli as a baseline condition). The task was to rate the emotion displayed by a target person's face in terms of valence, arousal, and category. Results clearly demonstrated the presence of a significant effect in terms of both valence and arousal in the fear condition only. Moreover, participants tended to categorize the target person's neutral facial expression choosing the emotion category congruent with the preceding context. Our results highlight the context-sensitivity of emotions and the importance of studying them under ecologically valid conditions.

  16. Allopregnanolone in the bed nucleus of the stria terminalis modulates contextual fear in rats

    PubMed Central

    Nagaya, Naomi; Acca, Gillian M.; Maren, Stephen

    2015-01-01

    Trauma- and stress-related disorders are among the most common types of mental illness affecting the U.S. population. For many of these disorders, there is a striking sex difference in lifetime prevalence; for instance, women are twice as likely as men to be affected by posttraumatic stress disorder (PTSD). Gonadal steroids and their metabolites have been implicated in sex differences in fear and anxiety. One example, allopregnanolone (ALLO), is a neuroactive metabolite of progesterone that allosterically enhances GABAA receptor activity and has anxiolytic effects. Like other ovarian hormones, it not only occurs at different levels in males and females but also fluctuates over the female reproductive cycle. One brain structure that may be involved in neuroactive steroid regulation of fear and anxiety is the bed nucleus of the stria terminalis (BNST). To explore this question, we examined the consequences of augmenting or reducing ALLO activity in the BNST on the expression of Pavlovian fear conditioning in rats. In Experiment 1, intra-BNST infusions of ALLO in male rats suppressed freezing behavior (a fear response) to the conditioned context, but did not influence freezing to a discrete tone conditioned stimulus (CS). In Experiment 2, intra-BNST infusion of either finasteride (FIN), an inhibitor of ALLO synthesis, or 17-phenyl-(3α,5α)-androst-16-en-3-ol, an ALLO antagonist, in female rats enhanced contextual freezing; neither treatment affected freezing to the tone CS. These findings support a role for ALLO in modulating contextual fear via the BNST and suggest that sex differences in fear and anxiety could arise from differential steroid regulation of BNST function. The susceptibility of women to disorders such as PTSD may be linked to cyclic declines in neuroactive steroid activity within fear circuitry. PMID:26300750

  17. Allopregnanolone in the bed nucleus of the stria terminalis modulates contextual fear in rats.

    PubMed

    Nagaya, Naomi; Acca, Gillian M; Maren, Stephen

    2015-01-01

    Trauma- and stress-related disorders are among the most common types of mental illness affecting the U.S. population. For many of these disorders, there is a striking sex difference in lifetime prevalence; for instance, women are twice as likely as men to be affected by posttraumatic stress disorder (PTSD). Gonadal steroids and their metabolites have been implicated in sex differences in fear and anxiety. One example, allopregnanolone (ALLO), is a neuroactive metabolite of progesterone that allosterically enhances GABAA receptor activity and has anxiolytic effects. Like other ovarian hormones, it not only occurs at different levels in males and females but also fluctuates over the female reproductive cycle. One brain structure that may be involved in neuroactive steroid regulation of fear and anxiety is the bed nucleus of the stria terminalis (BNST). To explore this question, we examined the consequences of augmenting or reducing ALLO activity in the BNST on the expression of Pavlovian fear conditioning in rats. In Experiment 1, intra-BNST infusions of ALLO in male rats suppressed freezing behavior (a fear response) to the conditioned context, but did not influence freezing to a discrete tone conditioned stimulus (CS). In Experiment 2, intra-BNST infusion of either finasteride (FIN), an inhibitor of ALLO synthesis, or 17-phenyl-(3α,5α)-androst-16-en-3-ol, an ALLO antagonist, in female rats enhanced contextual freezing; neither treatment affected freezing to the tone CS. These findings support a role for ALLO in modulating contextual fear via the BNST and suggest that sex differences in fear and anxiety could arise from differential steroid regulation of BNST function. The susceptibility of women to disorders such as PTSD may be linked to cyclic declines in neuroactive steroid activity within fear circuitry.

  18. Hippocampal Mek/Erk signaling mediates extinction of contextual freezing behavior.

    PubMed

    Fischer, Andre; Radulovic, Marko; Schrick, Christina; Sananbenesi, Farahnaz; Godovac-Zimmermann, Jasminka; Radulovic, Jelena

    2007-01-01

    Fear memories elicit multiple behavioral responses, encompassing avoidance, or behavioral inhibition in response to threatening contexts. Context-specific freezing, reflecting fear-induced behavioral inhibition, has been proposed as one of the main risks factors for the development of anxiety disorders. We attempted to define the key hippocampal mediators of extinction in a mouse model of context-dependent freezing. Nine-week-old male C57BL/6J mice were trained and tested for contextual fear conditioning and extinction. Freezing behavior scored by unbiased sampling, was used as an index of fear. Proteomic, immunoblot, and immunohistochemical approaches were employed to identify, verify, and analyze the alterations of the hippocampal extracellular signal-regulated kinases 1 and 2 (Erk-1/2). Targeted pharmacological inhibition of the Erk-1/2 activating kinase, the mitogen activated and extracellular signal-regulated kinase (Mek), served to establish the role of Mek/Erk signaling in extinction. When compared to acquisition, extinction of contextual freezing triggered a rapid activation of Erk-1/2 showing a distinctive time-course, nuclear localization, and subcellular isoform distribution. These differences suggested that the upstream regulation and downstream effects of this pathway might be specific for each process. Dorsohippocampal injections of the Mek inhibitors U0126 (0.5 microg/site) and PD98059 (1.5 microg/site) immediately after the nonreinforced trials prevented Erk-1/2 activation and significantly impaired extinction. This effect was dissociable from potential actions on memory retrieval or reconsolidation. On the basis of these findings, we propose that hippocampal Mek/Erk signaling might serve as one of the key mediators of contextual fear extinction.

  19. Reinstatement of an extinguished fear conditioned response in infant rats.

    PubMed

    Revillo, Damian A; Trebucq, Gastón; Paglini, Maria G; Arias, Carlos

    2016-01-01

    Although it is currently accepted that the extinction effect reflects new context-dependent learning, this is not so clear during infancy, because some studies did not find recovery of the extinguished conditioned response (CR) in rodents during this ontogenetic stage. However, recent studies have shown the return of an extinguished CR in infant rats. The present study analyzes the possibility of recovering an extinguished CR with a reinstatement procedure in a fear conditioning paradigm, on PD17 (Experiments 1-4) and on PD24 (Experiment 5), while exploring the role of the olfactory content of the context upon the reinstatement effect during the preweanling period. Preweanling rats expressed a previously extinguished CR after a single experience with an unsignaled US. Furthermore, this result was only found when subjects were trained and tested in contexts that included an explicit odor, but not in standard experimental cages. Finally, Experiment 5 demonstrated the reinstatement effect on PD24 in a standard context. These results support the notion that extinction during infancy has the same characteristics as those described for extinction that occurs in adulthood. Instead of postulating a different mechanism for extinction during infancy, we propose that it may be more accurate to view the problem in terms of the variables that may differentially modulate the extinction effect according to the stages of ontogeny. © 2015 Revillo et al.; Published by Cold Spring Harbor Laboratory Press.

  20. Harnessing Reconsolidation to Weaken Fear and Appetitive Memories: A Meta-Analysis of Post-Retrieval Extinction Effects

    PubMed Central

    Kredlow, M. Alexandra; Unger, Leslie D.; Otto, Michael W.

    2015-01-01

    A new understanding of the mechanisms of memory retrieval and reconsolidation holds the potential for improving exposure-based treatments. Basic research indicates that following fear extinction, safety and fear memories may compete, raising the possibility of return of fear. One possible solution is to modify original fear memories through reconsolidation interference, reducing the likelihood of return of fear. Post-retrieval extinction is a behavioral method of reconsolidation interference that has been explored in the context of conditioned fear and appetitive memory paradigms. This meta-analysis examines the magnitude of post-retrieval extinction effects and potential moderators of these effects. A PubMed and PsycINFO search was conducted through June 2014. Sixty-three comparisons examining post-retrieval extinction for preventing the return of fear or appetitive responses in animals or humans met inclusion criteria. Post-retrieval extinction demonstrated a significant, small-to-moderate effect (g = .40) for further reducing the return of fear in humans and a significant, large effect (g = 0.89) for preventing the return of appetitive responses in animals relative to standard extinction. For fear outcomes in animals, effects were small (g = 0.21) and non-significant, but moderated by the number of animals housed together and the duration of time between post-retrieval extinction/extinction and test. Across paradigms, these findings support the efficacy of this pre-clinical strategy for preventing the return of conditioned fear and appetitive responses. Overall, findings to date support the continued translation of post-retrieval extinction research to human and clinical applications, with particular application to the treatment of anxiety, traumatic stress, and substance use disorders. PMID:26689086

  1. Murine GRPR and Stathmin Control in Opposite Directions both Cued Fear Extinction and Neural Activities of the Amygdala and Prefrontal Cortex

    PubMed Central

    Martel, Guillaume; Hevi, Charles; Wong, Alexandra; Zushida, Ko; Uchida, Shusaku; Shumyatsky, Gleb P.

    2012-01-01

    Extinction is an integral part of normal healthy fear responses, while it is compromised in several fear-related mental conditions in humans, such as post-traumatic stress disorder (PTSD). Although much research has recently been focused on fear extinction, its molecular and cellular underpinnings are still unclear. The development of animal models for extinction will greatly enhance our approaches to studying its neural circuits and the mechanisms involved. Here, we describe two gene-knockout mouse lines, one with impaired and another with enhanced extinction of learned fear. These mutant mice are based on fear memory-related genes, stathmin and gastrin-releasing peptide receptor (GRPR). Remarkably, both mutant lines showed changes in fear extinction to the cue but not to the context. We performed indirect imaging of neuronal activity on the second day of cued extinction, using immediate-early gene c-Fos. GRPR knockout mice extinguished slower (impaired extinction) than wildtype mice, which was accompanied by an increase in c-Fos activity in the basolateral amygdala and a decrease in the prefrontal cortex. By contrast, stathmin knockout mice extinguished faster (enhanced extinction) and showed a decrease in c-Fos activity in the basolateral amygdala and an increase in the prefrontal cortex. At the same time, c-Fos activity in the dentate gyrus was increased in both mutant lines. These experiments provide genetic evidence that the balance between neuronal activities of the amygdala and prefrontal cortex defines an impairment or facilitation of extinction to the cue while the hippocampus is involved in the context-specificity of extinction. PMID:22312434

  2. Murine GRPR and stathmin control in opposite directions both cued fear extinction and neural activities of the amygdala and prefrontal cortex.

    PubMed

    Martel, Guillaume; Hevi, Charles; Wong, Alexandra; Zushida, Ko; Uchida, Shusaku; Shumyatsky, Gleb P

    2012-01-01

    Extinction is an integral part of normal healthy fear responses, while it is compromised in several fear-related mental conditions in humans, such as post-traumatic stress disorder (PTSD). Although much research has recently been focused on fear extinction, its molecular and cellular underpinnings are still unclear. The development of animal models for extinction will greatly enhance our approaches to studying its neural circuits and the mechanisms involved. Here, we describe two gene-knockout mouse lines, one with impaired and another with enhanced extinction of learned fear. These mutant mice are based on fear memory-related genes, stathmin and gastrin-releasing peptide receptor (GRPR). Remarkably, both mutant lines showed changes in fear extinction to the cue but not to the context. We performed indirect imaging of neuronal activity on the second day of cued extinction, using immediate-early gene c-Fos. GRPR knockout mice extinguished slower (impaired extinction) than wildtype mice, which was accompanied by an increase in c-Fos activity in the basolateral amygdala and a decrease in the prefrontal cortex. By contrast, stathmin knockout mice extinguished faster (enhanced extinction) and showed a decrease in c-Fos activity in the basolateral amygdala and an increase in the prefrontal cortex. At the same time, c-Fos activity in the dentate gyrus was increased in both mutant lines. These experiments provide genetic evidence that the balance between neuronal activities of the amygdala and prefrontal cortex defines an impairment or facilitation of extinction to the cue while the hippocampus is involved in the context-specificity of extinction.

  3. The Effect of Neighborhood Recorded Crime on Fear: Does Neighborhood Social Context Matter?

    PubMed

    Pearson, Amber L; Breetzke, Gregory; Ivory, Vivienne

    2015-09-01

    A number of individual and neighborhood-level factors may influence the relationship between recorded crime in one's neighborhood and fear of crime. Understanding these factors may assist in reducing fear, which has been associated with poorer physical and mental health. The aim of this study was to evaluate whether the effect of recorded crime rates on fear differs based on the neighborhood social context (social fragmentation) using hierarchical regression modelling, with separate analyses by crime type. Recorded crimes (2008-2010) and national (New Zealand) survey data were used. Higher crime in a neighborhood was associated with higher fear of crime, with only small effect size differences in feelings of fear by recorded type of crime. However, when stratified, the associations between violent and drug/alcohol crimes and fear of crime were larger for those living in highly fragmented neighborhoods compared with less fragmented neighborhoods. Efforts to alleviate fear of crime should focus on the broader neighborhood social context in which these feelings are espoused.

  4. Investigation of a central nucleus of the amygdala/dorsal raphe nucleus serotonergic circuit implicated in fear-potentiated startle

    PubMed Central

    Spannuth, Benjamin M.; Hale, Matthew W.; Evans, Andrew K.; Lukkes, Jodi L.; Campeau, Serge; Lowry, Christopher A.

    2011-01-01

    Serotonergic systems are thought to play an important role in control of motor activity and emotional states. We used a fear-potentiated startle paradigm to investigate the effects of a motor-eliciting stimulus in the presence or absence of induction of an acute fear state on serotonergic neurons in the dorsal raphe nucleus (DR) and cells in subdivisions of the central amygdaloid nucleus (CE), a structure that plays an important role in fear responses, using induction of the protein product of the immediate-early gene, c-fos. In Experiment 1 we investigated the effects of fear conditioning training, by training rats to associate a light cue (conditioned stimulus, CS; 1000 lx, 2 sec) with foot shock (0.5 s, 0.5 mA) in a single session. In Experiment 2 rats were given two training sessions identical to Experiment 1 on days 1 and 2, then tested in one of four conditions on day 3: 1) placement in the training context without exposure to either the CS or acoustic startle (AS), 2) exposure to 10 trials of the 2 s CS, 3) exposure to 40 110 dB AS trials, or 4) exposure to 40 110 dB AS trials with 10 of the trials preceded by and co-terminating with the CS. All treatments were conducted during a 20 min session. Fear conditioning training, by itself, increased c-Fos expression in multiple subdivisions of the CE and throughout the DR. In contrast, fear-potentiated startle selectively increased c-Fos expression in the medial subdivision of the CE and in serotonergic neurons in the dorsal part of the dorsal raphe nucleus (DRD). These data are consistent with previous studies demonstrating that fear-related stimuli selectively activate DRD serotonergic neurons. Further studies of this mesolimbocortical serotonergic system could have important implications for understanding mechanisms underlying vulnerability to stress-related psychiatric disorders, including anxiety and affective disorders. PMID:21277950

  5. Fear of failure and student athletes' interpersonal antisocial behaviour in education and sport.

    PubMed

    Sagar, Sam S; Boardley, Ian D; Kavussanu, Maria

    2011-09-01

    BACKGROUND. The link between fear of failure and students' antisocial behaviour has received scant research attention despite associations between fear of failure, hostility, and aggression. Also, the effect of sport experience on antisocial behaviour has not been considered outside of the sport context in adult populations. Further, to date, sex differences have not been considered in fear of failure research. AIMS. To examine whether (a) fear of failure and sport experience predict antisocial behaviour in the university and sport contexts in student athletes, and whether this prediction is the same in males and females; and (b) sex differences exist in antisocial behaviour and fear of failure. SAMPLE. British university student athletes (n= 176 male; n= 155 female; M(age) = 20.11 years). METHOD. Participants completed questionnaires assessing fear of failure, sport experience, and antisocial behaviour in both contexts. RESULTS. (a) Fear of failure and sport experience positively predicted antisocial behaviour in university and sport and the strength of these predictions did not differ between males and females; (b) females reported higher levels of fear of devaluing one's self-estimate than males whereas males reported higher levels of fear of important others losing interest than females. Males engaged more frequently than females in antisocial behaviour in both contexts. CONCLUSIONS. Fear of failure and sport experience may be important considerations when trying to understand antisocial behaviour in student athletes in education and sport; moreover, the potential effect of overall fear of failure and of sport experience on this frequency does not differ by sex. The findings make an important contribution to the fear of failure and morality literatures. ©2010 The British Psychological Society.

  6. Cat odor causes long-lasting contextual fear conditioning and increased pituitary-adrenal activation, without modifying anxiety.

    PubMed

    Muñoz-Abellán, Cristina; Daviu, Nuria; Rabasa, Cristina; Nadal, Roser; Armario, Antonio

    2009-10-01

    A single exposure to a cat or cat odors has been reported by some groups to induce contextual and auditory fear conditioning and long-lasting changes in anxiety-like behaviour, but there is no evidence for parallel changes in biological stress markers. In the present study we demonstrated in male rats that exposure to a novel environment containing a cloth impregnated with cat fur odor resulted in avoidance of the odor, lower levels of activity and higher pituitary-adrenal (PA) response as compared to those exposed to the novel environment containing a clean cloth, suggesting increased levels of stress in the former animals. When re-exposed 9 days later to the same environment with a clean cloth, previously cat fur exposed rats again showed avoidance of the cloth area and lower levels of activity, suggesting development of contextual fear conditioning, which again was associated with a higher PA activation. In contrast, unaltered both anxiety-like behaviour and PA responsiveness to an elevated plus-maze were found 7 days after cat odor exposure. It is concluded that: (i) PA activation is able to reflect both the stressful properties of cat fur odor and odor-induced contextual fear conditioning; (ii) development of cat odor-induced contextual fear conditioning is independent of the induction of long-lasting changes in anxiety-like behaviour; and (iii) greater PA activation during exposure to the odor context is not explained by non-specific sensitization of the PA axis caused by previous exposure to cat fur odor.

  7. Validating a human model for anxiety using startle potentiated by cue and context: the effects of alprazolam, pregabalin, and diphenhydramine

    PubMed Central

    Mol, N.; Kenemans, J. L.; Prinssen, E. P.; Niklson, I.; Xia-Chen, C.; Broeyer, F.; van Gerven, J.

    2009-01-01

    Background Fear-potentiated startle has been suggested as a translational model for evaluating efficacy of anxiolytic compounds in humans. Several known anxiolytic compounds have been tested as well as several putative anxiolytics. Because results of these studies have been equivocal, the aim of the present study was to examine another pharmacological permutation of the human potentiated startle model by comparing two anxiolytic agents to a non-anxiolytic sedative and placebo. Methods Twenty healthy volunteers participated in a double-blind, placebo-controlled, cross-over study with four sessions in which they received single doses of the anxiolytics alprazolam (1 mg) and pregabalin (200 mg), as well as diphenhydramine (50 mg) as a non-anxiolytic sedative control and placebo. The design included a cued shock condition that presumably evokes fear and an unpredictable shock context condition presumably evoking anxiety. Results None of the treatments reliably reduced either fear- or anxiety-potentiated startle. Alprazolam and diphenhydramine reduced overall baseline startle. Alprazolam was found to only affect contextual anxiety in a statistical significant way after two subjects who failed to show a contextual anxiety effect in the placebo condition were excluded from the analysis. Pregabalin did not significantly affect any of the physiological measures. Discussion The negative findings from this study are discussed in terms of methodological differences between designs and in variability of startle both between and within study participants. Conclusion Even though fear-potentiated startle may be used to translate preclinical evidence to human populations, methodological issues still hamper the application of this model to early screening of putative anxiolytic drugs. PMID:19415242

  8. Sex differences in conditioned stimulus discrimination during context-dependent fear learning and its retrieval in humans: the role of biological sex, contraceptives and menstrual cycle phases

    PubMed Central

    Lonsdorf, Tina B.; Haaker, Jan; Schümann, Dirk; Sommer, Tobias; Bayer, Janine; Brassen, Stefanie; Bunzeck, Nico; Gamer, Matthias; Kalisch, Raffael

    2015-01-01

    Background Anxiety disorders are more prevalent in women than in men. Despite this sexual dimorphism, most experimental studies are conducted in male participants, and studies focusing on sex differences are sparse. In addition, the role of hormonal contraceptives and menstrual cycle phase in fear conditioning and extinction processes remain largely unknown. Methods We investigated sex differences in context-dependent fear acquisition and extinction (day 1) and their retrieval/expression (day 2). Skin conductance responses (SCRs), fear and unconditioned stimulus expectancy ratings were obtained. Results We included 377 individuals (261 women) in our study. Robust sex differences were observed in all dependent measures. Women generally displayed higher subjective ratings but smaller SCRs than men and showed reduced excitatory/inhibitory conditioned stimulus (CS+/CS−) discrimination in all dependent measures. Furthermore, women using hormonal contraceptives showed reduced SCR CS discrimination on day 2 than men and free-cycling women, while menstrual cycle phase had no effect. Limitations Possible limitations include the simultaneous testing of up to 4 participants in cubicles, which might have introduced a social component, and not assessing postexperimental contingency awareness. Conclusion The response pattern in women shows striking similarity to previously reported sex differences in patients with anxiety. Our results suggest that pronounced deficits in associative discrimination learning and subjective expression of safety information (CS− responses) might underlie higher prevalence and higher symptom rates seen in women with anxiety disorders. The data call for consideration of biological sex and hormonal contraceptive use in future studies and may suggest that targeting inhibitory learning during therapy might aid precision medicine. PMID:26107163

  9. Schematic drawings of facial expressions for emotion recognition and interpretation by preschool-aged children.

    PubMed

    MacDonald, P M; Kirkpatrick, S W; Sullivan, L A

    1996-11-01

    Schematic drawings of facial expressions were evaluated as a possible assessment tool for research on emotion recognition and interpretation involving young children. A subset of Ekman and Friesen's (1976) Pictures of Facial Affect was used as the standard for comparison. Preschool children (N = 138) were shown drawing and photographs in two context conditions for six emotions (anger, disgust, fear, happiness, sadness, and surprise). The overall correlation between accuracy for the photographs and drawings was .677. A significant difference was found for the stimulus condition (photographs vs. drawings) but not for the administration condition (label-based vs. context-based). Children were significantly more accurate in interpreting drawings than photographs and tended to be more accurate in identifying facial expressions in the label-based administration condition for both photographs and drawings than in the context-based administration condition.

  10. Context-Specific Freezing and Associated Physiological Reactivity as a Dysregulated Fear Response

    ERIC Educational Resources Information Center

    Buss, Kristin A.; Davidson, Richard J.; Kalin, Ned H.; Goldsmith, H. Hill

    2004-01-01

    The putative association between fear-related behaviors and peripheral sympathetic and neuroendocrine reactivity has not been replicated consistently. This inconsistency was addressed in a reexamination of the characterization of children with extreme fearful reactions by focusing on the match between distress behaviors and the eliciting context.…

  11. Heparan Sulfates Support Pyramidal Cell Excitability, Synaptic Plasticity, and Context Discrimination

    PubMed Central

    Minge, Daniel; Senkov, Oleg; Kaushik, Rahul; Herde, Michel K.; Tikhobrazova, Olga; Wulff, Andreas B.; Mironov, Andrey; van Kuppevelt, Toin H.; Oosterhof, Arie; Kochlamazashvili, Gaga

    2017-01-01

    Abstract Heparan sulfate (HS) proteoglycans represent a major component of the extracellular matrix and are critical for brain development. However, their function in the mature brain remains to be characterized. Here, acute enzymatic digestion of HS side chains was used to uncover how HSs support hippocampal function in vitro and in vivo. We found that long-term potentiation (LTP) of synaptic transmission at CA3–CA1 Schaffer collateral synapses was impaired after removal of highly sulfated HSs with heparinase 1. This reduction was associated with decreased Ca2+ influx during LTP induction, which was the consequence of a reduced excitability of CA1 pyramidal neurons. At the subcellular level, heparinase treatment resulted in reorganization of the distal axon initial segment, as detected by a reduction in ankyrin G expression. In vivo, digestion of HSs impaired context discrimination in a fear conditioning paradigm and oscillatory network activity in the low theta band after fear conditioning. Thus, HSs maintain neuronal excitability and, as a consequence, support synaptic plasticity and learning. PMID:28119345

  12. How Context Influences Our Perception of Emotional Faces: A Behavioral Study on the Kuleshov Effect

    PubMed Central

    Calbi, Marta; Heimann, Katrin; Barratt, Daniel; Siri, Francesca; Umiltà, Maria A.; Gallese, Vittorio

    2017-01-01

    Facial expressions are of major importance in understanding the mental and emotional states of others. So far, most studies on the perception and comprehension of emotions have used isolated facial expressions as stimuli; for example, photographs of actors displaying facial expressions corresponding to one of the so called ‘basic emotions.’ However, our real experience during social interactions is different: facial expressions of emotion are mostly perceived in a wider context, constituted by body language, the surrounding environment, and our beliefs and expectations. Already in the early twentieth century, the Russian filmmaker Lev Kuleshov argued that such context, established by intermediate shots of strong emotional content, could significantly change our interpretation of facial expressions in film. Prior experiments have shown behavioral effects pointing in this direction, but have only used static images as stimuli. Our study used a more ecological design with participants watching film sequences of neutral faces, crosscut with scenes of strong emotional content (evoking happiness or fear, plus neutral stimuli as a baseline condition). The task was to rate the emotion displayed by a target person’s face in terms of valence, arousal, and category. Results clearly demonstrated the presence of a significant effect in terms of both valence and arousal in the fear condition only. Moreover, participants tended to categorize the target person’s neutral facial expression choosing the emotion category congruent with the preceding context. Our results highlight the context-sensitivity of emotions and the importance of studying them under ecologically valid conditions. PMID:29046652

  13. Acute Ethanol Has Biphasic Effects on Short- and Long-Term Memory in Both Foreground and Background Contextual Fear Conditioning in C57BL/6 Mice

    PubMed Central

    Gulick, Danielle; Gould, Thomas J.

    2009-01-01

    Background Ethanol is a frequently abused, addictive drug that impairs cognitive function. Ethanol may disrupt cognitive processes by altering attention, short-term memory, and/ or long-term memory. Interestingly, some research suggests that ethanol may enhance cognitive processes at lower doses. The current research examined the dose-dependent effects of ethanol on contextual and cued fear conditioning. In addition, the present studies assessed the importance of stimulus salience in the effects of ethanol and directly compared the effects of ethanol on short-term and long-term memory. Methods This study employed both foreground and background fear conditioning, which differ in the salience of contextual stimuli, and tested conditioning at 4 hours, 24 hours, and 1 week in order to assess the effects of ethanol on short-term and long-term memory. Foreground conditioning consisted of 2 presentations of a foot shock unconditioned stimulus (US) (2 seconds, 0.57 mA). Background conditioning consisted of 2 auditory conditioned stimulus (30 seconds, 85 dB white noise)–foot shock (US; 2 seconds, 0.57 mA) pairings. Results For both foreground and background conditioning, ethanol enhanced short-term and long-term memory for contextual and cued conditioning at a low dose (0.25 g/kg) and impaired short-term and long-term memory for contextual and cued conditioning at a high dose (1.0 g/kg). Conclusions These results suggest that ethanol has long-lasting, biphasic effects on short-term and long-term memory for contextual and cued conditioning. Furthermore, the effects of ethanol on contextual fear conditioning are independent of the salience of the context. PMID:17760787

  14. "Incidental fear cues increase monetary loss aversion": Correction to Schulreich, Gerhardt, and Heekeren (2016).

    PubMed

    2016-12-01

    Reports an error in "Incidental fear cues increase monetary loss aversion" by Stefan Schulreich, Holger Gerhardt and Hauke R. Heekeren ( Emotion , 2016[Apr], Vol 16[3], 402-412). In the current article, there was an error in the Study 2 portion of the article. The fourth paragraph of the Results section should read as follows: Performing the same analyses as in Study 1, we found an effect of incidental fear cues on decision behavior. Participants accepted fewer gambles in the fearful-face condition (32.77%) than in the neutral-face condition (33.96%), with Z = -2.187, p = .027, d = -0.998 in the Wilcoxon signed-ranks test and β = 0.012, SE = 0.0053, F(1, 21) = 4.434, p = .047, partial η² = .174 in the linear regression. This suggests increased risk aversion in the fearful-face condition. Concerning personality, however, there were no significant between-subjects effects or between-within interaction effects (all ps = .349). (The following abstract of the original article appeared in record 2015-52358-001.) In many everyday decisions, people exhibit loss aversion-a greater sensitivity to losses relative to gains of equal size. Loss aversion is thought to be (at least partly) mediated by emotional-in particular, fear-related-processes. Decision research has shown that even incidental emotions, which are unrelated to the decision at hand, can influence decision making. The effect of incidental fear on loss aversion, however, is thus far unclear. In two studies, we experimentally investigated how incidental fear cues, presented during (Study 1) or before (Study 2) choices to accept or reject mixed gambles over real monetary stakes, influence monetary loss aversion. We find that the presentation of fearful faces, relative to the presentation of neutral faces, increased risk aversion-an effect that could be attributed to increased loss aversion. The size of this effect was moderated by psychopathic personality: Fearless dominance, in particular its interpersonal facet, but not self-centered impulsivity, attenuated the effect of incidental fear cues on loss aversion, consistent with reduced fear reactivity. Together, these results highlight the sensitivity of loss aversion to the affective context. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  15. Toddlers’ dysregulated fear predicts delta-beta coupling during preschool

    PubMed Central

    Phelps, Randi A.; Brooker, Rebecca J.; Buss, Kristin A.

    2015-01-01

    Dysregulated fear, or the persistence of high levels of fear in low-threat contexts, is an early risk factor for the development of anxiety symptoms. Previous work has suggested both propensities for over-control and under-control of fearfulness as risk factors for anxiety problems, each of which may be relevant to observations of dysregulated fear. Given difficulty disentangling over-control and under-control through traditional behavioral measures, we used delta-beta coupling to begin to understand the degree to which dysregulated fear may reflect propensities for over- or under-control. We found that toddlers who showed high levels of dysregulated fear evidenced greater delta-beta coupling at frontal and central electrode sites as preschoolers relative to children who were low in dysregulated fear. Importantly, these differences were not observed when comparisons were made based on fear levels in high threat contexts. Results suggest dysregulated fear may involve tendencies toward over-control at the neural level. PMID:26624221

  16. Hippocampal neurogenesis enhancers promote forgetting of remote fear memory after hippocampal reactivation by retrieval

    PubMed Central

    Ishikawa, Rie; Fukushima, Hotaka; Frankland, Paul W; Kida, Satoshi

    2016-01-01

    Forgetting of recent fear memory is promoted by treatment with memantine (MEM), which increases hippocampal neurogenesis. The approaches for treatment of post-traumatic stress disorder (PTSD) using rodent models have focused on the extinction and reconsolidation of recent, but not remote, memories. Here we show that, following prolonged re-exposure to the conditioning context, enhancers of hippocampal neurogenesis, including MEM, promote forgetting of remote contextual fear memory. However, these interventions are ineffective following shorter re-exposures. Importantly, we find that long, but not short re-exposures activate gene expression in the hippocampus and induce hippocampus-dependent reconsolidation of remote contextual fear memory. Furthermore, remote memory retrieval becomes hippocampus-dependent after the long-time recall, suggesting that remote fear memory returns to a hippocampus dependent state after the long-time recall, thereby allowing enhanced forgetting by increased hippocampal neurogenesis. Forgetting of traumatic memory may contribute to the development of PTSD treatment. DOI: http://dx.doi.org/10.7554/eLife.17464.001 PMID:27669409

  17. Memory Retrieval Re-Activates Erk1/2 Signaling in the Same Set of CA1 Neurons Recruited During Conditioning.

    PubMed

    Zamorano, Cristina; Fernández-Albert, Jordi; Storm, Daniel R; Carné, Xavier; Sindreu, Carlos

    2018-02-01

    The hippocampus enables a range of behaviors through its intrinsic circuits and concerted actions with other brain regions. One such important function is the retrieval of episodic memories. How hippocampal cells support retrieval of contextual fear memory remains largely unclear. Here we monitored phospho-activation of extracellular-regulated kinase (Erk1/2) across neuronal populations of the hippocampus to find that CA1 pyramidal neurons, but not cells in CA3 or dentate gyrus, specifically respond to retrieval of an aversive context. In contrast, retrieval of a neutral context that fails to elicit a threat response did not activate Erk1/2. Moreover, retrieval preferentially re-activated Erk1/2 in the same set of CA1 neurons previously activated during conditioning in a context-specific manner. By confining drug inhibition within dorsal CA1, we established the crucial role for Erk1/2 activity in retrieval of long-term memory, as well as in amygdala activation associated with fear expression. These data provide functional evidence that Erk1/2 signaling in CA1 encodes a specific neural representation of contextual memory with emotional value. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. False Context Fear Memory in Rats

    ERIC Educational Resources Information Center

    Bae, Sarah; Holmes, Nathan M.; Westbrook, R. Frederick

    2015-01-01

    Four experiments used rats to study false context fear memories. In Experiment 1, rats were pre-exposed to a distinctive chamber (context A) or to a control environment (context C), shocked after a delay in a second chamber (context B) and tested either in B or A. Rats pre-exposed to A froze just as much as control rats in B but more than control…

  19. Candesartan ameliorates impaired fear extinction induced by innate immune activation.

    PubMed

    Quiñones, María M; Maldonado, Lizette; Velazquez, Bethzaly; Porter, James T

    2016-02-01

    Patients with post-traumatic stress disorder (PTSD) tend to show signs of a relatively increased inflammatory state suggesting that activation of the immune system may contribute to the development of PTSD. In the present study, we tested whether activation of the innate immune system can disrupt acquisition or recall of auditory fear extinction using an animal model of PTSD. Male adolescent rats received auditory fear conditioning in context A. The next day, an intraperitoneal injection of lipopolysaccharide (LPS; 100 μg/kg) prior to auditory fear extinction in context B impaired acquisition and recall of extinction. LPS (100 μg/kg) given after extinction training did not impair extinction recall suggesting that LPS did not affect consolidation of extinction. In contrast to cued fear extinction, contextual fear extinction was not affected by prior injection of LPS (100 μg/kg). Although LPS also reduced locomotion, we could dissociate the effects of LPS on extinction and locomotion by using a lower dose of LPS (50 μg/kg) which impaired locomotion without affecting extinction. In addition, 15 h after an injection of 250 μg/kg LPS in adult rats, extinction learning and recall were impaired without affecting locomotion. A sub-chronic treatment with candesartan, an angiotensin II type 1 receptor blocker, prevented the LPS-induced impairment of extinction in adult rats. Our results demonstrate that activation of the innate immune system can disrupt auditory fear extinction in adolescent and adult animals. These findings also provide direction for clinical studies of novel treatments that modulate the innate immune system for stress-related disorders like PTSD. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Basolateral Amygdala and the Regulation of Fear-Conditioned Changes in Sleep: Role of Corticotropin-Releasing Factor

    PubMed Central

    Wellman, Laurie L.; Yang, Linghui; Ambrozewicz, Marta A.; Machida, Mayumi; Sanford, Larry D.

    2013-01-01

    Study Objective: To determine whether corticotropin-releasing factor (CRF) in the basolateral amygdala (BLA) modulated sleep and fear-conditioned alterations in sleep. Design: After 2 days of habituation to recording procedures, baseline sleep recordings were obtained. The animals were then habituated to the handling procedure necessary for microinjections over 2 consecutive days. In experiment 1, rats received microinjections of 0.5 μL antalarmin (1.61 or 4.82 mM), a CRF receptor 1 antagonist, or distilled water once a week for 3 wk. In experiment 2, rats received a microinjection of either antalarmin or vehicle prior to inescapable shock training (ST; 20 shocks; 0.8 mA, 0.5 sec; 1 min interstimulus interval). The animals were placed back in the context 7 days later for 30 min without shock (CR; context re-exposure). Sleep was recorded for 8 h after each manipulation. Setting: NA. Subjects: Outbred Wistar rats. Interventions: The rats were surgically implanted with electrodes for recording the electroencephalogram and electromyogram for determining arousal state and with bilateral guide cannulae directed at BLA. Measurements and Results: Antalarmin microinjected into BLA did not significantly alter sleep under undisturbed conditions. However, antalarmin microinjected bilaterally into BLA prior to ST blocked reductions in rapid eye movement sleep that ST normally produces. Further, the single microinjection prior to ST blocked the reduction in rapid eye movement typically seen after subsequent CR. Behavioral freezing, an indicator of fear memory, was not altered. Conclusions: CRF in BLA is involved in regulating stress-induced alterations in sleep and it plays a role in modulating how stressful memories influence sleep. Citation: Wellman LL; Yang L; Ambrozewicz MA; Machida M; Sanford LD. Basolateral amygdala and the regulation of fear-conditioned changes in sleep: role of corticotropin-releasing factor. SLEEP 2013;36(4):471-480. PMID:23564994

  1. Orexin modulates behavioral fear expression through the locus coeruleus.

    PubMed

    Soya, Shingo; Takahashi, Tohru M; McHugh, Thomas J; Maejima, Takashi; Herlitze, Stefan; Abe, Manabu; Sakimura, Kenji; Sakurai, Takeshi

    2017-11-20

    Emotionally salient information activates orexin neurons in the lateral hypothalamus, leading to increase in sympathetic outflow and vigilance level. How this circuit alters animals' behavior remains unknown. Here we report that noradrenergic neurons in the locus coeruleus (NA LC neurons) projecting to the lateral amygdala (LA) receive synaptic input from orexin neurons. Pharmacogenetic/optogenetic silencing of this circuit as well as acute blockade of the orexin receptor-1 (OX1R) decreases conditioned fear responses. In contrast, optogenetic stimulation of this circuit potentiates freezing behavior against a similar but distinct context or cue. Increase of orexinergic tone by fasting also potentiates freezing behavior and LA activity, which are blocked by pharmacological blockade of OX1R in the LC. These findings demonstrate the circuit involving orexin, NA LC and LA neurons mediates fear-related behavior and suggests inappropriate excitation of this pathway may cause fear generalization sometimes seen in psychiatric disorders, such as PTSD.

  2. Converging evidence for an impact of a functional NOS gene variation on anxiety-related processes

    PubMed Central

    Haaker, Jan; Glotzbach-Schoon, Evelyn; Schümann, Dirk; Andreatta, Marta; Mechias, Marie-Luise; Raczka, Karolina; Gartmann, Nina; Büchel, Christian; Mühlberger, Andreas; Pauli, Paul; Reif, Andreas; Kalisch, Raffael; Lonsdorf, Tina B.

    2016-01-01

    Abstract Being a complex phenotype with substantial heritability, anxiety and related phenotypes are characterized by a complex polygenic basis. Thereby, one candidate pathway is neuronal nitric oxide (NO) signaling, and accordingly, rodent studies have identified NO synthase (NOS-I), encoded by NOS1, as a strong molecular candidate for modulating anxiety and hippocampus-dependent learning processes. Using a multi-dimensional and -methodological replication approach, we investigated the impact of a functional promoter polymorphism (NOS1-ex1f-VNTR) on human anxiety-related phenotypes in a total of 1019 healthy controls in five different studies. Homozygous carriers of the NOS1-ex1f short-allele displayed enhanced trait anxiety, worrying and depression scores. Furthermore, short-allele carriers were characterized by increased anxious apprehension during contextual fear conditioning. While autonomous measures (fear-potentiated startle) provided only suggestive evidence for a modulatory role of NOS1-ex1f-VNTR on (contextual) fear conditioning processes, neural activation at the amygdala/anterior hippocampus junction was significantly increased in short-allele carriers during context conditioning. Notably, this could not be attributed to morphological differences. In accordance with data from a plethora of rodent studies, we here provide converging evidence from behavioral, subjective, psychophysiological and neuroimaging studies in large human cohorts that NOS-I plays an important role in anxious apprehension but provide only limited evidence for a role in (contextual) fear conditioning. PMID:26746182

  3. On the transition from reconsolidation to extinction of contextual fear memories

    PubMed Central

    Flavell, Charlotte R.; Lee, Jonathan L.C.

    2017-01-01

    Retrieval of an associative memory can lead to different phenomena. Brief reexposure sessions tend to trigger reconsolidation, whereas more extended ones trigger extinction. In appetitive and fear cued Pavlovian memories, an intermediate “null point” period has been observed where neither process seems to be engaged. Here we investigated whether this phenomenon extends to contextual fear memory. Adult rats were subjected to a contextual fear conditioning paradigm, reexposed to the context 2 d later for 3, 5, 10, 20, or 30 min, with immediate injections of MK-801 or saline following reexposure, and tested on the following day. We observed a significant effect of MK-801 with the 3- and 30-min sessions, impairing reconsolidation and extinction, respectively. However, it did not have significant effects with 5-, 10-, or 20-min sessions, even though freezing decreased from reexposure to test. Further analyses indicated that this is not likely to be due to a variable transition point at the population level. In conclusion, the results show that in contextual fear memories there is a genuine “null point” between the parameters that induce reconsolidation and extinction, as defined by the effects of MK-801, although NMDA receptor-independent decreases in freezing can still occur in these conditions. PMID:28814464

  4. A role for the anteromedial thalamic nucleus in the acquisition of contextual fear memory to predatory threats.

    PubMed

    de Lima, Miguel Antonio Xavier; Baldo, Marcus Vinicius C; Canteras, Newton Sabino

    2017-01-01

    Previous studies from our group have shown that cytotoxic lesions in the ventral portion of the anteromedial thalamic nucleus (AMv), one of the main targets of the hypothalamic predator-responsive circuit, strongly impairs contextual fear responses to an environment previously associated with a predator. The AMv is in a position to convey information to cortico-hippocampal-amygdalar circuits involved in the processing of fear memory. However, it remains to be determined whether the nucleus is involved in the acquisition or subsequent expression of contextual fear. In the present investigation, we addressed this question by inactivating the rat AMv with muscimol either prior to cat exposure or prior to exposure to the cat-related context. Accordingly, AMv pharmacological inactivation prior to cat exposure did not interfere with innate fear responses, but it drastically reduced contextual conditioning to the predator-associated environment. On the other hand, AMv inactivation prior to exposure to the environment associated with the predator threat did not affect contextual fear responses. The behavioral results were further supported by the demonstration that AMv inactivation prior to cat exposure also blocked the activation of sites critically involved in the expression of anti-predatory contextual defensive responses (i.e., the dorsal premammillary nucleus and the dorsolateral periaqueductal gray) in animals exposed to the predator-associated context. The AMv projections were also examined, and the results of this investigation outline important paths that can influence hippocampal circuitry and raise new ideas for anterior thalamic-hippocampal paths involved in emotional learning.

  5. The Exclusive Induction of Extinction Is Gated by BDNF

    ERIC Educational Resources Information Center

    Kirtley, Anne; Thomas, Kerrie L.

