Subduction-driven recycling of continental margin lithosphere.
Levander, A; Bezada, M J; Niu, F; Humphreys, E D; Palomeras, I; Thurner, S M; Masy, J; Schmitz, M; Gallart, J; Carbonell, R; Miller, M S
2014-11-13
Whereas subduction recycling of oceanic lithosphere is one of the central themes of plate tectonics, the recycling of continental lithosphere appears to be far more complicated and less well understood. Delamination and convective downwelling are two widely recognized processes invoked to explain the removal of lithospheric mantle under or adjacent to orogenic belts. Here we relate oceanic plate subduction to removal of adjacent continental lithosphere in certain plate tectonic settings. We have developed teleseismic body wave images from dense broadband seismic experiments that show higher than expected volumes of anomalously fast mantle associated with the subducted Atlantic slab under northeastern South America and the Alboran slab beneath the Gibraltar arc region; the anomalies are under, and are aligned with, the continental margins at depths greater than 200 kilometres. Rayleigh wave analysis finds that the lithospheric mantle under the continental margins is significantly thinner than expected, and that thin lithosphere extends from the orogens adjacent to the subduction zones inland to the edges of nearby cratonic cores. Taking these data together, here we describe a process that can lead to the loss of continental lithosphere adjacent to a subduction zone. Subducting oceanic plates can viscously entrain and remove the bottom of the continental thermal boundary layer lithosphere from adjacent continental margins. This drives surface tectonics and pre-conditions the margins for further deformation by creating topography along the lithosphere-asthenosphere boundary. This can lead to development of secondary downwellings under the continental interior, probably under both South America and the Gibraltar arc, and to delamination of the entire lithospheric mantle, as around the Gibraltar arc. This process reconciles numerous, sometimes mutually exclusive, geodynamic models proposed to explain the complex oceanic-continental tectonics of these subduction zones.
NASA Astrophysics Data System (ADS)
Shahraki, Meysam; Schmeling, Harro; Haas, Peter
2018-01-01
Isostatic equilibrium is a good approximation for passive continental margins. In these regions, geoid anomalies are proportional to the local dipole moment of density-depth distributions, which can be used to constrain the amount of oceanic to continental lithospheric thickening (lithospheric jumps). We consider a five- or three-layer 1D model for the oceanic and continental lithosphere, respectively, composed of water, a sediment layer (both for the oceanic case), the crust, the mantle lithosphere and the asthenosphere. The mantle lithosphere is defined by a mantle density, which is a function of temperature and composition, due to melt depletion. In addition, a depth-dependent sediment density associated with compaction and ocean floor variation is adopted. We analyzed satellite derived geoid data and, after filtering, extracted typical averaged profiles across the Western and Eastern passive margins of the South Atlantic. They show geoid jumps of 8.1 m and 7.0 m for the Argentinian and African sides, respectively. Together with topography data and an averaged crustal density at the conjugate margins these jumps are interpreted as isostatic geoid anomalies and yield best-fitting crustal and lithospheric thicknesses. In a grid search approach five parameters are systematically varied, namely the thicknesses of the sediment layer, the oceanic and continental crusts and the oceanic and the continental mantle lithosphere. The set of successful models reveals a clear asymmetry between the South Africa and Argentine lithospheres by 15 km. Preferred models predict a sediment layer at the Argentine margin of 3-6 km and at the South Africa margin of 1-2.5 km. Moreover, we derived a linear relationship between, oceanic lithosphere, sediment thickness and lithospheric jumps at the South Atlantic margins. It suggests that the continental lithospheres on the western and eastern South Atlantic are thicker by 45-70 and 60-80 km than the oceanic lithospheres, respectively.
NASA Astrophysics Data System (ADS)
Tymms, V. J.; Kusznir, N. J.
2004-12-01
The effect of temperature dependent rheology has been examined for a model of continental lithosphere thinning by an upwelling divergent flow field within continental lithosphere and asthenosphere leading to continental breakup and rifted continental margin formation. The model uses a coupled FE fluid flow and thermal solution and is kinematically driven using a half divergence rate Vx and upwelling velocity Vz. Viscosity structure is modified by the evolving temperature field of the model through the temperature dependent Newtonian rheology. Continental lithosphere and asthenosphere material are advected by the fluid-flow field in order to predict crustal and mantle lithosphere thinning leading to rifted continental margin formation. The results of the temperature dependent rheology model are compared with those of a simple isoviscous model. The temperature dependent rheology model predicts continental lithosphere thinning and depth dependent stretching, similar to that predicted by the uniform viscosity model. However compared with the uniform viscosity model the temperature dependent rheology predicts greater amounts of thinning of the continental crust and lithospheric mantle than the isoviscous solutions. An important parameter within the kinematic model of continental lithosphere breakup and rifted continental margin development is the velocity ratio Vz/Vx. For non-volcanic margins, Vz/Vx is thought to be around unity. Applying a velocity ratio Vz/Vx of unity gives a diffuse ocean-continent transition and exhumation of continental lithospheric mantle. For volcanic margins, Vz/Vx is of order 10, falling to unity with a half-life of order 10 Ma, leading to a more sharply defined ocean-continent transition. While Vx during continental breakup may be estimated, Vz can only be inferred. FE fluid flow solutions, in which Vz is not imposed and without an initial buoyancy driven flow component, predict a velocity ratio Vz/Vx of around unity for both temperature dependent rheology and isovisous fluid-flow solutions. The effect of incorporating a lithology dependent continental lithosphere rheology (quartz-feldspar crust, olivine mantle) with temperature dependence is also being investigated. The work forms part of the Integrated Seismic Imaging and Modelling of Margins (iSIMM*) project. This work forms part of the NERC Margins iSIMM project. iSIMM investigators are from Liverpool and Cambridge Universities, Schlumberger Cambridge Research & Badley Geoscience, supported by the NERC, the DTI, Agip UK, BP, Amerada Hess Ltd, Anadarko, Conoco-Phillips, Shell, Statoil and WesternGeco. The iSIMM team comprises NJ Kusznir, RS White, AM Roberts, PAF Christie, R Spitzer, N Hurst, ZC Lunnon, CJ Parkin, AW Roberts, LK Smith, V Tymms & D. Healy.
NASA Astrophysics Data System (ADS)
Jeanniot, Ludovic; Kusznir, Nick; Manatschal, Gianreto; Mohn, Geoffroy
2014-05-01
Observations at magma-poor rifted margins such as Iberia-Newfoundland show a complex lithosphere deformation history during continental breakup and seafloor spreading initiation leading to complex OCT architecture with hyper-extended continental crust and lithosphere, exhumed mantle and scattered embryonic oceanic crust and continental slivers. Initiation of seafloor spreading requires both the rupture of the continental crust and lithospheric mantle, and the onset of decompressional melting. Their relative timing controls when mantle exhumation may occur; the presence or absence of exhumed mantle provides useful information on the timing of these events and constraints on lithosphere deformation modes. A single lithosphere deformation mode leading to continental breakup and sea-floor spreading cannot explain observations. We have determined the sequence of lithosphere deformation events for two profiles across the present-day conjugate Iberia-Newfoundland margins, using forward modelling of continental breakup and seafloor spreading initiation calibrated against observations of crustal basement thickness and subsidence. Flow fields, representing a sequence of lithosphere deformation modes, are generated by a 2D finite element viscous flow model (FeMargin), and used to advect lithosphere and asthenosphere temperature and material. FeMargin is kinematically driven by divergent deformation in the upper 15-20 km of the lithosphere inducing passive upwelling beneath that layer; extensional faulting and magmatic intrusions deform the topmost upper lithosphere, consistent with observations of deformation processes occurring at slow spreading ocean ridges (Cannat, 1996). Buoyancy enhanced upwelling, as predicted by Braun et al. (2000) is also kinematically included in the lithosphere deformation model. Melt generation by decompressional melting is predicted using the parameterization and methodology of Katz et al. (2003). The distribution of lithosphere deformation, the contribution of buoyancy driven upwelling and their spatial and temporal evolution including lateral migration are determined by using a series of numerical experiments, tested and calibrated against observations of crustal thicknesses and water-loaded subsidence. Pure-shear widths exert a strong control on the timing of crustal rupture and melt initiation; to satisfy OCT architecture, subsidence and mantle exhumation, we need to focus the deformation from a broad to a narrow region. The lateral migration of the deformation flow axis has an important control on the rupture of continental crust and lithosphere, melt initiation, their relative timing, the resulting OCT architecture and conjugate margin asymmetry. The numerical models are used to predict margin isostatic response and subsidence history.
NASA Astrophysics Data System (ADS)
Jeanniot, L.; Kusznir, N. J.; Manatschal, G.; Mohn, G.; Beltrando, M.
2013-12-01
Observations at magma-poor rifted margins such as Iberia-Newfoundland show a complex lithosphere deformation history and OCT architecture, resulting in hyper-extended continental crust and lithosphere, exhumed mantle and scattered embryonic oceanic crust before continental breakup and seafloor spreading. Initiation of seafloor spreading requires both the rupture of the continental crust and lithospheric mantle, and the onset of decompressional melting. Their relative timing controls when mantle exhumation may occur; the presence or absence of exhumed mantle provides useful information on the timing of these events and constraints on lithosphere deformation modes. A single kinematic lithosphere deformation mode leading to continental breakup and sea-floor spreading cannot explain observations. We have determined the sequence of lithosphere deformation events, using forward modelling of crustal thickness, subsidence and P-T-t history calibrated against observations on the present-day Iberia-Newfoundland and the fossil analogue Alpine Tethys margins. Lithosphere deformation modes, represented by flow fields, are generated by a 2D finite element viscous flow model (FeMargin), and used to advect lithosphere and asthenosphere temperature and material. FeMargin is kinematically driven by divergent deformation in the topmost upper lithosphere inducing passive upwelling beneath that layer; the upper lithosphere is assumed to deform by extensional faulting and magmatic intrusions, consistent with observations of deformation processes occurring at slow spreading ocean ridges (Cannat, 1996). Buoyancy enhanced upwelling is also included in the kinematic model as predicted by Braun et al (2000). We predict melt generation by decompressional melting using the parameterization and methodology of Katz et al., 2003. We use a series of numerical experiments, tested and calibrated against crustal thicknesses and subsidence observations, to determine the distribution of lithosphere deformation, the contribution of buoyancy driven upwelling and their spatial and temporal evolution including lateral migration. Particle tracking is used to predict P-T-t histories for both Iberia-Newfoundland and the Alpine Tethys conjugate margin transects. The lateral migration of the deformation flow axis has an important control on the rupture of continental crust and lithosphere, melt initiation, their relative timing, the resulting OCT architecture and conjugate margin asymmetry. Initial continental crust thickness and lithosphere temperature structure are important in controlling initial elevation and subsequent subsidence and depositional histories. Numerical models are used to examine the possible isostatic responses of the present-day and fossil analogue rifted margins.
NASA Astrophysics Data System (ADS)
Ratheesh-Kumar, R. T.; Xiao, Wenjiao
2018-05-01
Gondwana correlation studies had rationally positioned the western continental margin of India (WCMI) against the eastern continental margin of Madagascar (ECMM), and the eastern continental margin of India (ECMI) against the eastern Antarctica continental margin (EACM). This contribution computes the effective elastic thickness (Te) of the lithospheres of these once-conjugated continental margins using the multitaper Bouguer coherence method. The results reveal significantly low strength values (Te ∼ 2 km) in the central segment of the WCMI that correlate with consistently low Te values (2-3 km) obtained throughout the entire marginal length of the ECMM. This result is consistent with the previous Te estimates of these margins, and confirms the idea that the low-Te segments in the central part of the WCMI and along the ECMM represents paleo-rift inception points of the lithospheric margins that was thermally and mechanically weakened by the combined action of the Marion hotspot and lithospheric extension during the rifting. The uniformly low-Te value (∼2 km) along the EACM indicates a mechanically weak lithospheric margin, probably due to considerable stretching of the lithosphere, considering the fact that this margin remained almost stationary throughout its rift history. In contrast, the ECMI has comparatively high-Te variations (5-11 km) that lack any correlation with the regional tectonic setting. Using gravity forward and inversion applications, we find a leading order of influence of sediment load on the flexural properties of this marginal lithosphere. The study concludes that the thick pile of the Bengal Fan sediments in the ECMI masks and has erased the signal of the original load-induced topography, and its gravity effect has biased the long-wavelength part of the observed gravity signal. The hence uncorrelated flat topography and deep lithospheric flexure together contribute a bias in the flexure modeling, which likely accounts a relatively high Te estimate.
Thinning of heterogeneous lithosphere: insights from field observations and numerical modelling
NASA Astrophysics Data System (ADS)
Petri, B.; Duretz, T.; Mohn, G.; Schmalholz, S. M.
2017-12-01
The nature and mechanisms of formation of extremely thinned continental crust (< 10 km) and lithosphere during rifting remain debated. Observations from present-day and fossil continental passive margins document the heterogeneous nature of the lithosphere characterized, among others, by lithological variations and structural inheritance. This contribution aims at investigating the mechanisms of extreme lithospheric thinning by exploring in particular the role of initial heterogeneities by coupling field observations from fossil passive margins and numerical models of lithospheric extension. Two field examples from the Alpine Tethys margins outcropping in the Eastern Alps (E Switzerland and N Italy) and in the Southern Alps (N Italy) were selected for their exceptional level of preservation of rift-related structures. This situation enables us to characterize (1) the pre-rift architecture of the continental lithosphere, (2) the localization of rift-related deformation in distinct portion of the lithosphere and (3) the interaction between initial heterogeneities of the lithosphere and rift-related structures. In a second stage, these observations are integrated in high-resolution, two-dimensional thermo-mechanical models taking into account various patterns of initial mechanical heterogeneities. Our results show the importance of initial pre-rift architecture of the continental lithosphere during rifting. Key roles are given to high-angle and low-angle normal faults, anastomosing shear-zones and decoupling horizons. We propose that during the first stages of thinning, deformation is strongly controlled by the complex pre-rift architecture of the lithosphere, localized along major structures responsible for the lateral extrusion of mid to lower crustal levels. This extrusion juxtaposes mechanically stronger levels in the hyper-thinned continental crust, being exhumed by subsequent low-angle normal faults. Altogether, these results highlight the critical role of the extraction of mechanically strong layers of the lithosphere during the extreme thinning of the continental lithosphere and allows to propose a new model for the formation of continental passive margins.
Tracing the thermal evolution of continental lithosphere through depth-dependent extension
NASA Astrophysics Data System (ADS)
Smye, A.; Lavier, L. L.; Stockli, D. F.; Zack, T.
2015-12-01
Rifting of continental lithosphere requires a mechanism to reduce lithospheric thickness from 100-150 kilometers to close to zero kilometers at the point of rupture. At magma-poor continental margins, this has long-thought to be caused by uniform stretching and thinning of the lithosphere accompanied by passive upwelling of the asthenosphere [1]. For the last thirty years depth-dependent thinning has been proposed as an alternative to this model to explain the anomalously shallow environment of deposition along many continental margins [2, 3]. A critical prediction of this modification is that the lower crust and sub-continental lithospheric mantle undergo a phase of increased heat flow, potentially accompanied by heating, during thinning of the lithospheric mantle. Here, we test this prediction by applying recently developed U-Pb age depth profiling techniques [4] to lower crustal accessory minerals from the exhumed Alpine Tethys and Pyrenean margins. Inversion of diffusion-controlled U-Pb age profiles in rutile affords the opportunity to trace the thermal evolution of the lower crust through the rifting process. Resultant thermal histories are used to calculate thinning factors of the crust and lithospheric mantle by 2D thermo-kinematic models of extending lithosphere. Combined, we use the measured and modeled thermal histories to propose a mechanism to explain the initiation and growth of lithospheric instabilities that lead to depth-dependent thinning at magma-poor continental margins. [1] McKenzie, D. (1978) EPSL 40, 25-32; [2] Royden, L. & Keen, C. (1980) EPSL 51, 343-361; [3] Huismans, R. & Beaumont, C. (2014) EPSL, 407, 148-162; [4] Smye, A. and Stockli, D. (2014) EPSL, 408, 171-182.
NASA Astrophysics Data System (ADS)
Tymms, V. J.; Kusznir, N. J.
2005-05-01
We numerically model continental lithosphere deformation leading to breakup and sea floor spreading initiation in response to an imposed upwelling and divergent flow field applied to continental lithosphere and asthenosphere. The model is used to predict rifted continental margin lithosphere thinning and temperature structure. Model predictions are compared with observed rifted margin structure for four diverse case studies. Prior to application of the upwelling divergent flow field the continental lithosphere is undeformed with a uniform temperature gradient. The upwelling divergent flow field is defined kinematically using boundary conditions consisting of the upwelling velocity Vz at the divergence axis and the half divergence rate Vx . The resultant velocity field throughout the continuum is computed using finite element (FE) code incorporating a Newtonian temperature dependent rheology. The flow field is used to advect the continental lithosphere material and lithospheric and asthenospheric temperatures. Viscosity structure is hence modified and the velocities change correspondingly in a feedback loop. We find the kinematic boundary conditions Vz and Vx to be of first order importance. A high Vz/Vx (greater than10), corresponding to buoyancy assisted flow, leads to minimal mantle exhumation and a well defined continent ocean transition consistent with observations at volcanic margins. For Vz/Vx near unity, corresponding to plate boundary driven divergence, mantle exhumation over widths of up to 100 km is predicted which is consistent with observations at non-volcanic margins. The FE method allows the upwelling velocity Vz to be propagated upwards from the top of the asthenosphere to the Earth's surface without the requirement of imposing Vx. When continental breakup is achieved the half divergence velocity Vx can be applied at the lithosphere surface and the upwelling velocity Vz left free. We find this time and space dependent set of boundary conditions is more plausible than a constant corner flow type solution and predicts levels of depth dependent stretching and continent ocean transitions consistent with observation. Depth dependent lithosphere stretching, which is observed at rifted continental margins, is predicted to occur before continental breakup and sea-floor spreading initiation. The model may be used to predict surface heat flow and bathymetry, and to provide estimates of melt production rates and cumulative thickness. We compare model predictions with observed margin structure for four diverse rifted margins: the Lofoten Margin (a mature volcanic margin), Goban Spur (a mature non-volcanic margin), the Woodlark Basin (a neotectonic young ocean basin) and the Faroe-Shetland Basin (a failed attempt at continental breakup). This work forms part of the NERC Margins iSIMM project. iSIMM investigators are from Liverpool and Cambridge Universities, Badley Geoscience & Schlumberger Cambridge Research supported by the NERC, the DTI, Agip UK, BP, Amerada Hess Ltd, Anadarko, Conoco¬Phillips, Shell, Statoil and WesternGeco. The iSIMM team comprises NJ Kusznir, RS White, AM Roberts, PAF Christie, A Chappell, J Eccles, R Fletcher, D Healy, N Hurst, ZC Lunnon, CJ Parkin, AW Roberts, LK Smith, V Tymms & R Spitzer.
NASA Astrophysics Data System (ADS)
Hurst, N. W.; Kusznir, N. J.
2005-05-01
A new method of inverting satellite gravity at rifted continental margins to give crustal thickness, incorporating a lithosphere thermal correction, has been developed which does not use a priori information about the location of the ocean-continent transition (OCT) and provides an independent prediction of OCT location. Satellite derived gravity anomaly data (Sandwell and Smith 1997) and bathymetry data (Gebco 2003) are used to derive the mantle residual gravity anomaly which is inverted in 3D in the spectral domain to give Moho depth. Oceanic lithosphere and stretched continental margin lithosphere produce a large negative residual thermal gravity anomaly (up to -380 mgal), which must be corrected for in order to determine Moho depth. This thermal gravity correction may be determined for oceanic lithosphere using oceanic isochron data, and for the thinned continental margin lithosphere using margin rift age and beta stretching estimates iteratively derived from crustal basement thickness determined from the gravity inversion. The gravity inversion using the thermal gravity correction predicts oceanic crustal thicknesses consistent with seismic observations, while that without the thermal correction predicts much too great oceanic crustal thicknesses. Predicted Moho depth and crustal thinning across the Hatton and Faroes rifted margins, using the gravity inversion with embedded thermal correction, compare well with those produced by wide-angle seismology. A new gravity inversion method has been developed in which no isochrons are used to define the thermal gravity correction. The new method assumes all lithosphere to be initially continental and a uniform lithosphere stretching age is used corresponding to the time of continental breakup. The thinning factor produced by the gravity inversion is used to predict the thickness of oceanic crust. This new modified form of gravity inversion with embedded thermal correction provides an improved estimate of rifted continental margin crustal thinning and an improved (and isochron independent) prediction of OCT location. The new method uses an empirical relationship to predict the thickness of oceanic crust as a function of lithosphere thinning factor controlled by two input parameters: a critical thinning factor for the start of ocean crust production and the maximum oceanic crustal thickness produced when the thinning factor = 1, corresponding to infinite lithosphere stretching. The disadvantage of using a uniform stretching age corresponding to the age of continental breakup is that the inversion fails to predict increasing thermal gravity correction towards the ocean ridge and incorrectly predicts thickening of oceanic crust with decreasing oceanic age. The new gravity inversion method has been applied to N. Atlantic rifted margins. This work forms part of the NERC Margins iSIMM project. iSIMM investigators are from Liverpool and Cambridge Universities, Badley Geoscience & Schlumberger Cambridge Research supported by the NERC, the DTI, Agip UK, BP, Amerada Hess Ltd, Anadarko, ConocoPhillips, Shell, Statoil and WesternGeco. The iSIMM team comprises NJ Kusznir, RS White, AM Roberts, PAF Christie, A Chappell, J Eccles, R Fletcher, D Healy, N Hurst, ZC Lunnon, CJ Parkin, AW Roberts, LK Smith, V Tymms & R Spitzer.
NASA Astrophysics Data System (ADS)
Kusznir, Nick; Gozzard, Simon; Alvey, Andy
2016-04-01
The distribution of ocean crust and lithosphere within the South China Sea (SCS) are controversial. Sea-floor spreading re-orientation and ridge jumps during the Oligocene-Miocene formation of the South China Sea led to the present complex distribution of oceanic crust, thinned continental crust, micro-continents and volcanic ridges. We determine Moho depth, crustal thickness and continental lithosphere thinning (1- 1/beta) for the South China Sea using a gravity inversion method which incorporates a lithosphere thermal gravity anomaly correction (Chappell & Kusznir, 2008). The gravity inversion method provides a prediction of ocean-continent transition structure and continent-ocean boundary location which is independent of ocean isochron information. A correction is required for the lithosphere thermal gravity anomaly in order to determine Moho depth accurately from gravity inversion; the elevated lithosphere geotherm of the young oceanic and rifted continental margin lithosphere of the South China Sea produces a large lithosphere thermal gravity anomaly which in places exceeds -150 mGal. The gravity anomaly inversion is carried out in the 3D spectral domain (using Parker 1972) to determine 3D Moho geometry and invokes Smith's uniqueness theorem. The gravity anomaly contribution from sediments assumes a compaction controlled sediment density increase with depth. The gravity inversion includes a parameterization of the decompression melting model of White & McKenzie (1999) to predict volcanic addition generated during continental breakup lithosphere thinning and seafloor spreading. Public domain free air gravity anomaly, bathymetry and sediment thickness data are used in this gravity inversion. Using crustal thickness and continental lithosphere thinning factor maps with superimposed shaded-relief free-air gravity anomaly, we improve the determination of pre-breakup rifted margin conjugacy, rift orientation and sea-floor spreading trajectory. SCS conjugate margins are highly asymmetric and have several striking features such as the Macclesfield Bank, Xisha Trough, Reed Bank and Dangerous Grounds. Thin continental crust is predicted extending westwards from thin oceanic crust north of Macclesfield Bank into the Quiondongnan (QDN) basin and is interpreted as being generated ahead of westward propagating sea-floor spreading most in the Oligocene. Further south, highly thinned continental crust or possibly serpentinised exhumed mantle is predicted in the Phu Khanh Basin. Ahead of the failed propagating tip of seafloor spreading, offshore southern Vietnam, thinned continental crust is predicted for the Cuu Long and Nam Con Son Basins. Crustal thicknesses from gravity inversion confirms that the southern margin of the SCS consists of fragmented blocks of thinned continental crust separated by thinner regions of continental crust that have undergone higher degrees of stretching and thinning. The Reed Bank is predicted to have a crustal thickness of 20 to 25km, similar to that of Macclesfield Bank. The Dangerous Grounds, west of the Reed Bank, are also predicted to consist of continental crust. This region has been thinned to a higher degree than the Reed Bank, with continental crustal thickness ranging between 10 and 20km thick.
NASA Astrophysics Data System (ADS)
Fierro, Elisa; Capitanio, Fabio A.; Schettino, Antonio; Morena Salerno, V.
2017-04-01
We use numerical modeling to investigate the coupling of mantle instabilities and surface tectonics along lithospheric steps developing during rifting. We address whether edge driven convection (EDC) beneath rifted continental margins and shear flow during rift-drift transition can play a role in the observed post-rift compressive tectonic evolution of the divergent continental margins along the Red Sea. We run a series of 2D simulations to examine the relationship between the maximum compression and key geometrical parameters of the step beneath continental margins, such as the step height due to lithosphere thickness variation and the width of the margins, and test the effect of rheology varying temperature- and stress-dependent viscosity in the lithosphere and asthenosphere. The development of instabilities is initially illustrated as a function of these parameters, to show the controls on the lithosphere strain distribution and magnitude. We then address the transient evolution of the instabilities to characterize their duration. In an additional suite of models, we address the development of EDC during plate motions, thus accounting for the mantle shearing due to spreading. Our results show an increase of strain with the step height as well as with the margin width up to 200 km. After this value the influence of ridge margin can be neglected. Strain rates are, then, quantified for a range of laboratory-constrained constitutive laws for mantle and lithosphere forming minerals. These models propose a viable mechanism to explain the post-rift tectonic inversion observed along the Arabian continental margin and the episodic ultra-fast sea floor spreading in the central Red Sea, where the role of EDC has been invoked.
Lithosphere erosion and continental breakup: Interaction of extension, plume upwelling and melting
NASA Astrophysics Data System (ADS)
Lavecchia, Alessio; Thieulot, Cedric; Beekman, Fred; Cloetingh, Sierd; Clark, Stuart
2017-06-01
We present the results of thermo-mechanical modelling of extension and breakup of a heterogeneous continental lithosphere, subjected to plume impingement in presence of intraplate stress field. We incorporate partial melting of the extending lithosphere, underlying upper mantle and plume, caused by pressure-temperature variations during the thermo-mechanical evolution of the conjugate passive margin system. Effects of melting included in the model account for thermal effects, causing viscosity reduction due to host rock heating, and mechanical effects, due to cohesion loss. Our study provides better understanding on how presence of melts can influence the evolution of rifting. Here we focus particularly on the role of melting for the temporal and spatial evolution of passive margin geometry and rift migration. Depending on the lithospheric structure, melt presence may have a significant impact on the characteristics of areas affected by lithospheric extension. Pre-existing lithosphere heterogeneities determine the location of initial breakup, but in presence of plumes the subsequent evolution is more difficult to predict. For small distances between plume and area of initial rifting, the development of symmetric passive margins is favored, whereas increasing the distance promotes asymmetry. For a plume-rifting distance large enough to prevent interaction, the effect of plumes on the overlying lithosphere is negligible and the rift persists at the location of the initial lithospheric weakness. When the melt effect is included, the development of asymmetric passive continental margins is fostered. In this case, melt-induced lithospheric weakening may be strong enough to cause rift jumps toward the plume location.
NASA Astrophysics Data System (ADS)
Lyakhovsky, V.; Segev, A.; Schattner, U.; Weinberger, R.
2012-01-01
We study the propagation of a continental rift and its interaction with a continental margin utilizing a 3-D lithospheric model with a seismogenic crust governed by a damage rheology. A long-standing problem in rift-mechanics, known as thetectonic force paradox, is that the magnitude of the tectonic forces required for rifting are not large enough in the absence of basaltic magmatism. Our modeling results demonstrate that under moderate rift-driving tectonic forces the rift propagation is feasible even in the absence of magmatism. This is due to gradual weakening and "long-term memory" of fractured rocks that lead to a significantly lower yielding stress than that of the surrounding intact rocks. We show that the style, rate and the associated seismicity pattern of the rift zone formation in the continental lithosphere depend not only on the applied tectonic forces, but also on the rate of healing. Accounting for the memory effect provides a feasible solution for thetectonic force paradox. Our modeling results also demonstrate how the lithosphere structure affects the geometry of the propagating rift system toward a continental margin. Thinning of the crystalline crust leads to a decrease in the propagation rate and possibly to rift termination across the margin. In such a case, a new fault system is created perpendicular to the direction of the rift propagation. These results reveal that the local lithosphere structure is one of the key factors controlling the geometry of the evolving rift system and seismicity pattern.
Modelling of sea floor spreading initiation and rifted continental margin formation
NASA Astrophysics Data System (ADS)
Tymms, V. J.; Isimm Team
2003-04-01
Recent observations of depth dependent (heterogeneous) stretching where upper crustal extension is much less than that of the lower crust and lithospheric mantle at both non-volcanic and volcanic margins plus the discovery of broad domains of exhumed continental mantle at non-volcanic rifted margins are not predicted by existing quantitative models of rifted margin formation which are usually based on intra-continental rift models subjected to very large stretching factors. New conceptual and quantitative models of rifted margin formation are required. Observations and continuum mechanics suggest that the dominant process responsible for rifted continental margin formation is sea-floor spreading of the young ocean ridge, rather than pre-breakup intra-continental rifting. Simple fluid flow models of ocean ridge processes using analytical iso-viscous corner-flow demonstrate that the divergent motion of the upwelling mantle beneath the ocean ridge, when viewed in the reference frame of the young continental margin, shows oceanward flow of the lower continental crust and lithospheric mantle of the young rifted margin giving rise to depth dependent stretching as observed. Single-phase fluid-models have been developed to model the initiation of sea-floor spreading and the thermal, stretching and thinning evolution of the young rifted continental margin. Finite element fluid-flow modelling incorporating the evolving temperature dependent viscosity field on the fluid flow also show depth dependent stretching of the young continental margin. Two-phase flow models of ocean ridges incorporating the transport of both solid matrix and melt fluid (Spiegelman &Reynolds 1999) predict the divergent motion of the asthenosphere and lithosphere matrix, and the focusing of basaltic melt into the narrow axial zone spreading centre at ocean ridges. We are adapting two-phase flow models for application to the initiation of sea-floor spreading and rifted continental margin formation. iSIMM investigators are V Tymms, NJ Kusznir, RS White, AM Roberts, PAF Christie, N Hurst, Z Lunnon, CJ Parkin, AW Roberts, LK Smith, R Spitzer, A. Davies and A. Surendra, with funding from NERC, DTI, Agip UK, BP, Amerada Hess Ltd., Anadarko, Conoco, Phillips, Shell, Statoil, and WesternGeco.
NASA Astrophysics Data System (ADS)
Cowie, Leanne; Kusznir, Nick; Leroy, Sylvie; Manatshal, Gianreto
2013-04-01
Knowledge and understanding of the ocean-continent transition (OCT) structure and continent-ocean boundary (COB) location, the distribution of thinned continental crust and lithosphere, its distal extent and the start of unequivocal oceanic crust are of critical importance in evaluating rifted continental margin formation and evolution. In order to determine the OCT structure and COB location for the eastern Gulf of Aden, along the Oman margin, we use a combination of gravity inversion, subsidence analysis and residual depth anomaly (RDA) analysis. Gravity inversion has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning; subsidence analysis has been used to determine the distribution of continental lithosphere thinning; and RDAs have been used to investigate the OCT bathymetric anomalies with respect to expected oceanic bathymetries at rifted margins. The gravity inversion method, which is carried out in the 3D spectral domain, incorporates a lithosphere thermal gravity anomaly and includes a correction for volcanic addition due to decompression melting. Reference Moho depths used in the gravity inversion have been calibrated against seismic refraction Moho depths. RDAs have been calculated by comparing observed and age predicted oceanic bathymetries, using the thermal plate model predictions from Crosby and McKenzie (2009). RDAs have been computed along profiles and have been corrected for sediment loading using flexural back-stripping and decompaction. In addition, gravity inversion crustal basement thicknesses together with Airy isostasy have been used to predict a synthetic RDA. The RDA results show a change in RDA signature and may be used to estimate the distal extent of thinned continental crust and where oceanic crust begins. Continental lithosphere thinning has been determined using flexural back-stripping and subsidence analysis assuming the classical rift model of McKenzie (1978) with a correction for volcanic addition due to decompression melting based on White & McKenzie (1989). Gravity inversion and the "synthetic" gravity derived RDA both show generally normal thickness oceanic crust, with some localised thin oceanic crust. Continental lithosphere thinning factors determined from gravity inversion and subsidence analysis are in good agreement and have been used to constrain COB location along the profile lines. These techniques show that the OCT in the eastern Gulf of Aden, is relatively narrow, with the distance between the COB and the margin hinge measuring less than 100km.
Using Gravity Inversion to Estimate Antarctic Geothermal Heat Flux
NASA Astrophysics Data System (ADS)
Vaughan, Alan P. M.; Kusznir, Nick J.; Ferraccioli, Fausto; Leat, Phil T.; Jordan, Tom A. R. M.; Purucker, Michael E.; (Sasha) Golynsky, A. V.; Rogozhina, Irina
2014-05-01
New modelling studies for Greenland have recently underlined the importance of GHF for long-term ice sheet behaviour (Petrunin et al. 2013). Revised determinations of top basement heat-flow for Antarctica and adjacent rifted continental margins using gravity inversion mapping of crustal thickness and continental lithosphere thinning (Chappell & Kusznir 2008), using BedMap2 data have provided improved estimates of geothermal heat flux (GHF) in Antarctica where it is very poorly known. Continental lithosphere thinning and post-breakup residual thicknesses of continental crust determined from gravity inversion have been used to predict the preservation of continental crustal radiogenic heat productivity and the transient lithosphere heat-flow contribution within thermally equilibrating rifted continental and oceanic lithosphere. The sensitivity of present-day Antarctic top basement heat-flow to initial continental radiogenic heat productivity, continental rift and margin breakup age has been examined. Recognition of the East Antarctic Rift System (EARS), a major Permian to Cretaceous age rift system that appears to extend from the continental margin at the Lambert Rift to the South Pole region, a distance of 2500 km (Ferraccioli et al. 2011) and is comparable in scale to the well-studied East African rift system, highlights that crustal variability in interior Antarctica is much greater than previously assumed. GHF is also important to understand proposed ice accretion at the base of the EAIS in the GSM and its links to sub-ice hydrology (Bell et al. 2011). References Bell, R.E., Ferraccioli, F., Creyts, T.T., Braaten, D., Corr, H., Das, I., Damaske, D., Frearson, N., Jordan, T., Rose, K., Studinger, M. & Wolovick, M. 2011. Widespread persistent thickening of the East Antarctic Ice Sheet by freezing from the base. Science, 331 (6024), 1592-1595. Chappell, A.R. & Kusznir, N.J. 2008. Three-dimensional gravity inversion for Moho depth at rifted continental margins incorporating a lithosphere thermal gravity anomaly correction. Geophysical Journal International, 174 (1), 1-13. Ferraccioli, F., Finn, C.A., Jordan, T.A., Bell, R.E., Anderson, L.M. & Damaske, D. 2011. East Antarctic rifting triggers uplift of the Gamburtsev Mountains. Nature, 479, 388-392. Petrunin, A., Rogozhina, I., Vaughan, A. P. M., Kukkonen, I. T., Kaban, M., Koulakov, I., Thomas, M. (2013): Heat flux variations beneath central Greenland's ice due to anomalously thin lithosphere. - Nature Geoscience, 6, 746-750.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mascle, J.; Blarez, E.
The authors present a marine study of the eastern Ivory Coast-Ghana continental margins which they consider one of the most spectacular extinct transform margins. This margin has been created during Early-Lower Cretaceous time and has not been submitted to any major geodynamic reactivation since its fabric. Based on this example, they propose to consider during the evolution of the transform margin four main and successive stages. Shearing contact is first active between two probably thick continental crusts and then between progressively thinning continental crusts. This leads to the creation of specific geological structures such as pull-apart graben, elongated fault lineaments,more » major fault scarps, shear folds, and marginal ridges. After the final continental breakup, a hot center (the mid-oceanic ridge axis) is progressively drifting along the newly created margin. The contact between two lithospheres of different nature should necessarily induce, by thermal exchanges, vertical crustal readjustments. Finally, the transform margin remains directly adjacent to a hot but cooling oceanic lithosphere; its subsidence behavior should then progressively be comparable to the thermal subsidence of classic rifted margins.« less
The Lithospheric Geoid as a Constraint on Plate Dynamics
NASA Astrophysics Data System (ADS)
Richardson, R. M.; Coblentz, D. D.
2015-12-01
100 years after Wegener's pioneering work there is still considerable debate about the dynamics of present-day plate motions. A better understanding of present-day dynamics is key to a better understanding of the supercontinent cycle. The Earth's gravity field is one of the primary data sets to help constrain horizontal density contrasts, and hence plate dynamic forces. Previous work has shown that the global average for the geoid step up from old oceanic lithosphere across passive continental margins to stable continental lithosphere is about 6-9m, and the global average for the geoid anomaly associated with cooling oceanic lithosphere (the so-called "ridge push") is 10-12m. The ridge geoid anomaly corresponds to a net force of ~3x1012N/m (averaged over the thickness of the lithosphere) due to 'ridge push.' However, for individual continental margins and mid-ocean ridge systems, there is considerable variation in the geoid step and geoid anomaly and consequently the associated forces contributing to the stress field. We explore the variation in geoid step across passive continental margins looking for correlations with age of continental breakup (and hence place within the supercontinent cycle), hot spot tracks, continental plate velocities, long-wavelength geoid energy (that may be masking signal), and small scale convection. For mid-ocean ridges, we explore variations in geoid anomaly looking for correlations with plate spreading rates, hot spot tracks, long-wavelength geoid energy (that may be masking signal), and small scale convection. We use a band-pass spherical harmonic filter on the full geoid (e.g., EGM2008-WGS84, complete to spherical harmonic degree and order 2159) between orders 6 and 80. The evaluation of the role of spatial variations in the geoid gradient for cooling oceanic lithosphere and across the continental margin in the dynamics of the intraplate stress field requires high spatial resolution modeling. We perform a high resolution finite element analysis (~35,000 elements for a spatial resolution of approximately 50 km) for the North American plate, where previous lower resolution modeling has shown the importance of the lithospheric cooling (ridge push) force to model the broad scale stress patterns observed from the middle of the continent to the Mid-Atlantic ridge.
Oceanic-type accretion may begin before complete continental break-up
NASA Astrophysics Data System (ADS)
Geoffroy, L.; Zalan, P. V.; Viana, A. R.
2011-12-01
Oceanic accretion is thought to be the process of oceanic crust (and lithosphere) edification through adiabatic melting of shallow convecting mantle at oceanic spreading ridges. It is usually considered as a post-breakup diagnostic process following continents rupturing. However, this is not always correct. The structure of volcanic passive margins (representing more than 50% of passive continental margins) outlines that the continental lithosphere is progressively changed into oceanic-type lithosphere during the stage of continental extension. This is clear at least, at crustal level. The continental crust is 'changed' from the earliest stages of extension into a typical -however thicker- oceanic crust with the typical oceanic magmatic layers (from top to bottom: lava flows/tuffs, sheeted dyke complexes, dominantly (sill-like) mafic intrusions in the lower crust). The Q-rich continental crust is highly extended and increases in volume (due to the magma) during the extensional process. At the continent-ocean transition there is, finally, no seismic difference between this highly transformed continental crust and the oceanic crust. Using a large range of data (including deep seismic reflection profiles), we discuss the mantle mechanisms that governs the process of mantle-assisted continental extension. We outline the large similarity between those mantle processes and those acting at purely-oceanic spreading axis and discuss the effects of the inherited continental lithosphere in the pattern of new mafic crust edification.
Continental underplating after slab break-off
NASA Astrophysics Data System (ADS)
Magni, V.; Allen, M. B.; van Hunen, J.; Bouilhol, P.
2017-09-01
We present three-dimensional numerical models to investigate the dynamics of continental collision, and in particular what happens to the subducted continental lithosphere after oceanic slab break-off. We find that in some scenarios the subducting continental lithosphere underthrusts the overriding plate not immediately after it enters the trench, but after oceanic slab break-off. In this case, the continental plate first subducts with a steep angle and then, after the slab breaks off at depth, it rises back towards the surface and flattens below the overriding plate, forming a thick horizontal layer of continental crust that extends for about 200 km beyond the suture. This type of behaviour depends on the width of the oceanic plate marginal to the collision zone: wide oceanic margins promote continental underplating and marginal back-arc basins; narrow margins do not show such underplating unless a far field force is applied. Our models show that, as the subducted continental lithosphere rises, the mantle wedge progressively migrates away from the suture and the continental crust heats up, reaching temperatures >900 °C. This heating might lead to crustal melting, and resultant magmatism. We observe a sharp peak in the overriding plate rock uplift right after the occurrence of slab break-off. Afterwards, during underplating, the maximum rock uplift is smaller, but the affected area is much wider (up to 350 km). These results can be used to explain the dynamics that led to the present-day crustal configuration of the India-Eurasia collision zone and its consequences for the regional tectonic and magmatic evolution.
Volcanic passive margins: another way to break up continents
Geoffroy, L.; Burov, E. B.; Werner, P.
2015-01-01
Two major types of passive margins are recognized, i.e. volcanic and non-volcanic, without proposing distinctive mechanisms for their formation. Volcanic passive margins are associated with the extrusion and intrusion of large volumes of magma, predominantly mafic, and represent distinctive features of Larges Igneous Provinces, in which regional fissural volcanism predates localized syn-magmatic break-up of the lithosphere. In contrast with non-volcanic margins, continentward-dipping detachment faults accommodate crustal necking at both conjugate volcanic margins. These faults root on a two-layer deformed ductile crust that appears to be partly of igneous nature. This lower crust is exhumed up to the bottom of the syn-extension extrusives at the outer parts of the margin. Our numerical modelling suggests that strengthening of deep continental crust during early magmatic stages provokes a divergent flow of the ductile lithosphere away from a central continental block, which becomes thinner with time due to the flow-induced mechanical erosion acting at its base. Crustal-scale faults dipping continentward are rooted over this flowing material, thus isolating micro-continents within the future oceanic domain. Pure-shear type deformation affects the bulk lithosphere at VPMs until continental breakup, and the geometry of the margin is closely related to the dynamics of an active and melting mantle. PMID:26442807
Volcanic passive margins: another way to break up continents.
Geoffroy, L; Burov, E B; Werner, P
2015-10-07
Two major types of passive margins are recognized, i.e. volcanic and non-volcanic, without proposing distinctive mechanisms for their formation. Volcanic passive margins are associated with the extrusion and intrusion of large volumes of magma, predominantly mafic, and represent distinctive features of Larges Igneous Provinces, in which regional fissural volcanism predates localized syn-magmatic break-up of the lithosphere. In contrast with non-volcanic margins, continentward-dipping detachment faults accommodate crustal necking at both conjugate volcanic margins. These faults root on a two-layer deformed ductile crust that appears to be partly of igneous nature. This lower crust is exhumed up to the bottom of the syn-extension extrusives at the outer parts of the margin. Our numerical modelling suggests that strengthening of deep continental crust during early magmatic stages provokes a divergent flow of the ductile lithosphere away from a central continental block, which becomes thinner with time due to the flow-induced mechanical erosion acting at its base. Crustal-scale faults dipping continentward are rooted over this flowing material, thus isolating micro-continents within the future oceanic domain. Pure-shear type deformation affects the bulk lithosphere at VPMs until continental breakup, and the geometry of the margin is closely related to the dynamics of an active and melting mantle.
Arctic and N Atlantic Crustal Thickness and Oceanic Lithosphere Distribution from Gravity Inversion
NASA Astrophysics Data System (ADS)
Kusznir, Nick; Alvey, Andy
2014-05-01
The ocean basins of the Arctic and N. Atlantic formed during the Mesozoic and Cenozoic as a series of distinct ocean basins, both small and large, leading to a complex distribution of oceanic crust, thinned continental crust and rifted continental margins. The plate tectonic framework of this region was demonstrated by the pioneering work of Peter Ziegler in AAPG Memoir 43 " Evolution of the Arctic-North Atlantic and the Western Tethys" published in 1988. The spatial evolution of Arctic Ocean and N Atlantic ocean basin geometry and bathymetry are critical not only for hydrocarbon exploration but also for understanding regional palaeo-oceanography and ocean gateway connectivity, and its influence on global climate. Mapping crustal thickness and oceanic lithosphere distribution represents a substantial challenge for the Polar Regions. Using gravity anomaly inversion we have produced comprehensive maps of crustal thickness and oceanic lithosphere distribution for the Arctic and N Atlantic region, We determine Moho depth, crustal basement thickness, continental lithosphere thinning and ocean-continent transition location using a 3D spectral domain gravity inversion method, which incorporates a lithosphere thermal gravity anomaly correction (Chappell & Kusznir 2008). Gravity anomaly and bathymetry data used in the gravity inversion are from the NGA (U) Arctic Gravity Project and IBCAO respectively; sediment thickness is from a new regional compilation. The resulting maps of crustal thickness and continental lithosphere thinning factor are used to determine continent-ocean boundary location and the distribution of oceanic lithosphere. Crustal cross-sections using Moho depth from the gravity inversion allow continent-ocean transition structure to be determined and magmatic type (magma poor, "normal" or magma rich). Our gravity inversion predicts thin crust and high continental lithosphere thinning factors in the Eurasia, Canada, Makarov, Podvodnikov and Baffin Basins consistent with these basins being oceanic. Larger crustal thicknesses, in the range 20 - 30 km, are predicted for the Lomonosov, Alpha and Mendeleev Ridges. Crustal basement thicknesses of 10-15 km are predicted under the Laptev Sea which is interpreted as highly thinned continental crust formed at the eastward continuation of Eurasia Basin sea-floor spreading. Thin continental or oceanic crust of thickness 7 km or less is predicted under the North Chukchi Basin and has major implications for understanding the Mesozoic and Cenozoic plate tectonic history of the Siberian and Chukchi Amerasia Basin margins. Restoration of crustal thickness and continent-ocean boundary location from gravity inversion may be used to test and refine plate tectonic reconstructions. Using crustal thickness and continental lithosphere thinning factor maps with superimposed shaded-relief free-air gravity anomaly, we improve the determination of pre-breakup rifted margin conjugacy and sea-floor spreading trajectory within the Arctic and N Atlantic basins. By restoring crustal thickness & continental lithosphere thinning maps of the Eurasia Basin & NE Atlantic to their initial post-breakup configuration we show the geometry and segmentation of the rifted continental margins at their time of breakup, together with the location of highly-stretched failed breakup basins and rifted micro-continents. We interpret gravity inversion crustal thicknesses underneath Morris Jessop Rise & Yermak Plateau as continental crust which provided a barrier to the tectonic and palaeo-oceanic linkage between the Arctic & North Atlantic until the Oligocene. Before this time, we link the seafloor spreading within the Eurasia Basin to that in Baffin Bay.
Neogene rotations and quasicontinuous deformation of the Pacific Northwest continental margin
England, Philip; Wells, Ray E.
1991-01-01
Paleomagnetically determined rotations about vertical axes of 15 to 12 Ma flows of the Miocene Columbia River Basalt Group of Oregon and Washington decrease smoothly with distance from the plate margin, consistent with a simple physical model for continental deformation that assumes the lithosphere behaves as a thin layer of fluid. The average rate of northward translation of the continental margin since 15 Ma calculated from the rotations, using this model, is about 15 mm/yr, which suggests that much of the tangential motion between the Juan de Fuca and North American plates since middle Miocene time has been taken up by deformation of North America. The fluid-like character of the large-scale deformation implies that the brittle upper crust follows the motions of the deeper parts of the lithosphere.
NRC Continental Margins Workshop
NASA Astrophysics Data System (ADS)
Katsouros, Mary Hope
The Ocean Studies Board of the National Research Council is organizing a workshop, “Continental Margins: Evolution of Passive Continental Margins and Active Marginal Processes,” to stimulate discussion and longterm planning in the scientific community about the evolution of all types of continental margins. We want to coordinate academic, industry, and government agency efforts in this field, and to enhance communication between sea-based and land-based research programs.The continental margins constitute the only available record of the long-term dynamic interaction of oceanic and continental lithosphere. Of great interest are the unique structures and thick sedimentary sequences associated with this interaction. A major focus of the workshop will be to define strategies for exploring and understanding the continental margins in three dimensions and through geologic time. The workshop will be divided into 7 working groups, each concentrating on a major issue in continental margins research. A background document is being prepared summarizing recent research in specific continental margin fields and identifying key scientific and technical issues.
NASA Astrophysics Data System (ADS)
Kusznir, Nick; Alvey, Andy; Roberts, Alan
2017-04-01
The 3D mapping of crustal thickness for continental shelves and oceanic crust, and the determination of ocean-continent transition (OCT) structure and continent-ocean boundary (COB) location, represents a substantial challenge. Geophysical inversion of satellite derived free-air gravity anomaly data incorporating a lithosphere thermal anomaly correction (Chappell & Kusznir, 2008) now provides a useful and reliable methodology for mapping crustal thickness in the marine domain. Using this we have produced the first comprehensive maps of global crustal thickness for oceanic and continental shelf regions. Maps of crustal thickness and continental lithosphere thinning factor from gravity inversion may be used to determine the distribution of oceanic lithosphere, micro-continents and oceanic plateaux including for the inaccessible polar regions (e.g. Arctic Ocean, Alvey et al.,2008). The gravity inversion method provides a prediction of continent-ocean boundary location which is independent of ocean magnetic anomaly and isochron interpretation. Using crustal thickness and continental lithosphere thinning factor maps with superimposed shaded-relief free-air gravity anomaly, we can improve the determination of pre-breakup rifted margin conjugacy and sea-floor spreading trajectory during ocean basin formation. By restoring crustal thickness & continental lithosphere thinning to their initial post-breakup configuration we show the geometry and segmentation of the rifted continental margins at their time of breakup, together with the location of highly-stretched failed breakup basins and rifted micro-continents. For detailed analysis to constrain OCT structure, margin type (i.e. magma poor, "normal" or magma rich) and COB location, a suite of quantitative analytical methods may be used which include: (i) Crustal cross-sections showing Moho depth and crustal basement thickness from gravity inversion. (ii) Residual depth anomaly (RDA) analysis which is used to investigate OCT bathymetric anomalies with respect to expected oceanic values. This includes flexural backstripping to produce bathymetry corrected for sediment loading. (iii) Subsidence analysis which is used to determine the distribution of continental lithosphere thinning. (iv) Joint inversion of time-domain deep seismic reflection and gravity anomaly data which is used to determine lateral variations in crustal basement density and velocity across the OCT, and to validate deep seismic reflection interpretations of Moho depth. The combined interpretation of these independent quantitative measurements is used to determine crustal thickness and composition across the ocean-continent-transition. This integrated approach has been validated on the Iberian margin where ODP drilling provides ground-truth of ocean-continent-transition crustal structure, continent-ocean-boundary location and magmatic type.
Regional magnetic anomaly constraints on continental breakup
DOE Office of Scientific and Technical Information (OSTI.GOV)
von Frese, R.R.B.; Hinze, W.J.; Olivier, R.
1986-01-01
Continental lithosphere magnetic anomalies mapped by the Magsat satellite are related to tectonic features associated with regional compositional variations of the crust and upper mantle and crustal thickness and thermal perturbations. These continental-scale anomaly patterns when corrected for varying observation elevation and the global change in the direction and intensity of the geomagnetic field show remarkable correlation of regional lithospheric magnetic sources across rifted continental margins when plotted on a reconstruction of Pangea. Accordingly, these anomalies provide new and fundamental constraints on the geologic evolution and dynamics of the continents and oceans.
On the initiation of subduction
NASA Technical Reports Server (NTRS)
Mueller, Steve; Phillips, Roger J.
1991-01-01
Estimates of shear resistance associated with lithospheric thrusting and convergence represent lower bounds on the force necessary to promote trench formation. Three environments proposed as preferential sites of incipient subduction are investigated: passive continental margins, transform faults/fracture zones, and extinct ridges. None of these are predicted to convert into subduction zones simply by the accumulation of local gravitational stresses. Subduction cannot initiate through the foundering of dense oceanic lithosphere immediately adjacent to passive continental margins. The attempted subduction of buoyant material at a mature trench can result in large compressional forces in both subducting and overriding plates. This is the only tectonic force sufficient to trigger the nucleation of a new subduction zone. The ubiquitous distribution of transform faults and fracture zones, combined with the common proximity of these features to mature subduction complexes, suggests that they may represent the most likely sites of trench formation if they are even marginally weaker than normal oceanic lithosphere.
NASA Astrophysics Data System (ADS)
Chalmers, James
2014-05-01
There are mountain ranges up to more than 2 km high along many passive continental margins (e.g. Norway, eastern Australia, eastern Brazil, SE and SW Africa, east and west Greenland etc.), dubbed Elevated Passive Continental Margins (EPCMs). EPCMs contain several features in common and observations indicate that uplift of these margins took place after continental break-up. There are many explanations for their formation but none that satisfy all the observations. Lack of a geodynamical mechanism has meant that there has been difficulty in getting the community to accept the observational evidence. Formation of a passive continental margin must take place under conditions of tension. After rifting ceases, however, the margin can come under compression from forces originating elsewhere on or below its plate, e.g. orogeny elsewhere in the plate or sub-lithospheric drag. The World Stress Map (www.world-stress-mp.org) shows that, where data exists, all EPCMs are currently under compression. Under sufficient compression, crust and/or lithosphere can fold, and Cloetingh & Burov (2010) showed that many continental areas may have folded in this way. The wavelengths of folding observed by Cloetingh & Burov (2010) imply that the lower crust is likely to be of intermediate composition; granitic lower crust would fold with a shorter wavelength and basic lower crust would mean that the whole lithosphere would have to fold as a unit resulting in a much longer wavelength. Continental crust more than 20 km thick would be separated from the mantle by a weak layer. However, crust less thick than that would contain no weak layers would become effectively annealed to the underlying strong mantle. Under sufficient horizontal compression stress, material can flow in the lower weak layer towards a continental margin from the continental side. The annealed extended crust and mantle under the rift means, however, that flow cannot continue towards the ocean. Mid- and lower crustal material therefore accumulates in the proximal rift and rift margin, thickening them and lifting them by isostatic response to the thickening. Flow into the rift margin is opposed by uplift and folding of the upper, strong crust, which imposes an additional normal stress, until crust thickens no more. However, flow continues through this thickened crust, thickening and uplifting the area "downstream", so widening the thickened area. Flow and uplift can continue until a reduction in imposed far-field compressive stress causes a consequent large reduction in inflow, thereby 'freezing' the thickened crust in place. Erosion of the uplifted area will lead to further uplift of the uneroded material because of the isostatic response to the erosion. Reference Cloetingh, S. & Burov, E. 2010: Lithospheric folding and sedimentary basin evolution: a review and analysis of formation mechanisms. Basin Research 22, 1365-2117. doi:10.1111/j.1365-2117.2010.00490.x.
NASA Astrophysics Data System (ADS)
Rao, G. Srinivasa; Kumar, Manish; Radhakrishna, M.
2018-02-01
The continental breakup history at the northwest continental margin of India remained conjectural due to lack of clearly discernable magnetic anomaly identifications and the presence of several enigmatic structural/basement features whose structure was partly obscured by the Late Cretaceous Deccan magmatic event. In this study, a detailed analysis of the existing seismic and seismological data covering both onshore and offshore areas of the northwest Indian margin along with 3-D/2-D constrained potential field (gravity, magnetic and geoid) modeling has been carried out. The crustal structure and lithosphere-asthenosphere boundary (LAB) delineated across the margin provided valuable insights on the mechanism of continental extension. An analysis of the residual geoid anomaly (degree-10) map and the modeled LAB below Deccan volcanic province (DVP) revealed significant variation in upper mantle characteristics between the northwest (NW) and south central (SC) parts of DVP having thinner lithosphere in the NW part. The depth to LAB ranges 80-130 km at the margin with gradual thinning towards the western offshore having sharp gradient in the south (SC part of DVP) and gentle gradient in the north (NW part of DVP). The Moho configuration obtained from seismically constrained 3-D gravity inversion reveals that Moho depths vary 34-42 km below DVP and gradually thins to 16-20 km in the western offshore. The effective elastic thickness (Te) map computed through 3-D flexural modeling indicates that the Te values are in general lower in the region and range 12-25 km. Such lower Te values could be ascribed to the combined effect of the lithosphere stretching during Gondwana fragmentation in the Mesozoic and subsequent thermal influence of the Reunion plume. Based on the crustal stretching factors (β), Te estimates and the modeled lithosphere geometry at the margin in this study, we propose that the lithosphere below Laxmi-Gop basin region (β > 3.0) had undergone continuous stretching since India-Madagascar rifting ( 88 Ma) /much prior to this event. However, this continuous stretching did not lead to breakup. Due to syn-rift cooling, the developed necking zone (brittle-ductile deformation) got ceased and led to the development of a new necking zone between Seychelles and Laxmi Ridge. Subsequent stretching between Seychelles and the Laxmi Ridge contemporaneous with the Deccan flood basalts eruption led to the seafloor spreading in the Western Basin (anomaly C28n). Thus, the Laxmi Ridge became a continental sliver.
Evolution of passive continental margins and initiation of subduction zones
NASA Astrophysics Data System (ADS)
Cloetingh, S. A. P. L.; Wortel, M. J. R.; Vlaar, N. J.
1982-05-01
Although the initiation of subduction is a key element in plate tectonic schemes for evolution of lithospheric plates, the underlying mechanisms are not well understood. Plate rupture is an important aspect of the process of creating a new subduction zone, as stresses of the order of kilobars are required to fracture oceanic lithosphere1. Therefore initiation of subduction could take place preferentially at pre-existing weakness zones or in regions where the lithosphere is prestressed. As such, transform faults2,3 and passive margins4,5 where the lithosphere is downflexed under the influence of sediment loading have been suggested. From a model study of passive margin evolution we found that ageing of passive margins alone does not make them more suitable sites for initiation of subduction. However, extensive sediment loading on young lithosphere might be an effective mechanism for closure of small ocean basins.
Continental transform margins : state of art and future milestones
NASA Astrophysics Data System (ADS)
Basile, Christophe
2010-05-01
Transform faults were defined 45 years ago as ‘a new class of fault' (Wilson, 1965), and transform margins were consequently individualized as a new class of continental margins. While transform margins represent 20 to 25 % of the total length of continent-ocean transitions, they were poorly studied, especially when compared with the amount of data, interpretations, models and conceptual progress accumulated on divergent or convergent continental margins. The best studied examples of transform margins are located in the northern part of Norway, south of South Africa, in the gulf of California and on both sides of the Equatorial Atlantic. Here is located the Côte d'Ivoire - Ghana margin, where the more complete data set was acquired, based on numerous geological and geophysical cruises, including ODP Leg 159. The first models that encompassed the structure and evolution of transform margins were mainly driven by plate kinematic reconstructions, and evidenced the diachronic end of tectonic activity and the non-cylindrical character of these margins, with a decreasing strike-slip deformation from the convex to the concave divergent-transform intersections. Further thermo-mechanical models were more specifically designed to explain the vertical displacements along transform margins, and especially the occurrence of high-standing marginal ridges. These thermo-mechanical models involved either heat transfer from oceanic to continental lithospheres across the transform faults or tectonically- or gravity-driven mass transfer in the upper crust. These models were far from fully fit observations, and were frequently dedicated to specific example, and not easily generalizable. Future work on transform continental margins may be expected to fill some scientific gaps, and the definition of working directions can benefit from the studies dedicated to other types of margins. At regional scale the structural and sedimentological variability of transform continental margins has to be emphasized. There is not only one type of transform margins, but as for divergent margins huge changes from one margin to another in both structure and evolution. Multiple types have to be evidenced together with the various parameters that should control the variability. As for divergent margins, special attention should be paid to conjugated transform margins as a tool to assess symmetrical / asymmetrical processes in the oceanic opening. Attention should also be focused on the three-dimensional structure of the intersections between transform and divergent margins, such as the one where the giant oil field Jubilee was recently discovered. There is almost no 3D data available in these area, and their structures still have to be described. An other key point to develop is the mechanical behavior of the lithosphere in and in the vicinity of transform margins. The classical behaviors (isostasy, elastic flexure) have be tested extensively. The localization of the deformation by the transform fault, and the coupling of continental and oceanic lithosphere across the transform fault have to be adressed to understand the evolution of these margins. Again as for divergent margins, new concepts are needed to explain the variations in the post-rift and post-transform subsidence, that can not always be explained by classical subsidence models. But the most remarkable advance in our understanding of transform margins may be related to the study of interactions between the lithosphere and adjacent envelops : deep interactions with the mantle, as underplating, tectonic erosion, or possible lateral crustal flow ; surficial interactions between structural evolution, erosion and sedimentation processes in transform margins may affect the topography and bathymetry, thus the oceanic circulation with possible effects on regional and global climate.
NASA Astrophysics Data System (ADS)
Ulvrova, Martina; Williams, Simon; Coltice, Nicolas; Tackley, Paul
2017-04-01
Plate tectonics is a prominent feature on Earth. Together with the underlying convecting mantle, plates form a self-organized system. In order to understand the dynamics of the coupled system, subduction of the lithospheric plates plays the key role since it links the exterior with the interior of the planet. In this work we study subduction initiation and death with respect to the position of the continental rafts. Using thermo-mechanical numerical calculations we investigate global convection models featuring self-consistent plate tectonics and continental drifting employing a pseudo-plastic rheology and testing the effect of a free surface. We consider uncompressible mantle convection in Boussinesq approximation that is basaly and internaly heated. Our calculations indicate that the presence of the continents alterns stress distribution within a certain distance from the margins. Intra-oceanic subudction initiation is favorable during super-continent cycles while the initiation at passive continental margin prevails when continents are dispersed. The location of subduction initiation is additionally controlled by the lithospheric strength. Very weak lithosphere results in domination of intra-oceanic subduction initiation. The subduction zones die more easily in the vicinity of the continent due to the strong rheological contrast between the oceanic and continental lithosphere. In order to compare our findings with subduction positions through time recorded on Earth, we analyse subduction birth in global plate reconstruction back to 410 My.
Alpine inversion of the North African margin and delamination of its continental lithosphere
NASA Astrophysics Data System (ADS)
Roure, FrançOis; Casero, Piero; Addoum, Belkacem
2012-06-01
This paper aims at summarizing the current extent and architecture of the former Mesozoic passive margin of North Africa from North Algeria in the west up to the Ionian-Calabrian arc and adjacent Mediterranean Ridge in the east. Despite that most paleogeographic models consider that the Eastern Mediterranean Basin as a whole is still underlain by remnants of the Permo-Triassic or a younger Cretaceous Tethyan-Mesogean ocean, the strong similarities documented here in structural styles and timing of inversion between the Saharan Atlas, Sicilian Channel and the Ionian abyssal plain evidence that this portion of the Eastern Mediterranean Basin still belongs to the distal portion of the North African continental margin. A rim of Tethyan ophiolitic units can be also traced more or less continuously from Turkey and Cyprus in the east, in onshore Crete, in the Pindos in Greece and Mirdita in Albania, as well as in the Western Alps, Corsica and the Southern Apennines in the west, supporting the hypothesis that both the Apulia/Adriatic domain and the Eastern Mediterranean Basin still belong to the former southern continental margin of the Tethys. Because there is no clear evidence of crustal-scale fault offsetting the Moho, but more likely a continuous yet folded Moho extending between the foreland and the hinterland beneath the Mediterranean arcs, we propose here a new model of delamination of the continental lithosphere for the Apennines and the Aegean arcs. In this model, only the mantle lithosphere of Apulia and the Eastern Mediterranean is still locally subducted and recycled in the asthenosphere, most if not all the northern portion of the African crust and coeval Moho being currently decoupled from its former, currently delaminated and subducted mantle lithosphere.
Lithosphere structure and subsidence evolution of the conjugate S-African and Argentine margins
NASA Astrophysics Data System (ADS)
Dressel, Ingo; Scheck-Wenderoth, Magdalena; Cacace, Mauro; Götze, Hans-Jürgen; Franke, Dieter
2016-04-01
The bathymetric evolution of the South Atlantic passive continental margins is a matter of debate. Though it is commonly accepted that passive margins experience thermal subsidence as a result of lithospheric cooling as well as load induced subsidence in response to sediment deposition it is disputed if the South Atlantic passive margins were affected by additional processes affecting the subsidence history after continental breakup. We present a subsidence analysis along the SW African margin and offshore Argentina and restore paleobathymetries to assess the subsidence evolution of the margin. These results are discussed with respect to mechanisms behind margin evolution. Therefore, we use available information about the lithosphere-scale present-day structural configuration of these margins as a starting point for the subsidence analysis. A multi 1D backward modelling method is applied to separate individual subsidence components such as the thermal- as well as the load induced subsidence and to restore paleobathymetries for the conjugate margins. The comparison of the restored paleobathymetries shows that the conjugate margins evolve differently: Continuous subsidence is obtained offshore Argentina whereas the subsidence history of the SW African margin is interrupted by phases of uplift. This differing results for both margins correlate also with different structural configurations of the subcrustal mantle. In the light of these results we discuss possible implications for uplift mechanisms.
Pb-, Sr- and Nd-Isotopic systematics and chemical characteristics of cenozoic basalts, Eastern China
Peng, Z.C.; Zartman, R.E.; Futa, K.; Chen, D.G.
1986-01-01
Forty-eight Paleogene, Neogene and Quaternary basaltic rocks from northeastern and east-central China have been analyzed for major-element composition, selected trace-element contents, and Pb, Sr and Nd isotopic systematics. The study area lies entirely within the marginal Pacific tectonic domain. Proceeding east to west from the continental margin to the interior, the basalts reveal an isotopic transition in mantle source material and/or degree of crustal interaction. In the east, many of the rocks are found to merge both chemically and isotopically with those previously reported from the Japanese and Taiwan island-arc terrains. In the west, clear evidence exists for component(s) of Late Archean continental lithosphere to be present in some samples. A major crustal structure, the Tan-Lu fault, marks the approximate boundary between continental margin and interior isotopic behaviors. Although the isotopic signature of the western basalts has characteristics of lower-crustal contamination, a subcrustal lithosphere, i.e. an attached mantle keel, is probably more likely to be the major contributor of their continental "flavor". The transition from continental margin to interior is very pronounced for Pb isotopes, although Sr and Nd isotopes also combine to yield correlated patterns that deviate strikingly from the mid-ocean ridge basalt (MORB) and oceanic-island trends. The most distinctive chemical attribute of this continental lithosphere component is its diminished U Pb as reflected in the Pb isotopic composition when compared to sources of MORB, oceanic-island and island-arc volcanic rocks. Somewhat diminished Sm Nd and elevated Rb Sr, especially in comparison to the depleted asthenospheric mantle, are also apparent from the Nd- and Sr-isotopic ratios. ?? 1986.
NASA Astrophysics Data System (ADS)
Rooney, Tyrone O.; Mohr, Paul; Dosso, Laure; Hall, Chris
2013-02-01
The Afar triple junction, where the Red Sea, Gulf of Aden and African Rift System extension zones converge, is a pivotal domain for the study of continental-to-oceanic rift evolution. The western margin of Afar forms the southernmost sector of the western margin of the Red Sea rift where that margin enters the Ethiopian flood basalt province. Tectonism and volcanism at the triple junction had commenced by ˜31 Ma with crustal fissuring, diking and voluminous eruption of the Ethiopian-Yemen flood basalt pile. The dikes which fed the Oligocene-Quaternary lava sequence covering the western Afar rift margin provide an opportunity to probe the geochemical reservoirs associated with the evolution of a still active continental margin. 40Ar/39Ar geochronology reveals that the western Afar margin dikes span the entire history of rift evolution from the initial Oligocene flood basalt event to the development of focused zones of intrusion in rift marginal basins. Major element, trace element and isotopic (Sr-Nd-Pb-Hf) data demonstrate temporal geochemical heterogeneities resulting from variable contributions from the Afar plume, depleted asthenospheric mantle, and African lithosphere. The various dikes erupted between 31 Ma and 22 Ma all share isotopic signatures attesting to a contribution from the Afar plume, indicating this initial period in the evolution of the Afar margin was one of magma-assisted weakening of the lithosphere. From 22 Ma to 12 Ma, however, diffuse diking during continued evolution of the rift margin facilitated ascent of magmas in which depleted mantle and lithospheric sources predominated, though contributions from the Afar plume persisted. After 10 Ma, magmatic intrusion migrated eastwards towards the Afar rift floor, with an increasing fraction of the magmas derived from depleted mantle with less of a lithospheric signature. The dikes of the western Afar margin reveal that magma generation processes during the evolution of this continental rift margin are increasingly dominated by shallow decompressional melting of the ambient asthenosphere, the composition of which may in part be controlled by preferential channeling of plume material along the developing neo-oceanic axes of extension.
NASA Astrophysics Data System (ADS)
Gomez, C. D.; Escobar, L., Sr.; Rathnayaka, S.; Weeraratne, D. S.; Kohler, M. D.
2016-12-01
The California continental margin, a major transform plate boundary in continental North America, is the locus of complex tectonic stress fields that are important in interpreting both remnant and ongoing deformational strain. Ancient subduction of the East Pacific Rise spreading center, the rotation and translation of tectonic blocks and inception of the San Andreas fault all contribute to the dynamic stress fields located both onshore and offshore southern California. Data obtained by the ALBACORE (Asthenospheric and Lithospheric Broadband Architecture from the California Offshore Region Experiment) and the CISN (California Integrated Seismic Network) seismic array are analyzed for azimuthal anisotropy of Rayleigh waves from 80 teleseismic events at periods 16 - 78 s. Here we invert Rayleigh wave data for shear wave velocity structure and three-dimensional seismic anisotropy in the thee regions designated within the continental margin including the continent, seafloor and California Borderlands. Preliminary results show that seismic anisotropy is resolved in multiple layers and can be used to determine the lithosphere-asthenosphere boundary (LAB) in offshore and continental regions. The oldest seafloor in our study at age 25-35 Ma indicates that the anisotropic transition across the LAB occurs at 73 km +/- 25 km with the lithospheric fast direction oriented WNW-ESE, consistent with current Pacific plate motion direction. The continent region west of the San Andreas indicates similar WNW-ESE anisotropy and LAB depth. Regions east of the San Andreas fault indicate NW-SE anisotropy transitioning to a N-S alignment at 80 km depth north of the Garlock fault. The youngest seafloor (15 - 25 Ma) and outer Borderlands indicate a more complex three layer fabric where shallow lithospheric NE-SW fast directions are perpendicular with ancient Farallon subduction arc, a mid-layer with E-W fast directions are perpendicular to remnant fossil fabric, and the deepest layer indicates NW-SE fast directions below the LAB likely controlled by current Pacific plate motion. The inner Borderland indicates two layer anisotropic structure with a shallow NW-SE lithospheric fast direction that changes to NE-SW fast directions below the LAB, possibly consistent with the ancient subduction direction.
NASA Astrophysics Data System (ADS)
Steckler, Michael S.; ten Brink, Uri S.
1986-08-01
The complex plate boundary between Arabia and Africa at the northern end of the Red Sea includes the Gulf of Suez rift and the Gulf of Aqaba—Dead Sea transform. Geologic evidence indicates that during the earliest phase of rifting the Red Sea propagated NNW towards the Mediterranean Sea creating the Gulf of Suez. Subsequently, the majority of the relative movement between the plates shifted eastward to the Dead Sea transform. We propose that an increase in the strength of the lithosphere across the Mediterranean continental margin acted as a barrier to the propagation of the rift. A new plate boundary, the Dead Sea transform formed along a zone of minimum strength. We present an analysis of lithospheric strength variations across the Mediterranean continental margin. The main factors controlling these variations are the geotherm, crustal thickness and composition, and sediment thickness. The analysis predicts a characteristic strength profile at continental margins which consists of a marked increase in strength seaward of the hinge zone and a strength minimum landward of the hinge zone. This strength profile also favors the creation of thin continental slivers such as the Levant west of the Dead Sea transform and the continental promontory containing Socotra Island at the mouth of the Gulf of Aden. Calculations of strength variations based on changes of crustal thickness, geotherm and sediment thickness can be extended to other geologic settings as well. They can explain the location of rerifting events at intracratonic basins, of backarc basins and of major continental strike-slip zones.
NASA Astrophysics Data System (ADS)
Mao, J.; Wang, T.; Ludington, S.; Qiu, Z.; Li, Z.
2017-12-01
East Asia is one of the most complex regions in the world. Its margin was divided into 4 parts: Northeast Asia, North China, South China and Southeast Asia. During the Phanerozoic, continental plates of East Asia have interacted successively with a) the Paleo Tethyan Ocean, b) the Tethyan and Paleo Pacific Oceans and c) the Pacific and Indian. In the Early Mesozoic, the Indosinian orogeny is characterized by the convergence and extension within multiple continental plates, whereas the Late Mesozoic Yanshanian orogeny is characterized by both convergence and compression due to oceanic subduction and by widespread extension. We propose this combination as "East Asia Continental Margin type." Except in Northeast Asia, where Jurassic and Cretaeous accretionary complexes are common, most magmatic rocks are the result of reworking of ancient margins of small continental plates; and oceanic island arc basalts and continental margin arc andesites are largely absent. Because South China is adjacent to the western margin of the Pacific Plate, some effects of its westward subduction must be unavoidable, but juvenile arc-related crust has not been identified. The East Asian Continental Margin is characterized by magmatic rocks that are the result of post-convergent tectonics, which differs markedly from the active continental margins of both South and North America. In summary, the chief characteristics of the East Asian Continental Margin are: 1) In Mesozoic, the periphery of multiple blocks experienced magmatism caused by lithospheric delamination and thinning in response to extension punctuated by shorter periods of convergence. 2) The main mechanism of magma generation was the partial melting of crustal rocks, due to underplating by upwelling mafic magma associated with the collapse of orogenic belts and both extension and compression between small continental blocks. 3) During orogeny, mostly high Sr/Y arc-related granitoids formed, whereas during post-orogenic times, A-type granitoids formed. 4) These dynamics are the result of subduction and extension of the oceanic plates that bordered East Asia. 5) The complex mosaic of geology and geochemistry is the result of compositional variation in the deep lithosphere, as well as variation in the dynamics of oceanic plate movements.
NASA Technical Reports Server (NTRS)
Kidd, W. S. F.; Kusky, T. M.; Bradley, D. C.
1988-01-01
How late Archean tectonics could be seen to have operated in the Slave Province is illustrated. Lithospheric thinning and stretching, with the formation of rifted margins (to continental or island arc fragments), and lithospheric flexural loading of the kind familiar in arcs and mountain belts could be discerned.
Wilson study cycles: Research relative to ocean geodynamic cycles
NASA Technical Reports Server (NTRS)
Kidd, W. S. F.
1985-01-01
The effects of conversion of Atlantic (rifted) margins to convergent plate boundaries; oceanic plateaus at subduction zones; continental collision and tectonic escape; southern Africa rifts; and global hot spot distribution on long term development of the continental lithosphere were studied.
NASA Astrophysics Data System (ADS)
Guillou-Frottier, L.; Burov, E.; Cloetingh, S.
2007-12-01
Plume-Lithosphere Interactions (PLI) in continets have complex topographic and magmatic signatures and are often identified near boundaries between younger plates (e.g., orogenic) and older stable plates (e.g., cratons), which represent important geometrical, thermal and rheological barriers that interact with the emplacement of the plume head (e.g., Archean West Africa, East Africa, Pannonian - Carpathian system). The observable PLI signatures are conditioned by plume dynamics but also by complex rheology and structure of continental lithosphere. We address this problem by considering a new free-surface thermo-mechanical numerical model of PLI with two stratified elasto-viscous-plastic (EVP) continental plates of contrasting age, thickness and structure. The results show that: (1) surface deformation is poly-harmonic and contains smaller wavelengths (50-500 km) than that associated with the plume head (>1000 km). (2) below intra-plate boundaries, plume head flattening is asymmetric, it is blocked from one side by the cold vertical boundary of the older plate, which leads to mechanical decoupling of crust from mantle lithosphere, and to localized faulting at the cratonic margin; (2) the return flow from the plume head results in sub-vertical down-thrusting (delamination) of the lithosphere at the margin, producing sharp vertical cold boundary down to the 400 km depth; (3) plume head flattening and migration towards the younger plate results in concurrent surface extension above the centre of the plume and in compression (pushing), down-thrusting and magmatic events at the cratonic margin (down-thrusting is also produced at the opposite border of the younger plate); these processes may result in continental growth at the "craton side"; (4) topographic signatures of PLI show basin-scale uplifts and subsidences preferentially located at cratonic margins. Negative Rayleigh-Taylor instabilities in the lithosphere above the plume head provide a mechanism for crustal delamination. In case of several cratonic blocks, the combined effect of subsidence and lithospheric thinning at cratons edges, while plume head material is being stocked in between the cratons, favours major magmatic events at cratonic margins. Numerous field evidence (West Africa, Western Australia) underline the trapping effect of cratonic margins for formation of (e.g.) orogenic gold deposits, which require particular extreme P-T conditions. Location of gemstones deposits is also associated with cratonic margins, as demonstrated by the Tanzanian Ruby belt. Their formation depend on particularly fast isothermal deepening processes, which can be reproduced by slab-like instabilities induced by plume head-cratonic margin interaction. On the other hand, absence of magmatic events should not be interpreted as evidence for the absence of plume: at surface, these events may not necessary have unambiguous deep geochemical signatures, as the hot source plume material stalls below Moho and forms a long-lasting (10 to 100 Myr) sub-Moho reservoir. This should induce strong crustal melting that may overprint deeper signatures since crustal melts are generated at much lower temperatures than mantle, and produce light low-viscous rapidly ascending magmas. Drip-like down- sagging of the lithospheric mantle and metamorphic lower crustal material inside the plume head may contaminate the latter and also alter the geochemical signature of related magmas.
NASA Astrophysics Data System (ADS)
Lamoureux, J. M.; Menke, W. H.
2017-12-01
The Northern Appalachian Anomaly (NAA) is a patch of the asthenosphere in southern New England that is unusually hot given its passive margin setting. Previous research has detected large seismic wave delays that imply a temperature of 770 deg C higher than the mantle below the adjacent craton at the same depth. A key outstanding issue is whether the NAA interacts with the lithosphere above it (e.g. by heating it up). We study this issue using Po and So waves from two magnitude >5.5 earthquakes near the Puerto Rico Trench. These waves, propagating in the cold oceanic lithosphere at near Moho speeds, deliver high frequency energy to the shallow continental lithosphere. We hypothesized that: (1) once within the continental lithosphere, Po and So experience attenuation with distance that can be quantified by a quality factor Q, and that (2) any heating of the lithosphere above the NAA would lead to a higher Q than in regions further north or south along the continental margin. Corresponding Po and So velocities would also be lower. The decay rates of Po and So are estimated using least-squares applied to RMS coda amplitudes measured from digital seismograms from stations in northeastern North America, corrected for instrument response. A roughly log-linear decrease in amplitude is observed, corresponding to P and S wave quality factors in the range of 394-1500 and 727-6847, respectively. Measurements are made for four margin-perpendicular geographical bands, with one band overlapping the NAA. We detect no effect on these amplitudes by the NAA; 95% confidence bounds overlap in every case; Furthermore, all quality factors are much higher than the 100 predicted by lab experiments for near-solidus mantle rocks. These results suggest that the NAA is not causing significant heating of the lithosphere above it. The shear velocities, however, are about 10% slower above the NAA - an effect that may be fossil, reflecting processes that occurred millions of years ago.
NASA Astrophysics Data System (ADS)
Piccardo, Giovanni; Ranalli, Giorgio
2015-04-01
Direct field/laboratory, structural/petrologic investigations of mantle lithosphere from orogenic peridotites in Alpine-Apennine ophiolites provide significant constraints to the rift evolution of the Jurassic Ligurian Tethys ocean (Piccardo et al., 2014, and references therein). These studies have shown that continental extension and passive rifting were characterized by an important syn-rift "hidden" magmatic event, pre-dating continental break-up and sea-floor spreading. Occurrence of km-scale bodies of reactive spinel-harzburgites and impregnated plagioclase-peridotites, formed by melt/peridotite interaction, and the lack of any extrusive counterpart, show that the percolating magmas remained stored inside the mantle lithosphere. Petrologic-geochemical data/modelling and mineral Sm/Nd age constraints evidence that the syn-rift melt infiltration and reactive porous-flow percolation through the lithosphere were induced by MORB-type parental liquids formed by decompression melting of the passively upwelling asthenosphere. Melt thermal advection through, and melt stagnation within the lithosphere, heated the mantle column to temperatures close to the dry peridotite solidus ("asthenospherization" of mantle lithosphere). Experimental results of numerical/analogue modelling of the Ligurian rifting, based on field/laboratory constraints, show that: (1) porous flow percolation of asthenospheric melts resulted in considerable softening of the mantle lithosphere, decreasing total strength TLS from 10 to 1 TN m-1 as orders of magnitude (Ranalli et al. 2007), and (2) the formation of an axial lithospheric mantle column, with softened rheological characteristics (Weakened Lithospheric Mantle - WLM), induced necking instability in the extending lithosphere and subsequent active upwelling of the asthenosphere inside the WLM zone (Corti et al., 2007). Therefore, the syn-rift hidden magmatism (melt thermo-chemical-mechanical erosion, melt thermal advection and melt storage) caused important compositional and rheological modifications in the mantle lithosphere and played a fundamental role in the evolution of rifting, favouring, in particular, faster divergence of future continental margins and active upwelling of deeper/hotter asthenosphere. Active divergent forces probably changed the extension regime from passive to active rifting (as envisaged by Huismans et al., 2001). Accordingly, melt thermal advection and melt storage, and the rheological modifications induced in the mantle lithosphere, had a fundamental role in the evolution of the Ligurian rifting (Piccardo, 2014; Piccardo et al., 2014). Observations from the natural laboratory are pivotal when interpreting modelling results on the formation of rifted continental margins by extension of continental lithosphere leading to seafloor spreading. The rheological characteristics of the melt-modified mantle lithosphere can provide natural constraints for the interpretation of variously termed components ("oceanic lithosphere, Huismans & Beaumont, 2014; "oceanic and syn-rift lithospheric mantle", Whitmarsh & Manatschal, 2012), located in some models at non-oceanic, sub-continental settings, either below the extending continental crust or between the sub-continental lithosphere and the upwelling asthenosphere. Corti, G., Piccardo, G.B., Ranalli, G., et al., 2007. J. Geodynamics, 43, 465-483. Huismans, R.S., Beaumont, C., 2014. EPSL, 407, 148-162. Huismans, R.S., Podladchikov, Y.Y., Cloetingh, S., 2001, J. Geophys. Res. 106(11), 271-291. Piccardo, G.B., 2014. Geol. Soc. London, Spec. Publ., online 413, http://dx.doi.org/10.1144/SP413.7. Piccardo, G.B., et al., 2014. Earth-Science Reviews, http://dx.doi.org/10.1016/j.earscirev.2014.07.002. Ranalli, G., Piccardo, G.B., Corona-Chavez, P., 2007. J. Geodynamics, 43, 450-464. Whitmarsh, R.B., Manatschal, G., 2012. Roberts & Bally (eds), http://eprints.soton.ac.uk/id/eprint/358832.
Continental collision slowing due to viscous mantle lithosphere rather than topography.
Clark, Marin Kristen
2012-02-29
Because the inertia of tectonic plates is negligible, plate velocities result from the balance of forces acting at plate margins and along their base. Observations of past plate motion derived from marine magnetic anomalies provide evidence of how continental deformation may contribute to plate driving forces. A decrease in convergence rate at the inception of continental collision is expected because of the greater buoyancy of continental than oceanic lithosphere, but post-collisional rates are less well understood. Slowing of convergence has generally been attributed to the development of high topography that further resists convergent motion; however, the role of deforming continental mantle lithosphere on plate motions has not previously been considered. Here I show that the rate of India's penetration into Eurasia has decreased exponentially since their collision. The exponential decrease in convergence rate suggests that contractional strain across Tibet has been constant throughout the collision at a rate of 7.03 × 10(-16) s(-1), which matches the current rate. A constant bulk strain rate of the orogen suggests that convergent motion is resisted by constant average stress (constant force) applied to a relatively uniform layer or interface at depth. This finding follows new evidence that the mantle lithosphere beneath Tibet is intact, which supports the interpretation that the long-term strain history of Tibet reflects deformation of the mantle lithosphere. Under conditions of constant stress and strength, the deforming continental lithosphere creates a type of viscous resistance that affects plate motion irrespective of how topography evolved.
NASA Astrophysics Data System (ADS)
Melankholina, E. N.; Sushchevskaya, N. M.
2017-01-01
Comparative tectonic analysis of passive margins of the Atlantic Ocean has been performed. Tectonotypes of both volcanic and nonvolcanic margins are described, and their comparison with other passive Atlantic margins is given. The structural features of margins, peculiarities of magmatism, its sources and reasons for geochemical enrichment of melts are discussed. The important role of melting of the continental lithosphere in the development of magmatism is demonstrated. Enriched EM I and EM II sources are determined for the lower parts of the volcanic section, and a depleted or poorly enriched source is determined for the upper parts of the volcanic section based on isotope data. The conclusions of the paper relate to tectonic settings of the initial occurrence of magmatism and rifting and breakup during the period of opening of the Mesozoic Ocean. It was found out that breakup and magmatism at proximal margins led only to insignificant structural transformations and reduction of the thickness of the ancient continental crust, while very important magmatic events happened later in the distal zone. New growth of magmatic crust at the stage of continental breakup is determined as a typical feature of distal zones of the margins under study. The relationship of development of margins with the impact of deep plumes as the source of magmatic material or a heat source only is discussed. Progradation of the zone of extension and breakup into the areas of cold lithosphere of the Atlantic and the formation of a single tectonomagmatic system of the ocean are under consideration.
NASA Astrophysics Data System (ADS)
Gómez-Romeu, Júlia; Kusznir, Nick; Manatschal, Gianreto; Roberts, Alan
2017-04-01
Despite magma-poor rifted margins having been extensively studied for the last 20 years, the evolution of extensional fault geometry and the flexural isostatic response to faulting remain still debated topics. We investigate how the flexural isostatic response to faulting controls the structural development of the distal part of rifted margins in the hyper-extended domain and the resulting sedimentary record. In particular we address an important question concerning the geometry and evolution of extensional faults within distal hyper-extended continental crust; are the seismically observed extensional fault blocks in this region allochthons from the upper plate or are they autochthons of the lower plate? In order to achieve our aim we focus on the west Iberian rifted continental margin along the TGS and LG12 seismic profiles. Our strategy is to use a kinematic forward model (RIFTER) to model the tectonic and stratigraphic development of the west Iberia margin along TGS-LG12 and quantitatively test and calibrate the model against breakup paleo-bathymetry, crustal basement thickness and well data. RIFTER incorporates the flexural isostatic response to extensional faulting, crustal thinning, lithosphere thermal loads, sedimentation and erosion. The model predicts the structural and stratigraphic consequences of recursive sequential faulting and sedimentation. The target data used to constrain model predictions consists of two components: (i) gravity anomaly inversion is used to determine Moho depth, crustal basement thickness and continental lithosphere thinning and (ii) reverse post-rift subsidence modelling consisting of flexural backstripping, decompaction and reverse post-rift thermal subsidence modelling is used to give paleo-bathymetry at breakup time. We show that successful modelling of the structural and stratigraphic development of the TGS-LG12 Iberian margin transect also requires the simultaneous modelling of the Newfoundland conjugate margin, which we constrain using target data from the SCREECH 2 seismic profile. We also show that for the successful modelling and quantitative validation of the lithosphere hyper-extension stage it is necessary to first have a good calibrated model of the necking phase. Not surprisingly the evolution of a rifted continental margin cannot be modelled without modelling and calibration of its conjugate margin.
Evolution of the Upper Lithosphere in the ENAM Area from 3-D Wide-Angle Seismic Data
NASA Astrophysics Data System (ADS)
Shuck, B.; Van Avendonk, H. J.
2016-12-01
Located offshore North Carolina, the ENAM study area contains the geologic record of the transition from continental rifting to seafloor spreading. In this study we analyze 2-D and 3-D marine wide-angle seismic data from the ENAM experiment with the goal of understanding the interaction between mantle melts and extension in the lithosphere during continental breakup. It is often assumed that magnetic anomalies are associated with continental breakup magmatism. These magnetic anomalies are formed when mantle melts penetrate thinned continental lithosphere leaving basalt flows on the surface. The typical magnetic anomalies of this system are the East Coast Magnetic Anomaly (ECMA) and the West African Coastal Magnetic Anomaly (WACMA). However, there also exists the Blake Spur Magnetic Anomaly (BSMA) which lies 200 km eastward of the ECMA. The BSMA has no mirror counterpart on the African side if rifting was symmetric in nature. This leads us to formulate two alternative hypotheses: 1) Oceanic crust exists between the ECMA and BSMA, or 2) The ECMA and BSMA form a wide volcanic margin. The first hypothesis would suggest the BSMA represents a sliver of West-African crust that was later transferred to the Atlantic plate by a mid-ocean ridge jump eastward. The second hypothesis would suggest asymmetric rifting accompanied by magmatism off North Carolina. Analysis of ENAM seismic refraction data will give insight into how the ECMA and BSMA are related to structure of the crust and mantle. We construct seismic velocity models (P and S-wave) along ENAM lines parallel and perpendicular to the margin to help determine the seismic anisotropy of the study area. Based on a preliminary analysis of the data, the seismic compressional velocity is 8% higher parallel to the margin and suggests the BSMA represents rifted continental lithosphere formed from mantle melt percolation which created a shape-preferred orientation of crystals in the upper mantle.
Rheology of the lithosphere: selected topics.
Kirby, S.H.; Kronenberg, A.K.
1987-01-01
Reviews recent results concerning the rheology of the lithosphere with special attention to the following topics: 1) the flexure of the oceanic lithosphere, 2) deformation of the continental lithosphere resulting from vertical surface loads and forces applied at plate margins, 3) the rheological stratification of the continents, 4) strain localization and shear zone development, and 5) strain-induced crystallographic preferred orientations and anisotropies in body-wave velocities. We conclude with a section citing the 1983-1986 rock mechanics literature by category.-Authors
NASA Astrophysics Data System (ADS)
Price, A. C.; Weeraratne, D. S.; Kohler, M. D.; Rathnayaka, S.; Escobar, L., Sr.
2015-12-01
The North American and Pacific plate boundary is a unique example of past subduction of an oceanic spreading center which has involved oceanic plate capture and inception of a continental transform boundary that juxtaposes continental and oceanic lithosphere on a single plate. The amphibious ALBACORE seismic project (Asthenospheric and Lithospheric Broadband Architecture from the California Offshore Region Experiment) deployed 34 ocean bottom seismometers (OBS) on 15-35 Ma seafloor and offers a unique opportunity to compare the LAB in continental and oceanic lithosphere in one seismic study. Rayleigh waves were recorded simultaneously by our offshore array and 82 CISN network land stations from 2010-2011. Here we predict phase velocities for a starting shear wave velocity model for each of 5 regions in our study area and compare to observed phase velocities from our array in a least-squares sense that produces the best fit 1-D shear wave velocity structure for each region. Preliminary results for the deep ocean (seafloor 25-32 Ma) indicates high velocities reaching 4.5 km/s at depths of 50 km associated with the lithosphere for seafloor 25-32 Ma. A negative velocity gradient is observed below this which reaches a minimum of 4.0 km/s at 160 km depth. The mid-ocean region (age 13-25 Ma) indicates a slightly lower magnitude and shallower LVZ. The Inner Borderland displays the highest lithospheric velocities offshore reaching 4.8 km/s at 40 km depth indicating underplating. The base of the LVZ in the Borderland increases sharply from 4.0 km/s to 4.5 km/s at 80-150 km depth indicating partial melt and compositional changes. The LVZ displays a very gradual positive velocity gradient in all other regions such as the deep seafloor and continent reaching 4.5 km/s at 300 km depth. The deep ocean, Borderlands, and continental region each have unique lithospheric velocities, LAB depths, and LVZ character that indicate stark differences in mantle structure that occur on a single plate as well as across the continental margin.
Lithospheric strength across the ocean-continent transition in the NW of the Iberian Peninsula
NASA Astrophysics Data System (ADS)
Martín-Velázquez, Silvia; Martín-González, Fidel
2014-05-01
The main objective of this work is to investigate the relation between the strength of the lithosphere and the observed pattern of seismicity across the ocean-continent transition in the NW margin of the Iberian Peninsula. The seismicity is diffuse in this intraplate area, far from the seismically active margin of the plate: the Eurasia-African plate boundary, where convergence occurs at a rate of 4-5mm/year. The earthquake epicentres are mainly limited to an E-W trending zone (onshore seismicity is more abundant than offshore), and most earthquakes occur at depths less than 30 km, however, offshore depths are up to 150 km). Moreover, one of the problems to unravel in this area is that the seismotectonic interpretations of the anomalous seismicity in the NW peninsular are contradictory. The temperature and strength profiles have been modelled in three domains along the non-volcanic rifted West Iberian Margin: 1) the oceanic lithosphere of the Iberian Abyssal Plain, 2) the oceanic lithosphere near the ocean-continent transition of the Galicia Bank, and 3) the continental lithosphere of the NW Iberian Massif. The average bathymetry and topography have been used to fit the thermal structures of the three types of lithospheres, given that the heat flow and heat production values show a varied range. The geotherms, together with the brittle and ductile rheological laws, have been used to calculate the strength envelopes in different stress regimes (compression, shear and tensile). The continental lithosphere-asthenosphere boundary is located at 123 km and several brittle-ductile transitions appear in the crust and the mantle. However, the oceanic lithospheres are thinner (110 km near the Galicia Bank and 87 km in the Iberian Abbysal Plain) and more simple (brittle behaviour in the crust and upper mantle). The earthquake distribution is best explained by lithospheres with dry compositions and shear or tensile stress regimes. These results are similar can be compared to those of the Gulf of Cadiz oceanic-continental transition near the Eurasia-African plate boundary (Neves and Neves, 2009), and they contribute to complete the knowledge about seismicity and lithospheric strength in the ocean-continent transition of the Iberian Peninsula. References Neves M.C., Neves, R.G.M., 2009. Flexure and seismicity across the ocean-continent transition in the Gulf of Cadiz. Journal of Geodynamics, 47, 119-129.
NASA Astrophysics Data System (ADS)
Paulsen, G. E.; Nielsen, S. B.; Hansen, D. L.
The vertical movements during a regional stress reversal in a rifted basin or on a passive continental margin are examined using a numerical 2D thermo-mechanical finite element model with a visco-elastic-plastic rheology. Three different physical mechanisms are recognized in small-scale vertical movements at small inplane force variations: elastic dilatation, elastic flexure, and permanent deformation. Their rela- tive importance depend on the applied force, the duration of the force, and the thermal structure of the lithosphere. Elastic material dilatation occurs whenever the stress state changes. A reversal from extension to compression therefore immediately leads to elastic dilatation, and re- sults in an overall subsidence of the entire profile. Simultaneously with dilatation the lithosphere reacts with flexure. The significance of the flexural component strongly depends on the thermal structure of the lithosphere. The polarity and amplitude of the flexure depends on the initial (before compression) loading of the lithosphere. Gener- ally, the flexural effects lead to subsidence of the overdeep in the landward part of the basin and a small amount of uplift at the basin flanks. The amplitudes of the flexural response are small and comparable with the amplitudes of the elastic dilatation. With continuing compression permanent deformation and lithospheric thickening becomes increasingly important. Ultimately, the thickened part of the lithosphere stands out as an inverted zone. The amount of permanent deformation is directly connected with the size and duration of the applied force, but even a relatively small force leads to inversion tectonics in the landward part of the basin. The conclusions are: 1) small stress induced vertical movements in rift basins and at passive continental margins are the result of a complex interaction of at least three different processes, 2) the total sediment loaded amplitudes resulting from these pro- cesses are small (2-300 m) for inplane forces up to 1.5·1012 N/m.
