ERIC Educational Resources Information Center
Mei, Qiaozhu
2009-01-01
With the dramatic growth of text information, there is an increasing need for powerful text mining systems that can automatically discover useful knowledge from text. Text is generally associated with all kinds of contextual information. Those contexts can be explicit, such as the time and the location where a blog article is written, and the…
Text Mining in Organizational Research
Kobayashi, Vladimer B.; Berkers, Hannah A.; Kismihók, Gábor; Den Hartog, Deanne N.
2017-01-01
Despite the ubiquity of textual data, so far few researchers have applied text mining to answer organizational research questions. Text mining, which essentially entails a quantitative approach to the analysis of (usually) voluminous textual data, helps accelerate knowledge discovery by radically increasing the amount data that can be analyzed. This article aims to acquaint organizational researchers with the fundamental logic underpinning text mining, the analytical stages involved, and contemporary techniques that may be used to achieve different types of objectives. The specific analytical techniques reviewed are (a) dimensionality reduction, (b) distance and similarity computing, (c) clustering, (d) topic modeling, and (e) classification. We describe how text mining may extend contemporary organizational research by allowing the testing of existing or new research questions with data that are likely to be rich, contextualized, and ecologically valid. After an exploration of how evidence for the validity of text mining output may be generated, we conclude the article by illustrating the text mining process in a job analysis setting using a dataset composed of job vacancies. PMID:29881248
Text Mining in Organizational Research.
Kobayashi, Vladimer B; Mol, Stefan T; Berkers, Hannah A; Kismihók, Gábor; Den Hartog, Deanne N
2018-07-01
Despite the ubiquity of textual data, so far few researchers have applied text mining to answer organizational research questions. Text mining, which essentially entails a quantitative approach to the analysis of (usually) voluminous textual data, helps accelerate knowledge discovery by radically increasing the amount data that can be analyzed. This article aims to acquaint organizational researchers with the fundamental logic underpinning text mining, the analytical stages involved, and contemporary techniques that may be used to achieve different types of objectives. The specific analytical techniques reviewed are (a) dimensionality reduction, (b) distance and similarity computing, (c) clustering, (d) topic modeling, and (e) classification. We describe how text mining may extend contemporary organizational research by allowing the testing of existing or new research questions with data that are likely to be rich, contextualized, and ecologically valid. After an exploration of how evidence for the validity of text mining output may be generated, we conclude the article by illustrating the text mining process in a job analysis setting using a dataset composed of job vacancies.
Chemical named entities recognition: a review on approaches and applications.
Eltyeb, Safaa; Salim, Naomie
2014-01-01
The rapid increase in the flow rate of published digital information in all disciplines has resulted in a pressing need for techniques that can simplify the use of this information. The chemistry literature is very rich with information about chemical entities. Extracting molecules and their related properties and activities from the scientific literature to "text mine" these extracted data and determine contextual relationships helps research scientists, particularly those in drug development. One of the most important challenges in chemical text mining is the recognition of chemical entities mentioned in the texts. In this review, the authors briefly introduce the fundamental concepts of chemical literature mining, the textual contents of chemical documents, and the methods of naming chemicals in documents. We sketch out dictionary-based, rule-based and machine learning, as well as hybrid chemical named entity recognition approaches with their applied solutions. We end with an outlook on the pros and cons of these approaches and the types of chemical entities extracted.
O'Mara-Eves, Alison; Thomas, James; McNaught, John; Miwa, Makoto; Ananiadou, Sophia
2015-01-14
The large and growing number of published studies, and their increasing rate of publication, makes the task of identifying relevant studies in an unbiased way for inclusion in systematic reviews both complex and time consuming. Text mining has been offered as a potential solution: through automating some of the screening process, reviewer time can be saved. The evidence base around the use of text mining for screening has not yet been pulled together systematically; this systematic review fills that research gap. Focusing mainly on non-technical issues, the review aims to increase awareness of the potential of these technologies and promote further collaborative research between the computer science and systematic review communities. Five research questions led our review: what is the state of the evidence base; how has workload reduction been evaluated; what are the purposes of semi-automation and how effective are they; how have key contextual problems of applying text mining to the systematic review field been addressed; and what challenges to implementation have emerged? We answered these questions using standard systematic review methods: systematic and exhaustive searching, quality-assured data extraction and a narrative synthesis to synthesise findings. The evidence base is active and diverse; there is almost no replication between studies or collaboration between research teams and, whilst it is difficult to establish any overall conclusions about best approaches, it is clear that efficiencies and reductions in workload are potentially achievable. On the whole, most suggested that a saving in workload of between 30% and 70% might be possible, though sometimes the saving in workload is accompanied by the loss of 5% of relevant studies (i.e. a 95% recall). Using text mining to prioritise the order in which items are screened should be considered safe and ready for use in 'live' reviews. The use of text mining as a 'second screener' may also be used cautiously. The use of text mining to eliminate studies automatically should be considered promising, but not yet fully proven. In highly technical/clinical areas, it may be used with a high degree of confidence; but more developmental and evaluative work is needed in other disciplines.
Chemical named entities recognition: a review on approaches and applications
2014-01-01
The rapid increase in the flow rate of published digital information in all disciplines has resulted in a pressing need for techniques that can simplify the use of this information. The chemistry literature is very rich with information about chemical entities. Extracting molecules and their related properties and activities from the scientific literature to “text mine” these extracted data and determine contextual relationships helps research scientists, particularly those in drug development. One of the most important challenges in chemical text mining is the recognition of chemical entities mentioned in the texts. In this review, the authors briefly introduce the fundamental concepts of chemical literature mining, the textual contents of chemical documents, and the methods of naming chemicals in documents. We sketch out dictionary-based, rule-based and machine learning, as well as hybrid chemical named entity recognition approaches with their applied solutions. We end with an outlook on the pros and cons of these approaches and the types of chemical entities extracted. PMID:24834132
Socio-contextual Network Mining for User Assistance in Web-based Knowledge Gathering Tasks
NASA Astrophysics Data System (ADS)
Rajendran, Balaji; Kombiah, Iyakutti
Web-based Knowledge Gathering (WKG) is a specialized and complex information seeking task carried out by many users on the web, for their various learning, and decision-making requirements. We construct a contextual semantic structure by observing the actions of the users involved in WKG task, in order to gain an understanding of their task and requirement. We also build a knowledge warehouse in the form of a master Semantic Link Network (SLX) that accommodates and assimilates all the contextual semantic structures. This master SLX, which is a socio-contextual network, is then mined to provide contextual inputs to the current users through their agents. We validated our approach through experiments and analyzed the benefits to the users in terms of resource explorations and the time saved. The results are positive enough to motivate us to implement in a larger scale.
Extracting semantically enriched events from biomedical literature
2012-01-01
Background Research into event-based text mining from the biomedical literature has been growing in popularity to facilitate the development of advanced biomedical text mining systems. Such technology permits advanced search, which goes beyond document or sentence-based retrieval. However, existing event-based systems typically ignore additional information within the textual context of events that can determine, amongst other things, whether an event represents a fact, hypothesis, experimental result or analysis of results, whether it describes new or previously reported knowledge, and whether it is speculated or negated. We refer to such contextual information as meta-knowledge. The automatic recognition of such information can permit the training of systems allowing finer-grained searching of events according to the meta-knowledge that is associated with them. Results Based on a corpus of 1,000 MEDLINE abstracts, fully manually annotated with both events and associated meta-knowledge, we have constructed a machine learning-based system that automatically assigns meta-knowledge information to events. This system has been integrated into EventMine, a state-of-the-art event extraction system, in order to create a more advanced system (EventMine-MK) that not only extracts events from text automatically, but also assigns five different types of meta-knowledge to these events. The meta-knowledge assignment module of EventMine-MK performs with macro-averaged F-scores in the range of 57-87% on the BioNLP’09 Shared Task corpus. EventMine-MK has been evaluated on the BioNLP’09 Shared Task subtask of detecting negated and speculated events. Our results show that EventMine-MK can outperform other state-of-the-art systems that participated in this task. Conclusions We have constructed the first practical system that extracts both events and associated, detailed meta-knowledge information from biomedical literature. The automatically assigned meta-knowledge information can be used to refine search systems, in order to provide an extra search layer beyond entities and assertions, dealing with phenomena such as rhetorical intent, speculations, contradictions and negations. This finer grained search functionality can assist in several important tasks, e.g., database curation (by locating new experimental knowledge) and pathway enrichment (by providing information for inference). To allow easy integration into text mining systems, EventMine-MK is provided as a UIMA component that can be used in the interoperable text mining infrastructure, U-Compare. PMID:22621266
Extracting semantically enriched events from biomedical literature.
Miwa, Makoto; Thompson, Paul; McNaught, John; Kell, Douglas B; Ananiadou, Sophia
2012-05-23
Research into event-based text mining from the biomedical literature has been growing in popularity to facilitate the development of advanced biomedical text mining systems. Such technology permits advanced search, which goes beyond document or sentence-based retrieval. However, existing event-based systems typically ignore additional information within the textual context of events that can determine, amongst other things, whether an event represents a fact, hypothesis, experimental result or analysis of results, whether it describes new or previously reported knowledge, and whether it is speculated or negated. We refer to such contextual information as meta-knowledge. The automatic recognition of such information can permit the training of systems allowing finer-grained searching of events according to the meta-knowledge that is associated with them. Based on a corpus of 1,000 MEDLINE abstracts, fully manually annotated with both events and associated meta-knowledge, we have constructed a machine learning-based system that automatically assigns meta-knowledge information to events. This system has been integrated into EventMine, a state-of-the-art event extraction system, in order to create a more advanced system (EventMine-MK) that not only extracts events from text automatically, but also assigns five different types of meta-knowledge to these events. The meta-knowledge assignment module of EventMine-MK performs with macro-averaged F-scores in the range of 57-87% on the BioNLP'09 Shared Task corpus. EventMine-MK has been evaluated on the BioNLP'09 Shared Task subtask of detecting negated and speculated events. Our results show that EventMine-MK can outperform other state-of-the-art systems that participated in this task. We have constructed the first practical system that extracts both events and associated, detailed meta-knowledge information from biomedical literature. The automatically assigned meta-knowledge information can be used to refine search systems, in order to provide an extra search layer beyond entities and assertions, dealing with phenomena such as rhetorical intent, speculations, contradictions and negations. This finer grained search functionality can assist in several important tasks, e.g., database curation (by locating new experimental knowledge) and pathway enrichment (by providing information for inference). To allow easy integration into text mining systems, EventMine-MK is provided as a UIMA component that can be used in the interoperable text mining infrastructure, U-Compare.
Chen, Annie T; Zhu, Shu-Hong; Conway, Mike
2015-09-29
The rise in popularity of electronic cigarettes (e-cigarettes) and hookah over recent years has been accompanied by some confusion and uncertainty regarding the development of an appropriate regulatory response towards these emerging products. Mining online discussion content can lead to insights into people's experiences, which can in turn further our knowledge of how to address potential health implications. In this work, we take a novel approach to understanding the use and appeal of these emerging products by applying text mining techniques to compare consumer experiences across discussion forums. This study examined content from the websites Vapor Talk, Hookah Forum, and Reddit to understand people's experiences with different tobacco products. Our investigation involves three parts. First, we identified contextual factors that inform our understanding of tobacco use behaviors, such as setting, time, social relationships, and sensory experience, and compared the forums to identify the ones where content on these factors is most common. Second, we compared how the tobacco use experience differs with combustible cigarettes and e-cigarettes. Third, we investigated differences between e-cigarette and hookah use. In the first part of our study, we employed a lexicon-based extraction approach to estimate prevalence of contextual factors, and then we generated a heat map based on these estimates to compare the forums. In the second and third parts of the study, we employed a text mining technique called topic modeling to identify important topics and then developed a visualization, Topic Bars, to compare topic coverage across forums. In the first part of the study, we identified two forums, Vapor Talk Health & Safety and the Stopsmoking subreddit, where discussion concerning contextual factors was particularly common. The second part showed that the discussion in Vapor Talk Health & Safety focused on symptoms and comparisons of combustible cigarettes and e-cigarettes, and the Stopsmoking subreddit focused on psychological aspects of quitting. Last, we examined the discussion content on Vapor Talk and Hookah Forum. Prominent topics included equipment, technique, experiential elements of use, and the buying and selling of equipment. This study has three main contributions. Discussion forums differ in the extent to which their content may help us understand behaviors with potential health implications. Identifying dimensions of interest and using a heat map visualization to compare across forums can be helpful for identifying forums with the greatest density of health information. Additionally, our work has shown that the quitting experience can potentially be very different depending on whether or not e-cigarettes are used. Finally, e-cigarette and hookah forums are similar in that members represent a "hobbyist culture" that actively engages in information exchange. These differences have important implications for both tobacco regulation and smoking cessation intervention design.
A Contextualized, Differential Sequence Mining Method to Derive Students' Learning Behavior Patterns
ERIC Educational Resources Information Center
Kinnebrew, John S.; Loretz, Kirk M.; Biswas, Gautam
2013-01-01
Computer-based learning environments can produce a wealth of data on student learning interactions. This paper presents an exploratory data mining methodology for assessing and comparing students' learning behaviors from these interaction traces. The core algorithm employs a novel combination of sequence mining techniques to identify deferentially…
Mining Context-Aware Association Rules Using Grammar-Based Genetic Programming.
Luna, Jose Maria; Pechenizkiy, Mykola; Del Jesus, Maria Jose; Ventura, Sebastian
2017-09-25
Real-world data usually comprise features whose interpretation depends on some contextual information. Such contextual-sensitive features and patterns are of high interest to be discovered and analyzed in order to obtain the right meaning. This paper formulates the problem of mining context-aware association rules, which refers to the search for associations between itemsets such that the strength of their implication depends on a contextual feature. For the discovery of this type of associations, a model that restricts the search space and includes syntax constraints by means of a grammar-based genetic programming methodology is proposed. Grammars can be considered as a useful way of introducing subjective knowledge to the pattern mining process as they are highly related to the background knowledge of the user. The performance and usefulness of the proposed approach is examined by considering synthetically generated datasets. A posteriori analysis on different domains is also carried out to demonstrate the utility of this kind of associations. For example, in educational domains, it is essential to identify and understand contextual and context-sensitive factors that affect overall and individual student behavior and performance. The results of the experiments suggest that the approach is feasible and it automatically identifies interesting context-aware associations from real-world datasets.
ERIC Educational Resources Information Center
Kinnebrew, John S.; Biswas, Gautam
2012-01-01
Our learning-by-teaching environment, Betty's Brain, captures a wealth of data on students' learning interactions as they teach a virtual agent. This paper extends an exploratory data mining methodology for assessing and comparing students' learning behaviors from these interaction traces. The core algorithm employs sequence mining techniques to…
Zhu, Shu-Hong; Conway, Mike
2015-01-01
Background The rise in popularity of electronic cigarettes (e-cigarettes) and hookah over recent years has been accompanied by some confusion and uncertainty regarding the development of an appropriate regulatory response towards these emerging products. Mining online discussion content can lead to insights into people’s experiences, which can in turn further our knowledge of how to address potential health implications. In this work, we take a novel approach to understanding the use and appeal of these emerging products by applying text mining techniques to compare consumer experiences across discussion forums. Objective This study examined content from the websites Vapor Talk, Hookah Forum, and Reddit to understand people’s experiences with different tobacco products. Our investigation involves three parts. First, we identified contextual factors that inform our understanding of tobacco use behaviors, such as setting, time, social relationships, and sensory experience, and compared the forums to identify the ones where content on these factors is most common. Second, we compared how the tobacco use experience differs with combustible cigarettes and e-cigarettes. Third, we investigated differences between e-cigarette and hookah use. Methods In the first part of our study, we employed a lexicon-based extraction approach to estimate prevalence of contextual factors, and then we generated a heat map based on these estimates to compare the forums. In the second and third parts of the study, we employed a text mining technique called topic modeling to identify important topics and then developed a visualization, Topic Bars, to compare topic coverage across forums. Results In the first part of the study, we identified two forums, Vapor Talk Health & Safety and the Stopsmoking subreddit, where discussion concerning contextual factors was particularly common. The second part showed that the discussion in Vapor Talk Health & Safety focused on symptoms and comparisons of combustible cigarettes and e-cigarettes, and the Stopsmoking subreddit focused on psychological aspects of quitting. Last, we examined the discussion content on Vapor Talk and Hookah Forum. Prominent topics included equipment, technique, experiential elements of use, and the buying and selling of equipment. Conclusions This study has three main contributions. Discussion forums differ in the extent to which their content may help us understand behaviors with potential health implications. Identifying dimensions of interest and using a heat map visualization to compare across forums can be helpful for identifying forums with the greatest density of health information. Additionally, our work has shown that the quitting experience can potentially be very different depending on whether or not e-cigarettes are used. Finally, e-cigarette and hookah forums are similar in that members represent a “hobbyist culture” that actively engages in information exchange. These differences have important implications for both tobacco regulation and smoking cessation intervention design. PMID:26420469
Spectral signature verification using statistical analysis and text mining
NASA Astrophysics Data System (ADS)
DeCoster, Mallory E.; Firpi, Alexe H.; Jacobs, Samantha K.; Cone, Shelli R.; Tzeng, Nigel H.; Rodriguez, Benjamin M.
2016-05-01
In the spectral science community, numerous spectral signatures are stored in databases representative of many sample materials collected from a variety of spectrometers and spectroscopists. Due to the variety and variability of the spectra that comprise many spectral databases, it is necessary to establish a metric for validating the quality of spectral signatures. This has been an area of great discussion and debate in the spectral science community. This paper discusses a method that independently validates two different aspects of a spectral signature to arrive at a final qualitative assessment; the textual meta-data and numerical spectral data. Results associated with the spectral data stored in the Signature Database1 (SigDB) are proposed. The numerical data comprising a sample material's spectrum is validated based on statistical properties derived from an ideal population set. The quality of the test spectrum is ranked based on a spectral angle mapper (SAM) comparison to the mean spectrum derived from the population set. Additionally, the contextual data of a test spectrum is qualitatively analyzed using lexical analysis text mining. This technique analyzes to understand the syntax of the meta-data to provide local learning patterns and trends within the spectral data, indicative of the test spectrum's quality. Text mining applications have successfully been implemented for security2 (text encryption/decryption), biomedical3 , and marketing4 applications. The text mining lexical analysis algorithm is trained on the meta-data patterns of a subset of high and low quality spectra, in order to have a model to apply to the entire SigDB data set. The statistical and textual methods combine to assess the quality of a test spectrum existing in a database without the need of an expert user. This method has been compared to other validation methods accepted by the spectral science community, and has provided promising results when a baseline spectral signature is present for comparison. The spectral validation method proposed is described from a practical application and analytical perspective.
Davis, Allan Peter; Wiegers, Thomas C.; Roberts, Phoebe M.; King, Benjamin L.; Lay, Jean M.; Lennon-Hopkins, Kelley; Sciaky, Daniela; Johnson, Robin; Keating, Heather; Greene, Nigel; Hernandez, Robert; McConnell, Kevin J.; Enayetallah, Ahmed E.; Mattingly, Carolyn J.
2013-01-01
Improving the prediction of chemical toxicity is a goal common to both environmental health research and pharmaceutical drug development. To improve safety detection assays, it is critical to have a reference set of molecules with well-defined toxicity annotations for training and validation purposes. Here, we describe a collaboration between safety researchers at Pfizer and the research team at the Comparative Toxicogenomics Database (CTD) to text mine and manually review a collection of 88 629 articles relating over 1 200 pharmaceutical drugs to their potential involvement in cardiovascular, neurological, renal and hepatic toxicity. In 1 year, CTD biocurators curated 2 54 173 toxicogenomic interactions (1 52 173 chemical–disease, 58 572 chemical–gene, 5 345 gene–disease and 38 083 phenotype interactions). All chemical–gene–disease interactions are fully integrated with public CTD, and phenotype interactions can be downloaded. We describe Pfizer’s text-mining process to collate the articles, and CTD’s curation strategy, performance metrics, enhanced data content and new module to curate phenotype information. As well, we show how data integration can connect phenotypes to diseases. This curation can be leveraged for information about toxic endpoints important to drug safety and help develop testable hypotheses for drug–disease events. The availability of these detailed, contextualized, high-quality annotations curated from seven decades’ worth of the scientific literature should help facilitate new mechanistic screening assays for pharmaceutical compound survival. This unique partnership demonstrates the importance of resource sharing and collaboration between public and private entities and underscores the complementary needs of the environmental health science and pharmaceutical communities. Database URL: http://ctdbase.org/ PMID:24288140
Davis, Allan Peter; Wiegers, Thomas C; Roberts, Phoebe M; King, Benjamin L; Lay, Jean M; Lennon-Hopkins, Kelley; Sciaky, Daniela; Johnson, Robin; Keating, Heather; Greene, Nigel; Hernandez, Robert; McConnell, Kevin J; Enayetallah, Ahmed E; Mattingly, Carolyn J
2013-01-01
Improving the prediction of chemical toxicity is a goal common to both environmental health research and pharmaceutical drug development. To improve safety detection assays, it is critical to have a reference set of molecules with well-defined toxicity annotations for training and validation purposes. Here, we describe a collaboration between safety researchers at Pfizer and the research team at the Comparative Toxicogenomics Database (CTD) to text mine and manually review a collection of 88,629 articles relating over 1,200 pharmaceutical drugs to their potential involvement in cardiovascular, neurological, renal and hepatic toxicity. In 1 year, CTD biocurators curated 254,173 toxicogenomic interactions (152,173 chemical-disease, 58,572 chemical-gene, 5,345 gene-disease and 38,083 phenotype interactions). All chemical-gene-disease interactions are fully integrated with public CTD, and phenotype interactions can be downloaded. We describe Pfizer's text-mining process to collate the articles, and CTD's curation strategy, performance metrics, enhanced data content and new module to curate phenotype information. As well, we show how data integration can connect phenotypes to diseases. This curation can be leveraged for information about toxic endpoints important to drug safety and help develop testable hypotheses for drug-disease events. The availability of these detailed, contextualized, high-quality annotations curated from seven decades' worth of the scientific literature should help facilitate new mechanistic screening assays for pharmaceutical compound survival. This unique partnership demonstrates the importance of resource sharing and collaboration between public and private entities and underscores the complementary needs of the environmental health science and pharmaceutical communities. Database URL: http://ctdbase.org/
Enriching consumer health vocabulary through mining a social Q&A site: A similarity-based approach.
He, Zhe; Chen, Zhiwei; Oh, Sanghee; Hou, Jinghui; Bian, Jiang
2017-05-01
The widely known vocabulary gap between health consumers and healthcare professionals hinders information seeking and health dialogue of consumers on end-user health applications. The Open Access and Collaborative Consumer Health Vocabulary (OAC CHV), which contains health-related terms used by lay consumers, has been created to bridge such a gap. Specifically, the OAC CHV facilitates consumers' health information retrieval by enabling consumer-facing health applications to translate between professional language and consumer friendly language. To keep up with the constantly evolving medical knowledge and language use, new terms need to be identified and added to the OAC CHV. User-generated content on social media, including social question and answer (social Q&A) sites, afford us an enormous opportunity in mining consumer health terms. Existing methods of identifying new consumer terms from text typically use ad-hoc lexical syntactic patterns and human review. Our study extends an existing method by extracting n-grams from a social Q&A textual corpus and representing them with a rich set of contextual and syntactic features. Using K-means clustering, our method, simiTerm, was able to identify terms that are both contextually and syntactically similar to the existing OAC CHV terms. We tested our method on social Q&A corpora on two disease domains: diabetes and cancer. Our method outperformed three baseline ranking methods. A post-hoc qualitative evaluation by human experts further validated that our method can effectively identify meaningful new consumer terms on social Q&A. Copyright © 2017 Elsevier Inc. All rights reserved.
Enriching semantic knowledge bases for opinion mining in big data applications.
Weichselbraun, A; Gindl, S; Scharl, A
2014-10-01
This paper presents a novel method for contextualizing and enriching large semantic knowledge bases for opinion mining with a focus on Web intelligence platforms and other high-throughput big data applications. The method is not only applicable to traditional sentiment lexicons, but also to more comprehensive, multi-dimensional affective resources such as SenticNet. It comprises the following steps: (i) identify ambiguous sentiment terms, (ii) provide context information extracted from a domain-specific training corpus, and (iii) ground this contextual information to structured background knowledge sources such as ConceptNet and WordNet. A quantitative evaluation shows a significant improvement when using an enriched version of SenticNet for polarity classification. Crowdsourced gold standard data in conjunction with a qualitative evaluation sheds light on the strengths and weaknesses of the concept grounding, and on the quality of the enrichment process.
Enriching semantic knowledge bases for opinion mining in big data applications
Weichselbraun, A.; Gindl, S.; Scharl, A.
2014-01-01
This paper presents a novel method for contextualizing and enriching large semantic knowledge bases for opinion mining with a focus on Web intelligence platforms and other high-throughput big data applications. The method is not only applicable to traditional sentiment lexicons, but also to more comprehensive, multi-dimensional affective resources such as SenticNet. It comprises the following steps: (i) identify ambiguous sentiment terms, (ii) provide context information extracted from a domain-specific training corpus, and (iii) ground this contextual information to structured background knowledge sources such as ConceptNet and WordNet. A quantitative evaluation shows a significant improvement when using an enriched version of SenticNet for polarity classification. Crowdsourced gold standard data in conjunction with a qualitative evaluation sheds light on the strengths and weaknesses of the concept grounding, and on the quality of the enrichment process. PMID:25431524
Text Mining in Biomedical Domain with Emphasis on Document Clustering.
Renganathan, Vinaitheerthan
2017-07-01
With the exponential increase in the number of articles published every year in the biomedical domain, there is a need to build automated systems to extract unknown information from the articles published. Text mining techniques enable the extraction of unknown knowledge from unstructured documents. This paper reviews text mining processes in detail and the software tools available to carry out text mining. It also reviews the roles and applications of text mining in the biomedical domain. Text mining processes, such as search and retrieval of documents, pre-processing of documents, natural language processing, methods for text clustering, and methods for text classification are described in detail. Text mining techniques can facilitate the mining of vast amounts of knowledge on a given topic from published biomedical research articles and draw meaningful conclusions that are not possible otherwise.
Context-Aware Recommender Systems
NASA Astrophysics Data System (ADS)
Adomavicius, Gediminas; Tuzhilin, Alexander
The importance of contextual information has been recognized by researchers and practitioners in many disciplines, including e-commerce personalization, information retrieval, ubiquitous and mobile computing, data mining, marketing, and management. While a substantial amount of research has already been performed in the area of recommender systems, most existing approaches focus on recommending the most relevant items to users without taking into account any additional contextual information, such as time, location, or the company of other people (e.g., for watching movies or dining out). In this chapter we argue that relevant contextual information does matter in recommender systems and that it is important to take this information into account when providing recommendations. We discuss the general notion of context and how it can be modeled in recommender systems. Furthermore, we introduce three different algorithmic paradigms - contextual prefiltering, post-filtering, and modeling - for incorporating contextual information into the recommendation process, discuss the possibilities of combining several contextaware recommendation techniques into a single unifying approach, and provide a case study of one such combined approach. Finally, we present additional capabilities for context-aware recommenders and discuss important and promising directions for future research.
Text Mining in Biomedical Domain with Emphasis on Document Clustering
2017-01-01
Objectives With the exponential increase in the number of articles published every year in the biomedical domain, there is a need to build automated systems to extract unknown information from the articles published. Text mining techniques enable the extraction of unknown knowledge from unstructured documents. Methods This paper reviews text mining processes in detail and the software tools available to carry out text mining. It also reviews the roles and applications of text mining in the biomedical domain. Results Text mining processes, such as search and retrieval of documents, pre-processing of documents, natural language processing, methods for text clustering, and methods for text classification are described in detail. Conclusions Text mining techniques can facilitate the mining of vast amounts of knowledge on a given topic from published biomedical research articles and draw meaningful conclusions that are not possible otherwise. PMID:28875048
Using uncertainty to link and rank evidence from biomedical literature for model curation
Zerva, Chrysoula; Batista-Navarro, Riza; Day, Philip; Ananiadou, Sophia
2017-01-01
Abstract Motivation In recent years, there has been great progress in the field of automated curation of biomedical networks and models, aided by text mining methods that provide evidence from literature. Such methods must not only extract snippets of text that relate to model interactions, but also be able to contextualize the evidence and provide additional confidence scores for the interaction in question. Although various approaches calculating confidence scores have focused primarily on the quality of the extracted information, there has been little work on exploring the textual uncertainty conveyed by the author. Despite textual uncertainty being acknowledged in biomedical text mining as an attribute of text mined interactions (events), it is significantly understudied as a means of providing a confidence measure for interactions in pathways or other biomedical models. In this work, we focus on improving identification of textual uncertainty for events and explore how it can be used as an additional measure of confidence for biomedical models. Results We present a novel method for extracting uncertainty from the literature using a hybrid approach that combines rule induction and machine learning. Variations of this hybrid approach are then discussed, alongside their advantages and disadvantages. We use subjective logic theory to combine multiple uncertainty values extracted from different sources for the same interaction. Our approach achieves F-scores of 0.76 and 0.88 based on the BioNLP-ST and Genia-MK corpora, respectively, making considerable improvements over previously published work. Moreover, we evaluate our proposed system on pathways related to two different areas, namely leukemia and melanoma cancer research. Availability and implementation The leukemia pathway model used is available in Pathway Studio while the Ras model is available via PathwayCommons. Online demonstration of the uncertainty extraction system is available for research purposes at http://argo.nactem.ac.uk/test. The related code is available on https://github.com/c-zrv/uncertainty_components.git. Details on the above are available in the Supplementary Material. Contact sophia.ananiadou@manchester.ac.uk Supplementary information Supplementary data are available at Bioinformatics online. PMID:29036627
Using uncertainty to link and rank evidence from biomedical literature for model curation.
Zerva, Chrysoula; Batista-Navarro, Riza; Day, Philip; Ananiadou, Sophia
2017-12-01
In recent years, there has been great progress in the field of automated curation of biomedical networks and models, aided by text mining methods that provide evidence from literature. Such methods must not only extract snippets of text that relate to model interactions, but also be able to contextualize the evidence and provide additional confidence scores for the interaction in question. Although various approaches calculating confidence scores have focused primarily on the quality of the extracted information, there has been little work on exploring the textual uncertainty conveyed by the author. Despite textual uncertainty being acknowledged in biomedical text mining as an attribute of text mined interactions (events), it is significantly understudied as a means of providing a confidence measure for interactions in pathways or other biomedical models. In this work, we focus on improving identification of textual uncertainty for events and explore how it can be used as an additional measure of confidence for biomedical models. We present a novel method for extracting uncertainty from the literature using a hybrid approach that combines rule induction and machine learning. Variations of this hybrid approach are then discussed, alongside their advantages and disadvantages. We use subjective logic theory to combine multiple uncertainty values extracted from different sources for the same interaction. Our approach achieves F-scores of 0.76 and 0.88 based on the BioNLP-ST and Genia-MK corpora, respectively, making considerable improvements over previously published work. Moreover, we evaluate our proposed system on pathways related to two different areas, namely leukemia and melanoma cancer research. The leukemia pathway model used is available in Pathway Studio while the Ras model is available via PathwayCommons. Online demonstration of the uncertainty extraction system is available for research purposes at http://argo.nactem.ac.uk/test. The related code is available on https://github.com/c-zrv/uncertainty_components.git. Details on the above are available in the Supplementary Material. sophia.ananiadou@manchester.ac.uk. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.
Pressing needs of biomedical text mining in biocuration and beyond: opportunities and challenges
Singhal, Ayush; Leaman, Robert; Catlett, Natalie; Lemberger, Thomas; McEntyre, Johanna; Polson, Shawn; Xenarios, Ioannis; Arighi, Cecilia; Lu, Zhiyong
2016-01-01
Text mining in the biomedical sciences is rapidly transitioning from small-scale evaluation to large-scale application. In this article, we argue that text-mining technologies have become essential tools in real-world biomedical research. We describe four large scale applications of text mining, as showcased during a recent panel discussion at the BioCreative V Challenge Workshop. We draw on these applications as case studies to characterize common requirements for successfully applying text-mining techniques to practical biocuration needs. We note that system ‘accuracy’ remains a challenge and identify several additional common difficulties and potential research directions including (i) the ‘scalability’ issue due to the increasing need of mining information from millions of full-text articles, (ii) the ‘interoperability’ issue of integrating various text-mining systems into existing curation workflows and (iii) the ‘reusability’ issue on the difficulty of applying trained systems to text genres that are not seen previously during development. We then describe related efforts within the text-mining community, with a special focus on the BioCreative series of challenge workshops. We believe that focusing on the near-term challenges identified in this work will amplify the opportunities afforded by the continued adoption of text-mining tools. Finally, in order to sustain the curation ecosystem and have text-mining systems adopted for practical benefits, we call for increased collaboration between text-mining researchers and various stakeholders, including researchers, publishers and biocurators. PMID:28025348
Pressing needs of biomedical text mining in biocuration and beyond: opportunities and challenges
Singhal, Ayush; Leaman, Robert; Catlett, Natalie; ...
2016-12-26
Text mining in the biomedical sciences is rapidly transitioning from small-scale evaluation to large-scale application. In this article, we argue that text-mining technologies have become essential tools in real-world biomedical research. We describe four large scale applications of text mining, as showcased during a recent panel discussion at the BioCreative V Challenge Workshop. We draw on these applications as case studies to characterize common requirements for successfully applying text-mining techniques to practical biocuration needs. We note that system ‘accuracy’ remains a challenge and identify several additional common difficulties and potential research directions including (i) the ‘scalability’ issue due to themore » increasing need of mining information from millions of full-text articles, (ii) the ‘interoperability’ issue of integrating various text-mining systems into existing curation workflows and (iii) the ‘reusability’ issue on the difficulty of applying trained systems to text genres that are not seen previously during development. We then describe related efforts within the text-mining community, with a special focus on the BioCreative series of challenge workshops. We believe that focusing on the near-term challenges identified in this work will amplify the opportunities afforded by the continued adoption of text-mining tools. In conclusion, in order to sustain the curation ecosystem and have text-mining systems adopted for practical benefits, we call for increased collaboration between text-mining researchers and various stakeholders, including researchers, publishers and biocurators.« less
Pressing needs of biomedical text mining in biocuration and beyond: opportunities and challenges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singhal, Ayush; Leaman, Robert; Catlett, Natalie
Text mining in the biomedical sciences is rapidly transitioning from small-scale evaluation to large-scale application. In this article, we argue that text-mining technologies have become essential tools in real-world biomedical research. We describe four large scale applications of text mining, as showcased during a recent panel discussion at the BioCreative V Challenge Workshop. We draw on these applications as case studies to characterize common requirements for successfully applying text-mining techniques to practical biocuration needs. We note that system ‘accuracy’ remains a challenge and identify several additional common difficulties and potential research directions including (i) the ‘scalability’ issue due to themore » increasing need of mining information from millions of full-text articles, (ii) the ‘interoperability’ issue of integrating various text-mining systems into existing curation workflows and (iii) the ‘reusability’ issue on the difficulty of applying trained systems to text genres that are not seen previously during development. We then describe related efforts within the text-mining community, with a special focus on the BioCreative series of challenge workshops. We believe that focusing on the near-term challenges identified in this work will amplify the opportunities afforded by the continued adoption of text-mining tools. In conclusion, in order to sustain the curation ecosystem and have text-mining systems adopted for practical benefits, we call for increased collaboration between text-mining researchers and various stakeholders, including researchers, publishers and biocurators.« less
Pressing needs of biomedical text mining in biocuration and beyond: opportunities and challenges.
Singhal, Ayush; Leaman, Robert; Catlett, Natalie; Lemberger, Thomas; McEntyre, Johanna; Polson, Shawn; Xenarios, Ioannis; Arighi, Cecilia; Lu, Zhiyong
2016-01-01
Text mining in the biomedical sciences is rapidly transitioning from small-scale evaluation to large-scale application. In this article, we argue that text-mining technologies have become essential tools in real-world biomedical research. We describe four large scale applications of text mining, as showcased during a recent panel discussion at the BioCreative V Challenge Workshop. We draw on these applications as case studies to characterize common requirements for successfully applying text-mining techniques to practical biocuration needs. We note that system 'accuracy' remains a challenge and identify several additional common difficulties and potential research directions including (i) the 'scalability' issue due to the increasing need of mining information from millions of full-text articles, (ii) the 'interoperability' issue of integrating various text-mining systems into existing curation workflows and (iii) the 'reusability' issue on the difficulty of applying trained systems to text genres that are not seen previously during development. We then describe related efforts within the text-mining community, with a special focus on the BioCreative series of challenge workshops. We believe that focusing on the near-term challenges identified in this work will amplify the opportunities afforded by the continued adoption of text-mining tools. Finally, in order to sustain the curation ecosystem and have text-mining systems adopted for practical benefits, we call for increased collaboration between text-mining researchers and various stakeholders, including researchers, publishers and biocurators. Published by Oxford University Press 2016. This work is written by US Government employees and is in the public domain in the US.
Analyzing cross-college course enrollments via contextual graph mining
Liu, Xiaozhong; Chen, Yan
2017-01-01
The ability to predict what courses a student may enroll in the coming semester plays a pivotal role in the allocation of learning resources, which is a hot topic in the domain of educational data mining. In this study, we propose an innovative approach to characterize students’ cross-college course enrollments by leveraging a novel contextual graph. Specifically, different kinds of variables, such as students, courses, colleges and diplomas, as well as various types of variable relations, are utilized to depict the context of each variable, and then a representation learning algorithm node2vec is applied to extracting sophisticated graph-based features for the enrollment analysis. In this manner, the relations between any pair of variables can be measured quantitatively, which enables the variable type to transform from nominal to ratio. These graph-based features are examined by the random forest algorithm, and experiments on 24,663 students, 1,674 courses and 417,590 enrollment records demonstrate that the contextual graph can successfully improve analyzing the cross-college course enrollments, where three of the graph-based features have significantly stronger impacts on prediction accuracy than the others. Besides, the empirical results also indicate that the student’s course preference is the most important factor in predicting future course enrollments, which is consistent to the previous studies that acknowledge the course interest is a key point for course recommendations. PMID:29186171
Analyzing cross-college course enrollments via contextual graph mining.
Wang, Yongzhen; Liu, Xiaozhong; Chen, Yan
2017-01-01
The ability to predict what courses a student may enroll in the coming semester plays a pivotal role in the allocation of learning resources, which is a hot topic in the domain of educational data mining. In this study, we propose an innovative approach to characterize students' cross-college course enrollments by leveraging a novel contextual graph. Specifically, different kinds of variables, such as students, courses, colleges and diplomas, as well as various types of variable relations, are utilized to depict the context of each variable, and then a representation learning algorithm node2vec is applied to extracting sophisticated graph-based features for the enrollment analysis. In this manner, the relations between any pair of variables can be measured quantitatively, which enables the variable type to transform from nominal to ratio. These graph-based features are examined by the random forest algorithm, and experiments on 24,663 students, 1,674 courses and 417,590 enrollment records demonstrate that the contextual graph can successfully improve analyzing the cross-college course enrollments, where three of the graph-based features have significantly stronger impacts on prediction accuracy than the others. Besides, the empirical results also indicate that the student's course preference is the most important factor in predicting future course enrollments, which is consistent to the previous studies that acknowledge the course interest is a key point for course recommendations.
Text Mining for Adverse Drug Events: the Promise, Challenges, and State of the Art
Harpaz, Rave; Callahan, Alison; Tamang, Suzanne; Low, Yen; Odgers, David; Finlayson, Sam; Jung, Kenneth; LePendu, Paea; Shah, Nigam H.
2014-01-01
Text mining is the computational process of extracting meaningful information from large amounts of unstructured text. Text mining is emerging as a tool to leverage underutilized data sources that can improve pharmacovigilance, including the objective of adverse drug event detection and assessment. This article provides an overview of recent advances in pharmacovigilance driven by the application of text mining, and discusses several data sources—such as biomedical literature, clinical narratives, product labeling, social media, and Web search logs—that are amenable to text-mining for pharmacovigilance. Given the state of the art, it appears text mining can be applied to extract useful ADE-related information from multiple textual sources. Nonetheless, further research is required to address remaining technical challenges associated with the text mining methodologies, and to conclusively determine the relative contribution of each textual source to improving pharmacovigilance. PMID:25151493
ERIC Educational Resources Information Center
Trybula, Walter J.
1999-01-01
Reviews the state of research in text mining, focusing on newer developments. The intent is to describe the disparate investigations currently included under the term text mining and provide a cohesive structure for these efforts. A summary of research identifies key organizations responsible for pushing the development of text mining. A section…
Robson, Barry; Boray, Srinidhi
2016-06-01
Extracting medical knowledge by structured data mining of many medical records and from unstructured data mining of natural language source text on the Internet will become increasingly important for clinical decision support. Output from these sources can be transformed into large numbers of elements of knowledge in a Knowledge Representation Store (KRS), here using the notation and to some extent the algebraic principles of the Q-UEL Web-based universal exchange and inference language described previously, rooted in Dirac notation from quantum mechanics and linguistic theory. In a KRS, semantic structures or statements about the world of interest to medicine are analogous to natural language sentences seen as formed from noun phrases separated by verbs, prepositions and other descriptions of relationships. A convenient method of testing and better curating these elements of knowledge is by having the computer use them to take the test of a multiple choice medical licensing examination. It is a venture which perhaps tells us almost as much about the reasoning of students and examiners as it does about the requirements for Artificial Intelligence as employed in clinical decision making. It emphasizes the role of context and of contextual probabilities as opposed to the more familiar intrinsic probabilities, and of a preliminary form of logic that we call presyllogistic reasoning. Copyright © 2016 Elsevier Ltd. All rights reserved.
Biomedical text mining and its applications in cancer research.
Zhu, Fei; Patumcharoenpol, Preecha; Zhang, Cheng; Yang, Yang; Chan, Jonathan; Meechai, Asawin; Vongsangnak, Wanwipa; Shen, Bairong
2013-04-01
Cancer is a malignant disease that has caused millions of human deaths. Its study has a long history of well over 100years. There have been an enormous number of publications on cancer research. This integrated but unstructured biomedical text is of great value for cancer diagnostics, treatment, and prevention. The immense body and rapid growth of biomedical text on cancer has led to the appearance of a large number of text mining techniques aimed at extracting novel knowledge from scientific text. Biomedical text mining on cancer research is computationally automatic and high-throughput in nature. However, it is error-prone due to the complexity of natural language processing. In this review, we introduce the basic concepts underlying text mining and examine some frequently used algorithms, tools, and data sets, as well as assessing how much these algorithms have been utilized. We then discuss the current state-of-the-art text mining applications in cancer research and we also provide some resources for cancer text mining. With the development of systems biology, researchers tend to understand complex biomedical systems from a systems biology viewpoint. Thus, the full utilization of text mining to facilitate cancer systems biology research is fast becoming a major concern. To address this issue, we describe the general workflow of text mining in cancer systems biology and each phase of the workflow. We hope that this review can (i) provide a useful overview of the current work of this field; (ii) help researchers to choose text mining tools and datasets; and (iii) highlight how to apply text mining to assist cancer systems biology research. Copyright © 2012 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Yu, Chong Ho; Jannasch-Pennell, Angel; DiGangi, Samuel
2011-01-01
The objective of this article is to illustrate that text mining and qualitative research are epistemologically compatible. First, like many qualitative research approaches, such as grounded theory, text mining encourages open-mindedness and discourages preconceptions. Contrary to the popular belief that text mining is a linear and fully automated…
Text mining meets workflow: linking U-Compare with Taverna
Kano, Yoshinobu; Dobson, Paul; Nakanishi, Mio; Tsujii, Jun'ichi; Ananiadou, Sophia
2010-01-01
Summary: Text mining from the biomedical literature is of increasing importance, yet it is not easy for the bioinformatics community to create and run text mining workflows due to the lack of accessibility and interoperability of the text mining resources. The U-Compare system provides a wide range of bio text mining resources in a highly interoperable workflow environment where workflows can very easily be created, executed, evaluated and visualized without coding. We have linked U-Compare to Taverna, a generic workflow system, to expose text mining functionality to the bioinformatics community. Availability: http://u-compare.org/taverna.html, http://u-compare.org Contact: kano@is.s.u-tokyo.ac.jp Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20709690
The use of data mining by private health insurance companies and customers' privacy.
Al-Saggaf, Yeslam
2015-07-01
This article examines privacy threats arising from the use of data mining by private Australian health insurance companies. Qualitative interviews were conducted with key experts, and Australian governmental and nongovernmental websites relevant to private health insurance were searched. Using Rationale, a critical thinking tool, the themes and considerations elicited through this empirical approach were developed into an argument about the use of data mining by private health insurance companies. The argument is followed by an ethical analysis guided by classical philosophical theories-utilitarianism, Mill's harm principle, Kant's deontological theory, and Helen Nissenbaum's contextual integrity framework. Both the argument and the ethical analysis find the use of data mining by private health insurance companies in Australia to be unethical. Although private health insurance companies in Australia cannot use data mining for risk rating to cherry-pick customers and cannot use customers' personal information for unintended purposes, this article nonetheless concludes that the secondary use of customers' personal information and the absence of customers' consent still suggest that the use of data mining by private health insurance companies is wrong.
Mining local climate data to assess spatiotemporal dengue fever epidemic patterns in French Guiana
Flamand, Claude; Fabregue, Mickael; Bringay, Sandra; Ardillon, Vanessa; Quénel, Philippe; Desenclos, Jean-Claude; Teisseire, Maguelonne
2014-01-01
Objective To identify local meteorological drivers of dengue fever in French Guiana, we applied an original data mining method to the available epidemiological and climatic data. Through this work, we also assessed the contribution of the data mining method to the understanding of factors associated with the dissemination of infectious diseases and their spatiotemporal spread. Methods We applied contextual sequential pattern extraction techniques to epidemiological and meteorological data to identify the most significant climatic factors for dengue fever, and we investigated the relevance of the extracted patterns for the early warning of dengue outbreaks in French Guiana. Results The maximum temperature, minimum relative humidity, global brilliance, and cumulative rainfall were identified as determinants of dengue outbreaks, and the precise intervals of their values and variations were quantified according to the epidemiologic context. The strongest significant correlations were observed between dengue incidence and meteorological drivers after a 4–6-week lag. Discussion We demonstrated the use of contextual sequential patterns to better understand the determinants of the spatiotemporal spread of dengue fever in French Guiana. Future work should integrate additional variables and explore the notion of neighborhood for extracting sequential patterns. Conclusions Dengue fever remains a major public health issue in French Guiana. The development of new methods to identify such specific characteristics becomes crucial in order to better understand and control spatiotemporal transmission. PMID:24549761
Educational Data Mining and Learning Analytics: Applications to Constructionist Research
ERIC Educational Resources Information Center
Berland, Matthew; Baker, Ryan S.; Blikstein, Paulo
2014-01-01
Constructionism can be a powerful framework for teaching complex content to novices. At the core of constructionism is the suggestion that by enabling learners to build creative artifacts that require complex content to function, those learners will have opportunities to learn this content in contextualized, personally meaningful ways. In this…
USDA-ARS?s Scientific Manuscript database
Valuable information on the location and context of ecological studies are locked up in publications in myriad formats that are not easily machine readable. This presents significant challenges to building geographic-based tools to search for and visualize sources of ecological knowledge. JournalMap...
Survey of Natural Language Processing Techniques in Bioinformatics.
Zeng, Zhiqiang; Shi, Hua; Wu, Yun; Hong, Zhiling
2015-01-01
Informatics methods, such as text mining and natural language processing, are always involved in bioinformatics research. In this study, we discuss text mining and natural language processing methods in bioinformatics from two perspectives. First, we aim to search for knowledge on biology, retrieve references using text mining methods, and reconstruct databases. For example, protein-protein interactions and gene-disease relationship can be mined from PubMed. Then, we analyze the applications of text mining and natural language processing techniques in bioinformatics, including predicting protein structure and function, detecting noncoding RNA. Finally, numerous methods and applications, as well as their contributions to bioinformatics, are discussed for future use by text mining and natural language processing researchers.
NASA Technology Takes Center Stage
NASA Technical Reports Server (NTRS)
2004-01-01
In today's fast-paced business world, there is often more information available to researchers than there is time to search through it. Data mining has become the answer to finding the proverbial "needle in a haystack," as companies must be able to quickly locate specific pieces of information from large collections of data. Perilog, a suite of data-mining tools, searches for hidden patterns in large databases to determine previously unrecognized relationships. By retrieving and organizing contextually relevant data from any sequence of terms - from genetic data to musical notes - the software can intelligently compile information about desired topics from databases.
Text mining for adverse drug events: the promise, challenges, and state of the art.
Harpaz, Rave; Callahan, Alison; Tamang, Suzanne; Low, Yen; Odgers, David; Finlayson, Sam; Jung, Kenneth; LePendu, Paea; Shah, Nigam H
2014-10-01
Text mining is the computational process of extracting meaningful information from large amounts of unstructured text. It is emerging as a tool to leverage underutilized data sources that can improve pharmacovigilance, including the objective of adverse drug event (ADE) detection and assessment. This article provides an overview of recent advances in pharmacovigilance driven by the application of text mining, and discusses several data sources-such as biomedical literature, clinical narratives, product labeling, social media, and Web search logs-that are amenable to text mining for pharmacovigilance. Given the state of the art, it appears text mining can be applied to extract useful ADE-related information from multiple textual sources. Nonetheless, further research is required to address remaining technical challenges associated with the text mining methodologies, and to conclusively determine the relative contribution of each textual source to improving pharmacovigilance.
Jennifer A. Cuff; David N. Bengston; Donald G. McTavish
2000-01-01
Managing public forest collaboratively requires an understanding of differences between and similarities among diverse stakeholder groups. The Minnesota Contextual Content Analysis (MCCA) computer program was used to analyze text obtained from World Wide Web sites expressing the views of seven diverse stakeholder groups involved in forest planning and managemnet....
Health Terrain: Visualizing Large Scale Health Data
2015-12-01
Text mining ; Data mining . 16. SECURITY CLASSIFICATION OF: 17... text mining algorithms to construct a concept space. A browser-‐based user interface is developed to...Public health data, Notifiable condition detector, Text mining , Data mining 4 of 29 Disease Patient Location Term
Introducing Text Analytics as a Graduate Business School Course
ERIC Educational Resources Information Center
Edgington, Theresa M.
2011-01-01
Text analytics refers to the process of analyzing unstructured data from documented sources, including open-ended surveys, blogs, and other types of web dialog. Text analytics has enveloped the concept of text mining, an analysis approach influenced heavily from data mining. While text mining has been covered extensively in various computer…
Automatic detection of referral patients due to retinal pathologies through data mining.
Quellec, Gwenolé; Lamard, Mathieu; Erginay, Ali; Chabouis, Agnès; Massin, Pascale; Cochener, Béatrice; Cazuguel, Guy
2016-04-01
With the increased prevalence of retinal pathologies, automating the detection of these pathologies is becoming more and more relevant. In the past few years, many algorithms have been developed for the automated detection of a specific pathology, typically diabetic retinopathy, using eye fundus photography. No matter how good these algorithms are, we believe many clinicians would not use automatic detection tools focusing on a single pathology and ignoring any other pathology present in the patient's retinas. To solve this issue, an algorithm for characterizing the appearance of abnormal retinas, as well as the appearance of the normal ones, is presented. This algorithm does not focus on individual images: it considers examination records consisting of multiple photographs of each retina, together with contextual information about the patient. Specifically, it relies on data mining in order to learn diagnosis rules from characterizations of fundus examination records. The main novelty is that the content of examination records (images and context) is characterized at multiple levels of spatial and lexical granularity: 1) spatial flexibility is ensured by an adaptive decomposition of composite retinal images into a cascade of regions, 2) lexical granularity is ensured by an adaptive decomposition of the feature space into a cascade of visual words. This multigranular representation allows for great flexibility in automatically characterizing normality and abnormality: it is possible to generate diagnosis rules whose precision and generalization ability can be traded off depending on data availability. A variation on usual data mining algorithms, originally designed to mine static data, is proposed so that contextual and visual data at adaptive granularity levels can be mined. This framework was evaluated in e-ophtha, a dataset of 25,702 examination records from the OPHDIAT screening network, as well as in the publicly-available Messidor dataset. It was successfully applied to the detection of patients that should be referred to an ophthalmologist and also to the specific detection of several pathologies. Copyright © 2016 Elsevier B.V. All rights reserved.
Van Landeghem, Sofie; De Bodt, Stefanie; Drebert, Zuzanna J; Inzé, Dirk; Van de Peer, Yves
2013-03-01
Despite the availability of various data repositories for plant research, a wealth of information currently remains hidden within the biomolecular literature. Text mining provides the necessary means to retrieve these data through automated processing of texts. However, only recently has advanced text mining methodology been implemented with sufficient computational power to process texts at a large scale. In this study, we assess the potential of large-scale text mining for plant biology research in general and for network biology in particular using a state-of-the-art text mining system applied to all PubMed abstracts and PubMed Central full texts. We present extensive evaluation of the textual data for Arabidopsis thaliana, assessing the overall accuracy of this new resource for usage in plant network analyses. Furthermore, we combine text mining information with both protein-protein and regulatory interactions from experimental databases. Clusters of tightly connected genes are delineated from the resulting network, illustrating how such an integrative approach is essential to grasp the current knowledge available for Arabidopsis and to uncover gene information through guilt by association. All large-scale data sets, as well as the manually curated textual data, are made publicly available, hereby stimulating the application of text mining data in future plant biology studies.
ERIC Educational Resources Information Center
Kinnebrew John S.; Killingsworth, Stephen S.; Clark, Douglas B.; Biswas, Gautam; Sengupta, Pratim; Minstrell, James; Martinez-Garza, Mario; Krinks, Kara
2017-01-01
Digital games can make unique and powerful contributions to K-12 science education, but much of that potential remains unrealized. Research evaluating games for learning still relies primarily on pre- and post-test data, which limits possible insights into more complex interactions between game design features, gameplay, and formal assessment.…
Integration of Text- and Data-Mining Technologies for Use in Banking Applications
NASA Astrophysics Data System (ADS)
Maslankowski, Jacek
Unstructured data, most of it in the form of text files, typically accounts for 85% of an organization's knowledge stores, but it's not always easy to find, access, analyze or use (Robb 2004). That is why it is important to use solutions based on text and data mining. This solution is known as duo mining. This leads to improve management based on knowledge owned in organization. The results are interesting. Data mining provides to lead with structuralized data, usually powered from data warehouses. Text mining, sometimes called web mining, looks for patterns in unstructured data — memos, document and www. Integrating text-based information with structured data enriches predictive modeling capabilities and provides new stores of insightful and valuable information for driving business and research initiatives forward.
ERIC Educational Resources Information Center
Cai, Wei; Lee, Benny P. H.
2010-01-01
This study examines the effect of contextual clues on the use of strategies (inferencing and ignoring) and knowledge sources (semantics, morphology, world knowledge, and others) for processing unfamiliar words in listening comprehension. Three types of words were investigated: words with local co-text clues, global co-text clues and extra-textual…
SparkText: Biomedical Text Mining on Big Data Framework.
Ye, Zhan; Tafti, Ahmad P; He, Karen Y; Wang, Kai; He, Max M
Many new biomedical research articles are published every day, accumulating rich information, such as genetic variants, genes, diseases, and treatments. Rapid yet accurate text mining on large-scale scientific literature can discover novel knowledge to better understand human diseases and to improve the quality of disease diagnosis, prevention, and treatment. In this study, we designed and developed an efficient text mining framework called SparkText on a Big Data infrastructure, which is composed of Apache Spark data streaming and machine learning methods, combined with a Cassandra NoSQL database. To demonstrate its performance for classifying cancer types, we extracted information (e.g., breast, prostate, and lung cancers) from tens of thousands of articles downloaded from PubMed, and then employed Naïve Bayes, Support Vector Machine (SVM), and Logistic Regression to build prediction models to mine the articles. The accuracy of predicting a cancer type by SVM using the 29,437 full-text articles was 93.81%. While competing text-mining tools took more than 11 hours, SparkText mined the dataset in approximately 6 minutes. This study demonstrates the potential for mining large-scale scientific articles on a Big Data infrastructure, with real-time update from new articles published daily. SparkText can be extended to other areas of biomedical research.
SparkText: Biomedical Text Mining on Big Data Framework
He, Karen Y.; Wang, Kai
2016-01-01
Background Many new biomedical research articles are published every day, accumulating rich information, such as genetic variants, genes, diseases, and treatments. Rapid yet accurate text mining on large-scale scientific literature can discover novel knowledge to better understand human diseases and to improve the quality of disease diagnosis, prevention, and treatment. Results In this study, we designed and developed an efficient text mining framework called SparkText on a Big Data infrastructure, which is composed of Apache Spark data streaming and machine learning methods, combined with a Cassandra NoSQL database. To demonstrate its performance for classifying cancer types, we extracted information (e.g., breast, prostate, and lung cancers) from tens of thousands of articles downloaded from PubMed, and then employed Naïve Bayes, Support Vector Machine (SVM), and Logistic Regression to build prediction models to mine the articles. The accuracy of predicting a cancer type by SVM using the 29,437 full-text articles was 93.81%. While competing text-mining tools took more than 11 hours, SparkText mined the dataset in approximately 6 minutes. Conclusions This study demonstrates the potential for mining large-scale scientific articles on a Big Data infrastructure, with real-time update from new articles published daily. SparkText can be extended to other areas of biomedical research. PMID:27685652
ERIC Educational Resources Information Center
Qin, Jian; Jurisica, Igor; Liddy, Elizabeth D.; Jansen, Bernard J; Spink, Amanda; Priss, Uta; Norton, Melanie J.
2000-01-01
These six articles discuss knowledge discovery in databases (KDD). Topics include data mining; knowledge management systems; applications of knowledge discovery; text and Web mining; text mining and information retrieval; user search patterns through Web log analysis; concept analysis; data collection; and data structure inconsistency. (LRW)
Westergaard, David; Stærfeldt, Hans-Henrik; Tønsberg, Christian; Jensen, Lars Juhl; Brunak, Søren
2018-02-01
Across academia and industry, text mining has become a popular strategy for keeping up with the rapid growth of the scientific literature. Text mining of the scientific literature has mostly been carried out on collections of abstracts, due to their availability. Here we present an analysis of 15 million English scientific full-text articles published during the period 1823-2016. We describe the development in article length and publication sub-topics during these nearly 250 years. We showcase the potential of text mining by extracting published protein-protein, disease-gene, and protein subcellular associations using a named entity recognition system, and quantitatively report on their accuracy using gold standard benchmark data sets. We subsequently compare the findings to corresponding results obtained on 16.5 million abstracts included in MEDLINE and show that text mining of full-text articles consistently outperforms using abstracts only.
Westergaard, David; Stærfeldt, Hans-Henrik
2018-01-01
Across academia and industry, text mining has become a popular strategy for keeping up with the rapid growth of the scientific literature. Text mining of the scientific literature has mostly been carried out on collections of abstracts, due to their availability. Here we present an analysis of 15 million English scientific full-text articles published during the period 1823–2016. We describe the development in article length and publication sub-topics during these nearly 250 years. We showcase the potential of text mining by extracting published protein–protein, disease–gene, and protein subcellular associations using a named entity recognition system, and quantitatively report on their accuracy using gold standard benchmark data sets. We subsequently compare the findings to corresponding results obtained on 16.5 million abstracts included in MEDLINE and show that text mining of full-text articles consistently outperforms using abstracts only. PMID:29447159
PubRunner: A light-weight framework for updating text mining results.