    2010-01-01

    We have previously reported that the reconsolidation and extinction of hippocampal-dependent contextual fear memory can be initiated by a single context conditioned stimulus (CS) presentation of either short or long duration, and that both processes require protein synthesis in this brain region. Furthermore, reconsolidation depends on Zif268…

  6. Perspectives on fear generalization and its implications for emotional disorders.

    PubMed

    Jasnow, Aaron M; Lynch, Joseph F; Gilman, T Lee; Riccio, David C

    2017-03-01

    Although generalization to conditioned stimuli is not a new phenomenon, renewed interest in understanding its biological underpinning has stemmed from its association with a number of anxiety disorders. Generalization as it relates to fear processing is a temporally dynamic process in which animals, including humans, display fear in response to similar yet distinct cues or contexts as the time between training and testing increases. This Review surveys the literature on contextual fear generalization and its relation to several views of memory, including systems consolidation, forgetting, and transformation hypothesis, which differentially implicate roles of the hippocampus and neocortex in memory consolidation and retrieval. We discuss recent evidence on the neurobiological mechanisms contributing to the increase in fear generalization over time and how generalized responding may be modulated by acquisition, consolidation, and retrieval mechanisms. Whereas clinical perspectives of generalization emphasize a lack of fear inhibition to CS - cues or fear toward intermediate CS cues, the time-dependent nature of generalization and its relation to traditional views on memory consolidation and retrieval are often overlooked. Understanding the time-dependent increase in fear generalization has important implications not only for understanding how generalization contributes to anxiety disorders but also for understanding basic long-term memory function. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Social Defeat: Impact on Fear Extinction and Amygdala-Prefrontal Cortical Theta Synchrony in 5-HTT Deficient Mice

    PubMed Central

    Narayanan, Venu; Heiming, Rebecca S.; Jansen, Friederike; Lesting, Jörg; Sachser, Norbert; Pape, Hans-Christian; Seidenbecher, Thomas

    2011-01-01

    Emotions, such as fear and anxiety, can be modulated by both environmental and genetic factors. One genetic factor is for example the genetically encoded variation of the serotonin transporter (5-HTT) expression. In this context, the 5-HTT plays a key role in the regulation of central 5-HT neurotransmission, which is critically involved in the physiological regulation of emotions including fear and anxiety. However, a systematic study which examines the combined influence of environmental and genetic factors on fear-related behavior and the underlying neurophysiological basis is missing. Therefore, in this study we used the 5-HTT-deficient mouse model for studying emotional dysregulation to evaluate consequences of genotype specific disruption of 5-HTT function and repeated social defeat for fear-related behaviors and corresponding neurophysiological activities in the lateral amygdala (LA) and infralimbic region of the medial prefrontal cortex (mPFC) in male 5-HTT wild-type (+/+), homo- (−/−) and heterozygous (+/−) mice. Naive males and experienced losers (generated in a resident-intruder paradigm) of all three genotypes, unilaterally equipped with recording electrodes in LA and mPFC, underwent a Pavlovian fear conditioning. Fear memory and extinction of conditioned fear was examined while recording neuronal activity simultaneously with fear-related behavior. Compared to naive 5-HTT+/+ and +/− mice, 5-HTT−/− mice showed impaired recall of extinction. In addition, 5-HTT−/− and +/− experienced losers showed delayed extinction learning and impaired recall of extinction. Impaired behavioral responses were accompanied by increased theta synchronization between the LA and mPFC during extinction learning in 5-HTT-/− and +/− losers. Furthermore, impaired extinction recall was accompanied with increased theta synchronization in 5-HTT−/− naive and in 5-HTT−/− and +/− loser mice. In conclusion, extinction learning and memory of conditioned fear can be modulated by both the 5-HTT gene activity and social experiences in adulthood, accompanied by corresponding alterations of the theta activity in the amygdala-prefrontal cortex network. PMID:21818344

  8. Repeated Exposure to Conditioned Fear Stress Increases Anxiety and Delays Sleep Recovery Following Exposure to an Acute Traumatic Stressor

    PubMed Central

    Greenwood, Benjamin N.; Thompson, Robert S.; Opp, Mark R.; Fleshner, Monika

    2014-01-01

    Repeated stressor exposure can sensitize physiological responses to novel stressors and facilitate the development of stress-related psychiatric disorders including anxiety. Disruptions in diurnal rhythms of sleep–wake behavior accompany stress-related psychiatric disorders and could contribute to their development. Complex stressors that include fear-eliciting stimuli can be a component of repeated stress experienced by human beings, but whether exposure to repeated fear can prime the development of anxiety and sleep disturbances is unknown. In the current study, adult male F344 rats were exposed to either control conditions or repeated contextual fear conditioning for 22 days followed by exposure to no, mild (10), or severe (100) acute uncontrollable tail shock stress. Exposure to acute stress produced anxiety-like behavior as measured by a reduction in juvenile social exploration and exaggerated shock-elicited freezing in a novel context. Prior exposure to repeated fear enhanced anxiety-like behavior as measured by shock-elicited freezing, but did not alter social exploratory behavior. The potentiation of anxiety produced by prior repeated fear was temporary; exaggerated fear was present 1 day but not 4 days following acute stress. Interestingly, exposure to acute stress reduced rapid eye movement (REM) and non-REM (NREM) sleep during the hours immediately following acute stress. This initial reduction in sleep was followed by robust REM rebound and diurnal rhythm flattening of sleep/wake behavior. Prior repeated fear extended the acute stress-induced REM and NREM sleep loss, impaired REM rebound, and prolonged the flattening of the diurnal rhythm of NREM sleep following acute stressor exposure. These data suggest that impaired recovery of sleep/wake behavior following acute stress could contribute to the mechanisms by which a history of prior repeated stress increases vulnerability to subsequent novel stressors and stress-related disorders. PMID:25368585

  9. Blockade of CB1 receptors prevents retention of extinction but does not increase low preincubated conditioned fear in the fear incubation procedure.

    PubMed

    Pickens, Charles L; Theberge, Florence R

    2014-02-01

    We recently developed a procedure to study fear incubation, in which rats given 100 tone-shock pairings over 10 days show low fear 2 days after conditioned fear training and high fear after 30 days. Notably, fear 2 days after 10 sessions of fear conditioning is lower than fear seen 2 days after a single session of fear conditioning, suggesting that fear is suppressed. Here, we investigate the potential role of CB1 receptor activation by endocannabinoids in this fear suppression. We subjected rats to 10 days of fear conditioning and then administered systemic injections of the CB1 receptor antagonist SR141716 before a conditioned fear test was conducted 2 days later under extinction conditions. A second test was conducted without any injections on the following day (3 days after training) to examine retention of fear extinction. SR141716 injections did not increase fear expression 2 days after extended fear conditioning or affect within-session extinction; however, it impaired retention of between-session fear extinction in the day 3 test. These data suggest that CB1 receptor activation does not suppress fear soon after extended fear conditioning in the fear incubation task. The data also add to the existing literature on the role of CB1 receptors in extinction of conditioned fear.

  10. Blockade of CB1 receptors prevents retention of extinction but does not increase low pre-incubated conditioned fear in the fear incubation procedure

    PubMed Central

    Pickens, Charles L.; Theberge, Florence R.

    2015-01-01

    We recently developed a procedure to study fear incubation in which rats given 100 tone-shock pairings over 10 days show low fear 2 days after conditioned fear training and high fear after 30 days. Notably, fear 2 days after 10 sessions of fear conditioning is lower than fear seen 2 days after a single session of fear conditioning, suggesting that fear is suppressed. Here, we investigate the potential role of CB1 receptor activation by endocannabinoids in this fear suppression. We gave rats 10 days of fear conditioning and then gave systemic injections of the CB1 receptor antagonist SR141716 before a conditioned fear test conducted 2 days later under extinction conditions. A second test was conducted without any injections on the following day (3 days post-training) to examine fear extinction retention. SR141716 injections did not increase fear expression 2 days after extended fear conditioning or affect within-session extinction, but impaired retention of between-session fear extinction in the day 3 test. These data suggest that CB1 receptor activation is not suppressing fear soon after extended fear conditioning in the fear incubation task. The data also add to an existing literature on the effects of CB1 receptors in extinction of conditioned fear. PMID:24346290

  11. Fear, threat and efficacy in threat appeals: message involvement as a key mediator to message acceptance.

    PubMed

    Cauberghe, Verolien; De Pelsmacker, Patrick; Janssens, Wim; Dens, Nathalie

    2009-03-01

    In a sample of 170 youngsters, the effect of two versions of a public service announcement (PSA) threat appeal against speeding, placed in four different contexts, on evoked fear, perceived threat (severity and probability of occurrence), perceived response efficacy and self-efficacy, message involvement and anti-speeding attitude and anti-speeding intention is investigated. Evoked fear and perceived threat and efficacy independently influence message involvement. Message involvement is a full mediator between evoked fear, perceived threat and efficacy perception on the one hand, and attitudes towards the message and behavioral intention to accept the message on the other. Speeding experience has a significantly negative impact on anti-speeding attitudes. Message and medium context threat levels and context thematic congruency have a significant effect on evoked fear and to a lesser extent on perceived threat.

  12. Which Fearful Toddlers Should We Worry About? Context, Fear Regulation, and Anxiety Risk

    PubMed Central

    Buss, Kristin A.

    2010-01-01

    The current study tests a model of risk for anxiety in fearful toddlers characterized by the regulation of the intensity of withdrawal behavior across a variety of contexts. Participants included 111, low-risk, 24-month-old toddlers followed longitudinally each year through the fall of their kindergarten year. The key hypothesis was that being fearful in situations that are relatively low in threat (i.e., are predictable, controllable, and in which children have many coping resources) is an early precursor to risk for anxiety development as measured by parent and teacher report of anxious behaviors in kindergarten. Results supported the prediction such that it is not how much fear is expressed, but when the fear is expressed and how it is expressed that is important for characterizing adaptive behavior. Implications are discussed for a model of risk that includes the regulation of fear, the role of eliciting context, social wariness, and the importance of examining developmental transitions, such as the start of formal schooling. These findings have implications for the way we identify fearful children who may be at risk for developing anxiety-related problems. PMID:21463035

  13. Investigation of a central nucleus of the amygdala/dorsal raphe nucleus serotonergic circuit implicated in fear-potentiated startle.

    PubMed

    Spannuth, B M; Hale, M W; Evans, A K; Lukkes, J L; Campeau, S; Lowry, C A

    2011-04-14

    Serotonergic systems are thought to play an important role in control of motor activity and emotional states. We used a fear-potentiated startle paradigm to investigate the effects of a motor-eliciting stimulus in the presence or absence of induction of an acute fear state on serotonergic neurons in the dorsal raphe nucleus (DR) and cells in subdivisions of the central amygdaloid nucleus (CE), a structure that plays an important role in fear responses, using induction of the protein product of the immediate-early gene, c-Fos. In Experiment 1 we investigated the effects of fear conditioning training, by training rats to associate a light cue (conditioned stimulus, CS; 1000 lx, 2 s) with foot shock (0.5 s, 0.5 mA) in a single session. In Experiment 2 rats were given two training sessions identical to Experiment 1 on days 1 and 2, then tested in one of four conditions on day 3: (1) placement in the training context without exposure to either the CS or acoustic startle (AS), (2) exposure to 10 trials of the 2 s CS, (3) exposure to 40 110 dB AS trials, or (4) exposure to 40 110 dB AS trials with 10 of the trials preceded by and co-terminating with the CS. All treatments were conducted during a 20 min session. Fear conditioning training, by itself, increased c-Fos expression in multiple subdivisions of the CE and throughout the DR. In contrast, fear-potentiated startle selectively increased c-Fos expression in the medial subdivision of the CE and in serotonergic neurons in the dorsal part of the dorsal raphe nucleus (DRD). These data are consistent with previous studies demonstrating that fear-related stimuli selectively activate DRD serotonergic neurons. Further studies of this mesolimbocortical serotonergic system could have important implications for understanding mechanisms underlying vulnerability to stress-related psychiatric disorders, including anxiety and affective disorders. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Hippocampal GABAB(1a) Receptors Constrain Generalized Contextual Fear

    PubMed Central

    Lynch, Joseph F; Winiecki, Patrick; Gilman, T Lee; Adkins, Jordan M; Jasnow, Aaron M

    2017-01-01

    Many anxiety disorders are characterized by generalization of fear responses to neutral or ambiguous stimuli. Therefore, a comprehensive understanding of the mechanisms contributing to generalized fear is essential for formulating successful treatments for anxiety disorders. Previous research shows that GABA-mediated presynaptic inhibition has a critical role in cued fear generalization, as animals with genetically deleted presynaptic GABAB(1a) receptors cannot discriminate between CS+ and CS− tones. Work from our laboratory has further identified that GABAB(1a) receptors are necessary for maintaining contextual memory precision, thereby constraining generalized contextual fear. We previously found that GABAB(1a) KO mice show generalized fear to a neutral context 24 h after training, but not 2 h after training. A similar pattern was observed with object location and recognition, suggesting that this receptor subtype affects consolidation and/or retrieval of precise contextual and spatial memories. Here we sought to specifically examine the involvement of GABAB(1a) receptors in consolidation or retrieval of a precise fear memory. To do so, we infused a selective GABAB(1a) receptor antagonist, CGP 36216, intracerebroventricularly (ICV), or locally into the dorsal hippocampus, ventral hippocampus, or anterior cingulate cortex (ACC), during consolidation and retrieval of context fear training. Blockade of GABAB(1a) receptors through ICV, dorsal hippocampal, or ventral hippocampal infusions ‘after' training (consolidation) resulted in fear generalization to the neutral context when mice were tested 24, but not 6 h after training. Post-training infusions of CGP into the ACC, however, did not promote generalized fear. In addition, ICV, dorsal hippocampal, ventral hippocampal, or ACC infusions immediately ‘before' testing (retrieval) did not result in context fear generalization. These data suggest that GABA-mediated presynaptic inhibition is not critical for retrieval of precise contextual memory, but rather has an important role in the long-term consolidation of precise contextual memories and constrains generalized fear responses. PMID:27834391

  15. The effect of a retrieval cue on the return of spider fear.

    PubMed

    Dibbets, Pauline; Moor, Charlotte; Voncken, Marisol J

    2013-12-01

    Exposure therapy is often used as treatment for anxiety disorders. However, a change in context after exposure can result in fear renewal. This renewal can be attenuated by using retrieval cues stemming from the exposure context. The present study investigated the effect of such a cue in spider-fearful persons. Thirty-three participants underwent an in vivo exposure session while wearing a bracelet (retrieval cue). After exposure, half of the participants continued to wear the bracelet at home until follow-up (cue groups); the other half handed over the bracelet after exposure (no cue groups). Half of the participants in each group received the follow-up in the exposure context (AAcue and AAnocue); for the other half follow-up was conducted in a novel environment (ABcue and ABnocue). A switch in context at follow-up resulted in more self-reported anxiety and arousal compared to no switch. However, the retrieval cue did not attenuate this renewed responding. The number of participant per condition was limited, which might have obscured possible retrieval cue effects due to a lack of power. Additionally, information about the retrieval cue was provided after exposure, which might have weakened the association between the cue and exposure therapy. Furthermore, no autonomic measures were incorporated, restricting the effect to self-report measures. For future studies we would recommend to explicitly link the retrieval cue before onset of the exposure session and to incorporate autonomic measures. Our findings indicate that a switch in context resulted in more self-reported anxiety and arousal, but that a cue stemming from the exposure context did not attenuate this renewal. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. The effects of midazolam and D-cycloserine on the release of glutamate and GABA in the basolateral amygdala of low and high anxiety rats during extinction trial of a conditioned fear test.

    PubMed

    Lehner, Małgorzata; Wisłowska-Stanek, Aleksandra; Taracha, Ewa; Maciejak, Piotr; Szyndler, Janusz; Skórzewska, Anna; Turzyńska, Danuta; Sobolewska, Alicja; Hamed, Adam; Bidziński, Andrzej; Płaźnik, Adam

    2010-11-01

    In this study, we investigated how midazolam and d-cycloserine regulate the tonic activity and/or phasic reactivity of brain neurotransmitter systems to fear-evoking stimuli in rats with varying intensities of a fear response. We used a new animal model composed of high (HR) and low (LR) anxiety rats, selected according to their behaviour in the contextual fear test (i.e., the duration of a freezing response was used as a discriminating variable). In these rats, we examined the effects of both drugs on the release of glutamate and GABA in the basolateral amygdala (BLA) during the first extinction trial of a conditioned fear test. The results showed that administration of d-cycloserine (15 mg/kg, i.p.) significantly enhanced the inhibition of an aversive context-induced freezing response observed during the extinction session in HR and LR rats. In contrast, midazolam (0.75 mg/kg, i.p.) accelerated the attenuation of fear responses only in HR rats. The less anxious behaviour of LR animals given saline was accompanied by elevated basal levels of glutamate in the BLA, in comparison with HR rats, and a stronger elevation of GABA in response to contextual fear. In HR animals, the pretreatment of rats with d-cycloserine and midazolam significantly increased the local concentration of GABA and inhibited the expression of contextual fear. These findings suggest that animals more vulnerable to stress have innate deficits in brain systems that control the activity of the BLA mediating the central effect of stress. These results contribute to our understanding of observed individual differences in the effects of anxiolytic drugs among patients with anxiety disorders. Copyright © 2010. Published by Elsevier Inc.

  17. Looking at the heart of low and high heart rate variability fearful flyers: self-reported anxiety when confronting feared stimuli.

    PubMed

    Bornas, Xavier; Llabrés, Jordi; Noguera, Miquel; López, Ana Ma; Barceló, Francesca; Tortella-Feliu, Miquel; Fullana, Miquel Angel

    2005-12-01

    Previous research has shown that phobic subjects with low heart rate variability (HRV) are less able to inhibit an inappropriate response when confronted with threatening words compared to phobic subjects with high HRV [Johnsen, B.H., Thayer, J.F., Laberg, J.C., Wormnes, B., Raadal, M., Skaret, E., et al., 2003. Attentional and physiological characteristics of patients with dental anxiety. Journal of Anxiety Disorders, 17, 75-87]. The aim of this study was to evaluate changes in self-reported anxiety when low HRV and high HRV fearful flyers (N=15) and a matched control group (N=15) were exposed to flight-related pictures, flight-related sounds or both pictures and sounds. We hypothesized that sounds would be crucial to evoke fear. Also, low HRV fearful flyers were expected to report higher anxiety than high HRV fearful flyers assuming anxiety as their inappropriate response. Decreases on HRV measures were also predicted for a subgroup of phobic participants (N=10) when confronted with the feared stimuli. Our data supported the hypothesis that sounds are crucial in this kind of phobia. Low HRV fearful flyers reported higher anxiety than high HRV fearful flyers in two out of three aversive conditions. The predicted HRV decreases were not found in this study. Results are discussed in the context of avoidance of exposure-based treatments.

  18. Clinical relevance of retrieval cues for attenuating context renewal of fear.

    PubMed

    Culver, Najwa C; Stoyanova, Milena; Craske, Michelle G

    2011-03-01

    The present studies investigated if retrieval cues (reminder objects) can attenuate context renewal of fear. In Study 1, 32 participants completed exposure in one of two contexts; 1-week follow-up testing occurred in a novel or the same context. Results indicated significant renewal of fear for those tested in a novel context. In Study 2, 40 participants completed exposure in one of these contexts; half were presented with cues. One week later, all were tested in a novel context with or without cues. Results indicated weak attenuation of context renewal for participants re-presented with cues. In Study 3, 18 participants completed exposure in one of two maximally distinct contexts; all with cues. One week later, participants were tested in a novel context with or without cues. Results indicated no group differences. These findings suggest that clinical relevance of this set of cues for attenuating context renewal may be limited. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Epinephrine increases contextual learning through activation of peripheral β2-adrenoceptors.

    PubMed

    Alves, Ester; Lukoyanov, Nikolay; Serrão, Paula; Moura, Daniel; Moreira-Rodrigues, Mónica

    2016-06-01

    Phenylethanolamine-N-methyltransferase knockout (Pnmt-KO) mice are unable to synthesize epinephrine and display reduced contextual fear. However, the precise mechanism responsible for impaired contextual fear learning in these mice is unknown. Our aim was to study the mechanism of epinephrine-dependent contextual learning. Wild-type (WT) or Pnmt-KO (129x1/SvJ) mice were submitted to a fear conditioning test either in the absence or in the presence of epinephrine, isoprenaline (non-selective β-adrenoceptor agonist), fenoterol (selective β2-adrenoceptor agonist), epinephrine plus sotalol (non-selective β-adrenoceptor antagonist), and dobutamine (selective β1-adrenoceptor agonist). Catecholamines were separated by reverse-phase HPLC and quantified by electrochemical detection. Blood glucose was measured by coulometry. Re-exposure to shock context induced higher freezing in WT and Pnmt-KO mice treated with epinephrine and fenoterol than in mice treated with vehicle. In addition, freezing response in Pnmt-KO mice was much lower than in WT mice. Freezing induced by epinephrine was blocked by sotalol in Pnmt-KO mice. Epinephrine and fenoterol treatment restored glycemic response in Pnmt-KO mice. Re-exposure to shock context did not induce a significant difference in freezing in Pnmt-KO mice treated with dobutamine and vehicle. Aversive memories are best retained if moderately high plasma epinephrine concentrations occur at the same moment as the aversive stimulus. In addition, epinephrine increases context fear learning by acting on peripheral β2-adrenoceptors, which may induce high levels of blood glucose. Since glucose crosses the blood-brain barrier, it may enhance hippocampal-dependent contextual learning.

  20. Deficient inhibitory processing in trait anxiety: Evidence from context-dependent fear learning, extinction recall and renewal.

    PubMed

    Haaker, J; Lonsdorf, T B; Schümann, D; Menz, M; Brassen, S; Bunzeck, N; Gamer, M; Kalisch, R

    2015-10-01

    Impaired fear inhibition has been described as a hallmark of pathological anxiety. We aimed at further characterizing the relation between fear inhibition and anxiety by extending previous work to contextual safety stimuli as well as to dimensional scores of trait anxiety in a large sample. We employed a validated paradigm for context-dependent fear acquisition/extinction (day 1) and retrieval/expression (day 2) in 377 healthy individuals. This large sample size allowed the employment of a dimensional rather than binary approach with respect to individual differences in trait anxiety. We observed a positive correlation on day 1 between trait anxiety with all CSs that possess an inherent inhibitory component, conveyed either by reliable non-reinforcement of a specific CS in a dangerous context (safe cue) or by the context itself (i.e., safe context). No correlation however was observed for a CS that possesses excitatory (threatening) properties only. These results were observed during fear learning (day 1) for US expectancy and fear ratings but not for SCRs. No such pattern was evident during fear and extinction retrieval/expression (day 2). We provide further evidence that high trait anxiety is associated with the inability to take immediate advantage of environmental safety cues (cued and contextual), which might represent a promising trans-diagnostic marker for different anxiety disorders. Consequently, the incorporation of methods to optimize inhibitory learning in current cognitive behavioral therapy (CBT) treatments might open up a promising avenue for precision medicine in anxiety disorders. We did not include patients diagnosed with anxiety disorders. Copyright © 2015. Published by Elsevier B.V.

  1. Combination of chronic stress and ovariectomy causes conditioned fear memory deficits and hippocampal cholinergic neuronal loss in mice.

    PubMed

    Takuma, K; Mizoguchi, H; Funatsu, Y; Hoshina, Y; Himeno, Y; Fukuzaki, E; Kitahara, Y; Arai, S; Ibi, D; Kamei, H; Matsuda, T; Koike, K; Inoue, M; Nagai, T; Yamada, K

    2012-04-05

    We have recently found that the combination of ovariectomy (OVX) and chronic restraint stress (CS) causes hippocampal pyramidal cell loss and cognitive dysfunction in female rats and that estrogen replacement prevents the OVX/CS-induced morphological and behavioral changes. In this study, to clarify the mechanisms underlying the OVX/CS-mediated memory impairment further, we examined the roles of cholinergic systems in the OVX/CS-induced memory impairment in mice. Female Slc:ICR strain mice were randomly divided into two groups: OVX and sham-operated groups. Two weeks after the operation, the mice of each group were further assigned to CS (6 h/day) or non-stress group. Following the 3-week-stress period, all mice were subjected to contextual fear conditioning, and context- and tone-dependent memory tests were conducted 1 or 24 h after the conditioning. Overburden with 3 weeks of CS from 2 weeks after OVX impaired context- and tone-dependent freezing and the OVX/CS caused significant Nissl-stained neuron-like cell loss in the hippocampal CA3 region, although OVX and CS alone did not cause such behavioral and histological changes. Replacement of 17β-estradiol for 5 weeks after OVX suppressed OVX/CS-induced memory impairment and hippocampal Nissl-positive cell loss. Furthermore, the OVX/CS mice exhibited a significant decrease in choline acetyltransferase in the hippocampus compared with other groups. The cholinesterase inhibitors donepezil and galantamine ameliorated OVX/CS-induced memory impairment. These data suggest that cholinergic dysfunction may be involved in the OVX/CS-induced conditioned fear memory impairment. Overall, our findings suggest that the OVX/CS mouse model is useful to study the mechanisms underlying estrogen loss-induced memory deficits. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Incubation of conditioned fear in the conditioned suppression model in rats: role of food-restriction conditions, length of conditioned stimulus, and generality to conditioned freezing

    PubMed Central

    Pickens, Charles L.; Navarre, Brittany M.; Nair, Sunila G.

    2010-01-01

    We recently adapted the conditioned suppression of operant responding method to study fear incubation. We found that food-restricted rats show low fear 2 days after extended (10 d; 100 30-sec tone-shock pairings) fear training and high fear after 1–2 months. Here, we studied a potential mechanism of fear incubation: extended food-restriction stress. We also studied whether fear incubation is observed after fear training with a prolonged-duration (6-min) tone conditioned stimulus (CS), and whether conditioned freezing incubates after extended training in rats with or without a concurrent operant task. Conditioned fear was assessed 2 days and 1 month after training. In the conditioned suppression method, fear incubation was reliably observed in rats under moderate food-restriction conditions (18–20 g food/day) that allowed for weight gain, and after extended (10 d), but not limited (1 d), fear training with the 6-min CS. Incubation of conditioned freezing was observed after extended fear training in rats lever-pressing for food and, to a lesser degree, in rats not performing an operant task. Results indicate that prolonged hunger-related stress does not account for fear incubation in the conditioned suppression method, and that fear incubation occurs to a longer-duration (6-min) fear CS. Extended training also leads to robust fear incubation of conditioned freezing in rats performing an operant task and weaker fear incubation in rats not performing an operant task. PMID:20600654

  3. Incubation of conditioned fear in the conditioned suppression model in rats: role of food-restriction conditions, length of conditioned stimulus, and generality to conditioned freezing.

    PubMed

    Pickens, C L; Navarre, B M; Nair, S G

    2010-09-15

    We recently adapted the conditioned suppression of operant responding method to study fear incubation. We found that food-restricted rats show low fear 2 days after extended (10 d; 100 30-s tone-shock pairings) fear training and high fear after 1-2 months. Here, we studied a potential mechanism of fear incubation: extended food-restriction stress. We also studied whether fear incubation is observed after fear training with a prolonged-duration (6-min) tone conditioned stimulus (CS), and whether conditioned freezing incubates after extended training in rats with or without a concurrent operant task. Conditioned fear was assessed 2 days and 1 month after training. In the conditioned suppression method, fear incubation was reliably observed in rats under moderate food-restriction conditions (18-20 g food/day) that allowed for weight gain, and after extended (10 d), but not limited (1 d), fear training with the 6-min CS. Incubation of conditioned freezing was observed after extended fear training in rats lever-pressing for food and, to a lesser degree, in rats not performing an operant task. Results indicate that prolonged hunger-related stress does not account for fear incubation in the conditioned suppression method, and that fear incubation occurs to a longer-duration (6-min) fear CS. Extended training also leads to robust fear incubation of conditioned freezing in rats performing an operant task and weaker fear incubation in rats not performing an operant task. (c) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Heparan Sulfates Support Pyramidal Cell Excitability, Synaptic Plasticity, and Context Discrimination.

    PubMed

    Minge, Daniel; Senkov, Oleg; Kaushik, Rahul; Herde, Michel K; Tikhobrazova, Olga; Wulff, Andreas B; Mironov, Andrey; van Kuppevelt, Toin H; Oosterhof, Arie; Kochlamazashvili, Gaga; Dityatev, Alexander; Henneberger, Christian

    2017-02-01

    Heparan sulfate (HS) proteoglycans represent a major component of the extracellular matrix and are critical for brain development. However, their function in the mature brain remains to be characterized. Here, acute enzymatic digestion of HS side chains was used to uncover how HSs support hippocampal function in vitro and in vivo. We found that long-term potentiation (LTP) of synaptic transmission at CA3-CA1 Schaffer collateral synapses was impaired after removal of highly sulfated HSs with heparinase 1. This reduction was associated with decreased Ca2+ influx during LTP induction, which was the consequence of a reduced excitability of CA1 pyramidal neurons. At the subcellular level, heparinase treatment resulted in reorganization of the distal axon initial segment, as detected by a reduction in ankyrin G expression. In vivo, digestion of HSs impaired context discrimination in a fear conditioning paradigm and oscillatory network activity in the low theta band after fear conditioning. Thus, HSs maintain neuronal excitability and, as a consequence, support synaptic plasticity and learning. © The Author 2017. Published by Oxford University Press.

  5. Converging evidence for an impact of a functional NOS gene variation on anxiety-related processes.

    PubMed

    Kuhn, Manuel; Haaker, Jan; Glotzbach-Schoon, Evelyn; Schümann, Dirk; Andreatta, Marta; Mechias, Marie-Luise; Raczka, Karolina; Gartmann, Nina; Büchel, Christian; Mühlberger, Andreas; Pauli, Paul; Reif, Andreas; Kalisch, Raffael; Lonsdorf, Tina B

    2016-05-01

    Being a complex phenotype with substantial heritability, anxiety and related phenotypes are characterized by a complex polygenic basis. Thereby, one candidate pathway is neuronal nitric oxide (NO) signaling, and accordingly, rodent studies have identified NO synthase (NOS-I), encoded by NOS1, as a strong molecular candidate for modulating anxiety and hippocampus-dependent learning processes. Using a multi-dimensional and -methodological replication approach, we investigated the impact of a functional promoter polymorphism (NOS1-ex1f-VNTR) on human anxiety-related phenotypes in a total of 1019 healthy controls in five different studies. Homozygous carriers of the NOS1-ex1f short-allele displayed enhanced trait anxiety, worrying and depression scores. Furthermore, short-allele carriers were characterized by increased anxious apprehension during contextual fear conditioning. While autonomous measures (fear-potentiated startle) provided only suggestive evidence for a modulatory role of NOS1-ex1f-VNTR on (contextual) fear conditioning processes, neural activation at the amygdala/anterior hippocampus junction was significantly increased in short-allele carriers during context conditioning. Notably, this could not be attributed to morphological differences. In accordance with data from a plethora of rodent studies, we here provide converging evidence from behavioral, subjective, psychophysiological and neuroimaging studies in large human cohorts that NOS-I plays an important role in anxious apprehension but provide only limited evidence for a role in (contextual) fear conditioning. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  6. Intolerance of uncertainty and startle potentiation in relation to different threat reinforcement rates.

    PubMed

    Chin, Brian; Nelson, Brady D; Jackson, Felicia; Hajcak, Greg

    2016-01-01

    Fear conditioning research on threat predictability has primarily examined the impact of temporal (i.e., timing) predictability on the startle reflex. However, there are other key features of threat that can vary in predictability. For example, the reinforcement rate (i.e., frequency) of threat is a crucial factor underlying fear learning. The present study examined the impact of threat reinforcement rate on the startle reflex and self-reported anxiety during a fear conditioning paradigm. Forty-five participants completed a fear learning task in which the conditioned stimulus was reinforced with an electric shock to the forearm on 50% of trials in one block and 75% of trials in a second block, in counter-balanced order. The present study also examined whether intolerance of uncertainty (IU), the tendency to perceive or experience uncertainty as stressful or unpleasant, was associated with the startle reflex during conditions of low (50%) vs. high (75%) reinforcement. Results indicated that, across all participants, startle was greater during the 75% relative to the 50% reinforcement condition. IU was positively correlated with startle potentiation (i.e., increased startle response to the CS+ relative to the CS-) during the 50%, but not the 75%, reinforcement condition. Thus, despite receiving fewer electric shocks during the 50% reinforcement condition, individuals with high IU uniquely demonstrated greater defense system activation when impending threat was more uncertain. The association between IU and startle was independent of state anxiety. The present study adds to a growing literature on threat predictability and aversive responding, and suggests IU is associated with abnormal responding in the context of uncertain threat. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Fear of losing money? Aversive conditioning with secondary reinforcers.

    PubMed

    Delgado, M R; Labouliere, C D; Phelps, E A

    2006-12-01

    Money is a secondary reinforcer that acquires its value through social communication and interaction. In everyday human behavior and laboratory studies, money has been shown to influence appetitive or reward learning. It is unclear, however, if money has a similar impact on aversive learning. The goal of this study was to investigate the efficacy of money in aversive learning, comparing it with primary reinforcers that are traditionally used in fear conditioning paradigms. A series of experiments were conducted in which participants initially played a gambling game that led to a monetary gain. They were then presented with an aversive conditioning paradigm, with either shock (primary reinforcer) or loss of money (secondary reinforcer) as the unconditioned stimulus. Skin conductance responses and subjective ratings indicated that potential monetary loss modulated the conditioned response. Depending on the presentation context, the secondary reinforcer was as effective as the primary reinforcer during aversive conditioning. These results suggest that stimuli that acquire reinforcing properties through social communication and interaction, such as money, can effectively influence aversive learning.

  8. Using Retrieval Cues to Attenuate Return of Fear in Individuals With Public Speaking Anxiety.

    PubMed

    Shin, Ki Eun; Newman, Michelle G

    2018-03-01

    Even after successful exposure, relapse is not uncommon. Based on the retrieval model of fear extinction (e.g., Vervliet, Craske, & Hermans, 2013), return of fear can occur after exposure due to an elapse of time (spontaneous recovery) or change in context (contextual renewal). The use of external salient stimuli presented throughout extinction (i.e., retrieval cues [RCs]) has been suggested as a potential solution to this problem (Bouton, 2002). The current study examined whether RCs attenuated return of fear in individuals with public speaking anxiety. Sixty-five participants completed a brief exposure while presented with two RC stimuli aimed at a variety of senses (visual, tactile, olfactory, and auditory). Later, half the participants were tested for return of fear in a context different from the exposure context, and the other half in the same context. Half of each context group were presented with the same cues as in exposure, while the other half were not. Return of fear due to an elapse of time, change in context, and effects of RCs were evaluated on subjective, behavioral, and physiological measures of anxiety. Although contextual renewal was not observed, results supported effects of RCs in reducing spontaneous recovery on behavioral and physiological measures of anxiety. There was also evidence that participants who were reminded of feeling anxious during exposure by the RCs benefited more from using them at follow-up, whereas those who perceived the cues as comforting (safety signals) benefited less. Clinical implications of the findings are discussed. Copyright © 2017. Published by Elsevier Ltd.

  9. Encoding, consolidation, and retrieval of contextual memory: differential involvement of dorsal CA3 and CA1 hippocampal subregions.

    PubMed

    Daumas, Stéphanie; Halley, Hélène; Francés, Bernard; Lassalle, Jean-Michel

    2005-01-01

    Studies on human and animals shed light on the unique hippocampus contributions to relational memory. However, the particular role of each hippocampal subregion in memory processing is still not clear. Hippocampal computational models and theories have emphasized a unique function in memory for each hippocampal subregion, with the CA3 area acting as an autoassociative memory network and the CA1 area as a critical output structure. In order to understand the respective roles of the CA3- and CA1-hippocampal areas in the formation of contextual memory, we studied the effects of the reversible inactivation by lidocaine of the CA3 or CA1 areas of the dorsal hippocampus on acquisition, consolidation, and retrieval of a contextual fear conditioning. Whereas infusions of lidocaine never impaired elementary tone conditioning, their effects on contextual conditioning provided interesting clues about the role of these two hippocampal regions. They demonstrated first that the CA3 area is necessary for the rapid elaboration of a unified representation of the context. Secondly, they suggested that the CA1 area is rather involved in the consolidation process of contextual memory. Third, they showed that CA1 or CA3 inactivation during retention test has no effect on contextual fear retrieval when a recognition memory procedure is used. In conclusion, our findings point as evidence that CA1 and CA3 subregions of the dorsal hippocampus play important and different roles in the acquisition and consolidation of contextual fear memory, whereas they are not required for context recognition.

  10. Conditioned Fear Acquisition and Generalization in Generalized Anxiety Disorder.

    PubMed

    Tinoco-González, Daniella; Fullana, Miquel Angel; Torrents-Rodas, David; Bonillo, Albert; Vervliet, Bram; Blasco, María Jesús; Farré, Magí; Torrubia, Rafael

    2015-09-01

    Abnormal fear conditioning processes (including fear acquisition and conditioned fear-generalization) have been implicated in the pathogenesis of anxiety disorders. Previous research has shown that individuals with panic disorder present enhanced conditioned fear-generalization in comparison to healthy controls. Enhanced conditioned fear-generalization could also characterize generalized anxiety disorder (GAD), but research so far is inconclusive. An important confounding factor in previous research is comorbidity. The present study examined conditioned fear-acquisition and fear-generalization in 28 patients with GAD and 30 healthy controls using a recently developed fear acquisition and generalization paradigm assessing fear-potentiated startle and online expectancies of the unconditioned stimulus. Analyses focused on GAD patients without comorbidity but included also patients with comorbid anxiety disorders. Patients and controls did not differ as regards fear acquisition. However, contrary to our hypothesis, both groups did not differ either in most indexes of conditioned fear-generalization. Moreover, dimensional measures of GAD symptoms were not correlated with conditioned fear-generalization indexes. Comorbidity did not have a significant impact on the results. Our data suggest that conditioned fear-generalization is not enhanced in GAD. Results are discussed with special attention to the possible effects of comorbidity on fear learning abnormalities. Copyright © 2014. Published by Elsevier Ltd.

  11. S-R associations, their extinction, and recovery in an animal model of anxiety: a new associative account of phobias without recall of original trauma.

    PubMed

    Laborda, Mario A; Miller, Ralph R

    2011-06-01

    Associative accounts of the etiology of phobias have been criticized because of numerous cases of phobias in which the client does not remember a relevant traumatic event (i.e., Pavlovian conditioning trial), instructions, or vicarious experience with the phobic object. In three lick suppression experiments with rats as subjects, we modeled an associative account of such fears. Experiment 1 assessed stimulus-response (S-R) associations in first-order fear conditioning. After behaviorally complete devaluation of the unconditioned stimulus, the target stimulus still produced strong conditioned responses, suggesting that an S-R association had been formed and that this association was not significantly affected when the outcome was devalued through unsignaled presentations of the unconditioned stimulus. Experiments 2 and 3 examined extinction and recovery of S-R associations. Experiment 2 showed that extinguished S-R associations returned when testing occurred outside of the extinction context (i.e., renewal) and Experiment 3 found that a long delay between extinction and testing also produced a return of the extinguished S-R associations (i.e., spontaneous recovery). These experiments suggest that fears for which people cannot recall a cause are explicable in an associative framework, and indicate that those fears are susceptible to relapse after extinction treatment just like stimulus-outcome (S-O) associations. Copyright © 2010. Published by Elsevier Ltd.

  12. Reversal Learning and Associative Memory Impairments in a BACHD Rat Model for Huntington Disease

    PubMed Central

    Abada, Yah-se K.; Nguyen, Huu Phuc; Ellenbroek, Bart; Schreiber, Rudy

    2013-01-01

    Chorea and psychiatric symptoms are hallmarks of Huntington disease (HD), a neurodegenerative disorder, genetically characterized by the presence of expanded CAG repeats (>35) in the HUNTINGTIN (HTT) gene. HD patients present psychiatric symptoms prior to the onset of motor symptoms and we recently found a similar emergence of non motor and motor deficits in BACHD rats carrying the human full length mutated HTT (97 CAG-CAA repeats). We evaluated cognitive performance in reversal learning and associative memory tests in different age cohorts of BACHD rats. Male wild type (WT) and transgenic (TG) rats between 2 and 12 months of age were tested. Learning and strategy shifting were assessed in a cross-maze test. Associative memory was evaluated in different fear conditioning paradigms (context, delay and trace). The possible confound of a fear conditioning phenotype by altered sensitivity to a ‘painful’ stimulus was assessed in a flinch-jump test. In the cross maze, 6 months old TG rats showed a mild impairment in reversal learning. In the fear conditioning tasks, 4, 6 and 12 months old TG rats showed a marked reduction in contextual fear conditioning. In addition, TG rats showed impaired delay conditioning (9 months) and trace fear conditioning (3 months). This phenotype was unlikely to be affected by a change in ‘pain’ sensitivity as WT and TG rats showed no difference in their threshold response in the flinch-jump test. Our results suggest that BACHD rats have a profound associative memory deficit and, possibly, a deficit in reversal learning as assessed in a cross maze task. The time course for the emergence of these symptoms (i.e., before the occurrence of motor symptoms) in this rat model for HD appears similar to the time course in patients. These data suggest that BACHD rats may be a useful model for preclinical drug discovery. PMID:24223692

  13. ApoE isoform-dependent deficits in extinction of contextual fear conditioning.

    PubMed

    Olsen, R H J; Agam, M; Davis, M J; Raber, J

    2012-10-01

    The three major human apoE isoforms (apoE2, apoE3 and apoE4) are encoded by distinct alleles (ϵ2, ϵ3 and ϵ4). Compared with ϵ3, ϵ4 is associated with increased risk to develop Alzheimer's disease (AD), cognitive impairments in Parkinson's disease (PD), and other conditions. In contrast, a recent study indicated an increased susceptibility to the recurring and re-experiencing symptom cluster of Post-Traumatic Stress Disorder (PTSD), as well as related memory impairments, in patients carrying at least one ϵ2 allele. Contextual fear conditioning and extinction are used in human and animal models to study this symptom cluster. In this study, acquisition (day 1, training), consolidation (day 2, first day of re-exposure) and extinction (days 2-5) of conditioned contextual fear in human apoE2, apoE3 and apoE4 targeted replacement and C57BL/6J wild-type (WT) mice was investigated. Male and female apoE2 showed acquisition and retrieval of conditioned fear, but failed to exhibit extinction. In contrast, WT, apoE3 and apoE4 mice showed extinction. While apoE2 mice exhibited lower freezing in response to the context on day 2 than apoE3 and apoE4 mice, this cannot explain their extinction deficit as WT mice exhibited similar freezing levels as apoE2 mice on day 2 but still exhibited extinction. Elevating freezing through extended training preserved extinction in controls, but failed to ameliorate extinction deficits in apoE2 animals. These data along with clinical data showing an association of apoE2 with susceptibility to specific symptom clusters in PTSD supports an important role for apoE isoform in the extinction of conditioned fear. © 2012 The Authors. Genes, Brain and Behavior © 2012 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  14. Memory accuracy predicts hippocampal mTOR pathway activation following retrieval of contextual fear memory.

    PubMed

    Gafford, Georgette M; Parsons, Ryan G; Helmstetter, Fred J

    2013-09-01

    Prior work suggests that hippocampus-dependent memory undergoes a systems consolidation process such that recent memories are stored in the hippocampus, while older memories are independent of the hippocampus and instead dependent on cortical areas. One problem with interpreting these studies is that memory for the contextual stimuli weakens as time passes between the training event and testing and older memories are often less detailed, making it difficult to determine if memory storage in the hippocampus is related to the age or to the accuracy of the memory. Activity of the mammalian target of rapamycin (mTOR) signaling pathway is known to be important for controlling protein translation necessary for both memory consolidation after initial learning and for the reconsolidation of memory after retrieval. We tested whether p70s6 kinase (p70s6K), a key component of the mTOR signaling pathway, is activated following retrieval of context fear memory in the dorsal hippocampus (DH) and anterior cingulate cortex (ACC) at 1, 10, or 36 days after context fear conditioning. We also tested whether strengthening memory for the contextual stimuli changed p70s6K phosphorylation in these structures 36 days after training. We show that under standard training conditions retrieval of a recently formed memory is initially precise and involves the DH. Over time it loses detail, becomes independent of the DH and depends on the ACC. In a subsequent experiment, we preserved the accuracy of older memories through pre-exposure to the training context. We show that remote memory still involved the DH in animals given pre-exposure. These data support the notion that detailed memories depend on the DH regardless of their age. Copyright © 2013 Wiley Periodicals, Inc.

  15. Corticosterone administration after a single-trial contextual fear conditioning does not influence the strength and specificity of recent and remote memory in rats.

    PubMed

    Bueno, Ana Paula A; de Paiva, Joselisa Péres Queiroz; Corrêa, Moisés Dos Santos; Tiba, Paula Ayako; Fornari, Raquel Vecchio

    2017-03-15

    It is well established that corticosterone (CORT) enhances memory consolidation of emotionally arousing experiences. Despite emotional memories being usually referred to as well remembered for long periods, there are no studies that have investigated the effects of CORT in modulating the duration and specificity of memory. In the present study, we trained Wistar rats in a single-trial contextual fear conditioning protocol and injected CORT (0.3, 1.0 or 3.0mg/kg), immediately after training, to investigate its effects on memory consolidation. Rats were tested 2 and 29days after the training session or only 29days after training to assess recent or remote memory. Our results show that animals tested for recent memory discriminated the training context from a novel one, while those tested only for remote memory generalized the fear response to both contexts. Animals tested for remote memory after being tested for recent memory were able to discriminate both contexts. These results support the literature regarding memory specificity and duration. However, CORT treatment, even at the dose of 1.0mg/kg that effectively enhanced the plasmatic hormone levels, did not affect the strength or the specificity of memory in either recent or remote memory tests. We hypothesize that the lack of effect of CORT treatment could be due to the low arousing training experience of the single-trial protocol which, despite being sufficient to induce significant recent and remote memory consolidation, may not be sufficient to allow the memory-enhancing effect of CORT. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Correlates and consequences of toddler cortisol reactivity to fear.