NASA Astrophysics Data System (ADS)
Piccardo, Giovanni; Ranalli, Giorgio
2017-04-01
Orogenic peridotites from Alpine-Apennine ophiolite Massifs (Lanzo, Voltri, External and Internal Ligurides, - NW Italy, and Mt. Maggiore - Corsica) derive from the mantle lithosphere of the Ligurian Tethys. Field/structural and petrologic/geochemical studies provide constraints on the evolution of the lithospheric mantle during pre-oceanic passive rifting of the late Jurassic Ligurian Tethys ocean. Continental rifting by far-field tectonic forces induced extension of the lithosphere by means of km-scale extensional shear zones that developed before infiltration of melts from the asthenosphere (Piccardo and Vissers, 2007). After significant thinning of the lithosphere, the passively upwelling asthenosphere underwent spinel-facies decompression melting along the axial zone of the extensional system. Silica-undersaturated melt fractions percolated through the lithospheric mantle via diffuse/focused porous flow and interacted with the host peridotite through pyroxenes-dissolving/olivine-precipitating melt/rock reactions. Pyroxene dissolution and olivine precipitation modified the composition of the primary silica-undersaturated melts into derivative silica-saturated melts, while the host lithospheric spinel lherzolites were transformed into pyroxene-depleted/olivine-enriched reactive spinel harzburgites and dunites. The derivative liquids interacted through olivine-dissolving/orthopyroxene+plagioclase-crystallizing reactions with the host peridotites that were impregnated and refertilized (Piccardo et al., 2015). The saturated melts stagnated and crystallized in the shallow mantle lithosphere (as testified by diffuse interstitial crystallization of euhedral orthopyroxene and anhedral plagioclase) and locally ponded, forming orthopyroxene-rich/olivine-free gabbro-norite pods (Piccardo and Guarnieri, 2011). Reactive and impregnated peridotites are characterized by high equilibration temperatures (up to 1250 °C) even at low pressure, plagioclase-peridotite facies conditions. This indicates that thermal advection by percolation of hot asthenospheric melts significantly heated the lithospheric mantle column above the melting asthenosphere. Numerical and analogue models show that infiltration of melts results in considerable softening of mantle rocks. Total ithospheric strength can be decreased from 10 to 1 TN m-1 as orders of magnitude and the sin-rift thermo-mechanical erosion of the lithospheric mantle induces significant rheological softening along the axial zone of extension (Corti et al., 2007; Ranalli et al., 2007). Softening of the lithospheric mantle may lead to whole lithospheric failure and consequently to transition from continental extension to oceanic spreading. Therefore, rheological softening caused destabilization of the lithospheric mantle between the future continental margins (Piccardo et al., 2014; Piccardo, 2016) of the Ligurian Tethys. The wedge of destabilized lithosphere favored faster divergence of the continental blocks and enhanced doming and thermal buoyancy of deeper/hotter asthenosphere that rose between the future continental margins and originated aggregated MORB melts (i.e., the oceanic magmatism that formed olivine-gabbro intrusions and pillowed basalt extrusions). Lithosphere destabilization by melt percolation can play a fundamental role in the geodynamic evolution of lithosphere extension causing transition from continental extension to continental break-up to oceanic spreading. Corti, G., Bonini, M., Innocenti, F., Manetti, P., Piccardo, G.B., Ranalli, G., 2007. Journal of Geodynamics, 43, 465-483. Piccardo, G.B., Padovano, M., Guarnieri, L. 2014. Earth-Science Reviews, 138, 409-434. Piccardo, G.B., 2016. Gondwana Research, 39, 230-249. Piccardo, G.B., Vissers, R.L.M., 2007. Journal of Geodynamics, 43, 417-449. Piccardo, G.B., Guarnieri, L., 2011. Lithos, 124, 210-214. Ranalli, G., Piccardo, G.B., Corona-Chavez, P., 2007. Journal of Geodynamics, 43, 450-464.
Estimating Antarctic Geothermal Heat Flux using Gravity Inversion
NASA Astrophysics Data System (ADS)
Vaughan, Alan P. M.; Kusznir, Nick J.; Ferraccioli, Fausto; Leat, Phil T.; Jordan, Tom A. R. M.; Purucker, Michael E.; Golynsky, A. V.; Sasha Rogozhina, Irina
2013-04-01
Geothermal heat flux (GHF) in Antarctica is very poorly known. We have determined (Vaughan et al. 2012) top basement heat-flow for Antarctica and adjacent rifted continental margins using gravity inversion mapping of crustal thickness and continental lithosphere thinning (Chappell & Kusznir 2008). Continental lithosphere thinning and post-breakup residual thicknesses of continental crust determined from gravity inversion have been used to predict the preservation of continental crustal radiogenic heat productivity and the transient lithosphere heat-flow contribution within thermally equilibrating rifted continental and oceanic lithosphere. The sensitivity of present-day Antarctic top basement heat-flow to initial continental radiogenic heat productivity, continental rift and margin breakup age has been examined. Knowing GHF distribution for East Antarctica and the Gamburtsev Subglacial Mountains (GSM) region in particular is critical because: 1) The GSM likely acted as key nucleation point for the East Antarctic Ice Sheet (EAIS); 2) the region may contain the oldest ice of the EAIS - a prime target for future ice core drilling; 3) GHF is important to understand proposed ice accretion at the base of the EAIS in the GSM and its links to sub-ice hydrology (Bell et al. 2011). An integrated multi-dataset-based GHF model for East Antarctica is planned that will resolve the wide range of estimates previously published using single datasets. The new map and existing GHF distribution estimates available for Antarctica will be evaluated using direct ice temperature measurements obtained from deep ice cores, estimates of GHF derived from subglacial lakes, and a thermodynamic ice-sheet model of the Antarctic Ice Sheet driven by past climate reconstructions and each of analysed heat flow maps, as has recently been done for the Greenland region (Rogozhina et al. 2012). References Bell, R.E., Ferraccioli, F., Creyts, T.T., Braaten, D., Corr, H., Das, I., Damaske, D., Frearson, N., Jordan, T., Rose, K., Studinger, M. & Wolovick, M. 2011. Widespread persistent thickening of the East Antarctic Ice Sheet by freezing from the base. Science, 331 (6024), 1592-1595. Chappell, A.R. & Kusznir, N.J. 2008. Three-dimensional gravity inversion for Moho depth at rifted continental margins incorporating a lithosphere thermal gravity anomaly correction. Geophysical Journal International, 174 (1), 1-13. Golynsky, A.V. & Golynsky, D.A. 2009. Rifts in the tectonic structure of East Antarctica (in Russian). Russian Earth Science Research in Antarctica, 2, 132-162. Rogozhina, I., Hagedoorn, J.M., Martinec, Z., Fleming, K., Soucek, O., Greve, R. & Thomas, M. 2012. Effects of uncertainties in the geothermal heat flux distribution on the Greenland Ice Sheet: An assessment of existing heat flow models. Journal of Geophysical Research-Earth Surface, 117 (F2), F02025. Vaughan, A.P.M., Kusznir, N.J., Ferraccioli, F. & Jordan, T.A.R.M. 2012. Regional heat-flow prediction for Antarctica using gravity inversion mapping of crustal thickness and lithosphere thinning. Geophysical Research Abstracts, 14, EGU2012-8095.
New Insight Into The Crustal Structure of The Continental Margin Off NW Sabah/borneo
NASA Astrophysics Data System (ADS)
Barckhausen, U.; Franke, D.; Behain, D.; Meyer, H.
The continental margin offshore NW Sabah/Borneo (Malaysia) has been investigated with reflection and refraction seismics, magnetics, and gravity during the recent cruise BGR01-POPSCOMS. A total of 4000 km of geophysical profiles has been acquired, thereof 2900 km with reflection seismics. Like in major parts of the South China Sea, the area seaward of the Sabah Trough consists of extended continental lithosphere. We found evidence that the continental crust also underlies the continental slope land- ward of the Trough, a fact that raises many questions about the tectonic history and development of this margin. The characteristic pattern of rotated fault blocks and half grabens and the carbon- ates which are observed all over the Dangerous Grounds can be traced a long way landward of the Sabah Trough beneath the sedimentary succession of the upper plate. The magnetic anomalies which are dominated by the magnetic signatures of relatively young volcanic features also continue under the continental slope. The sedimentary rocks of the upper plate, in contrast, seem to generate hardly any magnetic anoma- lies. We suspect that the volcanic activity coincided with the collision of Borneo and the Dangerous Grounds in middle or late Miocene time. The emplacement of an al- lochtonous terrane on top of the extended continental lithosphere could be explained by overthrusting as a result of the collision or it could be related to gravity sliding following a broad uplift of NW Borneo at the same time.
NASA Astrophysics Data System (ADS)
Beniest, A.; Koptev, A.; Leroy, S. D.
2016-12-01
Anomalous features along the South American and African rifted margins at depth and at the surface have been recognised with gravity and magnetic modelling. They include high velocity/high density bodies at lower crustal level and topography variations that are usually interpreted as aborted rifts. We present fully-coupled lithosphere-scale numerical models that permit us to explain both features in a relatively simple framework of an interaction between rheologically stratified continental lithosphere and an active mantle plume. We used 2D and 3D numerical models to investigate the impact of thermo-rheological structure of the continental lithosphere and initial plume position on continental rifting and breakup processes. Based on the results of our 2D experiments, three main types of continental break-up are revealed: A) mantle plume-induced break-up, directly located above the centre of the mantle anomaly, B) mantle plume-induced break-up, 50 to 250 km displaced from the initial plume location and C) self-induced break-up due to convection and/or slab-subduction/delamination, considerably shifted (300 to 800 km) from the initial plume position. With our 3D, laterally homogenous initial setup, we show that a complex system, with the axis of continental break-up 100's of km's shifted from the original plume location, can arise spontaneously from simple and perfectly symmetric preliminary settings. Our modelling demonstrates that fragments of a laterally migrating plume head become glued to the base of the lithosphere and remain at both sides of the newly-formed oceanic basin after continental break-up. Underplated plume material soldered into lower parts of lithosphere can be interpreted as the high-velocity/high density magmatic bodies at lower crustal levels. In the very early stages of rifting, first impingement of the vertically upwelled mantle plume to the lithospheric base leads to surface topographic variations. Given the shifted position of the final spreading centre with respect to initial plume position, these topographic variations resemble aborted rifts that are observed on passive margins. Lastly, after continuous extension and transition to the spreading state, strain rate relocalizations develop that can be interpreted as ridge jumps that are commonly observed in nature.
Collapse of passive margins by lithospheric damage and plunging grain size
NASA Astrophysics Data System (ADS)
Mulyukova, Elvira; Bercovici, David
2018-02-01
The collapse of passive margins has been proposed as a possible mechanism for the spontaneous initiation of subduction. In order for a new trench to form at the junction between oceanic and continental plates, the cold and stiff oceanic lithosphere must be weakened sufficiently to deform at tectonic rates. Such rates are especially hard to attain in the cold ductile portion of the lithosphere, at which the mantle lithosphere reaches peak strength. The amount of weakening required for the lithosphere to deform in this tectonic setting is dictated by the available stress. Stress in a cooling passive margin increases with time (e.g., due to ridge push), and is augmented by stresses present in the lithosphere at the onset of rifting (e.g., due to drag from underlying mantle flow). Increasing stress has the potential to weaken the ductile portion of the lithosphere by dislocation creep, or by decreasing grain size in conjunction with a grain-size sensitive rheology like diffusion creep. While the increasing stress acts to weaken the lithosphere, the decreasing temperature acts to stiffen it, and the dominance of one effect or the other determines whether the margin might weaken and collapse. Here, we present a model of the thermal and mechanical evolution of a passive margin, wherein we predict formation of a weak shear zone that spans a significant depth-range of the ductile portion of the lithosphere. Stiffening due to cooling is offset by weakening due to grain size reduction, driven by the combination of imposed stresses and grain damage. Weakening via grain damage is modest when ridge push is the only source of stress in the lithosphere, making the collapse of a passive margin unlikely in this scenario. However, adding even a small stress-contribution from mantle drag results in damage and weakening of a significantly larger portion of the lithosphere. We posit that rapid grain size reduction in the ductile portion of the lithosphere can enable, or at least significantly facilitate, the collapse of a passive margin and initiate a new subduction zone. We use this model to estimate the conditions for passive margin collapse for modern and ancient Earth, as well as for Venus.
NASA Astrophysics Data System (ADS)
Peres Rocha, M.; Azevedo, P. A. D.; Assumpcao, M.; Franca, G. S.; Marotta, G. S.
2016-12-01
Results of the P-wave travel-time seismic tomography method allowed observing differences in the seismic behavior of the lithosphere along the Brazilian continental margin in the South Atlantic. High velocity anomalies have predominance in the northern portion, which extends from the Rio de Janeiro to Alagoas States (between latitudes -22.5 and -8.5), and low velocity anomalies in the southern portion, which extends from Rio de Janeiro to Rio Grande do Sul States (between latitudes -30 and -22.5). Low velocities coincide spatially with the offshore high seismicity areas, as indicated by Assumpção (1998) and at the high velocities with low seismicity regions. The high velocity anomalies at northern portion are related to the cratonic and low-stretched lithosphere of San Francisco block that was connected to the Congo block before the opening of the Atlantic Ocean. Low velocities can be assigned to more weakened lithosphere, where it started the South Atlantic Ocean opening process. The oldest lithosphere in the South Atlantic, indicated by the magnetic anomalies of the oceanic floor, is higher in the southern part than in the northern part, suggesting that the continents in this region were separating, while the northern region was still connected to Africa, which could explain the lithospheric stretching process.
Continents as lithological icebergs: The importance of buoyant lithospheric roots
Abbott, D.H.; Drury, R.; Mooney, W.D.
1997-01-01
An understanding of the formation of new continental crust provides an important guide to locating the oldest terrestrial rocks and minerals. We evaluated the crustal thicknesses of the thinnest stable continental crust and of an unsubductable oceanic plateau and used the resulting data to estimate the amount of mantle melting which produces permanent continental crust. The lithospheric mantle is sufficiently depleted to produce permanent buoyancy (i.e., the crust is unsubductable) at crustal thicknesses greater than 25-27 km. These unsubductable oceanic plateaus and hotspot island chains are important sources of new continental crust. The newest continental crust (e.g., the Ontong Java plateau) has a basaltic composition, not a granitic one. The observed structure and geochemistry of continents are the result of convergent margin magmatism and metamorphism which modify the nascent basaltic crust into a lowermost basaltic layer overlain by a more silicic upper crust. The definition of a continent should imply only that the lithosphere is unsubductable over ??? 0.25 Ga time periods. Therefore, the search for the oldest crustal rocks should include rocks from lower to mid-crustal levels.
NASA Astrophysics Data System (ADS)
Amodeo, K.; Rathnayaka, S.; Weeraratne, D. S.; Kohler, M. D.
2016-12-01
Continental and oceanic lithosphere, which form in different tectonic environments, are studied in a single amphibious seismic array across the Southern California continental margin. This provides a unique opportunity to directly compare oceanic and continental lithosphere, asthenosphere, and the LAB (Lithosphere-Asthenosphere Boundary) in a single data set. The complex history of the region, including spreading center subduction, block rotation, and Borderland extension, allows us to study limits in the rigidity and strength of the lithosphere. We study Rayleigh wave phase velocities obtained from the ALBACORE (Asthenospheric and Lithospheric Broadband Architecture from the California Offshore Region Experiment) offshore seismic array project and invert for shear wave velocity structure as a function of depth. We divide the study area into several regions: continent, inner Borderland, outer Borderland, and oceanic seafloor categorized by age. A unique starting Vs model is used for each case including layer thicknesses, densities, and P and S velocities which predicts Rayleigh phase velocities and are compared to observed phase velocities in each region. We solve for shear wave velocities with the best fit between observed and predicted phase velocity data in a least square sense. Preliminary results indicate that lithospheric velocities in the oceanic mantle are higher than the continental region by at least 2%. The LAB is observed at 50 ± 20 km beneath 15-35 Ma oceanic seafloor. Asthenospheric low velocities reach a minimum of 4.2 km/s in all regions, but have a steeper positive velocity gradient at the base of the oceanic asthenosphere compared to the continent. Seismic tomography images in two and three dimensions will be presented from each study region.
NASA Astrophysics Data System (ADS)
Delph, Jonathan R.; Abgarmi, Bijan; Ward, Kevin M.; Beck, Susan L.; Arda Ozacar, A.; Zandt, George; Sandvol, Eric; Turkelli, Niyazi; Kalafat, Dogan
2017-04-01
The lithospheric evolution of Anatolia is largely defined by processes associated with the terminal stages of subduction along its southern margin. Central Anatolia represents the transition from the subduction of oceanic lithosphere at the Aegean trench in the west to the Arabian - Eurasian continental collision in the east. In the overriding plate, this complicated transition is contemporaneous with uplift along the southern margin of central Anatolia (2 km in 6 Myr), voluminous felsic-intermediate ignimbrite eruptions (>1000 km3), extension, and tectonic deformation reflected by abundant low-magnitude seismic activity. The addition of 72 seismic stations as part of the Continental Dynamics - Central Anatolian Tectonics project, along with development of a new approach to the joint inversion of receiver functions and dispersion data, enables us obtain a high-resolution 3D shear wave velocity model of central Anatolia down to 150 km. This new velocity model has important implications for the complex interactions between the downgoing, segmenting African lithosphere and the overriding Anatolian Plate. These results reveal that the lithosphere of central Anatolia and the northern Arabian Plate is thin (<50 to 80 km). The Central Taurus Mountains, which have experienced 2 km of uplift in the past 6 Ma, are underlain by the fastest shear velocities in the region (>4.5 km/s), indicating the presence of the Cyprean slab beneath central Anatolia. Thus, uplift of the Central Taurus Mountains may be due to slab rebound after the detachment of the oceanic portion of the Cyprean slab beneath Anatolia rather than the presence of shallow asthenospheric material. These fast velocities extend to the northern margin of the Central Taurus Mountains, giving way to a NE-SW trend of very slow upper mantle shear wave velocities (<4.2 km/s) beneath the Central Anatolian Volcanic Province. These slow velocities are interpreted to be shallow, warm asthenosphere in which melt is present. The combination of a shallow asthenosphere and lithospheric-scale weaknesses associated with relict tectonic structures formed during the assembly of Anatolia are responsible for the spatial distribution of volcanism in the Central Anatolian Volcanic Province. Finally, we present a model for the evolution of central Anatolia that brings together the volcanism, extension in the Kirsehir Block, uplift of the southern margin of central Anatolia, and our seismic images.
Rotation, narrowing and preferential reactivation of brittle structures during oblique rifting
NASA Astrophysics Data System (ADS)
Huismans, R. S.; Duclaux, G.; May, D.
2017-12-01
Occurrence of multiple faults populations with contrasting orientations in oblique continental rifts and passive margins has long sparked debate about relative timing of deformation events and tectonic interpretations. Here, we use high-resolution three-dimensional thermo-mechanical numerical modeling to characterize the evolution of the structural style associated with moderately oblique rifting in the continental lithosphere. Automatic analysis of the distribution of active extensional shears at the surface of the model demonstrates a characteristic deformation sequence. We show that upon localization, Phase 1 wide oblique en-échelon grabens develop, limited by extensional shears oriented orthogonal to σ3. Subsequent widening of the grabens is accompanied by a progressive rotation of the Phase 1 extensional shears that become sub-orthogonal the plate motion direction. Phase 2 is marked by narrowing of active deformation resulting from thinning of the continental lithosphere and development of a second-generation of extensional shears. During Phase 2 deformation localizes both on plate motion direction-orthogonal structures that reactivate rotated Phase 1 shears, and on new oblique structures orthogonal to σ3. Finally, Phase 3 consists in the oblique rupture of the continental lithosphere and produces an oceanic domain where oblique ridge segments are linked with highly oblique accommodation zones. We conclude that while new structures form normal to σ3 in an oblique rift, progressive rotation and long-term reactivation of Phase 1 structures promotes orthorhombic fault systems, critical to accommodate upper crustal extension and control oblique passive margin architecture. The distribution, orientation, and evolution of frictional-plastic structures observed in our models is remarkably similar to documented fault populations in the Gulf of Aden conjugate passive margins, which developed in moderately oblique extensional settings.
NASA Astrophysics Data System (ADS)
Maystrenko, Yuriy Petrovich; Gernigon, Laurent; Nasuti, Aziz; Olesen, Odleiv
2018-03-01
A lithosphere-scale 3-D density/magnetic structural model of the Møre and Vøring segments of the Mid-Norwegian continental margin and the adjacent areas of the Norwegian mainland has been constructed by using both published, publically available data sets and confidential data, validated by the 3-D density and magnetic modelling. The obtained Moho topography clearly correlates with the major tectonic units of the study area where a deep Moho corresponds to the base of the Precambrian continental crust and the shallower one is located in close proximity to the younger oceanic lithospheric domain. The 3-D density modelling agrees with previous studies which indicate the presence of a high-density/high-velocity lower-crustal layer beneath the Mid-Norwegian continental margin. The broad Jan Mayen Corridor gravity low is partially related to the decreasing density of the sedimentary layers within the Jan Mayen Corridor and also has to be considered in relation to a possible low-density composition- and/or temperature-related zone in the lithospheric mantle. According to the results of the 3-D magnetic modelling, the absence of a strong magnetic anomaly over the Utgard High indicates that the uplifted crystalline rocks are not so magnetic there, supporting a suggestion that the entire crystalline crust has a low magnetization beneath the greater part of the Vøring Basin and the northern part of the Møre Basin. On the contrary, the crystalline crust is much more magnetic beneath the Trøndelag Platform, the southern part of the Møre Basin and within the mainland, reaching a culmination at the Frøya High where the most intensive magnetic anomaly is observed within the study area.
Numerical models for continental break-up: Implications for the South Atlantic
NASA Astrophysics Data System (ADS)
Beniest, A.; Koptev, A.; Burov, E.
2017-03-01
We propose a mechanism that explains in one unified framework the presence of continental break-up features such as failed rift arms and high-velocity and high-density bodies that occur along the South Atlantic rifted continental margins. We used 2D and 3D numerical models to investigate the impact of thermo-rheological structure of the continental lithosphere and initial plume position on continental rifting and break-up processes. 2D experiments show that break-up can be 1) "central", mantle plume-induced and directly located above the centre of the mantle anomaly, 2) "shifted", mantle plume-induced and 50 to 200 km shifted from the initial plume location or 3) "distant", self-induced due to convection and/or slab-subduction/delamination and 300 to 800 km off-set from the original plume location. With a 3D, perfectly symmetrical and laterally homogeneous setup, the location of continental break-up can be shifted hundreds of kilometres from the initial position of the mantle anomaly. We demonstrate that in case of shifted or distant continental break-up with respect to the original plume location, multiple features can be explained. Its deep-seated source can remain below the continent at one or both sides of the newly-formed ocean. This mantle material, glued underneath the margins at lower crustal levels, resembles the geometry and location of high velocity/high density bodies observed along the South Atlantic conjugate margins. Impingement of vertically up-welled plume material on the base of the lithosphere results in pre-break-up topography variations that are located just above this initial anomaly impingement. This can be interpreted as aborted rift features that are also observed along the rifted margins. When extension continues after continental break-up, high strain rates can relocalize. This relocation has been so far attributed to rift jumps. Most importantly, this study shows that there is not one, single rift mode for plume-induced crustal break-up.
Thermo-mechanical models of obduction applied to the Oman ophiolite
NASA Astrophysics Data System (ADS)
Thibault, Duretz; Philippe, Agard; Philippe, Yamato; Céline, Ducassou; Taras, Gerya; Evguenii, Burov
2015-04-01
During obduction regional-scale fragments of oceanic lithosphere (ophiolites) are emplaced somewhat enigmatically on top of lighter continental lithosphere. We herein use two-dimensional thermo-mechanical models to investigate the feasibility and controlling parameters of obduction. The models are designed using available geological data from the Oman (Semail) ophiolite. Initial and boundary conditions are constrained by plate kinematic and geochronological data and modeling results are validated against petrological and structural observations. The reference model consists of three distinct stages: (1) initiation of oceanic subduction initiation away from Arabian margin, (2) emplacement of the Oman Ophiolite atop the Arabian margin, (2) dome-like exhumation of the subducted Arabian margin beneath the overlying ophiolite. A parametric study suggests that 350-400 km of shortening allows to best fit both the peak P-T conditions of the subducted margin (1.5-2.5 GPa / 450-600°C) and the dimensions of the ophiolite (~170 km width), in agreement with previous estimations. Our results further confirm that the locus of obduction initiation is close to the eastern edge of the Arabian margin (~100 km) and indicate that obduction is facilitated by a strong continental basement rheology.
NASA Astrophysics Data System (ADS)
Schiffer, C.; Petersen, K. D.
2016-12-01
Rifts often develop along suture zones between previously collided continents, as part of the Wilson cycle. The North Atlantic is such an example, formed where Pangaea broke apart along Caledonian and Variscan sutures. Dipping upper mantle structures in E. Greenland and Scotland, have been interpreted as fossil subduction zones and the seismic signature indicates the presence of eclogite and serpentinite. We speculate that this orogenic material may impose a rheological control upon post-orogenic extension and we use thermo-mechanical modelling to explore such effects. Our model includes the following features: 1) Crustal thickness anomalies, 2) Eclogitised mafic crust emplaced in the mantle lithosphere, and 3) Hydrated mantle peridotite (serpentinite) formed in a pre-rift subduction setting. Our models indicate that the inherited structures control the location and the structural and magmatic evolution of the rift. Rifting of thin initial crust allows for relatively large amounts of serpentinite to be preserved within the uppermost mantle. This facilitates rapid continental breakup and serpentinite exhumation. Magmatism does not occur before continental breakup. Rifts in thicker crust preserve little or no serpentinite and thinning is more focused in the mantle lithosphere, rather than in the crust. Continental breakup is therefore preceded by magmatism. This implies that pre-rift orogenic properties may determine whether magma-poor or magma-rich conjugate margins are formed. Our models show that inherited orogenic eclogite and serpentinite are deformed and partially emplaced either as dipping structures within the lithospheric mantle or at the base of the thinned continental crust. The former is consistent with dipping sub-Moho reflectors often observed in passive margins. The latter provides an alternative interpretation of `lower crustal bodies' which are often regarded as igneous bodies. An additional implication of our models is that serpentinite, often observed seismically or exposed at the sea floor of passive margins, was formed prior to rifting in addition to syn-rift, fault-driven hydrothermal processes. Whether lower crustal and serpentinite bodies are produced previously or during rifting is of relevance for the estimation of thinning-factors of the pre-existing crust.
NASA Astrophysics Data System (ADS)
Dong, Shuwen; Zhang, Yueqiao; Zhang, Fuqin; Cui, Jianjun; Chen, Xuanhua; Zhang, Shuanhong; Miao, Laicheng; Li, Jianhua; Shi, Wei; Li, Zhenhong; Huang, Shiqi; Li, Hailong
2015-12-01
The basic tectonic framework of continental East Asia was produced by a series of nearly contemporaneous orogenic events in the late Middle Jurassic to Early Cretaceous. Commonly, the Late Mesozoic orogenic processes were characterized by continent-continent collision, large-scale thrusting, strike-slip faulting and intense crustal shortening, crustal thickening, regional anatexis and metamorphism, followed by large-scale lithospheric extension, rifting and magmatism. To better understand the geological processes, this paper reviews and synthesizes existing multi-disciplinary geologic data related to sedimentation, tectonics, magmatism, metamorphism and geochemistry, and proposes a two-stage tectono-thermal evolutionary history of East Asia during the late Middle Jurassic to Early Cretaceous (ca. 170-120 Ma). In the first stage, three orogenic belts along the continental margins were formed coevally at ca. 170-135 Ma, i.e., the north Mongol-Okhotsk orogen, the east paleo-Pacific coastal orogen, and the west Bangong-Nujiang orogen. Tectonism related to the coastal orogen caused extensive intracontinental folding and thrusting that resulted in a depositional hiatus in the Late Jurassic, as well as crustal anatexis that generated syn-kinematic granites, adakites and migmatites. The lithosphere of the East Asian continent was thickened, reaching a maximum during the latest Jurassic or the earliest Cretaceous. In the second stage (ca. 135-120 Ma), delamination of the thickened lithosphere resulted in a remarkable (>120 km) lithospheric thinning and the development of mantle-derived magmatism, mineralization, metamorphic core complexes and rift basins. The Middle Jurassic-Early Cretaceous subduction of oceanic plates (paleo-Pacific, meso-Tethys, and Mongol-Okhotsk) and continent-continent collision (e.g. Lhasa and Qiangtang) along the East Asian continental margins produced broad coastal and intracontinental orogens. These significant tectonic activities, marked by widespread intracontinental orogeny and continental reconstruction, are commonly termed the Yanshan Revolution (Movement) in the Chinese literature.
NASA Astrophysics Data System (ADS)
Gün, E.; Gogus, O.; Pysklywec, R.; Topuz, G.; Bodur, O. F.
2017-12-01
The Tethyan belt in the eastern Mediterranean region is characterized by the accretion of several micro-continental blocks (e.g. Anatolide-Tauride, Sakarya and Istanbul terranes). The accretion of a micro-continental block to the active continental margin and subsequent initiation of a new subduction are of crucial importance in understanding the geodynamic evolution of the region. Numerical geodynamic experiments are designed to investigate how these micro-continental blocks in the ocean-continent subduction system develops the aforementioned subduction, back-arc extension, surface uplift and the ophiolite emplacement in the eastern Mediterranean since Late Cretaceous. In a series set of experiments, we test various sizes of micro-continental blocks (ranging from 50 to 300 km), different rheological properties (e.g. dry-wet olivine mantle) and imposed plate convergence velocities (0 to 4 cm/year). For a prime present-day analogue to the micro-continental block collision-accretion, model predictions are compared against the collision between Eratosthenes and Cyprus. Preliminary results show that slab break-off occurs directly after the collision when the plate convergence velocities are less than 2 cm/yr and the mantle lithosphere of the continental block has viscoplastic rheology. On the other hand, there is no relationship between convergence rate and break-off event when the lithospheric mantle rheology is chosen to be plastic. Furthermore, the micro-continental block undergoes considerable extension before continental collision due to the slab pull force, if a viscoplastic rheology is assumed for the mantle lithosphere.
IODP drilling in the South China Sea in 2017 will address the mechanism of continental breakup
NASA Astrophysics Data System (ADS)
Sun, Z.; Larsen, H. C.; Lin, J.; Pang, X.; McIntosh, K. D.; Stock, J. M.; Jian, Z.; Wang, P.; Li, C.
2016-12-01
Geophysical exploration and scientific drilling along the North Atlantic rifted continental margins suggested that passive continental margins can be classified into two end members: magma-rich and magma-poor. Bearing seaward-dipping reflector sequences (SDRS) and highly mafic underplated high velocity lower crust (HVLC), the magma-rich margin is thought to be related to large igneous provinces (LIP) or mantle plume activity. Magma-poor margins have been drilled offshore Iberia and Newfoundland, where brittle faults cut through the whole crust and reach the upper mantle. Following seawater infiltration, the mantle was serpentinized and exhumed in the continent-ocean transition zone (COT). Later geophysical exploration and modeling suggested that in magma-poor margins lithosphere may break up in different styles, including uniform breakup, lower crust exhumation, or upper mantle exhumed at the COT, etc. The northern continental margin of the South China Sea (SCS) between longitude 114.5º and 116.5º hosts features that might be similar to both of the two end-members defined in the North Atlantic. Wide-angle seismic studies suggest that below the inner margin, crustal underplating of high velocity material is present, while syn-rift as well as post-rift intrusive features are visible and have in places been verified by industry drilling. However, the profound volcanism and associated SDRS formation are entirely lacking, and thus classification as a volcanic rifted margin can be ruled out. Instead, the COT exhibits a profound thinning of the continental crust towards the ocean crust of the SCS, showing some similarity to the Iberia type margin. The crustal thinning is caused by low-angle faults that have stretched the upper continental crust. There are indications of lower crustal flow toward the SCS. Alternatively, these extensional faults may have reached the lithospheric mantle and generated serpentinized material in a similar fashion as seen off Iberia. It will require deep drilling and sampling of characteristic basement units within the COT to distinguish. Four months of drilling by IODP to address this question is scheduled for February to June in 2017. The IODP drilling has the potential to support a third breakup mechanism theorized by modelling in addition to the two types drilled.
Rodinia: Supercontinent's poster child or problem child?
NASA Astrophysics Data System (ADS)
Cawood, Peter; Hawkesworth, Chris
2014-05-01
Earth's rock record extending from 1.7 to 0.75 Ga, that period encompassing the entire Rodinian supercontinent cycle and the latter part of Nuna cycle, and corresponding with Earth's Middle Age, is characterized by environmental, evolutionary and lithospheric stability that contrasts with the dramatic changes in preceding and succeeding eras. The period is marked by a paucity of passive margins, an absence of a significant Sr anomaly in the paleoseawater record or in the epsilon Hf(t) in detrital zircon, a lack of orogenic gold and volcanic-hosted massive sulfide deposits, and an absence of glacial deposits and of iron formations. In contrast, anorthosites and kindred bodies are well developed and major pulses of Mo and Cu mineralization, including the world's largest examples of these deposits, are features of this period. These trends are attributed to the combined effects of lithospheric behavior related to secular cooling of the mantle and a relatively stable continental assemblage that was initiated during assembly of the Nuna supercontinent by ~1.7 Ga and continued until breakup of its closely related successor, Rodinia, around 0.75 Ga. The overall low abundance of passive margins within this timeframe is consistent with a stable continental configuration, which also provided a framework for environmental and evolutionary stability. A series of convergent margin accretionary orogens developed along the margin of the supercontinent as evidenced by rock sequences preserved in dispersed fragments in Australia, Antarctica, Amazonia, Baltica and Laurentia. Abundant anorthosites and related rocks developed inboard of the plate margin. Their temporal distribution appears to link with the secular cooling of the mantle in which the overlying continental lithosphere was then strong enough to be thickened, during either low angle subduction or post-subduction collision, and to support the emplacement of large plutons into the crust, yet the underlying mantle was still warm enough to result in widespread melting of the lower thickened crust.
Sailing for stretched lithosphere
NASA Astrophysics Data System (ADS)
2008-07-01
Having managed to get themselves and all their instruments on board a ship not too far away from an imminent war zone, Jenny Collier and colleagues enjoyed the serenity of life at sea as they investigated the rifted continental margin of India.
Lee, C.-T.A.; Morton, D.M.; Kistler, R.W.; Baird, A.K.
2007-01-01
Mesozoic continental arcs in the North American Cordillera were examined here to establish a baseline model for Phanerozoic continent formation. We combine new trace-element data on lower crustal xenoliths from the Mesozoic Sierra Nevada Batholith with an extensive grid-based geochemical map of the Peninsular Ranges Batholith, the southern equivalent of the Sierras. Collectively, these observations give a three-dimensional view of the crust, which permits the petrogenesis and tectonics of Phanerozoic crust formation to be linked in space and time. Subduction of the Farallon plate beneath North America during the Triassic to early Cretaceous was characterized by trench retreat and slab rollback because old and cold oceanic lithosphere was being subducted. This generated an extensional subduction zone, which created fringing island arcs just off the Paleozoic continental margin. However, as the age of the Farallon plate at the time of subduction decreased, the extensional environment waned, allowing the fringing island arc to accrete onto the continental margin. With continued subduction, a continental arc was born and a progressively more compressional environment developed as the age of subducting slab continued to young. Refinement into a felsic crust occurred after accretion, that is, during the continental arc stage, wherein a thickened crustal and lithospheric column permitted a longer differentiation column. New basaltic arc magmas underplate and intrude the accreted terrane, suture, and former continental margin. Interaction of these basaltic magmas with pre-existing crust and lithospheric mantle created garnet pyroxenitic mafic cumulates by fractional crystallization at depth as well as gabbroic and garnet pyroxenitic restites at shallower levels by melting of pre-existing lower crust. The complementary felsic plutons formed by these deep-seated differentiation processes rose into the upper crust, stitching together the accreted terrane, suture and former continental margin. The mafic cumulates and restites, owing to their high densities, eventually foundered into the mantle, leaving behind a more felsic crust. Our grid-based sampling allows us to estimate an unbiased average upper crustal composition for the Peninsular Ranges Batholith. Major and trace-element compositions are very similar to global continental crust averaged over space and time, but in detail, the Peninsular Ranges are slightly lower in compatible to mildly incompatible elements, MgO, Mg#, V, Sc, Co, and Cr. The compositional similarities suggest a strong arc component in global continental crust, but the slight discrepancies suggest that additional crust formation processes are also important in continent formation as a whole. Finally, the delaminated Sierran garnet pyroxenites have some of the lowest U/Pb ratios ever measured for silicate rocks. Such material, if recycled and stored in the deep mantle, would generate a reservoir with very unradiogenic Pb, providing one solution to the global Pb isotope paradox. ?? 2007 Elsevier B.V. All rights reserved.
Tectonic escape in the evolution of the continental crust
NASA Technical Reports Server (NTRS)
Burke, K.; Sengor, C.
1986-01-01
The continental crust originated by processes similar to those operating today and continents consist of material most of which originated long ago in arc-systems that have later been modified, especially at Andean margins and in continental collisions where crustal thickening is common. Collision-related strike-slip motion is a general process in continental evolution. Because buoyant continental (or arc) material generally moves during collision toward a nearby oceanic margin where less buoyant lithosphere crops out, the process of major strike-slip dominated motion toward a 'free-face' is called 'tectonic escape'. Tectonic escape is and has been an element in continental evolution throughout recorded earth-history. It promotes: (1) rifting and the formation of rift-basins with thinning of thickened crust; (2) pervasive strike-slip faulting late in orogenic history which breaks up mountain belts across strike and may juxtapose unrelated sectors in cross-section; (3) localized compressional mountains and related foreland-trough basins.
Origin of back-arc basins and effects of western Pacific subduction systems on eastern China geology
NASA Astrophysics Data System (ADS)
Niu, Y.
2013-12-01
Assuming that subduction initiation is a consequence of lateral compositional buoyancy contrast within the lithosphere [1], and recognizing that subduction initiation within normal oceanic lithosphere is unlikely [1], we can assert that passive continental margins that are locations of the largest compositional buoyancy contrast within the lithosphere are the loci of future subduction zones [1]. We hypothesize that western Pacific back-arc basins were developed as and evolved from rifting at passive continental margins in response to initiation and continuation of subduction zones. This hypothesis can be tested by demonstrating that intra-oceanic island arcs must have basement of continental origin. The geology of the Islands of Japan supports this. The highly depleted forearc peridotites (sub-continental lithosphere material) from Tonga and Mariana offer independent lines of evidence for the hypothesis [1]. The origin and evolution of the Okinawa Trough (back-arc basin) and Ryukyu Arc/Trench systems represents the modern example of subduction initiation and back-arc basin formation along a (Chinese) continental margin. The observation why back-arc basins exit behind some subduction zones (e.g., western Pacific) but not others (e.g., in South America) depends on how the overlying plate responds to subduction, slab-rollback and trench retreat. In the western Pacific, trench retreat towards east results in the development of extension in the upper Eurasian plate and formation of back-arc basins. In the case of South America, where no back-arc basins form because trench retreat related extension is focused at the 'weakest' South Mid-Atlantic Ridge. It is thus conceptually correct that the South Atlantic is equivalent to a huge 'back-arc basin' although its origin may be different. Given the negative Clayperon slope of the Perovskite-ringwoodite phase transition at the 660 km mantle seismic discontinuity (660-D), slab penetration across the 660-D is difficult and trench retreat in the western Pacific readily result in the horizontal stagnation of the Pacific plate in the transition zone beneath eastern Asian continent [2]. Dehydration of this slab supplies water, which rises and results in 'basal hydration weakening' of the eastern China lithosphere and its thinning by converting it into weak material of asthenospheric property [3]. We note the proposal that multiple subduction zones with more water (i.e., subduction of the South China Block beneath the North China Craton, NCC; subduction of the Siberian/Mongolian block beneath the NCC) all contribute to the lithosphere thinning beneath the NCC [4]. However, 'South China-NCC' and 'Siberian/Mongolian-NCC' represent two collisional tectonics involving no trench retreat, causing no transition-zone slab stagnation, supplying no water, and thus contributing little to lithosphere thinning beneath the NCC. Furthermore, lithosphere thinning happened to the entire eastern China, not just limited to the NCC, emphasizing the effects of the western Pacific subduction system on eastern China geology. References: [1] Niu et al., 2003, Journal of Petrology, 44, 851-866. [2] Kárason & van der Hilst, R., 2000, Geophysical Monograph, 121, 277-288. [3] Niu, 2005, Geological Journal of China Universities, 11, 9-46. [4] Windley et al., 2010, American Journal of Science, 310, 1250-1293.
Lower crustal strength controls on melting and type of oceanization at magma-poor margins
NASA Astrophysics Data System (ADS)
Ros, E.; Perez-Gussinye, M.; Araujo, M. N.; Thoaldo Romeiro, M.; Andres-Martinez, M.; Morgan, J. P.
2017-12-01
Geodynamical models have been widely used to explain the variability in the architectonical style of conjugate rifted margins as a combination of lithospheric deformation modes, which are strongly influenced by lower crustal strength. We use 2D numerical models to show that the lower crustal strength also plays a key role on the onset and amount of melting and serpentinization during continental rifting. The relative timing between melting and serpentinization onsets controls whether the continent-ocean transition (COT) of margins will be predominantly magmatic or will mainly consist of exhumed and serpentinized mantle. Based on our results for magma-poor continental rifting, we propose a genetic link between margin architecture and COT styles that can be used as an additional tool to help interpret and understand the processes leading to margin formation. Our results show that strong lower crusts and very slow extension velocities (<5 mm/yr) lead to either symmetric or asymmetric margins with large oceanward dipping faults, strong syn-rift subsidence and abrupt crustal tapering beneath the continental shelf. These margins are characterized by a COT consisting of exhumed and serpentinized mantle and some magmatic products. Weak lower crusts at ultra-slow velocities lead also to either symmetric or asymmetric margins with small faults dipping both ocean- and landward, small syn-rift subsidence and gentle crustal tapering, and present a predominantly magmatic COT, perhaps underlain by some serpentinized mantle. When conjugate margins are asymmetric, if the rheology is relatively strong, serpentinite predominantly underlays the wide margin, whereas if the lower crustal strength is weak, melt preferentially migrates towards the wide margin. Based on the onshore lithospheric structure, extension velocity and margin architecture of the magma-poor section of the South Atlantic, we suggest that the COT of the northern sector, Camamu-Gabon basins, is more likely to consist of exhumed mantle with intruded magmatism, while to the South, the Camamu-Kwanza and North Santos-South Kwanza conjugates, may be better characterized by a predominantly magmatic COT.
Rift migration explains continental margin asymmetry and crustal hyper-extension
Brune, Sascha; Heine, Christian; Pérez-Gussinyé, Marta; Sobolev, Stephan V.
2014-01-01
When continents break apart, continental crust and lithosphere are thinned until break-up is achieved and an oceanic basin is formed. The most remarkable and least understood structures associated with this process are up to 200 km wide areas of hyper-extended continental crust, which are partitioned between conjugate margins with pronounced asymmetry. Here we show, using high-resolution thermo-mechanical modelling, that hyper-extended crust and margin asymmetry are produced by steady state rift migration. We demonstrate that rift migration is accomplished by sequential, oceanward-younging, upper crustal faults, and is balanced through lower crustal flow. Constraining our model with a new South Atlantic plate reconstruction, we demonstrate that larger extension velocities may account for southward increasing width and asymmetry of these conjugate magma-poor margins. Our model challenges conventional ideas of rifted margin evolution, as it implies that during rift migration large amounts of material are transferred from one side of the rift zone to the other. PMID:24905463
NASA Astrophysics Data System (ADS)
Biryol, C. B.; Wagner, L. S.; Fischer, K. M.; Hawman, R. B.
2016-12-01
The present tectonic configuration of the southeastern United States is a product of earlier episodes of arc accretion, continental collision and breakup. This region is located in the interior of the North American Plate, some 1500 km away from closest active plate margin. However, there is ongoing tectonism across the area with multiple zones of seismicity, rejuvenation of the Appalachians of North Carolina, Virginia, and Pennsylvania, and Cenozoic intraplate volcanism. The mechanisms controlling this activity and the modern-day state of stress remain enigmatic. Two factors often regarded as major contributors are plate strength and preexisting inherited structures. Recent improvements in broadband seismic data coverage in the region associated with the South Eastern Suture of the Appalachian Margin Experiment (SESAME) and EarthScope Transportable Array make it possible to obtain detailed information on the structure of the lithosphere in the region. Here we present new tomographic images of the upper mantle beneath the Southeastern United States, revealing large-scale structural variations in the upper mantle. Our results indicate fast seismic velocity patterns that can be interpreted as ongoing lithospheric foundering. We observe an agreement between the locations of these upper mantle anomalies and the location of major zones of tectonism, volcanism and seismicity, providing a viable explanation for modern-day activity in this plate interior setting long after it became a passive margin. Based on distinct variations in the geometry and thickness of the lithospheric mantle and foundered lithosphere, we propose that piecemeal delamination has occurred beneath the region throughout the Cenozoic, removing a significant amount of reworked/deformed mantle lithosphere. Ongoing lithospheric foundering beneath the eastern margin of stable North America explains significant variations in thickness of lithospheric mantle across the former Grenville deformation front.
NASA Astrophysics Data System (ADS)
Harris, R. A.
2011-12-01
The active Banda arc/continent collision of the Timor region provides many important contrasts to what is observed in Taiwan, which is mostly a function of differences in the nature of the subducting plate. One of the most important differences is the thermal state of the respective continental margins: 30 Ma China passive margin versus 160 Ma NW Australian continental margin. The subduction of the cold and strong NW Australian passive margin beneath the Banda trench provides many new constraints for resolving longstanding issues about the formative stages of collision and accretion of continental crust. Some of these issues include evidence for slab rollback and subduction erosion, deep continental subduction, emplacement or demise of forearc basement, relative amounts of uplift from crustal vs. lithospheric processes, influence of inherited structure, partitioning of strain away from the thrust front, extent of mélange development, metamorphic conditions and exhumation mechanisms, continental contamination and accretion of volcanic arcs, does the slab tear, and does subduction polarity reverse? Most of these issues link to the profound control of lower plate crustal heterogeneity, thermal state and inherited structure. The thermomechanical characteristics of subducting an old continental margin allow for extensive underthrusting of lower plate cover units beneath the forearc and emplacement and uplift of extensive nappes of forearc basement. It also promotes subduction of continental crust to deep enough levels to experience high pressure metamorphism (not found in Taiwan) and extensive contamination of the volcanic arc. Seismic tomography confirms subduction of continental lithosphere beneath the Banda Arc to at least 400 km with no evidence for slab tear. Slab rollback during this process results in massive subduction erosion and extension of the upper plate. Other differences in the nature of the subducting plates in Taiwan in Timor are differences in the lateral continuity of the continental margins. The northern Australian continental margin is highly irregular with many rift basins subducting parallel to their axes. This feature gives rise to irregularities in the uplift pattern of the collision and its continental margin parallel structural grain. Another major difference between Taiwan and Timor is the mechanical stratigraphy entering the trench. The Australian continental margin bears a carbonate rich pre and post rift sequence that is separated by a 1000 m thick, over pressured mudstone unit that acts as major detachment and promotes extensive mud diapirism. The post breakup Australian Passive Margin Sequence is incorporated into the orogenic wedge by frontal accretion and forms a classic imbricate thrust stack near the front of the Banda forearc. The pre breakup Gondwana Sequence below the detachment continues at least to depth of 30 km in the subduction channel beneath the Banda forearc upper plate and stacks up into a duplex zone that forms structural culminations throughout Timor. The upper plate of both collisions is similar in nature but is deformed in different ways due to the strong influence of the lower plate. However, both have extensive subduction erosion and demise of the forearc and systematic accretion of the arc.
Geomorphology of the Southern Gulf of California Seafloor
NASA Astrophysics Data System (ADS)
Eakins, B. W.; Lonsdale, P. F.; Fletcher, J. M.; Ledesma, J. V.
2004-12-01
A Spring 2004 multibeam sonar survey defined the seafloor geomorphology of the southern part of Gulf of California and the intersection of the East Pacific Rise with the North American continent. Survey goals included mapping structural patterns formed during the rifting that opened the Gulf and identifying the spatial transition from continental rifting to seafloor spreading. Multibeam sonar imagery, augmented with archival data and a subaerial DEM of Mexico, illuminates the principal features of this boundary zone between obliquely diverging plates: (i) active and inactive oceanic risecrests within young oceanic basins that are rich in evidence for off-axis magmatic eruption and intrusion; (ii) transforms with pull-apart basins and transpressive ridges along shearing continental margins and within oceanic crust; (iii) orphaned blocks of continental crust detached from sheared and rifted continental margins; and (iv) young, still-extending continental margins dissected by submarine canyons that in many cases are deeply drowned river valleys. Many of the canyons are conduits for turbidity currents that feed deep-sea fans on oceanic and subsided continental crust, and channel sediment to spreading axes, thereby modifying the crustal accretion process. We present a series of detailed bathymetric and seafloor reflectivity maps of this MARGINS Rupturing Continental Lithosphere focus site illustrating geomorphologic features of the southern part of the Gulf, from Guaymas Basin to the Maria Magdalena Rise.
The continent-ocean transition on the northwestern South China Sea
NASA Astrophysics Data System (ADS)
Cameselle, Alejandra L.; Ranero, César R.; Franke, Dieter; Barckhausen, Udo
2015-04-01
Rifted margins are created as a result of stretching and breakup of continental lithosphere that eventually leads to oceanic spreading and formation of a new oceanic basin. A cornerstone for understanding how rift characteristics vary along strike in the same system and what processes control the final transition to seafloor spreading is the continent-ocean transition (COT). We use four regional multichannel seismic profiles and published magnetic lineations to study the structure and variability of COT on the northwest subbasin (NWSB) of the South China Sea and to discern continental from oceanic domains. The continental domain is characterized by tilted fault blocks overlaid by thick syn-rift sedimentary units and fairly continuous Moho reflections typically at 8-10 s twtt. Thickness of the continental crust changes from ~20-25 km under the uppermost slope to ~9-6 km under the lower slope. The oceanic domain is interpreted where a highly reflective top of basement, little faulting, no syntectonic strata, and fairly constant thickness basement (4-8 km) occur. The COT is imaged as a ~5-10 km wide zone where oceanic-type features abut continental-type structures. The South China margin is deformed by abundant normal faults dissecting the continental crust, whereas the conjugate Macclesfield Bank margin displays comparatively abrupt thinning and little faulting. Seismic profiles show an along-strike variation in the tectonic structure of the continental margin. The NE-most lines display ~20-40 km wide segments of intense faulting under the slope and associated continental-crust thinning. Towards the SW, faulting and thinning of the continental crust occurs across a ~100-110 km wide segment. We interpret this 3D structural variability and the narrow COT as a consequence of the abrupt termination of continental rifting tectonics by the NE to SW propagation of a spreading center. We suggest that breakup occurred by spreading center propagation to a larger degree than by lithospheric thinning during continental rifting. Based on the sedimentary successions overlying the oceanic crust, we propose a kinematic evolution for the oceanic domain of the NWSB consisting of a southward spreading center propagation followed by a first narrow ridge jump to the north, and then a younger larger jump to the SW into the east subbasin.
The Northern Appalachian Anomaly is a Modern Asthenospheric Upwelling
NASA Astrophysics Data System (ADS)
Menke, W. H.; Skryzalin, P. A.; Levin, V. L.; Harper, T. B.; Darbyshire, F. A.; Dong, T.
2016-12-01
The eastern North American coast is the site of significant seismic velocity heterogeneities. They are a record - albeit an ambiguous one - of lithospheric and asthenospheric processes operating at the continental margin. We focus on the Northern Appalachian Anomaly (NAA), a particularly strong slow velocity feature in the shallow mantle located in a westward indentation (or divot) of the continental lithosphere in southern New England. The NAA has been explained as a relic feature associated with the Great Meteor hotspot (GMHS), which traversed southern New England at 130-100 Ma. Here we consider the alternative hypothesis that it is a modern feature associated with small-scale asthenospheric upwelling unrelated to any hotspot. We show that the NAA is a narrow (400 km wide) columnar feature and that its travel time delays are consistent with an extremely strong ( 700K ) asthenospheric temperature anomaly. After analyzing several previously-published tomographic images and a new one described here, we conclude that it is most consistent with a strong local upwelling associated with the eastern edge of the Laurentian (pre-Cambrian) continental lithosphere.
NASA Astrophysics Data System (ADS)
Chen, L.; Jiang, M.; Talebian, M.; Wan, B.; Ai, Y.; Ghods, A.; Sobouti, F.; Xiao, W.; Zhu, R.
2017-12-01
This study investigates the intracontinental deformation and its relationship with the structure of the crust and uppermost mantle in the NW Iranian plateau by combining new seismic and geological observations, to understand how this part of the plateau deformed to accommodate the Arabia-Eurasia plate collision and how the property of the lithosphere controls the deformation pattern. In contrast to the adjacent Anatolian block that exhibits westward large-scale extrusion, the northwesternmost part of the Iranian plateau shows dispersed intracontinental deformations with the development of numerous small-scale and discontinuous right-lateral strike-slip faults. The dispersed surface structures and deformation pattern correspond well to the active volcanism and seismically slow crust and uppermost mantle, and hence a weak lithosphere of the area. Further to the southeast are the western part of the Alborz Mountains and the southern Caspian Sea, both of which are characterized by stronger and more rigid lithosphere with relatively fast crust and uppermost mantle and absence of Quaternary volcanoes. A sharp Moho offset of 18 km has been imaged at the border of the Alborz and southern Caspian Sea using teleseismic receiver function data from a dense seismic array deployed under a collaborative project named "China-Iran Geological and Geophysical Survey in the Iranian Plateau (CIGSIP)". The sharp Moho offset and the minor undulations of the Moho on both sides indicate insignificant intracrustal deformation but mainly relative crustal movements between the Alborz Mountains and southern Caspian Sea, a behavior consistent with the relatively rigid nature of the lithosphere. Similar Moho offsets and lithospheric structures have been reported at the borders between the Kunlun Mountains and Qaidam or Tarim Basins in the northern margin of the Tibetan plateau, suggesting the occurrence of relative crustal movements with the effects of rigid continental lithosphere in the region. The new observations in the NW Iranian plateau combined with those in the Tibetan plateau thus provide solid evidence that intracontinental deformation is primarily controlled by the structure and properties of the continental lithosphere that may or may not have been severely altered by the collisional processes at plate margins.
Dynamics and the Wilson Cycle: An EarthScope vision
NASA Astrophysics Data System (ADS)
Ebinger, Cynthia; Humphreys, Eugene; Williams, Michael; van der Lee, Suzan; Levin, Vadim; Webb, Laura; Becker, Thorsten
2017-04-01
Wilson's model has two major components, each with distinctive observables. Initial subduction of ocean lithosphere collides continents across a closing ocean basin, creating a mountain range; rifting then initiates within the collisional orogeny and progresses to create oceanic spreading and creation of a new ocean basin. Subduction eventually initiates near the old, cold, and heavily sedimented continental margin, leading to subduction, and repeating the cycle. This model is largely kinematic in nature, and predictive in application. We re-evaluate the Wilson Cycle in light of process-oriented perspectives afforded by the surface to mantle Earthscope results. Repeating episodes of mountain building by means of continental collisions remains clear, but new observations augment or diverge from Wilson's concepts. A 'new' component stems from observations from both the East and West coasts: translational fault systems played critical roles in continental accretion, collision, and rifting. Earthscope data sets also have enabled imaging of the structure of western U.S. lithosphere with unprecedented detail. From new and existing data sets, we conclude that collision occurs in 'ribbons' in large part linked to the shapes of the landmasses colliding landmasses, and deformation includes a major component of transform tectonics. Post-orogenic gravitational collapse may occur far inboard of the site of collision. A third 'new' feature is that plate coupling with the mantle leads to deformation outside the classic Wilson Cycle. For example, the passive margin of eastern N. America shows tectonic activity, uplift, and magmatism long after the onset of seafloor spreading, demonstrating the dynamic nature of lithosphere-asthenosphere coupling. A 'fourth' observation is that lateral density contrasts and volatile migration during subduction and collision effectively refertilize mantle lithosphere, and pre-condition later tectonic cycles.
Upper mantle structure at Walvis Ridge from Pn tomography
NASA Astrophysics Data System (ADS)
Ryberg, Trond; Braeuer, Benjamin; Weber, Michael
2017-10-01
Passive continental margins offer the unique opportunity to study the processes involved in continental extension and break-up. Within the LISPWAL (LIthospheric Structure of the Namibian continental Passive margin at the intersection with the Walvis Ridge from amphibious seismic investigations) project, combined on- and offshore seismic experiments were designed to characterize the Southern African passive margin at the Walvis Ridge in northern Namibia. In addition to extensive analysis of the crustal structures, we carried out seismic investigations targeting the velocity structure of the upper mantle in the landfall region of the Walvis Ridge with the Namibian coast. Upper mantle Pn travel time tomography from controlled source, amphibious seismic data was used to investigate the sub-Moho upper mantle seismic velocity. We succeeded in imaging upper mantle structures potentially associated with continental break-up and/or the Tristan da Cunha hotspot track. We found mostly coast-parallel sub-Moho velocity anomalies, interpreted as structures which were created during Gondwana break-up.
Lithospheric architecture of the Levant Basin (Eastern Mediterranean region): A 2D modeling approach
NASA Astrophysics Data System (ADS)
Inati, Lama; Zeyen, Hermann; Nader, Fadi Henri; Adelinet, Mathilde; Sursock, Alexandre; Rahhal, Muhsin Elie; Roure, François
2016-12-01
This paper discusses the deep structure of the lithosphere underlying the easternmost Mediterranean region, in particular the Levant Basin and its margins, where the nature of the crust, continental versus oceanic, remains debated. Crustal thickness and the depth of the lithosphere-asthenosphere boundary (LAB) as well as the crustal density distribution were calculated by integrating surface heat flow data, free-air gravity anomaly, geoid and topography. Accordingly, two-dimensional, lithospheric models of the study area are discussed, demonstrating the presence of a progressively attenuated crystalline crust from E to W (average thickness from 35 to 8 km). The crystalline crust is best interpreted as a strongly thinned continental crust under the Levant Basin, represented by two distinct components, an upper and a lower crust. Further to the west, the Herodotus Basin is believed to be underlain by an oceanic crust, with a thickness between 6 and 10 km. The Moho under the Arabian Plate is 35-40 km deep and becomes shallower towards the Mediterranean coast. It appears to be situated at depths ranging between 20 and 23 km below the Levant Basin and 26 km beneath the Herodotus Basin, based on our proposed models. At the Levantine margin, the thinning of the crust in the transitional domain between the onshore and the offshore is gradual, indicating successive extensional regimes that did not reach the beak up stage. In addition, the depth to LAB is around 120 km under the Arabian and the Eurasian Plates, 150 km under the Levant Basin, and it plunges to 180 km under the Herodotus Basin. This study shows that detailed 2D lithosphere modeling using integrated geophysical data can help understand the mechanisms responsible for the modelled lithospheric architecture when constrained with geological findings.
Cenozoic tectonic subsidence in the Southern Continental Margin, South China Sea
NASA Astrophysics Data System (ADS)
Fang, Penggao; Ding, Weiwei; Fang, Yinxia; Zhao, Zhongxian; Feng, Zhibing
2017-06-01
We analyzed two recently acquired multichannel seismic profiles across the Dangerous Grounds and the Reed Bank area in the South China Sea. Reconstruction of the tectonic subsidence shows that the southern continental margin can be divided into three stages with variable subsidence rate. A delay of tectonic subsidence existed in both areas after a break-up, which was likely related to the major mantle convection during seafloor spreading, that was triggered by the secondary mantle convection below the continental margin, in addition to the variation in lithospheric thickness. Meanwhile, the stage with delayed subsidence rate differed along strikes. In the Reed Bank area, this stage is between 32-23.8 Ma, while in the Dangerous Grounds, it was much later (between 19-15.5 Ma). We believe the propagated rifting in the South China Sea dominated the changes of this delayed subsidence rate stage.
NASA Astrophysics Data System (ADS)
Gholamrezaie, Ershad; Scheck-Wenderoth, Magdalena; Sippel, Judith; Strecker, Manfred R.
2018-02-01
The aim of this study is to investigate the shallow thermal field differences for two differently aged passive continental margins by analyzing regional variations in geothermal gradient and exploring the controlling factors for these variations. Hence, we analyzed two previously published 3-D conductive and lithospheric-scale thermal models of the Southwest African and the Norwegian passive margins. These 3-D models differentiate various sedimentary, crustal, and mantle units and integrate different geophysical data such as seismic observations and the gravity field. We extracted the temperature-depth distributions in 1 km intervals down to 6 km below the upper thermal boundary condition. The geothermal gradient was then calculated for these intervals between the upper thermal boundary condition and the respective depth levels (1, 2, 3, 4, 5, and 6 km below the upper thermal boundary condition). According to our results, the geothermal gradient decreases with increasing depth and shows varying lateral trends and values for these two different margins. We compare the 3-D geological structural models and the geothermal gradient variations for both thermal models and show how radiogenic heat production, sediment insulating effect, and thermal lithosphere-asthenosphere boundary (LAB) depth influence the shallow thermal field pattern. The results indicate an ongoing process of oceanic mantle cooling at the young Norwegian margin compared with the old SW African passive margin that seems to be thermally equilibrated in the present day.
Timing and composition of continental volcanism at Harrat Hutaymah, western Saudi Arabia
Duncan, Robert A.; Kent, Adam J R; Thornber, Carl; Schliedler, Tyler D; Al-Amri, Abdullah M
2016-01-01
Harrat Hutaymah is an alkali basalt volcanic field in north-central Saudi Arabia, at the eastern margin of a large Neogene continental, intraplate magmatic province. Lava flow, tephra and spatter cone compositions in the field include alkali olivine basalts and basanites. These compositions contrast with the predominantly tholeiitic, fissure-fed basalts found along the eastern margin of the Red Sea. The Hutaymah lava flows were erupted through Proterozoic arc-associated plutonic and meta-sedimentary rocks of the Arabian shield, and commonly contain a range of sub-continental lithospheric xenoliths, although the lavas themselves show little indication of crustal contamination. Previous radiometric dating of this volcanic field (a single published K–Ar age; 1.8 Ma) is suspiciously old given the field measurement of normal magnetic polarity only (i.e. Brunhes interval, ≤ 780 Ka). We report new age determinations on 14 lava flows by the 40Ar–39Ar laser step heating method, all younger than ~ 850 Ka, to better constrain the time frame of volcanism, and major, trace and rare earth element compositions to describe the chemical variation of volcanic activity at Harrat Hutaymah. Crystal fractionation was dominated by olivine ± clinopyroxene at a range of upper mantle and crustal pressures. Rapid ascent and eruption of magma is indicated by the array of lower crustal and lithospheric xenoliths observed in lava flows and tephra. Modeling suggests 1–7% melting of an enriched asthenospheric mantle source occurred beneath Harrat Hutaymah under a relatively thick lithospheric cap (60–80 km).
Timing and composition of continental volcanism at Harrat Hutaymah, western Saudi Arabia
NASA Astrophysics Data System (ADS)
Duncan, Robert A.; Kent, Adam J. R.; Thornber, Carl R.; Schlieder, Tyler D.; Al-Amri, Abdullah M.
2016-03-01
Harrat Hutaymah is an alkali basalt volcanic field in north-central Saudi Arabia, at the eastern margin of a large Neogene continental, intraplate magmatic province. Lava flow, tephra and spatter cone compositions in the field include alkali olivine basalts and basanites. These compositions contrast with the predominantly tholeiitic, fissure-fed basalts found along the eastern margin of the Red Sea. The Hutaymah lava flows were erupted through Proterozoic arc-associated plutonic and meta-sedimentary rocks of the Arabian shield, and commonly contain a range of sub-continental lithospheric xenoliths, although the lavas themselves show little indication of crustal contamination. Previous radiometric dating of this volcanic field (a single published K-Ar age; 1.8 Ma) is suspiciously old given the field measurement of normal magnetic polarity only (i.e. Brunhes interval, ≤ 780 Ka). We report new age determinations on 14 lava flows by the 40Ar-39Ar laser step heating method, all younger than ~ 850 Ka, to better constrain the time frame of volcanism, and major, trace and rare earth element compositions to describe the chemical variation of volcanic activity at Harrat Hutaymah. Crystal fractionation was dominated by olivine ± clinopyroxene at a range of upper mantle and crustal pressures. Rapid ascent and eruption of magma is indicated by the array of lower crustal and lithospheric xenoliths observed in lava flows and tephra. Modeling suggests 1-7% melting of an enriched asthenospheric mantle source occurred beneath Harrat Hutaymah under a relatively thick lithospheric cap (60-80 km).
NASA Astrophysics Data System (ADS)
Cuthbert, Simon
2017-04-01
The Scandinavian Caledonides (SC) represents a plate collision zone of Himalayan style and scale. Three fundamental characteristics of this orogen are: (1) early foreland-directed, tectonic transport and stacking of nappes; (2) late, wholesale reversal of tectonic transport; (3) ultrahigh pressure metamorphism of felsic crust derived from the underthrusting plate at several levels in the orogenic wedge and below the main thrust surface, indicating subduction of continental crust into the mantle. The significance of this for crustal evolution is the profound remodeling of continental crust, direct geochemical interaction of such crust and the mantle and the opening of accommodation space trapping large volumes of clastic detritus within the orogen. The orogenic wedge of the SC was derived from the upper crust of the Baltica continental margin (a hyper-extended passive margin), plus terranes derived from an assemblage of outboard arcs and intra-oceanic basins and, at the highest structural level, elements of the Laurentian margin. Nappe emplacement was driven by Scandian ( 430Ma) collision of Baltica with Laurentia, but emerging Middle Ordovician ages for diamond-facies metamorphism for the most outboard (or rifted) elements of Baltica suggest prior collision with an arc or microcontinent. Nappes derived from Baltica continental crust were subducted, in some cases to depths sufficient to form diamond. These then detached from the upper part of the down-going plate along major thrust faults, at which time they ceased to descend and possibly rose along the subduction channel. Subduction of the remaining continental margin continued below these nappes, possibly driven by slab-pull of the previously subducted Iapetus oceanic lithosphere and metamorphic densification of subducted felsic continental margin. 3D numerical modelling based upon a Caledonide-like plate scenario shows that if a continental corner or promontory enters the subduction zone, the continental margin descends to greater depths than for a simple orthogonal collision and its modelled thermal evolution is consistent with UHP metamorphic assemblages recorded in the southern part of the SC. Furthermore, a tear initiates at the promontary tip along the ocean-continent junction and propagates rapidly along the orogen. The buoyant upthrust of the subducted margin can then lead to reversal of the motion vector of the entire subducting continent, which withdraws the subducted lithospheric margin out of the subduction channel ("eduction"). Because of the diachroneity of slab failure, the continent also rotates, which causes the eduction vector to change azimuth over time. These model behaviours are consistent with the late orogenic structural evolution of the southern SC. However, during the final exhumation stage the crust may not have acted entirely coherently, as some eduction models propose: There is evidence that some inboard Baltica crust experienced late, shallow subduction before detaching as giant "flakes" that carried the orogenic wedge piggyback, forelandwards. Eduction and flake-tectonics could have operated coevally; the model system does not preclude this. Finally, the traction of a large educting (or extruding) mass of continental margin against the overlying orogenic wedge may have stretched and ruptured the wedge, resulting in opening of the late-orogenic Old Red Sandstone molasse basins.
The nature of orogenic crust in the central Andes
NASA Astrophysics Data System (ADS)
Beck, Susan L.; Zandt, George
2002-10-01
The central Andes (16°-22°S) are part of an active continental margin mountain belt and the result of shortening of the weak western edge of South America between the strong lithospheres of the subducting Nazca plate and the underthrusting Brazilian shield. We have combined receiver function and surface wave dispersion results from the BANJO-SEDA project with other geophysical studies to characterize the nature of the continental crust and mantle lithospheric structure. The major results are as follows: (1) The crust supporting the high elevations is thick and has a felsic to intermediate bulk composition. (2) The relatively strong Brazilian lithosphere is underthrusting as far west (65.5°W) as the high elevations of the western part of the Eastern Cordillera (EC) but does not underthrust the entire Altiplano. (3) The subcrustal lithosphere is delaminating piecemeal under the Altiplano-EC boundary but is not completely removed beneath the central Altiplano. The Altiplano crust is characterized by a brittle upper crust decoupled from a very weak lower crust that is dominated by ductile deformation, leading to lower crustal flow and flat topography. In contrast, in the high-relief, inland-sloping regions of the EC and sub-Andean zone, the upper crust is still strongly coupled across the basal thrust of the fold-thrust belt to the underthrusting Brazilian Shield lithosphere. Subcrustal shortening between the Altiplano and Brazilian lithosphere appears to be accommodated by delamination near the Altiplano-EC boundary. Our study suggests that orogenic reworking may be an important part of the "felsification" of continental crust.
Geodynamic models of the Wilson Cycle: From rifts to mountains to rifts
NASA Astrophysics Data System (ADS)
Buiter, Susanne; Tetreault, Joya; Torsvik, Trond
2015-04-01
The Wilson Cycle theory that oceans close and reopen along the former suture is a fundamental concept in plate tectonics. The theory suggests that subduction initiates at a passive margin, closing the ocean, and that future continental extension localises at the ensuing collision zone. Each stage of the Wilson Cycle will therefore be characterised by inherited structural and thermal heterogeneities. Here we investigate the role of Wilson Cycle inheritance by considering the influence of (1) passive margin structure on continental collision and (2) collision zones on passive margin formation. Passive margins may be preferred locations for subduction initiation because inherited faults and areas of exhumed serpentinized mantle may weaken a margin enough to localise shortening. If subduction initiates at a passive margin, the shape and structure of the passive margins will affect future continental collision. Our review of present-day passive margins along the Atlantic and Indian Oceans reveals that most passive margins are located on former collision zones. Continental break-up occurs on relatively young sutures, such as Morocco-Nova Scotia, and on very old sutures, such as the Greenland-Labrador and East Antarctica-Australia systems. This implies that it is not always post-collisional collapse that initiates the extensional phase of a Wilson Cycle. We highlight the impact of collision zone inheritance on continental extension and rifted margin architecture. We show numerical experiments of one Wilson Cycle of subduction, collision, and extension. Subduction initiates at a tapered passive margin. Closure of a 60 Ma ocean leads to continental collision and slab break-off, followed by some tens of kilometres of slab eduction. Mantle flow above the sinking detached slab enhances deformation in the rift area. The resulting rift exposes not only continental crust, but also subduction-related sediments and oceanic crust remnants. Renewed subduction in the post-collision phase is enabled by lithosphere delamination and slab rollback, leading to back-arc extension in a style similar to the Tyrrhenian Sea.
NASA Astrophysics Data System (ADS)
Galushkin, Yu. I.; Leitchenkov, G. L.; Guseva, Yu. B.; Dubinin, E. P.
2018-01-01
The burial history and thermal evolution of the lithosphere within the passive nonvolcanic Antarctic margin in the region of the Mawson Sea are numerically reconstructed for the margin areas along the seismic profile 5909 with the use of the GALO basin modeling system. The amplitudes of the lithosphere stretching at the different stages of continental rifting which took place from 160 to 90 Ma ago are calculated from the geophysical estimates of the thickness of the consolidated crust and the tectonic analysis of the variations in the thickness of the sedimentary cover and sea depths during the evolution of the basin. It is hypothesized that the formation of the recent sedimentary section sequence in the studied region of the Antarctic margin began 140 Ma ago on a basement that was thinned by a factor of 1.6 to 4.5 during the first episode of margin stretching (160-140 Ma) under a fairly high heat flux. The reconstruction of the thermal regime of the lithosphere has shown that the mantle rocks could occur within the temperature interval of serpentinization and simultaneously within the time interval of lithospheric stretching (-160 < t <-90 Ma) only within separate segments of profile 5909 in the Mawson Sea. The calculations of the rock strength distribution with depth by the example of the section of pseudowell 4 have shown that a significant part of the crust and uppermost mantle fall here in the region of brittle deformations in the most recent period of lithosphere stretching (-104 to-90 Ma ago). The younger basin segments of profile 5909 in the region of pseudowells 5 and 6 are characterized by a high heat flux, and the formation of through-thickness brittle fractures in these zones is less probable. However, serpentinization could take place in these areas as in the other margin segments at the stage of presedimentation ultra slow basement stretching.
NASA Astrophysics Data System (ADS)
Neumann, E.; Vannucci, R.; Tiepolo, M.; Griffin, W. L.; Pearson, N. J.; O'Reilly, S. Y.
2005-05-01
Our present information on passive margins rests almost exclusively on seismic and density data. An important exception is the west Iberia margin where petrological and geochemical information on crustal and mantle rocks have been made available through drilling experiments. In order to increase our information about, and understanding of, passive margins and their mode of formation, more information on crustal and mantle rocks along different types of passive margins are needed. In the area of the Canary Islands such information has been obtained through the study of mantle and deep crustal xenoliths brought to the surface by basaltic magmas. In-situ laser ablation (LA) ICP-MS mineral analyses have enabled us to "see through" the effects of the Canary Islands event and obtain robust information about the original (pre-Canarian) chemical character of the crust and upper mantle on which these islands are built. Our studies show that the lithosphere beneath the Canary Islands originated as highly refractory N-MORB type oceanic mantle overlain by highly refractory N-MORB crust. Both the lithospheric mantle and lower crust have been metasomatized to different degrees by a variety of fluid and melts. The enriched material is commonly concentrated along grain boundaries and cracks through mineral grains, suggesting that the metasomatism is relatively recent, and is thus associated with the Canary Islands magmatism. The original, strongly depleted trace element patterns and the low 87Sr/86Sr isotopic ratios typical of the oceanic lithosphere are preserved in the minerals in the least metasomatized rocks (e.g. LaN/LuN<0.1 in orthopyroxene and 87Sr/86Sr=0.7027-0.7029 in clinopyroxene in mantle xenoliths). The compositions of the most depleted gabbro samples from the different islands are closely similar, implying that there was no significant change in chemistry during the early stages of formation of the Atlantic oceanic crust in this area. Strongly depleted gabbros similar to those collected in Fuerteventura have also been retrieved in the MARK area along the central Mid-Atlantic Ridge. Furthermore, we have found no evidence of continental material that might reflect attenuated continental lithosphere in this area. The easternmost Canary Islands, Fuerteventura and Lanzarote, appear to overlap the lower part of the continental slope of Africa. The presence of normal oceanic lithosphere beneath these islands implies that the continent-ocean transition in the Canary Islands area must be relatively sharp, in contrast to the passive non-volcanic margin further north along the coast of Morocco, along the Iberia peninsula, and in many other areas. Our data also contradict the hypothesis that a mantle plume was present in this area during the opening of the Atlantic Ocean.
Uplift along passive continental margins, changes in plate motion and mantle convection
NASA Astrophysics Data System (ADS)
Japsen, Peter; Green, Paul F.; Chalmers, James A.; Bonow, Johan M.
2014-05-01
The origin of the forces that produce elevated, passive continental margins (EPCMs) is a hot topic in geoscience. It is, however, a new aspect in the debate that episodes of uplift coincide with changes in plate motion. This has been revealed, primarily, by studies of the burial, uplift and exhumation history of EPCMs based on integration on stratigraphic landscape analysis, low-temperature thermochronology and evidence from the geological record (Green et al., 2013). In the Campanian, Eocene and Miocene, uplift and erosion affected the margins of Brazil and Africa (Japsen et al., 2012b). The uplift phases in Brazil coincided with main phases of Andean orogeny which were periods of relatively rapid convergence at the Andean margin of South America (Cobbold et al., 2001). Because Campanian uplift in Brazil coincides, not only with rapid convergence at the Andean margin of South America, but also with a decline in Atlantic spreading rate, Japsen et al. (2012b) suggested that all these uplift events have a common cause, which is lateral resistance to plate motion. Because the uplift phases are common to margins of diverging plates, it was also suggested that the driving forces can transmit across the spreading axis; probably at great depth, e.g. in the asthenosphere. Late Eocene, Late Miocene and Pliocene uplift and erosion shaped the elevated margin of southern East Greenland (Bonow et al., in review; Japsen et al., in review). These regional uplift phases are synchronous with phases in West Greenland, overlap in time with similar events in North America and Europe and also correlate with changes in plate motion. The much higher elevation of East Greenland compared to West Greenland suggests dynamic support in the east from the Iceland plume. Japsen et al. (2012a) pointed out that EPCMs are typically located above thick crust/lithosphere that is closely juxtaposed to thinner crust/lithosphere. The presence of mountains along the Atlantic margin of Brazil and in East and West Greenland, close to where continental crust starts to thin towards oceanic crust, illustrates the common association between EPCMs and the edges of cratons. These observations indicate that the elevation of EPCMs may be due to processes operating where there is a rapid change in crustal/lithosphere thickness. Vertical motion of EPCMs may thus be related to lithosphere-scale folding caused by compressive stresses at the edge of a craton (e.g. Cloetingh et al., 2008). The compression may be derived either from orogenies elsewhere on a plate or from differential drag at the base of the lithosphere by horizontal asthenospheric flow (Green et al., 2013). Bonow, Japsen, Nielsen. Global Planet. Change in review. Cloetingh, Beekman, Ziegler, van Wees, Sokoutis, 2008. Geol. Soc. Spec. Publ. (London) 306. Cobbold, Meisling, Mount, 2001. AAPG Bull. 85. Green, Lidmar-Bergström, Japsen, Bonow, Chalmers, 2013. GEUS Bull. 2013/30. Japsen, Chalmers, Green, Bonow 2012a, Global Planet. Change 90-91. Japsen, Bonow, Green, Cobbold, Chiossi, Lilletveit, Magnavita, Pedreira, 2012b. GSA Bull. 124. Japsen, Green, Bonow, Nielsen. Global Planet. Change in review.
NASA Astrophysics Data System (ADS)
Rao Gangumalla, Srinivasa; Radhakrishna, Munukutla
2014-05-01
The eastern continental margin of India has evolved as a consequence of rifting and breakup between India and east Antarctica during the early Cretaceous. Plate reconstruction models for the breakup of eastern Gondwanaland by many earlier workers have unambiguously placed the southeast margin of Sri Lanka and India together as a conjugate segment with the east Antarctica margin that extends from Gunnerus Ridge in the west to western Enderby basin in the east. In this study, we present results of integrated analysis of gravity, geoid, magnetic and seismic data from these two conjugate portions in order to examine the lithosphere structure and early seafloor spreading, style of breakup, continent-ocean boundary (COB) and rheological characteristics at these margins. The interpreted COB lies at a distance of 55-140 km on the side of southeast margin of Sri Lanka and India, whereas, it lies at a distance of 190-550 km on the side of east Antarctica margin. The seismic profiles and the constrained potential field models across these two segments do not show the existence of seaward dipping reflector sequences or magmatic underplating suggesting that these segments have not encountered major magmatic activity. While, significant crustal thinning/stretching is observed at the east Antarctic margin, the Cauvery offshore had experienced limited stretching with faulted Moho interface. Further, the conspicuous residual geoid low in the Cauvery offshore basin is inferred to be due to a continental crustal block. The modelled Lithosphere-Astenosphere Boundary (LAB) in these two margins is located around 110-120 km depth with slightly thicker lithosphere at the east Antarctica margin. In addition, the interpretation of magnetic anomalies provided structure of the oceanic crust generated through seafloor spreading processes with age and magnetization data constrained from the identified magnetic anomalies in the respective margins. Using the Bouguer coherence method, we computed spatial variations in effective elastic thickness (Te) at these margin segments. The estimated Te values at the Indian margin ranges between 5-8 km in the southeast of Sri Lanka to around 10-12 km in the Cauvery offshore which decrease further north to < 5 km in the Cauvery-Palar basin. Along the east Antarctic margin, the Te values ranges between 5-10 km in the Gunnerus ridge region, 35-40 km in the western Enderby basin which decrease further towards the central Enderby basin up to 20 km. In this study, the above results have been analyzed in terms of early breakup mechanism and subsequent evolution of these two conjugate segments.
Global geodynamic models constrained by tectonic reconstructions including plate deformation
NASA Astrophysics Data System (ADS)
Gurnis, M.; Flament, N.; Spasojevic, S.; Williams, S.; Seton, M.; Müller, R. D.
2011-12-01
In order to investigate the effect of mantle flow on the Earth's surface, imposing the kinematics predicted by plate reconstructions in global convection models has become common practice. Such models are valuable to investigate the effect of the mantle flow beneath the lithosphere on surface topography. Changes in surface topography due to lithospheric deformation are so far not part of top-down tectonic models in which plates are treated as rigid in traditional tectonic reconstructions. We introduce a new generation of geodynamic models that are based on tectonic reconstructions with deforming plates at both passive and convergent margins. These models allow us to investigate the relationships between lithospheric deformation and mantle flow, and their combined effects on surface topography. In traditional tectonic reconstructions, continents are represented as rigid blocks that either overlap or are separated by gaps in full-fit reconstructions. Reconstructions that include a global network of topological plate polygons avoid continental overlaps and gaps, but velocities are still derived on the basis of the Euler poles for rigid blocks. To resolve these issues, we developed a series of deforming plate models using the open source plate modeling software GPlates. For a given area, our methodology requires the relative motions between major rigid continental blocks, and a definition of the regions in which continental lithosphere deformed between these blocks. We use geophysical and geological data to define the limit between rigid and deforming areas, and the deformation history of non-rigid blocks. The velocity field predicted by these reconstructions is then used as a time-dependent surface boundary condition in global 3-D geodynamic models. To incorporate the continental lithosphere in our global models, we embed compositionally distinct crust and continental lithosphere within the thermal lithosphere. We define three isostatic columns of different thickness and buoyancy based on the tectonothermal age of the continents: Archean, Proterozoic and Phanerozoic. In the fourth isostatic column, the oceans, the thickness of the thermal lithosphere is assimilated using the half-space cooling model. We also use this capacity to define the thickness of the thermal lithosphere for different continental types, with the exception of the deforming areas that are fully dynamic. Finally, we introduce a new slab assimilation method in which the thermal structure of the slab, derived analytically, is progressively assimilated in the upper mantle into the dynamic models. This method not only improves the continuity of slabs in our models, but it also allows us to model flat slab segments that are particularly relevant for dynamic topography. This new generation of models allows us to analyse the contributions of continental deformation and of mantle flow to surface topography. We compare our results to geological and geophysical data, including stratigraphy, paleo-altimetry, paleo-environment and mantle tomography. This allows us to place constraints on key model parameters and to refine our knowledge of plate-mantle interactions during continental deformation.
Post-rift deformation of the Red Sea Arabian margin
NASA Astrophysics Data System (ADS)
Zanoni, Davide; Schettino, Antonio; Pierantoni, Pietro Paolo; Rasul, Najeeb
2017-04-01
Starting from the Oligocene, the Red Sea rift nucleated within the composite Neoproterozoic Arabian-Nubian shield. After about 30 Ma-long history of continental lithosphere thinning and magmatism, the first pulse of oceanic spreading occurred at around 4.6 Ma at the triple junction of Africa, Arabia, and Danakil plate boundaries and propagated southward separating Danakil and Arabia plates. Ocean floor spreading between Arabia and Africa started later, at about 3 Ma and propagated northward (Schettino et al., 2016). Nowadays the northern part of the Red Sea is characterised by isolated oceanic deeps or a thinned continental lithosphere. Here we investigate the deformation of thinned continental margins that develops as a consequence of the continental lithosphere break-up induced by the progressive oceanisation. This deformation consists of a system of transcurrent and reverse faults that accommodate the anelastic relaxation of the extended margins. Inversion and shortening tectonics along the rifted margins as a consequence of the formation of a new segment of ocean ridge was already documented in the Atlantic margin of North America (e.g. Schlische et al. 2003). We present preliminary structural data obtained along the north-central portion of the Arabian rifted margin of the Red Sea. We explored NE-SW trending lineaments within the Arabian margin that are the inland continuation of transform boundaries between segments of the oceanic ridge. We found brittle fault zones whose kinematics is consistent with a post-rift inversion. Along the southernmost transcurrent fault (Ad Damm fault) of the central portion of the Red Sea we found evidence of dextral movement. Along the northernmost transcurrent fault, which intersects the Harrat Lunayyir, structures indicate dextral movement. At the inland termination of this fault the evidence of dextral movement are weaker and NW-SE trending reverse faults outcrop. Between these two faults we found other dextral transcurrent systems that locally are associated with metre-thick reverse fault zones. Along the analysed faults there is evidence of tectonic reworking. Relict kinematic indicators or the sense of asymmetry of sigmoidal Miocene dykes may suggest that a former sinistral movement was locally accommodated by these faults. This evidence of inversion of strike-slip movement associated with reverse structures, mostly found at the inland endings of these lineaments, suggests an inversion tectonics that could be related to the progressive and recent oceanisation of rift segments. Schettino A., Macchiavelli C., Pierantoni P.P., Zanoni D. & Rasul N. 2016. Recent kinematics of the tectonic plates surrounding the Red Sea and Gulf of Aden. Geophysical Journal International, 207, 457-480. Schlische R.W., Withjack M.O. & Olsen P.E., 2003. Relative timing of CAMP, rifting, continental breakup, and basin inversion: tectonic significance, in The Central Atlantic Magmatic Province: Insights from Fragments of Pangea, eds Hames W., Mchone J.G., Renne P. & Ruppel C., American Geophysical Union, 33-59.
NASA Astrophysics Data System (ADS)
Voggenreiter, W.; Hötzl, H.
The tectonic and magnetic evolution of the Jizan coastal plain (Tihama Asir) in southwest Arabia was dominated by SW-NE lithospheric extension related to the development of the Red Sea Rift. A well-exposed, isotopically-dated succession of magmatic rocks (Jizan Group volcanics, Tihama Asir Magmatic Complex) allows a kinematic analysis for this part of the Arabian Red Sea margin. A mafic dyke swarm and several generations of roughly NW-trending normal faults characterized the continental rift stage from Oligocene to early Miocene time. Major uplift of the Arabian graben shoulder probably began about 14 Ma ago. By this time, extension and magmatism ceased in the Jizan area and were followed by an approximately 10 Ma interval of tectonic and magmatic quiescence. A second phase of extension began in the Pliocene and facilitated a vast outpouring of alkaliolivine basalts on the coastal plain. The geometry of faulting in the Jizan area supports a Wernicke-type simple-shear mechanism of continental rifting for the southern Arabian continental margin of the Red Sea.
Atlantic continental margin of the United States
Grow, John A.; Sheridan, Robert E.; Palmer, A.R.
1982-01-01
The objective of this Decade of North American Geology (D-NAG) volume will be to focus on the Mesozoic and Cenozoic evolution of the U.S. Atlantic continental margin, including the onshore coastal plain, related onshore Triassic-Jurassic rift grabens, and the offshore basins and platforms. Following multiple compressional tectonic episodes between Africa and North America during the Paleozoic Era that formed the Appalachian Mountains, the Mesozoic and Cenozoic Eras were dominated by tensional tectonic processes that separated Africa and North America. Extensional rifting during Triassic and Early Jurassic times resulted in numerous tensional grabens both onshore and offshore, which filled with nonmarine continental red beds, lacustrine deposits, and volcanic flows and debris. The final stage of this breakup between Africa and North America occurred beneath the present outer continental shelf and continental slope during Early or Middle Jurassic time when sea-floor spreading began to form new oceanic crust and lithosophere between the two continents as they drifted apart. Postrift subsidence of the marginal basins continued in response to cooling of the lithosphere and sedimentary loading.Geophysical surveys and oil-exploration drilling along the U.S. Atlantic continental margin during the past 5 years are beginning to answer many questions concerning its deep structure and stratigraphy and how it evolved during the rifting and early sea-floor-spreading stages of the separation of this region from Africa. Earlier geophysical studies of the U.S. continental margin used marine refraction and submarine gravity measurements. Single-channel seismic-reflection, marine magnetic, aeromagnetic, and continuous gravity measurements became available during the 1960s.
NASA Astrophysics Data System (ADS)
Cowie, Leanne; Kusznir, Nick; Horn, Brian
2014-05-01
Integrated quantitative analysis using deep seismic reflection data and gravity inversion have been applied to the S Angolan and SE Brazilian margins to determine OCT structure, COB location and magmatic type. Knowledge of these margin parameters are of critical importance for understanding rifted continental margin formation processes and in evaluating petroleum systems in deep-water frontier oil and gas exploration. The OCT structure, COB location and magmatic type of the S Angolan and SE Brazilian rifted continental margins are much debated; exhumed and serpentinised mantle have been reported at these margins. Gravity anomaly inversion, incorporating a lithosphere thermal gravity anomaly correction, has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning. Residual Depth Anomaly (RDA) analysis has been used to investigate OCT bathymetric anomalies with respect to expected oceanic bathymetries and subsidence analysis has been used to determine the distribution of continental lithosphere thinning. These techniques have been validated for profiles Lusigal 12 and ISE-01 on the Iberian margin. In addition a joint inversion technique using deep seismic reflection and gravity anomaly data has been applied to the ION-GXT BS1-575 SE Brazil and ION-GXT CS1-2400 S Angola deep seismic reflection lines. The joint inversion method solves for coincident seismic and gravity Moho in the time domain and calculates the lateral variations in crustal basement densities and velocities along the seismic profiles. Gravity inversion, RDA and subsidence analysis along the ION-GXT BS1-575 profile, which crosses the Sao Paulo Plateau and Florianopolis Ridge of the SE Brazilian margin, predict the COB to be located SE of the Florianopolis Ridge. Integrated quantitative analysis shows no evidence for exhumed mantle on this margin profile. The joint inversion technique predicts oceanic crustal thicknesses of between 7 and 8 km thickness with normal oceanic basement seismic velocities and densities. Beneath the Sao Paulo Plateau and Florianopolis Ridge, joint inversion predicts crustal basement thicknesses between 10-15km with high values of basement density and seismic velocities under the Sao Paulo Plateau which are interpreted as indicating a significant magmatic component within the crustal basement. The Sao Paulo Plateau and Florianopolis Ridge are separated by a thin region of crustal basement beneath the salt interpreted as a regional transtensional structure. Sediment corrected RDAs and gravity derived "synthetic" RDAs are of a similar magnitude on oceanic crust, implying negligible mantle dynamic topography. Gravity inversion, RDA and subsidence analysis along the S Angolan ION-GXT CS1-2400 profile suggests that exhumed mantle, corresponding to a magma poor margin, is absent..The thickness of earliest oceanic crust, derived from gravity and deep seismic reflection data, is approximately 7km consistent with the global average oceanic crustal thicknesses. The joint inversion predicts a small difference between oceanic and continental crustal basement density and seismic velocity, with the change in basement density and velocity corresponding to the COB independently determined from RDA and subsidence analysis. The difference between the sediment corrected RDA and that predicted from gravity inversion crustal thickness variation implies that this margin is experiencing approximately 500m of anomalous uplift attributed to mantle dynamic uplift.
A Community Seismic Experiment in the ENAM Primary Site
NASA Astrophysics Data System (ADS)
Van Avendonk, H. J.
2012-12-01
Eastern North America (ENAM) was chosen as a GeoPRISMS Rift Initiation and Evolution primary site because it represents a mature continental margin with onshore and offshore rift basins in which the record of extension and continental break-up is preserved. The degree to which syn-rift magmatism and preexisting lithospheric weaknesses controlled the evolution of the margin can be further investigated if we image its 3-D structure at small and large length scales with active-source and earthquake seismic imaging. In the Summer of 2012 we submitted a proposal to the US National Science Foundation for an ambitious plan for data acquisition on a 400 km wide section of the mid-Atlantic East Coast margin around Cape Hatteras, from unextended continental lithosphere onshore to mature oceanic lithosphere offshore. This area includes an important along-strike transition in the morphology of the margin from the Carolina Trough to the Baltimore Canyon Trough, and two major fracture zones that are associated with significant offsets at the modern Mid-Atlantic Ridge. The study area also covers several features representing the post-rift modification of the margin by slope instability and fluid flow. As the Earthscope Transportable Array reaches the East Coast of the US in 2013 and 2014, we will have an unprecedented opportunity to image the detailed structure of the rifted margin. To make effective use of the research infrastructure, including the seismic vessel R/V Marcus Langseth, the Earthscope seismic instrumentation, and US OBS Instrument Pool, we propose to collect a suite of seismic data at the mid-Atlantic margin in the context of a community-driven experiment with completely open data access. This multi-faceted seismic experiment offers an immense opportunity for education of young scientists. We propose an integrated education effort during and after acquisition. The science and field parties for data acquisition will largely consist of young scientists, who will be chosen by application. Following the cruise, we propose to hold two short courses on multi-channel seismic reflection and wide-angle reflection and refraction data processing using the new seismic data. The acquisition of all seismic data, archiving of the data in existing data bases, and distribution to the community will take two years. Afterwards, proposals developed by any member of the science community can be submitted for further data analysis and testing of current scientific hypotheses regarding the evolution and dynamics of the ENAM margin.
NASA Astrophysics Data System (ADS)
Kelly, Sean; Butler, Jared P.; Beaumont, Christopher
2016-12-01
Many collisional orogens contain exotic terranes that were accreted to either the subducting or overriding plate prior to terminal continent-continent collision. The ways in which the physical properties of these terranes influence collision remain poorly understood. We use 2D thermomechanical finite element models to examine the effects of prior 'soft' terrane accretion to a continental upper plate (retro-lithosphere) on the ensuing continent-continent collision. The experiments explore how the style of collision changes in response to variations in the density and viscosity of the accreted terrane lithospheric mantle, as well as the density of the pro-lithospheric mantle, which determines its propensity to subduct or compress the accreted terrane and retro-lithosphere. The models evolve self-consistently through several emergent phases: breakoff of subducted oceanic lithosphere; pro-continent subduction; shortening of the retro-lithosphere accreted terrane, sometimes accompanied by lithospheric delamination; and, terminal underthrusting of pro-lithospheric mantle beneath the accreted terrane crust or mantle. The modeled variations in the properties of the accreted terrane lithospheric mantle can be interpreted to reflect metasomatism during earlier oceanic subduction beneath the terrane. Strongly metasomatized (i.e., dense and weak) mantle is easily removed by delamination or entrainment by the subducting pro-lithosphere, and facilitates later flat-slab underthrusting. The models are a prototype representation of the Himalayan-Tibetan orogeny in which there is only one accreted terrane, representing the Lhasa terrane, but they nonetheless exhibit processes like those inferred for the more complex Himalayan-Tibetan system. Present-day underthrusting of the Tibetan Plateau crust by Indian mantle lithosphere requires that the Lhasa terrane lithospheric mantle has been removed. Some of the model results support previous conceptual interpretations that Tibetan lithospheric mantle was removed by convective coupling to the pro-lithosphere. They can also be interpreted to suggest that delamination beneath Tibet was facilitated by densification and weakening of the plateau lithosphere, perhaps owing to long-lived pre- to syn-collisional subduction-related metasomatism beneath the Asian margin.
NASA Astrophysics Data System (ADS)
Yegorova, Tamara; Bakhmutov, Vladimir; Janik, Tomasz; Grad, Marek
2011-01-01
The Antarctic Peninsula (AP) is a composite magmatic arc terrane formed at the Pacific margin of Gondwana. Through the late Mesozoic and Cenozoic subduction has stopped progressively from southwest to northeast as a result of a series of ridge trench collisions. Subduction may be active today in the northern part of the AP adjacent to the South Shetland Islands. The subduction system is confined by the Shackleton and Hero fracture zones. The magmatic arc of the AP continental margin is marked by high-amplitude gravity and magnetic anomaly belts reaching highest amplitudes in the region of the South Shetland Islands and trench. The sources for these anomalies are highly magnetic and dense batholiths of mafic bulk composition, which were intruded in the Cretaceous, due to partial melting of upper-mantle and lower-crustal rocks. 2-D gravity and magnetic models provide new insights into crustal and upper-mantle structure of the active and passive margin segments of the northern AP. Our models incorporate seismic refraction constraints and physical property data. This enables us to better constrain both Moho geometry and petrological interpretations in the crust and upper mantle. Model along the DSS-12 profile crosses the AP margin near the Anvers Island and shows typical features of a passive continental margin. The second model along the DSS-17 profile extends from the Drake Passage through the South Shetland Trench/Islands system and Bransfield Strait to the AP and indicates an active continental margin linked to slow subduction and on-going continental rifting in the backarc region. Continental rifting beneath the Bransfield Strait is associated with an upward of hot upper mantle rocks and with extensive magmatic underplating.