Anekalla, Kishore R; Courneya, J P; Fiorini, Nicolas; Lever, Jake; Muchow, Michael; Busby, Ben
2017-01-01
Biomedical text mining promises to assist biologists in quickly navigating the combined knowledge in their domain. This would allow improved understanding of the complex interactions within biological systems and faster hypothesis generation. New biomedical research articles are published daily and text mining tools are only as good as the corpus from which they work. Many text mining tools are underused because their results are static and do not reflect the constantly expanding knowledge in the field. In order for biomedical text mining to become an indispensable tool used by researchers, this problem must be addressed. To this end, we present PubRunner, a framework for regularly running text mining tools on the latest publications. PubRunner is lightweight, simple to use, and can be integrated with an existing text mining tool. The workflow involves downloading the latest abstracts from PubMed, executing a user-defined tool, pushing the resulting data to a public FTP or Zenodo dataset, and publicizing the location of these results on the public PubRunner website. We illustrate the use of this tool by re-running the commonly used word2vec tool on the latest PubMed abstracts to generate up-to-date word vector representations for the biomedical domain. This shows a proof of concept that we hope will encourage text mining developers to build tools that truly will aid biologists in exploring the latest publications.
Mining local climate data to assess spatiotemporal dengue fever epidemic patterns in French Guiana.
Flamand, Claude; Fabregue, Mickael; Bringay, Sandra; Ardillon, Vanessa; Quénel, Philippe; Desenclos, Jean-Claude; Teisseire, Maguelonne
2014-10-01
To identify local meteorological drivers of dengue fever in French Guiana, we applied an original data mining method to the available epidemiological and climatic data. Through this work, we also assessed the contribution of the data mining method to the understanding of factors associated with the dissemination of infectious diseases and their spatiotemporal spread. We applied contextual sequential pattern extraction techniques to epidemiological and meteorological data to identify the most significant climatic factors for dengue fever, and we investigated the relevance of the extracted patterns for the early warning of dengue outbreaks in French Guiana. The maximum temperature, minimum relative humidity, global brilliance, and cumulative rainfall were identified as determinants of dengue outbreaks, and the precise intervals of their values and variations were quantified according to the epidemiologic context. The strongest significant correlations were observed between dengue incidence and meteorological drivers after a 4-6-week lag. We demonstrated the use of contextual sequential patterns to better understand the determinants of the spatiotemporal spread of dengue fever in French Guiana. Future work should integrate additional variables and explore the notion of neighborhood for extracting sequential patterns. Dengue fever remains a major public health issue in French Guiana. The development of new methods to identify such specific characteristics becomes crucial in order to better understand and control spatiotemporal transmission. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Text mining for the biocuration workflow
Hirschman, Lynette; Burns, Gully A. P. C; Krallinger, Martin; Arighi, Cecilia; Cohen, K. Bretonnel; Valencia, Alfonso; Wu, Cathy H.; Chatr-Aryamontri, Andrew; Dowell, Karen G.; Huala, Eva; Lourenço, Anália; Nash, Robert; Veuthey, Anne-Lise; Wiegers, Thomas; Winter, Andrew G.
2012-01-01
Molecular biology has become heavily dependent on biological knowledge encoded in expert curated biological databases. As the volume of biological literature increases, biocurators need help in keeping up with the literature; (semi-) automated aids for biocuration would seem to be an ideal application for natural language processing and text mining. However, to date, there have been few documented successes for improving biocuration throughput using text mining. Our initial investigations took place for the workshop on ‘Text Mining for the BioCuration Workflow’ at the third International Biocuration Conference (Berlin, 2009). We interviewed biocurators to obtain workflows from eight biological databases. This initial study revealed high-level commonalities, including (i) selection of documents for curation; (ii) indexing of documents with biologically relevant entities (e.g. genes); and (iii) detailed curation of specific relations (e.g. interactions); however, the detailed workflows also showed many variabilities. Following the workshop, we conducted a survey of biocurators. The survey identified biocurator priorities, including the handling of full text indexed with biological entities and support for the identification and prioritization of documents for curation. It also indicated that two-thirds of the biocuration teams had experimented with text mining and almost half were using text mining at that time. Analysis of our interviews and survey provide a set of requirements for the integration of text mining into the biocuration workflow. These can guide the identification of common needs across curated databases and encourage joint experimentation involving biocurators, text mining developers and the larger biomedical research community. PMID:22513129
Text mining for the biocuration workflow.
Hirschman, Lynette; Burns, Gully A P C; Krallinger, Martin; Arighi, Cecilia; Cohen, K Bretonnel; Valencia, Alfonso; Wu, Cathy H; Chatr-Aryamontri, Andrew; Dowell, Karen G; Huala, Eva; Lourenço, Anália; Nash, Robert; Veuthey, Anne-Lise; Wiegers, Thomas; Winter, Andrew G
2012-01-01
Molecular biology has become heavily dependent on biological knowledge encoded in expert curated biological databases. As the volume of biological literature increases, biocurators need help in keeping up with the literature; (semi-) automated aids for biocuration would seem to be an ideal application for natural language processing and text mining. However, to date, there have been few documented successes for improving biocuration throughput using text mining. Our initial investigations took place for the workshop on 'Text Mining for the BioCuration Workflow' at the third International Biocuration Conference (Berlin, 2009). We interviewed biocurators to obtain workflows from eight biological databases. This initial study revealed high-level commonalities, including (i) selection of documents for curation; (ii) indexing of documents with biologically relevant entities (e.g. genes); and (iii) detailed curation of specific relations (e.g. interactions); however, the detailed workflows also showed many variabilities. Following the workshop, we conducted a survey of biocurators. The survey identified biocurator priorities, including the handling of full text indexed with biological entities and support for the identification and prioritization of documents for curation. It also indicated that two-thirds of the biocuration teams had experimented with text mining and almost half were using text mining at that time. Analysis of our interviews and survey provide a set of requirements for the integration of text mining into the biocuration workflow. These can guide the identification of common needs across curated databases and encourage joint experimentation involving biocurators, text mining developers and the larger biomedical research community.
Van Landeghem, Sofie; De Bodt, Stefanie; Drebert, Zuzanna J.; Inzé, Dirk; Van de Peer, Yves
2013-01-01
Despite the availability of various data repositories for plant research, a wealth of information currently remains hidden within the biomolecular literature. Text mining provides the necessary means to retrieve these data through automated processing of texts. However, only recently has advanced text mining methodology been implemented with sufficient computational power to process texts at a large scale. In this study, we assess the potential of large-scale text mining for plant biology research in general and for network biology in particular using a state-of-the-art text mining system applied to all PubMed abstracts and PubMed Central full texts. We present extensive evaluation of the textual data for Arabidopsis thaliana, assessing the overall accuracy of this new resource for usage in plant network analyses. Furthermore, we combine text mining information with both protein–protein and regulatory interactions from experimental databases. Clusters of tightly connected genes are delineated from the resulting network, illustrating how such an integrative approach is essential to grasp the current knowledge available for Arabidopsis and to uncover gene information through guilt by association. All large-scale data sets, as well as the manually curated textual data, are made publicly available, hereby stimulating the application of text mining data in future plant biology studies. PMID:23532071
Frontiers of biomedical text mining: current progress
Zweigenbaum, Pierre; Demner-Fushman, Dina; Yu, Hong; Cohen, Kevin B.
2008-01-01
It is now almost 15 years since the publication of the first paper on text mining in the genomics domain, and decades since the first paper on text mining in the medical domain. Enormous progress has been made in the areas of information retrieval, evaluation methodologies and resource construction. Some problems, such as abbreviation-handling, can essentially be considered solved problems, and others, such as identification of gene mentions in text, seem likely to be solved soon. However, a number of problems at the frontiers of biomedical text mining continue to present interesting challenges and opportunities for great improvements and interesting research. In this article we review the current state of the art in biomedical text mining or ‘BioNLP’ in general, focusing primarily on papers published within the past year. PMID:17977867
Wadi el-Sheikh: A new archaeological investigation of ancient Egyptian chert mines
2017-01-01
This article provides an overview of the first results from archaeological investigations at Wadi el-Sheikh in Egypt by the University of Vienna Middle Egypt Project. Chert was an important raw material used to produce tools, implements and jewelry in ancient times. Wadi el-Sheikh was exploited over thousands of years as it was probably the most important source of chert in Pharaonic civilization. The results of our new investigations that involved surveys and test excavations indicate the presence of large scale mining activities in the first half of the 3rd Millennium B.C.E. which allow for detailed insights into the amount of raw material extracted, the mining methods used and the lithic products manufactured in this area. These aspects are contextualized on the background of ancient Egyptian state-organized resource acquisition strategies and economy. PMID:28152079
Automated detection of follow-up appointments using text mining of discharge records.
Ruud, Kari L; Johnson, Matthew G; Liesinger, Juliette T; Grafft, Carrie A; Naessens, James M
2010-06-01
To determine whether text mining can accurately detect specific follow-up appointment criteria in free-text hospital discharge records. Cross-sectional study. Mayo Clinic Rochester hospitals. Inpatients discharged from general medicine services in 2006 (n = 6481). Textual hospital dismissal summaries were manually reviewed to determine whether the records contained specific follow-up appointment arrangement elements: date, time and either physician or location for an appointment. The data set was evaluated for the same criteria using SAS Text Miner software. The two assessments were compared to determine the accuracy of text mining for detecting records containing follow-up appointment arrangements. Agreement of text-mined appointment findings with gold standard (manual abstraction) including sensitivity, specificity, positive predictive and negative predictive values (PPV and NPV). About 55.2% (3576) of discharge records contained all criteria for follow-up appointment arrangements according to the manual review, 3.2% (113) of which were missed through text mining. Text mining incorrectly identified 3.7% (107) follow-up appointments that were not considered valid through manual review. Therefore, the text mining analysis concurred with the manual review in 96.6% of the appointment findings. Overall sensitivity and specificity were 96.8 and 96.3%, respectively; and PPV and NPV were 97.0 and 96.1%, respectively. of individual appointment criteria resulted in accuracy rates of 93.5% for date, 97.4% for time, 97.5% for physician and 82.9% for location. Text mining of unstructured hospital dismissal summaries can accurately detect documentation of follow-up appointment arrangement elements, thus saving considerable resources for performance assessment and quality-related research.
Automatic target validation based on neuroscientific literature mining for tractography
Vasques, Xavier; Richardet, Renaud; Hill, Sean L.; Slater, David; Chappelier, Jean-Cedric; Pralong, Etienne; Bloch, Jocelyne; Draganski, Bogdan; Cif, Laura
2015-01-01
Target identification for tractography studies requires solid anatomical knowledge validated by an extensive literature review across species for each seed structure to be studied. Manual literature review to identify targets for a given seed region is tedious and potentially subjective. Therefore, complementary approaches would be useful. We propose to use text-mining models to automatically suggest potential targets from the neuroscientific literature, full-text articles and abstracts, so that they can be used for anatomical connection studies and more specifically for tractography. We applied text-mining models to three structures: two well-studied structures, since validated deep brain stimulation targets, the internal globus pallidus and the subthalamic nucleus and, the nucleus accumbens, an exploratory target for treating psychiatric disorders. We performed a systematic review of the literature to document the projections of the three selected structures and compared it with the targets proposed by text-mining models, both in rat and primate (including human). We ran probabilistic tractography on the nucleus accumbens and compared the output with the results of the text-mining models and literature review. Overall, text-mining the literature could find three times as many targets as two man-weeks of curation could. The overall efficiency of the text-mining against literature review in our study was 98% recall (at 36% precision), meaning that over all the targets for the three selected seeds, only one target has been missed by text-mining. We demonstrate that connectivity for a structure of interest can be extracted from a very large amount of publications and abstracts. We believe this tool will be useful in helping the neuroscience community to facilitate connectivity studies of particular brain regions. The text mining tools used for the study are part of the HBP Neuroinformatics Platform, publicly available at http://connectivity-brainer.rhcloud.com/. PMID:26074781
Adaptive semantic tag mining from heterogeneous clinical research texts.
Hao, T; Weng, C
2015-01-01
To develop an adaptive approach to mine frequent semantic tags (FSTs) from heterogeneous clinical research texts. We develop a "plug-n-play" framework that integrates replaceable unsupervised kernel algorithms with formatting, functional, and utility wrappers for FST mining. Temporal information identification and semantic equivalence detection were two example functional wrappers. We first compared this approach's recall and efficiency for mining FSTs from ClinicalTrials.gov to that of a recently published tag-mining algorithm. Then we assessed this approach's adaptability to two other types of clinical research texts: clinical data requests and clinical trial protocols, by comparing the prevalence trends of FSTs across three texts. Our approach increased the average recall and speed by 12.8% and 47.02% respectively upon the baseline when mining FSTs from ClinicalTrials.gov, and maintained an overlap in relevant FSTs with the base- line ranging between 76.9% and 100% for varying FST frequency thresholds. The FSTs saturated when the data size reached 200 documents. Consistent trends in the prevalence of FST were observed across the three texts as the data size or frequency threshold changed. This paper contributes an adaptive tag-mining framework that is scalable and adaptable without sacrificing its recall. This component-based architectural design can be potentially generalizable to improve the adaptability of other clinical text mining methods.
Text mining resources for the life sciences.
Przybyła, Piotr; Shardlow, Matthew; Aubin, Sophie; Bossy, Robert; Eckart de Castilho, Richard; Piperidis, Stelios; McNaught, John; Ananiadou, Sophia
2016-01-01
Text mining is a powerful technology for quickly distilling key information from vast quantities of biomedical literature. However, to harness this power the researcher must be well versed in the availability, suitability, adaptability, interoperability and comparative accuracy of current text mining resources. In this survey, we give an overview of the text mining resources that exist in the life sciences to help researchers, especially those employed in biocuration, to engage with text mining in their own work. We categorize the various resources under three sections: Content Discovery looks at where and how to find biomedical publications for text mining; Knowledge Encoding describes the formats used to represent the different levels of information associated with content that enable text mining, including those formats used to carry such information between processes; Tools and Services gives an overview of workflow management systems that can be used to rapidly configure and compare domain- and task-specific processes, via access to a wide range of pre-built tools. We also provide links to relevant repositories in each section to enable the reader to find resources relevant to their own area of interest. Throughout this work we give a special focus to resources that are interoperable-those that have the crucial ability to share information, enabling smooth integration and reusability. © The Author(s) 2016. Published by Oxford University Press.
Chapter 16: text mining for translational bioinformatics.
Cohen, K Bretonnel; Hunter, Lawrence E
2013-04-01
Text mining for translational bioinformatics is a new field with tremendous research potential. It is a subfield of biomedical natural language processing that concerns itself directly with the problem of relating basic biomedical research to clinical practice, and vice versa. Applications of text mining fall both into the category of T1 translational research-translating basic science results into new interventions-and T2 translational research, or translational research for public health. Potential use cases include better phenotyping of research subjects, and pharmacogenomic research. A variety of methods for evaluating text mining applications exist, including corpora, structured test suites, and post hoc judging. Two basic principles of linguistic structure are relevant for building text mining applications. One is that linguistic structure consists of multiple levels. The other is that every level of linguistic structure is characterized by ambiguity. There are two basic approaches to text mining: rule-based, also known as knowledge-based; and machine-learning-based, also known as statistical. Many systems are hybrids of the two approaches. Shared tasks have had a strong effect on the direction of the field. Like all translational bioinformatics software, text mining software for translational bioinformatics can be considered health-critical and should be subject to the strictest standards of quality assurance and software testing.
Text mining resources for the life sciences
Shardlow, Matthew; Aubin, Sophie; Bossy, Robert; Eckart de Castilho, Richard; Piperidis, Stelios; McNaught, John; Ananiadou, Sophia
2016-01-01
Text mining is a powerful technology for quickly distilling key information from vast quantities of biomedical literature. However, to harness this power the researcher must be well versed in the availability, suitability, adaptability, interoperability and comparative accuracy of current text mining resources. In this survey, we give an overview of the text mining resources that exist in the life sciences to help researchers, especially those employed in biocuration, to engage with text mining in their own work. We categorize the various resources under three sections: Content Discovery looks at where and how to find biomedical publications for text mining; Knowledge Encoding describes the formats used to represent the different levels of information associated with content that enable text mining, including those formats used to carry such information between processes; Tools and Services gives an overview of workflow management systems that can be used to rapidly configure and compare domain- and task-specific processes, via access to a wide range of pre-built tools. We also provide links to relevant repositories in each section to enable the reader to find resources relevant to their own area of interest. Throughout this work we give a special focus to resources that are interoperable—those that have the crucial ability to share information, enabling smooth integration and reusability. PMID:27888231
Cohen, Raphael; Elhadad, Michael; Elhadad, Noémie
2013-01-16
The increasing availability of Electronic Health Record (EHR) data and specifically free-text patient notes presents opportunities for phenotype extraction. Text-mining methods in particular can help disease modeling by mapping named-entities mentions to terminologies and clustering semantically related terms. EHR corpora, however, exhibit specific statistical and linguistic characteristics when compared with corpora in the biomedical literature domain. We focus on copy-and-paste redundancy: clinicians typically copy and paste information from previous notes when documenting a current patient encounter. Thus, within a longitudinal patient record, one expects to observe heavy redundancy. In this paper, we ask three research questions: (i) How can redundancy be quantified in large-scale text corpora? (ii) Conventional wisdom is that larger corpora yield better results in text mining. But how does the observed EHR redundancy affect text mining? Does such redundancy introduce a bias that distorts learned models? Or does the redundancy introduce benefits by highlighting stable and important subsets of the corpus? (iii) How can one mitigate the impact of redundancy on text mining? We analyze a large-scale EHR corpus and quantify redundancy both in terms of word and semantic concept repetition. We observe redundancy levels of about 30% and non-standard distribution of both words and concepts. We measure the impact of redundancy on two standard text-mining applications: collocation identification and topic modeling. We compare the results of these methods on synthetic data with controlled levels of redundancy and observe significant performance variation. Finally, we compare two mitigation strategies to avoid redundancy-induced bias: (i) a baseline strategy, keeping only the last note for each patient in the corpus; (ii) removing redundant notes with an efficient fingerprinting-based algorithm. (a)For text mining, preprocessing the EHR corpus with fingerprinting yields significantly better results. Before applying text-mining techniques, one must pay careful attention to the structure of the analyzed corpora. While the importance of data cleaning has been known for low-level text characteristics (e.g., encoding and spelling), high-level and difficult-to-quantify corpus characteristics, such as naturally occurring redundancy, can also hurt text mining. Fingerprinting enables text-mining techniques to leverage available data in the EHR corpus, while avoiding the bias introduced by redundancy.
ParaBTM: A Parallel Processing Framework for Biomedical Text Mining on Supercomputers.
Xing, Yuting; Wu, Chengkun; Yang, Xi; Wang, Wei; Zhu, En; Yin, Jianping
2018-04-27
A prevailing way of extracting valuable information from biomedical literature is to apply text mining methods on unstructured texts. However, the massive amount of literature that needs to be analyzed poses a big data challenge to the processing efficiency of text mining. In this paper, we address this challenge by introducing parallel processing on a supercomputer. We developed paraBTM, a runnable framework that enables parallel text mining on the Tianhe-2 supercomputer. It employs a low-cost yet effective load balancing strategy to maximize the efficiency of parallel processing. We evaluated the performance of paraBTM on several datasets, utilizing three types of named entity recognition tasks as demonstration. Results show that, in most cases, the processing efficiency can be greatly improved with parallel processing, and the proposed load balancing strategy is simple and effective. In addition, our framework can be readily applied to other tasks of biomedical text mining besides NER.
Text-mining and information-retrieval services for molecular biology
Krallinger, Martin; Valencia, Alfonso
2005-01-01
Text-mining in molecular biology - defined as the automatic extraction of information about genes, proteins and their functional relationships from text documents - has emerged as a hybrid discipline on the edges of the fields of information science, bioinformatics and computational linguistics. A range of text-mining applications have been developed recently that will improve access to knowledge for biologists and database annotators. PMID:15998455
Text mining for traditional Chinese medical knowledge discovery: a survey.
Zhou, Xuezhong; Peng, Yonghong; Liu, Baoyan
2010-08-01
Extracting meaningful information and knowledge from free text is the subject of considerable research interest in the machine learning and data mining fields. Text data mining (or text mining) has become one of the most active research sub-fields in data mining. Significant developments in the area of biomedical text mining during the past years have demonstrated its great promise for supporting scientists in developing novel hypotheses and new knowledge from the biomedical literature. Traditional Chinese medicine (TCM) provides a distinct methodology with which to view human life. It is one of the most complete and distinguished traditional medicines with a history of several thousand years of studying and practicing the diagnosis and treatment of human disease. It has been shown that the TCM knowledge obtained from clinical practice has become a significant complementary source of information for modern biomedical sciences. TCM literature obtained from the historical period and from modern clinical studies has recently been transformed into digital data in the form of relational databases or text documents, which provide an effective platform for information sharing and retrieval. This motivates and facilitates research and development into knowledge discovery approaches and to modernize TCM. In order to contribute to this still growing field, this paper presents (1) a comparative introduction to TCM and modern biomedicine, (2) a survey of the related information sources of TCM, (3) a review and discussion of the state of the art and the development of text mining techniques with applications to TCM, (4) a discussion of the research issues around TCM text mining and its future directions. Copyright 2010 Elsevier Inc. All rights reserved.
Managing biological networks by using text mining and computer-aided curation
NASA Astrophysics Data System (ADS)
Yu, Seok Jong; Cho, Yongseong; Lee, Min-Ho; Lim, Jongtae; Yoo, Jaesoo
2015-11-01
In order to understand a biological mechanism in a cell, a researcher should collect a huge number of protein interactions with experimental data from experiments and the literature. Text mining systems that extract biological interactions from papers have been used to construct biological networks for a few decades. Even though the text mining of literature is necessary to construct a biological network, few systems with a text mining tool are available for biologists who want to construct their own biological networks. We have developed a biological network construction system called BioKnowledge Viewer that can generate a biological interaction network by using a text mining tool and biological taggers. It also Boolean simulation software to provide a biological modeling system to simulate the model that is made with the text mining tool. A user can download PubMed articles and construct a biological network by using the Multi-level Knowledge Emergence Model (KMEM), MetaMap, and A Biomedical Named Entity Recognizer (ABNER) as a text mining tool. To evaluate the system, we constructed an aging-related biological network that consist 9,415 nodes (genes) by using manual curation. With network analysis, we found that several genes, including JNK, AP-1, and BCL-2, were highly related in aging biological network. We provide a semi-automatic curation environment so that users can obtain a graph database for managing text mining results that are generated in the server system and can navigate the network with BioKnowledge Viewer, which is freely available at http://bioknowledgeviewer.kisti.re.kr.
Morodi, T J; Mpofu, Charles
2017-06-28
This paper examines the issue of acid mine drainage in South Africa and environmental decision making processes that could be taken to mitigate the problem in the context of both conventional risk assessment and the precautionary principle. It is argued that conventional risk assessment protects the status quo and hence cannot be entirely relied upon as an effective tool to resolve environmental problems in the context of South Africa, a developing country with complex environmental health concerns. The complexity of the environmental issues is discussed from historical and political perspectives. An argument is subsequently made that the precautionary principle is an alternative tool, and its adoption can be used to empower local communities. This work, therefore, adds to new knowledge by problematising conventional risk assessment and proposing the framing of the acid mine drainage issues in a complex and contextual scenario of a developing country-South Africa.
An overview of the biocreative 2012 workshop track III: Interactive text mining task
USDA-ARS?s Scientific Manuscript database
An important question is how to make use of text mining to enhance the biocuration workflow. A number of groups have developed tools for text mining from a computer science/linguistics perspective and there are many initiatives to curate some aspect of biology from the literature. In some cases the ...
Text Mining in Cancer Gene and Pathway Prioritization
Luo, Yuan; Riedlinger, Gregory; Szolovits, Peter
2014-01-01
Prioritization of cancer implicated genes has received growing attention as an effective way to reduce wet lab cost by computational analysis that ranks candidate genes according to the likelihood that experimental verifications will succeed. A multitude of gene prioritization tools have been developed, each integrating different data sources covering gene sequences, differential expressions, function annotations, gene regulations, protein domains, protein interactions, and pathways. This review places existing gene prioritization tools against the backdrop of an integrative Omic hierarchy view toward cancer and focuses on the analysis of their text mining components. We explain the relatively slow progress of text mining in gene prioritization, identify several challenges to current text mining methods, and highlight a few directions where more effective text mining algorithms may improve the overall prioritization task and where prioritizing the pathways may be more desirable than prioritizing only genes. PMID:25392685
Text mining in cancer gene and pathway prioritization.
Luo, Yuan; Riedlinger, Gregory; Szolovits, Peter
2014-01-01
Prioritization of cancer implicated genes has received growing attention as an effective way to reduce wet lab cost by computational analysis that ranks candidate genes according to the likelihood that experimental verifications will succeed. A multitude of gene prioritization tools have been developed, each integrating different data sources covering gene sequences, differential expressions, function annotations, gene regulations, protein domains, protein interactions, and pathways. This review places existing gene prioritization tools against the backdrop of an integrative Omic hierarchy view toward cancer and focuses on the analysis of their text mining components. We explain the relatively slow progress of text mining in gene prioritization, identify several challenges to current text mining methods, and highlight a few directions where more effective text mining algorithms may improve the overall prioritization task and where prioritizing the pathways may be more desirable than prioritizing only genes.
Citation Mining: Integrating Text Mining and Bibliometrics for Research User Profiling.
ERIC Educational Resources Information Center
Kostoff, Ronald N.; del Rio, J. Antonio; Humenik, James A.; Garcia, Esther Ofilia; Ramirez, Ana Maria
2001-01-01
Discusses the importance of identifying the users and impact of research, and describes an approach for identifying the pathways through which research can impact other research, technology development, and applications. Describes a study that used citation mining, an integration of citation bibliometrics and text mining, on articles from the…
Managing equipment innovations in mining: A review.
Trudel, Bryan; Nadeau, Sylvie; Zaras, Kazimierz; Deschamps, Isabelle
2015-01-01
Technological innovations in mining equipment have led to increased productivity and occupational health and safety (OHS) performance, but their introduction also brings new risks for workers. The aim of this study is to provide support for mining industry managers who are required to reconcile equipment choices with OHS and productivity. Examination of the literature through interdisciplinary digital databases. Databases were searched using specific combinations of keywords and limited to studies dating back no farther than 1992. The ``snowball'' technique was also used to examining the references listed in research articles initially identified with the databases. A total of 19 contextual factors were identified as having the potential to influence the OHS and productivity leverage of equipment innovations. The most often cited among these factors are the level of training provided to the equipment operators, operator experience and age, supervisor leadership abilities, and maintaining good relations within work crews. Interactions between these factors are not discussed in mining innovation literature. It would be helpful to use a systems thinking approach which incorporates interaction between relevant actors and factors to define properly the most sensitive aspects of innovation management as it applies to mining equipment.
Using text-mining techniques in electronic patient records to identify ADRs from medicine use.
Warrer, Pernille; Hansen, Ebba Holme; Juhl-Jensen, Lars; Aagaard, Lise
2012-05-01
This literature review included studies that use text-mining techniques in narrative documents stored in electronic patient records (EPRs) to investigate ADRs. We searched PubMed, Embase, Web of Science and International Pharmaceutical Abstracts without restrictions from origin until July 2011. We included empirically based studies on text mining of electronic patient records (EPRs) that focused on detecting ADRs, excluding those that investigated adverse events not related to medicine use. We extracted information on study populations, EPR data sources, frequencies and types of the identified ADRs, medicines associated with ADRs, text-mining algorithms used and their performance. Seven studies, all from the United States, were eligible for inclusion in the review. Studies were published from 2001, the majority between 2009 and 2010. Text-mining techniques varied over time from simple free text searching of outpatient visit notes and inpatient discharge summaries to more advanced techniques involving natural language processing (NLP) of inpatient discharge summaries. Performance appeared to increase with the use of NLP, although many ADRs were still missed. Due to differences in study design and populations, various types of ADRs were identified and thus we could not make comparisons across studies. The review underscores the feasibility and potential of text mining to investigate narrative documents in EPRs for ADRs. However, more empirical studies are needed to evaluate whether text mining of EPRs can be used systematically to collect new information about ADRs. © 2011 The Authors. British Journal of Clinical Pharmacology © 2011 The British Pharmacological Society.
Using text-mining techniques in electronic patient records to identify ADRs from medicine use
Warrer, Pernille; Hansen, Ebba Holme; Juhl-Jensen, Lars; Aagaard, Lise
2012-01-01
This literature review included studies that use text-mining techniques in narrative documents stored in electronic patient records (EPRs) to investigate ADRs. We searched PubMed, Embase, Web of Science and International Pharmaceutical Abstracts without restrictions from origin until July 2011. We included empirically based studies on text mining of electronic patient records (EPRs) that focused on detecting ADRs, excluding those that investigated adverse events not related to medicine use. We extracted information on study populations, EPR data sources, frequencies and types of the identified ADRs, medicines associated with ADRs, text-mining algorithms used and their performance. Seven studies, all from the United States, were eligible for inclusion in the review. Studies were published from 2001, the majority between 2009 and 2010. Text-mining techniques varied over time from simple free text searching of outpatient visit notes and inpatient discharge summaries to more advanced techniques involving natural language processing (NLP) of inpatient discharge summaries. Performance appeared to increase with the use of NLP, although many ADRs were still missed. Due to differences in study design and populations, various types of ADRs were identified and thus we could not make comparisons across studies. The review underscores the feasibility and potential of text mining to investigate narrative documents in EPRs for ADRs. However, more empirical studies are needed to evaluate whether text mining of EPRs can be used systematically to collect new information about ADRs. PMID:22122057
Gene prioritization and clustering by multi-view text mining
2010-01-01
Background Text mining has become a useful tool for biologists trying to understand the genetics of diseases. In particular, it can help identify the most interesting candidate genes for a disease for further experimental analysis. Many text mining approaches have been introduced, but the effect of disease-gene identification varies in different text mining models. Thus, the idea of incorporating more text mining models may be beneficial to obtain more refined and accurate knowledge. However, how to effectively combine these models still remains a challenging question in machine learning. In particular, it is a non-trivial issue to guarantee that the integrated model performs better than the best individual model. Results We present a multi-view approach to retrieve biomedical knowledge using different controlled vocabularies. These controlled vocabularies are selected on the basis of nine well-known bio-ontologies and are applied to index the vast amounts of gene-based free-text information available in the MEDLINE repository. The text mining result specified by a vocabulary is considered as a view and the obtained multiple views are integrated by multi-source learning algorithms. We investigate the effect of integration in two fundamental computational disease gene identification tasks: gene prioritization and gene clustering. The performance of the proposed approach is systematically evaluated and compared on real benchmark data sets. In both tasks, the multi-view approach demonstrates significantly better performance than other comparing methods. Conclusions In practical research, the relevance of specific vocabulary pertaining to the task is usually unknown. In such case, multi-view text mining is a superior and promising strategy for text-based disease gene identification. PMID:20074336
A contextual data mining approach toward assisting the treatment of anxiety disorders.
Panagiotakopoulos, Theodor Chris; Lyras, Dimitrios Panagiotis; Livaditis, Miltos; Sgarbas, Kyriakos N; Anastassopoulos, George C; Lymberopoulos, Dimitrios K
2010-05-01
Anxiety disorders are considered the most prevalent of mental disorders. Nevertheless, the exact reasons that provoke them to patients remain yet not clearly specified, while the literature concerning the environment for monitoring and treatment support is rather scarce warranting further investigation. Toward this direction, in this study a context-aware approach is proposed, aiming to provide medical supervisors with a series of applications and personalized services targeted to exploit the multiparameter contextual data collected through a long-term monitoring procedure. More specifically, an application that assists the archiving and retrieving of the patients' health records was developed, and four treatment supportive services were considered. The three of them focus on the discovery of possible associations between the patient's contextual data; the last service aims at predicting the stress level a patient might suffer from, in a given context. The proposed approach was experimentally evaluated quantitatively (in terms of computational efficiency and time requirements) and qualitatively by experts on the field of mental health domain. The feedback received was very encouraging and the proposed approach seems quite useful to the anxiety disorders' treatment.
Small, Aeron M; Kiss, Daniel H; Zlatsin, Yevgeny; Birtwell, David L; Williams, Heather; Guerraty, Marie A; Han, Yuchi; Anwaruddin, Saif; Holmes, John H; Chirinos, Julio A; Wilensky, Robert L; Giri, Jay; Rader, Daniel J
2017-08-01
Interrogation of the electronic health record (EHR) using billing codes as a surrogate for diagnoses of interest has been widely used for clinical research. However, the accuracy of this methodology is variable, as it reflects billing codes rather than severity of disease, and depends on the disease and the accuracy of the coding practitioner. Systematic application of text mining to the EHR has had variable success for the detection of cardiovascular phenotypes. We hypothesize that the application of text mining algorithms to cardiovascular procedure reports may be a superior method to identify patients with cardiovascular conditions of interest. We adapted the Oracle product Endeca, which utilizes text mining to identify terms of interest from a NoSQL-like database, for purposes of searching cardiovascular procedure reports and termed the tool "PennSeek". We imported 282,569 echocardiography reports representing 81,164 individuals and 27,205 cardiac catheterization reports representing 14,567 individuals from non-searchable databases into PennSeek. We then applied clinical criteria to these reports in PennSeek to identify patients with trileaflet aortic stenosis (TAS) and coronary artery disease (CAD). Accuracy of patient identification by text mining through PennSeek was compared with ICD-9 billing codes. Text mining identified 7115 patients with TAS and 9247 patients with CAD. ICD-9 codes identified 8272 patients with TAS and 6913 patients with CAD. 4346 patients with AS and 6024 patients with CAD were identified by both approaches. A randomly selected sample of 200-250 patients uniquely identified by text mining was compared with 200-250 patients uniquely identified by billing codes for both diseases. We demonstrate that text mining was superior, with a positive predictive value (PPV) of 0.95 compared to 0.53 by ICD-9 for TAS, and a PPV of 0.97 compared to 0.86 for CAD. These results highlight the superiority of text mining algorithms applied to electronic cardiovascular procedure reports in the identification of phenotypes of interest for cardiovascular research. Copyright © 2017. Published by Elsevier Inc.
Using Embedded Visual Coding to Support Contextualization of Historical Texts
ERIC Educational Resources Information Center
Baron, Christine
2016-01-01
This mixed-method study examines the think-aloud protocols of 48 randomly assigned undergraduate students to understand what effect embedding a visual coding system, based on reliable visual cues for establishing historical time period, would have on novice history students' ability to contextualize historic documents. Results indicate that using…
Biocuration workflows and text mining: overview of the BioCreative 2012 Workshop Track II.
Lu, Zhiyong; Hirschman, Lynette
2012-01-01
Manual curation of data from the biomedical literature is a rate-limiting factor for many expert curated databases. Despite the continuing advances in biomedical text mining and the pressing needs of biocurators for better tools, few existing text-mining tools have been successfully integrated into production literature curation systems such as those used by the expert curated databases. To close this gap and better understand all aspects of literature curation, we invited submissions of written descriptions of curation workflows from expert curated databases for the BioCreative 2012 Workshop Track II. We received seven qualified contributions, primarily from model organism databases. Based on these descriptions, we identified commonalities and differences across the workflows, the common ontologies and controlled vocabularies used and the current and desired uses of text mining for biocuration. Compared to a survey done in 2009, our 2012 results show that many more databases are now using text mining in parts of their curation workflows. In addition, the workshop participants identified text-mining aids for finding gene names and symbols (gene indexing), prioritization of documents for curation (document triage) and ontology concept assignment as those most desired by the biocurators. DATABASE URL: http://www.biocreative.org/tasks/bc-workshop-2012/workflow/.
NASA Astrophysics Data System (ADS)
Znikina, Ludmila; Rozhneva, Elena
2017-11-01
The article deals with the distribution of informative intensity of the English-language scientific text based on its structural features contributing to the process of formalization of the scientific text and the preservation of the adequacy of the text with derived semantic information in relation to the primary. Discourse analysis is built on specific compositional and meaningful examples of scientific texts taken from the mining field. It also analyzes the adequacy of the translation of foreign texts into another language, the relationships between elements of linguistic systems, the degree of a formal conformance, translation with the specific objectives and information needs of the recipient. Some key words and ideas are emphasized in the paragraphs of the English-language mining scientific texts. The article gives the characteristic features of the structure of paragraphs of technical text and examples of constructions in English scientific texts based on a mining theme with the aim to explain the possible ways of their adequate translation.
An Evaluation of Text Mining Tools as Applied to Selected Scientific and Engineering Literature.
ERIC Educational Resources Information Center
Trybula, Walter J.; Wyllys, Ronald E.
2000-01-01
Addresses an approach to the discovery of scientific knowledge through an examination of data mining and text mining techniques. Presents the results of experiments that investigated knowledge acquisition from a selected set of technical documents by domain experts. (Contains 15 references.) (Author/LRW)
ERIC Educational Resources Information Center
Chen, Hsinchun
2003-01-01
Discusses information retrieval techniques used on the World Wide Web. Topics include machine learning in information extraction; relevance feedback; information filtering and recommendation; text classification and text clustering; Web mining, based on data mining techniques; hyperlink structure; and Web size. (LRW)
Application of text mining in the biomedical domain.
Fleuren, Wilco W M; Alkema, Wynand
2015-03-01
In recent years the amount of experimental data that is produced in biomedical research and the number of papers that are being published in this field have grown rapidly. In order to keep up to date with developments in their field of interest and to interpret the outcome of experiments in light of all available literature, researchers turn more and more to the use of automated literature mining. As a consequence, text mining tools have evolved considerably in number and quality and nowadays can be used to address a variety of research questions ranging from de novo drug target discovery to enhanced biological interpretation of the results from high throughput experiments. In this paper we introduce the most important techniques that are used for a text mining and give an overview of the text mining tools that are currently being used and the type of problems they are typically applied for. Copyright © 2015 Elsevier Inc. All rights reserved.
Chemical and Physical Soil Restoration in Mining Areas
NASA Astrophysics Data System (ADS)
Teresinha Gonçalves Bizuti, Denise; de Marchi Soares, Thaís; Roberti Alves de Almeida, Danilo; Sartorio, Simone Daniela; Casagrande, José Carlos; Santin Brancalion, Pedro Henrique
2017-04-01
The current trend of ecological restoration is to address the recovery of degraded areas by ecosystemic way, overcoming the rehabilitation process. In this sense, the topsoil and other complementary techniques in mining areas plays an important role in soil recovery. The aim of this study was to contextualize the soil improvement, with the use of topsoil through chemical and physical attributes, relative to secondary succession areas in restoration, as well as in reference ecosystems (natural forest). Eighteen areas were evaluated, six in forest restoration process, six native forests and six just mining areas. The areas were sampled in the depths of 0-5, 5-10, 10-20, 20-40 and 40-60 cm. Chemical indicators measured were parameters of soil fertility and texture, macroporosity, microporosity, density and total porosity as physical parameters. The forest restoration using topsoil was effective in triggering a process of soil recovery, promoting, in seven years, chemical and physical characteristics similar to those of the reference ecosystem.
The Islamic State Battle Plan: Press Release Natural Language Processing
2016-06-01
Processing, text mining , corpus, generalized linear model, cascade, R Shiny, leaflet, data visualization 15. NUMBER OF PAGES 83 16. PRICE CODE...Terrorism and Responses to Terrorism TDM Term Document Matrix TF Term Frequency TF-IDF Term Frequency-Inverse Document Frequency tm text mining (R...package=leaflet. Feinerer I, Hornik K (2015) Text Mining Package “tm,” Version 0.6-2. (Jul 3) https://cran.r-project.org/web/packages/tm/tm.pdf
OntoGene web services for biomedical text mining.
Rinaldi, Fabio; Clematide, Simon; Marques, Hernani; Ellendorff, Tilia; Romacker, Martin; Rodriguez-Esteban, Raul
2014-01-01
Text mining services are rapidly becoming a crucial component of various knowledge management pipelines, for example in the process of database curation, or for exploration and enrichment of biomedical data within the pharmaceutical industry. Traditional architectures, based on monolithic applications, do not offer sufficient flexibility for a wide range of use case scenarios, and therefore open architectures, as provided by web services, are attracting increased interest. We present an approach towards providing advanced text mining capabilities through web services, using a recently proposed standard for textual data interchange (BioC). The web services leverage a state-of-the-art platform for text mining (OntoGene) which has been tested in several community-organized evaluation challenges,with top ranked results in several of them.
Text mining patents for biomedical knowledge.
Rodriguez-Esteban, Raul; Bundschus, Markus
2016-06-01
Biomedical text mining of scientific knowledge bases, such as Medline, has received much attention in recent years. Given that text mining is able to automatically extract biomedical facts that revolve around entities such as genes, proteins, and drugs, from unstructured text sources, it is seen as a major enabler to foster biomedical research and drug discovery. In contrast to the biomedical literature, research into the mining of biomedical patents has not reached the same level of maturity. Here, we review existing work and highlight the associated technical challenges that emerge from automatically extracting facts from patents. We conclude by outlining potential future directions in this domain that could help drive biomedical research and drug discovery. Copyright © 2016 Elsevier Ltd. All rights reserved.
OntoGene web services for biomedical text mining
2014-01-01
Text mining services are rapidly becoming a crucial component of various knowledge management pipelines, for example in the process of database curation, or for exploration and enrichment of biomedical data within the pharmaceutical industry. Traditional architectures, based on monolithic applications, do not offer sufficient flexibility for a wide range of use case scenarios, and therefore open architectures, as provided by web services, are attracting increased interest. We present an approach towards providing advanced text mining capabilities through web services, using a recently proposed standard for textual data interchange (BioC). The web services leverage a state-of-the-art platform for text mining (OntoGene) which has been tested in several community-organized evaluation challenges, with top ranked results in several of them. PMID:25472638
e-Health and new moms: Contextual factors associated with sources of health information.
Walker, Lorraine O; Mackert, Michael S; Ahn, Jisoo; Vaughan, Misha W; Sterling, Bobbie S; Guy, Sarah; Hendrickson, Sherry
2017-11-01
Guided by the Uses and Gratifications approach, to examine mothers' use and preference of e-Health media, and associated contextual factors. Cross-sectional survey of 165 mothers (White, African-American, and Hispanic) from a stratified random sample. Use of online media about mother-baby care; favorite websites about motherhood and best-liked features of Web sites; channel preferences (Web site, postal mail, text) for receiving three types of health information; and contextual factors, e.g., education. Media use ranged from 96% for health information searches about babies to 46% for YouTube viewing about mother-baby topics. Contextual factors, such as education, were associated with media use. Babycenter was the most frequently reported favorite Web site and rich, relevant information was the best-liked feature. Across three health topics (weight, stress/depression, parenting) mothers preferred receiving information by Web site, followed by postal mail and least by text messaging (χ 2 statistics, p < .001). Stress and race/ethnicity were among factors associated with preferences. Mothers widely used e-Health related media, but use was associated with contextual factors. In public health efforts to reach new mothers, partnering with mother-favored Web sites, focusing on audience-relevant media, and adopting attributes of successful sites are recommended strategies. © 2017 Wiley Periodicals, Inc.
Toward semantic-based retrieval of visual information: a model-based approach
NASA Astrophysics Data System (ADS)
Park, Youngchoon; Golshani, Forouzan; Panchanathan, Sethuraman
2002-07-01
This paper center around the problem of automated visual content classification. To enable classification based image or visual object retrieval, we propose a new image representation scheme called visual context descriptor (VCD) that is a multidimensional vector in which each element represents the frequency of a unique visual property of an image or a region. VCD utilizes the predetermined quality dimensions (i.e., types of features and quantization level) and semantic model templates mined in priori. Not only observed visual cues, but also contextually relevant visual features are proportionally incorporated in VCD. Contextual relevance of a visual cue to a semantic class is determined by using correlation analysis of ground truth samples. Such co-occurrence analysis of visual cues requires transformation of a real-valued visual feature vector (e.g., color histogram, Gabor texture, etc.,) into a discrete event (e.g., terms in text). Good-feature to track, rule of thirds, iterative k-means clustering and TSVQ are involved in transformation of feature vectors into unified symbolic representations called visual terms. Similarity-based visual cue frequency estimation is also proposed and used for ensuring the correctness of model learning and matching since sparseness of sample data causes the unstable results of frequency estimation of visual cues. The proposed method naturally allows integration of heterogeneous visual or temporal or spatial cues in a single classification or matching framework, and can be easily integrated into a semantic knowledge base such as thesaurus, and ontology. Robust semantic visual model template creation and object based image retrieval are demonstrated based on the proposed content description scheme.
Limited Role of Contextual Information in Adult Word Recognition. Technical Report No. 411.
ERIC Educational Resources Information Center
Durgunoglu, Aydin Y.
Recognizing a word in a meaningful text involves processes that combine information from many different sources, and both bottom-up processes (such as feature extraction and letter recognition) and top-down processes (contextual information) are thought to interact when skilled readers recognize words. Two similar experiments investigated word…
The Fourth Gospel as Contextualized by Yucatecan Assemblies of God Pastors
ERIC Educational Resources Information Center
Kazim, Paul S.
2017-01-01
Most of the training material that Assemblies of God educators use in Latin America was originally written in English. Almost without exception nationals or missionaries translated the approved theology texts from English. While everyone contextualizes, the gospel message will not ever be completely at home in the Yucatan until the pastors think…
Promoting Contextual Vocabulary Learning through an Adaptive Computer-Assisted EFL Reading System
ERIC Educational Resources Information Center
Wang, Y.-H.
2016-01-01
The study developed an adaptive computer-assisted reading system and investigated its effect on promoting English as a foreign language learner-readers' contextual vocabulary learning performance. Seventy Taiwanese college students were assigned to two reading groups. Participants in the customised reading group read online English texts, each of…
Lucini, Filipe R; S Fogliatto, Flavio; C da Silveira, Giovani J; L Neyeloff, Jeruza; Anzanello, Michel J; de S Kuchenbecker, Ricardo; D Schaan, Beatriz
2017-04-01
Emergency department (ED) overcrowding is a serious issue for hospitals. Early information on short-term inward bed demand from patients receiving care at the ED may reduce the overcrowding problem, and optimize the use of hospital resources. In this study, we use text mining methods to process data from early ED patient records using the SOAP framework, and predict future hospitalizations and discharges. We try different approaches for pre-processing of text records and to predict hospitalization. Sets-of-words are obtained via binary representation, term frequency, and term frequency-inverse document frequency. Unigrams, bigrams and trigrams are tested for feature formation. Feature selection is based on χ 2 and F-score metrics. In the prediction module, eight text mining methods are tested: Decision Tree, Random Forest, Extremely Randomized Tree, AdaBoost, Logistic Regression, Multinomial Naïve Bayes, Support Vector Machine (Kernel linear) and Nu-Support Vector Machine (Kernel linear). Prediction performance is evaluated by F1-scores. Precision and Recall values are also informed for all text mining methods tested. Nu-Support Vector Machine was the text mining method with the best overall performance. Its average F1-score in predicting hospitalization was 77.70%, with a standard deviation (SD) of 0.66%. The method could be used to manage daily routines in EDs such as capacity planning and resource allocation. Text mining could provide valuable information and facilitate decision-making by inward bed management teams. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Text and Structural Data Mining of Influenza Mentions in Web and Social Media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corley, Courtney D.; Cook, Diane; Mikler, Armin R.
Text and structural data mining of Web and social media (WSM) provides a novel disease surveillance resource and can identify online communities for targeted public health communications (PHC) to assure wide dissemination of pertinent information. WSM that mention influenza are harvested over a 24-week period, 5-October-2008 to 21-March-2009. Link analysis reveals communities for targeted PHC. Text mining is shown to identify trends in flu posts that correlate to real-world influenza-like-illness patient report data. We also bring to bear a graph-based data mining technique to detect anomalies among flu blogs connected by publisher type, links, and user-tags.
Vaccine adverse event text mining system for extracting features from vaccine safety reports.
Botsis, Taxiarchis; Buttolph, Thomas; Nguyen, Michael D; Winiecki, Scott; Woo, Emily Jane; Ball, Robert
2012-01-01
To develop and evaluate a text mining system for extracting key clinical features from vaccine adverse event reporting system (VAERS) narratives to aid in the automated review of adverse event reports. Based upon clinical significance to VAERS reviewing physicians, we defined the primary (diagnosis and cause of death) and secondary features (eg, symptoms) for extraction. We built a novel vaccine adverse event text mining (VaeTM) system based on a semantic text mining strategy. The performance of VaeTM was evaluated using a total of 300 VAERS reports in three sequential evaluations of 100 reports each. Moreover, we evaluated the VaeTM contribution to case classification; an information retrieval-based approach was used for the identification of anaphylaxis cases in a set of reports and was compared with two other methods: a dedicated text classifier and an online tool. The performance metrics of VaeTM were text mining metrics: recall, precision and F-measure. We also conducted a qualitative difference analysis and calculated sensitivity and specificity for classification of anaphylaxis cases based on the above three approaches. VaeTM performed best in extracting diagnosis, second level diagnosis, drug, vaccine, and lot number features (lenient F-measure in the third evaluation: 0.897, 0.817, 0.858, 0.874, and 0.914, respectively). In terms of case classification, high sensitivity was achieved (83.1%); this was equal and better compared to the text classifier (83.1%) and the online tool (40.7%), respectively. Our VaeTM implementation of a semantic text mining strategy shows promise in providing accurate and efficient extraction of key features from VAERS narratives.
DISEASES: text mining and data integration of disease-gene associations.
Pletscher-Frankild, Sune; Pallejà, Albert; Tsafou, Kalliopi; Binder, Janos X; Jensen, Lars Juhl
2015-03-01
Text mining is a flexible technology that can be applied to numerous different tasks in biology and medicine. We present a system for extracting disease-gene associations from biomedical abstracts. The system consists of a highly efficient dictionary-based tagger for named entity recognition of human genes and diseases, which we combine with a scoring scheme that takes into account co-occurrences both within and between sentences. We show that this approach is able to extract half of all manually curated associations with a false positive rate of only 0.16%. Nonetheless, text mining should not stand alone, but be combined with other types of evidence. For this reason, we have developed the DISEASES resource, which integrates the results from text mining with manually curated disease-gene associations, cancer mutation data, and genome-wide association studies from existing databases. The DISEASES resource is accessible through a web interface at http://diseases.jensenlab.org/, where the text-mining software and all associations are also freely available for download. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Simmons, Michael; Singhal, Ayush; Lu, Zhiyong
2018-01-01
The key question of precision medicine is whether it is possible to find clinically actionable granularity in diagnosing disease and classifying patient risk. The advent of next generation sequencing and the widespread adoption of electronic health records (EHRs) have provided clinicians and researchers a wealth of data and made possible the precise characterization of individual patient genotypes and phenotypes. Unstructured text — found in biomedical publications and clinical notes — is an important component of genotype and phenotype knowledge. Publications in the biomedical literature provide essential information for interpreting genetic data. Likewise, clinical notes contain the richest source of phenotype information in EHRs. Text mining can render these texts computationally accessible and support information extraction and hypothesis generation. This chapter reviews the mechanics of text mining in precision medicine and discusses several specific use cases, including database curation for personalized cancer medicine, patient outcome prediction from EHR-derived cohorts, and pharmacogenomic research. Taken as a whole, these use cases demonstrate how text mining enables effective utilization of existing knowledge sources and thus promotes increased value for patients and healthcare systems. Text mining is an indispensable tool for translating genotype-phenotype data into effective clinical care that will undoubtedly play an important role in the eventual realization of precision medicine. PMID:27807747
Simmons, Michael; Singhal, Ayush; Lu, Zhiyong
2016-01-01
The key question of precision medicine is whether it is possible to find clinically actionable granularity in diagnosing disease and classifying patient risk. The advent of next-generation sequencing and the widespread adoption of electronic health records (EHRs) have provided clinicians and researchers a wealth of data and made possible the precise characterization of individual patient genotypes and phenotypes. Unstructured text-found in biomedical publications and clinical notes-is an important component of genotype and phenotype knowledge. Publications in the biomedical literature provide essential information for interpreting genetic data. Likewise, clinical notes contain the richest source of phenotype information in EHRs. Text mining can render these texts computationally accessible and support information extraction and hypothesis generation. This chapter reviews the mechanics of text mining in precision medicine and discusses several specific use cases, including database curation for personalized cancer medicine, patient outcome prediction from EHR-derived cohorts, and pharmacogenomic research. Taken as a whole, these use cases demonstrate how text mining enables effective utilization of existing knowledge sources and thus promotes increased value for patients and healthcare systems. Text mining is an indispensable tool for translating genotype-phenotype data into effective clinical care that will undoubtedly play an important role in the eventual realization of precision medicine.
Using Text Mining to Uncover Students' Technology-Related Problems in Live Video Streaming
ERIC Educational Resources Information Center
Abdous, M'hammed; He, Wu
2011-01-01
Because of their capacity to sift through large amounts of data, text mining and data mining are enabling higher education institutions to reveal valuable patterns in students' learning behaviours without having to resort to traditional survey methods. In an effort to uncover live video streaming (LVS) students' technology related-problems and to…
Hammond, Kenric W; Ben-Ari, Alon Y; Laundry, Ryan J; Boyko, Edward J; Samore, Matthew H
2015-12-01
Free text in electronic health records resists large-scale analysis. Text records facts of interest not found in encoded data, and text mining enables their retrieval and quantification. The U.S. Department of Veterans Affairs (VA) clinical data repository affords an opportunity to apply text-mining methodology to study clinical questions in large populations. To assess the feasibility of text mining, investigation of the relationship between exposure to adverse childhood experiences (ACEs) and recorded diagnoses was conducted among all VA-treated Gulf war veterans, utilizing all progress notes recorded from 2000-2011. Text processing extracted ACE exposures recorded among 44.7 million clinical notes belonging to 243,973 veterans. The relationship of ACE exposure to adult illnesses was analyzed using logistic regression. Bias considerations were assessed. ACE score was strongly associated with suicide attempts and serious mental disorders (ORs = 1.84 to 1.97), and less so with behaviorally mediated and somatic conditions (ORs = 1.02 to 1.36) per unit. Bias adjustments did not remove persistent associations between ACE score and most illnesses. Text mining to detect ACE exposure in a large population was feasible. Analysis of the relationship between ACE score and adult health conditions yielded patterns of association consistent with prior research. Copyright © 2015 International Society for Traumatic Stress Studies.
Text-Frame Relationships and ESL.
ERIC Educational Resources Information Center
Burquest, Donald A.; Henry, Floreen Barger
The relationship of contextual background to comprehension of written texts is discussed with reference to instruction in English as a second language (ESL). A theory advanced by Kerry Stewart Robichaux proposes six possible relationships between a text and its cultural "frame." Applications of the six text-frame relationships to foreign…
Text mining and its potential applications in systems biology.
Ananiadou, Sophia; Kell, Douglas B; Tsujii, Jun-ichi
2006-12-01
With biomedical literature increasing at a rate of several thousand papers per week, it is impossible to keep abreast of all developments; therefore, automated means to manage the information overload are required. Text mining techniques, which involve the processes of information retrieval, information extraction and data mining, provide a means of solving this. By adding meaning to text, these techniques produce a more structured analysis of textual knowledge than simple word searches, and can provide powerful tools for the production and analysis of systems biology models.
Developing a hybrid dictionary-based bio-entity recognition technique.
Song, Min; Yu, Hwanjo; Han, Wook-Shin
2015-01-01
Bio-entity extraction is a pivotal component for information extraction from biomedical literature. The dictionary-based bio-entity extraction is the first generation of Named Entity Recognition (NER) techniques. This paper presents a hybrid dictionary-based bio-entity extraction technique. The approach expands the bio-entity dictionary by combining different data sources and improves the recall rate through the shortest path edit distance algorithm. In addition, the proposed technique adopts text mining techniques in the merging stage of similar entities such as Part of Speech (POS) expansion, stemming, and the exploitation of the contextual cues to further improve the performance. The experimental results show that the proposed technique achieves the best or at least equivalent performance among compared techniques, GENIA, MESH, UMLS, and combinations of these three resources in F-measure. The results imply that the performance of dictionary-based extraction techniques is largely influenced by information resources used to build the dictionary. In addition, the edit distance algorithm shows steady performance with three different dictionaries in precision whereas the context-only technique achieves a high-end performance with three difference dictionaries in recall.
A Visual Analytics Framework for Identifying Topic Drivers in Media Events.
Lu, Yafeng; Wang, Hong; Landis, Steven; Maciejewski, Ross
2017-09-14
Media data has been the subject of large scale analysis with applications of text mining being used to provide overviews of media themes and information flows. Such information extracted from media articles has also shown its contextual value of being integrated with other data, such as criminal records and stock market pricing. In this work, we explore linking textual media data with curated secondary textual data sources through user-guided semantic lexical matching for identifying relationships and data links. In this manner, critical information can be identified and used to annotate media timelines in order to provide a more detailed overview of events that may be driving media topics and frames. These linked events are further analyzed through an application of causality modeling to model temporal drivers between the data series. Such causal links are then annotated through automatic entity extraction which enables the analyst to explore persons, locations, and organizations that may be pertinent to the media topic of interest. To demonstrate the proposed framework, two media datasets and an armed conflict event dataset are explored.
Developing a hybrid dictionary-based bio-entity recognition technique
2015-01-01
Background Bio-entity extraction is a pivotal component for information extraction from biomedical literature. The dictionary-based bio-entity extraction is the first generation of Named Entity Recognition (NER) techniques. Methods This paper presents a hybrid dictionary-based bio-entity extraction technique. The approach expands the bio-entity dictionary by combining different data sources and improves the recall rate through the shortest path edit distance algorithm. In addition, the proposed technique adopts text mining techniques in the merging stage of similar entities such as Part of Speech (POS) expansion, stemming, and the exploitation of the contextual cues to further improve the performance. Results The experimental results show that the proposed technique achieves the best or at least equivalent performance among compared techniques, GENIA, MESH, UMLS, and combinations of these three resources in F-measure. Conclusions The results imply that the performance of dictionary-based extraction techniques is largely influenced by information resources used to build the dictionary. In addition, the edit distance algorithm shows steady performance with three different dictionaries in precision whereas the context-only technique achieves a high-end performance with three difference dictionaries in recall. PMID:26043907
VisualUrText: A Text Analytics Tool for Unstructured Textual Data
NASA Astrophysics Data System (ADS)
Zainol, Zuraini; Jaymes, Mohd T. H.; Nohuddin, Puteri N. E.
2018-05-01
The growing amount of unstructured text over Internet is tremendous. Text repositories come from Web 2.0, business intelligence and social networking applications. It is also believed that 80-90% of future growth data is available in the form of unstructured text databases that may potentially contain interesting patterns and trends. Text Mining is well known technique for discovering interesting patterns and trends which are non-trivial knowledge from massive unstructured text data. Text Mining covers multidisciplinary fields involving information retrieval (IR), text analysis, natural language processing (NLP), data mining, machine learning statistics and computational linguistics. This paper discusses the development of text analytics tool that is proficient in extracting, processing, analyzing the unstructured text data and visualizing cleaned text data into multiple forms such as Document Term Matrix (DTM), Frequency Graph, Network Analysis Graph, Word Cloud and Dendogram. This tool, VisualUrText, is developed to assist students and researchers for extracting interesting patterns and trends in document analyses.