    PubMed

    Kiel, Elizabeth J; Kalomiris, Anne E

    2016-02-01

    Cortisol reactivity to fear-eliciting stimuli during toddlerhood may represent an indicator of risk for anxiety spectrum problems and other maladjustment. Thus, it is important to understand factors that may contribute to cortisol reactivity as well as those that determine its predictive relation to early emerging anxiety. In this vein, the current study investigated maternal comforting behaviors, both solicited and unsolicited by the toddler, as correlates of cortisol reactivity at 2years of age. Furthermore, we investigated maternal comforting behaviors and behavioral indicators of fear in both a low-threat and a high-threat context as moderators of the relation between cortisol reactivity at age 2 and change in anxiety from age 2 to age 3. The sample comprised 99 2-year-old toddlers and their mothers. Toddlers provided saliva samples at baseline and after a fear-eliciting stimulus that were assayed for cortisol. Mothers were observed for comforting behavior while interacting with their toddlers in laboratory tasks and completed questionnaires about their toddlers' anxiety. Results indicated that unsolicited (spontaneous) comforting behavior related to toddler cortisol reactivity above and beyond solicited comforting and the level of fear toddlers displayed in the same task. Moreover, fear in a low-threat context, but not in a high-threat context, moderated the relation between cortisol reactivity and change in anxiety, such that cortisol reactivity had a positive relation to anxiety at extreme levels of low-threat fear. Results suggest the importance of considering the caregiving environment and context-specific fear in understanding the nature of cortisol reactivity during the toddler years. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Neurocognitive assessment of emotional context sensitivity.

    PubMed

    Myruski, Sarah; Bonanno, George A; Gulyayeva, Olga; Egan, Laura J; Dennis-Tiwary, Tracy A

    2017-10-01

    Sensitivity to emotional context is an emerging construct for characterizing adaptive or maladaptive emotion regulation, but few measurement approaches exist. The current study combined behavioral and neurocognitive measures to assess context sensitivity in relation to self-report measures of adaptive emotional flexibility and well-being. Sixty-six adults completed an emotional go/no-go task using happy, fearful, and neutral faces as go and no-go cues, while EEG was recorded to generate event-related potentials (ERPs) reflecting attentional selection and discrimination (N170) and cognitive control (N2). Context sensitivity was measured as the degree of emotional facilitation or disruption in the go/no-go task and magnitude of ERP response to emotion cues. Participants self-reported on emotional flexibility, anxiety, and depression. Overall participants evidenced emotional context sensitivity, such that when happy faces were go stimuli, accuracy improved (greater behavioral facilitation), whereas when fearful faces were no-go stimuli, errors increased (disrupted behavioral inhibition). These indices predicted emotional flexibility and well-being: Greater behavioral facilitation following happy cues was associated with lower depression and anxiety, whereas greater disruption in behavioral inhibition following fearful cues was associated with lower flexibility. ERP indices of context sensitivity revealed additional associations: Greater N2 to fear go cues was associated with less anxiety and depression, and greater N2 and N170 to happy and fear no-go cues, respectively, were associated with greater emotional flexibility and well-being. Results suggest that pleasant and unpleasant emotions selectively enhance and disrupt components of context sensitivity, and that behavioral and ERP indices of context sensitivity predict flexibility and well-being.

  18. Effects of exposure in single and multiple contexts on fear renewal: The moderating role of threat-specific and nonspecific emotionality.

    PubMed

    Olatunji, Bunmi O; Tomarken, Andrew; Wentworth, Brian; Fritzsche, Laura

    2017-03-01

    The current study examines effects of exposure in multiple contexts on fear reduction and renewal and the moderating effect of baseline threat-specific and nonspecific emotionality. Snake-fearful participants received a negative or neutral emotion induction and were randomized to video exposure to a snake in a single context, multiple context, or a no exposure control group. Anxiety in response to video presentations of a snake was significantly reduced in the two exposure groups compared to the control group, especially among those with heightened baseline threat-specific emotionality as indicated by snake anxiety ratings at baseline. Although the two exposure groups did not differ in responding when confronted with a novel snake, both exposure groups reported significantly lower snake anxiety and arousal than the control group. Subsequent analysis did show that compared to controls, the single context group demonstrated greater increase in anxiety and arousal from post-exposure to exposure to the novel snake among those with heightened snake anxiety at baseline. Furthermore, the multiple context group was less avoidant and less fearful than the single context group on a post-exposure behavioral test. The study used an analogue exposure paradigm with an analogue sample and findings may not be generalizable to a clinical population. These findings suggest that baseline threat-specific emotionality influences fear reduction and renewal. The benefits of exposure in multiple contexts are discussed in relation to a distinct pattern of symptom change that is in line with an inhibitory learning approach. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Neural circuits involved in the renewal of extinguished fear.

    PubMed

    Chen, Weihai; Wang, Yan; Wang, Xiaqing; Li, Hong

    2017-07-01

    The last 10 years have witnessed a substantial progress in understanding the neural mechanisms for the renewal of the extinguished fear memory. Based on the theory of fear extinction, exposure therapy has been developed as a typical cognitive behavioral therapy for posttraumatic stress disorder. Although the fear memory can be extinguished by repeated presentation of conditioned stimulus without unconditioned stimulus, the fear memory is not erased and tends to relapse outside of extinction context, which is referred to as renewal. Therefore, the renewal is regarded as a great obstruction interfering with the effect of exposure therapy. In recent years, there has been a great deal of studies in understanding the neurobiological underpinnings of fear renewal. These offer a foundation upon which novel therapeutic interventions for the renewal may be built. This review focuses on behavioral, anatomical and electrophysiological studies that interpret roles of the hippocampus, prelimbic cortex and amygdala as well as the connections between them for the renewal of the extinguished fear. Additionally, this review suggests the possible pathways for the renewal: (1) the prelimbic cortex may integrate contextual information from hippocampal inputs and project to the basolateral amygdala to mediate the renewal of extinguished fear memory; the ventral hippocampus may innervate the activities of the basolateral amygdala or the central amygdala directly for the renewal. © 2017 IUBMB Life, 69(7):470-478, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  20. Pre-attentive, context-specific representation of fear memory in the auditory cortex of rat.

    PubMed

    Funamizu, Akihiro; Kanzaki, Ryohei; Takahashi, Hirokazu

    2013-01-01

    Neural representation in the auditory cortex is rapidly modulated by both top-down attention and bottom-up stimulus properties, in order to improve perception in a given context. Learning-induced, pre-attentive, map plasticity has been also studied in the anesthetized cortex; however, little attention has been paid to rapid, context-dependent modulation. We hypothesize that context-specific learning leads to pre-attentively modulated, multiplex representation in the auditory cortex. Here, we investigate map plasticity in the auditory cortices of anesthetized rats conditioned in a context-dependent manner, such that a conditioned stimulus (CS) of a 20-kHz tone and an unconditioned stimulus (US) of a mild electrical shock were associated only under a noisy auditory context, but not in silence. After the conditioning, although no distinct plasticity was found in the tonotopic map, tone-evoked responses were more noise-resistive than pre-conditioning. Yet, the conditioned group showed a reduced spread of activation to each tone with noise, but not with silence, associated with a sharpening of frequency tuning. The encoding accuracy index of neurons showed that conditioning deteriorated the accuracy of tone-frequency representations in noisy condition at off-CS regions, but not at CS regions, suggesting that arbitrary tones around the frequency of the CS were more likely perceived as the CS in a specific context, where CS was associated with US. These results together demonstrate that learning-induced plasticity in the auditory cortex occurs in a context-dependent manner.

  1. A specific role for hippocampal mossy fiber's zinc in rapid storage of emotional memories

    PubMed Central

    Ceccom, Johnatan; Halley, Hélène; Daumas, Stéphanie; Lassalle, Jean Michel

    2014-01-01

    We investigated the specific role of zinc present in large amounts in the synaptic vesicles of mossy fibers and coreleased with glutamate in the CA3 region. In previous studies, we have shown that blockade of zinc after release has no effect on the consolidation of spatial learning, while zinc is required for the consolidation of contextual fear conditioning. Although both are hippocampo-dependent processes, fear conditioning to the context implies a strong emotional burden. To verify the hypothesis that zinc could play a specific role in enabling sustainable memorization of a single event with a strong emotional component, we used a neuropharmacological approach combining a glutamate receptor antagonist with different zinc chelators. Results show that zinc is mandatory to allow the consolidation of one-shot memory, thus being the key element allowing the hippocampus submitted to a strong emotional charge to switch from the cognitive mode to a flashbulb memory mode. Individual differences in learning abilities have been known for a long time to be totally or partially compensated by distributed learning practice. Here we show that contextual fear conditioning impairments due to zinc blockade can be efficiently reduced by distributed learning practice. PMID:24741109

  2. Prostaglandins are necessary and sufficient to induce contextual fear learning impairments after interleukin-1 beta injections into the dorsal hippocampus

    PubMed Central

    Hein, A.M.; Stutzman, D.L.; Bland, S.T.; Barrientos, R.M.; Watkins, L.R.; Rudy, J.W.; Maier, S.F.

    2008-01-01

    The intra-hippocampal administration of interleukin-1β (IL-1β) as well as the induction of elevated but physiological levels of IL-1β within the hippocampus interferes with the formation of long-term memory. There is evidence suggesting that the induction of prostaglandin (PG) formation by IL-1β is involved in impairments in working and spatial memory following IL-1β. The present experiments extend these findings by showing that PGs are responsible for memory deficits in contextual fear conditioning that occur following IL-1β injection into the dorsal hippocampus. Cyclooxygenase (COX) inhibition blocked the disruption in contextual fear conditioning produced by IL-1β and COX inhibition alone also disrupted contextual memory, suggesting an inverted U-shaped relationship between PG levels and memory. In addition to demonstrating the necessity of PGs in IL-1β mediated memory deficits, we also show that PGs injected directly into the dorsal hippocampus are sufficient to impair context memory and significantly reduce post-conditioning levels of BDNF within the hippocampus, suggesting a possible mechanism for the memory-impairing effects of PGs. PMID:18035502

  3. The role of the dorsomedial part of the prefrontal cortex serotonergic innervation in rat responses to the aversively conditioned context: behavioral, biochemical and immunocytochemical studies.

    PubMed

    Lehner, Małgorzata; Taracha, Ewa; Turzyńska, Danuta; Sobolewska, Alicja; Hamed, Adam; Kołomańska, Paulina; Skórzewska, Anna; Maciejak, Piotr; Szyndler, Janusz; Bidziński, Andrzej; Płaźnik, Adam

    2008-10-10

    In this study we have explored differences in animal reactivity to conditioned aversive stimuli using the conditioned fear test (a contextual fear-freezing response), in rats subjected to the selective lesion of the prefrontal cortex serotonergic innervation, and differing in their response to the acute painful stimulation, a footshock (HS--high sensitivity rats, and LS--low sensitivity rats, selected arbitrarily according to their behavior in the 'flinch-jump' pre-test). Local administration of serotonergic neurotoxin (5,7-dihydroxytryptamine) to the dorsomedial part of the prefrontal cortex caused a very strong, structure and neurotransmitter selective depletion of serotonin concentration. In HS rats, the serotonergic lesion significantly disinhibited rat behavior controlled by fear, enhanced c-Fos expression in the dorsomedial prefrontal area, and increased the concentration of GABA in the basolateral amygdala, measured in vivo after the testing session of the conditioned fear test. The LS animals revealed an opposite pattern of behavioral and biochemical changes after serotonergic lesion: an increase in the duration of a freezing response, and expression of c-Fos in the basolateral and central nuclei of amygdala, and a lower GABA concentration in the basolateral amygdala. In control conditions, c-Fos expression did not differ in LS and HS, naïve, not conditioned and not exposed to the test cage animals. The present study adds more arguments for the controlling role of serotonergic innervation of the dorsomedial part of the prefrontal cortex in processing emotional input by other brain centers. Moreover, it provides experimental data, which may help to better explain the anatomical and biochemical basis of differences in individual reactivity to stressful stimulation, and, possibly, to anxiolytic drugs with serotonergic or GABAergic profiles of action.

  4. The Effect of an Extinction Cue on ABA-Renewal: Does Valence Matter?

    ERIC Educational Resources Information Center

    Dibbets, Pauline; Maes, Joseph H. R.

    2011-01-01

    The present human fear conditioning study examined whether the valence of an extinction cue has a differential effect on attenuating renewal that is induced by removal of the extinction context. Additionally, the study aimed to assess whether such attenuating effect is based on a modulatory or safety-signal role of the cue. In acquisition,…

  5. Changes in Context-Specificity during Memory Reconsolidation: Selective Effects of Hippocampal Lesions

    ERIC Educational Resources Information Center

    Winocur, Gordon; Frankland, Paul W.; Sekeres, Melanie; Fogel, Stuart; Moscovitch, Morris

    2009-01-01

    After acquisition, memories associated with contextual fear conditioning pass through a labile phase, in which they are vulnerable to hippocampal lesions, to a more stable state, via consolidation, in which they engage extrahippocampal structures and are resistant to such disruption. The process is accompanied by changes in the form of the memory…

  6. Activation of orexin/hypocretin neurons is associated with individual differences in cued fear extinction.

    PubMed

    Sharko, Amanda C; Fadel, Jim R; Kaigler, Kris F; Wilson, Marlene A

    2017-09-01

    Identifying the neurobiological mechanisms that underlie differential sensitivity to stress is critical for understanding the development and expression of stress-induced disorders, such as post-traumatic stress disorder (PTSD). Preclinical studies have suggested that rodents display different phenotypes associated with extinction of Pavlovian conditioned fear responses, with some rodent populations being resistant to extinction. An emerging literature also suggests a role for orexins in the consolidation processes associated with fear learning and extinction. To examine the possibility that the orexin system might be involved in individual differences in fear extinction, we used a Pavlovian conditioning paradigm in outbred Long-Evans rats. Rats showed significant variability in the extinction of cue-conditioned freezing and extinction recall, and animals were divided into groups based on their extinction profiles based on a median split of percent freezing behavior during repeated exposure to the conditioned cue. Animals resistant to extinction (high freezers) showed more freezing during repeated cue presentations during the within trial and between trial extinction sessions compared with the group showing significant extinction (low freezers), although there were no differences between these groups in freezing upon return to the conditioned context or during the conditioning session. Following the extinction recall session, activation of orexin neurons was determined using dual label immunohistochemistry for cFos in orexin positive neurons in the hypothalamus. Individual differences in the extinction of cue conditioned fear were associated with differential activation of hypothalamic orexin neurons. Animals showing poor extinction of cue-induced freezing (high freezers) had significantly greater percentage of orexin neurons with Fos in the medial hypothalamus than animals displaying significant extinction and good extinction recall (low freezers). Further, the freezing during extinction learning was positively correlated with the percentage of activated orexin neurons in both the lateral and medial hypothalamic regions. No differences in the overall density of orexin neurons or Fos activation were seen between extinction phenotypes. Although correlative, our results support other studies implicating a role of the orexinergic system in regulating extinction of conditioned responses to threat. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. The effects of varying contextual demands on age-related positive gaze preferences.

    PubMed

    Noh, Soo Rim; Isaacowitz, Derek M

    2015-06-01

    Despite many studies on the age-related positivity effect and its role in visual attention, discrepancies remain regarding whether full attention is required for age-related differences to emerge. The present study took a new approach to this question by varying the contextual demands of emotion processing. This was done by adding perceptual distractions, such as visual and auditory noise, that could disrupt attentional control. Younger and older participants viewed pairs of happy-neutral and fearful-neutral faces while their eye movements were recorded. Facial stimuli were shown either without noise, embedded in a background of visual noise (low, medium, or high), or with simultaneous auditory babble. Older adults showed positive gaze preferences, looking toward happy faces and away from fearful faces; however, their gaze preferences tended to be influenced by the level of visual noise. Specifically, the tendency to look away from fearful faces was not present in conditions with low and medium levels of visual noise but was present when there were high levels of visual noise. It is important to note, however, that in the high-visual-noise condition, external cues were present to facilitate the processing of emotional information. In addition, older adults' positive gaze preferences disappeared or were reduced when they first viewed emotional faces within a distracting context. The current results indicate that positive gaze preferences may be less likely to occur in distracting contexts that disrupt control of visual attention. (c) 2015 APA, all rights reserved.

  8. A twin study of the genetics of fear conditioning.

    PubMed

    Hettema, John M; Annas, Peter; Neale, Michael C; Kendler, Kenneth S; Fredrikson, Mats

    2003-07-01

    Fear conditioning is a traditional model for the acquisition of fears and phobias. Studies of the genetic architecture of fear conditioning may inform gene-finding strategies for anxiety disorders. The objective of this study was to determine the genetic and environmental sources of individual differences in fear conditioning by means of a twin sample. Classic fear conditioning data were experimentally obtained from 173 same-sex twin pairs (90 monozygotic and 83 dizygotic). Sequences of evolutionary fear-relevant (snakes and spiders) and fear-irrelevant (circles and triangles) pictorial stimuli served as conditioned stimuli paired with a mild electric shock serving as the unconditioned stimulus. The outcome measure was the electrodermal skin conductance response. We applied structural equation modeling methods to the 3 conditioning phases of habituation, acquisition, and extinction to determine the extent to which genetic and environmental factors underlie individual variation in associative and nonassociative learning. All components of the fear conditioning process in humans demonstrated moderate heritability, in the range of 35% to 45%. Best-fitting multivariate models suggest that 2 sets of genes may underlie the trait of fear conditioning: one that most strongly affects nonassociative processes of habituation that also is shared with acquisition and extinction, and a second that appears related to associative fear conditioning processes. In addition, these data provide tentative evidence of differences in heritability based on the fear relevance of the stimuli. Genes represent a significant source of individual variation in the habituation, acquisition, and extinction of fears, and genetic effects specific to fear conditioning are involved.

  9. Context memory formation requires activity-dependent protein degradation in the hippocampus.

    PubMed

    Cullen, Patrick K; Ferrara, Nicole C; Pullins, Shane E; Helmstetter, Fred J

    2017-11-01

    Numerous studies have indicated that the consolidation of contextual fear memories supported by an aversive outcome like footshock requires de novo protein synthesis as well as protein degradation mediated by the ubiquitin-proteasome system (UPS). Context memory formed in the absence of an aversive stimulus by simple exposure to a novel environment requires de novo protein synthesis in both the dorsal (dHPC) and ventral (vHPC) hippocampus. However, the role of UPS-mediated protein degradation in the consolidation of context memory in the absence of a strong aversive stimulus has not been investigated. In the present study, we used the context preexposure facilitation effect (CPFE) procedure, which allows for the dissociation of context learning from context-shock learning, to investigate the role of activity-dependent protein degradation in the dHPC and vHPC during the formation of a context memory. We report that blocking protein degradation with the proteasome inhibitor clasto-lactacystin β-lactone (βLac) or blocking protein synthesis with anisomycin (ANI) immediately after context preexposure significantly impaired context memory formation. Additionally, we examined 20S proteasome activity at different time points following context exposure and saw that the activity of proteasomes in the dHPC increases immediately after stimulus exposure while the vHPC exhibits a biphasic pattern of proteolytic activity. Taken together, these data suggest that the requirement of increased proteolysis during memory consolidation is not driven by processes triggered by the strong aversive outcome (i.e., shock) normally used to support fear conditioning. © 2017 Cullen et al.; Published by Cold Spring Harbor Laboratory Press.

  10. Elevation of Hippocampal Neurogenesis Induces a Temporally Graded Pattern of Forgetting of Contextual Fear Memories.

    PubMed

    Gao, Aijing; Xia, Frances; Guskjolen, Axel J; Ramsaran, Adam I; Santoro, Adam; Josselyn, Sheena A; Frankland, Paul W

    2018-03-28

    Throughout life neurons are continuously generated in the subgranular zone of the hippocampus. The subsequent integration of newly generated neurons alters patterns of dentate gyrus input and output connectivity, potentially rendering memories already stored in those circuits harder to access. Consistent with this prediction, we previously showed that increasing hippocampal neurogenesis after training induces forgetting of hippocampus-dependent memories, including contextual fear memory. However, the brain regions supporting contextual fear memories change with time, and this time-dependent memory reorganization might regulate the sensitivity of contextual fear memories to fluctuations in hippocampal neurogenesis. By virally expressing the inhibitory designer receptor exclusively activated by designer drugs, hM4Di, we first confirmed that chemogenetic inhibition of dorsal hippocampal neurons impairs retrieval of recent (day-old) but not remote (month-old) contextual fear memories in male mice. We then contrasted the effects of increasing hippocampal neurogenesis at recent versus remote time points after contextual fear conditioning in male and female mice. Increasing hippocampal neurogenesis immediately following training reduced conditioned freezing when mice were replaced in the context 1 month later. In contrast, when hippocampal neurogenesis was increased time points remote to training, conditioned freezing levels were unaltered when mice were subsequently tested. These temporally graded forgetting effects were observed using both environmental and genetic interventions to increase hippocampal neurogenesis. Our experiments identify memory age as a boundary condition for neurogenesis-mediated forgetting and suggest that, as contextual fear memories mature, they become less sensitive to changes in hippocampal neurogenesis levels because they no longer depend on the hippocampus for their expression. SIGNIFICANCE STATEMENT New neurons are generated in the hippocampus throughout life. As they integrate into the hippocampus, they remodel neural circuitry, potentially making information stored in those circuits harder to access. Consistent with this, increasing hippocampal neurogenesis after learning induces forgetting of the learnt information. The current study in mice asks whether these forgetting effects depend on the age of the memory. We found that post-training increases in hippocampal neurogenesis only impacted recently acquired, and not remotely acquired, hippocampal memories. These experiments identify memory age as a boundary condition for neurogenesis-mediated forgetting, and suggest remote memories are less sensitive to changes in hippocampal neurogenesis levels because they no longer depend critically on the hippocampus for their expression. Copyright © 2018 the authors 0270-6474/18/383190-09$15.00/0.

  11. Probing the influence of unconscious fear-conditioned visual stimuli on eye movements.

    PubMed

    Madipakkam, Apoorva Rajiv; Rothkirch, Marcus; Wilbertz, Gregor; Sterzer, Philipp

    2016-11-01

    Efficient threat detection from the environment is critical for survival. Accordingly, fear-conditioned stimuli receive prioritized processing and capture overt and covert attention. However, it is unknown whether eye movements are influenced by unconscious fear-conditioned stimuli. We performed a classical fear-conditioning procedure and subsequently recorded participants' eye movements while they were exposed to fear-conditioned stimuli that were rendered invisible using interocular suppression. Chance-level performance in a forced-choice-task demonstrated unawareness of the stimuli. Differential skin conductance responses and a change in participants' fearfulness ratings of the stimuli indicated the effectiveness of conditioning. However, eye movements were not biased towards the fear-conditioned stimulus. Preliminary evidence suggests a relation between the strength of conditioning and the saccadic bias to the fear-conditioned stimulus. Our findings provide no strong evidence for a saccadic bias towards unconscious fear-conditioned stimuli but tentative evidence suggests that such an effect may depend on the strength of the conditioned response. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Generalization of conditioned fear along a dimension of increasing fear intensity

    PubMed Central

    Dunsmoor, Joseph E.; Mitroff, Stephen R.; LaBar, Kevin S.

    2009-01-01

    The present study investigated the extent to which fear generalization in humans is determined by the amount of fear intensity in nonconditioned stimuli relative to a perceptually similar conditioned stimulus. Stimuli consisted of graded emotionally expressive faces of the same identity morphed between neutral and fearful endpoints. Two experimental groups underwent discriminative fear conditioning between a face stimulus of 55% fear intensity (conditioned stimulus, CS+), reinforced with an electric shock, and a second stimulus that was unreinforced (CS−). In Experiment 1 the CS− was a relatively neutral face stimulus, while in Experiment 2 the CS− was the most fear-intense stimulus. Before and following fear conditioning, skin conductance responses (SCR) were recorded to different morph values along the neutral-to-fear dimension. Both experimental groups showed gradients of generalization following fear conditioning that increased with the fear intensity of the stimulus. In Experiment 1 a peak shift in SCRs extended to the most fear-intense stimulus. In contrast, generalization to the most fear-intense stimulus was reduced in Experiment 2, suggesting that discriminative fear learning procedures can attenuate fear generalization. Together, the findings indicate that fear generalization is broadly tuned and sensitive to the amount of fear intensity in nonconditioned stimuli, but that fear generalization can come under stimulus control. These results reveal a novel form of fear generalization in humans that is not merely based on physical similarity to a conditioned exemplar, and may have implications for understanding generalization processes in anxiety disorders characterized by heightened sensitivity to nonthreatening stimuli. PMID:19553384

  13. Adenosine A2A Receptors in the Amygdala Control Synaptic Plasticity and Contextual Fear Memory.

    PubMed

    Simões, Ana Patrícia; Machado, Nuno J; Gonçalves, Nélio; Kaster, Manuella P; Simões, Ana T; Nunes, Ana; Pereira de Almeida, Luís; Goosens, Ki Ann; Rial, Daniel; Cunha, Rodrigo A

    2016-11-01

    The consumption of caffeine modulates working and reference memory through the antagonism of adenosine A 2A receptors (A 2A Rs) controlling synaptic plasticity processes in hippocampal excitatory synapses. Fear memory essentially involves plastic changes in amygdala circuits. However, it is unknown if A 2A Rs in the amygdala regulate synaptic plasticity and fear memory. We report that A 2A Rs in the amygdala are enriched in synapses and located to glutamatergic synapses, where they selectively control synaptic plasticity rather than synaptic transmission at a major afferent pathway to the amygdala. Notably, the downregulation of A 2A Rs selectively in the basolateral complex of the amygdala, using a lentivirus with a silencing shRNA (small hairpin RNA targeting A 2A R (shA 2A R)), impaired fear acquisition as well as Pavlovian fear retrieval. This is probably associated with the upregulation and gain of function of A 2A Rs in the amygdala after fear acquisition. The importance of A 2A Rs to control fear memory was further confirmed by the ability of SCH58261 (0.1 mg/kg; A 2A R antagonist), caffeine (5 mg/kg), but not DPCPX (0.5 mg/kg; A 1 R antagonist), treatment for 7 days before fear conditioning onwards, to attenuate the retrieval of context fear after 24-48 h and after 7-8 days. These results demonstrate that amygdala A 2A Rs control fear memory and the underlying process of synaptic plasticity in this brain region. This provides a neurophysiological basis for the association between A 2A R polymorphisms and phobia or panic attacks in humans and prompts a therapeutic interest in A 2A Rs to manage fear-related pathologies.

  14. Living in Fear of Your Child's Pain: The Parent Fear of Pain Questionnaire

    PubMed Central

    Simons, Laura E.; Smith, Allison; Kaczynski, Karen; Basch, Molly

    2015-01-01

    Fear and avoidance have been consistently associated with poor pain-related outcomes in children. In the context of the pediatric pain experience, parent distress and behaviors can be highly influential. The current study validated the Parent Fear of Pain Questionnaire (PFOPQ) to assess a parent's fears and avoidance behaviors associated with their child's pain. Using the PFOPQ in conjunction with measures of parent and child pain-related variables, we tested the Interpersonal Fear Avoidance Model (IFAM). The sample comprised of 321 parents and their child with chronic or new-onset pain who presented to a multidisciplinary outpatient pain clinic. An exploratory factor analysis yielded a 4-factor structure for the PFOPQ consisting of Fear of Pain, Fear of Movement, Fear of School, and Avoidance. As hypothesized, Fear of Pain was most closely related to parent pain catastrophizing and child fear of pain, while Avoidance was most closely related to parent protective behaviors and child avoidance of activities. In testing the IFAM, parent behavior contributed directly and indirectly to child avoidance while parent fear and catastrophizing contributed indirectly to child avoidance through parent behavior and child fear and catastrophizing, in turn, influencing child functional disability levels. The current study provides the first measure of parent pain-related fears and avoidance behaviors and evaluates the theorized IFAM. These results underscore the important influence of parents on child pain-related outcomes and puts forth a psychometrically sound measure to assess parent fear and avoidance in the context of their child's pain. PMID:25630026

  15. Living in fear of your child's pain: the Parent Fear of Pain Questionnaire.

    PubMed

    Simons, Laura E; Smith, Allison; Kaczynski, Karen; Basch, Molly

    2015-04-01

    Fear and avoidance have been consistently associated with poor pain-related outcomes in children. In the context of the pediatric pain experience, parent distress and behaviors can be highly influential. This study validated the Parent Fear of Pain Questionnaire (PFOPQ) to assess a parent's fears and avoidance behaviors associated with their child's pain. Using the PFOPQ in conjunction with measures of parent and child pain-related variables, we tested the interpersonal fear-avoidance model (IFAM). The sample comprised 321 parents and their child with chronic or new-onset pain who presented to a multidisciplinary outpatient pain clinic. An exploratory factor analysis yielded a 4-factor structure for the PFOPQ consisting of Fear of Pain, Fear of Movement, Fear of School, and Avoidance. As hypothesized, Fear of Pain was most closely related to parent pain catastrophizing and child fear of pain, whereas Avoidance was most closely related to parent protective behaviors and child avoidance of activities. In testing the IFAM, parent behavior contributed directly and indirectly to child avoidance, whereas parent fear and catastrophizing contributed indirectly to child avoidance through parent behavior and child fear and catastrophizing, in turn, influencing child functional disability levels. This study provides the first measure of parent pain-related fears and avoidance behaviors and evaluates the theorized IFAM. These results underscore the important influence of parents on child pain-related outcomes and put forth a psychometrically sound measure to assess parent fear and avoidance in the context of their child's pain.

  16. Electrophysiological Correlates of Emotional Source Memory in High-Trait-Anxiety Individuals

    PubMed Central

    Cui, Lixia; Shi, Guangyuan; He, Fan; Zhang, Qin; Oei, Tian P. S.; Guo, Chunyan

    2016-01-01

    The interaction between recognition memory and emotion has become a research hotspot in recent years. Dual process theory posits that familiarity and recollection are two separate processes contributing to recognition memory, but further experimental evidence is needed. The present study explored the emotional context effects on successful and unsuccessful source retrieval amongst 15 high-trait-anxiety college students by using event-related potentials (ERPs) measurement. During study, a happy, fearful, or neutral face picture first was displayed, then a Chinese word was superimposed centrally on the picture and subjects were asked to remember the word and the corresponding type of picture. During the test participants were instructed to press one of four buttons to indicate whether the displayed word was an old or new word. And then, for the old word, indicate whether it had been shown with a fearful, happy, or neutral face during the study. ERPs were generally more positive for remembered words than for new words and the ERP difference was termed as an old/new effect. It was found that, for successful source retrieval (it meant both the item and the source were remembered accurately) between 500 and 700 ms (corresponding to a late positive component, LPC), there were significant old/new effects in all contexts. However, for unsuccessful source retrieval (it meant the correct recognition of old items matched with incorrect source attribution), there were no significant old/new effects in happy and neutral contexts, though significant old/new effects were observed in the fearful context. Between 700 and 1200 ms (corresponding to a late slow wave, LSW), there were significant old/new effects for successful source retrieval in happy and neutral contexts. However, in the fearful context, the old/new effects were reversed, ERPs were more negative for successful source retrieval compared to correct rejections. Moreover, there were significant emotion effects for successful source retrieval at this time window. Further analysis showed ERPs of old items were more negative in fearful context than in neutral context. The results showed that early unsuccessful fearful source retrieval processes (related to familiarity) were enhanced, but late successful fearful source retrieval processes during source retrieval monitoring (related to recollection) were weakened. This provided preliminary evidence for the dual processing theory. PMID:27462288

  17. Angiotensin-(1-7)/Mas axis modulates fear memory and extinction in mice.

    PubMed

    Lazaroni, Thiago Luiz do Nascimento; Bastos, Cristiane Perácio; Moraes, Márcio Flávio Dutra; Santos, Robson Souza; Pereira, Grace Schenatto

    2016-01-01

    Inappropriate defense-alerting reaction to fear is a common feature of neuropsychiatric diseases. Therefore, impairments in brain circuits, as well as in molecular pathways underlying the neurovegetative adjustments to fear may play an essential role on developing neuropsychiatric disorders. Here we tested the hypothesis that interfering with angiotensin-(1-7) [Ang-(1-7)]/Mas receptor axis homeostasis, which appears to be essential to arterial pressure control, would affect fear memory and extinction. Mas knockout (MasKO) mice, in FVB/N background, showed normal cued fear memory and extinction, but increased freezing in response to context. Next, as FVB/N has poor performance in contextual fear memory, we tested MasKO in mixed 129xC57BL/6 background. MasKO mice behaved similarly to wild-type (WT), but memory extinction was slower in contextual fear conditioning to a weak protocol (1CS/US). In addition, delayed extinction in MasKO mice was even more pronounced after a stronger protocol (3CS/US). We showed previously that Angiotensin II receptor AT1 antagonist, losantan, rescued object recognition memory deficit in MasKO mice. Here, losartan was also effective. Memory extinction was accelerated in MasKO mice after treatment with losartan. In conclusion, we showed for the first time that Ang-(1-7)/Mas axis may modulate fear memory extinction. Furthermore, we suggest MasKO mice as an animal model to study post-traumatic stress disorder (PTSD). Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Posterior insular cortex is necessary for conditioned inhibition of fear

    PubMed Central

    Foilb, Allison R.; Flyer-Adams, Johanna G.; Maier, Steven F.; Christianson, John P.

    2016-01-01

    Veridical detection of safety versus danger is critical to survival. Learned signals for safety inhibit fear, and so when presented, reduce fear responses produced by danger signals. This phenomenon is termed conditioned inhibition of fear. Here, we report that CS+/CS− fear discrimination conditioning over 5 days in rats leads the CS− to become a conditioned inhibitor of fear, as measured by the classic tests of conditioned inhibition: summation and retardation of subsequent fear acquisition. We then show that NMDA-receptor antagonist AP5 injected to posterior insular cortex (IC) before training completely prevented the acquisition of a conditioned fear inhibitor, while intra-AP5 to anterior and medial IC had no effect. To determine if the IC contributes to the recall of learned fear inhibition, injections of the GABAA agonist muscimol were made to posterior IC before a summation test. This resulted in fear inhibition per se, which obscured inference to the effect of IC inactivation with recall of the safety cue. Control experiments sought to determine if the role of the IC in conditioned inhibition learning could be reduced to simpler fear discrimination function, but fear discrimination and recall were unaffected by AP5 or muscmiol, respectively, in the posterior IC. These data implicate a role of posterior IC in the learning of conditioned fear inhibitors. PMID:27523750

  19. Fear Control an Danger Control: A Test of the Extended Parallel Process Model (EPPM).

    ERIC Educational Resources Information Center

    Witte, Kim

    1994-01-01

    Explores cognitive and emotional mechanisms underlying success and failure of fear appeals in context of AIDS prevention. Offers general support for Extended Parallel Process Model. Suggests that cognitions lead to fear appeal success (attitude, intention, or behavior changes) via danger control processes, whereas the emotion fear leads to fear…

  20. The Genetic Covariation between Fear Conditioning and Self-Report Fears

    PubMed Central

    Hettema, John M.; Annas, Peter; Neale, Michael C.; Fredrikson, Mats; Sci, Dr Med; Kendler, Kenneth S.

    2008-01-01

    Background Fear conditioning is a traditional model for the acquisition of phobias, while behavioral therapies utilize processes underlying extinction to treat phobic and other anxiety disorders. Furthermore, fear conditioning has been proposed as an endophenotype for genetic studies of anxiety disorders. While prior studies have demonstrated that fear conditioning and self-report fears are heritable, no studies have determined whether they share a common genetic basis. Methods We obtained fear conditioning data from 173 twin pairs from the Swedish Twin Registry who also provided self-report ratings of 16 common fears. Using multivariate structural equation modeling, we analyzed factor-derived scores for the subjective fear ratings together with the electrophysiologic skin conductance responses during habituation, acquisition, and extinction to determine the extent of their genetic covariation. Results Phenotypic correlations between experimental and self-report fear measures were modest and, and counter-intuitively, negative; that is, subjects who reported themselves as more fearful had smaller electrophysiologic responses. Best-fit models estimated a significant (negative) genetic correlation between them, although genetic factors underlying fear conditioning accounted for only 9% of individual differences in self-report fears. Conclusions Experimentally-derived fear conditioning measures share only a small portion of the genetic factors underlying individual differences in subjective fears, cautioning against relying too heavily on the former as an endophenotype for genetic studies of phobic disorders. PMID:17698042

  1. Benchmarking: Another Attempt to Introduce Market-Oriented Policies into Irish Second-Level Education?

    ERIC Educational Resources Information Center

    Halton, Michael J.

    2003-01-01

    Teachers in Ireland fear that benchmarking in the context of the present review of pay and conditions for all public service workers camouflages a shift of concern away from the development of the individual student to concern for the quality of the educational process provided by schools. A recent dispute between secondary teachers and the Irish…

  2. Fear conditioned responses and PTSD symptoms in children: Sex differences in fear-related symptoms.

    PubMed

    Gamwell, Kaitlyn; Nylocks, Maria; Cross, Dorthie; Bradley, Bekh; Norrholm, Seth D; Jovanovic, Tanja

    2015-11-01

    Fear conditioning studies in adults have found that posttraumatic stress disorder (PTSD) is associated with heightened fear responses and impaired discrimination. The objective of the current study was to examine the association between PTSD symptoms and fear conditioned responses in children from a highly traumatized urban population. Children between 8 and 13 years old participated in a fear conditioning study in addition to providing information about their trauma history and PTSD symptoms. Results showed that females showed less discrimination between danger and safety signals during conditioning compared to age-matched males. In boys, intrusive symptoms were predictive of fear responses, even after controlling for trauma exposure. However, in girls, conditioned fear to the danger cue was predictive of self-blame and fear of repeated trauma. This study suggests there are early sex differences in the patterns of fear conditioning and that these sex differences may translate to differential risk for trauma-related psychopathology. © 2015 Wiley Periodicals, Inc.

  3. The Medial Amygdala-Medullary PrRP-Synthesizing Neuron Pathway Mediates Neuroendocrine Responses to Contextual Conditioned Fear in Male Rodents

    PubMed Central

    Yoshida, Masahide; Takayanagi, Yuki

    2014-01-01

    Fear responses play evolutionarily beneficial roles, although excessive fear memory can induce inappropriate fear expression observed in posttraumatic stress disorder, panic disorder, and phobia. To understand the neural machineries that underlie these disorders, it is important to clarify the neural pathways of fear responses. Contextual conditioned fear induces freezing behavior and neuroendocrine responses. Considerable evidence indicates that the central amygdala plays an essential role in expression of freezing behavior after contextual conditioned fear. On the other hand, mechanisms of neuroendocrine responses remain to be clarified. The medial amygdala (MeA), which is activated after contextual conditioned fear, was lesioned bilaterally by infusion of N-methyl-d-aspartate after training of fear conditioning. Plasma oxytocin, ACTH, and prolactin concentrations were significantly increased after contextual conditioned fear in sham-lesioned rats. In MeA-lesioned rats, these neuroendocrine responses but not freezing behavior were significantly impaired compared with those in sham-lesioned rats. In contrast, the magnitudes of neuroendocrine responses after exposure to novel environmental stimuli were not significantly different in MeA-lesioned rats and sham-lesioned rats. Contextual conditioned fear activated prolactin-releasing peptide (PrRP)-synthesizing neurons in the medulla oblongata. In MeA-lesioned rats, the percentage of PrRP-synthesizing neurons activated after contextual conditioned fear was significantly decreased. Furthermore, neuroendocrine responses after contextual conditioned fear disappeared in PrRP-deficient mice. Our findings suggest that the MeA-medullary PrRP-synthesizing neuron pathway plays an important role in neuroendocrine responses to contextual conditioned fear. PMID:24877622

  4. The medial amygdala-medullary PrRP-synthesizing neuron pathway mediates neuroendocrine responses to contextual conditioned fear in male rodents.

    PubMed

    Yoshida, Masahide; Takayanagi, Yuki; Onaka, Tatsushi

    2014-08-01

    Fear responses play evolutionarily beneficial roles, although excessive fear memory can induce inappropriate fear expression observed in posttraumatic stress disorder, panic disorder, and phobia. To understand the neural machineries that underlie these disorders, it is important to clarify the neural pathways of fear responses. Contextual conditioned fear induces freezing behavior and neuroendocrine responses. Considerable evidence indicates that the central amygdala plays an essential role in expression of freezing behavior after contextual conditioned fear. On the other hand, mechanisms of neuroendocrine responses remain to be clarified. The medial amygdala (MeA), which is activated after contextual conditioned fear, was lesioned bilaterally by infusion of N-methyl-d-aspartate after training of fear conditioning. Plasma oxytocin, ACTH, and prolactin concentrations were significantly increased after contextual conditioned fear in sham-lesioned rats. In MeA-lesioned rats, these neuroendocrine responses but not freezing behavior were significantly impaired compared with those in sham-lesioned rats. In contrast, the magnitudes of neuroendocrine responses after exposure to novel environmental stimuli were not significantly different in MeA-lesioned rats and sham-lesioned rats. Contextual conditioned fear activated prolactin-releasing peptide (PrRP)-synthesizing neurons in the medulla oblongata. In MeA-lesioned rats, the percentage of PrRP-synthesizing neurons activated after contextual conditioned fear was significantly decreased. Furthermore, neuroendocrine responses after contextual conditioned fear disappeared in PrRP-deficient mice. Our findings suggest that the MeA-medullary PrRP-synthesizing neuron pathway plays an important role in neuroendocrine responses to contextual conditioned fear.

  5. Oxytocin and Social Support as Synergistic Inhibitors of Aversive Fear Conditioning and Fear-Potentiated Startle in Male Rats

    DTIC Science & Technology

    2009-09-01

    startle amplitude. They then received Pavlovian fear conditioning of five pairings of a 3 s light co-terminating with a 500 ms, 0.6mA footshock. Four...Synergistic Inhibitors of Aversive Fear Conditioning and Fear-Potentiated Startle in Male Rats PRINCIPAL INVESTIGATOR: Jeffrey B. Rosen, Ph.D...NUMBER Oxytocin and Social Support as Synergistic Inhibitors of Aversive Fear Conditioning and Fear-Potentiated Startle in Male Rats 5b. GRANT

  6. The effect of emotionally valenced eye region images on visuocortical processing of surprised faces.

    PubMed

    Li, Shuaixia; Li, Ping; Wang, Wei; Zhu, Xiangru; Luo, Wenbo

    2018-05-01

    In this study, we presented pictorial representations of happy, neutral, and fearful expressions projected in the eye regions to determine whether the eye region alone is sufficient to produce a context effect. Participants were asked to judge the valence of surprised faces that had been preceded by a picture of an eye region. Behavioral results showed that affective ratings of surprised faces were context dependent. Prime-related ERPs with presentation of happy eyes elicited a larger P1 than those for neutral and fearful eyes, likely due to the recognition advantage provided by a happy expression. Target-related ERPs showed that surprised faces in the context of fearful and happy eyes elicited dramatically larger C1 than those in the neutral context, which reflected the modulation by predictions during the earliest stages of face processing. There were larger N170 with neutral and fearful eye contexts compared to the happy context, suggesting faces were being integrated with contextual threat information. The P3 component exhibited enhanced brain activity in response to faces preceded by happy and fearful eyes compared with neutral eyes, indicating motivated attention processing may be involved at this stage. Altogether, these results indicate for the first time that the influence of isolated eye regions on the perception of surprised faces involves preferential processing at the early stages and elaborate processing at the late stages. Moreover, higher cognitive processes such as predictions and attention can modulate face processing from the earliest stages in a top-down manner. © 2017 Society for Psychophysiological Research.