NASA Astrophysics Data System (ADS)
Butler, Jared P.; Beaumont, Christopher
2017-04-01
The plate tectonic setting in which proto-ophiolite 'oceanic' lithosphere is created remains controversial with a number of environments suggested. Recent opinions tend to coalesce around supra-subduction zone (SSZ) forearc extension, with a popular conceptual model in which the proto-ophiolite forms during foundering of oceanic lithosphere at the time of spontaneous or induced onset of subduction. This mechanism is favored in intra-oceanic settings where the subducting lithosphere is old and the upper plate is young and thin. We investigate an alternative mechanism; namely, decoupling of the subducting oceanic lithosphere in the forearc of an active continental margin, followed by subduction zone (trench) retreat and creation of a forearc oceanic rift basin, containing proto-ophiolite lithosphere, between the continental margin and the retreating subduction zone. A template of 2D numerical model experiments examines the trade-off between strength of viscous coupling in the lithospheric subduction channel and net slab pull of the subducting lithosphere. Three tectonic styles are observed: 1) C, continuous subduction without forearc decoupling; 2) R, forearc decoupling followed by rapid subduction zone retreat; 3) B, breakoff of subducting lithosphere followed by re-initiation of subduction and in some cases, forearc decoupling (B-R). In one case (BA-B-R; where BA denotes backarc) subduction zone retreat follows backarc rifting. Subduction zone decoupling is analyzed using frictional-plastic yield theory and the Stefan solution for the separation of plates containing a viscous fluid. The numerical model results are used to explain the formation of Xigaze group ophiolites, southern Tibet, which formed in the Lhasa terrane forearc, likely following earlier subduction and not necessarily during subduction initiation. Either there was normal coupled subduction before subduction zone decoupling, or precursor slab breakoff, subduction re-initiation and then decoupling. Rapid deep upper-mantle circulation in the models during subduction zone retreat can exhume and emplace material in the forearc proto-ophiolite from as deep as the mantle transition zone, thereby explaining diamonds and other 10-15 GPa UHP phases in Tibetan ophiolites.
3D numerical simulations of multiphase continental rifting
NASA Astrophysics Data System (ADS)
Naliboff, J.; Glerum, A.; Brune, S.
2017-12-01
Observations of rifted margin architecture suggest continental breakup occurs through multiple phases of extension with distinct styles of deformation. The initial rifting stages are often characterized by slow extension rates and distributed normal faulting in the upper crust decoupled from deformation in the lower crust and mantle lithosphere. Further rifting marks a transition to higher extension rates and coupling between the crust and mantle lithosphere, with deformation typically focused along large-scale detachment faults. Significantly, recent detailed reconstructions and high-resolution 2D numerical simulations suggest that rather than remaining focused on a single long-lived detachment fault, deformation in this phase may progress toward lithospheric breakup through a complex process of fault interaction and development. The numerical simulations also suggest that an initial phase of distributed normal faulting can play a key role in the development of these complex fault networks and the resulting finite deformation patterns. Motivated by these findings, we will present 3D numerical simulations of continental rifting that examine the role of temporal increases in extension velocity on rifted margin structure. The numerical simulations are developed with the massively parallel finite-element code ASPECT. While originally designed to model mantle convection using advanced solvers and adaptive mesh refinement techniques, ASPECT has been extended to model visco-plastic deformation that combines a Drucker Prager yield criterion with non-linear dislocation and diffusion creep. To promote deformation localization, the internal friction angle and cohesion weaken as a function of accumulated plastic strain. Rather than prescribing a single zone of weakness to initiate deformation, an initial random perturbation of the plastic strain field combined with rapid strain weakening produces distributed normal faulting at relatively slow rates of extension in both 2D and 3D simulations. Our presentation will focus on both the numerical assumptions required to produce these results and variations in 3D rifted margin architecture arising from a transition from slow to rapid rates of extension.
NASA Astrophysics Data System (ADS)
Handy, M. R.; Ustaszewski, K. M.; Kissling, E. H.
2013-12-01
Kinematic reconstructions of the Alpine orogen from Late Cretaceous to present time reveal that slab tearing and switches of subduction polarity are related to two slab gaps presently imaged as low-velocity anomalies at the transition of the Eastern and Central Alps, and beneath the northern Dinarides. A lithosphere-scale transfer fault at the Alps-Dinarides join (ADT) linked S-directed subduction of the oceanic part of the European plate in the Alps with N-directed subduction of the continental part of the Adriatic plate in the Dinarides in Late Cretaceous to Paleogene time. Transfer faulting in the Dinarides was initially situated along a suture zone, then jumped westward no later than 40 Ma as thrusting and subduction affected more external units of the Alps and Dinarides. Late Eocene Alpine collision led to a slowing of Adria-Europe convergence and initial rupturing of the European and Adriatic slabs in Eocene-Oligocene time, when most of the oceanic lithosphere broke off. This thermally preconditioned the lithosphere for a radical reorganization of slabs and mantle flow in the Alpine domain beginning in early Miocene time. This included the onset of Carpathian rollback subduction, as well as counterclockwise rotation and N-ward subduction of Adriatic continental lithosphere into the space beneath the Eastern Alps that was vacated by foundering and renewed tearing of the European slab in Oligocene-early Miocene time. Our plate reconstructions indicate that this tear nucleated at the tip of a subducted sliver of European continental lithosphere coinciding with the present location of the narrow slab gap between the Eastern and Central Alps. This tear then propagated horizontally to the NE along the subducted boundary of the European margin and the Carpathian embayment of the Alpine Tethyan ocean. The surface response to slab tearing included peneplainization and uplift of part of the Eastern Alps. Transfer faulting along the ADT gave way to back-arc extension and strike-slip faulting behind the retreating Carpathian orogeny no later than 23 Ma. Continued NW-motion of the Adriatic microplate in Oligocene-Miocene time opened a gap along the former ADT which filled with upwelling asthenosphere. We speculate that this thermally eroded the Miocene slab beneath the northern Dinarides, giving rise to the present slab gap there. The forces governing motion of the Adriatic microplate changed both with time and the nature of the subducting lithosphere. From 84-35 Ma, the NW-retreat of the down-going European plate facilitated the independent motion of Adria at 1-2 cm/a with respect to Europe. Adria's motion may have been driven partly by suction behind this European slab which comprised mostly old oceanic lithosphere. With the onset of Alpine collision at c. 35 Ma, the slabs became gravitationally unstable and ruptured. N-ward subduction of a fragment of Adriatic continental lithosphere beneath the Eastern Alps in Miocene time was probably initiated by push from Africa and possibly enhanced by neutral to negative buoyancy of the slab itself which included dense lower crust of the Adriatic continental margin.
NASA Astrophysics Data System (ADS)
van Gelder, Inge; Willingshofer, Ernst; Sokoutis, Dimitrios; Cloetingh, Sierd
2017-04-01
A series of physical analogue experiments were performed to simulate intra-continental subduction contemporaneous with lateral extrusion of the upper plate to study the interferences between these two processes at crustal levels and in the lithospheric mantle. The lithospheric-scale models are specifically designed to represent the collision of the Adriatic microplate with the Eastern Alps, simulated by an intra-continental weak zone to initiate subduction and a weak confined margin perpendicular to the direction of convergence in order to allow for extrusion of the lithosphere. The weak confined margin is the analog for the opening of the Pannonian back-arc basin adjacent to the Eastern Alps with the direction of extension perpendicular to the strike of the orogen. The models show that intra-continental subduction and coeval lateral extrusion of the upper plate are compatible processes. The obtained deformation structures within the extruding region are similar compared to the classical setup where lateral extrusion is provoked by lithosphere-scale indentation. In the models a strong coupling across the subduction boundary allows for the transfer of abundant stresses to the upper plate, leading to laterally varying strain regimes that are characterized by crustal thickening near a confined margin and dominated by lateral displacement of material near a weak lateral confinement. During ongoing convergence the strain regimes propagate laterally, thereby creating an area of overlap characterized by transpression. In models with oblique subduction, with respect to the convergence direction, less deformation of the upper plate is observed and as a consequence the amount of lateral extrusion decreases. Additionally, strain is partitioned along the oblique plate boundary leading to less subduction in expense of right lateral displacement close to the weak lateral confinement. Both oblique and orthogonal subduction models have a strong resemblance to lateral extrusion tectonics of the Eastern Alps, where subduction of the adjacent Adriatic plate beneath the Eastern Alps is debated. Our results highlight that both indentation and subduction of Adria are valid collisional mechanisms to provoke lateral extrusion-type deformation within the Eastern Alps lithosphere, i.e. the upper plate. Moreover, the insights suggest that the Oligocene to Late Miocene structural evolution of the Eastern Alps is best described by phases of oblique and subsequent orthogonal subduction which is in line with Miocene rotations of the Adriatic plate. Furthermore, oblique subduction of the Adriatic plate provides a viable mechanism to explain the rapid decrease in slab length beneath the Eastern Alps towards the Pannonian Basin, also implying that the Adriatic slab can behave and form independently with regards to the adjacent subduction of Adria beneath the Dinarides.
The Ocean-Continent Transition at the North Atlantic Volcanic Margins
NASA Astrophysics Data System (ADS)
White, R. S.; Christie, P. A.; Kusznir, N. J.; Roberts, A. M.; Eccles, J.; Lunnon, Z.; Parkin, C. J.; Smith, L. K.; Spitzer, R.; Roberts, A. W.
2005-05-01
The continental margins of the northern North Atlantic are the best studied volcanic margins in the world. There is a wealth of integrated wide-angle and deep seismic profiles across the continent-ocean transition and the adjacent oceanic and continental crust, several of which form conjugate margin studies. We show new results from the integrated Seismic Imaging and Modelling of Margins (iSIMM) profiles across the Faroes continental margin which image both the extruded volcanics which generate seaward dipping reflector sequences and the underlying lower-crustal intrusions from which the extruded basalts are fed. This enables estimation of the degree of continental stretching and the total volume of melt generated from the mantle at the time of continental breakup. The new results are set in the context of profiles along the entire northern North Atlantic margins. The pattern of melt generation during continental breakup and the initiation of seafloor spreading allows us to map the pattern of enhanced sub-lithospheric mantle temperatures caused by initiation of the Iceland mantle plume over this period. The initial mantle plume thermal anomalies have the shape of rising hot sheets of mantle up to 2000 km in length, which focus into a more axisymmetric shape under the present location of Iceland. These spatial and temporal variations in the mantle temperature exert important controls on the history of uplift and subsidence and thermal maturation of the sediments near the continental margin and its hinterland. The iSIMM Scientific Team comprises NJ Kusznir, RS White, AM Roberts, PAF Christie, R Spitzer, N Hurst, ZC Lunnon, CJ Parkin, AW Roberts, LK Smith, V Tymms, J Eccles and D Healy. The iSIMM project is supported by Liverpool and Cambridge Universities, Schlumberger Cambridge Research, Badley Technology Limited, WesternGeco, Amerada Hess, Anadarko, BP, ConocoPhillips, ENI-UK, Statoil, Shell, the NERC and DTI. We thank WesternGeco for provision of Q-streamer data.
NASA Astrophysics Data System (ADS)
Zirakparvar, N. Alex; Setera, Jacob; Mathez, Edmond; Vantongeren, Jill; Fossum, Ryanna
2017-02-01
This paper presents laser ablation U-Pb age and Hf isotope data for zircons from basement rocks and glacial deposits in northern New Jersey and southeastern New York. The purpose is to understand the eastern Laurentian continental margin's Hf isotope record in relation to its geologic evolution prior to the opening of the Atlantic Ocean. The basement samples encompass a Meso- to Neoproterozoic continental margin arc, an anatectic magmatic suite, as well as a Late Ordovician alkaline igneous suite emplaced during post-orogenic melting of the lithospheric mantle. Additional samples were collected from terminal moraines of two Quaternary continental ice sheets. Across the entire dataset, zircons with ages corresponding to the timing of continental margin arc magmatism ( 1.4 Ga to 1.2 Ga) have positive εHf(initial) values that define the more radiogenic end of a crustal evolution array. This array progresses towards more unradiogenic εHf(initial) values along a series of low 176Lu/177Hf (0.022 to 0.005) trajectories during subsequent anatectic magmatism ( 1.2 Ga to 1.0 Ga) and later metamorphic and metasomatic re-working ( 1.0 Ga to 0.8 Ga) of the continental margin arc crust. In contrast, nearly chondritic εHf(initial) values from the Late Ordovician alkaline magmas indicate that the Laurentian margin was underlain by a re-fertilized mantle source. Such a source may have developed by subduction enrichment of the mantle wedge beneath the continental margin during the Mesoproterozoic. Additionally, preliminary data from a metasedimentary unit of unknown provenance hints at the possibility that some of the sediments occupying this portion of the Laurentian margin prior to the Ordovician were sourced from crust older than 1.9 Ga.
NASA Astrophysics Data System (ADS)
Lamb, M. A.; Cashman, S. M.; Dorsey, R. J.; Bennett, S. E. K.; Loveless, J. P.; Goodliffe, A. M.
2014-12-01
The NSF-MARGINS Program funded a decade of research on continental margin processes. The NSF-GeoPRISMS Mini-lesson Project, funded by NSF-TUES, is designed to integrate the significant findings from the MARGINS program into open-source college-level curriculum. The Gulf of California (GOC) served as the focus site for the Rupturing Continental Lithosphere initiative, which addressed several scientific questions: What forces drive rift initiation, localization, propagation and evolution? How does deformation vary in time and space, and why? How does crust evolve, physically and chemically, as rifting proceeds to sea-floor spreading? What is the role of sedimentation and magmatism in continental extension? We developed two weeks of curriculum designed for an upper-division structural geology, tectonics or geophysics course. The curriculum includes lectures, labs, and in-class activities that can be used as a whole or individually. The first set of materials introduces the RCL initiative to students and has them analyze the bathymetry and oblique-rifting geometry of the GOC in an exercise using GeoMapApp. The second set of materials has two goals: (1) introduce students to fundamental concepts of interpreting seismic reflection data via lectures and in-class interpretation of strata, basement, and faults from recent GOC seismic data, and (2) encourage students to discover the structural geometry and rift evolution, including the east-to-west progression of faulting and transition from detachment to high-angle faulting in the northern GOC, and changes in deformation style from north to south. In the third set of materials, students investigate isostatic affects of sediment fill in GOC oblique rift basins. This activity consists of a problem set, introduced in a lecture, where students integrate their findings from the previous bathymetry- and seismic-interpretation exercises.
Plate break-up geometry in SE-Afar
NASA Astrophysics Data System (ADS)
Geoffroy, Laurent; Le Gall, Bernard; Daoud, Mohamed
2014-05-01
New structural data acquired in Djibouti strongly support the view of a magma-rich to magma-poor pair of conjugate margins developed in SE Afar since at least 9 Ma. Our model is illustrated by a crustal-scale transect that emphasizes the role of a two-stage extensional detachment fault system, with opposing senses of motion through time. The geometry and kinematics of this detachment fault pattern are mainly documented from lavas and fault dip data extracted from remote sensing imagery (Landsat ETM+, and corresponding DEM), further calibrated by field observations. Although expressed by opposite fault geometries, the two successive extensional events evidenced here are part of a two-stage continental extensional tear-system associated with the ongoing propagation of the Aden-Tadjoura oceanic axis to the NW. A flip-flop evolution of detachment faults accommodating lithosphere divergence has recently been proposed for the development of the Indian Ocean and continental margins (Sauter et al., 2013). However, the SE Afar evolution further suggests a radical and sudden change in lithosphere behavior during extension, from a long-term and widespread magmatic stage to a syn-sedimentary break-up stage where mantle melting concentrates along the future oceanic axis. Of special interest is the fact that a late and rapid stage of non-magmatic extension led to break-up, whose geometry triggered the location of the break-up axis and earliest oceanic accretion. New structural data acquired in Djibouti strongly support the view of a magma-rich to magma-poor pair of conjugate margins developed in SE Afar since at least 9 Ma. Our model is illustrated by a crustal-scale transect that emphasizes the role of a two-stage extensional detachment fault system, with opposing senses of motion through time. The geometry and kinematics of this detachment fault pattern are mainly documented from lavas and fault dip data extracted from remote sensing imagery (Landsat ETM+, and corresponding DEM), further calibrated by field observations. Although expressed by opposite fault geometries, the two successive extensional events evidenced here are part of a two-stage continental extensional tear-system associated with the ongoing propagation of the Aden-Tadjoura oceanic axis to the NW. A flip-flop evolution of detachment faults accommodating lithosphere divergence has recently been proposed for the development of the Indian Ocean and continental margins (Sauter et al., 2013). However, the SE Afar evolution further suggests a radical and sudden change in lithosphere behavior during extension, from a long-term and widespread magmatic stage to a syn-sedimentary break-up stage where mantle melting concentrates along the future oceanic axis. Of special interest is the fact that a late and rapid stage of non-magmatic extension led to break-up, whose geometry triggered the location of the break-up axis and earliest oceanic accretion.
NASA Astrophysics Data System (ADS)
Darbyshire, Fiona A.; Dahl-Jensen, Trine; Larsen, Tine B.; Voss, Peter H.; Joyal, Guillaume
2018-03-01
The Greenland landmass preserves ˜4 billion years of tectonic history, but much of the continent is inaccessible to geological study due to the extensive inland ice cap. We map out, for the first time, the 3-D crustal structure of Greenland and the NW Atlantic ocean, using Rayleigh wave anisotropic group velocity tomography, in the period range 10-80 s, from regional earthquakes and the ongoing GLATIS/GLISN seismograph networks. 1-D inversion gives a pseudo-3-D model of shear wave velocity structure to depths of ˜100 km with a horizontal resolution of ˜200 km. Crustal thickness across mainland Greenland ranges from ˜25 km to over 50 km, and the velocity structure shows considerable heterogeneity. The large sedimentary basins on the continental shelf are clearly visible as low velocities in the upper ˜5-15 km. Within the upper continental basement, velocities are systematically lower in northern Greenland than in the south, and exhibit a broadly NW-SE trend. The thinning of the crust at the continental margins is also clearly imaged. Upper-mantle velocities show a clear distinction between typical fast cratonic lithosphere (Vs ≥4.6 km s-1) beneath Greenland and its NE margin and anomalously slow oceanic mantle (Vs ˜4.3-4.4 km s-1) beneath the NW Atlantic. We do not observe any sign of pervasive lithospheric modification across Greenland in the regions associated with the presumed Iceland hotspot track, though the average crustal velocity in this region is higher than that of areas to the north and south. Crustal anisotropy beneath Greenland is strong and complex, likely reflecting numerous episodes of tectonic deformation. Beneath the North Atlantic and Baffin Bay, the dominant anisotropy directions are perpendicular to the active and extinct spreading centres. Anisotropy in the subcontinental lithosphere is weaker than that of the crust, but still significant, consistent with cratonic lithosphere worldwide.
Deep Seismic Structure of the Texas-Gulf of Mexico Passive Margin
NASA Astrophysics Data System (ADS)
Pulliam, J.; Gurrola, H.
2013-12-01
The Texas-Gulf of Mexico region has witnessed a wide range of tectonic processes, including deformation due to orogeny, continental collision and rifting. Artifacts of these processes are likely to remain at lithospheric depths beneath the region but, until recently, the tools needed to examine structures at mantle depths were not available. With the passage of the EarthScope's USArray stations and the completion of a targeted broadband deployment, new images of the region's lithosphere have emerged. These images reveal lithospheric-scale anomalies that correlate strongly with surface features, such as a large fast anomaly that corresponds to the southern extent of the Laurentia (or 'Great Plains') craton and a large slow anomaly associated with the Southern Oklahoma Aulacogen. Other features that would not have been expected based on surface tectonics include a slow layer that we interpret to be a shear zone at the base of the cratonic root and the transitional continental lithosphere, and a zone that is bounded at its top and bottom by discontinuities and high levels of seismic anisotropy. Additionally a high velocity body underlying the Gulf Coast Plains may mark delaminating lower crust. If true it provides indirect evidence that active rifting best describes the process that led to the opening of the Gulf of Mexico. These new results are based upon the analysis of 326 USArray broadband seismic stations and a 23-station broadband deployment across Texas' passive margin, from Matagorda Island, a barrier island in the Gulf of Mexico, to Johnson City, TX, on the relatively undisturbed Proterozoic crust of central Texas.
Saltus, R.W.; Hudson, T.L.
2007-01-01
The northern Cordilleran fold-and-thrust belt in Canada and Alaska is at the boundary between the broad continental margin mobile belt and the stable North American craton. The fold-and-thrust belt is marked by several significant changes in geometry: cratonward extensions in the central Yukon Territory and northeastern Alaska are separated by marginward re-entrants. These geometric features of the Cordilleran mobile belt are controlled by relations between lithospheric strength and compressional tectonic forces developed along the continental margin. Regional magnetic anomalies indicate deep thermal and compositional characteristics that contribute to variations in crustal strength. Our detailed analysis of one such anomaly, the North Slope deep magnetic high, helps to explain the geometry of the fold-and-thrust front in northern Alaska. This large magnetic anomaly is inferred to reflect voluminous mafic magmatism in an old (Devonian?) extensional domain. The presence of massive amounts of malic material in the lower crust implies geochemical depletion of the underlying upper mantle, which serves to strengthen the lithosphere against thermal erosion by upper mantle convection. We infer that deep-source magnetic highs are an important indicator of strong lower crust and upper mantle. This stronger lithosphere forms buttresses that play an important role in the structural development of the northern Cordilleran fold-and-thrust belt. ?? 2007 The Geological Society of America.
Lithospheric controls on the formation of provinces hosting giant orogenic gold deposits
Bierlein, F.P.; Groves, D.I.; Goldfarb, R.J.; Dube, B.
2006-01-01
Ages of giant gold systems (>500 t gold) cluster within well-defined periods of lithospheric growth at continental margins, and it is the orogen-scale processes during these mainly Late Archaean, Palaeoproterozoic and Phanerozoic times that ultimately determine gold endowment of a province in an orogen. A critical factor for giant orogenic gold provinces appears to be thickness of the subcontinental lithospheric mantle (SCLM) beneath a province at the time of gold mineralisation, as giant gold deposits are much more likely to develop in orogens with subducted oceanic or thin continental lithosphere. A proxy for the latter is a short pre-mineralisation crustal history such that thick SCLM was not developed before gold deposition. In constrast, orogens with protracted pre-mineralisation crustal histories are more likely to be characterised by a thick SCLM that is difficult to delaminate, and hence, such provinces will normally be poorly endowed. The nature of the lithosphere also influences the intrinsic gold concentrations of potential source rocks, with back-arc basalts, transitional basalts and basanites enriched in gold relative to other rock sequences. Thus, segments of orogens with thin lithosphere may enjoy the conjunction of giant-scale fluid flux through gold-enriched sequences. Although the nature of the lithosphere plays the crucial role in dictating which orogenic gold provinces will contain one or more giant deposits, the precise siting of those giants depends on the critical conjunction of a number of province-scale factors. Such features control plumbing systems, traps and seals in tectonically and lithospherically suitable terranes within orogens. ?? Springer-Verlag 2006.
NASA Astrophysics Data System (ADS)
Krob, Florian; Stippich, Christian; Glasmacher, Ulrich A.; Hackspacher, Peter
2017-04-01
New insights on the geological evolution of the continental margin of Southeastern Brazil derived from zircon and apatite (U-Th-Sm)/He and fission-track data Krob, F.C.1, Stippich, C. 1, Glasmacher, U.A.1, Hackspacher, P.C.2 (1) Institute of Earth Sciences, Research Group Thermochronology and Archaeometry, Heidelberg University, INF 234, 69120, Heidelberg, Germany (2) Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Av. 24-A, 1515 Rio Claro, SP, 13506-900, Brazil Passive continental margins are important geoarchives related to mantle dynamics, the breakup of continents, lithospheric dynamics, and other processes. The main concern yields the quantifying long-term lithospheric evolution of the continental margin between São Paulo and Laguna in southeastern Brazil since the Neoproterozoic. We put special emphasis on the reactivation of old fracture zones running into the continent and their constrains on the landscape evolution. In this contribution, we represent already consisting thermochronological data attained by fission-track and (U-Th-Sm)/He analysis on apatites and zircons. The zircon fission-track ages range between 108.4 (15.0) and 539.9 (68.4) Ma, the zircon (U-Th-Sm)/He ages between 72.9 (5.8) and 427.6 (1.8) Ma whereas the apatite fission-track ages range between 40.0 (5.3) and 134.7 (8.0) Ma, and the apatite (U-Th-Sm)/He ages between 32.1 (1.52) and 92.0 (1.86) Ma. These thermochronological ages from metamorphic, sedimentary and intrusive rocks show six distinct blocks (Laguna, Florianópolis, Curitiba, Ilha Comprida, Peruibe and Santos) with different evolution cut by old fracture zones. Furthermore, models of time-temperature evolution illustrate the differences in Pre- to post-rift exhumation histories of these blocks. The presented data will provide an insight into the complex exhumation history of the continental margin based on the existing literature data on the evolution of the Paraná basin in Brazil and the latest thermochronological data. We used the geological model of the Paraná basin supersequences (Rio Ivaí, Paraná, Gondwana I-III and Bauru) to remodel the subsidence and exhumation history of our consisting thermochronological sample data. First indications include a fast exhumation during the early Paleozoic, a slow shallow (northern blocks) to fast and deep (Laguna block) subduction from middle Paleozoic to Mesozoic time and a extremely fast exhumation during the opening of the South Atlantic (Cretaceous time). This enables a possible interpretation of the southeastern Brazilian margin being an outer part of the Paraná basin and even the possible source area for the Ordovician to Carboniferous sediments. Further on, we try to research the newly gained exhumation history models for indications on the evolution and movement of the lithosphere of the southeastern Brazilian mantle.
NASA Astrophysics Data System (ADS)
Goswami, A.; Olson, P. L.; Hinnov, L. A.; Gnanadesikan, A.
2015-09-01
We present a method for reconstructing global ocean bathymetry that combines a standard plate cooling model for the oceanic lithosphere based on the age of the oceanic crust, global oceanic sediment thicknesses, plus generalized shelf-slope-rise structures calibrated at modern active and passive continental margins. Our motivation is to develop a methodology for reconstructing ocean bathymetry in the geologic past that includes heterogeneous continental margins in addition to abyssal ocean floor. First, the plate cooling model is applied to maps of ocean crustal age to calculate depth to basement. To the depth to basement we add an isostatically adjusted, multicomponent sediment layer constrained by sediment thickness in the modern oceans and marginal seas. A three-parameter continental shelf-slope-rise structure completes the bathymetry reconstruction, extending from the ocean crust to the coastlines. Parameters of the shelf-slope-rise structures at active and passive margins are determined from modern ocean bathymetry at locations where a complete history of seafloor spreading is preserved. This includes the coastal regions of the North, South, and central Atlantic, the Southern Ocean between Australia and Antarctica, and the Pacific Ocean off the west coast of South America. The final products are global maps at 0.1° × 0.1° resolution of depth to basement, ocean bathymetry with an isostatically adjusted multicomponent sediment layer, and ocean bathymetry with reconstructed continental shelf-slope-rise structures. Our reconstructed bathymetry agrees with the measured ETOPO1 bathymetry at most passive margins, including the east coast of North America, north coast of the Arabian Sea, and northeast and southeast coasts of South America. There is disagreement at margins with anomalous continental shelf-slope-rise structures, such as around the Arctic Ocean, the Falkland Islands, and Indonesia.
NASA Astrophysics Data System (ADS)
Hässig, Marc; Duretz, Thibault; Rolland, Yann; Sosson, Marc
2016-05-01
The ophiolites of NE Anatolia and of the Lesser Caucasus (NALC) evidence an obduction over ∼200 km of oceanic lithosphere of Middle Jurassic age (c. 175-165 Ma) along an entire tectonic boundary (>1000 km) at around 90 Ma. The obduction process is characterized by four first order geological constraints: Ophiolites represent remnants of a single ophiolite nappe currently of only a few kilometres thick and 200 km long. The oceanic crust was old (∼80 Ma) at the time of its obduction. The presence of OIB-type magmatism emplaced up to 10 Ma prior to obduction preserved on top of the ophiolites is indicative of mantle upwelling processes (hotspot). The leading edge of the Taurides-Anatolides, represented by the South Armenian Block, did not experience pressures exceeding 0.8 GPa nor temperatures greater than ∼300 °C during underthrusting below the obducting oceanic lithosphere. An oceanic domain of a maximum 1000 km (from north to south) remained between Taurides-Anatolides and Pontides-Southern Eurasian Margin after the obduction. We employ two-dimensional thermo-mechanical numerical modelling in order to investigate obduction dynamics of a re-heated oceanic lithosphere. Our results suggest that thermal rejuvenation (i.e. reheating) of the oceanic domain, tectonic compression, and the structure of the passive margin are essential ingredients for enabling obduction. Afterwards, extension induced by far-field plate kinematics (subduction below Southern Eurasian Margin), facilitates the thinning of the ophiolite, the transport of the ophiolite on the continental domain, and the exhumation of continental basement through the ophiolite. The combined action of thermal rejuvenation and compression are ascribed to a major change in tectonic motions occurring at 110-90 Ma, which led to simultaneous obductions in the Oman (Arabia) and NALC regions.
NASA Astrophysics Data System (ADS)
Liu, M.; Li, Y.; Sun, Y.; Shen, X.
2017-12-01
The Indo-Eurasian continental collision since 50 Ma has thickened the crust to raise the Himalayan-Tibetan Plateau and driven lateral extrusion of Asian lithospheric blocks to affect Cenozoic tectonics in central and east Asia. The relative roles of crustal thickening and tectonic extrusion, and the strain partitioning between them over time and space, remain controversial. We have analyzed the strain rates using GPS velocities, and correlated the results with vertical motion derived from precise leveling. We found that tectonic extrusion largely transforms to crustal thickening near the margins of the Tibetan Plateau. Near the NW margin of the Tibetan Plateau, the shear stain transforms to compressive strain, consistent with neotectonic studies that indicate crustal shortening and uplift. Around the SE margin, shear stain largely terminates in the southern Yunnan province of China. The present-day crustal motion in SE Tibetan Plateau can be well explained by gravitational spreading without invoking plate-edge push as envisioned in the tectonic extrusion model. Using data collected from local seismic arrays, we derived receiver functions to image the lithospheric structures across the Tibetan Plateau and the Alashan block to its north and the Ordos block to its east. Our results indicate that the mantle lithosphere of these bounding Asian blocks has not been reworked by Tibetan tectonics; instead they have acted as restrictive walls to the growing Tibetan Plateau. Our finite element modeling shows that crustal deformation along the margins of the Tibetan Plateau are consistent with the notion that the east- and southeastward extrusion of the Tibetan lithosphere is largely confined to the Tibetan Plateau because of the restrictive bounding blocks of the Asian lithosphere. Thus the tectonic impact of the Indo-Eurasian collision on the Cenozoic Asian tectonics may not be as extensive as previously thought.
NASA Astrophysics Data System (ADS)
Dai, H. K.; Zheng, J.; Su, Y. P.; Xiong, Q.; Pan, S. K.
2017-12-01
The nature of the sub-continental lithospheric mantle (SCLM) beneath the western North China Craton (NCC) is poorly known, which hinders understanding the cratonic response to the southward subduction of the Paleo-Asian Ocean. Mineral chemical data of spinel lherzolite xenoliths from newly discovered Cenozoic Langshan basalts in the northwestern part of the craton have been integrated with data from other localities across the western NCC, to put constrains on the SCLM nature and to explore the reworking processes involved. Compositions of mineral cores (i.e., Mg# in olivine = 88 91) and P-T estimates ( 1.2 GPa, 950 oC) suggest the Langshan xenoliths/xenocrysts represent fragments of the uppermost SCLM and experienced <15% melt extraction. These characteristics are similar to those of mantle xenoliths from other locaties (Siziwangqi and Hannuoba) along the northern margin of the western NCC. Disequilibrium characteristics are observed in xenoliths/xenocrysts in this study, including pyroxene spongy coronae and compositionally zoned olivine. They are interpreted to be induced by partial melting and by ironic diffusion with silicate melts in the mantle respectively, shortly before the eruption of host basalt. Metasomatism is recorded in clinopyroxene cores by concomitant enrichments in light rare earth elements and high field strength elements and was likely related to the migration of silicate melts derived from a mantle modified by slab melts during the Paleozoic time. The SCLM along the northern margin of the western NCC is fertile in nature constrained by mantle xenoliths from several localities (Langshan in this study, Siziwangqi and Hannuoba in references). Considering 1) the coexistence of fertile lithospheric mantle (similar to the Phanerozoic SCLM of the eastern NCC) and the overlying ancient continental crust, and 2) the sharp decrease in lithospheric thickness from the inner part to the northern margin of the western NCC, the SCLM beneath the northwestern part should have been strongly rejuvenated or replaced by fertile and non-cratonic mantle. Combined with other geological evidence on the northwestern margin, the mantle replacement and metasomatism were likely triggered by southward subduction of the Paleo-Asian Ocean.
Crustal structure and extension mode in the northwestern margin of the South China Sea
NASA Astrophysics Data System (ADS)
Gao, Jinwei; Wu, Shiguo; McIntosh, Kirk; Mi, Lijun; Liu, Zheng; Spence, George
2016-06-01
Combining multi-channel seismic reflection and gravity modeling, this study has investigated the crustal structure of the northwestern South China Sea margin. These data constrain a hyper-extended crustal area bounded by basin-bounding faults corresponding to an aborted rift below the Xisha Trough with a subparallel fossil ridge in the adjacent Northwest Sub-basin. The thinnest crust is located in the Xisha Trough, where it is remnant lower crust with a thickness of less than 3 km. Gravity modeling also revealed a hyper-extended crust across the Xisha Trough. The postrift magmatism is well developed and more active in the Xisha Trough and farther southeast than on the northwestern continental margin of the South China Sea; and the magmatic intrusion/extrusion was relatively active during the rifting of Xisha Trough and the Northwest Sub-basin. A narrow continent-ocean transition zone with a width of ˜65 km bounded seaward by a volcanic buried seamount is characterized by crustal thinning, rift depression, low gravity anomaly and the termination of the break-up unconformity seismic reflection. The aborted rift near the continental margin means that there may be no obvious detachment fault like that in the Iberia-Newfoundland type margin. The symmetric rift, extreme hyper-extended continental crust and hotter mantle materials indicate that continental crust underwent stretching phase (pure-shear deformation), thinning phase and breakup followed by onset of seafloor spreading and the mantle-lithosphere may break up before crustal-necking in the northwestern South China Sea margin.
NASA Astrophysics Data System (ADS)
Greenhalgh, E. E.; Kusznir, N. J.
2006-12-01
Satellite gravity inversion incorporating a lithosphere thermal gravity correction has been used to map crustal thickness and lithosphere thinning factor for the N.E. Atlantic. The inversion of gravity data to determine crustal thickness incorporates a lithosphere thermal gravity anomaly correction for both oceanic and continental margin lithosphere. Predicted crustal thicknesses in the Norwegian Basin are between 7 and 4 km on the extinct Aegir oceanic ridge which ceased sea-floor spreading in the Oligocene. Crustal thickness estimates do not include a correction for sediment thickness and are upper bounds. Crustal thicknesses determined by gravity inversion for the Aegir Ridge are consistent with recent estimates derived using refraction seismology by Breivik et al. (2006). Failure to incorporate a lithosphere thermal gravity anomaly correction produces an over-estimate of crustal thickness. Oceanic crustal thicknesses within the Norwegian Basin are predicted by the gravity inversion to increase to 9-10 km eastwards towards the Norwegian (Moere) and westwards towards the Jan Mayen micro-continent, consistent with volcanic margin continental breakup at the end of the Palaeocene. The observation (from gravity inversion and seismic refraction studies) of thin oceanic crust produced by the Aegir ocean ridge in the Oligocene has implications for the temporal evolution of asthenosphere temperature under the N.E. Atlantic during the Tertiary. Thin Oligocene oceanic crust may imply cool (normal) asthenosphere temperatures during the Oligocene in contrast to elevated asthenosphere temperatures in the Palaeocene and Miocene-Recent as indicated by volcanic margin formation and the formation of Iceland respectively. Gravity inversion also predicts a region of thin oceanic crust to the west of the northern part of the Jan Mayen micro-continent and to the east of the thicker oceanic crust currently being formed at the Kolbeinsey Ridge. Thicker crust (c.f. ocean basins) is predicted for the Jan Mayen micro- continent south of Jan Mayen Island, with crust of the order of 20 km thickness extending southwards to connect with both the Faroes-Iceland Ridge and N.E. Iceland. Predicted crustal thicknesses under the Faroes- Iceland Ridge are approximately 25 km. The lithosphere thermal model used to predict the lithosphere thermal gravity anomaly correction may be conditioned using magnetic isochron data to provide the age of oceanic lithosphere. The resulting crustal thickness determination and the location of ocean-continent transition (OCT) are however sensitive to errors in the magnetic isochron data. An alternative method of inverting satellite gravity to give crustal thickness, incorporating a lithosphere thermal correction, has been used which does not use magnetic isochron data and provides an independent prediction of crustal thickness and OCT location. The crustal thickness estimates and OCT locations detailed above are robust to these sensitivity tests.
Mapping Antarctic Crustal Thickness using Gravity Inversion and Comparison with Seismic Estimates
NASA Astrophysics Data System (ADS)
Kusznir, Nick; Ferraccioli, Fausto; Jordan, Tom
2017-04-01
Using gravity anomaly inversion, we produce comprehensive regional maps of crustal thickness and oceanic lithosphere distribution for Antarctica and the Southern Ocean. Crustal thicknesses derived from gravity inversion are consistent with seismic estimates. We determine Moho depth, crustal basement thickness, continental lithosphere thinning (1-1/β) and ocean-continent transition location using a 3D spectral domain gravity inversion method, which incorporates a lithosphere thermal gravity anomaly correction (Chappell & Kusznir 2008). The gravity anomaly contribution from ice thickness is included in the gravity inversion, as is the contribution from sediments which assumes a compaction controlled sediment density increase with depth. Data used in the gravity inversion are elevation and bathymetry, free-air gravity anomaly, the Bedmap 2 ice thickness and bedrock topography compilation south of 60 degrees south and relatively sparse constraints on sediment thickness. Ocean isochrons are used to define the cooling age of oceanic lithosphere. Crustal thicknesses from gravity inversion are compared with independent seismic estimates, which are still relatively sparse over Antarctica. Our gravity inversion study predicts thick crust (> 45 km) under interior East Antarctica, which is penetrated by narrow continental rifts featuring relatively thinner crust. The largest crustal thicknesses predicted from gravity inversion lie in the region of the Gamburtsev Subglacial Mountains, and are consistent with seismic estimates. The East Antarctic Rift System (EARS), a major Permian to Cretaceous age rift system, is imaged by our inversion and appears to extend from the continental margin at the Lambert Rift to the South Pole region, a distance of 2500 km. Offshore an extensive region of either thick oceanic crust or highly thinned continental crust lies adjacent to Oates Land and north Victoria Land, and also off West Antarctica around the Amundsen Ridges. Thin crust is predicted under the Ross Sea and beneath the West Antarctic Ice Sheet and delineates the regional extent of the broad West Antarctic Rift System (WARS). Substantial regional uplift is required under Marie Byrd Land to reconcile gravity and seismic estimates. A mantle dynamic uplift origin of the uplift is preferred to a thermal anomaly from a very young rift. The new maps produced by this study support the hypothesis that one branch of the WARS links through to the De Gerlache sea-mounts and Peter I Island in the Bellingshausen Sea region, while another branch may link to the George V Sound Rift in the Antarctic Peninsula region. Crustal thickness and lithosphere thinning derived from gravity inversion also allows the determination of circum-Antarctic ocean-continent transition structure and the mapping of continent-ocean boundary location. Superposition of illuminated satellite gravity data onto crustal thickness maps from gravity inversion provides improved determination of Southern Ocean rift orientation, pre-breakup rifted margin conjugacy and continental breakup trajectory. The continental lithosphere thinning distribution, used to define the initial thermal model temperature perturbation, is derived from the gravity inversion and uses no a priori isochron information; as a consequence the gravity inversion method provides a prediction of ocean-continent transition location, which is independent of ocean isochron information.
Fuis, G.S.; Moore, Thomas E.; Plafker, G.; Brocher, T.M.; Fisher, M.A.; Mooney, W.D.; Nokleberg, W.J.; Page, R.A.; Beaudoin, B.C.; Christensen, N.I.; Levander, A.R.; Lutter, W.J.; Saltus, R.W.; Ruppert, N.A.
2008-01-01
We investigate the crustal structure and tectonic evolution of the North American continent in Alaska, where the continent has grown through magmatism, accretion, and tectonic underplating. In the 1980s and early 1990s, we conducted a geological and geophysical investigation, known as the Trans-Alaska Crustal Transect (TACT), along a 1350-km-long corridor from the Aleutian Trench to the Arctic coast. The most distinctive crustal structures and the deepest Moho along the transect are located near the Pacific and Arctic margins. Near the Pacific margin, we infer a stack of tectonically underplated oceanic layers interpreted as remnants of the extinct Kula (or Resurrection) plate. Continental Moho just north of this underplated stack is more than 55 km deep. Near the Arctic margin, the Brooks Range is underlain by large-scale duplex structures that overlie a tectonic wedge of North Slope crust and mantle. There, the Moho has been depressed to nearly 50 km depth. In contrast, the Moho of central Alaska is on average 32 km deep. In the Paleogene, tectonic underplating of Kula (or Resurrection) plate fragments overlapped in time with duplexing in the Brooks Range. Possible tectonic models linking these two regions include flat-slab subduction and an orogenic-float model. In the Neogene, the tectonics of the accreting Yakutat terrane have differed across a newly interpreted tear in the subducting Pacific oceanic lithosphere. East of the tear, Pacific oceanic lithosphere subducts steeply and alone beneath the Wrangell volcanoes, because the overlying Yakutat terrane has been left behind as underplated rocks beneath the rising St. Elias Range, in the coastal region. West of the tear, the Yakutat terrane and Pacific oceanic lithosphere subduct together at a gentle angle, and this thickened package inhibits volcanism. ?? 2008 The Geological Society of America.
NASA Astrophysics Data System (ADS)
Sutherland, Lin; Graham, Ian; Yaxley, Gregory; Armstrong, Richard; Giuliani, Gaston; Hoskin, Paul; Nechaev, Victor; Woodhead, Jon
2016-04-01
Zircon megacrysts (± gem corundum) appear in basalt fields of Indo-Pacific origin over a 12,000 km zone (ZIP) along West Pacific continental margins. Age-dating, trace element, oxygen and hafnium isotope studies on representative zircons (East Australia-Asia) indicate diverse magmatic sources. The U-Pb (249 to 1 Ma) and zircon fission track (ZFT) ages (65 to 1 Ma) suggest thermal annealing during later basalt transport, with < 1 to 203 Ma gaps between the U-Pb and ZFT ages. Magmatic growth zonation and Zr/Hf ratios (0.01-0.02) suggest alkaline magmatic sources, while Ti—in—zircon thermometry suggests that most zircons crystallized within ranges between 550 and 830 °C. Chondrite-normalised multi-element plots show variable enrichment patterns, mostly without marked Eu depletion, indicating little plagioclase fractionation in source melts. Key elements and ratios matched against zircons from magmatic rocks suggest a range of ultramafic to felsic source melts. Zircon O-isotope ratios (δ18O in the range 4 to 11‰) and initial Hf isotope ratios (ɛHf in the range +2 to +14) encompass ranges for both mantle and crustal melts. Calculated Depleted Mantle (TDM 0.03-0.56 Ga) and Crustal Residence (0.20-1.02 Ga) model ages suggest several mantle events, continental break-ups (Rodinia and Gondwana) and convergent margin collisions left imprints in the zircon source melts. East Australian ZIP sites reflect prolonged intraplate magmatism (~85 Ma), often during times of fast-migrating lithosphere. In contrast, East Asian-Russian ZIP sites reflect later basaltic magmatism (<40 Ma), often linked to episodes of back-arc rifting and spreading, slow-migrating lithosphere and slab subduction.
Identifying mantle lithosphere inheritance in controlling intraplate orogenesis
NASA Astrophysics Data System (ADS)
Heron, Philip J.; Pysklywec, Russell N.; Stephenson, Randell
2016-09-01
Crustal inheritance is often considered important in the tectonic evolution of the Wilson Cycle. However, the role of the mantle lithosphere is usually overlooked due to its difficulty to image and uncertainty in rheological makeup. Recently, increased resolution in lithosphere imaging has shown potential scarring in continental mantle lithosphere to be ubiquitous. In our study, we analyze intraplate deformation driven by mantle lithosphere heterogeneities from ancient Wilson Cycle processes and compare this to crustal inheritance deformation. We present 2-D numerical experiments of continental convergence to generate intraplate deformation, exploring the limits of continental rheology to understand the dominant lithosphere layer across a broad range of geological settings. By implementing a "jelly sandwich" rheology, common in stable continental lithosphere, we find that during compression the strength of the mantle lithosphere is integral in generating deformation from a structural anomaly. We posit that if the continental mantle is the strongest layer within the lithosphere, then such inheritance may have important implications for the Wilson Cycle. Furthermore, our models show that deformation driven by mantle lithosphere scarring can produce tectonic patterns related to intraplate orogenesis originating from crustal sources, highlighting the need for a more formal discussion of the role of the mantle lithosphere in plate tectonics.
NASA Astrophysics Data System (ADS)
Emmanuel, M.; Lescanne, M.; Picazo, S.; Tomasi, S.
2017-12-01
In the last decade, high-quality seismic data and drilling results drastically challenged our ideas about how continents break apart. New models address their observed variability and are presently redefining basics of rifting as well as exploration potential along deepwater rifted margins. Seafloor spreading is even more constrained by decades of scientific exploration along Mid Oceanic Ridges. By contrast, the transition between rifting and drifting remains a debated subject. This lithospheric breakup "event" is geologically recorded along Ocean-Continent Transitions (OCT) at the most distal part of margins before indubitable oceanic crust. Often lying along ultra-deepwater margin domains and buried beneath a thick sedimentary pile, high-quality images of these domains are rare but mandatory to get strong insights on the processes responsible for lithospheric break up and what are the consequences for the overlying basins. We intend to answer these questions by studying a world-class 3D seismic survey in a segment of a rifted margin exposed in the Atlantic. Through these data, we can show in details the OCT architecture between a magma-poor hyper-extended margin (with exhumed mantle) and a classical layered oceanic crust. It is characterized by 1- the development of out-of-sequence detachment systems with a landward-dipping geometry and 2- the increasing magmatic additions oceanwards (intrusives and extrusives). Geometry of these faults suggests that they may be decoupled at a mantle brittle-ductile interface what may be an indicator on thermicity. Furthermore, magmatism increases as deformation migrates to the future first indubitable oceanic crust what controls a progressive magmatic crustal thickening below, above and across a tapering rest of margin. As the magmatic budget increases oceanwards, full-rate divergence is less and less accommodated by faulting. Magmatic-sedimentary architectures of OCT is therefore changing from supra-detachment to magmatic oceanic half-grabens (low-crustal extension, high magma additions) and to ultimate layered oceanic crust (quasi-none crustal extension, full magmatic accretion). All of these elements suggest that lithospheric breakup can be addressed as a tectonic-magma competition as the brittle-ductile mantle interface is shallowing along OCT.
Drip tectonics and the enigmatic uplift of the Central Anatolian Plateau.
Göğüş, Oğuz H; Pysklywec, Russell N; Şengör, A M C; Gün, Erkan
2017-11-16
Lithospheric drips have been interpreted for various regions around the globe to account for the recycling of the continental lithosphere and rapid plateau uplift. However, the validity of such hypothesis is not well documented in the context of geological, geophysical and petrological observations that are tested against geodynamical models. Here we propose that the folding of the Central Anatolian (Kırşehir) arc led to thickening of the lithosphere and onset of "dripping" of the arc root. Our geodynamic model explains the seismic data showing missing lithosphere and a remnant structure characteristic of a dripping arc root, as well as enigmatic >1 km uplift over the entire plateau, Cappadocia and Galatia volcanism at the southern and northern plateau margins since ~10 Ma, respectively. Models show that arc root removal yields initial surface subsidence that inverts >1 km of uplift as the vertical loading and crustal deformation change during drip evolution.
The extending lithosphere (Arthur Holmes Medal Lecture)
NASA Astrophysics Data System (ADS)
Brun, Jean-Pierre
2017-04-01
Extension of the lithosphere gives birth to a wide range of structures, with characteristic widths between 10 and 1000 km, which includes continental rifts, passive margins, oceanic rifts, core complexes, or back-arc basins. Because the rheology of rocks strongly depends on temperature, this variety of extensional structures falls in two broad categories of extending lithospheres according to the initial Moho temperature TM. "Cold extending systems", with TM < 750°C and mantle-dominated strength, lead to narrow rifts and, if extension is maintained long enough, to passive margins and then mantle core complexes. "Hot extending systems", with TM > 750°C and crustal-dominated strength, lead, depending on strain rate, to either wide rifts or metamorphic core complexes. A much less quoted product of extension is the exhumation of high-pressure (HP ) metamorphic rocks occurring in domains of back-arc extension driven by slab rollback (e.g. Aegean; Appennines-Calabrian) or when the subduction upper plate undergoes extension for plate kinematics reasons (e.g. Norwegian Caledonides; Papua New Guinea). In these tectonic environments, well-documented pressure-temperature-time (P - T - t) paths of HP rocks show a two-stage retrogression path whose the first part corresponds to an isothermal large pressure drop ΔP proportional to the maximum pressure Pmax recorded by the rocks. This linear relation between ΔP and Pmax, which likely results from a stress switch between compression and extension at the onset of exhumation, is in fact observed in all HP metamorphism provinces worldwide, suggesting that the exhumation of HP rocks in extension is a general process rather than an uncommon case. In summary, the modes and products of extension are so diverse that, taken all together, they constitute a very versatile natural laboratory to decipher the rheological complexities of the continental lithosphere and their mechanical implications.
Elastic thickness estimates at northeast passive margin of North America and its implications
NASA Astrophysics Data System (ADS)
Kumar, R. T. Ratheesh; Maji, Tanmay K.; Kandpal, Suresh Ch; Sengupta, D.; Nair, Rajesh R.
2011-06-01
Global estimates of the elastic thickness (Te) of the structure of passive continental margins show wide and varying results owing to the use of different methodologies. Earlier estimates of the elastic thickness of the North Atlantic passive continental margins that used flexural modelling yielded a Te value of ~20-100 km. Here, we compare these estimates with the Te value obtained using orthonormalized Hermite multitaper recovered isostatic coherence functions. We discuss how Te is correlated with heat flow distribution and depth of necking. The E-W segment in the southern study region comprising Nova Scotia and the Southern Grand Banks show low Te values, while the zones comprising the NE-SW zones, viz., Western Greenland, Labrador, Orphan Basin and the Northern Grand Bank show comparatively high Te values. As expected, Te broadly reflects the depth of the 200-400°C isotherm below the weak surface sediment layer at the time of loading, and at the margins most of the loading occurred during rifting. We infer that these low Te measurements indicate Te frozen into the lithosphere. This could be due to the passive nature of the margin when the loads were emplaced during the continental break-up process at high temperature gradients.
NASA Astrophysics Data System (ADS)
Flament, Nicolas; Gurnis, Michael; Williams, Simon; Seton, Maria; Skogseid, Jakob; Heine, Christian; Dietmar Müller, R.
2014-02-01
The relief of the South Atlantic is characterized by elevated passive continental margins along southern Africa and eastern Brazil, and by the bathymetric asymmetry of the southern oceanic basin where the western flank is much deeper than the eastern flank. We investigate the origin of these topographic features in the present and over time since the Jurassic with a model of global mantle flow and lithospheric deformation. The model progressively assimilates plate kinematics, plate boundaries and lithospheric age derived from global tectonic reconstructions with deforming plates, and predicts the evolution of mantle temperature, continental crustal thickness, long-wavelength dynamic topography, and isostatic topography. Mantle viscosity and the kinematics of the opening of the South Atlantic are adjustable parameters in thirteen model cases. Model predictions are compared to observables both for the present-day and in the past. Present-day predictions are compared to topography, mantle tomography, and an estimate of residual topography. Predictions for the past are compared to tectonic subsidence from backstripped borehole data along the South American passive margin, and to dynamic uplift as constrained by thermochronology in southern Africa. Comparison between model predictions and observations suggests that the first-order features of the topography of the South Atlantic are due to long-wavelength dynamic topography, rather than to asthenospheric processes. The uplift of southern Africa is best reproduced with a lower mantle that is at least 40 times more viscous than the upper mantle.
NASA Astrophysics Data System (ADS)
Flament, Nicolas; Gurnis, Michael; Williams, Simon; Seton, Maria; Skogseid, Jakob; Heine, Christian; Müller, Dietmar
2014-05-01
The relief of the South Atlantic is characterized by elevated passive continental margins along southern Africa and eastern Brazil, and by the bathymetric asymmetry of the southern oceanic basin where the western flank is much deeper than the eastern flank. We investigate the origin of these topographic features in the present and over time since the Jurassic with a model of global mantle flow and lithospheric deformation. The model progressively assimilates plate kinematics, plate boundaries and lithospheric age derived from global tectonic reconstructions with deforming plates, and predicts the evolution of mantle temperature, continental crustal thickness, long-wavelength dynamic topography, and isostatic topography. Mantle viscosity and the kinematics of the opening of the South Atlantic are adjustable parameters in multiple model cases. Model predictions are compared to observables both for the present-day and in the past. Present-day predictions are compared to topography, mantle tomography, and an estimate of residual topography. Predictions for the past are compared to tectonic subsidence from backstripped borehole data along the South American passive margin, and to dynamic uplift as constrained by thermochronology in southern Africa. Comparison between model predictions and observations suggests that the first-order features of the topography of the South Atlantic are due to long-wavelength dynamic topography, rather than to asthenospheric processes. We find the uplift of southern Africa to be best reproduced with a lower mantle that is at least 40 times more viscous than the upper mantle.
Magma-poor vs. magma-rich continental rifting and breakup in the Labrador Sea
NASA Astrophysics Data System (ADS)
Gouiza, M.; Paton, D.
2017-12-01
Magma-poor and magma-rich rifted margins show distinct structural and stratigraphic geometries during the rift to breakup period. In magma-poor margins, crustal stretching is accommodated mainly by brittle faulting and the formation of wide rift basins shaped by numerous graben and half-graben structures. Continental breakup and oceanic crust accretion are often preceded by a localised phase of (hyper-) extension where the upper mantle is embrittled, serpentinized, and exhumed to the surface. In magma-rich margins, the rift basin is narrow and extension is accompanied by a large magmatic supply. Continental breakup and oceanic crust accretion is preceded by the emplacement of a thick volcanic crust juxtaposing and underplating a moderately thinned continental crust. Both magma-poor and magma-rich rifting occur in response to lithospheric extension but the driving forces and processes are believed to be different. In the former extension is assumed to be driven by plate boundary forces, while in the latter extension is supposed to be controlled by sublithospheric mantle dynamics. However, this view fails in explaining observations from many Atlantic conjugate margins where magma-poor and magma-rich segments alternate in a relatively abrupt fashion. This is the case of the Labrador margin where the northern segment shows major magmatic supply during most of the syn-rift phase which culminate in the emplacement of a thick volcanic crust in the transitional domain along with high density bodies underplating the thinned continental crust; while the southern segment is characterized mainly by brittle extension, mantle seprentinization and exhumation prior to continental breakup. In this work, we use seismic and potential field data to describe the crustal and structural architectures of the Labrador margin, and investigate the tectonic and mechanical processes of rifting that may have controlled the magmatic supply in the different segments of the margin.
NASA Astrophysics Data System (ADS)
Chen, Lin; Zhang, Zhongjie; Song, Haibin
2013-12-01
The South China Sea is widely believed to have been opened by seafloor spreading during the Cenozoic. The details of its lithospheric extension are still being debated, and it is unknown whether pure, simple, or conjunct shears are responsible for the opening of the South China Sea. The depth-dependent and along-strike extension derived from the single-stage finite stretching model or instantaneous stretching model is inconsistent with the observation that the South China Sea proto-margins have experienced multi-episodic extension since the Late Cretaceous. Based on the multi-episodic finite stretching model, we present the amount of lithosphere stretching at the northern continental margin of the South China Sea for different depth scales (upper crust, whole crust and lithosphere) and along several transects. The stretching factors are estimated by integrating seven deep-penetration seismic profiles, the Moho distribution derived from gravity modeling, and the tectonic subsidence data for 41 wells. The results demonstrate that the amount of stretching increases rapidly from 1.1 at the continent shelf to over 3.5 at the lower slope, but the stretching factors at the crust and lithosphere scales are consistent within error (from the uncertainty in paleobathymetry and sea-level change). Furthermore, the along-strike variation in stretching factor is within the range of 1.11-1.9 in west-east direction, accompanied by significant west-east differences in the thickness of high-velocity layers (HVLs) within the lowermost crust. This weak along-strike variation of the stretching factor is most likely produced by the preexisting contrasts in the composition and thermal structure of the lithosphere. The above observations suggest that the continental extension in the opening of the South China Sea mainly takes the form of a uniform pure shear rather than depth-dependent stretching.
NASA Astrophysics Data System (ADS)
Khattab, M. M.
1993-04-01
The compiled Bouguer gravity anomaly map over parts of the ophiolite rocks of the Northern Oman Mountains suggests the existence of three partially serpentinized nappes: two along the Gulf of Oman coast with axes near Dadnah, near Fujira and the third 17 km SSE of Masafi. Modeling of the subsurface geology, beneath two gravity profiles (Diba-Kalba and Masafi-Fujira), is based on the occurrence (field evidence) of multiphase low-angle thrusting of the members of the Tethyan lithosphere in northern and Oman Mountains. An assumed crustal model at the Arabian continental margin, beneath the Masafi-Fujira profile, is made to explain an intense gravity gradient. Gravity interpretation is not inconsistent with a gliding mechanism for obduction of the ophiolite on this part of the Arabian continental margin.
NASA Astrophysics Data System (ADS)
Tian, X.; Buck, W. R.
2017-12-01
Seaward dipping reflectors (SDRs) are found at many rifted margins. Drilling indicates SDRs are interbedded layers of basalts and sediments. Multi-channel seismic reflection data show SDRs with various width (2 100 km), thickness (1 15 km) and dip angles (0 30). Recent studies use analytic thin plate models (AtPM) to describe plate deflections under volcanic loads. They reproduce a wide range of SDRs structures without detachment faulting. These models assume that the solidified dikes provide downward loads at the rifting center. Meanwhile, erupted lava flows and sediments fill in the flexural depression and further load the lithosphere. Because the strength of the lithosphere controls the amount and wavelength of bending, the geometries of SDRs provide a window into the strength of the lithosphere during continental rifting. We attempt to provide a quantitative mapping between the SDR geometry and the lithospheric strength and thickness during rifting. To do this, we first derive analytic solutions to two observables that are functions of effective elastic thickness (Te). One observable (Xf) is the horizontal distance for SDRs to evolve from flat layers to the maximum bent layers. Another observable is the ratio between the thickness and the tangent of the maximum slope of SDRs at Xf. We then extend the AtPM to numerical thin plate models (NtPM) with spatially restricted lava flows. AtPM and NtPM show a stable and small relative difference in terms of the two observables with different values of Te. This provides a mapping of Te between NtPM and AtPM models. We also employ a fully two-dimensional thermal-mechanical treatment with elasto-visco-plastic rheology to simulate SDRs formation. These models show that brittle yielding due to bending can reduce the Te of the lithosphere by as much as 50% of the actual brittle lithospheric thickness. Quantification of effects of plastic deformation on bending allow us to use Te to link SDRs geometries to brittle lithospheric thickness. From published seismic reflection data, we obtain a global map of Te at volcanic rifted margins that ranges from 2 12 km using the AtPM and NtPM mapping. The corresponding brittle lithospheric thickness ranges from 6 20 km. In addition, preliminary results show Te increases along a given margin with distance away from a Large Igneous Province.
NASA Astrophysics Data System (ADS)
Robertson, K. E.; Thiel, S.; Heinson, G. S.
2017-12-01
The Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) is an Australian initiative to map the Australian continental lithosphere using magnetotelluric (MT) stations to obtain a resistivity model of the subsurface. It is a joint project between Geoscience Australia, state surveys, and Universities. We present new MT 3D inversion results of the largest coherent array of the AusLAMP MT deployments to date covering two-thirds of South Australia, funded largely by the Geological Survey of South Australia with additional funding by Geoscience Australia and The University of Adelaide. The model extends across the South Australian Gawler Craton, including the Eucla Basin to the west of the craton and the Flinders Ranges and Curnamona Province to the east. The MT array covers parts of the Australian lithosphere, which has been largely unexplored with seismic tomography methods and provide a unique insight into the tectonic evolution of the continent. We incorporate 284 long-period (10s-10,000s) MT stations separated roughly every half degree latitude and longitude across an area spanning 1200 km x 800 km, south of latitude -28.5 degrees and from longitude 129 degrees to 141 degrees. We invert 24 discrete periods of the impedance tenor between 7 s and 13,000 s, and 22 different periods of the tipper data between 7s-8000 s period. The results show a heterogeneous lower crust and mantle lithosphere with a primarily resistive mantle (>1000 Ωm) lithosphere in the central and western part of the Gawler Craton and Eucla Domain. The model shows a generally NS oriented electric LAB offset from deeper cratonic lithosphere in the west to a shallow lithosphere along the eastern margin of the Gawler Craton extending further east towards the Proterozoic and Phanerozoic eastern part of Australia. The lower crust is generally resistive with elongated lower crustal conductivity anomalies, which are associated with major translithospheric shear zones likely existent since the Archean/Proterozoic and coincident with the craton margins of the Gawler Craton. The geometry of the elongated shear zones follows major trends in the gravity field, isotope geochemistry and location of prospective mineral occurrences. Therefore, these zones reflect areas of enhanced fertility and metasomatism of the continental lithosphere.
Lithospheric structure of east Asia from ambient noise and two-station Rayleigh wave tomography
NASA Astrophysics Data System (ADS)
Li, M.; Song, X.; Li, J.; Bao, X.
2017-12-01
The complex tectonic background of east Asia makes it an ideal region to investigate the evolution of continental lithosphere. High-resolution lithospheric structure models are essential in this endeavor. Surface-wave tomography has been an important technique for constructing 3D lithospheric structure in global and regional scales. In this study, using event data recorded by more than 1000 seismic stations from multiple national and international networks in and surrounding China (CEArray, PASSCAL, GSN), we systematically measured Rayleigh-wave phase-velocity dispersion curves at periods 10-120 s and group-velocity dispersion curves at periods 10-140 s based on the traditional two-station method. The dispersion curves were extracted from the cross-correlation functions of the earthquake data at the two stations near the great circle path using frequency-time analysis method. The new measurements extend the phase and group dispersion data to longer periods (i.e. >70 s), which are difficult to extract from ambient noise cross-correlation. The longer-period data allow us to image deeper lithospheric velocity structure. We combined the new dispersion measurements with two previously obtained data sets: (1) data set from Bao et al. (2015) across the Chinese continent that includes group and phase dispersion measurements from ambient noise correlations and group velocity measurements from earthquakes, and (2) data set from Wang et al. (2017) across the marginal seas in east Asia from ambient noise correlations. We used the combined data set to invert for the phase velocity maps up to 120 s and group velocity maps up to 140 s at a grid spacing of 0.5°×0.5°and then invert for the 1D shear-wave velocity structure at each grid to obtain the new 3D shear-wave velocity model. The new model is generally consistent with that of Bao et al. (2015) but with improved resolution particularly in greater depths and in east-Asia marginal seas. We also derived crustal thickness and lithospheric thickness models. The lithospheric thickness model shows strong spatial heterogeneity and thinning trend from west to east in our study region. These models reveal important lithospheric features beneath east Asia and provide a fundamental data set for understanding continental dynamics and evolution.
New Insight Into the Crustal Structure of the Continental Margin offshore NW Sabah/Borneo
NASA Astrophysics Data System (ADS)
Barckhausen, U.; Franke, D.; Behain, D.; Meyer, H.
2002-12-01
The continental margin offshore NW Sabah/Borneo (Malaysia) has been investigated with reflection and refraction seismics, magnetics, and gravity during the recent cruise BGR01-POPSCOMS. A total of 4000 km of geophysical profiles has been acquired, thereof 2900 km with reflection seismics. The focus of investigations was on the deep water areas. The margin looks like a typical accretionary margin and was presumably formed during the subduction of a proto South China Sea. Presently, no horizontal movements between the two plates are being observed. Like in major parts of the South China Sea, the area seaward of the Sabah Trough consists of extended continental lithosphere which is characterised by a pattern of rotated fault blocks and half grabens and a carbonate platform of Early Oligocene to Early Miocene age. We found evidence that the continental crust also underlies the Sabah Trough and the adjacent continental slope, a fact that raises many questions about the tectonic history and development of this margin. The tectonic pattern of the Dangerous Grounds' extended continental crust can be traced a long way landward of the Sabah Trough beneath the sedimentary succession of the upper plate. The magnetic anomalies which are dominated by the magnetic signatures of relatively young volcanic features also continue under the continental slope. The sedimentary rocks of the upper plate, in contrast, seem to generate hardly any magnetic anomalies. Based on the new data we propose the following scenario for the development of the NW Sabah continental margin: Seafloor spreading in the present South China Sea started at about 30 Ma in the Late Oligocene. The spreading process separated the Dangerous Grounds area from the SE Asian continent and ceased in late Early Miocene when the oceanic crust of the proto South China Sea was fully subducted in eastward direction along the Borneo-Palawan Trough. During Lower and/or Middle Miocene, Borneo rotated counterclockwise and was thrusted onto the edge of the rifted continental block of the Dangerous Grounds. The subducted oceanic crust of the proto South China Sea must today be located below the Eastern part of Sabah and not along the present NW Sabah Trough.
Seismic investigation of an ocean-continent transition zone in the northern South China Sea
NASA Astrophysics Data System (ADS)
Zhu, J.; Qiu, X.; Xu, H.; Zhan, W.; Sun, Z.
2011-12-01
Rifted continental margins and basins are mainly formed by the lithospheric extension. Thined lithosphere of passive continental margins results in decompression melt of magma and created oceanic crust and thined ocean-continent transition (OCT) zone. Two refraction profiles used ocean bottom seismometers deployed in the broad continental shelf and three multi-channel seismic reflection lines in the northern South China Sea, acquired by the ship "Shiyan 2" of the South China Sea Institute of Oceanology, Chinese Academy of Sciences in 2010, are processed and interpreted in this study. Seismic reflection lines cut through the Dongsha rise, Zhu-1 and Zhu-2 depression within a Tertiary basin, Pear River Mouth basin (called as Zhujiangkou basin). These tectonic features are clear imaged in the seismic reflection records. Numerous normal faults, cutted through the basement and related to the stretch of the northern South China Sea margin, are imaged and interpreted. Reflection characteristics of the ocean-continent transition (OCT) zone are summaried and outlined. The COT zone is mainly divided into the northern syn-rift subsidence zone, central volcano or buried volcano uplift zone and tilt faulted block near the South Chia Sea basin. Compared to the previous seismic reflection data and refraction velocity models, the segmentation range of the OCT zone is outlined, from width of about 225 km in the northeastern South China Sea , of 160 km in the central to of 110 km in the north-central South China Sea. Based on the epicenter distribution of sporadic and large than 6 magnitude earthquakes, it suggests the OCT zone in the northern South China Sea at present is still an active seismic zone.
NASA Astrophysics Data System (ADS)
Levander, A.; Bezada, M. J.; Niu, F.; Schmitz, M.
2015-12-01
The southern Caribbean plate boundary is a complex strike-slip fault system bounded by oppositely vergent subduction zones, the Antilles subduction zone in the east, and a currently locked Caribbean-South American subduction zone in the west (Bilham and Mencin, 2013). Finite-frequency teleseismic P-wave tomography images both the Atlanic (ATL) and the Caribbean (CAR) plates subducting steeply in opposite directions to transition zone depths under northern South America. Ps receiver functions show a depressed 660 discontinuity and thickened transition zone associated with each subducting plate. In the east the oceanic (ATL) part of the South American (SA) plate subducts westward beneath the CAR, initiating the El Pilar-San Sebastian strike slip system, a subduction-transform edge propagator (STEP) fault (Govers and Wortel, 2005). The point at which the ATL tears away from SA as it descends into the mantle is evidenced by the Paria cluster seismicity at depths of 60-110 km (Russo et al, 1993). Body wave tomography and lithosphere-asthenosphere boundary (LAB) thickness determined from Sp and Ps receiver functions and Rayleigh waves suggest that the descending ATL also viscously removes the bottom third to half of the SA continental margin lithospheric mantle as it descends. This has left thinned continental lithosphere under northern SA in the wake of the eastward migrating Antilles subduction zone. The thinned lithosphere occupies ~70% of the length of the El Pilar-San Sebastian fault system, from ~64oW to ~69oW, and extends inland several hundred kilometers. In northwestern SA the CAR subducts east-southeast at low angle under northern Colombia and western Venezuela. The subducting CAR is at least 200 km wide, extending from northernmost Colombia as far south as the Bucaramanga nest seismicity. The CAR descends steeply under Lake Maracaibo and the Merida Andes. This flat slab is associated with three Neogene basement cored, Laramide-style uplifts: the Santa Marta block, the Perija Range, and the Merida Andes (Kellogg and Bonini, 1982). The steep descent of the CAR under Maracaibo implies that the CAR plate is torn somewhere between the Merida Andes and the Caribbean Sea, where it forms the ocean floor. An upcoming broadband seismic experiment will examine the CAR flat slab and the suspected slab tear in detail.
Orogenic structural inheritance and rifted passive margin formation
NASA Astrophysics Data System (ADS)
Salazar Mora, Claudio A.; Huismans, Ritske S.
2016-04-01
Structural inheritance is related to mechanical weaknesses in the lithosphere due to previous tectonic events, e.g. rifting, subduction and collision. The North and South Atlantic rifted passive margins that formed during the breakup of Western Gondwana, are parallel to the older Caledonide and the Brasiliano-Pan-African orogenic belts. In the South Atlantic, 'old' mantle lithospheric fabric resulting from crystallographic preferred orientation of olivine is suggested to play a role during rifted margin formation (Tommasi and Vauchez, 2001). Magnetometric and gravimetric mapping of onshore structures in the Camamu and Almada basins suggest that extensional faults are controlled by two different directions of inherited older Brasiliano structures in the upper lithosphere (Ferreira et al., 2009). In the South Atlantic Campos Basin, 3D seismic data indicate that inherited basement structures provide a first order control on basin structure (Fetter, 2009). Here we investigate the role of structural inheritance on the formation of rifted passive margins with high-resolution 2D thermo-mechanical numerical experiments. The numerical domain is 1200 km long and 600 km deep and represents the lithosphere and the sublithospheric mantle. Model experiments were carried out by creating self-consistent orogenic inheritance where a first phase of orogen formation is followed by extension. We focus in particular on the role of varying amount of orogenic shortening, crustal rheology, contrasting styles of orogen formation on rifted margin style, and the time delay between orogeny and subsequent rifted passive formation. Model results are compared to contrasting structural styles of rifted passive margin formation as observed in the South Atlantic. Ferreira, T.S., Caixeta, J.M., Lima, F.D., 2009. Basement control in Camamu and Almada rift basins. Boletim de Geociências da Petrobrás 17, 69-88. Fetter, M., 2009. The role of basement tectonic reactivation on the structural evolution of Campos Basin, offshore Brazil: Evidence from 3D seismic analysis and section restoration. Marine and Petroleum Geology 26, 873-886. Tommasi, A., Vauchez, A., 2001. Continental rifting parallel to ancient collisional belts: An effect of the mechanical anisotropy of the lithospheric mantle. Earth and Planetary Science Letters 185, 199-210.
The Lithospheric Fabric of Southern North America and the Wide Gulf of Mexico Rift
NASA Astrophysics Data System (ADS)
Stern, R. J.
2017-12-01
Rifting of Laurentia out of Greater Gondwana and Cuyania out of Laurentia in Cambrian time was associated with a strongly magmatic triple junction centered near modern Dallas, one arm of which is preserved as the S. Oklahoma Aulacogen. The position of this hotspot and the trend of its two successful arms (which opened to form the Iapetus/Rheic ocean in Early Paleozoic time) carved an irregular southern margin of Laurentia, which has since controlled the tectonic evolution of the region. This re-entrant margin was modified by Pennsylvanian collision of rigid indentor Laurentia with weak arc lithosphere of N. Gondwana, juxtaposing strong Laurentian lithosphere of the Texas craton in the west with weak (hydrated and partially molten) arc lithosphere of N. Gondwana to the east. The different strengths of the two lithospheres was remarkable, with strong Laurentia contrasted with weak N. Gondwana margin, and persisted for 150 m.y. to control Gulf of Mexico rifting. The Ouachita-Marathon foldbelt demarcates regions strongly affected by extension (lithosphere that originally was part of the N. Gondwanan arc and forearc) from unaffected regions (lithosphere that was originally part of Laurentia). Extensional strain to open the Gulf of Mexico in Jurassic time totally occurred in Gondwanan lithosphere and had little effect on Laurentia except for Triassic uplift in Texas (which shed large volumes of clastic sediments westwards, now preserved as Late Triassic Dockum and Chinle Groups) and rifting in Arkansas (to form Late Triassic Eagle Mills grabens) and farther east. Even Pennsylvanian foreland basins and Ancestral Rockies faults intersecting the Ouachita-Marathon orogen do not appear to have been rejuvenated by Triassic-Jurassic extension. Extension in weak Gondwanan lithosphere resulted in a broad rift zone that now buried beneath Mesozoic and younger sediments. Buried fragments of thicker continental crust - the Sabine and Monroe uplifts, the Wiggins Arch, and Florida - must be fragments of Gondwanan arc crust. Because they are buried, we know little about these "Gondwana orphans" and also the deeper basins associated with the buried broad region of distributed extension. It will require joint efforts by academia, industry, and government to probe this region.
NASA Astrophysics Data System (ADS)
Klingelhoefer, F.; Biari, Y.; Sahabi, M.; Funck, T.; Benabdellouahed, M.; Schnabel, M.; Reichert, C. J.; Gutscher, M. A.; Bronner, A.; Austin, J. A., Jr.
2017-12-01
The structure of conjugate passive margins provides information about rifting styles, the initial phases of the opening of an ocean and the formation of its associated sedimentary basins. The study of the deep structure of conjugate passive continental margins combined with precise plate kinematic reconstructions can provide constraints on the mechanisms of rifting and formation of initial oceanic crust. In this study the Central Atlantic conjugate margins are compared, based on compilation of wide-angle seismic profiles from the NW-Africa Nova Scotian and US passive margins. Plate cinematic reconstructions were used to place the profiles in the position at opening and at the M25 magnetic anomaly. The patterns of volcanism, crustal thickness, geometry, and seismic velocities in the transition zone. suggest symmetric rifting followed by asymmetric oceanic crustal accretion. Conjugate profiles in the southern Central Atlantic image differences in the continental crustal thickness. While profiles on the eastern US margin are characterized by thick layers of magmatic underplating, no such underplate was imaged along the NW-African continental margin. It has been proposed that these volcanic products form part of the CAMP (Central Atlantic Magmatic Province). In the north, two wide-angle seismic profiles acquired in exactly conjugate positions show that the crustal geometry of the unthinned continental crust and the necking zone are nearly symmetric. A region including seismic velocities too high to be explained by either continental or oceanic crust is imaged along the Nova Scotia margin off Eastern Canada, corresponding on the African side to an oceanic crust with slightly elevated velocities. These might result from asymmetric spreading creating seafloor by faulting the existing lithosphere on the Canadian side and the emplacement of magmatic oceanic crust including pockets of serpentinite on the Moroccan margin. A slightly elevated crustal thickness along the African margin can be explained by the influence of the Canary hotspot between 60 and 30 Ma in the study region. After isochron M25, a large-scale plate reorganization may then have led to an increase in spreading velocity and the production of a more typical but thin magmatic crust on both sides.
NASA Astrophysics Data System (ADS)
Vernikovskaya, Antonina E.; Vernikovsky, Valery A.; Matushkin, Nikolay Yu.; Kadilnikov, Pavel I.; Romanova, Irina V.
2017-04-01
Rocks from active continental margin complexes are characterized by a wide variety of chemical compositions from depleted in alkali to alkali differentiates. When addressing issues of geodynamic settings in which such rocks form, it is important to understand the evolution of the host tectonic structure, as well as the chemical affiliation of the various rocks composing it. The Yenisey Ridge orogen located in the south-western framing of Siberia is one of the more studied regions with a long history of Neoproterozoic magmatic events. This orogen was formed during the collision of the Central Angara terrane with Siberia, which took place 761-718 Ma. Subsequent subduction-related events in the orogen have been recorded in the coeval magmatism (711-629 Ma) of two complexes: one is the active continental margin complex (Nb enriched igneous rocks - gabbroids, trachybasalts, A-type granites and carbonatites, including contact metasomatites zones with Nb mineralization), and the other one is an island arc complex (differentiated series volcanics, gabbroids and plagiogranites). The rocks of these complexes are respectively located in two suture zones: the Tatarka-Ishimba zone that formed due to the collision mentioned above, and the Yenisei suture marking the subduction zone [Vernikovsky et al., 2003; 2008]. The final Neoproterozoic stage in the evolution of the active margin of Siberia is manifested as adakite-gabbro-anorthosite magmatism in the 576-546 Ma interval. Our results indicate a genetic relationship between the adakites and their host NEB-type metabasites of the Zimovey massif. These Neoproterozoic adakites could have formed in a setting of transform-strike-slip drift of lithospheric plates after the subduction stopped, both from a crustal and mantle-crustal source, similarly to the Cenozoic magmatic complexes of the transform margin in the eastern framing of Eurasia [Khanchuk et al., 2016]. Vernikovsky V.A., Vernikovskaya A.E., Kotov A.B., Sal'nikova E.B., Kovach V.P. Neoproterozoic accretionary and collisional events on the western margin of the Siberian craton: new geological and geochronological evidence from the Yenisey Ridge // Tectonophysics, 2003, V. 375, P. 147-168. Vernikovsky V.A., Vernikovskaya A.E., Sal'nikova E.B., Berezhnaya N.G., Larionov A.N., Kotov A.B., Kovach V.P., Vernikovskaya I.V., Matushkin N.Yu., Yasenev A.M. Late Riphean alkaline magmatism in the western margin of the Siberian Craton: A result of continental rifting or accretionary events? // Doklady Earth Sciences, 2008, V. 419, Iss. 1, P. 226-230. Khanchuk A.I., Kemkin I.V., Kruk N.N. The Sikhote-Alin orogenic belt, Russian South East: Terranes and the formation of continental lithosphere based on geological and isotopic Data // Journal of Asian Earth Sciences, 2016, V. 120, P. 117-138.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGinnis, J.P.; Karner, G.D.; Driscoll, N.W.
The tectonic and stratigraphic development of the Congo continental margin reflects the timing, magnitude, and distribution of lithospheric extension responsible for its formation. Details of the lithospheric extension process are recorded in the stratigraphic successions preserved along and across the margin. By using the stratal relationships (e.g., onlap, downlap, and truncation) and lithofacies determined from seismic reflection and exploratory well data as input into our basin-modeling strategy, we have developed an integrated approach to determine the relationship between the timing, magnitude, and distribution of lithospheric extension across the margin. Two hinge zones, an eastern and Atlantic hinge formed along themore » Congo margin in response to discrete extensional events occurring from the Berriasian to the Aptian. The eastern hinge zone demarcates the eastern limit of the broadly distributed Berriasian extension. This extension resulted in the formation of deep anoxic, lacustrine systems. In contrast, the Atlantic hinge, located [approximately]90 km west of the eastern hinge, marks the eastern limit of a second phase of extension, which began in the Hauterivian. Consequent footwall uplift and rotation exposed the earlier synrift and prerift stratigraphy to at least wave base causing varying amounts of erosional truncation across the Atlantic hinge zone along much of the Gabon, Congo, and Angola margins. The absence of the Melania Formation across the Congo margin implies that uplift of the Atlantic hinge was relatively minor compared to that across the Angola and Gabon margins. In addition, material eroded from the adjacent and topographically higher hinge zones may in part account for the thick wedge of sediment deposited seaward of the Congo Atlantic hinge. A third phase of extension reactivated both the eastern and Atlantic hinge zones and was responsible for creating the accommodation space for Marnes Noires source rock deposition.« less
Heat flow in eastern Egypt - The thermal signature of a continental breakup
NASA Technical Reports Server (NTRS)
Morgan, P.; Boulos, F. K.; Hennin, S. F.; El-Sherif, A. A.; El-Sayed, A. A.
1985-01-01
It is noted that the Red Sea is a modern example of continental fragmentation and incipient ocean formation. A consistent pattern of high heat flow in the Red Sea margins and coastal zone, including Precambrian terrane up to at least 30 km from the Red Sea, has emerged from the existing data. It is noted that this pattern has important implications for the mode and mechanism of Red Sea opening. High heat flow in the Red Sea shelf requires either a high extension of the crust in this zone (probably with major basic magmatic activity) or young oceanic crust beneath this zone. High heat flow in the coastal thermal anomaly zone may be caused by lateral conduction from the offshore lithosphere and/or from high mantle heat flow. It is suggested that new oceanic crust and highly extended continental crust would be essentially indistinguishable with the available data in the Red Sea margins, and are for many purposes essentially identical.
The mantle lithosphere and the Wilson Cycle
NASA Astrophysics Data System (ADS)
Heron, Philip; Pysklywec, Russell; Stephenson, Randell
2017-04-01
In the view of the conventional theory of plate tectonics (e.g., the Wilson Cycle), crustal inheritance is often considered important in tectonic evolution. However, the role of the mantle lithosphere is usually overlooked due to its difficulty to image and uncertainty in rheological makeup. Deep seismic imaging has shown potential scarring in continental mantle lithosphere to be ubiquitous. Recent studies have interpreted mantle lithosphere heterogeneities to be pre-existing structures, and as such linked to the Wilson Cycle and inheritance. In our study, we analyze intraplate deformation driven by mantle lithosphere heterogeneities from ancient Wilson Cycle processes and compare this to crustal inheritance deformation. We present 2-D numerical experiments of continental convergence to generate intraplate deformation, exploring the limits of continental rheology to understand the dominant lithosphere layer across a broad range of geological settings. By implementing a "jelly sandwich" rheology, characteristic of stable continental lithosphere, we find that during compression the strength of the mantle lithosphere is integral in controlling deformation from a structural anomaly. We posit that if the continental mantle is the strongest layer within the lithosphere, then such inheritance may have important implications for the Wilson Cycle. Furthermore, our models show that deformation driven by mantle lithosphere scarring can produce tectonic patterns related to intraplate orogenesis originating from crustal sources, highlighting the need for a more formal discussion of the role of the mantle lithosphere in plate tectonics. We outline the difficulty in unravelling the causes of tectonic deformation, alongside discussing the role of deep lithosphere processes in plate tectonics.
NASA Astrophysics Data System (ADS)
Botter, C. D.; Prada, M.; Fullea, J.
2017-12-01
The Porcupine is a North-South oriented basin located southwest of Ireland, along the North Atlantic continental margin, formed by several rifting episodes during Late Carboniferous to Early Cretaceous. The sedimentary cover is underlined by a very thin continental crust in the center of the basin (<5 km) that has been generally associated with hyperextension and mantle serpentinization. From North to South lithospheric stretching factors increase drastically from 2 in the North to >10 in the South. In spite of the abundant literature, most of the oil and gas exploration in the Porcupine Basin has been targeting its northern part and is mostly restricted to relatively shallow depths, giving a restrained overview of the basin structure. Therefore, studying the thermodynamic and composition of the deep and broader structures is needed to understand the processes linked to the formation and the symmetry signature of the basin. Here, we model the present-day thermal and compositional structure of the continental crust and lithospheric mantle underneath the Porcupine basin using gravity, seismic, heat flow and elevation data. We use an integrated geophysical-petrological framework where most relevant rock properties (density, seismic velocities) are determined as a function of temperature, pressure and composition. Our modelling approach solves simultaneously the heat transfer, thermodynamic, geopotential, seismic and isostasy equations, and fit the results to all available geophysical and petrological observables (LitMod software). In this work we have implemented a module to compute self-consistently a laterally variable lithospheric elastic thickness based on mineral physics rheological laws (yield strength envelopes over the 3D volume). An appropriate understanding of local and flexural isostatic behavior of the basin is essential to unravel its tectonic history (i.e. stretching factors, subsidence etc.). Our Porcupine basin 3D model is defined by four lithological layers, representing properties from post- and syn-rift sequences to the lithospheric mantle. The computed yield strength envelopes are representative of hyperextended lithosphere and reveal the sensitivity of the lithospheric strength to the geotherm, as well as to the thickness and composition of the crust.
Crustal structure and inferred extension mode in the northern margin of the South China Sea
NASA Astrophysics Data System (ADS)
Gao, J.; Wu, S.; McIntosh, K. D.; Mi, L.; Spence, G.
2016-12-01
Combining multi-channel seismic reflection and satellite gravity data, this study has investigated the crustal structure and magmatic activities of the northern South China Sea (SCS) margin. Results show that a broad continent-ocean transition zone (COT) with more than 140 km wide is characterized by extensive igneous intrusion/extrusion and hyper-extended continental crust in the northeastern SCS margin, a broader COT with 220-265 km wide is characterized by crustal thinning, rift depression, structural highs with igneous rock and perhaps a volcanic zone or a zone of tilted fault blocks at the distal edge in the mid-northern SCS margin, and a narrow COT with 65 km wide bounded seawards by a volcanic buried seamount is characterized by extremely hyper-extended continental crust in the northwestern SCS margin, where the remnant crust with less than 3 km thick is bounded by basin-bounding faults corresponding to an aborted rift below the Xisha Trough with a sub-parallel fossil ridge in the adjacent Northwest Sub-basin. Results from gravity modeling and seismic refraction data show that a high velocity layer (HVL) is present in the outer shelf and slope below extended continental crust in the eastern portion of the northern SCS margin and is thickest (up to 10 km) in the Dongsha Uplift where the HVL gradually thins to east and west below the lower slope and finally terminates at the Manila Trench and Baiyun sag of the Pearl River Mouth Basin. The magmatic intrusions/extrusions and HVL may be related to partial melting caused by decompression of passive, upwelling asthenosphere which resulted primarily in post-rifting underplating and magmatic emplacement or modification of the crust. The northern SCS margin is closer to those of the magma-poor margins than those of volcanic margins, but the aborted rift near the northwestern continental margin shows that there may be no obvious detachment fault like that in the Iberia-Newfoundland type margin. The symmetric aborted rift, broad hyper-extended continental crust, locally distributed HVL, and hotter mantle materials indicate that continental crust underwent stretching phase (pure-shear deformation), thinning phase and breakup followed by onset of seafloor spreading and the mantle-lithosphere may break up before crustal-necking in the northern South China Sea margin.
Geothermal Heat Flux: Linking Deep Earth's Interior and the Dynamics of Large-Scale Ice Sheets
NASA Astrophysics Data System (ADS)
Rogozhina, Irina; Vaughan, Alan
2014-05-01
Regions covered by continental-scale ice sheets have the highest degree of uncertainty in composition and structure of the crust and lithospheric mantle, compounded by the poorest coverage on Earth of direct heat flow measurements. In addition to challenging conditions that make direct measurements and geological survey difficult Greenland and Antarctica are known to be geologically complex. Antarctica in particular is marked by two lithospherically distinct zones. In contrast to young and thin lithosphere of West Antarctica, East Antarctica is a collage of thick Precambrian fragments of Gondwana and earlier supercontinents. However, recent observations and modeling studies have detected large systems of subglacial lakes extending beneath much of the East Antarctic ice sheet base that have been linked to anomalously elevated heat flow. Outcrop samples from the rift margin with Australia (Prydz Bay) have revealed highly radiogenic Cambrian granite intrusives that are implicated in regional increase of crustal heat flux by a factor of two to three compared to the estimated continental background. Taken together, these indicate high variability of heat flow and properties of rocks across Antarctica. Similar conclusions have been made based on direct measurements and observations of the Greenland ice sheet. Airborne ice-penetrating radar and deep ice core projects show very high rates of basal melt for parts of the ice sheet in northern and central Greenland that have been explained by abnormally high heat flux. Archaean in age, the Greenland lithosphere was significantly reworked during the Early Proterozoic. In this region, the interpretation of independent geophysical data is complicated by Proterozoic and Phanerozoic collision zones, compounded by strong thermochemical effects of rifting along the western and eastern continental margins between 80 and 25 million years ago. In addition, high variability of heat flow and thermal lithosphere structure in central Greenland results from the remanent effects of an Early Cenozoic passage of the lithosphere above the Iceland mantle plume that is implicated in strong thermochemical erosion of the lithosphere and significant long-term effects on the present-day subglacial heat flow pattern and thermodynamic state of the Greenland ice sheet. These observations and our modeling results (Petrunin et al., 2013) show that the present-day thermal state of Greenland and Antarctic lithosphere cannot be well understood without taking into account a long-term tectonic history of these regions. The goal of the IceGeoHeat project is to combine existing independent geophysical data and innovative modeling approaches to comprehensively study the evolution and present state of the lithosphere in Greenland and Antarctica, and assess the role of geothermal heat flux in shaping the present-day ice sheet dynamics. This requires multiple collaborations involving experts across a range of disciplines. The project builds on the IceGeoHeat initiative formed in April 2012 and now including researchers from ten countries in the main core (MC) with expertise in numerical modeling and data assessment in geodynamics, geology, geothermics, cryosphere and (paleo-)climate. Petrunin, A., Rogozhina, I., Vaughan, A. P. M., Kukkonen, I. T., Kaban, M., Koulakov, I., Thomas, M. (2013): Heat flux variations beneath central Greenland's ice due to anomalously thin lithosphere. - Nature Geoscience, 6, 746-750.
NASA Astrophysics Data System (ADS)
Behrmann, Jan H.; Planert, Lars; Jokat, Wilfried; Ryberg, Trond; Bialas, Jörg; Jegen, Marion
2013-04-01
The opening of the South Atlantic ocean basin was accompanied by voluminous magmatism on the conjugate continental margins of Africa and South America, including the formation of the Parana and Entendeka large igneous provinces (LIP), the build-up of up to 100 km wide volcanic wedges characterized by seaward dipping reflector sequences (SDR), as well as the formation of paired hotspot tracks on the rifted African and South American plates, the Walvis Ridge and the Rio Grande Rise. The area is considered as type example for hotspot or plume-related continental break-up. However, SDR, and LIP-related features on land are concentrated south of the hotspot tracks. The segmentation of the margins offers a prime opportunity to study the magmatic signal in space and time, and investigate the interrelation with rift-related deformation. A globally significant question we address here is whether magmatism drives continental break-up, or whether even rifting accompanied by abundant magmatism is in response to crustal and lithospheric stretching governed by large-scale plate kinematics. In 2010/11, an amphibious set of wide-angle seismic data was acquired around the landfall of Walvis Ridge at the Namibian passive continental margin. The experiments were designed to provide crustal velocity information and to investigate the structure of the upper mantle. In particular, we aimed at identifying deep fault zones and variations in Moho depth, constrain the velocity signature of SDR sequences, as well as the extent of magmatic addition to the lower crust near the continent-ocean transition. Sediment cover down to the igneous basement was additionally constrained by reflection seismic data. Here, we present tomographic analysis of the seismic data of one long NNW oriented profile parallel to the continental margin across Walvis Ridge, and a second amphibious profile from the Angola Basin across Walvis Ridge and into the continental interior, crossing the area of the Etendeka Plateau basalts. The most striking feature is the sharp transition in crustal structure and thickness across the northern boundary of Walvis Ridge. Thin oceanic crust (6.5 km) of the Angola Basin lies next to the up to 35 km thick igneous crustal root founding the highest elevated northern portions of Walvis Ridge. Both structures are separated by a very large transform fault zone. The velocity structure of Walvis Ridge lower crust is indicative of gabbro, and, in the lowest parts, of cumulate sequences. On the southern side of Walvis Ridge there is a smooth gradation into the adjacent 25-30 km thick crust underlying the ocean-continent boundary, with a velocity structure resembling that of Walvis Ridge The second profile shows a sharp transition from oceanic to rifted continental crust. The transition zone may be underlain by hydrated uppermost mantle. Below the Etendeka Plateau, an extensive high-velocity body, likely representing gabbros and their cumulates at the base of the crust, indicates magmatic underplating. We summarize by stating that rift-related lithospheric stretching and associated transform faulting play an overriding role in locating magmatism, dividing the margin in a magmatic-dominated segment to the south, and an amagmatic segment north of Walvis Ridge.
Basins in ARC-continental collisions
Draut, Amy E.; Clift, Peter D.; Busby, Cathy; Azor, Antonio
2012-01-01
Arc-continent collisions occur commonly in the plate-tectonic cycle and result in rapidly formed and rapidly collapsing orogens, often spanning just 5-15 My. Growth of continental masses through arc-continent collision is widely thought to be a major process governing the structural and geochemical evolution of the continental crust over geologic time. Collisions of intra-oceanic arcs with passive continental margins (a situation in which the arc, on the upper plate, faces the continent) involve a substantially different geometry than collisions of intra-oceanic arcs with active continental margins (a situation requiring more than one convergence zone and in which the arc, on the lower plate, backs into the continent), with variable preservation potential for basins in each case. Substantial differences also occur between trench and forearc evolution in tectonically erosive versus tectonically accreting margins, both before and after collision. We examine the evolution of trenches, trench-slope basins, forearc basins, intra-arc basins, and backarc basins during arc-continent collision. The preservation potential of trench-slope basins is low; in collision they are rapidly uplifted and eroded, and at erosive margins they are progressively destroyed by subduction erosion. Post-collisional preservation of trench sediment and trench-slope basins is biased toward margins that were tectonically accreting for a substantial length of time before collision. Forearc basins in erosive margins are usually floored by strong lithosphere and may survive collision with a passive margin, sometimes continuing sedimentation throughout collision and orogeny. The low flexural rigidity of intra-arc basins makes them deep and, if preserved, potentially long records of arc and collisional tectonism. Backarc basins, in contrast, are typically subducted and their sediment either lost or preserved only as fragments in melange sequences. A substantial proportion of the sediment derived from collisional orogenesis ends up in the foreland basin that forms as a result of collision, and may be preserved largely undeformed. Compared to continent-continent collisional foreland basins, arc-continent collisional foreland basins are short-lived and may undergo partial inversion after collision as a new, active continental margin forms outboard of the collision zone and the orogen whose load forms the basin collapses in extension.
Gravity Maps of Antarctic Lithospheric Structure from Remote-Sensing and Seismic Data
NASA Astrophysics Data System (ADS)
Tenzer, Robert; Chen, Wenjin; Baranov, Alexey; Bagherbandi, Mohammad
2018-02-01
Remote-sensing data from altimetry and gravity satellite missions combined with seismic information have been used to investigate the Earth's interior, particularly focusing on the lithospheric structure. In this study, we use the subglacial bedrock relief BEDMAP2, the global gravitational model GOCO05S, and the ETOPO1 topographic/bathymetric data, together with a newly developed (continental-scale) seismic crustal model for Antarctica to compile the free-air, Bouguer, and mantle gravity maps over this continent and surrounding oceanic areas. We then use these gravity maps to interpret the Antarctic crustal and uppermost mantle structure. We demonstrate that most of the gravity features seen in gravity maps could be explained by known lithospheric structures. The Bouguer gravity map reveals a contrast between the oceanic and continental crust which marks the extension of the Antarctic continental margins. The isostatic signature in this gravity map confirms deep and compact orogenic roots under the Gamburtsev Subglacial Mountains and more complex orogenic structures under Dronning Maud Land in East Antarctica. Whereas the Bouguer gravity map exhibits features which are closely spatially correlated with the crustal thickness, the mantle gravity map reveals mainly the gravitational signature of the uppermost mantle, which is superposed over a weaker (long-wavelength) signature of density heterogeneities distributed deeper in the mantle. In contrast to a relatively complex and segmented uppermost mantle structure of West Antarctica, the mantle gravity map confirmed a more uniform structure of the East Antarctic Craton. The most pronounced features in this gravity map are divergent tectonic margins along mid-oceanic ridges and continental rifts. Gravity lows at these locations indicate that a broad region of the West Antarctic Rift System continuously extends between the Atlantic-Indian and Pacific-Antarctic mid-oceanic ridges and it is possibly formed by two major fault segments. Gravity lows over the Transantarctic Mountains confirms their non-collisional origin. Additionally, more localized gravity lows closely coincide with known locations of hotspots and volcanic regions (Marie Byrd Land, Balleny Islands, Mt. Erebus). Gravity lows also suggest a possible hotspot under the South Orkney Islands. However, this finding has to be further verified.