BioCreative Workshops for DOE Genome Sciences: Text Mining for Metagenomics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Cathy H.; Hirschman, Lynette
The objective of this project was to host BioCreative workshops to define and develop text mining tasks to meet the needs of the Genome Sciences community, focusing on metadata information extraction in metagenomics. Following the successful introduction of metagenomics at the BioCreative IV workshop, members of the metagenomics community and BioCreative communities continued discussion to identify candidate topics for a BioCreative metagenomics track for BioCreative V. Of particular interest was the capture of environmental and isolation source information from text. The outcome was to form a “community of interest” around work on the interactive EXTRACT system, which supported interactive taggingmore » of environmental and species data. This experiment is included in the BioCreative V virtual issue of Database. In addition, there was broad participation by members of the metagenomics community in the panels held at BioCreative V, leading to valuable exchanges between the text mining developers and members of the metagenomics research community. These exchanges are reflected in a number of the overview and perspective pieces also being captured in the BioCreative V virtual issue. Overall, this conversation has exposed the metagenomics researchers to the possibilities of text mining, and educated the text mining developers to the specific needs of the metagenomics community.« less
Benchmarking infrastructure for mutation text mining
2014-01-01
Background Experimental research on the automatic extraction of information about mutations from texts is greatly hindered by the lack of consensus evaluation infrastructure for the testing and benchmarking of mutation text mining systems. Results We propose a community-oriented annotation and benchmarking infrastructure to support development, testing, benchmarking, and comparison of mutation text mining systems. The design is based on semantic standards, where RDF is used to represent annotations, an OWL ontology provides an extensible schema for the data and SPARQL is used to compute various performance metrics, so that in many cases no programming is needed to analyze results from a text mining system. While large benchmark corpora for biological entity and relation extraction are focused mostly on genes, proteins, diseases, and species, our benchmarking infrastructure fills the gap for mutation information. The core infrastructure comprises (1) an ontology for modelling annotations, (2) SPARQL queries for computing performance metrics, and (3) a sizeable collection of manually curated documents, that can support mutation grounding and mutation impact extraction experiments. Conclusion We have developed the principal infrastructure for the benchmarking of mutation text mining tasks. The use of RDF and OWL as the representation for corpora ensures extensibility. The infrastructure is suitable for out-of-the-box use in several important scenarios and is ready, in its current state, for initial community adoption. PMID:24568600
Benchmarking infrastructure for mutation text mining.
Klein, Artjom; Riazanov, Alexandre; Hindle, Matthew M; Baker, Christopher Jo
2014-02-25
Experimental research on the automatic extraction of information about mutations from texts is greatly hindered by the lack of consensus evaluation infrastructure for the testing and benchmarking of mutation text mining systems. We propose a community-oriented annotation and benchmarking infrastructure to support development, testing, benchmarking, and comparison of mutation text mining systems. The design is based on semantic standards, where RDF is used to represent annotations, an OWL ontology provides an extensible schema for the data and SPARQL is used to compute various performance metrics, so that in many cases no programming is needed to analyze results from a text mining system. While large benchmark corpora for biological entity and relation extraction are focused mostly on genes, proteins, diseases, and species, our benchmarking infrastructure fills the gap for mutation information. The core infrastructure comprises (1) an ontology for modelling annotations, (2) SPARQL queries for computing performance metrics, and (3) a sizeable collection of manually curated documents, that can support mutation grounding and mutation impact extraction experiments. We have developed the principal infrastructure for the benchmarking of mutation text mining tasks. The use of RDF and OWL as the representation for corpora ensures extensibility. The infrastructure is suitable for out-of-the-box use in several important scenarios and is ready, in its current state, for initial community adoption.
DrugQuest - a text mining workflow for drug association discovery.
Papanikolaou, Nikolas; Pavlopoulos, Georgios A; Theodosiou, Theodosios; Vizirianakis, Ioannis S; Iliopoulos, Ioannis
2016-06-06
Text mining and data integration methods are gaining ground in the field of health sciences due to the exponential growth of bio-medical literature and information stored in biological databases. While such methods mostly try to extract bioentity associations from PubMed, very few of them are dedicated in mining other types of repositories such as chemical databases. Herein, we apply a text mining approach on the DrugBank database in order to explore drug associations based on the DrugBank "Description", "Indication", "Pharmacodynamics" and "Mechanism of Action" text fields. We apply Name Entity Recognition (NER) techniques on these fields to identify chemicals, proteins, genes, pathways, diseases, and we utilize the TextQuest algorithm to find additional biologically significant words. Using a plethora of similarity and partitional clustering techniques, we group the DrugBank records based on their common terms and investigate possible scenarios why these records are clustered together. Different views such as clustered chemicals based on their textual information, tag clouds consisting of Significant Terms along with the terms that were used for clustering are delivered to the user through a user-friendly web interface. DrugQuest is a text mining tool for knowledge discovery: it is designed to cluster DrugBank records based on text attributes in order to find new associations between drugs. The service is freely available at http://bioinformatics.med.uoc.gr/drugquest .
BioCreative III interactive task: an overview
2011-01-01
Background The BioCreative challenge evaluation is a community-wide effort for evaluating text mining and information extraction systems applied to the biological domain. The biocurator community, as an active user of biomedical literature, provides a diverse and engaged end user group for text mining tools. Earlier BioCreative challenges involved many text mining teams in developing basic capabilities relevant to biological curation, but they did not address the issues of system usage, insertion into the workflow and adoption by curators. Thus in BioCreative III (BC-III), the InterActive Task (IAT) was introduced to address the utility and usability of text mining tools for real-life biocuration tasks. To support the aims of the IAT in BC-III, involvement of both developers and end users was solicited, and the development of a user interface to address the tasks interactively was requested. Results A User Advisory Group (UAG) actively participated in the IAT design and assessment. The task focused on gene normalization (identifying gene mentions in the article and linking these genes to standard database identifiers), gene ranking based on the overall importance of each gene mentioned in the article, and gene-oriented document retrieval (identifying full text papers relevant to a selected gene). Six systems participated and all processed and displayed the same set of articles. The articles were selected based on content known to be problematic for curation, such as ambiguity of gene names, coverage of multiple genes and species, or introduction of a new gene name. Members of the UAG curated three articles for training and assessment purposes, and each member was assigned a system to review. A questionnaire related to the interface usability and task performance (as measured by precision and recall) was answered after systems were used to curate articles. Although the limited number of articles analyzed and users involved in the IAT experiment precluded rigorous quantitative analysis of the results, a qualitative analysis provided valuable insight into some of the problems encountered by users when using the systems. The overall assessment indicates that the system usability features appealed to most users, but the system performance was suboptimal (mainly due to low accuracy in gene normalization). Some of the issues included failure of species identification and gene name ambiguity in the gene normalization task leading to an extensive list of gene identifiers to review, which, in some cases, did not contain the relevant genes. The document retrieval suffered from the same shortfalls. The UAG favored achieving high performance (measured by precision and recall), but strongly recommended the addition of features that facilitate the identification of correct gene and its identifier, such as contextual information to assist in disambiguation. Discussion The IAT was an informative exercise that advanced the dialog between curators and developers and increased the appreciation of challenges faced by each group. A major conclusion was that the intended users should be actively involved in every phase of software development, and this will be strongly encouraged in future tasks. The IAT Task provides the first steps toward the definition of metrics and functional requirements that are necessary for designing a formal evaluation of interactive curation systems in the BioCreative IV challenge. PMID:22151968
ERIC Educational Resources Information Center
Kong, Siu Cheung; Li, Ping; Song, Yanjie
2018-01-01
This study evaluated a bilingual text-mining system, which incorporated a bilingual taxonomy of key words and provided hierarchical visualization, for understanding learner-generated text in the learning management systems through automatic identification and counting of matching key words. A class of 27 in-service teachers studied a course…
Beyond accuracy: creating interoperable and scalable text-mining web services.
Wei, Chih-Hsuan; Leaman, Robert; Lu, Zhiyong
2016-06-15
The biomedical literature is a knowledge-rich resource and an important foundation for future research. With over 24 million articles in PubMed and an increasing growth rate, research in automated text processing is becoming increasingly important. We report here our recently developed web-based text mining services for biomedical concept recognition and normalization. Unlike most text-mining software tools, our web services integrate several state-of-the-art entity tagging systems (DNorm, GNormPlus, SR4GN, tmChem and tmVar) and offer a batch-processing mode able to process arbitrary text input (e.g. scholarly publications, patents and medical records) in multiple formats (e.g. BioC). We support multiple standards to make our service interoperable and allow simpler integration with other text-processing pipelines. To maximize scalability, we have preprocessed all PubMed articles, and use a computer cluster for processing large requests of arbitrary text. Our text-mining web service is freely available at http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/tmTools/#curl : Zhiyong.Lu@nih.gov. Published by Oxford University Press 2016. This work is written by US Government employees and is in the public domain in the US.
75 FR 51291 - National Science Board: Sunshine Act Meetings; Notice
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-19
...-Gathering Activities. [cir] COV Report Text-Mining. [cir] Design of Research Questions for External Input. [cir] SBE/CISE Text-Mining Projects. [cir] Using a Blog for Informal Input. Committee on Education and...
Imitating manual curation of text-mined facts in biomedicine.
Rodriguez-Esteban, Raul; Iossifov, Ivan; Rzhetsky, Andrey
2006-09-08
Text-mining algorithms make mistakes in extracting facts from natural-language texts. In biomedical applications, which rely on use of text-mined data, it is critical to assess the quality (the probability that the message is correctly extracted) of individual facts--to resolve data conflicts and inconsistencies. Using a large set of almost 100,000 manually produced evaluations (most facts were independently reviewed more than once, producing independent evaluations), we implemented and tested a collection of algorithms that mimic human evaluation of facts provided by an automated information-extraction system. The performance of our best automated classifiers closely approached that of our human evaluators (ROC score close to 0.95). Our hypothesis is that, were we to use a larger number of human experts to evaluate any given sentence, we could implement an artificial-intelligence curator that would perform the classification job at least as accurately as an average individual human evaluator. We illustrated our analysis by visualizing the predicted accuracy of the text-mined relations involving the term cocaine.
Assimilating Text-Mining & Bio-Informatics Tools to Analyze Cellulase structures
NASA Astrophysics Data System (ADS)
Satyasree, K. P. N. V., Dr; Lalitha Kumari, B., Dr; Jyotsna Devi, K. S. N. V.; Choudri, S. M. Roy; Pratap Joshi, K.
2017-08-01
Text-mining is one of the best potential way of automatically extracting information from the huge biological literature. To exploit its prospective, the knowledge encrypted in the text should be converted to some semantic representation such as entities and relations, which could be analyzed by machines. But large-scale practical systems for this purpose are rare. But text mining could be helpful for generating or validating predictions. Cellulases have abundant applications in various industries. Cellulose degrading enzymes are cellulases and the same producing bacteria - Bacillus subtilis & fungus Pseudomonas putida were isolated from top soil of Guntur Dt. A.P. India. Absolute cultures were conserved on potato dextrose agar medium for molecular studies. In this paper, we presented how well the text mining concepts can be used to analyze cellulase producing bacteria and fungi, their comparative structures are also studied with the aid of well-establised, high quality standard bioinformatic tools such as Bioedit, Swissport, Protparam, EMBOSSwin with which a complete data on Cellulases like structure, constituents of the enzyme has been obtained.
Gurulingappa, Harsha; Toldo, Luca; Rajput, Abdul Mateen; Kors, Jan A; Taweel, Adel; Tayrouz, Yorki
2013-11-01
The aim of this study was to assess the impact of automatically detected adverse event signals from text and open-source data on the prediction of drug label changes. Open-source adverse effect data were collected from FAERS, Yellow Cards and SIDER databases. A shallow linguistic relation extraction system (JSRE) was applied for extraction of adverse effects from MEDLINE case reports. Statistical approach was applied on the extracted datasets for signal detection and subsequent prediction of label changes issued for 29 drugs by the UK Regulatory Authority in 2009. 76% of drug label changes were automatically predicted. Out of these, 6% of drug label changes were detected only by text mining. JSRE enabled precise identification of four adverse drug events from MEDLINE that were undetectable otherwise. Changes in drug labels can be predicted automatically using data and text mining techniques. Text mining technology is mature and well-placed to support the pharmacovigilance tasks. Copyright © 2013 John Wiley & Sons, Ltd.
Mining Adverse Drug Reactions in Social Media with Named Entity Recognition and Semantic Methods.
Chen, Xiaoyi; Deldossi, Myrtille; Aboukhamis, Rim; Faviez, Carole; Dahamna, Badisse; Karapetiantz, Pierre; Guenegou-Arnoux, Armelle; Girardeau, Yannick; Guillemin-Lanne, Sylvie; Lillo-Le-Louët, Agnès; Texier, Nathalie; Burgun, Anita; Katsahian, Sandrine
2017-01-01
Suspected adverse drug reactions (ADR) reported by patients through social media can be a complementary source to current pharmacovigilance systems. However, the performance of text mining tools applied to social media text data to discover ADRs needs to be evaluated. In this paper, we introduce the approach developed to mine ADR from French social media. A protocol of evaluation is highlighted, which includes a detailed sample size determination and evaluation corpus constitution. Our text mining approach provided very encouraging preliminary results with F-measures of 0.94 and 0.81 for recognition of drugs and symptoms respectively, and with F-measure of 0.70 for ADR detection. Therefore, this approach is promising for downstream pharmacovigilance analysis.
Detection and Evaluation of Cheating on College Exams Using Supervised Classification
ERIC Educational Resources Information Center
Cavalcanti, Elmano Ramalho; Pires, Carlos Eduardo; Cavalcanti, Elmano Pontes; Pires, Vládia Freire
2012-01-01
Text mining has been used for various purposes, such as document classification and extraction of domain-specific information from text. In this paper we present a study in which text mining methodology and algorithms were properly employed for academic dishonesty (cheating) detection and evaluation on open-ended college exams, based on document…
Byrnes, Hilary F; Miller, Brenda A; Wiebe, Douglas J; Morrison, Christopher N; Remer, Lillian G; Wiehe, Sarah E
2015-08-01
Measuring activity spaces, places adolescents spend time, provides information about relations between contextual exposures and risk behaviors. We studied whether contextual exposures in adolescents' activity spaces differ from contextual risks present in residential contexts and examined relationships between contextual exposures in activity spaces and alcohol/marijuana use. Adolescents (N = 18) aged 16-17 years carried global positioning system (GPS)-enabled smartphones for 1 week, with locations tracked. Activity spaces were created by connecting global positioning system points sequentially and adding buffers. Contextual exposure data (e.g., alcohol outlets) were connected to routes. Adolescents completed texts regarding behaviors. Adolescent activity spaces intersected 24.3 census tracts and contained nine times more alcohol outlets than that of residential census tracts. Outlet exposure in activity spaces was related to drinking. Low-socioeconomic status exposure was related to marijuana use. Findings suggest substantial differences between activity spaces and residential contexts and suggest that activity spaces are relevant for adolescent risk behaviors. Copyright © 2015 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.
What the papers say: Text mining for genomics and systems biology
2010-01-01
Keeping up with the rapidly growing literature has become virtually impossible for most scientists. This can have dire consequences. First, we may waste research time and resources on reinventing the wheel simply because we can no longer maintain a reliable grasp on the published literature. Second, and perhaps more detrimental, judicious (or serendipitous) combination of knowledge from different scientific disciplines, which would require following disparate and distinct research literatures, is rapidly becoming impossible for even the most ardent readers of research publications. Text mining -- the automated extraction of information from (electronically) published sources -- could potentially fulfil an important role -- but only if we know how to harness its strengths and overcome its weaknesses. As we do not expect that the rate at which scientific results are published will decrease, text mining tools are now becoming essential in order to cope with, and derive maximum benefit from, this information explosion. In genomics, this is particularly pressing as more and more rare disease-causing variants are found and need to be understood. Not being conversant with this technology may put scientists and biomedical regulators at a severe disadvantage. In this review, we introduce the basic concepts underlying modern text mining and its applications in genomics and systems biology. We hope that this review will serve three purposes: (i) to provide a timely and useful overview of the current status of this field, including a survey of present challenges; (ii) to enable researchers to decide how and when to apply text mining tools in their own research; and (iii) to highlight how the research communities in genomics and systems biology can help to make text mining from biomedical abstracts and texts more straightforward. PMID:21106487
Knowledge based word-concept model estimation and refinement for biomedical text mining.
Jimeno Yepes, Antonio; Berlanga, Rafael
2015-02-01
Text mining of scientific literature has been essential for setting up large public biomedical databases, which are being widely used by the research community. In the biomedical domain, the existence of a large number of terminological resources and knowledge bases (KB) has enabled a myriad of machine learning methods for different text mining related tasks. Unfortunately, KBs have not been devised for text mining tasks but for human interpretation, thus performance of KB-based methods is usually lower when compared to supervised machine learning methods. The disadvantage of supervised methods though is they require labeled training data and therefore not useful for large scale biomedical text mining systems. KB-based methods do not have this limitation. In this paper, we describe a novel method to generate word-concept probabilities from a KB, which can serve as a basis for several text mining tasks. This method not only takes into account the underlying patterns within the descriptions contained in the KB but also those in texts available from large unlabeled corpora such as MEDLINE. The parameters of the model have been estimated without training data. Patterns from MEDLINE have been built using MetaMap for entity recognition and related using co-occurrences. The word-concept probabilities were evaluated on the task of word sense disambiguation (WSD). The results showed that our method obtained a higher degree of accuracy than other state-of-the-art approaches when evaluated on the MSH WSD data set. We also evaluated our method on the task of document ranking using MEDLINE citations. These results also showed an increase in performance over existing baseline retrieval approaches. Copyright © 2014 Elsevier Inc. All rights reserved.
Assessing semantic similarity of texts - Methods and algorithms
NASA Astrophysics Data System (ADS)
Rozeva, Anna; Zerkova, Silvia
2017-12-01
Assessing the semantic similarity of texts is an important part of different text-related applications like educational systems, information retrieval, text summarization, etc. This task is performed by sophisticated analysis, which implements text-mining techniques. Text mining involves several pre-processing steps, which provide for obtaining structured representative model of the documents in a corpus by means of extracting and selecting the features, characterizing their content. Generally the model is vector-based and enables further analysis with knowledge discovery approaches. Algorithms and measures are used for assessing texts at syntactical and semantic level. An important text-mining method and similarity measure is latent semantic analysis (LSA). It provides for reducing the dimensionality of the document vector space and better capturing the text semantics. The mathematical background of LSA for deriving the meaning of the words in a given text by exploring their co-occurrence is examined. The algorithm for obtaining the vector representation of words and their corresponding latent concepts in a reduced multidimensional space as well as similarity calculation are presented.
ERIC Educational Resources Information Center
Benoit, Gerald
2002-01-01
Discusses data mining (DM) and knowledge discovery in databases (KDD), taking the view that KDD is the larger view of the entire process, with DM emphasizing the cleaning, warehousing, mining, and visualization of knowledge discovery in databases. Highlights include algorithms; users; the Internet; text mining; and information extraction.…
ERIC Educational Resources Information Center
Bowers, Alex J.; Chen, Jingjing
2015-01-01
The purpose of this study is to bring together recent innovations in the research literature around school district capital facility finance, municipal bond elections, statistical models of conditional time-varying outcomes, and data mining algorithms for automated text mining of election ballot proposals to examine the factors that influence the…
New directions in biomedical text annotation: definitions, guidelines and corpus construction
Wilbur, W John; Rzhetsky, Andrey; Shatkay, Hagit
2006-01-01
Background While biomedical text mining is emerging as an important research area, practical results have proven difficult to achieve. We believe that an important first step towards more accurate text-mining lies in the ability to identify and characterize text that satisfies various types of information needs. We report here the results of our inquiry into properties of scientific text that have sufficient generality to transcend the confines of a narrow subject area, while supporting practical mining of text for factual information. Our ultimate goal is to annotate a significant corpus of biomedical text and train machine learning methods to automatically categorize such text along certain dimensions that we have defined. Results We have identified five qualitative dimensions that we believe characterize a broad range of scientific sentences, and are therefore useful for supporting a general approach to text-mining: focus, polarity, certainty, evidence, and directionality. We define these dimensions and describe the guidelines we have developed for annotating text with regard to them. To examine the effectiveness of the guidelines, twelve annotators independently annotated the same set of 101 sentences that were randomly selected from current biomedical periodicals. Analysis of these annotations shows 70–80% inter-annotator agreement, suggesting that our guidelines indeed present a well-defined, executable and reproducible task. Conclusion We present our guidelines defining a text annotation task, along with annotation results from multiple independently produced annotations, demonstrating the feasibility of the task. The annotation of a very large corpus of documents along these guidelines is currently ongoing. These annotations form the basis for the categorization of text along multiple dimensions, to support viable text mining for experimental results, methodology statements, and other forms of information. We are currently developing machine learning methods, to be trained and tested on the annotated corpus, that would allow for the automatic categorization of biomedical text along the general dimensions that we have presented. The guidelines in full detail, along with annotated examples, are publicly available. PMID:16867190
NASA Astrophysics Data System (ADS)
Scheele, C. J.; Huang, Q.
2016-12-01
In the past decade, the rise in social media has led to the development of a vast number of social media services and applications. Disaster management represents one of such applications leveraging massive data generated for event detection, response, and recovery. In order to find disaster relevant social media data, current approaches utilize natural language processing (NLP) methods based on keywords, or machine learning algorithms relying on text only. However, these approaches cannot be perfectly accurate due to the variability and uncertainty in language used on social media. To improve current methods, the enhanced text-mining framework is proposed to incorporate location information from social media and authoritative remote sensing datasets for detecting disaster relevant social media posts, which are determined by assessing the textual content using common text mining methods and how the post relates spatiotemporally to the disaster event. To assess the framework, geo-tagged Tweets were collected for three different spatial and temporal disaster events: hurricane, flood, and tornado. Remote sensing data and products for each event were then collected using RealEarthTM. Both Naive Bayes and Logistic Regression classifiers were used to compare the accuracy within the enhanced text-mining framework. Finally, the accuracies from the enhanced text-mining framework were compared to the current text-only methods for each of the case study disaster events. The results from this study address the need for more authoritative data when using social media in disaster management applications.
Rispel, L C; Peltzer, K; Nkomo, N; Molomo, B
2010-11-01
In 2006, De Beers Consolidated Diamond Mines in South Africa entered into a partnership with the Soul City Institute for Health and Development Communications to implement an HIV and AIDS Community Training Partnership Program (CTPP), initially in five diamond mining areas in three provinces of South Africa. The aim of CTPP was to improve HIV knowledge and to contribute to positive behavior changes in the targeted populations. This paper describes the evaluation of the CTPP, one year after implementation. The evaluation combined qualitative interviews with key informants and trainers and a post-intervention survey of 142 community members. The successes of the CTPP included capacity building of trainers through an innovative training approach and HIV and AIDS knowledge transfer to community trainers and targeted communities in remote mining towns. The Soul City edutainment brand is popular and emerged as a major reason for success. Challenges included insufficient attention paid to contextual factors, resource constraints and the lack of a monitoring and evaluation framework. Independent evaluations are useful to strengthen program implementation. In remote areas and resource constraint settings, partnerships between non-governmental organisations and corporations may be required for successful community HIV and AIDS initiatives. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tirupattur, Naveen; Lapish, Christopher C.; Mukhopadhyay, Snehasis
2011-06-01
Text mining, sometimes alternately referred to as text analytics, refers to the process of extracting high-quality knowledge from the analysis of textual data. Text mining has wide variety of applications in areas such as biomedical science, news analysis, and homeland security. In this paper, we describe an approach and some relatively small-scale experiments which apply text mining to neuroscience research literature to find novel associations among a diverse set of entities. Neuroscience is a discipline which encompasses an exceptionally wide range of experimental approaches and rapidly growing interest. This combination results in an overwhelmingly large and often diffuse literature which makes a comprehensive synthesis difficult. Understanding the relations or associations among the entities appearing in the literature not only improves the researchers current understanding of recent advances in their field, but also provides an important computational tool to formulate novel hypotheses and thereby assist in scientific discoveries. We describe a methodology to automatically mine the literature and form novel associations through direct analysis of published texts. The method first retrieves a set of documents from databases such as PubMed using a set of relevant domain terms. In the current study these terms yielded a set of documents ranging from 160,909 to 367,214 documents. Each document is then represented in a numerical vector form from which an Association Graph is computed which represents relationships between all pairs of domain terms, based on co-occurrence. Association graphs can then be subjected to various graph theoretic algorithms such as transitive closure and cycle (circuit) detection to derive additional information, and can also be visually presented to a human researcher for understanding. In this paper, we present three relatively small-scale problem-specific case studies to demonstrate that such an approach is very successful in replicating a neuroscience expert's mental model of object-object associations entirely by means of text mining. These preliminary results provide the confidence that this type of text mining based research approach provides an extremely powerful tool to better understand the literature and drive novel discovery for the neuroscience community.
Using Open Web APIs in Teaching Web Mining
ERIC Educational Resources Information Center
Chen, Hsinchun; Li, Xin; Chau, M.; Ho, Yi-Jen; Tseng, Chunju
2009-01-01
With the advent of the World Wide Web, many business applications that utilize data mining and text mining techniques to extract useful business information on the Web have evolved from Web searching to Web mining. It is important for students to acquire knowledge and hands-on experience in Web mining during their education in information systems…
Rapid extraction of gist from visual text and its influence on word recognition.
Asano, Michiko; Yokosawa, Kazuhiko
2011-01-01
Two experiments explored rapid extraction of gist from a visual text and its influence on word recognition. In both, a short text (sentence) containing a target word was presented for 200 ms and was followed by a target recognition task. Results showed that participants recognized contextually anomalous word targets less frequently than contextually consistent counterparts (Experiment 1). This context effect was obtained when sentences contained the same semantic content but with disrupted syntactic structure (Experiment 2). Results demonstrate that words in a briefly presented visual sentence are processed in parallel and that rapid extraction of sentence gist relies on a primitive representation of sentence context (termed protocontext) that is semantically activated by the simultaneous presentation of multiple words (i.e., a sentence) before syntactic processing.
Zhao, Ning; Zheng, Guang; Li, Jian; Zhao, Hong-Yan; Lu, Cheng; Jiang, Miao; Zhang, Chi; Guo, Hong-Tao; Lu, Ai-Ping
2018-01-09
To identify the commonalities between rheumatoid arthritis (RA) and diabetes mellitus (DM) to understand the mechanisms of Chinese medicine (CM) in different diseases with the same treatment. A text mining approach was adopted to analyze the commonalities between RA and DM according to CM and biological elements. The major commonalities were subsequently verifified in RA and DM rat models, in which herbal formula for the treatment of both RA and DM identifified via text mining was used as the intervention. Similarities were identifified between RA and DM regarding the CM approach used for diagnosis and treatment, as well as the networks of biological activities affected by each disease, including the involvement of adhesion molecules, oxidative stress, cytokines, T-lymphocytes, apoptosis, and inflfl ammation. The Ramulus Cinnamomi-Radix Paeoniae Alba-Rhizoma Anemarrhenae is an herbal combination used to treat RA and DM. This formula demonstrated similar effects on oxidative stress and inflfl ammation in rats with collagen-induced arthritis, which supports the text mining results regarding the commonalities between RA and DM. Commonalities between the biological activities involved in RA and DM were identifified through text mining, and both RA and DM might be responsive to the same intervention at a specifific stage.
NASA Astrophysics Data System (ADS)
Hassibi, Khosrow M.
1994-02-01
This paper presents a brief overview of our research in the development of an OCR system for recognition of machine-printed texts in languages that use the Arabic alphabet. The cursive nature of machine-printed Arabic makes the segmentation of words into letters a challenging problem. In our approach, through a novel preliminary segmentation technique, a word is broken into pieces where each piece may not represent a valid letter in general. Neural networks trained on a training sample set of about 500 Arabic text images are used for recognition of these pieces. The rules governing the alphabet and character-level contextual information are used for recombining these pieces into valid letters. Higher-level contextual analysis schemes including the use of an Arabic lexicon and n-grams is also under development and are expected to improve the word recognition accuracy. The segmentation, recognition, and contextual analysis processes are closely integrated using a feedback scheme. The details of preparation of the training set and some recent results on training of the networks will be presented.
Byrnes, Hilary F.; Miller, Brenda A.; Morrison, Christopher N.; Wiebe, Douglas J.; Woychik, Marcie; Wiehe, Sarah E.
2017-01-01
Most prior studies use objectively measured data (e.g., census-based indicators) to assess contextual risks. However, teens’ observations might be more important for their risk behavior. Objectives: 1) determine relationships between observed and objective indicators of contextual risks 2) determine relations of observed and objective indicators with teen alcohol use and problem behavior. Teens aged 14–16 (N=170) carried GPS-enabled smartphones for one month, with locations documented. Ecological momentary assessment (EMA) measured teens’ observations via texts regarding risk behaviors and environmental observations. Objective indicators of alcohol outlets and disorganization were spatially joined to EMAs based on teens’ location at the time of the texts. Observed and objective disorganization, and objective indicators of alcohol outlets were related to alcohol use. Observed disorganization was related to problem behavior, while objective indicators were unrelated. Findings suggest the importance of considering teens’ observations of contextual risk for understanding influences on risk behavior and suggest future directions for research and prevention strategies. PMID:28061392
Text Mining of Journal Articles for Sleep Disorder Terminologies.
Lam, Calvin; Lai, Fu-Chih; Wang, Chia-Hui; Lai, Mei-Hsin; Hsu, Nanly; Chung, Min-Huey
2016-01-01
Research on publication trends in journal articles on sleep disorders (SDs) and the associated methodologies by using text mining has been limited. The present study involved text mining for terms to determine the publication trends in sleep-related journal articles published during 2000-2013 and to identify associations between SD and methodology terms as well as conducting statistical analyses of the text mining findings. SD and methodology terms were extracted from 3,720 sleep-related journal articles in the PubMed database by using MetaMap. The extracted data set was analyzed using hierarchical cluster analyses and adjusted logistic regression models to investigate publication trends and associations between SD and methodology terms. MetaMap had a text mining precision, recall, and false positive rate of 0.70, 0.77, and 11.51%, respectively. The most common SD term was breathing-related sleep disorder, whereas narcolepsy was the least common. Cluster analyses showed similar methodology clusters for each SD term, except narcolepsy. The logistic regression models showed an increasing prevalence of insomnia, parasomnia, and other sleep disorders but a decreasing prevalence of breathing-related sleep disorder during 2000-2013. Different SD terms were positively associated with different methodology terms regarding research design terms, measure terms, and analysis terms. Insomnia-, parasomnia-, and other sleep disorder-related articles showed an increasing publication trend, whereas those related to breathing-related sleep disorder showed a decreasing trend. Furthermore, experimental studies more commonly focused on hypersomnia and other SDs and less commonly on insomnia, breathing-related sleep disorder, narcolepsy, and parasomnia. Thus, text mining may facilitate the exploration of the publication trends in SDs and the associated methodologies.
Text Mining to Support Gene Ontology Curation and Vice Versa.
Ruch, Patrick
2017-01-01
In this chapter, we explain how text mining can support the curation of molecular biology databases dealing with protein functions. We also show how curated data can play a disruptive role in the developments of text mining methods. We review a decade of efforts to improve the automatic assignment of Gene Ontology (GO) descriptors, the reference ontology for the characterization of genes and gene products. To illustrate the high potential of this approach, we compare the performances of an automatic text categorizer and show a large improvement of +225 % in both precision and recall on benchmarked data. We argue that automatic text categorization functions can ultimately be embedded into a Question-Answering (QA) system to answer questions related to protein functions. Because GO descriptors can be relatively long and specific, traditional QA systems cannot answer such questions. A new type of QA system, so-called Deep QA which uses machine learning methods trained with curated contents, is thus emerging. Finally, future advances of text mining instruments are directly dependent on the availability of high-quality annotated contents at every curation step. Databases workflows must start recording explicitly all the data they curate and ideally also some of the data they do not curate.
Hahn, P; Dullweber, F; Unglaub, F; Spies, C K
2014-06-01
Searching for relevant publications is becoming more difficult with the increasing number of scientific articles. Text mining as a specific form of computer-based data analysis may be helpful in this context. Highlighting relations between authors and finding relevant publications concerning a specific subject using text analysis programs are illustrated graphically by 2 performed examples. © Georg Thieme Verlag KG Stuttgart · New York.
Iqbal, Ehtesham; Mallah, Robbie; Rhodes, Daniel; Wu, Honghan; Romero, Alvin; Chang, Nynn; Dzahini, Olubanke; Pandey, Chandra; Broadbent, Matthew; Stewart, Robert; Dobson, Richard J B; Ibrahim, Zina M
2017-01-01
Adverse drug events (ADEs) are unintended responses to medical treatment. They can greatly affect a patient's quality of life and present a substantial burden on healthcare. Although Electronic health records (EHRs) document a wealth of information relating to ADEs, they are frequently stored in the unstructured or semi-structured free-text narrative requiring Natural Language Processing (NLP) techniques to mine the relevant information. Here we present a rule-based ADE detection and classification pipeline built and tested on a large Psychiatric corpus comprising 264k patients using the de-identified EHRs of four UK-based psychiatric hospitals. The pipeline uses characteristics specific to Psychiatric EHRs to guide the annotation process, and distinguishes: a) the temporal value associated with the ADE mention (whether it is historical or present), b) the categorical value of the ADE (whether it is assertive, hypothetical, retrospective or a general discussion) and c) the implicit contextual value where the status of the ADE is deduced from surrounding indicators, rather than explicitly stated. We manually created the rulebase in collaboration with clinicians and pharmacists by studying ADE mentions in various types of clinical notes. We evaluated the open-source Adverse Drug Event annotation Pipeline (ADEPt) using 19 ADEs specific to antipsychotics and antidepressants medication. The ADEs chosen vary in severity, regularity and persistence. The average F-measure and accuracy achieved by our tool across all tested ADEs were 0.83 and 0.83 respectively. In addition to annotation power, the ADEPT pipeline presents an improvement to the state of the art context-discerning algorithm, ConText.
Mining of Business-Oriented Conversations at a Call Center
NASA Astrophysics Data System (ADS)
Takeuchi, Hironori; Nasukawa, Tetsuya; Watanabe, Hideo
Recently it has become feasible to transcribe textual records from telephone conversations at call centers by using automatic speech recognition. In this research, we extended a text mining system for call summary records and constructed a conversation mining system for the business-oriented conversations at the call center. To acquire useful business insights from the conversational data through the text mining system, it is critical to identify appropriate textual segments and expressions as the viewpoints to focus on. In the analysis of call summary data using a text mining system, some experts defined the viewpoints for the analysis by looking at some sample records and by preparing the dictionaries based on frequent keywords in the sample dataset. However with conversations it is difficult to identify such viewpoints manually and in advance because the target data consists of complete transcripts that are often lengthy and redundant. In this research, we defined a model of the business-oriented conversations and proposed a mining method to identify segments that have impacts on the outcomes of the conversations and can then extract useful expressions in each of these identified segments. In the experiment, we processed the real datasets from a car rental service center and constructed a mining system. With this system, we show the effectiveness of the method based on the defined conversation model.
Exploration of Opinion-aware Approach to Contextual Suggestion
2014-11-01
effectiveness of the proposed method. 1 Introduction TREC 1014 Contextual Suggestion Track gives researchers the chance to test their methods on providing...each category. Information including the name, average rating, address, business hour, all ratings and the associated text reviews of the candidate...Annals of Statistics , 29:1189–1232, 2000. 5. K. Ganesan, C. Zhai, and J. Han. Opinosis: a graph-based approach to abstractive summarization of highly
Recent progress in automatically extracting information from the pharmacogenomic literature
Garten, Yael; Coulet, Adrien; Altman, Russ B
2011-01-01
The biomedical literature holds our understanding of pharmacogenomics, but it is dispersed across many journals. In order to integrate our knowledge, connect important facts across publications and generate new hypotheses we must organize and encode the contents of the literature. By creating databases of structured pharmocogenomic knowledge, we can make the value of the literature much greater than the sum of the individual reports. We can, for example, generate candidate gene lists or interpret surprising hits in genome-wide association studies. Text mining automatically adds structure to the unstructured knowledge embedded in millions of publications, and recent years have seen a surge in work on biomedical text mining, some specific to pharmacogenomics literature. These methods enable extraction of specific types of information and can also provide answers to general, systemic queries. In this article, we describe the main tasks of text mining in the context of pharmacogenomics, summarize recent applications and anticipate the next phase of text mining applications. PMID:21047206
Mining protein function from text using term-based support vector machines
Rice, Simon B; Nenadic, Goran; Stapley, Benjamin J
2005-01-01
Background Text mining has spurred huge interest in the domain of biology. The goal of the BioCreAtIvE exercise was to evaluate the performance of current text mining systems. We participated in Task 2, which addressed assigning Gene Ontology terms to human proteins and selecting relevant evidence from full-text documents. We approached it as a modified form of the document classification task. We used a supervised machine-learning approach (based on support vector machines) to assign protein function and select passages that support the assignments. As classification features, we used a protein's co-occurring terms that were automatically extracted from documents. Results The results evaluated by curators were modest, and quite variable for different problems: in many cases we have relatively good assignment of GO terms to proteins, but the selected supporting text was typically non-relevant (precision spanning from 3% to 50%). The method appears to work best when a substantial set of relevant documents is obtained, while it works poorly on single documents and/or short passages. The initial results suggest that our approach can also mine annotations from text even when an explicit statement relating a protein to a GO term is absent. Conclusion A machine learning approach to mining protein function predictions from text can yield good performance only if sufficient training data is available, and significant amount of supporting data is used for prediction. The most promising results are for combined document retrieval and GO term assignment, which calls for the integration of methods developed in BioCreAtIvE Task 1 and Task 2. PMID:15960835
Contextual knowledge reduces demands on working memory during reading.
Miller, Lisa M Soederberg; Cohen, Jason A; Wingfield, Arthur
2006-09-01
An experiment is reported in which young, middle-aged, and older adults read and recalled ambiguous texts either with or without the topic title that supplied contextual knowledge. Within each of the age groups, the participants were divided into those with high or low working memory (WM) spans, with available WM capacity further manipulated by the presence or absence of an auditory target detection task concurrent with the reading task. Differences in reading efficiency (reading time per proposition recalled) between low WM span and high WM span groups were greater among readers who had access to contextual knowledge relative to those who did not, suggesting that contextual knowledge reduces demands on WM capacity. This position was further supported by the finding that increased age and attentional demands, two factors associated with reduced WM capacity, exaggerated the benefits of contextual knowledge on reading efficiency. The relative strengths of additional potential predictors of reading efficiency (e.g., interest, effort, and memory beliefs), along with knowledge, WM span, and age, are reported. Findings showed that contextual knowledge was the strongest predictor of reading efficiency even after controlling for the effects of all of the other predictors.
Conceptual biology, hypothesis discovery, and text mining: Swanson's legacy.
Bekhuis, Tanja
2006-04-03
Innovative biomedical librarians and information specialists who want to expand their roles as expert searchers need to know about profound changes in biology and parallel trends in text mining. In recent years, conceptual biology has emerged as a complement to empirical biology. This is partly in response to the availability of massive digital resources such as the network of databases for molecular biologists at the National Center for Biotechnology Information. Developments in text mining and hypothesis discovery systems based on the early work of Swanson, a mathematician and information scientist, are coincident with the emergence of conceptual biology. Very little has been written to introduce biomedical digital librarians to these new trends. In this paper, background for data and text mining, as well as for knowledge discovery in databases (KDD) and in text (KDT) is presented, then a brief review of Swanson's ideas, followed by a discussion of recent approaches to hypothesis discovery and testing. 'Testing' in the context of text mining involves partially automated methods for finding evidence in the literature to support hypothetical relationships. Concluding remarks follow regarding (a) the limits of current strategies for evaluation of hypothesis discovery systems and (b) the role of literature-based discovery in concert with empirical research. Report of an informatics-driven literature review for biomarkers of systemic lupus erythematosus is mentioned. Swanson's vision of the hidden value in the literature of science and, by extension, in biomedical digital databases, is still remarkably generative for information scientists, biologists, and physicians.
Recent Advances and Emerging Applications in Text and Data Mining for Biomedical Discovery.
Gonzalez, Graciela H; Tahsin, Tasnia; Goodale, Britton C; Greene, Anna C; Greene, Casey S
2016-01-01
Precision medicine will revolutionize the way we treat and prevent disease. A major barrier to the implementation of precision medicine that clinicians and translational scientists face is understanding the underlying mechanisms of disease. We are starting to address this challenge through automatic approaches for information extraction, representation and analysis. Recent advances in text and data mining have been applied to a broad spectrum of key biomedical questions in genomics, pharmacogenomics and other fields. We present an overview of the fundamental methods for text and data mining, as well as recent advances and emerging applications toward precision medicine. © The Author 2015. Published by Oxford University Press.
Recent Advances and Emerging Applications in Text and Data Mining for Biomedical Discovery
Gonzalez, Graciela H.; Tahsin, Tasnia; Goodale, Britton C.; Greene, Anna C.
2016-01-01
Precision medicine will revolutionize the way we treat and prevent disease. A major barrier to the implementation of precision medicine that clinicians and translational scientists face is understanding the underlying mechanisms of disease. We are starting to address this challenge through automatic approaches for information extraction, representation and analysis. Recent advances in text and data mining have been applied to a broad spectrum of key biomedical questions in genomics, pharmacogenomics and other fields. We present an overview of the fundamental methods for text and data mining, as well as recent advances and emerging applications toward precision medicine. PMID:26420781
Tomoaia-Cotisel, Andrada; Scammon, Debra L; Waitzman, Norman J; Cronholm, Peter F; Halladay, Jacqueline R; Driscoll, David L; Solberg, Leif I; Hsu, Clarissa; Tai-Seale, Ming; Hiratsuka, Vanessa; Shih, Sarah C; Fetters, Michael D; Wise, Christopher G; Alexander, Jeffrey A; Hauser, Diane; McMullen, Carmit K; Scholle, Sarah Hudson; Tirodkar, Manasi A; Schmidt, Laura; Donahue, Katrina E; Parchman, Michael L; Stange, Kurt C
2013-01-01
We aimed to advance the internal and external validity of research by sharing our empirical experience and recommendations for systematically reporting contextual factors. Fourteen teams conducting research on primary care practice transformation retrospectively considered contextual factors important to interpreting their findings (internal validity) and transporting or reinventing their findings in other settings/situations (external validity). Each team provided a table or list of important contextual factors and interpretive text included as appendices to the articles in this supplement. Team members identified the most important contextual factors for their studies. We grouped the findings thematically and developed recommendations for reporting context. The most important contextual factors sorted into 5 domains: (1) the practice setting, (2) the larger organization, (3) the external environment, (4) implementation pathway, and (5) the motivation for implementation. To understand context, investigators recommend (1) engaging diverse perspectives and data sources, (2) considering multiple levels, (3) evaluating history and evolution over time, (4) looking at formal and informal systems and culture, and (5) assessing the (often nonlinear) interactions between contextual factors and both the process and outcome of studies. We include a template with tabular and interpretive elements to help study teams engage research participants in reporting relevant context. These findings demonstrate the feasibility and potential utility of identifying and reporting contextual factors. Involving diverse stakeholders in assessing context at multiple stages of the research process, examining their association with outcomes, and consistently reporting critical contextual factors are important challenges for a field interested in improving the internal and external validity and impact of health care research.
Application of text mining for customer evaluations in commercial banking
NASA Astrophysics Data System (ADS)
Tan, Jing; Du, Xiaojiang; Hao, Pengpeng; Wang, Yanbo J.
2015-07-01
Nowadays customer attrition is increasingly serious in commercial banks. To combat this problem roundly, mining customer evaluation texts is as important as mining customer structured data. In order to extract hidden information from customer evaluations, Textual Feature Selection, Classification and Association Rule Mining are necessary techniques. This paper presents all three techniques by using Chinese Word Segmentation, C5.0 and Apriori, and a set of experiments were run based on a collection of real textual data that includes 823 customer evaluations taken from a Chinese commercial bank. Results, consequent solutions, some advice for the commercial bank are given in this paper.
Individual Profiling Using Text Analysis
2016-04-15
Mining a Text for Errors. . . . on Knowledge discovery in data mining , pages 624–628, 2005. [12] Michal Kosinski, David Stillwell, and Thore Graepel...AFRL-AFOSR-UK-TR-2016-0011 Individual Profiling using Text Analysis 140333 Mark Stevenson UNIVERSITY OF SHEFFIELD, DEPARTMENT OF PSYCHOLOGY Final...REPORT TYPE Final 3. DATES COVERED (From - To) 15 Sep 2014 to 14 Sep 2015 4. TITLE AND SUBTITLE Individual Profiling using Text Analysis
Mining the pharmacogenomics literature—a survey of the state of the art
Cohen, K. Bretonnel; Garten, Yael; Shah, Nigam H.
2012-01-01
This article surveys efforts on text mining of the pharmacogenomics literature, mainly from the period 2008 to 2011. Pharmacogenomics (or pharmacogenetics) is the field that studies how human genetic variation impacts drug response. Therefore, publications span the intersection of research in genotypes, phenotypes and pharmacology, a topic that has increasingly become a focus of active research in recent years. This survey covers efforts dealing with the automatic recognition of relevant named entities (e.g. genes, gene variants and proteins, diseases and other pathological phenomena, drugs and other chemicals relevant for medical treatment), as well as various forms of relations between them. A wide range of text genres is considered, such as scientific publications (abstracts, as well as full texts), patent texts and clinical narratives. We also discuss infrastructure and resources needed for advanced text analytics, e.g. document corpora annotated with corresponding semantic metadata (gold standards and training data), biomedical terminologies and ontologies providing domain-specific background knowledge at different levels of formality and specificity, software architectures for building complex and scalable text analytics pipelines and Web services grounded to them, as well as comprehensive ways to disseminate and interact with the typically huge amounts of semiformal knowledge structures extracted by text mining tools. Finally, we consider some of the novel applications that have already been developed in the field of pharmacogenomic text mining and point out perspectives for future research. PMID:22833496
Mining the pharmacogenomics literature--a survey of the state of the art.
Hahn, Udo; Cohen, K Bretonnel; Garten, Yael; Shah, Nigam H
2012-07-01
This article surveys efforts on text mining of the pharmacogenomics literature, mainly from the period 2008 to 2011. Pharmacogenomics (or pharmacogenetics) is the field that studies how human genetic variation impacts drug response. Therefore, publications span the intersection of research in genotypes, phenotypes and pharmacology, a topic that has increasingly become a focus of active research in recent years. This survey covers efforts dealing with the automatic recognition of relevant named entities (e.g. genes, gene variants and proteins, diseases and other pathological phenomena, drugs and other chemicals relevant for medical treatment), as well as various forms of relations between them. A wide range of text genres is considered, such as scientific publications (abstracts, as well as full texts), patent texts and clinical narratives. We also discuss infrastructure and resources needed for advanced text analytics, e.g. document corpora annotated with corresponding semantic metadata (gold standards and training data), biomedical terminologies and ontologies providing domain-specific background knowledge at different levels of formality and specificity, software architectures for building complex and scalable text analytics pipelines and Web services grounded to them, as well as comprehensive ways to disseminate and interact with the typically huge amounts of semiformal knowledge structures extracted by text mining tools. Finally, we consider some of the novel applications that have already been developed in the field of pharmacogenomic text mining and point out perspectives for future research.
Using Text Mining to Characterize Online Discussion Facilitation
ERIC Educational Resources Information Center
Ming, Norma; Baumer, Eric
2011-01-01
Facilitating class discussions effectively is a critical yet challenging component of instruction, particularly in online environments where student and faculty interaction is limited. Our goals in this research were to identify facilitation strategies that encourage productive discussion, and to explore text mining techniques that can help…
40 CFR 372.23 - SIC and NAICS codes to which this Part applies.
Code of Federal Regulations, 2010 CFR
2010-07-01
... facilities primarily engaged in reproducing text, drawings, plans, maps, or other copy, by blueprinting...)); 212324Kaolin and Ball Clay Mining Limited to facilities operating without a mine or quarry and that are...)); 212393Other Chemical and Fertilizer Mineral Mining Limited to facilities operating without a mine or quarry...
pubmed.mineR: an R package with text-mining algorithms to analyse PubMed abstracts.
Rani, Jyoti; Shah, A B Rauf; Ramachandran, Srinivasan
2015-10-01
The PubMed literature database is a valuable source of information for scientific research. It is rich in biomedical literature with more than 24 million citations. Data-mining of voluminous literature is a challenging task. Although several text-mining algorithms have been developed in recent years with focus on data visualization, they have limitations such as speed, are rigid and are not available in the open source. We have developed an R package, pubmed.mineR, wherein we have combined the advantages of existing algorithms, overcome their limitations, and offer user flexibility and link with other packages in Bioconductor and the Comprehensive R Network (CRAN) in order to expand the user capabilities for executing multifaceted approaches. Three case studies are presented, namely, 'Evolving role of diabetes educators', 'Cancer risk assessment' and 'Dynamic concepts on disease and comorbidity' to illustrate the use of pubmed.mineR. The package generally runs fast with small elapsed times in regular workstations even on large corpus sizes and with compute intensive functions. The pubmed.mineR is available at http://cran.rproject. org/web/packages/pubmed.mineR.
Chen, Chou-Cheng; Ho, Chung-Liang
2014-01-01
While a huge amount of information about biological literature can be obtained by searching the PubMed database, reading through all the titles and abstracts resulting from such a search for useful information is inefficient. Text mining makes it possible to increase this efficiency. Some websites use text mining to gather information from the PubMed database; however, they are database-oriented, using pre-defined search keywords while lacking a query interface for user-defined search inputs. We present the PubMed Abstract Reading Helper (PubstractHelper) website which combines text mining and reading assistance for an efficient PubMed search. PubstractHelper can accept a maximum of ten groups of keywords, within each group containing up to ten keywords. The principle behind the text-mining function of PubstractHelper is that keywords contained in the same sentence are likely to be related. PubstractHelper highlights sentences with co-occurring keywords in different colors. The user can download the PMID and the abstracts with color markings to be reviewed later. The PubstractHelper website can help users to identify relevant publications based on the presence of related keywords, which should be a handy tool for their research. http://bio.yungyun.com.tw/ATM/PubstractHelper.aspx and http://holab.med.ncku.edu.tw/ATM/PubstractHelper.aspx.
Text Classification for Organizational Researchers
Kobayashi, Vladimer B.; Mol, Stefan T.; Berkers, Hannah A.; Kismihók, Gábor; Den Hartog, Deanne N.
2017-01-01
Organizations are increasingly interested in classifying texts or parts thereof into categories, as this enables more effective use of their information. Manual procedures for text classification work well for up to a few hundred documents. However, when the number of documents is larger, manual procedures become laborious, time-consuming, and potentially unreliable. Techniques from text mining facilitate the automatic assignment of text strings to categories, making classification expedient, fast, and reliable, which creates potential for its application in organizational research. The purpose of this article is to familiarize organizational researchers with text mining techniques from machine learning and statistics. We describe the text classification process in several roughly sequential steps, namely training data preparation, preprocessing, transformation, application of classification techniques, and validation, and provide concrete recommendations at each step. To help researchers develop their own text classifiers, the R code associated with each step is presented in a tutorial. The tutorial draws from our own work on job vacancy mining. We end the article by discussing how researchers can validate a text classification model and the associated output. PMID:29881249
Graphics-based intelligent search and abstracting using Data Modeling
NASA Astrophysics Data System (ADS)
Jaenisch, Holger M.; Handley, James W.; Case, Carl T.; Songy, Claude G.
2002-11-01
This paper presents an autonomous text and context-mining algorithm that converts text documents into point clouds for visual search cues. This algorithm is applied to the task of data-mining a scriptural database comprised of the Old and New Testaments from the Bible and the Book of Mormon, Doctrine and Covenants, and the Pearl of Great Price. Results are generated which graphically show the scripture that represents the average concept of the database and the mining of the documents down to the verse level.
The Labour Welfare Fund Laws (Amendment) Act, 1987 (No. 15 of 1987), 22 May 1987.
1987-01-01
This Act authorizes funds constituted under the Mica Mines Labour Welfare Fund Act, 1946, the Limestone and Dolomite Mines Labour Welfare Fund Act, 1972, the Iron Ore Mines, Manganese Ore Mines and Chrome Mines Labour Welfare Fund Act, 1976, and the Beedi Workers Welfare Fund Act, 1976, to be applied for the provision of family welfare, including family planning education and services. full text
Mining Tasks from the Web Anchor Text Graph: MSR Notebook Paper for the TREC 2015 Tasks Track
2015-11-20
Mining Tasks from the Web Anchor Text Graph: MSR Notebook Paper for the TREC 2015 Tasks Track Paul N. Bennett Microsoft Research Redmond, USA pauben...anchor text graph has proven useful in the general realm of query reformulation [2], we sought to quantify the value of extracting key phrases from...anchor text in the broader setting of the task understanding track. Given a query, our approach considers a simple method for identifying a relevant
ERIC Educational Resources Information Center
Wang, Yinying; Bowers, Alex J.; Fikis, David J.
2017-01-01
Purpose: The purpose of this study is to describe the underlying topics and the topic evolution in the 50-year history of educational leadership research literature. Method: We used automated text data mining with probabilistic latent topic models to examine the full text of the entire publication history of all 1,539 articles published in…
Waitzkin, H; Britt, T
1989-01-01
Criticism of social context does not generally appear in medical encounters. When contextual issues arise in medical discourse, messages of ideology and social control may become apparent, usually without the conscious awareness of the participants. By easing the physical or psychological impact of contextual difficulties, or by encouraging patients' conformity to mainstream expectations of desirable behavior, encounters with doctors can help win patients' consent to troubling social conditions. Seen in this light, doctor-patient encounters become micropolitical situations that do not typically encourage explicit statements or actions by health professionals to change contextual sources of their patients' difficulties. A critical theory influenced by structuralism suggests that the surface meanings of signs in medical discourse prove less important than their structural relationships. In addition, a theoretical approach adopting elements of post-structuralism and Marxist literary criticism emphasizes the marginal, absent, or excluded elements of medical discourse. Contextual features that shape a text include social class, sex, age, and race. Through the underlying structure of medical discourse, contextual problems are expressed, marginalized, and managed.
Text and Truth: Reading, Student Experience, and the Common Core
ERIC Educational Resources Information Center
Sandler, Susan; Hammond, Zaretta
2012-01-01
One of the rumors making the rounds of K-12 educators goes something like this: The Common Core State Standards do not allow "prereading"--the pedagogical practice meant to help students better understand a text they are about to read--or for that matter any classroom activities that contextualize a text through outside sources. The interesting…
NASA Astrophysics Data System (ADS)
Kim, Kwang Hyeon; Lee, Suk; Shim, Jang Bo; Chang, Kyung Hwan; Yang, Dae Sik; Yoon, Won Sup; Park, Young Je; Kim, Chul Yong; Cao, Yuan Jie
2017-08-01
The aim of this study is an integrated research for text-based data mining and toxicity prediction modeling system for clinical decision support system based on big data in radiation oncology as a preliminary research. The structured and unstructured data were prepared by treatment plans and the unstructured data were extracted by dose-volume data image pattern recognition of prostate cancer for research articles crawling through the internet. We modeled an artificial neural network to build a predictor model system for toxicity prediction of organs at risk. We used a text-based data mining approach to build the artificial neural network model for bladder and rectum complication predictions. The pattern recognition method was used to mine the unstructured toxicity data for dose-volume at the detection accuracy of 97.9%. The confusion matrix and training model of the neural network were achieved with 50 modeled plans (n = 50) for validation. The toxicity level was analyzed and the risk factors for 25% bladder, 50% bladder, 20% rectum, and 50% rectum were calculated by the artificial neural network algorithm. As a result, 32 plans could cause complication but 18 plans were designed as non-complication among 50 modeled plans. We integrated data mining and a toxicity modeling method for toxicity prediction using prostate cancer cases. It is shown that a preprocessing analysis using text-based data mining and prediction modeling can be expanded to personalized patient treatment decision support based on big data.
A sentence sliding window approach to extract protein annotations from biomedical articles
Krallinger, Martin; Padron, Maria; Valencia, Alfonso
2005-01-01
Background Within the emerging field of text mining and statistical natural language processing (NLP) applied to biomedical articles, a broad variety of techniques have been developed during the past years. Nevertheless, there is still a great ned of comparative assessment of the performance of the proposed methods and the development of common evaluation criteria. This issue was addressed by the Critical Assessment of Text Mining Methods in Molecular Biology (BioCreative) contest. The aim of this contest was to assess the performance of text mining systems applied to biomedical texts including tools which recognize named entities such as genes and proteins, and tools which automatically extract protein annotations. Results The "sentence sliding window" approach proposed here was found to efficiently extract text fragments from full text articles containing annotations on proteins, providing the highest number of correctly predicted annotations. Moreover, the number of correct extractions of individual entities (i.e. proteins and GO terms) involved in the relationships used for the annotations was significantly higher than the correct extractions of the complete annotations (protein-function relations). Conclusion We explored the use of averaging sentence sliding windows for information extraction, especially in a context where conventional training data is unavailable. The combination of our approach with more refined statistical estimators and machine learning techniques might be a way to improve annotation extraction for future biomedical text mining applications. PMID:15960831
Text Mining Improves Prediction of Protein Functional Sites
Cohn, Judith D.; Ravikumar, Komandur E.
2012-01-01
We present an approach that integrates protein structure analysis and text mining for protein functional site prediction, called LEAP-FS (Literature Enhanced Automated Prediction of Functional Sites). The structure analysis was carried out using Dynamics Perturbation Analysis (DPA), which predicts functional sites at control points where interactions greatly perturb protein vibrations. The text mining extracts mentions of residues in the literature, and predicts that residues mentioned are functionally important. We assessed the significance of each of these methods by analyzing their performance in finding known functional sites (specifically, small-molecule binding sites and catalytic sites) in about 100,000 publicly available protein structures. The DPA predictions recapitulated many of the functional site annotations and preferentially recovered binding sites annotated as biologically relevant vs. those annotated as potentially spurious. The text-based predictions were also substantially supported by the functional site annotations: compared to other residues, residues mentioned in text were roughly six times more likely to be found in a functional site. The overlap of predictions with annotations improved when the text-based and structure-based methods agreed. Our analysis also yielded new high-quality predictions of many functional site residues that were not catalogued in the curated data sources we inspected. We conclude that both DPA and text mining independently provide valuable high-throughput protein functional site predictions, and that integrating the two methods using LEAP-FS further improves the quality of these predictions. PMID:22393388
Xia, Jingbo; Zhang, Xing; Yuan, Daojun; Chen, Lingling; Webster, Jonathan; Fang, Alex Chengyu
2013-01-01
To effectively assess the possibility of the unknown rice protein resistant to Xanthomonas oryzae pv. oryzae, a hybrid strategy is proposed to enhance gene prioritization by combining text mining technologies with a sequence-based approach. The text mining technique of term frequency inverse document frequency is used to measure the importance of distinguished terms which reflect biomedical activity in rice before candidate genes are screened and vital terms are produced. Afterwards, a built-in classifier under the chaos games representation algorithm is used to sieve the best possible candidate gene. Our experiment results show that the combination of these two methods achieves enhanced gene prioritization. PMID:24371834
Uncovering text mining: A survey of current work on web-based epidemic intelligence
Collier, Nigel
2012-01-01
Real world pandemics such as SARS 2002 as well as popular fiction like the movie Contagion graphically depict the health threat of a global pandemic and the key role of epidemic intelligence (EI). While EI relies heavily on established indicator sources a new class of methods based on event alerting from unstructured digital Internet media is rapidly becoming acknowledged within the public health community. At the heart of automated information gathering systems is a technology called text mining. My contribution here is to provide an overview of the role that text mining technology plays in detecting epidemics and to synthesise my existing research on the BioCaster project. PMID:22783909
Xia, Jingbo; Zhang, Xing; Yuan, Daojun; Chen, Lingling; Webster, Jonathan; Fang, Alex Chengyu
2013-01-01
To effectively assess the possibility of the unknown rice protein resistant to Xanthomonas oryzae pv. oryzae, a hybrid strategy is proposed to enhance gene prioritization by combining text mining technologies with a sequence-based approach. The text mining technique of term frequency inverse document frequency is used to measure the importance of distinguished terms which reflect biomedical activity in rice before candidate genes are screened and vital terms are produced. Afterwards, a built-in classifier under the chaos games representation algorithm is used to sieve the best possible candidate gene. Our experiment results show that the combination of these two methods achieves enhanced gene prioritization.