  7. Extinction during reconsolidation eliminates recovery of fear conditioned to fear-irrelevant and fear-relevant stimuli.

    PubMed

    Thompson, Alina; Lipp, Ottmar V

    2017-05-01

    Extant literature suggests that extinction training delivered during the memory reconsolidation period is superior to traditional extinction training in the reduction of fear recovery, as it targets the original fear memory trace. At present it is debated whether different types of fear memories are differentially sensitive to behavioral manipulations of reconsolidation. Here, we examined post-reconsolidation recovery of fear as a function of conditioned stimulus (CS) fear-relevance, using the unconditioned stimulus (US) to reactivate and destabilize conditioned fear memories. Participants (N = 56; 25 male; M = 24.39 years, SD = 7.71) in the US-reactivation and control group underwent differential fear conditioning to fear-relevant (spiders/snakes) and fear-irrelevant (geometric shapes) CSs on Day 1. On Day 2, participants received either reminded (US-reactivation) or non-reminded extinction training. Tests of fear recovery, conducted 24 h later, revealed recovery of differential electrodermal responding to both classes of CSs in the control group, but not in the US-reactivation group. These findings indicate that the US reactivation-extinction procedure eliminated recovery of extinguished responding not only to fear-irrelevant, but also to fear-relevant CSs. Contrasting previous reports, our findings show that post-reconsolidation recovery of conditioned responding is not a function of CS fear-relevance and that persistent reduction of fear, conditioned to fear-relevant CSs, can be achieved through behavioral manipulations of reconsolidation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Posterior insular cortex is necessary for conditioned inhibition of fear.

    PubMed

    Foilb, Allison R; Flyer-Adams, Johanna G; Maier, Steven F; Christianson, John P

    2016-10-01

    Veridical detection of safety versus danger is critical to survival. Learned signals for safety inhibit fear, and so when presented, reduce fear responses produced by danger signals. This phenomenon is termed conditioned inhibition of fear. Here, we report that CS+/CS- fear discrimination conditioning over 5 days in rats leads the CS- to become a conditioned inhibitor of fear, as measured by the classic tests of conditioned inhibition: summation and retardation of subsequent fear acquisition. We then show that NMDA-receptor antagonist AP5 injected to posterior insular cortex (IC) before training completely prevented the acquisition of a conditioned fear inhibitor, while intra-AP5 to anterior and medial IC had no effect. To determine if the IC contributes to the recall of learned fear inhibition, injections of the GABAA agonist muscimol were made to posterior IC before a summation test. This resulted in fear inhibition per se, which obscured inference to the effect of IC inactivation with recall of the safety cue. Control experiments sought to determine if the role of the IC in conditioned inhibition learning could be reduced to simpler fear discrimination function, but fear discrimination and recall were unaffected by AP5 or muscimol, respectively, in the posterior IC. These data implicate a role of posterior IC in the learning of conditioned fear inhibitors. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Opposing effects of d-cycloserine on fear despite a common extinction duration: Interactions between brain regions and behavior

    PubMed Central

    Bolkan, Scott S.; Lattal, K. Matthew

    2014-01-01

    A number of studies have reported that D-cycloserine (DCS), a partial agonist of the N-methyl-D-aspartate glutamate receptor, can facilitate the loss of conditioned fear if it is administered during an extinction trial. Here we examine the effects of DCS injected into the hippocampus or amygdala on extinction of context-evoked freezing after contextual fear conditioning in C57BL/6 mice. We find that DCS administered prior to an extinction session decreased freezing from the outset of the session regardless of which brain region was targeted. Retention tests revealed opposite effects on fear expression despite identical behavioral treatments: intra-hippocampal DCS inhibited fear expression while intra-amygdala DCS potentiated fear expression. Following post-extinction session injections of DCS, we found a similar though less pronounced effect. Closer inspection of the data revealed that the effects of DCS interacted with the behavior of the subjects during extinction. Intra-hippocampal injections of DCS enhanced extinction in those mice that showed the greatest amount of within-session extinction, but had less pronounced effects on mice that showed the least within-session extinction. Intra-amygdala injections of DCS impaired extinction in those mice that showed the least within-session, but there was some evidence that the effect in the amygdala did not depend on behavior during extinction. These findings demonstrate that even with identical extinction preparations and trial durations, the effects of DCS administered into the hippocampus and amygdala can heavily depend on the organism’s behavior during the extinction session. The broader implication of these findings is that the effects of pharmacological treatments designed to enhance extinction by targeting hippocampal or amygdalar processes may depend greatly on the responsivity of the subject to the behavioral treatment. PMID:24374132

  10. Opposing effects of D-cycloserine on fear despite a common extinction duration: interactions between brain regions and behavior.

    PubMed

    Bolkan, Scott S; Lattal, K Matthew

    2014-09-01

    A number of studies have reported that D-cycloserine (DCS), a partial agonist of the N-methyl-D-aspartate glutamate receptor, can facilitate the loss of conditioned fear if it is administered during an extinction trial. Here we examine the effects of DCS injected into the hippocampus or amygdala on extinction of context-evoked freezing after contextual fear conditioning in C57BL/6 mice. We find that DCS administered prior to an extinction session decreased freezing from the outset of the session regardless of which brain region was targeted. Retention tests revealed opposite effects on fear expression despite identical behavioral treatments: intra-hippocampal DCS inhibited fear expression while intra-amygdala DCS potentiated fear expression. Following post-extinction session injections of DCS, we found a similar though less pronounced effect. Closer inspection of the data revealed that the effects of DCS interacted with the behavior of the subjects during extinction. Intra-hippocampal injections of DCS enhanced extinction in those mice that showed the greatest amount of within-session extinction, but had less pronounced effects on mice that showed the least within-session extinction. Intra-amygdala injections of DCS impaired extinction in those mice that showed the least within-session extinction, but there was some evidence that the effect in the amygdala did not depend on behavior during extinction. These findings demonstrate that even with identical extinction trial durations, the effects of DCS administered into the hippocampus and amygdala can heavily depend on the organism's behavior during the extinction session. The broader implication of these findings is that the effects of pharmacological treatments designed to enhance extinction by targeting hippocampal or amygdalar processes may depend on the responsivity of the subject to the behavioral treatment. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. ASIC1A in neurons is critical for fear-related behaviors.

    PubMed

    Taugher, R J; Lu, Y; Fan, R; Ghobbeh, A; Kreple, C J; Faraci, F M; Wemmie, J A

    2017-11-01

    Acid-sensing ion channels (ASICs) have been implicated in fear-, addiction- and depression-related behaviors in mice. While these effects have been attributed to ASIC1A in neurons, it has been reported that ASICs may also function in nonneuronal cells. To determine if ASIC1A in neurons is indeed required, we generated neuron-specific knockout (KO) mice with floxed Asic1a alleles disrupted by Cre recombinase driven by the neuron-specific synapsin I promoter (SynAsic1a KO mice). We confirmed that Cre expression occurred in neurons, but not all neurons, and not in nonneuronal cells including astrocytes. Consequent loss of ASIC1A in some but not all neurons was verified by western blotting, immunohistochemistry and electrophysiology. We found ASIC1A was disrupted in fear circuit neurons, and SynAsic1a KO mice exhibited prominent deficits in multiple fear-related behaviors including Pavlovian fear conditioning to cue and context, predator odor-evoked freezing and freezing responses to carbon dioxide inhalation. In contrast, in the nucleus accumbens ASIC1A expression was relatively normal in SynAsic1a KO mice, and consistent with this observation, cocaine conditioned place preference (CPP) was normal. Interestingly, depression-related behavior in the forced swim test, which has been previously linked to ASIC1A in the amygdala, was also normal. Together, these data suggest neurons are an important site of ASIC1A action in fear-related behaviors, whereas other behaviors likely depend on ASIC1A in other neurons or cell types not targeted in SynAsic1a KO mice. These findings highlight the need for further work to discern the roles of ASICs in specific cell types and brain sites. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  12. Dendritic structural plasticity in the basolateral amygdala after fear conditioning and its extinction in mice

    PubMed Central

    Heinrichs, Stephen C.; Leite-Morris, Kimberly A.; Guy, Marsha D.; Goldberg, Lisa R.; Young, Angela J.; Kaplan, Gary B.

    2015-01-01

    Previous research suggests that morphology and arborization of dendritic spines change as a result of fear conditioning in cortical and subcortical brain regions. This study uniquely aims to delineate these structural changes in the basolateral amygdala (BLA) after both fear conditioning and fear extinction. C57BL/6 mice acquired robust conditioned fear responses (70–80% cued freezing behavior) after six pairings with a tone cue associated with footshock in comparison to unshocked controls. During fear acquisition, freezing behavior was significantly affected by both shock exposure and trial number. For fear extinction, mice were exposed to the conditioned stimulus tone in the absence of shock administration and behavioral responses significantly varied by shock treatment. In the retention tests over 3 weeks, the percentage time spent freezing varied with the factor of extinction training. In all treatment groups, alterations in dendritic plasticity were analyzed using Golgi–Cox staining of dendrites in the BLA. Spine density differed between the fear conditioned group and both the fear extinction and control groups on third order dendrites. Spine density was significantly increased in the fear conditioned group compared to the fear extinction group and controls. Similarly in Sholl analyses, fear conditioning significantly increased BLA spine numbers and dendritic intersections while subsequent extinction training reversed these effects. In summary, fear extinction produced enduring behavioral plasticity that is associated with a reversal of alterations in BLA dendritic plasticity produced by fear conditioning. These neuroplasticity findings can inform our understanding of structural mechanisms underlying stress-related pathology can inform treatment research into these disorders. PMID:23570859

  13. The fear of other persons' laughter: Poor neuronal protection against social signals of anger and aggression.

    PubMed

    Papousek, Ilona; Schulter, Günter; Rominger, Christian; Fink, Andreas; Weiss, Elisabeth M

    2016-01-30

    The fear of other persons' laughter (gelotophobia) occurs in the context of several psychiatric conditions, particularly in the schizophrenia spectrum and social phobia. It entails severe personal and inter-personal problems including heightened aggression and possibly violence. Individuals with gelotophobia (n=30; 24 with social phobia or Cluster A diagnosis) and matched symptom-free controls (n=30) were drawn from a large screening sample (n=1440). EEG coherences were recorded during the confrontation with other people's affect expressions, to investigate the brain's modulatory control over the emotionally laden perceptual input. Gelotophobia was associated with more loose functional coupling of prefrontal and posterior cortex during the processing of expressions of anger and aggression, thus leaving the individual relatively unprotected from becoming affected by these social signals. The brain's response to social signals of anger/aggression and the accompanied heightened permeability for this kind of information explains the particular sensitivity to actual or supposed malicious aspects of laughter (and possibly of other ambiguous social signals) in individuals with gelotophobia, which represents the core feature of the condition. Heightened perception of stimuli that could be perceived as offensive, which is inherent in several psychiatric conditions, may be particularly evident in the fear of other persons' laughter. Copyright © 2015. Published by Elsevier Ireland Ltd.

  14. Skin Conductance Responses and Neural Activations During Fear Conditioning and Extinction Recall Across Anxiety Disorders.

    PubMed

    Marin, Marie-France; Zsido, Rachel G; Song, Huijin; Lasko, Natasha B; Killgore, William D S; Rauch, Scott L; Simon, Naomi M; Milad, Mohammed R

    2017-06-01

    The fear conditioning and extinction neurocircuitry has been extensively studied in healthy and clinical populations, with a particular focus on posttraumatic stress disorder. Despite significant overlap of symptoms between posttraumatic stress disorder and anxiety disorders, the latter has received less attention. Given that dysregulated fear levels characterize anxiety disorders, examining the neural correlates of fear and extinction learning may shed light on the pathogenesis of underlying anxiety disorders. To investigate the psychophysiological and neural correlates of fear conditioning and extinction recall in anxiety disorders and to document how these features differ as a function of multiple diagnoses or anxiety severity. This investigation was a cross-sectional, case-control, functional magnetic resonance imaging study at an academic medical center. Participants were healthy controls and individuals with at least 1 of the following anxiety disorders: generalized anxiety disorder, social anxiety disorder, specific phobia, and panic disorder. The study dates were between March 2013 and May 2015. Two-day fear conditioning and extinction paradigm. Skin conductance responses, blood oxygenation level-dependent responses, trait anxiety scores from the State Trait Anxiety Inventory-Trait Form, and functional connectivity. This study included 21 healthy controls (10 women) and 61 individuals with anxiety disorders (36 women). P values reported for the neuroimaging results are all familywise error corrected. Skin conductance responses during extinction recall did not differ between individuals with anxiety disorders and healthy controls (ηp2 = 0.001, P = .79), where ηp2 is partial eta squared. The anxiety group had lower activation of the ventromedial prefrontal cortex (vmPFC) during extinction recall (ηp2 = 0.178, P = .02). A similar hypoactive pattern was found during early conditioning (ηp2 = 0.106, P = .009). The vmPFC hypoactivation was associated with anxiety symptom severity (r = -0.420, P = .01 for conditioning and r = -0.464, P = .004 for extinction recall) and the number of co-occuring anxiety disorders diagnosed (ηp2 = 0.137, P = .009 for conditioning and ηp2 = 0.227, P = .004 for extinction recall). Psychophysiological interaction analyses revealed that the fear network connectivity differed between healthy controls and the anxiety group during fear learning (ηp2 range between 0.088 and 0.176 and P range between 0.02 and 0.003) and extinction recall (ηp2 range between 0.111 and 0.235 and P range between 0.02 and 0.002). Despite no skin conductance response group differences during extinction recall, brain activation patterns between anxious and healthy individuals differed. These findings encourage future studies to examine the conditions longitudinally and in the context of treatment trials to improve and guide therapeutics via advanced neurobiological understanding of each disorder.

  15. Skin Conductance Responses and Neural Activations During Fear Conditioning and Extinction Recall Across Anxiety Disorders

    PubMed Central

    Marin, Marie-France; Zsido, Rachel G.; Song, Huijin; Lasko, Natasha B.; Killgore, William D. S.; Rauch, Scott L.; Simon, Naomi M.

    2017-01-01

    Importance The fear conditioning and extinction neurocircuitry has been extensively studied in healthy and clinical populations, with a particular focus on posttraumatic stress disorder. Despite significant overlap of symptoms between posttraumatic stress disorder and anxiety disorders, the latter has received less attention. Given that dysregulated fear levels characterize anxiety disorders, examining the neural correlates of fear and extinction learning may shed light on the pathogenesis of underlying anxiety disorders. Objectives To investigate the psychophysiological and neural correlates of fear conditioning and extinction recall in anxiety disorders and to document how these features differ as a function of multiple diagnoses or anxiety severity. Design, Setting, and Participants This investigation was a cross-sectional, case-control, functional magnetic resonance imaging study at an academic medical center. Participants were healthy controls and individuals with at least 1 of the following anxiety disorders: generalized anxiety disorder, social anxiety disorder, specific phobia, and panic disorder. The study dates were between March 2013 and May 2015. Exposures Two-day fear conditioning and extinction paradigm. Main Outcomes and Measures Skin conductance responses, blood oxygenation level–dependent responses, trait anxiety scores from the State Trait Anxiety Inventory–Trait Form, and functional connectivity. Results This study included 21 healthy controls (10 women) and 61 individuals with anxiety disorders (36 women). P values reported for the neuroimaging results are all familywise error corrected. Skin conductance responses during extinction recall did not differ between individuals with anxiety disorders and healthy controls (ηp2 = 0.001, P = .79), where ηp2 is partial eta squared. The anxiety group had lower activation of the ventromedial prefrontal cortex (vmPFC) during extinction recall (ηp2 = 0.178, P = .02). A similar hypoactive pattern was found during early conditioning (ηp2 = 0.106, P = .009). The vmPFC hypoactivation was associated with anxiety symptom severity (r = −0.420, P = .01 for conditioning and r = −0.464, P = .004 for extinction recall) and the number of co-occuring anxiety disorders diagnosed (ηp2 = 0.137, P = .009 for conditioning and ηp2 = 0.227, P = .004 for extinction recall). Psychophysiological interaction analyses revealed that the fear network connectivity differed between healthy controls and the anxiety group during fear learning (ηp2 range between 0.088 and 0.176 and P range between 0.02 and 0.003) and extinction recall (ηp2 range between 0.111 and 0.235 and P range between 0.02 and 0.002). Conclusions and Relevance Despite no skin conductance response group differences during extinction recall, brain activation patterns between anxious and healthy individuals differed. These findings encourage future studies to examine the conditions longitudinally and in the context of treatment trials to improve and guide therapeutics via advanced neurobiological understanding of each disorder. PMID:28403387

  16. Thalamocortical interactions underlying visual fear conditioning in humans.

    PubMed

    Lithari, Chrysa; Moratti, Stephan; Weisz, Nathan

    2015-11-01

    Despite a strong focus on the role of the amygdala in fear conditioning, recent works point to a more distributed network supporting fear conditioning. We aimed to elucidate interactions between subcortical and cortical regions in fear conditioning in humans. To do this, we used two fearful faces as conditioned stimuli (CS) and an electrical stimulation at the left hand, paired with one of the CS, as unconditioned stimulus (US). The luminance of the CS was rhythmically modulated leading to "entrainment" of brain oscillations at a predefined modulation frequency. Steady-state responses (SSR) were recorded by MEG. In addition to occipital regions, spectral analysis of SSR revealed increased power during fear conditioning particularly for thalamus and cerebellum contralateral to the upcoming US. Using thalamus and amygdala as seed-regions, directed functional connectivity was calculated to capture the modulation of interactions that underlie fear conditioning. Importantly, this analysis showed that the thalamus drives the fusiform area during fear conditioning, while amygdala captures the more general effect of fearful faces perception. This study confirms ideas from the animal literature, and demonstrates for the first time the central role of the thalamus in fear conditioning in humans. © 2015 Wiley Periodicals, Inc.

  17. Opioid receptors regulate blocking and overexpectation of fear learning in conditioned suppression.

    PubMed

    Arico, Carolyn; McNally, Gavan P

    2014-04-01

    Endogenous opioids play an important role in prediction error during fear learning. However, the evidence for this role has been obtained almost exclusively using the species-specific defense response of freezing as the measure of learned fear. It is unknown whether opioid receptors regulate predictive fear learning when other measures of learned fear are used. Here, we used conditioned suppression as the measure of learned fear to assess the role of opioid receptors in fear learning. Experiment 1a studied associative blocking of fear learning. Rats in an experimental group received conditioned stimulus A (CSA) + training in Stage I and conditioned stimulus A and B (CSAB) + training in Stage II, whereas rats in a control group received only CSAB + training in Stage II. The prior fear conditioning of CSA blocked fear learning to conditioned stimulus B (CSB) in the experimental group. In Experiment 1b, naloxone (4 mg/kg) administered before Stage II prevented this blocking, thereby enabling normal fear learning to CSB. Experiment 2a studied overexpectation of fear. Rats received CSA + training and CSB + training in Stage I, and then rats in the experimental group received CSAB + training in Stage II whereas control rats did not. The Stage II compound training of CSAB reduced fear to CSA and CSB on test. In Experiment 2b, naloxone (4 mg/kg) administered before Stage II prevented this overexpectation. These results show that opioid receptors regulate Pavlovian fear learning, augmenting learning in response to positive prediction error and impairing learning in response to negative prediction error, when fear is assessed via conditioned suppression. These effects are identical to those observed when freezing is used as the measure of learned fear. These findings show that the role for opioid receptors in regulating fear learning extends across multiple measures of learned fear.

  18. A role for anterior thalamic nuclei in affective cognition: interaction with environmental conditions.

    PubMed

    Dupire, Alexandra; Kant, Patricia; Mons, Nicole; Marchand, Alain R; Coutureau, Etienne; Dalrymple-Alford, John; Wolff, Mathieu

    2013-05-01

    Damage to anterior thalamic nuclei (ATN) is a well-known cause of diencephalic pathology that produces a range of cognitive deficits reminiscent of a hippocampal syndrome. Anatomical connections of the ATN also extend to cerebral areas that support affective cognition. Enriched environments promote recovery of declarative/relational memory after ATN lesions and are known to downregulate emotional behaviors. Hence, the performance of standard-housed and enriched ATN rats in a range of behavioral tasks engaging affective cognition was compared. ATN rats exhibited reduced anxiety responses in the elevated plus maze, increased activity and reduced corticosterone responses when exploring an open field, and delayed acquisition of a conditioned contextual fear response. ATN rats also exhibited reduced c-Fos and phosphorylated cAMP response element-binding protein (pCREB) immunoreactivity in the hippocampal formation and the amygdala after completion of the contextual fear test. Marked c-Fos hypoactivity and reduced pCREB levels were also evident in the granular retrosplenial cortex and, to a lesser extent, in the anterior cingulate cortex. Unlike standard-housed ATN rats, enriched ATN rats expressed virtually no fear of the conditioned context. These results show that the ATN regulate affective cognition and that damage to this region may produce markedly different behavioral effects as a function of environmental housing conditions. Copyright © 2013 Wiley Periodicals, Inc.

  19. Fear Generalization and Anxiety: Behavioral and Neural Mechanisms.

    PubMed

    Dunsmoor, Joseph E; Paz, Rony

    2015-09-01

    Fear can be an adaptive emotion that helps defend against potential danger. Classical conditioning models elegantly describe how animals learn which stimuli in the environment signal danger, but understanding how this learning is generalized to other stimuli that resemble aspects of a learned threat remains a challenge. Critically, the overgeneralization of fear to harmless stimuli or situations is a burden to daily life and characteristic of posttraumatic stress disorder and other anxiety disorders. Here, we review emerging evidence on behavioral and neural mechanisms of generalization of emotional learning with the goal of encouraging further research on generalization in anxiety disorders. We begin by placing research on fear generalization in a rich historical context of stimulus generalization dating back to Pavlov, which lays the foundation for theoretical and experimental approaches used today. We then transition to contemporary behavioral and neurobiological research on generalization of emotional learning in humans and nonhuman animals and discuss the factors that promote generalization on the one hand from discrimination on the other hand. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  20. Reconsolidation or extinction: transcription factor switch in the determination of memory course after retrieval.

    PubMed

    de la Fuente, Verónica; Freudenthal, Ramiro; Romano, Arturo

    2011-04-13

    In fear conditioning, aversive stimuli are readily associated with contextual features. A brief reexposure to the training context causes fear memory reconsolidation, whereas a prolonged reexposure induces memory extinction. The regulation of hippocampal gene expression plays a key role in contextual memory consolidation and reconsolidation. However, the mechanisms that determine whether memory will reconsolidate or extinguish are not known. Here, we demonstrate opposing roles for two evolutionarily related transcription factors in the mouse hippocampus. We found that nuclear factor-κB (NF-κB) is required for fear memory reconsolidation. Conversely, calcineurin phosphatase inhibited NF-κB and induced nuclear factor of activated T-cells (NFAT) nuclear translocation in the transition between reconsolidation and extinction. Accordingly, the hippocampal inhibition of both calcineurin and NFAT independently impaired memory extinction, whereas inhibition of NF-κB enhanced memory extinction. These findings represent the first insight into the molecular mechanisms that determine memory reprocessing after retrieval, supporting a transcriptional switch that directs memory toward reconsolidation or extinction. The precise molecular characterization of postretrieval processes has potential importance to the development of therapeutic strategies for fear memory disorders.

  1. A role for midline and intralaminar thalamus in the associative blocking of Pavlovian fear conditioning.

    PubMed

    Sengupta, Auntora; McNally, Gavan P

    2014-01-01

    Fear learning occurs in response to positive prediction error, when the expected outcome of a conditioning trial exceeds that predicted by the conditioned stimuli present. This role for error in Pavlovian association formation is best exemplified by the phenomenon of associative blocking, whereby prior fear conditioning of conditioned stimulus (CS) A is able to prevent learning to CSB when they are conditioned in compound. The midline and intralaminar thalamic nuclei (MIT) are well-placed to contribute to fear prediction error because they receive extensive projections from the midbrain periaqueductal gray-which has a key role in fear prediction error-and project extensively to prefrontal cortex and amygdala. Here we used an associative blocking design to study the role of MIT in fear learning. In Stage I rats were trained to fear CSA via pairings with shock. In Stage II rats received compound fear conditioning of CSAB paired with shock. On test, rats that received Stage I training expressed less fear to CSB relative to control rats that did not receive this training. Microinjection of bupivacaine into MIT prior to Stage II training had no effect on the expression of fear during Stage II and had no effect on fear learning in controls, but prevented associative blocking and so enabled fear learning to CSB. These results show an important role for MIT in predictive fear learning and are discussed with reference to previous findings implicating the midline and posterior intralaminar thalamus in fear learning and fear responding.

  2. Fear learning circuitry is biased toward generalization of fear associations in posttraumatic stress disorder

    PubMed Central

    Morey, R A; Dunsmoor, J E; Haswell, C C; Brown, V M; Vora, A; Weiner, J; Stjepanovic, D; Wagner, H R; Brancu, Mira; Marx, Christine E; Naylor, Jennifer C; Van Voorhees, Elizabeth; Taber, Katherine H; Beckham, Jean C; Calhoun, Patrick S; Fairbank, John A; Szabo, Steven T; LaBar, K S

    2015-01-01

    Fear conditioning is an established model for investigating posttraumatic stress disorder (PTSD). However, symptom triggers may vaguely resemble the initial traumatic event, differing on a variety of sensory and affective dimensions. We extended the fear-conditioning model to assess generalization of conditioned fear on fear processing neurocircuitry in PTSD. Military veterans (n=67) consisting of PTSD (n=32) and trauma-exposed comparison (n=35) groups underwent functional magnetic resonance imaging during fear conditioning to a low fear-expressing face while a neutral face was explicitly unreinforced. Stimuli that varied along a neutral-to-fearful continuum were presented before conditioning to assess baseline responses, and after conditioning to assess experience-dependent changes in neural activity. Compared with trauma-exposed controls, PTSD patients exhibited greater post-study memory distortion of the fear-conditioned stimulus toward the stimulus expressing the highest fear intensity. PTSD patients exhibited biased neural activation toward high-intensity stimuli in fusiform gyrus (P<0.02), insula (P<0.001), primary visual cortex (P<0.05), locus coeruleus (P<0.04), thalamus (P<0.01), and at the trend level in inferior frontal gyrus (P=0.07). All regions except fusiform were moderated by childhood trauma. Amygdala–calcarine (P=0.01) and amygdala–thalamus (P=0.06) functional connectivity selectively increased in PTSD patients for high-intensity stimuli after conditioning. In contrast, amygdala–ventromedial prefrontal cortex (P=0.04) connectivity selectively increased in trauma-exposed controls compared with PTSD patients for low-intensity stimuli after conditioning, representing safety learning. In summary, fear generalization in PTSD is biased toward stimuli with higher emotional intensity than the original conditioned-fear stimulus. Functional brain differences provide a putative neurobiological model for fear generalization whereby PTSD symptoms are triggered by threat cues that merely resemble the index trauma. PMID:26670285

  3. Association of poor childhood fear conditioning and adult crime.

    PubMed

    Gao, Yu; Raine, Adrian; Venables, Peter H; Dawson, Michael E; Mednick, Sarnoff A

    2010-01-01

    Amygdala dysfunction is theorized to give rise to poor fear conditioning, which in turn predisposes to crime, but it is not known whether poor conditioning precedes criminal offending. This study prospectively assessed whether poor fear conditioning early in life predisposes to adult crime in a large cohort. Electrodermal fear conditioning was assessed in a cohort of 1,795 children at age 3, and registration for criminal offending was ascertained at age 23. In a case-control design, 137 cohort members with a criminal record were matched on gender, ethnicity, and social adversity with 274 noncriminal comparison members. Statistical analyses compared childhood fear conditioning for the two groups. Criminal offenders showed significantly reduced electrodermal fear conditioning at age 3 compared to matched comparison subjects. Poor fear conditioning at age 3 predisposes to crime at age 23. Poor fear conditioning early in life implicates amygdala and ventral prefrontal cortex dysfunction and a lack of fear of socializing punishments in children who grow up to become criminals. These findings are consistent with a neurodevelopmental contribution to crime causation.

  4. Encoding of Discriminative Fear Memory by Input-Specific LTP in the Amygdala.

    PubMed

    Kim, Woong Bin; Cho, Jun-Hyeong

    2017-08-30

    In auditory fear conditioning, experimental subjects learn to associate an auditory conditioned stimulus (CS) with an aversive unconditioned stimulus. With sufficient training, animals fear conditioned to an auditory CS show fear response to the CS, but not to irrelevant auditory stimuli. Although long-term potentiation (LTP) in the lateral amygdala (LA) plays an essential role in auditory fear conditioning, it is unknown whether LTP is induced selectively in the neural pathways conveying specific CS information to the LA in discriminative fear learning. Here, we show that postsynaptically expressed LTP is induced selectively in the CS-specific auditory pathways to the LA in a mouse model of auditory discriminative fear conditioning. Moreover, optogenetically induced depotentiation of the CS-specific auditory pathways to the LA suppressed conditioned fear responses to the CS. Our results suggest that input-specific LTP in the LA contributes to fear memory specificity, enabling adaptive fear responses only to the relevant sensory cue. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Hippocampal Processing of Ambiguity Enhances Fear Memory

    PubMed Central

    Amadi, Ugwechi; Lim, Seh Hong; Liu, Elizabeth; Baratta, Michael V.; Goosens, Ki Ann

    2016-01-01

    Despite the ubiquitous use of Pavlovian fear conditioning as a model for fear learning, the highly predictable conditions used in the laboratory do not resemble real-world conditions, where dangerous situations can lead to unpleasant outcomes in unpredictable ways. Here we varied the timing of aversive events following predictive cues in rodents and discovered that temporal ambiguity of aversive events greatly enhances fear. During fear conditioning with unpredictably timed aversive events, pharmacological inactivation of the dorsal hippocampus or optogenetic silencing of CA1 cells during aversive negative prediction errors prevented this enhancement of fear without impacting fear learning for predictable events. Dorsal hippocampal inactivation also prevented ambiguity-related enhancement of fear during auditory fear conditioning under a partial reinforcement schedule. These results reveal that information about the timing and occurrence of aversive events is rapidly acquired and that unexpectedly timed or omitted aversive events generate hippocampal signals to enhance fear learning. PMID:28182526

  6. Hippocampal Processing of Ambiguity Enhances Fear Memory.

    PubMed

    Amadi, Ugwechi; Lim, Seh Hong; Liu, Elizabeth; Baratta, Michael V; Goosens, Ki A

    2017-02-01

    Despite the ubiquitous use of Pavlovian fear conditioning as a model for fear learning, the highly predictable conditions used in the laboratory do not resemble real-world conditions, in which dangerous situations can lead to unpleasant outcomes in unpredictable ways. In the current experiments, we varied the timing of aversive events after predictive cues in rodents and discovered that temporal ambiguity of aversive events greatly enhances fear. During fear conditioning with unpredictably timed aversive events, pharmacological inactivation of the dorsal hippocampus or optogenetic silencing of cornu ammonis 1 cells during aversive negative prediction errors prevented this enhancement of fear without affecting fear learning for predictable events. Dorsal hippocampal inactivation also prevented ambiguity-related enhancement of fear during auditory fear conditioning under a partial-reinforcement schedule. These results reveal that information about the timing and occurrence of aversive events is rapidly acquired and that unexpectedly timed or omitted aversive events generate hippocampal signals to enhance fear learning.

  7. Neural circuits and mechanisms involved in Pavlovian fear conditioning: A critical review

    PubMed Central

    Kim, Jeansok J.; Jung, Min Whan

    2015-01-01

    Pavlovian or classical fear conditioning is recognized as a model system to investigate the neurobiological mechanisms of learning and memory in the mammalian brain and to understand the root of fear-related disorders in humans. In recent decades, important progress has been made in delineating the essential neural circuitry and cellular–molecular mechanisms of fear conditioning. Converging lines of evidence indicate that the amygdala is necessarily involved in the acquisition, storage and expression of conditioned fear memory, and long-term potentiation (LTP) in the lateral nucleus of the amygdala is often proposed as the underlying synaptic mechanism of associative fear memory. Recent studies further implicate the prefrontal cortex–amygdala interaction in the extinction (or inhibition) of conditioned fear. Despite these advances, there are unresolved issues and findings that challenge the validity and sufficiency of the current amygdalar LTP hypothesis of fear conditioning. The purpose of this review is to critically evaluate the strengths and weaknesses of evidence indicating that fear conditioning depend crucially upon the amygdalar circuit and plasticity. PMID:16120461

  8. The integration of visual context information in facial emotion recognition in 5- to 15-year-olds.

    PubMed

    Theurel, Anne; Witt, Arnaud; Malsert, Jennifer; Lejeune, Fleur; Fiorentini, Chiara; Barisnikov, Koviljka; Gentaz, Edouard

    2016-10-01

    The current study investigated the role of congruent visual context information in the recognition of facial emotional expression in 190 participants from 5 to 15years of age. Children performed a matching task that presented pictures with different facial emotional expressions (anger, disgust, happiness, fear, and sadness) in two conditions: with and without a visual context. The results showed that emotions presented with visual context information were recognized more accurately than those presented in the absence of visual context. The context effect remained steady with age but varied according to the emotion presented and the gender of participants. The findings demonstrated for the first time that children from the age of 5years are able to integrate facial expression and visual context information, and this integration improves facial emotion recognition. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Extended fear conditioning reveals a role for both N-methyl-D-aspartic acid and non-N-methyl-D-aspartic acid receptors in the amygdala in the acquisition of conditioned fear.

    PubMed

    Pistell, P J; Falls, W A

    2008-09-09

    Pavlovian conditioning is a useful tool for elucidating the neural mechanisms involved with learning and memory, especially in regard to the stimuli associated with aversive events. The amygdala has been repeatedly implicated as playing a significant role in the acquisition and expression of fear. If the amygdala is critical for the acquisition of fear, then it should contribute to this processes regardless of the parameters used to induce or evaluate conditioned fear. A series of experiments using reversible inactivation techniques evaluated the role of the amygdala in the acquisition of conditioned fear when training was conducted over several days in rats. Fear-potentiated startle was used to evaluate the acquisition of conditioned fear. Pretraining infusions of N-methyl-d-aspartic acid (NMDA) or non-NMDA receptor antagonists alone into the amygdala interfered with the acquisition of fear early in training, but not later. Pretraining infusions of a cocktail consisting of both an NMDA and non-NMDA antagonist interfered with the acquisition of conditioned fear across all days of training. Taken together these results suggest the amygdala may potentially be critical for the acquisition of conditioned fear regardless of the parameters utilized.

  10. Changes on auditory physiology in response to the inactivation of amygdala nuclei in high anxiety rats expressing learned fear.

    PubMed

    Nobre, Manoel Jorge

    2013-06-13

    The inferior colliculus (IC) is primarily involved in the processing of acoustic stimuli, including those emitted by prey and predators. The role of the central nucleus of the IC (CIC) in fear and anxiety has been suggested based on electrophysiological, behavioral and immunohistochemical studies. The reactivity of high-anxiety rats (HA) to diverse challenges is different from low-anxiety ones (LA). In humans and laboratory animals, pathological anxiety is often accompanied by heightened vigilance and alertness, hyperactivity of the amygdala (AM), and increased amplitude of the auditory evoked potentials (AEP) from the IC. This study aims to evaluate the influence of the inactivation of the central (CEA) and basolateral (BLA) nuclei of the amygdala, after local infusions of the full GABAA agonist muscimol (1nmol/0.2μl), on the AEP elicited in the CIC of rats tested under a learned fear state. Our results showed that both BLA and CEA inactivation change the expression of conditioned fear, in a paradigm using the context as the conditioned stimulus (CS). These changes are correlated to the innate anxiety levels of the animals. It is supposed that this shortcoming is in addition to the imbalance between the regulatory role of the top-down and bottom-up processes in the control of anxiety. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Correlates and Consequences of Toddler Cortisol Reactivity to Fear

    PubMed Central

    Kiel, Elizabeth J.; Kalomiris, Anne E.

    2015-01-01

    Cortisol reactivity to fear-eliciting stimuli in toddlerhood may represent an indicator of risk for anxiety-spectrum problems and other maladjustment. Thus, it is important to understand factors that may contribute to cortisol reactivity as well as those that determine its predictive relation to early emerging anxiety. In this vein, the current study investigated maternal comforting behaviors, both solicited and unsolicited by the toddler, as correlates of cortisol reactivity at age 2. Further, we investigated maternal comforting behaviors and behavioral indicators of fear in both a low-threat and a high-threat context as moderators of the relation between cortisol reactivity at age 2 and change in anxiety from age 2 to age 3. The sample comprised 99 2-year-old toddlers and their mothers. Toddlers provided saliva samples at baseline and after a fear-eliciting stimulus that were assayed for cortisol. Mothers were observed for comforting behavior while interacting with their toddlers in laboratory tasks and completed questionnaires about their toddlers’ anxiety. Results indicated that unsolicited (spontaneous) comforting behavior related to toddler cortisol reactivity above and beyond solicited comforting and the level of fear toddlers displayed in the same task. Moreover, fear in a low-threat, but not high-threat, context moderated the relation between cortisol reactivity and change in anxiety, such that cortisol reactivity had a positive relation to anxiety at extreme levels of low-threat fear. Results suggest the importance of considering the caregiving environment and context-specific fear in understanding the nature of cortisol reactivity in the toddler years. PMID:26410395

  12. Fear of pain in the context of intensive pain rehabilitation among children and adolescents with neuropathic pain: associations with treatment response.

    PubMed

    Simons, Laura E; Kaczynski, Karen J; Conroy, Caitlin; Logan, Deirdre E

    2012-12-01

    Recent research has implicated pain-related fear in relation to functional outcomes in children with chronic pain. The current study examined fear of pain, disability, and depression within the context of an intensive pain rehabilitation program. One hundred forty-five children and adolescents who participated in an intensive interdisciplinary pediatric pain rehabilitation day program were assessed in this study. Patients completed measures of pain intensity, pain-related fears, functional disability, and depressive symptoms at admission, discharge, and on average, 2 months postdischarge. After controlling for pain intensity, pain-related fear was significantly related to disability and depressive symptoms at all time points. As predicted, a decline in pain-related fear was significantly associated with a decrease in disability and depressive symptoms. Interestingly, high levels of pain-related fears at admission predicted less reduction in functional disability and depression at discharge, suggesting that high levels of pain-related fear may be a risk factor in relation to treatment outcomes. Overall, results indicate that the relationship between fear of pain and changes in disability and depressive symptoms are closely linked, with fear of pain playing an important role in treatment. This paper presents results underscoring the importance of pain-related fear in relation to treatment response for children and adolescents with chronic pain. These findings support the need to develop and implement interventions that target reductions in pain-related fear. Copyright © 2012 American Pain Society. Published by Elsevier Inc. All rights reserved.

  13. Self-esteem, Self-focused Attention, and the Mediating Role of Fear of Negative Evaluation in College Students With and Without Asthma.

    PubMed

    Junghans-Rutelonis, Ashley N; Suorsa, Kristina I; Tackett, Alayna P; Burkley, Edward; Chaney, John M; Mullins, Larry L

    2015-01-01

    The current study investigated the mediating role of fear of negative evaluation on the relationship between self-focused attention and self-esteem among college students with and without asthma. Young adults with (n = 148) and without (n = 530) childhood-onset asthma were recruited from a college student population. Self-focused attention and fear of negative evaluation measures were completed. Participants also answered questions about inclusion in a social activity. Higher levels of self-focused attention and fear of negative evaluation were associated with lower self-esteem in both groups within the context of social activity participation. Fear of negative evaluation mediated the relationship between self-consciousness and self-esteem. No significant differences were found between groups. Findings indicate significant relationships among self-focused attention, fear of negative evaluation, and self-esteem in the context of social activity participation. Further examination of self-esteem regarding participation in social activities among college students appears warranted.

  14. Easy to remember, difficult to forget: the development of fear regulation

    PubMed Central

    Johnson, D.C.; Casey, B.J.

    2014-01-01

    Fear extinction learning is a highly adaptive process that involves the integrity of frontolimbic circuitry. Its disruption has been associated with emotional dysregulation in stress and anxiety disorders. In this article we consider how age, genetics and experiences shape our capacity to regulate fear in cross-species studies. Evidence for adolescent-specific diminished fear extinction learning is presented in the context of immature frontolimbic circuitry. We also present evidence for less neural plasticity in fear regulation as a function of early life stress and by genotype, focusing on the common brain derived neurotrophin factor (BDNF) Val66Met polymorphism. Finally, we discuss this work in the context of exposure-based behavioral therapies for the treatment of anxiety and stress disorders that are based on principles of fear extinction. We conclude by speculating on how such therapies may be optimized for the individual based on the patient’s age, genetic profile and personal history to move from standard treatment of care to personalized and precision medicine. PMID:25238998

  15. The Melatonergic System in Anxiety Disorders and the Role of Melatonin in Conditional Fear.

    PubMed

    Huang, F; Yang, Z; Li, C-Q

    2017-01-01

    Resistance to extinction of certain conditioned responses forms the basis of anxieties, phobias, and compulsions. There has been an available effective means of extinction-based exposure psychotherapy for the treatment of anxiety disorders, such as posttraumatic stress disorder (PTSD) that has been hypothesized to result from impaired extinction of fear memory. PTSD is considered as a memory disorder within a Pavlovian fear conditioning and extinction framework. Therefore, the aim of this review was to report the preclinical profile of melatonin, a pineal gland hormone, as a potential pharmacological option in the treatment of anxiety disorders such as PTSD, tested with the Pavlovian fear conditioning paradigm. We performed a literature review regarding studies that evaluated the effects of melatonin on fear conditioning and fear extinction. Results showed that a single administration 30min before conditioning has no effect on the acquisition of cued fear, but impaired contextual fear conditioning. Compared to rats injected with vehicle, rats injected with melatonin 30min before extinction training presented a significant lower freezing during both extinction training and extinction test phases. However, melatonin injected immediately after extinction training was ineffective on extinction learning. Melatonin impaired contextual fear conditioning, a hippocampus-dependent task. On the contrary, melatonin facilitates the extinction of conditional cued fear without affecting its acquisition or expression, and melatonin facilitates cued fear extinction only when it is present during extinction training. Although further studies are necessary, the research undertaken until now shows that melatonin modulates fear conditioning and fear extinction and consequently melatonin may serve as an agent for the treatment of PTSD. © 2017 Elsevier Inc. All rights reserved.

  16. NPY controls fear conditioning and fear extinction by combined action on Y₁ and Y₂ receptors.

    PubMed

    Verma, D; Tasan, R O; Herzog, H; Sperk, G

    2012-06-01

    Neuropeptide Y (NPY) and its receptors have been implicated in the control of emotional-affective processing, but the mechanism is unclear. While it is increasingly evident that stimulation of Y₁ and inhibition of Y₂ receptors produce prominent anxiolytic and antidepressant effects, the contribution of the individual NPY receptor subtypes in the acquisition and extinction of learned fear are unknown. Here we performed Pavlovian fear conditioning and extinction in NPY knockout (KO) and in NPY receptor KO mice. NPY KO mice display a dramatically accelerated acquisition of conditioned fear. Deletion of Y₁ receptors revealed only a moderately accelerated acquisition of conditioned fear, while lack of Y₂ receptors was without any effect on fear learning. However, the strong phenotype seen in NPY KO mice was reproduced in mice lacking both Y₁ and Y₂ receptors. In addition, NPY KO mice showed excessive recall of conditioned fear and impaired fear extinction. This behaviour was replicated only after deletion of both Y₁ and Y₂ receptors. In Y₁ receptor single KO mice, fear extinction was delayed and was unchanged in Y₂ receptor KO mice. Deletion of NPY and particularly Y₂ receptors resulted in a generalization of conditioned fear. Our data demonstrate that NPY delays the acquisition, reduces the expression of conditioned fear while promoting fear extinction. Although these effects appear to be primarily mediated by Y₁ receptors, the pronounced phenotype of Y₁Y₂ receptor double KO mice suggests a synergistic role of Y₂ receptors in fear acquisition and in fear extinction. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  17. Double Dissociation of Amygdala and Hippocampal Contributions to Trace and Delay Fear Conditioning

    PubMed Central

    Raybuck, Jonathan D.; Lattal, K. Matthew

    2011-01-01

    A key finding in studies of the neurobiology of learning memory is that the amygdala is critically involved in Pavlovian fear conditioning. This is well established in delay-cued and contextual fear conditioning; however, surprisingly little is known of the role of the amygdala in trace conditioning. Trace fear conditioning, in which the CS and US are separated in time by a trace interval, requires the hippocampus and prefrontal cortex. It is possible that recruitment of cortical structures by trace conditioning alters the role of the amygdala compared to delay fear conditioning, where the CS and US overlap. To investigate this, we inactivated the amygdala of male C57BL/6 mice with GABA A agonist muscimol prior to 2-pairing trace or delay fear conditioning. Amygdala inactivation produced deficits in contextual and delay conditioning, but had no effect on trace conditioning. As controls, we demonstrate that dorsal hippocampal inactivation produced deficits in trace and contextual, but not delay fear conditioning. Further, pre- and post-training amygdala inactivation disrupted the contextual but the not cued component of trace conditioning, as did muscimol infusion prior to 1- or 4-pairing trace conditioning. These findings demonstrate that insertion of a temporal gap between the CS and US can generate amygdala-independent fear conditioning. We discuss the implications of this surprising finding for current models of the neural circuitry involved in fear conditioning. PMID:21283812

  18. Effects of acute exercise on fear extinction in rats and exposure therapy in humans: Null findings from five experiments.