Hou, Zengqian; Liu, Yan; Tian, Shihong; Yang, Zhiming; Xie, Yuling
2015-01-01
Carbonatite-associated rare-earth-element (REE) deposits are the most significant source of the world’s REEs; however, their genesis remains unclear. Here, we present new Sr-Nd-Pb and C-O isotopic data for Cenozoic carbonatite-hosted giant REE deposits in southwest China. These REE deposits are located along the western margin of the Yangtze Craton that experienced Proterozoic lithospheric accretion, and controlled by Cenozoic strike-slip faults related to Indo-Asian continental collision. The Cenozoic carbonatites were emplaced as stocks or dykes with associated syenites, and tend to be extremely enriched in Ba, Sr, and REEs and have high 87Sr/86Sr ratios (>0.7055). These carbonatites were likely formed by melting of the sub-continental lithospheric mantle (SCLM), which had been previously metasomatized by high-flux REE- and CO2-rich fluids derived from subducted marine sediments. The fertility of these carbonatites depends on the release of REEs from recycled marine sediments and on the intensity of metasomatic REE refertilization of the SCLM. We suggest that cratonic edges, particularly along ancient convergent margins, possess the optimal configuration for generating giant REE deposits; therefore, areas of metamorphic basement bounded or cut by translithospheric faults along cratonic edges have a high potential for such deposits. PMID:26035414
A new model for the development of the active Afar volcanic margin
NASA Astrophysics Data System (ADS)
Pik, Raphaël; Stab, Martin; Bellahsen, Nicolas; Leroy, Sylvie
2016-04-01
Volcanic passive margins, that represent more than the three quarters of continental margins worldwide, are privileged witnesses of the lithospheric extension processes thatform new oceanic basins. They are characterized by voluminous amounts of underplated, intruded and extruded magmas, under the form of massive lavas prisms (seaward-dipping reflectors, or SDR) during the course of thinning and stretching of the lithosphere, that eventually form the ocean-continent transition. The origin and mechanisms of formation of these objects are still largely debated today. We have focussed our attention in the last few years on the Afar volcanic province which represents an active analogue of such volcanic margins. We explored the structural and temporal relationships that exist between the development of the major thinning and stretching structures and the magmatic production in Central Afar. Conjugate precise fieldwork analysis along with lavas geochronology allowed us to revisit the timing and style of the rift formation, since the early syn-rift period of time in the W-Afar marginal area to present days. Extension is primarily accommodated over a wide area at the surface since the very initial periods of extension (~ 25 Ma) following the emplacement of Oligocene CFBs. We propose in our reconstruction of central Afar margin history that extension has been associated with important volumes of underplated mafic material that compensate crustal thinning. This has been facilitated by major crustal-scale detachments that help localize the thinning and underplating at depth. In line with this 'magmatic wide-rift' mode of extension, we demonstrate that episodic extension steps alternate with more protracted magmatic phases. The production of syn-rift massive flood basalts (~ 4 Ma) occurs after early thinning of both the crust and the lithosphere, which suggests that SDR formation, is controlled by previous tectonic event. We determined how the melting regime evolved in response to the deformation of the lithosphere, through a petrological and geochemical study of the pre- to syn-rift lavas and concluded that the lithospheric mantle experienced the combined effect of post-plume cooling, but also thinning during the Miocene. This is accompanied by the early channelization of the plume head into narrower zones, which helped focus extension at the future volcanic margins location. The anomalous mantle potential temperature increased during the very last localization phase (< 1 Ma), which leads us to argue in favor of the focussed activity of a plume stem below the volcanic margin, instead of purely passive adiabatic decompression. Our new interpretation of the regional isotopic signatures of lavas depicts a clear framework of the Afar plume and lithospheric mantle relationships to on going extension and segmentation of these margins, and allow us to propose new contrasted models for their development.
Global map of lithosphere thermal thickness on a 1 deg x 1 deg grid - digitally available
NASA Astrophysics Data System (ADS)
Artemieva, Irina
2014-05-01
This presentation reports a 1 deg ×1 deg global thermal model for the continental lithosphere (TC1). The model is digitally available from the author's web-site: www.lithosphere.info. Geotherms for continental terranes of different ages (early Archean to present) are constrained by reliable data on borehole heat flow measurements (Artemieva and Mooney, 2001), checked with the original publications for data quality, and corrected for paleo-temperature effects where needed. These data are supplemented by cratonic geotherms based on xenolith data. Since heat flow measurements cover not more than half of the continents, the remaining areas (ca. 60% of the continents) are filled by the statistical numbers derived from the thermal model constrained by borehole data. Continental geotherms are statistically analyzed as a function of age and are used to estimate lithospheric temperatures in continental regions with no or low quality heat flow data. This analysis requires knowledge of lithosphere age globally. A compilation of tectono-thermal ages of lithospheric terranes on a 1 deg × 1 deg grid forms the basis for the statistical analysis. It shows that, statistically, lithospheric thermal thickness z (in km) depends on tectono-thermal age t (in Ma) as: z=0.04t+93.6. This relationship formed the basis for a global thermal model of the continental lithosphere (TC1). Statistical analysis of continental geotherms also reveals that this relationship holds for the Archean cratons in general, but not in detail. Particularly, thick (more than 250 km) lithosphere is restricted solely to young Archean terranes (3.0-2.6 Ga), while in old Archean cratons (3.6-3.0 Ga) lithospheric roots do not extend deeper than 200-220 km. The TC1 model is presented by a set of maps, which show significant thermal heterogeneity within continental upper mantle. The strongest lateral temperature variations (as large as 800 deg C) are typical of the shallow mantle (depth less than 100 km). A map of the depth to a 600 deg C isotherm in continental upper mantle is presented as a proxy to the elastic thickness of the cratonic lithosphere, in which flexural rigidity is dominated by olivine rheology of the mantle. The TC1 model of the lithosphere thickness is used to calculate the growth and preservation rates of the lithosphere since the Archean.
Mooney, Walter D.; Ritsema, Jeroen; Hwang, Yong Keun
2012-01-01
A joint analysis of global seismicity and seismic tomography indicates that the seismic potential of continental intraplate regions is correlated with the seismic properties of the lithosphere. Archean and Early Proterozoic cratons with cold, stable continental lithospheric roots have fewer crustal earthquakes and a lower maximum earthquake catalog moment magnitude (Mcmax). The geographic distribution of thick lithospheric roots is inferred from the global seismic model S40RTS that displays shear-velocity perturbations (δVS) relative to the Preliminary Reference Earth Model (PREM). We compare δVS at a depth of 175 km with the locations and moment magnitudes (Mw) of intraplate earthquakes in the crust (Schulte and Mooney, 2005). Many intraplate earthquakes concentrate around the pronounced lateral gradients in lithospheric thickness that surround the cratons and few earthquakes occur within cratonic interiors. Globally, 27% of stable continental lithosphere is underlain by δVS≥3.0%, yet only 6.5% of crustal earthquakes with Mw>4.5 occur above these regions with thick lithosphere. No earthquakes in our catalog with Mw>6 have occurred above mantle lithosphere with δVS>3.5%, although such lithosphere comprises 19% of stable continental regions. Thus, for cratonic interiors with seismically determined thick lithosphere (1) there is a significant decrease in the number of crustal earthquakes, and (2) the maximum moment magnitude found in the earthquake catalog is Mcmax=6.0. We attribute these observations to higher lithospheric strength beneath cratonic interiors due to lower temperatures and dehydration in both the lower crust and the highly depleted lithospheric root.
NASA Astrophysics Data System (ADS)
Currie, C. A.; Beaumont, C.
2009-05-01
The origin of deep-seated magmatism (in particular, kimberlites and lamproites) within continental plate interiors remains enigmatic in the context of plate tectonic theory. One hypothesis proposes a relationship between kimberlite occurrence and lithospheric subduction, such that a subducting plate releases fluids below a continental craton, triggering melting of the deep lithosphere and magmatism (Sharp, 1974; McCandless, 1999). This study provides a quantitative evaluation of this hypothesis, focusing on the Late Cretaceous- Eocene (105-50 Ma) kimberlites and lamproites of western North America. These magmas were emplaced along a corridor of Archean and Proterozoic lithosphere, 1000-1500 km inboard of the plate margin separating the subducting Farallon Plate and continental North America Plate. Kimberlite-lamproite magmatism coincides with tectonic events, including the Laramide orogeny, shut-down of the Sierra Nevada arc, and eastward migration of volcanism, that are commonly attributed to a change in Farallon Plate geometry to a shallow-angle trajectory (<25° dip). Thermal-mechanical numerical models demonstrate that rapid Cretaceous plate convergence rates and enhanced westward velocity of North America result in shallow-angle subduction that places the Farallon Plate beneath the western edge of the cratonic interior of North America. This geometry is consistent with the observed continental dynamic subsidence that lead to the development of the Western Interior Seaway. The models also show that the subducting plate has a cool thermal structure, and subducted hydrous minerals (serpentine, phengite and phlogopite) remain stable to more than 1200 km from the trench, where they may break down and release fluids that infiltrate the overlying craton lithosphere. This is supported by geochemical studies that indicate metasomatism of the Colorado Plateau and Wyoming craton mantle lithosphere by an aqueous fluid and/or silicate melt with a subduction signature. Through Cretaceous shallow-angle subduction, the Farallon Plate was in a position to mechanically and chemically interact with North American craton lithosphere at the time of kimberlite-lamproite magmatism, making the subduction hypothesis a viable mechanism for the genesis of these magmas. REFERENCES: McCandless, T.E., Proceedings of the 7th International Kimberlite Conference, v.2, pp.545-549, 1999; Sharp, W.E., Earth Planet. Sci. Lett., v.21, pp.351-354, 1974.
Lithospheric Structure and Seismotectonics of Central East Antarctica
NASA Astrophysics Data System (ADS)
Reading, A. M.
2006-12-01
The lithosphere of central East Antarctica, the sector of the continent between 30°E - 120°E, is investigated using seismic methods including receiver function and shear-wave splitting analysis. Data from the broadband stations of the temporary SSCUA deployment (in the continental interior) are used together with records from the permanent GSN stations (on the coast) to carry out the first studies of crustal depth and structure, and patterns of seismic anisotropy across this region. The depth of the Moho is found to be 42 km (+/- 2 km) beneath Mawson station with similar structures extending southward across the Rayner province as far south as Beaver Lake. The Fisher Terrane is characterised by a crustal shear wavespeed profile showing few discontinuties with the Moho at a similar depth to the Rayner. South of Fisher, the crust becomes much shallower, with the Moho at 32 km depth. This shallow crust extends across the Lambert glacier to the Prydz coast and the Lambert Terrane. The characteristic crustal wavespeed profiles provide baseline structure for mapping the extent of the terrance beneath the Antarctic Ice Sheet in future deployments. Observations of seismic anisotropy are less well- defined but, at a reconnaissance level, show fast directions parallel to the present day coastline. This may be controlled by rift-related influences on the lithosphere associated with the breakup of East Gondwana. The seismicity is confirmed to be extremely low. The only seismogenic forces on the Antarctic plate in this region are acting at the boundary between the continental and oceanic lithosphere west of 50°E and east of 100°E and represent a superposition of tectonic and glaciogenic controls. The Lambert Glacier region shows little or no seismotectonic activity in the continental interior or on the oceanic margin.
The Role of the Mantle on Structural Reactivation at the Plate Tectonics Scale (Invited)
NASA Astrophysics Data System (ADS)
Vauchez, A. R.; Tommasi, A.
2009-12-01
During orogeny, rifting, and in major strike-slip faults, the lithospheric mantle undergoes solid-state flow to accommodate the imposed strain. This deformation occurs mostly through crystal plasticity processes, like dislocation creep, and results in the development of a crystallographic preferred orientation (CPO) of olivine and pyroxene. Because these minerals, especially olivine, display strongly anisotropic physical properties, their preferred orientation confers anisotropic properties at the scale of the rock. When the deformation event comes to its end, the CPO are "frozen" and remain stable for millions or even billions years if no other deformation subsequently affects the lithospheric mantle. This means that anisotropic properties preserving a memory of previous deformation events may subsist in the continental mantle over very long periods of time. One of the main consequences of a well-developed olivine CPO is an anisotropic mantle viscosity and hence a deformation dependant on the orientation of the tectonic solicitations relative to the orientation of the olivine CPO inherited from the past orogenic events. The most obvious expression of this anisotropic mechanical behaviour is the influence of the inherited tectonic fabric on continental rifting. Most continental rifts that lead to successful continental breakup, like in the early Atlantic or the western Indian systems, formed parallel to ancient collisional belts. Moreover, the early stages of deformation in these systems are characterized by a transtensional strain regime involving a large component of strike-slip shearing parallel to the inherited fabric. The link between the lithospheric mantle fabric and the rift structure is further supported by seismic anisotropy measurements in major rifts (e.g., the East-African Rift) or at passive continental margins (e.g., the Atlantic Ocean) that show fast split S-waves polarized in a direction parallel to both the inherited fabric and the trend of the rift, and by the analysis of the CPO in mantle xenoliths collected in such areas. These observations are consistent with recent multi-scale numerical models showing that olivine CPO frozen in the lithospheric mantle result in an anisotropic mechanical behaviour. In a plate submitted to extension, CPO-induced anisotropy favours the reactivation in transtension of lithospheric-scale strike slip faults that are oblique to the imposed tensional stresses. Further investigation is needed to constrain the role of an inherited mechanical anisotropy of the lithosphere during compressional events and the possible feedbacks between an anisotropic viscous deformation of the lithospheric mantle and the seismic cycle. In both cases, crust-mantle coupling is likely for large-scale structures and mantle CPO may influence the kinematics of tectonic systems, at least during the initial stages of their evolution.
Modeling Archean Subduction Initiation from Continental Spreading with a Free-Surface
NASA Astrophysics Data System (ADS)
Adams, A.; Thielmann, M.; Golabek, G.
2017-12-01
Earth is the only planet known to have plate tectonics, however the onset of plate tectonics and Earth's early tectonic environment are highly uncertain. Modern plate tectonics are characterized by the sinking of dense lithosphere at subduction zones; however this process may not have been feasible if Earth's interior was hotter in the Archean, resulting in thicker and more buoyant oceanic lithosphere than observed at present [van Hunen and van den Berg, 2008]. Previous studies have proposed gravitational spreading of early continents at passive margins as a mechanism to trigger early episodes of plate subduction using numerical simulations with a free-slip upper boundary condition [Rey et al., 2014]. This study utilizes 2D thermo-mechanical numerical experiments using the finite element code MVEP2 [Kaus, 2010; Thielmann et al., 2014] to investigate the viability of this mechanism for subduction initiation in an Archean mantle for both free-slip and free-surface models. Radiogenic heating, strain weakening, and eclogitization were systematically implemented to determine critical factors for modeling subduction initiation. In free-slip models, results show episodes of continent spreading and subduction initiation of oceanic lithosphere for low limiting yield stresses (100-150 MPa) and increasing continent width with no dependency on radiogenic heating, strain weakening, or eclogitization. For models with a free-surface, subduction initiation was observed at low limiting yield stresses (100-225 MPa) with increasing continent width and only in models with eclogitization. Initial lithospheric stress states were studied as a function of density and viscosity ratios between continent and oceanic lithosphere, and results indicate the magnitude of lithospheric stresses increases with increasing continental buoyancy. This work suggests continent spreading may trigger episodes of subduction in models with a free-surface with critical factors being low limiting yield stresses and eclogitization.
Preferential rifting of continents - A source of displaced terranes
NASA Technical Reports Server (NTRS)
Vink, G. E.; Morgan, W. J.; Zhao, W.-L.
1984-01-01
Lithospheric rifting, while prevalent in the continents, rarely occurs in oceanic regions. To explain this preferential rifting of continents, the total strength of different lithospheres is compared by integrating the limits of lithospheric stress with depth. Comparisons of total strength indicate that continental lithosphere is weaker than oceanic lithosphere by about a factor of three. Also, a thickened crust can halve the total strength of normal continental lithosphere. Because the weakest area acts as a stress guide, any rifting close to an ocean-continent boundary would prefer a continental pathway. This results in the formation of small continental fragments or microplates that, once accreted back to a continent during subduction, are seen as displaced terranes. In addition, the large crustal thicknesses associated with suture zones would make such areas likely locations for future rifting episodes. This results in the tendency of new oceans to open along the suture where a former ocean had closed.
NASA Astrophysics Data System (ADS)
Dubinin, Evgeny; Grokholsky, Andrey; Makushkina, Anna
2016-04-01
Complex process of continental lithosphere breakup is often accompanied by full or semi isolation of small continental blocks from the parent continent such as microcontinents or submerged marginal plateaus. We present different types of continental blocks formed in various geodynamic settings. The process depends on thermo-mechanical properties of rifting. 1) The continental blocks fully isolated from the parent continent. This kind of blocks exist in submerged form (Elan Bank, the Jan-Mayen Ridge, Zenith Plateau, Gulden Draak Knoll, Batavia Knoll) and in non-submerged form in case of large block size. Most of listed submerged blocks are formed in proximity of hot-spot or plume. 2) The continental blocks semi-isolated from the parent continent. Exmouth Plateau, Vøring, Agulhas, Naturaliste are submerged continental plateaus of the indicated category; Sri Lanka, Tasmania, Socotra are islands adjacent to continent here. Nowadays illustration of this setting is the Sinai block located between the two continental rifts. 3) The submerged linear continental blocks formed by the continental rifting along margin (the Lomonosov Ridge). Suggested evolution of this paragraph is the rift propagation along existing transtensional (or another type) transform fault. Future example of this type might be the California Peninsula block, detached from the North American plate by the rifting within San-Andreas fault. 4) The submerged continental blocks formed by extensional processes as the result of asthenosphere flow and shear deformations. Examples are submerged blocks in the central and southern Scotia Sea (Terror Bank, Protector Basin, Discovery Bank, Bruce Bank etc.). 5) The continental blocks formed in the transform fault systems originated in setting of contradict rifts propagation in presence of structure barriers, rifts are shifted by several hundreds kilometers from each other. Examples of this geodynamic setting are Equatorial Atlantic at the initial development stage, and the transitional zone between Mohns and Gakkel Ridges. The research funded by RFBR, project № 15-05-03486.
Tectonic evolution and extension at the Møre Margin - Offshore mid-Norway
NASA Astrophysics Data System (ADS)
Theissen-Krah, S.; Zastrozhnov, D.; Abdelmalak, M. M.; Schmid, D. W.; Faleide, J. I.; Gernigon, L.
2017-11-01
Lithospheric stretching is the key process in forming extensional sedimentary basins at passive rifted margins. This study explores the stretching factors, resulting extension, and structural evolution of the Møre segment on the Mid-Norwegian continental margin. Based on the interpretation of new and reprocessed high-quality seismic, we present updated structural maps of the Møre margin that show very thick post-rift sediments in the central Møre Basin and extensive sill intrusion into the Cretaceous sediments. A major shift in subsidence and deposition occurred during mid-Cretaceous. One transect across the Møre continental margin from the Slørebotn Subbasin to the continent-ocean boundary is reconstructed using the basin modelling software TecMod. We test different initial crustal configurations and rifting events and compare our structural reconstruction results to stretching factors derived both from crustal thinning and the classical backstripping/decompaction approach. Seismic interpretation in combination with structural reconstruction modelling does not support the lower crustal bodies as exhumed and serpentinised mantle. Our extension estimate along this transect is 188 ± 28 km for initial crustal thickness varying between 30 and 40 km.
NASA Astrophysics Data System (ADS)
Liu, X.; Currie, C. A.
2017-12-01
The subducted Farallon plate is believed to have evolved to a flat geometry underneath North America plate during Late Cretaceous, triggering Laramide deformation within the continental interior. However, the mechanism that caused the oceanic slab to flatten and the factors that control the flat-slab depth remain uncertain. In this work, we use 2D thermal-mechanical models using the SOPALE code to study the subduction dynamics from 90 Ma to 50 Ma. During this period, an oceanic plateau (Shatsky Conjugate) is inferred to have subducted beneath western North America and interacted with the continental lithosphere, including areas of thicker lithosphere such as the Colorado Plateau and Wyoming Craton. Based on seismic tomography and plate reconstruction data sets, we built a set of models to examine the influence of the structure and rheology of the oceanic and continental plates on slab dynamics. Models include a 600 km wide oceanic plateau consisting of 18 km thick crust and a 36 km thick underlying harzburgite layer, and we ran a series of model experiments to test different continental thicknesses (80 km, 120 km, & 180 km) and continental mantle lithosphere strengths (approximating conditions from wet olivine to dry olivine). Consistent with earlier studies, we find that creation of a long flat slab requires a buoyant oceanic plateau (i.e., non-eclogitized crust) and trenchward motion of the continent. In addition, our models demonstrate the upper plate has an important control on slab dynamics. A flat slab requires either a thin continent or, if the continent is thick, its mantle lithosphere must be relatively weak so that it can be displaced by the flattening slab. The depth of the flat slab is mainly controlled by two factors: (1) the continental thickness and (2) the strength of the continental mantle lithosphere. For the same initial lithosphere thickness (120 km), a shallower flat slab ( 90 km depth) occurs for the weakest mantle lithosphere ( wet olivine) compared to 120 km depth for strong ( dry) mantle lithosphere because the flat slab removes the lowermost weak lithosphere. Moreover, an even deeper slab ( 130 km) can be found underneath the weakest but thicker continental lithosphere (180 km). Future models will focus on how the flat slab may induce hydration and deformation for the overriding continental plate.
Three-dimensional frictional plastic strain partitioning during oblique rifting
NASA Astrophysics Data System (ADS)
Duclaux, Guillaume; Huismans, Ritske S.; May, Dave
2017-04-01
Throughout the Wilson cycle the obliquity between lithospheric plate motion direction and nascent or existing plate boundaries prompts the development of intricate three-dimensional tectonic systems. Where oblique divergence dominates, as in the vast majority of continental rift and incipient oceanic domains, deformation is typically transtensional and large stretching in the brittle upper crust is primarily achieved by the accumulation of displacement on fault networks of various complexity. In continental rift depressions such faults are initially distributed over tens to hundreds of kilometer-wide regions, which can ultimately stretch and evolve into passive margins. Here, we use high-resolution 3D thermo-mechanical finite element models to investigate the relative timing and distribution of localised frictional plastic deformation in the upper crust during oblique rift development in a simplified layered lithosphere. We vary the orientation of a wide oblique heterogeneous weak zone (representing a pre-existing geologic feature like a past orogenic domain), and test the sensitivity of the shear zones orientation to a range of noise distribution. These models allow us to assess the importance of material heterogeneities for controlling the spatio-temporal shear zones distribution in the upper crust during oblique rifting, and to discuss the underlying controls governing oblique continental breakup.
NASA Astrophysics Data System (ADS)
Heinonen, Jussi S.; Luttinen, Arto V.; Bohrson, Wendy A.
2016-01-01
Continental flood basalts (CFBs) represent large-scale melting events in the Earth's upper mantle and show considerable geochemical heterogeneity that is typically linked to substantial contribution from underlying continental lithosphere. Large-scale partial melting of the cold subcontinental lithospheric mantle and the large amounts of crustal contamination suggested by traditional binary mixing or assimilation-fractional crystallization models are difficult to reconcile with the thermal and compositional characteristics of continental lithosphere, however. The well-exposed CFBs of Vestfjella, western Dronning Maud Land, Antarctica, belong to the Jurassic Karoo large igneous province and provide a prime locality to quantify mass contributions of lithospheric and sublithospheric sources for two reasons: (1) recently discovered CFB dikes show isotopic characteristics akin to mid-ocean ridge basalts, and thus help to constrain asthenospheric parental melt compositions and (2) the well-exposed basaltic lavas have been divided into four different geochemical magma types that exhibit considerable trace element and radiogenic isotope heterogeneity (e.g., initial ɛ Nd from -16 to +2 at 180 Ma). We simulate the geochemical evolution of Vestfjella CFBs using (1) energy-constrained assimilation-fractional crystallization equations that account for heating and partial melting of crustal wall rock and (2) assimilation-fractional crystallization equations for lithospheric mantle contamination by using highly alkaline continental volcanic rocks (i.e., partial melts of mantle lithosphere) as contaminants. Calculations indicate that the different magma types can be produced by just minor (1-15 wt%) contamination of asthenospheric parental magmas by melts from variable lithospheric reservoirs. Our models imply that the role of continental lithosphere as a CFB source component or contaminant may have been overestimated in many cases. Thus, CFBs may represent major juvenile crustal growth events rather than just recycling of old lithospheric materials.
Evidence from mantle xenoliths for lithosphere removal beneath the central Rio Grande Rift
NASA Astrophysics Data System (ADS)
Byerly, Benjamin L.; Lassiter, John C.
2012-11-01
Seismic tomography beneath the Central Rio Grande Rift (RGR) at ˜34°N shows a low P and S wave velocity zone in the mantle that extends up the base of the Moho. This low-velocity region has been interpreted by (Gao et al., 2004) to be the result of convective removal of a portion of the once >100 km thick Proterozoic lithosphere. The amount of extension in the central RGR is thought to be low (˜25%) and thus cannot account for the amount of lithosphere thinning suggested by seismic tomography. We measured whole rock and mineral major element, trace element, and isotopic compositions of spinel-peridotite xenoliths erupted along the central axis of the rift (Elephant Butte) and the eastern margin of the Colorado Plateau (Cerro Chato) to determine their depth of origin and mantle provenance and to test the delamination hypothesis. If lithosphere removal has not occurred and the low P and S wave velocities are instead the result of hydration or melt infiltration in the lithosphere, then xenoliths erupted on the rift axis should have geochemical compositions similar to Proterozoic sub-continental lithospheric mantle (SCLM). At Cerro Chato, on the margin of the Colorado Plateau, xenoliths were derived from ˜60 km depth and have geochemical signatures similar to Proterozoic sub-continental lithospheric mantle (e.g. refractory major element compositions, LREE-enrichment, enriched Sr and Nd isotopes, unradiogenic Os isotopes). At Elephant Butte, along the central rift axis, two distinct groups of xenoliths are present. The majority of xenoliths from Elephant Butte are LREE-depleted and have fertile major element compositions. Additionally, these xenoliths have isotopic signatures similar to the range for DMM (e.g. 87Sr/86Sr ranging from 0.7018 to 0.7023, ɛNd ranging from 7 to 21, and 187Os/188Os ranging from 0.122 to 0.130). We interpret this group of xenoliths to be derived from asthenospheric mantle. A less-abundant group of xenoliths at Elephant Butte are LREE enriched, have refractory major element compositions, enriched Sr, Nd, and Pb isotopes, and unradiogenic Os isotopes. These are characteristic of Proterozoic SCLM. Both groups of xenoliths from Elephant Butte are derived from ˜45 km depth. We interpret the suite of xenoliths at Elephant Butte to have sampled what was recently the base of the Proterozoic SCLM. We conclude that a portion of the mantle lithosphere has been removed which allowed modern convecting mantle (DMM) to be emplaced at the base of the pre-existing SCLM.
NASA Astrophysics Data System (ADS)
Delvaux, Damien; Everaerts, Michel; Kongota Isasi, Elvis; Ganza Bamulezi, Gloire
2016-04-01
After the break-up and separation of South America from Africa and the initiation of the South-Atlantic mid-oceanic ridge in the Albian, at about 120 Ma, ridge-push forces started to build-up in the oceanic lithosphere and were transmitted to the adjacent continental plates. This is particularly well expressed in the passive margin and continental interior of Central Africa. According to the relations of Wiens and Stein (1985) between ridge-push forces and basal drag in function of the lithospheric age of oceanic plates, the deviatoric stress reaches a compressional maximum between 50 and 100, Ma after the initiation of the spreading ridge, so broadly corresponding to the Paleocene in this case (~70-20 Ma). Earthquake focal mechanism data show that the West-Congo margin and a large part of the Congo basin are still currently under compressional stresses with an horizontal compression parallel to the direction of the active transform fracture zones. We studied the fracture network along the Congo River in Kinshasa and Brazzaville which affect Cambrian sandstones and probably also the late Cretaceous-Paleocene sediments. Their brittle tectonic evolution is compatible with the buildup of ridge-push forces related to the South-Atlantic opening. Further inland, low-angle reverse faults are found affecting Jurassic to Middle Cretaceous cores from the Samba borehole in the Congo basin and strike-slip movements are recorded as a second brittle phase in the Permian cores of the Dekese well, at the southern margin of the Congo basin. An analysis of the topography and river network of the Congo basin show the development of low-amplitude (50-100 m) long wavelengths (100-300 km) undulations that can be interpreted as lithospheric buckling in response to the compressional intraplate stress field generated by the Mid-Atlantic ridge-push. Wiens, D.A., Stein, S., 1985. Implications of oceanic intraplate seismicity for plate stresses, driving forces and theology. Tectonophysics 1166, 143-162.
The history and fate of three families of lithosphere on Earth
NASA Astrophysics Data System (ADS)
Lee, C. T.
2016-12-01
Based on compilations of surface heat flux to constrain the thermal boundary layer thickness, lithosphere thickness can be shown to have a trimodal distribution. In ocean basins, lithosphere thickness ranges from thin (<10 km) beneath young ocean basins, which dominate, to thick (<100 km) beneath old ocean basins, which are rare due to subduction. Continents have thicker lithospheres and define two additional peaks: 30%, reflecting most of the Archean cratons, are 180-220 km thick and 60% are 90-140 km thick. While ocean basins subduct after their lithospheres grow thick, continents do not, despite their thicker lithospheres. The insubductibility of continents is because the buoyancy of thick crust compensates for the thick cold lithosphere and because continental thermal boundary layers do not grow indefinitely. Lithospheric growth is understood to be limited by the onset of small-scale convective instabilities, but why then do continental lithospheres have two different critical thicknesses? Initial thickness, at the time of formation, is critical. Continental lithospheres less than 120 km thick are subject to magmatic modification (refertilization) in the form of thermo-chemical erosion, which gradually thins the lithosphere. Lithospheres greater than 120 km appear to be relatively immune to significant lithospheric thinning. This may in part be because refertilization-driven destabilization does not occur since deep melting is suppressed beneath thick lithosphere. To resist thermal thinning, it seems necessary that anomalously thick lithospheres were born with intrinsic strength, widely hypothesized to have been imparted by the unusual petrogenesis of cratonic mantle, wherein high degrees of melting early in Earth's history resulted in the formation of a dehydrated and strong chemical boundary layer. Another possibility is that cratonic mantle is characterized by the strengthening effects of larger grain size, owing to the high degrees of melting that decrease the number of clinopyroxene pinning points. In summary, a lithosphere's fate depends on the nature of its origin. Continental lithospheres born thick will have long, boring lives, continental lithospheres born thin will be forever tormented, and oceanic lithospheres are fated to have calm but brief lives at the Earth's surface.
NASA Astrophysics Data System (ADS)
Vernikovskaya, A. E.; Vernikovsky, V. A.; Matushkin, N. Yu.; Kadilnikov, P. I.; Romanova, I. V.; Larionov, A. N.
2017-12-01
In the late Neoproterozoic a prolonged active continental margin mode dominated the southwestern margin of the Siberian craton. Based on results of geological, petrological-geochemical, U-Th-Pb and Sm-Nd, Rb-Sr isotope investigations, for the first time we established that on the final evolution stage of this margin 576-546 Ma, intrusions of adakites and gabbro-anorthosites of the Zimoveyniy massif were emplaced in the South Yenisei Ridge. These new data indicate genetic relationships of the studied adakites and host NEB-metabasites. The formation of adakites could have been due to a crustal or a mantle-crustal source in a setting of transform sliding of lithospheric plates after the subduction stopped.
NASA Astrophysics Data System (ADS)
Breivik, Asbjørn Johan; Faleide, Jan Inge; Mjelde, Rolf; Flueh, Ernst R.; Murai, Yoshio
2017-10-01
The Early Eocene continental breakup was magma-rich and formed part of the North Atlantic Igneous Province. Extrusive and intrusive magmatism was abundant on the continental side, and a thick oceanic crust was produced up to a few m.y. after breakup. However, the extensive magmatism at the Vøring Plateau off mid-Norway died down rapidly northeastwards towards the Lofoten/Vesterålen Margin. In 2003 an Ocean Bottom Seismometer profile was collected from mainland Norway, across Lofoten, and into the deep ocean. Forward/inverse velocity modeling by raytracing reveals a continental margin transitional between magma-rich and magma-poor rifting. For the first time a distinct lower-crustal body typical for volcanic margins has been identified at this outer margin segment, up to 3.5 km thick and ∼50 km wide. On the other hand, expected extrusive magmatism could not be clearly identified here. Strong reflections earlier interpreted as the top of extensive lavas may at least partly represent high-velocity sediments derived from the shelf, and/or fault surfaces. Early post-breakup oceanic crust is moderately thickened (∼8 km), but is reduced to 6 km after 1 m.y. The adjacent continental crystalline crust is extended down to a minimum of 4.5 km thickness. Early plate spreading rates derived from the Norway Basin and the northern Vøring Plateau were used to calculate synthetic magnetic seafloor anomalies, and compared to our ship magnetic profile. It appears that continental breakup took place at ∼53.1 Ma, ∼1 m.y. later than on the Vøring Plateau, consistent with late strong crustal extension. The low interaction between extension and magmatism indicates that mantle plume material was not present at the Lofoten Margin during initial rifting, and that the observed excess magmatism was created by late lateral transport from a nearby pool of plume material into the lithospheric rift zone at breakup time.
NASA Astrophysics Data System (ADS)
Koptev, A.; Calais, E.; Burov, E. B.; Leroy, S. D.; Gerya, T.
2014-12-01
Although many continental rift basins and their successfully rifted counterparts at passive continental margins are magmatic, some are not. This dichotomy prompted end-member views of the mechanism driving continental rifting, deep-seated and mantle plume-driven for some, owing to shallow lithospheric stretching for others. In that regard, the East African Rift (EAR), the 3000 km-long divergent boundary between the Nubian and Somalian plates, provides a unique setting with the juxtaposition of the eastern, magma-rich, and western, magma-poor, branches on either sides of the 250-km thick Tanzanian craton. Here we implement high-resolution rheologically realistic 3D numerical model of plume-lithosphere interactions in extensional far-field settings to explain this contrasted behaviour in a unified framework starting from simple, symmetrical initial conditions with an isolated mantle plume rising beneath a craton in an east-west tensional far field stress. The upwelling mantle plume is deflected by the cratonic keel and preferentially channelled along one of its sides. This leads to the coeval development of a magma-rich branch above the plume head and a magma-poor one along the opposite side of the craton, the formation of a rotating microplate between the two rift branches, and the feeding of melt to both branches form a single mantle source. The model bears strong similarities with the evolution of the eastern and western branches of the central EAR and the geodetically observed rotation of the Victoria microplate. This result reconciles the passive (plume-activated) versus active (far-field tectonic stresses) rift models as our experiments shows both processes in action and demonstrate the possibility of developing both magmatic and amagmatic rifts in identical geotectonic environments.
NASA Astrophysics Data System (ADS)
Bellahsen, N.; Leroy, S.; Autin, J.; Razin, P.; d'Acremont, E.; Sloan, H.; Pik, R.; Ahmed, A.; Khanbari, K.
2013-11-01
Transfer zones are ubiquitous features in continental rifts and margins, as are transform faults in oceanic lithosphere. Here, we present a structural study of the Hadibo Transfer Zone (HTZ), located in Socotra Island (Yemen) in the southeastern Gulf of Aden. There, we interpret this continental transfer fault zone to represent a reactivated pre-existing structure. Its trend is oblique to the direction of divergence and it has been active from the early up to the latest stages of rifting. One of the main oceanic fracture zones (FZ), the Hadibo-Sharbithat FZ, is aligned with and appears to be an extension of the HTZ and is probably genetically linked to it. Comparing this setting with observations from other Afro-Arabian rifts as well as with passive margins worldwide, it appears that many continental transfer zones are reactivated pre-existing structures, oblique to divergence. We therefore establish a classification system for oceanic FZ based upon their relationship with syn-rift structures. Type 1 FZ form at syn-rift structures and are late syn-rift to early syn-OCT. Type 2 FZ form during the OCT formation and Type 3 FZ form within the oceanic domain, after the oceanic spreading onset. The latter are controlled by far-field forces, magmatic processes, spreading rates, and oceanic crust rheology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bird, P.R.; Johns, C.C.; Clark-Lowes, D.D.
Western Turkey consists of a number of tectonic terranes joined together by a network of suture zones. The terranes originated as microcontinental plates that rifted away from the continental margins forming the northern and southern boundaries of the Tethyan sea. These micro-continents were united by a series of collisions beginning in the Late Triassic and ending in the Miocene, with the final closure of the Tethyan sea. The sedimentary cover of the microcontinents consists of Paleozoic and Mesozoic passive margin and rift basin sequences containing numerous potential source and reservoir intervals. Most of these sequences show affinities with Gondwanaland, withmore » the notable exception of the Istanbul nappe, which is strongly Laurasian in character. Forearc basin sequences were also deposited on the margins of the microcontinents during early Tertiary plate convergence. Ensuing continental collisions resulted in compressional deformation of sedimentary cover sequences. The intensity of deformation ranged from basin inversion producing numerous potential hydrocarbon traps, to large-scale overthrusting. Following continental suturing, continued compression in eastern Turkey has been accommodated since the Miocene by westward escape of continental lithosphere between the North and South Anatolian transform faults. Neotectonic pull-apart basins formed in response to these movements, accumulating large thicknesses of Miocene-Pliocene carbonates and clastic sediments. Potential reservoirs in the Neotectonic basins may be sourced either in situ or from underlying Paleozoic and Mesozoic source rocks that remain within the hydrocarbon generating window today.« less
Bohannon, R.G.; Eittreim, S.L.
1991-01-01
The continental margins of the southern and central Red Sea and most of Wilkes Land, Antarctica have bulk crustal configurations and detailed structures that are best explained by a prolonged history of magmatic expansion that followed a brief, but intense period of mechanical extension. Extension on the Red Sea margins was spatially confined to a rift that was 20-30 km in width. The rifting phase along the Arabian margin of the central and southern Red Sea occurred 25-32 Ma ago, primarily by detachment faulting at upper crustal levels and ductile uniform stretching at depth. Rifting was followed by an early magmatic phase during which the margin was invaded by dikes and plutons, primarily of gabbro and diorite, at 20-24 Ma, after the crust was mechanically thinned from 40 km to ??? 20 km. We infer continued spreading after that in which broad shelves were formed by a process of magmatic expansion, because the offshore crust is only 8-15 km thick, including sediment, and seismic reflection data do not depict horst and graben or half graben structures from which mechanical extension might be inferred. The Wilkes Land margin is similar to the Arabian example. The margin is about 150 km in width, the amount of upper crustal extension is too low to explain the change in sub-sediment crustal thickness from ??? 35 km on the mainland to < 10 km beneath the margin and reflectors in the deepest seismic sequence are nearly flat lying. Our model requires large volumes of melt in the early stages of continental rifting. The voluminous melt might be partly a product of nearby hot spots, such as Afar and partly the result of an initial period of partial fusion in the deep continental lithosphere under lower temperatures than ordinarily required by dry solidus conditions. ?? 1991.
NASA Astrophysics Data System (ADS)
Beniest, Anouk; Koptev, Alexander; Leroy, Sylvie; Burov, Evgueni
2017-04-01
We used 2D and 3D numerical models to investigate the impact of a single mantle plume on continental rifting and breakup processes. We varied the thermo-rheological structure of the continental lithosphere, its geometry and the initial plume position. Based on the results of our 2D experiments, three continental break-up modes can be distinguished: A) 'central' continental break-up, the break-up center is located directly above the original mantle anomaly position, B) 'shifted' break-up, the break-up center is 50 to 200 km displaced from the initial plume location and C) 'distant' break-up, due to convection and/or slab-subduction/delamination, the break-up center is considerably shifted (300 to 800 km) from the primary plume position. Our 3D model, with a laterally homogeneous initial setup also results in continental break-up with the axis of continental break-up hundreds of kilometers shifted from the original plume location. The model results show that the classical, 'central' view of mantle plume induced continental break-up is not the only mode of break-up. When considering a diversity of break-up styles, it is possible to explain a variety of observed geophysical and geological features. For example, the mantle material glued to the base of the lithosphere at shallower depths corresponds geometrically and location-wise to high-velocity/high-density bodies observed on seismic data below the thinned continental lithosphere and the transition zone of the South Atlantic domain. During migration, products of partial melting of the mantle material can move vertically to (shallow) lower crustal levels. They might resemble high density bodies observed at lower crustal levels inside continental crust with similar geometries observed with gravity modelling. Also, topographic variation form in the very early stages of rifting on the first impingement of upwelled plume material. These variations remain visible, as the final position of the spreading center is shifted from the point of impingement and can be interpreted as aborted rifts, observed along passive margins. Our modelling demonstrates that both simple and perfectly symmetric preliminary settings as well as complex initial setups can result in a variety of break-up systems.
An essential role for continental rifts and lithosphere in the deep carbon cycle
NASA Astrophysics Data System (ADS)
Foley, Stephen F.; Fischer, Tobias P.
2017-12-01
The continental lithosphere is a vast store for carbon. The carbon has been added and reactivated by episodic freezing and re-melting throughout geological history. Carbon remobilization can lead to significant variations in CO2 outgassing and release in the form of magmas from the continental lithosphere over geological timescales. Here we use calculations of continental lithospheric carbon storage, enrichment and remobilization to demonstrate that the role for continental lithosphere and rifts in Earth's deep carbon budget has been severely underestimated. We estimate that cratonic lithosphere, which formed 2 to 3 billion years ago, originally contained about 0.25 Mt C km-3. A further 14 to 28 Mt C km-3 is added over time from the convecting mantle and about 43 Mt C km-3 is added by plume activity. Re-melting focuses carbon beneath rifts, creating zones with about 150 to 240 Mt C km-3, explaining the well-known association of carbonate-rich magmatic rocks with rifts. Reactivation of these zones can release 28 to 34 Mt of carbon per year for the 40 million year lifetime of a continental rift. During past episodes of supercontinent breakup, the greater abundance of continental rifts could have led to short-term carbon release of at least 142 to 170 Mt of carbon per year, and may have contributed to the high atmospheric CO2 at several times in Earth's history.
NASA Astrophysics Data System (ADS)
Zhang, Letian
2017-09-01
The Asian continent was formed through the amalgamation of several major continental blocks that were formerly separated by the Paleo-Asian and Tethyan Oceans. During this process, the Asian continent underwent a long period of continental crustal growth and tectonic deformation, making it the largest and youngest continent on Earth. This paper presents a review of the application of geophysical electromagnetic methods, mainly the magnetotelluric (MT) method, in recent investigations of the diverse tectonic features across the Asian continent. The case studies cover the major continental blocks of Asia, the Central Asian orogenic system, the Tethyan orogenic system, as well as the western Pacific subduction system. In summary, most of the major continental blocks of Asia exhibit a three-layer structure with a resistive upper crust and upper mantle and a relatively conductive mid-lower crust. Large-scale conductors in the upper mantle were interpreted as an indication of lithospheric modification at the craton margins. The electrical structure of the Central Asian orogenic system is generally more resistive than the bordering continental blocks, whereas the Tethyan orogenic system displays more conductive, with pervasive conductors in the lower crust and upper mantle. The western Pacific subduction system shows increasing complexity in its electrical structure from its northern extent to its southern extent. In general, the following areas of the Asian continent have increasingly conductive lithospheric electrical structures, which correspond to a transition from the most stable areas to the most active tectonic areas of Asia: the major continental blocks, the accretionary Central Asian orogenic system, the collisional Tethyan orogenic system, and the western Pacific subduction system. As a key part of this review, a three-dimensional (3-D) model of the lithospheric electrical structure of a large portion of the Tibetan Plateau is presented and discussed in detail; the model indicates tearing of the underthrusting Indian slab as well as complex crustal conductor geometries, which are not obviously consistent with the hypothesis of a continuous, eastward channel flow. These studies have greatly enhanced our knowledge of the formation and deformation processes of the Asian continent. Lastly, future research to expand field data coverage, improve related techniques, and integrate data from other disciplines is suggested.
NASA Astrophysics Data System (ADS)
Pegram, William J.
1990-03-01
Geochemical analyses of dikes, sills, and volcanic rocks of the Mesozoic Appalachian Tholeiite (MAT) Province of the easternmost United States provide evidence that continental tholeiites are derived from continental lithospheric mantle sources that are genetically and geochronologically related to the overlying continental crust. Nineteen olivine tholeiites and sixteen quartz tholeiites from the length of this province, associated in space and time with the last opening of the Atlantic, display significant isotopic heterogeneity: initial ɛ Nd = +3.8 to -5.7; initial 87Sr/ 86Sr= 0.7044-0.7072; 206Pb/ 204Pb= 17.49-19.14; 207Pb/ 204Pb= 15.55-15.65; 208Pb/ 204Pb= 37.24-39.11. In Pb sbnd Pb space, the MAT define a linear array displaced above the field for MORB and thus resemble oceanic basalts with DUPAL Pb isotopic traits. A regression of this array yields a secondary Pb sbnd Pb isochron age of ≈ 1000 Ma (μ 1 = 8.26), similar to Sm/Nd isochrons from the southern half of the province and to the radiometric age of the Grenville crust underlying easternmost North America. The MAT exhibit significant trace element ratio heterogeneity (e.g., Sm/Nd= 0.226-0.327) and have trace element traits similar to convergent margin magmas [e.g., depletions of Nb and Ti relative to the rare earth elements on normalized trace element incompatibility diagrams, Ba/Nb ratios (19-75) that are significantly greater than those of MORB, and low TiO 2 (0.39-0.69%)]. Geochemical and geological considerations very strongly suggest that the MAT were not significantly contaminated during ascent through the continental crust. Further, isotope and trace element variations are not consistent with the involvement of contemporaneous MORB or OIB components. Rather, the materials that control the MAT incompatible element chemistry were derived from subcontinental lithospheric mantle. Thus: (1) the MAT/arc magma trace element similarities; (2) the Pb sbnd Pb and Sm/Nd isochron ages; and (3) the need for a method of introducing an ancient (> 2-3 Ga) Pb component into subcontinental mantle that cannot be much older than 1 Ga leads to a model whereby the MAT were generated by the melting of sediment-contaminated arc mantle that was incorporated into the continental lithosphere during arc activity preceding the Grenville Orogeny (≈ 1000 Ma).
NASA Astrophysics Data System (ADS)
Panter, K. S.; Castillo, P.; Krans, S. R.; Deering, C. D.; McIntosh, W. C.; Valley, J. W.; Kitajima, K.; Kyle, P. R.; Hart, S. R.; Blusztajn, J.
2017-12-01
Alkaline magmatism within the West Antarctic rift system in the NW Ross Sea (NWRS) includes a chain of shield volcanoes extending 260 km along the coast, numerous seamounts located on the continental shelf and hundreds more within the oceanic Adare Basin. Dating and geochemistry confirm that the seamounts are Pliocene‒Pleistocene in age and petrogenetically akin to the mostly Miocene volcanism on the continent as well as to a much broader region of alkaline volcanism that altogether encompasses areas of West Antarctica, Zealandia and Australia. All of these regions were contiguous prior to Gondwana breakup at 100 Ma, suggesting that the magmatism is interrelated. Mafic alkaline magmas (> 6 wt.% MgO) erupted across the transition from continent to ocean in the NWRS show a remarkable systematic increase in Si-undersaturation, P2O5, Sr, Zr, Nb and light rare earth element (LREE) concentrations, LREE/HREE and Nb/Y ratios. Radiogenic isotopes also vary with Nd and Pb ratios increasing and Sr ratios decreasing ocean-ward. The variations are not explained by crustal contamination or by changes in degree of mantle partial melting but are likely a function of the thickness and age of mantle lithosphere. The isotopic signature of the most Si-undersaturated and incompatible element enriched basalts best represent the composition of the sub-lithospheric source with low 87Sr/86Sr (≤ 0.7030) and δ18Oolivine (≤ 5.0 ‰), high 143Nd/144Nd ( 0.5130) and 206Pb/204Pb (≥ 20) ratios. The isotopic `endmember' is derived from recycled material and was transferred to the lithospheric mantle by small degree melts to form amphibole-rich metasomes. Later melting of the metasomes produced silica-undersaturated liquids that reacted with the surrounding peridotite. This reaction occurred to a greater extent as the melt traversed through thicker and older lithosphere continent-ward. Ancient or more recent ( 550‒100 Ma) subduction along the margin of Gondwana supplied the recycled subduction-related residue to the asthenosphere. Metasomatism was triggered by major episodes of extension beginning in the Late Cretaceous but did not produce alkaline magmatism directly. Significant delay of 30 to 20 Ma between extension and magmatism was likely controlled by conductive heating and the rate of thermal migration at the base of the lithosphere.
2D Geodynamic models of Microcontinent Formation
NASA Astrophysics Data System (ADS)
Tetreault, Joya; Buiter, Susanne
2013-04-01
Continental fragments (microcontinents and continental ribbons) are rifted-off blocks of relatively unthinned continental crust situated among the severely thinned crust of passive margins. The existence of these large crustal blocks would suggest that the passive margin containing them either underwent simultaneous differential rifting or multi-stage rifting in order to produce continental breakup and seafloor spreading in more than one location in the span of approximately 100 km. Also, because continental fragments do not occur on every passive margin, there must be something particular about the crust and/or lithosphere that led to the production of these features. Some proposed mechanisms for microcontinent and continental ribbon formation include (1) structural inheritance, (2) strain localization by serpentinized mantle or magmatic underplating, and (3) plume interaction with an active rift. Pre-existing weakness and inherited structural fabrics in typical continental crust from past tectonic events, such as varying rheology of accreted terranes and collisional suture zones, could be reactivated and serve as foci for deformation. The second theory is that strain is localized in certain regions by large amounts of weakened material that are either serpentinized mantle or mafic bodies underplating the thinned crust. Another possible process that could lead to continental fragment formation is magmatic influence of hot plume material that focuses in various regions, producing rifts in separate areas. The Jan Mayen and Seychelles microcontinents both have geological and plate reconstruction evidence to support the plume interaction theory. We use 2-D geodynamic experiments to assess the importance of structural inheritance, strain localization by regions of weakened mantle material, and contributions to rifting from plume material on producing crustal blocks surrounded by seafloor or thinned/hyperextended crust. Our preliminary results suggest that each of these three mechanisms, working alone, cannot produce concurrent or multi-stage differential thinning and continental break-up. We infer that multistage extension produced by a combination of these mechanisms could be necessary to produce microcontinents and continental ribbons.
NASA Astrophysics Data System (ADS)
Chappell, A. R.; Kusznir, N. J.
2005-12-01
The southern Rockall Trough, located to the west of Ireland and the UK in the NE Atlantic, has been interpreted as both a Mesozoic intra-continental rift basin (O'Reilly 1995) and a mid Cretaceous ocean basin (e.g. Roberts et al. 1980). The continental rift hypothesis (O'Reilly 1995) requires differential stretching of the upper and lower crust and syn-tectonic cooling to mechanically explain the formation of 5-6km thick continental crust and allow serpentinisation of the upper mantle. In this model serpentinisation of the upper mantle is needed to explain low upper mantle seismic velocities. The serpentinisation has also been required to fit gravity modelling of seismic transects to the observed gravity (e.g. Shannon 1999). We use satellite gravity inversion to map Moho depth and crustal thickness (Chappell & Kusznir 2005) for the Rockall Trough area. The satellite gravity inversion is a 3D spectral method incorporating a correction for the residual lithosphere thermal gravity anomaly present in continental rifted margin lithosphere and oceanic lithosphere. The gravity inversion predicts Moho depth and geometry in agreement with wide-angle seismic estimates without invoking the extensive serpentinisation of the upper-mantle needed by the intra-continental rift hypothesis (O'Reilly 1995). Recent seismic modelling (Morewood 2005) suggests that the thin crust in the southern Rockall Trough does not have the seismic layering associated with oceanic crust formed at intermediate or fast spreading rates. Also, wide-angle seismic data shows low upper mantle seismic velocities are present and spatially associated with the thin 5-6km crust (Shannon 1999). These observations are consistent with models and observations of oceanic crust formed at slow spreading ocean ridges (Cannat 1996, Jokat 2003). Such models are based on a proportion of melt being retained in the upper mantle, producing low seismic velocities, and a reduced supply of melt to the crust, resulting in thin seismic crust with some serpentinised mantle material included. We propose that the southern Rockall Trough was formed by continental break-up and a period of slow mid Cretaceous sea floor spreading rather than as an intra- continental rift basin. This work forms part of the NERC Margins iSIMM project. iSIMM investigators are from Liverpool and Cambridge Universities, Badley Geoscience & Schlumberger Cambridge Research supported by the NERC, the DTI, Agip UK, BP, Amerada Hess Ltd, Anadarko, Conoco-Phillips, Shell, Statoil and WesternGeco. The iSIMM team comprises NJ Kusznir, RS White, AM Roberts, PAF Christie, AR Chappell, J Eccles, RJ Fletcher, D Healy, N Hurst, ZC Lunnon, CJ Parkin, AW Roberts, LK Smith, VJ Tymms & R Spitzer.
NASA Astrophysics Data System (ADS)
Yin, Y.; Jin, S.; Wei, W.; Ye, G.; Dong, H.; Zhang, L.
2017-12-01
The Shanxi Rift being located within the interior of the North China Craton and far from any plate boundaries has undergone dramatic deformation and seismicity during the Cenozoic. In this study, we build 3-D lithospheric resistivity model by MT array data, across the Linfen Basin which is the most active segment of this intraplate rift. Accordingly, combined with previous rock physics experimental results, we estimate the fluid contents of lower crustal granulites and upper mantle peridotites and thereby the rough distribution of lithospheric rheological strength. On the two sides of Linfen Basin, lithosphere beneath the Precambrian terranes are of high strength. By contrast, a high-conductivity nearly upright lithosphere weak zone occurs beneath the eastern margin of the Linfen Basin and appears to be connected to the high-conductivity and therefore weak lower crust just beneath the basin, probably indicating a structure of asthenospheric upwelling causing the lower crustal decoupling through lateral drag forces. The distribution of lithospheric weak zones, brittle faults, ductile shear zones and detachment structures determined from our resistivity model is in good agreement with the 8-My stage model of a previous numerical geodynamic simulation for continental rift evolution by reconstruction of the South Atlantic plate. Accordingly, we suggest that the lithospheric weak zone could be a preexisting Precambrian shear zone and has reactivated as an asthenospheric upwelling conduit under the far-field effects of Indo- Asian collision or Pacific Plate subduction since the late Mesozoic. This process could have caused the upper crustal extension and rifting through the stress regulation by the plastic lower crust, which could be the mechanism of rift formation. In summary, we suggest the Linfen segment of the Shanxi Rift, is a simple shear mode rift in the incipient stage of rift evolution, rather than a mature pure shear mode one as determined by precious seismic imaging.
NASA Astrophysics Data System (ADS)
Gómez-Romeu, J.; Kusznir, N.; Manatschal, G.; Roberts, A.
2017-12-01
During the formation of magma-poor rifted margins, upper lithosphere thinning and stretching is achieved by extensional faulting, however, there is still debate and uncertainty how faults evolve during rifting leading to breakup. Seismic data provides an image of the present-day structural and stratigraphic configuration and thus initial fault geometry is unknown. To understand the geometric evolution of extensional faults at rifted margins it is extremely important to also consider the flexural response of the lithosphere produced by fault displacement resulting in footwall uplift and hangingwall subsidence. We investigate how the flexural isostatic response to extensional faulting controls the structural development of rifted margins. To achieve our aim, we use a kinematic forward model (RIFTER) which incorporates the flexural isostatic response to extensional faulting, crustal thinning, lithosphere thermal loads, sedimentation and erosion. Inputs for RIFTER are derived from seismic reflection interpretation and outputs of RIFTER are the prediction of the structural and stratigraphic consequences of recursive sequential faulting and sedimentation. Using RIFTER we model the simultaneous tectonic development of the Iberia-Newfoundland conjugate rifted margins along the ISE01-SCREECH1 and TGS/LG12-SCREECH2 seismic lines. We quantitatively test and calibrate the model against observed target data restored to breakup time. Two quantitative methods are used to obtain this target data: (i) gravity anomaly inversion which predicts Moho depth and continental lithosphere thinning and (ii) reverse post-rift subsidence modelling to give water and Moho depths at breakup time. We show that extensional faulting occurs on steep ( 60°) normal faults in both proximal and distal parts of rifted margins. Extensional faults together with their flexural isostatic response produce not only sub-horizontal exhumed footwall surfaces (i.e. the rolling hinge model) and highly rotated (60° or more) pre- and syn-rift stratigraphy, but also extensional allochthons underlain by apparent horizontal detachments. These detachment faults were never active in this sub-horizontal geometry; they were only active as steep faults which were isostatically rotated to their present sub-horizontal position.
NASA Astrophysics Data System (ADS)
Balling, N.
2000-12-01
Deep seismic profiling experiments in the region of NW Europe (including BABEL in the Gulf of Bothnia and the Baltic Sea, Mobil Search in the Skagerrak and MONA LISA in the North Sea) have demonstrated the existence of seismic reflectors in the mantle lithosphere beneath the Baltic Shield, the Tornquist Zone and the North Sea basins. Different sets of reflectors are observed, notably dipping and sub-horizontal. Dipping, distinct reflectivity, which may be followed from Moho/Moho offsets into the deeper parts of the continental lithosphere, is of special interest because of its tectonic and geodynamic significance. Such reflectivity, observed in several places, dipping 15-35° and covering a depth range of 30-90 km, constrained by surface geological information and radiometric age data, is interpreted to represent fossil, ancient subduction and collison zones. Subduction slabs with remnant oceanic basaltic crust transformed into eclogite is assumed, in particular, to generate deep seismic reflectivity. Deep seismic evidence is presented for subduction, crustal accretion and collision processes with inferred ages from 1.9 to 1.1 Ga from the main structural provinces within the Baltic Shield including Svecofennian, Transscandinavian Igneous Belt, Gothian and Sveconorwegian. Along the southwestern border of Baltica (in the southeastern North Sea) south-dipping crustal and sub-crustal reflectivity is observed down to a depth of about 90 km, close to the lithosphere-asthenosphere boundary. These structures are interpreted to reveal a lithosphere-scale Caledonian (ca. 440 Ma) suture zone resulting from the closure of the Tornquist Sea/Thor Ocean and the amalgamation of Baltica and Eastern Avalonia. These results demonstrate that deep structures within the continental lithosphere, originating from early crust-forming plate tectonic processes, may survive for a very long time and form seismic marker reflectivity of great value in geotectonic interpretation and reconstructions. Furthermore, the depth of dipping reflectivity from ancient structures, such as subduction slabs, significantly contributes information about the thickness of the coherent lithosphere. The seismic observations and our interpretations support plate tectonic and structural models, suggesting crustal growth and amalgamation of tectonic units in the Baltic Shield and along its southwestern margin generally from the northeast (in present-day orientation) towards the southwest and west, likely to result in regional deep structural and tectonic age zonations.
NASA Astrophysics Data System (ADS)
Pearce, J. A.; Parkinson, I. J.
2003-12-01
It is a common assumption that ophiolites and oceanic lithosphere attain their structures and compositions through partial melting of mantle in a single tectonic setting and with a simple petrogenetic relationship between all the units. There is, however, growing evidence that some oceanic lithosphere and ophiolite complexes contain a record of a polygenetic history of formation. This may be apparent in crustal units (complex lava stratigraphies or cross-cutting dykes and gabbros) but the best evidence is recorded in the chrome spinel compositions of residual mantle. Among the most effective plots is that of oxygen fugacity, calculated from accurately-determined ferric iron concentrations, against Cr-number. In the ocean basins, forearc peridotites from the Izu-Bonin Mariana, Tonga and South Sandwich systems may be of two types. In the first, both peridotites and dunites have similar oxygen fugacities and a small range in Cr-number. We interpret these as mongenetic. In the second, the peridotites have low oxygen fugacities and moderate Cr-number and trend towards dunites with high oxygen fugacities and high Cr-number. We interpret these as representing mid-ocean ridge mantle lithosphere, which existed prior to a subduction event and was subsequently invaded by subduction-related melts. The time-gap between the ridge and subduction events may be millions of years or, in the case of subduction initiation, represent a continuum. At passive continental margins, such as the Galicia margin, the origin may again be monogenetic or polygenetic. In the latter case, the mantle peridotites may exhibit a trend from low Cr-number to moderate Cr-number and decreasing oxygen fugacity. We interpret these as representing orogenic peridotite uplifted during an amagmatic extensional event and invaded by MORB magma during subsequent spreading. As with forearc peridotites, the time gap between these two events may be large or there be a continuum. A surprising number of ophiolites exhibit this polygenetic character, especially those which may be linked to subduction initiation (such as the northern Semail ophiolite, Pindos, Zambales) or to ocean opening (e.g. Western Mediterranean ophiolites, Othris, Lizard). And even in essentially monogenetic ophiolites, such as the Troodos Massif, there are subtle variations that may be related to ridge jumps or other local processes. These observations raise questions over the extent to which oceanic lithosphere really is the product of 100% extension or whether it may sometimes contain relics of a more complex history.
NASA Astrophysics Data System (ADS)
Kimura, Jun-Ichi; Sakuyama, Tetsuya; Miyazaki, Takashi; Vaglarov, Bogdan S.; Fukao, Yoshio; Stern, Robert J.
2018-02-01
Intra-plate basalts of 35-0 Ma in East Eurasia formed in a broad backarc region above the stagnant Pacific Plate slab in the mantle transition zone. These basalts show regional-scale variations in Nd-Hf isotopes. The basalts with the most radiogenic Nd-Hf center on the Shandong Peninsula with intermediate Nd-Hf at Hainan and Datong. The least radiogenic basalts occur in the perimeters underlain by the thick continental lithosphere. Shandong basalts possess isotopic signatures of the young igneous oceanic crust of the subducted Pacific Plate. Hainan and Datong basalts have isotopic signatures of recycled subduction materials with billions of years of storage in the mantle. The perimeter basalts have isotopic signatures similar to pyroxenite xenoliths from the subcontinental lithospheric mantle beneath East Eurasia. Hainan basalts exhibit the highest mantle potential temperature (Tp), while the Shandong basalts have the lowest Tp. We infer that a deep high-Tp plume interacted with the subducted Pacific Plate slab in the mantle transition zone to form a local low-Tp plume by entraining colder igneous oceanic lithosphere. We infer that the subducted Izanagi Plate slab, once a part of the Pacific Plate mosaic, broke off from the Pacific Plate slab at 35 Ma to sink into the lower mantle. The sinking Izanagi slab triggered the plume that interacted with the stagnant Pacific slab and caused subcontinental lithospheric melting. This coincided with formation of the western Pacific backarc marginal basins due to Pacific Plate slab rollback and stagnation.
NASA Astrophysics Data System (ADS)
Behn, M. D.; Conrad, C. P.; Silver, P. G.
2005-12-01
Shear flow in the asthenosphere tends to align olivine crystals in the direction of shear, producing a seismically anisotropic asthenosphere that can be detected using a number of seismic techniques (e.g., shear-wave splitting (SWS) and surface waves). In the ocean basins, where the asthenosphere has a relatively uniform thickness and lithospheric anisotropy appears to be small, observed azimuthal anisotropy is well fit by asthenospheric shear flow in global flow models driven by a combination of plate motions and mantle density heterogeneity. In contrast, beneath the continents both the lithospheric ceiling and asthenospheric thickness may vary considerably across cratonic regions and ocean-continent boundaries. To examine the influence of a continental lithosphere with variable thickness on predictions of continental seismic anisotropy, we impose lateral variations in lithospheric viscosity in global models of mantle flow driven by plate motions and mantle density heterogeneity. For the North American continent, the Farallon slab descends beneath a deep cratonic root, producing downwelling flow in the upper mantle and convergent flow beneath the cratonic lithosphere. We evaluate both the orientation of the predicted azimuthal anisotropy and the depth dependence of radial anisotropy for this downwelling flow and find that the inclusion of a strong continental root provides an improved fit to observed SWS observations beneath the North American craton. Thus, we hypothesize that at least some continental anisotropy is associated with sub-lithospheric viscous shear, although fossil anisotropy in the lithospheric layer may also contribute significantly. Although we do not observe significant variations in the direction of predicted anisotropy with depth, we do find that the inclusion of deep continental roots pushes the depth of the anisotropy layer deeper into the upper mantle. We test several different models of laterally-varying lithosphere and asthenosphere viscosity. These models can be used to separate the contributions of asthenospheric flow and lithospheric fossil fabric in observations of continental anisotropy.
Goldfarb, Richard J.; Anderson, Eric; Hart, Craig J.R.
2013-01-01
The Pebble Cu-Au-Mo deposit in southwestern Alaska, containing the largest gold resource of any known porphyry in the world, developed in a tectonic setting significantly different from that of the present-day. It is one of a series of metalliferous middle Cretaceous porphyritic granodiorite, quartz monzonite, and diorite bodies, evolved from lower crust and metasomatized lithospheric mantle melts, which formed along much of the length of the North American craton suture with the Peninsular-Alexander-Wrangellia arc. The porphyry deposits were emplaced within the northernmost two of a series of ca. 130 to 80 Ma flysch basins that define the suture, as well as into arc rocks immediately seaward of the two basins. Deposits include the ca. 100 to 90 Ma Pebble, Neacola, and other porphyry prospects along the Kahiltna basin-Peninsula terrane boundary, and the ca. 115 to 105 Ma Baultoff, Carl Creek, Horsfeld, Orange Hill, Bond Creek, and Chisna porphyries along the Nutzotin basin-Wrangellia terrane boundary.The porphyry deposits probably formed along the craton margin more than 1,000 km to the south of their present latitude. Palinspastic reconstructions of plate kinematics from this period are particularly difficult because magmatism overlaps the 119 to 83 Ma Cretaceous Normal Superchron, a period when sea-floor magnetic data are lacking. Our favored scenario is that ore formation broadly overlaps the cessation of sedimentation and contraction and the transition to a transpressional continental margin regime, such that the remnant ocean basins were converted to strike-slip basins. The basins and outboard Peninsular-Alexander-Wrangellia composite superterrane, which are all located seaward of the deep crustal Denali-Farewell fault system, were subjected to northerly dextral transpression for as long as perhaps 50 m.y., beginning at ca. 95 ± 10 Ma. The onset of this transpression was marked by development of the mineralized bodies along fault segments on the seaward side of the basins.Geochemical and radiogenic isotopic data for igneous rocks associated with the Pebble porphyry deposit suggest continuous melt derivation from enriched lithosphere of a recently metasomatized mantle. These geochemical characteristics, coupled with the arc-continent-related collisional setting, suggest that lithospheric thickening and postcollisional lithospheric melting are the most likely cause of the ore-related magmatism. Subsequent to translation of the Alaskan margin terranes and early Tertiary oroclinal bending of Alaska, the northernmost Kahiltna basin and the Pebble deposit, as well as the other porphyry systems, reached their present-day locations along southern Alaska.
Lithospheric Structure Beneath Taiwan From Sp Converted Waves
NASA Astrophysics Data System (ADS)
Glasgow, D.; McGlashan, N.; Brown, L.
2006-12-01
Taiwan is the product of three dimensionally complex interaction between the Eurasian Plate (EP) and the Philippine Sea plate (PSP), with the EP subducting eastward beneath the PSP in southern Taiwan while the PSP subducts northward beneath the EP in northern Taiwan. The structural emplacement of Philippine Arc lithosphere onto Chinese passive margin lithosphere is an exemplar of continental amalgamation, yet there are relatively few contraints on the geometry of lithosphere involved at depth. We have used teleseismic data recorded by the Broadband Array for Taiwan Seismology (BATS) to compute S-to-p wave receiver functions for the Taiwan region to provide new constraints on deep geometries. Moho conversions provide independent new estimates of crustal thickness, which vary from 35 to 55 km across the island in agreement with previous P to S conversion studies and local tomography. More significantly, our results suggest that the lithosphere- asthenosphere boundary (LAB) varies in depth from ca 140 km beneath northeastern Taiwan to ca 120 km beneath central Taiwan to perhaps less than 80 km beneath southern Taiwan. We attribute this along strike variation to the depression and decapitation of the Eurasian plate in the transition to northward subduction of the PSP.
NASA Astrophysics Data System (ADS)
Stab, Martin; Leroy, Sylvie; Bellahsen, Nicolas; Pik, Raphaël; Ayalew, Dereje; Yirgu, Gezahegn; Khanbari, Khaled
2017-04-01
The Afro-Arabian rift system is characterized by complex interactions between magmatism and rifting, leading to long-term segmentation of the associated continental margins. However, past studies focused on specific rift segments and no attempt has yet been made to reconcile them into a single comprehensive geodynamic model. To address this, we present interpretations of seismic profiles offshore the Eritrea-Yemeni margins in the southern Red Sea and the Yemeni margin in the Gulf of Aden and reassess the regional geodynamic evolution including the new tectonic evolution of the Central Afar Magmatic margin. We point out the role of two major transform zones in structuring the volcanism and faulting of the Red Sea-Afar-Aden margins. We show that those transform zones not only control the present-day rift organization, but were also active since the onset of rifting in Oligocene times. Early syn-rift transform zones control the emplacement and the development of seaward-dipping-reflector wedges immediately after the Continental Flood basalts (30 Ma), and are closely associated with mantle plume melts in the course of the segment extension. The margins segmentation thus appears to reflect the underlying mantle dynamics and thermal anomaly, which have directly influenced the style of rifting (wide vs. narrow rift), in controlling the development of preferential lithospheric thinning and massive transfer of magmas in the crust.
DELP Symposium: Tectonics of eastern Asia and western Pacific Continental Margin
NASA Astrophysics Data System (ADS)
Eastern Asia and the western Pacific make up a broad region of active plate tectonic interaction. The area is a natural laboratory for studying the processes involved in the origin and evolution of volcanic island arcs, marginal basins, accretionary prisims, oceanic trenches, accreted terranes, ophiolite emplacement, and intracontinental deformation. Many of our working concepts of plate tectonics and intraplate deformation were developed in this region, even though details of the geology and geophysics there must be considered of a reconnaissance nature.During the past few years researchers have accumulated a vast amount of new and detailed information and have developed a better understanding of the processes that have shaped the tectonic elements in this region. To bring together scientists from many disciplines and to present the wide range of new data and ideas that offer a broader perspective on the interrelations of geological, geochemical, geophysical and geodetic studies, the symposium Tectonics of Eastern Asia and Western Pacific Continental Margin was held December 13-16, 1988, at the Tokyo Institute of Technology in Japan, under the auspicies of DELP (Dynamics and Evolution of the Lithosphere Project).
NASA Astrophysics Data System (ADS)
Chen, Ming; Fang, Jian; Cui, Ronghua
2018-02-01
This work aims to investigate the crustal and lithospheric mantle thickness of the South China Sea (SCS) and adjacent regions. The crust-mantle interface, average crustal density, and lithospheric mantle base are calculated from free-air gravity anomaly and topographic data using an iterative inversion method. We construct a three-dimensional lithospheric model with different hierarchical layers. The satellite-derived gravity is used to invert the average crustal density and Moho (crust-mantle interface) undulations. The average crustal density and LAB (lithosphere-asthenosphere boundary) depths are further adjusted by topographic data under the assumption of local isostasy. The average difference in Moho depths between this study and the seismic measurement results is <1.5 km. The results show that in oceanic regions, the Moho depths are 7.5-30 km and the LAB depths are 65-120 km. The lithospheric thickness of the SCS basin and the adjacent regions increases from the sea basin to the continental margin with a large gradient in the ocean-continent transition zones. The Moho depths of conjugate plots during the opening of SCS, Zhongsha Islands and Reed Bank, reveal the asymmetric spreading pattern of SCS seafloor spreading. The lithospheric thinning pattern indicate two different spreading directions during seafloor spreading, which changed from N-S to NW-SE after the southward transition of the spreading axis. The lithosphere of the SCS basin and adjacent regions indicate that the SCS basin is a young basin with a stable interior lithosphere.
Geodynamic modelling of the rift-drift transition: Application to the Red Sea
NASA Astrophysics Data System (ADS)
Fierro, E.; Schettino, A.; Capitanio, F. A.; Ranalli, G.
2017-12-01
The onset of oceanic accretion after a rifting phase is generally accompanied by an initial fast pulse of spreading in the case of volcanic margins, such that the effective spreading rate exceeds the relative far-field velocity between the two plates for a short time interval. This pulse has been attributed to edge-driven convention (EDC), although our numerical modelling shows that the shear stress at the base of the lithosphere cannot exceed 1 MPa. In general, we have developed a 2D numerical model of the mantle instabilities during the rifting phase, in order to determine the geodynamic conditions at the rift-drift transition. The model was tested using Underworld II software, variable rheological parameters, and temperature and stress-dependent viscosity. Our results show an increase of strain rates at the top of the lithosphere with the lithosphere thickness as well as with the initial width of the margin up to 300 km. Beyond this value, the influence of the initial rift width can be neglected. An interesting outcome of the numerical model is the existence of an axial zone characterized by higher strain rates, which is flanked by two low-strain stripes. As a consequence, the model suggests the existence of an area of syn-rift compression within the rift valley. Regarding the post-rift phase, we propose that at the onset of a seafloor spreading, a phase of transient creep allows the release of the strain energy accumulated in the mantle lithosphere during the rifting phase, through anelastic relaxation. Then, the conjugated margins would be subject to post-rift contraction and eventually to tectonic inversion of the rift structures. To explore the tenability of this model, we introduce an anelastic component in the lithosphere rheology, assuming both the classical linear Kelvin-Voigt rheology and a non-linear Kelvin model. The non-linear model predicts viable relaxation times ( 1-2Myrs) to explain the post-rift tectonic inversion observed along the Arabian continental margin and the episodic initial fast seafloor spreading in the central Red Sea, where the role of EDC has been invoked.
Nokleberg, W.J.; Richter, D.H.
2007-01-01
Several narrow terranes occur along the Denali fault in the Eastern and Central Alaska Range in Southern Alaska. These terranes are the Aurora Peak, Cottonwood Creek, Maclaren, Pingston, and Windy terranes, and a terrane of ultramafic and associated rocks. Exterior to the narrow terranes to the south is the majorWrangellia island arc composite terrane, and to the north is the major Yukon Tanana metamorphosed continental margin terrane. Overlying mainly the northern margin of the Wrangellia composite terrane are the Kahiltna overlap assemblage to the west, and the Gravina- Nutzotin-Gambier volcanic-plutonic- sedimentary belt to the east and southeast. The various narrow terranes are interpreted as the result of translation of fragments of larger terranes during two major tectonic events: (1) Late Jurassic to mid-Cretaceous accretion of the Wrangellia island arc composite terrane (or superterrane composed of the Wrangellia, Peninsular, and Alexander terranes) and associated subduction zone complexes; and (2) starting in about the Late Cretaceous, dextral transport of the Wrangellia composite terrane along the Denali fault. These two major tectonic events caused: (1) entrapment of a lens of oceanic lithosphere along the suture belt between the Wrangellia composite terrane and the North American Craton Margin and outboard accreted terranes to form the ultramafic and mafic part of the terrane of ultramafic and associated rocks, (2) subsequent dextral translation along the Denali fault of the terrane of ultramafic and associated rocks, (3) dextral translation along the Denali fault of the Aurora Peak, Cottonwood Creek, and Maclaren and continental margin arc terranes from part of the Coast plutonic-metamorphic complex (Coast-North Cascade plutonic belt) in the southwest Yukon Territory or Southeastern Alaska, (4) dextral translation along the Denali fault of the Pingston passive continental margin from a locus along the North American Continental Margin, and (5) formation and dextral transport along the Denali fault of the m??lange of the Windy terrane from fragments of the Gravina-Nutzotin-Gambier volcanic-plutonic-sedimentary belt and from the North American Continental Margin. Copyright ?? 2007 The Geological Society of America.
NASA Astrophysics Data System (ADS)
Goswami, A.; Olson, P. L.; Hinnov, L. A.; Gnanadesikan, A.
2015-04-01
We present a method for reconstructing global ocean bathymetry that uses a plate cooling model for the oceanic lithosphere, the age distribution of the oceanic crust, global oceanic sediment thicknesses, plus shelf-slope-rise structures calibrated at modern active and passive continental margins. Our motivation is to reconstruct realistic ocean bathymetry based on parameterized relationships of present-day variables that can be applied to global oceans in the geologic past, and to isolate locations where anomalous processes such as mantle convection may affect bathymetry. Parameters of the plate cooling model are combined with ocean crustal age to calculate depth-to-basement. To the depth-to-basement we add an isostatically adjusted, multicomponent sediment layer, constrained by sediment thickness in the modern oceans and marginal seas. A continental shelf-slope-rise structure completes the bathymetry reconstruction, extending from the ocean crust to the coastlines. Shelf-slope-rise structures at active and passive margins are parameterized using modern ocean bathymetry at locations where a complete history of seafloor spreading is preserved. This includes the coastal regions of the North, South, and Central Atlantic Ocean, the Southern Ocean between Australia and Antarctica, and the Pacific Ocean off the west coast of South America. The final products are global maps at 0.1° × 0.1° resolution of depth-to-basement, ocean bathymetry with an isostatically adjusted, multicomponent sediment layer, and ocean bathymetry with reconstructed continental shelf-slope-rise structures. Our reconstructed bathymetry agrees with the measured ETOPO1 bathymetry at most passive margins, including the east coast of North America, north coast of the Arabian Sea, and northeast and southeast coasts of South America. There is disagreement at margins with anomalous continental shelf-slope-rise structures, such as around the Arctic Ocean, the Falkland Islands, and Indonesia.
NASA Astrophysics Data System (ADS)
Stippich, Christian; Krob, Florian; Glasmacher, Ulrich Anton; Hackspacher, Peter Christian
2017-04-01
The aim of the research is to quantify the long-term evolution of the western South Atlantic passive continental margin (SAPCM) in SE-Brazil. Excellent onshore outcrop conditions and extensive pre-rift to post-rift archives between São Paulo and Laguna allow a high precision quantification of exhumation, and rock uplift rates, influencing physical parameters, long-term acting forces, and process-response systems. The research integrates published (Karl et al., 2013) and partly published thermochronological data from Brazil, and test lately published new concepts on causes of long-term landscape and lithospheric evolution in southern Brazil. Six distinct lithospheric blocks (Laguna, Florianópolis, Curitiba, Ilha Comprida, Peruibe and Santos), which are separated by fracture zones (Karl et al., 2013) are characterized by individual thermochronological age spectra. Furthermore, the thermal evolution derived by numerical modeling indicates variable post-rift exhumation histories of these blocks. In this context, we will provide information on the causes for the complex exhumation history of the Florianópolis, and adjacent blocks. Following up on our latest publication (Braun et al., 2016) regarding the effect of variability in rock thermal conductivity on exhumation rate estimates we performed a sensitivity analysis to quantify the effect of a differentiated lithospheric crust on the thermal evolution of the Florianópolis block versus exhumation rates estimated from modelling a lithospheric uniform crustal block. The long-term landscape evolution models with process rates were computed with the software code PECUBE (Braun, 2003; Braun et al., 2012). Testing model solutions obtained for a multidimensional parameter space against the real thermochronological and geomorphological data set, the most likely combinations of parameters, values, and rates can be constrained. References Braun, J., 2003. Pecube: A new finite element code to solve the 3D heat transport equation including the effects of a time-varying, finite amplitude surface topography. Computers and Geosciences, v.29, pp.787-794. Braun, J., Stippich, C., Glasmacher, U. A., 2016. The effect of variability in rock thermal conductivity on exhumation rate estimates from thermochronological data. Tectonophysics, v.690, pp.288-297 Braun, J., van der Beek, P., Valla, P., Robert, X., Herman, F., Goltzbacj, C., Pedersen, V., Perry, C., Simon-Labric, T., Prigent, C., 2012. Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE. Tectonophysics, v.524-525, pp.1-28. Karl, M., Glasmacher, U.A., Kollenz, S., Franco-Magalhaes, A.O.B., Stockli, D.F., Hackspacher, P., 2013. Evolution of the South Atlantic passive continental margin in southern Brazil derived from zircon and apatite (U-Th-Sm)/He and fission-track data. Tectonophysics, Volume 604, Pages 224-244.
Regional magnetic anomaly constraints on continental rifting
NASA Technical Reports Server (NTRS)
Vonfrese, R. R. B.; Hinze, W. J.; Olivier, R.; Bentley, C. R.
1985-01-01
Radially polarized MAGSAT anomalies of North and South America, Europe, Africa, India, Australia and Antarctica demonstrate remarkably detailed correlation of regional magnetic lithospheric sources across rifted margins when plotted on a reconstruction of Pangea. These major magnetic features apparently preserve their integrity until a superimposed metamorphoric event alters the magnitude and pattern of the anomalies. The longevity of continental scale magnetic anomalies contrasts markedly with that of regional gravity anomalies which tend to reflect predominantly isostatic adjustments associated with neo-tectonism. First observed as a result of NASA's magnetic satellite programs, these anomalies provide new and fundamental constraints on the geologic evolution and dynamics of the continents and oceans. Accordingly, satellite magnetic observations provide a further tool for investigating continental drift to compliment other lines of evidence in paleoclimatology, paleontology, paleomagnetism, and studies of the radiometric ages and geometric fit of the continents.
NASA Astrophysics Data System (ADS)
Planert, Lars; Behrmann, Jan; Jokat, Wilfried; Fromm, Tanja; Ryberg, Trond; Weber, Michael; Haberland, Christian
2017-10-01
Voluminous magmatism during the South Atlantic opening has been considered as a classical example for plume related continental breakup. We present a study of the crustal structure around Walvis Ridge, near the intersection with the African margin. Two wide-angle seismic profiles were acquired. One is oriented NNW-SSE, following the continent-ocean transition and crossing Walvis Ridge. A second amphibious profile runs NW-SE from the Angola Basin into continental Namibia. At the continent-ocean boundary (COB) the mafic crust beneath Walvis Ridge is up to 33 km thick, with a pronounced high-velocity lower crustal body. Towards the south there is a smooth transition to 20-25 km thick crust underlying the COB in the Walvis Basin, with a similar velocity structure, indicating a gabbroic lower crust with associated cumulates at the base. The northern boundary of Walvis Ridge towards the Angola Basin shows a sudden change to oceanic crust only 4-6 km thick, coincident with the projection of the Florianopolis Fracture Zone, one of the most prominent tectonic features of the South Atlantic ocean basin. In the amphibious profile the COB is defined by a sharp transition from oceanic to rifted continental crust, with a magmatic overprint landward of the intersection of Walvis Ridge with the Namibian margin. The continental crust beneath the Congo Craton is 40 km thick, shoaling to 35 km further SE. The velocity models show that massive high-velocity gabbroic intrusives are restricted to a narrow zone directly underneath Walvis Ridge and the COB in the south. This distribution of rift-related magmatism is not easily reconciled with models of continental breakup following the establishment of a large, axially symmetric plume in the Earth's mantle. Rift-related lithospheric stretching and associated transform faulting play an overriding role in locating magmatism, dividing the margin in a magma-dominated southern and an essentially amagmatic northern segment.
Insights from 3D numerical simulations on the dynamics of the India-Asia collision zone
NASA Astrophysics Data System (ADS)
Pusok, A. E.; Kaus, B.; Popov, A.
2013-12-01
The dynamics of the India-Asia collision zone remains one of the most remarkable topics of the current research interest: the transition from subduction to collision and uplift, followed by the rise of the abnormally thick Tibetan plateau, and the deformation at its Eastern and Western syntaxes, are processes still not fully understood. Models that have addressed this topic include wholescale underthrusting of Indian lithospheric mantle under Tibet, distributed homogeneous shortening or the thin-sheet model, slip-line field model for lateral extrusion or lower crustal flow models for the exhumation of the Himalayan units and lateral spreading of the Tibetan plateau. Of these, the thin-sheet model has successfully illustrated some of the basic physics of continental collision and has the advantage of a 3D model being reduced to 2D, but one of its major shortcomings is that it cannot simultaneously represent channel flow and gravitational collapse of the mantle lithosphere, since these mechanisms require the lithosphere to interact with the underlying mantle, or to have a vertically non-homogeneous rheology. As a consequence, 3D models are emerging as powerful tools to understand the dynamics of coupled systems. However, because of yet recent developments and various complexities, the current 3D models simulating the dynamics of continent collision zones have relied on certain explicit assumptions, such as replacing part of the asthenosphere with various types of boundary conditions that mimic the effect of mantle flow, in order to focus on the lithospheric/crustal deformation. Here, we employ the parallel 3D code LaMEM (Lithosphere and Mantle Evolution Model), with a finite difference staggered grid solver, which is capable of simulating lithospheric deformation while simultaneously taking mantle flow and a free surface into account. We present qualitative results on lithospheric and upper-mantle scale simulations in which the Indian lithosphere is subducted and/or indented into Asia. We investigate the way deep processes affect continental tectonics at convergent margins, addressing the role the continent subduction and indentation plays on the development of continental tectonics during convergence and we discuss the implications these offer for the Asian tectonics. Acknowledgements: Funding was provided by the European Research Council under the European Community's Seventh Framework Program (FP7/2007-2013) / ERC Grant agreement #258830. Numerical computations have been performed on MOGON (ZDV Mainz computing center) and JUQUEEN (Jülich high-performance computing center).
The South China sea margins: Implications for rifting contrasts
Hayes, D.E.; Nissen, S.S.
2005-01-01
Implications regarding spatially complex continental rifting, crustal extension, and the subsequent evolution to seafloor spreading are re-examined for the northern and southern-rifted margins of the South China Sea. Previous seismic studies have shown dramatic differences in the present-day crustal thicknesses as the manifestations of the strain experienced during the rifting of the margin of south China. Although the total crustal extension is presumed to be the same along the margin and adjacent ocean basin, the amount of continental crustal extension that occurred is much less along the east and central segments of the margin than along the western segment. This difference was accommodated by the early formation of oceanic crust (creating the present-day South China Sea basin) adjacent to the eastern margin segment while continued extension of continental crust was sustained to the west. Using the observed cross-sectional areas of extended continental crust derived from deep penetration seismics, two end-member models of varying rift zone widths and varying initial crustal thicknesses are qualitatively examined for three transects. Each model implies a time difference in the initiation of seafloor spreading inferred for different segments along the margin. The two models examined predict that the oceanic crust of the South China Sea basin toward the west did not begin forming until sometime between 6-12 my after its initial formation (???32 Ma) toward the east. These results are compatible with crustal age interpretations of marine magnetic anomalies. Assuming rifting symmetry with conjugate margin segments now residing along the southern portions of the South China Sea basin implies that the total width of the zone of rifting in the west was greater than in the east by about a factor of two. We suggest the most likely causes of the rifting differences were east-west variations in the rheology of the pre-rift crust and associated east-west variations in the thermal structure of the pre-rift lithosphere. The calculated widths of rifted continental crust for the northern and southern margins, when combined with the differential widths of seafloor generated during the seafloor spreading phase, indicate the total crustal extension that occurred is about 1100 km and is remarkably consistent to within ???10% for all three (eastern, central, western) segments examined. ?? 2005 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cowie, L.; Kusznir, N. J.; Horn, B.
2013-12-01
Knowledge of ocean-continent transition (OCT) structure, continent-ocean boundary (COB) location and magmatic type are of critical importance for understanding rifted continental margin formation processes and in evaluating petroleum systems in deep-water frontier oil and gas exploration. The OCT structure, COB location and magmatic type of the SE Brazilian and S Angolan rifted continental margins are much debated; exhumed and serpentinised mantle have been reported at these margins. Integrated quantitative analysis using deep seismic reflection data and gravity inversion have been used to determine OCT structure, COB location and magmatic type for the SE Brazilian and S Angolan margins. Gravity inversion has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning. Residual Depth Anomaly (RDA) analysis has been used to investigate OCT bathymetric anomalies with respect to expected oceanic bathymetries and subsidence analysis has been used to determine the distribution of continental lithosphere thinning. These techniques have been validated on the Iberian margin for profiles IAM9 and ISE-01. In addition a joint inversion technique using deep seismic reflection and gravity anomaly data has been applied to the ION-GXT BS1-575 SE Brazil and ION-GXT CS1-2400 S Angola. The joint inversion method solves for coincident seismic and gravity Moho in the time domain and calculates the lateral variations in crustal basement densities and velocities along profile. Gravity inversion, RDA and subsidence analysis along the S Angolan ION-GXT CS1-2400 profile has been used to determine OCT structure and COB location. Analysis suggests that exhumed mantle, corresponding to a magma poor margin, is absent beneath the allochthonous salt. The thickness of earliest oceanic crust, derived from gravity and deep seismic reflection data is approximately 7km. The joint inversion predicts crustal basement densities and seismic velocities which are slightly less than expected for 'normal' oceanic crust. The difference between the sediment corrected RDA and that predicted from gravity inversion crustal thickness variation implies that this margin is experiencing ~300m of anomalous uplift attributed to mantle dynamic uplift. Gravity inversion, RDA and subsidence analysis have also been used to determine OCT structure and COB location along the ION-GXT BS1-575 profile, crossing the Sao Paulo Plateau and Florianopolis Ridge of the SE Brazilian margin. Gravity inversion, RDA and subsidence analysis predict the COB to be located SE of the Florianopolis Ridge. Analysis shows no evidence for exhumed mantle on this margin profile. The joint inversion technique predicts normal oceanic basement seismic velocities and densities and beneath the Sao Paulo Plateau and Florianopolis Ridge predicts crustal basement thicknesses between 10-15km. The Sao Paulo Plateau and Florianopolis Ridge are separated by a thin region of crustal basement beneath the salt interpreted as a regional transtensional structure. Sediment corrected RDAs and gravity derived 'synthetic' RDAs are of a similar magnitude on oceanic crust, implying negligible mantle dynamic topography.
A numerical investigation of continental collision styles
NASA Astrophysics Data System (ADS)
Ghazian, Reza Khabbaz; Buiter, Susanne J. H.
2013-06-01
Continental collision after closure of an ocean can lead to different deformation styles: subduction of continental crust and lithosphere, lithospheric thickening, folding of the unsubducted continents, Rayleigh-Taylor (RT) instabilities and/or slab break-off. We use 2-D thermomechanical models of oceanic subduction followed by continental collision to investigate the sensitivity of these collision styles to driving velocity, crustal and lithospheric temperature, continental rheology and the initial density difference between the oceanic lithosphere and the asthenosphere. We find that these parameters influence the collision system, but that driving velocity, rheology and lithospheric (rather than Moho and mantle) temperature can be classified as important controls, whereas reasonable variations in the initial density contrast between oceanic lithosphere and asthenosphere are not necessarily important. Stable continental subduction occurs over a relatively large range of values of driving velocity and lithospheric temperature. Fast and cold systems are more likely to show folding, whereas slow and warm systems can experience RT-type dripping. Our results show that a continent with a strong upper crust can experience subduction of the entire crust and is more likely to fold. Accretion of the upper crust at the trench is feasible when the upper crust has a moderate to weak strength, whereas the entire crust can be scraped-off in the case of a weak lower crust. We also illustrate that weakening of the lithospheric mantle promotes RT-type of dripping in a collision system. We use a dynamic collision model, in which collision is driven by slab pull only, to illustrate that adjacent plates can play an important role in continental collision systems. In dynamic collision models, exhumation of subducted continental material and sediments is triggered by slab retreat and opening of a subduction channel, which allows upward flow of buoyant materials. Exhumation continues after slab break-off by reverse motion of the subducting plate (`eduction') caused by the reduced slab pull. We illustrate how a simple force balance of slab pull, slab push, slab bending, viscous resistance and buoyancy can explain the different collision styles caused by variations in velocity, temperature, rheology, density differences and the interaction with adjacent plates.
NASA Astrophysics Data System (ADS)
Doherty, C.; Class, C.; Goldstein, S. L.; Shirey, S. B.; Martin, A. P.; Cooper, A. F.; Berg, J. H.; Gamble, J. A.
2012-12-01
In order to understand the dynamic response of the subcontinental lithospheric mantle (SCLM) to rifting, it is important to be able to distinguish the geochemical signatures of SCLM vs. asthenosphere. Recent work demonstrates that unradiogenic Os isotope ratios can indicate old depletion events in the convecting upper mantle (e.g. Rudnick & Walker, 2009), and allow us to make these distinctions. Thus, if SCLM can be traced across a rifted margin, its fate during rifting can be established. The Western Ross Sea provides favorable conditions to test the dynamic response of SCLM to rifting. Re-Os measurements from 8 locations extending from the rift shoulder to 200 km into the rift basin reveal 187Os/188Os ranging from 0.1056 at Foster Crater on the shoulder, to 0.1265 on Ross Island within the rift. While individual sample model ages vary widely throughout the margin, 'aluminochron' ages (Reisberg & Lorand, 1995) reveal a narrower range of lithospheric stabilization ages. Franklin Island and Sulfur Cones show a range of Re-depletion ages (603-1522 Ma and 436-1497 Ma) but aluminochrons yield Paleoproterozoic stabilization ages of 1680 Ma and 1789 Ma, respectively. These ages coincide with U-Pb zircon ages from Transantarctic Mountain (TAM) crustal rocks, in support of SCLM stabilization at the time of crust formation along the central TAM. The Paleoproterozoic stabilization age recorded at Franklin Island is especially significant, since it lies 200km off of the rift shoulder. The similar ages beneath the rift shoulder and within the rift suggests stretched SCLM reaches into the rift and thus precludes replacement by asthenospheric mantle. The persistence of thinned Paleoproterozoic SCLM into the rifted zone in WARS suggests that it represents a 'type I' margin of Huismans and Beaumont (2011), which is characterized by crustal breakup before loss of lithospheric mantle. The Archean Re-depletion age of 3.2 Ga observed on the rift shoulder suggests that cratonic lithosphere extends beneath the TAM. With further analyses we hope to determine if there is lateral flow of cratonic lithosphere into the rift. Huismans, R., Beaumount, C., 2011. Depth-dependent extension, two stage breakup and cratonic underplating at rifted margins. Nature 473, 74-78. Reisberg, L.C., Lorand, J.P., 1995. Longevity of sub-continental mantle lithosphere from osmium isotope systematics in orogenic peridotite massifs. Nature 376, 159-162. Rudnick, R.L., Walker, R.J., 2009. Interpreting ages from Re-Os isotopes in peridotites. Lithos 1125, 1083-1095.
Continental crust beneath southeast Iceland.
Torsvik, Trond H; Amundsen, Hans E F; Trønnes, Reidar G; Doubrovine, Pavel V; Gaina, Carmen; Kusznir, Nick J; Steinberger, Bernhard; Corfu, Fernando; Ashwal, Lewis D; Griffin, William L; Werner, Stephanie C; Jamtveit, Bjørn
2015-04-14
The magmatic activity (0-16 Ma) in Iceland is linked to a deep mantle plume that has been active for the past 62 My. Icelandic and northeast Atlantic basalts contain variable proportions of two enriched components, interpreted as recycled oceanic crust supplied by the plume, and subcontinental lithospheric mantle derived from the nearby continental margins. A restricted area in southeast Iceland--and especially the Öræfajökull volcano--is characterized by a unique enriched-mantle component (EM2-like) with elevated (87)Sr/(86)Sr and (207)Pb/(204)Pb. Here, we demonstrate through modeling of Sr-Nd-Pb abundances and isotope ratios that the primitive Öræfajökull melts could have assimilated 2-6% of underlying continental crust before differentiating to more evolved melts. From inversion of gravity anomaly data (crustal thickness), analysis of regional magnetic data, and plate reconstructions, we propose that continental crust beneath southeast Iceland is part of ∼350-km-long and 70-km-wide extension of the Jan Mayen Microcontinent (JMM). The extended JMM was marginal to East Greenland but detached in the Early Eocene (between 52 and 47 Mya); by the Oligocene (27 Mya), all parts of the JMM permanently became part of the Eurasian plate following a westward ridge jump in the direction of the Iceland plume.