Kreula, Sanna M; Kaewphan, Suwisa; Ginter, Filip; Jones, Patrik R
2018-01-01
The increasing move towards open access full-text scientific literature enhances our ability to utilize advanced text-mining methods to construct information-rich networks that no human will be able to grasp simply from 'reading the literature'. The utility of text-mining for well-studied species is obvious though the utility for less studied species, or those with no prior track-record at all, is not clear. Here we present a concept for how advanced text-mining can be used to create information-rich networks even for less well studied species and apply it to generate an open-access gene-gene association network resource for Synechocystis sp. PCC 6803, a representative model organism for cyanobacteria and first case-study for the methodology. By merging the text-mining network with networks generated from species-specific experimental data, network integration was used to enhance the accuracy of predicting novel interactions that are biologically relevant. A rule-based algorithm (filter) was constructed in order to automate the search for novel candidate genes with a high degree of likely association to known target genes by (1) ignoring established relationships from the existing literature, as they are already 'known', and (2) demanding multiple independent evidences for every novel and potentially relevant relationship. Using selected case studies, we demonstrate the utility of the network resource and filter to ( i ) discover novel candidate associations between different genes or proteins in the network, and ( ii ) rapidly evaluate the potential role of any one particular gene or protein. The full network is provided as an open-source resource.
Tomoaia-Cotisel, Andrada; Scammon, Debra L.; Waitzman, Norman J.; Cronholm, Peter F.; Halladay, Jacqueline R.; Driscoll, David L.; Solberg, Leif I.; Hsu, Clarissa; Tai-Seale, Ming; Hiratsuka, Vanessa; Shih, Sarah C.; Fetters, Michael D.; Wise, Christopher G.; Alexander, Jeffrey A.; Hauser, Diane; McMullen, Carmit K.; Scholle, Sarah Hudson; Tirodkar, Manasi A.; Schmidt, Laura; Donahue, Katrina E.; Parchman, Michael L.; Stange, Kurt C.
2013-01-01
PURPOSE We aimed to advance the internal and external validity of research by sharing our empirical experience and recommendations for systematically reporting contextual factors. METHODS Fourteen teams conducting research on primary care practice transformation retrospectively considered contextual factors important to interpreting their findings (internal validity) and transporting or reinventing their findings in other settings/situations (external validity). Each team provided a table or list of important contextual factors and interpretive text included as appendices to the articles in this supplement. Team members identified the most important contextual factors for their studies. We grouped the findings thematically and developed recommendations for reporting context. RESULTS The most important contextual factors sorted into 5 domains: (1) the practice setting, (2) the larger organization, (3) the external environment, (4) implementation pathway, and (5) the motivation for implementation. To understand context, investigators recommend (1) engaging diverse perspectives and data sources, (2) considering multiple levels, (3) evaluating history and evolution over time, (4) looking at formal and informal systems and culture, and (5) assessing the (often nonlinear) interactions between contextual factors and both the process and outcome of studies. We include a template with tabular and interpretive elements to help study teams engage research participants in reporting relevant context. CONCLUSIONS These findings demonstrate the feasibility and potential utility of identifying and reporting contextual factors. Involving diverse stakeholders in assessing context at multiple stages of the research process, examining their association with outcomes, and consistently reporting critical contextual factors are important challenges for a field interested in improving the internal and external validity and impact of health care research. PMID:23690380
Code of Federal Regulations, 2010 CFR
2010-07-01
... texts of State and Federal cooperative agreements for regulation of mining on Federal lands. The... Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE INTRODUCTION § 900.2 Objectives. The objective of...
76 FR 40649 - Indiana Regulatory Program
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-11
... at 312 IAC 25-6-30 Surface mining; explosives; general requirements. The full text of the program... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 914... Mining Reclamation and Enforcement, Interior. ACTION: Proposed rule; public comment period on proposed...
Complementing the Numbers: A Text Mining Analysis of College Course Withdrawals
ERIC Educational Resources Information Center
Michalski, Greg V.
2011-01-01
Excessive college course withdrawals are costly to the student and the institution in terms of time to degree completion, available classroom space, and other resources. Although generally well quantified, detailed analysis of the reasons given by students for course withdrawal is less common. To address this, a text mining analysis was performed…
Can abstract screening workload be reduced using text mining? User experiences of the tool Rayyan.
Olofsson, Hanna; Brolund, Agneta; Hellberg, Christel; Silverstein, Rebecca; Stenström, Karin; Österberg, Marie; Dagerhamn, Jessica
2017-09-01
One time-consuming aspect of conducting systematic reviews is the task of sifting through abstracts to identify relevant studies. One promising approach for reducing this burden uses text mining technology to identify those abstracts that are potentially most relevant for a project, allowing those abstracts to be screened first. To examine the effectiveness of the text mining functionality of the abstract screening tool Rayyan. User experiences were collected. Rayyan was used to screen abstracts for 6 reviews in 2015. After screening 25%, 50%, and 75% of the abstracts, the screeners logged the relevant references identified. A survey was sent to users. After screening half of the search result with Rayyan, 86% to 99% of the references deemed relevant to the study were identified. Of those studies included in the final reports, 96% to 100% were already identified in the first half of the screening process. Users rated Rayyan 4.5 out of 5. The text mining function in Rayyan successfully helped reviewers identify relevant studies early in the screening process. Copyright © 2017 John Wiley & Sons, Ltd.
Pandey, Abhishek; Kreimeyer, Kory; Foster, Matthew; Botsis, Taxiarchis; Dang, Oanh; Ly, Thomas; Wang, Wei; Forshee, Richard
2018-01-01
Structured Product Labels follow an XML-based document markup standard approved by the Health Level Seven organization and adopted by the US Food and Drug Administration as a mechanism for exchanging medical products information. Their current organization makes their secondary use rather challenging. We used the Side Effect Resource database and DailyMed to generate a comparison dataset of 1159 Structured Product Labels. We processed the Adverse Reaction section of these Structured Product Labels with the Event-based Text-mining of Health Electronic Records system and evaluated its ability to extract and encode Adverse Event terms to Medical Dictionary for Regulatory Activities Preferred Terms. A small sample of 100 labels was then selected for further analysis. Of the 100 labels, Event-based Text-mining of Health Electronic Records achieved a precision and recall of 81 percent and 92 percent, respectively. This study demonstrated Event-based Text-mining of Health Electronic Record's ability to extract and encode Adverse Event terms from Structured Product Labels which may potentially support multiple pharmacoepidemiological tasks.
A Framework for Text Mining in Scientometric Study: A Case Study in Biomedicine Publications
NASA Astrophysics Data System (ADS)
Silalahi, V. M. M.; Hardiyati, R.; Nadhiroh, I. M.; Handayani, T.; Rahmaida, R.; Amelia, M.
2018-04-01
The data of Indonesians research publications in the domain of biomedicine has been collected to be text mined for the purpose of a scientometric study. The goal is to build a predictive model that provides a classification of research publications on the potency for downstreaming. The model is based on the drug development processes adapted from the literatures. An effort is described to build the conceptual model and the development of a corpus on the research publications in the domain of Indonesian biomedicine. Then an investigation is conducted relating to the problems associated with building a corpus and validating the model. Based on our experience, a framework is proposed to manage the scientometric study based on text mining. Our method shows the effectiveness of conducting a scientometric study based on text mining in order to get a valid classification model. This valid model is mainly supported by the iterative and close interactions with the domain experts starting from identifying the issues, building a conceptual model, to the labelling, validation and results interpretation.
Data Processing and Text Mining Technologies on Electronic Medical Records: A Review
Sun, Wencheng; Li, Yangyang; Liu, Fang; Fang, Shengqun; Wang, Guoyan
2018-01-01
Currently, medical institutes generally use EMR to record patient's condition, including diagnostic information, procedures performed, and treatment results. EMR has been recognized as a valuable resource for large-scale analysis. However, EMR has the characteristics of diversity, incompleteness, redundancy, and privacy, which make it difficult to carry out data mining and analysis directly. Therefore, it is necessary to preprocess the source data in order to improve data quality and improve the data mining results. Different types of data require different processing technologies. Most structured data commonly needs classic preprocessing technologies, including data cleansing, data integration, data transformation, and data reduction. For semistructured or unstructured data, such as medical text, containing more health information, it requires more complex and challenging processing methods. The task of information extraction for medical texts mainly includes NER (named-entity recognition) and RE (relation extraction). This paper focuses on the process of EMR processing and emphatically analyzes the key techniques. In addition, we make an in-depth study on the applications developed based on text mining together with the open challenges and research issues for future work. PMID:29849998
Afzal, Zubair; Pons, Ewoud; Kang, Ning; Sturkenboom, Miriam C J M; Schuemie, Martijn J; Kors, Jan A
2014-11-29
In order to extract meaningful information from electronic medical records, such as signs and symptoms, diagnoses, and treatments, it is important to take into account the contextual properties of the identified information: negation, temporality, and experiencer. Most work on automatic identification of these contextual properties has been done on English clinical text. This study presents ContextD, an adaptation of the English ConText algorithm to the Dutch language, and a Dutch clinical corpus. We created a Dutch clinical corpus containing four types of anonymized clinical documents: entries from general practitioners, specialists' letters, radiology reports, and discharge letters. Using a Dutch list of medical terms extracted from the Unified Medical Language System, we identified medical terms in the corpus with exact matching. The identified terms were annotated for negation, temporality, and experiencer properties. To adapt the ConText algorithm, we translated English trigger terms to Dutch and added several general and document specific enhancements, such as negation rules for general practitioners' entries and a regular expression based temporality module. The ContextD algorithm utilized 41 unique triggers to identify the contextual properties in the clinical corpus. For the negation property, the algorithm obtained an F-score from 87% to 93% for the different document types. For the experiencer property, the F-score was 99% to 100%. For the historical and hypothetical values of the temporality property, F-scores ranged from 26% to 54% and from 13% to 44%, respectively. The ContextD showed good performance in identifying negation and experiencer property values across all Dutch clinical document types. Accurate identification of the temporality property proved to be difficult and requires further work. The anonymized and annotated Dutch clinical corpus can serve as a useful resource for further algorithm development.
Byrnes, Hilary F; Miller, Brenda A; Morrison, Christopher N; Wiebe, Douglas J; Woychik, Marcie; Wiehe, Sarah E
2017-01-01
Most prior studies use objectively measured data (e.g., census-based indicators) to assess contextual risks. However, teens' observations might be more important for their risk behavior. 1) determine relationships between observed and objective indicators of contextual risks 2) determine relations of observed and objective indicators with teen alcohol use and problem behavior. Teens aged 14-16 (N=170) carried GPS-enabled smartphones for one month, with locations documented. Ecological momentary assessment (EMA) measured teens' observations via texts regarding risk behaviors and environmental observations. Objective indicators of alcohol outlets and disorganization were spatially joined to EMAs based on teens' location at the time of the texts. Observed and objective disorganization, and objective indicators of alcohol outlets were related to alcohol use. Observed disorganization was related to problem behavior, while objective indicators were unrelated. Findings suggest the importance of considering teens' observations of contextual risk for understanding influences on risk behavior and suggest future directions for research and prevention strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Enhancing L2 Reading Comprehension with Hypermedia Texts: Student Perceptions
ERIC Educational Resources Information Center
Garrett-Rucks, Paula; Howles, Les; Lake, William M.
2015-01-01
This study extends current research about L2 hypermedia texts by investigating the combined use of audiovisual features including: (a) Contextualized images, (b) rollover translations, (c) cultural information, (d) audio explanations and (e) comprehension check exercises. Specifically, student perceptions of hypermedia readings compared to…
An overview of the BioCreative 2012 Workshop Track III: interactive text mining task
Arighi, Cecilia N.; Carterette, Ben; Cohen, K. Bretonnel; Krallinger, Martin; Wilbur, W. John; Fey, Petra; Dodson, Robert; Cooper, Laurel; Van Slyke, Ceri E.; Dahdul, Wasila; Mabee, Paula; Li, Donghui; Harris, Bethany; Gillespie, Marc; Jimenez, Silvia; Roberts, Phoebe; Matthews, Lisa; Becker, Kevin; Drabkin, Harold; Bello, Susan; Licata, Luana; Chatr-aryamontri, Andrew; Schaeffer, Mary L.; Park, Julie; Haendel, Melissa; Van Auken, Kimberly; Li, Yuling; Chan, Juancarlos; Muller, Hans-Michael; Cui, Hong; Balhoff, James P.; Chi-Yang Wu, Johnny; Lu, Zhiyong; Wei, Chih-Hsuan; Tudor, Catalina O.; Raja, Kalpana; Subramani, Suresh; Natarajan, Jeyakumar; Cejuela, Juan Miguel; Dubey, Pratibha; Wu, Cathy
2013-01-01
In many databases, biocuration primarily involves literature curation, which usually involves retrieving relevant articles, extracting information that will translate into annotations and identifying new incoming literature. As the volume of biological literature increases, the use of text mining to assist in biocuration becomes increasingly relevant. A number of groups have developed tools for text mining from a computer science/linguistics perspective, and there are many initiatives to curate some aspect of biology from the literature. Some biocuration efforts already make use of a text mining tool, but there have not been many broad-based systematic efforts to study which aspects of a text mining tool contribute to its usefulness for a curation task. Here, we report on an effort to bring together text mining tool developers and database biocurators to test the utility and usability of tools. Six text mining systems presenting diverse biocuration tasks participated in a formal evaluation, and appropriate biocurators were recruited for testing. The performance results from this evaluation indicate that some of the systems were able to improve efficiency of curation by speeding up the curation task significantly (∼1.7- to 2.5-fold) over manual curation. In addition, some of the systems were able to improve annotation accuracy when compared with the performance on the manually curated set. In terms of inter-annotator agreement, the factors that contributed to significant differences for some of the systems included the expertise of the biocurator on the given curation task, the inherent difficulty of the curation and attention to annotation guidelines. After the task, annotators were asked to complete a survey to help identify strengths and weaknesses of the various systems. The analysis of this survey highlights how important task completion is to the biocurators’ overall experience of a system, regardless of the system’s high score on design, learnability and usability. In addition, strategies to refine the annotation guidelines and systems documentation, to adapt the tools to the needs and query types the end user might have and to evaluate performance in terms of efficiency, user interface, result export and traditional evaluation metrics have been analyzed during this task. This analysis will help to plan for a more intense study in BioCreative IV. PMID:23327936
An overview of the BioCreative 2012 Workshop Track III: interactive text mining task.
Arighi, Cecilia N; Carterette, Ben; Cohen, K Bretonnel; Krallinger, Martin; Wilbur, W John; Fey, Petra; Dodson, Robert; Cooper, Laurel; Van Slyke, Ceri E; Dahdul, Wasila; Mabee, Paula; Li, Donghui; Harris, Bethany; Gillespie, Marc; Jimenez, Silvia; Roberts, Phoebe; Matthews, Lisa; Becker, Kevin; Drabkin, Harold; Bello, Susan; Licata, Luana; Chatr-aryamontri, Andrew; Schaeffer, Mary L; Park, Julie; Haendel, Melissa; Van Auken, Kimberly; Li, Yuling; Chan, Juancarlos; Muller, Hans-Michael; Cui, Hong; Balhoff, James P; Chi-Yang Wu, Johnny; Lu, Zhiyong; Wei, Chih-Hsuan; Tudor, Catalina O; Raja, Kalpana; Subramani, Suresh; Natarajan, Jeyakumar; Cejuela, Juan Miguel; Dubey, Pratibha; Wu, Cathy
2013-01-01
In many databases, biocuration primarily involves literature curation, which usually involves retrieving relevant articles, extracting information that will translate into annotations and identifying new incoming literature. As the volume of biological literature increases, the use of text mining to assist in biocuration becomes increasingly relevant. A number of groups have developed tools for text mining from a computer science/linguistics perspective, and there are many initiatives to curate some aspect of biology from the literature. Some biocuration efforts already make use of a text mining tool, but there have not been many broad-based systematic efforts to study which aspects of a text mining tool contribute to its usefulness for a curation task. Here, we report on an effort to bring together text mining tool developers and database biocurators to test the utility and usability of tools. Six text mining systems presenting diverse biocuration tasks participated in a formal evaluation, and appropriate biocurators were recruited for testing. The performance results from this evaluation indicate that some of the systems were able to improve efficiency of curation by speeding up the curation task significantly (∼1.7- to 2.5-fold) over manual curation. In addition, some of the systems were able to improve annotation accuracy when compared with the performance on the manually curated set. In terms of inter-annotator agreement, the factors that contributed to significant differences for some of the systems included the expertise of the biocurator on the given curation task, the inherent difficulty of the curation and attention to annotation guidelines. After the task, annotators were asked to complete a survey to help identify strengths and weaknesses of the various systems. The analysis of this survey highlights how important task completion is to the biocurators' overall experience of a system, regardless of the system's high score on design, learnability and usability. In addition, strategies to refine the annotation guidelines and systems documentation, to adapt the tools to the needs and query types the end user might have and to evaluate performance in terms of efficiency, user interface, result export and traditional evaluation metrics have been analyzed during this task. This analysis will help to plan for a more intense study in BioCreative IV.
76 FR 12849 - Kentucky Regulatory Program
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-09
... (underground mining). The text of the Kentucky regulations can be found in the administrative record and online... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 917 [KY-252-FOR; OSM-2009-0011] Kentucky Regulatory Program AGENCY: Office of Surface Mining Reclamation...
Research on Classification of Chinese Text Data Based on SVM
NASA Astrophysics Data System (ADS)
Lin, Yuan; Yu, Hongzhi; Wan, Fucheng; Xu, Tao
2017-09-01
Data Mining has important application value in today’s industry and academia. Text classification is a very important technology in data mining. At present, there are many mature algorithms for text classification. KNN, NB, AB, SVM, decision tree and other classification methods all show good classification performance. Support Vector Machine’ (SVM) classification method is a good classifier in machine learning research. This paper will study the classification effect based on the SVM method in the Chinese text data, and use the support vector machine method in the chinese text to achieve the classify chinese text, and to able to combination of academia and practical application.
StemTextSearch: Stem cell gene database with evidence from abstracts.
Chen, Chou-Cheng; Ho, Chung-Liang
2017-05-01
Previous studies have used many methods to find biomarkers in stem cells, including text mining, experimental data and image storage. However, no text-mining methods have yet been developed which can identify whether a gene plays a positive or negative role in stem cells. StemTextSearch identifies the role of a gene in stem cells by using a text-mining method to find combinations of gene regulation, stem-cell regulation and cell processes in the same sentences of biomedical abstracts. The dataset includes 5797 genes, with 1534 genes having positive roles in stem cells, 1335 genes having negative roles, 1654 genes with both positive and negative roles, and 1274 with an uncertain role. The precision of gene role in StemTextSearch is 0.66, and the recall is 0.78. StemTextSearch is a web-based engine with queries that specify (i) gene, (ii) category of stem cell, (iii) gene role, (iv) gene regulation, (v) cell process, (vi) stem-cell regulation, and (vii) species. StemTextSearch is available through http://bio.yungyun.com.tw/StemTextSearch.aspx. Copyright © 2017. Published by Elsevier Inc.
2010-01-01
Background An increase in work on the full text of journal articles and the growth of PubMedCentral have the opportunity to create a major paradigm shift in how biomedical text mining is done. However, until now there has been no comprehensive characterization of how the bodies of full text journal articles differ from the abstracts that until now have been the subject of most biomedical text mining research. Results We examined the structural and linguistic aspects of abstracts and bodies of full text articles, the performance of text mining tools on both, and the distribution of a variety of semantic classes of named entities between them. We found marked structural differences, with longer sentences in the article bodies and much heavier use of parenthesized material in the bodies than in the abstracts. We found content differences with respect to linguistic features. Three out of four of the linguistic features that we examined were statistically significantly differently distributed between the two genres. We also found content differences with respect to the distribution of semantic features. There were significantly different densities per thousand words for three out of four semantic classes, and clear differences in the extent to which they appeared in the two genres. With respect to the performance of text mining tools, we found that a mutation finder performed equally well in both genres, but that a wide variety of gene mention systems performed much worse on article bodies than they did on abstracts. POS tagging was also more accurate in abstracts than in article bodies. Conclusions Aspects of structure and content differ markedly between article abstracts and article bodies. A number of these differences may pose problems as the text mining field moves more into the area of processing full-text articles. However, these differences also present a number of opportunities for the extraction of data types, particularly that found in parenthesized text, that is present in article bodies but not in article abstracts. PMID:20920264
Deriving novel relationships from the scientific literature is an important adjunct to datamining activities for complex datasets in genomics and high-throughput screening activities. Automated text-mining algorithms can be used to extract relevant content from the literature and...
A Feature Mining Based Approach for the Classification of Text Documents into Disjoint Classes.
ERIC Educational Resources Information Center
Nieto Sanchez, Salvador; Triantaphyllou, Evangelos; Kraft, Donald
2002-01-01
Proposes a new approach for classifying text documents into two disjoint classes. Highlights include a brief overview of document clustering; a data mining approach called the One Clause at a Time (OCAT) algorithm which is based on mathematical logic; vector space model (VSM); and comparing the OCAT to the VSM. (Author/LRW)
ERIC Educational Resources Information Center
Hung, Jui-Long; Zhang, Ke
2012-01-01
This study investigated the longitudinal trends of academic articles in Mobile Learning (ML) using text mining techniques. One hundred and nineteen (119) refereed journal articles and proceedings papers from the SCI/SSCI database were retrieved and analyzed. The taxonomies of ML publications were grouped into twelve clusters (topics) and four…
Trends of E-Learning Research from 2000 to 2008: Use of Text Mining and Bibliometrics
ERIC Educational Resources Information Center
Hung, Jui-long
2012-01-01
This study investigated the longitudinal trends of e-learning research using text mining techniques. Six hundred and eighty-nine (689) refereed journal articles and proceedings were retrieved from the Science Citation Index/Social Science Citation Index database in the period from 2000 to 2008. All e-learning publications were grouped into two…
Evaluation of English Textbooks in Terms of Textuality Standards
ERIC Educational Resources Information Center
Ocak, Gürbüz; Baysal, Emine Akkas
2016-01-01
Putting a number of sentences together in order to build a text, the sentences must comply with the criteria such as cohesion, coherence, intentionality, acceptability, contextualization, informativeness and intertextuality. The text should bear these criteria in order to fulfil the intended communicative features. Therefore, in this study, it is…
Kreula, Sanna M.; Kaewphan, Suwisa; Ginter, Filip
2018-01-01
The increasing move towards open access full-text scientific literature enhances our ability to utilize advanced text-mining methods to construct information-rich networks that no human will be able to grasp simply from ‘reading the literature’. The utility of text-mining for well-studied species is obvious though the utility for less studied species, or those with no prior track-record at all, is not clear. Here we present a concept for how advanced text-mining can be used to create information-rich networks even for less well studied species and apply it to generate an open-access gene-gene association network resource for Synechocystis sp. PCC 6803, a representative model organism for cyanobacteria and first case-study for the methodology. By merging the text-mining network with networks generated from species-specific experimental data, network integration was used to enhance the accuracy of predicting novel interactions that are biologically relevant. A rule-based algorithm (filter) was constructed in order to automate the search for novel candidate genes with a high degree of likely association to known target genes by (1) ignoring established relationships from the existing literature, as they are already ‘known’, and (2) demanding multiple independent evidences for every novel and potentially relevant relationship. Using selected case studies, we demonstrate the utility of the network resource and filter to (i) discover novel candidate associations between different genes or proteins in the network, and (ii) rapidly evaluate the potential role of any one particular gene or protein. The full network is provided as an open-source resource. PMID:29844966
Van Landeghem, Sofie; Abeel, Thomas; Saeys, Yvan; Van de Peer, Yves
2010-09-15
In the field of biomolecular text mining, black box behavior of machine learning systems currently limits understanding of the true nature of the predictions. However, feature selection (FS) is capable of identifying the most relevant features in any supervised learning setting, providing insight into the specific properties of the classification algorithm. This allows us to build more accurate classifiers while at the same time bridging the gap between the black box behavior and the end-user who has to interpret the results. We show that our FS methodology successfully discards a large fraction of machine-generated features, improving classification performance of state-of-the-art text mining algorithms. Furthermore, we illustrate how FS can be applied to gain understanding in the predictions of a framework for biomolecular event extraction from text. We include numerous examples of highly discriminative features that model either biological reality or common linguistic constructs. Finally, we discuss a number of insights from our FS analyses that will provide the opportunity to considerably improve upon current text mining tools. The FS algorithms and classifiers are available in Java-ML (http://java-ml.sf.net). The datasets are publicly available from the BioNLP'09 Shared Task web site (http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/SharedTask/).
Generative Topic Modeling in Image Data Mining and Bioinformatics Studies
ERIC Educational Resources Information Center
Chen, Xin
2012-01-01
Probabilistic topic models have been developed for applications in various domains such as text mining, information retrieval and computer vision and bioinformatics domain. In this thesis, we focus on developing novel probabilistic topic models for image mining and bioinformatics studies. Specifically, a probabilistic topic-connection (PTC) model…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-05
... silver mining operation. Most of the infrastructure to support a mining operation was authorized and.... The Proposed Action consists of underground mining, constructing a new production shaft, improving.... Public comments resulted in the addition of clarifying text, but did not significantly change the...
Stewart, Suzanne L K; Schepman, Astrid; Haigh, Matthew; McHugh, Rhian; Stewart, Andrew J
2018-03-14
The recognition of emotional facial expressions is often subject to contextual influence, particularly when the face and the context convey similar emotions. We investigated whether spontaneous, incidental affective theory of mind inferences made while reading vignettes describing social situations would produce context effects on the identification of same-valenced emotions (Experiment 1) as well as differently-valenced emotions (Experiment 2) conveyed by subsequently presented faces. Crucially, we found an effect of context on reaction times in both experiments while, in line with previous work, we found evidence for a context effect on accuracy only in Experiment 1. This demonstrates that affective theory of mind inferences made at the pragmatic level of a text can automatically, contextually influence the perceptual processing of emotional facial expressions in a separate task even when those emotions are of a distinctive valence. Thus, our novel findings suggest that language acts as a contextual influence to the recognition of emotional facial expressions for both same and different valences.
Ghazizadeh, Mahtab; McDonald, Anthony D; Lee, John D
2014-09-01
This study applies text mining to extract clusters of vehicle problems and associated trends from free-response data in the National Highway Traffic Safety Administration's vehicle owner's complaint database. As the automotive industry adopts new technologies, it is important to systematically assess the effect of these changes on traffic safety. Driving simulators, naturalistic driving data, and crash databases all contribute to a better understanding of how drivers respond to changing vehicle technology, but other approaches, such as automated analysis of incident reports, are needed. Free-response data from incidents representing two severity levels (fatal incidents and incidents involving injury) were analyzed using a text mining approach: latent semantic analysis (LSA). LSA and hierarchical clustering identified clusters of complaints for each severity level, which were compared and analyzed across time. Cluster analysis identified eight clusters of fatal incidents and six clusters of incidents involving injury. Comparisons showed that although the airbag clusters across the two severity levels have the same most frequent terms, the circumstances around the incidents differ. The time trends show clear increases in complaints surrounding the Ford/Firestone tire recall and the Toyota unintended acceleration recall. Increases in complaints may be partially driven by these recall announcements and the associated media attention. Text mining can reveal useful information from free-response databases that would otherwise be prohibitively time-consuming and difficult to summarize manually. Text mining can extend human analysis capabilities for large free-response databases to support earlier detection of problems and more timely safety interventions.
Analysis of Nature of Science Included in Recent Popular Writing Using Text Mining Techniques
ERIC Educational Resources Information Center
Jiang, Feng; McComas, William F.
2014-01-01
This study examined the inclusion of nature of science (NOS) in popular science writing to determine whether it could serve supplementary resource for teaching NOS and to evaluate the accuracy of text mining and classification as a viable research tool in science education research. Four groups of documents published from 2001 to 2010 were…
ERIC Educational Resources Information Center
Cheon, Jongpil; Lee, Sangno; Smith, Walter; Song, Jaeki; Kim, Yongjin
2013-01-01
The purpose of this study was to use text mining analysis of early adolescents' online essays to determine their knowledge of global lunar patterns. Australian and American students in grades five to seven wrote about global lunar patterns they had discovered by sharing observations with each other via the Internet. These essays were analyzed for…
ERIC Educational Resources Information Center
Çepni, Sevcan Bayraktar; Demirel, Elif Tokdemir
2016-01-01
This study aimed to find out the impact of "text mining and imitating" strategies on lexical richness, lexical diversity and general success of students in their compositions in second language writing. The participants were 98 students studying their first year in Karadeniz Technical University in English Language and Literature…
Science and Technology Text Mining: Text Mining of the Journal Cortex
2004-01-01
Amnesia Retrograde Amnesia GENERAL Semantic Memory Episodic Memory Working Memory TEST Serial Position Curve...in Cortex can be reasonably divided into four categories (papers in each category in parenthesis): Semantic Memory (151); Handedness (145); Amnesia ... Semantic Memory (151) is divided into Verbal/ Numerical (76) and Visual/ Spatial (75). Amnesia (119) is divided into Amnesia Symptoms (50) and
Experiences with Text Mining Large Collections of Unstructured Systems Development Artifacts at JPL
NASA Technical Reports Server (NTRS)
Port, Dan; Nikora, Allen; Hihn, Jairus; Huang, LiGuo
2011-01-01
Often repositories of systems engineering artifacts at NASA's Jet Propulsion Laboratory (JPL) are so large and poorly structured that they have outgrown our capability to effectively manually process their contents to extract useful information. Sophisticated text mining methods and tools seem a quick, low-effort approach to automating our limited manual efforts. Our experiences of exploring such methods mainly in three areas including historical risk analysis, defect identification based on requirements analysis, and over-time analysis of system anomalies at JPL, have shown that obtaining useful results requires substantial unanticipated efforts - from preprocessing the data to transforming the output for practical applications. We have not observed any quick 'wins' or realized benefit from short-term effort avoidance through automation in this area. Surprisingly we have realized a number of unexpected long-term benefits from the process of applying text mining to our repositories. This paper elaborates some of these benefits and our important lessons learned from the process of preparing and applying text mining to large unstructured system artifacts at JPL aiming to benefit future TM applications in similar problem domains and also in hope for being extended to broader areas of applications.
Biomedical hypothesis generation by text mining and gene prioritization.
Petric, Ingrid; Ligeti, Balazs; Gyorffy, Balazs; Pongor, Sandor
2014-01-01
Text mining methods can facilitate the generation of biomedical hypotheses by suggesting novel associations between diseases and genes. Previously, we developed a rare-term model called RaJoLink (Petric et al, J. Biomed. Inform. 42(2): 219-227, 2009) in which hypotheses are formulated on the basis of terms rarely associated with a target domain. Since many current medical hypotheses are formulated in terms of molecular entities and molecular mechanisms, here we extend the methodology to proteins and genes, using a standardized vocabulary as well as a gene/protein network model. The proposed enhanced RaJoLink rare-term model combines text mining and gene prioritization approaches. Its utility is illustrated by finding known as well as potential gene-disease associations in ovarian cancer using MEDLINE abstracts and the STRING database.
The Functional Genomics Network in the evolution of biological text mining over the past decade.
Blaschke, Christian; Valencia, Alfonso
2013-03-25
Different programs of The European Science Foundation (ESF) have contributed significantly to connect researchers in Europe and beyond through several initiatives. This support was particularly relevant for the development of the areas related with extracting information from papers (text-mining) because it supported the field in its early phases long before it was recognized by the community. We review the historical development of text mining research and how it was introduced in bioinformatics. Specific applications in (functional) genomics are described like it's integration in genome annotation pipelines and the support to the analysis of high-throughput genomics experimental data, and we highlight the activities of evaluation of methods and benchmarking for which the ESF programme support was instrumental. Copyright © 2013 Elsevier B.V. All rights reserved.
Agile Text Mining for the 2014 i2b2/UTHealth Cardiac Risk Factors Challenge
Cormack, James; Nath, Chinmoy; Milward, David; Raja, Kalpana; Jonnalagadda, Siddhartha R
2016-01-01
This paper describes the use of an agile text mining platform (Linguamatics’ Interactive Information Extraction Platform, I2E) to extract document-level cardiac risk factors in patient records as defined in the i2b2/UTHealth 2014 Challenge. The approach uses a data-driven rule-based methodology with the addition of a simple supervised classifier. We demonstrate that agile text mining allows for rapid optimization of extraction strategies, while post-processing can leverage annotation guidelines, corpus statistics and logic inferred from the gold standard data. We also show how data imbalance in a training set affects performance. Evaluation of this approach on the test data gave an F-Score of 91.7%, one percent behind the top performing system. PMID:26209007
Fu, Xiao; Batista-Navarro, Riza; Rak, Rafal; Ananiadou, Sophia
2015-01-01
Chronic obstructive pulmonary disease (COPD) is a life-threatening lung disorder whose recent prevalence has led to an increasing burden on public healthcare. Phenotypic information in electronic clinical records is essential in providing suitable personalised treatment to patients with COPD. However, as phenotypes are often "hidden" within free text in clinical records, clinicians could benefit from text mining systems that facilitate their prompt recognition. This paper reports on a semi-automatic methodology for producing a corpus that can ultimately support the development of text mining tools that, in turn, will expedite the process of identifying groups of COPD patients. A corpus of 30 full-text papers was formed based on selection criteria informed by the expertise of COPD specialists. We developed an annotation scheme that is aimed at producing fine-grained, expressive and computable COPD annotations without burdening our curators with a highly complicated task. This was implemented in the Argo platform by means of a semi-automatic annotation workflow that integrates several text mining tools, including a graphical user interface for marking up documents. When evaluated using gold standard (i.e., manually validated) annotations, the semi-automatic workflow was shown to obtain a micro-averaged F-score of 45.70% (with relaxed matching). Utilising the gold standard data to train new concept recognisers, we demonstrated that our corpus, although still a work in progress, can foster the development of significantly better performing COPD phenotype extractors. We describe in this work the means by which we aim to eventually support the process of COPD phenotype curation, i.e., by the application of various text mining tools integrated into an annotation workflow. Although the corpus being described is still under development, our results thus far are encouraging and show great potential in stimulating the development of further automatic COPD phenotype extractors.
The Promise of a Literacy Reform Effort in the Upper Elementary Grades
ERIC Educational Resources Information Center
Walpole, Sharon; Amendum, Steven; Pasquarella, Adrian; Strong, John Z.; McKenna, Michael C.
2017-01-01
We compared year-long gains in fluency and comprehension in grades 3-5 in 3 treatment and 4 comparison schools. Treatment schools implemented a comprehensive school reform (CSR) program called Bookworms. The program employed challenging text and emphasized high text volume, aggressive vocabulary and knowledge building, and contextualized strategy…
Students' Reading Comprehension Performance with Emotional Literacy-Based Strategy Intervention
ERIC Educational Resources Information Center
Yussof, Yusfarina Mohd; Jamian, Abdul Rasid; Hamzah, Zaitul Azma Zainon; Roslan, Samsilah
2013-01-01
An effective reading comprehension process demands a strategy to enhance the cognitive ability to digest text information in the effort to elicit meaning contextually. In addition, the role of emotions also influences the efficacy of this process, especially in narrative text comprehension. This quasi-experimental study aims to observe students'…
Contextuality and Cultural Texts: A Case Study of Workplace Learning in Call Centres
ERIC Educational Resources Information Center
Crouch, Margaret
2006-01-01
Purpose: The paper seeks to show the contextualisation of call centres as a work-specific ethnographically and culturally based community, which, in turn, influences pedagogical practices through the encoding and decoding of cultural texts in relation to two logics: cost-efficiency and customer-orientation. Design/methodology/approach: The paper…
78 FR 64397 - Mississippi Regulatory Program
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-29
... text of the program amendment available at www.regulations.gov . A. Mississippi Surface Coal Mining... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 924...; S2D2SSS08011000SX066A00033F13XS501520] Mississippi Regulatory Program AGENCY: Office of Surface Mining Reclamation and Enforcement...
Redundancy and Novelty Mining in the Business Blogosphere
ERIC Educational Resources Information Center
Tsai, Flora S.; Chan, Kap Luk
2010-01-01
Purpose: The paper aims to explore the performance of redundancy and novelty mining in the business blogosphere, which has not been studied before. Design/methodology/approach: Novelty mining techniques are implemented to single out novel information out of a massive set of text documents. This paper adopted the mixed metric approach which…
Gutberlet, J
2015-11-01
Solid waste is a major urban challenge worldwide and reclaiming the resources embedded in waste streams, involving organized recyclers, is a smart response to it. Informal and organized recyclers, mostly in the global south, already act as important urban miners in resource recovery. The paper describes the complex operations of recycling cooperatives and draws attention to their economic, environmental, and social contributions. A detailed discussion based on empirical data from the recycling network COOPCENT-ABC in metropolitan São Paulo, Brazil, contextualizes this form of urban mining. The analysis is situated within Social and Solidarity Economy (SSE) and Ecological Economy (EE) theory. Current challenges related to planning, public policy, and the implementation of cooperative recycling are analysed on the level of individual recyclers, cooperatives, municipalities and internationally. There are still many hurdles for the informal, organized recycling sector to become recognized as a key player in efficient material separation and to up-scale these activities for an effective contribution to the SSE and EE. Policies need to be in place to guarantee fair and safe work relations. There is a win-win situation where communities and the environment will benefit from organized urban mining. Copyright © 2015 Elsevier Ltd. All rights reserved.
Meng, Guilin; Meng, Xiulin; Ma, Xiaoye; Zhang, Gengping; Hu, Xiaolin; Jin, Aiping; Liu, Xueyuan
2018-01-01
Alzheimer’s disease (AD) is an increasing concern in human health. Despite significant research, highly effective drugs to treat AD are lacking. The present study describes the text mining process to identify drug candidates from a traditional Chinese medicine (TCM) database, along with associated protein target mechanisms. We carried out text mining to identify literatures that referenced both AD and TCM and focused on identifying compounds and protein targets of interest. After targeting one potential TCM candidate, corresponding protein-protein interaction (PPI) networks were assembled in STRING to decipher the most possible mechanism of action. This was followed by validation using Western blot and co-immunoprecipitation in an AD cell model. The text mining strategy using a vast amount of AD-related literature and the TCM database identified curcumin, whose major component was ferulic acid (FA). This was used as a key candidate compound for further study. Using the top calculated interaction score in STRING, BACE1 and MMP2 were implicated in the activity of FA in AD. Exposure of SHSY5Y-APP cells to FA resulted in the decrease in expression levels of BACE-1 and APP, while the expression of MMP-2 and MMP-9 increased in a dose-dependent manner. This suggests that FA induced BACE1 and MMP2 pathways maybe novel potential mechanisms involved in AD. The text mining of literature and TCM database related to AD suggested FA as a promising TCM ingredient for the treatment of AD. Potential mechanisms interconnected and integrated with Aβ aggregation inhibition and extracellular matrix remodeling underlying the activity of FA were identified using in vitro studies. PMID:29896095
Meng, Guilin; Meng, Xiulin; Ma, Xiaoye; Zhang, Gengping; Hu, Xiaolin; Jin, Aiping; Zhao, Yanxin; Liu, Xueyuan
2018-01-01
Alzheimer's disease (AD) is an increasing concern in human health. Despite significant research, highly effective drugs to treat AD are lacking. The present study describes the text mining process to identify drug candidates from a traditional Chinese medicine (TCM) database, along with associated protein target mechanisms. We carried out text mining to identify literatures that referenced both AD and TCM and focused on identifying compounds and protein targets of interest. After targeting one potential TCM candidate, corresponding protein-protein interaction (PPI) networks were assembled in STRING to decipher the most possible mechanism of action. This was followed by validation using Western blot and co-immunoprecipitation in an AD cell model. The text mining strategy using a vast amount of AD-related literature and the TCM database identified curcumin, whose major component was ferulic acid (FA). This was used as a key candidate compound for further study. Using the top calculated interaction score in STRING, BACE1 and MMP2 were implicated in the activity of FA in AD. Exposure of SHSY5Y-APP cells to FA resulted in the decrease in expression levels of BACE-1 and APP, while the expression of MMP-2 and MMP-9 increased in a dose-dependent manner. This suggests that FA induced BACE1 and MMP2 pathways maybe novel potential mechanisms involved in AD. The text mining of literature and TCM database related to AD suggested FA as a promising TCM ingredient for the treatment of AD. Potential mechanisms interconnected and integrated with Aβ aggregation inhibition and extracellular matrix remodeling underlying the activity of FA were identified using in vitro studies.
Johnson, Robin J.; Lay, Jean M.; Lennon-Hopkins, Kelley; Saraceni-Richards, Cynthia; Sciaky, Daniela; Murphy, Cynthia Grondin; Mattingly, Carolyn J.
2013-01-01
The Comparative Toxicogenomics Database (CTD; http://ctdbase.org/) is a public resource that curates interactions between environmental chemicals and gene products, and their relationships to diseases, as a means of understanding the effects of environmental chemicals on human health. CTD provides a triad of core information in the form of chemical-gene, chemical-disease, and gene-disease interactions that are manually curated from scientific articles. To increase the efficiency, productivity, and data coverage of manual curation, we have leveraged text mining to help rank and prioritize the triaged literature. Here, we describe our text-mining process that computes and assigns each article a document relevancy score (DRS), wherein a high DRS suggests that an article is more likely to be relevant for curation at CTD. We evaluated our process by first text mining a corpus of 14,904 articles triaged for seven heavy metals (cadmium, cobalt, copper, lead, manganese, mercury, and nickel). Based upon initial analysis, a representative subset corpus of 3,583 articles was then selected from the 14,094 articles and sent to five CTD biocurators for review. The resulting curation of these 3,583 articles was analyzed for a variety of parameters, including article relevancy, novel data content, interaction yield rate, mean average precision, and biological and toxicological interpretability. We show that for all measured parameters, the DRS is an effective indicator for scoring and improving the ranking of literature for the curation of chemical-gene-disease information at CTD. Here, we demonstrate how fully incorporating text mining-based DRS scoring into our curation pipeline enhances manual curation by prioritizing more relevant articles, thereby increasing data content, productivity, and efficiency. PMID:23613709
A New Framework for Textual Information Mining over Parse Trees. CRESST Report 805
ERIC Educational Resources Information Center
Mousavi, Hamid; Kerr, Deirdre; Iseli, Markus R.
2011-01-01
Textual information mining is a challenging problem that has resulted in the creation of many different rule-based linguistic query languages. However, these languages generally are not optimized for the purpose of text mining. In other words, they usually consider queries as individuals and only return raw results for each query. Moreover they…
Data Mining: A Hybrid Methodology for Complex and Dynamic Research
ERIC Educational Resources Information Center
Lang, Susan; Baehr, Craig
2012-01-01
This article provides an overview of the ways in which data and text mining have potential as research methodologies in composition studies. It introduces data mining in the context of the field of composition studies and discusses ways in which this methodology can complement and extend our existing research practices by blending the best of what…
Text mining and medicine: usefulness in respiratory diseases.
Piedra, David; Ferrer, Antoni; Gea, Joaquim
2014-03-01
It is increasingly common to have medical information in electronic format. This includes scientific articles as well as clinical management reviews, and even records from health institutions with patient data. However, traditional instruments, both individual and institutional, are of little use for selecting the most appropriate information in each case, either in the clinical or research field. So-called text or data «mining» enables this huge amount of information to be managed, extracting it from various sources using processing systems (filtration and curation), integrating it and permitting the generation of new knowledge. This review aims to provide an overview of text and data mining, and of the potential usefulness of this bioinformatic technique in the exercise of care in respiratory medicine and in research in the same field. Copyright © 2013 SEPAR. Published by Elsevier Espana. All rights reserved.
Agile text mining for the 2014 i2b2/UTHealth Cardiac risk factors challenge.
Cormack, James; Nath, Chinmoy; Milward, David; Raja, Kalpana; Jonnalagadda, Siddhartha R
2015-12-01
This paper describes the use of an agile text mining platform (Linguamatics' Interactive Information Extraction Platform, I2E) to extract document-level cardiac risk factors in patient records as defined in the i2b2/UTHealth 2014 challenge. The approach uses a data-driven rule-based methodology with the addition of a simple supervised classifier. We demonstrate that agile text mining allows for rapid optimization of extraction strategies, while post-processing can leverage annotation guidelines, corpus statistics and logic inferred from the gold standard data. We also show how data imbalance in a training set affects performance. Evaluation of this approach on the test data gave an F-Score of 91.7%, one percent behind the top performing system. Copyright © 2015 Elsevier Inc. All rights reserved.
Overview of the gene ontology task at BioCreative IV.
Mao, Yuqing; Van Auken, Kimberly; Li, Donghui; Arighi, Cecilia N; McQuilton, Peter; Hayman, G Thomas; Tweedie, Susan; Schaeffer, Mary L; Laulederkind, Stanley J F; Wang, Shur-Jen; Gobeill, Julien; Ruch, Patrick; Luu, Anh Tuan; Kim, Jung-Jae; Chiang, Jung-Hsien; Chen, Yu-De; Yang, Chia-Jung; Liu, Hongfang; Zhu, Dongqing; Li, Yanpeng; Yu, Hong; Emadzadeh, Ehsan; Gonzalez, Graciela; Chen, Jian-Ming; Dai, Hong-Jie; Lu, Zhiyong
2014-01-01
Gene ontology (GO) annotation is a common task among model organism databases (MODs) for capturing gene function data from journal articles. It is a time-consuming and labor-intensive task, and is thus often considered as one of the bottlenecks in literature curation. There is a growing need for semiautomated or fully automated GO curation techniques that will help database curators to rapidly and accurately identify gene function information in full-length articles. Despite multiple attempts in the past, few studies have proven to be useful with regard to assisting real-world GO curation. The shortage of sentence-level training data and opportunities for interaction between text-mining developers and GO curators has limited the advances in algorithm development and corresponding use in practical circumstances. To this end, we organized a text-mining challenge task for literature-based GO annotation in BioCreative IV. More specifically, we developed two subtasks: (i) to automatically locate text passages that contain GO-relevant information (a text retrieval task) and (ii) to automatically identify relevant GO terms for the genes in a given article (a concept-recognition task). With the support from five MODs, we provided teams with >4000 unique text passages that served as the basis for each GO annotation in our task data. Such evidence text information has long been recognized as critical for text-mining algorithm development but was never made available because of the high cost of curation. In total, seven teams participated in the challenge task. From the team results, we conclude that the state of the art in automatically mining GO terms from literature has improved over the past decade while much progress is still needed for computer-assisted GO curation. Future work should focus on addressing remaining technical challenges for improved performance of automatic GO concept recognition and incorporating practical benefits of text-mining tools into real-world GO annotation. http://www.biocreative.org/tasks/biocreative-iv/track-4-GO/. Published by Oxford University Press 2014. This work is written by US Government employees and is in the public domain in the US.
PPInterFinder--a mining tool for extracting causal relations on human proteins from literature.
Raja, Kalpana; Subramani, Suresh; Natarajan, Jeyakumar
2013-01-01
One of the most common and challenging problem in biomedical text mining is to mine protein-protein interactions (PPIs) from MEDLINE abstracts and full-text research articles because PPIs play a major role in understanding the various biological processes and the impact of proteins in diseases. We implemented, PPInterFinder--a web-based text mining tool to extract human PPIs from biomedical literature. PPInterFinder uses relation keyword co-occurrences with protein names to extract information on PPIs from MEDLINE abstracts and consists of three phases. First, it identifies the relation keyword using a parser with Tregex and a relation keyword dictionary. Next, it automatically identifies the candidate PPI pairs with a set of rules related to PPI recognition. Finally, it extracts the relations by matching the sentence with a set of 11 specific patterns based on the syntactic nature of PPI pair. We find that PPInterFinder is capable of predicting PPIs with the accuracy of 66.05% on AIMED corpus and outperforms most of the existing systems. DATABASE URL: http://www.biomining-bu.in/ppinterfinder/
PPInterFinder—a mining tool for extracting causal relations on human proteins from literature
Raja, Kalpana; Subramani, Suresh; Natarajan, Jeyakumar
2013-01-01
One of the most common and challenging problem in biomedical text mining is to mine protein–protein interactions (PPIs) from MEDLINE abstracts and full-text research articles because PPIs play a major role in understanding the various biological processes and the impact of proteins in diseases. We implemented, PPInterFinder—a web-based text mining tool to extract human PPIs from biomedical literature. PPInterFinder uses relation keyword co-occurrences with protein names to extract information on PPIs from MEDLINE abstracts and consists of three phases. First, it identifies the relation keyword using a parser with Tregex and a relation keyword dictionary. Next, it automatically identifies the candidate PPI pairs with a set of rules related to PPI recognition. Finally, it extracts the relations by matching the sentence with a set of 11 specific patterns based on the syntactic nature of PPI pair. We find that PPInterFinder is capable of predicting PPIs with the accuracy of 66.05% on AIMED corpus and outperforms most of the existing systems. Database URL: http://www.biomining-bu.in/ppinterfinder/ PMID:23325628
Topaz, Maxim; Radhakrishnan, Kavita; Lei, Victor; Zhou, Li
2016-01-01
Effective self-management can decrease up to 50% of heart failure hospitalizations. Unfortunately, self-management by patients with heart failure remains poor. This pilot study aimed to explore the use of text-mining to identify heart failure patients with ineffective self-management. We first built a comprehensive self-management vocabulary based on the literature and clinical notes review. We then randomly selected 545 heart failure patients treated within Partners Healthcare hospitals (Boston, MA, USA) and conducted a regular expression search with the compiled vocabulary within 43,107 interdisciplinary clinical notes of these patients. We found that 38.2% (n = 208) patients had documentation of ineffective heart failure self-management in the domains of poor diet adherence (28.4%), missed medical encounters (26.4%) poor medication adherence (20.2%) and non-specified self-management issues (e.g., "compliance issues", 34.6%). We showed the feasibility of using text-mining to identify patients with ineffective self-management. More natural language processing algorithms are needed to help busy clinicians identify these patients.
Integration of Artificial Market Simulation and Text Mining for Market Analysis
NASA Astrophysics Data System (ADS)
Izumi, Kiyoshi; Matsui, Hiroki; Matsuo, Yutaka
We constructed an evaluation system of the self-impact in a financial market using an artificial market and text-mining technology. Economic trends were first extracted from text data circulating in the real world. Then, the trends were inputted into the market simulation. Our simulation revealed that an operation by intervention could reduce over 70% of rate fluctuation in 1995. By the simulation results, the system was able to help for its user to find the exchange policy which can stabilize the yen-dollar rate.
BioC implementations in Go, Perl, Python and Ruby
Liu, Wanli; Islamaj Doğan, Rezarta; Kwon, Dongseop; Marques, Hernani; Rinaldi, Fabio; Wilbur, W. John; Comeau, Donald C.
2014-01-01
As part of a communitywide effort for evaluating text mining and information extraction systems applied to the biomedical domain, BioC is focused on the goal of interoperability, currently a major barrier to wide-scale adoption of text mining tools. BioC is a simple XML format, specified by DTD, for exchanging data for biomedical natural language processing. With initial implementations in C++ and Java, BioC provides libraries of code for reading and writing BioC text documents and annotations. We extend BioC to Perl, Python, Go and Ruby. We used SWIG to extend the C++ implementation for Perl and one Python implementation. A second Python implementation and the Ruby implementation use native data structures and libraries. BioC is also implemented in the Google language Go. BioC modules are functional in all of these languages, which can facilitate text mining tasks. BioC implementations are freely available through the BioC site: http://bioc.sourceforge.net. Database URL: http://bioc.sourceforge.net/ PMID:24961236
PathText: a text mining integrator for biological pathway visualizations
Kemper, Brian; Matsuzaki, Takuya; Matsuoka, Yukiko; Tsuruoka, Yoshimasa; Kitano, Hiroaki; Ananiadou, Sophia; Tsujii, Jun'ichi
2010-01-01
Motivation: Metabolic and signaling pathways are an increasingly important part of organizing knowledge in systems biology. They serve to integrate collective interpretations of facts scattered throughout literature. Biologists construct a pathway by reading a large number of articles and interpreting them as a consistent network, but most of the models constructed currently lack direct links to those articles. Biologists who want to check the original articles have to spend substantial amounts of time to collect relevant articles and identify the sections relevant to the pathway. Furthermore, with the scientific literature expanding by several thousand papers per week, keeping a model relevant requires a continuous curation effort. In this article, we present a system designed to integrate a pathway visualizer, text mining systems and annotation tools into a seamless environment. This will enable biologists to freely move between parts of a pathway and relevant sections of articles, as well as identify relevant papers from large text bases. The system, PathText, is developed by Systems Biology Institute, Okinawa Institute of Science and Technology, National Centre for Text Mining (University of Manchester) and the University of Tokyo, and is being used by groups of biologists from these locations. Contact: brian@monrovian.com. PMID:20529930
@Note: a workbench for biomedical text mining.
Lourenço, Anália; Carreira, Rafael; Carneiro, Sónia; Maia, Paulo; Glez-Peña, Daniel; Fdez-Riverola, Florentino; Ferreira, Eugénio C; Rocha, Isabel; Rocha, Miguel
2009-08-01
Biomedical Text Mining (BioTM) is providing valuable approaches to the automated curation of scientific literature. However, most efforts have addressed the benchmarking of new algorithms rather than user operational needs. Bridging the gap between BioTM researchers and biologists' needs is crucial to solve real-world problems and promote further research. We present @Note, a platform for BioTM that aims at the effective translation of the advances between three distinct classes of users: biologists, text miners and software developers. Its main functional contributions are the ability to process abstracts and full-texts; an information retrieval module enabling PubMed search and journal crawling; a pre-processing module with PDF-to-text conversion, tokenisation and stopword removal; a semantic annotation schema; a lexicon-based annotator; a user-friendly annotation view that allows to correct annotations and a Text Mining Module supporting dataset preparation and algorithm evaluation. @Note improves the interoperability, modularity and flexibility when integrating in-home and open-source third-party components. Its component-based architecture allows the rapid development of new applications, emphasizing the principles of transparency and simplicity of use. Although it is still on-going, it has already allowed the development of applications that are currently being used.
Sahadevan, S; Hofmann-Apitius, M; Schellander, K; Tesfaye, D; Fluck, J; Friedrich, C M
2012-10-01
In biological research, establishing the prior art by searching and collecting information already present in the domain has equal importance as the experiments done. To obtain a complete overview about the relevant knowledge, researchers mainly rely on 2 major information sources: i) various biological databases and ii) scientific publications in the field. The major difference between the 2 information sources is that information from databases is available, typically well structured and condensed. The information content in scientific literature is vastly unstructured; that is, dispersed among the many different sections of scientific text. The traditional method of information extraction from scientific literature occurs by generating a list of relevant publications in the field of interest and manually scanning these texts for relevant information, which is very time consuming. It is more than likely that in using this "classical" approach the researcher misses some relevant information mentioned in the literature or has to go through biological databases to extract further information. Text mining and named entity recognition methods have already been used in human genomics and related fields as a solution to this problem. These methods can process and extract information from large volumes of scientific text. Text mining is defined as the automatic extraction of previously unknown and potentially useful information from text. Named entity recognition (NER) is defined as the method of identifying named entities (names of real world objects; for example, gene/protein names, drugs, enzymes) in text. In animal sciences, text mining and related methods have been briefly used in murine genomics and associated fields, leaving behind other fields of animal sciences, such as livestock genomics. The aim of this work was to develop an information retrieval platform in the livestock domain focusing on livestock publications and the recognition of relevant data from cattle and pigs. For this purpose, the rather noncomprehensive resources of pig and cattle gene and protein terminologies were enriched with orthologue synonyms, integrated in the NER platform, ProMiner, which is successfully used in human genomics domain. Based on the performance tests done, the present system achieved a fair performance with precision 0.64, recall 0.74, and F(1) measure of 0.69 in a test scenario based on cattle literature.
miRTex: A Text Mining System for miRNA-Gene Relation Extraction
Li, Gang; Ross, Karen E.; Arighi, Cecilia N.; Peng, Yifan; Wu, Cathy H.; Vijay-Shanker, K.
2015-01-01
MicroRNAs (miRNAs) regulate a wide range of cellular and developmental processes through gene expression suppression or mRNA degradation. Experimentally validated miRNA gene targets are often reported in the literature. In this paper, we describe miRTex, a text mining system that extracts miRNA-target relations, as well as miRNA-gene and gene-miRNA regulation relations. The system achieves good precision and recall when evaluated on a literature corpus of 150 abstracts with F-scores close to 0.90 on the three different types of relations. We conducted full-scale text mining using miRTex to process all the Medline abstracts and all the full-length articles in the PubMed Central Open Access Subset. The results for all the Medline abstracts are stored in a database for interactive query and file download via the website at http://proteininformationresource.org/mirtex. Using miRTex, we identified genes potentially regulated by miRNAs in Triple Negative Breast Cancer, as well as miRNA-gene relations that, in conjunction with kinase-substrate relations, regulate the response to abiotic stress in Arabidopsis thaliana. These two use cases demonstrate the usefulness of miRTex text mining in the analysis of miRNA-regulated biological processes. PMID:26407127
Cañada, Andres; Rabal, Obdulia; Oyarzabal, Julen; Valencia, Alfonso
2017-01-01
Abstract A considerable effort has been devoted to retrieve systematically information for genes and proteins as well as relationships between them. Despite the importance of chemical compounds and drugs as a central bio-entity in pharmacological and biological research, only a limited number of freely available chemical text-mining/search engine technologies are currently accessible. Here we present LimTox (Literature Mining for Toxicology), a web-based online biomedical search tool with special focus on adverse hepatobiliary reactions. It integrates a range of text mining, named entity recognition and information extraction components. LimTox relies on machine-learning, rule-based, pattern-based and term lookup strategies. This system processes scientific abstracts, a set of full text articles and medical agency assessment reports. Although the main focus of LimTox is on adverse liver events, it enables also basic searches for other organ level toxicity associations (nephrotoxicity, cardiotoxicity, thyrotoxicity and phospholipidosis). This tool supports specialized search queries for: chemical compounds/drugs, genes (with additional emphasis on key enzymes in drug metabolism, namely P450 cytochromes—CYPs) and biochemical liver markers. The LimTox website is free and open to all users and there is no login requirement. LimTox can be accessed at: http://limtox.bioinfo.cnio.es PMID:28531339
Text mining a self-report back-translation.