    PubMed

    Jacquart, Jolene; Roquet, Rheall F; Papini, Santiago; Powers, Mark B; Rosenfield, David; Smits, Jasper A J; Monfils, Marie-H

    2017-08-01

    Exposure therapy is an established learning-based intervention for the treatment of anxiety disorders with an average response rate of nearly 50%, leaving room for improvement. Emerging strategies to enhance exposure therapy in humans and fear extinction retention in animal models are primarily pharmacological. These approaches are limited as many patients report preferring non-pharmacological approaches in therapy. With general cognitive enhancement effects, exercise has emerged as a plausible non-pharmacological augmentation strategy. The present study tested the hypothesis that fear extinction and exposure therapy would be enhanced by a pre-training bout of exercise. We conducted four experiments with rats that involved a standardized conditioning and extinction paradigm and a manipulation of exercise. In a fifth experiment, we manipulated vigorous-intensity exercise prior to a standardized virtual reality exposure therapy session among adults with fear of heights. In experiments 1-4, exercise did not facilitate fear extinction, long-term memory, or fear relapse tests. In experiment 5, human participants showed an overall reduction in fear of heights but exercise did not enhance symptom improvement. Although acute exercise prior to fear extinction or exposure therapy, as operationalized in the present 5 studies, did not enhance outcomes, these results must be interpreted within the context of a broader literature that includes positive findings. Taken all together, this suggests that more research is necessary to identify optimal parameters and key individual differences so that exercise can be implemented successfully to treat anxiety disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Combined Neuropeptide S and D-Cycloserine Augmentation Prevents the Return of Fear in Extinction-Impaired Rodents: Advantage of Dual versus Single Drug Approaches

    PubMed Central

    Maurer, Verena; Murphy, Conor; Schmuckermair, Claudia; Muigg, Patrick; Neumann, Inga D.; Whittle, Nigel

    2016-01-01

    Background: Despite its success in treating specific anxiety disorders, the effect of exposure therapy is limited by problems with tolerability, treatment resistance, and fear relapse after initial response. The identification of novel drug targets facilitating fear extinction in clinically relevant animal models may guide improved treatment strategies for these disorders in terms of efficacy, acceleration of fear extinction, and return of fear. Methods: The extinction-facilitating potential of neuropeptide S, D-cycloserine, and a benzodiazepine was investigated in extinction-impaired high anxiety HAB rats and 129S1/SvImJ mice using a classical cued fear conditioning paradigm followed by extinction training and several extinction test sessions to study fear relapse. Results: Administration of D-cycloserine improved fear extinction in extinction-limited, but not in extinction-deficient, rodents compared with controls. Preextinction neuropeptide S caused attenuated fear responses in extinction-deficient 129S1/SvImJ mice at extinction training onset and further reduced freezing during this session. While the positive effects of either D-cycloserine or neuropeptide S were not persistent in 129S1/SvImJ mice after 10 days, the combination of preextinction neuropeptide S with postextinction D-cycloserine rendered the extinction memory persistent and context independent up to 5 weeks after extinction training. This dual pharmacological adjunct to extinction learning also protected against fear reinstatement in 129S1/SvImJ mice. Conclusions: By using the potentially nonsedative anxiolytic neuropeptide S and the cognitive enhancer D-cycloserine to facilitate deficient fear extinction, we provide here the first evidence of a purported efficacy of a dual over a single drug approach. This approach may render exposure sessions less aversive and more efficacious for patients, leading to enhanced protection from fear relapse in the long term. PMID:26625894

  20. Combined Neuropeptide S and D-Cycloserine Augmentation Prevents the Return of Fear in Extinction-Impaired Rodents: Advantage of Dual versus Single Drug Approaches.

    PubMed

    Sartori, Simone B; Maurer, Verena; Murphy, Conor; Schmuckermair, Claudia; Muigg, Patrick; Neumann, Inga D; Whittle, Nigel; Singewald, Nicolas

    2016-06-01

    Despite its success in treating specific anxiety disorders, the effect of exposure therapy is limited by problems with tolerability, treatment resistance, and fear relapse after initial response. The identification of novel drug targets facilitating fear extinction in clinically relevant animal models may guide improved treatment strategies for these disorders in terms of efficacy, acceleration of fear extinction, and return of fear. The extinction-facilitating potential of neuropeptide S, D-cycloserine, and a benzodiazepine was investigated in extinction-impaired high anxiety HAB rats and 129S1/SvImJ mice using a classical cued fear conditioning paradigm followed by extinction training and several extinction test sessions to study fear relapse. Administration of D-cycloserine improved fear extinction in extinction-limited, but not in extinction-deficient, rodents compared with controls. Preextinction neuropeptide S caused attenuated fear responses in extinction-deficient 129S1/SvImJ mice at extinction training onset and further reduced freezing during this session. While the positive effects of either D-cycloserine or neuropeptide S were not persistent in 129S1/SvImJ mice after 10 days, the combination of preextinction neuropeptide S with postextinction D-cycloserine rendered the extinction memory persistent and context independent up to 5 weeks after extinction training. This dual pharmacological adjunct to extinction learning also protected against fear reinstatement in 129S1/SvImJ mice. By using the potentially nonsedative anxiolytic neuropeptide S and the cognitive enhancer D-cycloserine to facilitate deficient fear extinction, we provide here the first evidence of a purported efficacy of a dual over a single drug approach. This approach may render exposure sessions less aversive and more efficacious for patients, leading to enhanced protection from fear relapse in the long term. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  1. The role of omega-3 on modulation of cognitive deficiency induced by REM sleep deprivation in rats.

    PubMed

    Nasehi, Mohammad; Nezhad, Seyed Moslem Mousavi; Khakpai, Fatemeh; Zarrindast, Mohammad-Reza

    2018-06-02

    Prolonged sleep deprivation causes cognitive deficits. In rats, for instance, sleep deprivation weakens spatial learning and long-term potentiation (LTP). We examined the effects of omega-3 on cognitive deficiency induced by REM sleep deprivation (RSD). For this purpose, we used a fear conditioning paradigm, forced swim test (FST) apparatus, and hot plate test. Intravenously omega-3 injection was performed during 3 consecutive days. Rats trained in the fear conditioning apparatus after 24 hours. During conditioning, animals were received foot shocks, either alone or paired with a sound. Sleep deprivation paradigm was carried out in which REM sleep was completely prevented and non-REM sleep was intensely declined for 24 hours. Then, context-dependent retention, anxiety behaviors, and hot plate tests were done. Auditory-dependent retention, anxiety behaviors, and FST were carried out 24 hours later. 24 hours of RSD impaired cognitive function, however intravenously administration of omega-3 improved (0.25, 0.5 and 1 mg/kg) context- or auditory-dependent memory, induced anxiolytic (1 mg/kg), antidepressant (1.25 mg/kg), and anti-nociceptive (0.25 mg/kg) effects. The results revealed that RSD interferes with the neural systems underlying cognitive functions and supports the involvement of omega-3 in the modulation of cognitive functions. Copyright © 2018. Published by Elsevier B.V.

  2. Extinction of drug- and withdrawal-paired cues in animal models: relevance to the treatment of addiction.

    PubMed

    Myers, Karyn M; Carlezon, William A

    2010-11-01

    Conditioned drug craving and withdrawal elicited by cues paired with drug use or acute withdrawal are among the many factors contributing to compulsive drug taking. Understanding how to stop these cues from having these effects is a major goal of addiction research. Extinction is a form of learning in which associations between cues and the events they predict are weakened by exposure to the cues in the absence of those events. Evidence from animal models suggests that conditioned responses to drug cues can be extinguished, although the degree to which this occurs in humans is controversial. Investigations into the neurobiological substrates of extinction of conditioned drug craving and withdrawal may facilitate the successful use of drug cue extinction within clinical contexts. While this work is still in the early stages, there are indications that extinction of drug- and withdrawal-paired cues shares neural mechanisms with extinction of conditioned fear. Using the fear extinction literature as a template, it is possible to organize the observations on drug cue extinction into a cohesive framework. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. A Key Role for Nectin-1 in the Ventral Hippocampus in Contextual Fear Memory

    PubMed Central

    Grosse, Jocelyn; Krummenacher, Claude; Sandi, Carmen

    2013-01-01

    Nectins are cell adhesion molecules that are widely expressed in the brain. Nectin expression shows a dynamic spatiotemporal regulation, playing a role in neural migratory processes during development. Nectin-1 and nectin-3 and their heterophilic trans-interactions are important for the proper formation of synapses. In the hippocampus, nectin-1 and nectin-3 localize at puncta adherentia junctions and may play a role in synaptic plasticity, a mechanism essential for memory and learning. We evaluated the potential involvement of nectin-1 and nectin-3 in memory consolidation using an emotional learning paradigm. Rats trained for contextual fear conditioning showed transient nectin-1—but not nectin-3—protein upregulation in synapse-enriched hippocampal fractions at about 2 h posttraining. The upregulation of nectin-1 was found exclusively in the ventral hippocampus and was apparent in the synaptoneurosomal fraction. This upregulation was induced by contextual fear conditioning but not by exposure to context or shock alone. When an antibody against nectin-1, R165, was infused in the ventral-hippocampus immediately after training, contextual fear memory was impaired. However, treatment with the antibody in the dorsal hippocampus had no effect in contextual fear memory formation. Similarly, treatment with the antibody in the ventral hippocampus did not interfere with acoustic memory formation. Further control experiments indicated that the effects of ventral hippocampal infusion of the nectin-1 antibody in contextual fear memory cannot be ascribed to memory non-specific effects such as changes in anxiety-like behavior or locomotor behavior. Therefore, we conclude that nectin-1 recruitment to the perisynaptic environment in the ventral hippocampus plays an important role in the formation of contextual fear memories. Our results suggest that these mechanisms could be involved in the connection of emotional and contextual information processed in the amygdala and dorsal hippocampus, respectively, thus opening new venues for the development of treatments to psychopathological alterations linked to impaired contextualization of emotions. PMID:23418609

  4. An Additional Prior Retrieval Alters the Effects of a Retrieval-Extinction Procedure on Recent and Remote Fear Memory

    PubMed Central

    An, Xianli; Yang, Ping; Chen, Siguang; Zhang, Fenfen; Yu, Duonan

    2018-01-01

    Several studies have shown that the isolated retrieval of a consolidated fear memory can induce a labile phase, during which extinction training can prevent the reinstatement, a form of relapse in which fear response to a fear-provoking context returns when a mild shock is presented. However, fear memory retrieval may also have another opposing result: the enhancement of fear memory. This implies that the fear memory trace can be modified by a brief retrieval. Unclear is whether the fear-impairing effect of retrieval-extinction (RE) is altered by a prior brief retrieval. The present study investigated the responses of recent and remote fear memories to the RE procedure after the presentation of an additional prior retrieval (priRet). We found that a single RE procedure effectively blocked the reinstatement of 2-day recent contextual fear memory. The memory-impairing effect of the RE procedure on recent fear was not observed when priRet was presented 6 or 24 h before the RE procedure. In contrast to the 2-day recent memory, the RE procedure failed to block the reinstatement of 36-day remote fear memory but successfully disrupted the return of remote fear memory after priRet. This memory-disruptive effect on remote memory did not occur when priRet was performed in a novel context. Nimodipine administration revealed that the blockade of priRet-induced processes recovered the effects of the RE procedure on both recent and remote fear memories. Our findings suggest that the susceptibility of recent and remote fear memories to RE procedures can be altered by an additional retrieval. PMID:29358910

  5. An Additional Prior Retrieval Alters the Effects of a Retrieval-Extinction Procedure on Recent and Remote Fear Memory.

    PubMed

    An, Xianli; Yang, Ping; Chen, Siguang; Zhang, Fenfen; Yu, Duonan

    2017-01-01

    Several studies have shown that the isolated retrieval of a consolidated fear memory can induce a labile phase, during which extinction training can prevent the reinstatement, a form of relapse in which fear response to a fear-provoking context returns when a mild shock is presented. However, fear memory retrieval may also have another opposing result: the enhancement of fear memory. This implies that the fear memory trace can be modified by a brief retrieval. Unclear is whether the fear-impairing effect of retrieval-extinction (RE) is altered by a prior brief retrieval. The present study investigated the responses of recent and remote fear memories to the RE procedure after the presentation of an additional prior retrieval (priRet). We found that a single RE procedure effectively blocked the reinstatement of 2-day recent contextual fear memory. The memory-impairing effect of the RE procedure on recent fear was not observed when priRet was presented 6 or 24 h before the RE procedure. In contrast to the 2-day recent memory, the RE procedure failed to block the reinstatement of 36-day remote fear memory but successfully disrupted the return of remote fear memory after priRet. This memory-disruptive effect on remote memory did not occur when priRet was performed in a novel context. Nimodipine administration revealed that the blockade of priRet-induced processes recovered the effects of the RE procedure on both recent and remote fear memories. Our findings suggest that the susceptibility of recent and remote fear memories to RE procedures can be altered by an additional retrieval.

  6. Synaptic consolidation as a temporally variable process: Uncovering the parameters modulating its time-course.

    PubMed

    Casagrande, Mirelle A; Haubrich, Josué; Pedraza, Lizeth K; Popik, Bruno; Quillfeldt, Jorge A; de Oliveira Alvares, Lucas

    2018-04-01

    Memories are not instantly created in the brain, requiring a gradual stabilization process called consolidation to be stored and persist in a long-lasting manner. However, little is known whether this time-dependent process is dynamic or static, and the factors that might modulate it. Here, we hypothesized that the time-course of consolidation could be affected by specific learning parameters, changing the time window where memory is susceptible to retroactive interference. In the rodent contextual fear conditioning paradigm, we compared weak and strong training protocols and found that in the latter memory is susceptible to post-training hippocampal inactivation for a shorter period of time. The accelerated consolidation process triggered by the strong training was mediated by glucocorticoids, since this effect was blocked by pre-training administration of metyrapone. In addition, we found that pre-exposure to the training context also accelerates fear memory consolidation. Hence, our results demonstrate that the time window in which memory is susceptible to post-training interferences varies depending on fear conditioning intensity and contextual familiarity. We propose that the time-course of memory consolidation is dynamic, being directly affected by attributes of the learning experiences. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Response-Specific Sex Difference in the Retention of Fear Extinction

    ERIC Educational Resources Information Center

    Voulo, Meagan E.; Parsons, Ryan G.

    2017-01-01

    Fear conditioning studies in rodents allow us to assess vulnerability factors which might underlie fear-based psychopathology such as post-traumatic stress disorder (PTSD). Despite PTSD being more prevalent in females than males, very few fear conditioning studies in rodents have tested females. Our study assessed fear conditioning and extinction…

  8. Behavioral Mechanisms of Context Fear Generalization in Mice

    ERIC Educational Resources Information Center

    Huckleberry, Kylie A.; Ferguson, Laura B.; Drew, Michael R.

    2016-01-01

    There is growing interest in generalization of learned contextual fear, driven in part by the hypothesis that mood and anxiety disorders stem from impaired hippocampal mechanisms of fear generalization and discrimination. However, there has been relatively little investigation of the behavioral and procedural mechanisms that might control…

  9. Ventromedial prefrontal cortex activity and rapid eye movement sleep are associated with subsequent fear expression in human subjects.

    PubMed

    Spoormaker, V I; Gvozdanovic, G A; Sämann, P G; Czisch, M

    2014-05-01

    In humans, activity patterns in the ventromedial prefrontal cortex (vmPFC) have been found to be predictive of subsequent fear memory consolidation. Pioneering work in rodents has further shown that vmPFC-amygdala theta synchronization is correlated with fear memory consolidation. We aimed to evaluate whether vmPFC activity during fear conditioning is (1) correlated with fear expression the subsequent day and whether (2) this relationship is mediated by rapid eye movement (REM) sleep. We analyzed data from 17 young healthy subjects undergoing a fear conditioning task, followed by a fear extinction task 24 h later, both recorded with simultaneous skin conductance response (SCR) and functional magnetic resonance imaging measurements, with a polysomnographically recorded night sleep in between. Our results showed a correlation between vmPFC activity during fear conditioning and subsequent REM sleep amount, as well as between REM sleep amount and SCR to the conditioned stimulus 24 h later. Moreover, we observed a significant correlation between vmPFC activity during fear conditioning and SCR responses during extinction, which was no longer significant after controlling for REM sleep amount. vmPFC activity during fear conditioning was further correlated with sleep latency. Interestingly, hippocampus activity during fear conditioning was correlated with stage 2 and stage 4 sleep amount. Our results provide preliminary evidence that the relationship between REM sleep and fear conditioning and extinction observed in rodents can be modeled in healthy human subjects, highlighting an interrelated set of potentially relevant trait markers.

  10. Worrying affects associative fear learning: a startle fear conditioning study.

    PubMed

    Gazendam, Femke J; Kindt, Merel

    2012-01-01

    A valuable experimental model for the pathogenesis of anxiety disorders is that they originate from a learned association between an intrinsically non-aversive event (Conditioned Stimulus, CS) and an anticipated disaster (Unconditioned Stimulus, UCS). Most anxiety disorders, however, do not evolve from a traumatic experience. Insights from neuroscience show that memory can be modified post-learning, which may elucidate how pathological fear can develop after relatively mild aversive events. Worrying--a process frequently observed in anxiety disorders--is a potential candidate to strengthen the formation of fear memory after learning. Here we tested in a discriminative fear conditioning procedure whether worry strengthens associative fear memory. Participants were randomly assigned to either a Worry (n = 23) or Control condition (n = 25). After fear acquisition, the participants in the Worry condition processed six worrisome questions regarding the personal aversive consequences of an electric stimulus (UCS), whereas the Control condition received difficult but neutral questions. Subsequently, extinction, reinstatement and re-extinction of fear were tested. Conditioned responding was measured by fear-potentiated startle (FPS), skin conductance (SCR) and UCS expectancy ratings. Our main results demonstrate that worrying resulted in increased fear responses (FPS) to both the feared stimulus (CS(+)) and the originally safe stimulus (CS(-)), whereas FPS remained unchanged in the Control condition. In addition, worrying impaired both extinction and re-extinction learning of UCS expectancy. The implication of our findings is that they show how worry may contribute to the development of anxiety disorders by affecting associative fear learning.

  11. Opposite effects of fear conditioning and extinction on dendritic spine remodelling.

    PubMed

    Lai, Cora Sau Wan; Franke, Thomas F; Gan, Wen-Biao

    2012-02-19

    It is generally believed that fear extinction is a form of new learning that inhibits rather than erases previously acquired fear memories. Although this view has gained much support from behavioural and electrophysiological studies, the hypothesis that extinction causes the partial erasure of fear memories remains viable. Using transcranial two-photon microscopy, we investigated how neural circuits are modified by fear learning and extinction by examining the formation and elimination of postsynaptic dendritic spines of layer-V pyramidal neurons in the mouse frontal association cortex. Here we show that fear conditioning by pairing an auditory cue with a footshock increases the rate of spine elimination. By contrast, fear extinction by repeated presentation of the same auditory cue without a footshock increases the rate of spine formation. The degrees of spine remodelling induced by fear conditioning and extinction strongly correlate with the expression and extinction of conditioned fear responses, respectively. Notably, spine elimination and formation induced by fear conditioning and extinction occur on the same dendritic branches in a cue- and location-specific manner: cue-specific extinction causes formation of dendritic spines within a distance of two micrometres from spines that were eliminated after fear conditioning. Furthermore, reconditioning preferentially induces elimination of dendritic spines that were formed after extinction. Thus, within vastly complex neuronal networks, fear conditioning, extinction and reconditioning lead to opposing changes at the level of individual synapses. These findings also suggest that fear memory traces are partially erased after extinction.

  12. Two roles of the context in Pavlovian fear conditioning.

    PubMed

    Urcelay, Gonzalo P; Miller, Ralph R

    2010-04-01

    At both empirical and theoretical levels, multiple functional roles of contextual information upon memory performance have been proposed without a clear dissociation of these roles. Some theories have assumed that contexts are functionally similar to cues, whereas other views emphasize the retrieval facilitating properties of contextual information. In Experiment 1, we observed that one critical parameter, the spacing of trials, could determine whether the context would function as a conditioned stimulus or as a retrieval cue for memories trained in different phases. Experiments 2 and 3 doubly dissociated these functions by selectively disrupting one role but not the other, and vice versa. Overall, these observations identify one determinant of different functions of contextual information and pose a major challenge to theories of learning that assume exclusively one or the other function of the context. Moreover, these data emphasize the importance of parametric variations on behavioral control, which has critical implications for studies designed to understand the role of the hippocampus in processing of contextual attributes.

  13. Hormonal Regulation of Extinction: Implications for Gender Differences in the Mechanisms of PTSD

    DTIC Science & Technology

    2010-03-01

    Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT This project investigates the role of gonadal hormones in the regulation of Pavlovian fear conditioning ...and its extinction. Pavlovian fear conditioning and its extinction serve as an animal model for the development of pathological fear in humans that...gonadal hormones in the regulation of Pavlovian fear conditioning and its extinction. Pavlovian fear conditioning and its extinction serve as an animal

  14. Rapid Remission of Conditioned Fear Expression with Extinction Training Paired with Vagus Nerve Stimulation

    PubMed Central

    Peña, David F.; Engineer, Navzer D.; McIntyre, Christa K.

    2012-01-01

    Background Fearful experiences can produce long-lasting and debilitating memories. Extinction of conditioned fear requires consolidation of new memories that compete with fearful associations. In human subjects, as well as rats, posttraining stimulation of the vagus nerve enhances memory consolidation. Subjects with posttraumatic stress disorder (PTSD) show impaired extinction of conditioned fear. The objective of this study was to determine whether vagus nerve stimulation (VNS) can enhance the consolidation of extinction of conditioned fear. Methods Male Sprague-Dawley rats were trained on an auditory fear conditioning task followed by 1–10 days of extinction training. Treatment with vagus nerve or sham stimulation was administered concurrently with exposure to the fear conditioned stimulus. Another group was given VNS and extinction training but the VNS was not paired with exposure to conditioned cues. Retention of fear conditioning was tested 24 hours after each treatment. Results VNS paired with exposure to conditioned cues enhanced the extinction of conditioned fear. After a single extinction trial, rats given VNS stimulation demonstrated a significantly lower level of freezing, compared to that of sham controls. When extinction trials were extended to 10 days, paired VNS accelerated extinction of the conditioned response. Conclusions Extinction paired with VNS is more rapid than extinction paired with sham stimulation. As it is currently approved by the Federal Food and Drug Administration for depression and seizure prevention, VNS is a readily-available and promising adjunct to exposure therapy for the treatment of severe anxiety disorders. PMID:23245749

  15. Fear, Worry, and Ritualistic Behaviour in Childhood: Developmental Trends and Interrelations

    ERIC Educational Resources Information Center

    Laing, Sarah V.; Fernyhough, Charles; Turner, Michelle; Freeston, Mark H.

    2009-01-01

    Previous studies of childhood fear, worry, and ritualistic behaviour have been limited by restricted age ranges, narrow ranges of anxiety phenomena, non-comparable methodologies, and assessment of typical behaviour within a pathological context. Content and intensity of fear, worry, and ritualistic behaviour, and associations among these…

  16. What Predicts Fear of School Violence among U.S. Adolescents?

    ERIC Educational Resources Information Center

    Akiba, Motoko

    2010-01-01

    Background/Context: Ensuring a safe learning environment for every student at school is a major responsibility of educators, school administrators, and policy makers in our society. Students' fear associated with school violence affects their school attendance, learning motivation, and academic achievement. Although predictors of adults' fear of…

  17. The Love That Takes a Toll: Exploring Race and the Pedagogy of Fear in Researching Teachers and Teaching

    ERIC Educational Resources Information Center

    Brown, Keffrelyn D.

    2013-01-01

    In this paper, I examine how what I call a "pedagogy of fear" played a role in the sociocultural context of research on teachers and teaching. Drawing from multiple literature on emotions, qualitative research, and race, I examine how a racialized field context framed my subsequent emotional responses and performance as an…

  18. From Threat to Fear: The neural organization of defensive fear systems in humans

    PubMed Central

    Mobbs, Dean; Marchant, Jennifer L; Hassabis, Demis; Seymour, Ben; Tan, Geoffrey; Gray, Marcus; Petrovic, Predrag; Dolan, Raymond J.; Frith, Christopher D.

    2009-01-01

    Post-encounter and circa-strike defensive contexts represent two adaptive responses to potential and imminent danger. In the context of a predator, the post-encounter reflects the initial detection of the potential threat, whilst the circa-strike is associated with direct predatory attack. We used fMRI to investigate the neural organization of anticipation and avoidance of artificial predators with high or low probability of capturing the subject across analogous post-encounter and circa-strike contexts of threat. Consistent with defense systems models, post-encounter threat elicited activity in forebrain areas including subgenual anterior cingulate cortex (sgACC), hippocampus and amygdala. Conversely, active avoidance during circa-strike threat increased activity in mid-dorsal ACC and midbrain areas. During the circa-strike condition, subjects showed increased coupling between the midbrain and mid-dorsal ACC and decreased coupling with the sgACC, amygdala and hippocampus. Greater activity was observed in the right pregenual ACC for high compared to low probability of capture during circa-strike threat. This region showed decreased coupling with the amygdala, insula and ventromedial prefrontal cortex. Finally, we found that locomotor errors correlated with subjective reports of panic for the high compared to low probability of capture during the circa-strike threat and these panic-related locomotor errors were correlated with midbrain activity. These findings support models suggesting that higher forebrain areas are involved in early threat responses, including the assignment and control of fear, whereas as imminent danger results in fast, likely “hard-wired”, defensive reactions mediated by the midbrain. PMID:19793982

  19. Suppression of Neurotoxic Lesion-Induced Seizure Activity: Evidence for a Permanent Role for the Hippocampus in Contextual Memory

    PubMed Central

    Sparks, Fraser T.; Lehmann, Hugo; Hernandez, Khadaryna; Sutherland, Robert J.

    2011-01-01

    Damage to the hippocampus (HPC) using the excitotoxin N-methyl-D-aspartate (NMDA) can cause retrograde amnesia for contextual fear memory. This amnesia is typically attributed to loss of cells in the HPC. However, NMDA is also known to cause intense neuronal discharge (seizure activity) during the hours that follow its injection. These seizures may have detrimental effects on retrieval of memories. Here we evaluate the possibility that retrograde amnesia is due to NMDA-induced seizure activity or cell damage per se. To assess the effects of NMDA induced activity on contextual memory, we developed a lesion technique that utilizes the neurotoxic effects of NMDA while at the same time suppressing possible associated seizure activity. NMDA and tetrodotoxin (TTX), a sodium channel blocker, are simultaneously infused into the rat HPC, resulting in extensive bilateral damage to the HPC. TTX, co-infused with NMDA, suppresses propagation of seizure activity. Rats received pairings of a novel context with foot shock, after which they received NMDA-induced, TTX+NMDA-induced, or no damage to the HPC at a recent (24 hours) or remote (5 weeks) time point. After recovery, the rats were placed into the shock context and freezing was scored as an index of fear memory. Rats with an intact HPC exhibited robust memory for the aversive context at both time points, whereas rats that received NMDA or NMDA+TTX lesions showed a significant reduction in learned fear of equal magnitude at both the recent and remote time points. Therefore, it is unlikely that observed retrograde amnesia in contextual fear conditioning are due to disruption of non-HPC networks by propagated seizure activity. Moreover, the memory deficit observed at both time points offers additional evidence supporting the proposition that the HPC has a continuing role in maintaining contextual memories. PMID:22110648

  20. Positive affect protects against deficient safety learning during extinction of fear of movement-related pain in healthy individuals scoring relatively high on trait anxiety.

    PubMed

    Meulders, Ann; Meulders, Michel; Vlaeyen, Johan W S

    2014-06-01

    From a treatment perspective, it is highly relevant to pinpoint individual vulnerability factors for resistance to exposure treatment in highly fearful chronic pain patients. Previous fear conditioning research showed that healthy individuals scoring relatively high on trait anxiety display sustained fear to safety cues during extinction. In the context of fear of movement-related pain, this intriguing question has been largely neglected so far. Even more importantly, positive psychological traits such as trait positive affect may function as protective factors against the spreading of fear to safe movements and improve exposure treatment outcomes. In this study, healthy participants completed a trait anxiety and trait positive affect questionnaire and underwent acquisition and extinction of fear of movement-related pain using an experimental voluntary movement paradigm. During acquisition, one movement (CS+) was paired with a painful stimulus and another movement was not (CS-). During extinction, the CS+ was no longer reinforced. Results show failure of fear inhibition to the CS- during extinction in healthy individuals scoring relatively high on trait anxiety or relatively low on positive affect. These findings seem to suggest that safety learning is more vulnerable in healthy people with a high anxious disposition and/or relatively lower levels of positive affect. In addition, this is the first study to show that the negative impact of high trait anxiety on fear inhibition to safety cues during extinction can be countered by high levels of positive affect. These findings may have important clinical implications. Both low positive affect and high trait anxiety are associated with impaired fear inhibition to nonpainful movements during fear extinction. Interestingly, high levels of positive affect buffer against the negative impact of trait anxiety. Increasing positive affect during exposure may counter the effects of trait vulnerabilities and improve treatment outcomes. Copyright © 2014 American Pain Society. Published by Elsevier Inc. All rights reserved.

  1. Bupropion Dose-Dependently Reverses Nicotine Withdrawal Deficits in Contextual Fear Conditioning

    PubMed Central

    Portugal, George S.; Gould, Thomas J.

    2007-01-01

    Bupropion, a norepinephrine and dopamine reuptake inhibitor and nicotinic acetylcholine receptor antagonist, facilitates smoking cessation and reduces some symptoms of nicotine withdrawal. However, the effects of bupropion on nicotine withdrawal-associated deficits in learning remain unclear. The present study investigated whether bupropion has effects on contextual and cued fear conditioning following withdrawal from chronic nicotine or when administered alone. Bupropion was administered alone for a range of doses (2.5, 5, 10, 20 or 40 mg/kg), and dose-dependent impairments in contextual and cued fear conditioning were observed (20 or 40 mg/kg). Follow-up studies investigated if bupropion disrupted acquisition or expression of fear conditioning. Bupropion (40 mg/kg) administration on training day only produced deficits in contextual fear conditioning. Alternatively, bupropion (20 or 40 mg/kg) administration during testing dose-dependently produced deficits in contextual and cued fear conditioning. To test the effect of bupropion on nicotine withdrawal, mice were withdrawn from 12 days of chronic nicotine (6.3 mg/kg/day) or saline treatment. Withdrawal from chronic nicotine disrupted contextual fear conditioning; however, 5 mg/kg bupropion reversed this deficit. Overall, these results indicate that a low dose of bupropion can reverse nicotine withdrawal deficits in contextual fear conditioning, but that high doses of bupropion produce deficits in fear conditioning. PMID:17868796

  2. Potentiation of GluN2C/D NMDA receptor subtypes in the amygdala facilitates the retention of fear and extinction learning in mice.

    PubMed

    Ogden, Kevin K; Khatri, Alpa; Traynelis, Stephen F; Heldt, Scott A

    2014-02-01

    NMDA receptors are glutamate receptor ion channels that contribute to synaptic plasticity and are important for many forms of learning and memory. In the amygdala, NMDA receptors are critical for the acquisition, retention, and extinction of classically conditioned fear responses. Although the GluN2B subunit has been implicated in both the acquisition and extinction of conditioned fear, GluN2C-knockout mice show reduced conditioned fear responses. Moreover, D-cycloserine (DCS), which facilitates fear extinction, selectively enhances the activity of GluN2C-containing NMDA receptors. To further define the contribution of GluN2C receptors to fear learning, we infused the GluN2C/GluN2D-selective potentiator CIQ bilaterally into the basolateral amygdala (3, 10, or 30 μg/side) following either fear conditioning or fear extinction training. CIQ both increased the expression of conditioned fear 24 h later and enhanced the extinction of the previously conditioned fear response. These results support a critical role for GluN2C receptors in the amygdala in the consolidation of learned fear responses and suggest that increased activity of GluN2C receptors may underlie the therapeutic actions of DCS.

  3. Developmental aspects of fear: Comparing the acquisition and generalization of conditioned fear in children and adults.

    PubMed

    Schiele, Miriam A; Reinhard, Julia; Reif, Andreas; Domschke, Katharina; Romanos, Marcel; Deckert, Jürgen; Pauli, Paul

    2016-05-01

    Most research on human fear conditioning and its generalization has focused on adults whereas only little is known about these processes in children. Direct comparisons between child and adult populations are needed to determine developmental risk markers of fear and anxiety. We compared 267 children and 285 adults in a differential fear conditioning paradigm and generalization test. Skin conductance responses (SCR) and ratings of valence and arousal were obtained to indicate fear learning. Both groups displayed robust and similar differential conditioning on subjective and physiological levels. However, children showed heightened fear generalization compared to adults as indexed by higher arousal ratings and SCR to the generalization stimuli. Results indicate overgeneralization of conditioned fear as a developmental correlate of fear learning. The developmental change from a shallow to a steeper generalization gradient is likely related to the maturation of brain structures that modulate efficient discrimination between danger and (ambiguous) safety cues. © 2016 The Authors. Developmental Psychobiology Published by Wiley Periodicals, Inc.

  4. The effects of acute nicotine on contextual safety discrimination.

    PubMed

    Kutlu, Munir G; Oliver, Chicora; Gould, Thomas J

    2014-11-01

    Anxiety disorders, such as post-traumatic stress disorder (PTSD), may be related to an inability to distinguish safe versus threatening environments and to extinguish fear memories. Given the high rate of cigarette smoking in patients with PTSD, as well as the recent finding that an acute dose of nicotine impairs extinction of contextual fear memory, we conducted a series of experiments to investigate the effect of acute nicotine in an animal model of contextual safety discrimination. Following saline or nicotine (at 0.0275, 0.045, 0.09 and 0.18 mg/kg) administration, C57BL/6J mice were trained in a contextual discrimination paradigm, in which the subjects received presentations of conditioned stimuli (CS) that co-terminated with a foot-shock in one context (context A (CXA)) and only CS presentations without foot-shock in a different context (context B (CXB)). Therefore, CXA was designated as the 'dangerous context', whereas CXB was designated as the 'safe context'. Our results suggested that saline-treated animals showed a strong discrimination between dangerous and safe contexts, while acute nicotine dose-dependently impaired contextual safety discrimination (Experiment 1). Furthermore, our results demonstrate that nicotine-induced impairment of contextual safety discrimination learning was not a result of increased generalized freezing (Experiment 2) or contingent on the common CS presentations in both contexts (Experiment 3). Finally, our results show that increasing the temporal gap between CXA and CXB during training abolished the impairing effects of nicotine (Experiment 4). The findings of this study may help link nicotine exposure to the safety learning deficits seen in anxiety disorder and PTSD patients. © The Author(s) 2014.

  5. The Topological Properties of Stimuli Influence Fear Generalization and Extinction in Humans

    PubMed Central

    Xu, Liang; Su, Hongyu; Xie, Xiaoyuan; Yan, Pei; Li, Junjiao; Zheng, Xifu

    2018-01-01

    Fear generalization is an etiologically significant indicator of anxiety disorders, and understanding how to inhibit it is important in their treatment. Prior studies have found that reducing fear generalization using a generalization stimulus (GS) is ineffective in removing a conditioned fear that incorporates local features, and that topological properties appear to play a comparatively more significant role in the processes of perception and categorization. Our study utilized a conditioned-fear generalization design to examine whether the topological properties of stimuli influence the generalization and return of fear. Fear was indexed using online expectancy ratings and skin conductance responses (SCRs). The study’s 52 participants were divided into three groups: Group 1, conditioned danger cue (CS+) extinction; Group 2, extinction of one GS; Group 3, extinction of three GSs. We found that the three groups acquired conditioned fear at the same level. In the generalization and extinction phase, fear was transferred to the GS with the same topological properties as CS+, and gradual decreases in both shock expectancy and SCRs over non-reinforced extinction trials were observed. In the test phase, participants’ online expectancy ratings indicated that fear did not return in Group 1, but did return in Groups 2 and 3. All three groups demonstrated successful GS fear extinction, but only Group 1 did not show a return of fear for CS+. Regarding SCRs results, none of the groups demonstrated a return of fear, suggesting that utilization of topological properties successfully reduced the return of conditioned fear. Our results indicate that, in clinical settings, using GS with topological equivalence to CS+ might offer a potential method with which to extinct conditioned fear. PMID:29643824

  6. Oxytocin receptor neurotransmission in the dorsolateral bed nucleus of the stria terminalis facilitates the acquisition of cued fear in the fear-potentiated startle paradigm in rats.

    PubMed

    Moaddab, Mahsa; Dabrowska, Joanna

    2017-07-15

    Oxytocin (OT) is a hypothalamic neuropeptide that modulates fear and anxiety-like behaviors. Dorsolateral bed nucleus of the stria terminalis (BNST dl ) plays a critical role in the regulation of fear and anxiety, and expresses high levels of OT receptor (OTR). However, the role of OTR neurotransmission within the BNST dl in mediating these behaviors is unknown. Here, we used adult male Sprague-Dawley rats to investigate the role of OTR neurotransmission in the BNST dl in the modulation of the acoustic startle response, as well as in the acquisition and consolidation of conditioned fear using fear potentiated startle (FPS) paradigm. Bilateral intra-BNST dl administration of OT (100 ng) did not affect the acquisition of conditioned fear response. However, intra-BNST dl administration of specific OTR antagonist (OTA), (d(CH 2 ) 5 1 , Tyr(Me) 2 , Thr 4 , Orn 8 , des-Gly-NH 2 9 )-vasotocin, (200 ng), prior to the fear conditioning session, impaired the acquisition of cued fear, without affecting a non-cued fear component of FPS. Neither OTA, nor OT affected baseline startle or shock reactivity during fear conditioning. Therefore, the observed impairment of cued fear after OTA infusion resulted from the specific effect on the formation of cued fear. In contrast to the acquisition, neither OTA nor OT affected the consolidation of FPS, when administered after the completion of fear conditioning session. Taken together, these results reveal the important role of OTR neurotransmission in the BNST dl in the formation of conditioned fear to a discrete cue. This study also highlights the role of the BNST dl in learning to discriminate between threatening and safe stimuli. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Molecular mechanisms of D-cycloserine in facilitating fear extinction: insights from RNAseq.

    PubMed

    Malan-Müller, Stefanie; Fairbairn, Lorren; Daniels, Willie M U; Dashti, Mahjoubeh Jalali Sefid; Oakeley, Edward J; Altorfer, Marc; Kidd, Martin; Seedat, Soraya; Gamieldien, Junaid; Hemmings, Sîan Megan Joanna

    2016-02-01

    D-cycloserine (DCS) has been shown to be effective in facilitating fear extinction in animal and human studies, however the precise mechanisms whereby the co-administration of DCS and behavioural fear extinction reduce fear are still unclear. This study investigated the molecular mechanisms of intrahippocampally administered D-cycloserine in facilitating fear extinction in a contextual fear conditioning animal model. Male Sprague Dawley rats (n = 120) were grouped into four experimental groups (n = 30) based on fear conditioning and intrahippocampal administration of either DCS or saline. The light/dark avoidance test was used to differentiate maladapted (MA) (anxious) from well-adapted (WA) (not anxious) subgroups. RNA extracted from the left dorsal hippocampus was used for RNA sequencing and gene expression data was compared between six fear-conditioned + saline MA (FEAR + SALINE MA) and six fear-conditioned + DCS WA (FEAR + DCS WA) animals. Of the 424 significantly downregulated and 25 significantly upregulated genes identified in the FEAR + DCS WA group compared to the FEAR + SALINE MA group, 121 downregulated and nine upregulated genes were predicted to be relevant to fear conditioning and anxiety and stress-related disorders. The majority of downregulated genes transcribed immune, proinflammatory and oxidative stress systems molecules. These molecules mediate neuroinflammation and cause neuronal damage. DCS also regulated genes involved in learning and memory processes, and genes associated with anxiety, stress-related disorders and co-occurring diseases (e.g., cardiovascular diseases, digestive system diseases and nervous system diseases). Identifying the molecular underpinnings of DCS-mediated fear extinction brings us closer to understanding the process of fear extinction.

  8. Brain dynamics of visual attention during anticipation and encoding of threat- and safe-cues in spider-phobic individuals

    PubMed Central

    Pané-Farré, Christiane A.; Löw, Andreas; Hamm, Alfons O.

    2015-01-01

    This study systematically investigated the sensitivity of the phobic attention system by measuring event-related potentials (ERPs) in spider-phobic and non-phobic volunteers in a context where spider and neutral pictures were presented (phobic threat condition) and in contexts where no phobic but unpleasant and neutral or only neutral pictures were displayed (phobia-irrelevant conditions). In a between-group study, participants were assigned to phobia-irrelevant conditions either before or after the exposure to spider pictures (pre-exposure vs post-exposure participants). Additionally, each picture was preceded by a fixation cross presented in one of three different colors that were informative about the category of an upcoming picture. In the phobic threat condition, spider-phobic participants showed a larger P1 than controls for all pictures and signal cues. Moreover, individuals with spider phobia who were sensitized by the exposure to phobic stimuli (i.e. post-exposure participants) responded with an increased P1 also in phobia-irrelevant conditions. In contrast, no group differences between spider-phobic and non-phobic individuals were observed in the P1-amplitudes during viewing of phobia-irrelevant stimuli in the pre-exposure group. In addition, cues signaling neutral pictures elicited decreased stimulus-preceding negativity (SPN) compared with cues signaling emotional pictures. Moreover, emotional pictures and cues signaling emotional pictures evoked larger early posterior negativity (EPN) and late positive potential (LPP) than neutral stimuli. Spider phobics showed greater selective attention effects than controls for phobia-relevant pictures (increased EPN and LPP) and cues (increased LPP and SPN). Increased sensitization of the attention system observed in spider-phobic individuals might facilitate fear conditioning and promote generalization of fear playing an important role in the maintenance of anxiety disorders. PMID:25608985

  9. Associations among Context-Specific Maternal Protective Behavior, Toddlers' Fearful Temperament, and Maternal Accuracy and Goals

    ERIC Educational Resources Information Center

    Kiel, Elizabeth J.; Buss, Kristin A.

    2012-01-01

    Maternal protective responses to temperamentally fearful toddlers have previously been found to relate to increased risk for children's development of anxiety-spectrum problems. Not all protective behavior is "overprotective", and not all mothers respond to toddlers' fear with protection. Therefore, the current study aimed to identify conditions…

  10. Fear of Failure and Student Athletes' Interpersonal Antisocial Behaviour in Education and Sport

    ERIC Educational Resources Information Center

    Sagar, Sam S.; Boardley, Ian D.; Kavussanu, Maria

    2011-01-01

    Background: The link between fear of failure and students' antisocial behaviour has received scant research attention despite associations between fear of failure, hostility, and aggression. Also, the effect of sport experience on antisocial behaviour has not been considered outside of the sport context in adult populations. Further, to date, sex…

  11. Assault Injury Rates, Social Capital, and Fear of Neighborhood Crime

    ERIC Educational Resources Information Center

    Kruger, Daniel J.; Hutchison, Peter; Monroe, Matthew G.; Reischl, Thomas; Morrel-Samuels, Susan

    2007-01-01

    This study develops an explanatory framework for fear of neighborhood crime based on respondents' social context and local rates of assault injuries. Rates of assault injuries within zip codes are based on hospital discharge records. We find that only four variables have a significant unique contribution to fear of crime: respondent's sex,…

  12. Negative Social Evaluative Fears Produce Social Anxiety, Food Intake, and Body Dissatisfaction: Evidence of Similar Mechanisms through Different Pathways

    PubMed Central

    Levinson, Cheri A.; Rodebaugh, Thomas L.