Continental crust beneath southeast Iceland
Torsvik, Trond H.; Amundsen, Hans E. F.; Trønnes, Reidar G.; Doubrovine, Pavel V.; Gaina, Carmen; Kusznir, Nick J.; Steinberger, Bernhard; Corfu, Fernando; Ashwal, Lewis D.; Griffin, William L.; Werner, Stephanie C.; Jamtveit, Bjørn
2015-01-01
The magmatic activity (0–16 Ma) in Iceland is linked to a deep mantle plume that has been active for the past 62 My. Icelandic and northeast Atlantic basalts contain variable proportions of two enriched components, interpreted as recycled oceanic crust supplied by the plume, and subcontinental lithospheric mantle derived from the nearby continental margins. A restricted area in southeast Iceland—and especially the Öræfajökull volcano—is characterized by a unique enriched-mantle component (EM2-like) with elevated 87Sr/86Sr and 207Pb/204Pb. Here, we demonstrate through modeling of Sr–Nd–Pb abundances and isotope ratios that the primitive Öræfajökull melts could have assimilated 2–6% of underlying continental crust before differentiating to more evolved melts. From inversion of gravity anomaly data (crustal thickness), analysis of regional magnetic data, and plate reconstructions, we propose that continental crust beneath southeast Iceland is part of ∼350-km-long and 70-km-wide extension of the Jan Mayen Microcontinent (JMM). The extended JMM was marginal to East Greenland but detached in the Early Eocene (between 52 and 47 Mya); by the Oligocene (27 Mya), all parts of the JMM permanently became part of the Eurasian plate following a westward ridge jump in the direction of the Iceland plume. PMID:25825769
Plate motion changes drive Eastern Indian Ocean microcontinent formation
NASA Astrophysics Data System (ADS)
Whittaker, J. M.; Williams, S.; Halpin, J.; Wild, T.; Stilwell, J.; Jourdan, F.; Daczko, N. R.
2016-12-01
The roles of plate tectonic or mantle dynamic forces in rupturing continental lithosphere remain controversial. Particularly enigmatic is the rifting of microcontinents from mature continental rifted margin - several well-studied microcontinent calving events coincide in space and time with mantle plume activity, but the significance of plumes in driving microcontinent formation remains controversial, and a role for plate-driven processes has also been suggested. In 2011, our team discovered two new microcontinents in the eastern Indian Ocean, the Batavia and Gulden Draak microcontinents. These microcontinents are unique as they are the only surviving remnants of the now-destroyed or highly deformed Greater Indian margin and provide us with an opportunity to test existing models of microcontinent formation against new observations. Here, we explore models for microcontinent formation using our new data from the Eastern Indian Ocean in a plate tectonic reconstruction framework. We use Argon dating and paleontology results to constrain calving from greater India at 101-104 Ma. This region had been proximal to the active Kerguelen plume for 30 Myrs but we demonstrate that calving did not correspond with a burst of volcanic activity. Rather, it is likely that plume-related thermal weakening of the Indian passive margin preconditioned it for microcontinent formation but calving was triggered by changes in plate tectonic boundary forces. Changes in the relative motions between Indian and Australia led to increasing compressive forces along the long-offset Wallaby-Zenith Fracture Zone, which was eventually abandoned during the jump of the spreading ridge into the Indian continental margin.
GeoFrame Walker Lane: Overview, Rationale, and Objectives
NASA Astrophysics Data System (ADS)
Stockli, D. F.
2006-12-01
GeoFrame is an integrative geologic initiative that takes a multi-dimensional view of the building and modification of the North American continent by systematic integration of geologic and geochronometric investigations and the results from unprecedented geophysical imaging as part of the Earthscope Program. The GeoFrame effort envisions these focus site investigations to entail map-scale arrays of passive source seismic receivers and associated active source seismic studies and complementary geophysics in conjunction with geologic-based synthesis and targeted studies. One of these focus sites is the Walker Lane region in eastern California and western Nevada, situated between the Basin and Range province and the unextended Sierra Nevada block. This GeoFrame focus site workshop is particularly timely given the deployment schedule of the USArray "BigFoot" array. The Walker Lane intraplate deformation zone accommodates nearly ~25% of present-day relative motion between the Pacific and North American plates and might represent an incipient plate boundary. It provides a world-class example of the present modification of continental lithosphere by the process of transcurrent faulting and rifting and offers the opportunity to seamlessly integrate surface geology, structural geology, petrology, geo- and thermochronology, and the history of the continental lithosphere with ongoing processes in the Earth's mantle. It affords opportunities to address a number of questions posed within Earthscope such as: mechanisms of strain transfer, the role of lithospheric rheology in strain localization and seismic response, the nature and timescales of transient fault behavior, and the role of magmas and fluids in deforming lithosphere. Implicit in the design and implementation of Earthscope is the recognition that progress on issues such as these requires an integrative geophysical and geological investigation of the Walker Lane. As such, it will open new avenues of collaboration and identify new research needs and opportunities. We anticipate the integration of results and efforts with ongoing Earthscope projects, such as Sierra Nevada efforts of SNEP as well as the NSF Margins Rupturing of Continental Lithosphere (RCL) initiative in the Gulf of California by continuing the work onshore from the Gulf of California to the north into Nevada.
From continental to oceanic rifting in the Gulf of California
NASA Astrophysics Data System (ADS)
Ferrari, Luca; Bonini, Marco; Martín, Arturo
2017-11-01
The continental margin of northwestern Mexico is the youngest example of the transition from a convergent plate boundary to an oblique divergent margin that formed the Gulf of California rift. Subduction of the Farallon oceanic plate during the Cenozoic progressively brought the East Pacific Rise (EPR) toward the North America trench. In this process increasingly younger and buoyant oceanic lithosphere entered the subduction zone until subduction ended just before most of the EPR could collide with the North America continental lithosphere. The EPR segments bounding the unsubducted parts of the Farallón plate remnants (Guadalupe and Magdalena microplates) also ceased spreading (Lonsdale, 1991) and a belt of the North American plate (California and Baja California Peninsula) became coupled with the Pacific Plate and started moving northwestward forming the modern Gulf of California oblique rift (Nicholson et al., 1994; Bohannon and Parsons, 1995). The timing of the change from plate convergence to oblique divergence off western Mexico has been constrained at the middle Miocene (15-12.5 Ma) by ocean floor morphology and magnetic anomalies as well as plate tectonic reconstructions (Atwater and Severinghaus, 1989; Stock and Hodges, 1989; Lonsdale, 1991), although the onset of transtensional deformation and the amount of right lateral displacement within the Gulf region are still being studied (Oskin et al., 2001; Fletcher et al., 2007; Bennett and Oskin, 2014). Other aspects of the formation of the Gulf of California remain not well understood. At present the Gulf of California straddles the transition from continental transtension in the north to oceanic spreading in the south. Seismic reflection-refraction data indicate asymmetric continent-ocean transition across conjugate margins of rift segments (González-Fernández et al., 2005; Lizarralde et al., 2007; Miller and Lizarralde, 2013; Martín-Barajas et al., 2013). The asymmetry may be related to crustal heterogeneities and thus early evidence of extension may provide useful information about the thermal conditions of the crust over a broader region encompassing the effects of coeval subduction and crustal stretching. On the other hand, onshore and offshore geologic studies have shown that lithospheric extension associated with a wide rift mode was already ongoing during the final stage of subduction of the Farallon plate and its remnants in the early to middle Miocene times (Ferrari et al., 2013; Murray et al., 2013; Bryan et al., 2014; Duque-Trujillo et al., 2014, 2015). More broadly, the complexity in the present rift architecture and Plio-Quaternary magmatism is related to the pre-middle Miocene geodynamic history that accompanied the removal of the slab since the Eocene (Ferrari et al., 2017).
Formation of Continental Fragments: The Tamayo Bank, Gulf of California
NASA Astrophysics Data System (ADS)
van Wijk, J.; Abera, R.; Axen, G. J.
2015-12-01
Potential field data are used to construct a two-dimensional crustal model along a profile through the Tamayo Trough and Bank in the Gulf of California. The model is constrained by seismic reflection and refraction data, and field observations. The potential field data do not fit a model where the crust of the Tamayo trough is continental, but they fit well with a model where the Tamayo trough crust is oceanic. This implies that the Tamayo Bank is entirely bounded by oceanic crust and is a microcontinent. The oceanic crust of the Tamayo trough that separates the Tamayo Bank from the mainland of Mexico is thin (~4 km), so oceanic spreading was probably magma-starved before it ceased. This led us to come up with a model that explains the formation of microcontinents that are smaller in size and are not found in the proximity of hotspots. At first, seafloor spreading commences following continental breakup. When the magma supply to the ridge slows down, the plate boundary strengthens. Hence, the ridge may be abandoned while tectonic extension begins elsewhere, or slow spreading may continue while a new ridge starts to develop. The old spreading ridge becomes extinct. An asymmetric ocean basin forms if the ridge jumps within oceanic lithosphere; a microcontinent forms if the ridge jumps into a continental margin. This model for formation of continental fragments is applicable to other regions as well, eliminating the need of mantle plume impingement to facilitate rifting of a young continental margin and microcontinent formation.
NASA Astrophysics Data System (ADS)
Lu, Y.; Li, C. F.
2017-12-01
Arctic Ocean remains at the forefront of geological exploration. Here we investigate its deep geological structures and geodynamics on the basis of gravity, magnetic and bathymetric data. We estimate Curie-point depth and lithospheric effective elastic thickness to understand deep geothermal structures and Arctic lithospheric evolution. A fractal exponent of 3.0 for the 3D magnetization model is used in the Curie-point depth inversion. The result shows that Curie-point depths are between 5 and 50 km. Curie depths are mostly small near the active mid-ocean ridges, corresponding well to high heat flow and active shallow volcanism. Large curie depths are distributed mainly at continental marginal seas around the Arctic Ocean. We present a map of effective elastic thickness (Te) of the lithosphere using a multitaper coherence technique, and Te are between 5 and 110 km. Te primarily depends on geothermal gradient and composition, as well as structures in the lithosphere. We find that Te and Curie-point depths are often correlated. Large Te are distributed mainly at continental region and small Te are distributed at oceanic region. The Alpha-Mendeleyev Ridge (AMR) and The Svalbard Archipelago (SA) are symmetrical with the mid-ocean ridge. AMR and SA were formed before an early stage of Eurasian basin spreading, and they are considered as conjugate large igneous provinces, which show small Te and Curie-point depths. Novaya Zemlya region has large Curie-point depths and small Te. We consider that fault and fracture near the Novaya Zemlya orogenic belt cause small Te. A series of transform faults connect Arctic mid-ocean ridge with North Atlantic mid-ocean ridge. We can see large Te near transform faults, but small Curie-point depths. We consider that although temperature near transform faults is high, but mechanically the lithosphere near transform faults are strengthened.
Plate tectonics beyond plate boundaries: the role of ancient structures in intraplate orogenesis
NASA Astrophysics Data System (ADS)
Heron, Philip; Pysklywec, Russell; Stephenson, Randell
2015-04-01
The development of orogens that occur at a distance from plate boundaries (i.e., `intraplate' deformation) cannot be adequately explained through conventional plate tectonic theory. Intraplate deformation infers a more complex argument for lithospheric and mantle interaction than plate tectonic theory allows. As a result, the origins of intraplate orogenesis are enigmatic. One hypothesis is the amalgamation of continental material (i.e., micro-plates) leaves inherent scars on the crust and mantle lithosphere. Previous studies into continent-continent collisions identify a number of scenarios from accretionary tectonics that affect the crust and mantle (namely, the development of a Rayleigh-Taylor instability, lithospheric underplating, lithospheric delamination, and lithospheric subduction). Any of these processes may weaken the lithosphere allowing episodic reactivation of faults within continental interiors. Hence, continental convergence (i.e., shortening) at a time after continental collision may cause the already weakened crust and mantle lithosphere to produce intraplate deformation. In order to better understand the processes involved in deformation away from plate boundaries, we present suites of continental shortening models (using the high-resolution thermal-mechanical modelling code SOPALE) to identify the preferred style of deformation. We model ancient structures by applying weak subduction scarring, changing the rheological conditions, and modifying the thermal structure within the lithosphere. To highlight the role of surface processes on plate and lithosphere deformation, the effect of climate-driven erosion and deposition on the tectonic structure of intraplate deformation is also addressed. We explore the relevance of the models to previously studied regions of intraplate orogenesis, including the Pyrenees in Europe, the Laramide orogen in North America, Tien Shan orogen in Central Asia, and Central Australia. The findings of the simulations with regards to past and future North American intraplate deformation are also discussed. Our results indicate that there exists a number of tectonic environments that can be produced relating to continental accretion, and that specific observational constraints to the local area (e.g., geological, geophysical, geodetic) are required to be integrated directly into the analyses for better interpretation. The models shown here find that although rheological changes to the lithosphere can produce a range of deformation during continental convergence (i.e., crustal thickening, thinning, and folding), mantle weak zones from ancient subduction can generate more localized deformation and topography.
NASA Technical Reports Server (NTRS)
Spohn, T.; Schubert, G.
1982-01-01
Thinning of the Earth's lithosphere by heat advected to its base is a possible mechanism for continental rifting and continental and oceanic mid-plate volcanism. It might also account for continental rifting-like processes and volcanism on Venus and Mars. Earth's continental lithosphere can be thinned to the crust in a few tens of million years by heat advected at a rate of 5 to 10 times the normal basal heat flux. This much heat is easily carried to the lithosphere by mantle plumes. The continent is not required to rest over the mantle hot spot but may move at tens of millimeters per year. Because of the constant level of crustal radioactive heat production, the ratio of the final to the initial surface heat flow increases much less than the ratio of the final to initial basal heat flow. For large increases in asthenospheric heat flow, the lithosphere is almost thinned to the crust before any significant change in surface heat flow occurs. Uplift due to thermal expansion upon thinning is a few kilometers. The oceanic lithosphere can be thinned to the crust in less than 10 million years if the heat advection is at a rate around 5 or more times the basal heat flow into 100 Ma old lithosphere. Uplift upon thinning can compensate the subsidence of spreading and cooling lithosphere.
Contourite drifts on early passive margins as an indicator of established lithospheric breakup
NASA Astrophysics Data System (ADS)
Soares, Duarte M.; Alves, Tiago M.; Terrinha, Pedro
2014-09-01
The Albian-Cenomanian breakup sequence (BS) offshore Northwest Iberia is mapped, described and characterised for the first time in terms of its seismic and depositional facies. The interpreted dataset comprises a large grid of regional (2D) seismic-reflection profiles, complemented by Industry and ODP/DSDP borehole data. Within the BS are observed distinct seismic facies that reflect the presence of: (a) black shales and fine-grained turbidites, (b) mass-transport deposits (MTDs) and coarse-grained turbidites, and (c) contourite drifts. Borehole data show that these depositional systems developed as mixed carbonate-siliciclastic sediments proximally, and as organic-carbon-rich mudstones (black shales) distally on the Northwest Iberia margin. MTDs and turbidites tend to occur on the continental slope, frequently in association with large-scale olistostromes. Distally, these change into interbedded fine-grained turbidites and black shales showing widespread evidence of deep-water current activity towards the top of the BS. Current activity is expressed by intra-BS erosional surfaces and sediment drifts. The results in this paper are important as they demonstrate that contourite drifts are ubiquitous features in the study area after Aptian-Albian lithospheric breakup. Therefore, we interpret the recognition of contourite drifts in Northwest Iberia as having significant palaeogeographic implications. Contourite drifts materialise the onset of important deep-water circulation marking the establishment of oceanic gateways between two fully separated continental margins. As a corollary, we postulate the generation of deep-water geostrophic currents to have had significant impact on North Atlantic climate and ocean circulation during the Albian-Cenomanian, with the record of such impacts being preserved in the contourite drifts analysed in this work.
NASA Technical Reports Server (NTRS)
Fitch, T. J.
1971-01-01
A model for oblique convergence between plates of lithosphere is proposed in which at least a fraction of slip parallel to the plate margin results in transcurrent movements on a nearly vertical fault which is located on the continental side of a zone of plate consumption. In an extreme case of complete decoupling only the component of slip normal to the plate margin can be inferred from underthrusting. Recent movements in the western Sunda region provide the most convincing evidence for decoupling of slip, which in this region is thought to be oblique to the plate margin. A speculative model for convergence along the margins of the Philippine Sea is constructed from an inferred direction of oblique slip in the Philippine region. This model requires that the triple point formed by the junction of the Japanese and Izu-Bonin trenches and the Nankai trough migrate along the Sagami trough.
Eastern Indian Ocean microcontinent formation driven by plate motion changes
NASA Astrophysics Data System (ADS)
Whittaker, J. M.; Williams, S. E.; Halpin, J. A.; Wild, T. J.; Stilwell, J. D.; Jourdan, F.; Daczko, N. R.
2016-11-01
The roles of plate tectonic or mantle dynamic forces in rupturing continental lithosphere remain controversial. Particularly enigmatic is the rifting of microcontinents from mature continental rifted margins, with plume-driven thermal weakening commonly inferred to facilitate calving. However, a role for plate tectonic reorganisations has also been suggested. Here, we show that a combination of plate tectonic reorganisation and plume-driven thermal weakening were required to calve the Batavia and Gulden Draak microcontinents in the Cretaceous Indian Ocean. We reconstruct the evolution of these two microcontinents using constraints from new paleontological samples, 40Ar/39Ar ages, and geophysical data. Calving from India occurred at 101-104 Ma, coinciding with the onset of a dramatic change in Indian plate motion. Critically, Kerguelen plume volcanism does not appear to have directly triggered calving. Rather, it is likely that plume-related thermal weakening of the Indian passive margin preconditioned it for microcontinent formation but calving was triggered by changes in plate tectonic boundary forces.
NASA Astrophysics Data System (ADS)
Van Avendonk, H. J.; Magnani, M. B.; Shillington, D. J.; Gaherty, J. B.; Hornbach, M. J.; Dugan, B.; Long, M. D.; Lizarralde, D.; Becel, A.; Benoit, M. H.; Harder, S. H.; Wagner, L. S.; Christeson, G. L.
2014-12-01
The continental margins of the eastern United States formed in the Early Jurassic after the breakup of supercontinent Pangea. The relationship between the timing of this rift episode and the occurrence of offshore magmatism, which is expressed in the East Coast Magnetic Anomaly, is still unknown. The possible influence of magmatism and existing lithospheric structure on the rifting processes along margin of the eastern U.S. was one of the motivations to conduct a large-scale community seismic experiment in the Eastern North America (ENAM) GeoPRISMS focus site. In addition, there is also a clear need for better high-resolution seismic data with shallow penetration on this margin to better understand the geological setting of submarine landslides. The ENAM community seismic experiment is a project in which a team of scientists will gather both active-source and earthquake seismic data in the vicinity of Cape Hatteras on a 500 km wide section of the margin offshore North Carolina and Virginia. The timing of data acquisition in 2014 and 2015 facilitates leveraging of other geophysical data acquisition programs such as Earthscope's Transportable Array and the USGS marine seismic investigation of the continental shelf. In April of 2014, 30 broadband ocean-bottom seismometers were deployed on the shelf, slope and abyssal plain of the study site. These instruments will record earthquakes for one year, which will help future seismic imaging of the deeper lithosphere beneath the margin. In September and October of 2014, regional marine seismic reflection and refraction data will be gathered with the seismic vessel R/V Marcus Langseth, and airgun shots will also be recorded on land to provide data coverage across the shoreline. Last, in the summer of 2015, a land explosion seismic refraction study will provide constraints on the crustal structure in the adjacent coastal plain of North Carolina and Virginia. All seismic data will be distributed to the community through IRIS/DMC and the LDEO/UTIG Seismic data center. Two workshops are planned for 2015, where new users get an opportunity to engage in basic processing and analysis of the new data set.
Characterising East Antarctic Lithosphere and its Rift Systems using Gravity Inversion
NASA Astrophysics Data System (ADS)
Vaughan, Alan P. M.; Kusznir, Nick J.; Ferraccioli, Fausto; Leat, Phil T.; Jordan, Tom A. R. M.; Purucker, Michael E.; Golynsky, A. V. Sasha; Rogozhina, Irina
2013-04-01
Since the International Geophysical Year (1957), a view has prevailed that East Antarctica has a relatively homogeneous lithospheric structure, consisting of a craton-like mosaic of Precambrian terranes, stable since the Pan-African orogeny ~500 million years ago (e.g. Ferracioli et al. 2011). Recent recognition of a continental-scale rift system cutting the East Antarctic interior has crystallised an alternative view of much more recent geological activity with important implications. The newly defined East Antarctic Rift System (EARS) (Ferraccioli et al. 2011) appears to extend from at least the South Pole to the continental margin at the Lambert Rift, a distance of 2500 km. This is comparable in scale to the well-studied East African rift system. New analysis of RadarSat data by Golynsky & Golynsky (2009) indicates that further rift zones may form widely distributed extension zones within the continent. A pilot study (Vaughan et al. 2012), using a newly developed gravity inversion technique (Chappell & Kusznir 2008) with existing public domain satellite data, shows distinct crustal thickness provinces with overall high average thickness separated by thinner, possibly rifted, crust. Understanding the nature of crustal thickness in East Antarctica is critical because: 1) this is poorly known along the ocean-continent transition, but is necessary to improve the plate reconstruction fit between Antarctica, Australia and India in Gondwana, which will also better define how and when these continents separated; 2) lateral variation in crustal thickness can be used to test supercontinent reconstructions and assess the effects of crystalline basement architecture and mechanical properties on rifting; 3) rift zone trajectories through East Antarctica will define the geometry of zones of crustal and lithospheric thinning at plate-scale; 4) it is not clear why or when the crust of East Antarctica became so thick and elevated, but knowing this can be used to test models of Cenozoic ice sheet formation and stability. References Chappell, A.R. & Kusznir, N.J. 2008. Three-dimensional gravity inversion for Moho depth at rifted continental margins incorporating a lithosphere thermal gravity anomaly correction. Geophysical Journal International, 174 (1), 1-13. Ferraccioli, F., Finn, C.A., Jordan, T.A., Bell, R.E., Anderson, L.M. & Damaske, D. 2011. East Antarctic rifting triggers uplift of the Gamburtsev Mountains Nature, 479, 388-392. Golynsky, A.V. & Golynsky, D.A. 2009. Rifts in the tectonic structure of East Antarctica (in Russian). Russian Earth Science Research in Antarctica, 2, 132-162. Vaughan, A.P.M., Kusznir, N.J., Ferraccioli, F. & Jordan, T.A.R.M. 2012. Regional heat-flow prediction for Antarctica using gravity inversion mapping of crustal thickness and lithosphere thinning. Geophysical Research Abstracts, 14, EGU2012-8095.
NASA Astrophysics Data System (ADS)
Mouthereau, FréDéRic; Petit, Carole
2003-11-01
Deformation in western Taiwan is characterized by variable depth-frequency distribution of crustal earthquakes which are closely connected with along-strike variations of tectonic styles (thin or thick skinned) around the Peikang High, a major inherited feature of the Chinese margin. To fit the calculated high crustal geotherm and the observed distribution of the crustal seismic activity, a Qz-diorite and granulite composition for the upper and the lower crust is proposed. We then model the plate flexure, through Te estimates, using brittle-elastic-ductile plate rheology. Flexure modeling shows that the best fit combination of Te-boundary condition is for thrust loads acting at the belt front. The calculated Te vary in the range of ˜15-20 km. These values are primarily a reflection of the thermal state of the rifted Chinese margin inherited from the Oligocene spreading in the South China Sea. However, other mechanical properties such as the degree of crust/mantle coupling and the thickness of the mechanically competent crust and mantle are considered. South of the Peikang High, flexure modeling reveals lower Te associated with thinner mechanically strong layers. Variable stress/strain distribution associated with a higher degree of crust/mantle decoupling is examined to explain plate weakening. We first show that plate curvature cannot easily explain strength reduction and observed seismic activity. Additional plate-boundary forces arising from the strong coupling induced by more frontal subduction of a buoyant crustal asperity, i.e., the Peikang High, with the overriding plate are required. Favorably oriented inherited features in the adjacent Tainan basin produce acceleration of strain rates in the upper crust and hence facilitate the crust/mantle decoupling as attested by high seismic activity and thick-skinned deformation. The relative weakening of the lower crust and mantle then leads to weaken the lithosphere. By contrast, to the north, more oblique collision and the lack of inherited features keep the lithosphere stronger. This study suggests that when the Eurasian plate enters the Taiwan collision, tectonic inheritance of the continental margin exerts a strong control on the plate deformation by modifying its strength.
Quantitative calculation and numerical modeling of the conjugate margins of the South China Sea
NASA Astrophysics Data System (ADS)
Dong, D.; Pérez-Gussinyé, M.; Wang, W.; Bai, Y.
2017-12-01
South China margin rifted on the tectonic setting of the early active continental margin since Cenozoic. The present South China Sea (SCS) opened at 32 Ma and showed propagation from east to west, with different crustal and sedimentary structures at the conjugate continental margins. Based on the latest high-quality multi-channel seismic data, bathymetric data, and other obtained seismic profiles, the asymmetric characteristics between the conjugate margins of the SCS are revealed. Spatial variation of morphology, basement structure and marginal faults are discovered among the SCS margin profiles. We calculate the lithospheric stretching factors and analyze the anomalous post-rift subsidence from two typical seismic profiles in the conjugate margins of the SCS, with integrated method of 2D forward and inversion based on flexural-cantilever model. We propose a differential extension model to explain the spatial differences in the SCS margins and emphasize the role of detachment fault in evolutionary process. Numerical modeling has a great advantage in studying the rifted margin formation mechanism. Dynamic modeling for the formation of asymmetric conjugate margins of the SCS is carried out by solving the thermal-mechanical equation, based on the viscoelastic-plastic model. The results show that the width and symmetry of the margin are controlled by the crustal rheological structure and sedimentation rate. Crust with lower strength is prone to distributed and persistent faulting instead of strain localization, which results in the wider margin. On the contrary, the stronger crust would generate large faults and lead to strain localization in a small amount of them, easier to form narrow continental margin. Large sediment loading is favorable for the development of large faults, meanwhile, the subsequent thermal effect reduces the crustal viscosity. A sudden transition zone of sedimentation rate is prone to strain localization and accelerates the crust rift, which may affect the future break-up. The numerical modeling with full dynamics in SCS needs a further investigation. Acknowledge: This study was supported by the National Natural Science Foundation of China (No. 41476042, 41506055 )
Double subduction of continental lithosphere, a key to form wide plateau
NASA Astrophysics Data System (ADS)
Replumaz, Anne; Funiciello, Francesca; Reitano, Riccardo; Faccenna, Claudio; Balon, Marie
2016-04-01
The mechanisms involved in the creation of the high and wide topography, like the Tibetan Plateau, are still controversial. In particular, the behaviour of the indian and asian lower continental lithosphere during the collision is a matter of debate, either thickening, densifying and delaminating, or keeping its rigidity and subducting. But since several decades seismicity, seismic profiles and global tomography highlight the lithospheric structure of the Tibetan Plateau, and make the hypotheses sustaining the models more precise. In particular, in the western syntaxis, it is now clear that the indian lithosphere subducts northward beneath the Hindu Kush down to the transition zone, while the asian one subducts southward beneath Pamir (e.g. Negredo et al., 2007; Kufner et al., 2015). Such double subduction of continental lithospheres with opposite vergence has also been inferred in the early collision time. Cenozoic volcanic rocks between 50 and 30 Ma in the Qiangtang block have been interpreted as related to an asian subduction beneath Qiangtang at that time (De Celles et al., 2011; Guillot and Replumaz, 2013). We present here analogue experiments silicone/honey to explore the subduction of continental lithosphere, using a piston as analogue of far field forces. We explore the parameters that control the subductions dynamics of the 2 continental lithospheres and the thickening of the plates at the surface, and compare with the Tibetan Plateau evolution. We show that a continental lithosphere is able to subduct in a collision context, even lighter than the mantle, if the plate is rigid enough. In that case the horizontal force due to the collision context, modelled by the piston push transmitted by the indenter, is the driving force, not the slab pull which is negative. It is not a subduction driving by the weight of the slab, but a subduction induced by the collision, that we could call "collisional subduction".
Thermal regime of the continental lithosphere
NASA Technical Reports Server (NTRS)
Morgan, P.; Sass, J. H.
1984-01-01
From studies of the global heat flow data set, it has been generalized, with respect to the continental lithosphere, that there is a negative correlation between heat flow and the lithosphere's tectonic edge, and that the lithosphere's thermal evolution is similar to that of the ocean basins, resulting in a 'stable geotherm' in both environments. It is presently noted that a regional study perspective for heat flow data leads to doubts concerning the general applicability of either statement. Rao et al. (1982) have demonstrated that the data are not normally distributed, and that it is not possible to establish a negative correlation between heat flow and age in a rigorous statistical fashion. While some sites of stable continental blocks may have a geotherm that is by chance similar to that for old ocean basins, this need not hold true generally, and many stable continental terranes will be characterized by geotherms very different from those for old ocean basins.
Western Continental Margin of India - Re-look using potential field data
NASA Astrophysics Data System (ADS)
Rajaram, M.; S P, A.
2008-05-01
The Western Continental Margin of India (WCMI) evolved as a result of rifting between India and Madagascar that took place during mid Cretaceous (~88Ma).The WCMI is equally important in terms of natural resources as well as research point of view. The major tectonic elements in the western offshore includes the Laxmi and Chagos- Laccadive ridge dividing the WCMI and the adjoining Arabian sea into two basins, Pratap Ridge, Alleppey platform etc. Different theories have been proposed for the evolution of each of these tectonic elements. In the current paper we look at geopotential data on the west coast of India and the western off-shore. The data sets utilized include Satellite derived High Resolution Free Air Gravity data over the off-shore, Bouguer data onland, Champ Satellite Magnetic data, published Marine Magnetic data collected by ONGC, NIO, ground magnetic data over west cost collected by IIG and available aeromagnetic data. From the free air gravity anomaly the structural details of the western offshore can be delineated. The Euler depths of FAG depict deep solutions associated with Pratap Ridge, Comorin Ridge, the west coast fault and the Laxmi Ridge. These may be associated with continental margin and continental fragments. From the aeromagnetic and marine magnetic data it is evident that the West Coast Fault is dissected at several places. The shallow circular feature associated with Bombay High is evident both on the FAG and the analytic signal derived from satellite Magnetic data. The crustal magnetic thickness from MF5 lithospheric model of the Champ appears to suggest that the continental crust extends up to the Chagos- Laccadive ridge. Based on the analysis of these geopotential data sets the various theories for the evolution of the WCMI will be evaluated and these results will be presented.
Sulfur and Metal Fertilization of the Lower Continental Crust
NASA Technical Reports Server (NTRS)
Locmelis, Marek; Fiorentini, Marco L.; Rushmer, Tracy; Arevalo, Ricardo, Jr.; Adam, John; Denyszyn, Steven W.
2015-01-01
Mantle-derived melts and metasomatic fluids are considered to be important in the transport and distribution of trace elements in the subcontinental lithospheric mantle. However, the mechanisms that facilitate sulfur and metal transfer from the upper mantle into the lower continental crust are poorly constrained. This study addresses this knowledge gap by examining a series of sulfide- and hydrous mineral-rich alkaline mafic-ultramafic pipes that intruded the lower continental crust of the Ivrea-Verbano Zone in the Italian Western Alps. The pipes are relatively small (<300 m diameter) and primarily composed of a matrix of subhedral to anhedral amphibole (pargasite), phlogopite and orthopyroxene that enclose sub-centimeter-sized grains of olivine. The 1 to 5 m wide rim portions of the pipes locally contain significant blebby and disseminated Fe-Ni-Cu-PGE sulfide mineralization.Stratigraphic relationships, mineral chemistry, geochemical modeling and phase equilibria suggest that the pipes represent open-ended conduits within a large magmatic plumbing system. The earliest formed pipe rocks were olivine-rich cumulates that reacted with hydrous melts to produce orthopyroxene, amphibole and phlogopite.Sulfides precipitated as immiscible liquid droplets that were retained within a matrix of silicate crystals and scavenged metals from the percolating hydrous melt. New high-precision chemical abrasion TIMS-UPb dating of zircons from one of the pipes indicates that these pipes were emplaced at 249.1+/-0.2 Ma, following partial melting of lithospheric mantle pods that were metasomatized during the Eo-Variscan oceanic to continental subduction (approx. 420-310 Ma). The thermal energy required to generate partial melting of the metasomatized mantle was most likely derived from crustal extension, lithospheric decompression and subsequent asthenospheric rise during the orogenic collapse of the Variscan belt (<300 Ma). Unlike previous models, outcomes from this study suggest a significant temporal gap between the occurrence of mantle metasomatism, subsequent partial melting and emplacement of the pipes.We argue that this multi-stage process is a very effective mechanism to fertilize the commonly dry and refractory lower continental crust in metals and volatiles. During the four-dimensional evolution of the thermo-tectonic architecture of any given terrain, metals and volatiles stored in the lower continental crust may become available as sources for subsequent ore-forming processes, thus enhancing the prospectivity of continental block margins for a wide range of mineral systems.
Spreading continents kick-started plate tectonics.
Rey, Patrice F; Coltice, Nicolas; Flament, Nicolas
2014-09-18
Stresses acting on cold, thick and negatively buoyant oceanic lithosphere are thought to be crucial to the initiation of subduction and the operation of plate tectonics, which characterizes the present-day geodynamics of the Earth. Because the Earth's interior was hotter in the Archaean eon, the oceanic crust may have been thicker, thereby making the oceanic lithosphere more buoyant than at present, and whether subduction and plate tectonics occurred during this time is ambiguous, both in the geological record and in geodynamic models. Here we show that because the oceanic crust was thick and buoyant, early continents may have produced intra-lithospheric gravitational stresses large enough to drive their gravitational spreading, to initiate subduction at their margins and to trigger episodes of subduction. Our model predicts the co-occurrence of deep to progressively shallower mafic volcanics and arc magmatism within continents in a self-consistent geodynamic framework, explaining the enigmatic multimodal volcanism and tectonic record of Archaean cratons. Moreover, our model predicts a petrological stratification and tectonic structure of the sub-continental lithospheric mantle, two predictions that are consistent with xenolith and seismic studies, respectively, and consistent with the existence of a mid-lithospheric seismic discontinuity. The slow gravitational collapse of early continents could have kick-started transient episodes of plate tectonics until, as the Earth's interior cooled and oceanic lithosphere became heavier, plate tectonics became self-sustaining.
Accretionary orogens through Earth history
Cawood, Peter A.; Kroner, A.; Collins, W.J.; Kusky, T.M.; Mooney, W.D.; Windley, B.F.
2009-01-01
Accretionary orogens form at intraoceanic and continental margin convergent plate boundaries. They include the supra-subduction zone forearc, magmatic arc and back-arc components. Accretionary orogens can be grouped into retreating and advancing types, based on their kinematic framework and resulting geological character. Retreating orogens (e.g. modern western Pacific) are undergoing long-term extension in response to the site of subduction of the lower plate retreating with respect to the overriding plate and are characterized by back-arc basins. Advancing orogens (e.g. Andes) develop in an environment in which the overriding plate is advancing towards the downgoing plate, resulting in the development of foreland fold and thrust belts and crustal thickening. Cratonization of accretionary orogens occurs during continuing plate convergence and requires transient coupling across the plate boundary with strain concentrated in zones of mechanical and thermal weakening such as the magmatic arc and back-arc region. Potential driving mechanisms for coupling include accretion of buoyant lithosphere (terrane accretion), flat-slab subduction, and rapid absolute upper plate motion overriding the downgoing plate. Accretionary orogens have been active throughout Earth history, extending back until at least 3.2 Ga, and potentially earlier, and provide an important constraint on the initiation of horizontal motion of lithospheric plates on Earth. They have been responsible for major growth of the continental lithosphere through the addition of juvenile magmatic products but are also major sites of consumption and reworking of continental crust through time, through sediment subduction and subduction erosion. It is probable that the rates of crustal growth and destruction are roughly equal, implying that net growth since the Archaean is effectively zero. ?? The Geological Society of London 2009.
NASA Astrophysics Data System (ADS)
Tesoniero, Andrea; Auer, Ludwig; Boschi, Lapo; Cammarano, Fabio
2015-11-01
We present a new global model of shear and compressional wave speeds for the entire mantle, partly based on the data set employed for the shear velocity model savani. We invert Rayleigh and Love surface waves up to the sixth overtone in combination with major P and S body wave phases. Mineral physics data on the isotropic δlnVS/δlnVP ratio are taken into account in the form of a regularization constraint. The relationship between VP and VS that we observe in the top 300 km of the mantle has important thermochemical implications. Back-arc basins in the Western Pacific are characterized by large VP/VS and not extremely low VS at ˜150 km depth, consistently with presence of water. Most pronounced anomalies are located in the Sea of Japan, in the back-arc region of the Philippine Sea, and in the South China Sea. Our results indicate the effectiveness of slab-related processes to hydrate the mantle and suggest an important role of Pacific plate subduction also for the evolution of the South China Sea. We detect lateral variations in composition within the continental lithospheric mantle. Regions that have been subjected to rifting, collisions, and flood basalt events are underlain by relatively large VP/VS ratio compared to undeformed Precambrian regions, consistently with a lower degree of chemical depletion. Compositional variations are also observed in deep lithosphere. At ˜200 km depth, mantle beneath Australia and African cratons has comparable positive VS anomalies with other continental regions, but VP is ˜1% higher.
Regional metamorphism at extreme conditions: Implications for orogeny at convergent plate margins
NASA Astrophysics Data System (ADS)
Zheng, Yong-Fei; Chen, Ren-Xu
2017-09-01
Regional metamorphism at extreme conditions refers either to Alpine-type metamorphism at low geothermal gradients of <10 °C/km, or to Buchan-type metamorphism at high geothermal gradients of >30 °C/km. Extreme pressures refer to those above the polymorphic transition of quartz to coesite, so that ultrahigh-pressure (UHP) eclogite-facies metamorphism occurs at mantle depths of >80 km. Extreme temperatures refer to those higher than 900 °C at crustal depths of ≤80 km, so that ultrahigh-temperature (UHT) granulite-facies metamorphism occurs at medium to high pressures. While crustal subduction at the low geothermal gradients results in blueschist-eclogite facies series without arc volcanism, heating of the thinned orogenic lithosphere brings about the high geothermal gradients for amphibolite-granulite facies series with abundant magmatism. Therefore, UHP metamorphic rocks result from cold lithospheric subduction to the mantle depths, whereas UHT metamorphic rocks are produced by hot underplating of the asthenospheric mantle at the crustal depths. Active continental rifting is developed on the thinned lithosphere in response to asthenospheric upwelling, and this tectonism is suggested as a feasible mechanism for regional granulite-facies metamorphism, with the maximum temperature depending on the extent to which the mantle lithosphere is thinned prior to the rifting. While lithospheric compression is associated with subduction metamorphism in accretionary and collisional orogens, the thinned orogenic lithosphere undergoes extension due to the asthenospheric upwelling to result in orogen-parallel rifting metamorphism and magmatism. Thus, the rifting metamorphism provides a complement to the subduction metamorphism and its operation marks the asthenospheric heating of the orogenic lithosphere. Because of the partial melting and melt extraction of the lower continental crust, contemporaneous granite-migmatite-granulite associations may serve as a petrological indicator of rifting orogeny that is superimposed on precedingly accretionary and collisional orogens. The UHT metamorphic rocks have occurred since the Archean, suggesting that the hot underplating has operated very early in the Earth's history. In contrast, the UHP metamorphic rocks primarily occur in the Phanerozoic, indicating that the thermal regime of many subduction zones has changed since the Neoproterozoic for the cold subduction.
NASA Astrophysics Data System (ADS)
Bajolet, Flora; Chardon, Dominique; Rouby, Delphine; Dall'Asta, Massimo; Roig, Jean-Yves; Loparev, Artiom; Coueffe, Renaud
2017-04-01
Our work aims at setting the evolving boundary conditions of erosion and sediments transfer, transit, and onshore-offshore accumulations on northern South America and along its Atlantic margins. Since the Early Mesozoic, the source-to-sink system evolved under the interplay of four main processes, which are (i) volcanism and arc building along the proto-Andes, (ii) long-term dynamics of the Amazon incratonic basin, (iii) rifting, relaxation and rejuvenation of the Atlantic margins and (iv) building of the Andes. We compiled information available from geological maps and the literature regarding tectonics, plate kinematics, magmatism, stratigraphy, sedimentology (including paleoenvironments and currents) and thermochronology to produce a series of paleogeographic maps showing the tectonic and kinematic framework of continental areas under erosion (sources), by-pass and accumulation (sinks) over the Amazonian craton, its adjacent regions and along its Atlantic margins. The maps also allow assessing the relative impact of (i) ongoing Pacific subduction, (ii) Atlantic rifting and its aftermath, and (iii) Atlantic slab retreat from under the Caribbean domain on the distribution and activity of onshore/offshore sedimentary basins. Stratigraphic and thermochronology data are also used to assess denudation / vertical motions due to sediment transfers and lithosphere-asthenosphere interactions. This study ultimately aims at linking the sediment routing system to long-wavelength deformation of northern South America under the influence of mountain building, intracratonic geodynamics, divergent margin systems and mantle dynamics.
Thermal anomalies and magmatism due to lithospheric doubling and shifting
NASA Astrophysics Data System (ADS)
Vlaar, N. J.
1983-11-01
We present some thermal and magmatic consequences of the processes of lithospheric doubling and lithospheric shifting. Lithospheric doubling concerns the obduction of a cold continental or old oceanic lithospheric plate over a young and hot oceanic lithosphere/upper mantle system, including an oceanic ridge. Lithospheric shifting concerns the translation and rotation of a lithospheric plate relative to the upper mantle. In both cases the resulting thermal state of the upper mantle below the obducting or shifting lithosphere may be perturbed relative to a "normal" continental or oceanic geothermal situation. The perturbed geothermal state gives rise to a density inversion at depth and thus induces a vertical gravitational instability which favours magmatism. We speculate about the magmatic consequences of this situation and infer that in the case of lithospheric doubling our model may account for the petrology and geochemistry of the resulting magma. The original layering and composition of the overridden young oceanic lithosphere may strongly influence magmatic processes. We dwell shortly on the genesis of kimberlites within the framework of our lithospheric doubling model and on magmatism in general. Lithospheric recycling is inherent to the mechanism of lithospheric doubling.
NASA Astrophysics Data System (ADS)
Schaeffer, A. J.; Snyder, D. B.; Cairns, S.; Elliot, B.; Audet, P.; Esteve, C.; Murray-Bergquist, L.; Falck, H.
2016-12-01
The tectonic evolution of the Beaufort Sea continental margin has contributed to the maturation of these rocks into a major petroleum reservoir. Recent shallow offshore seismic reflection data suggest that Banks Island represents thin crust along a rifted margin established during the opening of the Arctic Ocean. In this case, rifting of the margin caused Banks Island to subside and accumulate sediments rich in petroleum source material. The cooling history and further subsidence of these sediments is important for understanding the thermal maturation of petroleum products. Recently published surface-wave velocity models of North America indicate seismic velocities at 100-150 km depths similar to those beneath Canada's diamond mines in the central Slave craton north of Yellowknife. These results imply that Banks Island is part of the Canadian Shield and that any kimberlites found thereon might contain diamonds. However, the fast velocities are inconsistent with this being a tectonically disrupted and thinned lithosphere along the Arctic margin of the Canada Basin. The problem is therefore to reconcile mantle structure typical of the Canadian Shield with crust typical of a rifted passive margin. Possibly related seismicity beneath the Mackenize River Delta and offshore in the Beaufort Sea has been observed for decades but its origin remains unknown, although has been suggested as due to incipient subduction of oceanic lithosphere beneath the North American craton. Resolving these questions requires high-resolution 3-D seismic models obtained from an array of broadband seismograph stations. Here we present preliminary results on the structure of the crust and uppermost mantle underlying the western Canadian Arctic. These results are generated using new data from the Banks Island Seismograph Network (BISN), three stations installed over the summer of 2014 and 2015; augmented with several USArray Transportable Array stations and older POLARIS and CNSN stations on neighbouring Arctic Islands.
Toward self-consistent tectono-magmatic numerical model of rift-to-ridge transition
NASA Astrophysics Data System (ADS)
Gerya, Taras; Bercovici, David; Liao, Jie
2017-04-01
Natural data from modern and ancient lithospheric extension systems suggest three-dimensional (3D) character of deformation and complex relationship between magmatism and tectonics during the entire rift-to-ridge transition. Therefore, self-consistent high-resolution 3D magmatic-thermomechanical numerical approaches stand as a minimum complexity requirement for modeling and understanding of this transition. Here we present results from our new high-resolution 3D finite-difference marker-in-cell rift-to-ridge models, which account for magmatic accretion of the crust and use non-linear strain-weakened visco-plastic rheology of rocks that couples brittle/plastic failure and ductile damage caused by grain size reduction. Numerical experiments suggest that nucleation of rifting and ridge-transform patterns are decoupled in both space and time. At intermediate stages, two patterns can coexist and interact, which triggers development of detachment faults, failed rift arms, hyper-extended margins and oblique proto-transforms. En echelon rift patterns typically develop in the brittle upper-middle crust whereas proto-ridge and proto-transform structures nucleate in the lithospheric mantle. These deep proto-structures propagate upward, inter-connect and rotate toward a mature orthogonal ridge-transform patterns on the timescale of millions years during incipient thermal-magmatic accretion of the new oceanic-like lithosphere. Ductile damage of the extending lithospheric mantle caused by grain size reduction assisted by Zenner pinning plays critical role in rift-to-ridge transition by stabilizing detachment faults and transform structures. Numerical results compare well with observations from incipient spreading regions and passive continental margins.
Intracontinental Rifts As Glorious Failures
NASA Astrophysics Data System (ADS)
Burke, K.
2012-12-01
Rifts: "Elongate depressions overlying places where the lithosphere has ruptured in extension" develop in many environments because rocks are weak in extension (Sengor 2nd edn. Springer Encycl. Solid Earth Geophys.). I focus on intra-continental rifts in which the Wilson Cycle failed to develop but in which that failure has led to glory because rocks and structures in those rifts throw exceptional light on how Earth's complex continental evolution can operate: The best studied record of human evolution is in the East African Rift; The Ventersdorp rifts (2.7 Ga) have yielded superb crustal-scale rift seismic reflection records; "Upside-down drainage" (Sleep 1997) has guided supra-plume-head partial melt into older continental rifts leading Deccan basalt of ~66Ma to erupt into a Late Paleozoic (~ 300Ma) rift and the CAMP basalts of ~201 Ma into Ladinian, ~230 Ma, rifts. Nepheline syenites and carbonatites, which are abundant in rifts that overlie sutures in the underlying mantle lithosphere, form by decompression melting of deformed nepheline syenites and carbonatites ornamenting those sutures (Burke et al.2003). Folding, faulting and igneous episodes involving decompression melting in old rifts can relate to collision at a remote plate margin (Guiraud and Bosworth 1997, Dewey and Burke 1974) or to passage of the rift over a plume generation zone (PGZ Burke et al.2008) on the Core Mantle Boundary (e.g.Lake Ellen MI kimberlites at ~206 Ma).
Synthesis of finite displacements and displacements in continental margins
NASA Technical Reports Server (NTRS)
Speed, R. C.; Elison, M. W.; Heck, F. R.; Russo, R. M.
1988-01-01
The scope of the project is the analysis of displacement-rate fields in the transitional regions between cratonal and oceanic lithospheres over Phanerozoic time (last 700 ma). Associated goals are an improved understanding of range of widths of major displacement zones; the partition of displacement gradients and rotations with position and depth in such zones; the temporal characteristics of such zones-the steadiness, episodicity, and duration of uniform versus nonunifrom fields; and the mechanisms and controls of the establishment and kinematics of displacement zones. The objective is to provide a context of time-averaged kinematics of displacement zones. The initial phase is divided topically among the methodology of measurement and reduction of displacements in the lithosphere and the preliminary analysis from geologic and other data of actual displacement histories from the Cordillera, Appalachians, and southern North America.
Lithospheric processes that enhance melting at rifts
NASA Astrophysics Data System (ADS)
Elkins-Tanton, L. T.; Furman, T.
2008-12-01
Continental rifts are commonly sites for mantle melting, whether in the form of ridge melting to create new oceanic crust, or as the locus of flood basalt activity, or in the long initial period of rifting before lavas evolve fully into MORBs. The high topography in the lithosphere-asthenosphere boundary under a rift creates mantle upwelling and adiabatic melting even in the absence of a plume. This geometry itself, however, is conducive to lithospheric instability on the sides of the rifts. Unstable lithosphere may founder into the mantle, producing more complex aesthenospheric convective patterns and additional opportunities to produce melt. Lithospheric instabilities can produce additional adiabatic melting in convection produced as they sink, and they may also devolatilize as they sink, introducing the possibility of flux melting to the rift environment. We call this process upside-down melting, since devolatilization and melting proceed as the foundering lithosphere sinks, rather than while rising, as in the more familiar adiabatic decompression melting. Both adiabatic melting and flux melting would take place along the edges of the rift and may even move magmatism outside the rift, as has been seen in Ethiopia. In volcanism postdating the flood basalts on and adjacent to the Ethiopian Plateau there is evidence for both lithospheric thinning and volatile enrichment in the magmas, potentially consistent with the upside-down melting model. Here we present a physical model for the conjunction of adiabatic decompression melting to produce new oceanic crust in the rift, while lithospheric gravitational instabilities drive both adiabatic and flux melting at its margins.
NASA Astrophysics Data System (ADS)
Hunziker, Daniela; Burg, Jean-Pierre; Bouilhol, Pierre; von Quadt, Albrecht
2015-03-01
This study focuses on an east-west trending belt of granitic to intermediate intrusions and their volcanic cover in the northern Dur Kan Complex, a continental slice outcropping to the north of the exposed Makran accretionary wedge in southeastern Iran. Field observations, petrographic descriptions, trace element, and isotope analyses combined with U-Pb zircon geochronology are presented to determine the time frame of magmatism and tectonic setting during the formation of these rocks. Results document three magmatic episodes with different melt sources for (1) granites, (2) a diorite-trondhjemite-plagiogranite sequence, and (3) diabases and lavas. Granites, dated at 170-175 Ma, represent crystallized melt with a strong continental isotopic contribution. The diorite-trondhjemite-plagiogranite sequence is 165-153 Ma old and derives from a mantle magma source with minor continental contribution. East-west trending diabase dikes and bodies intruded the granitoids, which were eroded and then covered by Valanginian (140-133 Ma) alkaline lavas and sediments. Alkaline dikes and lavas have a mantle isotopic composition. Temporal correlation with plutonites of the Sanandaj-Sirjan Zone to the northwest defines a narrow, NW-SE striking and nearly 2000 km long belt of Jurassic intrusions. The increasing mantle influence in the magma sources is explained by thinning of continental lithosphere and related mantle upwelling/decompression melting. Accordingly, the formation of the studied igneous rocks is related to the extension of the Iranian continental margin, which ultimately led to the formation of the Tethys-related North Makran Ophiolites.
Petrology of exhumed mantle rocks at passive margins: ancient lithosphere and rejuvenation processes
NASA Astrophysics Data System (ADS)
Müntener, Othmar; McCarthy, Anders; Picazo, Suzanne
2014-05-01
Mantle peridotites from ocean-continent transition zones (OCT's) and ultraslow spreading ridges question the commonly held assumption of a simple link between mantle melting and MORB. 'Ancient' and partly refertilized mantle in rifts and ridges illustrates the distribution of the scale of chemical and isotopic upper mantle heterogeneity even on a local scale. Field data and petrology demonstrates that ancient, thermally undisturbed, pyroxenite-veined subcontinental mantle blobs formed parts of the ocean floor next to thinned continental crust. These heterogeneities might comprise an (ancient?) subduction component. Upwelling of partial melts that enter the conductive lithospheric mantle inevitably leads to freezing of the melt and refertilization of the lithosphere and this process might well be at the origin of the difference between magma-poor and volcanic margins. Similar heterogeneity might be created in the oceanic lithosphere, in particular at slow to ultra-slow spreading ridges where the thermal boundary layer (TBM) is thick and may be veined with metasomatic assemblages that might be recycled in subduction zones. In this presentation, we provide a summary of mantle compositions from the European realm to show that inherited mantle signatures from previous orogenies play a key role on the evolution of rift systems and on the chemical diversity of peridotites exposed along passive margins and ultra-slow spreading ridges. Particularly striking is the abundance of plagioclase peridotites in the Alpine ophiolites that are interpreted as recorders of refertilization processes related to thinning and exhumation of mantle lithosphere. Another important result over the last 20 years was the discovery of extremely refractory Nd-isotopic compositions with highly radiogenic 147Sm/144Nd which indicates that partial melting processes and Jurassic magmatism in the Western Thetys are decoupled. Although the isotopic variability might be explained by mantle heterogeneities, an alternative is that these depleted domains represent snapshots of melting processes that are related to Permian and/or even older crust forming processes. The findings of the these refractory mantle rocks over the entire Western Alpine arc and the similarity in model ages of depletion suggests a connection to the Early Permian magmatic activity. Shallow and deep crustal magmatism in the Permian is widespread over Western Europe and the distribution of these mafic rocks are likely to pre-determine the future areas of crustal thinning and exhumation during formation of the Thethyan passive margins.
NASA Astrophysics Data System (ADS)
El-Sharkawy, Amr; Weidle, Christian; Christiano, Luigia; Lebedev, Sergei; Meier, Thomas
2017-04-01
The Alpine-Mediterranean mobile belt is, tectonically, one of the most complicated and active regions in the world. Since the Mesozoic, collisions between Gondwana-derived continental blocks and Eurasia, due to the closure of a number of rather small ocean basins, have shaped the Mediterranean geology. During the late Mesozoic, it was dominated by subduction zones (e.g., in Anatolia, the Dinarides, the Carpathians, the Alps, the Apennines, and the Betics), which inverted the extensional regime, consuming the previously formed oceanic lithosphere, the adjacent passive continental margins and presumably partly also continental lithosphere. The location, distribution, and evolution of these subduction zones were mainly controlled by the continental or oceanic nature, density, and thickness of the lithosphere inherited from the Mesozoic rift after the European Variscan Orogeny. Despite the numerous studies that have attempted to characterize the lithosphere-asthenosphere structure in that area, details of the lithospheric structure and dynamics, as well as flow in the asthenosphere are, however, poorly known. A 3D shear-wave velocity structure of the lithosphere-asthenosphere system in the Mediterranean is investigated using new tomographic images obtained from surface wave tomography. An automated algorithm for inter-station phase velocity measurements is applied here to obtain both Rayleigh and Love fundamental mode phase velocities. We utilize a database consisting of more than 4000 seismic events recorded by more than 2000 broadband seismic stations within the area, provided by the European Integrated Data Archive (WebDc/EIDA) and IRIS. Moreover, for the first time, data from the Egyptian National Seismological Network (ENSN), recorded by up to 25 broad band seismic stations, are also included in the analysis. For each station pair, approximately located on the same great circle path, the recorded waveforms are cross correlated and the dispersion curves of fundamental modes are calculated from the phase of the cross correlation functions weighted in the time-frequency plane. Path average dispersion curves are obtained by averaging the smooth parts of single-event dispersion curves. A careful quality control of the resulting phase velocities is performed. We calculate maps of Love and Rayleigh phase velocity at more than 100 different periods. The phase-velocity maps provide the local phase-velocity dispersion curve for each geographical grid node of the map. Each of these local dispersion curves is inverted individually for 1D shear wave velocity model using a newly implemented Particle Swarm Optimization (PSO) algorithm. The resulted 1D velocity models are then combined to construct the 3D shear-velocity model. Horizontal and vertical cross sections through the 3D isotropic model reveal significant variations in shear wave velocity with depth, and lateral changes in the crust and upper mantle structure emphasizing the processes associated with the convergence of the Eurasian and African plates. Key words: seismic tomography, Mediterranean, surface waves, particle swarm optimization.
NASA Astrophysics Data System (ADS)
Gaullier, Virginie; Chanier, Frank; Vendeville, Bruno; Maillard, Agnès; Thinon, Isabelle; Graveleau, Fabien; Lofi, Johanna; Sage, Françoise
2016-04-01
The Eastern Sardinian passive continental margin formed during the opening of the Tyrrhenian Sea, which is a back-arc basin created by continental rifting and oceanic spreading related to the eastward migrating Apennine subduction system (middle Miocene to Pliocene). Up to now, rifting in this key area was considered to be pro parte coeval with the Messinian Salinity Crisis (MSC, 5.96-5.32 Ma). We use the MSC seismic markers and the deformation of viscous salt and its brittle overburden as proxies to better delineate the timing of rifting and post-rift reactivation, and especially to quantify vertical and horizontal movements. On this young, highly-segmented margin, the Messinian Erosion Surface and the Upper and Mobile Units are systematically associated, respectively, to basement highs and deeper basins, showing that a rifted deep-sea domain already existed by Messinian times, therefore a major pre-MSC rifting episode occurred across the entire domain. Data show that there are no signs of Messinian syn-rift sediments, hence no evidence for rifting after Late Tortonian times. Moreover, because salt tectonics creates fan-shaped geometries in sediments, syn-rift deposits have to be carefully re-examined to distinguish the effects of crustal tectonics (rifting) and salt tectonics. We also precise that rifting is clearly diachronous from the upper margin (East-Sardinia Basin) to the lower margin (Cornaglia Terrace) with two unconformities, attributed respectively to the necking and to the lithospheric breakup unconformities. The onshore part of the upper margin has been recently investigated in order to characterize the large crustal faults affecting the Mesozoic series (geometry, kinematics and chronology) and to decipher the role of the structural inheritance and of the early rifting. Seaward, we also try to constrain the architecture and timing of the continent-ocean transition, between the hyper-extended continental crust and the first oceanic crust. Widespread post-breakup deformation also occurred during the Pliocene. Some Pliocene vertical movements have been evidenced by discovering localized gravity gliding of the salt and its Late Messinian (UU) and Early Pliocene overburden. To the South, crustal-scale southward tilting triggered along-strike gravity gliding of salt and cover recorded by upslope extension and downslope shortening. To the North, East of the Baronie Ridge, there was some post-salt crustal activity along a narrow N-S basement trough, bounded by crustal faults. The salt geometry would suggest that nothing happened after Messinian times, but some structural features (confirmed by analogue modelling) show that basement fault slip was accommodated by lateral salt flow, which thinned upslope and thickened downslope, while the overlying sediments remained sub-horizontal. Along the inner domain of Eastern Sardinian margin, the post-rift deformation style greatly varies. Compressional structures (reverse faults and folds) are observed both onshore and offshore while post-rift extensional structures are mainly identified offshore. Such late deformation could be attributed to mechanisms acting alone or combined, such as : i. the reactivation of the margin, as already described for the Ligurian, Algerian or South-Balearic margins due to the Eurasian-African convergence ; 2. the Zanclean reflooding and the resulting water overload on the elastic lithosphere ; 3. an episodic mantle upwelling.
Surface Deformation and Lower Crustal Flow in Eastern Tibet
Royden; Burchfiel; King; Wang; Chen; Shen; Liu
1997-05-02
Field observations and satellite geodesy indicate that little crustal shortening has occurred along the central to southern margin of the eastern Tibetan plateau since about 4 million years ago. Instead, central eastern Tibet has been nearly stationary relative to southeastern China, southeastern Tibet has rotated clockwise without major crustal shortening, and the crust along portions of the eastern plateau margin has been extended. Modeling suggests that these phenomena are the result of continental convergence where the lower crust is so weak that upper crustal deformation is decoupled from the motion of the underlying mantle. This model also predicts east-west extension on the high plateau without convective removal of Tibetan lithosphere and without eastward movement of the crust east of the plateau.
NASA Astrophysics Data System (ADS)
Moratti, G.; Benvenuti, M.; Santo, A. P.; Laurenzi, M. A.; Braschi, E.; Tommasini, S.
2018-04-01
This study is based upon a stratigraphic and structural revision of a Middle Jurassic-Upper Cretaceous mostly continental succession exposed between Boumalne Dades and Tinghir (Southern Morocco), and aims at reconstructing the relation among sedimentary, tectonic and magmatic processes that affected a portion of the Central High Atlas domains. Basalts interbedded in the continental deposits have been sampled in the two studied sites for petrographic, geochemical and radiogenic isotope analyses. The results of this study provide: (1) a robust support to the local stratigraphic revision and to a regional lithostratigraphic correlation based on new 40Ar-39Ar ages (ca. 120 Ma) of the intervening basalts; (2) clues for reconstructing the relation between magma emplacement in a structural setting characterized by syn-depositional crustal shortening pre-dating the convergent tectonic inversion of the Atlasic rifted basins; (3) a new and intriguing scenario indicating that the Middle Jurassic-Lower Cretaceous basalts of the Central High Atlas could represent the first signal of the present-day Canary Islands mantle plume impinging, flattening, and delaminating the base of the Moroccan continental lithosphere since the Jurassic, and successively dragged passively by the Africa plate motion to NE. The tectono-sedimentary and magmatic events discussed in this paper are preliminarily extended from their local scale into a peculiar geodynamic setting of a continental plate margin flanked by the opening and spreading Central Atlantic and NW Tethys oceans. It is suggested that during the late Mesozoic this setting created an unprecedented condition of intraplate stress for concurrent crustal shortening, related mountain uplift, and thinning of continental lithosphere.
NASA Astrophysics Data System (ADS)
Sun, Yujun; Fan, Taoyuan; Wu, Zhonghai
2018-05-01
Both of the southern and eastern margins of the Tibetan Plateau are bounded by the cratonic blocks (Indian plate and Sichuan basin). However, there are many differences in tectonic deformation, lithospheric structure and surface heat flow between these two margins. What dynamics cause these differences? With the constraints of the lithospheric structure and surface heat flow across the southern and eastern margins of Tibetan Plateau, we constructed 2-D thermal-mechanical finite-element models to investigate the dynamics across these two margins. The results show that the delamination of mantle lithosphere beneath the Lhasa terrane in Oligocene and the rheological contrast between the Indian and Tibetan crust are the two main factors that control the subduction of the Indian plate. The dynamics across the eastern margin of the Tibetan Plateau are different from the southern margin. During the lateral expansion of the Tibetan Plateau, pure shear thickening is the main deformation characteristic for the Songpan-Ganzi lithosphere. This thickening results in the reduction of geothermal gradient and surface heat flow. From this study, it can be seen that the delamination of the mantle lithosphere and the rheological contrast between the Tibetan Plateau and its bounding blocks are the two main factors that control the lithospheric deformation and surface heat flow.
NASA Astrophysics Data System (ADS)
Aragon, J. C.; Long, M. D.; Benoit, M. H.; Servali, A.
2016-12-01
North America's eastern passive continental margin has been modified by several cycles of supercontinent assembly. Its complex surface geology and distinct topography provide evidence of these events, while also raising questions about the extent of deformation in the continental crust, lithosphere, and mantle during past episodes of rifting and mountain building. The Mid-Atlantic Geophysical Integrative Collaboration (MAGIC) is an EarthScope and GeoPRISMS-funded project that involves a collaborative effort among seismologists, geodynamicists, and geomorphologists. One component of the project is a broadband seismic array consisting of 28 instruments in a linear path from coastal Virginia to western Ohio, which operated between October 2013 and October 2016. A key science question addressed by the MAGIC project is the geometry of past lithospheric deformation and present-day mantle flow beneath the Appalachians, which can be probed using observations of seismic anisotropy Here we present observations of SKS splitting and quasi-Love wave arrivals from stations of the MAGIC array, which together constrain seismic anisotropy in the upper mantle. SKS splitting along the array reveals distinct regions of upper mantle anisotropy, with stations in and to the west of the range exhibiting fast directions parallel to the strike of the mountains. In contrast, weak splitting and null SKS arrivals dominate eastern stations in the coastal plain. Documented Love-to-Rayleigh wave scattering for surface waves originating the magnitude 8.3 Illapel, Chile earthquakes in September 2015 provides complementary constraints on anisotropy. These quasi-Love wave arrivals suggest a pronounced change in upper mantle anisotropy at the eastern edge of present-day Appalachian topography. Together, these observations increase our understanding of the extent of lithospheric deformation beneath North America associated with Appalachian orogenesis, as well as the pattern of present-day mantle flow beneath the passive margin.
NASA Astrophysics Data System (ADS)
Cowie, Leanne; Kusznir, Nick
2014-05-01
Subsidence analysis of sedimentary basins and rifted continental margins requires a correction for the anomalous uplift or subsidence arising from mantle dynamic topography. Whilst different global model predictions of mantle dynamic topography may give a broadly similar pattern at long wavelengths, they differ substantially in the predicted amplitude and at shorter wavelengths. As a consequence the accuracy of predicted mantle dynamic topography is not sufficiently good to provide corrections for subsidence analysis. Measurements of present day anomalous subsidence, which we attribute to mantle dynamic topography, have been made for three rifted continental margins; offshore Iberia, the Gulf of Aden and southern Angola. We determine residual depth anomaly (RDA), corrected for sediment loading and crustal thickness variation for 2D profiles running from unequivocal oceanic crust across the continental ocean boundary onto thinned continental crust. Residual depth anomalies (RDA), corrected for sediment loading using flexural backstripping and decompaction, have been calculated by comparing observed and age predicted oceanic bathymetries at these margins. Age predicted bathymetric anomalies have been calculated using the thermal plate model predictions from Crosby & McKenzie (2009). Non-zero sediment corrected RDAs may result from anomalous oceanic crustal thickness with respect to the global average or from anomalous uplift or subsidence. Gravity anomaly inversion incorporating a lithosphere thermal gravity anomaly correction and sediment thickness from 2D seismic reflection data has been used to determine Moho depth, calibrated using seismic refraction, and oceanic crustal basement thickness. Crustal basement thicknesses derived from gravity inversion together with Airy isostasy have been used to correct for variations of crustal thickness from a standard oceanic thickness of 7km. The 2D profiles of RDA corrected for both sediment loading and non-standard crustal thickness provide a measurement of anomalous uplift or subsidence which we attribute to mantle dynamic topography. We compare our sediment and crustal thickness corrected RDA analysis results with published predictions of mantle dynamic topography from global models.
NASA Astrophysics Data System (ADS)
Maystrenko, Yuriy Petrovich; Gernigon, Laurent; Olesen, Odleiv; Ottesen, Dag; Rise, Leif
2018-05-01
A 3-D subsurface temperature distribution within the Lofoten-Vesterålen segment of the Mid-Norwegian continental margin and adjacent areas has been studied to understand the thermal effect of late Cenozoic erosion of old sedimentary and crystalline rocks and subsequent deposition of glacial sediments during the Pleistocene. A lithosphere-scale 3-D structural model of the Lofoten-Vesterålen area has been used as a realistic approximation of the geometries of the sedimentary infill, underlying crystalline crust and lithospheric mantle during the 3-D thermal modelling. The influence of late Cenozoic erosion and sedimentation has been included during the 3-D thermal calculations. In addition, the 3-D thermal modelling has been carried out by taking also into account the influence of early Cenozoic continental breakup. The results of the 3-D thermal modelling demonstrate that the mainland is generally colder than the basin areas within the upper part of the 3-D model. The thermal influence of the early Cenozoic breakup is still clearly recognizable within the western and deep parts of the Lofoten-Vesterålen margin segment in terms of the increased temperatures. The thermal effects of the erosion and deposition within the study area also indicate that a positive thermal anomaly exists within the specific subareas where sedimentary and crystalline rocks were eroded. A negative thermal effect occurs in the subareas affected by subsidence and sedimentation. The erosion-related positive thermal anomaly reaches its maximum of more than +27 °C at depths of 17-22 km beneath the eastern part of the Vestfjorden Basin. The most pronounced deposition-related negative anomaly shows a minimum of around -70 °C at 17-20 km depth beneath the Lofoten Basin. The second negative anomaly is located within the northeastern part of the Vøring Basin and has minimal values of around -48 °C at 12-14 km depth. These prominent thermal anomalies are associated with the subareas where relatively high erosional and depositional rates were observed for late Cenozoic time.
NASA Astrophysics Data System (ADS)
Fitzgerald, P. G.; Studinger, M.; Bialas, R. W.; Buck, W.
2007-12-01
The Transantarctic Mountains (TAM), the world's longest and highest non-contractional intracontinental mountain belt, define the western boundary of the West Antarctic rift system (WARS). The WARS is a broad region of extended continental lithosphere, ca. 750-1000 km wide, lying dominantly below sea-level. A new model (Bialas et al., 2007), proposes that a region of thickened continental crust and high-standing topography, the "West Antarctic Plateau", underwent extensional collapse to leave a remnant edge representing the proto-TAM. Tectonic and paleogeographic reconstructions indicate the plateau formed inboard of a continental arc along the paleo- Pacific margin of Antarctica, active throughout the Paleozoic until the late Mesozoic. This high-standing region was responsible for confining sediments (Beacon Supergroup) to elongate basins along the length of the TAM. Much of the present region of the WARS has been correlated with the Lachlan Fold belt of southeastern Australia. This belt formed from the Ordovician to Carboniferous during back-arc basin formation associated with slab roll- back with short periods of compression. Convergence along the paleo-Pacific margin, perhaps enhanced by subduction of more buoyant oceanic lithosphere as the Phoenix-Pacific ridge was obliquely subducted, resulted in crustal thickening and formation of high-standing terrain (the plateau). Extensional collapse of the plateau most likely began in the Jurassic during initial rifting between East and West Antarctica, but was mainly accomplished during distributed rifting in the Cretaceous (ca. 105-85) following subduction of the Phoenix-Pacific ridge and prior to the separation of New Zealand from Marie Byrd Land. Continued formation of the TAM continued in the Cenozoic concomitant with extension in the WARS that was localized along its western margin adjacent to the TAM. Glacial erosion in the Oligocene and early-Miocene enhanced peak height in the TAM. In this presentation we discuss the diverse geological, geophysical, thermochronological and tectonic evidence for the West Antarctic Plateau and the implications for the formation of the Transantarctic Mountains.
NASA Astrophysics Data System (ADS)
Liao, Jie; Gerya, Taras; Thielmann, Marcel; Webb, A. Alexander G.; Kufner, Sofia-Katerina; Yin, An
2017-12-01
The development of opposing continental subduction zones remains scantly explored in three dimensions. The Hindu Kush-Pamir orogenic system at the western end of the Himalayan orogen provides a rare example of continental collision linked to two opposing intra-continental subduction zones. The subducted plates feature a peculiar 3D geometry consisting of two distinct lithospheric fragments with different polarities, subduction angles and slab-curvatures beneath the Hindu Kush and Pamir, respectively. Using 3D geodynamic modeling, we simulate possible development of two opposing continental subduction zones to understand the dynamic evolution of the Hindu Kush-Pamir orogenic system. Our geodynamic model reproduces the major tectonic elements observed: (1) the deeper subduction depth, the steeper dip angle and the southward offset of the Hindu Kush subduction zone relative to the Pamir naturally occur if convergence direction of the subducting Indian plate and dip-direction of the Hindu Kush subduction zone match. (2) The formation of the highly asymmetrically curved Pamir region and the south-dipping subduction is promoted by the initial geometry of the indenting Indian lithosphere together with the existence of a major strike-slip fault on the eastern margin of the Pamir region. (3) Subduction of only the lower continental crust during continental collision can occur if the coupling between upper and lower crusts is weak enough to allow a separation of these two components, and that (4) the subduction of mainly lower crust then facilitates that conditions for intermediate-depth seismicity can be reached. (5) The secondary tectonic features modeled here such as strike-slip-fault growth, north-northwest striking extension zone, and lateral flow of the thickened ductile upper crust are comparable to the current tectonics of the region. (6) Model results are further compared to the potentially similar orogenic system, i.e., the Alpine orogen, in terms of the curved Western Alpine arc and the two opposing subducted slabs beneath the Alps and the Dinarides.
Artemieva, I.M.; Mooney, W.D.; Perchuc, E.; Thybo, H.
2002-01-01
We discuss the structure of the continental lithosphere, its physical properties, and the mechanisms that formed and modified it since the early Archean. The structure of the upper mantle and the crust is derived primarily from global and regional seismic tomography studies of Eurasia and from global and regional data on seismic anisotropy. These data as documented in the papers of this special issue of Tectonophysics are used to illustrate the role of different tectonic processes in the lithospheric evolution since Archean to present. These include, but are not limited to, cratonization, terrane accretion and collision, continental rifting (both passive and active), subduction, and lithospheric basal erosion due to a relative motion of cratonic keels and the convective mantle. ?? 2002 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bermingham, P. M.; Fairhead, J. D.; Stuart, G. W.
1983-05-01
Gravity studies of the Darfur uplift, Western Sudan, show it to be associated with a circular negative Bouguer anomaly, 50 mGal in amplitude and 700 km across. A three-dimensional model interpretation of the Darfur anomaly, using constraints deduced from geophysical studies of similar but more evolved Kenya and Ethiopia domes, suggests either a low-density laccolithic body at mid-lithospheric depth (~ 60 km) or a thinned lithosphere with emplacement at high level of low-density asthenospheric material. The regional setting of the Darfur uplift is described in terms of it being an integral part of the Central African Rift System which is shown to be broadly equivalent to the early to middle Miocene stage in the development of the Afro-Arabian Rift System. Comparisons between these rift systems suggest that extensional tectonics and passive rifting, resulting in the subsiding sedimentary rift basins associated with the Ngaoundere, Abu Gabra, Red Sea and Gulf of Aden rifts, are more typical of the early stage development of passive continental margins than the active domal uplift and development of rifted features associated with the Darfur, Kenya and Ethiopia domes.
NASA Astrophysics Data System (ADS)
Sokolov, Sergey; Luchitskaya, Marina; Tuchkova, Marianna; Moiseev, Artem; Ledneva, Galina
2013-04-01
Continental margin of Northeastern Asia includes many island arc terranes that differ in age and tectonic position. Two convergent margins are reconstructed for Late Jurassic - Early Cretaceous time: Uda-Murgal and Alazeya - Oloy island arc systems. A long tectonic zone composed of Upper Jurassic to Lower Cretaceous volcanic and sedimentary rocks is recognized along the Asian continent margin from the Mongol-Okhotsk thrust-fold belt on the south to the Chukotka Peninsula on the north. This belt represents the Uda-Murgal arc, which was developed along the convergent margin between Northeastern Asia and Northwestern Meso-Pacific. Several segments are identified in this arc based upon the volcanic and sedimentary rock assemblages, their respective compositions and basement structures. The southern and central parts of the Uda-Murgal island arc system were a continental margin belt with heterogeneous basement represented by metamorphic rocks of the Siberian craton, the Verkhoyansk terrigenous complex of Siberian passive margin and the Koni-Taigonos late Paleozoic to early Mesozoic island arc with accreted oceanic terranes. At the present day latitude of the Pekulney and Chukotka segments there was an ensimatic island arc with relicts of the South Anyui oceanic basin in backarc basin. Alazeya-Oloy island arc systems consists of Paleozoic and Mesozoic complexes that belong to the convergent margin between Northeastern Asia and Proto-Artic Ocean. It separated structures of the North American and Siberian continents. The Siberian margin was active whereas the North American margin was passive. The Late Jurassic was characterized by termination of a spreading in the Proto-Arctic Ocean and transformation of the latter into the closing South Anyui turbidite basin. In the beginning the oceanic lithosphere and then the Chukotka microcontinent had been subducted beneath the Alazeya-Oloy volcanic belt
NASA Astrophysics Data System (ADS)
Burov, E.; Guillou-Frottier, L.
2005-05-01
Current debates on the existence of mantle plumes largely originate from interpretations of supposed signatures of plume-induced surface topography that are compared with predictions of geodynamic models of plume-lithosphere interactions. These models often inaccurately predict surface evolution: in general, they assume a fixed upper surface and consider the lithosphere as a single viscous layer. In nature, the surface evolution is affected by the elastic-brittle-ductile deformation, by a free upper surface and by the layered structure of the lithosphere. We make a step towards reconciling mantle- and tectonic-scale studies by introducing a tectonically realistic continental plate model in large-scale plume-lithosphere interaction. This model includes (i) a natural free surface boundary condition, (ii) an explicit elastic-viscous(ductile)-plastic(brittle) rheology and (iii) a stratified structure of continental lithosphere. The numerical experiments demonstrate a number of important differences from predictions of conventional models. In particular, this relates to plate bending, mechanical decoupling of crustal and mantle layers and tension-compression instabilities, which produce transient topographic signatures such as uplift and subsidence at large (>500 km) and small scale (300-400, 200-300 and 50-100 km). The mantle plumes do not necessarily produce detectable large-scale topographic highs but often generate only alternating small-scale surface features that could otherwise be attributed to regional tectonics. A single large-wavelength deformation, predicted by conventional models, develops only for a very cold and thick lithosphere. Distinct topographic wavelengths or temporarily spaced events observed in the East African rift system, as well as over French Massif Central, can be explained by a single plume impinging at the base of the continental lithosphere, without evoking complex asthenospheric upwelling.
NASA Astrophysics Data System (ADS)
Liu, S.; Wang, L.
2006-12-01
The effective elastic thickness (Te) of lithosphere is one parameter describing the responses of the lithosphere to long term forces, and is still controversial in estimation by different methods. Here we present the effective elastic thickness of the lithosphere in continental China from heat flow data by the method proposed by Burov et al, J.G.R., 1995,100(B3):3905-3927. Our results show that Te varies much in different sub-areas in continental China due to different geological evolution and associated thermal regimes. Te is much greater than the crustal thickness in the area where the heat flow is really low and the lithosphere is really thick, indicating much more contribution from the lithospheric mantle and the dominative control of the mantle with olivine on the rheology of the lithosphere, and the major basins (Tarim, Junggar, Ordos and Sichuan basins) in central-western China share this characteristic. For instance, the Te of the Tarim basin is 66km with crustal thickness of 45km. Te is less than the crustal thickness in the region where the heat flow is relatively high, and approximates to the crustal brittle-ductile transition depth, suggesting more contribution from the crust and the dominative control of the felsic crust on the rheology of the lithosphere, and this phenomenon is obvious in the SE coastal China, eastern North China and the orogenic belts. Compared the estimated Te with the seismogenic layer thickness (Ts) available in China, it is also found that the Te is much greater than Ts in the major basins with low heat flow, and is similar to Ts in the active zones with high heat flow, which is inconsistent with that Te is usually smaller than Ts proposed by Maggi et al., Geology,2000,28(6):495-498. Generally, two end elements rheological modes for continental lithosphere of the strong crust-weak mantle and the weak crust-strong mantle are all available in continental China considering different thermal regime, composition and geological evolution.
Seismic imaging of lithospheric discontinuities and continental evolution
NASA Astrophysics Data System (ADS)
Bostock, M. G.
1999-09-01
Discontinuities in physical properties within the continental lithosphere reflect a range of processes that have contributed to craton stabilization and evolution. A survey of recent seismological studies concerning lithospheric discontinuities is made in an attempt to document their essential characteristics. Results from long-period seismology are inconsistent with the presence of continuous, laterally invariant, isotropic boundaries within the upper mantle at the global scale. At regional scales, two well-defined interfaces termed H (˜60 km depth) and L (˜200 km depth) of continental affinity are identified, with the latter boundary generally exhibiting an anisotropic character. Long-range refraction profiles are frequently characterized by subcontinental mantle that exhibits a complex stratification within the top 200 km. The shallow layering of this package can behave as an imperfect waveguide giving rise to the so-called teleseismic Pn phase, while the L-discontinuity may define its lower base as the culmination of a low velocity zone. High-resolution, seismic reflection profiling provides sufficient detail in a number of cases to document the merging of mantle interfaces into lower continental crust below former collisional sutures and magmatic arcs, thus unambiguously identifying some lithospheric discontinuities with thrust faults and subducted oceanic lithosphere. Collectively, these and other seismic observations point to a continental lithosphere whose internal structure is dominated by a laterally variable, subhorizontal layering. This stratigraphy appears to be more pronounced at shallower lithospheric levels, includes dense, anisotropic layers of order 10 km in thickness, and exhibits horizontal correlation lengths comparable to the lateral dimensions of overlying crustal blocks. A model of craton evolution which relies on shallow subduction as a principal agent of craton stabilization is shown to be broadly compatible with these characteristics.
NASA Astrophysics Data System (ADS)
Kerrich, R.; Jia, Y.; Wyman, D.
2001-12-01
Mantle plume activity was more intense in the Archean and komatiite-basalt volcanic sequences are a major component of many Archean greenstone belts. Tholeiitic basalts compositionally resemble Phanerozoic and Recent ocean plateau basalts, such as those of Ontong Java and Iceland. However, komatiite-basalt sequences are tectonically imbricated with bimodal arc lavas and associated trench turbidites. Interfingering of komatiite flows with boninite series flows, and primitive to evolved arc basalts has recently been identified in the 2.7 Ga Abitibi greenstone belt, demonstrating spatially and temporally associated plume and arc magmatism. These observations are consistent with an intra-oceanic arc migrating and capturing an ocean plateau, where the plateau jams the arc and imbricated plateau-arc crust forms a greenstone belt orogen. Melting of shallowly subducted plateau basalt crust (high Ba, Th, LREE) accounts for the areally extensive and voluminous syntectonic tonalite batholiths. In contrast, the adakite-Mg-andesite-Niobium enriched basalt association found in Archean greenstone belts and Cenozoic arcs are melts of LREE depleted MORB slab. Buoyant residue from anomalously hot mantle plume melting at > 100km rises to couple with the composite plume-arc crust to form the distinctively thick and refractory Archean continental lithospheric mantle. New geochemical data for structurally hosted ultramafic units along the N. American Cordillera, from S. California to the Yukon, show that these are obducted slices of sub-arc lithospheric mantle. Negatively fractionated HREE with high Al2O3/TiO2 ratios signify prior melt extraction, and variably enriched Th and LREE with negative Nb anomalies a subduction component in a convergent margin. A secular decrease of mantle plume activity and temperature results in plume-arc dominated geodynamics in the Archean with shallow subduction and thick CLM, whereas Phanerozoic convergent margins are dominated by arc-continent, arc-terrane, and terrane-terrane collision with steep subduction resulting in narrow belts of granitoids and obduction of lithospheric mantle.
NASA Astrophysics Data System (ADS)
Allahyari, Khalil; Saccani, Emilio; Rahimzadeh, Bahman; Zeda, Ottavia
2014-01-01
The Sarve-Abad (Sawlava) ophiolitic complex consists of several tectonically dismembered ophiolitic sequences. They are located along the Main Zagros Thrust Zone, which marks the ophiolitic suture between the Arabian and Sanandaj-Sirjan continental blocks. They represent a portion of the southern Neo-Tethyan oceanic lithosphere, which originally existed between the Arabian (to the south) and Eurasian (to the north) continental margins. The Sarve-Abad ophiolites include cumulitic lherzolites bearing minor dunite and chromitite lenses in places. The main rock-forming minerals in ultramafic cumulates are cumulus olivine and inter-cumulus clinopyroxene and orthopyroxene. Minor (<5%) chromian spinel occurs as both cumulus and inter-cumulus phases.
Deng, Yangfan; Levandowski, William Brower; Kusky, Tim
2017-01-01
Intraplate strain generally focuses in discrete zones, but despite the profound impact of this partitioning on global tectonics, geodynamics, and seismic hazard, the processes by which deformation becomes localized are not well understood. Such heterogeneous intraplate strain is exemplified in central Asia, where the Indo-Eurasian collision has caused widespread deformation while the Tarim block has experienced minimal Cenozoic shortening. The apparent stability of Tarim may arise either because strain is dominantly accommodated by pre-existing faults in the continental suture zones that bound it—essentially discretizing Eurasia into microplates—or because the lithospheric-scale strength (i.e., viscosity) of the Tarim block is greater than its surroundings. Here, we jointly analyze seismic velocity, gravity, topography, and temperature to develop a 3-D density model of the crust and upper mantle in this region. The Tarim crust is characterized by high density, vs, vp, and vp/vs, consistent with a dominantly mafic composition and with the presence of an oceanic plateau beneath Tarim. Low-density but high-velocity mantle lithosphere beneath southern (southwestern) Tarim underlies a suite of Permian plume-related mafic intrusions and A-type granites sourced in previously depleted mantle lithosphere; we posit that this region was further depleted, dehydrated, and strengthened by Permian plume magmatism. The actively deforming western and southern margins of Tarim—the Tien Shan, Kunlun Shan, and Altyn Tagh fault—are underlain by buoyant upper mantle with low velocity; we hypothesize that this material has been hydrated by mantle-derived fluids that have preferentially migrated along Paleozoic continental sutures. Such hydrous material should be weak, and herein strain focuses there because of lithospheric-scale variations in rheology rather than the pre-existence of faults in the brittle crust. Thus this world-class example of strain partitioning arises not simply from the pre-existence of brittle faults but from the thermo-chemical and therefore rheological variations inherited from prior tectonism.
NASA Astrophysics Data System (ADS)
Liang, X.; Tian, X.; Wang, M.
2017-12-01
Indian plate collided with Eurasian plate at 60 Ma and there are about 3000 km crustal shortening since the continental-continental collision. At least one third of the total amount of crustal shortening between Indian and Eurasian plates could not be accounted by thickened Tibetan crust and surface erosion. It will need a combination of possible transfer of lower crust to the mantle by eclogitization and lateral extrusion. Based on the lithosphere-asthenosphere boundary images beneath the Tibetan plateau, there is also at least the same amount deficit for lithospheric mantle subducted into upper/lower mantle or lateral extrusion with the crust. We have to recover a detailed Indian continental lithosphere image beneath the plateau in order to explain this deficit of mass budget. Combining the new teleseismic body waves recorded by SANDWICH passive seismic array with waveforms from several previous temporary seismic arrays, we carried out finite-frequency tomographic inversions to image three-dimensional velocity structures beneath southern and central Tibetan plateau to examine the possible image of subducted Indian lithosphere in the Tibetan upper mantle. We have recovered a continuous high velocity body in upper mantle and piece-wised high velocity anomalies in the mantle transition zone. Based on their geometry and relative locations, we interpreted these high velocity anomalies as the subducted and detached Indian lithosphere at different episodes of the plateau evolution. Detachments of the subducted Indian lithosphere should have a crucial impact on the volcanism activities and uplift history of the plateau.
NASA Astrophysics Data System (ADS)
Kanda, R. V.; Suppe, J.; Wu, J. E.
2013-12-01
Recent plate-tectonic reconstructions based on mapping of subducted slabs imaged by state-of-the-art tomographic models, and constrained by paleomagnetic data demonstrate that the Philippine Sea Plate (PSP) was originally part of the Sunda Plate (SP). These reconstructions show that the PSP has moved northward with Australia across 25° of latitude since the early Eocene (~ 43 Ma). Most of this motion of the PSP was accommodated on the north and east by overriding a southward subducting East Asian Sea (EAS) ocean basin that was contiguous with the present-day Eurasian Plate (EP). On the western margin of the PSP, this northward advance was accommodated by a N-S transform system. Ages of the Luzon volcanic arc suggest that by early Miocene (~ 15-20 Ma), the EP seafloor west of this transform started subducting eastwards, and highly obliquely, underneath a NNW moving PSP that was detached from the SP. Further, by late Miocene (~10 Ma), northward subduction of the PSP along the present Ryukyu Trench began as a result of arc-continent collision of the PSP along the Eurasian continental margin and flipping of subduction polarity due to slab break-off of the south-subducting EAS. A significant rotation of the PSP-EP convergence to the present more northwesterly direction occurred only over the last ~2 Ma. This present-day juxtaposition of orthogonal subduction polarities beneath Taiwan can be understood in terms of a margin-parallel lithospheric STEP fault, that accomplishes the progressive SW extension of the Ryukyu Trench (RT), and also marks the northern limit of the EP subduction. The torn edge of the Eurasian lithosphere is imaged tomographically. Further support for this tearing comes from our newly developed multi-resolution stress maps based on focal-mechanism inversions and the seismicity distribution. Our inferred stress orientations indicate orthogonal contact between the subducting PSP and the Eurasian lithospheres, resulting in present-day E-W strike-parallel compression and horizontal flexure in the PSP above 100 km depth. Here, we present first-order 2.5D/3D lithospheric scale models of the Taiwan orogen resulting from the progressive deformation of the Eurasian margin and based on the above plate motion history. These models are also constrained by large-scale geologic and slab structure as well as 3D geophysical data: focal-mechanism based stress orientations and geodetic strain-rates. We use a particle-tracer based 3D Lagrangian-Eulerian code, SULEC, that can model the evolution of finite plastic and viscoelastic deformation. Our hierarchical modeling approach involves first using intuition building 2D models having simplified versions of the above spatio-temporal constraints, before considering more complex 3D setups. For simplicity, we start our models from the time of initiation of PSP subduction along the RT (~ 10 Ma), and pre-existing slabs in the upper-mantle. Our models address: (a) the timing of subduction flipping from southwards to northwards at the Ruykyu Trench; (b) the tearing of the EP lithosphere as a STEP fault; (c) the mechanism(s) by which the subducting PSP 'slid' under the EP continental margin as far north as Shanghai; and (d) the role of pre-existing subducting slabs along the PSP's western and eastern edges on the recent sudden change to northwesterly convergence.
Anomalous Subsidence at the Ocean Continent Transition of the Gulf of Aden Rifted Continental Margin
NASA Astrophysics Data System (ADS)
Cowie, Leanne; Kusznir, Nick; Leroy, Sylvie
2013-04-01
It has been proposed that some rifted continental margins have anomalous subsidence and that at break-up they were elevated at shallower bathymetries than the isostatic response predicted by classical rift models (McKenzie, 1978). The existence of anomalous syn- or early-post break-up subsidence of this form would have important implications for our understanding of the geodynamics of continental break-up and sea-floor spreading initiation. We have investigated subsidence of the young rifted continental margin of the eastern Gulf of Aden, focussing on the western Oman margin (break-up age 17.6 Ma). Lucazeau et al. (2008) have found that the observed bathymetry here is approximately 1 km shallower than the predicted bathymetry. In order to examine the proposition of an anomalous early post break-up subsidence history of the Omani Gulf of Aden rifted continental margin, we have determined the subsidence of the oldest oceanic crust adjacent to the continent-ocean boundary (COB) using residual depth anomaly (RDA) analysis corrected for sediment loading and oceanic crustal thickness variation. RDAs corrected for sediment loading using flexural backstripping and decompaction have been calculated by comparing observed and age predicted oceanic bathymetries in order to identify anomalous subsidence of the Gulf of Aden rifted continental margin. Age predicted bathymetric anomalies have been calculated using the thermal plate model predictions of Crosby and McKenzie (2009). Non-zero RDAs at the Omani Gulf of Aden rifted continental margin can be the result of non standard oceanic crustal thickness or the effect of mantle dynamic topography or a non-classical rift and break-up model. Oceanic crustal basement thicknesses from gravity inversion together with Airy isostasy have been used to predict a "synthetic" gravity RDA, in order to determine the RDA contribution from non-standard oceanic crustal thickness. Gravity inversion, used to determine crustal basement thickness, incorporates a lithosphere thermal gravity anomaly correction and uses sediment thicknesses from 2D seismic data. Reference Moho depths used in the gravity inversion have been calibrated against seismic refraction Moho depths. The difference between the sediment corrected RDA and the "synthetic" gravity derived RDA gives the component of the RDA which is not due to variations in oceanic crustal thickness. This RDA corrected for sediment loading and crustal thickness variation has a magnitude between +600m and +1000m (corresponding to anomalous uplift) and is comparable to that reported (+1km) by Lucazeau et al. (2008). We are unable to distinguish whether this anomalous uplift is due to mantle dynamic topography or anomalous subsidence with respect to classical rift model predictions.
NASA Astrophysics Data System (ADS)
Leprêtre, Rémi; Missenard, Yves; Barbarand, Jocelyn; Gautheron, Cécile; Saddiqi, Omar; Pinna-Jamme, Rosella
2015-06-01
The passive margin of South Morocco is a low-elevated passive margin. It constitutes one of the oldest margins of the Atlantic Ocean, with an Early Jurassic breakup, and little geological data are available concerning its postrift reactivation so far. We investigated the postrift thermal history of the onshore part of the margin with low-temperature thermochronology on apatite crystals. Fission track and (U-Th-Sm)/He ages we obtained are significantly younger than the breakup ( 190 Ma). Fission track ages range from 107 ± 8 to 175 ± 16 Ma, with mean track lengths from 10.7 ± 0.3 to 12.5 ± 0.2 µm. (U-Th-Sm)/He ages range from 14 ± 1 to 185 ± 15 Ma. Using inverse modeling of low-temperature thermochronological data, we demonstrate that the South Moroccan continental margin underwent a complex postrift history with at least two burial and exhumation phases. The first exhumation event occurred during Late Jurassic/Early Cretaceous, and we attribute this to mantle dynamics rather than to intrinsic rifting-related processes such as flexural rebound. The second event, from Late Cretaceous to early Paleogene, might record the onset of Africa/Europe convergence. We show a remarkably common behavior of the whole Moroccan passive margin during its early postrift evolution. The present-day differences result from a segmentation of the margin domains due to the Africa/Europe convergence. Finally we propose that varying retained strengths during rifting and also the specific crustal/lithospheric geometry of stretching explain the difference between the topographical expressions on the continental African margin compared to its American counterpart.
Geodynamic inversion to constrain the rheology of the lithosphere: What is the effect of elasticity?
NASA Astrophysics Data System (ADS)
Baumann, Tobias; Kaus, Boris; Thielmann, Marcel
2016-04-01
The concept of elastic thickness (T_e) is one of the main methods to describe the integrated strength of oceanic lithosphere (e.g. Watts, 2001). Observations of the Te are in general agreement with yield strength envelopes estimated from laboratory experiments (Burov, 2007, Goetze & Evans 1979). Yet, applying the same concept to the continental lithosphere has proven to be more difficult (Burov & Diament, 1995), which resulted in an ongoing discussion on the rheological structure of the lithosphere (e.g. Burov & Watts, 2006, Jackson, 2002; Maggi et al., 2000). Recently, we proposed a new approach, which constrains rheological properties of the lithosphere directly from geophysical observations such as GPS-velocity, topography and gravity (Baumann & Kaus, 2015). This approach has the advantage that available data sets (such as Moho depth) can be directly taken into account without making the a-priori assumption that the lithosphere is thin elastic plate floating on the mantle. Our results show that a Bayesian inversion method combined with numerical thermo-mechanical models can be used as independent tool to constrain non-linear viscous and plastic parameters of the lithosphere. As the rheology of the lithosphere is strongly temperature dependent, it is even possible to add a temperature parameterisation to the inversion method and constrain the thermal structure of the lithosphere in this manner. Results for the India-Asia collision zone show that existing geophysical data require India to have a quite high effective viscosity. Yet, the rheological structure of Tibet less well constrained and a number of scenarios give a nearly equally good fit to the data. Yet, one of the assumptions that we make while doing this geodynamic inversion is that the rheology is viscoplastic, and that elastic effects do not significantly alter the large-scale dynamics of the lithosphere. Here, we test the validity of this assumption by performing synthetic forward models and retrieving the rheological parameters of these models with viscoplastic geodynamic inversions. We focus on a typical intra-oceanic subduction system as well as a typical scenario of subduction of an oceanic plate underneath a continental arc. Baumann, T. S. & Kaus, B. J. P., 2015. Geodynamic inversion to constrain thenon-linear rheology of the lithosphere, Geophys. J. Int., 202(2), 1289-1316. Burov, E. B. & Diament, M., 1995. The effective elastic thickness (Te) of continental lithosphere: What does it really mean?, J. Geophys. Res., 100, 3905-3927. Burov, E. B. & Watts, A. B., 2006. The long-term strength of continental lithosphere : jelly sandwich or crème brûlée?, GSA today, 16(1), 4-10. Burov, E. B., 2007. Crust and Lithosphere Dynamics: Plate Rheology and Mechanics, in Treatise Geophys., vol. 6, chap. 3, pp. 99-151, ed. Watts, A. B., Elsevier. Goetze, C. & Evans, B., 1979. Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics, Geophys. J. Int., 59(3), 463-478. Jackson, J., 2002. Strength of the continental lithosphere: Time to abandon the jelly sandwich?, GSA today, 12(9), 4-9. Maggi, A., Jackson, J. A., McKenzie, D., & Priestley, K., 2000a. Earthquake focal depths, effective elastic thickness, and the strength of the continental lithosphere, Geology, 28, 495-498. Watts, A. B., 2001. Isostasy and Flexure of the Lithosphere, Cambridge University Press.