Blanch, Angel; Aluja, Anton
2016-06-01
There are several recommendations about the routine to undertake when back translating self-report instruments in cross-cultural research. However, text mining methods have been generally ignored within this field. This work describes a text mining innovative application useful to adapt a personality questionnaire to 12 different languages. The method is divided in 3 different stages, a descriptive analysis of the available back-translated instrument versions, a dissimilarity assessment between the source language instrument and the 12 back-translations, and an item assessment of item meaning equivalence. The suggested method contributes to improve the back-translation process of self-report instruments for cross-cultural research in 2 significant intertwined ways. First, it defines a systematic approach to the back translation issue, allowing for a more orderly and informed evaluation concerning the equivalence of different versions of the same instrument in different languages. Second, it provides more accurate instrument back-translations, which has direct implications for the reliability and validity of the instrument's test scores when used in different cultures/languages. In addition, this procedure can be extended to the back-translation of self-reports measuring psychological constructs in clinical assessment. Future research works could refine the suggested methodology and use additional available text mining tools. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Elayavilli, Ravikumar Komandur; Liu, Hongfang
2016-01-01
Computational modeling of biological cascades is of great interest to quantitative biologists. Biomedical text has been a rich source for quantitative information. Gathering quantitative parameters and values from biomedical text is one significant challenge in the early steps of computational modeling as it involves huge manual effort. While automatically extracting such quantitative information from bio-medical text may offer some relief, lack of ontological representation for a subdomain serves as impedance in normalizing textual extractions to a standard representation. This may render textual extractions less meaningful to the domain experts. In this work, we propose a rule-based approach to automatically extract relations involving quantitative data from biomedical text describing ion channel electrophysiology. We further translated the quantitative assertions extracted through text mining to a formal representation that may help in constructing ontology for ion channel events using a rule based approach. We have developed Ion Channel ElectroPhysiology Ontology (ICEPO) by integrating the information represented in closely related ontologies such as, Cell Physiology Ontology (CPO), and Cardiac Electro Physiology Ontology (CPEO) and the knowledge provided by domain experts. The rule-based system achieved an overall F-measure of 68.93% in extracting the quantitative data assertions system on an independently annotated blind data set. We further made an initial attempt in formalizing the quantitative data assertions extracted from the biomedical text into a formal representation that offers potential to facilitate the integration of text mining into ontological workflow, a novel aspect of this study. This work is a case study where we created a platform that provides formal interaction between ontology development and text mining. We have achieved partial success in extracting quantitative assertions from the biomedical text and formalizing them in ontological framework. The ICEPO ontology is available for download at http://openbionlp.org/mutd/supplementarydata/ICEPO/ICEPO.owl.
Flooded Underground Coal Mines: A Significant Source of Inexpensive Geothermal Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watzlaf, G.R.; Ackman, T.E.
2007-04-01
Many mining regions in the United States contain extensive areas of flooded underground mines. The water within these mines represents a significant and widespread opportunity for extracting low-grade, geothermal energy. Based on current energy prices, geothermal heat pump systems using mine water could reduce the annual costs for heating to over 70 percent compared to conventional heating methods (natural gas or heating oil). These same systems could reduce annual cooling costs by up to 50 percent over standard air conditioning in many areas of the country. (Formatted full-text version is released by permission of publisher)
Mining Quality Phrases from Massive Text Corpora
Liu, Jialu; Shang, Jingbo; Wang, Chi; Ren, Xiang; Han, Jiawei
2015-01-01
Text data are ubiquitous and play an essential role in big data applications. However, text data are mostly unstructured. Transforming unstructured text into structured units (e.g., semantically meaningful phrases) will substantially reduce semantic ambiguity and enhance the power and efficiency at manipulating such data using database technology. Thus mining quality phrases is a critical research problem in the field of databases. In this paper, we propose a new framework that extracts quality phrases from text corpora integrated with phrasal segmentation. The framework requires only limited training but the quality of phrases so generated is close to human judgment. Moreover, the method is scalable: both computation time and required space grow linearly as corpus size increases. Our experiments on large text corpora demonstrate the quality and efficiency of the new method. PMID:26705375
Raja, Kalpana; Patrick, Matthew; Gao, Yilin; Madu, Desmond; Yang, Yuyang
2017-01-01
In the past decade, the volume of “omics” data generated by the different high-throughput technologies has expanded exponentially. The managing, storing, and analyzing of this big data have been a great challenge for the researchers, especially when moving towards the goal of generating testable data-driven hypotheses, which has been the promise of the high-throughput experimental techniques. Different bioinformatics approaches have been developed to streamline the downstream analyzes by providing independent information to interpret and provide biological inference. Text mining (also known as literature mining) is one of the commonly used approaches for automated generation of biological knowledge from the huge number of published articles. In this review paper, we discuss the recent advancement in approaches that integrate results from omics data and information generated from text mining approaches to uncover novel biomedical information. PMID:28331849
Systematic drug repositioning through mining adverse event data in ClinicalTrials.gov.
Su, Eric Wen; Sanger, Todd M
2017-01-01
Drug repositioning (i.e., drug repurposing) is the process of discovering new uses for marketed drugs. Historically, such discoveries were serendipitous. However, the rapid growth in electronic clinical data and text mining tools makes it feasible to systematically identify drugs with the potential to be repurposed. Described here is a novel method of drug repositioning by mining ClinicalTrials.gov. The text mining tools I2E (Linguamatics) and PolyAnalyst (Megaputer) were utilized. An I2E query extracts "Serious Adverse Events" (SAE) data from randomized trials in ClinicalTrials.gov. Through a statistical algorithm, a PolyAnalyst workflow ranks the drugs where the treatment arm has fewer predefined SAEs than the control arm, indicating that potentially the drug is reducing the level of SAE. Hypotheses could then be generated for the new use of these drugs based on the predefined SAE that is indicative of disease (for example, cancer).
Matsuda, Yoshio; Manaka, Tomoko; Kobayashi, Makiko; Sato, Shuhei; Ohwada, Michitaka
2016-06-01
The aim of the present study was to examine the possibility of screening apprehensive pregnant women and mothers at risk for post-partum depression from an analysis of the textual data in the Mother and Child Handbook by using the text-mining method. Uncomplicated pregnant women (n = 58) were divided into two groups according to State-Trait Anxiety Inventory grade (high trait [group I, n = 21] and low trait [group II, n = 37]) or Edinburgh Postnatal Depression Scale score (high score [group III, n = 15] and low score [group IV, n = 43]). An exploratory analysis of the textual data from the Maternal and Child Handbook was conducted using the text-mining method with the Word Miner software program. A comparison of the 'structure elements' was made between the two groups. The number of structure elements extracted by separated words from text data was 20 004 and the number of structure elements with a threshold of 2 or more as an initial value was 1168. Fifteen key words related to maternal anxiety, and six key words related to post-partum depression were extracted. The text-mining method is useful for the exploratory analysis of textual data obtained from pregnant woman, and this screening method has been suggested to be useful for apprehensive pregnant women and mothers at risk for post-partum depression. © 2016 Japan Society of Obstetrics and Gynecology.
An Integrated Suite of Text and Data Mining Tools - Phase II
2005-08-30
Riverside, CA, USA Mazda Motor Corp, Jpn Univ of Darmstadt, Darmstadt, Ger Navy Center for Applied Research in Artificial Intelligence Univ of...with Georgia Tech Research Corporation developed a desktop text-mining software tool named TechOASIS (known commercially as VantagePoint). By the...of this dataset and groups the Corporate Source items that co-occur with the found items. He decides he is only interested in the institutions
He, Qiwei; Veldkamp, Bernard P; Glas, Cees A W; de Vries, Theo
2017-03-01
Patients' narratives about traumatic experiences and symptoms are useful in clinical screening and diagnostic procedures. In this study, we presented an automated assessment system to screen patients for posttraumatic stress disorder via a natural language processing and text-mining approach. Four machine-learning algorithms-including decision tree, naive Bayes, support vector machine, and an alternative classification approach called the product score model-were used in combination with n-gram representation models to identify patterns between verbal features in self-narratives and psychiatric diagnoses. With our sample, the product score model with unigrams attained the highest prediction accuracy when compared with practitioners' diagnoses. The addition of multigrams contributed most to balancing the metrics of sensitivity and specificity. This article also demonstrates that text mining is a promising approach for analyzing patients' self-expression behavior, thus helping clinicians identify potential patients from an early stage.
Using ontology network structure in text mining.
Berndt, Donald J; McCart, James A; Luther, Stephen L
2010-11-13
Statistical text mining treats documents as bags of words, with a focus on term frequencies within documents and across document collections. Unlike natural language processing (NLP) techniques that rely on an engineered vocabulary or a full-featured ontology, statistical approaches do not make use of domain-specific knowledge. The freedom from biases can be an advantage, but at the cost of ignoring potentially valuable knowledge. The approach proposed here investigates a hybrid strategy based on computing graph measures of term importance over an entire ontology and injecting the measures into the statistical text mining process. As a starting point, we adapt existing search engine algorithms such as PageRank and HITS to determine term importance within an ontology graph. The graph-theoretic approach is evaluated using a smoking data set from the i2b2 National Center for Biomedical Computing, cast as a simple binary classification task for categorizing smoking-related documents, demonstrating consistent improvements in accuracy.
ERIC Educational Resources Information Center
Beyer, Charlotte
2013-01-01
This article explores teaching and learning perspectives in relation to a first-year English Literature module on foundational literary texts and considers the value of certain assessment modes. The essay discusses methodological and pedagogical questions and argues that the module provides a contextual platform from which first-year students are…
Operational Initiative in Theory and Doctrine
2015-05-21
1984 Paret translation of On War uses the term initiative with far more frequency than the original German text ; given that Paret contextually...logical evolution of thought throughout doctrine, from core texts and dominant military theory prior to 1905 through the current catalogued system...Unfortunately, no such cohesive map currently exists; rather, military theorists have charted the terrain of initiative piecemeal. This section seeks to
ERIC Educational Resources Information Center
García-Ponce, Edgar Emmanuell; Mora-Pablo, Irasema; Lengeling, M. Martha; Crawford, Troy
2018-01-01
According to discoursal views on language, variations in textualization strategies are always sociocontextually motivated and never happen at random. The textual forms employed in a text, along with many other discoursal and contextual factors, could certainly affect the readability of the text, making it more or less processable for the same…
ERIC Educational Resources Information Center
Bonabi, Mina Abbasi; Lotfipour-Saedi, Kazem; Hemmati, Fatemeh; Jafarigohar, Manoochehr
2018-01-01
According to discoursal views on language, variations in textualization strategies are always sociocontextually motivated and never happen at random. The textual forms employed in a text, along with many other discoursal and contextual factors, could certainly affect the readability of the text, making it more or less processable for the same…
NASA Astrophysics Data System (ADS)
Prno, Jason; Slocombe, D. Scott
2014-03-01
The concept of a "social license to operate" (SLO) was coined in the 1990s and gained popularity as one way in which "social" considerations can be addressed in mineral development decision making. The need for a SLO implies that developers require the widespread approval of local community members for their projects to avoid exposure to potentially costly conflict and business risks. Only a limited amount of scholarship exists on the topic, and there is a need for research that specifically addresses the complex and changeable nature of SLO outcomes. In response to these challenges, this paper advances a novel, systems-based conceptual framework for assessing SLO determinants and outcomes in the mining industry. Two strands of systems theory are specifically highlighted—complex adaptive systems and resilience—and the roles of context, key system variables, emergence, change, uncertainty, feedbacks, cross-scale effects, multiple stable states, thresholds, and resilience are discussed. The framework was developed from the results of a multi-year research project which involved international mining case study investigations, a comprehensive literature review, and interviews conducted with mining stakeholders and observers. The framework can help guide SLO analysis and management efforts, by encouraging users to account for important contextual and complexity-oriented elements present in SLO settings. We apply the framework to a case study in Alaska, USA before discussing its merits and challenges. We also illustrate knowledge gaps associated with applications of complex adaptive systems and resilience theories to the study of SLO dynamics, and discuss opportunities for future research.
Prno, Jason; Slocombe, D Scott
2014-03-01
The concept of a "social license to operate" (SLO) was coined in the 1990s and gained popularity as one way in which "social" considerations can be addressed in mineral development decision making. The need for a SLO implies that developers require the widespread approval of local community members for their projects to avoid exposure to potentially costly conflict and business risks. Only a limited amount of scholarship exists on the topic, and there is a need for research that specifically addresses the complex and changeable nature of SLO outcomes. In response to these challenges, this paper advances a novel, systems-based conceptual framework for assessing SLO determinants and outcomes in the mining industry. Two strands of systems theory are specifically highlighted-complex adaptive systems and resilience-and the roles of context, key system variables, emergence, change, uncertainty, feedbacks, cross-scale effects, multiple stable states, thresholds, and resilience are discussed. The framework was developed from the results of a multi-year research project which involved international mining case study investigations, a comprehensive literature review, and interviews conducted with mining stakeholders and observers. The framework can help guide SLO analysis and management efforts, by encouraging users to account for important contextual and complexity-oriented elements present in SLO settings. We apply the framework to a case study in Alaska, USA before discussing its merits and challenges. We also illustrate knowledge gaps associated with applications of complex adaptive systems and resilience theories to the study of SLO dynamics, and discuss opportunities for future research.
The structure and infrastructure of the global nanotechnology literature
NASA Astrophysics Data System (ADS)
Kostoff, Ronald N.; Stump, Jesse A.; Johnson, Dustin; Murday, James S.; Lau, Clifford G. Y.; Tolles, William M.
2006-08-01
Text mining is the extraction of useful information from large volumes of text. A text mining analysis of the global open nanotechnology literature was performed. Records from the Science Citation Index (SCI)/Social SCI were analyzed to provide the infrastructure of the global nanotechnology literature (prolific authors/journals/institutions/countries, most cited authors/papers/journals) and the thematic structure (taxonomy) of the global nanotechnology literature, from a science perspective. Records from the Engineering Compendex (EC) were analyzed to provide a taxonomy from a technology perspective. The Far Eastern countries have expanded nanotechnology publication output dramatically in the past decade.
PubMed-EX: a web browser extension to enhance PubMed search with text mining features.
Tsai, Richard Tzong-Han; Dai, Hong-Jie; Lai, Po-Ting; Huang, Chi-Hsin
2009-11-15
PubMed-EX is a browser extension that marks up PubMed search results with additional text-mining information. PubMed-EX's page mark-up, which includes section categorization and gene/disease and relation mark-up, can help researchers to quickly focus on key terms and provide additional information on them. All text processing is performed server-side, freeing up user resources. PubMed-EX is freely available at http://bws.iis.sinica.edu.tw/PubMed-EX and http://iisr.cse.yzu.edu.tw:8000/PubMed-EX/.
Learning in the context of distribution drift
2017-05-09
published in the leading data mining journal, Data Mining and Knowledge Discovery (Webb et. al., 2016)1. We have shown that the previous qualitative...learner Low-bias learner Aggregated classifier Figure 7: Architecture for learning fr m streaming data in th co text of variable or unknown...Learning limited dependence Bayesian classifiers, in Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD
Enhancements for a Dynamic Data Warehousing and Mining System for Large-scale HSCB Data
2016-07-20
Intelligent Automation Incorporated Enhancements for a Dynamic Data Warehousing and Mining ...Page | 2 Intelligent Automation Incorporated Monthly Report No. 4 Enhancements for a Dynamic Data Warehousing and Mining System Large-Scale HSCB...including Top Videos, Top Users, Top Words, and Top Languages, and also applied NER to the text associated with YouTube posts. We have also developed UI for
Enhancements for a Dynamic Data Warehousing and Mining System for Large-Scale HSCB Data
2016-07-20
Intelligent Automation Incorporated Enhancements for a Dynamic Data Warehousing and Mining ...Page | 2 Intelligent Automation Incorporated Monthly Report No. 4 Enhancements for a Dynamic Data Warehousing and Mining System Large-Scale HSCB...including Top Videos, Top Users, Top Words, and Top Languages, and also applied NER to the text associated with YouTube posts. We have also developed UI for
Change in the Embedding Dimension as an Indicator of an Approaching Transition
Neuman, Yair; Marwan, Norbert; Cohen, Yohai
2014-01-01
Predicting a transition point in behavioral data should take into account the complexity of the signal being influenced by contextual factors. In this paper, we propose to analyze changes in the embedding dimension as contextual information indicating a proceeding transitive point, called OPtimal Embedding tRANsition Detection (OPERAND). Three texts were processed and translated to time-series of emotional polarity. It was found that changes in the embedding dimension proceeded transition points in the data. These preliminary results encourage further research into changes in the embedding dimension as generic markers of an approaching transition point. PMID:24979691
Empirical advances with text mining of electronic health records.
Delespierre, T; Denormandie, P; Bar-Hen, A; Josseran, L
2017-08-22
Korian is a private group specializing in medical accommodations for elderly and dependent people. A professional data warehouse (DWH) established in 2010 hosts all of the residents' data. Inside this information system (IS), clinical narratives (CNs) were used only by medical staff as a residents' care linking tool. The objective of this study was to show that, through qualitative and quantitative textual analysis of a relatively small physiotherapy and well-defined CN sample, it was possible to build a physiotherapy corpus and, through this process, generate a new body of knowledge by adding relevant information to describe the residents' care and lives. Meaningful words were extracted through Standard Query Language (SQL) with the LIKE function and wildcards to perform pattern matching, followed by text mining and a word cloud using R® packages. Another step involved principal components and multiple correspondence analyses, plus clustering on the same residents' sample as well as on other health data using a health model measuring the residents' care level needs. By combining these techniques, physiotherapy treatments could be characterized by a list of constructed keywords, and the residents' health characteristics were built. Feeding defects or health outlier groups could be detected, physiotherapy residents' data and their health data were matched, and differences in health situations showed qualitative and quantitative differences in physiotherapy narratives. This textual experiment using a textual process in two stages showed that text mining and data mining techniques provide convenient tools to improve residents' health and quality of care by adding new, simple, useable data to the electronic health record (EHR). When used with a normalized physiotherapy problem list, text mining through information extraction (IE), named entity recognition (NER) and data mining (DM) can provide a real advantage to describe health care, adding new medical material and helping to integrate the EHR system into the health staff work environment.
Developmental differences in the naming of contextually non-categorical objects.
Ozcan, Mehmet
2012-02-01
This study investigates the naming process of contextually non-categorical objects in children from 3 to 9 plus 13-year-olds. 112 children participated in the study. Children were asked to narrate a story individually while looking at Mercer Mayer's textless, picture book Frog, where are you? The narratives were audio recorded and transcribed. Texts were analyzed to find out how children at different ages name contextually non-categorical objects, tree and its parts in this case. Our findings revealed that increasing age in children is a positive factor in naming objects that are parts or extended forms of an object which itself constitutes a basic category in a certain context. Younger children used categorical names more frequently to refer to parts or disfigured forms of the object than older children and adults while older children and adults used specified names to refer to the parts or extended forms of the categorical names.
Database citation in full text biomedical articles.
Kafkas, Şenay; Kim, Jee-Hyub; McEntyre, Johanna R
2013-01-01
Molecular biology and literature databases represent essential infrastructure for life science research. Effective integration of these data resources requires that there are structured cross-references at the level of individual articles and biological records. Here, we describe the current patterns of how database entries are cited in research articles, based on analysis of the full text Open Access articles available from Europe PMC. Focusing on citation of entries in the European Nucleotide Archive (ENA), UniProt and Protein Data Bank, Europe (PDBe), we demonstrate that text mining doubles the number of structured annotations of database record citations supplied in journal articles by publishers. Many thousands of new literature-database relationships are found by text mining, since these relationships are also not present in the set of articles cited by database records. We recommend that structured annotation of database records in articles is extended to other databases, such as ArrayExpress and Pfam, entries from which are also cited widely in the literature. The very high precision and high-throughput of this text-mining pipeline makes this activity possible both accurately and at low cost, which will allow the development of new integrated data services.
Database Citation in Full Text Biomedical Articles
Kafkas, Şenay; Kim, Jee-Hyub; McEntyre, Johanna R.
2013-01-01
Molecular biology and literature databases represent essential infrastructure for life science research. Effective integration of these data resources requires that there are structured cross-references at the level of individual articles and biological records. Here, we describe the current patterns of how database entries are cited in research articles, based on analysis of the full text Open Access articles available from Europe PMC. Focusing on citation of entries in the European Nucleotide Archive (ENA), UniProt and Protein Data Bank, Europe (PDBe), we demonstrate that text mining doubles the number of structured annotations of database record citations supplied in journal articles by publishers. Many thousands of new literature-database relationships are found by text mining, since these relationships are also not present in the set of articles cited by database records. We recommend that structured annotation of database records in articles is extended to other databases, such as ArrayExpress and Pfam, entries from which are also cited widely in the literature. The very high precision and high-throughput of this text-mining pipeline makes this activity possible both accurately and at low cost, which will allow the development of new integrated data services. PMID:23734176
Subramani, Suresh; Kalpana, Raja; Monickaraj, Pankaj Moses; Natarajan, Jeyakumar
2015-04-01
The knowledge on protein-protein interactions (PPI) and their related pathways are equally important to understand the biological functions of the living cell. Such information on human proteins is highly desirable to understand the mechanism of several diseases such as cancer, diabetes, and Alzheimer's disease. Because much of that information is buried in biomedical literature, an automated text mining system for visualizing human PPI and pathways is highly desirable. In this paper, we present HPIminer, a text mining system for visualizing human protein interactions and pathways from biomedical literature. HPIminer extracts human PPI information and PPI pairs from biomedical literature, and visualize their associated interactions, networks and pathways using two curated databases HPRD and KEGG. To our knowledge, HPIminer is the first system to build interaction networks from literature as well as curated databases. Further, the new interactions mined only from literature and not reported earlier in databases are highlighted as new. A comparative study with other similar tools shows that the resultant network is more informative and provides additional information on interacting proteins and their associated networks. Copyright © 2015 Elsevier Inc. All rights reserved.
2009-06-01
capabilities: web-based, relational/multi-dimensional, client/server, and metadata (data about data) inclusion (pp. 39-40). Text mining, on the other...and Organizational Systems ( CASOS ) (Carley, 2005). Although AutoMap can be used to conduct text-mining, it was utilized only for its visualization...provides insight into how the GMCOI is using the terms, and where there might be redundant terms and need for de -confliction and standardization
Terminologies for text-mining; an experiment in the lipoprotein metabolism domain
Alexopoulou, Dimitra; Wächter, Thomas; Pickersgill, Laura; Eyre, Cecilia; Schroeder, Michael
2008-01-01
Background The engineering of ontologies, especially with a view to a text-mining use, is still a new research field. There does not yet exist a well-defined theory and technology for ontology construction. Many of the ontology design steps remain manual and are based on personal experience and intuition. However, there exist a few efforts on automatic construction of ontologies in the form of extracted lists of terms and relations between them. Results We share experience acquired during the manual development of a lipoprotein metabolism ontology (LMO) to be used for text-mining. We compare the manually created ontology terms with the automatically derived terminology from four different automatic term recognition (ATR) methods. The top 50 predicted terms contain up to 89% relevant terms. For the top 1000 terms the best method still generates 51% relevant terms. In a corpus of 3066 documents 53% of LMO terms are contained and 38% can be generated with one of the methods. Conclusions Given high precision, automatic methods can help decrease development time and provide significant support for the identification of domain-specific vocabulary. The coverage of the domain vocabulary depends strongly on the underlying documents. Ontology development for text mining should be performed in a semi-automatic way; taking ATR results as input and following the guidelines we described. Availability The TFIDF term recognition is available as Web Service, described at PMID:18460175
Abbe, Adeline; Falissard, Bruno
2017-10-23
Internet is a particularly dynamic way to quickly capture the perceptions of a population in real time. Complementary to traditional face-to-face communication, online social networks help patients to improve self-esteem and self-help. The aim of this study was to use text mining on material from an online forum exploring patients' concerns about treatment (antidepressants and anxiolytics). Concerns about treatment were collected from discussion titles in patients' online community related to antidepressants and anxiolytics. To examine the content of these titles automatically, we used text mining methods, such as word frequency in a document-term matrix and co-occurrence of words using a network analysis. It was thus possible to identify topics discussed on the forum. The forum included 2415 discussions on antidepressants and anxiolytics over a period of 3 years. After a preprocessing step, the text mining algorithm identified the 99 most frequently occurring words in titles, among which were escitalopram, withdrawal, antidepressant, venlafaxine, paroxetine, and effect. Patients' concerns were related to antidepressant withdrawal, the need to share experience about symptoms, effects, and questions on weight gain with some drugs. Patients' expression on the Internet is a potential additional resource in addressing patients' concerns about treatment. Patient profiles are close to that of patients treated in psychiatry. ©Adeline Abbe, Bruno Falissard. Originally published in JMIR Mental Health (http://mental.jmir.org), 23.10.2017.
Jonnagaddala, Jitendra; Liaw, Siaw-Teng; Ray, Pradeep; Kumar, Manish; Chang, Nai-Wen; Dai, Hong-Jie
2015-12-01
Coronary artery disease (CAD) often leads to myocardial infarction, which may be fatal. Risk factors can be used to predict CAD, which may subsequently lead to prevention or early intervention. Patient data such as co-morbidities, medication history, social history and family history are required to determine the risk factors for a disease. However, risk factor data are usually embedded in unstructured clinical narratives if the data is not collected specifically for risk assessment purposes. Clinical text mining can be used to extract data related to risk factors from unstructured clinical notes. This study presents methods to extract Framingham risk factors from unstructured electronic health records using clinical text mining and to calculate 10-year coronary artery disease risk scores in a cohort of diabetic patients. We developed a rule-based system to extract risk factors: age, gender, total cholesterol, HDL-C, blood pressure, diabetes history and smoking history. The results showed that the output from the text mining system was reliable, but there was a significant amount of missing data to calculate the Framingham risk score. A systematic approach for understanding missing data was followed by implementation of imputation strategies. An analysis of the 10-year Framingham risk scores for coronary artery disease in this cohort has shown that the majority of the diabetic patients are at moderate risk of CAD. Copyright © 2015 Elsevier Inc. All rights reserved.
Cañada, Andres; Capella-Gutierrez, Salvador; Rabal, Obdulia; Oyarzabal, Julen; Valencia, Alfonso; Krallinger, Martin
2017-07-03
A considerable effort has been devoted to retrieve systematically information for genes and proteins as well as relationships between them. Despite the importance of chemical compounds and drugs as a central bio-entity in pharmacological and biological research, only a limited number of freely available chemical text-mining/search engine technologies are currently accessible. Here we present LimTox (Literature Mining for Toxicology), a web-based online biomedical search tool with special focus on adverse hepatobiliary reactions. It integrates a range of text mining, named entity recognition and information extraction components. LimTox relies on machine-learning, rule-based, pattern-based and term lookup strategies. This system processes scientific abstracts, a set of full text articles and medical agency assessment reports. Although the main focus of LimTox is on adverse liver events, it enables also basic searches for other organ level toxicity associations (nephrotoxicity, cardiotoxicity, thyrotoxicity and phospholipidosis). This tool supports specialized search queries for: chemical compounds/drugs, genes (with additional emphasis on key enzymes in drug metabolism, namely P450 cytochromes-CYPs) and biochemical liver markers. The LimTox website is free and open to all users and there is no login requirement. LimTox can be accessed at: http://limtox.bioinfo.cnio.es. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Text Mining for Drugs and Chemical Compounds: Methods, Tools and Applications.
Vazquez, Miguel; Krallinger, Martin; Leitner, Florian; Valencia, Alfonso
2011-06-01
Providing prior knowledge about biological properties of chemicals, such as kinetic values, protein targets, or toxic effects, can facilitate many aspects of drug development. Chemical information is rapidly accumulating in all sorts of free text documents like patents, industry reports, or scientific articles, which has motivated the development of specifically tailored text mining applications. Despite the potential gains, chemical text mining still faces significant challenges. One of the most salient is the recognition of chemical entities mentioned in text. To help practitioners contribute to this area, a good portion of this review is devoted to this issue, and presents the basic concepts and principles underlying the main strategies. The technical details are introduced and accompanied by relevant bibliographic references. Other tasks discussed are retrieving relevant articles, identifying relationships between chemicals and other entities, or determining the chemical structures of chemicals mentioned in text. This review also introduces a number of published applications that can be used to build pipelines in topics like drug side effects, toxicity, and protein-disease-compound network analysis. We conclude the review with an outlook on how we expect the field to evolve, discussing its possibilities and its current limitations. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mining free-text medical records for companion animal enteric syndrome surveillance.
Anholt, R M; Berezowski, J; Jamal, I; Ribble, C; Stephen, C
2014-03-01
Large amounts of animal health care data are present in veterinary electronic medical records (EMR) and they present an opportunity for companion animal disease surveillance. Veterinary patient records are largely in free-text without clinical coding or fixed vocabulary. Text-mining, a computer and information technology application, is needed to identify cases of interest and to add structure to the otherwise unstructured data. In this study EMR's were extracted from veterinary management programs of 12 participating veterinary practices and stored in a data warehouse. Using commercially available text-mining software (WordStat™), we developed a categorization dictionary that could be used to automatically classify and extract enteric syndrome cases from the warehoused electronic medical records. The diagnostic accuracy of the text-miner for retrieving cases of enteric syndrome was measured against human reviewers who independently categorized a random sample of 2500 cases as enteric syndrome positive or negative. Compared to the reviewers, the text-miner retrieved cases with enteric signs with a sensitivity of 87.6% (95%CI, 80.4-92.9%) and a specificity of 99.3% (95%CI, 98.9-99.6%). Automatic and accurate detection of enteric syndrome cases provides an opportunity for community surveillance of enteric pathogens in companion animals. Copyright © 2014 Elsevier B.V. All rights reserved.
Kharat, Amit T; Singh, Amarjit; Kulkarni, Vilas M; Shah, Digish
2014-01-01
Data mining facilitates the study of radiology data in various dimensions. It converts large patient image and text datasets into useful information that helps in improving patient care and provides informative reports. Data mining technology analyzes data within the Radiology Information System and Hospital Information System using specialized software which assesses relationships and agreement in available information. By using similar data analysis tools, radiologists can make informed decisions and predict the future outcome of a particular imaging finding. Data, information and knowledge are the components of data mining. Classes, Clusters, Associations, Sequential patterns, Classification, Prediction and Decision tree are the various types of data mining. Data mining has the potential to make delivery of health care affordable and ensure that the best imaging practices are followed. It is a tool for academic research. Data mining is considered to be ethically neutral, however concerns regarding privacy and legality exists which need to be addressed to ensure success of data mining. PMID:25024513
Analyzing asset management data using data and text mining.
DOT National Transportation Integrated Search
2014-07-01
Predictive models using text from a sample competitively bid California highway projects have been used to predict a construction : projects likely level of cost overrun. A text description of the project and the text of the five largest project line...
BioC implementations in Go, Perl, Python and Ruby.
Liu, Wanli; Islamaj Doğan, Rezarta; Kwon, Dongseop; Marques, Hernani; Rinaldi, Fabio; Wilbur, W John; Comeau, Donald C
2014-01-01
As part of a communitywide effort for evaluating text mining and information extraction systems applied to the biomedical domain, BioC is focused on the goal of interoperability, currently a major barrier to wide-scale adoption of text mining tools. BioC is a simple XML format, specified by DTD, for exchanging data for biomedical natural language processing. With initial implementations in C++ and Java, BioC provides libraries of code for reading and writing BioC text documents and annotations. We extend BioC to Perl, Python, Go and Ruby. We used SWIG to extend the C++ implementation for Perl and one Python implementation. A second Python implementation and the Ruby implementation use native data structures and libraries. BioC is also implemented in the Google language Go. BioC modules are functional in all of these languages, which can facilitate text mining tasks. BioC implementations are freely available through the BioC site: http://bioc.sourceforge.net. Database URL: http://bioc.sourceforge.net/ Published by Oxford University Press 2014. This work is written by US Government employees and is in the public domain in the US.
Urbanski, William M; Condie, Brian G
2009-12-01
Textpresso Site Specific Recombinases (http://ssrc.genetics.uga.edu/) is a text-mining web server for searching a database of more than 9,000 full-text publications. The papers and abstracts in this database represent a wide range of topics related to site-specific recombinase (SSR) research tools. Included in the database are most of the papers that report the characterization or use of mouse strains that express Cre recombinase as well as papers that describe or analyze mouse lines that carry conditional (floxed) alleles or SSR-activated transgenes/knockins. The database also includes reports describing SSR-based cloning methods such as the Gateway or the Creator systems, papers reporting the development or use of SSR-based tools in systems such as Drosophila, bacteria, parasites, stem cells, yeast, plants, zebrafish, and Xenopus as well as publications that describe the biochemistry, genetics, or molecular structure of the SSRs themselves. Textpresso Site Specific Recombinases is the only comprehensive text-mining resource available for the literature describing the biology and technical applications of SSRs. (c) 2009 Wiley-Liss, Inc.
Text mining for metabolic pathways, signaling cascades, and protein networks.
Hoffmann, Robert; Krallinger, Martin; Andres, Eduardo; Tamames, Javier; Blaschke, Christian; Valencia, Alfonso
2005-05-10
The complexity of the information stored in databases and publications on metabolic and signaling pathways, the high throughput of experimental data, and the growing number of publications make it imperative to provide systems to help the researcher navigate through these interrelated information resources. Text-mining methods have started to play a key role in the creation and maintenance of links between the information stored in biological databases and its original sources in the literature. These links will be extremely useful for database updating and curation, especially if a number of technical problems can be solved satisfactorily, including the identification of protein and gene names (entities in general) and the characterization of their types of interactions. The first generation of openly accessible text-mining systems, such as iHOP (Information Hyperlinked over Proteins), provides additional functions to facilitate the reconstruction of protein interaction networks, combine database and text information, and support the scientist in the formulation of novel hypotheses. The next challenge is the generation of comprehensive information regarding the general function of signaling pathways and protein interaction networks.
TOY SAFETY SURVEILLANCE FROM ONLINE REVIEWS
Winkler, Matt; Abrahams, Alan S.; Gruss, Richard; Ehsani, Johnathan P.
2016-01-01
Toy-related injuries account for a significant number of childhood injuries and the prevention of these injuries remains a goal for regulatory agencies and manufacturers. Text-mining is an increasingly prevalent method for uncovering the significance of words using big data. This research sets out to determine the effectiveness of text-mining in uncovering potentially dangerous children’s toys. We develop a danger word list, also known as a ‘smoke word’ list, from injury and recall text narratives. We then use the smoke word lists to score over one million Amazon reviews, with the top scores denoting potential safety concerns. We compare the smoke word list to conventional sentiment analysis techniques, in terms of both word overlap and effectiveness. We find that smoke word lists are highly distinct from conventional sentiment dictionaries and provide a statistically significant method for identifying safety concerns in children’s toy reviews. Our findings indicate that text-mining is, in fact, an effective method for the surveillance of safety concerns in children’s toys and could be a gateway to effective prevention of toy-product-related injuries. PMID:27942092
Social networks to biological networks: systems biology of Mycobacterium tuberculosis.
Vashisht, Rohit; Bhardwaj, Anshu; Osdd Consortium; Brahmachari, Samir K
2013-07-01
Contextualizing relevant information to construct a network that represents a given biological process presents a fundamental challenge in the network science of biology. The quality of network for the organism of interest is critically dependent on the extent of functional annotation of its genome. Mostly the automated annotation pipelines do not account for unstructured information present in volumes of literature and hence large fraction of genome remains poorly annotated. However, if used, this information could substantially enhance the functional annotation of a genome, aiding the development of a more comprehensive network. Mining unstructured information buried in volumes of literature often requires manual intervention to a great extent and thus becomes a bottleneck for most of the automated pipelines. In this review, we discuss the potential of scientific social networking as a solution for systematic manual mining of data. Focusing on Mycobacterium tuberculosis, as a case study, we discuss our open innovative approach for the functional annotation of its genome. Furthermore, we highlight the strength of such collated structured data in the context of drug target prediction based on systems level analysis of pathogen.
ASCOT: a text mining-based web-service for efficient search and assisted creation of clinical trials
2012-01-01
Clinical trials are mandatory protocols describing medical research on humans and among the most valuable sources of medical practice evidence. Searching for trials relevant to some query is laborious due to the immense number of existing protocols. Apart from search, writing new trials includes composing detailed eligibility criteria, which might be time-consuming, especially for new researchers. In this paper we present ASCOT, an efficient search application customised for clinical trials. ASCOT uses text mining and data mining methods to enrich clinical trials with metadata, that in turn serve as effective tools to narrow down search. In addition, ASCOT integrates a component for recommending eligibility criteria based on a set of selected protocols. PMID:22595088
Korkontzelos, Ioannis; Mu, Tingting; Ananiadou, Sophia
2012-04-30
Clinical trials are mandatory protocols describing medical research on humans and among the most valuable sources of medical practice evidence. Searching for trials relevant to some query is laborious due to the immense number of existing protocols. Apart from search, writing new trials includes composing detailed eligibility criteria, which might be time-consuming, especially for new researchers. In this paper we present ASCOT, an efficient search application customised for clinical trials. ASCOT uses text mining and data mining methods to enrich clinical trials with metadata, that in turn serve as effective tools to narrow down search. In addition, ASCOT integrates a component for recommending eligibility criteria based on a set of selected protocols.
Pak, Malk Eun; Kim, Yu Ri; Kim, Ha Neui; Ahn, Sung Min; Shin, Hwa Kyoung; Baek, Jin Ung; Choi, Byung Tae
2016-02-17
In literature on Korean medicine, Dongeuibogam (Treasured Mirror of Eastern Medicine), published in 1613, represents the overall results of the traditional medicines of North-East Asia based on prior medicinal literature of this region. We utilized this medicinal literature by text mining to establish a list of candidate herbs for cognitive enhancement in the elderly and then performed an evaluation of their effects. Text mining was performed for selection of candidate herbs. Cell viability was determined in HT22 hippocampal cells and immunohistochemistry and behavioral analysis was performed in a kainic acid (KA) mice model in order to observe alterations of hippocampal cells and cognition. Twenty four herbs for cognitive enhancement in the elderly were selected by text mining of Dongeuibogam. In HT22 cells, pretreatment with 3 candidate herbs resulted in significantly reduced glutamate-induced cell death. Panax ginseng was the most neuroprotective herb against glutamate-induced cell death. In the hippocampus of a KA mice model, pretreatment with 11 candidate herbs resulted in suppression of caspase-3 expression. Treatment with 7 candidate herbs resulted in significantly enhanced expression levels of phosphorylated cAMP response element binding protein. Number of proliferated cells indicated by BrdU labeling was increased by treatment with 10 candidate herbs. Schisandra chinensis was the most effective herb against cell death and proliferation of progenitor cells and Rehmannia glutinosa in neuroprotection in the hippocampus of a KA mice model. In a KA mice model, we confirmed improved spatial and short memory by treatment with the 3 most effective candidate herbs and these recovered functions were involved in a higher number of newly formed neurons from progenitor cells in the hippocampus. These established herbs and their combinations identified by text-mining technique and evaluation for effectiveness may have value in further experimental and clinical applications for cognitive enhancement in the elderly. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Mining the Text: 34 Text Features that Can Ease or Obstruct Text Comprehension and Use
ERIC Educational Resources Information Center
White, Sheida
2012-01-01
This article presents 34 characteristics of texts and tasks ("text features") that can make continuous (prose), noncontinuous (document), and quantitative texts easier or more difficult for adolescents and adults to comprehend and use. The text features were identified by examining the assessment tasks and associated texts in the national…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-24
... Transmittal of Applications: March 26, 2010. Full Text of Announcement I. Funding Opportunity Description... related to industrial health and safety: Mining and mineral engineering, industrial engineering... technology/technician, hazardous materials information systems technology/technician, mining technology...
Tichomirowa, Marion; Heidel, Claudia
2012-01-01
The isotope composition of dissolved sulphate and strontium in atmospheric deposition, groundwater, mine water and river water in the region of Freiberg was investigated to better understand the fate of these components in the regional and global water cycle. Most of the isotope variations of dissolved sulphates in atmospheric deposition from three locations sampled bi- or tri-monthly can be explained by fractionation processes leading to lower [Formula: see text] (of about 2-3‰) and higher [Formula: see text] (of about 8-10‰) values in summer compared with the winter period. These samples showed a negative correlation between [Formula: see text] and [Formula: see text] values and a weak positive correlation between [Formula: see text] and [Formula: see text] values. They reflect the sulphate formed by aqueous oxidation from long-range transport in clouds. However, these isotope variations were superimposed by changes of the dominating atmospheric sulphate source. At two of the sampling points, large variations of mean annual [Formula: see text] values from atmospheric bulk deposition were recorded. From 2008 to 2009, the mean annual [Formula: see text] value increased by about 5‰; and decreased by about 4‰ from 2009 to 2010. A change in the dominating sulphate source or oxidation pathways of SO(2) in the atmosphere is proposed to cause these shifts. No changes were found in corresponding [Formula: see text] values. Groundwater, river water and some mine waters (where groundwater was the dominating sulphate source) also showed temporal shifts in their [Formula: see text] values corresponding to those of bulk atmospheric deposition, albeit to a lower degree. The mean transit time of atmospheric sulphur through the soil into the groundwater and river water was less than a year and therefore much shorter than previously suggested. Mining activities of about 800 years in the Freiberg region may have led to large subsurface areas with an enhanced groundwater flow along fractures and mined-refilled ore lodes which may shorten transit times of sulphate from precipitation through groundwater into river water.
Neural networks for data mining electronic text collections
NASA Astrophysics Data System (ADS)
Walker, Nicholas; Truman, Gregory
1997-04-01
The use of neural networks in information retrieval and text analysis has primarily suffered from the issues of adequate document representation, the ability to scale to very large collections, dynamism in the face of new information and the practical difficulties of basing the design on the use of supervised training sets. Perhaps the most important approach to begin solving these problems is the use of `intermediate entities' which reduce the dimensionality of document representations and the size of documents collections to manageable levels coupled with the use of unsupervised neural network paradigms. This paper describes the issues, a fully configured neural network-based text analysis system--dataHARVEST--aimed at data mining text collections which begins this process, along with the remaining difficulties and potential ways forward.
Data Visualization in Information Retrieval and Data Mining (SIG VIS).
ERIC Educational Resources Information Center
Efthimiadis, Efthimis
2000-01-01
Presents abstracts that discuss using data visualization for information retrieval and data mining, including immersive information space and spatial metaphors; spatial data using multi-dimensional matrices with maps; TREC (Text Retrieval Conference) experiments; users' information needs in cartographic information retrieval; and users' relevance…
Macromolecule mass spectrometry: citation mining of user documents.
Kostoff, Ronald N; Bedford, Clifford D; del Río, J Antonio; Cortes, Héctor D; Karypis, George
2004-03-01
Identifying research users, applications, and impact is important for research performers, managers, evaluators, and sponsors. Identification of the user audience and the research impact is complex and time consuming due to the many indirect pathways through which fundamental research can impact applications. This paper identified the literature pathways through which two highly-cited papers of 2002 Chemistry Nobel Laureates Fenn and Tanaka impacted research, technology development, and applications. Citation Mining, an integration of citation bibliometrics and text mining, was applied to the >1600 first generation Science Citation Index (SCI) citing papers to Fenn's 1989 Science paper on Electrospray Ionization for Mass Spectrometry, and to the >400 first generation SCI citing papers to Tanaka's 1988 Rapid Communications in Mass Spectrometry paper on Laser Ionization Time-of-Flight Mass Spectrometry. Bibliometrics was performed on the citing papers to profile the user characteristics. Text mining was performed on the citing papers to identify the technical areas impacted by the research, and the relationships among these technical areas.
2016-09-26
Intelligent Automation Incorporated Enhancements for a Dynamic Data Warehousing and Mining ...Enhancements for a Dynamic Data Warehousing and Mining System for N00014-16-P-3014 Large-Scale Human Social Cultural Behavioral (HSBC) Data 5b. GRANT NUMBER...Representative Media Gallery View. We perform Scraawl’s NER algorithm to the text associated with YouTube post, which classifies the named entities into
Detecting Malicious Tweets in Twitter Using Runtime Monitoring With Hidden Information
2016-06-01
text mining using Twitter streaming API and python [Online]. Available: http://adilmoujahid.com/posts/2014/07/twitter-analytics/ [22] M. Singh, B...sites with 645,750,000 registered users [3] and has open source public tweets for data mining . 2. Malicious Users and Tweets In the modern world...want to data mine in Twitter, and presents the natural language assertions and corresponding rule patterns. It then describes the steps performed using
Numerical linear algebra in data mining
NASA Astrophysics Data System (ADS)
Eldén, Lars
Ideas and algorithms from numerical linear algebra are important in several areas of data mining. We give an overview of linear algebra methods in text mining (information retrieval), pattern recognition (classification of handwritten digits), and PageRank computations for web search engines. The emphasis is on rank reduction as a method of extracting information from a data matrix, low-rank approximation of matrices using the singular value decomposition and clustering, and on eigenvalue methods for network analysis.
Method to Select Technical Terms for Glossaries in Support of Joint Task Force Operations
2012-01-01
have been prohibitively time-consuming. Instead, we identified two publicly available terminology extractor tools: TerMine (NaCTEM, 2011) and Alchemy ...and that from the latter, by high recall. The Alchemy approach contrasts with that used in TerMine in that Alchemy will process the text with...information categories, such as person, location, and organization, in addition to returning topic keywords. Output from both TerMine and Alchemy
Competing Activation during Fantasy Text Comprehension
ERIC Educational Resources Information Center
Creer, Sarah D.; Cook, Anne E.; O'Brien, Edward J.
2018-01-01
During comprehension, readers' general world knowledge and contextual information compete for influence during integration and validation. Fantasy narratives, in which general world knowledge often conflicts with fantastical events, provide a setting to examine this competition. Experiment 1 showed that with sufficient elaboration, contextual…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirdt, J.A.; Brown, D.A., E-mail: dbrown@bnl.gov
The EXFOR library contains the largest collection of experimental nuclear reaction data available as well as the data's bibliographic information and experimental details. We text-mined the REACTION and MONITOR fields of the ENTRYs in the EXFOR library in order to identify understudied reactions and quantities. Using the results of the text-mining, we created an undirected graph from the EXFOR datasets with each graph node representing a single reaction and quantity and graph links representing the various types of connections between these reactions and quantities. This graph is an abstract representation of the connections in EXFOR, similar to graphs of socialmore » networks, authorship networks, etc. We use various graph theoretical tools to identify important yet understudied reactions and quantities in EXFOR. Although we identified a few cross sections relevant for shielding applications and isotope production, mostly we identified charged particle fluence monitor cross sections. As a side effect of this work, we learn that our abstract graph is typical of other real-world graphs.« less
Systematic analysis of molecular mechanisms for HCC metastasis via text mining approach.
Zhen, Cheng; Zhu, Caizhong; Chen, Haoyang; Xiong, Yiru; Tan, Junyuan; Chen, Dong; Li, Jin
2017-02-21
To systematically explore the molecular mechanism for hepatocellular carcinoma (HCC) metastasis and identify regulatory genes with text mining methods. Genes with highest frequencies and significant pathways related to HCC metastasis were listed. A handful of proteins such as EGFR, MDM2, TP53 and APP, were identified as hub nodes in PPI (protein-protein interaction) network. Compared with unique genes for HBV-HCCs, genes particular to HCV-HCCs were less, but may participate in more extensive signaling processes. VEGFA, PI3KCA, MAPK1, MMP9 and other genes may play important roles in multiple phenotypes of metastasis. Genes in abstracts of HCC-metastasis literatures were identified. Word frequency analysis, KEGG pathway and PPI network analysis were performed. Then co-occurrence analysis between genes and metastasis-related phenotypes were carried out. Text mining is effective for revealing potential regulators or pathways, but the purpose of it should be specific, and the combination of various methods will be more useful.
Unapparent Information Revelation: Text Mining for Counterterrorism
NASA Astrophysics Data System (ADS)
Srihari, Rohini K.
Unapparent information revelation (UIR) is a special case of text mining that focuses on detecting possible links between concepts across multiple text documents by generating an evidence trail explaining the connection. A traditional search involving, for example, two or more person names will attempt to find documents mentioning both these individuals. This research focuses on a different interpretation of such a query: what is the best evidence trail across documents that explains a connection between these individuals? For example, all may be good golfers. A generalization of this task involves query terms representing general concepts (e.g. indictment, foreign policy). Previous approaches to this problem have focused on graph mining involving hyperlinked documents, and link analysis exploiting named entities. A new robust framework is presented, based on (i) generating concept chain graphs, a hybrid content representation, (ii) performing graph matching to select candidate subgraphs, and (iii) subsequently using graphical models to validate hypotheses using ranked evidence trails. We adapt the DUC data set for cross-document summarization to evaluate evidence trails generated by this approach
Knowledge acquisition, semantic text mining, and security risks in health and biomedical informatics
Huang, Jingshan; Dou, Dejing; Dang, Jiangbo; Pardue, J Harold; Qin, Xiao; Huan, Jun; Gerthoffer, William T; Tan, Ming
2012-01-01
Computational techniques have been adopted in medical and biological systems for a long time. There is no doubt that the development and application of computational methods will render great help in better understanding biomedical and biological functions. Large amounts of datasets have been produced by biomedical and biological experiments and simulations. In order for researchers to gain knowledge from original data, nontrivial transformation is necessary, which is regarded as a critical link in the chain of knowledge acquisition, sharing, and reuse. Challenges that have been encountered include: how to efficiently and effectively represent human knowledge in formal computing models, how to take advantage of semantic text mining techniques rather than traditional syntactic text mining, and how to handle security issues during the knowledge sharing and reuse. This paper summarizes the state-of-the-art in these research directions. We aim to provide readers with an introduction of major computing themes to be applied to the medical and biological research. PMID:22371823
NASA Astrophysics Data System (ADS)
Hirdt, J. A.; Brown, D. A.
2016-01-01
The EXFOR library contains the largest collection of experimental nuclear reaction data available as well as the data's bibliographic information and experimental details. We text-mined the REACTION and MONITOR fields of the ENTRYs in the EXFOR library in order to identify understudied reactions and quantities. Using the results of the text-mining, we created an undirected graph from the EXFOR datasets with each graph node representing a single reaction and quantity and graph links representing the various types of connections between these reactions and quantities. This graph is an abstract representation of the connections in EXFOR, similar to graphs of social networks, authorship networks, etc. We use various graph theoretical tools to identify important yet understudied reactions and quantities in EXFOR. Although we identified a few cross sections relevant for shielding applications and isotope production, mostly we identified charged particle fluence monitor cross sections. As a side effect of this work, we learn that our abstract graph is typical of other real-world graphs.
Large-Scale Event Extraction from Literature with Multi-Level Gene Normalization
Wei, Chih-Hsuan; Hakala, Kai; Pyysalo, Sampo; Ananiadou, Sophia; Kao, Hung-Yu; Lu, Zhiyong; Salakoski, Tapio; Van de Peer, Yves; Ginter, Filip
2013-01-01
Text mining for the life sciences aims to aid database curation, knowledge summarization and information retrieval through the automated processing of biomedical texts. To provide comprehensive coverage and enable full integration with existing biomolecular database records, it is crucial that text mining tools scale up to millions of articles and that their analyses can be unambiguously linked to information recorded in resources such as UniProt, KEGG, BioGRID and NCBI databases. In this study, we investigate how fully automated text mining of complex biomolecular events can be augmented with a normalization strategy that identifies biological concepts in text, mapping them to identifiers at varying levels of granularity, ranging from canonicalized symbols to unique gene and proteins and broad gene families. To this end, we have combined two state-of-the-art text mining components, previously evaluated on two community-wide challenges, and have extended and improved upon these methods by exploiting their complementary nature. Using these systems, we perform normalization and event extraction to create a large-scale resource that is publicly available, unique in semantic scope, and covers all 21.9 million PubMed abstracts and 460 thousand PubMed Central open access full-text articles. This dataset contains 40 million biomolecular events involving 76 million gene/protein mentions, linked to 122 thousand distinct genes from 5032 species across the full taxonomic tree. Detailed evaluations and analyses reveal promising results for application of this data in database and pathway curation efforts. The main software components used in this study are released under an open-source license. Further, the resulting dataset is freely accessible through a novel API, providing programmatic and customized access (http://www.evexdb.org/api/v001/). Finally, to allow for large-scale bioinformatic analyses, the entire resource is available for bulk download from http://evexdb.org/download/, under the Creative Commons – Attribution – Share Alike (CC BY-SA) license. PMID:23613707
Ravikumar, Komandur Elayavilli; Wagholikar, Kavishwar B; Li, Dingcheng; Kocher, Jean-Pierre; Liu, Hongfang
2015-06-06
Advances in the next generation sequencing technology has accelerated the pace of individualized medicine (IM), which aims to incorporate genetic/genomic information into medicine. One immediate need in interpreting sequencing data is the assembly of information about genetic variants and their corresponding associations with other entities (e.g., diseases or medications). Even with dedicated effort to capture such information in biological databases, much of this information remains 'locked' in the unstructured text of biomedical publications. There is a substantial lag between the publication and the subsequent abstraction of such information into databases. Multiple text mining systems have been developed, but most of them focus on the sentence level association extraction with performance evaluation based on gold standard text annotations specifically prepared for text mining systems. We developed and evaluated a text mining system, MutD, which extracts protein mutation-disease associations from MEDLINE abstracts by incorporating discourse level analysis, using a benchmark data set extracted from curated database records. MutD achieves an F-measure of 64.3% for reconstructing protein mutation disease associations in curated database records. Discourse level analysis component of MutD contributed to a gain of more than 10% in F-measure when compared against the sentence level association extraction. Our error analysis indicates that 23 of the 64 precision errors are true associations that were not captured by database curators and 68 of the 113 recall errors are caused by the absence of associated disease entities in the abstract. After adjusting for the defects in the curated database, the revised F-measure of MutD in association detection reaches 81.5%. Our quantitative analysis reveals that MutD can effectively extract protein mutation disease associations when benchmarking based on curated database records. The analysis also demonstrates that incorporating discourse level analysis significantly improved the performance of extracting the protein-mutation-disease association. Future work includes the extension of MutD for full text articles.
A semantic model for multimodal data mining in healthcare information systems.
Iakovidis, Dimitris; Smailis, Christos
2012-01-01
Electronic health records (EHRs) are representative examples of multimodal/multisource data collections; including measurements, images and free texts. The diversity of such information sources and the increasing amounts of medical data produced by healthcare institutes annually, pose significant challenges in data mining. In this paper we present a novel semantic model that describes knowledge extracted from the lowest-level of a data mining process, where information is represented by multiple features i.e. measurements or numerical descriptors extracted from measurements, images, texts or other medical data, forming multidimensional feature spaces. Knowledge collected by manual annotation or extracted by unsupervised data mining from one or more feature spaces is modeled through generalized qualitative spatial semantics. This model enables a unified representation of knowledge across multimodal data repositories. It contributes to bridging the semantic gap, by enabling direct links between low-level features and higher-level concepts e.g. describing body parts, anatomies and pathological findings. The proposed model has been developed in web ontology language based on description logics (OWL-DL) and can be applied to a variety of data mining tasks in medical informatics. It utility is demonstrated for automatic annotation of medical data.
Semantic Web and Contextual Information: Semantic Network Analysis of Online Journalistic Texts
NASA Astrophysics Data System (ADS)
Lim, Yon Soo
This study examines why contextual information is important to actualize the idea of semantic web, based on a case study of a socio-political issue in South Korea. For this study, semantic network analyses were conducted regarding English-language based 62 blog posts and 101 news stories on the web. The results indicated the differences of the meaning structures between blog posts and professional journalism as well as between conservative journalism and progressive journalism. From the results, this study ascertains empirical validity of current concerns about the practical application of the new web technology, and discusses how the semantic web should be developed.
Tagawa, Miki; Matsuda, Yoshio; Manaka, Tomoko; Kobayashi, Makiko; Ohwada, Michitaka; Matsubara, Shigeki
2017-01-01
The aim of the study was to examine the possibility of converting subjective textual data written in the free column space of the Mother and Child Handbook (MCH) into objective information using text mining and to compare any monthly changes in the words written by the mothers. Pregnant women without complications (n = 60) were divided into two groups according to State-Trait Anxiety Inventory grade: low trait anxiety (group I, n = 39) and high trait anxiety (group II, n = 21). Exploratory analysis of the textual data from the MCH was conducted by text mining using the Word Miner software program. Using 1203 structural elements extracted after processing, a comparison of monthly changes in the words used in the mothers' comments was made between the two groups. The data was mainly analyzed by a correspondence analysis. The structural elements in groups I and II were divided into seven and six clusters, respectively, by cluster analysis. Correspondence analysis revealed clear monthly changes in the words used in the mothers' comments as the pregnancy progressed in group I, whereas the association was not clear in group II. The text mining method was useful for exploratory analysis of the textual data obtained from pregnant women, and the monthly change in the words used in the mothers' comments as pregnancy progressed differed according to their degree of unease. © 2016 Japan Society of Obstetrics and Gynecology.
A Text-Mining Framework for Supporting Systematic Reviews.
Li, Dingcheng; Wang, Zhen; Wang, Liwei; Sohn, Sunghwan; Shen, Feichen; Murad, Mohammad Hassan; Liu, Hongfang
2016-11-01
Systematic reviews (SRs) involve the identification, appraisal, and synthesis of all relevant studies for focused questions in a structured reproducible manner. High-quality SRs follow strict procedures and require significant resources and time. We investigated advanced text-mining approaches to reduce the burden associated with abstract screening in SRs and provide high-level information summary. A text-mining SR supporting framework consisting of three self-defined semantics-based ranking metrics was proposed, including keyword relevance, indexed-term relevance and topic relevance. Keyword relevance is based on the user-defined keyword list used in the search strategy. Indexed-term relevance is derived from indexed vocabulary developed by domain experts used for indexing journal articles and books. Topic relevance is defined as the semantic similarity among retrieved abstracts in terms of topics generated by latent Dirichlet allocation, a Bayesian-based model for discovering topics. We tested the proposed framework using three published SRs addressing a variety of topics (Mass Media Interventions, Rectal Cancer and Influenza Vaccine). The results showed that when 91.8%, 85.7%, and 49.3% of the abstract screening labor was saved, the recalls were as high as 100% for the three cases; respectively. Relevant studies identified manually showed strong topic similarity through topic analysis, which supported the inclusion of topic analysis as relevance metric. It was demonstrated that advanced text mining approaches can significantly reduce the abstract screening labor of SRs and provide an informative summary of relevant studies.