    2014-01-01

    Social anxiety and eating disorders are highly comorbid, suggesting there are shared vulnerabilities that underlie the development of these disorders. Two proposed vulnerabilities are fear of negative evaluation and social appearance anxiety (i.e., fear of negative evaluation regarding one's appearance). In the current experimental study (N=160 women) we measured these fears: (a) through a manipulation comparing fear conditions, (b) with trait fears, and (c) state fears. Results indicated that participants in the fear of negative evaluation condition increased food consumption, whereas participants in the social appearance anxiety condition and high in trait social appearance anxiety experienced the highest amounts of body dissatisfaction. Participants in the fear of evaluation and social appearance anxiety conditions experienced elevated social anxiety. These results support the idea that negative evaluation fears are shared vulnerabilities for eating and social anxiety disorders, but that the way these variables exert their effects may lead to disorder specific behaviors. PMID:26504674

  13. Cholinergic regulation of fear learning and extinction.

    PubMed

    Wilson, Marlene A; Fadel, Jim R

    2017-03-01

    Cholinergic activation regulates cognitive function, particularly long-term memory consolidation. This Review presents an overview of the anatomical, neurochemical, and pharmacological evidence supporting the cholinergic regulation of Pavlovian contextual and cue-conditioned fear learning and extinction. Basal forebrain cholinergic neurons provide inputs to neocortical regions and subcortical limbic structures such as the hippocampus and amygdala. Pharmacological manipulations of muscarinic and nicotinic receptors support the role of cholinergic processes in the amygdala, hippocampus, and prefrontal cortex in modulating the learning and extinction of contexts or cues associated with threat. Additional evidence from lesion studies and analysis of in vivo acetylcholine release with microdialysis similarly support a critical role of cholinergic neurotransmission in corticoamygdalar or corticohippocampal circuits during acquisition of fear extinction. Although a few studies have suggested a complex role of cholinergic neurotransmission in the cellular plasticity essential for extinction learning, more work is required to elucidate the exact cholinergic mechanisms and physiological role of muscarinic and nicotinic receptors in these fear circuits. Such studies are important for elucidating the role of cholinergic neurotransmission in disorders such as posttraumatic stress disorder that involve deficits in extinction learning as well as for developing novel therapeutic approaches for such disorders. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Direct reactivation of a coherent neocortical memory of context

    PubMed Central

    Cowansage, Kiriana Kater; Shuman, Tristan; Dillingham, Blythe Christine; Chang, Allene; Golshani, Peyman; Mayford, Mark

    2014-01-01

    Summary Declarative memories are thought to be stored within anatomically distributed neuronal networks requiring the hippocampus; however, it is unclear how neocortical areas participate in memory at the time of encoding. Here, we use a c-fos-based genetic tagging system to selectively express the channelrhodopsin variant, ChEF, and optogenetically reactivate a specific neural ensemble in retrosplenial cortex (RSC) engaged by context fear conditioning. Artificial stimulation of RSC was sufficient to produce both context-specific behavior and downstream cellular activity commensurate with natural experience. Moreover, optogenetically, but not contextually-elicited responses were insensitive to hippocampal inactivation, suggesting that although the hippocampus is needed to coordinate activation by sensory cues, a higher-order cortical framework can independently subserve learned behavior, even shortly after learning. PMID:25308330

  15. Plasticity of Fear and Safety Neurons of the Amygdala in Response to Fear Extinction

    PubMed Central

    Sangha, Susan

    2015-01-01

    Fear inhibition learning induces plasticity and remodeling of circuits within the amygdala. Most studies examine these changes in nondiscriminative fear conditioning paradigms. Using a discriminative fear, safety, and reward conditioning task, Sangha et al. (2013) have previously reported several neural microcircuits within the basal amygdala (BA) which discriminate among these cues, including a subpopulation of neurons responding selectively to a safety cue and not a fear cue. Here, the hypothesis that these “safety” neurons isolated during discriminative conditioning are biased to become fear cue responsive as a result of extinction, when fear behavior diminishes, was tested. Although 41% of “safety” neurons became fear cue responsive as a result of extinction, the data revealed that there was no bias for these neurons to become preferentially responsive during fear extinction compared to the other identified subgroups. In addition to the plasticity seen in the “safety” neurons, 44% of neurons unresponsive to either the fear cue or safety cue during discriminative conditioning became fear cue responsive during extinction. Together these emergent responses to the fear cue as a result of extinction support the hypothesis that new learning underlies extinction. In contrast, 47% of neurons responsive to the fear cue during discriminative conditioning became unresponsive to the fear cue during extinction. These findings are consistent with a suppression of neural responding mediated by inhibitory learning, or, potentially, by direct unlearning. Together, the data support extinction as an active process involving both gains and losses of responses to the fear cue and suggests the final output of the integrated BA circuit in influencing fear behavior is a balance of excitation and inhibition, and perhaps reversal of learning-induced changes. PMID:26733838

  16. Hormonal Regulation of Extinction: Implication for Mechanisms of Gender Difference in PTSD

    DTIC Science & Technology

    2009-09-01

    role of gonadal hormones in the regulation of Pavlovian fear conditioning and its extinction. Pavlovian fear conditioning and its extinction serve...learning in Pavlovian fear conditioning involves training with the presentation of an innocuous stimulus (the conditioned stimulus – CS) that is associated...GD, Schlinger BA, Fanselow MS (1998) Testicular hormones do not regulate sexually dimorphic Pavlovian fear conditioning or perforant- path long-term

  17. Dopamine D1-like receptor signalling in the hippocampus and amygdala modulates the acquisition of contextual fear conditioning.

    PubMed

    Heath, Florence C; Jurkus, Regimantas; Bast, Tobias; Pezze, Marie A; Lee, Jonathan L C; Voigt, J Peter; Stevenson, Carl W

    2015-07-01

    Dopamine D1-like receptor signalling is involved in contextual fear conditioning, but the brain regions involved and its role in other contextual fear memory processes remain unclear. The objective of this study was to investigate (1) the effects of SCH 23390, a dopamine D1/D5 receptor antagonist, on contextual fear memory encoding, retrieval and reconsolidation, and (2) if the effects of SCH 23390 on conditioning involve the dorsal hippocampus (DH) and/or basolateral amygdala (BLA). Rats were used to examine the effects of systemically administering SCH 23390 on the acquisition, consolidation, retrieval and reconsolidation of contextual fear memory, and on locomotor activity and shock sensitivity. We also determined the effects of MK-801, an NMDA receptor antagonist, on contextual fear memory reconsolidation. The effects of infusing SCH 23390 locally into DH or BLA on contextual fear conditioning and locomotor activity were also examined. Systemic administration of SCH 23390 impaired contextual fear conditioning but had no effects on fear memory consolidation, retrieval or reconsolidation. MK-801 was found to impair reconsolidation, suggesting that the behavioural parameters used allowed for the pharmacological disruption of memory reconsolidation. The effects of SCH 23390 on conditioning were unlikely the result of any lasting drug effects on locomotor activity at memory test or any acute drug effects on shock sensitivity during conditioning. SCH 23390 infused into either DH or BLA impaired contextual fear conditioning and decreased locomotor activity. These findings suggest that dopamine D1-like receptor signalling in DH and BLA contributes to the acquisition of contextual fear memory.

  18. Fear, anger, fruits, and veggies: interactive effects of emotion and message framing on health behavior.

    PubMed

    Gerend, Mary A; Maner, Jon K

    2011-07-01

    Message framing is a theoretically grounded health communication strategy designed to motivate action by emphasizing either the benefits of engaging in a particular behavior (gains) or the costs of failing to engage in the behavior (losses). This study investigated whether the effectiveness of a framed message depends on the emotional state of the message recipient. We examined effects of fear versus anger, emotions that frequently occur within the context of health decision-making. Undergraduate students (N = 133) were randomly assigned to complete a fear or anger induction task after which they read a gain- or loss-framed pamphlet promoting fruit and vegetable consumption. Fruit and vegetable intake (servings per day) subsequently was assessed over the following 2 weeks. As predicted, a significant frame by emotion interaction was observed, such that participants in the fear condition reported eating more servings of fruits and vegetables after exposure to a loss-framed message than to a gain-framed message. In contrast, participants in the anger condition reported eating (marginally) more servings of fruits and vegetables after exposure to a gain-framed message than to a loss-framed message. Greater increases in fruit and vegetable intake from baseline to follow-up were observed when the message frame was matched to the participant's emotional state. The effectiveness of framed health communications depends on the message recipient's current emotional state. Affective factors that are incidental to the behavior recommended in a health communication can affect the relative success of gain- and loss-framed appeals.

  19. Post-Extinction Conditional Stimulus Valence Predicts Reinstatement Fear: Relevance for Long Term Outcomes of Exposure Therapy

    PubMed Central

    Zbozinek, Tomislav D.; Hermans, Dirk; Prenoveau, Jason M.; Liao, Betty; Craske, Michelle G.

    2014-01-01

    Exposure therapy for anxiety disorders is translated from fear conditioning and extinction. While exposure therapy is effective in treating anxiety, fear sometimes returns after exposure. One pathway for return of fear is reinstatement: unsignaled unconditional stimuli following completion of extinction. The present study investigated the extent to which valence of the conditional stimulus (CS+) after extinction predicts return of CS+ fear after reinstatement. Participants (N = 84) engaged in a differential fear conditioning paradigm and were randomized to reinstatement or non-reinstatement. We hypothesized that more negative post-extinction CS+ valence would predict higher CS+ fear after reinstatement relative to non-reinstatement and relative to extinction retest. Results supported the hypotheses and suggest that strategies designed to decrease negative valence of the CS+ may reduce the return of fear via reinstatement following exposure therapy. PMID:24957680

  20. Low Endogenous Fibroblast Growth Factor 2 Levels Are Associated With Heightened Conditioned Fear Expression in Rats and Humans.

    PubMed

    Graham, Bronwyn M; Zagic, Dino; Richardson, Rick

    2017-10-15

    Hippocampal concentrations of the neurotrophic factor fibroblast growth factor 2 (FGF2) are negatively associated with the expression of fear following conditioning in rats. Heightened conditioned fear expression may be a prospective risk factor for the development of human anxiety and trauma disorders. However, the relationship between conditioned fear expression and FGF2 is yet to be established in humans. Using a cross-species approach, we first investigated the relationship between serum concentrations of FGF2 and individual differences in conditioned fear expression in rats (n = 19). We then subjected 88 human participants, who were recruited from university and community advertisements, to a differential fear conditioning procedure and assessed the relationship between salivary concentrations of FGF2 and fear expression to a conditioned stimulus (CS) (a stimulus paired with a shock) and a CS that was never paired with shock. Rats with low serum levels of FGF2 exhibited significantly more freezing than rats with high serum levels of FGF2. Similarly, relative to those with high salivary FGF2, human participants with low salivary FGF2 exhibited significantly heightened skin conductance responses to the CS without shock during fear conditioning and to both the CS with shock and CS without shock during fear recall. These studies establish that peripheral markers of FGF2 concentrations are negatively associated with fear expression in both rats and humans. To the extent that conditioned fear expression predicts anxiety and trauma disorder vulnerability, FGF2 may be a clinically useful biomarker in the prediction and eventual prevention of these disorders. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  1. Amygdala upregulation of NCAM polysialylation induced by auditory fear conditioning is not required for memory formation, but plays a role in fear extinction.

    PubMed

    Markram, Kamila; Lopez Fernandez, Miguel Angel; Abrous, Djoher Nora; Sandi, Carmen

    2007-05-01

    There is much interest to understand the mechanisms leading to the establishment, maintenance, and extinction of fear memories. The amygdala has been critically involved in the processing of fear memories and a number of molecular changes have been implicated in this brain region in relation to fear learning. Although neural cell adhesion molecules (NCAMs) have been hypothesized to play a role, information available about their contribution to fear memories is scarce. We investigate here whether polysialylated NCAM (PSA-NCAM) contributes to auditory fear conditioning in the amygdala. First, PSA-NCAM expression was evaluated in different amygdala nuclei after auditory fear conditioning at two different shock intensities. Results showed that PSA-NCAM expression was increased 24 h post-training only in animals subjected to the highest shock intensity (1mA). Second, PSA-NCAM was cleaved in the basolateral amygdaloid complex through micro-infusions of the enzyme endoneuraminidase N, and the consequences of such treatment were investigated on the acquisition, consolidation, remote memory expression, and extinction of conditioned fear memories. Intra-amygdaloid cleavage of PSA-NCAM did not affect acquisition, consolidation or expression of remote fear memories. However, intra-amygdaloid PSA-NCAM cleavage enhanced fear extinction processes. These results suggest that upregulation of PSA-NCAM is a correlate of fear conditioning that is not necessary for the establishment of fear memory in the amygdala, but participates in mechanisms precluding fear extinction. These findings point out PSA-NCAM as a potential target for the treatment of psychopathologies that involve impairment in fear extinction.

  2. Social Modulation of Associative Fear Learning by Pheromone Communication

    ERIC Educational Resources Information Center

    Bredy, Timothy W.; Barad, Mark

    2009-01-01

    Mice communicate through visual, vocal, and olfactory cues that influence innate, nonassociative behavior. We here report that exposure to a recently fear-conditioned familiar mouse impairs acquisition of conditioned fear and facilitates fear extinction, effects mimicked by both an olfactory chemosignal emitted by a recently fear-conditioned…

  3. Generalization of Conditioned Fear along a Dimension of Increasing Fear Intensity

    ERIC Educational Resources Information Center

    Dunsmoor, Joseph E.; Mitroff, Stephen R.; LaBar, Kevin S.

    2009-01-01

    The present study investigated the extent to which fear generalization in humans is determined by the amount of fear intensity in nonconditioned stimuli relative to a perceptually similar conditioned stimulus. Stimuli consisted of graded emotionally expressive faces of the same identity morphed between neutral and fearful endpoints. Two…

  4. Assessing Fear Following Retrieval + Extinction Through Suppression of Baseline Reward Seeking vs. Freezing

    PubMed Central

    Shumake, Jason; Monfils, Marie H.

    2015-01-01

    Freezing has become the predominant measure used in rodent studies of conditioned fear, but conditioned suppression of reward-seeking behavior may provide a measure that is more relevant to human anxiety disorders; that is, a measure of how fear interferes with the enjoyment of pleasurable activities. Previous work has found that an isolated presentation of a fear conditioned stimulus (CS) prior to extinction training (retrieval + extinction) results in a more robust and longer-lasting reduction in fear. The objective of this study was to assess whether the retrieval + extinction effect is evident using conditioned suppression of reward seeking, operationalized as a reduction in baseline licking (without prior water deprivation) for a 10% sucrose solution. We found that, compared to freezing, conditioned suppression of reward seeking was much more sensitive to fear conditioning and far less responsive to extinction training. As in previous work, we found that retrieval + extinction reduced post-extinction fear reinstatement when measured as freezing, but it did not reduce fear reinstatement when measured as conditioned suppression. This suggests that there is still residual fear following retrieval + extinction, or that this procedure only modifies memory traces in neural circuits relevant to the expression of freezing, but not to the suppression of reward seeking. PMID:26778985

  5. Developmental aspects of fear: Comparing the acquisition and generalization of conditioned fear in children and adults

    PubMed Central

    Schiele, Miriam A.; Reinhard, Julia; Reif, Andreas; Domschke, Katharina; Romanos, Marcel; Deckert, Jürgen

    2016-01-01

    ABSTRACT Most research on human fear conditioning and its generalization has focused on adults whereas only little is known about these processes in children. Direct comparisons between child and adult populations are needed to determine developmental risk markers of fear and anxiety. We compared 267 children and 285 adults in a differential fear conditioning paradigm and generalization test. Skin conductance responses (SCR) and ratings of valence and arousal were obtained to indicate fear learning. Both groups displayed robust and similar differential conditioning on subjective and physiological levels. However, children showed heightened fear generalization compared to adults as indexed by higher arousal ratings and SCR to the generalization stimuli. Results indicate overgeneralization of conditioned fear as a developmental correlate of fear learning. The developmental change from a shallow to a steeper generalization gradient is likely related to the maturation of brain structures that modulate efficient discrimination between danger and (ambiguous) safety cues. © 2016 The Authors. Developmental Psychobiology Published by Wiley Periodicals, Inc. Dev Psychobiol 58: 471–481, 2016. PMID:26798984

  6. Stressor controllability modulates fear extinction in humans

    PubMed Central

    Hartley, Catherine A.; Gorun, Alyson; Reddan, Marianne C.; Ramirez, Franchesca; Phelps, Elizabeth A.

    2014-01-01

    Traumatic events are proposed to play a role in the development of anxiety disorders, however not all individuals exposed to extreme stress experience a pathological increase in fear. Recent studies in animal models suggest that the degree to which one is able to control an aversive experience is a critical factor determining its behavioral consequences. In this study, we examined whether stressor controllability modulates subsequent conditioned fear expression in humans. Participants were randomly assigned to an escapable stressor condition, a yoked inescapable stressor condition, or a control condition involving no stress exposure. One week later, all participants underwent fear conditioning, fear extinction, and a test of extinction retrieval the following day. Participants exposed to inescapable stress showed impaired fear extinction learning and increased fear expression the following day. In contrast, escapable stress improved fear extinction and prevented the spontaneous recovery of fear. Consistent with the bidirectional controllability effects previously reported in animal models, these results suggest that one's degree of control over aversive experiences may be an important factor influencing the development of psychological resilience or vulnerability in humans. PMID:24333646

  7. The effects of central administration of physostigmine in two models of anxiety.

    PubMed

    Sienkiewicz-Jarosz, H; Maciejak, Piotr; Krzaścik, Paweł; Członkowska, Agnieszka I; Szyndler, Janusz; Bidziński, Andrzej; Kostowski, Wojciech; Płaźnik, Adam

    2003-05-01

    The effects of intracerebroventricular and intraseptal (the medial septum) administration of a prototypical acetylcholinesterase inhibitor (AChE-I), physostigmine, and a classic benzodiazepine midazolam on rat behavior in the open field test of neophobia and in the conditioned fear test (freezing reaction) were examined in rats. In the open field test of neophobia midazolam and physostigmine increased at a limited dose range, rat exploratory activity, after intracerebroventricular injection. Physostigmine produced in addition the hyperlocomotory effect. Following intraseptal injections, only physostigmine selectively prolonged the time spent by animals in the central sector of the open field. In the model of a conditioned fear, both midazolam and physostigmine inhibited rat freezing reaction to the aversively conditioned context after intracerebroventricular, but not after intraseptal, pretrial drug administration. The presented data support the notion about the selective anxiolytic-like effects of some AChE-Is. It appears, therefore, that the calming and sedative effects of AChE-Is observed in patients with Alzheimer's disease may be directly related to their anxiolytic action, independent of an improvement in cognitive functions, which in turn may decrease disorientation-induced distress and anxiety.

  8. Uplifting Fear Appeals: Considering the Role of Hope in Fear-Based Persuasive Messages.

    PubMed

    Nabi, Robin L; Myrick, Jessica Gall

    2018-01-09

    Fear appeal research has focused, understandably, on fear as the primary emotion motivating attitude and behavior change. However, while the threat component of fear appeals associates with fear responses, a fear appeals' efficacy component likely associates with a different emotional experience: hope. Drawing from appraisal theories of emotion in particular, this article theorizes about the role of hope in fear appeals, testing hypotheses with two existing data sets collected within the context of sun safety messages. In both studies, significant interactions between hope and self-efficacy emerged to predict behavioral intentions. Notable main effects for hope also emerged, though with less consistency. Further, these effects persisted despite controlling for the four cognitions typically considered central to fear appeal effectiveness. These results, consistent across two samples, support the claim that feelings of hope in response to fear appeals contribute to their persuasive success. Implications for developing a recursive model of fear appeal processing are discussed.

  9. Distinct state anxiety after predictable and unpredictable fear training in mice.

    PubMed

    Seidenbecher, Thomas; Remmes, Jasmin; Daldrup, Thiemo; Lesting, Jörg; Pape, Hans-Christian

    2016-05-01

    Sustained fear paradigms in rodents have been developed to monitor states of anxious apprehension and to model situations in patients suffering from long-lasting anxiety disorders. A recent report describes a fear conditioning paradigm, allowing distinction between phasic and sustained states of conditioned fear in non-restrained mice. However, so far no prospective studies have yet been conducted to elucidate whether induction of phasic or sustained fear can affect states of anxiety. Here, we used CS (conditioned stimulus) and US (unconditioned stimulus) pairing with predictable and unpredictable timing to induce phasic and sustained fear in mice. State anxiety during various fear response components was assessed using the elevated plus-maze test. Training with unpredictable CS-US timing resulted in CS-evoked sustained components of fear (freezing), while predictable CS-US timing resulted in rapid decline. Data suggested the influence of training procedure on state anxiety which is dependent on progression of conditioned fear during fear memory retrieval. Animals trained with unpredictable CS-US timing showed an unchanged high anxiety state throughout behavioral observation. In contrast, mice trained with predictable CS-US timing showed anxiolytic-like behavior 3 min after CS onset, which was accompanied by a fast decline of the fear conditioned response (freezing). Further systematic studies are needed to validate the phasic/sustained fear model in rodents as translational model for anxiety disorders in humans. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Persistence of Amygdala-Hippocampal Connectivity and Multi-Voxel Correlation Structures During Awake Rest After Fear Learning Predicts Long-Term Expression of Fear.

    PubMed

    Hermans, Erno J; Kanen, Jonathan W; Tambini, Arielle; Fernández, Guillén; Davachi, Lila; Phelps, Elizabeth A

    2017-05-01

    After encoding, memories undergo a process of consolidation that determines long-term retention. For conditioned fear, animal models postulate that consolidation involves reactivations of neuronal assemblies supporting fear learning during postlearning "offline" periods. However, no human studies to date have investigated such processes, particularly in relation to long-term expression of fear. We tested 24 participants using functional MRI on 2 consecutive days in a fear conditioning paradigm involving 1 habituation block, 2 acquisition blocks, and 2 extinction blocks on day 1, and 2 re-extinction blocks on day 2. Conditioning blocks were preceded and followed by 4.5-min rest blocks. Strength of spontaneous recovery of fear on day 2 served as a measure of long-term expression of fear. Amygdala connectivity primarily with hippocampus increased progressively during postacquisition and postextinction rest on day 1. Intraregional multi-voxel correlation structures within amygdala and hippocampus sampled during a block of differential fear conditioning furthermore persisted after fear learning. Critically, both these main findings were stronger in participants who exhibited spontaneous recovery 24 h later. Our findings indicate that neural circuits activated during fear conditioning exhibit persistent postlearning activity that may be functionally relevant in promoting consolidation of the fear memory. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Bilateral Alternating Auditory Stimulations Facilitate Fear Extinction and Retrieval.

    PubMed

    Boukezzi, Sarah; Silva, Catarina; Nazarian, Bruno; Rousseau, Pierre-François; Guedj, Eric; Valenzuela-Moguillansky, Camila; Khalfa, Stéphanie

    2017-01-01

    Disruption of fear conditioning, its extinction and its retrieval are at the core of posttraumatic stress disorder (PTSD). Such deficits, especially fear extinction delay, disappear after alternating bilateral stimulations (BLS) during eye movement desensitization and reprocessing (EMDR) therapy. An animal model of fear recovery, based on auditory cued fear conditioning and extinction learning, recently showed that BLS facilitate fear extinction and fear extinction retrieval. Our goal was to determine if these previous results found in animals can be reproduced in humans. Twenty-two healthy participants took part in a classical fear conditioning, extinction, and extinction recall paradigm. Behavioral responses (fear expectations) as well as psychophysiological measures (skin conductance responses, SCRs) were recorded. The results showed a significant fear expectation decrease during fear extinction with BLS. Additionally, SCR for fear extinction retrieval were significantly lower with BLS. Our results demonstrate the importance of BLS to reduce negative emotions, and provide a successful model to further explore the neural mechanisms underlying the sole BLS effect in the EMDR.

  12. Bilateral Alternating Auditory Stimulations Facilitate Fear Extinction and Retrieval

    PubMed Central

    Boukezzi, Sarah; Silva, Catarina; Nazarian, Bruno; Rousseau, Pierre-François; Guedj, Eric; Valenzuela-Moguillansky, Camila; Khalfa, Stéphanie

    2017-01-01

    Disruption of fear conditioning, its extinction and its retrieval are at the core of posttraumatic stress disorder (PTSD). Such deficits, especially fear extinction delay, disappear after alternating bilateral stimulations (BLS) during eye movement desensitization and reprocessing (EMDR) therapy. An animal model of fear recovery, based on auditory cued fear conditioning and extinction learning, recently showed that BLS facilitate fear extinction and fear extinction retrieval. Our goal was to determine if these previous results found in animals can be reproduced in humans. Twenty-two healthy participants took part in a classical fear conditioning, extinction, and extinction recall paradigm. Behavioral responses (fear expectations) as well as psychophysiological measures (skin conductance responses, SCRs) were recorded. The results showed a significant fear expectation decrease during fear extinction with BLS. Additionally, SCR for fear extinction retrieval were significantly lower with BLS. Our results demonstrate the importance of BLS to reduce negative emotions, and provide a successful model to further explore the neural mechanisms underlying the sole BLS effect in the EMDR. PMID:28659851

  13. Differing Effects of Systemically Administered Rapamycin on Consolidation and Reconsolidation of Context vs. Cued Fear Memories

    ERIC Educational Resources Information Center

    Glover, Ebony M.; Ressler, Kerry J.; Davis, Michael

    2010-01-01

    Rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR) kinase, has attracted interest as a possible prophylactic for post-traumatic stress disorder (PTSD)-associated fear memories. We report here that although rapamycin (40 mg/kg, i.p.) disrupted the consolidation and reconsolidation of fear-potentiated startle paradigm to a…

  14. Mechanisms of Pavlovian fear conditioning: has the engram been located?

    PubMed

    Paré, Denis

    2002-09-01

    Uncertainty persists as to whether the amygdala is a crucial site of plasticity for classically conditioned fear or merely a sensory relay to structures generating fear responses. A recent Nature study suggests that associative synaptic changes take place in neurons of the amygdala during fear conditioning, and that these changes require dopamine-mediated modulation. Nevertheless, these findings do not prove that the amygdala is a sufficient site of plasticity for fear memory.

  15. Delay and trace fear conditioning in C57BL/6 and DBA/2 mice: issues of measurement and performance.

    PubMed

    Tipps, Megan E; Raybuck, Jonathan D; Buck, Kari J; Lattal, K Matthew

    2014-08-01

    Strain comparison studies have been critical to the identification of novel genetic and molecular mechanisms in learning and memory. However, even within a single learning paradigm, the behavioral data for the same strain can vary greatly, making it difficult to form meaningful conclusions at both the behavioral and cellular level. In fear conditioning, there is a high level of variability across reports, especially regarding responses to the conditioned stimulus (CS). Here, we compare C57BL/6 and DBA/2 mice using delay fear conditioning, trace fear conditioning, and a nonassociative condition. Our data highlight both the significant strain differences apparent in these fear conditioning paradigms and the significant differences in conditioning type within each strain. We then compare our data to an extensive literature review of delay and trace fear conditioning in these two strains. Finally, we apply a number of commonly used baseline normalization approaches to compare how they alter the reported differences. Our findings highlight three major sources of variability in the fear conditioning literature: CS duration, number of CS presentations, and data normalization to baseline measures. © 2014 Tipps et al.; Published by Cold Spring Harbor Laboratory Press.

  16. Influence of cued-fear conditioning and its impairment on NREM sleep.

    PubMed

    Kumar, Tankesh; Jha, Sushil K

    2017-10-01

    Many studies suggest that fear conditioning influences sleep. It is, however, not known if the changes in sleep architecture after fear conditioning are essentially associated with the consolidation of fearful memory or with fear itself. Here, we have observed that within sleep, NREM sleep consistently remained augmented after the consolidation of cued fear-conditioned memory. But a similar change did not occur after impairing memory consolidation by blocking new protein synthesis and glutamate transmission between glial-neuronal loop in the lateral amygdala (LA). Anisomycin (a protein synthesis inhibitor) and DL-α-amino-adipic acid (DL- α -AA) (a glial glutamine synthetase enzyme inhibitor) were microinjected into the LA soon after cued fear-conditioning to induce memory impairment. On the post-conditioning day, animals in both the groups exhibited significantly less freezing. In memory-consolidated groups (vehicle groups), NREM sleep significantly increased during 2nd to 5th hours after training compared to their baseline days. However, in memory impaired groups (anisomycin and DL- α -AA microinjected groups), similar changes were not observed. Our results thus suggest that changes in sleep architecture after cued fear-conditioning are indeed a consolidation dependent event. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Pain pathways involved in fear conditioning measured with fear-potentiated startle: lesion studies.

    PubMed

    Shi, C; Davis, M

    1999-01-01

    It is well established that the basolateral amygdala is critically involved in the association between an unconditioned stimulus (US), such as a foot shock, and a conditioned stimulus (CS), such as a light, during classic fear conditioning. However, little is known about how the US (pain) inputs are relayed to the basolateral amygdala. The present studies were designed to define potential US pathways to the amygdala using lesion methods. Electrolytic lesions before or after training were placed in caudal granular/dysgranular insular cortex (IC) alone or in conjunction with the posterior intralaminar nuclei of the thalamus (PoT/PIL), and the effects on fear conditioning were examined. Pretraining lesions of both IC and PoT/PIL, but not lesions of IC alone, blocked the acquisition of fear-potentiated startle. However, post-training combined lesions of IC and PoT/PIL did not prevent expression of conditioned fear. Given that previous studies have shown that lesions of PoT/PIL alone had no effect on acquisition of conditioned fear, these results suggest that two parallel cortical (insula-amygdala) and subcortical (PoT/PIL-amygdala) pathways are involved in relaying shock information to the basolateral amygdala during fear conditioning.

  18. The roles of Eph receptors in contextual fear conditioning memory formation.

    PubMed

    Dines, Monica; Grinberg, Svetlana; Vassiliev, Maria; Ram, Alon; Tamir, Tal; Lamprecht, Raphael

    2015-10-01

    Eph receptors regulate glutamate receptors functions, neuronal morphology and synaptic plasticity, cellular events believed to be involved in memory formation. In this study we aim to explore the roles of Eph receptors in learning and memory. Toward that end, we examined the roles of EphB2 and EphA4 receptors, key regulators of synaptic functions, in fear conditioning memory formation. We show that mice lacking EphB2 (EphB2(-/-)) are impaired in short- and long-term contextual fear conditioning memory. Mice that express a carboxy-terminally truncated form of EphB2 that lacks forward signaling, instead of the full EphB2, are impaired in long-term, but not short-term, contextual fear conditioning memory. Long-term contextual fear conditioning memory is attenuated in CaMKII-cre;EphA4(lx/-) mice where EphA4 is removed from all pyramidal neurons of the forebrain. Mutant mice with targeted kinase-dead EphA4 (EphA4(KD)) exhibit intact long-term contextual fear conditioning memory showing that EphA4 kinase-mediated forward signaling is not needed for contextual fear memory formation. The ability to form long-term conditioned taste aversion (CTA) memory is not impaired in the EphB2(-/-) and CaMKII-cre;EphA4(lx/-) mice. We conclude that EphB2 forward signaling is required for long-term contextual fear conditioning memory formation. In contrast, EphB2 mediates short-term contextual fear conditioning memory formation in a forward signaling-independent manner. EphA4 mediates long-term contextual fear conditioning memory formation in a kinase-independent manner. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. No effect of trait anxiety on differential fear conditioning or fear generalization.

    PubMed

    Torrents-Rodas, David; Fullana, Miquel A; Bonillo, Albert; Caseras, Xavier; Andión, Oscar; Torrubia, Rafael

    2013-02-01

    Previous studies have shown that individuals with anxiety disorders exhibit deficits in fear inhibition and excessive generalization of fear, but little data exist on individuals at risk from these disorders. The present study examined the role of trait anxiety in the acquisition and generalization of fear in 126 healthy participants selected on the basis of their trait-anxiety scores. Measures of conditioning included fear-potentiated startle, skin conductance response and online risk ratings for the unconditioned stimulus. Contrary to our hypotheses, trait anxiety did not have any effect either on the acquisition or the generalization of fear. Our results suggest that these fear conditioning processes are not impaired in individuals at risk from anxiety. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Negative expectations interfere with the analgesic effect of safety cues on pain perception by priming the cortical representation of pain in the midcingulate cortex

    PubMed Central

    Almarzouki, Abeer F.; Brown, Christopher A.; Brown, Richard J.; Leung, Matthew H. K.; Jones, Anthony K. P.

    2017-01-01

    It is well known that the efficacy of treatment effects, including those of placebos, is heavily dependent on positive expectations regarding treatment outcomes. For example, positive expectations about pain treatments are essential for pain reduction. Such positive expectations not only depend on the properties of the treatment itself, but also on the context in which the treatment is presented. However, it is not clear how the preceding threat of pain will bias positive expectancy effects. One hypothesis is that threatening contexts trigger fearful and catastrophic thinking, reducing the pain-relieving effects of positive expectancy. In this study, we investigated the disruptive influence of threatening contexts on positive expectancy effects while 41 healthy volunteers experienced laser-induced heat pain. A threatening context was induced using pain-threatening cues that preceded the induction of positive expectancies via subsequent pain-safety cues. We also utilised electroencephalography (EEG) to investigate potential neural mechanisms underlying these effects. Lastly, we used the Fear of Pain Questionnaire to address whether the disruptive effect of negative contexts on cued pain relief was related to the degree of fear of pain. As predicted, participants responded less to pain-safety cues (i.e., experienced more pain) when these were preceded by pain-threatening cues. In this threatening context, an enhancement of the N2 component of the laser-evoked potential was detected, which was more pronounced in fearful individuals. This effect was localised to the midcingulate cortex, an area thought to integrate negative affect with pain experience to enable adaptive behaviour in aversive situations. These results suggest that threatening contexts disrupt the effect of pain relief cues via an aversive priming mechanism that enhances neural responses in the early stages of sensory processing. PMID:28665973

  1. Short-Term Total Sleep-Deprivation Impairs Contextual Fear Memory, and Contextual Fear-Conditioning Reduces REM Sleep in Moderately Anxious Swiss Mice

    PubMed Central

    Qureshi, Munazah F.; Jha, Sushil K.

    2017-01-01

    The conditioning tasks have been widely used to model fear and anxiety and to study their association with sleep. Many reports suggest that sleep plays a vital role in the consolidation of fear memory. Studies have also demonstrated that fear-conditioning influences sleep differently in mice strains having a low or high anxiety level. It is, therefore, necessary to know, how sleep influences fear-conditioning and how fear-conditioning induces changes in sleep architecture in moderate anxious strains. We have used Swiss mice, a moderate anxious strain, to study the effects of: (i) sleep deprivation on contextual fear conditioned memory, and also (ii) contextual fear conditioning on sleep architecture. Animals were divided into three groups: (a) non-sleep deprived (NSD); (b) stress control (SC); and (c) sleep-deprived (SD) groups. The SD animals were SD for 5 h soon after training. We found that the NSD and SC animals showed 60.57% and 58.12% freezing on the testing day, while SD animals showed significantly less freezing (17.13% only; p < 0.001) on the testing day. Further, we observed that contextual fear-conditioning did not alter the total amount of wakefulness and non-rapid eye movement (NREM) sleep. REM sleep, however, significantly decreased in NSD and SC animals on the training and testing days. Interestingly, REM sleep did not decrease in the SD animals on the testing day. Our results suggest that short-term sleep deprivation impairs fear memory in moderate anxious mice. It also suggests that NREM sleep, but not REM sleep, may have an obligatory role in memory consolidation. PMID:29238297

  2. A peripheral immune response to remembering trauma contributes to the maintenance of fear memory in mice.

    PubMed

    Young, Matthew B; Howell, Leonard L; Hopkins, Lauren; Moshfegh, Cassandra; Yu, Zhe; Clubb, Lauren; Seidenberg, Jessica; Park, Jeanie; Swiercz, Adam P; Marvar, Paul J

    2018-05-17

    Alterations in peripheral immune markers are observed in individuals with post-traumatic stress disorder (PTSD). PTSD is characterized in part by impaired extinction of fear memory for a traumatic experience. We hypothesized that fear memory extinction is regulated by immune signaling stimulated when fear memory is retrieved. The relationship between fear memory and the peripheral immune response was tested using auditory Pavlovian fear conditioning in mice. Memory for the association was quantified by the amount of conditioned freezing exhibited in response to the conditioned stimulus (CS), extinction and time-dependent changes in circulating inflammatory cytokines. Brief extinction training with 12 CS rapidly and acutely increased circulating levels of the cytokine interleukin-6 (IL-6), downstream IL-6 signaling, other IL-6 related pro-inflammatory cytokines. Transgenic manipulations or neutralizing antibodies that inhibit IL-6 activity did not affect conditioned freezing during the acquisition of fear conditioning or extinction but significantly reduced conditioned freezing 24 h after extinction training with 12 CS. Conversely, conditioned freezing after extinction training was unchanged by IL-6 inhibition when 40 CS were used during the extinction training session. In addition to effectively diminishing conditioned freezing, extinction training with 40 CS also diminished the subsequent IL-6 response to the CS. These data demonstrate that IL-6 released following fear memory retrieval contributes to the maintenance of that fear memory and that this effect is extinction dependent. These findings extend the current understanding for the role of the immune system in PTSD and suggest that IL-6 and other IL-6 related pro-inflammatory cytokines may contribute to the persistence of fear memory in PTSD where fear memory extinction is impaired. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Chronic stress and sex differences on the recall of fear conditioning and extinction.

    PubMed

    Baran, Sarah E; Armstrong, Charles E; Niren, Danielle C; Hanna, Jeffery J; Conrad, Cheryl D

    2009-03-01

    Chronic stress effects and sex differences were examined on conditioned fear extinction. Male and female Sprague-Dawley rats were chronically stressed by restraint (6 h/d/21 d), conditioned to tone and footshock, followed by extinction after 1 h and 24 h delays. Chronic stress impaired the recall of fear extinction in males, as evidenced by high freezing to tone after the 24 h delay despite exposure to the previous 1 h delay extinction trials, and this effect was not due to ceiling effects from overtraining during conditioning. In contrast, chronic stress attenuated the recall of fear conditioning acquisition in females, regardless of exposure to the 1 h extinction exposure. Since freezing to tone was reinstated following unsignalled footshocks, the deficit in the stressed rats reflected impaired recall rather than impaired consolidation. Sex differences in fear conditioning and extinction were observed in nonstressed controls as well, with control females resisting extinction to tone. Analysis of contextual freezing showed that all groups (control, stress, male, female) increased freezing immediately after the first tone extinction trial, demonstrating contextual discrimination. These findings show that chronic stress and sex interact to influence fear conditioning, with chronic stress impairing the recall of delayed fear extinction in males to implicate the medial prefrontal cortex, disrupting the recall of the fear conditioning acquisition in females to implicate the amygdala, and nonstressed controls exhibiting sex differences in fear conditioning and extinction, which may involve the amygdala and/or corticosterone levels.

  4. Repeated Recall and PKM? Maintain Fear Memories in Juvenile Rats

    ERIC Educational Resources Information Center

    Oliver, Chicora F.; Kabitzke, Patricia; Serrano, Peter; Egan, Laura J.; Barr, Gordon A.; Shair, Harry N.; Wiedenmayer, Christoph

    2016-01-01

    We examined the neural substrates of fear memory formation and maintenance when repeated recall was used to prevent forgetting in young animals. In contrast to adult rats, juveniles failed to show contextual fear responses at 4 d post-fear conditioning. Reconsolidation sessions 3 and 6 d after conditioning restored contextual fear responses in…

  5. Hippocampal Structural Plasticity Accompanies the Resulting Contextual Fear Memory Following Stress and Fear Conditioning

    ERIC Educational Resources Information Center

    Giachero, Marcelo; Calfa, Gaston D.; Molina, Victor A.

    2013-01-01

    The present research investigated the resulting contextual fear memory and structural plasticity changes in the dorsal hippocampus (DH) following stress and fear conditioning. This combination enhanced fear retention and increased the number of total and mature dendritic spines in DH. Intra-basolateral amygdala (BLA) infusion of midazolam prior to…

  6. Implicit aversive memory under anaesthesia in animal models: a narrative review.

    PubMed

    Samuel, N; Taub, A H; Paz, R; Raz, A

    2018-07-01

    Explicit memory after anaesthesia has gained considerable attention because of its negative implications, while implicit memory, which is more elusive and lacks patients' explicit recall, has received less attention and dedicated research. This is despite the likely impact of implicit memory on postoperative long-term well-being and behaviour. Given the scarcity of human data, fear conditioning in animals offers a reliable model of implicit learning, and importantly, one where we already have a good understanding of the underlying neural circuitry in awake conditions. Animal studies provide evidence that fear conditioning occurs under anaesthesia. The effects of different anaesthetics on memory are complex, with different drugs interacting at different stages of learning. Modulatory suppressive effects can be because of context, specific drugs, and dose dependency. In some cases, low doses of general anaesthetics can actually lead to a paradoxical opposite effect. The underlying mechanisms involve several neurotransmitter systems, acting mainly in the amygdala, hippocampus, and neocortex. Here, we review animal studies of aversive conditioning under anaesthesia, discuss the complex picture that arises, identify the gaps in knowledge that require further investigation, and highlight the potential translational relevance of the models. Copyright © 2018 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.

  7. An "egr-1" ("zif268") Antisense Oligodeoxynucleotide Infused into the Amygdala Disrupts Fear Conditioning

    ERIC Educational Resources Information Center

    Donley, Melanie P.; Rosen, Jeffrey B.; Malkani, Seema; Wallace, Karin J.

    2004-01-01

    Studies of gene expression following fear conditioning have demonstrated that the inducible transcription factor, "egr-1," is increased in the lateral nucleus of the amygdala shortly following fear conditioning. These studies suggest that "egr-1" and its protein product Egr-1 in the amygdala are important for learning and memory of fear. To…

  8. Interoceptive fear conditioning and panic disorder: the role of conditioned stimulus-unconditioned stimulus predictability.

    PubMed

    Acheson, Dean T; Forsyth, John P; Moses, Erica

    2012-03-01

    Interoceptive fear conditioning is at the core of contemporary behavioral accounts of panic disorder. Yet, to date only one study has attempted to evaluate interoceptive fear conditioning in humans (see Acheson, Forsyth, Prenoveau, & Bouton, 2007). That study used brief (physiologically inert) and longer-duration (panicogenic) inhalations of 20% CO(2)-enriched air as an interoceptive conditioned (CS) and unconditioned (US) stimulus and evaluated fear learning in three conditions: CS only, CS-US paired, and CS-US unpaired. Results showed fear conditioning in the paired condition, and fearful responding and resistance to extinction in an unpaired condition. The authors speculated that such effects may be due to difficulty discriminating between the CS and the US. The aims of the present study are to (a) replicate and expand this line of work using an improved methodology, and (b) clarify the role of CS-US discrimination difficulties in either potentiating or depotentiating fear learning. Healthy participants (N=104) were randomly assigned to one of four conditions: (a) CS only, (b) contingent CS-US pairings, (c) unpaired CS and US presentations, or (d) an unpaired "discrimination" contingency, which included an exteroceptive discrimination cue concurrently with CS onset. Electrodermal and self-report ratings served as indices of conditioned responding. Consistent with expectation, the paired contingency and unpaired contingencies yielded elevated fearful responding to the CS alone. Moreover, adding a discrimination cue to the unpaired contingency effectively attenuated fearful responding. Overall, findings are consistent with modern learning theory accounts of panic and highlight the role of interoceptive conditioning and unpredictability in the etiology of panic disorder. Copyright © 2011. Published by Elsevier Ltd.