3-D numerical investigation of the mantle dynamics associated with the breakup of Pangea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumgardner, J.R.
1992-01-01
Three-dimensional finite element calculations in spherical geometry are performed to study the response of the mantle with platelike blocks at its surface to an initial condition corresponding to subduction along the margins of Pangea. The mantle is treated as an infinite Prandtl number Boussinesq fluid inside a spherical shell with isothermal, undeformable, free-slip boundaries. Nonsubducting rigid blocks to model continental lithosphere are included in the topmost layer of the computational mesh. At the beginning of the numerical experiments these blocks represent the present continents mapped to their approximate Pangean positions. Asymmetrical downwelling at the margins of these nonsubducting blocks resultsmore » in a pattern of stresses that acts to pull the supercontinent apart. The calculations suggest that the breakup of Pangea and the subsequent global pattern of seafloor spreading was driven largely by the subduction at the Pangean margins.« less
3-D numerical investigation of the mantle dynamics associated with the breakup of Pangea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumgardner, J.R.
1992-10-01
Three-dimensional finite element calculations in spherical geometry are performed to study the response of the mantle with platelike blocks at its surface to an initial condition corresponding to subduction along the margins of Pangea. The mantle is treated as an infinite Prandtl number Boussinesq fluid inside a spherical shell with isothermal, undeformable, free-slip boundaries. Nonsubducting rigid blocks to model continental lithosphere are included in the topmost layer of the computational mesh. At the beginning of the numerical experiments these blocks represent the present continents mapped to their approximate Pangean positions. Asymmetrical downwelling at the margins of these nonsubducting blocks resultsmore » in a pattern of stresses that acts to pull the supercontinent apart. The calculations suggest that the breakup of Pangea and the subsequent global pattern of seafloor spreading was driven largely by the subduction at the Pangean margins.« less
Thematic mapper study of Alaskan ophiolites
NASA Technical Reports Server (NTRS)
Bird, John M.
1988-01-01
The two principle objectives of the project Thematic Mapper Study of Alaskan Ophiolites were to further develop techniques for producing geologic maps, and to study the tectonics of the ophiolite terrains of the Brooks Range and Ruby Geanticline of northern Alaska. Ophiolites, sections of oceanic lithosphere emplaced along island arcs and continental margins, are important to the understanding of mountain belt evolution. Ophiolites also provide an opportunity to study the structural, lithologic, and geochemical characteristics of ocean lithosphere, yielding a better understanding of the processes forming lithosphere. The first part of the report is a description of the methods and results of the TM mapping and gravity modeling. The second part includes papers being prepared for publication. These papers are the following: (1) an analysis of basalt spectral variations; (2) a study of basalt geochemical variations; (3) an examination of the cooling history of the ophiolites using radiometric data; (4) an analysis of shortening produced by thrusting during the Brooks Range orogeny; and (5) a study of an ophiolite using digital aeromagnetic and topographic data. Additional papers are in preparation.
Earthquake rupture below the brittle-ductile transition in continental lithospheric mantle
Prieto, Germán A.; Froment, Bérénice; Yu, Chunquan; Poli, Piero; Abercrombie, Rachel
2017-01-01
Earthquakes deep in the continental lithosphere are rare and hard to interpret in our current understanding of temperature control on brittle failure. The recent lithospheric mantle earthquake with a moment magnitude of 4.8 at a depth of ~75 km in the Wyoming Craton was exceptionally well recorded and thus enabled us to probe the cause of these unusual earthquakes. On the basis of complete earthquake energy balance estimates using broadband waveforms and temperature estimates using surface heat flow and shear wave velocities, we argue that this earthquake occurred in response to ductile deformation at temperatures above 750°C. The high stress drop, low rupture velocity, and low radiation efficiency are all consistent with a dissipative mechanism. Our results imply that earthquake nucleation in the lithospheric mantle is not exclusively limited to the brittle regime; weakening mechanisms in the ductile regime can allow earthquakes to initiate and propagate. This finding has significant implications for understanding deep earthquake rupture mechanics and rheology of the continental lithosphere. PMID:28345055
Earthquake rupture below the brittle-ductile transition in continental lithospheric mantle.
Prieto, Germán A; Froment, Bérénice; Yu, Chunquan; Poli, Piero; Abercrombie, Rachel
2017-03-01
Earthquakes deep in the continental lithosphere are rare and hard to interpret in our current understanding of temperature control on brittle failure. The recent lithospheric mantle earthquake with a moment magnitude of 4.8 at a depth of ~75 km in the Wyoming Craton was exceptionally well recorded and thus enabled us to probe the cause of these unusual earthquakes. On the basis of complete earthquake energy balance estimates using broadband waveforms and temperature estimates using surface heat flow and shear wave velocities, we argue that this earthquake occurred in response to ductile deformation at temperatures above 750°C. The high stress drop, low rupture velocity, and low radiation efficiency are all consistent with a dissipative mechanism. Our results imply that earthquake nucleation in the lithospheric mantle is not exclusively limited to the brittle regime; weakening mechanisms in the ductile regime can allow earthquakes to initiate and propagate. This finding has significant implications for understanding deep earthquake rupture mechanics and rheology of the continental lithosphere.
NASA Astrophysics Data System (ADS)
Wang, Zhensheng; Kusky, Timothy M.; Capitanio, Fabio A.
2017-09-01
The documented occurrence of ancient continental cratonic roots beneath several oceanic basins remains poorly explained by the plate tectonic paradigm. These roots are found beneath some ocean-continent boundaries, on the trailing sides of some continents, extending for hundreds of kilometers or farther into oceanic basins. We postulate that these cratonic roots were left behind during plate motion, by differential shearing along the seismically imaged mid-lithosphere discontinuity (MLD), and then emplaced beneath the ocean-continent boundary. Here we use numerical models of cratons with realistic crustal rheologies drifting at observed plate velocities to support the idea that the mid-lithosphere weak layer fostered the decoupling and offset of the African continent's buoyant cratonic root, which was left behind during Meso-Cenozoic continental drift and emplaced beneath the Atlantic Ocean. We show that in some cratonic areas, the MLD plays a similar role as the lithosphere-asthenosphere boundary for accommodating lateral plate tectonic displacements.
Radiogenic Isotope Constraints on Plume - Lithosphere Interaction Beneath the Snake River Plain
NASA Astrophysics Data System (ADS)
Hanan, B. B.; Shervais, J. W.; Vetter, S. K.
2006-12-01
The Snake River Plain (SRP), an 800 km swath of volcanic centers that stretch across southern Idaho to western Wyoming-Montana, represents about 16 Myr of volcanic activity that took place as the NA continent migrated over a relatively fixed magma source, or hotspot. Volcanic activity in the SRP began with the eruption of the main phase of the Columbia River Basalt Group (CRBG) at about 16.5 - 15 Ma through Paleozoic- Mesozoic lithosphere accreted to the Precambrian NA continental margin (1). At about 15 Ma, volcanism shifted to the east, across the cratonic margin into the SRP, and advanced with time to its current position on the Yellowstone Plateau (YP). Published major element, trace element, and He isotope systematics of the basaltic rocks are consistent with a deep, sub-lithospheric mantle source, similar to the source of ocean island basalts (OIBs). In contrast, the radiogenic isotopes of Pb, Sr, and Nd are indistinguishable from sub- continental mantle lithosphere (SCML) that underlies the SRP and YP. This conundrum has been a major problem for plume-oriented models for the SRP-YP hotspot. The Wyoming craton underlying the SRP has a stabilization age of around 2.8 Ga under the YP and eastern SRP area (2). Deep crustal xenoliths show a pattern of decreasing age (about 3.2-2.5 Ga) from east to west along the SRP (3,4). Compared to other Archean rocks, the Pb and Sr initial ratios are higher, and the Nd initial ratios are lower than expected for a depleted upper mantle source, suggesting a small amount of crustal material mixed into the SCML during late Archean subduction events (2). Concentrations of radiogenic incompatible elements in OIB-plume sources are nearly 100 times lower than found in the craton. Assimilation of small percentage fractional melts of the craton into large volume, larger degree partial melts derived from the plume mantle source would result in hybrid magmas whose isotopic compositions are controlled by the isotopic composition of the continental component. We tested this prediction with fifty basalts from along the SRP analyzed for major and trace contents and Pb, Sr, and Nd isotopes. The SRP Pb isotope results are consistent with mixing between an OIB-like plume component with 1% to 4% melt derived from about 2.8 Ga Wyoming-like enriched SCML and show that the relative amount of plume-like OIB component increases from 90-98% in the YP, to 98-99% in the central and western SRP. Basalts of the main phase CRBG (5), the central and eastern SRP, and the YP (6) show an overall decrease in 206Pb/204Pb and ^{143}Nd/^{144}Nd, variable 87Sr/86Sr, and increase in 207Pb/206Pb and ^{208}Pb/206Pb from west to east with distance from the Yellowstone caldera, with OIB-like values in Oregon and Washington toward values typical of the lower crust and lithosphere of the Wyoming Province along the SRP and YP. These results are consistent with a progressive decrease in craton thickness from east to west approaching the craton margin, a concomitant decrease in the age, and compositional heterogeneity in the lower crust and SCML beneath the SRP. (1) Camp and Ross, JGR 109, 2004; (2) Wooden and Mueller, EPSL 87, 1988; (3) Leeman et al., EPSL 75, 1985; (4) Wolf et al., GSA Abstracts with Programs 37, 2005; (5) Hooper, G3 1, 2000; (6) Doe, JGR 87, 1982.
Modelling the bathymetry of the Antarctic continental shelf
ten Brink, Uri S.; Rogers, William P.; Kirkham, R.M.
1992-01-01
Continental shelves are typically covered by relatively shallow waters (<200 m) which deepen gradually from the coast to the shelf edge. The continental shelf around Antarctica is deeper than normal (400-700m) and is characterized in many areas by a nearshore trough (up to 1 km deep) that gradually shallows toward the shelf edge. We examine the cause for the unusual shelf bathymetry of Antarctica by 2-D numerical models that simulate the bathymetry along seismic line ODP-119 in Prydz Bay. Line ODP-119 was chosen because it is tied to to 5 ODP boreholes, and because the margin underwent little recent tectonic activity or changes in the glacial drainage pattern. The numerical models incorporate several factors that are likely to influence the bathymetry, such as the load of the ice cap, the isostatic response of the lithosphere, thermal and tectnoic subsidence of the margin, sea level changes, and the patterns of erosion and sedimentation across the margin. The models show that the observed bathymetry can be produced almost entirely by the sum of the outer-shelf sediment loading and inner-shelf unloading and by the load of the slope sediments. A simple statistical mdoel demonstrates that this distribution pattern of erosion and deposition can be generated by multiple cycles of ice sheet advances across the shelf, whereby in each cycle a thin (a few tens of meters) uniform layer of sediments is eroded from under the ice sheet and is redeposited seaward of the grounding line.
NASA Astrophysics Data System (ADS)
Pedrera, A.; García-Senz, J.; Ayala, C.; Ruiz-Constán, A.; Rodríguez-Fernández, L. R.; Robador, A.; González Menéndez, L.
2017-12-01
Recent models support the view that the Pyrenees were formed after the inversion of a previously highly extended continental crust that included exhumed upper mantle rocks. Mantle rocks remain near to the surface after compression and mountain building, covered by the latest Cretaceous to Paleogene sequences. 3-D lithospheric-scale gravity inversion demands the presence of a high-density mantle body placed within the crust in order to justify the observed anomalies. Exhumed mantle, having 50 km of maximum width, continuously extends beneath the Basque-Cantabrian Basin and along the northern side of the Pyrenees. The association of this body with rift, postrift, and inversion structural geometries is tested in a balanced cross section across the Basque-Cantabrian Basin that incorporates a major south-dipping ramp-flat-ramp extensional detachment active between Valanginian and early Cenomanian times. Results indicate that horizontal extension progressed 48 km at variable strain rates that increased from 1 to 4 mm/yr in middle Albian times. Low-strength Triassic Keuper evaporites and mudstones above the basement favor the decoupling of the cover with formation of minibasins, expulsion rollovers, and diapirs. The inversion of the extensional system is accommodated by doubly verging basement thrusts due to the reactivation of the former basin bounding faults in Eocene-Oligocene times. Total shortening is estimated in 34 km and produced the partial subduction of the continental lithosphere beneath the two sides of the exhumed mantle. Obtained results help to pinpoint the original architecture of the North Iberian Margin and the evolution of the hyperextended aborted intracontinental basins.
Continental margin subsidence from shallow mantle convection: Example from West Africa
NASA Astrophysics Data System (ADS)
Lodhia, Bhavik Harish; Roberts, Gareth G.; Fraser, Alastair J.; Fishwick, Stewart; Goes, Saskia; Jarvis, Jerry
2018-01-01
Spatial and temporal evolution of the uppermost convecting mantle plays an important role in determining histories of magmatism, uplift, subsidence, erosion and deposition of sedimentary rock. Tomographic studies and mantle flow models suggest that changes in lithospheric thickness can focus convection and destabilize plates. Geologic observations that constrain the processes responsible for onset and evolution of shallow mantle convection are sparse. We integrate seismic, well, gravity, magmatic and tomographic information to determine the history of Neogene-Recent (<23 Ma) upper mantle convection from the Cape Verde swell to West Africa. Residual ocean-age depths of +2 km and oceanic heat flow anomalies of +16 ± 4 mW m-2 are centered on Cape Verde. Residual depths decrease eastward to zero at the fringe of the Mauritania basin. Backstripped wells and mapped seismic data show that 0.4-0.8 km of water-loaded subsidence occurred in a ∼500 × 500 km region centered on the Mauritania basin during the last 23 Ma. Conversion of shear wave velocities into temperature and simple isostatic calculations indicate that asthenospheric temperatures determine bathymetry from Cape Verde to West Africa. Calculated average excess temperatures beneath Cape Verde are > + 100 °C providing ∼103 m of support. Beneath the Mauritania basin average excess temperatures are < - 100 °C drawing down the lithosphere by ∼102 to 103 m. Up- and downwelling mantle has generated a bathymetric gradient of ∼1/300 at a wavelength of ∼103 km during the last ∼23 Ma. Our results suggest that asthenospheric flow away from upwelling mantle can generate downwelling beneath continental margins.
NASA Astrophysics Data System (ADS)
Chappell, A.; Kusznir, N. J.
2005-05-01
The southern Rockall Trough south of 57 N has previously been interpreted as either an intra-continental rift floored with highly extended continental crust, or a failed oceanic rift formed by Cretaceous sea floor spreading. Satellite gravity, bathymetry data and seismic estimates of sediment thickness are used to derive crustal basement thickness for the southern Rockall Trough and adjacent regions using a gravity inversion method incorporating a correction for the large negative thermal gravity component present in oceanic and stretched continental lithosphere. The marine Bouguer anomaly, derived from satellite free air gravity (Sandwell & Smith 1997) and Gebco 2003 bathymetry data, is inverted using the method of Oldenberg (1974), incorporating an iteratively applied thermal anomaly correction, to give Moho depth. For oceanic crust the thermal anomaly correction is calculated using isochron ages (Muller et al. 1997) and for continental crust from the beta stretching factors resulting from gravity derived crustal basement thickness and an assumed rift age. When sediment thickness and volcanic addition are assumed to be zero, the resulting upper bound of crustal thickness from the gravity inversion is as little as 10 km in the southern Rockall Trough. A segmented axial thickening of the crust at the centre of the Rockall Trough is predicted, between the Barra volcanic ridge and the Anton Dohrn seamount and is interpreted as having a volcanic origin. Inclusion of a sediment thickness correction in the gravity inversion further reduces predicted crustal thickness. A pseudo-sediment-thickness map has been constructed from the available wide-angle data and incorporated in the gravity inversion. The addition of up to 5.5 km of sediment in the gravity inversion reduces the upper bound of crustal thickness to less than 3 km in some locations. The segmented axial thickening and thin crust shown by the gravity inversion, the lack of intra-basinal faulting, and the volcanic origin for the axis shown by normal incidence seismic data, are consistent with a sea-floor spreading origin for the southern Rockall Trough and not formation by intra-continental rifting. We investigate the formation of the southern Rockall Trough using SfMargin, a new model of continental lithosphere thinning leading to continental breakup and sea-floor spreading initiation. Comparisons of the geometry of the southern Rockall Trough predicted by SfMargin with that observed are consistent with a short period (20Ma) of slow Cretaceous sea-floor spreading, followed by thermal subsidence to present day. This work forms part of the NERC Margins iSIMM project. iSIMM investigators are from Liverpool and Cambridge Universities, Badley Geoscience & Schlumberger Cambridge Research supported by the NERC, the DTI, Agip UK, BP, Amerada Hess Ltd, Anadarko, ConocoPhillips, Shell, Statoil and WesternGeco. The iSIMM team comprises NJ Kusznir, RS White, AM Roberts, PAF Christie, A Chappell, J Eccles, R Fletcher, D Healy, N Hurst, ZC Lunnon, CJ Parkin, AW Roberts, LK Smith, V Tymms & R Spitzer.
NASA Astrophysics Data System (ADS)
MartíNez, Fernando; Taylor, Brian; Goodliffe, Andrew M.
1999-06-01
The Woodlark Basin in the southwest Pacific is a young ocean basin which began forming by ˜6 Ma following the rifting of continental and arc lithosphere. The N-S striking Moresby Transform divides the oceanic basin into eastern and western parts which have contrasting characteristics. Seafloor spreading west of Moresby Transform began after ˜2 Ma, and although spreading rates decrease to the west, the western basin has faster spreading characteristics than the eastern basin. These include (1) ˜500 m shallower seafloor; (2) Bouguer gravity anomalies that are >30 mGals lower; (3) magnetic anomaly and modeled seafloor magnetization amplitudes that are higher; (4) a spreading center with an axial high in contrast to the axial valleys of the eastern basin; (5) smoother seafloor fabric; and (6) exclusively nontransform spreading center offsets in contrast to the eastern basin, which has transform faults and fracture zones that extend across most of the basin. Overall depth contrasts and Bouguer anomalies can be matched by end-member models of thicker crust (˜2 km) or thinner lithosphere (<1/3) in the western basin. Correlated with these contrasts, the surrounding rifted margins abruptly thicken westward of the longitude of Moresby Transform. We examine alternative explanations for these contrasts and propose that rift-induced secondary mantle convection driven by thicker western margin lithosphere is most consistent with the observations. Although rift-induced convection has been cited as a cause for the voluminous excess magmatism at some rifted margins, the observations in the Woodlark Basin suggest that this mechanism may significantly affect the morphology, structure, and geophysical characteristics of young ocean basins in alternate ways which resemble increased spreading rate.
Davis, A.S.; Gunn, S.H.; Gray, L.-B.; Marlow, M. S.; Wong, F.L.
1993-01-01
Quaternary basanites were recovered from the continental margin of the Bering Sea near Navarin Basin. The basanites are highly vesicular flow rock and hyaloclastites similar to other alkalic volcanic rocks erupted repeatedly during the last Cenozoic on islands in the Bering Sea region and in mainland Alaska. K-Ar ages for the basanites indicate at least two episodes of volcanism at about 1.1 and 0.4 Ma. Trace-element data indicate these alkalic lavas have been generated by small, but variable, amounts of partial melting of a metasomatized lherzolite source. The relativley primitive compositions (MgO >9%), presence of mantle-derived xenoliths in some alkalic lavas, and presence of forsteritic olivine with low CaO and high NiO suggest that magma rose rapidly from great depth without spending time in large, long-lived magma chambers. Alkalic volcanism apparently resulted from upwelling and decompressional melting of small isolated mantle diapirs in response to local lithospheric attenuation associated with jostling of blocks during adjustment to regional stresses. -from Authors
Crustal architecture of the oblique-slip conjugate margins of George V Land and southeast Australia
Stagg, H.M.J.; Reading, A.M.
2007-01-01
A conceptual, lithospheric-scale cross-section of the conjugate, oblique-slip margins of George V Land, East Antarctica, and southeast Australia (Otway Basin) has been constructed based on the integration of seismic and sample data. This cross-section is characterised by asymmetry in width and thickness, and depth-dependent crustal extension at breakup in the latest Maastrichtian. The broad Antarctic margin (~360 km apparent rift width) developed on thick crust (~42 km) of the Antarctic craton, whereas the narrow Otway margin (~220 km) developed on the thinner crust (~31 km) of the Ross–Delamerian Orogen. The shallow basement (velocities ~5.5 km.s-1) and the deep continental crust (velocities >6.4 km.s-1) appear to be largely absent across the central rift, while the mid-crustal, probably granitic layer (velocities ~6 km.s-1) is preserved. Comparison with published numerical models suggests that the shallow basement and deep crust may have been removed by simple shear, whereas the mid-crust has been ductilely deformed.
From rifting to subduction: the role of inheritance in the Wilson Cycle
NASA Astrophysics Data System (ADS)
Beaussier, Stéphane; Gerya, Taras; Burg, Jean-Pierre
2017-04-01
The Wilson Cycle entails that oceans close and reopen. This cycle is a fundamental principle in plate tectonics, inferring continuity from divergence to convergence and that continental rifting takes place along former suture zones. This view questions the role of inherited structures at each stage of the Wilson Cycle. Using the 3D thermo-mechanical code, I3ELVIS (Gerya and Yuen 2007) we present a high-resolution continuous model of the Wilson cycle from continental rifting, breakup and oceanic spreading to convergence and spontaneous subduction initiation. Therefore, all lateral and longitudinal structures of the lithospheres are generated self-consistently and are consequences of the initial continental structure, tectono-magmatic inheritance and material rheology. In the models, subduction systematically initiates off-ridge and is controlled by the convergence-induced swelling of the ridge. Geometry and dynamics of the developing off-ridge subduction is controlled by four main factors: (1) the obliquity of the ridge with respect to the convergence direction; (2) fluid-induced weakening of the oceanic crust; (3) irregularity of ridge and margins inherited from rifting and spreading; (4) strain localization at transform faults formed during ocean floor spreading. Further convergence can lead to obduction of the oceanic crust and segments of ridge after the oceanic lithosphere is entrained into subduction. We show that the main parameters controlling the occurrence and geometry of obducted ophiolite are the convergence rate and the inherited structure of the passive margins and ridge. Our numerical experiments results show the essential role played by inheritance during the Wilson Cycle and are consistent with nature observations such as the tectonic history of the Oman subduction-obduction system. REFERENCES Gerya, T. V., and D. A. Yuen. 2007: "Robust Characteristics Method for Modelling Multiphase Visco-Elasto-Plastic Thermo-Mechanical Problems, Physics of the Earth and Planetary Interiors, 163 (1-4), 83-105.
Intraplate mafic magmatism: New insights from Africa and N. America
NASA Astrophysics Data System (ADS)
Ebinger, C. J.; van der Lee, S.; Tepp, G.; Pierre, S.
2017-12-01
Plate tectonic concepts consider that continental interiors are stable, with magmatism and strain localized to plate boundaries. We re-evaluate the role of pre-existing and evolving lithospheric heterogeneities in light of perspectives afforded by surface to mantle results from active and ancient rift zones in Africa and N. America. Our process-oriented approach addresses the localization of strain and magmatism and stability of continental plate interiors. In both Africa and N. America, geophysical imaging and xenolith studies reveal that thick, buoyant, and chemically distinct Archaean cratons with deep roots may deflect mantle flow, and localize magmatism and strain over many tectonic cycles. Studies of the Colorado Plateau and East African rift reveal widespread mantle metasomatism, and high levels of magma degassing along faults and at active volcanoes. The volcanoes and magmatic systems show a strong dependence on pre-existing heterogeneities in plate structure. Syntheses of the EarthScope program ishow that lateral density contrasts and migration of volatiles that accumulated during subduction can refertilize mantle lithosphere, and enable volatile-rich magmatism beneath relatively thick continental lithosphere. For example, the passive margin of eastern N. America shows uplift and magmatism long after the onset of seafloor spreading, demonstrating the dynamic nature of coupling between the lithosphere, asthenosphere, and deeper mantle. As demonstrated by the East African Rift, the Mid-Continent Rift, and other active and ancient rift zones, the interiors of continents, including thick, cold Archaean cratons are not immune to mafic magmatism and tectonism. Recent studies in N. America and Africa reveal ca. 1000 km-wide zones of dynamic uplift, low upper mantle velocities, and broadly distributed strain. The distribution of magmatism and volatile release, in combination with geophysical signals, indicates a potentially convective origin for widespread intraplate earthquakes and magmatism, across areas broader than the surface expression of rifting. Integrated geophysical, geological and geochemical studies reveal large volumes and rates of magmatism at rift zones, provoking re-evaluation of crustal accretion and carbon and water cycles, as well as earthquake and volcanic hazards.
NASA Astrophysics Data System (ADS)
Stippich, Christian; Krob, Florian; Glasmacher, Ulrich A.; Hackspacher, Peter C.
2016-04-01
The aim of the research is to quantify the long-term evolution of the western South Atlantic passive continental margin (SAPCM) in SE-Brazil. Excellent onshore outcrop conditions and extensive pre-rift to post-rift archives between São Paulo and Laguna allow a high precision quantification of exhumation, and rock uplift rates, influencing physical parameters, long-term acting forces, and process-response systems. Research will integrate published1 and partly published thermochronological data from Brazil, and test lately published new concepts on causes of long-term landscape and lithospheric evolution in southern Brazil. Six distinct lithospheric blocks (Laguna, Florianópolis, Curitiba, Ilha Comprida, Peruibe and Santos), which are separated by fracture zones1 are characterized by individual thermochronological age spectra. Furthermore, the thermal evolution derived by numerical modeling indicates variable post-rift exhumation histories of these blocks. In this context, we will provide information on the causes for the complex exhumation history of the Florianópolis, and adjacent blocks. The climate-continental margin-mantle coupled process-response system is caused by the interaction between endogenous and exogenous forces, which are related to the mantle-process driven rift - drift - passive continental margin evolution of the South Atlantic, and the climate change since the Early/Late Cretaceous climate maximum. Special emphasis will be given to the influence of long-living transform faults such as the Florianopolis Fracture Zone (FFZ) on the long-term topography evolution of the SAPCM's. A long-term landscape evolution model with process rates will be achieved by thermo-kinematic 3-D modeling (software code PECUBE2,3 and FastScape4). Testing model solutions obtained for a multidimensional parameter space against the real thermochronological and geomorphological data set, the most likely combinations of parameter rates, and values can be constrained. The data and models will allow separating the exogenous and endogenous forces and their process rates. References 1. Karl, M., Glasmacher, U.A., Kollenz, S., Franco-Magalhaes, A.O.B., Stockli, D.F., Hackspacher, P., 2013. Evolution of the South Atlantic passive continental margin in southern Brazil derived from zircon and apatite (U-Th-Sm)/He and fission-track data. Tectonophysics, Volume 604, Pages 224-244. 2. Braun, J., 2003. Pecube: A new finite element code to solve the 3D heat transport equation including the effects of a time-varying, finite amplitude surface topography. Computers and Geosciences, v.29, pp.787-794. 3. Braun, J., van der Beek, P., Valla, P., Robert, X., Herman, F., Goltzbacj, C., Pedersen, V., Perry, C., Simon-Labric, T., Prigent, C. 2012. Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE. Tectonophysics, v.524-525, pp.1-28. 4. Braun, J. and Willett, S.D., 2013. A very efficient, O(n), implicit and parallel method to solve the basic stream power law equation governing fluvial incision and landscape evolution. Geomorphology, v.180-181, 170-179.
The effects of strain heating in lithospheric stretching models
NASA Technical Reports Server (NTRS)
Stanton, M.; Hodge, D.; Cozzarelli, F.
1985-01-01
The deformation by stretching of a continental type lithosphere has been formulated so that the problem can be solved by a continuum mechanical approach. The deformation, stress state, and temperature distribution are constrained to satisfy the physical laws of conservation of mass, energy, momentum, and an experimentally defined rheological response. The conservation of energy equation including a term of strain energy dissipation is given. The continental lithosphere is assumed to have the rheology of an isotropic, incompressible, nonlinear viscous, two layered solid.
Mantle Lithosphere Rheology, Vertical Tectonics, and the Exhumation of (U)HP Rocks
NASA Astrophysics Data System (ADS)
Bodur, Ömer F.; Göǧüş, Oǧuz H.; Pysklywec, Russell N.; Okay, Aral I.
2018-02-01
Numerical modeling results indicate that mantle lithosphere rheology can influence the pressure-temperature-time (P-T-t) trajectories of continental crust subducted and exhumed during the onset of continental collision. Exhumation of ultrahigh-pressure ( 35 kbar)/high-temperature ( 750°C) metamorphic rocks is more prevalent in models with stronger continental mantle lithosphere (e.g., dry), whereas high-pressure ( 9-22 kbar)/low-temperature (350°C-630°C) metamorphic rocks occur in models with weaker rheology (e.g., hydrated) for the same layer. In the latter case, the buried crustal rocks can remain encased in ablatively subducting mantle lithosphere, reach only moderate temperatures, and exhume by dripping/detachment of the lithospheric root. In this transition from subduction to a dripping style of "vertical tectonics," burial and exhumation of crustal rocks are driven without imposed far-field plate convergence. The model results are compared against thermobarometric P-T estimates from major (ultra)high-pressure metamorphic terranes. We propose that the exhumation of high-pressure/low-temperature metamorphic rocks in Tavşanlı and Afyon zones in western Anatolia may be caused by viscous dripping of mantle lithosphere suggesting a weaker continental mantle lithosphere, whereas (ultra)high-pressure exhumation (e.g., Dabie Shan-eastern China and Dora Maira-western Alps) may be associated with plate-like subduction. In the latter case, the slab is much stronger and deformation is localized to the subduction interface along which rocks are buried to >100 km depth before they are exhumed to the near surface.
Oceanic Remnants In The Caribbean Plate: Origin And Loss Of Related LIPs.
NASA Astrophysics Data System (ADS)
Giunta, G.
2005-12-01
The modern Caribbean Plate is an independent lithospheric entity, occupying more than 4 Mkm2 and consisting of the remnants of little deformed Cretaceous oceanic plateau of the Colombia and Venezuela Basins (almost 1 Mkm2) and the Palaeozoic-Mesozoic Chortis continental block (about 700,000 km2), both bounded by deformed marginal belts. The northern (Guatemala and Greater Antilles) and the southern (northern Venezuela) plate margins are marked by collisional zones, whereas the western (Central America Isthmus) and the eastern (Lesser Antilles) margins are represented by convergent boundaries and their magmatic arcs, all involving ophiolitic terranes. The evolutionary history of the Caribbean Plate since the Jurassic-Early Cretaceous encompasses plume, accretionary, and collisional tectonics, the evidence of which has been recorded in the oceanic remnants of lost LIPs, as revealed in: i) the MORB to OIB thickened crust of the oceanic plateau, including its un-deformed or little deformed main portion, and scattered deformed tectonic units; ii) ophiolitic tectonic units of MORB affinity and the rock blocks in ophiolitic melanges; iii) intra-oceanic, supra subduction magmatic sequences with IAT and CA affinities. The Mesozoic oceanic LIPs, from which the remnants of the Caribbean Plate have been derived, have been poorly preserved during various episodes of the intra-oceanic convergence, either those related to the original proto-Caribbean oceanic realm or those connected with two eo-Caribbean stages of subduction. The trapped oceanic plateau of the Colombia and Venezuela Basins is likely to be an unknown portion of a bigger crustal element of a LIP, similar to the Ontong-Java plateau. The Jurassic-Early Cretaceous proto-Caribbean oceanic domain consists of oceanic crust generated at multiple spreading centres; during the Cretaceous, part of this crust was thickened to form an oceanic plateau with MORB and OIB affinities. At the same time, both South and North American continental margins, inferred to be close to the oceanic realm, were affected by rifting and within-plate tholeiitic magmatism (WPT); this interpretation supports a near mid-America original location of the "proto-Caribbean" LIP. The MORB magmatic sections and rock blocks in the ophiolitic melanges are interpreted as exhumed tectonic sheets of the normal proto-Caribbean oceanic lithosphere, or part of a back-arc crust, both deformed in the eo-Caribbean stages. The SSZ complexes, considered as Cordilleran-type deformed ophiolites, were derived from a LIP that experienced two superimposed eo-Caribbean stages of intra-oceanic subduction. The older (Mid-Cretaceous) stage involved the eastward subduction of the un-thickened proto-Caribbean lithosphere, resulting in IAT and CA magmatism accompanied by HP-LT metamorphism and melange formation. The second, Late Cretaceous stage involved a westward dipping intra-oceanic subduction, which generated tonalitic arc magmatism. The eastward wedging of the Caribbean Plateau between the North and South American plates progressively trapped remnants of the Colombia and Venezuela Basins between the Atlantic and Pacific subduction zones and their new volcanic arcs (Aves-Lesser Antilles and Central American Isthmus). Unlike the proto-Caribbean, it appears that this LIP did not involve the main continental margins, even though the northern and southern Caribbean borders experienced different evolutionary paths. It was largely lost by superimposed accretionary and collisional events producing the marginal belts of the Caribbean Plate; its evolution has been dominated by a strongly oblique tectonic regime, constraining seafloor spreading, subduction, crustal exhumation, emplacement, and dismembering processes.
NASA Astrophysics Data System (ADS)
Babuska, V.; Plomerova, J.; Karato, S. I.
2012-04-01
Although many studies indicate that subduction-related accretion, subduction-driven magmatism and tectonic stacking are major crustal-growth mechanisms, how the mantle lithosphere forms remains enigmatic. Cook (AGU Geod. Series 1986) published a model of continental 'shingling' based on seismic reflection data indicating dipping structures in the deep crust of accreted terranes. Helmstaedt and Gurney (J. Geoch. Explor. 1995) and Hart et al. (Geology 1997) suggest that the Archean continental lithosphere consists of alternating layers of basalt and peridotite derived from subducted and obducted Archean oceanic lithosphere. Peridotite xenoliths from the Mojavian mantle lithosphere (Luffi et al., JGR 2009), as well as xenoliths of eclogites underlying the Sierra Nevada batholith in California (Horodynskij et al., EPSL 2007), are representative for oceanic slab fragments successively attached to the continent. Recent seismological findings also seem to support a model of continental lithosphere built from systems of paleosubductions of plates of ancient oceanic lithosphere (Babuska and Plomerova, AGU Geoph. Monograph 1989), or by stacking of the plates (Helmstaedt and Schulze, Geol. Soc. Aust. Spec. Publ. 1989). Seismic anisotropy in the oceanic mantle lithosphere, explained mainly by the olivine A- (or D-) type fabric (Karato et al., Annu. Rev. Earth Planet. Sci. 2008), was discovered almost a half century ago (Hess, Nature 1964). Though it is difficult to determine seismic anisotropy within an active subducting slab (e.g., Healy et al., EPSL 2009; Eberhart-Phillips and Reyners, JGR 2009), field observations and laboratory experiments indicate the oceanic olivine fabric might be preserved there to a depth of at least 200-300 km. Dipping anisotropic fabrics in domains of the European mantle lithosphere were interpreted as systems of 'frozen' paleosubductions (Babuska and Plomerova, PEPI 2006), and the lithosphere base as a boundary between a fossil anisotropy in the lithospheric mantle and an underlying seismic anisotropy related to present-day flow in the asthenosphere (Plomerova and Babuska, Lithos 2010). Deep dipping reflectors in the Slave Craton were modelled as tops of a fossil oceanic lithosphere (Bostock, Lithos 1999). Using S-wave receiver functions, Miller and Eaton (GRL 2010) also interpreted mid-lithosphere discontinuities beneath British Columbia as remnant oceanic slabs. Strong radial anisotropy from global surface-wave data (Babuska et al., PAGEOPH 1998; Khan et al., JGR 2011), as well as differences between body-wave tomography images from SH and SV waves (Eken et al., Tectonophys. 2010), both showing strong anisotropy only down to ~200 km, are in agreement with the models of inclined olivine fabrics found in Phanerozoic and Precambrian mantle lithosphere (Plomerova et al., Solid Earth 2011). Models of assemblages of microplates with their own inclined fossil fabrics do not support a lithosphere growth by simple cooling processes, which should result in horizontal fabrics. The models with dipping fabrics also contribute to mapping boundaries of individual blocks building the continental lithosphere.
Do faults trigger folding in the lithosphere?
NASA Astrophysics Data System (ADS)
Gerbault, Muriel; Burov, Eugenii B.; Poliakov, Alexei N. B.; Daignières, Marc
A number of observations reveal large periodic undulations within the oceanic and continental lithospheres. The question if these observations are the result of large-scale compressive instabilities, i.e. buckling, remains open. In this study, we support the buckling hypothesis by direct numerical modeling. We compare our results with the data on three most proeminent cases of the oceanic and continental folding-like deformation (Indian Ocean, Western Gobi (Central Asia) and Central Australia). We demonstrate that under reasonable tectonic stresses, folds can develop from brittle faults cutting through the brittle parts of a lithosphere. The predicted wavelengths and finite growth rates are in agreement with observations. We also show that within a continental lithosphere with thermal age greater than 400 My, either a bi-harmonic mode (two superimposed wavelengths, crustal and mantle one) or a coupled mode (mono-layer deformation) of inelastic folding can develop, depending on the strength and thickness of the lower crust.
Foster, D.A.; Mueller, P.A.; Mogk, D.W.; Wooden, J.L.; Vogl, J.J.
2006-01-01
Defining the extent and age of basement provinces west of the exposed western margin of the Archean Wyoming craton has been elusive because of thick sedimentary cover and voluminous Cretaceous-Tertiary magmatism. U-Pb zircon geochronological data from small exposures of pre-Belt supergroup basement along the western side of the Wyoming craton, in southwestern Montana, reveal crystallization ages ranging from ???2.4 to ???1.8 Ga. Rock-forming events in the area as young as ???1.6 Ga are also indicated by isotopic (Nd, Pb, Sr) signatures and xenocrystic zircon populations in Cretaceous-Eocene granitoids. Most of this lithosphere is primitive, gives ages ???1.7-1.86 Ga, and occurs in a zone that extends west to the Neoproterozoic rifted margin of Laurentia. These data suggest that the basement west of the exposed Archean Wyoming craton contains accreted juvenile Paleoproterozoic arc-like terranes, along with a possible mafic underplate of similar age. This area is largely under the Mesoproterozoic Belt basin and intruded by the Idaho batholith. We refer to this Paleoproterozoic crust herein as the Selway terrane. The Selway terrane has been more easily reactivated and much more fertile for magma production and mineralization than the thick lithosphere of the Wyoming craton, and is of prime importance for evaluating Neoproterozoic continental reconstructions. ?? 2006 NRC Canada.
NASA Astrophysics Data System (ADS)
Zuo, X.; Chan, L. S.
2015-12-01
The South China continental margin is characterized by a widespread magmatic belt, prominent NE-striking faults and numerous rifted basins filled by Cretaceous-Eocene sediments. The geology denotes a transition from active to passive margin, which led to rapid modifications of crustal stress configuration and reactivation of older faults in this area. Our zircon fission-track data in this region show two episodes of exhumation: The first episode, occurring during 170-120Ma, affected local parts of the Nanling Range. The second episode, a more regional exhumation event, occurred during 115-70Ma, including the Yunkai Terrane and the Nanling Range. Numerical geodynamic modeling was conducted to simulate the subduction between the paleo-Pacific plate and the South China Block. The modeling results could explain the fact that exhumation of the granite-dominant Nanling Range occurred earlier than that of the gneiss-dominant Yunkai Terrane. In addition to the difference in rock types, the heat from Jurassic-Early Cretaceous magmatism in Nanling may have softened the upper crust, causing the area to exhume more readily than Yunkai. Numerical modeling results also indicate that (1) high lithospheric geothermal gradient, high slab dip angle and low convergence velocity favor the reversal of crustal stress state from compression to extension in the upper continental plate; (2) late Mesozoic magmatism in South China was probably caused by a slab roll-back; and (3) crustal extension could have occurred prior to the cessation of plate subduction. The inversion of stress regime in the continental crust from compression to crustal extension imply that the Late Cretaceous-early Paleogene red-bed basins in South China could have formed during the late stage of the subduction, accounting for the occurrence of volcanic events in some sedimentary basins. We propose that the rifting started as early as Late Cretaceous, probably before the cessation of subduction process.
NASA Astrophysics Data System (ADS)
Tetreault, J. L.; Buiter, S. J. H.
2012-08-01
Crustal growth at convergent margins can occur by the accretion of future allochthonous terranes (FATs), such as island arcs, oceanic plateaus, submarine ridges, and continental fragments. Using geodynamic numerical experiments, we demonstrate how crustal properties of FATs impact the amount of FAT crust that is accreted or subducted, the type of accretionary process, and the style of deformation on the overriding plate. Our results show that (1) accretion of crustal units occurs when there is a weak detachment layer within the FAT, (2) the depth of detachment controls the amount of crust accreted onto the overriding plate, and (3) lithospheric buoyancy does not prevent FAT subduction during constant convergence. Island arcs, oceanic plateaus, and continental fragments will completely subduct, despite having buoyant lithospheric densities, if they have rheologically strong crusts. Weak basal layers, representing pre-existing weaknesses or detachment layers, will either lead to underplating of faulted blocks of FAT crust to the overriding plate or collision and suturing of an unbroken FAT crust. Our experiments show that the weak, ultramafic layer found at the base of island arcs and oceanic plateaus plays a significant role in terrane accretion. The different types of accretionary processes also affect deformation and uplift patterns in the overriding plate, trench migration and jumping, and the dip of the plate interface. The resulting accreted terranes produced from our numerical experiments resemble observed accreted terranes, such as the Wrangellia Terrane and Klamath Mountain terranes in the North American Cordilleran Belt.
Introduction to TETHYS—an interdisciplinary GIS database for studying continental collisions
NASA Astrophysics Data System (ADS)
Khan, S. D.; Flower, M. F. J.; Sultan, M. I.; Sandvol, E.
2006-05-01
The TETHYS GIS database is being developed as a way to integrate relevant geologic, geophysical, geochemical, geochronologic, and remote sensing data bearing on Tethyan continental plate collisions. The project is predicated on a need for actualistic model 'templates' for interpreting the Earth's geologic record. Because of their time-transgressive character, Tethyan collisions offer 'actualistic' models for features such as continental 'escape', collision-induced upper mantle flow magmatism, and marginal basin opening, associated with modern convergent plate margins. Large integrated geochemical and geophysical databases allow for such models to be tested against the geologic record, leading to a better understanding of continental accretion throughout Earth history. The TETHYS database combines digital topographic and geologic information, remote sensing images, sample-based geochemical, geochronologic, and isotopic data (for pre- and post-collision igneous activity), and data for seismic tomography, shear-wave splitting, space geodesy, and information for plate tectonic reconstructions. Here, we report progress on developing such a database and the tools for manipulating and visualizing integrated 2-, 3-, and 4-d data sets with examples of research applications in progress. Based on an Oracle database system, linked with ArcIMS via ArcSDE, the TETHYS project is an evolving resource for researchers, educators, and others interested in studying the role of plate collisions in the process of continental accretion, and will be accessible as a node of the national Geosciences Cyberinfrastructure Network—GEON via the World-Wide Web and ultra-high speed internet2. Interim partial access to the data and metadata is available at: http://geoinfo.geosc.uh.edu/Tethys/ and http://www.esrs.wmich.edu/tethys.htm. We demonstrate the utility of the TETHYS database in building a framework for lithospheric interactions in continental collision and accretion.
NASA Astrophysics Data System (ADS)
Melankholina, E. N.; Sushchevskaya, N. M.
2018-03-01
The history of the opening of the South Atlantic in Early Cretaceous time is considered. It is shown that the determining role for continental breakup preparation has been played by tectono-magmatic events within the limits of the distal margins that developed above the plume head. The formation of the Rio Grande Rise-Walvis Ridge volcanic system along the trace of the hot spot is considered. The magmatism in the South Atlantic margins, its sources, and changes in composition during the evolution are described. On the basis of petrogeochemical data, the peculiarities of rocks with a continental signature are shown. Based on Pb-Sr-Nd isotopic studies, it is found that the manifestations of magmatism in the proximal margins had features of enriched components related to the EM I and EM II sources, sometimes with certain participation of the HIMU source. Within the limits of the Walvis Ridge, as magmatism expanded to the newly formed oceanic crust, the participation of depleted asthenospheric mantle became larger in the composition of magmas. The role played by the Tristan plume in magma generation is discussed: it is the most considered as the heat source that determined the melting of the ancient enriched lithosphere. The specifics of the tectono-magmatic evolution of the South Atlantic is pointed out: the origination during spreading of a number of hot spots above the periphery of the African superplume. The diachronous character of the opening of the ocean is considered in the context of northward progradation of the breakup line and its connection with the northern branch of the Atlantic Ocean in the Mid-Cretaceous.
On the role of mantle depletion and small-scale convection in post rift basin evolution (Invited)
NASA Astrophysics Data System (ADS)
Petersen, K.; Nielsen, S. B.
2013-12-01
Subsidence and heat flow evolution of the oceanic lithosphere appears to be consistent with the conductive cooling of a ~100 km plate overlying asthenospheric mantle of constant entropy. The physical mechanism behind plate-like subsidence has been suggested to be the result of small-scale convective instabilities which transport heat energy to the base of the lithosphere and cause an eventual departure from half space-like cooling by inhibiting subsidence of old ocean floor and causing an asymptotic surface heat flow of ~50 mW/m^2. Here, we conduct a number of numerical thermo-mechanical experiments of oceanic lithosphere cooling for different models of temperature- and pressure-dependent viscosity. We show that uniform (P, T-dependent) mantle viscosity cannot both explain half space-like subsidence for young (<70 Mr) lithosphere as well as a relatively high (>50 mW/m^2) surface heat flow which is observed above old (>100 Myr) lithosphere. The latter requires vigorous sub lithospheric convection which would lead to early (~1Myr) onset of convective instability at shallow depth (<60 km) and therefore insufficient initial subsidence. To resolve this paradox, we employ models which account for the density decrease and viscosity increase due to depletion during mid-ocean ridge melting. We demonstrate that the presence of a mantle restite layer within the lithosphere hinders convection at shallow depth and therefore promotes plate-like cooling. A systematic parameter search among 280 different numerical experiments indicates that models with 60-80 km depletion thickness minimize misfit with subsidence and heat flow data. This is consistent with existing petrological models of mid-ocean ridge melting. Our models further indicate that the post-rift subsidence pattern where little or no melting occurred during extension (e.g. non-volcanic margins and continental rifts) may differ from typical oceanic plate-like subsidence by occurring at a nearly constant rate rather than at an exponentially decaying rate. Model comparison with subsidence histories inferred from backstripping analysis implies that this is indeed often the case. Accordingly, existing thermal models of continental rifting which assume plate-like cooling (and is often calibrated from oceanic data) are likely to yield inaccurate predictions in terms of subsidence and heat flow evolution.
The dynamics of continental breakup-related magmatism on the Norwegian volcanic margin
NASA Astrophysics Data System (ADS)
Breivik, A. J.; Faleide, J. I.; Mjelde, R.
2007-12-01
The Vøring margin off mid-Norway was initiated during the earliest Eocene (~54 Ma), and large volumes of magmatic rocks were emplaced during and after continental breakup. In 2003, an ocean bottom seismometer survey was acquired on the Norwegian margin to constrain continental breakup and early seafloor spreading processes. The profile P-wave model described here crosses the northern part of the Vøring Plateau. Maximum igneous crustal thickness was found to be 18 km, decreasing to ~6.5 km over ~6 M.y. after continental breakup. Both the volume and the duration of excess magmatism after breakup is about twice of what is observed off the Møre Margin south of the Jan Mayen Fracture Zone, which offsets the margin segments by ~170 km. A similar reduction in magmatism occurs to the north over an along-margin distance of ~100 km to the Lofoten margin, but without a margin offset. There is a strong correlation between magma productivity and early plate spreading rate, which are highest just after breakup, falling with time. This is seen both at the Møre and the Vøring margin segments, suggesting a common cause. A model for the breakup- related magmatism should be able to (1) explain this correlation, (2) the magma production peak at breakup, and (3) the magmatic segmentation. Proposed end-member hypotheses are elevated upper-mantle temperatures caused by a hot mantle plume, or edge-driven small-scale convection fluxing mantle rocks through the melt zone. Both the average P-wave velocity and the major-element data at the Vøring margin indicate a low degree of melting consistent with convection. However, small scale convection does not easily explain the issues listed above. An elaboration of the mantle plume model by N. Sleep, in which buoyant plume material fills the rift-topography at the base of the lithosphere, can explain these: When the continents break apart, the buoyant plume-material flows up into the rift zone, causing excess magmatism by both elevated temperature and excess flux, and magmatism dies off as this rift-restricted material is spent. The buoyancy of the plume-material also elevates the plate boundaries and enhances plate spreading forces initially. The rapid drop in magma productivity to the north correlates with the northern boundary of the wide and deep Cretaceous Vøring Basin, thus less plume material was accommodated off Lofoten. This model predicts that the magma segmentation will show little variation in the geochemical signature.
NASA Astrophysics Data System (ADS)
Dalziel, I. W. D.; Norton, I. O.; Lawver, L. A.; Lavier, L.; Davis, J. K.; Gahagan, L.
2016-12-01
Geological and paleomagnetic data indicate that initial fragmentation of the Gondwanaland supercontinent in the southernmost Atlantic-Weddell Sea region involved translation and rotation of two small crustal blocks. The Falkland/Malvinas block on the South American plate (F/M) and the Ellsworth-Whitmore mountains block in West Antarctica (EWM) both contain segments of the earliest Mesozoic Gondwana fold belt. The blocks originated in the Natal embayment between the Cape Mountains of southernmost Africa and the Pensacola Mountains of the East Antarctic craton margin. Shortly after emplacement of the Karoo-Ferrar large igneous province (LIP) at ca. 182Ma, the F/M block was rotated clockwise 150 ° and the EWM block counter¬clockwise 90°, while both were translated several hundred kilometers towards the Panthalassic/Pacific Ocean. As indicated by absence of shortening in the sedimentary basins of the F/M Plateau and Weddell embayment, the motions of the crustal blocks relative to the major continents happened during extreme extension accompanied by widespread silicic magmatism that preceded seafloor spreading. We propose a new reconstruction of the Gondwana craton margin, suggesting an original embayment between the Kalahari and East Antarctic cratons, and subsequent mirror-image clockwise (South America-F/M) and counterclockwise (Antarctic Peninsula-EWM) rotations prior to seafloor spreading in the Weddell Sea and South Atlantic.What geodynamic processes were involved in the significant rotations and translations of continental lithosphere prior to ocean basin formation? Our conclusion, based on the geologic and geophysical data and on geodynamic modeling, is that the motions were driven by the distributed crustal thinning of warm continental lithosphere and by mantle flow towards a retreating Panthalassic margin subduction zone associated with the formation of the Karoo-Ferrar Large Igneous Province between the East Antarctic, Kalahari and Rio de la Plata cratons.
Controls on continental strain partitioning above an oblique subduction zone, Northern Andes
NASA Astrophysics Data System (ADS)
Schütt, Jorina M.; Whipp, David M., Jr.
2016-04-01
Strain partitioning is a common process at obliquely convergent plate margins dividing oblique convergence into margin-normal slip on the plate-bounding fault and horizontal shearing on a strike-slip system parallel to the subduction margin. In subduction zones, strain partitioning in the upper continental plate is mainly controlled by the shear forces acting on the plate interface and the strength of the continental crust. The plate interface forces are influenced by the subducting plate dip angle and the obliquity angle between the normal to the plate margin and the convergence velocity vector, and the crustal strength of the continent is strongly affected by the presence or absence of a volcanic arc, with the presence of the volcanic arcs being common at steep subduction zones. Along the ˜7000 km western margin of South America the convergence obliquity, subduction dip angles and presence of a volcanic arc all vary, but strain partitioning is only observed along parts of it. This raises the questions, to what extent do subduction zone characteristics control strain partitioning in the overriding continental plate, and which factors have the largest influence? We address these questions using lithospheric-scale 3D numerical geodynamic experiments to investigate the influence of subduction dip angle, convergence obliquity, and weaknesses in the crust owing to the volcanic arc on strain partitioning behavior. We base the model design on the Northern Volcanic Zone of the Andes (5° N - 2° S), characterized by steep subduction (˜ 35°), a convergence obliquity between 31° -45° and extensive arc volcanism, and where strain partitioning is observed. The numerical modelling software (DOUAR) solves the Stokes flow and heat transfer equations for a viscous-plastic creeping flow to calculate velocity fields, thermal evolution, rock uplift and strain rates in a 1600 km x 1600 km box with depth 160 km. Subduction geometry and material properties are based on a simplified, generic subduction zone similar to the northern Andes. The upper surface is initially defined to resemble the Andes, but is free to deform during the experiments. We consider two main model designs, one with and one without a volcanic arc (weak continental zone). A relatively high angle of convergence obliquity is predicted to favor strain partitioning, but preliminary model results show no strain partitioning for a uniform continental crustal strength with a friction angle of Φ = 15° . However, strain partitioning does occur when including a weak zone in the continental crust resulting from arc volcanic activity with Φ = 5° . This results in margin-parallel northeastward translation of a continental sliver at 3.2 cm/year. The presence of the sliver agrees well with observations of a continental sliver identified by GPS measurements in the Northern Volcanic Zone with a translation velocity of about 1 cm/year, though the GPS-derived velocity may not be representative of the long-term rate of translation depending on whether the observation period includes one or more seismic cycles. Regardless, the observed behavior is consistent with the observed earthquake focal mechanisms and GPS measurements, suggesting significant northeastward transport of Andean crust along the margin of the northern Andes.
NASA Astrophysics Data System (ADS)
Gozzard, S. P.; Kusznir, N.; Goodliffe, A.; Manatschal, G.
2007-12-01
Understanding how the continental crust and lithosphere thins at the propagating tip of sea-floor spreading is the key to understanding the continental breakup process. The Woodlark Basin, a young ocean basin located in the Western Pacific to the east of Papua New Guinea, commenced formation at approximately 8.4Ma and is propagating westwards at a rate of approximately 140km/Myr. Immediately to the west of the most recent segment of sea-floor spreading propagation, in the vicinity of the Moresby Seamount, evidence from bathymetry, subsidence and seismic Moho depth suggests that continental lithosphere is being thinned. In this study we have determined lithosphere thinning in the vicinity of the Moresby Seamount at the level of the whole lithosphere, the whole crust and the upper crust. Whole lithosphere thinning factors have been determined from subsidence analysis; whole continental crustal thinning factors have been determined from gravity inversions and upper crustal thinning factors have been determined from fault analysis. Three 2D seismic profiles surrounding the Moresby Seamount have been flexurally backstripped to the base of the syn-rift sediments to determine the water loaded subsidence. Using the McKenzie lithosphere extension model, modified to include volcanic addition at high thinning factors, whole thinning factors for the lithosphere have been determined from the water loaded subsidence. Results show that thermal subsidence alone cannot account for the observed subsidence, and that an additional initial subsidence is needed. Whole lithosphere thinning factors increase from an average of 0.5 to 0.8 across the Moresby Seamount eastwards towards the propagating tip. A satellite gravity inversion incorporating a lithosphere thermal gravity anomaly correction has been used to determine Moho depth, crustal thickness and thinning factors for the propagating tip in the Woodlark Basin. Moho depths are consistent with depths obtained from receiver function analysis (Ferris et al. 2006). Crustal thickness estimates do not include a correction for sediment thickness and are upper bounds. Crustal thinning factors in the vicinity of the Moresby Seamount are similar to those observed for the whole lithosphere. Fault analysis of the three 2D profiles have been used to determine upper crustal thinning factors. Upper crustal thinning factors between 0.1 to 0.2 are observed for the vicinity of the Moresby Seamount, substantially lower than thinning factors predicted for the whole lithosphere and continental crust, suggesting depth-dependent lithosphere thinning. Crustal thicknesses predicted from gravity inversion immediately to the east of the Moresby Seamount are substantially greater than would be expected for oceanic lithosphere in this region, while highly thinned, has not completely ruptured.
Seismic imaging beneath southwest Africa based on finite-frequency body wave tomography
NASA Astrophysics Data System (ADS)
Youssof, Mohammad; Yuan, Xiaohui; Tilmann, Frederik; Heit, Benjamin; Weber, Michael; Jokat, Wilfried; Geissler, Wolfram; Laske, Gabi
2016-04-01
We present a seismic model of southwest Africa from teleseismic tomographic inversion of the P- and S- wave data recorded by an amphibious temporary seismic network. The area of study is located at the intersection of the Walvis Ridge with the continental margin of northern Namibia, and extends into the Congo craton. Utilizing 3D finite-frequency sensitivity kernels, we invert traveltime residuals of the teleseismic body waves to image seismic structures in the upper mantle. To test the robustness of our tomographic imaging, we employed various resolution assessments that allow us to inspect the extent of smearing effects and to evaluate the optimum regularization weights (i.e., damping and smoothness). These tests include applying different (ir)regular parameterizations, classical checkerboard and anomaly tests and squeezing modeling. Furthermore, we performed different kinds of weighing schemes for the traveltime dataset. These schemes account for balancing between the picks data amount with their corresponding events directions. Our assessment procedure involves also a detailed investigation of the effect of the crustal correction on the final velocity image, which strongly influenced the image resolution for the mantle structures. Our model can resolve horizontal structures of 1° x 1° below the array down to 300-350 km depth. The resulting model is mainly dominated by the difference in the oceanic and continental mantle lithosphere beneath the study area, with second-order features related to their respective internal structures. The fast lithospheric keel of the Congo Craton reaches a depth of ~250 km. The orogenic Damara Belt and continental flood basalt areas are characterized by low velocity perturbations down to a depth of ~150 km, indicating a normal fertile mantle. High velocities in the oceanic lithosphere beneath the Walvis Ridge appear to show signatures of chemical depletion. A pronounced anomaly of fast velocity is imaged underneath continental NW Namibia and is separated from the high velocity anomaly of the Congo Craton. We interpret this positive perturbation as depleted mantle materials. The depletion event is most probably related to the emplacement of the Parana-Etendeka flood basalts at about 132 Ma triggered by a mantle plume, which has left traces on the Walvis Ridge as well.
Geothermal modelling and geoneutrino flux prediction at JUNO with local heat production data
NASA Astrophysics Data System (ADS)
Xi, Y.; Wipperfurth, S. A.; McDonough, W. F.; Sramek, O.; Roskovec, B.; He, J.
2017-12-01
Geoneutrinos are mostly electron antineutrinos created from natural radioactive decays in the Earth's interior. Measurement of a geoneutrino flux at near surface detector can lead to a better understanding of the composition of the Earth, inform about chemical layering in the mantle, define the power driving mantle convection and plate tectonics, and reveal the energy supplying the geodynamo. JUNO (Jiangmen Underground Neutrino Observatory) is a 20 kton liquid scintillator detector currently under construction with an expected start date in 2020. Due to its enormous mass, JUNO will detect about 400 geoneutrinos per year, making it an ideal tool to study the Earth. JUNO is located on the passive continental margin of South China, where there is an extensive continental shelf. The continental crust surrounding the JUNO detector is between 26 and 32 km thick and represents the transition between the southern Eurasian continental plate and oceanic plate of the South China Sea.We seek to predict the geoneutrino flux at JUNO prior to data taking and announcement of the particle physics measurement. To do so requires a detail survey of the local lithosphere, as it contributes about 50% of the signal. Previous estimates of the geoneutrino signal at JUNO utilized global crustal models, with no local constraints. Regionally, the area is characterized by extensive lateral and vertical variations in lithology and dominated by Mesozoic granite intrusions, with an average heat production of 6.29 μW/m3. Consequently, at 3 times greater heat production than the globally average upper crust, these granites will generate a higher than average geoneutrino flux at JUNO. To better define the U and Th concentrations in the upper crust, we collected some 300 samples within 50 km of JUNO. By combining chemical data obtained from these samples with data for crustal structures defined by local geophysical studies, we will construct a detailed 3D geothermal model of the region. Our prediction of the geoneutrino signal at JUNO will integrate data for the local (nearest 500 km to the detector) lithosphere, with a far-field model for the rest of the global lithosphere, and a model for the mantle.
NASA Astrophysics Data System (ADS)
Kalberg, Thomas; Gohl, Karsten
2014-07-01
The Amundsen Sea Embayment of West Antarctica represents a key component in the tectonic history of Antarctic-New Zealand continental breakup. The region played a major role in the plate-kinematic development of the southern Pacific from the inferred collision of the Hikurangi Plateau with the Gondwana subduction margin at approximately 110-100 Ma to the evolution of the West Antarctic Rift System. However, little is known about the crustal architecture and the tectonic processes creating the embayment. During two `RV Polarstern' expeditions in 2006 and 2010 a large geophysical data set was collected consisting of seismic-refraction and reflection data, ship-borne gravity and helicopter-borne magnetic measurements. Two P-wave velocity-depth models based on forward traveltime modelling of nine ocean bottom hydrophone recordings provide an insight into the lithospheric structure beneath the Amundsen Sea Embayment. Seismic-reflection data image the sedimentary architecture and the top-of-basement. The seismic data provide constraints for 2-D gravity modelling, which supports and complements P-wave modelling. Our final model shows 10-14-km-thick stretched continental crust at the continental rise that thickens to as much as 28 km beneath the inner shelf. The homogenous crustal architecture of the continental rise, including horst and graben structures are interpreted as indicating that wide-mode rifting affected the entire region. We observe a high-velocity layer of variable thickness beneath the margin and related it, contrary to other `normal volcanic type margins', to a proposed magma flow along the base of the crust from beneath eastern Marie Byrd Land-West Antarctica to the Marie Byrd Seamount province. Furthermore, we discuss the possibility of upper mantle serpentinization by seawater penetration at the Marie Byrd Seamount province. Hints of seaward-dipping reflectors indicate some degree of volcanism in the area after break-up. A set of gravity anomaly data indicate several phases of fully developed and failed rift systems, including a possible branch of the West Antarctic Rift System in the Amundsen Sea Embayment.
NASA Astrophysics Data System (ADS)
Niu, Y.; O'Hara, M. J.; Pearce, J. A.
2001-12-01
Subduction of oceanic lithosphere into deep mantle is one of the key aspects of plate tectonics. Pull by the subducting-slab due to its negative buoyancy is widely accepted as the major driving force for plate motion and plate tectonics. Hence, there would be no plate tectonics if there were no subduction zones. Yet how a subduction zone initiates remains poorly known. Here we show that lateral compositional (vs. thermal) buoyancy contrast within the lithosphere creates the favored and necessary condition for the initiation of a subduction zone by (1) comparing the compositional and density differences between normal oceanic lithosphere (NOL) represented by abyssal peridotites (AP) and subarc lithosphere (SAL) represented by forearc peridotites (FP), and (2) simple physical analysis. As the gravitational attraction is the principal driving force of the subducting slab, it would be optimal if one part of the lithosphere experiences a greater gravitational attraction than its adjacent neighbor prior to or during the initiation of a subduction. This requires the pre-existence of a density contrast within the lithosphere. If the lithosphere is thermally uniform as is often the case, then the density contrast must result from a compositional contrast. This hypothesis can be tested by examining the lithospheric materials on both sides of a subduction zone. Subduction of a dense NOL beneath a buoyant continental lithosphere is straightforward, but intra-oceanic subduction such as in the western Pacific requires a scrutiny. Our data show that FP of Mariana and Tonga - two of the most important intra-oceanic subduction zones on Earth - are compositionally more depleted than AP: Cr#-sp (mean+/- 1σ ) = 0.584+/-0.084(FP) vs. 0.307+/-0.134(AP); Mg#-ol = 0.915+/-0.006(FP) vs. 0.898+/-0.082(AP); Mg#-opx = 0.917+/-0.006(FP) vs. 0.908+/-0.006(AP); Mg#-cpx = 0.929+/-0.021(FP) vs. 0.917+/-0.011(AP). As a result, SAL is > 0.7% less dense than NOL. This density contrast due to compositional difference is equivalent to Δ T = ~230° C, which is similar to or greater than the postulated thermal buoyancy contrast between a hot mantle plume and its surroundings. While the depleted nature of FP has been interpreted to result from subducting-slab dehydration induced high extents of mantle wedge melting, evidence indicates that the depletion of these FP predates the inception of the subduction, thus these FP are not residues of present-day arc magmatism. Hence, the compositional buoyancy contrast already existed within the lithosphere before the inception of the subduction in the western Pacific. Much of the Mariana SAL may be fragments of old continental lithosphere, whereas the Tonga/Fiji plateau and Kamchatka lithosphere may be remnants of buoyant, hence unsubductable oceanic plateaus (mantle plume head materials) for the Louisville and Hawaiian hotspots respectively. Passive continental margins, where the largest compositional buoyancy contrast exists within the lithosphere, are the loci of future subduction zones. Geometrical analysis shows that the compositional buoyancy contrast within the lithosphere under compression (e.g., ridge push) induces transtensional planes. The weakest plane in the vicinity of the compositional buoyancy contrast develops into a reverse fault. The dense NOL (the foot-wall) tends to sink into the hot and less dense asthenosphere. Calculations show that this tendency to sink reduces both the normal stress to, and shear resistance along, the fault plane, thus easing the sinking and favoring the initiation of a subduction zone. This concept also explains other observations and makes testable predictions on important geodynamic problems.
NASA Astrophysics Data System (ADS)
Cunningham, D.
2017-12-01
This talk will review the Permian-Recent tectonic history of the Gobi Corridor region which includes the actively deforming Gobi Altai-Altai, Eastern Tien Shan, Beishan and North Tibetan foreland. Since terrane amalgamation in the Permian, Gobi Corridor crust has been repeatedly reactivated by Triassic-Jurassic contraction/transpression, Late Cretaceous extension and Late Cenozoic transpression. The tectonic history of the region suggests the following basic principle for intraplate continental regions: non-cratonized continental interior terrane collages are susceptible to repeated intraplate reactivation events, driven by either post-orogenic collapse and/or compressional stresses derived from distant plate boundary convergence. Thus, important related questions are: 1) what lithospheric pre-conditions favor intraplate crustal reactivation in the Gobi Corridor (simple answer: crustal thinning, thermal weakening, strong buttressing cratons), 2) what are the controls on the kinematics of deformation and style of mountain building in the Gobi-Altai-Altai, Beishan and North Tibetan margin (simple answer: many factors, but especially angular relationship between SHmax and `crustal grain'), 3) how does knowledge of the array of Quaternary faults and the historical earthquake record influence our understanding of modern earthquake hazards in continental intraplate regions (answer: extrapolation of derived fault slip rates and recurrence interval determinations are problematic), 4) what important lessons can we learn from the Mesozoic-Cenozoic tectonic history of Central Asia that is applicable to the tectonic evolution of all intraplate continental regions (simple answer: ancient intraplate deformation events may be subtly expressed in the rock record and only revealed by low-temperature thermochronometers, preserved orogen-derived sedimentary sequences, fault zone evidence for younger brittle reactivation, and recognition of a younger class of cross-cutting tectonic structures).
The importance of structural softening for the evolution and architecture of passive margins
Duretz, T.; Petri, B.; Mohn, G.; Schmalholz, S. M.; Schenker, F. L.; Müntener, O.
2016-01-01
Lithospheric extension can generate passive margins that bound oceans worldwide. Detailed geological and geophysical studies in present and fossil passive margins have highlighted the complexity of their architecture and their multi-stage deformation history. Previous modeling studies have shown the significant impact of coarse mechanical layering of the lithosphere (2 to 4 layer crust and mantle) on passive margin formation. We built upon these studies and design high-resolution (~100–300 m) thermo-mechanical numerical models that incorporate finer mechanical layering (kilometer scale) mimicking tectonically inherited heterogeneities. During lithospheric extension a variety of extensional structures arises naturally due to (1) structural softening caused by necking of mechanically strong layers and (2) the establishment of a network of weak layers across the deforming multi-layered lithosphere. We argue that structural softening in a multi-layered lithosphere is the main cause for the observed multi-stage evolution and architecture of magma-poor passive margins. PMID:27929057
Shaping mobile belts by small-scale convection.
Faccenna, Claudio; Becker, Thorsten W
2010-06-03
Mobile belts are long-lived deformation zones composed of an ensemble of crustal fragments, distributed over hundreds of kilometres inside continental convergent margins. The Mediterranean represents a remarkable example of this tectonic setting: the region hosts a diffuse boundary between the Nubia and Eurasia plates comprised of a mosaic of microplates that move and deform independently from the overall plate convergence. Surface expressions of Mediterranean tectonics include deep, subsiding backarc basins, intraplate plateaux and uplifting orogenic belts. Although the kinematics of the area are now fairly well defined, the dynamical origins of many of these active features are controversial and usually attributed to crustal and lithospheric interactions. However, the effects of mantle convection, well established for continental interiors, should be particularly relevant in a mobile belt, and modelling may constrain important parameters such as slab coherence and lithospheric strength. Here we compute global mantle flow on the basis of recent, high-resolution seismic tomography to investigate the role of buoyancy-driven and plate-motion-induced mantle circulation for the Mediterranean. We show that mantle flow provides an explanation for much of the observed dynamic topography and microplate motion in the region. More generally, vigorous small-scale convection in the uppermost mantle may also underpin other complex mobile belts such as the North American Cordillera or the Himalayan-Tibetan collision zone.
Construction and destruction of some North American cratons
NASA Astrophysics Data System (ADS)
Snyder, D. B.; Humphreys, G.
2015-12-01
Construction histories of Archean cratons remain poorly understood; their destruction is even less clear because of, by definition, its rarity. By assembling geophysical and geochemical data in 3-D lithosphere models, a clearer understanding of the geometry of major structures within the Rae, Slave and Wyoming cratons of central North America is now possible. Little evidence exists of subducted slabs similar to modern oceanic lithosphere in these construction histories whereas underthrusting and wedging of proto-continental lithosphere is inferred from multiple dipping discontinuities. Archean continental building blocks may resemble the modern lithosphere of Ontong-Java-Hikurangi oceanic plateau. Radiometric dating of xenoliths provides estimates of rock types and ages at depth beneath sparse kimberlite occurrences. These ages can be correlated to surface rocks. The 3.6-2.6 Ga Rae, Slave and Wyoming cratons comprise smaller continental terranes that 'cratonized' during a granitic bloom at 2.61-2.55 ga. Cratonization probably represents the final differentiation of early crust into a relatively homogeneous, uniformly thin (35-42 km), tonalite-trondhjemite-granodiorite crust with pyroxenite layers near the Moho atop depleted lithospheric mantle. Peak thermo-tectonic events at 1.86-1.7 Ga broadly metasomatized, mineralized and recrystallized mantle and lower crustal rocks, apparently making mantle peridotite more 'fertile' and conductive by introducing or concentrating sulfides or graphite throughout the lithosphere at 80-120 km depths. This metasomatism may have also weakened the lithosphere or made it more susceptible to tectonic or chemical erosion. The arrival of the subducted Shatsky Rise conjugate at the Wyoming craton at 65-75 Ma appears to have eroded and displaced the thus weakened base of the craton below 140-160 km. This replaced old refertilized continental mantle with new depleted oceanic mantle. Is this the same craton?
Reconstructing Rodinia by Fitting Neoproterozoic Continental Margins
Stewart, John H.
2009-01-01
Reconstructions of Phanerozoic tectonic plates can be closely constrained by lithologic correlations across conjugate margins by paleontologic information, by correlation of orogenic belts, by paleomagnetic location of continents, and by ocean floor magmatic stripes. In contrast, Proterozoic reconstructions are hindered by the lack of some of these tools or the lack of their precision. To overcome some of these difficulties, this report focuses on a different method of reconstruction, namely the use of the shape of continents to assemble the supercontinent of Rodinia, much like a jigsaw puzzle. Compared to the vast amount of information available for Phanerozoic systems, such a limited approach for Proterozoic rocks, may seem suspect. However, using the assembly of the southern continents (South America, Africa, India, Arabia, Antarctica, and Australia) as an example, a very tight fit of the continents is apparent and illustrates the power of the jigsaw puzzle method. This report focuses on Neoproterozoic rocks, which are shown on two new detailed geologic maps that constitute the backbone of the study. The report also describes the Neoproterozoic, but younger or older rocks are not discussed or not discussed in detail. The Neoproterozoic continents and continental margins are identified based on the distribution of continental-margin sedimentary and magmatic rocks that define the break-up margins of Rodinia. These Neoproterozoic continental exposures, as well as critical Neo- and Meso-Neoproterozoic tectonic features shown on the two new map compilations, are used to reconstruct the Mesoproterozoic supercontinent of Rodinia. This approach differs from the common approach of using fold belts to define structural features deemed important in the Rodinian reconstruction. Fold belts are difficult to date, and many are significantly younger than the time frame considered here (1,200 to 850 Ma). Identifying Neoproterozoic continental margins, which are primarily extensional in origin, supports recognition of the Neoproterozoic fragmentation pattern of Rodinia and outlines the major continental masses that, prior to the breakup, formed the supercontinent. Using this pattern, Rodinia can be assembled by fitting the pieces together. Evidence for Neoproterozoic margins is fragmentary. The most apparent margins are marked by miogeoclinal deposits (passive-margin deposits). The margins can also be outlined by the distribution of continental-margin magmatic-arc rocks, by juvenile ocean-floor rocks, or by the presence of continent-ward extending aulacogens. Most of the continental margins described here are Neoproterozoic, and some had an older history suggesting that they were major, long-lived lithospheric flaws. In particular, the western margin of North America appears to have existed for at least 1,470 Ma and to have been reactivated many times in the Neoproterozoic and Phanerozoic. The inheritance of trends from the Mesoproterozoic by the Neoproterozoic is particularly evident along the eastern United States, where a similarity of Mesoproterozoic (Grenville) and Neoproterozoic trends, as well as Paleozoic or Mesozoic trends, is evident. The model of Rodinia presented here is based on both geologic and paleomagnetic information. Geologic evidence is based on the distribution and shape of Neoproterozoic continents and on assembling these continents so as to match the shape, history, and scale of adjoining margins. The proposed model places the Laurasian continents?Baltica, Greenland, and Laurentia?west of the South American continents (Amazonia, Rio de La Plata, and Sa? Francisco). This assembly is indicated by conjugate pairs of Grenville-age rocks on the east side of Laurentia and on the west side of South America. In the model, predominantly late Neoproterozoic magmatic-arc rocks follow the trend of the Grenville rocks. The boundary between South America and Africa is interpreted as the site of a Wilson cycle
NASA Astrophysics Data System (ADS)
Ferraccioli, F.; Kusznir, N. J.; Jordan, T. A.
2017-12-01
Using gravity anomaly inversion, we produce comprehensive regional maps of crustal thickness and oceanic lithosphere distribution for Antarctica and the Southern Ocean. Antarctic crustal thicknesses derived from gravity inversion are compared with seismic estimates from Baranov (2011) and An et al. (2015). We determine Moho depth, crustal basement thickness, continental lithosphere thinning (1-1/) and ocean-continent transition location using a 3D spectral domain gravity inversion method, which incorporates a lithosphere thermal gravity anomaly correction (Chappell & Kusznir 2008). Data used in the gravity inversion are elevation and bathymetry, free-air gravity anomaly, the Bedmap 2 ice thickness and bedrock topography compilation south of 60 degrees south and relatively sparse constraints on sediment thickness. Our gravity inversion study predicts thick crust (> 45 km) under interior East Antarctica, which is penetrated by narrow continental rifts featuring relatively thinner crust. The largest crustal thicknesses predicted from gravity inversion lie in the region of the Gamburtsev Subglacial Mountains, and are consistent with seismic estimates. The East Antarctic Rift System (EARS), a major Permian to Cretaceous age rift system, is imaged by our inversion and appears to extend from the continental margin at the Lambert Rift (LR) to the South Pole region, a distance of 2500 km. Thin crust is predicted under the Ross Sea and beneath the West Antarctic Ice Sheet and delineates the regional extent of the broad West Antarctic Rift System (WARS). Substantial regional uplift is required under Marie Byrd Land to reconcile gravity and seismic estimates. A mantle dynamic uplift origin of the uplift is preferred to a thermal anomaly from a very young rift. The new crustal thickness map produced by this gravity inversion study support the hypothesis that one branch of the WARS links through to the De Gerlache sea-mounts (DG) and Peter I Island (PI) in the Bellingshausen Sea region, while another branch may link to the George V Sound Rift in the Antarctic Peninsula region.
NASA Astrophysics Data System (ADS)
Palomeras, I.; Villaseñor, A.; Thurner, S.; Levander, A.; Gallart, J.; Harnafi, M.
2017-05-01
We present a new 3-D shear velocity model of the western Mediterranean from the Pyrenees, Spain, to the Atlas Mountains, Morocco, and the estimated crustal and lithospheric thickness. The velocity model shows different crustal and lithospheric velocities for the Variscan provinces, those which have been affected by Alpine deformation, and those which are actively deforming. The Iberian Massif has detectable differences in crustal thickness that can be related to the evolution of the Variscan orogen in Iberia. Areas affected by Alpine deformation have generally lower velocities in the upper and lower crust than the Iberian Massif. Beneath the Gibraltar Strait and surrounding areas, the crustal thickness is greater than 50 km, below which a high-velocity anomaly (>4.5 km/s) is mapped to depths greater than 200 km. We identify this as a subducted remnant of the NeoTethys plate referred to as the Alboran and western Mediterranean slab. Beneath the adjacent Betic and Rif Mountains, the Alboran slab is still attached to the base of the crust, depressing it, and ultimately delaminating the lower crust and mantle lithosphere as the slab sinks. Under the adjacent continents, the Alboran slab is surrounded by low upper mantle shear wave velocities (Vs < 4.3) that we interpret as asthenosphere that has replaced the continental margin lithosphere which was viscously removed by Alboran plate subduction. The southernmost part of the model features an anomalously thin lithosphere beneath the Atlas Mountains that could be related to lateral flow induced by the Alboran slab.
NASA Astrophysics Data System (ADS)
Feucht, D. W.; Sheehan, A. F.; Bedrosian, P. A.
2017-12-01
We present an electrical resistivity model of the crust and upper mantle from two-dimensional (2-D) anisotropic inversion of magnetotelluric data collected along a 450 km transect of the Rio Grande rift, southern Rocky Mountains, and High Plains in Colorado, USA. Our model provides a window into the modern-day lithosphere beneath the Rocky Mountain Front to depths in excess of 150 km. Two key features of the 2-D resistivity model are (1) a broad zone ( 200 km wide) of enhanced electrical conductivity (<20 Ωm) in the midcrust to lower crust that is centered beneath the highest elevations of the southern Rocky Mountains and (2) hydrated lithospheric mantle beneath the Great Plains with water content in excess of 100 ppm. We interpret the high conductivity region of the lower crust as a zone of partially molten basalt and associated deep-crustal fluids that is the result of recent (less than 10 Ma) tectonic activity in the region. The recent supply of volatiles and/or heat to the base of the crust in the late Cenozoic implies that modern-day tectonic activity in the western United States extends to at least the western margin of the Great Plains. The transition from conductive to resistive upper mantle is caused by a gradient in lithospheric modification, likely including hydration of nominally anhydrous minerals, with maximum hydration occurring beneath the Rocky Mountain Front. This lithospheric "hydration front" has implications for the tectonic evolution of the continental interior and the mechanisms by which water infiltrates the lithosphere.
NASA Astrophysics Data System (ADS)
Schiffer, Christian; Nielsen, Søren Bom
2016-08-01
With convergent plate boundaries at some distance, the sources of the lithospheric stress field of the North Atlantic Realm are mainly mantle tractions at the base of the lithosphere, lithospheric density structure and topography. Given this, we estimate horizontal deviatoric stresses using a well-established thin sheet model in a global finite element representation. We adjust the lithospheric thickness and the sub-lithospheric pressure iteratively, comparing modelled in plane stress with the observations of the World Stress Map. We find that an anomalous mantle pressure associated with the Iceland and Azores melt anomalies, as well as topography are able to explain the general pattern of the principle horizontal stress directions. The Iceland melt anomaly overprints the classic ridge push perpendicular to the Mid Atlantic ridge and affects the conjugate passive margins in East Greenland more than in western Scandinavia. The dynamic support of topography shows a distinct maximum of c. 1000 m in Iceland and amounts <150 m along the coast of south-western Norway and 250-350 m along the coast of East Greenland. Considering that large areas of the North Atlantic Realm have been estimated to be sub-aerial during the time of break-up, two components of dynamic topography seem to have affected the area: a short-lived, which affected a wider area along the rift system and quickly dissipated after break-up, and a more durable in the close vicinity of Iceland. This is consistent with the appearance of a buoyancy anomaly at the base of the North Atlantic lithosphere at or slightly before continental breakup, relatively fast dissipation of the fringes of this, and continued melt generation below Iceland.
Thermal evolution of a hyperextended rift basin, Mauléon Basin, western Pyrenees
NASA Astrophysics Data System (ADS)
Hart, Nicole R.; Stockli, Daniel F.; Lavier, Luc L.; Hayman, Nicholas W.
2017-06-01
Onshore and offshore geological and geophysical observations and numerical modeling have greatly improved the conceptual understanding of magma-poor rifted margins. However, critical questions remain concerning the thermal evolution of the prerift to synrift phases of thinning ending with the formation of hyperextended crust and mantle exhumation. In the western Pyrenees, the Mauléon Basin preserves the structural and stratigraphic record of Cretaceous extension, exhumation, and sedimentation of the proximal-to-distal margin development. Pyrenean shortening uplifted basement and overlying sedimentary basins without pervasive shortening or reheating, making the Mauléon Basin an ideal locality to study the temporal and thermal evolution of magma-poor hyperextended rift systems through coupling bedrock and detrital zircon (U-Th)/He thermochronometric data from transects characterizing different structural rifting domains. These new data indicate that the basin was heated during early rifting to >180°C with geothermal gradients of 80-100°C/km. The proximal margin recorded rift-related exhumation/cooling at circa 98 Ma, whereas the distal margin remained >180°C until the onset of Paleocene Pyrenean shortening. Lithospheric-scale numerical modeling shows that high geothermal gradients, >80°C/km, and synrift sediments >180°C, can be reached early in rift evolution via heat advection by lithospheric depth-dependent thinning and blanketing caused by the lower thermal conductivity of synrift sediments. Mauléon Basin thermochronometric data and numerical modeling illustrate that reheating of basement and synrift strata might play an important role and should be considered in the future development of conceptual and numerical models for hyperextended magma-poor continental rifted margins.
Continental extension, magmatism and elevation; formal relations and rules of thumb
Lachenbruch, A.H.; Morgan, P.
1990-01-01
To investigate simplified relations between elevation and the extensional, magmatic and thermal processes that influence lithosphere buoyancy, we assume that the lithosphere floats on an asthenosphere of uniform density and has no flexural strength. A simple graph relating elevation to lithosphere density and thickness provides an overview of expectable conditions around the earth and a simple test for consistancy of continental and oceanic lithosphere models. The mass-balance relations yield simple general rules for estimating elevation changes caused by various tectonic, magmatic and thermal processes without referring to detailed models. The rules are general because they depend principally on buoyancy, which under our assumptions is specified by elevation, a known quantity; they do not generally require a knowledge of lithosphere thickness and density. The elevation of an extended terrain contains important information on its tectonic and magmatic history. In the Great Basin where Cenozoic extension is estimated to be 100%, the present high mean elevation ( ~ 1.75 km) probably requires substantial low-density magmatic contributions to the extending lithosphere. The elevation cannot be reasonably explained solely as the buoyant residue of a very high initial terrane, or of a lithosphere that was initially very thick and subsequently delaminated and heated. Even models with a high initial elevation typically call for 10 km or so of accumulated magmatic material of near-crustal density. To understand the evolution of the Great Basin, it is important to determine whether such intruded material is present; some could replenish the stretching crust by underplating and crustal intrusion and some might reside in the upper mantle. The elevation maintained or approached by an intruded extending lithosphere depends on the ratio B of how fast magma is supplied from the asthenosphere ( b km/Ma) to how fast the lithosphere spreads the magma out by extension (?? Ma-1). For a surface maintained 2 1 2km below sea level (e.g., an ocean ridge) B is about 5 km; for continental extension the ratio may be much greater. The frequent association of volcanism with continental extension, the high elevation (and buoyancy) of some appreciably extended terrains, and the oceanic spreading analog all suggest that magmatism may play an important role in continental extension. Better estimates of total extension and elevation change in extended regions can help to identify that role. ?? 1990.
Lateral Variations in SKS Splitting Across the MAGIC Array, Central Appalachians
NASA Astrophysics Data System (ADS)
Aragon, John C.; Long, Maureen D.; Benoit, Margaret H.
2017-11-01
The eastern margin of North America has been shaped by several cycles of supercontinent assembly. These past episodes of orogenesis and continental rifting have likely deformed the lithosphere, but the extent, style, and geometry of this deformation remain poorly known. Measurements of seismic anisotropy in the upper mantle can shed light on past lithospheric deformation, but may also reveal contributions from present-day mantle flow in the asthenosphere. Here we examine SKS waveforms and measure splitting of SKS phases recorded by the MAGIC experiment, a dense transect of seismic stations across the central Appalachians. Our measurements constrain small-scale lateral variations in azimuthal anisotropy and reveal distinct regions of upper mantle anisotropy. Stations within the present-day Appalachian Mountains exhibit fast splitting directions roughly parallel to the strike of the mountains and delay times of about 1.0 s. To the west, transverse component waveforms for individual events reveal lateral variability in anisotropic structure. Stations immediately to the east of the mountains exhibit complicated splitting patterns, more null SKS arrivals, and a distinct clockwise rotation of fast directions. The observed variability in splitting behavior argues for contributions from both the lithosphere and the asthenospheric mantle. We infer that the sharp lateral transition in splitting behavior at the eastern edge of the Appalachians is controlled by a change in anisotropy in the lithospheric mantle. We hypothesize that beneath the Appalachians, SKS splitting reflects lithospheric deformation associated with Appalachian orogenesis, while just to the east this anisotropic signature was modified by Mesozoic rifting.
Timing of mafic magmatism VS localization of the deformation: the Ivrea Zone (Italian Alps)
NASA Astrophysics Data System (ADS)
Bidault, M.; Geoffroy, L.; Arbaret, L.; Aubourg, C. T.
2017-12-01
Mafic magma emplacement is a common feature of continental extension systems, represented at initial stage by volcanic rifts and at more mature stage by volcanic passive margins. In those contexts, lithospheric extension is not isovolumic, magma being notably added to the crust while it is tectonically stretched and thinned. Crystal-scale power-law mechanisms responsible for the continuous flow of the lower crust during extension are composition- and temperature-dependent and additionally, very slow processes. However magma emplacement is a very rapid process. Its effect on the lower crust rheology is dual depending upon the time-scale of the processes: thermal weakening, when newly-formed hot intrusions emplace and heat their surrounding, and rheological chemical hardening when mafic intrusions are cold. Consequently, the localization and type of ductile deformation affecting the lower crust depend on the emplacement rate, volume and spatial organization of the mafic system. The Ivrea Zone is a well-known variscan continental crust section that underwent extension through first gravitational collapse in the Carboniferous and then lithospheric extension until the Permian. From the Late Carboniferous to the Permian, extension in the Ivrea Zone was associated with large volumes of magma intrusion within the lower crust. This volcanic rift stage predated the development of a non-volcanic passive margin during the Jurassic. The entire system was tilted 90° eastward during the Alpine orogeny but remained unaffected by significant metamorphism or pervasive strain. We combine new field observations, Anisotropy of Magnetic Susceptibility data and trace-element geochemistry to investigate the timing, tectonic-setting and consequences of magma emplacement in the in-extension Ivrea lower crust. We propose a new tectonic history, highlighting time-dependent strain transfer and localization in the lower crust, in connection with mafic magma intrusion.
Subduction dynamics: From the trench to the core-mantle boundary
NASA Astrophysics Data System (ADS)
Kincaid, Chris
1995-07-01
Subduction occurs along convergent plate boundaries where one of the colliding lithospheric plates descends into the mantle. Subduction zones are recognized where plates converge at ˜2-15 cm/yr, although well developed trenches and volcanic arcs (e.g. the line of active volcanoes lying parallel to most ocean trenches, such as the Aleutian Islands in the North Pacific) occur when convergence rates are higher, 4-10 cm/yr. This report is meant to provide a brief review on the general topic of subduction dynamics. A recent spin on subduction studies is the growing realization that the need to understand this global Earth process may be argued not only on purely scientific grounds, but also in terms of societal relevance. While subducting slabs of oceanic lithosphere clearly provide the dominant driving force for mantle dynamics and plate tectonics, over half of the Earth's present 40,000 km of subduction zones are associated with continental margins where a large and rapidly increasing percentage of the Earth's population resides. Subductioninduced hazards along active continental margins include those associated with volcanic hazards (Blong, 1984; Tilling, 1989) such as lava flows, pyroclastic flows and ash fallout and tectonic processes, such as faulting, tsunamis and earthquakes. With regards to earthquake hazards, all of the great (magnitude >9) earthquakes in recorded history have occurred at subduction zones, with 50% of all energy released since 1900 being in four events (1964-Alaska; 1960-Chile; 1957- Aleutians; 1952-Kamchatka). Subduction zone hazards have significant impact on long time scales, such as contributions to global climate change (Robock, 1991; Simarski, 1992; Johnson, 1993; Bluth et al., 1993) and short time scales such as airline safety (Casadevall, 1992). Moreover, accretionary wedges are important in terms of resource potential and trenches have occasionally been suggested as nuclear waste disposal sites.
Evolution of the continental margin of southern Spain and the Alboran Sea
Dillon, William P.; Robb, James M.; Greene, H. Gary; Lucena, Juan Carlos
1980-01-01
Seismic reflection profiles and magnetic intensity measurements were collected across the southern continental margin of Spain and the Alboran basin between Spain and Africa. Correlation of the distinct seismic stratigraphy observed in the profiles to stratigraphic information obtained from cores at Deep Sea Drilling Project site 121 allows effective dating of tectonic events. The Alboran Sea basin occupies a zone of motion between the African and Iberian lithospheric plates that probably began to form by extension in late Miocene time (Tortonian). At the end of Miocene time (end of Messinian) profiles show that an angular unconformity was cut, and then the strata were block faulted before subsequent deposition. The erosion of the unconformity probably resulted from lowering of Mediterranean sea level by evaporation when the previous channel between the Mediterranean and Atlantic was closed. Continued extension probably caused the block faulting and, eventually the opening of the present channel to the Atlantic through the Strait of Gibraltar and the reflooding of the Mediterranean. Minor tectonic movements at the end of Calabrian time (early Pleistocene) apparently resulted in minor faulting, extensive transgression in southeastern Spain, and major changes in the sedimentary environment of the Alboran basin. Active faulting observed at five locations on seismic profiles seems to form a NNE zone of transcurrent movement across the Alboran Sea. This inferred fault trend is coincident with some bathymetric, magnetic and seismicity trends and colinear with active faults that have been mapped on-shore in Morocco and Spain. The faults were probably caused by stresses related to plate movements, and their direction was modified by inherited fractures in the lithosphere that floors the Alboran Sea.
NASA Astrophysics Data System (ADS)
Schilling, Jean-Guy; Kingsley, Richard H.; Hanan, Barry B.; McCully, Brian L.
1992-07-01
The rare-earth-element concentrations and Nd, Sr, and Pb isotopic compositions of the basalts in the Gulf of Aden are described and related to asthenospheric and lithospheric interactions with a thermal toruslike plume. Specific attention is given to the spatial and temporal traits of the mantle sources, and isotopic and geochemical data are used to determine the extent to which basaltic volcanism is derived from a mantle plume, the mantle lithosphere, and upwelling of the depleted atmosphere. The impingement and dispersion of a plume head is confirmed beneath the Afar region, and the geological record shows continental stretching and rifting prior to the impingement in the outskirts of the Horn of Africa. The data suggest that the isotopic variations along the Gulf of Aden/Red Sea/Ethiopia Rift system can be explained by the interaction of a thermal toruslike plume with the depleted asthenosphere and the overlying continental mantle lithosphere.
NASA Astrophysics Data System (ADS)
Robertson, A. H. F.
2012-04-01
The objective here is to use the geology and tectonics of a critical part of the Tethyan orogen, represented by Greece and Albania, to shed light on the tectonic development of Tethys on a regional, to global scale, particularly the history of convergence during Late Palaeozoic to Cenozoic time. For Carboniferous time much evidence suggests that the Korabi-Pelagonian crustal unit as exposed in Albania and Greece formed above a northward-dipping subduction zone along the Eurasia continental margin, with Palaeotethys to the south. However, there is also some evidence of southward subduction beneath Gondwana especially from southern Greece and central southern Turkey. Palaeotethys is inferred to have closed in Europe as far to the east as the longitude of Libya, while remaining open beyond this. There is still uncertainty about the Pangea A-type reconstruction that would restore all of the present units in the area to within the E Mediterranean region, versus the Pangea B-type reconstruction that would require right-lateral displacement of exotic terranes, by up to 3,500 km eastwards. In either reconstruction, fragments of the Variscan collisional orogen are likely to have been displaced eastwards (variable distances) in the Balkan region prior to Late Permian-Early Triassic time. From ~Late Permian, the Greece-Albania crustal units were located in their present relative position within Tethys as a whole. From the mid-Permian, onwards the northern margin of Gondwana was affected by crustal extension. A Mesozoic ocean (Pindos-Mirdita ocean) then rifted during Early-Middle Triassic time, culminating in final continental break-up and seafloor spreading during the Late Triassic (Carnian-Norian). Subduction-influenced volcanics of mainly Early-Middle Triassic age probably reflect the extraction of magma from sub-continental lithosphere that was enriched in subduction-related fluids and volatiles during an earlier, ?Variscan subduction event. The existence of Upper Triassic mid-ocean ridge-type igneous rocks, known locally in Albania and Greece, points to rifting of a Red Sea-type oceanic basin rather than a back-arc basin related to contemporaneous subduction. After initial, inferred slow spreading at an Upper Triassic, rifted ocean ridge and spreading during the Early Jurassic, the ocean basin underwent regional convergence. Subduction was initiated at, or near, a spreading axis perhaps adjacent to an oceanic fracture zone. The Jurassic supra-subduction zone-type ophiolites of both Greece and Albania largely relate to melting of rising asthenosphere in the presence of volatiles (water) that originated from subducting oceanic lithosphere. High-magnesian boninite-type magmas that are present in both the Albanian and Greece ophiolites and some underlying melanges reflect remelting of previously depleted oceanic upper mantle. Localised MOR-type ophiolites of Late Middle Jurassic age, mainly exposed in NE Albania, were created at a rifted spreading axis. The amphibolite-facies metamorphic sole of the ophiolites was mainly derived from oceanic crust (including within-plate type seamounts), whereas the underlying lower-grade, greenschist facies sole was mainly sourced from the rifted continental margin. The melange, dismembered thrust sheets and polymict debris flows ("olistostromes") beneath the ophiolites formed by accretion and gravity reworking of continental margin units. The in situ radiolarian chert cover of the ophiolites in northern Albania is overlain by polymict debris flows ("olistostromes"). Pelagic carbonate deposition followed during Tithonian-Berriasian time and then restoration of a regional carbonate platform during the Cretaceous. Exhumation of deeply buried parts of the over-ridden continental margin probably took place during the Early Cretaceous. Structural evidence, mainly from northern Greece (Vourinos, Pindos and Othris areas), indicates that the ophiolites, the metamorphic sole, the accretionary melange, and the underlying continental margin units were all deformed by top-to-the-northeast thrusting during Late Middle-Early Late Jurassic time. However, such kinematic evidence is not obviously replicated in Albania, where there are reports of ~southwest-directed (or variable) emplacement. Remaining Pindos-Mirdita oceanic crust subducted ~southwestwards during Late Cretaceous-Eocene time, while oceanic crust continued to form in the south-Aegean region at least locally during Late Cretaceous time. During Early Cenozoic time the Pindos-Mirdita ocean closed progressively southwards, triggering mainly southward progradation of turbidites derived from the over-riding Korabi-Pelagonian microcontinent. Smaller volumes of sediment were also derived from the Apulia (Adria) continent. The Mesohellenic Trough of Greece and its counterpart in Albania evolved from an Eocene fore-arc-type basin above subducting oceanic lithosphere to a thrust-top basin as continental crust continued to underthrust during the Oligocene after final closure of the Pindos-Mirdita ocean. Miocene and Plio-Quaternary successor flexural foredeeps developed in response to continuing regional plate convergence. The preferred tectonic alternatives are assembled into a new overall tectonic model, which in turn needs to be tested and developed in the light of future studies. Reference: Robertson, A.H.F. Tectonic development of Greece and Albania in the context of alternative reconstructions of Tethys in the Eastern Mediterranean region during Late Palaeozoic-Cenozoic time. International Geological Review, in press.