Bravo, Àlex; Piñero, Janet; Queralt-Rosinach, Núria; Rautschka, Michael; Furlong, Laura I
2015-02-21
Current biomedical research needs to leverage and exploit the large amount of information reported in scientific publications. Automated text mining approaches, in particular those aimed at finding relationships between entities, are key for identification of actionable knowledge from free text repositories. We present the BeFree system aimed at identifying relationships between biomedical entities with a special focus on genes and their associated diseases. By exploiting morpho-syntactic information of the text, BeFree is able to identify gene-disease, drug-disease and drug-target associations with state-of-the-art performance. The application of BeFree to real-case scenarios shows its effectiveness in extracting information relevant for translational research. We show the value of the gene-disease associations extracted by BeFree through a number of analyses and integration with other data sources. BeFree succeeds in identifying genes associated to a major cause of morbidity worldwide, depression, which are not present in other public resources. Moreover, large-scale extraction and analysis of gene-disease associations, and integration with current biomedical knowledge, provided interesting insights on the kind of information that can be found in the literature, and raised challenges regarding data prioritization and curation. We found that only a small proportion of the gene-disease associations discovered by using BeFree is collected in expert-curated databases. Thus, there is a pressing need to find alternative strategies to manual curation, in order to review, prioritize and curate text-mining data and incorporate it into domain-specific databases. We present our strategy for data prioritization and discuss its implications for supporting biomedical research and applications. BeFree is a novel text mining system that performs competitively for the identification of gene-disease, drug-disease and drug-target associations. Our analyses show that mining only a small fraction of MEDLINE results in a large dataset of gene-disease associations, and only a small proportion of this dataset is actually recorded in curated resources (2%), raising several issues on data prioritization and curation. We propose that joint analysis of text mined data with data curated by experts appears as a suitable approach to both assess data quality and highlight novel and interesting information.
tmBioC: improving interoperability of text-mining tools with BioC.
Khare, Ritu; Wei, Chih-Hsuan; Mao, Yuqing; Leaman, Robert; Lu, Zhiyong
2014-01-01
The lack of interoperability among biomedical text-mining tools is a major bottleneck in creating more complex applications. Despite the availability of numerous methods and techniques for various text-mining tasks, combining different tools requires substantial efforts and time owing to heterogeneity and variety in data formats. In response, BioC is a recent proposal that offers a minimalistic approach to tool interoperability by stipulating minimal changes to existing tools and applications. BioC is a family of XML formats that define how to present text documents and annotations, and also provides easy-to-use functions to read/write documents in the BioC format. In this study, we introduce our text-mining toolkit, which is designed to perform several challenging and significant tasks in the biomedical domain, and repackage the toolkit into BioC to enhance its interoperability. Our toolkit consists of six state-of-the-art tools for named-entity recognition, normalization and annotation (PubTator) of genes (GenNorm), diseases (DNorm), mutations (tmVar), species (SR4GN) and chemicals (tmChem). Although developed within the same group, each tool is designed to process input articles and output annotations in a different format. We modify these tools and enable them to read/write data in the proposed BioC format. We find that, using the BioC family of formats and functions, only minimal changes were required to build the newer versions of the tools. The resulting BioC wrapped toolkit, which we have named tmBioC, consists of our tools in BioC, an annotated full-text corpus in BioC, and a format detection and conversion tool. Furthermore, through participation in the 2013 BioCreative IV Interoperability Track, we empirically demonstrate that the tools in tmBioC can be more efficiently integrated with each other as well as with external tools: Our experimental results show that using BioC reduces >60% in lines of code for text-mining tool integration. The tmBioC toolkit is publicly available at http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/tmTools/. Database URL: http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/tmTools/. Published by Oxford University Press 2014. This work is written by US Government employees and is in the public domain in the US.
Automatic extraction of relations between medical concepts in clinical texts
Harabagiu, Sanda; Roberts, Kirk
2011-01-01
Objective A supervised machine learning approach to discover relations between medical problems, treatments, and tests mentioned in electronic medical records. Materials and methods A single support vector machine classifier was used to identify relations between concepts and to assign their semantic type. Several resources such as Wikipedia, WordNet, General Inquirer, and a relation similarity metric inform the classifier. Results The techniques reported in this paper were evaluated in the 2010 i2b2 Challenge and obtained the highest F1 score for the relation extraction task. When gold standard data for concepts and assertions were available, F1 was 73.7, precision was 72.0, and recall was 75.3. F1 is defined as 2*Precision*Recall/(Precision+Recall). Alternatively, when concepts and assertions were discovered automatically, F1 was 48.4, precision was 57.6, and recall was 41.7. Discussion Although a rich set of features was developed for the classifiers presented in this paper, little knowledge mining was performed from medical ontologies such as those found in UMLS. Future studies should incorporate features extracted from such knowledge sources, which we expect to further improve the results. Moreover, each relation discovery was treated independently. Joint classification of relations may further improve the quality of results. Also, joint learning of the discovery of concepts, assertions, and relations may also improve the results of automatic relation extraction. Conclusion Lexical and contextual features proved to be very important in relation extraction from medical texts. When they are not available to the classifier, the F1 score decreases by 3.7%. In addition, features based on similarity contribute to a decrease of 1.1% when they are not available. PMID:21846787
Mining Health-Related Issues in Consumer Product Reviews by Using Scalable Text Analytics
Torii, Manabu; Tilak, Sameer S.; Doan, Son; Zisook, Daniel S.; Fan, Jung-wei
2016-01-01
In an era when most of our life activities are digitized and recorded, opportunities abound to gain insights about population health. Online product reviews present a unique data source that is currently underexplored. Health-related information, although scarce, can be systematically mined in online product reviews. Leveraging natural language processing and machine learning tools, we were able to mine 1.3 million grocery product reviews for health-related information. The objectives of the study were as follows: (1) conduct quantitative and qualitative analysis on the types of health issues found in consumer product reviews; (2) develop a machine learning classifier to detect reviews that contain health-related issues; and (3) gain insights about the task characteristics and challenges for text analytics to guide future research. PMID:27375358
Mining Health-Related Issues in Consumer Product Reviews by Using Scalable Text Analytics.
Torii, Manabu; Tilak, Sameer S; Doan, Son; Zisook, Daniel S; Fan, Jung-Wei
2016-01-01
In an era when most of our life activities are digitized and recorded, opportunities abound to gain insights about population health. Online product reviews present a unique data source that is currently underexplored. Health-related information, although scarce, can be systematically mined in online product reviews. Leveraging natural language processing and machine learning tools, we were able to mine 1.3 million grocery product reviews for health-related information. The objectives of the study were as follows: (1) conduct quantitative and qualitative analysis on the types of health issues found in consumer product reviews; (2) develop a machine learning classifier to detect reviews that contain health-related issues; and (3) gain insights about the task characteristics and challenges for text analytics to guide future research.
Weighted mining of massive collections of [Formula: see text]-values by convex optimization.
Dobriban, Edgar
2018-06-01
Researchers in data-rich disciplines-think of computational genomics and observational cosmology-often wish to mine large bodies of [Formula: see text]-values looking for significant effects, while controlling the false discovery rate or family-wise error rate. Increasingly, researchers also wish to prioritize certain hypotheses, for example, those thought to have larger effect sizes, by upweighting, and to impose constraints on the underlying mining, such as monotonicity along a certain sequence. We introduce Princessp , a principled method for performing weighted multiple testing by constrained convex optimization. Our method elegantly allows one to prioritize certain hypotheses through upweighting and to discount others through downweighting, while constraining the underlying weights involved in the mining process. When the [Formula: see text]-values derive from monotone likelihood ratio families such as the Gaussian means model, the new method allows exact solution of an important optimal weighting problem previously thought to be non-convex and computationally infeasible. Our method scales to massive data set sizes. We illustrate the applications of Princessp on a series of standard genomics data sets and offer comparisons with several previous 'standard' methods. Princessp offers both ease of operation and the ability to scale to extremely large problem sizes. The method is available as open-source software from github.com/dobriban/pvalue_weighting_matlab (accessed 11 October 2017).
30 CFR 900.15 - Federal lands program cooperative agreements.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... 900.15 Section 900.15 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE INTRODUCTION § 900.15 Federal lands program cooperative agreements. The full text of any State and Federal...
30 CFR 900.12 - State regulatory programs.
Code of Federal Regulations, 2010 CFR
2010-07-01
....12 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE INTRODUCTION § 900.12 State... to be codified under the applicable part number assigned to the State. The full text will not appear...
Literature Mining Methods for Toxicology and Construction of ...
Webinar Presentation on text-mining methodologies in use at NCCT and how they can be used to assist with the OECD Retinoid project. Presentation to 1st Workshop/Scientific Expert Group meeting on the OECD Retinoid Project - April 26, 2016 –Brussels, Presented remotely via web.
Untangling Topic Threads in Chat-Based Communication: A Case Study
2011-08-01
learning techniques such as clustering are very popular for analyzing text for topic identification (Anjewierden,, Kollöffel and Hulshof 2007; Adams...Anjewierden, A., Kollöffel, B., and Hulshof , C. (2007). Towards educational data mining: Using data mining methods for automated chat analysis to
Skipper, Jeremy I; Devlin, Joseph T; Lametti, Daniel R
2017-01-01
Does "the motor system" play "a role" in speech perception? If so, where, how, and when? We conducted a systematic review that addresses these questions using both qualitative and quantitative methods. The qualitative review of behavioural, computational modelling, non-human animal, brain damage/disorder, electrical stimulation/recording, and neuroimaging research suggests that distributed brain regions involved in producing speech play specific, dynamic, and contextually determined roles in speech perception. The quantitative review employed region and network based neuroimaging meta-analyses and a novel text mining method to describe relative contributions of nodes in distributed brain networks. Supporting the qualitative review, results show a specific functional correspondence between regions involved in non-linguistic movement of the articulators, covertly and overtly producing speech, and the perception of both nonword and word sounds. This distributed set of cortical and subcortical speech production regions are ubiquitously active and form multiple networks whose topologies dynamically change with listening context. Results are inconsistent with motor and acoustic only models of speech perception and classical and contemporary dual-stream models of the organization of language and the brain. Instead, results are more consistent with complex network models in which multiple speech production related networks and subnetworks dynamically self-organize to constrain interpretation of indeterminant acoustic patterns as listening context requires. Copyright © 2016. Published by Elsevier Inc.
Urbain, Jay
2015-12-01
We present the design, and analyze the performance of a multi-stage natural language processing system employing named entity recognition, Bayesian statistics, and rule logic to identify and characterize heart disease risk factor events in diabetic patients over time. The system was originally developed for the 2014 i2b2 Challenges in Natural Language in Clinical Data. The system's strengths included a high level of accuracy for identifying named entities associated with heart disease risk factor events. The system's primary weakness was due to inaccuracies when characterizing the attributes of some events. For example, determining the relative time of an event with respect to the record date, whether an event is attributable to the patient's history or the patient's family history, and differentiating between current and prior smoking status. We believe these inaccuracies were due in large part to the lack of an effective approach for integrating context into our event detection model. To address these inaccuracies, we explore the addition of a distributional semantic model for characterizing contextual evidence of heart disease risk factor events. Using this semantic model, we raise our initial 2014 i2b2 Challenges in Natural Language of Clinical data F1 score of 0.838 to 0.890 and increased precision by 10.3% without use of any lexicons that might bias our results. Copyright © 2015 Elsevier Inc. All rights reserved.
Enriching plausible new hypothesis generation in PubMed.
Baek, Seung Han; Lee, Dahee; Kim, Minjoo; Lee, Jong Ho; Song, Min
2017-01-01
Most of earlier studies in the field of literature-based discovery have adopted Swanson's ABC model that links pieces of knowledge entailed in disjoint literatures. However, the issue concerning their practicability remains to be solved since most of them did not deal with the context surrounding the discovered associations and usually not accompanied with clinical confirmation. In this study, we aim to propose a method that expands and elaborates the existing hypothesis by advanced text mining techniques for capturing contexts. We extend ABC model to allow for multiple B terms with various biological types. We were able to concretize a specific, metabolite-related hypothesis with abundant contextual information by using the proposed method. Starting from explaining the relationship between lactosylceramide and arterial stiffness, the hypothesis was extended to suggest a potential pathway consisting of lactosylceramide, nitric oxide, malondialdehyde, and arterial stiffness. The experiment by domain experts showed that it is clinically valid. The proposed method is designed to provide plausible candidates of the concretized hypothesis, which are based on extracted heterogeneous entities and detailed relation information, along with a reliable ranking criterion. Statistical tests collaboratively conducted with biomedical experts provide the validity and practical usefulness of the method unlike previous studies. Applying the proposed method to other cases, it would be helpful for biologists to support the existing hypothesis and easily expect the logical process within it.
Rational Cloze and Retrospection: Insights into First and Second Language Reading Comprehension.
ERIC Educational Resources Information Center
MacLean, Margaret; d'Anglejan, Alison
1986-01-01
Reports a study which investigated the use of rational cloze procedure in conjunction with retrospection or introspection assessment techniques to examine how individuals understand text in both first and second languages, especially the use of contextual constraints. (MSE)
Comparison between BIDE, PrefixSpan, and TRuleGrowth for Mining of Indonesian Text
NASA Astrophysics Data System (ADS)
Sa'adillah Maylawati, Dian; Irfan, Mohamad; Budiawan Zulfikar, Wildan
2017-01-01
Mining proscess for Indonesian language still be an interesting research. Multiple of words representation was claimed can keep the meaning of text better than bag of words. In this paper, we compare several sequential pattern algortihm, among others BIDE (BIDirectional Extention), PrefixSpan, and TRuleGrowth. All of those algorithm produce frequent word sequence to keep the meaning of text. However, the experiment result, with 14.006 of Indonesian tweet from Twitter, shows that BIDE can produce more efficient frequent word sequence than PrefixSpan and TRuleGrowth without missing the meaning of text. Then, the average of time process of PrefixSpan is faster than BIDE and TRuleGrowth. In the other hand, PrefixSpan and TRuleGrowth is more efficient in using memory than BIDE.
Online discourse on fibromyalgia: text-mining to identify clinical distinction and patient concerns.
Park, Jungsik; Ryu, Young Uk
2014-10-07
The purpose of this study was to evaluate the possibility of using text-mining to identify clinical distinctions and patient concerns in online memoires posted by patients with fibromyalgia (FM). A total of 399 memoirs were collected from an FM group website. The unstructured data of memoirs associated with FM were collected through a crawling process and converted into structured data with a concordance, parts of speech tagging, and word frequency. We also conducted a lexical analysis and phrase pattern identification. After examining the data, a set of FM-related keywords were obtained and phrase net relationships were set through a web-based visualization tool. The clinical distinction of FM was verified. Pain is the biggest issue to the FM patients. The pains were affecting body parts including 'muscles,' 'leg,' 'neck,' 'back,' 'joints,' and 'shoulders' with accompanying symptoms such as 'spasms,' 'stiffness,' and 'aching,' and were described as 'sever,' 'chronic,' and 'constant.' This study also demonstrated that it was possible to understand the interests and concerns of FM patients through text-mining. FM patients wanted to escape from the pain and symptoms, so they were interested in medical treatment and help. Also, they seemed to have interest in their work and occupation, and hope to continue to live life through the relationships with the people around them. This research shows the potential for extracting keywords to confirm the clinical distinction of a certain disease, and text-mining can help objectively understand the concerns of patients by generalizing their large number of subjective illness experiences. However, it is believed that there are limitations to the processes and methods for organizing and classifying large amounts of text, so these limits have to be considered when analyzing the results. The development of research methodology to overcome these limitations is greatly needed.
Unsupervised text mining for assessing and augmenting GWAS results.
Ailem, Melissa; Role, François; Nadif, Mohamed; Demenais, Florence
2016-04-01
Text mining can assist in the analysis and interpretation of large-scale biomedical data, helping biologists to quickly and cheaply gain confirmation of hypothesized relationships between biological entities. We set this question in the context of genome-wide association studies (GWAS), an actively emerging field that contributed to identify many genes associated with multifactorial diseases. These studies allow to identify groups of genes associated with the same phenotype, but provide no information about the relationships between these genes. Therefore, our objective is to leverage unsupervised text mining techniques using text-based cosine similarity comparisons and clustering applied to candidate and random gene vectors, in order to augment the GWAS results. We propose a generic framework which we used to characterize the relationships between 10 genes reported associated with asthma by a previous GWAS. The results of this experiment showed that the similarities between these 10 genes were significantly stronger than would be expected by chance (one-sided p-value<0.01). The clustering of observed and randomly selected gene also allowed to generate hypotheses about potential functional relationships between these genes and thus contributed to the discovery of new candidate genes for asthma. Copyright © 2016 Elsevier Inc. All rights reserved.
Stansfield, Claire; O'Mara-Eves, Alison; Thomas, James
2017-09-01
Using text mining to aid the development of database search strings for topics described by diverse terminology has potential benefits for systematic reviews; however, methods and tools for accomplishing this are poorly covered in the research methods literature. We briefly review the literature on applications of text mining for search term development for systematic reviewing. We found that the tools can be used in 5 overarching ways: improving the precision of searches; identifying search terms to improve search sensitivity; aiding the translation of search strategies across databases; searching and screening within an integrated system; and developing objectively derived search strategies. Using a case study and selected examples, we then reflect on the utility of certain technologies (term frequency-inverse document frequency and Termine, term frequency, and clustering) in improving the precision and sensitivity of searches. Challenges in using these tools are discussed. The utility of these tools is influenced by the different capabilities of the tools, the way the tools are used, and the text that is analysed. Increased awareness of how the tools perform facilitates the further development of methods for their use in systematic reviews. Copyright © 2017 John Wiley & Sons, Ltd.
U-Compare: share and compare text mining tools with UIMA.
Kano, Yoshinobu; Baumgartner, William A; McCrohon, Luke; Ananiadou, Sophia; Cohen, K Bretonnel; Hunter, Lawrence; Tsujii, Jun'ichi
2009-08-01
Due to the increasing number of text mining resources (tools and corpora) available to biologists, interoperability issues between these resources are becoming significant obstacles to using them effectively. UIMA, the Unstructured Information Management Architecture, is an open framework designed to aid in the construction of more interoperable tools. U-Compare is built on top of the UIMA framework, and provides both a concrete framework for out-of-the-box text mining and a sophisticated evaluation platform allowing users to run specific tools on any target text, generating both detailed statistics and instance-based visualizations of outputs. U-Compare is a joint project, providing the world's largest, and still growing, collection of UIMA-compatible resources. These resources, originally developed by different groups for a variety of domains, include many famous tools and corpora. U-Compare can be launched straight from the web, without needing to be manually installed. All U-Compare components are provided ready-to-use and can be combined easily via a drag-and-drop interface without any programming. External UIMA components can also simply be mixed with U-Compare components, without distinguishing between locally and remotely deployed resources. http://u-compare.org/
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kargupta, H.; Stafford, B.; Hamzaoglu, I.
This paper describes an experimental parallel/distributed data mining system PADMA (PArallel Data Mining Agents) that uses software agents for local data accessing and analysis and a web based interface for interactive data visualization. It also presents the results of applying PADMA for detecting patterns in unstructured texts of postmortem reports and laboratory test data for Hepatitis C patients.
29 CFR 570.33 - Prohibited occupations for minors 14 and 15 years of age.
Code of Federal Regulations, 2010 CFR
2010-07-01
... shall apply to all occupations other than the following: (a) Manufacturing, mining, or processing... revised text is set forth as follows: § 570.33 Occupations that are prohibited to minors 14 and 15 years... age: (a) Manufacturing, mining, or processing occupations, including occupations requiring the...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-28
... considered but eliminated from detailed analysis include conventional uranium mining and milling, conventional mining and heap leach processing, alternative site location, alternate lixiviants, and alternate...'s Agencywide Document Access and Management System (ADAMS), which provides text and image files of...
30 CFR 732.17 - State program amendments.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR... the number or size of coal exploration or surface coal mining and reclamation operations in the State... amendment(s) is being reviewed by the Director and will include the following: (i) The text or a summary of...
30 CFR 745.11 - Application and agreement.
Code of Federal Regulations, 2010 CFR
2010-07-01
....11 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR... approval under part 731 of this chapter, and has or may have within the State surface coal mining and... the full text of the terms of the proposed cooperative agreement as submitted or as subsequently...
29 CFR 570.118 - Sixteen-year minimum.
Code of Federal Regulations, 2010 CFR
2010-07-01
... for employment in manufacturing or mining occupations. Furthermore, this age minimum is applicable to... convenience of the user, the revised text is set forth as follows: § 570.118 Sixteen-year minimum. The Act sets a 16-year-age minimum for employment in manufacturing or mining occupations, although under FLSA...
Code of Federal Regulations, 2010 CFR
2010-07-01
... other than the following: (1) Manufacturing, (2) Mining, (3) An occupation found by the Secretary to be..., the revised text is set forth as follows: § 570.122 General. (a) Specific exemptions from the child... sixteen years in any occupation other than manufacturing, mining, or an occupation found by the Secretary...
29 CFR 570.119 - Fourteen-year minimum.
Code of Federal Regulations, 2010 CFR
2010-07-01
... occupations other than manufacturing and mining, the Secretary is authorized to issue regulations or orders... Subpart C of this part. 29-30 [Reserved] (a) Manufacturing, mining, or processing occupations; (b... of the user, the revised text is set forth as follows: § 570.119 Fourteen-year minimum. With respect...
OSCAR4: a flexible architecture for chemical text-mining.
Jessop, David M; Adams, Sam E; Willighagen, Egon L; Hawizy, Lezan; Murray-Rust, Peter
2011-10-14
The Open-Source Chemistry Analysis Routines (OSCAR) software, a toolkit for the recognition of named entities and data in chemistry publications, has been developed since 2002. Recent work has resulted in the separation of the core OSCAR functionality and its release as the OSCAR4 library. This library features a modular API (based on reduction of surface coupling) that permits client programmers to easily incorporate it into external applications. OSCAR4 offers a domain-independent architecture upon which chemistry specific text-mining tools can be built, and its development and usage are discussed.
Comparative Analysis of Document level Text Classification Algorithms using R
NASA Astrophysics Data System (ADS)
Syamala, Maganti; Nalini, N. J., Dr; Maguluri, Lakshamanaphaneendra; Ragupathy, R., Dr.
2017-08-01
From the past few decades there has been tremendous volumes of data available in Internet either in structured or unstructured form. Also, there is an exponential growth of information on Internet, so there is an emergent need of text classifiers. Text mining is an interdisciplinary field which draws attention on information retrieval, data mining, machine learning, statistics and computational linguistics. And to handle this situation, a wide range of supervised learning algorithms has been introduced. Among all these K-Nearest Neighbor(KNN) is efficient and simplest classifier in text classification family. But KNN suffers from imbalanced class distribution and noisy term features. So, to cope up with this challenge we use document based centroid dimensionality reduction(CentroidDR) using R Programming. By combining these two text classification techniques, KNN and Centroid classifiers, we propose a scalable and effective flat classifier, called MCenKNN which works well substantially better than CenKNN.
Mining Consumer Health Vocabulary from Community-Generated Text
Vydiswaran, V.G. Vinod; Mei, Qiaozhu; Hanauer, David A.; Zheng, Kai
2014-01-01
Community-generated text corpora can be a valuable resource to extract consumer health vocabulary (CHV) and link them to professional terminologies and alternative variants. In this research, we propose a pattern-based text-mining approach to identify pairs of CHV and professional terms from Wikipedia, a large text corpus created and maintained by the community. A novel measure, leveraging the ratio of frequency of occurrence, was used to differentiate consumer terms from professional terms. We empirically evaluated the applicability of this approach using a large data sample consisting of MedLine abstracts and all posts from an online health forum, MedHelp. The results show that the proposed approach is able to identify synonymous pairs and label the terms as either consumer or professional term with high accuracy. We conclude that the proposed approach provides great potential to produce a high quality CHV to improve the performance of computational applications in processing consumer-generated health text. PMID:25954426
Wagland, Richard; Recio-Saucedo, Alejandra; Simon, Michael; Bracher, Michael; Hunt, Katherine; Foster, Claire; Downing, Amy; Glaser, Adam; Corner, Jessica
2016-08-01
Quality of cancer care may greatly impact on patients' health-related quality of life (HRQoL). Free-text responses to patient-reported outcome measures (PROMs) provide rich data but analysis is time and resource-intensive. This study developed and tested a learning-based text-mining approach to facilitate analysis of patients' experiences of care and develop an explanatory model illustrating impact on HRQoL. Respondents to a population-based survey of colorectal cancer survivors provided free-text comments regarding their experience of living with and beyond cancer. An existing coding framework was tested and adapted, which informed learning-based text mining of the data. Machine-learning algorithms were trained to identify comments relating to patients' specific experiences of service quality, which were verified by manual qualitative analysis. Comparisons between coded retrieved comments and a HRQoL measure (EQ5D) were explored. The survey response rate was 63.3% (21 802/34 467), of which 25.8% (n=5634) participants provided free-text comments. Of retrieved comments on experiences of care (n=1688), over half (n=1045, 62%) described positive care experiences. Most negative experiences concerned a lack of post-treatment care (n=191, 11% of retrieved comments) and insufficient information concerning self-management strategies (n=135, 8%) or treatment side effects (n=160, 9%). Associations existed between HRQoL scores and coded algorithm-retrieved comments. Analysis indicated that the mechanism by which service quality impacted on HRQoL was the extent to which services prevented or alleviated challenges associated with disease and treatment burdens. Learning-based text mining techniques were found useful and practical tools to identify specific free-text comments within a large dataset, facilitating resource-efficient qualitative analysis. This method should be considered for future PROM analysis to inform policy and practice. Study findings indicated that perceived care quality directly impacts on HRQoL. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Child Psychopathology, Second Edition.
ERIC Educational Resources Information Center
Mash, Eric J.; Barkley, Russell A.
This text integrates state-of-the-art theory and empirical research on a wide range of child and adolescent disorders. Featuring contributions from leading scholars and clinicians, the volume provides comprehensive coverage of the biological, psychological, and social-contextual determinants of childhood problems. Each chapter focuses on a…
Extraction and Classification of Emotions for Business Research
NASA Astrophysics Data System (ADS)
Verma, Rajib
The commercial study of emotions has not embraced Internet / social mining yet, even though it has important applications in management. This is surprising since the emotional content is freeform, wide spread, can give a better indication of feelings (for instance with taboo subjects), and is inexpensive compared to other business research methods. A brief framework for applying text mining to this new research domain is shown and classification issues are discussed in an effort to quickly get businessman and researchers to adopt the mining methodology.
Clustering and Dimensionality Reduction to Discover Interesting Patterns in Binary Data
NASA Astrophysics Data System (ADS)
Palumbo, Francesco; D'Enza, Alfonso Iodice
The attention towards binary data coding increased consistently in the last decade due to several reasons. The analysis of binary data characterizes several fields of application, such as market basket analysis, DNA microarray data, image mining, text mining and web-clickstream mining. The paper illustrates two different approaches exploiting a profitable combination of clustering and dimensionality reduction for the identification of non-trivial association structures in binary data. An application in the Association Rules framework supports the theory with the empirical evidence.
Mining biomedical images towards valuable information retrieval in biomedical and life sciences
Ahmed, Zeeshan; Zeeshan, Saman; Dandekar, Thomas
2016-01-01
Biomedical images are helpful sources for the scientists and practitioners in drawing significant hypotheses, exemplifying approaches and describing experimental results in published biomedical literature. In last decades, there has been an enormous increase in the amount of heterogeneous biomedical image production and publication, which results in a need for bioimaging platforms for feature extraction and analysis of text and content in biomedical images to take advantage in implementing effective information retrieval systems. In this review, we summarize technologies related to data mining of figures. We describe and compare the potential of different approaches in terms of their developmental aspects, used methodologies, produced results, achieved accuracies and limitations. Our comparative conclusions include current challenges for bioimaging software with selective image mining, embedded text extraction and processing of complex natural language queries. PMID:27538578
Monitoring food safety violation reports from internet forums.
Kate, Kiran; Negi, Sumit; Kalagnanam, Jayant
2014-01-01
Food-borne illness is a growing public health concern in the world. Government bodies, which regulate and monitor the state of food safety, solicit citizen feedback about food hygiene practices followed by food establishments. They use traditional channels like call center, e-mail for such feedback collection. With the growing popularity of Web 2.0 and social media, citizens often post such feedback on internet forums, message boards etc. The system proposed in this paper applies text mining techniques to identify and mine such food safety complaints posted by citizens on web data sources thereby enabling the government agencies to gather more information about the state of food safety. In this paper, we discuss the architecture of our system and the text mining methods used. We also present results which demonstrate the effectiveness of this system in a real-world deployment.
Wiegers, Thomas C; Davis, Allan Peter; Mattingly, Carolyn J
2014-01-01
The Critical Assessment of Information Extraction systems in Biology (BioCreAtIvE) challenge evaluation tasks collectively represent a community-wide effort to evaluate a variety of text-mining and information extraction systems applied to the biological domain. The BioCreative IV Workshop included five independent subject areas, including Track 3, which focused on named-entity recognition (NER) for the Comparative Toxicogenomics Database (CTD; http://ctdbase.org). Previously, CTD had organized document ranking and NER-related tasks for the BioCreative Workshop 2012; a key finding of that effort was that interoperability and integration complexity were major impediments to the direct application of the systems to CTD's text-mining pipeline. This underscored a prevailing problem with software integration efforts. Major interoperability-related issues included lack of process modularity, operating system incompatibility, tool configuration complexity and lack of standardization of high-level inter-process communications. One approach to potentially mitigate interoperability and general integration issues is the use of Web services to abstract implementation details; rather than integrating NER tools directly, HTTP-based calls from CTD's asynchronous, batch-oriented text-mining pipeline could be made to remote NER Web services for recognition of specific biological terms using BioC (an emerging family of XML formats) for inter-process communications. To test this concept, participating groups developed Representational State Transfer /BioC-compliant Web services tailored to CTD's NER requirements. Participants were provided with a comprehensive set of training materials. CTD evaluated results obtained from the remote Web service-based URLs against a test data set of 510 manually curated scientific articles. Twelve groups participated in the challenge. Recall, precision, balanced F-scores and response times were calculated. Top balanced F-scores for gene, chemical and disease NER were 61, 74 and 51%, respectively. Response times ranged from fractions-of-a-second to over a minute per article. We present a description of the challenge and summary of results, demonstrating how curation groups can effectively use interoperable NER technologies to simplify text-mining pipeline implementation. Database URL: http://ctdbase.org/ © The Author(s) 2014. Published by Oxford University Press.
Building a glaucoma interaction network using a text mining approach.
Soliman, Maha; Nasraoui, Olfa; Cooper, Nigel G F
2016-01-01
The volume of biomedical literature and its underlying knowledge base is rapidly expanding, making it beyond the ability of a single human being to read through all the literature. Several automated methods have been developed to help make sense of this dilemma. The present study reports on the results of a text mining approach to extract gene interactions from the data warehouse of published experimental results which are then used to benchmark an interaction network associated with glaucoma. To the best of our knowledge, there is, as yet, no glaucoma interaction network derived solely from text mining approaches. The presence of such a network could provide a useful summative knowledge base to complement other forms of clinical information related to this disease. A glaucoma corpus was constructed from PubMed Central and a text mining approach was applied to extract genes and their relations from this corpus. The extracted relations between genes were checked using reference interaction databases and classified generally as known or new relations. The extracted genes and relations were then used to construct a glaucoma interaction network. Analysis of the resulting network indicated that it bears the characteristics of a small world interaction network. Our analysis showed the presence of seven glaucoma linked genes that defined the network modularity. A web-based system for browsing and visualizing the extracted glaucoma related interaction networks is made available at http://neurogene.spd.louisville.edu/GlaucomaINViewer/Form1.aspx. This study has reported the first version of a glaucoma interaction network using a text mining approach. The power of such an approach is in its ability to cover a wide range of glaucoma related studies published over many years. Hence, a bigger picture of the disease can be established. To the best of our knowledge, this is the first glaucoma interaction network to summarize the known literature. The major findings were a set of relations that could not be found in existing interaction databases and that were found to be new, in addition to a smaller subnetwork consisting of interconnected clusters of seven glaucoma genes. Future improvements can be applied towards obtaining a better version of this network.
Wiegers, Thomas C.; Davis, Allan Peter; Mattingly, Carolyn J.
2014-01-01
The Critical Assessment of Information Extraction systems in Biology (BioCreAtIvE) challenge evaluation tasks collectively represent a community-wide effort to evaluate a variety of text-mining and information extraction systems applied to the biological domain. The BioCreative IV Workshop included five independent subject areas, including Track 3, which focused on named-entity recognition (NER) for the Comparative Toxicogenomics Database (CTD; http://ctdbase.org). Previously, CTD had organized document ranking and NER-related tasks for the BioCreative Workshop 2012; a key finding of that effort was that interoperability and integration complexity were major impediments to the direct application of the systems to CTD's text-mining pipeline. This underscored a prevailing problem with software integration efforts. Major interoperability-related issues included lack of process modularity, operating system incompatibility, tool configuration complexity and lack of standardization of high-level inter-process communications. One approach to potentially mitigate interoperability and general integration issues is the use of Web services to abstract implementation details; rather than integrating NER tools directly, HTTP-based calls from CTD's asynchronous, batch-oriented text-mining pipeline could be made to remote NER Web services for recognition of specific biological terms using BioC (an emerging family of XML formats) for inter-process communications. To test this concept, participating groups developed Representational State Transfer /BioC-compliant Web services tailored to CTD's NER requirements. Participants were provided with a comprehensive set of training materials. CTD evaluated results obtained from the remote Web service-based URLs against a test data set of 510 manually curated scientific articles. Twelve groups participated in the challenge. Recall, precision, balanced F-scores and response times were calculated. Top balanced F-scores for gene, chemical and disease NER were 61, 74 and 51%, respectively. Response times ranged from fractions-of-a-second to over a minute per article. We present a description of the challenge and summary of results, demonstrating how curation groups can effectively use interoperable NER technologies to simplify text-mining pipeline implementation. Database URL: http://ctdbase.org/ PMID:24919658
NASA Astrophysics Data System (ADS)
Lee, M. J.; Oh, K. Y.; Joung-ho, L.
2016-12-01
Recently there are many research about analysing the interaction between entities by text-mining analysis in various fields. In this paper, we aimed to quantitatively analyse research-trends in the area of environmental research relating either spatial information or ICT (Information and Communications Technology) by Text-mining analysis. To do this, we applied low-dimensional embedding method, clustering analysis, and association rule to find meaningful associative patterns of key words frequently appeared in the articles. As the authors suppose that KCI (Korea Citation Index) articles reflect academic demands, total 1228 KCI articles that have been published from 1996 to 2015 were reviewed and analysed by Text-mining method. First, we derived KCI articles from NDSL(National Discovery for Science Leaders) site. And then we pre-processed their key-words elected from abstract and then classified those in separable sectors. We investigated the appearance rates and association rule of key-words for articles in the two fields: spatial-information and ICT. In order to detect historic trends, analysis was conducted separately for the four periods: 1996-2000, 2001-2005, 2006-2010, 2011-2015. These analysis were conducted with the usage of R-software. As a result, we conformed that environmental research relating spatial information mainly focused upon such fields as `GIS(35%)', `Remote-Sensing(25%)', `environmental theme map(15.7%)'. Next, `ICT technology(23.6%)', `ICT service(5.4%)', `mobile(24%)', `big data(10%)', `AI(7%)' are primarily emerging from environmental research relating ICT. Thus, from the analysis results, this paper asserts that research trends and academic progresses are well-structured to review recent spatial information and ICT technology and the outcomes of the analysis can be an adequate guidelines to establish environment policies and strategies. KEY WORDS: Big data, Test-mining, Environmental research, Spatial-information, ICT Acknowledgements: The authors appreciate the support that this study has received from `Building application frame of environmental issues, to respond to the latest ICT trends'.
Text mining-based in silico drug discovery in oral mucositis caused by high-dose cancer therapy.
Kirk, Jon; Shah, Nirav; Noll, Braxton; Stevens, Craig B; Lawler, Marshall; Mougeot, Farah B; Mougeot, Jean-Luc C
2018-08-01
Oral mucositis (OM) is a major dose-limiting side effect of chemotherapy and radiation used in cancer treatment. Due to the complex nature of OM, currently available drug-based treatments are of limited efficacy. Our objectives were (i) to determine genes and molecular pathways associated with OM and wound healing using computational tools and publicly available data and (ii) to identify drugs formulated for topical use targeting the relevant OM molecular pathways. OM and wound healing-associated genes were determined by text mining, and the intersection of the two gene sets was selected for gene ontology analysis using the GeneCodis program. Protein interaction network analysis was performed using STRING-db. Enriched gene sets belonging to the identified pathways were queried against the Drug-Gene Interaction database to find drug candidates for topical use in OM. Our analysis identified 447 genes common to both the "OM" and "wound healing" text mining concepts. Gene enrichment analysis yielded 20 genes representing six pathways and targetable by a total of 32 drugs which could possibly be formulated for topical application. A manual search on ClinicalTrials.gov confirmed no relevant pathway/drug candidate had been overlooked. Twenty-five of the 32 drugs can directly affect the PTGS2 (COX-2) pathway, the pathway that has been targeted in previous clinical trials with limited success. Drug discovery using in silico text mining and pathway analysis tools can facilitate the identification of existing drugs that have the potential of topical administration to improve OM treatment.
Takeda, Kayoko; Takahashi, Kiyoshi; Masukawa, Hiroyuki; Shimamori, Yoshimitsu
2017-01-01
Recently, the practice of active learning has spread, increasingly recognized as an essential component of academic studies. Classes incorporating small group discussion (SGD) are conducted at many universities. At present, assessments of the effectiveness of SGD have mostly involved evaluation by questionnaires conducted by teachers, by peer assessment, and by self-evaluation of students. However, qualitative data, such as open-ended descriptions by students, have not been widely evaluated. As a result, we have been unable to analyze the processes and methods involved in how students acquire knowledge in SGD. In recent years, due to advances in information and communication technology (ICT), text mining has enabled the analysis of qualitative data. We therefore investigated whether the introduction of a learning system comprising the jigsaw method and problem-based learning (PBL) would improve student attitudes toward learning; we did this by text mining analysis of the content of student reports. We found that by applying the jigsaw method before PBL, we were able to improve student attitudes toward learning and increase the depth of their understanding of the area of study as a result of working with others. The use of text mining to analyze qualitative data also allowed us to understand the processes and methods by which students acquired knowledge in SGD and also changes in students' understanding and performance based on improvements to the class. This finding suggests that the use of text mining to analyze qualitative data could enable teachers to evaluate the effectiveness of various methods employed to improve learning.
Text feature extraction based on deep learning: a review.
Liang, Hong; Sun, Xiao; Sun, Yunlei; Gao, Yuan
2017-01-01
Selection of text feature item is a basic and important matter for text mining and information retrieval. Traditional methods of feature extraction require handcrafted features. To hand-design, an effective feature is a lengthy process, but aiming at new applications, deep learning enables to acquire new effective feature representation from training data. As a new feature extraction method, deep learning has made achievements in text mining. The major difference between deep learning and conventional methods is that deep learning automatically learns features from big data, instead of adopting handcrafted features, which mainly depends on priori knowledge of designers and is highly impossible to take the advantage of big data. Deep learning can automatically learn feature representation from big data, including millions of parameters. This thesis outlines the common methods used in text feature extraction first, and then expands frequently used deep learning methods in text feature extraction and its applications, and forecasts the application of deep learning in feature extraction.
30 CFR 730.11 - Inconsistent and more stringent State laws and regulations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... regulations. 730.11 Section 730.11 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... Register setting forth the text or a summary of any State law or regulation initially determined by him to... stringent land use and environmental controls and regulations of coal exploration and surface coal mining...
Using Syntactic Patterns to Enhance Text Analytics
ERIC Educational Resources Information Center
Meyer, Bradley B.
2017-01-01
Large scale product and service reviews proliferate and are commonly found across the web. The ability to harvest, digest and analyze a large corpus of reviews from online websites is still however a difficult problem. This problem is referred to as "opinion mining." Opinion mining is an important area of research as advances in the…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-28
... Uranium Recovery Project, located in the Pumpkin Buttes Uranium Mining District within the Powder River.... Alternatives that were considered, but were eliminated from detailed analysis, include conventional mining and... an Agencywide Documents and Management System (ADAMS), which provides text and image files of the NRC...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-26
... (ADAMS), which provides text and image files of the NRC's public documents in the NRC Library at http... considered, but eliminated from detailed analysis, include conventional uranium mining and milling, conventional mining and heap leach processing, alternate lixiviants, and alternative wastewater disposal...
Disorders of Articulation. Prentice-Hall Foundations of Speech Pathology Series.
ERIC Educational Resources Information Center
Carrell, James A.
Designed for students of speech pathology and audiology and for practicing clinicians, the text considers the nature of the articulation process, criteria for diagnosis, and classification and etiology of disorders. Also discussed are phonetic characteristics, including phonemic errors and configurational and contextual defects; and functional…
Autonomous Language Learning against All Odds
ERIC Educational Resources Information Center
Gao, Xuesong
2010-01-01
Conceptualizing learners' individuality as dynamic and contextually situated, this paper reports on an inquiry that examined the genesis of a disabled learner's success in learning foreign languages on the Chinese mainland. Using source texts such as the learner's published diaries, letters and her autobiography, the inquiry revealed that language…
Discovering and visualizing indirect associations between biomedical concepts
Tsuruoka, Yoshimasa; Miwa, Makoto; Hamamoto, Kaisei; Tsujii, Jun'ichi; Ananiadou, Sophia
2011-01-01
Motivation: Discovering useful associations between biomedical concepts has been one of the main goals in biomedical text-mining, and understanding their biomedical contexts is crucial in the discovery process. Hence, we need a text-mining system that helps users explore various types of (possibly hidden) associations in an easy and comprehensible manner. Results: This article describes FACTA+, a real-time text-mining system for finding and visualizing indirect associations between biomedical concepts from MEDLINE abstracts. The system can be used as a text search engine like PubMed with additional features to help users discover and visualize indirect associations between important biomedical concepts such as genes, diseases and chemical compounds. FACTA+ inherits all functionality from its predecessor, FACTA, and extends it by incorporating three new features: (i) detecting biomolecular events in text using a machine learning model, (ii) discovering hidden associations using co-occurrence statistics between concepts, and (iii) visualizing associations to improve the interpretability of the output. To the best of our knowledge, FACTA+ is the first real-time web application that offers the functionality of finding concepts involving biomolecular events and visualizing indirect associations of concepts with both their categories and importance. Availability: FACTA+ is available as a web application at http://refine1-nactem.mc.man.ac.uk/facta/, and its visualizer is available at http://refine1-nactem.mc.man.ac.uk/facta-visualizer/. Contact: tsuruoka@jaist.ac.jp PMID:21685059
Lu, Zhiyong
2012-01-01
Today’s biomedical research has become heavily dependent on access to the biological knowledge encoded in expert curated biological databases. As the volume of biological literature grows rapidly, it becomes increasingly difficult for biocurators to keep up with the literature because manual curation is an expensive and time-consuming endeavour. Past research has suggested that computer-assisted curation can improve efficiency, but few text-mining systems have been formally evaluated in this regard. Through participation in the interactive text-mining track of the BioCreative 2012 workshop, we developed PubTator, a PubMed-like system that assists with two specific human curation tasks: document triage and bioconcept annotation. On the basis of evaluation results from two external user groups, we find that the accuracy of PubTator-assisted curation is comparable with that of manual curation and that PubTator can significantly increase human curatorial speed. These encouraging findings warrant further investigation with a larger number of publications to be annotated. Database URL: http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/PubTator/ PMID:23160414
Alanazi, Ibrahim O; AlYahya, Sami A; Ebrahimie, Esmaeil; Mohammadi-Dehcheshmeh, Manijeh
2018-06-15
Exponentially growing scientific knowledge in scientific publications has resulted in the emergence of a new interdisciplinary science of literature mining. In text mining, the machine reads the published literature and transfers the discovered knowledge to mathematical-like formulas. In an integrative approach in this study, we used text mining in combination with network discovery, pathway analysis, and enrichment analysis of genomic regions for better understanding of biomarkers in lung cancer. Particular attention was paid to non-coding biomarkers. In total, 60 MicroRNA biomarkers were reported for lung cancer, including some prognostic biomarkers. MIR21, MIR155, MALAT1, and MIR31 were the top non-coding RNA biomarkers of lung cancer. Text mining identified 447 proteins which have been studied as biomarkers in lung cancer. EGFR (receptor), TP53 (transcription factor), KRAS, CDKN2A, ENO2, KRT19, RASSF1, GRP (ligand), SHOX2 (transcription factor), and ERBB2 (receptor) were the most studied proteins. Within small molecules, thymosin-a1, oestrogen, and 8-OHdG have received more attention. We found some chromosomal bands, such as 7q32.2, 18q12.1, 6p12, 11p15.5, and 3p21.3 that are highly involved in deriving lung cancer biomarkers. Copyright © 2018 Elsevier B.V. All rights reserved.
Georga, Eleni; Protopappas, Vasilios; Guillen, Alejandra; Fico, Giuseppe; Ardigo, Diego; Arredondo, Maria Teresa; Exarchos, Themis P; Polyzos, Demosthenes; Fotiadis, Dimitrios I
2009-01-01
METABO is a diabetes monitoring and management system which aims at recording and interpreting patient's context, as well as, at providing decision support to both the patient and the doctor. The METABO system consists of (a) a Patient's Mobile Device (PMD), (b) different types of unobtrusive biosensors, (c) a Central Subsystem (CS) located remotely at the hospital and (d) the Control Panel (CP) from which physicians can follow-up their patients and gain also access to the CS. METABO provides a multi-parametric monitoring system which facilitates the efficient and systematic recording of dietary, physical activity, medication and medical information (continuous and discontinuous glucose measurements). Based on all recorded contextual information, data mining schemes that run in the PMD are responsible to model patients' metabolism, predict hypo/hyper-glycaemic events, and provide the patient with short and long-term alerts. In addition, all past and recently-recorded data are analyzed to extract patterns of behavior, discover new knowledge and provide explanations to the physician through the CP. Advanced tools in the CP allow the physician to prescribe personalized treatment plans and frequently quantify patient's adherence to treatment.
2016-11-18
Just as the present can be understood by examining the past, the use of historical research methods can help nurses to understand the present to influence the future. This text emphasises how this approach to nursing research can provide a contextual framework from which nurses can consider their own practice.
OSCAR4: a flexible architecture for chemical text-mining
2011-01-01
The Open-Source Chemistry Analysis Routines (OSCAR) software, a toolkit for the recognition of named entities and data in chemistry publications, has been developed since 2002. Recent work has resulted in the separation of the core OSCAR functionality and its release as the OSCAR4 library. This library features a modular API (based on reduction of surface coupling) that permits client programmers to easily incorporate it into external applications. OSCAR4 offers a domain-independent architecture upon which chemistry specific text-mining tools can be built, and its development and usage are discussed. PMID:21999457
Literature evidence in open targets - a target validation platform.
Kafkas, Şenay; Dunham, Ian; McEntyre, Johanna
2017-06-06
We present the Europe PMC literature component of Open Targets - a target validation platform that integrates various evidence to aid drug target identification and validation. The component identifies target-disease associations in documents and ranks the documents based on their confidence from the Europe PMC literature database, by using rules utilising expert-provided heuristic information. The confidence score of a given document represents how valuable the document is in the scope of target validation for a given target-disease association by taking into account the credibility of the association based on the properties of the text. The component serves the platform regularly with the up-to-date data since December, 2015. Currently, there are a total number of 1168365 distinct target-disease associations text mined from >26 million PubMed abstracts and >1.2 million Open Access full text articles. Our comparative analyses on the current available evidence data in the platform revealed that 850179 of these associations are exclusively identified by literature mining. This component helps the platform's users by providing the most relevant literature hits for a given target and disease. The text mining evidence along with the other types of evidence can be explored visually through https://www.targetvalidation.org and all the evidence data is available for download in json format from https://www.targetvalidation.org/downloads/data .
U-Compare: share and compare text mining tools with UIMA
Kano, Yoshinobu; Baumgartner, William A.; McCrohon, Luke; Ananiadou, Sophia; Cohen, K. Bretonnel; Hunter, Lawrence; Tsujii, Jun'ichi
2009-01-01
Summary: Due to the increasing number of text mining resources (tools and corpora) available to biologists, interoperability issues between these resources are becoming significant obstacles to using them effectively. UIMA, the Unstructured Information Management Architecture, is an open framework designed to aid in the construction of more interoperable tools. U-Compare is built on top of the UIMA framework, and provides both a concrete framework for out-of-the-box text mining and a sophisticated evaluation platform allowing users to run specific tools on any target text, generating both detailed statistics and instance-based visualizations of outputs. U-Compare is a joint project, providing the world's largest, and still growing, collection of UIMA-compatible resources. These resources, originally developed by different groups for a variety of domains, include many famous tools and corpora. U-Compare can be launched straight from the web, without needing to be manually installed. All U-Compare components are provided ready-to-use and can be combined easily via a drag-and-drop interface without any programming. External UIMA components can also simply be mixed with U-Compare components, without distinguishing between locally and remotely deployed resources. Availability: http://u-compare.org/ Contact: kano@is.s.u-tokyo.ac.jp PMID:19414535
On the unsupervised analysis of domain-specific Chinese texts
Deng, Ke; Bol, Peter K.; Li, Kate J.; Liu, Jun S.
2016-01-01
With the growing availability of digitized text data both publicly and privately, there is a great need for effective computational tools to automatically extract information from texts. Because the Chinese language differs most significantly from alphabet-based languages in not specifying word boundaries, most existing Chinese text-mining methods require a prespecified vocabulary and/or a large relevant training corpus, which may not be available in some applications. We introduce an unsupervised method, top-down word discovery and segmentation (TopWORDS), for simultaneously discovering and segmenting words and phrases from large volumes of unstructured Chinese texts, and propose ways to order discovered words and conduct higher-level context analyses. TopWORDS is particularly useful for mining online and domain-specific texts where the underlying vocabulary is unknown or the texts of interest differ significantly from available training corpora. When outputs from TopWORDS are fed into context analysis tools such as topic modeling, word embedding, and association pattern finding, the results are as good as or better than that from using outputs of a supervised segmentation method. PMID:27185919
Teaching in a Diverse Society.
ERIC Educational Resources Information Center
Grossman, Herbert
The goal of this text is to help educators recognize and reduce ethnic, socioeconomic, gender, contextual, and communicative disparities and inequalities in school. It is designed for preservice educators and attempts to help them understand the influence of diversity factors on the educational careers of their students. Chapter 1 describes the…
Eugenics in Education: Apologetics for Oppression
ERIC Educational Resources Information Center
Hartlep, Nicholas D.
2008-01-01
For many people an esoteric educational topic is eugenics. This brief text analysis will provide a textual as well as contextual analysis of Dr. Ann Gibson Winfield's book (2007) Eugenics and Education in America: Institutionalized Racism and the Implications of History, Ideology, and Memory. Winfield objectively critiques eugenic apologetics.…
Authorship Attribution with Function Word N-Grams
ERIC Educational Resources Information Center
Johnson, Rusty
2013-01-01
Prior research has considered the sequential order of function words, after the contextual words of the text have been removed, as a stylistic indicator of authorship. This research describes an effort to enhance authorship attribution accuracy based on this same information source with alternate classifiers, alternate n-gram construction methods,…
Contextual Religious Education and the Interpretive Approach
ERIC Educational Resources Information Center
Jackson, Robert
2008-01-01
This article responds to Andrew Wright's critique of my views on the representation of religions. Using various literary devices--associating my work closely with that of others whose views are in some ways different from my own, referring very selectively to published texts and exaggerating, and sometimes misrepresenting, what I actually…
Learning Words from Context and Dictionaries: An Experimental Comparison.
ERIC Educational Resources Information Center
Fischer, Ute
1994-01-01
Investigated the independent and interactive effects of contextual and definitional information on vocabulary learning. German students of English received either a text with unfamiliar English words or their monolingual English dictionary entries. A third group received both. Information about word context is crucial to understanding meaning. (44…
Moving beyond Transgression: Contextualizing Plagiarism and Patchwriting
ERIC Educational Resources Information Center
Crook, Stephanie
2016-01-01
This paper explores the phenomenon of "patchwriting," a term which Howard (1992) coined to refer to the practice of "copying from a source text and then deleting some words, altering grammatical structures, or plugging in one-for-one synonym substitutes" (p. 233). Although patchwriting in universities is often labeled simply as…
ERIC Educational Resources Information Center
Johnson, Amy M.; Butcher, Kirsten R.; Ozogul, Gamze; Reisslein, Martin
2014-01-01
Novice learners are typically unfamiliar with abstract engineering symbols. They are also often unaccustomed to instructional materials consisting of a combination of text, diagrams, and equations. This raises the question of whether instruction on elementary electrical circuit analysis for novice learners should employ contextualized…
Moral Education and the Role of Cultural Tools
ERIC Educational Resources Information Center
Vestol, Jon Magne
2011-01-01
Presenting results from a Norwegian empirical study of student texts and moral education textbooks, this article contributes to the evaluation and development of contextual approaches to moral education. Theoretical perspectives from Seyla Benhabib and Mark Tappan are discussed in the light of empirical data. In particular, while textbooks focus…
Mining biomedical images towards valuable information retrieval in biomedical and life sciences.
Ahmed, Zeeshan; Zeeshan, Saman; Dandekar, Thomas
2016-01-01
Biomedical images are helpful sources for the scientists and practitioners in drawing significant hypotheses, exemplifying approaches and describing experimental results in published biomedical literature. In last decades, there has been an enormous increase in the amount of heterogeneous biomedical image production and publication, which results in a need for bioimaging platforms for feature extraction and analysis of text and content in biomedical images to take advantage in implementing effective information retrieval systems. In this review, we summarize technologies related to data mining of figures. We describe and compare the potential of different approaches in terms of their developmental aspects, used methodologies, produced results, achieved accuracies and limitations. Our comparative conclusions include current challenges for bioimaging software with selective image mining, embedded text extraction and processing of complex natural language queries. © The Author(s) 2016. Published by Oxford University Press.
75 FR 55678 - Minerals Management: Adjustment of Cost Recovery Fees
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-14
... text to the general cost recovery fee table so that mineral cost recovery fees can be found in one... Coal and Oil Shale) Program's lease renewal fee will increase from $480 to $485; (C) The Mining Law... $2,840; and (D) The Mining Law Administration Program's fee for mineral patent adjudication of 10 or...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-15
... Environmental Assessment and Finding of No Significant Impact for License Amendment No. 61 for Rio Algom Mining... amendment to Source Materials License SUA-1473 issued to Rio Algom Mining LLC (Rio Algom, or the Licensee... access the NRC's Agencywide Document Access and Management System (ADAMS), which provides text and image...
ERIC Educational Resources Information Center
Tsai, Yea-Ru; Ouyang, Chen-Sen; Chang, Yukon
2016-01-01
The purpose of this study is to propose a diagnostic approach to identify engineering students' English reading comprehension errors. Student data were collected during the process of reading texts of English for science and technology on a web-based cumulative sentence analysis system. For the analysis, the association-rule, data mining technique…
Information Gain Based Dimensionality Selection for Classifying Text Documents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumidu Wijayasekara; Milos Manic; Miles McQueen
2013-06-01
Selecting the optimal dimensions for various knowledge extraction applications is an essential component of data mining. Dimensionality selection techniques are utilized in classification applications to increase the classification accuracy and reduce the computational complexity. In text classification, where the dimensionality of the dataset is extremely high, dimensionality selection is even more important. This paper presents a novel, genetic algorithm based methodology, for dimensionality selection in text mining applications that utilizes information gain. The presented methodology uses information gain of each dimension to change the mutation probability of chromosomes dynamically. Since the information gain is calculated a priori, the computational complexitymore » is not affected. The presented method was tested on a specific text classification problem and compared with conventional genetic algorithm based dimensionality selection. The results show an improvement of 3% in the true positives and 1.6% in the true negatives over conventional dimensionality selection methods.« less
Deploying and sharing U-Compare workflows as web services.
Kontonatsios, Georgios; Korkontzelos, Ioannis; Kolluru, Balakrishna; Thompson, Paul; Ananiadou, Sophia
2013-02-18
U-Compare is a text mining platform that allows the construction, evaluation and comparison of text mining workflows. U-Compare contains a large library of components that are tuned to the biomedical domain. Users can rapidly develop biomedical text mining workflows by mixing and matching U-Compare's components. Workflows developed using U-Compare can be exported and sent to other users who, in turn, can import and re-use them. However, the resulting workflows are standalone applications, i.e., software tools that run and are accessible only via a local machine, and that can only be run with the U-Compare platform. We address the above issues by extending U-Compare to convert standalone workflows into web services automatically, via a two-click process. The resulting web services can be registered on a central server and made publicly available. Alternatively, users can make web services available on their own servers, after installing the web application framework, which is part of the extension to U-Compare. We have performed a user-oriented evaluation of the proposed extension, by asking users who have tested the enhanced functionality of U-Compare to complete questionnaires that assess its functionality, reliability, usability, efficiency and maintainability. The results obtained reveal that the new functionality is well received by users. The web services produced by U-Compare are built on top of open standards, i.e., REST and SOAP protocols, and therefore, they are decoupled from the underlying platform. Exported workflows can be integrated with any application that supports these open standards. We demonstrate how the newly extended U-Compare enhances the cross-platform interoperability of workflows, by seamlessly importing a number of text mining workflow web services exported from U-Compare into Taverna, i.e., a generic scientific workflow construction platform.
Deploying and sharing U-Compare workflows as web services
2013-01-01
Background U-Compare is a text mining platform that allows the construction, evaluation and comparison of text mining workflows. U-Compare contains a large library of components that are tuned to the biomedical domain. Users can rapidly develop biomedical text mining workflows by mixing and matching U-Compare’s components. Workflows developed using U-Compare can be exported and sent to other users who, in turn, can import and re-use them. However, the resulting workflows are standalone applications, i.e., software tools that run and are accessible only via a local machine, and that can only be run with the U-Compare platform. Results We address the above issues by extending U-Compare to convert standalone workflows into web services automatically, via a two-click process. The resulting web services can be registered on a central server and made publicly available. Alternatively, users can make web services available on their own servers, after installing the web application framework, which is part of the extension to U-Compare. We have performed a user-oriented evaluation of the proposed extension, by asking users who have tested the enhanced functionality of U-Compare to complete questionnaires that assess its functionality, reliability, usability, efficiency and maintainability. The results obtained reveal that the new functionality is well received by users. Conclusions The web services produced by U-Compare are built on top of open standards, i.e., REST and SOAP protocols, and therefore, they are decoupled from the underlying platform. Exported workflows can be integrated with any application that supports these open standards. We demonstrate how the newly extended U-Compare enhances the cross-platform interoperability of workflows, by seamlessly importing a number of text mining workflow web services exported from U-Compare into Taverna, i.e., a generic scientific workflow construction platform. PMID:23419017
Biomedical text mining for research rigor and integrity: tasks, challenges, directions.