  9. Maltreatment Exposure, Brain Structure, and Fear Conditioning in Children and Adolescents.

    PubMed

    McLaughlin, Katie A; Sheridan, Margaret A; Gold, Andrea L; Duys, Andrea; Lambert, Hilary K; Peverill, Matthew; Heleniak, Charlotte; Shechner, Tomer; Wojcieszak, Zuzanna; Pine, Daniel S

    2016-07-01

    Alterations in learning processes and the neural circuitry that supports fear conditioning and extinction represent mechanisms through which trauma exposure might influence risk for psychopathology. Few studies examine how trauma or neural structure relates to fear conditioning in children. Children (n=94) aged 6-18 years, 40.4% (n=38) with exposure to maltreatment (physical abuse, sexual abuse, or domestic violence), completed a fear conditioning paradigm utilizing blue and yellow bells as conditioned stimuli (CS+/CS-) and an aversive alarm noise as the unconditioned stimulus. Skin conductance responses (SCR) and self-reported fear were acquired. Magnetic resonance imaging data were acquired from 60 children. Children without maltreatment exposure exhibited strong differential conditioning to the CS+ vs CS-, based on SCR and self-reported fear. In contrast, maltreated children exhibited blunted SCR to the CS+ and failed to exhibit differential SCR to the CS+ vs CS- during early conditioning. Amygdala and hippocampal volume were reduced among children with maltreatment exposure and were negatively associated with SCR to the CS+ during early conditioning in the total sample, although these associations were negative only among non-maltreated children and were positive among maltreated children. The association of maltreatment with externalizing psychopathology was mediated by this perturbed pattern of fear conditioning. Child maltreatment is associated with failure to discriminate between threat and safety cues during fear conditioning in children. Poor threat-safety discrimination might reflect either enhanced fear generalization or a deficit in associative learning, which may in turn represent a central mechanism underlying the development of maltreatment-related externalizing psychopathology in children.

  10. Maltreatment Exposure, Brain Structure, and Fear Conditioning in Children and Adolescents

    PubMed Central

    McLaughlin, Katie A; Sheridan, Margaret A; Gold, Andrea L; Duys, Andrea; Lambert, Hilary K; Peverill, Matthew; Heleniak, Charlotte; Shechner, Tomer; Wojcieszak, Zuzanna; Pine, Daniel S

    2016-01-01

    Alterations in learning processes and the neural circuitry that supports fear conditioning and extinction represent mechanisms through which trauma exposure might influence risk for psychopathology. Few studies examine how trauma or neural structure relates to fear conditioning in children. Children (n=94) aged 6–18 years, 40.4% (n=38) with exposure to maltreatment (physical abuse, sexual abuse, or domestic violence), completed a fear conditioning paradigm utilizing blue and yellow bells as conditioned stimuli (CS+/CS−) and an aversive alarm noise as the unconditioned stimulus. Skin conductance responses (SCR) and self-reported fear were acquired. Magnetic resonance imaging data were acquired from 60 children. Children without maltreatment exposure exhibited strong differential conditioning to the CS+ vs CS−, based on SCR and self-reported fear. In contrast, maltreated children exhibited blunted SCR to the CS+ and failed to exhibit differential SCR to the CS+ vs CS− during early conditioning. Amygdala and hippocampal volume were reduced among children with maltreatment exposure and were negatively associated with SCR to the CS+ during early conditioning in the total sample, although these associations were negative only among non-maltreated children and were positive among maltreated children. The association of maltreatment with externalizing psychopathology was mediated by this perturbed pattern of fear conditioning. Child maltreatment is associated with failure to discriminate between threat and safety cues during fear conditioning in children. Poor threat–safety discrimination might reflect either enhanced fear generalization or a deficit in associative learning, which may in turn represent a central mechanism underlying the development of maltreatment-related externalizing psychopathology in children. PMID:26677946

  11. Experience-dependent modification of a central amygdala fear circuit

    PubMed Central

    Li, Haohong; Penzo, Mario A.; Taniguchi, Hiroki; Kopec, Charles D.; Huang, Z. Josh; Li, Bo

    2013-01-01

    The amygdala is essential for fear learning and expression. The central amygdala (CeA), once viewed as a passive relay between the amygdala complex and downstream fear effectors, has emerged as an active participant in fear conditioning. However, how CeA contributes to the learning and expression of fear is unclear. Here we show in mice that fear conditioning induces robust plasticity of excitatory synapses onto inhibitory neurons in the lateral subdivision of CeA (CeL). This experience-dependent plasticity is cell-specific, bidirectional, and expressed presynaptically by inputs from the lateral amygdala. In particular, preventing synaptic potentiation onto somatostatin-positive neurons impairs fear memory formation. Furthermore, activation of these neurons is necessary for fear memory recall and sufficient to drive fear responses. Our findings support a model in which the fear conditioning-induced synaptic modifications in CeL favor the activation of somatostatin-positive neurons, which inhibit CeL output thereby disinhibiting the medial subdivision of CeA and releasing fear expression. PMID:23354330

  12. Bridging the Gap: Towards a Cell-Type Specific Understanding of Neural Circuits Underlying Fear Behaviors

    PubMed Central

    McCullough, KM; Morrison, FG; Ressler, KJ

    2016-01-01

    Fear and anxiety-related disorders are remarkably common and debilitating, and are often characterized by dysregulated fear responses. Rodent models of fear learning and memory have taken great strides towards elucidating the specific neuronal circuitries underlying the learning of fear responses. The present review addresses recent research utilizing optogenetic approaches to parse circuitries underlying fear behaviors. It also highlights the powerful advances made when optogenetic techniques are utilized in a genetically defined, cell-type specific, manner. The application of next-generation genetic and sequencing approaches in a cell-type specific context will be essential for a mechanistic understanding of the neural circuitry underlying fear behavior and for the rational design of targeted, circuit specific, pharmacologic interventions for the treatment and prevention of fear-related disorders. PMID:27470092

  13. The behavioral context of visual displays in common marmosets (Callithrix jacchus).

    PubMed

    de Boer, Raïssa A; Overduin-de Vries, Anne M; Louwerse, Annet L; Sterck, Elisabeth H M

    2013-11-01

    Communication is important in social species, and may occur with the use of visual, olfactory or auditory signals. However, visual communication may be hampered in species that are arboreal have elaborate facial coloring and live in small groups. The common marmoset fits these criteria and may have limited visual communication. Nonetheless, some (contradictive) propositions concerning visual displays in the common marmoset have been made, yet quantitative data are lacking. The aim of this study was to assign a behavioral context to different visual displays using pre-post-event-analyses. Focal observations were conducted on 16 captive adult and sub-adult marmosets in three different family groups. Based on behavioral elements with an unambiguous meaning, four different behavioral contexts were distinguished: aggression, fear, affiliation, and play behavior. Visual displays concerned behavior that included facial expressions, body postures, and pilo-erection of the fur. Visual displays related to aggression, fear, and play/affiliation were consistent with the literature. We propose that the visual display "pilo-erection tip of tail" is related to fear. Individuals receiving these fear signals showed a higher rate of affiliative behavior. This study indicates that several visual displays may provide cues or signals of particular social contexts. Since the three displays of fear elicited an affiliative response, they may communicate a request of anxiety reduction or signal an external referent. Concluding, common marmosets, despite being arboreal and living in small groups, use several visual displays to communicate with conspecifics and their facial coloration may not hamper, but actually promote the visibility of visual displays. © 2013 Wiley Periodicals, Inc.

  14. Modeling startle eyeblink electromyogram to assess fear learning.

    PubMed

    Khemka, Saurabh; Tzovara, Athina; Gerster, Samuel; Quednow, Boris B; Bach, Dominik R

    2017-02-01

    Pavlovian fear conditioning is widely used as a laboratory model of associative learning in human and nonhuman species. In this model, an organism is trained to predict an aversive unconditioned stimulus from initially neutral events (conditioned stimuli, CS). In humans, fear memory is typically measured via conditioned autonomic responses or fear-potentiated startle. For the latter, various analysis approaches have been developed, but a systematic comparison of competing methodologies is lacking. Here, we investigate the suitability of a model-based approach to startle eyeblink analysis for assessment of fear memory, and compare this to extant analysis strategies. First, we build a psychophysiological model (PsPM) on a generic startle response. Then, we optimize and validate this PsPM on three independent fear-conditioning data sets. We demonstrate that our model can robustly distinguish aversive (CS+) from nonaversive stimuli (CS-, i.e., has high predictive validity). Importantly, our model-based approach captures fear-potentiated startle during fear retention as well as fear acquisition. Our results establish a PsPM-based approach to assessment of fear-potentiated startle, and qualify previous peak-scoring methods. Our proposed model represents a generic startle response and can potentially be used beyond fear conditioning, for example, to quantify affective startle modulation or prepulse inhibition of the acoustic startle response. © 2016 The Authors. Psychophysiology published by Wiley Periodicals, Inc. on behalf of Society for Psychophysiological Research.

  15. Metyrapone Reveals That Previous Chronic Stress Differentially Impairs Hippocampal-dependent Memory

    PubMed Central

    CONRAD, CHERYL D.; MAULDIN-JOURDAIN, MELISSA L.; HOBBS, REBECCA J.

    2007-01-01

    Chronic stress facilitates fear conditioning in rats with hippocampal neuronal atrophy and in rats in which the atrophy is prevented with tianeptine, a serotonin re-uptake enhancer. The purpose of this study was to determine whether the lack of dissociation between fear conditioning performance and hippocampal integrity was masked by the presence of endogenous corticosteroids during training. As in previous studies, rats were stressed by daily restraint (6 h/day for 21 days), trained in the conditioning chamber (day 23), and then assessed for conditioned fear (day 25) at a time when hippocampal dendritic atrophy persists. On the training day, half of the control and stressed rats were injected with metyrapone to reduce corticosterone release. Two hours later, two paired or unpaired presentations of tone and footshock were delivered. Although metyrapone reduced conditioned fear in all rats, only stressed rats showed dissociated fear conditioning (i.e. tone conditioning was reduced while contextual conditioning was eliminated). Chronically stressed rats, regardless of metyrapone treatment displayed more rearing in the open field when tested immediately after the completion of fear conditioning. These data support the hypothesis that increased emotionality and enhanced fear conditioning exhibited by chronically stressed rats may be due to endogenous corticosterone secretion at the time of fear conditioned training. Moreover, these data suggest that chronic stress impairs hippocampal-dependent processes more robustly than hippocampal-independent processes after metyrapone to reduce corticosterone secretion during aversive training. PMID:18301732

  16. Fear and Loving in Las Vegas: Evolution, Emotion, and Persuasion.

    PubMed

    Griskevicius, Vladas; Goldstein, Noah J; Mortensen, Chad R; Sundie, Jill M; Cialdini, Robert B; Kenrick, Douglas T

    2009-06-01

    How do arousal-inducing contexts, such as frightening or romantic television programs, influence the effectiveness of basic persuasion heuristics? Different predictions are made by three theoretical models: A general arousal model predicts that arousal should increase effectiveness of heuristics; an affective valence model predicts that effectiveness should depend on whether the context elicits positive or negative affect; an evolutionary model predicts that persuasiveness should depend on both the specific emotion that is elicited and the content of the particular heuristic. Three experiments examined how fear-inducing versus romantic contexts influenced the effectiveness of two widely used heuristics-social proof (e.g., "most popular") and scarcity (e.g., "limited edition"). Results supported predictions from an evolutionary model, showing that fear can lead scarcity appeals to be counter-persuasive, and that romantic desire can lead social proof appeals to be counter-persuasive. The findings highlight how an evolutionary theoretical approach can lead to novel theoretical and practical marketing insights.

  17. Unraveling the Determinants of Fear of Crime Among Men and Women in Istanbul: Examining the Impact of Perceived Risk and Fear of Sexual Assault.

    PubMed

    Özaşçılar, Mine; Ziyalar, Neylan

    2017-07-01

    Studies have examined university students' fear of crime focusing on the relationship between the fear of sexual assault and fear of other crimes, termed the shadow of sexual assault hypothesis; however, no study to date has examined the shadow thesis in a Turkish context. Drawing on the shadow thesis, using a sample of 723 university students in Istanbul, this study focuses on the effect of fear of sexual assault and perceived risk of crime to general fear of crime among university students in Istanbul. Also, the predictors of fear of crime are explored to examine the relationship between lifestyle characteristics, constrained behaviors, and fear. The findings of the study supported the shadow thesis, indicating that fear of sexual assault shaped the nonsexual crimes, especially crimes involving face-to-face confrontations between the victim and offender. Furthermore, lifestyle characteristics are correlated with the men's fear of nonsexual crimes, particularly fear of robbery, aggravated assault, and burglary home.

  18. Acute Nicotine Enhances Spontaneous Recovery of Contextual Fear and Changes "c-fos" Early Gene Expression in Infralimbic Cortex, Hippocampus, and Amygdala

    ERIC Educational Resources Information Center

    Kutlu, Munir G.; Tumolo, Jessica M.; Holliday, Erica; Garrett, Brendan; Gould, Thomas J.

    2016-01-01

    Exposure therapy, which focuses on extinguishing fear-triggering cues and contexts, is widely used to treat post-traumatic stress disorder (PTSD). Yet, PTSD patients who received successful exposure therapy are vulnerable to relapse of fear response after a period of time, a phenomenon known as spontaneous recovery (SR). Increasing evidence…

  19. Contextual-Specificity of Short-Delay Extinction in Humans: Renewal of Fear-Potentiated Startle in a Virtual Environment

    ERIC Educational Resources Information Center

    Alvarez, Ruben P.; Johnson, Linda; Grillon, Christian

    2007-01-01

    A recent fear-potentiated startle study in rodents suggested that extinction was not context dependent when extinction was conducted after a short delay following acquisition, suggesting that extinction can lead to erasure of fear learning in some circumstances. The main objective of this study was to attempt to replicate these findings in humans…

  20. Temporal factors in the extinction of fear in inbred mouse strains differing in extinction efficacy.

    PubMed

    MacPherson, Kathryn; Whittle, Nigel; Camp, Marguerite; Gunduz-Cinar, Ozge; Singewald, Nicolas; Holmes, Andrew

    2013-07-05

    Various neuropsychiatric conditions, including posttraumatic stress disorder (PTSD), are characterized by deficient fear extinction, but individuals differ greatly in risk for these. While there is growing evidence that fear extinction is influenced by certain procedural variables, it is unclear how these influences might vary across individuals and subpopulations. To model individual differences in fear extinction, prior studies identified a strain of inbred mouse, 129S1/SvImJ (S1), which exhibits a profound deficit in fear extinction, as compared to other inbred strains, such as C57BL/6J (B6). Here, we assessed the effects of procedural variables on the impaired extinction phenotype of the S1 strain and, by comparison, the extinction-intact B6 strain. The variables studied were 1) the interval between conditioning and extinction, 2) the interval between cues during extinction training, 3) single-cue exposure before extinction training, and 4) extinction of a second-order conditioned cue. Conducting extinction training soon after ('immediately') conditioning attenuated fear retrieval in S1 mice and impaired extinction in B6 mice. Spacing cue presentations with long inter-trial intervals during extinction training augmented fear in S1 and B6 mice. The effect of spacing was lost with one-trial fear conditioning in B6, but not S1 mice. A single exposure to a conditioned cue before extinction training did not alter extinction retrieval, either in B6 or S1 mice. Both the S1 and B6 strains exhibited robust second-order fear conditioning, in which a cue associated with footshock was sufficient to serve as a conditioned exciter to condition a fear association to a second cue. B6 mice extinguished the fear response to the second-order conditioned cue, but S1 mice failed to do so. These data provide further evidence that fear extinction is strongly influenced by multiple procedural variables and is so in a highly strain-dependent manner. This suggests that the efficacy of extinction-based behavioral interventions, such as exposure therapy, for trauma-related anxiety disorders will be determined by the procedural parameters employed and the degree to which the patient can extinguish.

  1. Social modulation of associative fear learning by pheromone communication

    PubMed Central

    Bredy, Timothy W.; Barad, Mark

    2009-01-01

    Mice communicate through visual, vocal, and olfactory cues that influence innate, nonassociative behavior. We here report that exposure to a recently fear-conditioned familiar mouse impairs acquisition of conditioned fear and facilitates fear extinction, effects mimicked by both an olfactory chemosignal emitted by a recently fear-conditioned familiar mouse and by the putative stress-related anxiogenic pheromone β-phenylethylamine (β-PEA). Together, these findings suggest social modulation of higher-order cognitive processing through pheromone communication and support the concurrent excitor hypothesis of extinction learning. PMID:19117912

  2. Social modulation of associative fear learning by pheromone communication.

    PubMed

    Bredy, Timothy W; Barad, Mark

    2009-01-01

    Mice communicate through visual, vocal, and olfactory cues that influence innate, nonassociative behavior. We here report that exposure to a recently fear-conditioned familiar mouse impairs acquisition of conditioned fear and facilitates fear extinction, effects mimicked by both an olfactory chemosignal emitted by a recently fear-conditioned familiar mouse and by the putative stress-related anxiogenic pheromone beta-phenylethylamine (beta-PEA). Together, these findings suggest social modulation of higher-order cognitive processing through pheromone communication and support the concurrent excitor hypothesis of extinction learning.

  3. Sound tuning of amygdala plasticity in auditory fear conditioning

    PubMed Central

    Park, Sungmo; Lee, Junuk; Park, Kyungjoon; Kim, Jeongyeon; Song, Beomjong; Hong, Ingie; Kim, Jieun; Lee, Sukwon; Choi, Sukwoo

    2016-01-01

    Various auditory tones have been used as conditioned stimuli (CS) for fear conditioning, but researchers have largely neglected the effect that different types of auditory tones may have on fear memory processing. Here, we report that at lateral amygdala (LA) synapses (a storage site for fear memory), conditioning with different types of auditory CSs (2.8 kHz tone, white noise, FM tone) recruits distinct forms of long-term potentiation (LTP) and inserts calcium permeable AMPA receptor (CP-AMPAR) for variable periods. White noise or FM tone conditioning produced brief insertion (<6 hr after conditioning) of CP-AMPARs, whereas 2.8 kHz tone conditioning induced more persistent insertion (≥6 hr). Consistently, conditioned fear to 2.8 kHz tone but not to white noise or FM tones was erased by reconsolidation-update (which depends on the insertion of CP-AMPARs at LA synapses) when it was performed 6 hr after conditioning. Our data suggest that conditioning with different auditory CSs recruits distinct forms of LA synaptic plasticity, resulting in more malleable fear memory to some tones than to others. PMID:27488731

  4. Fear Conditioning Increases NREM Sleep

    PubMed Central

    Hellman, Kevin; Abel, Ted

    2010-01-01

    To understand the role that sleep may play in memory storage, the authors investigated how fear conditioning affects sleep–wake states by performing electroencephalographic (EEG) and electromyographic recordings of C57BL/6J mice receiving fear conditioning, exposure to conditioning stimuli, or immediate shock treatment. This experimental design allowed us to examine the effects of associative learning, presentation of the conditioning stimuli, and presentation of the unconditioned stimuli on sleep–wake states. During the 24 hr after training, fear-conditioned mice had approximately 1 hr more of nonrapid-eye-movement (NREM) sleep and less wakefulness than mice receiving exposure to conditioning stimuli or immediate shock treatment. Mice receiving conditioning stimuli had more delta power during NREM sleep, whereas mice receiving fear conditioning had less theta power during rapid-eye-movement sleep. These results demonstrate that a single trial of fear conditioning alters sleep–wake states and EEG oscillations over a 24-hr period, supporting the idea that sleep is modified by experience and that such changes in sleep–wake states and EEG oscillations may play a role in memory consolidation. PMID:17469920

  5. Fear-Conditioning Mechanisms Associated with Trait Vulnerability to Anxiety in Humans

    PubMed Central

    Indovina, Iole; Robbins, Trevor W.; Núñez-Elizalde, Anwar O.; Dunn, Barnaby D.; Bishop, Sonia J.

    2011-01-01

    Summary Investigations of fear conditioning in rodents and humans have illuminated the neural mechanisms underlying cued and contextual fear. A critical question is how personality dimensions such as trait anxiety act through these mechanisms to confer vulnerability to anxiety disorders, and whether humans' ability to overcome acquired fears depends on regulatory skills not characterized in animal models. In a neuroimaging study of fear conditioning in humans, we found evidence for two independent dimensions of neurocognitive function associated with trait vulnerability to anxiety. The first entailed increased amygdala responsivity to phasic fear cues. The second involved impoverished ventral prefrontal cortical (vPFC) recruitment to downregulate both cued and contextual fear prior to omission (extinction) of the aversive unconditioned stimulus. These two dimensions may contribute to symptomatology differences across anxiety disorders; the amygdala mechanism affecting the development of phobic fear and the frontal mechanism influencing the maintenance of both specific fears and generalized anxiety. PMID:21315265

  6. Sustained conditioned responses in prelimbic prefrontal neurons are correlated with fear expression and extinction failure.

    PubMed

    Burgos-Robles, Anthony; Vidal-Gonzalez, Ivan; Quirk, Gregory J

    2009-07-01

    During auditory fear conditioning, it is well established that lateral amygdala (LA) neurons potentiate their response to the tone conditioned stimulus, and that this potentiation is required for conditioned fear behavior. Conditioned tone responses in LA, however, last only a few hundred milliseconds and cannot be responsible for sustained fear responses to a tone lasting tens of seconds. Recent evidence from inactivation and stimulation studies suggests that the prelimbic (PL) prefrontal cortex is necessary for expression of learned fears, but the timing of PL tone responses and correlations with fear behavior have not been studied. Using multichannel unit recording techniques in behaving rats, we observed sustained conditioned tone responses in PL that were correlated with freezing behavior on a second-to-second basis during the presentation of a 30 s tone. PL tone responses were also correlated with conditioned freezing across different experimental phases (habituation, conditioning, extinction). Moreover, the persistence of PL responses after extinction training was associated with failure to express extinction memory. Together with previous inactivation findings, the present results suggest that PL transforms transient amygdala inputs to a sustained output that drives conditioned fear responses and gates the expression of extinction. Given the relatively long latency of conditioned responses we observed in PL (approximately 100 ms after tone onset), we propose that PL integrates inputs from the amygdala, hippocampus, and other cortical sources to regulate the expression of fear memories.

  7. Limbic system development underlies the emergence of classical fear conditioning during the 3rd and 4th weeks of life in the rat

    PubMed Central

    Deal, Alex L.; Erickson, Kristen J.; Shiers, Stephanie I.; Burman, Michael A.

    2016-01-01

    Classical fear conditioning creates an association between an aversive stimulus and a neutral stimulus. Although the requisite neural circuitry is well understood in mature organisms, the development of these circuits is less well studied. The current experiments examine the ontogeny of fear conditioning and relate it to neuronal activation assessed through immediate early gene (IEG) expression in the amygdala, hippocampus, perirhinal cortex, and hypothalamus of periweanling rats. Rat pups were fear conditioned, or not, during the 3rd or 4th weeks of life. Neuronal activation was assessed by quantifying expression of FBJ osteosarcoma oncogene (FOS) using immunohistochemistry (IHC) in Experiment 1. Fos and early growth response gene-1 (EGR1) expression was assessed using qRT-PCR in Experiment 2. Behavioral data confirm that both auditory and contextual fear continue to emerge between PD 17 and 24. The IEG expression data are highly consistent with these behavioral results. IHC results demonstrate significantly more FOS protein expression in the basal amygdala of fear conditioned PD 23 subjects compared to control subjects, but no significant difference at PD 17. qRT-PCR results suggest specific activation of the amygdala only in older subjects during auditory fear expression. A similar effect of age and conditioning status was also observed in the perirhinal cortex during both contextual and auditory fear expression. Overall, the development of fear conditioning occurring between the 3rd and 4th weeks of life appears to be at least partly attributable to changes in activation of the amygdala and perirhinal cortex during fear conditioning or expression. PMID:26820587

  8. The conditioning and extinction of fear in youths: What’s sex got to do with it?

    PubMed Central

    Chauret, Mélissa; La Buissonnière-Ariza, Valérie; Tremblay, Vickie Lamoureux; Suffren, Sabrina; Servonnet, Alice; Pine, Daniel S.; Maheu, Françoise S.

    2015-01-01

    Adult work shows differences in emotional processing influenced by sexes of both the viewer and expresser of facial expressions. We investigated this in 120 healthy youths (57 boys; 10–17 years old) randomly assigned to fear conditioning and extinction tasks using either neutral male or female faces as the conditioned threat and safety cues, and a fearful face paired with a shrieking scream as the unconditioned stimulus. Fear ratings and skin conductance responses (SCRs) were assessed. Male faces triggered increased fear ratings in all participants during conditioning and extinction. Greater differential SCRs were observed in boys viewing male faces and in girls viewing female faces during conditioning. During extinction, differential SCR findings remained significant in boys viewing male faces. Our findings demonstrate how sex of participant and sex of target interact to shape fear responses in youths, and how the type of measure may lead to distinct profiles of fear responses. PMID:24929048

  9. The relative effectiveness of extinction and counter-conditioning in diminishing children's fear.

    PubMed

    Newall, Carol; Watson, Tiffany; Grant, Kerry-Ann; Richardson, Rick

    2017-08-01

    Two behavioural strategies for reducing learned fear are extinction and counter-conditioning, and in this study we compared the relative effectiveness of the two procedures at diminishing fear in children. Seventy-three children aged 7-12 years old (M = 9.30, SD = 1.62) were exposed to pictures of two novel animals on a computer screen during the fear acquisition phase. One of these animals was paired with a picture of a scared human face (CS+) while the other was not (CS-). The children were then randomly assigned to one of three conditions: counter-conditioning (animal paired with a happy face), extinction (animal without scared face), or control (no fear reduction procedure). Changes in fear beliefs and behavioural avoidance of the animal were measured. Counter-conditioning was more effective at reducing fear to the CS + than extinction. The findings are discussed in terms of implications for behavioural treatments of childhood anxiety disorders. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  10. Cognitive and locomotor/exploratory behavior after chronic exercise in the olfactory bulbectomy animal model of depression.

    PubMed

    Van Hoomissen, Jacqueline; Kunrath, Julie; Dentlinger, Renee; Lafrenz, Andrew; Krause, Mark; Azar, Afaf

    2011-09-12

    Despite the evidence that exercise improves cognitive behavior in animal models, little is known about these beneficial effects in animal models of pathology. We examined the effects of activity wheel (AW) running on contextual fear conditioning (CFC) and locomotor/exploratory behavior in the olfactory bulbectomy (OBX) model of depression, which is characterized by hyperactivity and changes in cognitive function. Twenty-four hours after the conditioning session of the CFC protocol, the animals were tested for the conditioned response in a conditioned and a novel context to test for the effects of both AW and OBX on CFC, but also the context specificity of the effect. OBX reduced overall AW running behavior throughout the experiment, but increased locomotor/exploratory behavior during CFC, thus demonstrating a context-dependent effect. OBX animals, however, displayed normal CFC behavior that was context-specific, indicating that aversively conditioned memory is preserved in this model. AW running increased freezing behavior during the testing session of the CFC protocol in the control animals but only in the conditioned context, supporting the hypothesis that AW running improves cognitive function in a context-specific manner that does not generalize to an animal model of pathology. Blood corticosterone levels were increased in all animals at the conclusion of the testing sessions, but levels were higher in AW compared to sedentary groups indicating an effect of exercise on neuroendocrine function. Given the differential results of AW running on behavior and neuroendocrine function after OBX, further exploration of the beneficial effects of exercise in animal models of neuropathology is warranted. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Systemic propranolol acts centrally to reduce conditioned fear in rats without impairing extinction.

    PubMed

    Rodriguez-Romaguera, Jose; Sotres-Bayon, Francisco; Mueller, Devin; Quirk, Gregory J

    2009-05-15

    Previous work has implicated noradrenergic beta-receptors in the consolidation and reconsolidation of conditioned fear. Less is known, however, about their role in fear expression and extinction. The beta-receptor blocker propranolol has been used clinically to reduce anxiety. With an auditory fear conditioning task in rats, we assessed the effects of systemic propranolol on the expression and extinction of two measures of conditioned fear: freezing and suppression of bar-pressing. One day after receiving auditory fear conditioning, rats were injected with saline, propranolol, or peripheral beta-receptor blocker sotalol (both 10 mg/kg, IP). Twenty minutes after injection, rats were given either 6 or 12 extinction trials and were tested for extinction retention the following day. The effect of propranolol on the firing rate of neurons in prelimbic (PL) prefrontal cortex was also assessed. Propranolol reduced freezing by more than 50%, an effect that was evident from the first extinction trial. Suppression was also significantly reduced. Despite this, propranolol had no effect on the acquisition or retention of extinction. Unlike propranolol, sotalol did not affect fear expression, although both drugs significantly reduced heart rate. This suggests that propranolol acts centrally to reduce fear. Consistent with this, propranolol reduced the firing rate of PL neurons. Propranolol reduced the expression of conditioned fear, without interfering with extinction learning. Reduced fear with intact extinction suggests a possible use for propranolol in reducing anxiety during extinction-based exposure therapies, without interfering with long-term clinical response.

  12. Contextual fear conditioning in zebrafish.

    PubMed

    Kenney, Justin W; Scott, Ian C; Josselyn, Sheena A; Frankland, Paul W

    2017-10-01

    Zebrafish are a genetically tractable vertebrate that hold considerable promise for elucidating the molecular basis of behavior. Although numerous recent advances have been made in the ability to precisely manipulate the zebrafish genome, much less is known about many aspects of learning and memory in adult fish. Here, we describe the development of a contextual fear conditioning paradigm using an electric shock as the aversive stimulus. We find that contextual fear conditioning is modulated by shock intensity, prevented by an established amnestic agent (MK-801), lasts at least 14 d, and exhibits extinction. Furthermore, fish of various background strains (AB, Tu, and TL) are able to acquire fear conditioning, but differ in fear extinction rates. Taken together, we find that contextual fear conditioning in zebrafish shares many similarities with the widely used contextual fear conditioning paradigm in rodents. Combined with the amenability of genetic manipulation in zebrafish, we anticipate that our paradigm will prove to be a useful complementary system in which to examine the molecular basis of vertebrate learning and memory. © 2017 Kenney et al.; Published by Cold Spring Harbor Laboratory Press.

  13. Effects of oxytocin on background anxiety in rats with high or low baseline startle

    PubMed Central

    Ayers, Luke; Agostini, Andrew; Schulkin, Jay; Rosen, Jeffrey B.

    2016-01-01

    Rationale Oxytocin has antianxiety properties in humans and rodents. However, the antianxiety effects have been variable. Objectives To reduce variability and strengthen to the antianxiety effect of oxytocin in fear-potentiated startle, two experiments were performed. First, different amounts of light-shock pairings were given to determine the optimal levels of cue-specific fear conditioning and non-predictable startle (background anxiety). Second, the antianxiety effects of oxytocin were examined in rats with high and low pre-fear conditioning baseline startle to determine if oxytocin differentially affects high and low trait anxiety rats. Methods Baseline pre-fear conditioning startle responses were first measured. Rats then received 1, 5 or 10 light-shock pairings. Fear-potentiated startle was then tested with two trial types: light-cued startle and non-cued startle trials. In the second experiment, rats fear conditioned with 10 light-shock pairings were administered either saline or oxytocin before a fear-potentiated startle test. Rats were categorized as low or high startlers by their pre-fear conditioning startle amplitude. Results Ten shock-pairings produced the largest non-cued startle responses (background anxiety), without increasing cue-specific fear-potentiated startle compared to 1 and 5 light-shock pairings. Cue-specific fear-potentiated startle was unaffected by oxytocin. Oxytocin reduced background anxiety only in rats with low pre-fear startle responses. Conclusions Oxytocin has population selective antianxiety effects on non-cued unpredictable threat, but only in rats with low pre-fear baseline startle responses. The low startle responses are reminiscent of humans with low startle responses and high trait anxiety. PMID:27004789

  14. Disrupting reconsolidation of fear memory in humans by a noradrenergic β-blocker.

    PubMed

    Kindt, Merel; Soeter, Marieke; Sevenster, Dieuwke

    2014-12-18

    The basic design used in our human fear-conditioning studies on disrupting reconsolidation includes testing over different phases across three consecutive days. On day 1 - the fear acquisition phase, healthy participants are exposed to a series of picture presentations. One picture stimulus (CS1+) is repeatedly paired with an aversive electric stimulus (US), resulting in the acquisition of a fear association, whereas another picture stimulus (CS2-) is never followed by an US. On day 2 - the memory reactivation phase, the participants are re-exposed to the conditioned stimulus without the US (CS1-), which typically triggers a conditioned fear response. After the memory reactivation we administer an oral dose of 40 mg of propranolol HCl, a β-adrenergic receptor antagonist that indirectly targets the protein synthesis required for reconsolidation by inhibiting the noradrenaline-stimulated CREB phosphorylation. On day 3 - the test phase, the participants are again exposed to the unreinforced conditioned stimuli (CS1- and CS2-) in order to measure the fear-reducing effect of the manipulation. This retention test is followed by an extinction procedure and the presentation of situational triggers to test for the return of fear. Potentiation of the eye blink startle reflex is measured as an index for conditioned fear responding. Declarative knowledge of the fear association is measured through online US expectancy ratings during each CS presentation. In contrast to extinction learning, disrupting reconsolidation targets the original fear memory thereby preventing the return of fear. Although the clinical applications are still in their infancy, disrupting reconsolidation of fear memory seems to be a promising new technique with the prospect to persistently dampen the expression of fear memory in patients suffering from anxiety disorders and other psychiatric disorders.

  15. Fear, Anger, Fruits, and Veggies: Interactive Effects of Emotion and Message Framing on Health Behavior

    PubMed Central

    Gerend, Mary A.; Maner, Jon K.

    2010-01-01

    Objective Message framing is a theoretically grounded health communication strategy designed to motivate action by emphasizing the benefits of engaging in a particular behavior (gains) or the costs of failing to engage in the behavior (losses). This study investigated whether the effectiveness of a framed message depends on the emotional state of the message recipient. We examined effects of fear versus anger, emotions that frequently occur within the context of health decision-making. Methods Undergraduate students (N = 133) were randomly assigned to complete a fear or anger induction task after which they read a gain- or loss-framed pamphlet promoting fruit and vegetable consumption. Fruit and vegetable intake (servings per day) was subsequently assessed over the following two weeks. Results As predicted, a significant frame by emotion interaction was observed, such that participants in the fear condition reported eating more servings of fruits and vegetables after exposure to a loss-framed message than to a gain-framed message. In contrast, participants in the anger condition reported eating (marginally) more servings of fruits and vegetables after exposure to a gain-framed message than to a loss-framed message. That is, greater increases in fruit and vegetable intake from baseline to follow-up were observed when frame was matched to participants’ emotional state than when it was mismatched. Conclusion The effectiveness of framed health communications depends on the message recipient’s current emotional state. Affective factors that are incidental to the behavior recommended in a health communication can affect the relative success of gain- and loss-framed appeals. PMID:21534679

  16. Ketamine accelerates fear extinction via mTORC1 signaling

    PubMed Central

    Girgenti, Matthew J.; Ghosal, Sriparna; LoPresto, Dora; Taylor, Jane R.; Duman, Ronald S.

    2018-01-01

    Impaired fear extinction contributes to the persistence of post-traumatic stress disorder (PTSD), and can be utilized for the study of novel therapeutic agents. Glutamate plays an important role in the formation of traumatic memories, and in the pathophysiology and treatment of PTSD, highlighting several possible drug targets. Recent clinical studies demonstrate that infusion of ketamine, a glutamate NMDA receptor antagonist, rapidly and significantly reduces symptom severity in PTSD patients. In the present study, we examine the mechanisms underlying the actions of ketamine in a rodent model of fear conditioning, extinction, and renewal. Rats received ketamine or saline 24 h after fear conditioning and were then subjected to extinction-training on each of the following three days. Ketamine administration enhanced extinction on the second day of training (i.e., reduced freezing behavior to cue) and produced a long-lasting reduction in freezing on exposure to cue plus context 8 days later. Additionally, ketamine and extinction exposure increased levels of mTORC1 in the medial prefrontal cortex (mPFC), a region involved in the acquisition and retrieval of extinction, and infusion of the selective mTORC1 inhibitor rapamycin into the mPFC blocked the effects of ketamine on extinction. Ketamine plus extinction also increased cFos in the mPFC and administration of a glutamate-AMPA receptor antagonist blocked the effects of ketamine. These results support the hypothesis that ketamine produces long-lasting mTORC1/protein synthesis and activity dependent effects on neuronal circuits that enhance the expression of extinction and could represent a novel approach for the treatment of PTSD. PMID:28043916

  17. An appetitive conditioned stimulus enhances fear acquisition and impairs fear extinction

    PubMed Central

    Leung, Hiu T.; Holmes, Nathan M.

    2016-01-01

    Four experiments used between- and within-subject designs to examine appetitive–aversive interactions in rats. Experiments 1 and 2 examined the effect of an excitatory appetitive conditioned stimulus (CS) on acquisition and extinction of conditioned fear. In Experiment 1, a CS shocked in a compound with an appetitive excitor (i.e., a stimulus previously paired with sucrose) underwent greater fear conditioning than a CS shocked in a compound with a neutral stimulus. Conversely, in Experiment 2, a CS extinguished in a compound with an appetitive excitor underwent less extinction than a CS extinguished in a compound with a neutral stimulus. Experiments 3 and 4 compared the amount of fear conditioning to an appetitive excitor and a familiar but neutral target CS when the compound of these stimuli was paired with shock. In each experiment, more fear accrued to the appetitive excitor than to the neutral CS. These results show that an appetitive excitor influences acquisition and extinction of conditioned fear to a neutral CS and itself undergoes a greater associative change than the neutral CS across compound conditioning. They are discussed with respect to the role of motivational information in regulating an associative change in appetitive–aversive interactions. PMID:26884229

  18. Do Jews and Arabs Differ in Their Fear of Terrorism and Crime?

    PubMed

    Shechory Bitton, Mally; Silawi, Yousef

    2016-10-01

    The current study was carried out with the aim of supplementing the existing literature and broadening the understanding of the determinants of two powerful types of fear, fear of terrorism and fear of crime, by comparing their presence among Jews and Arabs in Israel. Based on an overview of factors influencing fear of victimization, the study focused on individual variables (ethnicity, sex, age, objective, and subjective exposure) as well as on neighborhood disorder and social integration. The sample consisted of 375 Israeli students (191 Jews and 184 Arabs). Predictions of fear of terrorism and crime were conducted with two multiple regressions. Fear of terrorism was significantly predicted by gender (women more than men), higher self exposure to terror, and higher neighborhood disorder. The only interaction found with regard to exposure to incidents showed that previous victimization predicts only fear of terrorism and only among Arabs who were themselves affected or exposed to the victimization of others. Fear of crime was predicted by sector (Jews more than Arabs), gender (women more than men), higher neighborhood disorder, and lower social integration. As far as known, this is the first attempt to examine differences between Jews and Arabs with regard to these two types of fear and to predict their causes. The findings help gain a better understanding as to how people perceive the threat of crime and terrorism, in general and in the Arab-Jewish context in particular. The findings also enable an understanding of the complexity of living under ongoing terrorism threats. The results are discussed in accordance with the literature, concluding with the need for further research that will take into account the wider cultural and social context.

  19. Fear conditioning and extinction across development: Evidence from human studies and animal models☆

    PubMed Central

    Shechner, Tomer; Hong, Melanie; Britton, Jennifer C.; Pine, Daniel S.; Fox, Nathan A.

    2015-01-01

    The ability to differentiate danger and safety through associative processes emerges early in life. Understanding the mechanisms underlying associative learning of threat and safety can clarify the processes that shape development of normative fears and pathological anxiety. Considerable research has used fear conditioning and extinction paradigms to delineate underlying mechanisms in animals and human adults; however, little is known about these mechanisms in children and adolescents. The current paper summarizes the empirical data on the development of fear conditioning and extinction. It reviews methodological considerations and future directions for research on fear conditioning and extinction in pediatric populations. PMID:24746848

  20. Component fears of claustrophobia associated with mock magnetic resonance imaging.

    PubMed

    McGlynn, F Dudley; Smitherman, Todd A; Hammel, Jacinda C; Lazarte, Alejandro A

    2007-01-01

    A conceptualization of claustrophobia [Rachman, S., & Taylor, S. (1993). Analyses of claustrophobia. Journal of Anxiety Disorders, 7, 281-291] was evaluated in the context of magnetic resonance imaging. One hundred eleven students responded to questionnaires that quantified fear of suffocation, fear of restriction, and sensitivity to anxiety symptoms. Sixty-four of them were then exposed to a mock magnetic resonance imaging assessment; maximum subjective fear during the mock assessment was self-reported, behavioral reactions to the mock assessment were characterized, and heart rates before and during the assessment were recorded. Scores for fear of suffocation, fear of restriction, and anxiety sensitivity were used to predict subjective, behavioral, and cardiac fear. Subjective fear during the mock assessment was predicted by fears of suffocation and public anxiousness. Behavioral fear (escape/avoidance) was predicted by fears of restriction and suffocation, and sensitivity to symptoms related to suffocation. Cardiac fear was predicted by fear of public anxiousness. The criterion variance predicted was impressive, clearly sufficient to legitimize both the research preparation and the conceptualization of claustrophobia that was evaluated.

  1. Early life programming of innate fear and fear learning in adult female rats.

    PubMed

    Stevenson, Carl W; Meredith, John P; Spicer, Clare H; Mason, Rob; Marsden, Charles A

    2009-03-02

    The early rearing environment can impact on emotional reactivity and learning later in life. In this study the effects of neonatal maternal separation (MS) on innate fear and fear learning were assessed in the adult female rat. Pups were subjected to MS (360 min), brief handling (H; 15 min), or animal facility rearing (AFR) on post-natal days 2-14. In the first experiment, innate fear was tested in the open field. No differences between the early rearing groups were observed in unconditioned fear. In the second experiment, separate cohorts were used in a 3-day fear learning paradigm which tested the acquisition (Day 1), expression and extinction (both Day 2) of conditioning to an auditory cue; extinction recall was determined as well (Day 3). Contextual fear conditioning was also assessed prior to cue presentations on Days 2 and 3. Whereas MS attenuated the acquisition and expression of fear conditioning to the cue, H potentiated extinction learning. Cue-induced fear was reduced on Day 3, compared to Day 2, indicating that the recall of extinction learning was evident; however, no early rearing group differences in extinction recall were observed. Similarly, while contextual fear was decreased on Day 3, compared to Day 2, there were no differences between the early rearing groups on either day tested. The present findings of altered cue-conditioned fear learning, in the absence of innate fear changes, lend further support for the important role of the early rearing environment in mediating cognition in adulthood.

  2. Modulation of contextual fear conditioning by chronic stress in rats is related to individual differences in behavioral reactivity to novelty.

    PubMed

    Cordero, M Isabel; Kruyt, Nyika D; Sandi, Carmen

    2003-04-25

    We investigated whether contextual fear conditioning could be related to the behavioral trait of locomotor reactivity to novelty in undisturbed and chronically stressed rats. Fear conditioning was found to be specifically enhanced in low reactive-stressed animals, as compared to low reactive-undisturbed rats. The results suggest that individuals that display low reactivity to novelty are more susceptible to be influenced by stress exposure to subsequently exhibit potentiated contextual fear conditioning.

  3. Predicting fear of heights, snakes, and public speaking from multimodal classical conditioning events.

    PubMed

    Wu, Ning Ying; Conger, Anthony J; Dygdon, Judith A

    2006-04-01

    Two hundred fifty one men and women participated in a study of the prediction of fear of heights, snakes, and public speaking by providing retrospective accounts of multimodal classical conditioning events involving those stimuli. The fears selected for study represent those believed by some to be innate (i.e., heights), prepared (i.e., snakes), and purely experientially learned (i.e., public speaking). This study evaluated the extent to which classical conditioning experiences in direct, observational, and verbal modes contributed to the prediction of the current level of fear severity. Subjects were asked to describe their current level of fear and to estimate their experience with fear response-augmenting events (first- and higher-order aversive pairings) and fear response-moderating events (first- and higher-order appetitive pairings, and pre- and post-conditioning neutral presentations) in direct, observational, and verbal modes. For each stimulus, fear was predictable from direct response-augmenting events and prediction was enhanced by the inclusion of response-moderating events. Furthermore, for each fear, maximum prediction was attained by the addition of variables tapping experiences in the observational and/or verbal modes. Conclusions are offered regarding the importance of including response-augmenting and response-moderating events in all three modes in both research and clinical applications of classical conditioning.