Controls of Lithospheric Mechanical Strength on the Deformation Pattern of Tien Shan
NASA Astrophysics Data System (ADS)
Li, Y.; Xiong, X.; Zheng, Y.; Hu, X.; Zhang, Y.
2015-12-01
The Tien Shan is an outstanding example of intracontinental mountain belt, which was built rapidly and formed far away from plate boundaries. It exhibits 300~500 km in width and extends ~2000 km EW, located in central Asia. The Tien Shan is a key area for solution of the problems relating to intracontinental geodynamics. During last decades, despite a large amount of results based on various geological, geophysical and geodetic data about the Tien Shan, however, deformation mechanism remains controversial and other several principal problems related to its structure and evolution also have not been completely resolved. As for patterns of continental deformation, they are always controlled by both the forces applied to the lithosphere and by lithospheric resistance to the forces. The latter is often measured by the mechanical strength of lithosphere. The lateral variation of strength of lithosphere has been recognized to be an important factor controlling the spatial construction and temporal evolution of continent. In this study, we investigate the mechanical strength (Te) of lithosphere in the Tien Shan using wavelet coherency between Bouguer anomaly and topography. The patterns of Te variations are closely related to major tectonic boundaries and blocks. Mechanical strength exhibits a weak zone (Te~5-20km) beneath the Tien Shan while its surrounding blocks including Tarim Basin, Junggar Basin and Kazakh platform are characterized by a strong lithosphere (Te>40km). The lateral variations in mechanical strength and velocity field of horizontal movement with GPS demonstrate that strain localization appears at the margins of Tarim Basin, which is also the strong lithospheric domain. It is suggested that the weak lithosphere allows the crustal stress accumulation and the strong lithosphere helps to stress transfer. There is also a good agreement between mechanical strength and shear wave velocity structure in upper mantle. It indicates a strong domain located in the lower crust and lithospheric mantle. Combined with results of analog models, the location and style of deformation are preliminary determined and thus the related topography evolution in the Tien Shan is mainly controlled by the lateral and depth variation in lithospheric mechanical strength of surrounding areas.
Foundering and Exhumation of UHP Terranes: Race Car or School Bus?
NASA Astrophysics Data System (ADS)
Kylander-Clark, A. R.; Hacker, B. R.
2008-12-01
Recent geochronologic data from the giant ultrahigh-pressure (UHP) terrane, in the Western Gneiss Region of Norway, indicate that subduction and exhumation were relatively slow (a few mm/yr), and that the terrane was exhumed to the surface as a relatively thick, coherent body. These conclusions are in stark contrast to those reached in previous studies of some of the best-studied, smaller UHP terranes and suggest that the processes that form and/or exhume small UHP terranes are fundamentally different from the processes that affect large UHP terranes. These differences may be the result of variations in the buoyancy forces of different proportions of subducted felsic crust, mafic crust, and mantle lithosphere. Initial collision occurs via the subduction of smaller portions of continental material, such as microcontinents or ribbon continents. Because the proportion of continental crust is small, the processes involved in early UHP terrane formation are dominated by the oceanic slab; subduction rates are fast because average plate densities are high, and, as a result, subduction angles are steep. Because these smaller, thinner portions of crust are weak, they deform easily and mix readily with the mantle. As the collision matures, thicker and larger portions of continental material-such as a continental margin-are subducted, and the subduction regime changes from one that was ocean dominated to one that is continent dominated. The increased buoyancy of the larger volume of continental crust resists the pull of the leading oceanic lithosphere; subduction shallows and plate rates slow. Because the downgoing continent is thick, it is strong, remains cohesive and has limited interaction with the mantle. Although the subduction regime during early orogenesis is distinct from that during late orogenesis, the degree of mountain building and crustal thickening may be similar in both stages as small volumes and fast flow rates of buoyant material give way to large volumes and slow flow rates.
Tectonic implications of post-30 Ma Pacific and North American relative plate motions
Bohannon, R.G.; Parsons, T.
1995-01-01
The Pacific plate moved northwest relative to North America since 42 Ma. The rapid half rate of Pacific-Farallon spreading allowed the ridge to approach the continent at about 29 Ma. Extinct spreading ridges that occur offshore along 65% of the margin document that fragments of the subducted Farallon slab became captured by the Pacific plate and assumed its motion proper to the actual subduction of the spreading ridge. This plate-capture process can be used to explain much of the post-29 Ma Cordilleran North America extension, strike slip, and the inland jump of oceanic spreading in the Gulf of California. Much of the post-29 Ma continental tectonism is the result of the strong traction imposed on the deep part of the continental crust by the gently inclined slab of subducted oceanic lithosphere as it moved to the northwest relative to the overlying continent. -from Authors
Mantle and crustal contributions to continental flood volcanism
Arndt, N.T.; Czamanske, G.K.; Wooden, J.L.; Fedorenko, V.A.
1993-01-01
Arndt, N.T., Czamanske, G.K., Wooden, J.L. and Fedorenko, V.A., 1993. Mantle and crustal contributions to continental flood volcanism. In: M.J.R. Wortel, U. Hansen and R. Sabadini (Editors), Relationships between Mantle Processes and Geological Processes at or near the Earth's Surface. Tectonophysics, 223: 39-52. Most continental flood basalts are enriched in incompatible elements and have high initial 87Sr/86Sr ratios and low ??{lunate}Nd values. Many are depleted in Nb and Ta. The commonly-held view that these characteristics are inherited directly from a source in metasomatized lithospheric mantle is inconsistent with the following arguments: (1) thermomechanical modelling demonstrates that flood basalt magmas come mainly from an asthenospheric or plume source, with minimal direct melting of the continental lithospheric mantle. The low water contents of most flood basalts argue against proposals that hydrous lithosphere was the source. (2) Lithospheric mantle normally has low concentrations of incompatible elements, and chondrite-normalized Nb and Ta contents similar to those of other incompatible elements. Such material cannot be the unmodified source of Nb-Ta-depleted basalts such as those from the Karoo, Ferrar, or Columbia River provinces. We suggest there are two main controls on the compositions of continental flood basalts. The first is lithospheric thickness, which strongly influences the depth and degree of mantle melting of a plume or asthenospheric source, and thus has an important influence on the composition of primary magmas. All liquids formed by partial melting of peridotite at sub-lithosphere depths are highly magnesian (20-25 wt.% MgO) but have variable trace-element contents. Where the lithosphere is thick, the source melts at high pressure, garnet is present, the degree of melting is low, and trace-element concentrations are high. This type of magma evolves to produce the high-Ti type of continental flood basalt. Where the lithosphere is thinner, the source ascends to shallower levels, the degree of melting is greater, garnet may be exhausted, and the magmas have lower trace-element contents; these magmas yield low-Ti basalts. The second control is processing of magmas in chambers that were periodically replenished and tapped, while continuously fractionating and assimilating their wall rocks. The uniform compositions of basalts that evolve in such chambers are far removed from those of their picritic parental magmas. Major elements in continental flood basalts reflect control by olivine, pyroxene, and plagioclase crystallization, and this assemblage places the magma chambers at crustal depth. We believe that trace-element and isotopic compositions are also buffered, and that the erupted basalts represent steady-state liquids tapped from these magma chambers. These processes impose a crustal signature on the magmas, as expressed most strongly in the concentrations of incompatible elements (e.g., Nb-Ta anomalies) and their isotopic characteristics. ?? 1993.
3D dynamics of crustal deformation driven by oblique subduction: Northern and Central Andes
NASA Astrophysics Data System (ADS)
Schütt, Jorina M.; Whipp, David M., Jr.
2017-04-01
The geometry and relative motion of colliding plates will affect how and where they deform. In oblique subduction systems, factors such as the dip angle of the subducting plate and the convergence obliquity, as well as the presence of weak zones in the overriding plate, all influence how oblique convergence is partitioned onto various fault systems in the overriding plate. The partitioning of strain into margin-normal slip on the plate-bounding fault and horizontal shearing on a strike-slip system parallel to the margin is mainly controlled by the margin-parallel shear forces acting on the plate interface and the strength of the continental crust. While these plate interface forces are influenced by the dip angle of the subducting plate (i.e., the length of plate interface in the frictional domain) and the obliquity angle between the normal to the plate margin and the plate convergence vector, the strength of the continental crust in the upper plate is strongly affected by the presence or absence of weak zones such as regions of arc volcanism, pre-existing fault systems, or boundaries of stronger crustal blocks. In order to investigate which of these factors are most important in controlling how the overriding continental plate deforms, we compare results of lithospheric-scale 3D numerical geodynamic experiments from two regions in the north-central Andes: the Northern Volcanic Zone (NVZ; 5°N - 3°S) and adjacent Peruvian Flat Slab Segment (PFSS; 3°S -14°S). The NVZ is characterized by a 35° subduction dip angle with an obliquity angle of about 40°, extensive volcanism and significant strain partitioning in the continental crust. In contrast, the PFSS is characterized by flat subduction (the slab flattens beneath the continent at around 100 km depth for several hundred kilometers), an obliquity angle of about 20°, no volcanism and minimal strain partitioning. The plate geometry and convergence obliquity for these regions are incorporated in 3D (1600 x 1600 x 160 km) numerical experiments of oceanic subduction beneath a continent, focusing on the conditions under which strain partitioning occurs in the continental plate. In addition to different slab geometries and obliquity angles, we consider the effect of a continental crustal of uniform strength (friction angle Φ=15^°) versus one including a weak zone in the continental crust (Φ=4^°) that runs parallel to the margin. Results of our experiments show that the obliquity angle has the largest effect on initiating strain partitioning, as expected based on strain partitioning theory, but strain partitioning is clearly enhanced by the presence of a continental weakness. Margin-parallel mass transport velocities in the continental sliver are similar to the values observed in the NVZ (about 1 cm/year) in models with a continental weakness and twice as high as those without. In addition, a shallower subduction angle results in formation of a wider continental sliver. Based upon our results, the lack of strain partitioning observed in the PFSS results from both a low convergence obliquity and lack of a weak zone in the continent, even though the shallow subduction should make strain partitioning more favorable.
Bulldozing of Basal Continental Mantle Lithosphere During Flat-Slab Subduction
NASA Astrophysics Data System (ADS)
Axen, G. J.; van Wijk, J.; Currie, C. A.
2017-12-01
Flat-slab subduction occurs along 10% of subduction margins, forming magmatic gaps and causing inland migration of upper-plate deformation. We suggest that basal continental mantle lithosphere (CML) can be bulldozed ahead of the flat portion of horizontally-subducted oceanic lithosphere, forming a growing and advancing keel of thickened CML. This process fills the asthenospheric mantle wedge with CML, precluding melting. The bulldozed CML keel may transmit tectonic stresses ahead of the flat slab itself, causing upper-plate deformation ahead of the slab hinge. We designed 2-D numerical models after the North American Laramide orogeny, with subduction of a thick, buoyant oceanic plateau (conjugate Shatsky Rise) and with the continent advancing trenchward over the initial slab hinge. This results in slab-flattening, and removal of CML material. In our models, the thickness of the CML layer removed by this process depends on overriding plate rheology and is up to 25 km. The removed material is bulldozed ahead of the hinge and may fill up the asthenospheric wedge. Low-density (depleted) CML favors formation of bulldozed keels, which increase in width as CML strength decreases. Regular-density and/or stronger CML forms smaller bulldozed keels that are more likely to sink with the slab as eclogitization and densification proceed. When the flat slab rolls back, it leaves a step in the CML at the farthest extent of the slab. Relics of this step may remain below North America or may have dripped off. We interpret an upper-mantle fast-velocity anomaly below SE New Mexico and W Texas as a drip/keel, and the step in lithosphere thickness in southwestern Colorado as a fossil step, caused by the removal of the CML layer. Our model predicts that the Laramide bulldozed CML keel may have aided in stress transmission that caused basement uplifts as far as NE Wyoming and subsurface folds even farther N and E. Modern examples may exist in South American flat slab segments.
Magma-assisted rifting in Ethiopia.
Kendall, J-M; Stuart, G W; Ebinger, C J; Bastow, I D; Keir, D
2005-01-13
The rifting of continents and evolution of ocean basins is a fundamental component of plate tectonics, yet the process of continental break-up remains controversial. Plate driving forces have been estimated to be as much as an order of magnitude smaller than those required to rupture thick continental lithosphere. However, Buck has proposed that lithospheric heating by mantle upwelling and related magma production could promote lithospheric rupture at much lower stresses. Such models of mechanical versus magma-assisted extension can be tested, because they predict different temporal and spatial patterns of crustal and upper-mantle structure. Changes in plate deformation produce strain-enhanced crystal alignment and increased melt production within the upper mantle, both of which can cause seismic anisotropy. The Northern Ethiopian Rift is an ideal place to test break-up models because it formed in cratonic lithosphere with minor far-field plate stresses. Here we present evidence of seismic anisotropy in the upper mantle of this rift zone using observations of shear-wave splitting. Our observations, together with recent geological data, indicate a strong component of melt-induced anisotropy with only minor crustal stretching, supporting the magma-assisted rifting model in this area of initially cold, thick continental lithosphere.
NASA Astrophysics Data System (ADS)
Çimen, Okay; Göncüoğlu, M. Cemal; Simonetti, Antonio; Sayit, Kaan
2018-05-01
The Central Pontides in northern Anatolia is located on the accretionary complex formed by the closure of Neotethyan Intra-Pontide Ocean between the southern Eurasian margin (Istanbul-Zonguldak Terrane) and the Cimmerian Sakarya Composite Terrane. Among other components of the oceanic lithosphere, it comprises not yet well-dated felsic igneous rocks formed in arc-basin as well as continent margin settings. In-situ U-Pb age results for zircons from the arc-basin system (öangaldağ Metamorphic Complex) and the continental arc (Devrekani Metadiorite and Granitoid) yield ages of 176 ± 6 Ma, 163 ± 9 Ma and 165 ± 3 Ma, respectively. Corresponding in-situ average (initial) 176Hf/177Hf initial ratios are 0.28261 ± 0.00003, 0.28267 ± 0.00002 and 0.28290 ± 0.00004 for these units and indicative of a subduction-modified mantle source. The new U-Pb ages and Hf isotope data from these oceanic and continental arc units together with regional geological constraints support the presence of a multiple subduction system within the Intra-Pontide Ocean during the Middle Jurassic.
NASA Astrophysics Data System (ADS)
Pitcavage, E.; Furman, T.; Nelson, W. R.
2017-12-01
The East African Rift System (EARS) is earth's largest continental divergent boundary and an unparalleled natural laboratory for understanding magmatism related to successful continental rifting. Classic views of continental rifting suggest that faulting and extension are facilitated by ascending magmas that weaken the lithosphere thermally and structurally within basin-bounding accommodation zones. In the EARS Western Rift (WR), many volcanic fields are not aligned along rift-bounding faults, and magma compositions lack evidence for asthenospheric inputs expected along lithosphere-penetrating fault systems. We note that compositional input from the Cenozoic Afar mantle plume is not recognized convincingly in WR mafic alkaline lavas1. Rather, magma compositions demonstrate significant input from anciently metasomatized sub-continental lithospheric mantle (SCLM). Destabilization and foundering of metasomatized SCLM has an increasingly recognized role in continental magmatism worldwide, producing volatile-rich, alkaline volcanics when drips of foundered SCLM devolatilize and melt on descent. This magmatism can lead to faulting: the lithospheric thinning that results from this process may play a role in physical aspects of rifting, contrasting with faulting facilitated by asthenospheric melts. Geochemical and geophysical evidence indicates that drip magmatism has occurred in several EARS provinces, including Turkana, Chyulu Hills, and in Afar2 where it is geographically coincident with successful rifting. We present bulk geochemical data that suggest drip melting of metasomatized SCLM is occurring in several WR volcanic fields. We focus on Bufumbira (Uganda), where mafic lavas are derived from garnet+phlogopite+amphibole+zircon-bearing pyroxenite, indicating a deep metasomatized SCLM source. Isotopic and trace element data suggest that extent of melting increased with depth of melting, a signature of lithospheric drip. We propose that drip magmatism is an important driver of volcanism in the early history of these igneous provinces and may be fundamentally related to the onset of successful rifting. 1. Graham, D. et al. Goldschmidt Conference Abstracts (2011). 2. Furman, T., et al. Geochim. Cosmochim. Acta 185, 418-434 (2016).
Generation of Continental Rifts, Basins and Swells by Lithosphere Instabilities
NASA Astrophysics Data System (ADS)
Milelli, L.; Fourel, L.; Jaupart, C. P.
2012-12-01
Domal uplifts, volcanism, basin formation and rifting have often struck the same continent in different areas at the same time. Their characteristics and orientations are difficult to reconcile with mantle convection or tectonic forces and suggest a driving mechanism that is intrinsic to the continent. The rifts seem to develop preferentially at high angles to the edge of the continent whereas swells and basins seem confined to the interior. Another intriguing geometrical feature is that the rifts often branch out in complicated patterns at their landward end. In Western Africa, for example, magmatic activity currently occurs in a number of uplifted areas including the peculiar Cameroon Volcanic Line that stretches away from the continental margin over about 1000 km. Magmatic and volcanic activity has been sustained along this line for 70 My with no age progression. The mantle upwelling that feeds the volcanoes is not affected by absolute plate motions and hence is attached to the continent. The Cameroon Volcanic Line extends to the Biu swell to the North and the Jos plateau to the West defining a striking Y-shaped pattern. This structure segues into several volcanic domes including the Air, the Hoggar, the Darfur, the Tibesti and the Haruj domes towards the Mediterranean coast. Another example is provided by North America, where the late Proterozoic-early Ordovician saw the formation of four major basins, the Michigan, Illinois, Williston and Hudson Bay, as well as of major rifts in southern Oklahoma and the Mississipi Valley within a short time interval. At the same time, a series of uplifts developed, such as the Ozark and Nashville domes. Motivated by these observations, we have sought an explanation in the continental lithosphere itself. We describe a new type of convective instability at the base of the lithosphere that leads to a remarkable spatial pattern at the scale of an entire continent. We carried out fluid mechanics laboratory experiments on buoyant blocks of finite size that became unstable due to cooling from above and describe the peculiar horizontal planform that developed. Dynamical behaviour depends on three dimensionless numbers, a Rayleigh number for the unstable block, a buoyancy number that scales the intrinsic density contrast to the thermal one and the aspect ratio of the block. Within the block, instability develops in two different ways in an outer annulus and in an inner region. In the outer annulus, upwellings and downwellings take the form of radial rolls spaced regularly. In the interior region, the planform adopts the more familiar form of polygonal cells. Translated to geological conditions, such instabilities should manifest themselves as linear rifts striking at a right angle to the continent-ocean boundary and an array of domal uplifts, volcanic swells and basins in the continental interior. The laboratory data lead to simple scaling laws for the dimensions and spacings of the convective structures. For the sub-continental lithospheric mantle, these dimensions and distances take values in the 500-1000 km range, close to geological examples. The large intrinsic buoyancy of Archean lithospheric roots prevents this type of instability, which explains why the widespread volcanic activity that currently affects Western Africa is confined to post-Archean domains.
The contribution of the Precambrian continental lithosphere to global H2 production.
Lollar, Barbara Sherwood; Onstott, T C; Lacrampe-Couloume, G; Ballentine, C J
2014-12-18
Microbial ecosystems can be sustained by hydrogen gas (H2)-producing water-rock interactions in the Earth's subsurface and at deep ocean vents. Current estimates of global H2 production from the marine lithosphere by water-rock reactions (hydration) are in the range of 10(11) moles per year. Recent explorations of saline fracture waters in the Precambrian continental subsurface have identified environments as rich in H2 as hydrothermal vents and seafloor-spreading centres and have suggested a link between dissolved H2 and the radiolytic dissociation of water. However, extrapolation of a regional H2 flux based on the deep gold mines of the Witwatersrand basin in South Africa yields a contribution of the Precambrian lithosphere to global H2 production that was thought to be negligible (0.009 × 10(11) moles per year). Here we present a global compilation of published and new H2 concentration data obtained from Precambrian rocks and find that the H2 production potential of the Precambrian continental lithosphere has been underestimated. We suggest that this can be explained by a lack of consideration of additional H2-producing reactions, such as serpentinization, and the absence of appropriate scaling of H2 measurements from these environments to account for the fact that Precambrian crust represents over 70 per cent of global continental crust surface area. If H2 production via both radiolysis and hydration reactions is taken into account, our estimate of H2 production rates from the Precambrian continental lithosphere of 0.36-2.27 × 10(11) moles per year is comparable to estimates from marine systems.
NASA Astrophysics Data System (ADS)
Morena Salerno, V.; Capitanio, Fabio A.
2017-04-01
The Earth's lithosphere is characters by various types of heterogeneities, at different scales and located at variable depth. They can be represented at crustal level by remnants of earlier tectonics evolution, such as previous orogenetic structures, remains of passive margins and magmatic bodies intrusion, or at deeper level by mantle anisotropies. These heterogeneities can severely affect the stress and strain localization in subsequent continental lithospheric extension and rift basins evolution, hence contributing to the formation of diverse and complex rift basin types and architectures. In order to explain the difference in rift basin and passive margin types, their subsidence patterns and melt production, previous studies have exanimated the role of initial heterogeneities, rheological layering, geothermal gradients, and extension rates during a single rifting event. However, this approach does not consider the previous strain history of many basins that are characterized by multiple rifting events. In this study we use numerical models of a pristine lithosphere undergoing two rifting events separated by cooling, to show the effect of early events on later evolution. The strain histories are controlled by the variation of velocity of boundary displacement during two rifting events. We use both fast and slow first rifting events, followed by a cooling period, producing diverse mechanical heterogeneities at Moho level that represent inherited initial conditions for the second rifting event. These inherited heterogeneities range from several small perturbations distributed along the numerical domain at the end of the slowest first rifting event, to a single large perturbation at the end of first fastest rifting event. In the second rifting event, the inherited heterogeneities are amplified at different degree and time, depending on the velocity of boundary displacement used. To highlight the role of previous strain history, we parametrize the inherited heterogeneities by calculating localization indexes for all the models at the onset of the second rifting event. This calculation embeds the inherited rheology from the previous rift event. We show that the lithosphere progressively localises along the inherited heterogeneities leading to the formation of various rift basin types, ranging from narrow to wide to hyperextended and with variation degrees of symmetry. Our result show that rift basin types and structural styles are strongly affected by inherited heterogeneities generated from previous rifting events, showing cases in which the previous strain history cannot be neglected. The subsidence patterns and melt production result to be very sensitive to the strain history, the type of inherited heterogeneities and their interplay with variation of boundary displacement velocity. Our numerical simulations replicate the first-order features of rift basins and provide a general framework to assess the inherited heterogeneities' role in the interpretation of extensional basins and their evolution.
Seismic constraints of thinning and fragmenting continental lithosphere beneath the Korean Peninsula
NASA Astrophysics Data System (ADS)
Kim, S.; Tauzin, B.; Tkalcic, H.; Rhie, J.
2017-12-01
Modification of the continental lithosphere is still an enigmatic process. The Korean Peninsula (KP) is one of ideal place to depict the process by interactions with subducting oceanic slabs. We detect a significant thickness change (>50 km) of the continental lithosphere beneath the KP that is confirmed by two independent approaches: (1) 3D imaging using ambient noise analysis and (2) receiver function CCP stacking. A series of transdimensional and hierarchical Bayesian joint inversions is performed to obtain a high-resolution 3D model from different types of surface wave dispersion data. For the stacking of receiver function waveforms, the coda waveforms of crustal multi-modes (PpPs and PpSs) are combined together to better image the lithosphere-asthenosphere boundary. We estimate the relatively deeper rooted lithosphere (>100 km) in the southwestern part of the KP compared to shallower surrounding regions. The lithospheric structure is underlain by lower velocity anomalies (Vs<4.1 km/s), which extends from back-arc regions near subducting slabs horizontally and connects to low velocity anomalies in the deeper upper mantle vertically. The imaged features clearly show that the effect of the oceanic slab subduction is a key factor controlling the modification process. We further examine the implication for the occurrence of intraplate volcanoes and the relationship to the mantle transition zone heterogeneities due to stagnant slabs in the northeast Asia.
NASA Astrophysics Data System (ADS)
Youssof, Mohammad; Yuan, Xiaohui; Tilmann, Frederik; Heit, Benjamin; Weber, Michael; Jokat, Wilfried; Geissler, Wolfram; Laske, Gabi; Eken, Tuna; Lushetile, Bufelo
2015-04-01
We present a 3D high-resolution seismic model of the southwestern Africa region from teleseismic tomographic inversion of the P- and S- wave data recorded by the amphibious WALPASS network. We used 40 temporary stations in southwestern Africa with records for a period of 2 years (the OBS operated for 1 year), between November 2010 and November 2012. The array covers a surface area of approximately 600 by 1200 km and is located at the intersection of the Walvis Ridge, the continental margin of northern Namibia, and extends into the Congo craton. Major questions that need to be understood are related to the impact of asthenosphere-lithosphere interaction, (plume-related features), on the continental areas and the evolution of the continent-ocean transition that followed the break-up of Gondwana. This process is supposed to leave its imprint as distinct seismic signature in the upper mantle. Utilizing 3D sensitivity kernels, we invert traveltime residuals to image velocity perturbations in the upper mantle down to 1000 km depth. To test the robustness of our tomographic image we employed various resolution tests which allow us to evaluate the extent of smearing effects and help defining the optimum inversion parameters (i.e., damping and smoothness) used during the regularization of inversion process. Resolution assessment procedure includes also a detailed investigation of the effect of the crustal corrections on the final images, which strongly influenced the resolution for the mantle structures. We present detailed tomographic images of the oceanic and continental lithosphere beneath the study area. The fast lithospheric keel of the Congo Craton reaches a depth of ~250 km. Relatively low velocity perturbations have been imaged within the orogenic Damara Belt down to a depth of ~150 km, probably related to surficial suture zones and the presence of fertile material. A shallower depth extent of the lithospheric plate of ~100 km was observed beneath the ocean, consistent with plate-cooling models. In addition to tomographic images, the seismic anisotropy measurements within the upper mantle inferred from teleseismic shear waves indicate a predominant NE-SW orientation for most of the land stations. Current results indicate no evidence for a consistent signature of fossil plume.
Effect of the lithospheric thermal state on the Moho interface: A case study in South America
NASA Astrophysics Data System (ADS)
Bagherbandi, Mohammad; Bai, Yongliang; Sjöberg, Lars E.; Tenzer, Robert; Abrehdary, Majid; Miranda, Silvia; Alcacer Sanchez, Juan M.
2017-07-01
Gravimetric methods applied for Moho recovery in areas with sparse and irregular distribution of seismic data often assume only a constant crustal density. Results of latest studies, however, indicate that corrections for crustal density heterogeneities could improve the gravimetric result, especially in regions with a complex geologic/tectonic structure. Moreover, the isostatic mass balance reflects also the density structure within the lithosphere. The gravimetric methods should therefore incorporate an additional correction for the lithospheric mantle as well as deeper mantle density heterogeneities. Following this principle, we solve the Vening Meinesz-Moritz (VMM) inverse problem of isostasy constrained by seismic data to determine the Moho depth of the South American tectonic plate including surrounding oceans, while taking into consideration the crustal and mantle density heterogeneities. Our numerical result confirms that contribution of sediments significantly modifies the estimation of the Moho geometry especially along the continental margins with large sediment deposits. To account for the mantle density heterogeneities we develop and apply a method in order to correct the Moho geometry for the contribution of the lithospheric thermal state (i.e., the lithospheric thermal-pressure correction). In addition, the misfit between the isostatic and seismic Moho models, attributed mainly to deep mantle density heterogeneities and other geophysical phenomena, is corrected for by applying the non-isostatic correction. The results reveal that the application of the lithospheric thermal-pressure correction improves the RMS fit of the VMM gravimetric Moho solution to the CRUST1.0 (improves ∼ 1.9 km) and GEMMA (∼1.1 km) models and the point-wise seismic data (∼0.7 km) in South America.
NASA Astrophysics Data System (ADS)
Pearson, David M.; MacLeod, Douglas R.; Ducea, Mihai N.; Gehrels, George E.; Jonathan Patchett, P.
2017-10-01
Though continental magmatic arcs are factories for new continental crust, a significant proportion of continental arc magmas are recycled from supracrustal material. To evaluate the relative contributions of retroarc underthrusting and trench side partial sediment subduction for introducing supracrustal rocks to the middle and lower crust of continental magmatic arcs, we present results from the deeply exposed country rocks of the Coast Mountains batholith of western British Columbia. Prior work demonstrates that these rocks underwent widespread partial melting that contributed to the Coast Mountains batholith. We utilize U-Pb zircon geochronology, Sm-Nd thermochronology, and field-based studies to document the protoliths and early burial history of amphibolite and granulite-facies metasedimentary rocks in the Central Gneiss Complex. U-Pb detrital zircon data from the structurally highest sample localities yielded 190 Ma unimodal age peaks and suggest that retroarc rocks of the Stikine terrane constitute a substantial portion of the Central Gneiss Complex. These supracrustal rocks underwent thrust-related burial and metamorphism at >25 km depths prior to 80 Ma. These rocks may also be underlain at the deepest exposed structural levels by Upper Cretaceous metasedimentary rocks, which may have been emplaced as a result of trench side underplating or intraarc burial. These results further our understanding of the mechanisms of material transport within the continental lithosphere along Cordilleran subduction margins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasyanos, M E
The behavior of surface waves at long periods is indicative of subcrustal velocity structure. Using recently published dispersion models, we invert surface wave group velocities for lithospheric structure, including lithospheric thickness, over much of the Eastern Hemisphere, encompassing Eurasia, Africa, and the Indian Ocean. Thicker lithosphere under Precambrian shields and platforms are clearly observed, not only under the large cratons (West Africa, Congo, Baltic, Russia, Siberia, India), but also under smaller blocks like the Tarim Basin and Yangtze craton. In contrast, it is found that remobilized Precambrian structures like the Saharan Shield and Sino-Korean Paraplatform do not have well-established lithosphericmore » keels. The thinnest lithospheric thickness is found under oceanic and continental rifts, as well as along convergence zones. We compare our results to thermal models of continental lithosphere, lithospheric cooling models of oceanic lithosphere, lithosphere-asthenosphere boundary (LAB) estimates from S-wave receiver functions, and velocity variations of global tomography models. In addition to comparing results for the broad region, we examine in detail the regions of Central Africa, Siberia, and Tibet. While there are clear differences in the various estimates, overall the results are generally consistent. Inconsistencies between the estimates may be due to a variety of reasons including lateral and depth resolution differences and the comparison of what may be different lithospheric features.« less
NASA Astrophysics Data System (ADS)
Roda, M.; Marotta, A. M.; Conte, K.; Spalla, M. I.
2015-12-01
The transition from continental rifting to oceanization has been investigated by mean of a 2D thermo-mechanical numerical model in which the formation of oceanic crust by mantle serpentinization, due to the hydration of the uprising peridotite, as been implemented. Model predictions have been compared with natural data related to the Permian-Triassic thinning affecting the continental lithosphere of the Alpine domain, in order to identify which portions of the present Alpine-Apennine system, preserving the imprints of Permian-Triassic high temperature (HT) metamorphism, is compatible, in terms of lithostratigraphy and tectono-metamorphic evolution, with a lithospheric extension preceding the opening of the Ligure-Piemontese oceanic basin. At this purpose age, petrological and structural data from the Alpine and Apennine ophiolite complexes are compared with model predictions from the oceanization stage. Our comparative analysis supports the thesis that the lithospheric extension preceding the opening of the Alpine Tethys did not start on a stable continental lithosphere, but developed by recycling part of the old Variscan collisional suture. The HT Permian-Triassic metamorphic re-equilibration overprints an inherited tectonic and metamorphic setting consequent to the Variscan subduction and collision, making the Alps a key case history to explore mechanisms responsible for the re-activation of orogenic scars.
NASA Astrophysics Data System (ADS)
Tugend, J.; Gillard, M.; Manatschal, G.; Nirrengarten, M.; Harkin, C. J.; Epin, M. E.; Sauter, D.; Autin, J.; Kusznir, N. J.; McDermott, K.
2017-12-01
Rifted margins are often classified based on their magmatic budget only. Magma-rich margins are commonly considered to have excess decompression melting at lithospheric breakup compared with steady state seafloor spreading while magma-poor margins have suppressed melting. New observations derived from high quality geophysical data sets and drill-hole data have revealed the diversity of rifted margin architecture and variable distribution of magmatism. Recent studies suggest, however, that rifted margins have more complex and polyphase tectono-magmatic evolutions than previously assumed and cannot be characterized based on the observed volume of magma alone. We compare the magmatic budget related to lithospheric breakup along two high-resolution long-offset deep reflection seismic profiles across the SE-Indian (magma-poor) and Uruguayan (magma-rich) rifted margins. Resolving the volume of magmatic additions is difficult. Interpretations are non-unique and several of them appear plausible for each case involving variable magmatic volumes and mechanisms to achieve lithospheric breakup. A supposedly 'magma-poor' rifted margin (SE-India) may show a 'magma-rich' lithospheric breakup whereas a 'magma-rich' rifted margin (Uruguay) does not necessarily show excess magmatism at lithospheric breakup compared with steady-state seafloor spreading. This questions the paradigm that rifted margins can be subdivided in either magma-poor or magma-rich margins. The Uruguayan and other magma-rich rifted margins appear characterized by an early onset of decompression melting relative to crustal breakup. For the converse, where the onset of decompression melting is late compared with the timing of crustal breakup, mantle exhumation can occur (e.g. SE-India). Our work highlights the difficulty in determining a magmatic budget at rifted margins based on seismic reflection data alone, showing the limitations of margin classification based solely on magmatic volumes. The timing of decompression melting onset and melting rates (magmatic processes) relative to crustal thinning (tectonic processes) appear equally, if not more important, than the magmatic budget for unravelling the evolution of rifted margins.
NASA Astrophysics Data System (ADS)
Lagabrielle, Yves; Guivel, Christèle; Maury, René C.; Bourgois, Jacques; Fourcade, Serge; Martin, Hervé
2000-11-01
High thermal gradients are expected to be found at sites of subduction of very young oceanic lithosphere and more particularly at ridge-trench-trench (RTT) triple junctions, where active oceanic spreading ridges enter a subduction zone. Active tectonics, associated with the emplacement of two main types of volcanic products, (1) MORB-type magmas, and (2) calc-alkaline acidic magmas in the forearc, also characterize these plate junction domains. In this context, MORB-type magmas are generally thought to derive from the buried active spreading center subducted at shallow depths, whereas the origin of calc-alkaline acidic magmas is more problematic. One of the best constrained examples of ridge-trench interaction is the Chile Triple Junction (CTJ) located southwest of the South American plate at 46°12'S, where the active Chile spreading center enters the subduction zone. In this area, there is a clear correlation between the emplacement of magmatic products and the migration of the triple junction along the active margin. The CTJ lava population is bimodal, with mafic to intermediate lavas (48-56% SiO 2) and acidic lavas ranging from dacites to rhyolites (66-73% SiO 2). Previous models have shown that partial melting of oceanic crust plus 10-20% of sediments, leaving an amphibole- and plagioclase-rich residue, is the only process that may account for the genesis of acidic magmas. Due to special plate geometry in the CTJ area, a given section of the margin may be successively affected by the passage of several ridge segments. We emphasize that repeated passages will lead to the development of very high thermal gradients allowing melting of rocks of oceanic origin at temperatures of 800-900°C and low pressures, corresponding to depths of 10-20 km depth only. In addition, the structure of the CTJ forearc domain is dominated by horizontal displacements and tilting of crustal blocks along a network of strike-slip faults. The occurrence of such a deformed domain implies that an important tectonic coupling may exist between the upper and the lower plates leading to the partitioning of the continental lithosphere and to the tectonic underplating of very young oceanic lithosphere below the continental wedge. We assume that in the case of the CTJ, the uncommon situation of three successive ridge segments entering the trench at 2-3 Ma intervals only resulted in a strong and finally long-lived thermal anomaly. This anomaly caused remelting of underplated portions of very young, still hot oceanic lithosphere. Only particular geometrical RTT configurations are able to produce such features. These include linear continental margin, short ridge segments slightly oblique to the trench and short transform faults. Finally, the CTJ example shows that a possible scenario for the origin of calc-alkaline acidic rocks in the near-trench region involves coeval tectonic coupling and repeated passage of thermal anomalies due to successive subduction of short ridge segments. Therefore, the local abundance of calc-alkaline acidic rocks, associated with MORB-type lavas in ancient series, could be the tracer of plate tectonic configurations involving the subduction of short ridge segments in a relatively short duration.
First-order similarities and differences between Alps, Dinarides, Hellenides and Anatolides-Taurides
NASA Astrophysics Data System (ADS)
Schmid, Stefan M.; Bernoulli, Daniel; Fügenschuh, Bernhard; Matenco, Liviu; Schefer, Senecio; Oberhänsli, Roland; van Hinsbergen, Douwe; Ustaszewski, Kamil
2013-04-01
We correlated tectonic units across several circum-Mediterranean orogen strands between the Alps, Carpathians, the Balkan Peninsula, the Aegean and Western Turkey. Our compilation allows discussing fundamental along-strike similarities and differences. One first-order difference is that Dinarides-Hellenides, Anatolides and Taurides represent orogens of opposite subduction polarity and age with respect to the Alps and Carpathians. The internal Dinarides are linked to the Alps and Western Carpathians along the Mid-Hungarian fault zone, a suspected former trench-trench transform fault; its lithospheric root was obliterated during Neogene back-arc extension that formed the Pannonian Basin. Dinarides and Hellenides alike consist of far-travelled nappes detached from the Adriatic continental margin along décollement horizons in Paleozoic or younger stratigraphic levels during Cretaceous and Cenozoic orogeny. The more internal nappes (i.e. Jadar-Kopaonik, Drina-Ivanjica, East Bosnian-Durmitor and their Pelagonian and Almopias equivalents in the Hellenides) are composite nappes whereby the allochthonous Adriatic margin sequences passively carry ophiolites (Western Vardar Ophiolitic Unit) obducted during the latest Jurassic-earliest Cretaceous. These obducted ophiolitic units, as well as ophiolites obducted onto Europe-derived units presently found in the East Carpathians (Eastern Vardar Ophiolitic Unit obducted onto the Dacia continental block), root in one single Neotethys ocean that started closing with the initiation of obduction in the latest Jurassic; final suturing occurred during Cretaceous times, terminating with the formation of the Sava-Izmir-Ankara suture in the latest Cretaceous. Ophiolitic "massifs" found outside the Sava-Izmir-Ankara suture zone do not mark oceanic sutures, nor do the Drina-Ivanjica and Pelagonian "massifs" represent independent continental fragments (terranes). The same logic applies to Western Turkey with the difference that the ophiolites were obducted in Late Cretaceous rather than Late Jurassic times. Also, the Sakarya zone and Cretaceous ophiolites of Turkey cannot be traced far into the Aegean region. The widespread existence of obducted ophiolites in the East Carpathians, Dinarides-Hellenides and Western Turkey thus represents a first-order difference to the Alps and Western Carpathians, where oceanic units derived from the Alpine Tethys occur invariably within accretionary prisms. Important lateral changes are also observed when comparing the present-day lithospheric configuration of the Dinarides with that of the Hellenides. In the Dinarides the Adriatic lithospheric slab can only be traced down to a depth of c. 200 km. In the Hellenides an over 2100 km long slab is still preserved below the Aegean part of the Hellenides, indicating long-lasting subduction of a coherent lithospheric slab that initiated during the onset of closure of Neotethys in Late Jurassic times. Some 1500 km of this total slab length became subducted after the closure of Neotethys and formation of the Sava-Izmir-Ankara suture zone. Out of this total some 800 km result from plate convergence while some 700 km are a consequence of massive back-arc extension and rollback.
NASA Astrophysics Data System (ADS)
Pusok, Adina E.; Kaus, Boris; Popov, Anton
2017-04-01
It is commonly accepted that slab detachment results from the development of extensional stresses within the subducting slab. Subduction slowdown due to arrival of buoyant continental material at the trench is considered to cause such stress build up in the slab. Following slab detachment, slab pull partially or completely loses its strength and hot asthenosphere may flow through the slab window, which can have major consequences for continental collision. The dynamics of slab detachment has been extensively studied in 2D (i.e. analytical and numerical), but 3D models of slab detachment during continental collision remain largely unexplored. Some of the previous 3D models have investigated the role of an asymmetric margin on the propagation of slab detachment (van Hunen and Allen, 2011), the impact of slab detachment on the curvature of orogenic belts (Capitanio and Replumaz, 2013), the role of the collision rate on slab detachment depth (Li et al., 2013) or the effect of along-trench variations on slab detachment (Duretz et al., 2014). However, rheology of mantle and lithosphere is known to have a major influence on the dynamics of subduction. Here, we explore a range of different rheological approximations to understand their sensitivity on the possible scenarios. We employ the code LaMEM (Kaus et al., 2016) to perform 3D simulations of subduction/continental collision in an integrated lithospheric and upper-mantle scale model. The models exhibit a wide range of behaviours depending on the rheological law employed: from linear, to temperature-dependent visco-elasto-plastic rheology that takes into account both diffusion and dislocation creep. For example, we find that slab dynamics varies drastically between end member models: in viscous approximations, slab detachment is slow, dominated by viscous thinning, while for a non-linear visco-elasto-plastic rheology, slab detachment is relatively fast, dominated by plastic breaking and inducing strong mantle flow in the slab window. Moreover, in models of viscous approximation, slab break-off starts in the slab interior due tot the nature of slab necking, while in models of non-linear visco-elasto-plastic rheology, slab tear will first occur at the edges of the continental collision.
NASA Astrophysics Data System (ADS)
Pitcavage, E.; Furman, T.; Nelson, W. R.
2016-12-01
The East African Rift System (EARS) is the earth's largest continental divergent boundary and is an unparalleled natural laboratory for understanding magmatic processes related to continental rifting. A fundamental unresolved question in EARS magmatism is the degree to which volcanism and rifting are influenced by Cenozoic plume-related melting rather than older, tectonically-driven metasomatism. In the latter scenario, metasomatism by carbonatite or silicate magmas and/or fluids that accompanies tectonic events such as the Proterozoic Pan-African Orogeny will create geochemical heterogeneities and rheological weaknesses in the sub-continental lithospheric mantle (SCLM). In the Western Rift, abundant alkaline mafic lavas record significant contributions from metasomatized SCLM. Modification, destabilization and foundering of metasomatized SCLM has an increasingly recognized role in continental magmatism worldwide. Lithospheric drip magmatism occurs when foundered lithosphere devolatilizes and melts on descent. Lithospheric thinning is one consequence of this process, and may play a role in physical aspects of rifting. Geochemical and geophysical evidence that drip magmatism has occurred in several areas of the EARS, including Turkana, Chyulu Hills, and Oligocene HT2 flood basalts in Afar, suggests that this process is fundamentally related to the onset of successful rifting. We use geochemical characteristics of primitive lavas from the Bufumbira volcanic field in the Western Rift's Virunga Province to demonstrate that ancient, tectonically-driven metasomatism modified the SCLM and contributes to recent volcanism. Further, we identify geochemical signatures which indicate that lithospheric drip melting is the primary petrogenetic process generating these lavas. Sr-Nd-Pb-Hf isotopic data show that the northern portion of the Western Rift, including Bufumbira, requires magma sources distinct from the rest of the EARS. Trace element data show that Bufumbira lavas are derived from depths within the garnet stability field and that source mineralogy includes phlogopite with potential amphibole and zircon; and that extent of melting increased with depth of melting, a signature of lithospheric drip.
Linking Observations of Dynamic Topography from Oceanic and Continental Realms around Australia
NASA Astrophysics Data System (ADS)
Czarnota, K.; Hoggard, M. J.; White, N.; Winterbourne, J.
2012-04-01
In the last decade, there has been growing interest in predicting the spatial and temporal evolution of dynamic topography (i.e. the surface manifestation of mantle convection). By directly measuring Neogene and Quaternary dynamic topography around Australia's passive margins we assess the veracity of these predictions and the interplay between mantle convection and plate motion. We mapped the present dynamic topography by carefully measuring residual topography of oceanic lithosphere adjacent to passive margins. This map provides a reference with respect to which the relative record of vertical motions, preserved within the stratigraphic architecture of the margins, can be interpreted. We carefully constrained the temporal record of vertical motions along Australia's Northwest Shelf by backstripping Neogene carbonate clinoform rollover trajectories in order to minimise paleobathymetric errors. Elsewhere, we compile temporal constraints from published literature. Three principal insights emerge from our analysis. First, the present-day drawn-down residual topography of Australia, cannot be approximated by a regional tilt down towards the northeast, as previously hypothesised. The south-western and south-eastern corners of Australia are at negligible to slightly positive residual topography which slopes down towards Australia's northern margin and the Great Australian Bight. Secondly, the record of passive margin subsidence suggests drawdown across northern Australia commenced synchronously at 8±2 Ma. The amplitude of this synchronous drawdown corresponds to the amplitude of oceanic residual topography, indicating northern Australia was at an unperturbed dynamic elevation until drawdown commenced. The synchronicity of this subsidence suggests that the Australian plate has not been affected by a southward propagating wave of drawdown, despite Australia's rapid northward motion towards the subduction realm in south-east Asia. In contrast, it appears the mantle anomaly responsible for this drawdown is a relatively young, long-wavelength feature. Thirdly, there is an apparent mismatch between the current drawdown of oceanic lithosphere observed along Australia's southern margin and the onshore record of Cenozoic uplift. This disparity we attribute to the region undergoing recent uplift from a position of dynamic drawdown.
Basin analysis of tertiary strata in the Pattani Basin, Gulf of Thailand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chonchawalit, A.; Bustin, R.M.
The stratigraphic and structural evolution of the Pattani basin, the most prolific petroleum basin in Thailand, reflects the extensional tectonics of continental southeast Asia. East-west extension, a product of the northward collision of India with Eurasia since the early Tertiary resulted in the formation of a series of north-south-trending sedimentary basins including the Pattani basin. Subsidence and thermal histories of the basin can generally be accounted for by nonuniform lithospheric stretching. The validity of nonuniform lithospheric stretching as a mechanic for the formation of the Pattani basin is confirmed by a reasonably good agreement between modeled and observed vitrinite reflectancemore » at various depths and locations. The amount of stretching and surface heat flow generally increases from the basin margin to the basin center. Crustal stretching factor ([beta]) ranges from 1.3 at the basin margin to 2.8 in the center. Subcrustal stretching factor ([sigma]) ranges from 1.3 at the margin to more than 3.0 in the center. The stretching of the lithosphere may have extended basement rocks as much as 45 to 90 km and may have caused the upwelling of asthenosphere, resulting in high heat flow. The sedimentary succession in the Pattani basin is divisible into synrift and postrift sequences. The synrift sequences comprise (1) late Eocene ( ) to early Oligocene alluvial fan, braided river, and flood-plain deposits; (2) late Oligocene to early Miocene floodplain and channel deposits; and (3) an early Miocene regressive package of marine to nonmarine sediments. Deposition of synrift sequences corresponded to rifting and extension, which included episodic block faulting and rapid subsidence. Postrift succession comprises (1) an early to middle Miocene regressive package of shallow marine to nonmarine sediments, (2) a late early Miocene transgressive package; and (3) a late Miocene to Pleistocene transgression succession.« less
Lithospheric controls on magma composition along Earth's longest continental hotspot track.
Davies, D R; Rawlinson, N; Iaffaldano, G; Campbell, I H
2015-09-24
Hotspots are anomalous regions of volcanism at Earth's surface that show no obvious association with tectonic plate boundaries. Classic examples include the Hawaiian-Emperor chain and the Yellowstone-Snake River Plain province. The majority are believed to form as Earth's tectonic plates move over long-lived mantle plumes: buoyant upwellings that bring hot material from Earth's deep mantle to its surface. It has long been recognized that lithospheric thickness limits the rise height of plumes and, thereby, their minimum melting pressure. It should, therefore, have a controlling influence on the geochemistry of plume-related magmas, although unambiguous evidence of this has, so far, been lacking. Here we integrate observational constraints from surface geology, geochronology, plate-motion reconstructions, geochemistry and seismology to ascertain plume melting depths beneath Earth's longest continental hotspot track, a 2,000-kilometre-long track in eastern Australia that displays a record of volcanic activity between 33 and 9 million years ago, which we call the Cosgrove track. Our analyses highlight a strong correlation between lithospheric thickness and magma composition along this track, with: (1) standard basaltic compositions in regions where lithospheric thickness is less than 110 kilometres; (2) volcanic gaps in regions where lithospheric thickness exceeds 150 kilometres; and (3) low-volume, leucitite-bearing volcanism in regions of intermediate lithospheric thickness. Trace-element concentrations from samples along this track support the notion that these compositional variations result from different degrees of partial melting, which is controlled by the thickness of overlying lithosphere. Our results place the first observational constraints on the sub-continental melting depth of mantle plumes and provide direct evidence that lithospheric thickness has a dominant influence on the volume and chemical composition of plume-derived magmas.
Kistler, Ronald W.; Wooden, Joseph L.; Premo, Wayne R.; Morton, Douglas M.
2014-01-01
Within the duration of the U.S. Geological Survey (USGS)–based Southern California Areal Mapping Project (SCAMP), many samples from the northern Peninsular Ranges batholith were studied for their whole-rock radioisotopic systematics (rubidium-strontium [Rb-Sr], uranium-thorium-lead [U-Th-Pb], and samarium-neodymium [Sm-Nd]), as well as oxygen (O), a stable isotope. The results of three main studies are presented separately, but here we combine them (>400 analyses) to produce a very complete Pb-Sr-Nd-O isotopic profile of an arc-continent collisional zone—perhaps the most complete in the world. In addition, because many of these samples have U-Pb zircon as well as argon mineral age determinations, we have good control of the timing for Pb-Sr-Nd-O isotopic variations.The ages and isotopic variations help to delineate at least four zones across the batholith from west to east—an older western zone (126–108 Ma), a transitional zone (111–93 Ma), an eastern zone (94–91 Ma), and a much younger allochthonous thrust sheet (ca. 84 Ma), which is the upper plate of the Eastern Peninsular Ranges mylonite zone. Average initial 87Sr/86 Sr (Sri), initial 206Pb/204Pb (206 Pbi), initial 208Pb/204Pb (average 208Pbi), initial epsilon Nd (average εNdi), and δ18O signatures range from 0.704, 18.787, 38.445, +3.1, and 4.0‰–9.0‰, respectively, in the westernmost zone, to 0.7071, 19.199, 38.777, −5, and 9‰–12‰, respectively, in the easternmost zone. The older western zone is therefore the more chemically and isotopically juvenile, characterized mostly by values that are slightly displaced from a mantle array at ca. 115 Ma, and similar to some modern island-arc signatures. In contrast, the isotopic signatures in the eastern zones indicate significant amounts of crustal involvement in the magmatic plumbing of those plutons. These isotopic signatures confirm previously published results that interpreted the Peninsular Ranges batholith as a progressively contaminated magmatic arc. The Peninsular Ranges batholith magmatic arc was initially an oceanic arc built on Panthalassan lithosphere that eventually evolved into a continental margin magmatic arc collision zone, eventually overriding North American cratonic lithosphere. Our Pb-Sr-Nd data further suggest that the western arc rocks represent a nearshore or inboard oceanic arc, as they exhibit isotopic signatures that are more enriched than typical mid-ocean-ridge basalt (MORB). Isotopic signatures from the central zone are transitional and indicate that enriched crustal magma sources were becoming involved in the northern Peninsular Ranges batholith magmatic plumbing. As the oceanic arc–continental margin collision progressed, a mixture of oceanic mantle and continental magmatic sources transpired. Magmatic production in the northern Peninsular Ranges batholith moved eastward and continued to tap enriched crustal magmatic sources. Similar modeling has been previously proposed for two other western margin magmatic arcs, the Sierra Nevada batholith of central California and the Idaho batholith.Calculated initial Nd signatures at ca. 100 Ma for Permian–Jurassic and Proterozoic basement rocks from the nearby San Gabriel Mountains and possible source areas along the southwestern Laurentian margin of southern California, southwestern Arizona, and northern Sonora strongly suggest their involvement with deep crustal magma mixing beneath the eastern zones of the Peninsular Ranges batholith, as well as farther east in continental lithospheric zones.Last, several samples from the allochthonous, easternmost upper-plate zone, which are considerably younger (ca. 84 Ma) than any of the rocks from the northern Peninsular Ranges batholith proper, have even more enriched average Sri, 206Pbi, 208Pbi, and εNdisignatures of 0.7079, 19.344, 38.881, and −6.6, respectively, indicative of the most-evolved magma sources in the northern Peninsular Ranges batholith and similar to radioisotopic values for rocks from the nearby Transverse Ranges, suggesting a genetic connection between the two.
NASA Astrophysics Data System (ADS)
McQuarrie, N.; van Hinsbergen, D. J. J.
2012-04-01
When did continents collide, and how is convergence partitioned after collision are first order questions that seem to defy consensus along the Alpine-Himalyan orogen. Estimates on the age of collision for Arabia and Eurasia range from late Cretaceous to Pliocene, based on a wide variety of presumed geologic responses. Both lower Miocene synorgenic strata with growth structures adjacent to the main Zagros fault and upper Oligocene to lower Miocene overlap strata over post-collisional thrusts are derived from Eurasia and require that collision was underway at least by ~25-24 Ma. However, upper plate deformation, exhumation and sedimentation are used to argue for an older, 35 Ma collision age. Africa-North America-Eurasia plate circuit rotations, combined with Red Sea rotations provides precise estimates of the relative positions between the northern Arabian margin and the southern Eurasia margin. Plate circuits indicate, from NW to SE along the collision zone 490-650 km of post-25 Ma Arabia-Eurasia convergence and 810-1070 km since 35 Ma. To assess the consequences of these collision ages for the amount of Arabian continental subduction, we compile all documented shortening within the orogen. The Zagros fold-thrust belt consists of thrusted upper crust that was offscraped from subducted Arabian continental lithosphere. Balanced cross-sections give 105-180 km of Zagros shortening (including estimates from the Zagros proper, 45-90 km, and the Zagros "crush" zone, 60-90 km). Shortening within Eurasia is estimated to be 53-75 km through the Kopet Dagh and Alborz Mountains, plus 38 km across Central Iran. These estimates suggest that the orogen has shortened 200 to 300 km since the early Miocene. Both a 25 and a 35 Ma collision estimate thus requires that a considerable portion of the Arabian plate subducted without recognized accretion of its upper crust. To balance plate circuits and documented shortening requires whole-sale subduction of ~500-800 km of continental crust since 35 Ma; for a 25 Ma collision this would be between 190-450 km. The ophiolitic fragments preserved along the suture zone allow us to test the magnitude of possible continental subduction. The Oman Ophiolite preserves the geometry and distance over which ophiolites obduced over the northern margin of Arabia in the late Cretaceous. The distance from the southwestern edge of the ophiolite to the northeastern edge of the continent is 180 km, suggesting that the Arabian continental margin plus overlying ophiolites may have extended ~200 km beyond the Main Zagros fault. Assuming that 200 km of Arabian continental margin and overlying ophiolites subducted entirely, except the few remnant ophiolite slivers remaining in the suture zone, would reconstruct ~ 400-500 km of post-collisional Arabia-Eurasia convergence, consistent with a ~25 Ma collision age. As much as 500-800 km of continental subduction required by an earlier (~35 Ma) collision age seems unlikely.
NASA Astrophysics Data System (ADS)
Ravaut, P.; Bayer, R.; Hassani, R.; Rousset, D.; Yahya'ey, A. Al
1997-09-01
The obduction process in Oman during Late Cretaceous time, and continental-to-oceanic subduction along the Zagros-Makran region during the Tertiary are consequences of the Arabian-Eurasian collision, resulting in construction of complex structures composed of the Oman ophiolite belt, the Zagros continental mountain belt and the Makran subduction zone with its associated accretionary wedge. In this paper, we jointly interpret Bouguer anomaly and available petroleum seismic profiles in terms of crustal structures. We show that the gravity anomaly in northern Oman is characterized by a high-amplitude negative-positive couple. The negative anomaly is coincident with Late Cretaceous (Fiqa) and Tertiary (Pabdeh) foreland basins and with the Zagros-Oman mountain belts, whereas the positive anomaly is correlated to the ophiolite massifs. The Bouguer anomaly map indicates the presence of a post-Late Cretaceous sedimentary basin, the Sohar basin, centred north of the Batinah plain. We interpret the negative/positive couple in terms of loading of the elastic Arabian lithosphere. We estimate the different Cretaceous-to-Recent loads, including topography, ophiolite nappes, sedimentary fill and the accretionary prism of the Makran trench. A new method, using Mindlin's elastic plate theory, is proposed to model the 2D deflection of the heterogeneous elastic Arabian plate, taking into account boundary conditions at the ends of the subducted plate. We show that remnant ophiolites are isolated from Tethyan oceanic lithosphere in the Gulf of Oman by a continental basement ridge, a NW prolongation of the Saih-Hatat window. Loading the northward-limited ophiolite blocks explains the deflection of the Fiqa foredeep basin. West of the Musandam Peninsula, the Tertiary Pabdeh foredeep is probably related to the emplacement of a 8-km-thick tectonic prism located on the Musandam Peninsula and in the Strait of Hormuz. Final 2D density models along profiles through the Oman mountain belt and the Gulf of Oman are discussed in the framework of Late Cretaceous obduction of the Tethys and synchronous subduction and exhumation of the Oman margin.
On the choice of boundary conditions in continuum models of continental deformation
NASA Technical Reports Server (NTRS)
Wdowinski, Shimon; O'Connell, Richard J.
1990-01-01
Recent studies of continental deformation have treated the lithosphere as a viscous medium and investigated the time evolution of the deformation caused by tectonic and buoyancy forces. This paper examines the differences between (1) continuum models that keep velocity boundary conditions constant with time and (2) models that keep stress boundary conditions constant with time. These differences are demonstrated by using a simple example of a continental lithosphere that is subjected to horizontal compression. The results show that in (2) the indentation velocity decreases with time, while in (1) the indentation velocity remains constant with time.
Upwarp of anomalous asthenosphere beneath the Rio Grande rift
Parker, E.C.; Davis, P.M.; Evans, J.R.; Iyer, H.M.; Olsen, K.H.
1984-01-01
Continental rifts are possible analogues of mid-ocean ridges, although major plate tectonic features are less clearly observed1. Current thermal models of mid-ocean ridges2-4 consist of solid lithospheric plates overlying the hotter, less viscous asthenosphere, with plate thickness increasing away from the ridge axis. The lithospheric lower boundary lies at or near the melting point isotherm, so that at greater depths higher temperatures account for lower viscosity, lower seismic velocities and possibly partial melting. Upwarp of this boundary at the ridge axis concentrates heat there, thus lowering densities by expansion and raising the sea floor to the level of thermal isostatic equilibrium. At slow spreading ridges, a major central graben forms owing to the mechanics of magma injection into the crust5. Topography, heat flow, gravity and seismic studies support these models. On the continents, a low-velocity channel has been observed, although it is poorly developed beneath ancient cratons6-9. Plate tectonic models have been applied to continental basins and margins10-12, but further similarities to the oceanic models remain elusive. Topographic uplift is often ascribed to Airy type isostatic compensation caused by crustal thickening, rather than thermal compensation in the asthenosphere. Here we discuss the Rio Grande rift, in southwestern United States. Teleseismic P-wave residuals show that regional uplift is explained by asthenosphere uplift rather than crustal thickening. ?? 1984 Nature Publishing Group.
Current kinematics and dynamics of Africa and the East African Rift System
NASA Astrophysics Data System (ADS)
Stamps, D. S.; Flesch, L. M.; Calais, E.; Ghosh, A.
2014-06-01
Although the East African Rift System (EARS) is an archetype continental rift, the forces driving its evolution remain debated. Some contend buoyancy forces arising from gravitational potential energy (GPE) gradients within the lithosphere drive rifting. Others argue for a major role of the diverging mantle flow associated with the African Superplume. Here we quantify the forces driving present-day continental rifting in East Africa by (1) solving the depth averaged 3-D force balance equations for 3-D deviatoric stress associated with GPE, (2) inverting for a stress field boundary condition that we interpret as originating from large-scale mantle tractions, (3) calculating dynamic velocities due to lithospheric buoyancy forces, lateral viscosity variations, and velocity boundary conditions, and (4) calculating dynamic velocities that result from the stress response of horizontal mantle tractions acting on a viscous lithosphere in Africa and surroundings. We find deviatoric stress associated with lithospheric GPE gradients are ˜8-20 MPa in EARS, and the minimum deviatoric stress resulting from basal shear is ˜1.6 MPa along the EARS. Our dynamic velocity calculations confirm that a force contribution from GPE gradients alone is sufficient to drive Nubia-Somalia divergence and that additional forcing from horizontal mantle tractions overestimates surface kinematics. Stresses from GPE gradients appear sufficient to sustain present-day rifting in East Africa; however, they are lower than the vertically integrated strength of the lithosphere along most of the EARS. This indicates additional processes are required to initiate rupture of continental lithosphere, but once it is initiated, lithospheric buoyancy forces are enough to maintain rifting.
NASA Astrophysics Data System (ADS)
Gillard, Morgane; Autin, Julia; Manatschal, Gianreto
2015-04-01
The discovery of large domains of hyper-extended continental crust and exhumed mantle along many present-day magma-poor rifted margins questions the processes that play during the lithospheric breakup and the onset of seafloor spreading. In particular, the amount of magma and its relation to tectonic structures is yet little understood. Trying to find answers to these questions asks to work at the most distal parts of rifted margins where the transition from rifting to steady state seafloor spreading occurred. The Australian-Antarctic conjugated margins provide an excellent study area. Indeed, the central sector of the Great Australian Bight/Wilkes Land developed in a magma-poor probably ultra-slow setting and displays a complex and not yet well understood Ocean-Continent Transition (OCT). This distal area is well imaged by numerous high quality seismic lines covering the whole OCT and the steady-state oceanic crust. The deformation recorded in the sedimentary units along these margins highlights a migration of the deformation toward the ocean and a clear polyphase evolution. In particular, the observation that each tectono-sedimentary unit downlaps oceanwards onto the basement suggests that final rifting is associated with the creation of new depositional ground under conditions that are not yet those of a steady state oceanic crust. These observations lead to a model of evolution for these distal margins implying the development of multiple detachment systems organizing out-of-sequence, each new detachment fault developing into the previously exhumed basement. This spatial and temporal organization of fault systems leads to a final symmetry of exhumed domains at both conjugated margins. Magma appears to gradually increase during the margin development and is particularly present in the more distal domain where we can observe clear magma/fault interactions. We propose that the evolution of such rifted margins is linked to cycles of delocalisation/re-localisation of the deformation which could be mainly influenced by magma and by the decoupling between the upper brittle deformation and the asthenospheric uplift. In this context, the lithospheric breakup appears to be triggered by progressive syn-extensional thermal and magmatic weakening. However, the observation of continentward dipping reflectors interpreted as flip-flop detachment systems suggests that the localisation of the spreading centre and the onset of the steady state oceanic spreading will not be necessarily associated with a clear magmatic oceanic crust. In case of a low magmatic budget we can rather observe the onset of steady state amagmatic oceanic spreading, similar to what is expected at ultra-slow spreading ridges. This model of evolution (Gillard, 2014, PhD thesis) could well explain the fact that most magma-poor margins display symmetric exhumed domains on conjugate margins. However it raises the question of the nature of magnetic anomalies in ocean-continent transitions and their value for the interpretation of the kinematic evolution of conjugate rifted margins.
The planet beyond the plume hypothesis
NASA Astrophysics Data System (ADS)
Smith, Alan D.; Lewis, Charles
1999-12-01
Acceptance of the theory of plate tectonics was accompanied by the rise of the mantle plume/hotspot concept which has come to dominate geodynamics from its use both as an explanation for the origin of intraplate volcanism and as a reference frame for plate motions. However, even with a large degree of flexibility permitted in plume composition, temperature, size, and depth of origin, adoption of any limited number of hotspots means the plume model cannot account for all occurrences of the type of volcanism it was devised to explain. While scientific protocol would normally demand that an alternative explanation be sought, there have been few challenges to "plume theory" on account of a series of intricate controls set up by the plume model which makes plumes seem to be an essential feature of the Earth. The hotspot frame acts not only as a reference but also controls plate tectonics. Accommodating plumes relegates mantle convection to a weak, sluggish effect such that basal drag appears as a minor, resisting force, with plates having to move themselves by boundary forces and continents having to be rifted by plumes. Correspondingly, the geochemical evolution of the mantle is controlled by the requirement to isolate subducted crust into plume sources which limits potential buffers on the composition of the MORB-source to plume- or lower mantle material. Crustal growth and Precambrian tectonics are controlled by interpretations of greenstone belts as oceanic plateaus generated by plumes. Challenges to any aspect of the plume model are thus liable to be dismissed unless a counter explanation is offered across the geodynamic spectrum influenced by "plume theory". Nonetheless, an alternative synthesis can be made based on longstanding petrological evidence for derivation of intraplate volcanism from volatile-bearing sources (wetspots) in conjunction with concepts dismissed for being incompatible or superfluous to "plume theory". In the alternative Earth, the sources for intraplate volcanism evolve from the source residues of arc volcanism located along sutures in the continental mantle. Continental rifting and the lateral distribution of intraplate sources in the asthenosphere are controlled by Earth rotation. Shear induced on the base of the asthenosphere from the mesosphere as the Earth rotates is transmitted to the lithosphere as basal drag. Attenuation of the drag due to the low viscosity of the asthenosphere, in conjunction with plate motions from boundary forces, results in a rotation differential of up to 5 cm yr -1 between the lithosphere and mesosphere manifest as westward plate lag/eastward mantle flow. Continental rifting results from basal drag supplemented by local convection induced by lithospheric architecture. Large continental igneous provinces are generated by convective melting, with passive margin volcanic sequences following the axis of rifting and flood basalts overlying the intersection of sutures in the continental mantle. As rifting progresses, the convection cells expand, cycling continental mantle from sutures perpendicular to the rift axis to generate intraplate tracks in the ocean basin. Continental mantle not melted on rifting, or delaminated on continental collision, becomes displaced to the east of the continent by differential rotation, which also sets up a means for tapping the material to give fixed melting anomalies. When plates move counter to the Earth's rotation, as in the example of the Pacific plate, asthenospheric flow is characterised by a counterflow regime with a zero velocity layer at depths within the stability field for volatile-bearing minerals. Intraplate volcanism results when melts are tapped from this stationary layer along lithospheric stress trajectories induced by stressing of the plate from variations in the subduction geometry around the margins of the plate. Plate boundary forces acting in the same direction as Earth rotation, as for the Nazca plate, produce fast plate velocities but not counterflow, though convergent margin geometry may still induce propagating fractures which set up melting anomalies. Lateral migration of asthenospheric domains allows the sources of Pacific intraplate volcanism to be traced back to continental mantle eroded during the breakup of Gondwana and the amalgamation of Asia in the Paleozoic. Intraplate volcanism in the South Pacific therefore has a common Gondwanan origin to intraplate volcanism in the South Atlantic and Indian Oceans, hence the DUPAL anomaly is entirely of shallow origin. Such domains constitute a second order geochemical heterogeneity superimposed on a streaky/marble-cake structure arising from remixing of subducted crust with the convecting mantle. During the Proterozoic and Phanerozoic, remixing of slabs has buffered the evolution of the depleted mantle to a rate of 2.2 ɛNd units Ga -1, with fractionation of Lu from Hf in the sediment component imparting the large range in 176Hf/ 177Hf relative to 143Nd/ 144Nd observed in MORB. Only the high ɛNd values of some Archean komatiites are compatible with derivation from unbuffered mantle. The existence of a very depleted reservoir is attributed to stabilisation of a large early continental crust through either obduction tectonics or slab melting regimes which reduced the efficiency of crustal recycling back into the mantle. Generation of komatiite is therefore a consequence of mantle composition, and is permitted in ocean ridge environments and/or under hydrous melting conditions. Correspondingly, as intraplate volcanism depends on survival of volatile-bearing sources, its appearance in the Middle Proterozoic corresponds to the time in the Earth's thermal evolution at which minerals such as phlogopite and amphibole could survive in off-ridge environments in the shallow asthenosphere. The geodynamic evolution of the Earth was thus determined at convergent margins, not by plumes and hotspots, with the decline in thermal regime causing both a reduction in size of crust and continental mantle roots, the latter becoming a source for intraplate volcanism while the crust was incorporated into the convecting mantle.
NASA Astrophysics Data System (ADS)
Ergun, Mustafa
2016-04-01
The Eastern Mediterranean and the Middle East make up the southern boundary of the Tethys Ocean for the last 200 Ma by the disintegration of the Pangaea and closure of the Tethys Ocean. It covers the structures: Hellenic and Cyprus arcs; Eastern Anatolian Fault Zone; Bitlis Suture Zone and Zagros Mountains. The northern boundary of the Tethys Ocean is made up the Black Sea and the Caspian Sea, and it extends up to Po valley towards the west (Pontides, Caucasus). Between these two zones the Alp-Himalayan orogenic belt is situated where the Balkan, Anatolia and the Iran plateaus are placed as the remnants of the lost Ocean of the Tethys. The active tectonics of the eastern Mediterranean is the consequences of the convergence between the Africa, Arabian plates in the south and the Eurasian plate in the north. These plates act as converging jaws of vise forming a crustal mosaic in between. The active crustal deformation pattern reveals two N-S trending maximum compression or crustal shortening syntaxes': (i) the eastern Black Sea and the Arabian plate, (ii) the western Black Sea and the Isparta Angle. The transition in young mountain belts, from ocean crust through the agglomeration of arc systems with long histories of oceanic closures, to a continental hinterland is well exemplified by the plate margin in the eastern Mediterranean. The boundary between the African plate and the Aegean/Anatolian microplate is in the process of transition from subduction to collision along the Cyprus Arc. Since the Black Sea has oceanic lithosphere, it is actually a separate plate. However it can be considered as a block, because the Black Sea is a trapped oceanic basin that cannot move freely within the Eurasian Plate. Lying towards the northern margin of orogenic belts related to the closure of the Tethys Ocean, it is generally considered to be a result of back-arc extension associated with the northward subduction of the Tethyan plate to the south. Interface oceanic lithosphere at the leading edge of the northward moving African Plate in the eastern Mediterranean Sea and the deforming Aegean-Anatolian Plate continental lithosphere forms the northward dipping Hellenic and Cyprean subduction zones in the south. Since there is a velocity differential between the northward motion of African and Arabian Plates (10 mm/yr and 18 mm/yr, respectively), this difference is accommodated along the sinistral strike-slip Dead Sea Fault that forms the plate boundary between the African and the Arabian Plates. Continental crust forms from structurally thickened remnants of oceanic crust and overlying sediments, which are then invaded by arc magmatism. Understanding this process is a first order problem of lithospheric dynamics. The transition in young mountain belts, from ocean crust through the agglomeration of arc systems with long histories of oceanic closures, to a continental hinterland is well exemplified by the plate margin in the eastern Mediterranean. Mountains are subject to erosion, which can disturb isostatic compensation. If the eroded mountains are no longer high enough to justify their deep root-zones, the topography is isostatically overcompensated. Similarly, the buoyancy forces that result from overcompensation of mountainous topography cause vertical uplift. The Eastern Mediterranean Basin, having 100 milligal gravity values lower than other isostatically compensated oceans, it is in general overcompensated. Normally the Eastern Mediterranean Basin should rise under its present isostatic condition. It is known, however, that the Eastern Mediterranean Basin with its thick sediment-filled basins is actually sinking. Anatolia, having 100 milligals gravity values higher than other isostatically compensated zones of the world, is in general undercompensated. Normal isostatic conditions require that Anatolia should sink. It is known, however, that Anatolia, with the exception of local grabens, is rising. While the Black Sea, having 100-milligal lower gravity value than other isostatically compensated oceans, it is in general overcompensated and The Black Sea basin with very thick sedimentary cover (more than 12-14 km thick) is actually sinking.
Structure and degree of magmatism of North and South Atlantic rifted margins
NASA Astrophysics Data System (ADS)
Faleide, Jan Inge; Breivik, Asbjørn J.; Blaich, Olav A.; Tsikalas, Filippos; Planke, Sverre; Mansour Abdelmalak, Mohamed; Mjelde, Rolf; Myklebust, Reidun
2014-05-01
The structure and evolution of conjugate rifted margins in the South and North Atlantic have been studied mainly based on seismic reflection and refraction profiles, complemented by potential field data and plate reconstructions. All margins exhibit distinct along-margin structural and magmatic changes reflecting both structural inheritance extending back to a complex pre-breakup geological history and the final breakup processes. The sedimentary basins at the conjugate margins developed as a result of multiple phases of rifting, associated with complex time-dependent thermal structure of the lithosphere. A series of conjugate crustal transects reveal tectonomagmatic asymmetry, both along-strike and across the conjugate margin systems. The continent-ocean transitional domain along the magma-dominated margin segments is characterized by a large volume of flood basalts and high-velocity/high-density lower crust emplaced during and after continental breakup. Both the volume and duration of excess magmatism varies. The extrusive and intrusive complexes make it difficult to pin down a COB to be used in plate reconstructions. The continent-ocean transition is usually well defined as a rapid increase of P-wave velocities at mid- to lower crustal levels. The transition is further constrained by comparing the mean P-wave velocity to the thickness of the crystalline crust. By this comparison we can also address the magmatic processes associated with breakup, whether they are convection dominated or temperature dominated. In the NE Atlantic there is a strong correlation between magma productivity and early plate spreading rate, suggesting a common cause. A model for the breakup-related magmatism should be able to explain this correlation, but also the magma production peak at breakup, the along-margin magmatic segmentation, and the active mantle upwelling. It is likely that mantle plumes (Iceland in the NE Atlantic, Tristan da Cunha in the South Atlantic) may have influenced the volume of magmatism but they did not necessarily alter the process of rifted margin formation, implying that parts of the margins may have much in common with more magma-poor margins. Conjugate margin segments from the North and South Atlantic will be compared and discussed with particular focus on the tectonomagmatic processes associated with continental breakup.
NASA Astrophysics Data System (ADS)
Motavalli-Anbaran, Seyed-Hani; Zeyen, Hermann; Brunet, Marie-FrançOise; Ardestani, Vahid Ebrahimzadeh
2011-10-01
Using gravity, geoid, topography and surface heat flow data, we have modeled the density and temperature distribution in the lithosphere along three profiles crossing Iran in SW-NE direction from the Arabian foreland in the SW to the South Caspian Basin and the Turan Platform to the NE. We find thin lithosphere (100-120 km) underneath central Iran, whereas thick lithosphere (up to 240 km) is found underneath Arabia, the South Caspian Basin and the Turan Platform. Crustal thickening is found under the Zagros and Alborz mountains (up to 60 km) and under the Kopet-Dagh Mountains (48 km), whereas the thin crust under the southern Caspian Sea is either an oceanic crust or a highly thinned continental one. Below the South Caspian Sea, the shape of the crust-mantle interface and the base of the lithosphere indicate a subduction of the South Caspian block toward the N-NW. Further east, under the Kopet-Dagh, no evidence for active subduction is visible. This can be explained by a rheologically very strong South Caspian block, surrounded by weaker continental lithosphere.
NASA Astrophysics Data System (ADS)
Diaz, Jordi; Gallart, Josep; Carbonell, Ramon
2016-04-01
The complex tectonic interaction processes between the European and African plates at the Western Mediterranean since Mesozoic times have left marked imprints in the present-day crustal architecture of this area, particularly as regarding the lateral variations in crustal and lithospheric thicknesses. The detailed mapping of such variations is essential to understand the regional geodynamics, as it provides major constraints for different seismological, geophysical and geodynamic modeling methods both at lithospheric and asthenospheric scales. Since the 1970s, the lithospheric structure beneath the Iberian Peninsula and its continental margins has been extensively investigated using deep multichannel seismic reflection and refraction/wide-angle reflection profiling experiments. Diaz and Gallart (2009) presented a compilation of the results then available beneath the Iberian Peninsula. In order to improve the picture of the whole region, we have now extended the geographical area to include northern Morocco and surrounding waters. We have also included in the compilation the results arising from all the seismic surveys performed in the area and documented in the last few years. The availability of broad-band sensors and data-loggers equipped with large storage capabilities has allowed in the last decade to boost the investigations on crustal and lithospheric structure using natural seismicity, providing a spatial resolution never achieved before. The TopoIberia-Iberarray network, deployed over Iberia and northern Morocco, has provided a good example of those new generation seismic experiments. The data base holds ~300 sites, including the permanent networks in the area and hence forming a unique seismic database in Europe. In this contribution, we retrieve the results on crustal thickness presented by Mancilla and Diaz (2015) using data from the TopoIberia and associated experiments and we complement them with additional estimations beneath the Rif Cordillera arising from more recent deployments. We have now included also the sparse results in the region previously published, with the aim of checking the consistency of the results, hence giving more strength to the retained features. Combining the Moho depth values coming from controlled source and natural seismicity experiments has finally allowed us to build up a high quality grid of the region at crustal scale, which is completed in the non-sampled areas by the wide-scale CRUST1.0 model. The final picture evidences the geodynamic diversity of the area, including crustal imbrication in the Pyrenean range, a large and relatively undisturbed Variscan Massif in the center of Iberia and a probable delamination process beneath the Gibraltar Arc. Crustal thicknesses range from values around 15 km in continental margins (Cantabrian margin and Valencia Trough) to depths exceeding 50 km beneath the Pyrenees and the Rif Cordillera. A new 3D model of those variations is presented here to illustrate and summarize such large variations
Drift of continental rafts with asymmetric heating.
Knopoff, L; Poehls, K A; Smith, R C
1972-06-02
A laboratory model of a lithospheric raft is propelled through a viscous asthenospheric layer with constant velocity of scaled magnitude appropriate to continental drift. The propulsion is due to differential heat concentration in the model oceanic and continental crusts.
Birch Lecture : The Deep Roots of Continents
NASA Astrophysics Data System (ADS)
Jaupart, C.
2006-12-01
The roots of Archean continents are made of depleted and buoyant mantle and may extend to depths larger than 250 km. Such distinctive characteristics have key dynamical and geological consequences that we are only beginning to address. Thick roots provide large volume repositories for chemical elements that do not mix with Earth's convecting interior. Their large diffusive relaxation time implies long-term thermal disequilibrium with their radioactive heat sources and with the cooling of the mantle. Their negative thermal buoyancy may drive convective instabilities with implications for intracontinental deformation and magmatism as well as for continental growth. The dynamical behaviour of continental roots depends on the buoyancy ratio B, the ratio of the intrinsic (chemical) buoyancy of depleted lithospheric mantle and the density difference due to thermal expansion. The lithosphere can be mechanically stable and in thermal equilibrium with heat supplied by small-scale convection at the top of the asthenosphere. Sufficient cooling may result in an oscillatory convective instability whereby perturbations to the base of the lithosphere rise and fall periodically. The lithosphere seems to have developed in a state near that of instability with different thicknesses depending on its intrinsic buoyancy. It may have grown not only by chemical differentiation during melting, but also by oscillatory convection entraining chemically denser material from the asthenosphere. Mantle plumes have different effects on lithospheres of different thicknesses and compositions. For B values larger than about 0.6, plume material does not really penetrate into the lithosphere and spreads beneath it. In this case, the buoyancy force that is applied to the base of the lithosphere drives moderate thinning and extension over large horizontal distances. It takes values of B less than 0.6 to achieve true plume penetration with a significant vertical velocity component. In this case, thinning and extension get localized above the rising plume. In both cases, heated lithosphere material becomes convectively unstable after some time and entrains asthenospheric material as it rises. Temperatures in thick continental lithosphere do not adjust rapidly to secular changes of mantle temperature. Analysis of (P,T) data from xenolith studies indicates that the Earth's mantle has cooled at a rate of 80 K Ga-1 or less. Thick continental roots preserve a record of Archean processes and of Earth's evolution through geological ages. Deciphering this record may well be our next challenge.
Tracking the India-Arabia Transform Plate Boundary during Paleogene Times.
NASA Astrophysics Data System (ADS)
Rodriguez, M.; Huchon, P.; Chamot-Rooke, N. R. A.; Fournier, M.; Delescluse, M.
2014-12-01
The Zagros and Himalaya mountain belts are the most prominent reliefs built by continental collision. They respectively result from Arabia and India collision with Eurasia. Convergence motions at mountain belts induced most of plate reorganization events in the Indian Ocean during the Cenozoic. Although critical for paleogeographic reconstructions, the way relative motion between Arabia and India was accommodated prior to the formation of the Sheba ridge in the Gulf of Aden remains poorly understood. The India-Arabia plate-boundary belongs to the category of long-lived (~90-Ma) oceanic transform faults, thus providing a good case study to investigate the role of major kinematic events over the structural evolution of a long-lived transform system. A seismic dataset crossing the Owen Fracture Zone, the Owen Basin, and the Oman Margin was acquired to track the past locations of the India-Arabia plate boundary. We highlight the composite age of the Owen Basin basement, made of Paleocene oceanic crust drilled on its eastern part, and composed of pre-Maastrichtian continental crust overlaid by Early Paleocene ophiolites on its western side. A major transform fault system crossing the Owen Basin juxtaposed these two slivers of lithosphere of different ages, and controlled the uplift of marginal ridges along the Oman Margin. This transform system deactivated ~40 Ma ago, coeval with the onset of ultra-slow spreading at the Carlsberg Ridge. The transform boundary then jumped to the edge of the present-day Owen Ridge during the Late Eocene-Oligocene period, before seafloor spreading began at the Sheba Ridge. This migration of the plate boundary involved the transfer of a part of the Indian oceanic lithosphere accreted at the Carlsberg Ridge to the Arabian plate. The episode of plate transfer at the India-Arabia plate boundary during the Late Eocene-Oligocene interval is synchronous with a global plate reorganization event corresponding to geological events at the Zagros and Himalaya belts. The Owen Ridge uplifted later, in Late Miocene times, and is unrelated to any major migration of the India-Arabia boundary.
Díaz García F; Arenas; Martínez Catalán JR; González del Tánago J; Dunning
1999-09-01
Analysis of the Careón Unit in the Ordenes Complex (northwest Iberian Massif) has supplied relevant data concerning the existence of a Paleozoic oceanic lithosphere, probably related to the Rheic realm, and the early subduction-related events that were obscured along much of the Variscan belt by subsequent collision tectonics. The ophiolite consists of serpentinized harzburgite and dunite in the lower section and a crustal section made up of coarse-grained and pegmatitic gabbros. An Early Devonian zircon age (395+/-2 Ma, U-Pb) was obtained in a leucocratic gabbro. The whole section was intruded by numerous diabasic gabbro dikes. Convergence processes took place shortly afterward, giving rise to a mantle-rooted synthetic thrust system, with some coeval igneous activity. Garnet amphibolite, developed in metamorphic soles, was found discontinuously attached to the thrust fault. The soles graded downward to epidote-amphibolite facies metabasite and were partially retrogressed to greenschist facies conditions. Thermobarometric estimations carried out at a metamorphic sole (T approximately 650 degrees C; P approximately 11.5 kbar) suggested that imbrications developed in a subduction setting, and regional geology places this subduction in the context of an early Variscan accretionary wedge. Subduction and imbrication of oceanic lithosphere was followed by underthrusting of the Gondwana continental margin.
High-Resolution Lithosphere Viscosity and Dynamics Revealed by Magnetotelluric Imaging
NASA Astrophysics Data System (ADS)
Liu, L.; Hasterok, D. P.
2016-12-01
An accurate viscosity structure is critical to truthfully modeling continental lithosphere dynamics, especially at spatial scales of <200 km where active tectonic deformation and volcanism occur. However, the effective viscosity structure of the lithosphere remains a key challenge in geodynamics due to the intimate involvement of viscosity with time and its dependence on many factors including strain rate, plastic failure, composition, and grain size. Current efforts on inferring the detailed lithosphere viscosity structure are sparse and large uncertainties and discrepancies still exist. Here we report an attempt to infer the effective lithospheric viscosity from a high-resolution magnetotelluric (MT) survey across the western United States. The high sensitivity of MT fields to the presence of electrically conductive fluids makes it a promising proxy for determining mechanical strength variations throughout the lithosphere. We demonstrate how a viscosity structure, approximated from electrical resistivity, results in a geodynamic model that successfully predicts short-wavelength surface topography, lithospheric deformation, and mantle upwelling beneath recent volcanism. The results indicate that lithosphere viscosity structure rather than the buoyancy structure is the dominant controlling factor for short-wavelength topography and intra-plate deformation in tectonically active regions. We further show that this viscosity is consistent with and more effective than that derived from laboratory-based rheology. We therefore propose that MT imaging provides a practical observational constraint for quantifying the dynamic evolution of the continental lithosphere.
The helium flux from the continents and ubiquity of low-3He/4He recycled crust and lithosphere
NASA Astrophysics Data System (ADS)
Day, James M. D.; Barry, Peter H.; Hilton, David R.; Burgess, Ray; Pearson, D. Graham; Taylor, Lawrence A.
2015-03-01
New helium isotope and trace-element abundance data are reported for pyroxenites and eclogites from South Africa, Siberia, and the Beni Bousera Massif, Morocco that are widely interpreted to form from recycled oceanic crustal protoliths. The first He isotope data are also presented for Archaean peridotites from the Kaapvaal (South Africa), Slave (Canada), and Siberian cratons, along with recently emplaced off-craton peridotite xenoliths from Kilbourne Hole, San Carlos (USA) and Vitim (Siberia), to complement existing 3He/4He values obtained for continental and oceanic peridotites. Helium isotope compositions of peridotite xenoliths vary from 7.3 to 9.6 RA in recently (<10 kyr) emplaced xenoliths, to 0.05 RA in olivine from cratonic peridotite xenoliths of the 1179 Ma Premier kimberlite, South Africa. The helium isotope compositions of the peridotites can be explained through progressive sampling of 4He produced from radiogenic decay of U and Th in the mineral lattice in the older emplaced peridotite xenoliths. Ingrowth of 4He is consistent with generally higher 4He concentrations measured in olivine from older emplaced peridotite xenoliths relative to those from younger peridotite xenoliths. Collectively, the new data are consistent with pervasive open-system behaviour of He in peridotite xenoliths from cratons, mobile belts and tectonically-active regions. However, there is probable bias in the estimate of the helium isotope composition of the continental lithospheric mantle (6.1 ± 2.1 RA), since previously published databases were largely derived from peridotite xenoliths from non-cratonic lithosphere, or phenocrysts/xenocrysts obtained within continental intraplate alkaline volcanics that contain a contribution from asthenospheric sources. Using the new He isotope data for cratonic peridotites and assuming that significant portions (>50%) of the Archaean and Proterozoic continental lithospheric mantle are stable and unaffected by melt or fluid infiltration on geological timescales (>0.1 Ga), and that U and Th contents vary between cratonic lithosphere and non-cratonic lithosphere, calculations yield a 3He flux of 0.25-2.2 atoms/s/cm2 for the continental lithospheric mantle. These estimates differ by a factor of ten from non-cratonic lithospheric mantle and are closer to the observed 3He flux from the continents (<1 atoms/s/cm2). Pyroxenites and eclogites from the continental regions are all characterized by 3He/4He (0.03-5.6 RA) less than the depleted upper mantle, and relatively high U and Th contents. Together with oceanic and continental lithospheric peridotites, these materials represent reservoirs with low time-integrated 3He/(U + Th) in the mantle. Pyroxenites and eclogites are also characterized by higher Fe/Mg, more radiogenic Os-Pb isotope compositions, and more variable δ18O values (∼3‰ to 7‰), compared with peridotitic mantle. These xenoliths are widely interpreted to be the metamorphic/metasomatic equivalents of recycled oceanic crustal protoliths. The low-3He/4He values of these reservoirs and their distinctive compositions make them probable end-members to explain the compositions of some low-3He/4He OIB, and provide an explanation for the low-3He/4He measured in most HIMU lavas. Continental lithospheric mantle and recycled oceanic crust protoliths are not reservoirs for high-3He/4He and so alternative, volumetrically significant, He-rich reservoirs, such as less-degassed (lower?) mantle, are required to explain high-3He/4He signatures measured in some intraplate lavas. Recycling of oceanic crust represents a fundamental process for the generation of radiogenic noble gases in the mantle, and can therefore be used effectively as tracers for volatile recycling.
NASA Astrophysics Data System (ADS)
Haproff, P. J.; Yin, A.; Zuza, A. V.
2017-12-01
Investigations of continental collisions often focus on thrust belts oriented perpendicular to the plate-convergence direction and exclude belts that bound the flanks of a continental indenter despite being crucial to understanding the collisional process. Research of the Himalayan orogen, for example, has mostly centered on the east-trending thrust belt between the eastern and western syntaxes, resulting in inadequate examination of the north-trending Indo-Burma Ranges located along the eastern margin of India. To better understand the development of the entire Himalayan orogenic system, we conducted field mapping across the Northern Indo-Burma Range (NIBR), situated at the intersection of the eastern Himalaya and Indo-Burma Ranges. Our research shows that major lithologic units and thrust faults of the Himalaya extend to the NIBR, suggesting a shared geologic evolution. The structural framework of the NIBR consists of a southwest-directed thrust belt cored by a hinterland-dipping duplex, like the Himalaya. However, the Northern Indo-Burma orogen is distinct based on (1) the absence of the Tethyan Himalayan Sequence and southern Gangdese batholith, (2) the absence of the South Tibetan detachment, (3) crustal shortening greater than 80%, (4) an incredibly narrow orogen width of 7-33 km, (5) exposure of an ophiolitic mélange complex as a klippe, (6) and right-slip shear along the active range-bounding thrust fault. Furthermore, lithospheric deformation along the flank and northeast corner of India is characterized by right-slip transpression partitioned between the thrust belt and right-slip faults. Such a regime is interpreted to accommodate both contraction and clockwise rotation of Tibetan lithosphere around India, consistent with existing continuum deformation and rotation models.
Mantle flow and deforming continents, insights from the Tethys realm
NASA Astrophysics Data System (ADS)
Jolivet, Laurent; Faccenna, Claudio; Becker, Thorsten; Tesauro, Magdala
2017-04-01
Continent deformation is partly a consequence of plate motion along plate boundaries. Whether underlying asthenospheric flow can also deform continents through basal shear or push on topographic irregularities of the base of the lithosphere is an open question. Eurasia has been extending at different scales since 50 Ma, from the Mediterranean back-arc domains to extension of Asia between the India-Asia collision zone and the Pacific subduction zones. While compression at plate margins, in subduction or collision zones can propagate far within continents, the mechanism explaining extension distributed over thousands of kilometres is unclear. We use trajectories of continental plates and continental fragments since 50 Ma in different kinematic frames and compare them with various proxies of asthenospheric flow such as seismic anisotropy at various depths. These trajectories partly fit sub-lithospheric seismic anisotropy with two main circulations, one carrying Africa and Eurasia away from the large low velocity anomaly (LLSVP) underlying South and West Africa and one carrying the Pacific plate away from the LLSVP underlying the southern Pacific. Under eastern Eurasia the flow converges with the Pacific flow and distributed extension affects eastern Asia all the way to Western Pacific back-arc basins. We speculate that the flow carrying India northward and Eurasia eastward has invaded the Pacific domain and caused this widely distributed extension that interferes with the strike-slip faults issued from the Himalaya-Tibet collision zone. This model is in line with earlier propositions based on geochemical proxies. We discuss this model and compare it to other widely distributed extensional deformation episodes such as the Early Cretaceous extension of Africa and lastly propose a scheme of large-scale continental deformation in relation to underlying mantle convection at different scales.
Mantle flow and deforming continents, the Tethys realm
NASA Astrophysics Data System (ADS)
Jolivet, L.; Faccenna, C.; Becker, T. W.
2016-12-01
Continent deformation is partly a consequence of plate motion along plate boundaries. Whether underlying asthenospheric flow can also deform continents through basal shear or push on topographic irregularities of the base of the lithosphere is an open question. Eurasia has been extending at different scales since 50 Ma, from the Mediterranean back-arc domains to extension of Asia between the India-Asia collision zone and the Pacific subduction zones. While compression at plate margins, in subduction or collision zones can propagate far within continents, the mechanism explaining extension distributed over thousands of kilometres is unclear. We use trajectories of continental plates and continental fragments since 50 Myrs in different kinematic frames and compare them with various proxies of asthenospheric flow such as seismic anisotropy at various depths. These trajectories partly fit sub-lithospheric seismic anisotropy with two main circulations, one carrying Africa and Eurasia away from the large low velocity anomaly (LLSVP) underlying South and West Africa and one carrying the Pacific plate away from the LLSVP underlying the southern Pacific. Under eastern Eurasia the flow converges with the Pacific flow and distributed extension affects eastern Asia all the way to Western Pacific back-arc basins. We speculate that the flow carrying India northward and Eurasia eastward has invaded the Pacific domain and caused this widely distributed extension that interferes with the strike-slip faults issued from the Himalaya-Tibet collision zone. This model is in line with earlier propositions based on geochemical proxies. We discuss this model and compare it to other widely distributed extensional deformation episodes such as the Early Cretaceous extension of Africa and finally propose a scheme of large-scale continental deformation in relation to underlying mantle convection at different scales.
Why did Arabia separate from Africa? Insights from 3-D laboratory experiments
NASA Astrophysics Data System (ADS)
Bellahsen, N.; Faccenna, C.; Funiciello, F.; Daniel, J. M.; Jolivet, L.
2003-11-01
We have performed 3-D scaled lithospheric experiments to investigate the role of the gravitational force exerted by a subducting slab on the deformation of the subducting plate itself. Experiments have been constructed using a dense silicone putty plate, to simulate a thin viscous lithosphere, floating in the middle of a large box filled with glucose syrup, simulating the upper mantle. We examine three different plate configurations: (i) subduction of a uniform oceanic plate, (ii) subduction of an oceanic-continental plate system and, (iii) subduction of a more complex oceanic-continental system simulating the asymmetric Africa-Eurasia system. Each model has been performed with and without the presence of a circular weak zone inside the subducting plate to test the near-surface weakening effect of a plume activity. Our results show that a subducting plate can deform in its interior only if the force distribution varies laterally along the subduction zone, i.e. by the asymmetrical entrance of continental material along the trench. In particular, extensional deformation of the plate occurs when a portion of the subduction zone is locked by the collisional process. The results of this study can be used to analyze the formation of the Arabian plate. We found that intraplate stresses, similar to those that generated the Africa-Arabia break-up, can be related to the Neogene evolution of the northern convergent margin of the African plate, where a lateral change from collision (Mediterranean and Bitlis) to active subduction (Makran) has been described. Second, intraplate stress and strain localization are favored by the presence of a weakness zone, such as the one generated by the Afar plume, producing a pattern of extensional deformation belts resembling the Red Sea-Gulf of Aden rift system.