Kilicoglu, Halil
2017-06-13
An estimated quarter of a trillion US dollars is invested in the biomedical research enterprise annually. There is growing alarm that a significant portion of this investment is wasted because of problems in reproducibility of research findings and in the rigor and integrity of research conduct and reporting. Recent years have seen a flurry of activities focusing on standardization and guideline development to enhance the reproducibility and rigor of biomedical research. Research activity is primarily communicated via textual artifacts, ranging from grant applications to journal publications. These artifacts can be both the source and the manifestation of practices leading to research waste. For example, an article may describe a poorly designed experiment, or the authors may reach conclusions not supported by the evidence presented. In this article, we pose the question of whether biomedical text mining techniques can assist the stakeholders in the biomedical research enterprise in doing their part toward enhancing research integrity and rigor. In particular, we identify four key areas in which text mining techniques can make a significant contribution: plagiarism/fraud detection, ensuring adherence to reporting guidelines, managing information overload and accurate citation/enhanced bibliometrics. We review the existing methods and tools for specific tasks, if they exist, or discuss relevant research that can provide guidance for future work. With the exponential increase in biomedical research output and the ability of text mining approaches to perform automatic tasks at large scale, we propose that such approaches can support tools that promote responsible research practices, providing significant benefits for the biomedical research enterprise. Published by Oxford University Press 2017. This work is written by a US Government employee and is in the public domain in the US.
May, Brian H; Zhang, Anthony; Lu, Yubo; Lu, Chuanjian; Xue, Charlie C L
2014-12-01
This project aimed to develop an approach to evaluating information contained in the premodern Traditional Chinese Medicine (TCM) literature that was (1) comprehensive, systematic, and replicable and (2) able to produce quantifiable output that could be used to answer specific research questions in order to identify natural products for clinical and experimental research. The project involved two stages. In stage 1, 14 TCM collections and compendia were evaluated for suitability as sources for searching; 8 of these were compared in detail. The results were published in the Journal of Alternative and Complementary Medicine. Stage 2 developed a text-mining approach for two of these sources. The text-mining approach was developed for Zhong Hua Yi Dian; Encyclopaedia of Traditional Chinese Medicine, 4th edition) and Zhong Yi Fang Ji Da Ci Dian; Great Compendium of Chinese Medical Formulae). This approach developed procedures for search term selection; methods for screening, classifying, and scoring data; procedures for systematic searching and data extraction; data checking procedures; and approaches for analyzing results. Examples are provided for studies of memory impairment and diabetic nephropathy, and issues relating to data interpretation are discussed. This approach to the analysis of large collections of the premodern TCM literature uses widely available sources and provides a text-mining approach that is systematic, replicable, and adaptable to the requirements of the particular project. Researchers can use these methods to explore changes in the names and conceptions of a disease over time, to identify which therapeutic methods have been more or less frequently used in different eras for particular disorders, and to assist in the selection of natural products for research efforts.
Incorporating linguistic knowledge for learning distributed word representations.
Wang, Yan; Liu, Zhiyuan; Sun, Maosong
2015-01-01
Combined with neural language models, distributed word representations achieve significant advantages in computational linguistics and text mining. Most existing models estimate distributed word vectors from large-scale data in an unsupervised fashion, which, however, do not take rich linguistic knowledge into consideration. Linguistic knowledge can be represented as either link-based knowledge or preference-based knowledge, and we propose knowledge regularized word representation models (KRWR) to incorporate these prior knowledge for learning distributed word representations. Experiment results demonstrate that our estimated word representation achieves better performance in task of semantic relatedness ranking. This indicates that our methods can efficiently encode both prior knowledge from knowledge bases and statistical knowledge from large-scale text corpora into a unified word representation model, which will benefit many tasks in text mining.
Incorporating Linguistic Knowledge for Learning Distributed Word Representations
Wang, Yan; Liu, Zhiyuan; Sun, Maosong
2015-01-01
Combined with neural language models, distributed word representations achieve significant advantages in computational linguistics and text mining. Most existing models estimate distributed word vectors from large-scale data in an unsupervised fashion, which, however, do not take rich linguistic knowledge into consideration. Linguistic knowledge can be represented as either link-based knowledge or preference-based knowledge, and we propose knowledge regularized word representation models (KRWR) to incorporate these prior knowledge for learning distributed word representations. Experiment results demonstrate that our estimated word representation achieves better performance in task of semantic relatedness ranking. This indicates that our methods can efficiently encode both prior knowledge from knowledge bases and statistical knowledge from large-scale text corpora into a unified word representation model, which will benefit many tasks in text mining. PMID:25874581
Text Mining of UU-ITE Implementation in Indonesia
NASA Astrophysics Data System (ADS)
Hakim, Lukmanul; Kusumasari, Tien F.; Lubis, Muharman
2018-04-01
At present, social media and networks act as one of the main platforms for sharing information, idea, thought and opinions. Many people share their knowledge and express their views on the specific topics or current hot issues that interest them. The social media texts have rich information about the complaints, comments, recommendation and suggestion as the automatic reaction or respond to government initiative or policy in order to overcome certain issues.This study examines the sentiment from netizensas part of citizen who has vocal sound about the implementation of UU ITE as the first cyberlaw in Indonesia as a means to identify the current tendency of citizen perception. To perform text mining techniques, this study used Twitter Rest API while R programming was utilized for the purpose of classification analysis based on hierarchical cluster.
Interactive text mining with Pipeline Pilot: a bibliographic web-based tool for PubMed.
Vellay, S G P; Latimer, N E Miller; Paillard, G
2009-06-01
Text mining has become an integral part of all research in the medical field. Many text analysis software platforms support particular use cases and only those. We show an example of a bibliographic tool that can be used to support virtually any use case in an agile manner. Here we focus on a Pipeline Pilot web-based application that interactively analyzes and reports on PubMed search results. This will be of interest to any scientist to help identify the most relevant papers in a topical area more quickly and to evaluate the results of query refinement. Links with Entrez databases help both the biologist and the chemist alike. We illustrate this application with Leishmaniasis, a neglected tropical disease, as a case study.
Martinovich, Viviana
2016-01-01
This text is part of a series of interviews that seek to explore diverse editing and publication experiences and the similar difficulties Latin America journals face, in order to begin to encounter contextualized solutions that articulate previously isolated efforts. In this interview, carried out in July 2015 in the Instituto de Salud Colectiva [Institute of Collective Health] of the Universidad Nacional de Lanús, Carlos Augusto Monteiro speaks to us about funding, work processes, technological innovations, and establishing teams and roles. He analyzes the importance of Latin American journals as a platform for spreading research relevant to national agendas, and the connection between journal performance, the quality of graduate training programs and research quality.
System, method and apparatus for generating phrases from a database
NASA Technical Reports Server (NTRS)
McGreevy, Michael W. (Inventor)
2004-01-01
A phrase generation is a method of generating sequences of terms, such as phrases, that may occur within a database of subsets containing sequences of terms, such as text. A database is provided and a relational model of the database is created. A query is then input. The query includes a term or a sequence of terms or multiple individual terms or multiple sequences of terms or combinations thereof. Next, several sequences of terms that are contextually related to the query are assembled from contextual relations in the model of the database. The sequences of terms are then sorted and output. Phrase generation can also be an iterative process used to produce sequences of terms from a relational model of a database.
Chen, Chuyun; Hong, Jiaming; Zhou, Weilin; Lin, Guohua; Wang, Zhengfei; Zhang, Qufei; Lu, Cuina; Lu, Lihong
2017-07-12
To construct a knowledge platform of acupuncture ancient books based on data mining technology, and to provide retrieval service for users. The Oracle 10 g database was applied and JAVA was selected as development language; based on the standard library and ancient books database established by manual entry, a variety of data mining technologies, including word segmentation, speech tagging, dependency analysis, rule extraction, similarity calculation, ambiguity analysis, supervised classification technology were applied to achieve text automatic extraction of ancient books; in the last, through association mining and decision analysis, the comprehensive and intelligent analysis of disease and symptom, meridians, acupoints, rules of acupuncture and moxibustion in acupuncture ancient books were realized, and retrieval service was provided for users through structure of browser/server (B/S). The platform realized full-text retrieval, word frequency analysis and association analysis; when diseases or acupoints were searched, the frequencies of meridian, acupoints (diseases) and techniques were presented from high to low, meanwhile the support degree and confidence coefficient between disease and acupoints (special acupoint), acupoints and acupoints in prescription, disease or acupoints and technique were presented. The experience platform of acupuncture ancient books based on data mining technology could be used as a reference for selection of disease, meridian and acupoint in clinical treatment and education of acupuncture and moxibustion.
Public reactions to e-cigarette regulations on Twitter: a text mining analysis.
Lazard, Allison J; Wilcox, Gary B; Tuttle, Hannah M; Glowacki, Elizabeth M; Pikowski, Jessica
2017-12-01
In May 2016, the Food and Drug Administration (FDA) issued a final rule that deemed e-cigarettes to be within their regulatory authority as a tobacco product. News and opinions about the regulation were shared on social media platforms, such as Twitter, which can play an important role in shaping the public's attitudes. We analysed information shared on Twitter for insights into initial public reactions. A text mining approach was used to uncover important topics among reactions to the e-cigarette regulations on Twitter. SAS Text Miner V.12.1 software was used for descriptive text mining to uncover the primary topics from tweets collected from May 1 to May 17 2016 using NUVI software to gather the data. A total of nine topics were generated. These topics reveal initial reactions to whether the FDA's e-cigarette regulations will benefit or harm public health, how the regulations will impact the emerging e-cigarette market and efforts to share the news. The topics were dominated by negative or mixed reactions. In the days following the FDA's announcement of the new deeming regulations, the public reaction on Twitter was largely negative. Public health advocates should consider using social media outlets to better communicate the policy's intentions, reach and potential impact for public good to create a more balanced conversation. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Retrieval practice enhances the ability to evaluate complex physiology information.
Dobson, John; Linderholm, Tracy; Perez, Jose
2018-05-01
Many investigations have shown that retrieval practice enhances the recall of different types of information, including both medical and physiological, but the effects of the strategy on higher-order thinking, such as evaluation, are less clear. The primary aim of this study was to compare how effectively retrieval practice and repeated studying (i.e. reading) strategies facilitated the evaluation of two research articles that advocated dissimilar conclusions. A secondary aim was to determine if that comparison was affected by using those same strategies to first learn important contextual information about the articles. Participants were randomly assigned to learn three texts that provided background information about the research articles either by studying them four consecutive times (Text-S) or by studying and then retrieving them two consecutive times (Text-R). Half of both the Text-S and Text-R groups were then randomly assigned to learn two physiology research articles by studying them four consecutive times (Article-S) and the other half learned them by studying and then retrieving them two consecutive times (Article-R). Participants then completed two assessments: the first tested their ability to critique the research articles and the second tested their recall of the background texts. On the article critique assessment, the Article-R groups' mean scores of 33.7 ± 4.7% and 35.4 ± 4.5% (Text-R then Article-R group and Text-S then Article-R group, respectively) were both significantly (p < 0.05) higher than the two Article-S mean scores of 19.5 ± 4.4% and 21.7 ± 2.9% (Text-S then Article-S group and Text-R then Article-S group, respectively). There was no difference between the two Article-R groups on the article critique assessment, indicating those scores weren't affected by the different contextual learning strategies. Retrieval practice promoted superior critical evaluation of the research articles, and the results also indicated the strategy enhanced the recall of background information. © 2018 John Wiley & Sons Ltd and The Association for the Study of Medical Education.
2015-01-01
Background Sufficient knowledge of molecular and genetic interactions, which comprise the entire basis of the functioning of living systems, is one of the necessary requirements for successfully answering almost any research question in the field of biology and medicine. To date, more than 24 million scientific papers can be found in PubMed, with many of them containing descriptions of a wide range of biological processes. The analysis of such tremendous amounts of data requires the use of automated text-mining approaches. Although a handful of tools have recently been developed to meet this need, none of them provide error-free extraction of highly detailed information. Results The ANDSystem package was developed for the reconstruction and analysis of molecular genetic networks based on an automated text-mining technique. It provides a detailed description of the various types of interactions between genes, proteins, microRNA's, metabolites, cellular components, pathways and diseases, taking into account the specificity of cell lines and organisms. Although the accuracy of ANDSystem is comparable to other well known text-mining tools, such as Pathway Studio and STRING, it outperforms them in having the ability to identify an increased number of interaction types. Conclusion The use of ANDSystem, in combination with Pathway Studio and STRING, can improve the quality of the automated reconstruction of molecular and genetic networks. ANDSystem should provide a useful tool for researchers working in a number of different fields, including biology, biotechnology, pharmacology and medicine. PMID:25881313
Tagline: Information Extraction for Semi-Structured Text Elements in Medical Progress Notes
ERIC Educational Resources Information Center
Finch, Dezon Kile
2012-01-01
Text analysis has become an important research activity in the Department of Veterans Affairs (VA). Statistical text mining and natural language processing have been shown to be very effective for extracting useful information from medical documents. However, neither of these techniques is effective at extracting the information stored in…
ERIC Educational Resources Information Center
Walkington, Candace; Clinton, Virginia; Ritter, Steven N.; Nathan, Mitchell J.
2015-01-01
Solving mathematics story problems requires text comprehension skills. However, previous studies have found few connections between traditional measures of text readability and performance on story problems. We hypothesized that recently developed measures of readability and topic incidence measured by text-mining tools may illuminate associations…
New challenges for text mining: mapping between text and manually curated pathways
Oda, Kanae; Kim, Jin-Dong; Ohta, Tomoko; Okanohara, Daisuke; Matsuzaki, Takuya; Tateisi, Yuka; Tsujii, Jun'ichi
2008-01-01
Background Associating literature with pathways poses new challenges to the Text Mining (TM) community. There are three main challenges to this task: (1) the identification of the mapping position of a specific entity or reaction in a given pathway, (2) the recognition of the causal relationships among multiple reactions, and (3) the formulation and implementation of required inferences based on biological domain knowledge. Results To address these challenges, we constructed new resources to link the text with a model pathway; they are: the GENIA pathway corpus with event annotation and NF-kB pathway. Through their detailed analysis, we address the untapped resource, ‘bio-inference,’ as well as the differences between text and pathway representation. Here, we show the precise comparisons of their representations and the nine classes of ‘bio-inference’ schemes observed in the pathway corpus. Conclusions We believe that the creation of such rich resources and their detailed analysis is the significant first step for accelerating the research of the automatic construction of pathway from text. PMID:18426550
Sentiment analysis of Arabic tweets using text mining techniques
NASA Astrophysics Data System (ADS)
Al-Horaibi, Lamia; Khan, Muhammad Badruddin
2016-07-01
Sentiment analysis has become a flourishing field of text mining and natural language processing. Sentiment analysis aims to determine whether the text is written to express positive, negative, or neutral emotions about a certain domain. Most sentiment analysis researchers focus on English texts, with very limited resources available for other complex languages, such as Arabic. In this study, the target was to develop an initial model that performs satisfactorily and measures Arabic Twitter sentiment by using machine learning approach, Naïve Bayes and Decision Tree for classification algorithms. The datasets used contains more than 2,000 Arabic tweets collected from Twitter. We performed several experiments to check the performance of the two algorithms classifiers using different combinations of text-processing functions. We found that available facilities for Arabic text processing need to be made from scratch or improved to develop accurate classifiers. The small functionalities developed by us in a Python language environment helped improve the results and proved that sentiment analysis in the Arabic domain needs lot of work on the lexicon side.
Dias, Alvaro Machado; Mansur, Carlos Gustavo; Myczkowski, Martin; Marcolin, Marco
2011-06-01
Transcranial magnetic stimulation (TMS) has played an important role in the fields of psychiatry, neurology and neuroscience, since its emergence in the mid-1980s; and several high quality reviews have been produced since then. Most high quality reviews serve as powerful tools in the evaluation of predefined tendencies, but they cannot actually uncover new trends within the literature. However, special statistical procedures to 'mine' the literature have been developed which aid in achieving such a goal. This paper aims to uncover patterns within the literature on TMS as a whole, as well as specific trends in the recent literature on TMS for the treatment of depression. Data mining and text mining. Currently there are 7299 publications, which can be clustered in four essential themes. Considering the frequency of the core psychiatric concepts within the indexed literature, the main results are: depression is present in 13.5% of the publications; Parkinson's disease in 2.94%; schizophrenia in 2.76%; bipolar disorder in 0.158%; and anxiety disorder in 0.142% of all the publications indexed in PubMed. Several other perspectives are discussed in the article. Copyright © 2011 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Gardiner, Veronica; Cumming-Potvin, Wendy
2015-01-01
The need to diversify digital communications for a global twenty-first century has prompted many theorists to reimagine literacy teaching and learning. Although the new Australian curriculum acknowledges multimodality and multimodal texts, professional learning continues to privilege print-focused literacy. Utilizing a multiliteracies' and…
Visual Indictment: A Contextual Analysis of "The Kallikak Family" Photographs
ERIC Educational Resources Information Center
Elks, Martin A.
2005-01-01
"The Kallikak Family" is a pre-eminent text in the history of mental retardation and psychology in which Goddard (1912) claimed he proved the heritability of feeble-mindedness and the necessity of institutionalization. The book contains 14 photographs, some of which have been retouched. These photographs were interpreted in this paper within the…
"A Constant Transit of Finding": Fantasy as Realisation in "Pan's Labyrinth"
ERIC Educational Resources Information Center
Clark, Roger; McDonald, Keith
2010-01-01
This article considers Guillermo Del Toro's "Pan's Labyrinth" as a text which utilises key codes and conventions of children's literature as a means of encountering the trauma of Fascism. The article begins by placing "Pan's Labyrinth" at a contextual crossroads involving fairy tale and a Spanish cinematic tradition and…
Local Assessment: Using Genre Analysis to Validate Directed Self-Placement
ERIC Educational Resources Information Center
Gere, Anne Ruggles; Aull, Laura; Escudero, Moises Damian Perales; Lancaster, Zak; Lei, Elizabeth Vander
2013-01-01
Grounded in the principle that writing assessment should be locally developed and controlled, this article describes a study that contextualizes and validates the decisions that students make in the modified Directed Self-Placement (DSP) process used at the University of Michigan. The authors present results of a detailed text analysis of…
The Curricular Value of Teaching about Immigration through Picture Book Thematic Text Sets
ERIC Educational Resources Information Center
Bersh, Luz Carime
2013-01-01
This article offers a contextual analysis of contemporary immigration issues impacting the institutions in the United States, in particular the school. It discusses the importance of addressing this theme in the classroom and presents its curricular value in the elementary and middle school social studies and interdisciplinary curricula. Using a…
Text mining by Tsallis entropy
NASA Astrophysics Data System (ADS)
Jamaati, Maryam; Mehri, Ali
2018-01-01
Long-range correlations between the elements of natural languages enable them to convey very complex information. Complex structure of human language, as a manifestation of natural languages, motivates us to apply nonextensive statistical mechanics in text mining. Tsallis entropy appropriately ranks the terms' relevance to document subject, taking advantage of their spatial correlation length. We apply this statistical concept as a new powerful word ranking metric in order to extract keywords of a single document. We carry out an experimental evaluation, which shows capability of the presented method in keyword extraction. We find that, Tsallis entropy has reliable word ranking performance, at the same level of the best previous ranking methods.
Summary of the BioLINK SIG 2013 meeting at ISMB/ECCB 2013.
Verspoor, Karin; Shatkay, Hagit; Hirschman, Lynette; Blaschke, Christian; Valencia, Alfonso
2015-01-15
The ISMB Special Interest Group on Linking Literature, Information and Knowledge for Biology (BioLINK) organized a one-day workshop at ISMB/ECCB 2013 in Berlin, Germany. The theme of the workshop was 'Roles for text mining in biomedical knowledge discovery and translational medicine'. This summary reviews the outcomes of the workshop. Meeting themes included concept annotation methods and applications, extraction of biological relationships and the use of text-mined data for biological data analysis. All articles are available at http://biolinksig.org/proceedings-online/. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Xiaoyang, Zhong; Hong, Ren; Jingxin, Gao
2018-03-01
With the gradual maturity of the real estate market in China, urban housing prices are also better able to reflect changes in market demand and the commodity property of commercial housing has become more and more obvious. Many scholars in our country have made a lot of research on the factors that affect the price of commercial housing in the city and the number of related research papers increased rapidly. These scholars’ research results provide valuable wealth to solve the problem of urban housing price changes in our country. However, due to the huge amount of literature, the vast amount of information is submerged in the library and cannot be fully utilized. Text mining technology has been widely concerned and developed in the field of Humanities and Social Sciences in recent years. But through the text mining technology to obtain the influence factors on the price of urban commercial housing is still relatively rare. In this paper, the research results of the existing scholars were excavated by text mining algorithm based on support vector machine in order to further make full use of the current research results and to provide a reference for stabilizing housing prices.
Jurca, Gabriela; Addam, Omar; Aksac, Alper; Gao, Shang; Özyer, Tansel; Demetrick, Douglas; Alhajj, Reda
2016-04-26
Breast cancer is a serious disease which affects many women and may lead to death. It has received considerable attention from the research community. Thus, biomedical researchers aim to find genetic biomarkers indicative of the disease. Novel biomarkers can be elucidated from the existing literature. However, the vast amount of scientific publications on breast cancer make this a daunting task. This paper presents a framework which investigates existing literature data for informative discoveries. It integrates text mining and social network analysis in order to identify new potential biomarkers for breast cancer. We utilized PubMed for the testing. We investigated gene-gene interactions, as well as novel interactions such as gene-year, gene-country, and abstract-country to find out how the discoveries varied over time and how overlapping/diverse are the discoveries and the interest of various research groups in different countries. Interesting trends have been identified and discussed, e.g., different genes are highlighted in relationship to different countries though the various genes were found to share functionality. Some text analysis based results have been validated against results from other tools that predict gene-gene relations and gene functions.
Dura, Elzbieta; Muresan, Sorel; Engkvist, Ola; Blomberg, Niklas; Chen, Hongming
2014-05-01
In the pharmaceutical industry, efficiently mining pharmacological data from the rapidly increasing scientific literature is very crucial for many aspects of the drug discovery process such as target validation, tool compound selection etc. A quick and reliable way is needed to collect literature assertions of selected compounds' biological and pharmacological effects in order to assist the hypothesis generation and decision-making of drug developers. INFUSIS, the text mining system presented here, extracts data on chemical compounds from PubMed abstracts. It involves an extensive use of customized natural language processing besides a co-occurrence analysis. As a proof-of-concept study, INFUSIS was used to search in abstract texts for several obesity/diabetes related pharmacological effects of the compounds included in a compound dictionary. The system extracts assertions regarding the pharmacological effects of each given compound and scores them by the relevance. For each selected pharmacological effect, the highest scoring assertions in 100 abstracts were manually evaluated, i.e. 800 abstracts in total. The overall accuracy for the inferred assertions was over 90 percent. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chen, Hongyu; Martin, Bronwen; Daimon, Caitlin M; Maudsley, Stuart
2013-01-01
Text mining is rapidly becoming an essential technique for the annotation and analysis of large biological data sets. Biomedical literature currently increases at a rate of several thousand papers per week, making automated information retrieval methods the only feasible method of managing this expanding corpus. With the increasing prevalence of open-access journals and constant growth of publicly-available repositories of biomedical literature, literature mining has become much more effective with respect to the extraction of biomedically-relevant data. In recent years, text mining of popular databases such as MEDLINE has evolved from basic term-searches to more sophisticated natural language processing techniques, indexing and retrieval methods, structural analysis and integration of literature with associated metadata. In this review, we will focus on Latent Semantic Indexing (LSI), a computational linguistics technique increasingly used for a variety of biological purposes. It is noted for its ability to consistently outperform benchmark Boolean text searches and co-occurrence models at information retrieval and its power to extract indirect relationships within a data set. LSI has been used successfully to formulate new hypotheses, generate novel connections from existing data, and validate empirical data.
Biomedical data mining in clinical routine: expanding the impact of hospital information systems.
Müller, Marcel; Markó, Kornel; Daumke, Philipp; Paetzold, Jan; Roesner, Arnold; Klar, Rüdiger
2007-01-01
In this paper we want to describe how the promising technology of biomedical data mining can improve the use of hospital information systems: a large set of unstructured, narrative clinical data from a dermatological university hospital like discharge letters or other dermatological reports were processed through a morpho-semantic text retrieval engine ("MorphoSaurus") and integrated with other clinical data using a web-based interface and brought into daily clinical routine. The user evaluation showed a very high user acceptance - this system seems to meet the clinicians' requirements for a vertical data mining in the electronic patient records. What emerges is the need for integration of biomedical data mining into hospital information systems for clinical, scientific, educational and economic reasons.
Mining adverse drug reactions from online healthcare forums using hidden Markov model.
Sampathkumar, Hariprasad; Chen, Xue-wen; Luo, Bo
2014-10-23
Adverse Drug Reactions are one of the leading causes of injury or death among patients undergoing medical treatments. Not all Adverse Drug Reactions are identified before a drug is made available in the market. Current post-marketing drug surveillance methods, which are based purely on voluntary spontaneous reports, are unable to provide the early indications necessary to prevent the occurrence of such injuries or fatalities. The objective of this research is to extract reports of adverse drug side-effects from messages in online healthcare forums and use them as early indicators to assist in post-marketing drug surveillance. We treat the task of extracting adverse side-effects of drugs from healthcare forum messages as a sequence labeling problem and present a Hidden Markov Model(HMM) based Text Mining system that can be used to classify a message as containing drug side-effect information and then extract the adverse side-effect mentions from it. A manually annotated dataset from http://www.medications.com is used in the training and validation of the HMM based Text Mining system. A 10-fold cross-validation on the manually annotated dataset yielded on average an F-Score of 0.76 from the HMM Classifier, in comparison to 0.575 from the Baseline classifier. Without the Plain Text Filter component as a part of the Text Processing module, the F-Score of the HMM Classifier was reduced to 0.378 on average, while absence of the HTML Filter component was found to have no impact. Reducing the Drug names dictionary size by half, on average reduced the F-Score of the HMM Classifier to 0.359, while a similar reduction to the side-effects dictionary yielded an F-Score of 0.651 on average. Adverse side-effects mined from http://www.medications.com and http://www.steadyhealth.com were found to match the Adverse Drug Reactions on the Drug Package Labels of several drugs. In addition, some novel adverse side-effects, which can be potential Adverse Drug Reactions, were also identified. The results from the HMM based Text Miner are encouraging to pursue further enhancements to this approach. The mined novel side-effects can act as early indicators for health authorities to help focus their efforts in post-marketing drug surveillance.
Automating Network Node Behavior Characterization by Mining Communication Patterns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carroll, Thomas E.; Chikkagoudar, Satish; Arthur-Durett, Kristine M.
Enterprise networks of scale are complex, dynamic computing environments that respond to evolv- ing business objectives and requirements. Characteriz- ing system behaviors in these environments is essential for network management and cyber security operations. Characterization of system’s communication is typical and is supported using network flow information (NetFlow). Related work has characterized behavior using theoretical graph metrics; results are often difficult to interpret by enterprise staff. We propose a different approach, where flow information is mapped to sets of tags that contextualize the data in terms of network principals and enterprise concepts. Frequent patterns are then extracted and are expressedmore » as behaviors. Behaviors can be com- pared, identifying systems expressing similar behaviors. We evaluate the approach using flow information collected by a third party.« less
Utilizing Dental Electronic Health Records Data to Predict Risk for Periodontal Disease.
Thyvalikakath, Thankam P; Padman, Rema; Vyawahare, Karnali; Darade, Pratiksha; Paranjape, Rhucha
2015-01-01
Periodontal disease is a major cause for tooth loss and adversely affects individuals' oral health and quality of life. Research shows its potential association with systemic diseases like diabetes and cardiovascular disease, and social habits such as smoking. This study explores mining potential risk factors from dental electronic health records to predict and display patients' contextualized risk for periodontal disease. We retrieved relevant risk factors from structured and unstructured data on 2,370 patients who underwent comprehensive oral examinations at the Indiana University School of Dentistry, Indianapolis, IN, USA. Predicting overall risk and displaying relationships between risk factors and their influence on the patient's oral and general health can be a powerful educational and disease management tool for patients and clinicians at the point of care.
Müller, H-M; Van Auken, K M; Li, Y; Sternberg, P W
2018-03-09
The biomedical literature continues to grow at a rapid pace, making the challenge of knowledge retrieval and extraction ever greater. Tools that provide a means to search and mine the full text of literature thus represent an important way by which the efficiency of these processes can be improved. We describe the next generation of the Textpresso information retrieval system, Textpresso Central (TPC). TPC builds on the strengths of the original system by expanding the full text corpus to include the PubMed Central Open Access Subset (PMC OA), as well as the WormBase C. elegans bibliography. In addition, TPC allows users to create a customized corpus by uploading and processing documents of their choosing. TPC is UIMA compliant, to facilitate compatibility with external processing modules, and takes advantage of Lucene indexing and search technology for efficient handling of millions of full text documents. Like Textpresso, TPC searches can be performed using keywords and/or categories (semantically related groups of terms), but to provide better context for interpreting and validating queries, search results may now be viewed as highlighted passages in the context of full text. To facilitate biocuration efforts, TPC also allows users to select text spans from the full text and annotate them, create customized curation forms for any data type, and send resulting annotations to external curation databases. As an example of such a curation form, we describe integration of TPC with the Noctua curation tool developed by the Gene Ontology (GO) Consortium. Textpresso Central is an online literature search and curation platform that enables biocurators and biomedical researchers to search and mine the full text of literature by integrating keyword and category searches with viewing search results in the context of the full text. It also allows users to create customized curation interfaces, use those interfaces to make annotations linked to supporting evidence statements, and then send those annotations to any database in the world. Textpresso Central URL: http://www.textpresso.org/tpc.
Complex Event Processing for Content-Based Text, Image, and Video Retrieval
2016-06-01
NY): Wiley- Interscience; 2000. Feldman R, Sanger J. The text mining handbook: advanced approaches in analyzing unstructured data. New York (NY...ARL-TR-7705 ● JUNE 2016 US Army Research Laboratory Complex Event Processing for Content-Based Text , Image, and Video Retrieval...ARL-TR-7705 ● JUNE 2016 US Army Research Laboratory Complex Event Processing for Content-Based Text , Image, and Video Retrieval
Sequence to Sequence - Video to Text
2015-12-11
Saenko, and S. Guadarrama. Generating natural-language video descriptions using text - mined knowledge. In AAAI, July 2013. 2 [20] P. Kuznetsova, V...Sequence to Sequence – Video to Text Subhashini Venugopalan1 Marcus Rohrbach2,4 Jeff Donahue2 Raymond Mooney1 Trevor Darrell2 Kate Saenko3...1. Introduction Describing visual content with natural language text has recently received increased interest, especially describing images with a
26 CFR 509.101 - Introductory.
Code of Federal Regulations, 2010 CFR
2010-04-01
... commercial profits” includes manufacturing, mercantile, mining, financial and insurance profits, but does not..., in duplicate, in the English and German languages, the two texts having equal authenticity, this 24th... or remuneration of public entertainers.” And whereas the text of the aforesaid reservation was...
Intelligent bar chart plagiarism detection in documents.
Al-Dabbagh, Mohammed Mumtaz; Salim, Naomie; Rehman, Amjad; Alkawaz, Mohammed Hazim; Saba, Tanzila; Al-Rodhaan, Mznah; Al-Dhelaan, Abdullah
2014-01-01
This paper presents a novel features mining approach from documents that could not be mined via optical character recognition (OCR). By identifying the intimate relationship between the text and graphical components, the proposed technique pulls out the Start, End, and Exact values for each bar. Furthermore, the word 2-gram and Euclidean distance methods are used to accurately detect and determine plagiarism in bar charts.
Intelligent Bar Chart Plagiarism Detection in Documents
Al-Dabbagh, Mohammed Mumtaz; Salim, Naomie; Alkawaz, Mohammed Hazim; Saba, Tanzila; Al-Rodhaan, Mznah; Al-Dhelaan, Abdullah
2014-01-01
This paper presents a novel features mining approach from documents that could not be mined via optical character recognition (OCR). By identifying the intimate relationship between the text and graphical components, the proposed technique pulls out the Start, End, and Exact values for each bar. Furthermore, the word 2-gram and Euclidean distance methods are used to accurately detect and determine plagiarism in bar charts. PMID:25309952
BioTextQuest(+): a knowledge integration platform for literature mining and concept discovery.
Papanikolaou, Nikolas; Pavlopoulos, Georgios A; Pafilis, Evangelos; Theodosiou, Theodosios; Schneider, Reinhard; Satagopam, Venkata P; Ouzounis, Christos A; Eliopoulos, Aristides G; Promponas, Vasilis J; Iliopoulos, Ioannis
2014-11-15
The iterative process of finding relevant information in biomedical literature and performing bioinformatics analyses might result in an endless loop for an inexperienced user, considering the exponential growth of scientific corpora and the plethora of tools designed to mine PubMed(®) and related biological databases. Herein, we describe BioTextQuest(+), a web-based interactive knowledge exploration platform with significant advances to its predecessor (BioTextQuest), aiming to bridge processes such as bioentity recognition, functional annotation, document clustering and data integration towards literature mining and concept discovery. BioTextQuest(+) enables PubMed and OMIM querying, retrieval of abstracts related to a targeted request and optimal detection of genes, proteins, molecular functions, pathways and biological processes within the retrieved documents. The front-end interface facilitates the browsing of document clustering per subject, the analysis of term co-occurrence, the generation of tag clouds containing highly represented terms per cluster and at-a-glance popup windows with information about relevant genes and proteins. Moreover, to support experimental research, BioTextQuest(+) addresses integration of its primary functionality with biological repositories and software tools able to deliver further bioinformatics services. The Google-like interface extends beyond simple use by offering a range of advanced parameterization for expert users. We demonstrate the functionality of BioTextQuest(+) through several exemplary research scenarios including author disambiguation, functional term enrichment, knowledge acquisition and concept discovery linking major human diseases, such as obesity and ageing. The service is accessible at http://bioinformatics.med.uoc.gr/biotextquest. g.pavlopoulos@gmail.com or georgios.pavlopoulos@esat.kuleuven.be Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
PLAN2L: a web tool for integrated text mining and literature-based bioentity relation extraction.
Krallinger, Martin; Rodriguez-Penagos, Carlos; Tendulkar, Ashish; Valencia, Alfonso
2009-07-01
There is an increasing interest in using literature mining techniques to complement information extracted from annotation databases or generated by bioinformatics applications. Here we present PLAN2L, a web-based online search system that integrates text mining and information extraction techniques to access systematically information useful for analyzing genetic, cellular and molecular aspects of the plant model organism Arabidopsis thaliana. Our system facilitates a more efficient retrieval of information relevant to heterogeneous biological topics, from implications in biological relationships at the level of protein interactions and gene regulation, to sub-cellular locations of gene products and associations to cellular and developmental processes, i.e. cell cycle, flowering, root, leaf and seed development. Beyond single entities, also predefined pairs of entities can be provided as queries for which literature-derived relations together with textual evidences are returned. PLAN2L does not require registration and is freely accessible at http://zope.bioinfo.cnio.es/plan2l.
Exponential gain of randomness certified by quantum contextuality
NASA Astrophysics Data System (ADS)
Um, Mark; Zhang, Junhua; Wang, Ye; Wang, Pengfei; Kim, Kihwan
2017-04-01
We demonstrate the protocol of exponential gain of randomness certified by quantum contextuality in a trapped ion system. The genuine randomness can be produced by quantum principle and certified by quantum inequalities. Recently, randomness expansion protocols based on inequality of Bell-text and Kochen-Specker (KS) theorem, have been demonstrated. These schemes have been theoretically innovated to exponentially expand the randomness and amplify the randomness from weak initial random seed. Here, we report the experimental evidence of such exponential expansion of randomness. In the experiment, we use three states of a 138Ba + ion between a ground state and two quadrupole states. In the 138Ba + ion system, we do not have detection loophole and we apply a methods to rule out certain hidden variable models that obey a kind of extended noncontextuality.
Mining and beneficiation: A review of possible lunar applications
NASA Technical Reports Server (NTRS)
Chamberlain, Peter G.
1991-01-01
Successful exploration of Mars and outer space may require base stations strategically located on the Moon. Such bases must develop a certain self-sufficiency, particularly in the critical life support materials, fuel components, and construction materials. Technology is reviewed for the first steps in lunar resource recovery-mining and beneficiation. The topic is covered in three main categories: site selection; mining; and beneficiation. It will also include (in less detail) in-situ processes. The text described mining technology ranging from simple diggings and hauling vehicles (the strawman) to more specialized technology including underground excavation methods. The section of beneficiation emphasizes dry separation techniques and methods of sorting the ore by particle size. In-situ processes, chemical and thermal, are identified to stimulate further thinking by future researchers.
DiMeX: A Text Mining System for Mutation-Disease Association Extraction.
Mahmood, A S M Ashique; Wu, Tsung-Jung; Mazumder, Raja; Vijay-Shanker, K
2016-01-01
The number of published articles describing associations between mutations and diseases is increasing at a fast pace. There is a pressing need to gather such mutation-disease associations into public knowledge bases, but manual curation slows down the growth of such databases. We have addressed this problem by developing a text-mining system (DiMeX) to extract mutation to disease associations from publication abstracts. DiMeX consists of a series of natural language processing modules that preprocess input text and apply syntactic and semantic patterns to extract mutation-disease associations. DiMeX achieves high precision and recall with F-scores of 0.88, 0.91 and 0.89 when evaluated on three different datasets for mutation-disease associations. DiMeX includes a separate component that extracts mutation mentions in text and associates them with genes. This component has been also evaluated on different datasets and shown to achieve state-of-the-art performance. The results indicate that our system outperforms the existing mutation-disease association tools, addressing the low precision problems suffered by most approaches. DiMeX was applied on a large set of abstracts from Medline to extract mutation-disease associations, as well as other relevant information including patient/cohort size and population data. The results are stored in a database that can be queried and downloaded at http://biotm.cis.udel.edu/dimex/. We conclude that this high-throughput text-mining approach has the potential to significantly assist researchers and curators to enrich mutation databases.
DiMeX: A Text Mining System for Mutation-Disease Association Extraction
Mahmood, A. S. M. Ashique; Wu, Tsung-Jung; Mazumder, Raja; Vijay-Shanker, K.
2016-01-01
The number of published articles describing associations between mutations and diseases is increasing at a fast pace. There is a pressing need to gather such mutation-disease associations into public knowledge bases, but manual curation slows down the growth of such databases. We have addressed this problem by developing a text-mining system (DiMeX) to extract mutation to disease associations from publication abstracts. DiMeX consists of a series of natural language processing modules that preprocess input text and apply syntactic and semantic patterns to extract mutation-disease associations. DiMeX achieves high precision and recall with F-scores of 0.88, 0.91 and 0.89 when evaluated on three different datasets for mutation-disease associations. DiMeX includes a separate component that extracts mutation mentions in text and associates them with genes. This component has been also evaluated on different datasets and shown to achieve state-of-the-art performance. The results indicate that our system outperforms the existing mutation-disease association tools, addressing the low precision problems suffered by most approaches. DiMeX was applied on a large set of abstracts from Medline to extract mutation-disease associations, as well as other relevant information including patient/cohort size and population data. The results are stored in a database that can be queried and downloaded at http://biotm.cis.udel.edu/dimex/. We conclude that this high-throughput text-mining approach has the potential to significantly assist researchers and curators to enrich mutation databases. PMID:27073839
ERIC Educational Resources Information Center
Chen, Gwo-Dong; Wei, Fu-Hsiang; Wang, Chin-Yeh; Lee, Jih-Hsien
2007-01-01
Reading content of the Web is increasingly popular. When students read the same material, each student has a unique comprehension of the text and requires individual support from appropriate references. Most references in typical web learning systems are unorganized. Students are often required to disrupt their reading to locate references. This…
Specificity of Emotion Inferences as a Function of Emotional Contextual Support
ERIC Educational Resources Information Center
Gillioz, Christelle; Gygax, Pascal M.
2017-01-01
Research on emotion inferences has shown that readers include a representation of the main character's emotional state in their mental representations of the text. We examined the specificity of emotion representations as a function of the emotion content of short narratives, in terms of the quantity and quality of emotion components included in…
Decentered Online Bible Instruction: How Active Learning Enhances the Study of Scripture
ERIC Educational Resources Information Center
Troftgruben, Troy M.
2018-01-01
The field of biblical studies lends itself well to decentered online learning--a kind that uses active learning to engage primary texts and their interpretations. Not only does such an approach work well in online and hybrid formats, it more readily welcomes readings that are more contextual, constructive, and collaborative. Three aspects best…
Sampling and monitoring for the mine life cycle
McLemore, Virginia T.; Smith, Kathleen S.; Russell, Carol C.
2014-01-01
Sampling and Monitoring for the Mine Life Cycle provides an overview of sampling for environmental purposes and monitoring of environmentally relevant variables at mining sites. It focuses on environmental sampling and monitoring of surface water, and also considers groundwater, process water streams, rock, soil, and other media including air and biological organisms. The handbook includes an appendix of technical summaries written by subject-matter experts that describe field measurements, collection methods, and analytical techniques and procedures relevant to environmental sampling and monitoring.The sixth of a series of handbooks on technologies for management of metal mine and metallurgical process drainage, this handbook supplements and enhances current literature and provides an awareness of the critical components and complexities involved in environmental sampling and monitoring at the mine site. It differs from most information sources by providing an approach to address all types of mining influenced water and other sampling media throughout the mine life cycle.Sampling and Monitoring for the Mine Life Cycle is organized into a main text and six appendices that are an integral part of the handbook. Sidebars and illustrations are included to provide additional detail about important concepts, to present examples and brief case studies, and to suggest resources for further information. Extensive references are included.
Text grouping in patent analysis using adaptive K-means clustering algorithm
NASA Astrophysics Data System (ADS)
Shanie, Tiara; Suprijadi, Jadi; Zulhanif
2017-03-01
Patents are one of the Intellectual Property. Analyzing patent is one requirement in knowing well the development of technology in each country and in the world now. This study uses the patent document coming from the Espacenet server about Green Tea. Patent documents related to the technology in the field of tea is still widespread, so it will be difficult for users to information retrieval (IR). Therefore, it is necessary efforts to categorize documents in a specific group of related terms contained therein. This study uses titles patent text data with the proposed Green Tea in Statistical Text Mining methods consists of two phases: data preparation and data analysis stage. The data preparation phase uses Text Mining methods and data analysis stage is done by statistics. Statistical analysis in this study using a cluster analysis algorithm, the Adaptive K-Means Clustering Algorithm. Results from this study showed that based on the maximum value Silhouette, generate 87 clusters associated fifteen terms therein that can be utilized in the process of information retrieval needs.
Advances in Machine Learning and Data Mining for Astronomy
NASA Astrophysics Data System (ADS)
Way, Michael J.; Scargle, Jeffrey D.; Ali, Kamal M.; Srivastava, Ashok N.
2012-03-01
Advances in Machine Learning and Data Mining for Astronomy documents numerous successful collaborations among computer scientists, statisticians, and astronomers who illustrate the application of state-of-the-art machine learning and data mining techniques in astronomy. Due to the massive amount and complexity of data in most scientific disciplines, the material discussed in this text transcends traditional boundaries between various areas in the sciences and computer science. The book's introductory part provides context to issues in the astronomical sciences that are also important to health, social, and physical sciences, particularly probabilistic and statistical aspects of classification and cluster analysis. The next part describes a number of astrophysics case studies that leverage a range of machine learning and data mining technologies. In the last part, developers of algorithms and practitioners of machine learning and data mining show how these tools and techniques are used in astronomical applications. With contributions from leading astronomers and computer scientists, this book is a practical guide to many of the most important developments in machine learning, data mining, and statistics. It explores how these advances can solve current and future problems in astronomy and looks at how they could lead to the creation of entirely new algorithms within the data mining community.
Generation of Acid Mine Lakes Associated with Abandoned Coal Mines in Northwest Turkey.
Sanliyuksel Yucel, Deniz; Balci, Nurgul; Baba, Alper
2016-05-01
A total of five acid mine lakes (AMLs) located in northwest Turkey were investigated using combined isotope, molecular, and geochemical techniques to identify geochemical processes controlling and promoting acid formation. All of the investigated lakes showed typical characteristics of an AML with low pH (2.59-3.79) and high electrical conductivity values (1040-6430 μS/cm), in addition to high sulfate (594-5370 mg/l) and metal (aluminum [Al], iron [Fe], manganese [Mn], nickel [Ni], and zinc [Zn]) concentrations. Geochemical and isotope results showed that the acid-generation mechanism and source of sulfate in the lakes can change and depends on the age of the lakes. In the relatively older lakes (AMLs 1 through 3), biogeochemical Fe cycles seem to be the dominant process controlling metal concentration and pH of the water unlike in the younger lakes (AMLs 4 and 5). Bacterial species determined in an older lake (AML 2) indicate that biological oxidation and reduction of Fe and S are the dominant processes in the lakes. Furthermore, O and S isotopes of sulfate indicate that sulfate in the older mine lakes may be a product of much more complex oxidation/dissolution reactions. However, the major source of sulfate in the younger mine lakes is in situ pyrite oxidation catalyzed by Fe(III) produced by way of oxidation of Fe(II). Consistent with this, insignificant fractionation between δ(34) [Formula: see text] and δ(34) [Formula: see text] values indicated that the oxidation of pyrite, along with dissolution and precipitation reactions of Fe(III) minerals, is the main reason for acid formation in the region. Overall, the results showed that acid generation during early stage formation of an AML associated with pyrite-rich mine waste is primarily controlled by the oxidation of pyrite with Fe cycles becoming the dominant processes regulating pH and metal cycles in the later stages of mine lake development.
Boniolo, Giovanni; D'Agostino, Marcello; Di Fiore, Pier Paolo
2010-03-03
We propose a formal language that allows for transposing biological information precisely and rigorously into machine-readable information. This language, which we call Zsyntax (where Z stands for the Greek word zetaomegaeta, life), is grounded on a particular type of non-classical logic, and it can be used to write algorithms and computer programs. We present it as a first step towards a comprehensive formal language for molecular biology in which any biological process can be written and analyzed as a sort of logical "deduction". Moreover, we illustrate the potential value of this language, both in the field of text mining and in that of biological prediction.
Appraising the Corporate Sustainability Reports - Text Mining and Multi-Discriminatory Analysis
NASA Astrophysics Data System (ADS)
Modapothala, J. R.; Issac, B.; Jayamani, E.
The voluntary disclosure of the sustainability reports by the companies attracts wider stakeholder groups. Diversity in these reports poses challenge to the users of information and regulators. This study appraises the corporate sustainability reports as per GRI (Global Reporting Initiative) guidelines (the most widely accepted and used) across all industrial sectors. Text mining is adopted to carry out the initial analysis with a large sample size of 2650 reports. Statistical analyses were performed for further investigation. The results indicate that the disclosures made by the companies differ across the industrial sectors. Multivariate Discriminant Analysis (MDA) shows that the environmental variable is a greater significant contributing factor towards explanation of sustainability report.
Augmented Robotics Dialog System for Enhancing Human–Robot Interaction
Alonso-Martín, Fernando; Castro-González, Aívaro; de Gorostiza Luengo, Francisco Javier Fernandez; Salichs, Miguel Ángel
2015-01-01
Augmented reality, augmented television and second screen are cutting edge technologies that provide end users extra and enhanced information related to certain events in real time. This enriched information helps users better understand such events, at the same time providing a more satisfactory experience. In the present paper, we apply this main idea to human–robot interaction (HRI), to how users and robots interchange information. The ultimate goal of this paper is to improve the quality of HRI, developing a new dialog manager system that incorporates enriched information from the semantic web. This work presents the augmented robotic dialog system (ARDS), which uses natural language understanding mechanisms to provide two features: (i) a non-grammar multimodal input (verbal and/or written) text; and (ii) a contextualization of the information conveyed in the interaction. This contextualization is achieved by information enrichment techniques that link the extracted information from the dialog with extra information about the world available in semantic knowledge bases. This enriched or contextualized information (information enrichment, semantic enhancement or contextualized information are used interchangeably in the rest of this paper) offers many possibilities in terms of HRI. For instance, it can enhance the robot's pro-activeness during a human–robot dialog (the enriched information can be used to propose new topics during the dialog, while ensuring a coherent interaction). Another possibility is to display additional multimedia content related to the enriched information on a visual device. This paper describes the ARDS and shows a proof of concept of its applications. PMID:26151202
Augmented Robotics Dialog System for Enhancing Human-Robot Interaction.
Alonso-Martín, Fernando; Castro-González, Aĺvaro; Luengo, Francisco Javier Fernandez de Gorostiza; Salichs, Miguel Ángel
2015-07-03
Augmented reality, augmented television and second screen are cutting edge technologies that provide end users extra and enhanced information related to certain events in real time. This enriched information helps users better understand such events, at the same time providing a more satisfactory experience. In the present paper, we apply this main idea to human-robot interaction (HRI), to how users and robots interchange information. The ultimate goal of this paper is to improve the quality of HRI, developing a new dialog manager system that incorporates enriched information from the semantic web. This work presents the augmented robotic dialog system (ARDS), which uses natural language understanding mechanisms to provide two features: (i) a non-grammar multimodal input (verbal and/or written) text; and (ii) a contextualization of the information conveyed in the interaction. This contextualization is achieved by information enrichment techniques that link the extracted information from the dialog with extra information about the world available in semantic knowledge bases. This enriched or contextualized information (information enrichment, semantic enhancement or contextualized information are used interchangeably in the rest of this paper) offers many possibilities in terms of HRI. For instance, it can enhance the robot's pro-activeness during a human-robot dialog (the enriched information can be used to propose new topics during the dialog, while ensuring a coherent interaction). Another possibility is to display additional multimedia content related to the enriched information on a visual device. This paper describes the ARDS and shows a proof of concept of its applications.
Figure mining for biomedical research.
Rodriguez-Esteban, Raul; Iossifov, Ivan
2009-08-15
Figures from biomedical articles contain valuable information difficult to reach without specialized tools. Currently, there is no search engine that can retrieve specific figure types. This study describes a retrieval method that takes advantage of principles in image understanding, text mining and optical character recognition (OCR) to retrieve figure types defined conceptually. A search engine was developed to retrieve tables and figure types to aid computational and experimental research. http://iossifovlab.cshl.edu/figurome/.
Analysis of the Relevance of Posts in Asynchronous Discussions
ERIC Educational Resources Information Center
Azevedo, Breno T.; Reategui, Eliseo; Behar, Patrícia A.
2014-01-01
This paper presents ForumMiner, a tool for the automatic analysis of students' posts in asynchronous discussions. ForumMiner uses a text mining system to extract graphs from texts that are given to students as a basis for their discussion. These graphs contain the most relevant terms found in the texts, as well as the relationships between them.…
77 FR 48498 - Executive-Led Trade Mission to South Africa and Zambia
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-14
... technologies and equipment; transportation equipment and infrastructure; and mining equipment and technology...'', add the following text: Water Sector [cir] Water supply [cir] Sanitation [cir] Drainage systems [cir... gemstones, and produces 20 percent of the world's emeralds.'', add the following text: Water The Government...
Rinaldi, Fabio; Schneider, Gerold; Kaljurand, Kaarel; Hess, Michael; Andronis, Christos; Konstandi, Ourania; Persidis, Andreas
2007-02-01
The amount of new discoveries (as published in the scientific literature) in the biomedical area is growing at an exponential rate. This growth makes it very difficult to filter the most relevant results, and thus the extraction of the core information becomes very expensive. Therefore, there is a growing interest in text processing approaches that can deliver selected information from scientific publications, which can limit the amount of human intervention normally needed to gather those results. This paper presents and evaluates an approach aimed at automating the process of extracting functional relations (e.g. interactions between genes and proteins) from scientific literature in the biomedical domain. The approach, using a novel dependency-based parser, is based on a complete syntactic analysis of the corpus. We have implemented a state-of-the-art text mining system for biomedical literature, based on a deep-linguistic, full-parsing approach. The results are validated on two different corpora: the manually annotated genomics information access (GENIA) corpus and the automatically annotated arabidopsis thaliana circadian rhythms (ATCR) corpus. We show how a deep-linguistic approach (contrary to common belief) can be used in a real world text mining application, offering high-precision relation extraction, while at the same time retaining a sufficient recall.
Zhang, Lei; Li, Yin; Guo, Xinfeng; May, Brian H.; Xue, Charlie C. L.; Yang, Lihong; Liu, Xusheng
2014-01-01
Objectives. To apply modern text-mining methods to identify candidate herbs and formulae for the treatment of diabetic nephropathy. Methods. The method we developed includes three steps: (1) identification of candidate ancient terms; (2) systemic search and assessment of medical records written in classical Chinese; (3) preliminary evaluation of the effect and safety of candidates. Results. Ancient terms Xia Xiao, Shen Xiao, and Xiao Shen were determined as the most likely to correspond with diabetic nephropathy and used in text mining. A total of 80 Chinese formulae for treating conditions congruent with diabetic nephropathy recorded in medical books from Tang Dynasty to Qing Dynasty were collected. Sao si tang (also called Reeling Silk Decoction) was chosen to show the process of preliminary evaluation of the candidates. It had promising potential for development as new agent for the treatment of diabetic nephropathy. However, further investigations about the safety to patients with renal insufficiency are still needed. Conclusions. The methods developed in this study offer a targeted approach to identifying traditional herbs and/or formulae as candidates for further investigation in the search for new drugs for modern disease. However, more effort is still required to improve our techniques, especially with regard to compound formulae. PMID:24744808
Shimazaki, Kei-ichi; Kushida, Tatsuya
2010-06-01
Lactoferrin is a multi-functional metal-binding glycoprotein that exhibits many biological functions of interest to many researchers from the fields of clinical medicine, dentistry, pharmacology, veterinary medicine, nutrition and milk science. To date, a number of academic reports concerning the biological activities of lactoferrin have been published and are easily accessible through public data repositories. However, as the literature is expanding daily, this presents challenges in understanding the larger picture of lactoferrin function and mechanisms. In order to overcome the "analysis paralysis" associated with lactoferrin information, we attempted to apply a text mining method to the accumulated lactoferrin literature. To this end, we used the information extraction system GENPAC (provided by Nalapro Technologies Inc., Tokyo). This information extraction system uses natural language processing and text mining technology. This system analyzes the sentences and titles from abstracts stored in the PubMed database, and can automatically extract binary relations that consist of interactions between genes/proteins, chemicals and diseases/functions. We expect that such information visualization analysis will be useful in determining novel relationships among a multitude of lactoferrin functions and mechanisms. We have demonstrated the utilization of this method to find pathways of lactoferrin participation in neovascularization, Helicobacter pylori attack on gastric mucosa, atopic dermatitis and lipid metabolism.
Internet of Things in Health Trends Through Bibliometrics and Text Mining.
Konstantinidis, Stathis Th; Billis, Antonis; Wharrad, Heather; Bamidis, Panagiotis D
2017-01-01
Recently a new buzzword has slowly but surely emerged, namely the Internet of Things (IoT). The importance of IoT is identified worldwide both by organisations and governments and the scientific community with an incremental number of publications during the last few years. IoT in Health is one of the main pillars of this evolution, but limited research has been performed on future visions and trends. Thus, in this study we investigate the longitudinal trends of Internet of Things in Health through bibliometrics and use of text mining. Seven hundred seventy eight (778) articles were retrieved form The Web of Science database from 1998 to 2016. The publications are grouped into thirty (30) clusters based on abstract text analysis resulting into some eight (8) trends of IoT in Health. Research in this field is obviously obtaining a worldwide character with specific trends, which are worth delineating to be in favour of some areas.
Semantic Theme Analysis of Pilot Incident Reports
NASA Technical Reports Server (NTRS)
Thirumalainambi, Rajkumar
2009-01-01
Pilots report accidents or incidents during take-off, on flight and landing to airline authorities and Federal aviation authority as well. The description of pilot reports for an incident contains technical terms related to Flight instruments and operations. Normal text mining approaches collect keywords from text documents and relate them among documents that are stored in database. Present approach will extract specific theme analysis of incident reports and semantically relate hierarchy of terms assigning weights of themes. Once the theme extraction has been performed for a given document, a unique key can be assigned to that document to cross linking the documents. Semantic linking will be used to categorize the documents based on specific rules that can help an end-user to analyze certain types of accidents. This presentation outlines the architecture of text mining for pilot incident reports for autonomous categorization of pilot incident reports using semantic theme analysis.
Trends in Fetal Medicine: A 10-Year Bibliometric Analysis of Prenatal Diagnosis
Dhombres, Ferdinand; Bodenreider, Olivier
2018-01-01
The objective is to automatically identify trends in Fetal Medicine over the past 10 years through a bibliometric analysis of articles published in Prenatal Diagnosis, using text mining techniques. We processed 2,423 full-text articles published in Prenatal Diagnosis between 2006 and 2015. We extracted salient terms, calculated their frequencies over time, and established evolution profiles for terms, from which we derived falling, stable, and rising trends. We identified 618 terms with a falling trend, 2,142 stable terms, and 839 terms with a rising trend. Terms with increasing frequencies include those related to statistics and medical study design. The most recent of these terms reflect the new opportunities of next- generation sequencing. Many terms related to cytogenetics exhibit a falling trend. A bibliometric analysis based on text mining effectively supports identification of trends over time. This scalable approach is complementary to analyses based on metadata or expert opinion. PMID:29295220
Integrating text mining into the MGI biocuration workflow
Dowell, K.G.; McAndrews-Hill, M.S.; Hill, D.P.; Drabkin, H.J.; Blake, J.A.
2009-01-01
A major challenge for functional and comparative genomics resource development is the extraction of data from the biomedical literature. Although text mining for biological data is an active research field, few applications have been integrated into production literature curation systems such as those of the model organism databases (MODs). Not only are most available biological natural language (bioNLP) and information retrieval and extraction solutions difficult to adapt to existing MOD curation workflows, but many also have high error rates or are unable to process documents available in those formats preferred by scientific journals. In September 2008, Mouse Genome Informatics (MGI) at The Jackson Laboratory initiated a search for dictionary-based text mining tools that we could integrate into our biocuration workflow. MGI has rigorous document triage and annotation procedures designed to identify appropriate articles about mouse genetics and genome biology. We currently screen ∼1000 journal articles a month for Gene Ontology terms, gene mapping, gene expression, phenotype data and other key biological information. Although we do not foresee that curation tasks will ever be fully automated, we are eager to implement named entity recognition (NER) tools for gene tagging that can help streamline our curation workflow and simplify gene indexing tasks within the MGI system. Gene indexing is an MGI-specific curation function that involves identifying which mouse genes are being studied in an article, then associating the appropriate gene symbols with the article reference number in the MGI database. Here, we discuss our search process, performance metrics and success criteria, and how we identified a short list of potential text mining tools for further evaluation. We provide an overview of our pilot projects with NCBO's Open Biomedical Annotator and Fraunhofer SCAI's ProMiner. In doing so, we prove the potential for the further incorporation of semi-automated processes into the curation of the biomedical literature. PMID:20157492
Integrating text mining into the MGI biocuration workflow.