  4. Parents' Verbal Communication and Childhood Anxiety: A Systematic Review.

    PubMed

    Percy, Ray; Creswell, Cathy; Garner, Matt; O'Brien, Doireann; Murray, Lynne

    2016-03-01

    Parents' verbal communication to their child, particularly the expression of fear-relevant information (e.g., attributions of threat to the environment), is considered to play a key role in children's fears and anxiety. This review considers the extent to which parental verbal communication is associated with child anxiety by examining research that has employed objective observational methods. Using a systematic search strategy, we identified 15 studies that addressed this question. These studies provided some evidence that particular fear-relevant features of parental verbal communication are associated with child anxiety under certain conditions. However, the scope for drawing reliable, general conclusions was limited by extensive methodological variation between studies, particularly in terms of the features of parental verbal communication examined and the context in which communication took place, how child anxiety was measured, and inconsistent consideration of factors that may moderate the verbal communication-child anxiety relationship. We discuss ways in which future research can contribute to this developing evidence base and reduce further methodological inconsistency so as to inform interventions for children with anxiety problems.

  5. Olfactory Fear Conditioning Induces Field Potential Potentiation in Rat Olfactory Cortex and Amygdala

    ERIC Educational Resources Information Center

    Messaoudi, Belkacem; Granjon, Lionel; Mouly, Anne-Marie; Sevelinges, Yannick; Gervais, Remi

    2004-01-01

    The widely used Pavlovian fear-conditioning paradigms used for studying the neurobiology of learning and memory have mainly used auditory cues as conditioned stimuli (CS). The present work assessed the neural network involved in olfactory fear conditioning, using olfactory bulb stimulation-induced field potential signal (EFP) as a marker of…

  6. A Comparison of Behavioral and Pharmacological Interventions to Attenuate Reactivated Fear Memories

    ERIC Educational Resources Information Center

    Monti, Roque I. Ferrer; Alfei, Joaquin M.; Mugnaini, Matias; Bueno, Adrian M.; Beckers, Tom; Urcelay, Gonzalo P.; Molina, Victor A.

    2017-01-01

    Two experiments using rats in a contextual fear memory preparation compared two approaches to reduce conditioned fear: (1) pharmacological reconsolidation blockade and (2) reactivation-plus-extinction training. In Experiment 1, we explored different combinations of reactivation-plus-extinction parameters to reduce conditioned fear and attenuate…

  7. The Role of Nucleus Accumbens Shell in Learning about Neutral versus Excitatory Stimuli during Pavlovian Fear Conditioning

    ERIC Educational Resources Information Center

    Bradfield, Laura A.; McNally, Gavan P.

    2010-01-01

    We studied the role of nucleus accumbens shell (AcbSh) in Pavlovian fear conditioning. Rats were trained to fear conditioned stimulus A (CSA) in Stage I, which was then presented in compound with a neutral stimulus and paired with shock in Stage II. AcbSh lesions had no effect on fear-learning to CSA in Stage I, but selectively prevented learning…

  8. Neurotoxic lesions of the dorsal and ventral hippocampus impair acquisition and expression of trace-conditioned fear-potentiated startle in rats.

    PubMed

    Trivedi, Mehul A; Coover, Gary D

    2006-04-03

    Pavlovian delay conditioning, in which a conditioned stimulus (CS) and unconditioned stimulus (US) co-terminate, is thought to reflect non-declarative memory. In contrast, trace conditioning, in which the CS and US are temporally separate, is thought to reflect declarative memory. Hippocampal lesions impair acquisition and expression of trace conditioning measured by the conditioned freezing and eyeblink responses, while having little effect on the acquisition of delay conditioning. Recent evidence suggests that lesions of the ventral hippocampus (VH) impair conditioned fear under conditions in which dorsal hippocampal (DH) lesions have little effect. In the present study, we examined the time-course of fear expression after delay and trace conditioning using the fear-potentiated startle (FPS) reflex, and the effects of pre- and post-training lesions to the VH and DH on trace-conditioned FPS. We found that both delay- and trace-conditioned rats displayed significant FPS near the end of the CS relative to the unpaired control group. In contrast, trace-conditioned rats displayed significant FPS throughout the duration of the trace interval, whereas FPS decayed rapidly to baseline after CS offset in delay-conditioned rats. In experiment 2, both DH and VH lesions were found to significantly reduce the overall magnitude of FPS compared to the control group, however, no differences were found between the DH and VH groups. These findings support a role for both the DH and VH in trace fear conditioning, and suggest that the greater effect of VH lesions on conditioned fear might be specific to certain measures of fear.

  9. Young and old Pavlovian fear memories can be modified with extinction training during reconsolidation in humans

    PubMed Central

    Steinfurth, Elisa C.K.; Kanen, Jonathan W.; Raio, Candace M.; Clem, Roger L.; Huganir, Richard L.; Phelps, Elizabeth A.

    2014-01-01

    Extinction training during reconsolidation has been shown to persistently diminish conditioned fear responses across species. We investigated in humans if older fear memories can benefit similarly. Using a Pavlovian fear conditioning paradigm we compared standard extinction and extinction after memory reactivation 1 d or 7 d following acquisition. Participants who underwent extinction during reconsolidation showed no evidence of fear recovery, whereas fear responses returned in participants who underwent standard extinction. We observed this effect in young and old fear memories. Extending the beneficial use of reconsolidation to older fear memories in humans is promising for therapeutic applications. PMID:24934333

  10. Psychological problems of families and health workers dealing with people infected with human immunodeficiency virus 1.

    PubMed

    Maj, M

    1991-03-01

    The psychological problems of the families of human immunodeficiency virus 1 (HIV-1)-infected people, and of the health workers taking care of them, have been addressed in a few empirical studies and in several anecdotal reports and theoretical contributions. Apparently, HIV-1 infection and acquired immunodeficiency syndrome (AIDS) are able to elicit a wide range of emotional reactions, from rejection and refusal to provide care to immersion in the infected person's needs and burnout. Since irrational fears and attitudes play an important role in conditioning these reactions, education may not be sufficient to change behaviour. Counselling sessions and mutual support groups are often the most appropriate contexts where fears and concerns can receive an individually tailored response, and where formal and informal caregivers can be helped to manage stress.

  11. Don't fear 'fear conditioning': Methodological considerations for the design and analysis of studies on human fear acquisition, extinction, and return of fear.

    PubMed

    Lonsdorf, Tina B; Menz, Mareike M; Andreatta, Marta; Fullana, Miguel A; Golkar, Armita; Haaker, Jan; Heitland, Ivo; Hermann, Andrea; Kuhn, Manuel; Kruse, Onno; Meir Drexler, Shira; Meulders, Ann; Nees, Frauke; Pittig, Andre; Richter, Jan; Römer, Sonja; Shiban, Youssef; Schmitz, Anja; Straube, Benjamin; Vervliet, Bram; Wendt, Julia; Baas, Johanna M P; Merz, Christian J

    2017-06-01

    The so-called 'replicability crisis' has sparked methodological discussions in many areas of science in general, and in psychology in particular. This has led to recent endeavours to promote the transparency, rigour, and ultimately, replicability of research. Originating from this zeitgeist, the challenge to discuss critical issues on terminology, design, methods, and analysis considerations in fear conditioning research is taken up by this work, which involved representatives from fourteen of the major human fear conditioning laboratories in Europe. This compendium is intended to provide a basis for the development of a common procedural and terminology framework for the field of human fear conditioning. Whenever possible, we give general recommendations. When this is not feasible, we provide evidence-based guidance for methodological decisions on study design, outcome measures, and analyses. Importantly, this work is also intended to raise awareness and initiate discussions on crucial questions with respect to data collection, processing, statistical analyses, the impact of subtle procedural changes, and data reporting specifically tailored to the research on fear conditioning. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Behavioral determination of stimulus pair discrimination of auditory acoustic and electrical stimuli using a classical conditioning and heart-rate approach.

    PubMed

    Morgan, Simeon J; Paolini, Antonio G

    2012-06-06

    Acute animal preparations have been used in research prospectively investigating electrode designs and stimulation techniques for integration into neural auditory prostheses, such as auditory brainstem implants and auditory midbrain implants. While acute experiments can give initial insight to the effectiveness of the implant, testing the chronically implanted and awake animals provides the advantage of examining the psychophysical properties of the sensations induced using implanted devices. Several techniques such as reward-based operant conditioning, conditioned avoidance, or classical fear conditioning have been used to provide behavioral confirmation of detection of a relevant stimulus attribute. Selection of a technique involves balancing aspects including time efficiency (often poor in reward-based approaches), the ability to test a plurality of stimulus attributes simultaneously (limited in conditioned avoidance), and measure reliability of repeated stimuli (a potential constraint when physiological measures are employed). Here, a classical fear conditioning behavioral method is presented which may be used to simultaneously test both detection of a stimulus, and discrimination between two stimuli. Heart-rate is used as a measure of fear response, which reduces or eliminates the requirement for time-consuming video coding for freeze behaviour or other such measures (although such measures could be included to provide convergent evidence). Animals were conditioned using these techniques in three 2-hour conditioning sessions, each providing 48 stimulus trials. Subsequent 48-trial testing sessions were then used to test for detection of each stimulus in presented pairs, and test discrimination between the member stimuli of each pair. This behavioral method is presented in the context of its utilisation in auditory prosthetic research. The implantation of electrocardiogram telemetry devices is shown. Subsequent implantation of brain electrodes into the Cochlear Nucleus, guided by the monitoring of neural responses to acoustic stimuli, and the fixation of the electrode into place for chronic use is likewise shown.

  13. Temporal factors in the extinction of fear in inbred mouse strains differing in extinction efficacy

    PubMed Central

    2013-01-01

    Background Various neuropsychiatric conditions, including posttraumatic stress disorder (PTSD), are characterized by deficient fear extinction, but individuals differ greatly in risk for these. While there is growing evidence that fear extinction is influenced by certain procedural variables, it is unclear how these influences might vary across individuals and subpopulations. To model individual differences in fear extinction, prior studies identified a strain of inbred mouse, 129S1/SvImJ (S1), which exhibits a profound deficit in fear extinction, as compared to other inbred strains, such as C57BL/6J (B6). Methods Here, we assessed the effects of procedural variables on the impaired extinction phenotype of the S1 strain and, by comparison, the extinction-intact B6 strain. The variables studied were 1) the interval between conditioning and extinction, 2) the interval between cues during extinction training, 3) single-cue exposure before extinction training, and 4) extinction of a second-order conditioned cue. Results Conducting extinction training soon after (‘immediately’) conditioning attenuated fear retrieval in S1 mice and impaired extinction in B6 mice. Spacing cue presentations with long inter-trial intervals during extinction training augmented fear in S1 and B6 mice. The effect of spacing was lost with one-trial fear conditioning in B6, but not S1 mice. A single exposure to a conditioned cue before extinction training did not alter extinction retrieval, either in B6 or S1 mice. Both the S1 and B6 strains exhibited robust second-order fear conditioning, in which a cue associated with footshock was sufficient to serve as a conditioned exciter to condition a fear association to a second cue. B6 mice extinguished the fear response to the second-order conditioned cue, but S1 mice failed to do so. Conclusions These data provide further evidence that fear extinction is strongly influenced by multiple procedural variables and is so in a highly strain-dependent manner. This suggests that the efficacy of extinction-based behavioral interventions, such as exposure therapy, for trauma-related anxiety disorders will be determined by the procedural parameters employed and the degree to which the patient can extinguish. PMID:23830244

  14. Gadd45b knockout mice exhibit selective deficits in hippocampus-dependent long-term memory

    PubMed Central

    Leach, Prescott T.; Poplawski, Shane G.; Kenney, Justin W.; Hoffman, Barbara; Liebermann, Dan A.; Abel, Ted; Gould, Thomas J.

    2012-01-01

    Growth arrest and DNA damage-inducible β (Gadd45b) has been shown to be involved in DNA demethylation and may be important for cognitive processes. Gadd45b is abnormally expressed in subjects with autism and psychosis, two disorders associated with cognitive deficits. Furthermore, several high-throughput screens have identified Gadd45b as a candidate plasticity-related gene. However, a direct demonstration of a link between Gadd45b and memory has not been established. The current studies first determined whether expression of the Gadd45 family of genes was affected by contextual fear conditioning. Gadd45b, and to a lesser extent Gadd45g, were up-regulated in the hippocampus following contextual fear conditioning, whereas Gadd45a was not. Next, Gadd45b knockout mice were tested for contextual and cued fear conditioning. Gadd45b knockout mice exhibited a significant deficit in long-term contextual fear conditioning; however, they displayed normal levels of short-term contextual fear conditioning. No differences between Gadd45b knockout and wild-type mice were observed in cued fear conditioning. Because cued fear conditioning is hippocampus independent, while contextual fear conditioning is hippocampus dependent, the current studies suggest that Gadd45b may be important for long-term hippocampus-dependent memory storage. Therefore, Gadd45b may be a novel therapeutic target for the cognitive deficits associated with many neurodevelopmental, neurological, and psychiatric disorders. PMID:22802593

  15. Fear-conditioning mechanisms associated with trait vulnerability to anxiety in humans.

    PubMed

    Indovina, Iole; Robbins, Trevor W; Núñez-Elizalde, Anwar O; Dunn, Barnaby D; Bishop, Sonia J

    2011-02-10

    Investigations of fear conditioning in rodents and humans have illuminated the neural mechanisms underlying cued and contextual fear. A critical question is how personality dimensions such as trait anxiety act through these mechanisms to confer vulnerability to anxiety disorders, and whether humans' ability to overcome acquired fears depends on regulatory skills not characterized in animal models. In a neuroimaging study of fear conditioning in humans, we found evidence for two independent dimensions of neurocognitive function associated with trait vulnerability to anxiety. The first entailed increased amygdala responsivity to phasic fear cues. The second involved impoverished ventral prefrontal cortical (vPFC) recruitment to downregulate both cued and contextual fear prior to omission (extinction) of the aversive unconditioned stimulus. These two dimensions may contribute to symptomatology differences across anxiety disorders; the amygdala mechanism affecting the development of phobic fear and the frontal mechanism influencing the maintenance of both specific fears and generalized anxiety. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. A role of nucleus accumbens dopamine receptors in the nucleus accumbens core, but not shell, in fear prediction error.

    PubMed

    Li, Susan S Y; McNally, Gavan P

    2015-08-01

    Two experiments used an associative blocking design to study the role of dopamine receptors in the nucleus accumbens shell (AcbSh) and core (AcbC) in fear prediction error. Rats in the experimental groups were trained to a visual fear-conditioned stimulus (conditional stimulus [CS]) A in Stage I, whereas rats in the control groups were not. In Stage II, all rats received compound fear conditioning of the visual CSA and an auditory CSB. Rats were later tested for their fear responses to CSB. All rats received microinjections of saline or the D1-D2 receptor antagonist cis-(z)-flupenthixol prior to Stage II. These microinjections targeted either the AcbSh (Experiment 1) or the AcbC (Experiment 2). In each experiment, Stage I fear conditioning of CSA blocked fear learning to CSB. Microinjection of cis-(z)-flupenthixol (10 or 20 μg) into the AcbSh (Experiment 1) had no effect on fear learning or associative blocking. In contrast, microinjection of cis-(z)-flupenthixol (10 or 20 μg) into the AcbC (Experiment 2) attenuated blocking and so enabled fear learning to CSB. These results identify the AcbC as the critical locus for dopamine receptor contributions to fear prediction error and the associative blocking of fear learning. (c) 2015 APA, all rights reserved).

  17. An Evaluation of United States’ Hedging Strategy with China

    DTIC Science & Technology

    2012-02-24

    fear the dragon” or “hug the panda .” In this context, this paper examines the background to Chinese foreign policy then evaluates the associated...the panda .” In this context, this paper examines the background to Chinese foreign policy then evaluates the associated American grand strategy that...should “fear the dragon” or “hug the panda .”3 As China continues to grow, the need to incorporate it into the international order to help shore up

  18. Visualization of Plasticity in Fear-Evoked Calcium Signals in Midbrain Dopamine Neurons

    ERIC Educational Resources Information Center

    Gore, Bryan B.; Soden, Marta E.; Zweifel, Larry S.

    2014-01-01

    Dopamine is broadly implicated in fear-related processes, yet we know very little about signaling dynamics in these neurons during active fear conditioning. We describe the direct imaging of calcium signals of dopamine neurons during Pavlovian fear conditioning using fiber-optic confocal microscopy coupled with the genetically encoded calcium…

  19. Behavioural, neurochemical and neuroendocrine effects of the endogenous β-carboline harmane in fear-conditioned rats.

    PubMed

    Smith, Karen L; Ford, Gemma K; Jessop, David S; Finn, David P

    2013-02-01

    The putative endogenous imidazoline binding site ligand harmane enhances neuronal activation in response to psychological stress and alters behaviour in animal models of anxiety and antidepressant efficacy. However, the neurobiological mechanisms underlying harmane's psychotropic effects are poorly understood. We investigated the effects of intraperitoneal injection of harmane (2.5 and 10 mg/kg) on fear-conditioned behaviour, hypothalamo-pituitary-adrenal axis activity, and monoaminergic activity within specific fear-associated areas of the rat brain. Harmane had no significant effect on the duration of contextually induced freezing or 22 kHz ultrasonic vocalisations and did not alter the contextually induced suppression of motor activity, including rearing. Harmane reduced the duration of rearing and tended to increase freezing in non-fear-conditioned controls, suggesting potential sedative effects. Harmane increased plasma ACTH and corticosterone concentrations, and serotonin (in hypothalamus, amygdaloid cortex, prefrontal cortex and hippocampus) and noradrenaline (prefrontal cortex) content, irrespective of fear-conditioning. Furthermore, harmane reduced dopamine and serotonin turnover in the PFC and hypothalamus, and serotonin turnover in the amygdaloid cortex in both fear-conditioned and non-fear-conditioned rats. In contrast, harmane increased dopamine and noradrenaline content and reduced dopamine turnover in the amygdala of fear-conditioned rats only, suggesting differential effects on catecholaminergic transmission in the presence and absence of fear. The precise mechanism(s) mediating these effects of harmane remain to be determined but may involve its inhibitory action on monoamine oxidases. These findings support a role for harmane as a neuromodulator, altering behaviour, brain neurochemistry and neuroendocrine function.

  20. Fear conditioning and extinction across development: evidence from human studies and animal models.

    PubMed

    Shechner, Tomer; Hong, Melanie; Britton, Jennifer C; Pine, Daniel S; Fox, Nathan A

    2014-07-01

    The ability to differentiate danger and safety through associative processes emerges early in life. Understanding the mechanisms underlying associative learning of threat and safety can clarify the processes that shape development of normative fears and pathological anxiety. Considerable research has used fear conditioning and extinction paradigms to delineate underlying mechanisms in animals and human adults; however, little is known about these mechanisms in children and adolescents. The current paper summarizes the empirical data on the development of fear conditioning and extinction. It reviews methodological considerations and future directions for research on fear conditioning and extinction in pediatric populations. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. AMYGDALA MICROCIRCUITS CONTROLLING LEARNED FEAR

    PubMed Central

    Duvarci, Sevil; Pare, Denis

    2014-01-01

    We review recent work on the role of intrinsic amygdala networks in the regulation of classically conditioned defensive behaviors, commonly known as conditioned fear. These new developments highlight how conditioned fear depends on far more complex networks than initially envisioned. Indeed, multiple parallel inhibitory and excitatory circuits are differentially recruited during the expression versus extinction of conditioned fear. Moreover, shifts between expression and extinction circuits involve coordinated interactions with different regions of the medial prefrontal cortex. However, key areas of uncertainty remain, particularly with respect to the connectivity of the different cell types. Filling these gaps in our knowledge is important because much evidence indicates that human anxiety disorders results from an abnormal regulation of the networks supporting fear learning. PMID:24908482

  2. Skin conductance fear conditioning impairments and aggression: a longitudinal study.

    PubMed

    Gao, Yu; Tuvblad, Catherine; Schell, Anne; Baker, Laura; Raine, Adrian

    2015-02-01

    Autonomic fear conditioning deficits have been linked to child aggression and adult criminal behavior. However, it is unknown if fear conditioning deficits are specific to certain subtypes of aggression, and longitudinal research is rare. In the current study, reactive and proactive aggression were assessed in a sample of males and females when aged 10, 12, 15, and 18 years old. Skin conductance fear conditioning data were collected when they were 18 years old. Individuals who were persistently high on proactive aggression measures had significantly poorer conditioned responses at 18 years old when compared to others. This association was not found for reactive aggression. Consistent with prior literature, findings suggest that persistent antisocial individuals have unique neurobiological characteristics and that poor autonomic fear conditioning is associated with the presence of increased instrumental aggressive behavior. © 2014 Society for Psychophysiological Research.

  3. What Can Ethobehavioral Studies Tell Us About The Brain’s Fear System?

    PubMed Central

    Pellman, Blake A.; Kim, Jeansok J.

    2016-01-01

    Foraging-associated predation risk is a natural problem all prey must face. Fear evolved due to its protective functions, guiding and shaping behaviors that help animals adapt to various ecological challenges. Despite the breadth of risky situations in nature that demand diversity in fear behaviors, contemporary neurobiological models of fear stem largely from Pavlovian fear conditioning studies that focus on how a particular cue becomes capable of eliciting learned fear responses, thus oversimplifying the brain’s fear system. Here we review fear from functional, mechanistic, and phylogenetic perspectives where environmental threats cause animals to alter their foraging strategies in terms of spatial and temporal navigation, and discuss whether the inferences we draw from fear conditioning studies operate in the natural world. PMID:27130660

  4. Toward an account of clinical anxiety predicated on basic, neurally mapped mechanisms of Pavlovian fear-learning: the case for conditioned overgeneralization.

    PubMed

    Lissek, Shmuel

    2012-04-01

    The past two decades have brought dramatic progress in the neuroscience of anxiety due, in no small part, to animal findings specifying the neurobiology of Pavlovian fear-conditioning. Fortuitously, this neurally mapped process of fear learning is widely expressed in humans, and has been centrally implicated in the etiology of clinical anxiety. Fear-conditioning experiments in anxiety patients thus represent a unique opportunity to bring recent advances in animal neuroscience to bear on working, brain-based models of clinical anxiety. The current presentation details the neural basis and clinical relevance of fear conditioning, and highlights generalization of conditioned fear to stimuli resembling the conditioned danger cue as one of the more robust conditioning markers of clinical anxiety. Studies testing such generalization across a variety of anxiety disorders (panic, generalized anxiety disorder, and social anxiety disorder) with systematic methods developed in animals will next be presented. Finally, neural accounts of overgeneralization deriving from animal and human data will be described with emphasis given to implications for the neurobiology and treatment of clinical anxiety. © 2012 Wiley Periodicals, Inc.

  5. Fear of failure and self-handicapping in college physical education.

    PubMed

    Chen, Lung Hung; Chen, Mei-Yen; Lin, Meng-Shyan; Kee, Ying Hwa; Shui, Shang-Hsueh

    2009-12-01

    The purpose of this study was to examine the relationship between fear of failure and self-handicapping within the context of physical education. Participants were 103 college freshmen enrolled in aerobic dance physical education classes in Taiwan. They completed the Performance Failure Appraisal Inventory and Self-Handicapping Scale for Sport 3 mo. after entering the class. Hierarchical regression indicated that scores on fear of failure predicted self-handicapping scores.

  6. Lifelong disturbance of serotonin transporter functioning results in fear learning deficits: Reversal by blockade of CRF1 receptors.

    PubMed

    Bijlsma, Elisabeth Y; Hendriksen, Hendrikus; Baas, Johanna M P; Millan, Mark J; Groenink, Lucianne

    2015-10-01

    The inability to associate aversive events with relevant cues (i.e. fear learning) may lead to maladaptive anxiety. To further study the role of the serotonin transporter (SERT) in fear learning, classical fear conditioning was studied in SERT knockout rats (SERT(-/-)) using fear potentiation of the startle reflex. Next, fear acquisition and concomitant development of contextual conditioned fear were monitored during training. To differentiate between developmental and direct effects of reduced SERT functioning, effects of acute and chronic SSRI treatment were studied in adult rats. Considering the known interactions between serotonin and corticotropin-releasing factor (CRF), we studied the effect of the CRFR1 antagonist CP154,526 on behavioral changes observed and determined CRF1 receptor levels in SERT(-/-) rats. SERT(-/-) showed blunted fear potentiation and enhanced contextual fear, which resulted from a deficit in fear acquisition. Paroxetine treatment did not affect acquisition or expression of fear-potentiated startle, suggesting that disturbed fear learning in SERT(-/-) results from developmental changes and not from reduced SERT functioning. Although CRF1 receptor levels did not differ significantly between genotypes, CP154,526 treatment normalized both cue- and contextual fear in SERT(-/-) during acquisition, but not expression of fear-potentiated startle. The disrupted fear acquisition and concomitant increase in contextual conditioned fear-potentiated startle fear in SERT(-/-) resembles the associative learning deficit seen in patients with panic disorder and suggests that normal SERT functioning is crucial for the development of an adequate fear neuro-circuitry. Moreover, the normalization of fear acquisition by CP154,526 suggests a role for central CRF signaling in the generalization of fear. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  7. Sleep supports cued fear extinction memory consolidation independent of circadian phase.

    PubMed

    Melo, Irene; Ehrlich, Ingrid

    2016-07-01

    Sleep promotes memory, particularly for declarative learning. However, its role in non-declarative, emotional memories is less well understood. Some studies suggest that sleep may influence fear-related memories, and thus may be an important factor determining the outcome of treatments for emotional disorders such as post-traumatic stress disorder. Here, we investigated the effect of sleep deprivation and time of day on fear extinction memory consolidation. Mice were subjected to a cued Pavlovian fear and extinction paradigm at the beginning of their resting or active phase. Immediate post-extinction learning sleep deprivation for 5h compromised extinction memory when tested 24h after learning. Context-dependent extinction memory recall was completely prevented by sleep-manipulation during the resting phase, while impairment was milder during the active phase and extinction memory retained its context-specificity. Importantly, control experiments excluded confounding factors such as differences in baseline locomotion, fear generalization and stress hormone levels. Together, our findings indicate that post-learning sleep supports cued fear extinction memory consolidation in both circadian phases. The lack of correlation between memory efficacy and sleep time suggests that extinction memory may be influenced by specific sleep events in the early consolidation period. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Gender, fear of crime, and attitudes toward prisoners among social work majors in a Hong Kong University.

    PubMed

    Chui, Wing Hong; Cheng, Kevin Kwok-Yin; Wong, Lok-Ping

    2013-04-01

    Fear of crime has been a dominant area of criminological inquiry, yet it is has been examined only recently in a Chinese context, and it is virtually unexplored in Hong Kong. Using a sample of 170 Hong Kong college students majoring in social work, the current study aimed to investigate the effects of gender on fear of crime and their relationships to attitudes toward prisoners. In general, women reported a significantly greater fear of crime than men for all offenses except for being cheated. Fear of rape/sexual assault was found to be a significant predictor of fear of serious crimes for women but a less significant predictor of their fear of minor crimes. The shadow of the sexual assault hypothesis was supported in this study. Fear of crime had little impact on attitudes toward prisoners.

  9. Cannabidiol regulation of emotion and emotional memory processing: relevance for treating anxiety-related and substance abuse disorders.

    PubMed

    Lee, Jonathan L C; Bertoglio, Leandro J; Guimarães, Francisco S; Stevenson, Carl W

    2017-10-01

    Learning to associate cues or contexts with potential threats or rewards is adaptive and enhances survival. Both aversive and appetitive memories are therefore powerful drivers of behaviour, but the inappropriate expression of conditioned responding to fear- and drug-related stimuli can develop into anxiety-related and substance abuse disorders respectively. These disorders are associated with abnormally persistent emotional memories and inadequate treatment, often leading to symptom relapse. Studies show that cannabidiol, the main non-psychotomimetic phytocannabinoid found in Cannabis sativa, reduces anxiety via 5-HT 1A and (indirect) cannabinoid receptor activation in paradigms assessing innate responses to threat. There is also accumulating evidence from animal studies investigating the effects of cannabidiol on fear memory processing indicating that it reduces learned fear in paradigms that are translationally relevant to phobias and post-traumatic stress disorder. Cannabidiol does so by reducing fear expression acutely and by disrupting fear memory reconsolidation and enhancing fear extinction, both of which can result in a lasting reduction of learned fear. Recent studies have also begun to elucidate the effects of cannabidiol on drug memory expression using paradigms with translational relevance to addiction. The findings suggest that cannabidiol reduces the expression of drug memories acutely and by disrupting their reconsolidation. Here, we review the literature demonstrating the anxiolytic effects of cannabidiol before focusing on studies investigating its effects on various fear and drug memory processes. Understanding how cannabidiol regulates emotion and emotional memory processing may eventually lead to its use as a treatment for anxiety-related and substance abuse disorders. Linked Articles This article is part of a themed section on Pharmacology of Cognition: a Panacea for Neuropsychiatric Disease? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.19/issuetoc. © 2017 The British Pharmacological Society.

  10. Genetic Correlation between Alcohol Preference and Conditioned Fear: Exploring a Functional Relationship

    PubMed Central

    Chester, Julia A.; Weera, Marcus M.

    2016-01-01

    Post-traumatic stress disorder (PTSD) and alcohol-use disorders have a high rate of co-occurrence, possibly because they are regulated by common genes. In support of this idea, mice selectively bred for high (HAP) alcohol preference show greater fear potentiated startle (FPS), a model for fear-related disorders such as PTSD, compared to mice selectively bred for low (LAP) alcohol preference. This positive genetic correlation between alcohol preference and FPS behavior suggests that the two traits may be functionally related. This study examined the effects of fear conditioning on alcohol consumption and the effects of alcohol consumption on the expression of FPS in male and female HAP2 and LAP2 mice. In experiment 1, alcohol consumption (g/kg) under continuous-access conditions was monitored daily for 4 weeks following a single fear-conditioning or control treatment (foot shock and no shock). FPS was assessed three times (once at the end of the 4-week alcohol access period, once at 24 h after removal of alcohol, and once at 6–8 days after removal of alcohol), followed by two more weeks of alcohol access. Results showed no change in alcohol consumption, but alcohol-consuming, fear-conditioned, HAP2 males showed increased FPS at 24 h during the alcohol abstinence period compared to control groups. In experiment 2, alcohol consumption under limited-access conditions was monitored daily for 4 weeks. Fear-conditioning or control treatments occurred four times during the first 12 days and FPS testing occurred four times during the second 12 days of the 4-week alcohol consumption period. Results showed that fear conditioning increased alcohol intake in both HAP2 and LAP2 mice immediately following the first conditioning session. Fear-conditioned HAP2 but not LAP2 mice showed greater alcohol intake compared to control groups on drinking days that occurred between fear conditioning and FPS test sessions. FPS did not change as a function of alcohol consumption in either line. These results in mice help shed light on how a genetic propensity toward high alcohol consumption may be related to the risk for developing PTSD and co-morbid alcohol-use disorders in humans. PMID:27908524

  11. Histone acetylation rescues contextual fear conditioning in nNOS KO mice and accelerates extinction of cued fear conditioning in wild type mice.

    PubMed

    Itzhak, Yossef; Anderson, Karen L; Kelley, Jonathan B; Petkov, Martin

    2012-05-01

    Epigenetic regulation of chromatin structure is an essential molecular mechanism that contributes to the formation of synaptic plasticity and long-term memory (LTM). An important regulatory process of chromatin structure is acetylation and deacetylation of histone proteins. Inhibition of histone deacetylase (HDAC) increases acetylation of histone proteins and facilitate learning and memory. Nitric oxide (NO) signaling pathway has a role in synaptic plasticity, LTM and regulation of histone acetylation. We have previously shown that NO signaling pathway is required for contextual fear conditioning. The present study investigated the effects of systemic administration of the HDAC inhibitor sodium butyrate (NaB) on fear conditioning in neuronal nitric oxide synthase (nNOS) knockout (KO) and wild type (WT) mice. The effect of single administration of NaB on total H3 and H4 histone acetylation in hippocampus and amygdala was also investigated. A single administration of NaB prior to fear conditioning (a) rescued contextual fear conditioning of nNOS KO mice and (b) had long-term (weeks) facilitatory effect on the extinction of cued fear memory of WT mice. The facilitatory effect of NaB on extinction of cued fear memory of WT mice was confirmed in a study whereupon NaB was administered during extinction. Results suggest that (a) the rescue of contextual fear conditioning in nNOS KO mice is associated with NaB-induced increase in H3 histone acetylation and (b) the accelerated extinction of cued fear memory in WT mice is associated with NaB-induced increase in H4 histone acetylation. Hence, a single administration of HDAC inhibitor may rescue NO-dependent cognitive deficits and afford a long-term accelerating effect on extinction of fear memory of WT mice. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Out with the old and in with the new: Synaptic mechanisms of extinction in the amygdala

    PubMed Central

    Maren, Stephen

    2014-01-01

    Considerable research indicates that long-term synaptic plasticity in the amygdala underlies the acquisition of emotional memories, including those learned during Pavlovian fear conditioning. Much less is known about the synaptic mechanisms involved in other forms of associative learning, including extinction, that update fear memories. Extinction learning might reverse conditioning-related changes (e.g., depotentiation) or induce plasticity at inhibitory synapses (e.g., long-term potentiation) to suppress conditioned fear responses. Either mechanism must account for fear recovery phenomena after extinction, as well as savings of extinction after fear recovery. PMID:25312830

  13. Prediction error and trace dominance determine the fate of fear memories after post-training manipulations

    PubMed Central

    Alfei, Joaquín M.; Ferrer Monti, Roque I.; Molina, Victor A.; Bueno, Adrián M.

    2015-01-01

    Different mnemonic outcomes have been observed when associative memories are reactivated by CS exposure and followed by amnestics. These outcomes include mere retrieval, destabilization–reconsolidation, a transitional period (which is insensitive to amnestics), and extinction learning. However, little is known about the interaction between initial learning conditions and these outcomes during a reinforced or nonreinforced reactivation. Here we systematically combined temporally specific memories with different reactivation parameters to observe whether these four outcomes are determined by the conditions established during training. First, we validated two training regimens with different temporal expectations about US arrival. Then, using Midazolam (MDZ) as an amnestic agent, fear memories in both learning conditions were submitted to retraining either under identical or different parameters to the original training. Destabilization (i.e., susceptibly to MDZ) occurred when reactivation was reinforced, provided the occurrence of a temporal prediction error about US arrival. In subsequent experiments, both treatments were systematically reactivated by nonreinforced context exposure of different lengths, which allowed to explore the interaction between training and reactivation lengths. These results suggest that temporal prediction error and trace dominance determine the extent to which reactivation produces the different outcomes. PMID:26179232

  14. The Amygdala Is Critical for Trace, Delay, and Contextual Fear Conditioning

    ERIC Educational Resources Information Center

    Kochli, Daniel E.; Thompson, Elaine C.; Fricke, Elizabeth A.; Postle, Abagail F.; Quinn, Jennifer J.

    2015-01-01

    Numerous investigations have definitively shown amygdalar involvement in delay and contextual fear conditioning. However, much less is known about amygdala contributions to trace fear conditioning, and what little evidence exists is conflicting as noted in previous studies. This discrepancy may result from selective targeting of individual nuclei…

  15. Effects of bright light exposure on human fear conditioning, extinction, and associated prefrontal activation.

    PubMed

    Yoshiike, Takuya; Honma, Motoyasu; Yamada, Naoto; Kim, Yoshiharu; Kuriyama, Kenichi

    2018-06-18

    Bright light (BL) not only regulates human emotion and circadian physiology but can also directly modulate emotional memories. Impaired fear extinction and enhanced fear acquisition and consolidation are hallmarks of fear-circuitry disorders; thus, we tested whether BL facilitates fear extinction and inhibits fear acquisition. We randomly exposed 29 healthy humans to high- (9000 lx) or low-intensity light (<500 lx) for 15 min, near the nadir of the phase response to light, in a single-blind manner. Simultaneously with the light exposure, subjects performed fear extinction training and second fear acquisition, where a visual conditioned stimulus (CS), previously paired with an electric shock unconditioned stimulus (US), was presented without the US, while another CS was newly paired with the US. Conditioned responses (CRs) and changes in prefrontal cortex (PFC) activity were determined during encoding and delayed recall sessions. BL-exposed subjects exhibited lower extinction-related PFC activity and marginally higher acquisition-related PFC activity during light exposure than subjects exposed to control light. Twenty-four hours later, BL reduced CRs to both the extinguished and non-extinguished CSs with marginally lower extinction-related PFC activation, suggesting that BL enhanced fear extinction, while suppressing fear acquisition. Further, BL sustained tolerance to fear re-conditioning. Our results demonstrate that a single and brief BL exposure, synchronized with fear extinction and acquisition, instantaneously influences prefrontal hemodynamic responses and alleviates fear expression after 24 h. Although the specificity of BL effects deems further investigation, our findings indicate the clinical relevance of adjunctive BL intervention in exposure-based cognitive-behavioral therapy for fear-circuitry disorders. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. NMDA receptors in the avian amygdala and the premotor arcopallium mediate distinct aspects of appetitive extinction learning.

    PubMed

    Gao, Meng; Lengersdorf, Daniel; Stüttgen, Maik C; Güntürkün, Onur

    2018-05-02

    Extinction learning is an essential mechanism that enables constant adaptation to ever-changing environmental conditions. The underlying neural circuit is mostly studied with rodent models using auditory cued fear conditioning. In order to uncover the variant and the invariant neural properties of extinction learning, we adopted pigeons as an animal model in an appetitive sign-tracking paradigm. The animals firstly learned to respond to two conditioned stimuli in two different contexts (CS-1 in context A and CS-2 in context B), before conditioned responses to the stimuli were extinguished in the opposite contexts (CS-1 in context B and CS-2 in context A). Subsequently, responding to both stimuli was tested in both contexts. Prior to extinction training, we locally injected the N-methyl-d-aspartate receptor (NMDAR) antagonist 2-Amino-5-phosphonovaleric acid (APV) in either the amygdala or the (pre)motor arcopallium to investigate their involvement in extinction learning. Our findings suggest that the encoding of extinction memory required the activation of amygdala, as visible by an impairment of extinction acquisition by concurrent inactivation of local NMDARs. In contrast, consolidation and subsequent retrieval of extinction memory recruited the (pre)motor arcopallium. Also, the inactivation of arcopallial NMDARs induced a general motoric slowing during extinction training. Thus, our results reveal a double dissociation between arcopallium and amygdala with respect to acquisition and consolidation of extinction, respectively. Our study therefore provides new insights on the two key components of the avian extinction network and their resemblance to the data obtained from mammals, possibly indicating a shared neural mechanism underlying extinction learning shaped by evolution. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Identity motives underlying desired and feared possible future selves.

    PubMed

    Vignoles, Vivian L; Manzi, Claudia; Regalia, Camillo; Jemmolo, Simone; Scabini, Eugenia

    2008-10-01

    Desired and feared possible future selves are important motivators of behavior and provide a temporal context for self-evaluation. Yet little research has examined why people desire some possible selves and fear others. In two studies, we tested the reflection of identity motives for self-esteem, efficacy, meaning, continuity, belonging, and distinctiveness in people's desired and feared possible future selves and in their possible future identity structures. As predicted, participants desired especially those possible futures in which motives for self-esteem, efficacy, meaning, and continuity would be satisfied, and they feared especially those in which the same four motives and, marginally, the motive for distinctiveness would be frustrated. Analyses supported an indirect path from belonging via self-esteem to desire and fear. Desired and feared possible future selves reflect potential satisfaction and frustration of these identity motives.

  18. Fear and Loving in Las Vegas: Evolution, Emotion, and Persuasion

    PubMed Central

    Griskevicius, Vladas; Goldstein, Noah J.; Mortensen, Chad R.; Sundie, Jill M.; Cialdini, Robert B.; Kenrick, Douglas T.

    2009-01-01

    How do arousal-inducing contexts, such as frightening or romantic television programs, influence the effectiveness of basic persuasion heuristics? Different predictions are made by three theoretical models: A general arousal model predicts that arousal should increase effectiveness of heuristics; an affective valence model predicts that effectiveness should depend on whether the context elicits positive or negative affect; an evolutionary model predicts that persuasiveness should depend on both the specific emotion that is elicited and the content of the particular heuristic. Three experiments examined how fear-inducing versus romantic contexts influenced the effectiveness of two widely used heuristics—social proof (e.g., “most popular”) and scarcity (e.g., “limited edition”). Results supported predictions from an evolutionary model, showing that fear can lead scarcity appeals to be counter-persuasive, and that romantic desire can lead social proof appeals to be counter-persuasive. The findings highlight how an evolutionary theoretical approach can lead to novel theoretical and practical marketing insights. PMID:19727416

  19. Dynamic expression of FKBP5 in the medial prefrontal cortex regulates resiliency to conditioned fear

    PubMed Central

    Criado-Marrero, Marangelie; Morales Silva, Roberto J.; Velazquez, Bethzaly; Hernández, Anixa; Colon, María; Cruz, Emmanuel; Soler-Cedeño, Omar; Porter, James T.

    2017-01-01

    The factors influencing resiliency to the development of post-traumatic stress disorder (PTSD) remain to be elucidated. Clinical studies associate PTSD with polymorphisms of the FK506 binding protein 5 (FKBP5). However, it is unclear whether changes in FKBP5 expression alone could produce resiliency or susceptibility to PTSD-like symptoms. In this study, we used rats as an animal model to examine whether FKBP5 in the infralimbic (IL) or prelimbic (PL) medial prefrontal cortex regulates fear conditioning or extinction. First, we examined FKBP5 expression in IL and PL during fear conditioning or extinction. In contrast to the stable expression of FKBP5 seen in PL, FKBP5 expression in IL increased after fear conditioning and remained elevated even after extinction suggesting that IL FKBP5 levels may modulate fear conditioning or extinction. Consistent with this possibility, reducing basal FKBP5 expression via local infusion of FKBP5–shRNA into IL reduced fear conditioning. Furthermore, reducing IL FKBP5, after consolidation of the fear memory, enhanced extinction memory indicating that IL FKBP5 opposed formation of the extinction memory. Our findings demonstrate that lowering FKBP5 expression in IL is sufficient to both reduce fear acquisition and enhance extinction, and suggest that lower expression of FKBP5 in the ventral medial prefrontal cortex could contribute to resiliency to PTSD. PMID:28298552

  20. Intranasal Cotinine Plus Krill Oil Facilitates Fear Extinction, Decreases Depressive-Like Behavior, and Increases Hippocampal Calcineurin A Levels in Mice.

    PubMed

    Alvarez-Ricartes, Nathalie; Oliveros-Matus, Patricia; Mendoza, Cristhian; Perez-Urrutia, Nelson; Echeverria, Florencia; Iarkov, Alexandre; Barreto, George E; Echeverria, Valentina

    2018-02-27

    Failure in fear extinction is one of the more troublesome characteristics of posttraumatic stress disorder (PTSD). Cotinine facilitates fear memory extinction and reduces depressive-like behavior when administered 24 h after fear conditioning in mice. In this study, it was investigated the behavioral and molecular effects of cotinine, and other antidepressant preparations infused intranasally. Intranasal (IN) cotinine, IN krill oil, IN cotinine plus krill oil, and oral sertraline were evaluated on depressive-like behavior and fear retention and extinction after fear conditioning in C57BL/6 mice. Since calcineurin A has been involved in facilitating fear extinction in rodents, we also investigated changes of calcineurin in the hippocampus, a region key on contextual fear extinction. Short-term treatment with cotinine formulations was superior to krill oil and oral sertraline in reducing depressive-like behavior and fear consolidation and enhancing contextual fear memory extinction in mice. IN krill oil slowed the extinction of fear. IN cotinine preparations increased the levels of calcineurin A in the hippocampus of conditioned mice. In the light of the results, the future investigation of the use of IN cotinine preparations for the extinction of contextual fear memory and treatment of treatment-resistant depression (TRD) in PTSD is discussed.

Top