Dowell, K G; McAndrews-Hill, M S; Hill, D P; Drabkin, H J; Blake, J A
2009-01-01
A major challenge for functional and comparative genomics resource development is the extraction of data from the biomedical literature. Although text mining for biological data is an active research field, few applications have been integrated into production literature curation systems such as those of the model organism databases (MODs). Not only are most available biological natural language (bioNLP) and information retrieval and extraction solutions difficult to adapt to existing MOD curation workflows, but many also have high error rates or are unable to process documents available in those formats preferred by scientific journals.In September 2008, Mouse Genome Informatics (MGI) at The Jackson Laboratory initiated a search for dictionary-based text mining tools that we could integrate into our biocuration workflow. MGI has rigorous document triage and annotation procedures designed to identify appropriate articles about mouse genetics and genome biology. We currently screen approximately 1000 journal articles a month for Gene Ontology terms, gene mapping, gene expression, phenotype data and other key biological information. Although we do not foresee that curation tasks will ever be fully automated, we are eager to implement named entity recognition (NER) tools for gene tagging that can help streamline our curation workflow and simplify gene indexing tasks within the MGI system. Gene indexing is an MGI-specific curation function that involves identifying which mouse genes are being studied in an article, then associating the appropriate gene symbols with the article reference number in the MGI database.Here, we discuss our search process, performance metrics and success criteria, and how we identified a short list of potential text mining tools for further evaluation. We provide an overview of our pilot projects with NCBO's Open Biomedical Annotator and Fraunhofer SCAI's ProMiner. In doing so, we prove the potential for the further incorporation of semi-automated processes into the curation of the biomedical literature.
Marshall, Zack; Welch, Vivian; Thomas, James; Brunger, Fern; Swab, Michelle; Shemilt, Ian; Kaposy, Chris
2017-02-20
There is limited information about how transgender, gender diverse, and Two-Spirit (trans) people have been represented and studied by researchers. The objectives of this study are to (1) map and describe trans research in the social sciences, sciences, humanities, health, education, and business, (2) identify evidence gaps and opportunities for more responsible research with trans people, (3) assess the use of text mining for study identification, and (4) increase access to trans research for key stakeholders through the creation of a web-based evidence map. Study design was informed by community consultations and pilot searches. Eligibility criteria were established to include all original research of any design, including trans people or their health information, and published in English in peer-reviewed journals. A complex electronic search strategy based on relevant concepts in 15 databases was developed to obtain a broad range of results linked to transgender, gender diverse, and Two-Spirit individuals and communities. Searches conducted in early 2015 resulted in 25,242 references after removal of duplicates. Based on the number of references, resources, and an objective to capture upwards of 90% of the existing literature, this study is a good candidate for text mining using Latent Dirichlet Allocation to improve efficiency of the screening process. The following information will be collected for evidence mapping: study topic, study design, methods and data sources, recruitment strategies, sample size, sample demographics, researcher name and affiliation, country where research was conducted, funding source, and year of publication. The proposed research incorporates an extensive search strategy, text mining, and evidence map; it therefore has the potential to build on knowledge in several fields. Review results will increase awareness of existing trans research, identify evidence gaps, and inform strategic research prioritization. Publishing the map online will improve access to research for key stakeholders including community members, policy makers, and healthcare providers. This study will also contribute to knowledge in the area of text mining for study identification by providing an example of how semi-automation performs for screening on title and abstract and on full text.
A Node Linkage Approach for Sequential Pattern Mining
Navarro, Osvaldo; Cumplido, René; Villaseñor-Pineda, Luis; Feregrino-Uribe, Claudia; Carrasco-Ochoa, Jesús Ariel
2014-01-01
Sequential Pattern Mining is a widely addressed problem in data mining, with applications such as analyzing Web usage, examining purchase behavior, and text mining, among others. Nevertheless, with the dramatic increase in data volume, the current approaches prove inefficient when dealing with large input datasets, a large number of different symbols and low minimum supports. In this paper, we propose a new sequential pattern mining algorithm, which follows a pattern-growth scheme to discover sequential patterns. Unlike most pattern growth algorithms, our approach does not build a data structure to represent the input dataset, but instead accesses the required sequences through pseudo-projection databases, achieving better runtime and reducing memory requirements. Our algorithm traverses the search space in a depth-first fashion and only preserves in memory a pattern node linkage and the pseudo-projections required for the branch being explored at the time. Experimental results show that our new approach, the Node Linkage Depth-First Traversal algorithm (NLDFT), has better performance and scalability in comparison with state of the art algorithms. PMID:24933123
Signal Detection Framework Using Semantic Text Mining Techniques
ERIC Educational Resources Information Center
Sudarsan, Sithu D.
2009-01-01
Signal detection is a challenging task for regulatory and intelligence agencies. Subject matter experts in those agencies analyze documents, generally containing narrative text in a time bound manner for signals by identification, evaluation and confirmation, leading to follow-up action e.g., recalling a defective product or public advisory for…
Cognition-Based Approaches for High-Precision Text Mining
ERIC Educational Resources Information Center
Shannon, George John
2017-01-01
This research improves the precision of information extraction from free-form text via the use of cognitive-based approaches to natural language processing (NLP). Cognitive-based approaches are an important, and relatively new, area of research in NLP and search, as well as linguistics. Cognitive approaches enable significant improvements in both…
Raykar, Nakul P; Yorlets, Rachel R; Liu, Charles; Goldman, Roberta; Greenberg, Sarah L M; Kotagal, Meera; Farmer, Paul E; Meara, John G; Roy, Nobhojit; Gillies, Rowan D
2016-01-01
Introduction 5 billion people around the world do not have access to safe, affordable, timely surgical care. This series of qualitative interviews was launched by The Lancet Commission on Global Surgery (LCoGS) with the aim of understanding the contextual challenges—the specific circumstances—faced by surgical care providers in low-resource settings who care for impoverished patients, and how those providers overcome these challenges. Methods From January 2014 to February 2015, 20 LCoGS collaborators conducted semistructured interviews with 148 surgical providers in low-resource settings in 21 countries. Stratified purposive sampling was used to include both rural and urban providers, and reputational case selection identified individuals. Interviewers were trained with an implementation manual. Following immersion into de-identified texts from completed interviews, topical coding and further analysis of coded texts was completed by an independent analyst with periodic validation from a second analyst. Results Providers described substantial financial, geographic and cultural barriers to patient access. Rural surgical teams reported a lack of a trained workforce and insufficient infrastructure, equipment, supplies and banked blood. Urban providers face overcrowding, exacerbated by minimal clinical and administrative support, and limited interhospital care coordination. Many providers across contexts identified national health policies that do not reflect the realities of resource-poor settings. Some findings were region-specific, such as weak patient–provider relationships and unreliable supply chains. In all settings, surgical teams have created workarounds to deliver care despite the challenges. Discussion While some differences exist between countries, the barriers to safe surgery and anaesthesia are overall consistent and resource-dependent. Efforts to advance and expand global surgery must address these commonalities, while local policymakers can tailor responses to key contextual differences. PMID:28588976
Raykar, Nakul P; Yorlets, Rachel R; Liu, Charles; Goldman, Roberta; Greenberg, Sarah L M; Kotagal, Meera; Farmer, Paul E; Meara, John G; Roy, Nobhojit; Gillies, Rowan D
2016-01-01
5 billion people around the world do not have access to safe, affordable, timely surgical care. This series of qualitative interviews was launched by The Lancet Commission on Global Surgery (LCoGS) with the aim of understanding the contextual challenges-the specific circumstances-faced by surgical care providers in low-resource settings who care for impoverished patients, and how those providers overcome these challenges. From January 2014 to February 2015, 20 LCoGS collaborators conducted semistructured interviews with 148 surgical providers in low-resource settings in 21 countries. Stratified purposive sampling was used to include both rural and urban providers, and reputational case selection identified individuals. Interviewers were trained with an implementation manual. Following immersion into de-identified texts from completed interviews, topical coding and further analysis of coded texts was completed by an independent analyst with periodic validation from a second analyst. Providers described substantial financial, geographic and cultural barriers to patient access. Rural surgical teams reported a lack of a trained workforce and insufficient infrastructure, equipment, supplies and banked blood. Urban providers face overcrowding, exacerbated by minimal clinical and administrative support, and limited interhospital care coordination. Many providers across contexts identified national health policies that do not reflect the realities of resource-poor settings. Some findings were region-specific, such as weak patient-provider relationships and unreliable supply chains. In all settings, surgical teams have created workarounds to deliver care despite the challenges. While some differences exist between countries, the barriers to safe surgery and anaesthesia are overall consistent and resource-dependent. Efforts to advance and expand global surgery must address these commonalities, while local policymakers can tailor responses to key contextual differences.
ERIC Educational Resources Information Center
Bucholtz, Kevin M.
2011-01-01
For some students, organic chemistry can be a distant subject and unrelated to any courses they have seen in their college careers. To develop a more contextual learning experience in organic chemistry, an additional text, "Napoleon's Buttons: 17 Molecules That Changed History," by Penny Le Couteur and Jay Burreson, was incorporated as a…
Refining the Use of the Web (and Web Search) as a Language Teaching and Learning Resource
ERIC Educational Resources Information Center
Wu, Shaoqun; Franken, Margaret; Witten, Ian H.
2009-01-01
The web is a potentially useful corpus for language study because it provides examples of language that are contextualized and authentic, and is large and easily searchable. However, web contents are heterogeneous in the extreme, uncontrolled and hence "dirty," and exhibit features different from the written and spoken texts in other linguistic…
Thematic Structure in Barack Obama's Press Conference: A Systemic Functional Grammar Study
ERIC Educational Resources Information Center
Kuswoyo, Heri
2016-01-01
This article looks into the theme--rheme pattern of presidential press conference that can be employed by speakers to organize the text in order to have a texture. Since a message should be conveyed in clause contextually and co-textually. Therefore, the objectives of this study are to analyze and describe the theme-rheme pattern employed in…
ERIC Educational Resources Information Center
Bourdet, Jean-Francois; And Others
1993-01-01
Four classroom activities for French instruction are described, including an exercise in contextual grammar, lessons in interpretation of charts and graphs, an exercise in extracting cultural information from text, and practice in calculating in French and applying basic economic concepts. (MSE)
ERIC Educational Resources Information Center
Karlsson, Anna-Malin
2002-01-01
Discusses the question of whether there is such a thing as web literacy. Perspectives from media studies, literacy studies, and the study of multimodal texts are used to find the main contextual parameters involved in what might be classed as web literacy. The parameters suggested are material conditions, domain, power or ideology, and semiotic…
ERIC Educational Resources Information Center
Leonard, Jacqueline; Moore, Cara M.; Brooks, Wanda
2014-01-01
This article reports on a teacher-research study that used multicultural texts as a context for teaching mathematics for cultural relevance during an elementary mathematics methods course. The results of the study reveal that 28% (5 out of 18) of the teacher candidates (TCs) chose books that were culturally contextual or culturally amenable.…
Movie-Generated EFL Writing: Discovering the Act of Writing through Visual Literacy Practices
ERIC Educational Resources Information Center
Hekmati, Nargess; Ghahremani Ghajar, Sue-san; Navidinia, Hossein
2018-01-01
The present article explores the idea of using movies in EFL classrooms to develop students' writing skill. In this qualitative study, 15 EFL learners were engaged in different writing activities in a contextualized form of movies, meaning that the films acted as text-books, and activities were designed based on the contexts of the films. Taking…
China Report, Economic Affairs
1985-01-26
Revenue, Expenditures 83 ENERGY Briefs Tianjin Methane Pits 84 - c - MINERAL RESOURCES PRC Journal on Stepping Up Exploitation of Mines (Li Peilin ...Huayun, Zhan Jingwu, Yao Xia, Lin Yinghai, Hou Zhiying, Song [name indis- tinct], Li Baoguang, Zhang Shude, Hu Tingji, and Hao Fuhong attended the...10, 5 Oct 84 pp 4-6 [Article by Li Peilin [621 3099 2651]: "A Probe into the Policy of Stepping Up the Exploitation of Mines"] [Text] Recently
Enforced Sparse Non-Negative Matrix Factorization
2016-01-23
documents to find interesting pieces of information. With limited resources, analysts often employ automated text - mining tools that highlight common...represented as an undirected bipartite graph. It has become a common method for generating topic models of text data because it is known to produce good results...model and the convergence rate of the underlying algorithm. I. Introduction A common analyst challenge is searching through large quantities of text
NASA Astrophysics Data System (ADS)
Ford, Danielle J.
2004-04-01
The use of an inquiry framework to support the development of learners'' scientific literacy has been supported by research on learning in science and advocated by the major science standards and policy documents. To fully engage in inquiry, however, a wide range of tools, including both activities and texts, must be employed. The successful integration of text materials requires the selection of suitable texts. This, in turn, requires an in-depth understanding of the types of science books available and their potential uses within an inquiry framework. To support preservice teachers'' development of these understandings, I examined the criteria they typically employ when evaluating texts in contextualized and uncontextualized settings. In these settings, students attended primarily to visual characteristics of texts or exhibited their limited understandings of science content and text use. These results were used to develop an evaluation framework that emphasizes use in inquiry over other typical evaluation criteria.
2016-01-01
Background As the use of electronic cigarettes (e-cigarettes) rises, social media likely influences public awareness and perception of this emerging tobacco product. Objective This study examined the public conversation on Twitter to determine overarching themes and insights for trending topics from commercial and consumer users. Methods Text mining uncovered key patterns and important topics for e-cigarettes on Twitter. SAS Text Miner 12.1 software (SAS Institute Inc) was used for descriptive text mining to reveal the primary topics from tweets collected from March 24, 2015, to July 3, 2015, using a Python script in conjunction with Twitter’s streaming application programming interface. A total of 18 keywords related to e-cigarettes were used and resulted in a total of 872,544 tweets that were sorted into overarching themes through a text topic node for tweets (126,127) and retweets (114,451) that represented more than 1% of the conversation. Results While some of the final themes were marketing-focused, many topics represented diverse proponent and user conversations that included discussion of policies, personal experiences, and the differentiation of e-cigarettes from traditional tobacco, often by pointing to the lack of evidence for the harm or risks of e-cigarettes or taking the position that e-cigarettes should be promoted as smoking cessation devices. Conclusions These findings reveal that unique, large-scale public conversations are occurring on Twitter alongside e-cigarette advertising and promotion. Proponents and users are turning to social media to share knowledge, experience, and questions about e-cigarette use. Future research should focus on these unique conversations to understand how they influence attitudes towards and use of e-cigarettes. PMID:27956376
Information Extraction for Clinical Data Mining: A Mammography Case Study
Nassif, Houssam; Woods, Ryan; Burnside, Elizabeth; Ayvaci, Mehmet; Shavlik, Jude; Page, David
2013-01-01
Breast cancer is the leading cause of cancer mortality in women between the ages of 15 and 54. During mammography screening, radiologists use a strict lexicon (BI-RADS) to describe and report their findings. Mammography records are then stored in a well-defined database format (NMD). Lately, researchers have applied data mining and machine learning techniques to these databases. They successfully built breast cancer classifiers that can help in early detection of malignancy. However, the validity of these models depends on the quality of the underlying databases. Unfortunately, most databases suffer from inconsistencies, missing data, inter-observer variability and inappropriate term usage. In addition, many databases are not compliant with the NMD format and/or solely consist of text reports. BI-RADS feature extraction from free text and consistency checks between recorded predictive variables and text reports are crucial to addressing this problem. We describe a general scheme for concept information retrieval from free text given a lexicon, and present a BI-RADS features extraction algorithm for clinical data mining. It consists of a syntax analyzer, a concept finder and a negation detector. The syntax analyzer preprocesses the input into individual sentences. The concept finder uses a semantic grammar based on the BI-RADS lexicon and the experts’ input. It parses sentences detecting BI-RADS concepts. Once a concept is located, a lexical scanner checks for negation. Our method can handle multiple latent concepts within the text, filtering out ultrasound concepts. On our dataset, our algorithm achieves 97.7% precision, 95.5% recall and an F1-score of 0.97. It outperforms manual feature extraction at the 5% statistical significance level. PMID:23765123
Information Extraction for Clinical Data Mining: A Mammography Case Study.
Nassif, Houssam; Woods, Ryan; Burnside, Elizabeth; Ayvaci, Mehmet; Shavlik, Jude; Page, David
2009-01-01
Breast cancer is the leading cause of cancer mortality in women between the ages of 15 and 54. During mammography screening, radiologists use a strict lexicon (BI-RADS) to describe and report their findings. Mammography records are then stored in a well-defined database format (NMD). Lately, researchers have applied data mining and machine learning techniques to these databases. They successfully built breast cancer classifiers that can help in early detection of malignancy. However, the validity of these models depends on the quality of the underlying databases. Unfortunately, most databases suffer from inconsistencies, missing data, inter-observer variability and inappropriate term usage. In addition, many databases are not compliant with the NMD format and/or solely consist of text reports. BI-RADS feature extraction from free text and consistency checks between recorded predictive variables and text reports are crucial to addressing this problem. We describe a general scheme for concept information retrieval from free text given a lexicon, and present a BI-RADS features extraction algorithm for clinical data mining. It consists of a syntax analyzer, a concept finder and a negation detector. The syntax analyzer preprocesses the input into individual sentences. The concept finder uses a semantic grammar based on the BI-RADS lexicon and the experts' input. It parses sentences detecting BI-RADS concepts. Once a concept is located, a lexical scanner checks for negation. Our method can handle multiple latent concepts within the text, filtering out ultrasound concepts. On our dataset, our algorithm achieves 97.7% precision, 95.5% recall and an F 1 -score of 0.97. It outperforms manual feature extraction at the 5% statistical significance level.
NASA Astrophysics Data System (ADS)
Candra Permana, Fahmi; Rosmansyah, Yusep; Setiawan Abdullah, Atje
2017-10-01
Students activity on social media can provide implicit knowledge and new perspectives for an educational system. Sentiment analysis is a part of text mining that can help to analyze and classify the opinion data. This research uses text mining and naive Bayes method as opinion classifier, to be used as an alternative methods in the process of evaluating studentss satisfaction for educational institution. Based on test results, this system can determine the opinion classification in Bahasa Indonesia using naive Bayes as opinion classifier with accuracy level of 84% correct, and the comparison between the existing system and the proposed system to evaluate students satisfaction in learning process, there is only a difference of 16.49%.
Graph-based biomedical text summarization: An itemset mining and sentence clustering approach.
Nasr Azadani, Mozhgan; Ghadiri, Nasser; Davoodijam, Ensieh
2018-06-12
Automatic text summarization offers an efficient solution to access the ever-growing amounts of both scientific and clinical literature in the biomedical domain by summarizing the source documents while maintaining their most informative contents. In this paper, we propose a novel graph-based summarization method that takes advantage of the domain-specific knowledge and a well-established data mining technique called frequent itemset mining. Our summarizer exploits the Unified Medical Language System (UMLS) to construct a concept-based model of the source document and mapping the document to the concepts. Then, it discovers frequent itemsets to take the correlations among multiple concepts into account. The method uses these correlations to propose a similarity function based on which a represented graph is constructed. The summarizer then employs a minimum spanning tree based clustering algorithm to discover various subthemes of the document. Eventually, it generates the final summary by selecting the most informative and relative sentences from all subthemes within the text. We perform an automatic evaluation over a large number of summaries using the Recall-Oriented Understudy for Gisting Evaluation (ROUGE) metrics. The results demonstrate that the proposed summarization system outperforms various baselines and benchmark approaches. The carried out research suggests that the incorporation of domain-specific knowledge and frequent itemset mining equips the summarization system in a better way to address the informativeness measurement of the sentences. Moreover, clustering the graph nodes (sentences) can enable the summarizer to target different main subthemes of a source document efficiently. The evaluation results show that the proposed approach can significantly improve the performance of the summarization systems in the biomedical domain. Copyright © 2018. Published by Elsevier Inc.
Dai, Hong-Jie; Su, Emily Chia-Yu; Uddin, Mohy; Jonnagaddala, Jitendra; Wu, Chi-Shin; Syed-Abdul, Shabbir
2017-11-01
Evidence has revealed interesting associations of clinical and social parameters with violent behaviors of patients with psychiatric disorders. Men are more violent preceding and during hospitalization, whereas women are more violent than men throughout the 3days following a hospital admission. It has also been proven that mental disorders may be a consistent risk factor for the occurrence of violence. In order to better understand violent behaviors of patients with psychiatric disorders, it is important to investigate both the clinical symptoms and psychosocial factors that accompany violence in these patients. In this study, we utilized a dataset released by the Partners Healthcare and Neuropsychiatric Genome-scale and RDoC Individualized Domains project of Harvard Medical School to develop a unique text mining pipeline that processes unstructured clinical data in order to recognize clinical and social parameters such asage, gender, history of alcohol use, and violent behaviors, and explored the associations between these parameters and violent behaviors of patients with psychiatric disorders. The aim of our work was to demonstrate the feasibility of mining factors that are strongly associated with violent behaviors among psychiatric patients from unstructured psychiatric evaluation records using clinical text mining. Experiment results showed that stimulants, followed by a family history of violent behavior, suicidal behaviors, and financial stress were strongly associated with violent behaviors. Key aspects explicated in this paper include employing our text mining pipeline to extract clinical and social factors linked with violent behaviors, generating association rules to uncover possible associations between these factors and violent behaviors, and lastly the ranking of top rules associated with violent behaviors using statistical analysis and interpretation. Copyright © 2017. Published by Elsevier Inc.
Alkemio: association of chemicals with biomedical topics by text and data mining
Gijón-Correas, José A.; Andrade-Navarro, Miguel A.; Fontaine, Jean F.
2014-01-01
The PubMed® database of biomedical citations allows the retrieval of scientific articles studying the function of chemicals in biology and medicine. Mining millions of available citations to search reported associations between chemicals and topics of interest would require substantial human time. We have implemented the Alkemio text mining web tool and SOAP web service to help in this task. The tool uses biomedical articles discussing chemicals (including drugs), predicts their relatedness to the query topic with a naïve Bayesian classifier and ranks all chemicals by P-values computed from random simulations. Benchmarks on seven human pathways showed good retrieval performance (areas under the receiver operating characteristic curves ranged from 73.6 to 94.5%). Comparison with existing tools to retrieve chemicals associated to eight diseases showed the higher precision and recall of Alkemio when considering the top 10 candidate chemicals. Alkemio is a high performing web tool ranking chemicals for any biomedical topics and it is free to non-commercial users. Availability: http://cbdm.mdc-berlin.de/∼medlineranker/cms/alkemio. PMID:24838570
String Mining in Bioinformatics
NASA Astrophysics Data System (ADS)
Abouelhoda, Mohamed; Ghanem, Moustafa
Sequence analysis is a major area in bioinformatics encompassing the methods and techniques for studying the biological sequences, DNA, RNA, and proteins, on the linear structure level. The focus of this area is generally on the identification of intra- and inter-molecular similarities. Identifying intra-molecular similarities boils down to detecting repeated segments within a given sequence, while identifying inter-molecular similarities amounts to spotting common segments among two or multiple sequences. From a data mining point of view, sequence analysis is nothing but string- or pattern mining specific to biological strings. For a long time, this point of view, however, has not been explicitly embraced neither in the data mining nor in the sequence analysis text books, which may be attributed to the co-evolution of the two apparently independent fields. In other words, although the word "data-mining" is almost missing in the sequence analysis literature, its basic concepts have been implicitly applied. Interestingly, recent research in biological sequence analysis introduced efficient solutions to many problems in data mining, such as querying and analyzing time series [49,53], extracting information from web pages [20], fighting spam mails [50], detecting plagiarism [22], and spotting duplications in software systems [14].
29 CFR 570.35a - Work experience and career exploration program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... permitted in all occupations except the following: (1) Manufacturing and mining. (2) Occupations declared to...) introductory text of newly redesignated § 570.36 was revised, effective July 19, 2010. For the convenience of the user, the revised text is set forth as follows: § 570.36 Work experience and career exploration...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-07
.... The text of the proposed rule change is available on the Exchange's Web site at http://nasdaqtrader... and discussed any comments it received on the proposed rule change. The text of these statements may... Mining Corporation (``NEM''); Palm, Inc. (``PALM''); Pfizer, Inc. (``PFE''); ''); Potash Corp...
Training and Employment of Land Mine and Booby Trap Detector Dogs. Volume II
1976-09-01
1Of injury, disease, and other physical abnormalities. All obligatory Li [1/ • ,i 4’: vaccinations should 1•e current ( canine distemper , infectious...as a procedures manual and reference text to be used during the training of initially naive canines v for land mine and booby trap detection service... canine L. training contexts. * • The techniques and procedures elaborated in the present docu- ment were developed for the United States Army Mobility
[Exploring the clinical characters of Shugan Jieyu capsule through text mining].
Pu, Zheng-Ping; Xia, Jiang-Ming; Xie, Wei; He, Jin-Cai
2017-09-01
The study was main to explore the clinical characters of Shugan Jieyu capsule through text mining. The data sets of Shugan Jieyu capsule were downloaded from CMCC database by the method of literature retrieved from May 2009 to Jan 2016. Rules of Chinese medical patterns, diseases, symptoms and combination treatment were mined out by data slicing algorithm, and they were demonstrated in frequency tables and two dimension based network. Then totally 190 literature were recruited. The outcomess suggested that SC was most frequently correlated with liver Qi stagnation. Primary depression, depression due to brain disease, concomitant depression followed by physical diseases, concomitant depression followed by schizophrenia and functional dyspepsia were main diseases treated by Shugan Jieyu capsule. Symptoms like low mood, psychic anxiety, somatic anxiety and dysfunction of automatic nerve were mainy relieved bv Shugan Jieyu capsule.For combination treatment. Shugan Jieyu capsule was most commonly used with paroxetine, sertraline and fluoxetine. The research suggested that syndrome types and mining results of Shugan Jieyu capsule were almost the same as its instructions. Syndrome of malnutrition of heart spirit was the potential Chinese medical pattern of Shugan Jieyu capsule. Primary comorbid anxiety and depression, concomitant comorbid anxiety and depression followed by physical diseases, and postpartum depression were potential diseases treated by Shugan Jieyu capsule.For combination treatment, Shugan Jieyu capsule was most commonly used with paroxetine, sertraline and fluoxetine. Copyright© by the Chinese Pharmaceutical Association.
Lowe, Daniel M.; O’Boyle, Noel M.; Sayle, Roger A.
2016-01-01
Awareness of the adverse effects of chemicals is important in biomedical research and healthcare. Text mining can allow timely and low-cost extraction of this knowledge from the biomedical literature. We extended our text mining solution, LeadMine, to identify diseases and chemical-induced disease relationships (CIDs). LeadMine is a dictionary/grammar-based entity recognizer and was used to recognize and normalize both chemicals and diseases to Medical Subject Headings (MeSH) IDs. The disease lexicon was obtained from three sources: MeSH, the Disease Ontology and Wikipedia. The Wikipedia dictionary was derived from pages with a disease/symptom box, or those where the page title appeared in the lexicon. Composite entities (e.g. heart and lung disease) were detected and mapped to their composite MeSH IDs. For CIDs, we developed a simple pattern-based system to find relationships within the same sentence. Our system was evaluated in the BioCreative V Chemical–Disease Relation task and achieved very good results for both disease concept ID recognition (F1-score: 86.12%) and CIDs (F1-score: 52.20%) on the test set. As our system was over an order of magnitude faster than other solutions evaluated on the task, we were able to apply the same system to the entirety of MEDLINE allowing us to extract a collection of over 250 000 distinct CIDs. PMID:27060160
Ji, Yanqing; Ying, Hao; Tran, John; Dews, Peter; Massanari, R Michael
2016-07-19
Finding highly relevant articles from biomedical databases is challenging not only because it is often difficult to accurately express a user's underlying intention through keywords but also because a keyword-based query normally returns a long list of hits with many citations being unwanted by the user. This paper proposes a novel biomedical literature search system, called BiomedSearch, which supports complex queries and relevance feedback. The system employed association mining techniques to build a k-profile representing a user's relevance feedback. More specifically, we developed a weighted interest measure and an association mining algorithm to find the strength of association between a query and each concept in the article(s) selected by the user as feedback. The top concepts were utilized to form a k-profile used for the next-round search. BiomedSearch relies on Unified Medical Language System (UMLS) knowledge sources to map text files to standard biomedical concepts. It was designed to support queries with any levels of complexity. A prototype of BiomedSearch software was made and it was preliminarily evaluated using the Genomics data from TREC (Text Retrieval Conference) 2006 Genomics Track. Initial experiment results indicated that BiomedSearch increased the mean average precision (MAP) for a set of queries. With UMLS and association mining techniques, BiomedSearch can effectively utilize users' relevance feedback to improve the performance of biomedical literature search.
Building a protein name dictionary from full text: a machine learning term extraction approach.
Shi, Lei; Campagne, Fabien
2005-04-07
The majority of information in the biological literature resides in full text articles, instead of abstracts. Yet, abstracts remain the focus of many publicly available literature data mining tools. Most literature mining tools rely on pre-existing lexicons of biological names, often extracted from curated gene or protein databases. This is a limitation, because such databases have low coverage of the many name variants which are used to refer to biological entities in the literature. We present an approach to recognize named entities in full text. The approach collects high frequency terms in an article, and uses support vector machines (SVM) to identify biological entity names. It is also computationally efficient and robust to noise commonly found in full text material. We use the method to create a protein name dictionary from a set of 80,528 full text articles. Only 8.3% of the names in this dictionary match SwissProt description lines. We assess the quality of the dictionary by studying its protein name recognition performance in full text. This dictionary term lookup method compares favourably to other published methods, supporting the significance of our direct extraction approach. The method is strong in recognizing name variants not found in SwissProt.
Building a protein name dictionary from full text: a machine learning term extraction approach
Shi, Lei; Campagne, Fabien
2005-01-01
Background The majority of information in the biological literature resides in full text articles, instead of abstracts. Yet, abstracts remain the focus of many publicly available literature data mining tools. Most literature mining tools rely on pre-existing lexicons of biological names, often extracted from curated gene or protein databases. This is a limitation, because such databases have low coverage of the many name variants which are used to refer to biological entities in the literature. Results We present an approach to recognize named entities in full text. The approach collects high frequency terms in an article, and uses support vector machines (SVM) to identify biological entity names. It is also computationally efficient and robust to noise commonly found in full text material. We use the method to create a protein name dictionary from a set of 80,528 full text articles. Only 8.3% of the names in this dictionary match SwissProt description lines. We assess the quality of the dictionary by studying its protein name recognition performance in full text. Conclusion This dictionary term lookup method compares favourably to other published methods, supporting the significance of our direct extraction approach. The method is strong in recognizing name variants not found in SwissProt. PMID:15817129
Papamokos, George; Silins, Ilona
2016-01-01
There is an increasing need for new reliable non-animal based methods to predict and test toxicity of chemicals. Quantitative structure-activity relationship (QSAR), a computer-based method linking chemical structures with biological activities, is used in predictive toxicology. In this study, we tested the approach to combine QSAR data with literature profiles of carcinogenic modes of action automatically generated by a text-mining tool. The aim was to generate data patterns to identify associations between chemical structures and biological mechanisms related to carcinogenesis. Using these two methods, individually and combined, we evaluated 96 rat carcinogens of the hematopoietic system, liver, lung, and skin. We found that skin and lung rat carcinogens were mainly mutagenic, while the group of carcinogens affecting the hematopoietic system and the liver also included a large proportion of non-mutagens. The automatic literature analysis showed that mutagenicity was a frequently reported endpoint in the literature of these carcinogens, however, less common endpoints such as immunosuppression and hormonal receptor-mediated effects were also found in connection with some of the carcinogens, results of potential importance for certain target organs. The combined approach, using QSAR and text-mining techniques, could be useful for identifying more detailed information on biological mechanisms and the relation with chemical structures. The method can be particularly useful in increasing the understanding of structure and activity relationships for non-mutagens.
Life priorities in the HIV-positive Asians: a text-mining analysis in young vs. old generation.
Chen, Wei-Ti; Barbour, Russell
2017-04-01
HIV/AIDS is one of the most urgent and challenging public health issues, especially since it is now considered a chronic disease. In this project, we used text mining techniques to extract meaningful words and word patterns from 45 transcribed in-depth interviews of people living with HIV/AIDS (PLWHA) conducted in Taipei, Beijing, Shanghai, and San Francisco from 2006 to 2013. Text mining analysis can predict whether an emerging field will become a long-lasting source of academic interest or whether it is simply a passing source of interest that will soon disappear. The data were analyzed by age group (45 and older vs. 44 and younger). The highest ranking fragments in the order of frequency were: "care", "daughter", "disease", "family", "HIV", "hospital", "husband", "medicines", "money", "people", "son", "tell/disclosure", "thought", "want", and "years". Participants in the 44-year-old and younger group were focused mainly on disease disclosure, their families, and their financial condition. In older PLWHA, social supports were one of the main concerns. In this study, we learned that different age groups perceive the disease differently. Therefore, when designing intervention, researchers should consider to tailor an intervention to a specific population and to help PLWHA achieve a better quality of life. Promoting self-management can be an effective strategy for every encounter with HIV-positive individuals.
Papamokos, George; Silins, Ilona
2016-01-01
There is an increasing need for new reliable non-animal based methods to predict and test toxicity of chemicals. Quantitative structure-activity relationship (QSAR), a computer-based method linking chemical structures with biological activities, is used in predictive toxicology. In this study, we tested the approach to combine QSAR data with literature profiles of carcinogenic modes of action automatically generated by a text-mining tool. The aim was to generate data patterns to identify associations between chemical structures and biological mechanisms related to carcinogenesis. Using these two methods, individually and combined, we evaluated 96 rat carcinogens of the hematopoietic system, liver, lung, and skin. We found that skin and lung rat carcinogens were mainly mutagenic, while the group of carcinogens affecting the hematopoietic system and the liver also included a large proportion of non-mutagens. The automatic literature analysis showed that mutagenicity was a frequently reported endpoint in the literature of these carcinogens, however, less common endpoints such as immunosuppression and hormonal receptor-mediated effects were also found in connection with some of the carcinogens, results of potential importance for certain target organs. The combined approach, using QSAR and text-mining techniques, could be useful for identifying more detailed information on biological mechanisms and the relation with chemical structures. The method can be particularly useful in increasing the understanding of structure and activity relationships for non-mutagens. PMID:27625608
Bin Raies, Arwa; Mansour, Hicham; Incitti, Roberto; Bajic, Vladimir B
2015-01-01
Gathering information about associations between methylated genes and diseases is important for diseases diagnosis and treatment decisions. Recent advancements in epigenetics research allow for large-scale discoveries of associations of genes methylated in diseases in different species. Searching manually for such information is not easy, as it is scattered across a large number of electronic publications and repositories. Therefore, we developed DDMGD database (http://www.cbrc.kaust.edu.sa/ddmgd/) to provide a comprehensive repository of information related to genes methylated in diseases that can be found through text mining. DDMGD's scope is not limited to a particular group of genes, diseases or species. Using the text mining system DEMGD we developed earlier and additional post-processing, we extracted associations of genes methylated in different diseases from PubMed Central articles and PubMed abstracts. The accuracy of extracted associations is 82% as estimated on 2500 hand-curated entries. DDMGD provides a user-friendly interface facilitating retrieval of these associations ranked according to confidence scores. Submission of new associations to DDMGD is provided. A comparison analysis of DDMGD with several other databases focused on genes methylated in diseases shows that DDMGD is comprehensive and includes most of the recent information on genes methylated in diseases. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Japanese anti- versus pro-influenza vaccination websites: a text-mining analysis.
Okuhara, Tsuyoshi; Ishikawa, Hirono; Okada, Masafumi; Kato, Mio; Kiuchi, Takahiro
2018-03-23
Anti-vaccination sentiment exists worldwide and Japan is no exception. Health professionals publish pro-influenza vaccination messages online to encourage proactive seeking of influenza vaccination. However, influenza vaccine coverage among the Japanese population is less than optimal. The contents of pro- and anti-influenza vaccination websites may contribute to readers' acceptance of one or the other position. We aimed to use a text-mining method to examine frequently appearing content on websites for and against influenza vaccination. We conducted online searches in January 2017 using two major Japanese search engines (Google Japan and Yahoo! Japan). Targeted websites were classified as 'pro', 'anti' or 'neutral' depending on their claims, with author(s) classified as 'health professionals', 'mass media' or 'laypersons'. Text-mining analysis was conducted, and statistical analysis was performed using a chi-squared test. Of the 334 websites analyzed, 13 content topics were identified. The three most frequently appearing content topics on pro-vaccination websites were vaccination effect for preventing serious cases of influenza, side effects of vaccination, and efficacy rate of vaccination. The three most frequent topics on anti-vaccination websites were ineffectiveness of influenza vaccination, toxicity of vaccination, and side effects of vaccination. The main disseminators of each topic, by author classification, were also revealed. We discuss possible tactics of online influenza vaccination promotion to counter anti-vaccination websites.
ERIC Educational Resources Information Center
Haghani, Nader; Bahmannejad, Fereshteh
2018-01-01
The present study examines the influence of ambiguity tolerance on the performance of Iranian GFL-learners (Note 1) at level B1 in the processing of gap-filling-text tests. It is assumed that learners with more tolerance of ambiguity achieve better results in the reading comprehension or in the contextual guessing of the omitted words. 34 GFL…
Mining Claim Activity on Federal Land for the Period 1976 through 2003
Causey, J. Douglas
2005-01-01
Previous reports on mining claim records provided information and statistics (number of claims) using data from the U.S. Bureau of Land Management's (BLM) Mining Claim Recordation System. Since that time, BLM converted their mining claim data to the Legacy Repost 2000 system (LR2000). This report describes a process to extract similar statistical data about mining claims from LR2000 data using different software and procedures than were used in the earlier work. A major difference between this process and the previous work is that every section that has a mining claim record is assigned a value. This is done by proportioning a claim between each section in which it is recorded. Also, the mining claim data in this report includes all BLM records, not just the western states. LR2000 mining claim database tables for the United States were provided by BLM in text format and imported into a Microsoft? Access2000 database in January, 2004. Data from two tables in the BLM LR2000 database were summarized through a series of database queries to determine a number that represents active mining claims in each Public Land Survey (PLS) section for each of the years from 1976 to 2002. For most of the area, spatial databases are also provided. The spatial databases are only configured to work with the statistics provided in the non-spatial data files. They are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller (for example, 1:250,000).
Processing of Written Irony in Autism Spectrum Disorder: An Eye-Movement Study.
Au-Yeung, Sheena K; Kaakinen, Johanna K; Liversedge, Simon P; Benson, Valerie
2015-12-01
Previous research has suggested that individuals with Autism Spectrum Disorders (ASD) have difficulties understanding others communicative intent and with using contextual information to correctly interpret irony. We recorded the eye movements of typically developing (TD) adults ASD adults when they read statements that could either be interpreted as ironic or non-ironic depending on the context of the passage. Participants with ASD performed as well as TD controls in their comprehension accuracy for speaker's statements in both ironic and non-ironic conditions. Eye movement data showed that for both participant groups, total reading times were longer for the critical region containing the speaker's statement and a subsequent sentence restating the context in the ironic condition compared to the non-ironic condition. The results suggest that more effortful processing is required in both ASD and TD participants for ironic compared with literal non-ironic statements, and that individuals with ASD were able to use contextual information to infer a non-literal interpretation of ironic text. Individuals with ASD, however, spent more time overall than TD controls rereading the passages, to a similar degree across both ironic and non-ironic conditions, suggesting that they either take longer to construct a coherent discourse representation of the text, or that they take longer to make the decision that their representation of the text is reasonable based on their knowledge of the world. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.
Cele, Emmanuel Nkosinathi; Maboeta, Mark
2016-01-01
An iron ore mine site in Swaziland is currently (2015) in a derelict state as a consequence of past (1964-1988) and present (2011 - current) iron ore mining operations. In order to control problems associated with mine wastes, the Swaziland Water Services Corporation (SWSC) recently (2013) proposed the application of biosolids in sites degraded by mining operations. It is thought that this practice could generally improve soil conditions and enhance plant reestablishment. More importantly, the SWSC foresees this as a potential solution to the biosolids disposal problems. In order to investigate the effects of biosolids and plants in soil physicochemical conditions of iron mine soils, we conducted two plant growth trials. Trial 1 consisted of tailings that received biosolids and topsoil (TUSB mix) while in trial 2, tailings received biosolids only (TB mix). In the two trials, the application rates of 0 (control), 10, 25, 50, 75 and 100 t ha(-1) were used. After 30 days of equilibration, 25 seeds of Cynodon dactylon were sown in each pot and thinned to 10 plants after 4 weeks. Plants were watered twice weekly and remained under greenhouse conditions for 12 weeks, subsequent to which soils were subjected to chemical analysis. According to the results obtained, there were significant improvements in soil parameters related to fertility such as organic matter (OM), water holding capacity (WHC), cation exchange capacity (CEC), ammonium [Formula: see text] , magnesium (Mg(2+)), calcium (Ca(2+)) and phosphorus ( [Formula: see text] ). With regard to heavy metals, biosolids led to significant increases in soil total concentrations of Cu, Zn, Cd, Hg and Pb. The higher concentrations of Zn and Cu in treated tailings compared to undisturbed adjacent soils are a cause for concern because in the field, this might work against the broader objectives of mine soil remediation, which include the recolonization of reclaimed sites by soil-dwelling organisms. Therefore, while biosolids contain important nutrients that may greatly improve physicochemical conditions and enhance vegetation reestablishment in mined soils, the threat of the build-up of higher levels of trace elements in treated tailings compared to surrounding adjacent soils must not be underestimated. Copyright © 2015 Elsevier Ltd. All rights reserved.
A Semantic Web-based System for Mining Genetic Mutations in Cancer Clinical Trials.
Priya, Sambhawa; Jiang, Guoqian; Dasari, Surendra; Zimmermann, Michael T; Wang, Chen; Heflin, Jeff; Chute, Christopher G
2015-01-01
Textual eligibility criteria in clinical trial protocols contain important information about potential clinically relevant pharmacogenomic events. Manual curation for harvesting this evidence is intractable as it is error prone and time consuming. In this paper, we develop and evaluate a Semantic Web-based system that captures and manages mutation evidences and related contextual information from cancer clinical trials. The system has 2 main components: an NLP-based annotator and a Semantic Web ontology-based annotation manager. We evaluated the performance of the annotator in terms of precision and recall. We demonstrated the usefulness of the system by conducting case studies in retrieving relevant clinical trials using a collection of mutations identified from TCGA Leukemia patients and Atlas of Genetics and Cytogenetics in Oncology and Haematology. In conclusion, our system using Semantic Web technologies provides an effective framework for extraction, annotation, standardization and management of genetic mutations in cancer clinical trials.
The ADE scorecards: a tool for adverse drug event detection in electronic health records.
Chazard, Emmanuel; Băceanu, Adrian; Ferret, Laurie; Ficheur, Grégoire
2011-01-01
Although several methods exist for Adverse Drug events (ADE) detection due to past hospitalizations, a tool that could display those ADEs to the physicians does not exist yet. This article presents the ADE Scorecards, a Web tool that enables to screen past hospitalizations extracted from Electronic Health Records (EHR), using a set of ADE detection rules, presently rules discovered by data mining. The tool enables the physicians to (1) get contextualized statistics about the ADEs that happen in their medical department, (2) see the rules that are useful in their department, i.e. the rules that could have enabled to prevent those ADEs and (3) review in detail the ADE cases, through a comprehensive interface displaying the diagnoses, procedures, lab results, administered drugs and anonymized records. The article shows a demonstration of the tool through a use case.
Contextual behavior and neural circuits
Lee, Inah; Lee, Choong-Hee
2013-01-01
Animals including humans engage in goal-directed behavior flexibly in response to items and their background, which is called contextual behavior in this review. Although the concept of context has long been studied, there are differences among researchers in defining and experimenting with the concept. The current review aims to provide a categorical framework within which not only the neural mechanisms of contextual information processing but also the contextual behavior can be studied in more concrete ways. For this purpose, we categorize contextual behavior into three subcategories as follows by considering the types of interactions among context, item, and response: contextual response selection, contextual item selection, and contextual item–response selection. Contextual response selection refers to the animal emitting different types of responses to the same item depending on the context in the background. Contextual item selection occurs when there are multiple items that need to be chosen in a contextual manner. Finally, when multiple items and multiple contexts are involved, contextual item–response selection takes place whereby the animal either chooses an item or inhibits such a response depending on item–context paired association. The literature suggests that the rhinal cortical regions and the hippocampal formation play key roles in mnemonically categorizing and recognizing contextual representations and the associated items. In addition, it appears that the fronto-striatal cortical loops in connection with the contextual information-processing areas critically control the flexible deployment of adaptive action sets and motor responses for maximizing goals. We suggest that contextual information processing should be investigated in experimental settings where contextual stimuli and resulting behaviors are clearly defined and measurable, considering the dynamic top-down and bottom-up interactions among the neural systems for contextual behavior. PMID:23675321
Mines, Quarries and Landscape. Visuality and Transformation
NASA Astrophysics Data System (ADS)
Jimeno, Carlos López; Torrijos, Ignacio Díez; González, Carmen Mataix
2016-06-01
In this paper a review of two basic concepts is carried out: scenery and landscape integration, proposing a new concept: "visuality", alternative to the classical "visibility" used in landscape studies related to mining activity, which explores the qualitative aspects that define the visual relationships between observer and environment. In relation to landscape integration studies, some reflections on substantive issues are made which induce certain prejudices at the time of addressing the issue of mining operations landscape integration, and some guidance and integration strategies are formulated. In the second part of the text, a new approach to the landscape integration of mines and quarries is raised, closely linked to the concept of visuality which are based on a basic goal: the re-qualification of the place, and give innovative answers to re-qualify the place and show how to catch the opportunity in the deep transformation generated by the development of mining activities. As a conclusion, a case study is presented in the last section, the landscape integration study conducted on marble exploitations Coto Pinos (Alicante, Spain), considered the largest ornamental rock quarry in Europe.
An Ensemble Method for Spelling Correction in Consumer Health Questions
Kilicoglu, Halil; Fiszman, Marcelo; Roberts, Kirk; Demner-Fushman, Dina
2015-01-01
Orthographic and grammatical errors are a common feature of informal texts written by lay people. Health-related questions asked by consumers are a case in point. Automatic interpretation of consumer health questions is hampered by such errors. In this paper, we propose a method that combines techniques based on edit distance and frequency counts with a contextual similarity-based method for detecting and correcting orthographic errors, including misspellings, word breaks, and punctuation errors. We evaluate our method on a set of spell-corrected questions extracted from the NLM collection of consumer health questions. Our method achieves a F1 score of 0.61, compared to an informed baseline of 0.29, achieved using ESpell, a spelling correction system developed for biomedical queries. Our results show that orthographic similarity is most relevant in spelling error correction in consumer health questions and that frequency and contextual information are complementary to orthographic features. PMID:26958208
Crowley, Rebecca S; Castine, Melissa; Mitchell, Kevin; Chavan, Girish; McSherry, Tara; Feldman, Michael
2010-01-01
The authors report on the development of the Cancer Tissue Information Extraction System (caTIES)--an application that supports collaborative tissue banking and text mining by leveraging existing natural language processing methods and algorithms, grid communication and security frameworks, and query visualization methods. The system fills an important need for text-derived clinical data in translational research such as tissue-banking and clinical trials. The design of caTIES addresses three critical issues for informatics support of translational research: (1) federation of research data sources derived from clinical systems; (2) expressive graphical interfaces for concept-based text mining; and (3) regulatory and security model for supporting multi-center collaborative research. Implementation of the system at several Cancer Centers across the country is creating a potential network of caTIES repositories that could provide millions of de-identified clinical reports to users. The system provides an end-to-end application of medical natural language processing to support multi-institutional translational research programs.
Park, Albert; Conway, Mike; Chen, Annie T
2018-01-01
Social media, including online health communities, have become popular platforms for individuals to discuss health challenges and exchange social support with others. These platforms can provide support for individuals who are concerned about social stigma and discrimination associated with their illness. Although mental health conditions can share similar symptoms and even co-occur, the extent to which discussion topics in online mental health communities are similar, different, or overlapping is unknown. Discovering the topical similarities and differences could potentially inform the design of related mental health communities and patient education programs. This study employs text mining, qualitative analysis, and visualization techniques to compare discussion topics in publicly accessible online mental health communities for three conditions: Anxiety, Depression and Post-Traumatic Stress Disorder. First, online discussion content for the three conditions was collected from three Reddit communities (r/Anxiety, r/Depression, and r/PTSD). Second, content was pre-processed, and then clustered using the k -means algorithm to identify themes that were commonly discussed by members. Third, we qualitatively examined the common themes to better understand them, as well as their similarities and differences. Fourth, we employed multiple visualization techniques to form a deeper understanding of the relationships among the identified themes for the three mental health conditions. The three mental health communities shared four themes: sharing of positive emotion, gratitude for receiving emotional support, and sleep- and work-related issues. Depression clusters tended to focus on self-expressed contextual aspects of depression, whereas the Anxiety Disorders and Post-Traumatic Stress Disorder clusters addressed more treatment- and medication-related issues. Visualizations showed that discussion topics from the Anxiety Disorders and Post-Traumatic Stress Disorder subreddits shared more similarities to one another than to the depression subreddit. We observed that the members of the three communities shared several overlapping concerns (i.e., sleep- and work-related problems) and discussion patterns (i.e., sharing of positive emotion and showing gratitude for receiving emotional support). We also highlighted that the discussions from the r/Anxiety and r/PTSD communities were more similar to one another than to discussions from the r/Depression community. The r/Anxiety and r/PTSD subreddit members are more likely to be individuals whose experiences with a condition are long-term, and who are interested in treatments and medications. The r/Depression subreddit members may be a comparatively diffuse group, many of whom are dealing with transient issues that cause depressed mood. The findings from this study could be used to inform the design of online mental health communities and patient education programs for these conditions. Moreover, we suggest that researchers employ multiple methods to fully understand the subtle differences when comparing similar discussions from online health communities.
Cornwall, Jon; Poppelwell, Zoe; McManus, Ruth
2018-05-15
Individuals who register as body donors do so for various reasons, with aiding medical science a common motivation. Despite awareness of several key reasons for donation, there are few in-depth explorations of these motivations to contextualize persons' reasons for donating. This study undertakes a mixed-method exploration of motivations for body donation to facilitate deeper understanding of the reasons underpinning donor registration. A survey of all newly registered body donors at a New Zealand university was performed over a single year. The survey included basic demographic information, a categorical question on reason for donation, a free-text question on donation motivation, and a free-text question allowing "other" comments on body donation. Basic statistical analysis was performed on demographic and categorical data, and thematic analysis used on free-text responses. From 169 registrants, 126 people (average age 70.5 years; 72 female) returned completed surveys (response rate 75%). Categorical data indicate a primary motivation of aiding medical science (86%). Fifty-one respondents (40%) provided free-text data on motivation, with other comments related to motivation provided by forty-one (33%). Common themes included reference to usefulness, uniqueness (pathophysiology and anatomy), gift-giving, kinship, and impermanence of the physical body. Consistent with previous studies, the primary reason for body donation was aiding medical science, however underpinning this was a complex layer of themes and sub-themes shaping motivations for choices. Findings provide important information that can guide development of robust informed consent processes, aid appropriate thanksgiving service delivery, and further contextualize the importance of medical professionals in body donation culture. Anat Sci Educ. © 2018 American Association of Anatomists. © 2018 American Association of Anatomists.
A Semi-supervised Heat Kernel Pagerank MBO Algorithm for Data Classification
2016-07-01
financial predictions, etc. and is finding growing use in text mining studies. In this paper, we present an efficient algorithm for classification of high...video data, set of images, hyperspectral data, medical data, text data, etc. Moreover, the framework provides a way to analyze data whose different...also be incorporated. For text classification, one can use tfidf (term frequency inverse document frequency) to form feature vectors for each document
ERIC Educational Resources Information Center
Jarman, Jay
2011-01-01
This dissertation focuses on developing and evaluating hybrid approaches for analyzing free-form text in the medical domain. This research draws on natural language processing (NLP) techniques that are used to parse and extract concepts based on a controlled vocabulary. Once important concepts are extracted, additional machine learning algorithms,…
BioC: a minimalist approach to interoperability for biomedical text processing
Comeau, Donald C.; Islamaj Doğan, Rezarta; Ciccarese, Paolo; Cohen, Kevin Bretonnel; Krallinger, Martin; Leitner, Florian; Lu, Zhiyong; Peng, Yifan; Rinaldi, Fabio; Torii, Manabu; Valencia, Alfonso; Verspoor, Karin; Wiegers, Thomas C.; Wu, Cathy H.; Wilbur, W. John
2013-01-01
A vast amount of scientific information is encoded in natural language text, and the quantity of such text has become so great that it is no longer economically feasible to have a human as the first step in the search process. Natural language processing and text mining tools have become essential to facilitate the search for and extraction of information from text. This has led to vigorous research efforts to create useful tools and to create humanly labeled text corpora, which can be used to improve such tools. To encourage combining these efforts into larger, more powerful and more capable systems, a common interchange format to represent, store and exchange the data in a simple manner between different language processing systems and text mining tools is highly desirable. Here we propose a simple extensible mark-up language format to share text documents and annotations. The proposed annotation approach allows a large number of different annotations to be represented including sentences, tokens, parts of speech, named entities such as genes or diseases and relationships between named entities. In addition, we provide simple code to hold this data, read it from and write it back to extensible mark-up language files and perform some sample processing. We also describe completed as well as ongoing work to apply the approach in several directions. Code and data are available at http://bioc.sourceforge.net/. Database URL: http://bioc.sourceforge.net/ PMID:24048470
Singhal, Ayush; Simmons, Michael; Lu, Zhiyong
2016-11-01
The practice of precision medicine will ultimately require databases of genes and mutations for healthcare providers to reference in order to understand the clinical implications of each patient's genetic makeup. Although the highest quality databases require manual curation, text mining tools can facilitate the curation process, increasing accuracy, coverage, and productivity. However, to date there are no available text mining tools that offer high-accuracy performance for extracting such triplets from biomedical literature. In this paper we propose a high-performance machine learning approach to automate the extraction of disease-gene-variant triplets from biomedical literature. Our approach is unique because we identify the genes and protein products associated with each mutation from not just the local text content, but from a global context as well (from the Internet and from all literature in PubMed). Our approach also incorporates protein sequence validation and disease association using a novel text-mining-based machine learning approach. We extract disease-gene-variant triplets from all abstracts in PubMed related to a set of ten important diseases (breast cancer, prostate cancer, pancreatic cancer, lung cancer, acute myeloid leukemia, Alzheimer's disease, hemochromatosis, age-related macular degeneration (AMD), diabetes mellitus, and cystic fibrosis). We then evaluate our approach in two ways: (1) a direct comparison with the state of the art using benchmark datasets; (2) a validation study comparing the results of our approach with entries in a popular human-curated database (UniProt) for each of the previously mentioned diseases. In the benchmark comparison, our full approach achieves a 28% improvement in F1-measure (from 0.62 to 0.79) over the state-of-the-art results. For the validation study with UniProt Knowledgebase (KB), we present a thorough analysis of the results and errors. Across all diseases, our approach returned 272 triplets (disease-gene-variant) that overlapped with entries in UniProt and 5,384 triplets without overlap in UniProt. Analysis of the overlapping triplets and of a stratified sample of the non-overlapping triplets revealed accuracies of 93% and 80% for the respective categories (cumulative accuracy, 77%). We conclude that our process represents an important and broadly applicable improvement to the state of the art for curation of disease-gene-variant relationships.
Text-mining analysis of mHealth research.
Ozaydin, Bunyamin; Zengul, Ferhat; Oner, Nurettin; Delen, Dursun
2017-01-01
In recent years, because of the advancements in communication and networking technologies, mobile technologies have been developing at an unprecedented rate. mHealth, the use of mobile technologies in medicine, and the related research has also surged parallel to these technological advancements. Although there have been several attempts to review mHealth research through manual processes such as systematic reviews, the sheer magnitude of the number of studies published in recent years makes this task very challenging. The most recent developments in machine learning and text mining offer some potential solutions to address this challenge by allowing analyses of large volumes of texts through semi-automated processes. The objective of this study is to analyze the evolution of mHealth research by utilizing text-mining and natural language processing (NLP) analyses. The study sample included abstracts of 5,644 mHealth research articles, which were gathered from five academic search engines by using search terms such as mobile health, and mHealth. The analysis used the Text Explorer module of JMP Pro 13 and an iterative semi-automated process involving tokenizing, phrasing, and terming. After developing the document term matrix (DTM) analyses such as single value decomposition (SVD), topic, and hierarchical document clustering were performed, along with the topic-informed document clustering approach. The results were presented in the form of word-clouds and trend analyses. There were several major findings regarding research clusters and trends. First, our results confirmed time-dependent nature of terminology use in mHealth research. For example, in earlier versus recent years the use of terminology changed from "mobile phone" to "smartphone" and from "applications" to "apps". Second, ten clusters for mHealth research were identified including (I) Clinical Research on Lifestyle Management, (II) Community Health, (III) Literature Review, (IV) Medical Interventions, (V) Research Design, (VI) Infrastructure, (VII) Applications, (VIII) Research and Innovation in Health Technologies, (IX) Sensor-based Devices and Measurement Algorithms, (X) Survey-based Research. Third, the trend analyses indicated the infrastructure cluster as the highest percentage researched area until 2014. The Research and Innovation in Health Technologies cluster experienced the largest increase in numbers of publications in recent years, especially after 2014. This study is unique because it is the only known study utilizing text-mining analyses to reveal the streams and trends for mHealth research. The fast growth in mobile technologies is expected to lead to higher numbers of studies focusing on mHealth and its implications for various healthcare outcomes. Findings of this study can be utilized by researchers in identifying areas for future studies.
Text-mining analysis of mHealth research
Zengul, Ferhat; Oner, Nurettin; Delen, Dursun
2017-01-01
In recent years, because of the advancements in communication and networking technologies, mobile technologies have been developing at an unprecedented rate. mHealth, the use of mobile technologies in medicine, and the related research has also surged parallel to these technological advancements. Although there have been several attempts to review mHealth research through manual processes such as systematic reviews, the sheer magnitude of the number of studies published in recent years makes this task very challenging. The most recent developments in machine learning and text mining offer some potential solutions to address this challenge by allowing analyses of large volumes of texts through semi-automated processes. The objective of this study is to analyze the evolution of mHealth research by utilizing text-mining and natural language processing (NLP) analyses. The study sample included abstracts of 5,644 mHealth research articles, which were gathered from five academic search engines by using search terms such as mobile health, and mHealth. The analysis used the Text Explorer module of JMP Pro 13 and an iterative semi-automated process involving tokenizing, phrasing, and terming. After developing the document term matrix (DTM) analyses such as single value decomposition (SVD), topic, and hierarchical document clustering were performed, along with the topic-informed document clustering approach. The results were presented in the form of word-clouds and trend analyses. There were several major findings regarding research clusters and trends. First, our results confirmed time-dependent nature of terminology use in mHealth research. For example, in earlier versus recent years the use of terminology changed from “mobile phone” to “smartphone” and from “applications” to “apps”. Second, ten clusters for mHealth research were identified including (I) Clinical Research on Lifestyle Management, (II) Community Health, (III) Literature Review, (IV) Medical Interventions, (V) Research Design, (VI) Infrastructure, (VII) Applications, (VIII) Research and Innovation in Health Technologies, (IX) Sensor-based Devices and Measurement Algorithms, (X) Survey-based Research. Third, the trend analyses indicated the infrastructure cluster as the highest percentage researched area until 2014. The Research and Innovation in Health Technologies cluster experienced the largest increase in numbers of publications in recent years, especially after 2014. This study is unique because it is the only known study utilizing text-mining analyses to reveal the streams and trends for mHealth research. The fast growth in mobile technologies is expected to lead to higher numbers of studies focusing on mHealth and its implications for various healthcare outcomes. Findings of this study can be utilized by researchers in identifying areas for future studies. PMID:29430456