NASA Astrophysics Data System (ADS)
Gu, Hai-Ou; Xiao, Yilin; Santosh, M.; Li, Wang-Ye; Yang, Xiaoyong; Pack, Andreas; Hou, Zhenhui
2013-09-01
The Mesozoic tectonics in East China is characterized by significant lithospheric thinning of the North China Craton, large-scale strike-slip movement along the Tan-Lu fault, and regional magmatism with associated metallogeny. Here we address the possible connections between these three events through a systematic investigation of the geochemistry, zircon geochronology and whole rock oxygen isotopes of the Mesozoic magmatic rocks distributed along the Tan-Lu fault in the Shandong province. The characteristic spatial and temporal distributions of high-Mg adakitic rocks along the Tan-Lu fault with emplacement ages of 134-128 Ma suggest a strong structural control for the emplacement of these intrusions, with magma generation possibly associated with the subduction of the Pacific plate in the early Cretaceous. The low-Mg adakitic rocks (127-120 Ma) in the Su-Lu orogenic belt were formed later than the high-Mg adakitic rocks, whereas in the Dabie orogenic belt, most of the low-Mg adakitic rocks (143-129 Ma) were generated earlier than the high-Mg adakitic rocks. Based on available data, we suggest that the large scale strike-slip tectonics of the Tan-Lu fault in the Mesozoic initiated cratonic destruction at the south-eastern margin of the North China Craton, significantly affecting the lower continental crust within areas near the fault. This process resulted in crustal fragments sinking into the asthenosphere and reacting with peridotites, which increased the Mg# of the adakitic melts, generating the high-Mg adakitic rocks. The gravitationally unstable lower continental crust below the Tan-Lu fault in the Su-Lu orogenic belt triggered larger volume delamination of the lower continental crust or foundering of the root.
On causal links between flood basalts and continental breakup
NASA Astrophysics Data System (ADS)
Courtillot, V.; Jaupart, C.; Manighetti, I.; Tapponnier, P.; Besse, J.
1999-03-01
Temporal coincidence between continental flood basalts and breakup has been noted for almost three decades. Eight major continental flood basalts have been produced over the last 300 Ma. The most recent, the Ethiopian traps, erupted in about 1 Myr at 30 Ma. Rifting in the Red Sea and Gulf of Aden, and possibly East African rift started at about the same time. A second trap-like episode occurred around 2 Ma and formation of true oceanic crust is due in the next few Myr. We find similar relationships for the 60 Ma Greenland traps and opening of the North Atlantic, 65 Ma Deccan traps and opening of the NW Indian Ocean, 132 Ma Parana traps and South Atlantic, 184 Ma Karoo traps and SW Indian Ocean, and 200 Ma Central Atlantic Margin flood basalts and opening of the Central Atlantic Ocean. The 250 Ma Siberian and 258 Ma Emeishan traps seem to correlate with major, if aborted, phases of rifting. Rifting asymmetry, apparent triple junctions and rift propagation (towards the flood basalt area) are common features that may, together with the relative timings of flood basalt, seaward dipping reflector and oceanic crust production, depend on a number of plume- and lithosphere- related factors. We propose a mixed scenario of `active/passive' rifting to account for these observations. In all cases, an active component (a plume and resulting flood basalt) is a pre-requisite for the breakup of a major oceanic basin. But rifting must be allowed by plate-boundary forces and is influenced by pre-existing heterogeneities in lithospheric structure. The best example is the Atlantic Ocean, whose large-scale geometry with three large basins was imposed by the impact points of three mantle plumes.
NASA Astrophysics Data System (ADS)
Lavier, L. L.; Muntener, O.
2011-12-01
Mantle peridotites from ocean-continent transition zones (OCT's) and ultraslow spreading ridges question the commonly held assumption of a simple link between mantle melting and MORB. 'Ancient' and partly refertilized mantle in rifts and ridges illustrates the distribution of the scale of upper mantle heterogeneity even on a local scale. Upwelling of partial melts that enter the conductive lithospheric mantle inevitably leads to freezing of the melt and metasomatized lithosphere. Field data and petrology demonstrates that ancient, thermally undisturbed, pyroxenite-veined subcontinental mantle blobs formed parts of the ocean floor next to thinned continental crust. Similar heterogeneity might be created in the oceanic lithosphere where the thermal boundary layer (TBM) is thick and veined with metasomatic assemblages. This cold, ancient, 'subcontinental domain' is separated by ductile shear zones (or some other form of permeability barriers) from an infiltrated ('hot') domain dominated by refertilized spinel and/or plagioclase peridotite. The footwall of these mantle shear zones display complex refertilization processes and high-temperature deformation. We present numerical models that illustrate the complex interplay of km-scale refertilization with active deformation and melt focusing on top of the mantle. Melt lubricated shear zones focus melt flow in shear fractures (melt bands) occurring along grain boundaries. Continuous uplift and cooling leads to crystallization, and crystal plastic deformation prevails in the subsolidus state. Below 800oC if water is present deformation by shearing of phyllosilicates may become prevalent. We develop physical boundary conditions for which stagnant melt beneath a permeability barrier remains trapped rather than being extracted to the surface via melt-filled fractures. We explore the parameter space for fracturing and drainage and development of anastomozing impermeable shear zones. Our models might be useful to constrain the conditions and enigmatic development of magma-poor and magma rich margins.
NASA Astrophysics Data System (ADS)
Foulger, G. R.; Doré, A. G.; Franke, D.; Geoffroy, L.; Gernigon, L.; Hole, M.; Hoskuldsson, A.; Julian, B. R.; Kusznir, N.; Martinez, F.; Natland, J. H.; Peace, A.; Petersen, K. D.; Schiffer, C.; Stephenson, R.; Stoker, M. S.
2017-12-01
The original simple theory of plate tectonics had to be refined to accommodate second-order geological features such as back-arc basins and continental deformation zones. We propose an additional refinement that is required by complexities that form and persist in new oceans when inhomogeneous continental lithosphere/tectosphere disintegrates. Such complexities include continual plate-boundary reorganizations and migrations, distributed continental material in the ocean, propagating and dying ridges, and sagging, flexing and tilting in the oceans and at continent-ocean boundary zones. Reorganizations of stress and motion persist, resulting in variable orientations over short distances, tectonic reactivations, complex plate boundary configurations including multiple triple junctions, and the formation and abandonment of oceanic microplates. Resulting local compressions and extensions are manifest as bathymetric anomalies, vertical motions, and distributed volcanism at various times and places as the new ocean grows. Examples of regions that exhibit some or all of these features include the North Atlantic, the Rio Grande Rise/Walvis Ridge region of the South Atlantic, and the Seychelles-Mauritius region in the Indian Ocean. We suggest that these complexities arise as a result of the formation of new spreading plate boundaries by rifts propagating through continental lithosphere/tectosphere that is anisotropic as a result of inherited structure/composition and/or a sub-lithospheric mantle destabilized by lithospheric-controlled processes. Such scenarios result in complicated disintegration of continents and local persistent dynamic instability in the new ocean.
NASA Astrophysics Data System (ADS)
Heinson, G.; Key, K.; Constable, S.; White, A.
2002-12-01
We present preliminary magnetotelluric (MT) and geomagnetic depth sounding (GDS) results from the Anisotropy and Physics of the Pacific Lithosphere Experiment (APPLE). APPLE included both controlled source EM and MT components in order to provide constraints on the depth and alignment of anisotropic conductivity structure in both the crust and upper mantle. A key goal of the MT component is to provide insights into electrical conduction mechanisms in the mantle, particularly the proposal that hydrogen dissolved in olivine enhances the conduction in the a axis direction. The main survey was located on 30 Ma old lithosphere, about 1000 km west of San Diego, USA. The core location consisted of two long period MT instruments (102 - 105 s), two broadband MT instruments (101-104 s) along with four long wire electric field receivers. Around the core eight additional instruments were positioned on a 30 km radius to provide constraints on lateral heterogeneities in conductivity structure that may masquerade as mantle anisotropy. Four long period instruments were also deployed along a transect from the core to the base of the continental slope to constrain the effect of the coast on the data. These were augmented with four broadband sites in 1500 m water on the continental shelf offshore San Diego and six broadband sites in 10-350 m water offshore Torrey Pines Beach, California. Processing the MT time series yielded impedance responses that are predominantly two dimensional (2D) with large splits between the two principal MT modes (up to a factor of 10 difference in apparent resistivity), with the greatest mode split and most significant GDS response occurring at sites nearest the continental margin. This suggests that much of this first order anisotropy in the MT response is due to the juxtaposition of the conductive ocean and the resistive continental crust, and indeed a 2D inversion that includes bathymetry of the coastline as fixed structure produces a model with lithospheric resistivities in agreement with the controlled source EM results and responses that match the observed split in the MT data. However, MT sites at the core and the surrounding 30 km circle sites, which should all exhibit the same relative coast effect distortions, show differences in both impedance responses and strike directions. Thin sheet modeling shows that despite the relatively small amount of relief (seafloor gradients typically less than 1 degree slope) the MT responses are affected by the subtle variations in seafloor bathymetry. It is clear that in order to estimate how much, if any, mineral scale anisotropy exists in the mantle beneath the deep ocean, the distorting effects of the seafloor bathymetry and the nearby resistive coastline have to be considered.
Highly CO2-supersaturated melts in the Pannonian lithospheric mantle - A transient carbon reservoir?
NASA Astrophysics Data System (ADS)
Créon, Laura; Rouchon, Virgile; Youssef, Souhail; Rosenberg, Elisabeth; Delpech, Guillaume; Szabó, Csaba; Remusat, Laurent; Mostefaoui, Smail; Asimow, Paul D.; Antoshechkina, Paula M.; Ghiorso, Mark S.; Boller, Elodie; Guyot, François
2017-08-01
Subduction of carbonated crust is widely believed to generate a flux of carbon into the base of the continental lithospheric mantle, which in turn is the likely source of widespread volcanic and non-volcanic CO2 degassing in active tectonic intracontinental settings such as rifts, continental margin arcs and back-arc domains. However, the magnitude of the carbon flux through the lithosphere and the budget of stored carbon held within the lithospheric reservoir are both poorly known. We provide new constraints on the CO2 budget of the lithospheric mantle below the Pannonian Basin (Central Europe) through the study of a suite of xenoliths from the Bakony-Balaton Highland Volcanic Field. Trails of secondary fluid inclusions, silicate melt inclusions, networks of melt veins, and melt pockets with large and abundant vesicles provide numerous lines of evidence that mantle metasomatism affected the lithosphere beneath this region. We obtain a quantitative estimate of the CO2 budget of the mantle below the Pannonian Basin using a combination of innovative analytical and modeling approaches: (1) synchrotron X-ray microtomography, (2) NanoSIMS, Raman spectroscopy and microthermometry, and (3) thermodynamic models (Rhyolite-MELTS). The three-dimensional volumes reconstructed from synchrotron X-ray microtomography allow us to quantify the proportions of all petrographic phases in the samples and to visualize their textural relationships. The concentration of CO2 in glass veins and pockets ranges from 0.27 to 0.96 wt.%, higher than in typical arc magmas (0-0.25 wt.% CO2), whereas the H2O concentration ranges from 0.54 to 4.25 wt.%, on the low end for estimated primitive arc magmas (1.9-6.3 wt.% H2O). Trapping pressures for vesicles were determined by comparing CO2 concentrations in glass to CO2 saturation as a function of pressure in silicate melts, suggesting pressures between 0.69 to 1.78 GPa. These values are generally higher than trapping pressures for fluid inclusions determined by Raman spectroscopy and microthermometry (0.1-1.1 GPa). The CO2/silicate melt mass ratios in the metasomatic agent that percolated through the lithospheric mantle below the Pannonian Basin are estimated to be between 9.0 and 25.4 wt.%, values consistent with metasomatism either by (1) silicate melts already supersaturated in CO2 before reaching lithospheric depths or (2) carbonatite melts that interacted with mantle peridotite to generate carbonated silicic melts. Taking the geodynamical context of the Pannonian Basin and our calculations of the CO2/silicate melt mass ratios in the metasomatic agent into account, we suggest that slab-derived melts initially containing up to 25 wt.% of CO2 migrated into the lithospheric mantle and exsolved CO2-rich fluid that became trapped in secondary fluid inclusions upon fracturing of the peridotite mineral matrix. We propose a first-order estimate of 2000 ppm as the minimal bulk CO2 concentration in the lithospheric mantle below the Pannonian Basin. This transient carbon reservoir is believed to be degassed through the Pannonian Basin due to volcanism and tectonic events, mostly focused along the lithospheric-scale regional Mid-Hungarian shear Zone.
NASA Astrophysics Data System (ADS)
Andrés, J.; Marzán, I.; Ayarza, P.; Martí, D.; Palomeras, I.; Torné, M.; Campbell, S.; Carbonell, R.
2018-03-01
In this work the thermal structure of the Iberian Peninsula is derived from magnetic data by calculating the bottom of the magnetization, assumed to be the Curie-point depth (CPD) isotherm, which accounts for the depth at which magnetite becomes paramagnetic (580°C). Comparison of the CPD with crustal thickness maps along with a heat flow map derived from the CPD provides new insights on the lithospheric thermal regime. Within Iberia, the CPD isotherm has thickness in the range of 17 to 29 km. This isotherm is shallow (<18 km) offshore, where the lithosphere is thinner. In continental Iberia, the NW Variscan domain presents a magnetic response that is most probably linked to thickening and later extension processes during the late Variscan Orogeny, which resulted in widespread crustal melting and emplacement of granites (in the Central Iberian Arc). The signature of the CPD at the Gibraltar Arc reveals a geometry consistent with the slab roll-back geodynamic model that shaped the western Mediterranean. In offshore areas, a broad extension of magnetized upper mantle is found. Serpentinization of the upper mantle, probably triggered in an extensional context, is proposed to account for the magnetic signal. The Atlantic margin presents up to 8 km of serpentinites, which, according to the identification of exhumed mantle, correlates with a hyperextended margin. The Mediterranean also presents generalized serpentinization up to 6 km in the Algerian Basin. Furthermore, a heat flow map and a Moho temperature map derived from the CPD are presented.
Large Igneous Provinces, Mantle Plumes, and Continental Break-up: An Overview.
NASA Astrophysics Data System (ADS)
Peate, D. W.
2003-04-01
Although mantle plumes are widely implicated in models for the generation of large igneous provinces (LIPs) and the break-up of supercontinents such as Gondwana, the exact role of the mantle plume in these processes, and even the very existence of mantle plumes, is controversial and hotly debated. The large volumes of magma produced within a LIP (> 10^6 km^3) in a relative short time interval (< few Myrs) require elevated mantle temperatures such as is inferred for a plume, but it is not easy to determine whether the melting occurred as a result of the arrival of a plume head in the shallow mantle or in response to lithospheric extension. Numerous questions remain unresolved: e.g. Can all LIPs be explained by plume-like mantle upwellings, or are non-plume models such as edge-driven convection a plausible alternative?; Are plumes wet-spots rather than hot-spots?; Do they originate from the core-mantle boundary?; How important is the influence of the overlying lithosphere (limiting the upwelling and extent of melting, modifying the composition of deeper melts, and possibly acting as a source for melts)? In this presentation, I will summarise key observations from three young LIP's (< 135 Ma), each associated with continental break-up. These case studies will be: (i) North Atlantic LIP - Iceland plume, (ii) Parana-Etendeka LIP - Tristan plume, and (iii) Ethiopia-Yemen LIP - Afar plume. Aspects that will be considered include: the areal extent, volume and eruption rates of magmatism; temporal relationship of flood basalt volcanism to lithospheric extension and continental break-up; compositional similarities and differences between the flood basalts and more recent lavas from the associated plume; spatial and temporal compositional variations as a means of assessing the location and length-scales of heterogeneities in the upwelling mantle, seismic tomographic images of mantle thermal structure today; crustal structure of the rifted margins from wide-angle and reflection seismic data. These geochemical, tectonic, and geophysical observations will then be used to evaluate the role of a plume in the formation of each of the three LIP's.
NASA Astrophysics Data System (ADS)
Grevemeyer, Ingo; Ranero, Cesar; Sallares, Valenti; Prada, Manel; Booth-Rea, Guillermo; Gallart, Josep; Zitellini, Nevio
2017-04-01
The Western Mediterranean Sea is a natural laboratory to study the processes of continental extension, rifting and back-arc spreading in a convergent setting caused by rollback of fragmented subducting oceanic slabs during the latest phase of consumption of the Tethys ocean, leading to rapid extension in areas characterized by a constant convergence of the African and European Plates since Cretaceous time. Opening of the Algerian-Balearic Basin was governed by a southward and westward retreating slab 21 to 18 Myr and 18 to15 Myr ago, respectively. Opening of the Tyrrhenian Basin was controlled by the retreating Calabrian slab 6 to 2 Myr ago. Yet, little is known about the structure of the rifted margins, back-arc extension and spreading. Here we present results from three onshore/offshore seismic refraction and wide-angle lines and two offshore lines sampling passive continental margins of southeastern Spain and to the south of the Balearic promontory and the structure of the Tyrrhenian Basin to the north of Sicily. Seismic refraction and wide-angle data were acquired in the Algerian-Balearc Basin during a cruise of the German research vessel Meteor in September of 2006 and in the Tyrrhenian Sea aboard the Spanish research vessel Sarmiento de Gamboa in July of 2015. All profiles sampled both continental crust of the margins surrounding the basins and extend roughly 100 km into the Algerian-Balearic and the Tyrrhenian Basins, yielding constraints on the nature of the crust covering the seafloor in the basins and adjacent margins. Crust in the Algerian-Balearic basin is roughly 5-6 km thick and the seismic velocity structure mimics normal oceanic crust with the exception that lower crustal velocity is <6.8 km/s, clearly slower than lower crust sampled in the Pacific Basin. The seismic Moho in the Algerian-Balearic Basin occurs at 11 km below sea level, reaching >24 km under SE Spain and the Balearic Islands, displaying typical features and structure of continental crust. Offshore Sicily, continental crust reaches 22 km. However, the Tyrrhenian Basin indicates a lithosphere with velocities increasing continuously from 3 km/s to 7.5 km/s, mimicking features attributed to un-roofed and hence serpentinized mantle. Therefore, even though the opening of both basins was controlled by slab rollback, the resulting structures of the basins indicate striking differences. It is interesting to note that the continent/ocean transition zone of the margins did not show any evidence for high velocity lower crustal rocks, in contrast to what has been sampled in Western Pacific arc/back-arc systems.
Magmatism and deformation during continental breakup
NASA Astrophysics Data System (ADS)
Keir, Derek
2013-04-01
The rifting of continents and the transition to seafloor spreading is characterised by extensional faulting and thinning of the lithosphere, and is sometimes accompanied by voluminous intrusive and extrusive magmatism. In order to understand how these processes develop over time to break continents apart, we have traditionally relied on interpreting the geological record at the numerous fully developed, ancient rifted margins around the world. In these settings, however, it is difficult to discriminate between different mechanisms of extension and magmatism because the continent-ocean transition is typically buried beneath thick layers of volcanic and sedimentary rocks, and the tectonic and volcanic activity that characterised breakup has long-since ceased. Ongoing continental breakup in the African and Arabian rift systems offers a unique opportunity to address these problems because it exposes several sectors of tectonically active rift sector development spanning the transition from embryonic continental rifting in the south to incipient seafloor spreading in the north. Here I synthesise exciting, multidisciplinary observational and modelling studies using geophysical, geodetic, petrological and numerical techniques that uniquely constrain the distribution, time-scales, and interactions between extension and magmatism during the progressive breakup of the African Plate. This new research has identified the previously unrecognised role of rapid and episodic dike emplacement in accommodating a large proportion of extension during continental rifting. We are now beginning to realise that changes in the dominant mechanism for strain over time (faulting, stretching and magma intrusion) impact dramatically on magmatism and rift morphology. The challenge now is to take what we're learned from East Africa and apply it to the rifted margins whose geological record documents breakup during entire Wilson Cycles.
Towards Understanding the Sunda and Banda Arcs
NASA Astrophysics Data System (ADS)
Hall, R.
2014-12-01
The present change from oceanic subduction beneath the Sunda Arc to arc-continent collision east of Sumba is merely the latest stage in a complex collision history that began more than 20 million years ago. Understanding present-day tectonics requires restoring the pre-collisional margins and unravelling the history of the entire Sunda-Banda Arc, not just a segment centred on Sumba. Seismic tomography displays a single folded slab beneath the Banda Arc around which mantle has flowed. Above this is a wide actively deforming zone of complex geology. Australian crust was first added to the Sunda margin in the Cretaceous. Early Miocene closure of the oceanic gap north of Australia led to further additions of continental crust during collision of the Sula Spur. Few microcontinental fragments were sliced from New Guinea as commonly interpreted. Most are parts of the Sula Spur fragmented by extension and strike-slip faulting during development of subduction zones and rollback into the Banda embayment. Many metamorphic 'basement' rocks are significantly younger than expected. They were metamorphosed during multiple episodes of extension which also exhumed the sub-lithospheric mantle, melted the deep continental crust, created new ocean basins, and dispersed continental crust throughout the inner and outer arc, and forearc, so that in places Australian crust is colliding with Australian crust. Thus, many of the arc volcanoes are built on continental not oceanic crust, and sediment eroded from recently emergent islands is compositionally different to subducted sediment that contributed to arc magmas. The published literature is inadequate. New fieldwork and data are required, particularly in remote areas, with integration of information from a variety of sources (e.g. industry seismic and multibeam bathymetry, remotely acquired imagery) and sub-disciplines (e.g. geochronology, geochemistry, seismology, modelling). No single methodology can provide a complete solution.
Global thermal models of the lithosphere
NASA Astrophysics Data System (ADS)
Cammarano, F.; Guerri, M.
2017-12-01
Unraveling the thermal structure of the outermost shell of our planet is key for understanding its evolution. We obtain temperatures from interpretation of global shear-velocity (VS) models. Long-wavelength thermal structure is well determined by seismic models and only slightly affected by compositional effects and uncertainties in mineral-physics properties. Absolute temperatures and gradients with depth, however, are not well constrained. Adding constraints from petrology, heat-flow observations and thermal evolution of oceanic lithosphere help to better estimate absolute temperatures in the top part of the lithosphere. We produce global thermal models of the lithosphere at different spatial resolution, up to spherical-harmonics degree 24, and provide estimated standard deviations. We provide purely seismic thermal (TS) model and hybrid models where temperatures are corrected with steady-state conductive geotherms on continents and cooling model temperatures on oceanic regions. All relevant physical properties, with the exception of thermal conductivity, are based on a self-consistent thermodynamical modelling approach. Our global thermal models also include density and compressional-wave velocities (VP) as obtained either assuming no lateral variations in composition or a simple reference 3-D compositional structure, which takes into account a chemically depleted continental lithosphere. We found that seismically-derived temperatures in continental lithosphere fit well, overall, with continental geotherms, but a large variation in radiogenic heat is required to reconcile them with heat flow (long wavelength) observations. Oceanic shallow lithosphere below mid-oceanic ridges and young oceans is colder than expected, confirming the possible presence of a dehydration boundary around 80 km depth already suggested in previous studies. The global thermal models should serve as the basis to move at a smaller spatial scale, where additional thermo-chemical variations required by geophysical observations can be included.
Large-scale variation in lithospheric structure along and across the Kenya rift
Prodehl, C.; Mechie, J.; Kaminski, W.; Fuchs, K.; Grosse, C.; Hoffmann, H.; Stangl, R.; Stellrecht, R.; Khan, M.A.; Maguire, Peter K.H.; Kirk, W.; Keller, Gordon R.; Githui, A.; Baker, M.; Mooney, W.; Criley, E.; Luetgert, J.; Jacob, B.; Thybo, H.; Demartin, M.; Scarascia, S.; Hirn, A.; Bowman, J.R.; Nyambok, I.; Gaciri, S.; Patel, J.; Dindi, E.; Griffiths, D.H.; King, R.F.; Mussett, A.E.; Braile, L.W.; Thompson, G.; Olsen, K.; Harder, S.; Vees, R.; Gajewski, D.; Schulte, A.; Obel, J.; Mwango, F.; Mukinya, J.; Riaroh, D.
1991-01-01
The Kenya rift is one of the classic examples of a continental rift zone: models for its evolution range from extension of the lithosphere by pure shear1, through extension by simple shear2, to diapiric upwelling of an asthenolith3. Following a pilot study in 19854, the present work involved the shooting of three seismic refraction and wide-angle reflection profiles along the axis, across the margins, and on the northeastern flank of the rift (Fig. 1). These lines were intended to reconcile the different crustal thickness estimates for the northern and southern parts of the rift4-6 and to reveal the structure across the rift, including that beneath the flanks. The data, presented here, reveal significant lateral variations in structure both along and across the rift. The crust thins along the rift axis from 35 km in the south to 20 km in the north; there are abrupt changes in Mono depth and uppermost-mantle seismic velocity across the rift margins, and crustal thickening across the boundary between the Archaean craton and PanAfrican orogenic belt immediately west of the rift. These results suggest that thickened crust may have controlled the rift's location, that there is a decrease in extension from north to south, and that the upper mantle immediately beneath the rift may contain reservoirs of magma generated at greater depth.
NASA Astrophysics Data System (ADS)
Keller, G. R.; Mickus, K. L.; Gurrola, H.; Harry, D. L.; Pulliam, J.
2016-12-01
A full understanding of the Gulf of Mexico's geologic history depends on understanding the tectonic framework along the southern margin of North America. The first step in establishing this framework was the breakup of Laurentia during the Early Paleozoic. At least one tectonic block rifted away from Laurentia's southern margin at this time, and is interpreted to be presently located in Argentina. Rifting resulted in a sinuous margin consisting of alternating ridge and transform segments extending from the southeastern U.S. across Texas into northern Mexico. The Paleozoic margin is associated with a clearly defined gravity high, and ends in the trend of this high are associated with intersections of ridge and transform segments along the margin. By the end of the Paleozoic, continental assembly via the Appalachian-Ouachita orogeny added new terranes to the eastern and southern margins of Laurentia and the assembly of the supercontinent Pangea was complete. Triassic through Late Jurassic opening of the Gulf of Mexico (GOM) created a complex margin, initially mobilizing several crustal blocks that were eventually left behind on the North American margin as seafloor spreading developed within the Gulf and the Yucatan block separated and rotated into its current position. Recent deep seismic reflection profiles along the northern margin of the GOM show that rifted continental crust extends offshore for 250 km before the oceanic crust of the Gulf of Mexico is encountered. Our group has worked to produce four integrated models of the lithospheric structure based upon reflection, refraction, and teleseismic data acquired across this margin integrated with gravity, magnetic, geologic and drilling data. These models define a complex zone of crustal thinning along the Gulf Coastal plain of Texas that is covered by up to 10km of primarily Cretaceous and younger sedimentary rocks. To the east along the coastal plain region, we have defined two large crustal blocks that were essentially left behind by the opening of the Gulf of Mexico.
ERIC Educational Resources Information Center
Diecchio, Richard Joseph
1995-01-01
Presents simple laboratory experiments to help students understand the principle of buoyancy and mass balance. Buoyancy experiments can simulate lithospheric mass balance, crustal loading and unloading, and can be used to model differences between the oceanic and continental lithosphere. (MKR)
Anomalous Late Jurassic motion of the Pacific Plate with implications for true polar wander
NASA Astrophysics Data System (ADS)
Fu, R. R.; Kent, D.
2017-12-01
True polar wander, or TPW, is the rotation of the entire mantle-crust system that results in simultaneous change in latitude and orientation for all lithospheric plates. One of the most recent candidate TPW events consists of a 30˚ rotation during Late Jurassic time (160 - 145 Ma). However, existing paleomagnetic documentation of this event derives exclusively from continental studies. Because all major landmasses except China were connected directly or via spreading centers in the Late Jurassic, the velocities of these continents were mutually constrained and their motion as a group over the underlying mantle would be indistinguishable from TPW using only continental data. On the other hand, plates of the Pacific Basin constituted a kinematically independent domain, interfacing with continents at subduction zones and slip-strike boundaries. Coherent motion of both Pacific Basin and continental plates would therefore indicate uniform motion of virtually the entire lithosphere, providing a means to distinguish TPW from continental drift. We performed thermal demagnetization on remaining samples from Ocean Drilling Program (ODP) Site 801B, which were cored from the oldest sampled oceanic crust in the Western Pacific, to determine its change in paleolatitude during the Late Jurassic and Early Cretaceous (167 - 134 Ma). We find that the Pacific Plate likely underwent a steady southward drift during this time period, consistent with previous results from magnetic anomalies, except for an episode of northward motion between Oxfordian and Tithonian time (161 - 147 Ma). Although the amplitude of this northward shift is subject to significant uncertainty due to the sparse recovery of core samples, the trajectory of the Pacific Plate is most simply explained by TPW in the 160 - 145 Ma interval as inferred from continental data. Furthermore, such an interpretation is consistent with the sense of shear inferred at the Farallon-North American Plate boundary, whereas uniform motion of the Pacific Plate without TPW contradicts inferred relative motions. The Late Jurassic motion of the Pacific Plate therefore provides support for the occurrence of TPW. Candidate drivers for such an event include subducting slabs at the western margin of North America and the Mongol-Okhotsk Ocean and mantle plumes associated with the Paraná LIP.
Compressional intracontinental orogens: Ancient and modern perspectives
NASA Astrophysics Data System (ADS)
Raimondo, Tom; Hand, Martin; Collins, William J.
2014-03-01
Compressional intracontinental orogens are major zones of crustal thickening produced at large distances from active plate boundaries. Consequently, any account of their initiation and subsequent evolution must be framed outside conventional plate tectonics theory, which can only explain the proximal effects of convergent plate-margin interactions. This review considers a range of hypotheses regarding the origins and transmission of compressive stresses in intraplate settings. Both plate-boundary and intraplate stress sources are investigated as potential driving forces, and their relationship to rheological models of the lithosphere is addressed. The controls on strain localisation are then evaluated, focusing on the response of the lithosphere to the weakening effects of structural, thermal and fluid processes. With reference to the characteristic features of intracontinental orogens in central Asia (the Tien Shan) and central Australia (the Petermann and Alice Springs Orogens), it is argued that their formation is largely driven by in-plane stresses generated at plate boundaries, with the lithosphere acting as an effective stress guide. This implies a strong lithospheric mantle rheology, in order to account for far-field stress propagation through the discontinuous upper crust and to enable the support of thick uplifted crustal wedges. Alternative models of intraplate stress generation, primarily involving mantle downwelling, are rejected on the grounds that their predicted temporal and spatial scales for orogenesis are inconsistent with the observed records of deformation. Finally, inherited mechanical weaknesses, thick sedimentary blanketing over a strongly heat-producing crust, and pervasive reaction softening of deep fault networks are identified as important and interrelated controls on the ability of the lithosphere to accommodate rather than transmit stress. These effects ultimately produce orogenic zones with architectural features and evolutionary histories strongly reminiscent of typical collisional belts, suggesting that the deformational response of continental crust is remarkably similar in different tectonic settings.
NASA Astrophysics Data System (ADS)
Janbakhsh, P.; Pysklywec, R.
2017-12-01
2D numerical modeling techniques have made great contribution to understanding geodynamic processes involved in crustal and lithospheric scale deformations for the past 20 years. The aim of this presentation is to expand the scope covered by previous researchers to 3 dimensions to address out-of-plane intrusion and extrusion of mantle material in and out of model space, and toroidal mantle wedge flows. In addition, 3D velocity boundary conditions can create more realistic models to replicate real case scenarios. 3D numerical experiments that will be presented are designed to investigate the density and viscosity effects of lower crustal eclogitization on the decoupling process of continental mantle lithosphere from the crust and its delamination. In addition, these models examine near-field effects of a subducting ocean lithosphere and a lithospheric scale fault zone on the evolution of the processes. The model solutions and predictions will also be compared against the Anatolian geology where subduction of Aegean and Arabian slabs, and the northern boundary with the North Anatolian Fault Zone are considered as two main contributing factors to anomalous crustal uplift, missing mantle lithosphere, and anomalous surface heat flux.
NASA Astrophysics Data System (ADS)
Torne, Montserrat; Zeyen, Hermann; Jimenez-Munt, Ivone; Fernandez, Manel; Vergés, Jaume
2017-04-01
We investigate the lithospheric density structure of the Iberian Peninsula and the surrounding Atlantic and Mediterranean margins from a 3D joint inversion of free-air, geoid and elevation data, based on a Bayesian approach. In addition, the crustal structure has been further constrained by incorporating about 750 Moho values from DSS investigations and RF analysis covering the entire region. Our preliminary results shows a significant lithospheric deformation along the plate boundaries, the Bay of Biscay-Pyrenees to the North and the Azores-Gibraltar to the south, where the CMB and LAB are located at depths more than 45 and 150 km, respectively. Noteworthy is the arcuate lithospheric thickening located at the westernmost end of the Gibraltar Arc system showing the presence of the NW-to-Westward retreated Gibraltar Arc slab that has given rise to the formation of the Betics-Rif Alpine belt system and the back arc Alboran basin. To the west, the stable-slightly deformed Iberian massif shows a quasi-flat CMB and LAB topography (30 to 32 km and about 110 km, respectively). The crust and mantle lithosphere thin towards the Mediterranean and Atlantic margins, with the exception of its northern margin where lithospheric thickening extends offshore to the Gulf of Biscay. In the western Mediterranean the SE-Neogene slab retreat has resulted in a significant thinning of the crust and mantle lithosphere. Thin lithosphere is also observed in the Tagus-Horseshoe abyssal plain region where the LAB shallows to less than 90 km. This work has been funded by the Spanish projects MITE (CGL2014-59516-P) and WEME-CSIC project 201330E11.
NASA Astrophysics Data System (ADS)
Handy, Mark R.; Ustaszewski, Kamil; Kissling, Eduard
2015-01-01
Palinspastic map reconstructions and plate motion studies reveal that switches in subduction polarity and the opening of slab gaps beneath the Alps and Dinarides were triggered by slab tearing and involved widespread intracrustal and crust-mantle decoupling during Adria-Europe collision. In particular, the switch from south-directed European subduction to north-directed "wrong-way" Adriatic subduction beneath the Eastern Alps was preconditioned by two slab-tearing events that were continuous in Cenozoic time: (1) late Eocene to early Oligocene rupturing of the oppositely dipping European and Adriatic slabs; these ruptures nucleated along a trench-trench transfer fault connecting the Alps and Dinarides; (2) Oligocene to Miocene steepening and tearing of the remaining European slab under the Eastern Alps and western Carpathians, while subduction of European lithosphere continued beneath the Western and Central Alps. Following the first event, post-late Eocene NW motion of the Adriatic Plate with respect to Europe opened a gap along the Alps-Dinarides transfer fault which was filled with upwelling asthenosphere. The resulting thermal erosion of the lithosphere led to the present slab gap beneath the northern Dinarides. This upwelling also weakened the upper plate of the easternmost part of the Alpine orogen and induced widespread crust-mantle decoupling, thus facilitating Pannonian extension and roll-back subduction of the Carpathian oceanic embayment. The second slab-tearing event triggered uplift and peneplainization in the Eastern Alps while opening a second slab gap, still present between the Eastern and Central Alps, that was partly filled by northward counterclockwise subduction of previously unsubducted Adriatic continental lithosphere. In Miocene time, Adriatic subduction thus jumped westward from the Dinarides into the heart of the Alpine orogen, where northward indentation and wedging of Adriatic crust led to rapid exhumation and orogen-parallel escape of decoupled Eastern Alpine crust toward the Pannonian Basin. The plate reconstructions presented here suggest that Miocene subduction and indentation of Adriatic lithosphere in the Eastern Alps were driven primarily by the northward push of the African Plate and possibly enhanced by neutral buoyancy of the slab itself, which included dense lower crust of the Adriatic continental margin.
Lateral variations in lithospheric and landscape evolution at both ends of the Himalaya-Tibet orogen
NASA Astrophysics Data System (ADS)
Zeitler, P. K.; Schmidt, J. L.; Meltzer, A.
2015-12-01
At the broadest scale, like many orogens the Himalaya encompass a range of orogenic features that are remarkably similar along much of the length of the mountain belt and its neighboring terranes. At one scale of consideration, these similarities appear to be a signal that fundamental processes associated with lithospheric collision have been active. However, the vast size of the Himalaya and Tibet, the different climate regimes experienced by the orogen across time and space, and the along-strike variations in the continental and arc margins that faced one another before collision, make it at once remarkable that any similarities exist, and important to more critically evaluate their nature. The eastern and western Himalayan syntaxes confound any attempt to generalize too much about the Himalaya-Tibet orogen. By area these features occupy at least 25% of the orogenic belt, and compared to the "main" portions of the arc they show clear differences in their lithospheric structures, landscapes, and evolution. The boundary and initial conditions that shaped the eastern and western indentor corners were and are different, as is the nature and timing of erosional exhumation. Some of the most active geologic processes on Earth have recently been in play within the syntaxes, and the evolution of landscapes and fluvial systems, important in developing the sedimentary record of the Himalaya-Tibet system, has been complex and variable in space and time. Southeasternmost Tibet and the Lhasa Block in particular exemplify this complexity both in its complex topographic evolution linked to surface processes and climate, and in lateral variability in lithospheric structure. Taking a system viewpoint, an important question to debate is the degree to which there are features in the Himalaya-Tibet system that are robustly emergent, given the broad boundary conditions of the continental collision plus the suite of local and regional geodynamical processes that have operated during orogenesis. A related question is the degree to which the variability seen within the orogen represents important information about process that is exportable to other orogens, or is in effect tectonic noise contingent on local geologic details and secular changes.
Crustal growth in subduction zones
NASA Astrophysics Data System (ADS)
Vogt, Katharina; Castro, Antonio; Gerya, Taras
2015-04-01
There is a broad interest in understanding the physical principles leading to arc magmatisim at active continental margins and different mechanisms have been proposed to account for the composition and evolution of the continental crust. It is widely accepted that water released from the subducting plate lowers the melting temperature of the overlying mantle allowing for "flux melting" of the hydrated mantle. However, relamination of subducted crustal material to the base of the continental crust has been recently suggested to account for the growth and composition of the continental crust. We use petrological-thermo-mechanical models of active subduction zones to demonstrate that subduction of crustal material to sublithospheric depth may result in the formation of a tectonic rock mélange composed of basalt, sediment and hydrated /serpentinized mantle. This rock mélange may evolve into a partially molten diapir at asthenospheric depth and rise through the mantle because of its intrinsic buoyancy prior to emplacement at crustal levels (relamination). This process can be episodic and long-lived, forming successive diapirs that represent multiple magma pulses. Recent laboratory experiments of Castro et al. (2013) have demonstrated that reactions between these crustal components (i.e. basalt and sediment) produce andesitic melt typical for rocks of the continental crust. However, melt derived from a composite diapir will inherit the geochemical characteristics of its source and show distinct temporal variations of radiogenic isotopes based on the proportions of basalt and sediment in the source (Vogt et al., 2013). Hence, partial melting of a composite diapir is expected to produce melt with a constant major element composition, but substantial changes in terms of radiogenic isotopes. However, crustal growth at active continental margins may also involve accretionary processes by which new material is added to the continental crust. Oceanic plateaus and other crustal units may collide with continental margins to form collisional orogens and accreted terranes in places where oceanic lithosphere is recycled back into the mantle. We use thermomechanical-petrological models of an oceanic-continental subduction zone to analyse the dynamics of terrane accretion and its implications to arc magmatisim. It is shown that terrane accretion may result in the rapid growth of continental crust, which is in accordance with geological data on some major segments of the continental crust. Direct consequences of terrane accretion may include slab break off, subduction zone transference, structural reworking, formation of high-pressure terranes and partial melting (Vogt and Gerya., 2014), forming complex suture zones of accreted and partially molten units. Castro, A., Vogt, K., Gerya, T., 2013. Generation of new continental crust by sublithospheric silicic-magma relamination in arcs: A test of Taylor's andesite model. Gondwana Research, 23, 1554-1566. Vogt, K., Castro, A., Gerya, T., 2013. Numerical modeling of geochemical variations caused by crustal relamination. Geochemistry, Geophysics, Geosystems, 14, 470-487. Vogt, K., Gerya, T., 2014. From oceanic plateaus to allochthonous terranes: Numerical Modelling. Gondwana Research, 25, 494-508
Crustal structure of the Murray Ridge, northwest Indian Ocean, from wide-angle seismic data
NASA Astrophysics Data System (ADS)
Minshull, T. A.; Edwards, R. A.; Flueh, E. R.
2015-07-01
The Murray Ridge/Dalrymple Trough system forms the boundary between the Indian and Arabian plates in the northern Arabian Sea. Geodetic constraints from the surrounding continents suggest that this plate boundary is undergoing oblique extension at a rate of a few millimetres per year. We present wide-angle seismic data that constrains the composition of the Ridge and of adjacent lithosphere beneath the Indus Fan. We infer that Murray Ridge, like the adjacent Dalrymple Trough, is underlain by continental crust, while a thin crustal section beneath the Indus Fan represents thinned continental crust or exhumed serpentinized mantle that forms part of a magma-poor rifted margin. Changes in crustal structure across the Murray Ridge and Dalrymple Trough can explain short-wavelength gravity anomalies, but a long-wavelength anomaly must be attributed to deeper density contrasts that may result from a large age contrast across the plate boundary. The origin of this fragment of continental crust remains enigmatic, but the presence of basement fabrics to the south that are roughly parallel to Murray Ridge suggests that it separated from the India/Seychelles/Madagascar block by extension during early breakup of Gondwana.
Obduction: Why, how and where. Clues from analog models
NASA Astrophysics Data System (ADS)
Agard, P.; Zuo, X.; Funiciello, F.; Bellahsen, N.; Faccenna, C.; Savva, D.
2014-05-01
Obduction is an odd geodynamic process characterized by the emplacement of dense oceanic “ophiolites” atop light continental plates in convergent settings. We herein present analog models specifically designed to explore the conditions (i.e., sharp increase of plate velocities - herein coined as ‘acceleration’, slab interaction with the 660 km discontinuity, ridge subduction) under which obduction may develop as a result of subduction initiation. The experimental setup comprises an upper mantle modeled as a low-viscosity transparent Newtonian glucose syrup filling a rigid Plexiglas tank and high-viscosity silicone plates. Convergence is simulated by pushing a piston with plate tectonics like velocities (1-10 cm/yr) onto a model comprising a continental margin, a weakness zone with variable resistance and dip (W), an oceanic plate (with or without a spreading ridge), a preexisting subduction zone (S) dipping away from the piston and an upper active continental margin, below which the oceanic plate is being subducted at the start of the model (as for the Neotethyan natural example). Several configurations were tested over thirty-five parametric models, with special emphasis on comparing different types of weakness zone and the degree of mechanical coupling across them. Measurements of displacements and internal deformation allow for a precise and reproducible tracking of deformation. Models consistently demonstrate that once conditions to initiate subduction are reached, obduction may develop further depending on the effective strength of W. Results (1) constrain the range of physical conditions required for obduction to develop/nucleate and (2) underline the key role of such perturbations for triggering obduction, particularly plate ‘acceleration’. They provide an explanation to the short-lived Peri-Arabic obduction, which took place along thousands of km almost synchronously (within ∼50-10 Myr), from Turkey to Oman, while the subduction zone beneath Eurasia became temporarily jammed. They also demonstrate that the emplacement of dense, oceanic material on continental lithosphere is not a mysterious process requiring extraordinary boundary conditions but results from large-scale, normal (oceanic then continental) subduction processes.
Sub-Moho Reflectors, Mantle Faults and Lithospheric Rheology
NASA Astrophysics Data System (ADS)
Brown, L. D.
2013-12-01
One of the most unexpected and dramatic observations from the early years of deep reflection profiling of the continents using multichannel CMP techniques was the existing of prominent reflections from the upper mantle. The first of these, the Flannan thrust/fault/feature, was traced by marine profiling of the continental margin offshore Britain by the BIRPS program, which soon found them to be but one of several clear sub-crustal discontinuities in that area. Subsequently, similar mantle reflectors have been observed in many areas around the world, most commonly beneath Precambrian cratonic areas. Many, but not all, of these mantle reflections appear to arise from near the overlying Moho or within the lower crust before dipping well into the mantle. Others occur as subhorizontal events at various depths with the mantle, with one suite seeming to cluster at a depth of about 75 km. The dipping events have been variously interpreted as mantle roots of crustal normal faults or the deep extension of crustal thrust faults. The most common interpretation, however, is that these dipping events are the relicts of ancient subduction zones, the stumps of now detached Benioff zones long since reclaimed by the deeper mantle. In addition to the BIRPS reflectors, the best known examples include those beneath Fennoscandia in northern Europe, the Abitibi-Grenville of eastern Canada, and the Slave Province of northwestern Canada (e.g. on the SNORCLE profile). The most recently reported example is from beneath the Sichuan Basin of central China. The preservation of these coherent, and relatively delicate appearing, features beneath older continental crust and presumably within equally old (of not older) mantle lithosphere, has profound implications for the history and rheology of the lithosphere in these areas. If they represent, as widely believe, some form of faulting with the lithosphere, they provide corollary constraints on the nature of faulting in both the lower crust and upper mantle. The SNORCLE mantle reflectors, which can be traced deep within the early Precambrian (?) mantle by both surface (controlled source) reflection profiles and passive (receiver function) images most clearly illustrates the rheological implications of such feature. The SNORCLE events appear to root upwards into the lower crust and extend to depths approaching 200 km into the mantle. This would seem to require the preservation of undeformed mantle lithosphere for almost 2.5 billion years in this area. This preservation is clearly inconsistent with the interpretation of nearby shallower mantle interfaces as marking the modern lithosphere-asthenosphere boundary. In summary, dipping mantle reflections imply preservation of substantial thicknesses of mantle lithosphere for very long periods of time, and localization of mantle deformation during the formation of these structures along relatively narrow, discrete interfaces rather than across broad zones of diffuse deformation. .
The Hikurangi Plateau: Tectonic Ricochet and Accretion
NASA Astrophysics Data System (ADS)
Willis, David; Moresi, Louis; Betts, Peter; Whittaker, Joanne
2015-04-01
80 million years between interactions with different subduction systems provided time for the Hikurangi Plateau and Pacific Ocean lithosphere to cool, densify and strengthen. Neogene subduction of the Hikurangi Plateau occurring orthogonal to its Cretaceous predecessor, provides a unique opportunity to explore how changes to the physical properties of oceanic lithosphere affect subduction dynamics. We used Underworld to build mechanically consistent collision models to understand the dynamics of the two Hikurangi collisions. The Hikurangi Plateau is a ~112 Ma, 15km thick oceanic plateau that has been entrained by subduction zones immediately preceding the final break-up of Eastern Gondwana and currently within the active Hikurangi Margin. We explore why attempted subduction of the plateau has resulted in vastly different dynamics on two separate occasions. Slab break-off occured during the collision with Gondwana, currently there is apparent subduction of the plateau underneath New Zealand. At ~100Ma the young, hot Hikurangi Plateau, positively buoyant with respect to the underlying mantle, impacted a Gondwana Margin under rapid extension after the subduction of an mid-ocean ridge 10-15Ma earlier. Modelling of plateaus within young oceanic crust indicates that subduction of the thickened crust was unlikely to occur. Frontal accretion of the plateau and accompanying slab break-off is expected to have occured rapidly after its arrival. The weak, young slab was susceptible to lateral propagation of the ~1500 km window opened by the collision, and break-off would have progressed along the subduction zone inhibiting the "step-back" of the trench seen in older plates. Slab break-off coincided with a world-wide reorganisation of plate velocites, and orogenic collapse along the Gondwana margin characterised by rapid extension and thinning of the over-riding continental plate from ~60 to 30km. Following extension, Zealandia migrated to the NW until the Miocene allowing the oceanic crust time to densify and strengthen. At ~23Ma, the inception of the Hikurangi Subduction Zone drove the scissor rotation of the Australian and Pacific Plates creating displacement along the Alpine Fault. The Hikurangi Plateau was once again drawn into the subduction system, this time with subduction occurring orthogonal to the Cretaceous suture. The northern margin of the plateau has begun to subduct, but towards the southern terminus, the trench appears to be pinned. The result of the locked subduction zone is the asymmetric roll-back of the Hikurangi-Kermadec-Tonga subduction system around the point where the trench transitions from roll-back to shortening. The oceanic Pacific lithosphere is now signficantly negatively buoyant while the thickened lithosphere of the plateau maintains a slight positive buoyancy. The oceanic crust provides sufficient slab pull to drive subduction of the northern plateau, aided by the thin ~500km width of the plateaus subducting front. The increased strength profile of the older subducting lithosphere allows buoyancy forces to be transmitted to the over-riding plate, allowing continued convergence and hindering slab-breakoff.
NASA Astrophysics Data System (ADS)
Pan, L., Sr.; Ren, J.
2017-12-01
The South China Sea (SCS) is one of the largest marginal sea on southeast Asia continental margin, developed Paleogene extension-rifting continental margin system which is rare in the world and preserving many deformed characterizes of this kind system. With the investigation of the SCS, guiding by the development of tectonics and geo-physics, especially the development of tectonics and the high quality seismic data based on the development of geo-physics, people gradually accept that the northern margin of the SCS has some detachment basin characterizes. After researching the northern margin of the SCS, we come up with lithosphere profiles across the shelf, slope and deep sea basin in the northeast of the SCS to confirm the tectonic style of ocean-continental transition and the property of the detachment fault. Furthermore, we describe the outline of large detachment basins at northern SCS. Based on the large number of high-quality 2D and 3D deep seismic profile(TWT,10s), drilling and logging data, combined with domestic and international relevant researches, using basin dynamics and tectono-stratigraphy theory, techniques and methods of geology and geophysics, qualitative and quantitative, we describe the formation of the detachment basin and calculate the fault activity rate, stretching factor and settlement. According to the research, we propose that there is a giant and complete detachment basin system in the northern SCS and suggest three conclusions. First of all, the detachment basin system can be divided into three domains: proximal domain covering the Yangjiang Sag, Shenhu uplift and part of Shunde Sag, necking zone covering part of the Shunde Sag and Heshan Sag, distal domain covering most part of Heshan Sag. Second, the difference of the stretching factor is observed along the three domains of the detachment basin system. The factor of the proximal domain is the minimum among them. On the other side, the distal domain is the maximum among them. This phenomenon can be concluded as the factor is gradually increasing from the continent to the ocean. Third, the development of detachment basin is episodic which can be divided into two stages approximately: the rifting and thermal subsidence.
NASA Astrophysics Data System (ADS)
Corre, B.; Lagabrielle, Y.; Labaume, P.; Lahfid, A.; Boulvais, P.; Bergamini, G.; Fourcade, S.; Clerc, C. N.; Asti, R.
2017-12-01
Subcontinental lithospheric mantle rocks are exhumed at the foot of magma-poor distal passive margins as a response to extreme stretching of the continental crust. The North-Pyrenean Zone (NPZ) exposes remnants of such extremely stretched paleo-passive margin that represent field analogues to study the processes of continental crust thinning and mantle exhumation. The NPZ results from the inversion of basins opened between the Iberia and Europa plates during Albo-Cenomanian times. The Chaînons Béarnais belt displays a fold-and-thrust structure involving the Mesozoic sedimentary cover associated with peridotite bodies in tectonic contact with Paleozoic basement lenses of small size. Continental extension developed under hot thermal conditions, as demonstrated by the syn-metamorphic Cretaceous ductile deformation affecting both the crustal basement and the Mesozoic cover. In this study, we present structural and geochemical data providing constraints to reconstruct the evolution of this paleo-margin. Field work confirms that the Mesozoic cover is intimately associated with mantle rocks and thin tectonic lenses of middle crust. Micro-structural studies show that the greenschist facies ductile deformation in the crust produced a mylonitic foliation which is always parallel to the crust/mantle contact. The crust/mantle detachment fault is a major shear zone characterized by anastomosed shear bands. It also shows that the pre-rift cover was detached from its bedrock at the Keuper evaporites level and was welded to mantle rocks during their exhumation at the foot of the margin. We show that: (i) the boudinaged pre-rift sediments have undergone drastic syn-metamorphic thinning with the genesis of a S0/S1 foliation and, (ii) the Paleozoic basement has been ductilely deformed, into thin tectonic lenses that remained welded to the exhumed mantle rocks. The ductile behavior is related to the presence of a thick pre- and syn-rift cover acting as an efficient thermal blanket. This new geological data set highlights important characteristics of ductile-type hyper-extended passive margin. Finally, we stress that studying field analogues represents a major tool to better understand the mechanisms of crustal thinning associated with mantle exhumation and their structural inheritance during tectonic inversion.
The Main Ethiopian Rift: a Narrow Rift in a Hot Craton?
NASA Astrophysics Data System (ADS)
Gashawbeza, E.; Keranen, K.; Klemperer, S.; Lawrence, J.
2008-12-01
The Main Ethiopian Rift (MER) is a classic example of a narrow rift, but a synthesis of our results from the EAGLE (Ethiopia-Afar Geoscientific Lithospheric Experiment Phase I broadband experiment) and from the EBSE experiment (Ethiopia Broadband Seismic Experiment) suggests the MER formed in thin, hot, weak continental lithosphere, in strong contrast with predictions of the Buck model of modes of continental lithospheric extension. Our joint inversion of receiver functions and Rayleigh-wave group velocities yields shear-wave velocities of the lowermost crust and uppermost mantle across the MER and the Ethiopian Plateau that are significantly lower than the equivalent velocities in the Eastern and Western branches of the East African Rift System. The very low shear-wave velocities, high electrical conductivity in the lower-crust, and high shear-wave splitting delay times beneath a very broad region of the MER and the Ethiopian Plateau indicate that the lower-crust is hot and likely contains partial melt. Our S-receiver function data demonstrate shallowing of the lithosphere-asthenosphere boundary from 90 km beneath the northwestern Ethiopian Plateau to 60 km beneath the MER. Although we lack good spatial resolution on the lithosphere-asthenosphere boundary, the region of thinned lithosphere may be intermediate in width between the narrow surface rift (< 100 km) and the broader zone of strain in the lower crust (~ 300 km). The MER developed as a narrow rift at the surface, localized along the Neoproterozoic suture that joined East and West Gondwana. However, a far broader of lower crust and uppermost mantle remains thermally weakened since the Oligocene formation of the flood basalts by the Afar plume head. If the lithosphere- asthenosphere boundary is indeed a strain marker then lithospheric mantle deformation is localized beneath the surface rift. The development of both the Eastern/Western branches of the East African Rift System to the south and of the MER in the north as narrow rifts, despite vastly different lithospheric strength profiles, indicates that inherited structure, rather than rheological stratification, is the primary control on the mode of extension in these continental rifts.
NASA Astrophysics Data System (ADS)
Alene, Mulugeta; Hart, William K.; Saylor, Beverly Z.; Deino, Alan; Mertzman, Stanley; Haile-Selassie, Yohannes; Gibert, Luis B.
2017-06-01
The Woranso-Mille (WORMIL) area in the west-central Afar, Ethiopia, contains several Pliocene basalt flows, tuffs, and fossiliferous volcaniclastic beds. We present whole-rock major- and trace-element data including REE, and Sr-Nd-Pb isotope ratios from these basalts to characterize the geochemistry, constrain petrogenetic processes, and infer mantle sources. Six basalt groups are distinguished stratigraphically and geochemically within the interval from 3.8 to 3 Ma. The elemental and isotopic data show intra- and inter-group variations derived primarily from source heterogeneity and polybaric crystallization ± crustal inputs. The combined Sr-Nd-Pb isotope data indicate the involvement of three main reservoirs: the Afar plume, depleted mantle, and enriched continental lithosphere (mantle ± crust). Trace element patterns and ratios further indicate the basalts were generated from spinel-dominated shallow melting, consistent with significantly thinned Pliocene lithosphere in western Afar. The on-land continuation of the Aden rift into western Afar during the Pliocene is reexamined in the context of the new geochemistry and age constraints of the WORMIL basalts. The new data reinforce previous interpretations that progressive rifting and transformation of the continental lithosphere to oceanic lithosphere allows for increasing asthenospheric inputs through time as the continental lithosphere is thinned. Accepted trace element values for BHVO-2 are those recently recommended by Jochum et al. (2016) rounded to provide the same significant figures as the data. Ternary model after Schilling et al. (1992); Endmembers from Rooney et al. (2012).
Asymmetric three-dimensional topography over mantle plumes.
Burov, Evgueni; Gerya, Taras
2014-09-04
The role of mantle-lithosphere interactions in shaping surface topography has long been debated. In general, it is supposed that mantle plumes and vertical mantle flows result in axisymmetric, long-wavelength topography, which strongly differs from the generally asymmetric short-wavelength topography created by intraplate tectonic forces. However, identification of mantle-induced topography is difficult, especially in the continents. It can be argued therefore that complex brittle-ductile rheology and stratification of the continental lithosphere result in short-wavelength modulation and localization of deformation induced by mantle flow. This deformation should also be affected by far-field stresses and, hence, interplay with the 'tectonic' topography (for example, in the 'active/passive' rifting scenario). Testing these ideas requires fully coupled three-dimensional numerical modelling of mantle-lithosphere interactions, which so far has not been possible owing to the conceptual and technical limitations of earlier approaches. Here we present new, ultra-high-resolution, three-dimensional numerical experiments on topography over mantle plumes, incorporating a weakly pre-stressed (ultra-slow spreading), rheologically realistic lithosphere. The results show complex surface evolution, which is very different from the smooth, radially symmetric patterns usually assumed as the canonical surface signature of mantle upwellings. In particular, the topography exhibits strongly asymmetric, small-scale, three-dimensional features, which include narrow and wide rifts, flexural flank uplifts and fault structures. This suggests a dominant role for continental rheological structure and intra-plate stresses in controlling dynamic topography, mantle-lithosphere interactions, and continental break-up processes above mantle plumes.
Global Seismicity: Three New Maps Compiled with Geographic Information Systems
NASA Technical Reports Server (NTRS)
Lowman, Paul D., Jr.; Montgomery, Brian C.
1996-01-01
This paper presents three new maps of global seismicity compiled from NOAA digital data, covering the interval 1963-1998, with three different magnitude ranges (mb): greater than 3.5, less than 3.5, and all detectable magnitudes. A commercially available geographic information system (GIS) was used as the database manager. Epicenter locations were acquired from a CD-ROM supplied by the National Geophysical Data Center. A methodology is presented that can be followed by general users. The implications of the maps are discussed, including the limitations of conventional plate models, and the different tectonic behavior of continental vs. oceanic lithosphere. Several little-known areas of intraplate or passive margin seismicity are also discussed, possibly expressing horizontal compression generated by ridge push.
NASA Astrophysics Data System (ADS)
Roy, M.; Rios, D.; Cosburn, K.
2017-12-01
Shear between the moving lithosphere and the underlying asthenospheric mantle can produce dynamic pressure gradients that control patterns of melt migration by percolative flow. Within continental interiors these pressure gradients may be large enough to focus melt migration into zones of low dynamic pressure and thus influence the surface distribution of magmatism. We build upon previous work to show that for a lithospheric keel that protrudes into the "mantle wind," spatially-variable melt migration can lead to spatially-variable thermal weakening of the lithosphere. Our models treat advective heat transfer in porous flow in the limit that heat transfer between the melt and surrounding matrix dominates over conductive heat transfer within either the melt or the solid alone. The models are parameterized by a heat transfer coefficient that we interpret to be related to the efficiency of heat transfer across the fluid-rock interface, related to the geometry and distribution of porosity. Our models quantitatively assess the viability of spatially variable thermal-weakening caused by melt-migration through continental regions that are characterized by variations in lithospheric thickness. We speculate upon the relevance of this process in producing surface patterns of Cenozoic magmatism and heatflow at the Colorado Plateau in the western US.
NASA Astrophysics Data System (ADS)
Braitenberg, Carla; Mariani, Patrizia
2015-03-01
The GOCE gravity field is globally homogeneous at the resolution of about 80km or better allowing for the first time to analyze tectonic structures at continental scale. Geologic correlation studies propose to continue the tectonic lineaments across continents to the pre-breakup position. Tectonic events that induce density changes, as metamorphic events and magmatic events, should then show up in the gravity field. Applying geodynamic plate reconstructions to the GOCE gravity field places today’s observed field at the pre-breakup position. The same reconstruction can be applied to the seismic velocity models, to allow a joint gravity-velocity analysis. The geophysical fields allow to control the likeliness of the hypothesized continuation of lineations based on sparse surface outcrops. Total absence of a signal, makes the cross-continental continuation of the lineament improbable, as continental-wide lineaments are controlled by rheologic and compositional differences of lithospheric mantle. It is found that the deep lithospheric roots as those found below cratons control the position of the positive gravity values. The explanation is that the deep lithospheric roots focus asthenospheric upwelling outboard of the root protecting the overlying craton from magmatic intrusions. The study is carried out over the African and South American continents.
NASA Astrophysics Data System (ADS)
Li, Lu; Qiu, Nansheng
2017-06-01
In this study the dynamic aspects of the Cenozoic extension in the Bohai Bay Basin are considered in the context of initial thickness of the crust and lithosphere, tectonic force, strain rate and thermal rheology, which are directly or indirectly estimated from a pure shear extensional model. It is accordingly reasonable to expect that, in the Bohai Bay Basin, the thickness variation could be present prior to the initiation of extension. The extensional deformation is localized by a thickness variation of the crust and lithosphere and the heterogeneity of the initial thickness plays an important role in rifting dynamics. The onset of rifting requires a critical tectonic force (initial tectonic force) to be applied, which then immediately begins to decay gradually. Rifting will only occur when the total effective buoyancy force of the subducting slab reaches a critical level, after a certain amount of subduction taking place. The magnitude of the tectonic force decreases with time in the early phase of rifting, which indicates the weakening due to the increase in geothermal gradient. In order to deform the continental lithosphere within the currently accepted maximum magnitude of the force derived from subducted slab roll-back, the following conditions should be satisfied: (1) the thickness of the continental lithosphere is significantly thin and less than 125 km and (2) the lithosphere has a wet and hot rheology, which provides implications for rheological layering in continental lithosphere. Our results are strongly supported by the ;crème brûlée; model, in which the lower crust and mantle are relatively ductile.
Barth, A.P.; Wooden, J.L.
2006-01-01
Initiation of the Cordilleran magmatic arc in the southwestern United States is marked by intrusion of granitic plutons, predominantly composed of alkali-calcic Fe- and Sr-enriched quartz monzodiorite and monzonite, that intruded Paleoproterozoic basement and its Paleozoic cratonal-miogeoclinal cover. Three intrusive suites, recognized on the basis of differences in high field strength element and large ion lithophile element abundances, contain texturally complex but chronologically distinctive zircons. These zircons record heterogeneous but geochemically discrete mafic crustal magma sources, discrete Permo-Triassic intrusion ages, and a prolonged postemplacement thermal history within the long-lived Cordilleran arc, leading to episodic loss of radiogenic Pb. Distinctive lower crustal magma sources reflect lateral heterogeneity within the composite lithosphere of the Proterozoic craton. Limited interaction between derived magmas and middle and upper crustal rocks probably reflects the relatively cool thermal structure of the nascent Cordilleran continental margin magmatic arc. ?? 2006 by The University of Chicago. All rights reserved.
Mair, John L.; Farmer, G. Lang; Groves, David I.; Hart, Craig J.R.; Goldfarb, Richard J.
2011-01-01
The type examples for the class of deposits termed intrusion-related gold systems occur in the Tombstone-Tungsten belt of Alaska and Yukon, on the eastern side of the Tintina gold province. In this part of the northern Cordillera, extensive mid-Cretaceous postcollisional plutonism took place following the accretion of exotic terranes to the continental margin. The most cratonward of the resulting plutonic belts comprises small isolated intrusive centers, with compositionally diverse, dominantly potassic rocks, as exemplified at Scheelite Dome, located in central Yukon. Similar to other spatially and temporally related intrusive centers, the Scheelite Dome intrusions are genetically associated with intrusion-related gold deposits. Intrusions have exceptional variability, ranging from volumetrically dominant clinopyroxene-bearing monzogranites, to calc-alkaline minettes and spessartites, with an intervening range of intermediate to felsic stocks and dikes, including leucominettes, quartz monzonites, quartz monzodiorites, and granodiorites. All rock types are potassic, are strongly enriched in LILEs and LREEs, and feature high LILE/HFSE ratios. Clinopyroxene is common to all rock types and ranges from salite in felsic rocks to high Mg augite and Cr-rich diopside in lamprophyres. Less common, calcic amphibole ranges from actinolitic hornblende to pargasite. The rocks have strongly radiogenic Sr (initial 87Sr/86Sr from 0.711-0.714) and Pb isotope ratios (206Pb/204Pb from 19.2-19.7), and negative initial εNd values (-8.06 to -11.26). Whole-rock major and trace element, radiogenic isotope, and mineralogical data suggest that the felsic to intermediate rocks were derived from mafic potassic magmas sourced from the lithospheric mantle via fractional crystallization and minor assimilation of metasedimentary crust. Mainly unmodified minettes and spessartites represent the most primitive and final phases emplaced. Metasomatic enrichments in the underlying lithospheric mantle are attributes of the ancient North American cratonic margin that appear to be essential prerequisites to this style of postcollisional magmatism and associated gold-rich fluid exsolution. This type of magmatic hydrothermal activity occurs in a very specific tectonic setting that typically sets intrusion-related gold deposits apart from orogenic gold deposits, which are synorogenic in timing and have no consistent direct relationship to such diverse and contemporaneous lithospheric mantle-derived magmas, although they too are commonly sited adjacent to lithospheric boundaries.
The evolution of rifting process in the tectonic history of the Earth
NASA Technical Reports Server (NTRS)
Milanovsky, E. E.; Nikishin, A. M.
1985-01-01
The continental rifting is the response of the lithosphere to the oriented tension. The distribution of viscosity in the lithosphere plays an essential role during all stages of the rifting. The viscosity is a function of the temperature, the lithostatic pressure, the rock composition, the deformation rate and other factors. The temperature is the most important factor. The vertical section of continental lithosphere of the rift zone may be divided into the following layers: the upper crust, in which brittle deformation prevails; the medialcrust, in which the role of plastic deformation increases; the lower crust, in which plastic deformation prevails; and the uppermost plastic part of the mantle overlapping asthenosphere. The depth of the boundaries in the crust layers are mainly controlled by the temperature.
NASA Astrophysics Data System (ADS)
Fiorentini, Marco L.; LaFlamme, Crystal; Denyszyn, Steven; Mole, David; Maas, Roland; Locmelis, Marek; Caruso, Stefano; Bui, Thi-Hao
2018-02-01
Mafic and ultramafic magmas that intrude into the lower crust can preserve evidence for metal and sulfur transfer from the lithospheric mantle into the lower continental crust. Here we focus on a series of ultramafic, alkaline pipes in the Ivrea Zone (NW Italy), which exposes deeply buried (6-11 kbar), migmatitic metasedimentary rocks intruded by voluminous basaltic magmas of the Mafic Complex, a major crustal underplating event precisely dated via U/Pb CA-IDTIMS on zircon at 286.8 ± 0.4 Ma. The ultramafic pipes postdate the Mafic Complex and from 100 to 300 m wide cumulate-rich conduits. They are hydrated and carbonated, have unusually high incompatible element concentrations and contain blebby and semi-massive Ni-Cu-PGE sulfide mineralisation. The sulfides occur as coarse intergranular nodules (>10 mm) and as small intragranular blebs (<1 mm) hosted in olivine, and have homogeneous, mantle-like δ34S (+1.35 ± 0.25‰). This homogeneity suggests that the pipes reached sulfide supersaturation without addition of crustal sulfur, and that the δ34S signature is representative of the continental lithospheric mantle. One of the pipes, the 249 Ma Valmaggia pipe, carries a very distinctive Sr-Nd-Hf-Pb isotopic composition in its core (87Sr/86Sr 0.70250, εNd-18, εHf-18, 206Pb/204Pb 16.0, 207Pb/204Pb 15.16, 208Pb/204Pb 35.87), very different from the margin of this pipe and from other pipes that have higher 87Sr/86Sr, εNd and 206Pb/204Pb. The unusual isotopic composition of the Valmaggia pipe requires a source with long-term (2500-1500 million years) U-, Th- and Rb-depletion and LREE enrichment. Such compositions are found in Late Archean/Early Proterozoic granulites and lower crustal xenoliths. We suggest that the unusual isotopic composition of the Valmaggia pipe reflects contamination of the mantle source of the pipe with a crustal component that is neither represented in the local Paleozoic crust nor in the isotopically anomalous hydrated mantle inferred as the source of the large-volume mafic underplate that formed the Mafic Complex. During post-collisional gravitational collapse of the Variscan Orogen, this source produced the alkaline, metal (Ni, Cu, PGE)- and volatile (H2O, CO2, S)-rich mafic-ultramafic magma that formed the deep-crustal intrusion at Valmaggia. U/Pb dating of other chemically and geologically comparable pipes in the area shows that this process was active over at least 40 Ma. The Ivrea pipes illustrate how the lower continental crust can be fertilised with mantle-derived metals and volatiles, which are available for later remobilisation into upper-crustal ore systems. World-class mineral deposits along the margins of lithospheric blocks may thus be the result of both favourable crustal architecture (focussing of magmas and fluids) and localised volatile and metal enrichment of the lower crust related to mantle-derived hydrous metasomatism.
The Role of Rift Obliquity in Formation of the Gulf of California
NASA Astrophysics Data System (ADS)
Bennett, Scott Edmund Kelsey
The Gulf of California illustrates how highly oblique rift geometries, where transform faults are kinematically linked to large-offset normal faults in adjacent pull-apart basins, enhance the ability of continental lithosphere to rupture and, ultimately, hasten the formation of new oceanic basins. The Gulf of California rift has accommodated oblique divergence of the Pacific and North America tectonic plates in northwestern Mexico since Miocene time. Due to its infancy, the rifted margins of the Gulf of California preserve a rare onshore record of early continental break-up processes from which to investigate the role of rift obliquity in strain localization. Using new high-precision paleomagnetic vectors from tectonically stable sites in north-central Baja California, I compile a paleomagnetic transect of Miocene ignimbrites across northern Baja California and Sonora that reveals the timing and distribution of dextral shear associated with inception of this oblique rift. I integrate detailed geologic mapping, basin analysis, and geochronology of pre-rift and syn-rift volcanic units to determine the timing of fault activity on Isla Tiburon, a proximal onshore exposure of the rifted North America margin, adjacent to the axis of the Gulf of California. The onset of strike-slip faulting on Isla Tiburon, ca. 8 - 7 Ma, was synchronous with the onset of transform faulting along a significant length of the nascent plate boundary within the rift. This tectonic transition coincides with a clockwise azimuthal shift in Pacific-North America relative motion that increased rift obliquity. I constrain the earliest marine conditions on southwest Isla Tiburon to ca. 6.4 - 6.0 Ma, coincident with a regional latest Miocene marine incursion in the northern proto-Gulf of California. This event likely flooded a narrow, incipient topographic depression along a ˜650 km-long portion of the latest Miocene plate boundary and corresponds in time and space with formation of a newly-constrained ˜50-100 kilometer-wide transtensional belt of focused strike-slip faulting, basin formation, and rotating crustal blocks. This proto-Gulf of California shear zone, embedded within the wider Mexican Basin and Range extensional province and connected to the San Andreas fault in southern California, hosted subsequent localization of the plate boundary and rupture of the continental lithosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ben-Avraham, Z.; Nur, A.
The elevation above sea level of circum-Pacific volcanoes situated on continental crust varies greatly, not only between various chains but also within chains. Their edifice heights, however, are essentially constant with each chain. This pattern is reversed for oceanic volcanoes: The elevation circum-Pacific volcanoes situated on oceanic curst is constant within arcs, while edifice heights are greatly variable. In continents the depth to the root zones of volcanoes may be within the elastic part of the lithosphere, whereas in the oceans it may be well below the elastic part of the lithosphere. We suggest that melting, or the onset ofmore » the volcanic uprising, may be controlled in both cases primarily by pressure: in the continental lithosphere by the overburden pressure determined by depth below the local surface and in the oceanic lithosphere by the isostatically compensated pressure zone controlled by depth below sea level. The pattern seems to hold even in complex geological regions and may be used to identify the nature of the crust in such regions.« less
NASA Astrophysics Data System (ADS)
van Gelder, I. E.; Willingshofer, E.; Sokoutis, D.; Cloetingh, S. A. P. L.
2017-08-01
A series of analogue experiments simulating intra-continental subduction contemporaneous with lateral extrusion of the upper plate are performed to study the interference between these two processes at crustal levels and in the lithospheric mantle. The models demonstrate that intra-continental subduction and coeval lateral extrusion of the upper plate are compatible processes leading to similar deformation structures within the extruding region as compared to the classical setup, lithosphere-scale indentation. Strong coupling across the subduction boundary allows for the transfer of stresses to the upper plate, where strain regimes are characterized by crustal thickening near a confined margin and dominated by lateral displacement of material near a weak lateral confinement. The strain regimes propagate laterally during ongoing convergence creating an area of overlap characterized by transpression. When subduction is oblique to the convergence direction, the upper plate is less deformed and as a consequence the amount of lateral extrusion decreases. In addition, strain is partitioned along the oblique plate boundary resulting in less subduction in expense of right lateral displacement close to the weak lateral confinement. Both oblique and orthogonal subduction models have a strong resemblance to lateral extrusion tectonics of the Eastern Alps (Europe), where subduction of the adjacent Adriatic plate beneath the Eastern Alps is debated. Our results imply that subduction of Adria is a valid mechanisms to induce extrusion-type deformation within the Eastern Alps lithosphere. Furthermore, our findings suggest that the Oligocene to Late Miocene structural evolution of the Eastern Alps reflects a phase of oblique subduction followed by a later stage of orthogonal subduction conform a Miocene shift in the plate motion of Adria. Oblique subduction also provides a viable mechanism to explain the rapid decrease in slab length of the Adriatic plate beneath the Eastern Alps towards the Pannonian Basin.
Imaging Canary Island hotspot material beneath the lithosphere of Morocco and southern Spain
NASA Astrophysics Data System (ADS)
Miller, Meghan S.; O'Driscoll, Leland J.; Butcher, Amber J.; Thomas, Christine
2015-12-01
The westernmost Mediterranean has developed into its present day tectonic configuration as a result of complex interactions between late stage subduction of the Neo-Tethys Ocean, continental collision of Africa and Eurasia, and the Canary Island mantle plume. This study utilizes S receiver functions (SRFs) from over 360 broadband seismic stations to seismically image the lithosphere and uppermost mantle from southern Spain through Morocco and the Canary Islands. The lithospheric thickness ranges from ∼65 km beneath the Atlas Mountains and the active volcanic islands to over ∼210 km beneath the cratonic lithosphere in southern Morocco. The common conversion point (CCP) volume of the SRFs indicates that thinned lithosphere extends from beneath the Canary Islands offshore southwestern Morocco, to beneath the continental lithosphere of the Atlas Mountains, and then thickens abruptly at the West African craton. Beneath thin lithosphere between the Canary hot spot and southern Spain, including below the Atlas Mountains and the Alboran Sea, there are distinct pockets of low velocity material, as inferred from high amplitude positive, sub-lithospheric conversions in the SRFs. These regions of low seismic velocity at the base of the lithosphere extend beneath the areas of Pliocene-Quaternary magmatism, which has been linked to a Canary hotspot source via geochemical signatures. However, we find that this volume of low velocity material is discontinuous along strike and occurs only in areas of recent volcanism and where asthenospheric mantle flow is identified with shear wave splitting analyses. We propose that the low velocity structure beneath the lithosphere is material flowing sub-horizontally northeastwards beneath Morocco from the tilted Canary Island plume, and the small, localized volcanoes are the result of small-scale upwellings from this material.
Continental lithosphere of the Arabian Plate: A geologic, petrologic, and geophysical synthesis
NASA Astrophysics Data System (ADS)
Stern, Robert J.; Johnson, Peter
2010-07-01
The Arabian Plate originated ˜ 25 Ma ago by rifting of NE Africa to form the Gulf of Aden and Red Sea. It is one of the smaller and younger of the Earth's lithospheric plates. The upper part of its crust consists of crystalline Precambrian basement, Phanerozoic sedimentary cover as much as 10 km thick, and Cenozoic flood basalt (harrat). The distribution of these rocks and variations in elevation across the Plate cause a pronounced geologic and topographic asymmetry, with extensive basement exposures (the Arabian Shield) and elevations of as much as 3000 m in the west, and a Phanerozoic succession (Arabian Platform) that thickens, and a surface that descends to sea level, eastward between the Shield and the northeastern margin of the Plate. This tilt in the Plate is partly the result of marginal uplift during rifting in the south and west, and loading during collision with, and subduction beneath, the Eurasian Plate in the northeast. But a variety of evidence suggests that the asymmetry also reflects a fundamental crustal and mantle heterogeneity in the Plate that dates from Neoproterozoic time when the crust formed. The bulk of the Plate's upper crystalline crust is Neoproterozoic in age (1000-540 Ma) reflecting, in the west, a 300-million year process of continental crustal growth between ˜ 850 and 550 Ma represented by amalgamated juvenile magmatic arcs, post-amalgamation sedimentary and volcanic basins, and granitoid intrusions that make up as much as 50% of the Shield's surface. Locally, Archean and Paleoproterozoic rocks are structurally intercalated with the juvenile Neoproterozoic rocks in the southern and eastern parts of the Shield. The geologic dataset for the age, composition, and origin of the upper crust of the Plate in the east is smaller than the database for the Shield, and conclusions made about the crust in the east are correspondingly less definitive. In the absence of exposures, furthermore, nothing is known by direct observation about the composition of the crust north of the Shield. Nonetheless, available data indicate a geologic history for eastern Arabian crust different to that in the west. The Neoproterozic crust (˜ 815-785 Ma) is somewhat older than in the bulk of the Arabian Shield, and igneous and metamorphic activity was largely finished by 750 Ma. Thereafter, the eastern part of the Plate became the site of virtually continuous sedimentation from 725 Ma on and into the Phanerozoic. This implies that a relatively strong lithosphere was in place beneath eastern Arabia by 700 Ma in contrast to a lithospheric instability that persisted to ˜ 550 Ma in the west. Lithospheric differentiation is further indicated by the Phanerozoic depositional history with steady subsidence and accumulation of a sedimentary succession 5-14 km thick in the east and a consistent high-stand and thin to no Phanerozoic accumulation over the Shield. Geophysical data likewise indicate east-west lithospheric differentiation. Overall, the crustal thickness of the Plate (depth to the Moho) is ˜ 40 km, but there is a tendency for the crust to thicken eastward by as much as 10% from 35-40 km beneath the Shield to 40-45 km beneath eastern Arabia. The crust also becomes structurally more complex with as many as 5 seismically recognized layers in the east compared to 3 layers in the west. A coincident increase in velocity is noted in the upper-crust layers. Complementary changes are evidenced in some models of the Arabian Plate continental upper mantle, indicating eastward thickening of the lithospheric mantle from ˜ 80 km beneath the Shield to ˜ 120 km beneath the Platform, which corresponds to an overall lithospheric thickening (crust and upper mantle) from ˜ 120 km to ˜ 160 km eastward. The locus of these changes coincides with a prominent magnetic anomaly (Central Arabian Magnetic Anomaly, CAMA) in the extreme eastern part of the Arabian Shield that extends north across the north-central part of the Arabian Plate. The CAMA also coincides with a major structural boundary separating a region of northerly and northwesterly basement trends in the west from a region of northerly and northeasterly trends in the northeastern part of the Plate, and with the transition from high-stand buoyant Shield to subsided Platform. Its coincidence with geophysically indicated changes in the lower crust and mantle structure suggests that a fundamental lithospheric boundary is present in the central part of the Arabian Plate. The ages and isotopic characteristics of xenoliths brought to the surface in Cenozoic basalt eruptions indicate that the lower crust and upper mantle are largely juvenile Neoproterozoic additions, meaning that the lower crust and upper mantle formed about the same time as the upper crust. This implies that the lithospheric boundary in the central part of the Arabian Plate dates from Neoproterozoic time. We conclude that lithospheric differentiation across the Arabian Plate is long lived and has controlled much of the Phanerozoic sedimentary history of the Plate.
NASA Astrophysics Data System (ADS)
Corre, Benjamin; Lagabrielle, Yves; Labaume, Pierre; Lahfid, Abdeltif; Boulvais, Philippe; Bergamini, Geraldine; Fourcade, Serge; Clerc, Camille
2017-04-01
Sub-continental lithospheric mantle rocks are exhumed at the foot of magma-poor distal passive margins as a response to extreme stretching of the continental crust during plate separation. Remnants of the Northern Iberian paleo-passive margin are now exposed in the North-Pyrenean Zone (NPZ) and represent field analogues to study the processes of continental crust thinning and subcontinental mantle exhumation. The NPZ results from the inversion of basins opened between the Iberia and Europa plates during Albo-Cenomanian times. In the western NPZ, the 'Chaînons Béarnais' ranges display a fold-and-thrust structure involving the Mesozoic sedimentary cover, decoupled from its continental basement and associated with peridotite bodies in tectonic contact with Palaeozoic basement lenses of small size. Continental extension developed under hot thermal conditions, as demonstrated by the syn-metamorphic Cretaceous ductile deformation affecting both the crustal basement and the allochthonous Mesozoic cover. In this study, we present structural and geochemical data providing constraints to reconstruct the evolution of the northern Iberia paleo-margin. Field work confirms that the pre-rift Mesozoic cover is intimately associated to mantle rocks and to thin tectonic lenses of crustal basement. It also shows that the pre-rift cover was detached from its bedrock at the Keuper evaporites level and was welded to mantle rocks during their exhumation at the foot of the hyper-extended margin. The crust/mantle detachment fault is a major shear zone characterized by anastomosed shear bands defining a plurimetric phacoidal fabric at the top of the serpentinized mantle. The detachment is marked by a layer of metasomatic rocks, locally 20 meters thick, made of talc-chlorite-pyrite-rich rocks that developped under greenschist facies conditions. Raman Spectroscopy on Carbonaceous Materials (RSCM), performed on the Mesozoic cover reveal that the entire sedimentary pile underwent temperatures ranging between 200°C and 480°C. We show that: (i) at the site of mantle rocks exhumation, the boudinaged pre-rift sediments have undergone drastic syn-metamorphic thinning with the genesis of a S0/S1 foliation and, (ii) the Paleozoic basement has been ductilely deformed, into thin tectonic lenses that remained welded to the exhumed mantle rocks. Therefore the overall crustal rheology appears dominated by shallow levels having a ductile behavior. This rheology is related to the presence of a thick pre- and syn-rift decoupled cover acting as an efficient thermal blanket. This new geological data set highlights important characteristics of ductile-type hyper-extended passive margin that cannot be obtained from the study of seismic lines. Finally, we stress that studying field analogues represents a major tool to better understand the mechanisms of extreme crustal thinning associated with mantle exhumation and their structural inheritance during tectonic inversion.
Construction and destruction of some North American cratons
NASA Astrophysics Data System (ADS)
Snyder, David B.; Humphreys, Eugene; Pearson, D. Graham
2017-01-01
Construction histories of Archean cratons remain poorly understood; their destruction is even less clear because of its rarity, but metasomatic weakening is an essential precursor. By assembling geophysical and geochemical data in 3-D lithosphere models, a clearer understanding of the geometry of major structures within the Rae, Slave and Wyoming cratons of central North America is now possible. Little evidence exists of subducted slab-like geometries similar to modern oceanic lithosphere in these construction histories. Underthrusting and wedging of proto-continental lithosphere is inferred from multiple dipping discontinuities, emphasizing the role of lateral accretion. Archean continental building blocks may resemble the modern lithosphere of oceanic plateau, but they better match the sort of refractory crust expected to have formed at Archean ocean spreading centres. Radiometric dating of mantle xenoliths provides estimates of rock types and ages at depth beneath sparse kimberlite occurrences, and these ages can be correlated to surface rocks. The 3.6-2.6 Ga Rae, Slave and Wyoming cratons stabilized during a granitic bloom at 2.61-2.55 Ga. This stabilization probably represents the final differentiation of early crust into a relatively homogeneous, uniformly thin (35-42 km), tonalite-trondhjemite-granodiorite crust with pyroxenite layers near the Moho atop depleted lithospheric mantle. Peak thermo-tectonic events at 1.86-1.7 Ga broadly metasomatized, mineralized and recrystallized mantle and lower crustal rocks, apparently making mantle peridotite more 'fertile' and more conductive by introducing or concentrating sulfides or graphite at 80-120 km depths. This metasomatism may have also weakened the lithosphere or made it more susceptible to tectonic or chemical erosion. Late Cretaceous flattening of Farallon lithosphere that included the Shatsky Rise conjugate appears to have weakened, eroded and displaced the base of the Wyoming craton below 140-160 km. This process replaced the old re-fertilized continental mantle with relatively young depleted oceanic mantle.
NASA Astrophysics Data System (ADS)
Brown, E.; Lesher, C. E.
2015-12-01
Continental flood basalts (CFB) are extreme manifestations of mantle melting derived from chemically/isotopically heterogeneous mantle. Much of this heterogeneity comes from lithospheric material recycled into the convecting mantle by a range of mechanisms (e.g. subduction, delamination). The abundance and petrogenetic origins of these lithologies thus provide important constraints on the geodynamical origins of CFB magmatism, and the timescales of lithospheric recycling in the mantle. Basalt geochemistry has long been used to constrain the compositions and mean ages of recycled lithologies in the mantle. Typically, this work assumes the isotopic compositions of the basalts are the same as their mantle source(s). However, because basalts are mixtures of melts derived from different sources (having different fusibilities) generated over ranges of P and T, their isotopic compositions only indirectly represent the isotopic compositions of their mantle sources[1]. Thus, relating basalts compositions to mantle source compositions requires information about the melting process itself. To investigate the nature of lithologic source heterogeneity while accounting for the effects of melting during CFB magmatism, we utilize the REEBOX PRO forward melting model[2], which simulates adiabatic decompression melting in lithologically heterogeneous mantle. We apply the model to constrain the origins and abundance of mantle heterogeneity associated with Paleogene flood basalts erupted during the rift-to-drift transition of Pangea breakup along the Central East Greenland rifted margin of the North Atlantic igneous province. We show that these basalts were derived by melting of a hot, lithologically heterogeneous source containing depleted, subduction-modified lithospheric mantle, and <10% recycled oceanic crust. The Paleozoic mean age we calculate for this recycled crust is consistent with an origin in the region's prior subduction history, and with estimates for the mean age of recycled crust in the modern Iceland plume[3]. These results suggest that this lithospheric material was not recycled into the lower mantle before becoming entrained in the Iceland plume. [1] Rudge et al. (2013). GCA, 114, p112-143; [2] Brown & Lesher (2014). Nat. Geo., 7, p820-824; [3] Thirlwall et al. (2004). GCA, 68, p361-386
Continental Basalts and Mantle Xenoliths
NASA Astrophysics Data System (ADS)
Zartman, Robert E.
In this decade of the International Lithosphere Program, much scientific attention is being directed toward the deep continental crust and subadjacent mantle. The petrologic, geochemical, and isotopic signatures of basaltic magmas, which transect much of the lithosphere as they ascend from their site of melting, and of contained cognate and accidental xenoliths, which are found along the path of ascent, give us, perhaps, the best clues to composition and structure in the third dimension. Continental Basalts and Mantle Xenoliths provides an opportunity to sample the British school of thought on subjects such as differences between oceanic and continental basalts, effects of mantle metasomatism, and relationships between events in the subcontinental mantle and those in the overlying crust. This volume is recommended by the publisher as being of interest to senior undergraduates and postgraduate researchers; I would extend that readership to all scientists who seek access to a potpourri of recent findings and current ideas in a rapidly evolving field of research.
NASA Astrophysics Data System (ADS)
Han, Xiaoying; Ren, Jianye; Lin, Zi; Yang, Linlong
2015-04-01
Recent years, oil and gas exploration of the Pearl River Mouth Basin in the northern margin of South China Sea continuously achieved historic breakthroughs. The Xingning-Jinghai sag, which is located in southeast of the Pearl River Mouth Basin, is a deep-water sag with a great exploration potential. Its tectonic evolution is extremely complex. It experienced Mesozoic subduction to Cenozoic intra-continental rifting background, and finally evolved into a deep-water sag of the northern continental margin of South China Sea. The geological characteristics and the tectonic evolution of Xingning-Jinghai sag was closely related to the process of formation and evolution of the passive continental margin of the northern South China Sea. It is confirmed by many geophysical data that compared with adjacent Chaoshan depression, the crustal thickness of Xingning-Jinghai sag was rapidly thinning, and it developed detachment faults with later magmatic intrusion. The development of detachment faults have dynamic significance for the spreading of the South China Sea. Based on the seismic geological interpretation of 2D seismic data in the study area, the characteristics of detachment fault and supra-detachment basin have been proposed in this study. The characteristics of the detachment fault are low angle and high ratio between heave and throw. The geometry of the detachment fault is a typical lisric shape, with the dip of fault decreasing generally from the seismic profile. The detachment basin where sediments are not deposited over a tilting hanging-wall block but onto a tectonically exhumed footwall which is different from the typical half graben basin. Seismic profiles indicate two different structural styles in the east and west part of Xingning-Jinghai sag. In the west of the sag, there developed two large detachment faults, which control their detachment basin systems and the typical H block, and the two detachment faults are dipping landward and seaward, respectively. In the east, affected by the later volcanic activities, Xingning-Jinghai sag deformed complicatedly and developed a series of landward dipping faults, showing the compound graben structure. Combined with the fault activity quantitative calculation, basin subsidence history and other advanced technology, the basin tectonic evolution has been divided into rift stage and post-rift stage. Considering the extension development evolution of Xingning-Jinghai sag and the extension and thinning of lithosphere under the background of spreading of the South China Sea, we argue that the northern margin of the South China lithosphere experienced an intense stretching and thinning stage. At this period, the subsidence of the Xingning-Jinghai sag was controlled by the detachment faults, indicating a rifting stage. With the development of the detachment faults, the thickness of crust was extremely thinned. After the spreading of the South China Sea the whole sag entered into the depression period which was characterized by thermal subsidence.
Tectonics of the Red Sea region reassessed
NASA Astrophysics Data System (ADS)
Ghebreab, Woldai
1998-11-01
The brittle upper level of the continental crust had been rifted with or without ocean opening many times in many places during the geological past and the process is still happening. Since the advent of plate tectonic theory in the early 1960s, the formation of such rifts has been viewed in the context of plate tectonic processes that caused the repeated dispersal of supercontinents. Several researchers focused on the mechanisms of formation of continental rifts because some rifts, like the Red Sea and Gulf of Aden, are precursors to ocean basins and many hydrocarbons yet to be located which are either directly or indirectly related to rift structures. The East African Rift System and the Red Sea-Gulf of Aden young oceans have been considered as prime examples of the early stage of continental separation that has long been a testing ground for classical hypotheses of continental drift. The Red Sea separates the once contiguous Neoproterozoic Arabian-Nubian Shields and started opening about 25 Ma ago. Geophysics and geochronology of dredged basaltic rocks indicate that sea-floor spreading began at only about 4-5 Ma. Numerous multidisciplinary investigations have been carried out in this region. However, several questions remain unresolved. Examples pertain to the nature of the crust that underlies the shelves, the extent of the ocean floor, the interplay between sea-floor spreading, crustal extension and plutonic activity and mechanisms of rifting. Several mechanisms of rifting have been proposed for the formation of the Red Sea. Examples include extension by prolonged steep normal faulting (horst-graben terrain), early diffuse ductile extension followed by brittle deformation, low-angle lithospheric simple shear, low-angle shear and magmatic expansion, lithospheric thinning by faulting and dike injection, northeastward migration of asymmetric rifting over a fixed mantle plume and the formation of pull-apart basin(s) by transtension. The major differences between the various models center on the relative timing of updoming, rifting and magmatism and whether the rifting was active and driven by a mantle plume or passive and due to lateral extension of the lithosphere leading to reactive effects in the mantle. New geological field data from the western margin of the Southern Red Sea in Eritrea reveal two main stages of NE-SW extension history. The first semi-brittle stage (⩾30 Ma) was dominantly characterized by top-to-east low-angle detachments. The second brittle stage of extension (since ˜22 Ma) occurred on a new system of dominantly down-to-southwest planar normal faults and dikes with NW-SE strikes. The earlier semi-brittle stage of extension corresponds to the predicted low-angle simple shear zone through the lithosphere and the later gives some support to the models that invoke graben-horst formation along steep normal faults that ultimately soled out to detachments at intermediate crustal level or merge with the Moho.
Tatsumoto, M.; Nakamura, Y.
1991-01-01
Volcanic rocks from the eastern Eurasian plate margin (southwestern Japan, the Sea of Japan, and northeastern China) show enriched (EMI) component signatures. Volcanic rocks from the Ulreung and Dog Islands in the Sea of Japan show typical DUPAL anomaly characteristics with extremely high ??208/204 Pb (up to 143) and enriched Nd and Sr isotopic compositions (??{lunate}Nd = -3 to -5, 87Sr 86Sr = ~0.705). The ??208/204 Pb values are similar to those associated with the DUPAL anomaly (up to 140) in the southern hemisphere. Because the EMI characteristics of basalts from the Sea of Japan are more extreme than those of southwestern Japan and inland China basalts, we propose that old mantle lithosphere was metasomatized early (prior to the Proterozoic) with subduction-related fluids (not present subduction system) so that it has been slightly enriched in incompatible elements and has had a high Th/U for a long time. The results of this study support the idea that the old subcontinental mantle lithosphere is the source for EMI of oceanic basalts, and that EMI does not need to be stored at the core/ mantle boundary layer for a long time. Dredged samples from seamounts and knolls from the Yamato Basin Ridge in the Sea of Japan show similar isotopic characteristics to basalts from the Mariana arc, supporting the idea that the Yamato Basin Ridge is a spreading center causing separation of the northeast Japan Arc from Eurasia. ?? 1991.
Tear geometry at active STEPs: an analogue model approach
NASA Astrophysics Data System (ADS)
Broerse, Taco; Sokoutis, Dimitrios; Willingshofer, Ernst; Govers, Rob
2017-04-01
At the lateral end of a subduction zone, tearing of lithosphere is the result of subduction of oceanic lithosphere while adjacent buoyant continental lithosphere stays at the surface. The location of lithospheric tearing is called a Subduction-Transform-Edge-Propagator (STEP), which continuously extends the plate boundary between overriding plate and continental lithosphere. One of our areas of interest is the southern Caribbean where Atlantic lithosphere subducts below the Caribbean plate. Mantle tomography suggests a clear southern edge of the Lesser Antilles slab, which makes the boundary between the Caribbean and South America a clear STEP candidate. At the surface, the San Sebastián/El Pilar fault zone forms the plate boundary between the Caribbean and South America and the active STEP is located near Trinidad. For the deeper part of the damage/shear zone, some information is available from a recent 3D gravity study: significant lateral variability in densities of the lithospheric mantle to the south of the STEP fault zone. The low-density zone may result from higher sub-crustal temperatures, such as would arise from an asthenospheric window resulting from detachment. Interpreted in this way, the mantle part of the damage zone may be 200-250 km wide. So, while the location of the plate boundary at the surface is relatively well resolved, little is known about the deeper continuation of the active STEP in the mantle lithosphere. We study the evolution of the tearing process at a STEP using analogue models. In our models we use silicone putty (lithosphere) and glucose (asthenosphere). Solely gravitational forces resulting from density differences between oceanic lithosphere and asthenosphere drive our model. Lithospheric tearing commences after subduction has initiated. The geometry of the tear varies with the rheology of the lithosphere and asthenosphere, particularly Newtonian versus power-law. We investigate the dependence on model parameters of the width of the tearing zone and the depth at which tearing occurs.
Imaging Ruptured Lithosphere Beneath the Arabian Peninsula Using S-wave Receiver Functions
NASA Astrophysics Data System (ADS)
Hansen, S. E.; Rodgers, A. J.; Schwartz, S. Y.; Al-Amri, A. M.
2006-12-01
The lithospheric thickness beneath the Arabian Peninsula has important implications for understanding the tectonic processes associated with continental rifting along the Red Sea. However, estimates of the lithospheric thickness are limited by the lack of high-resolution seismic observations sampling the lithosphere- asthenosphere boundary (LAB). The S-wave receiver function technique allows point determinations of Moho and LAB depths by identifying S-to-P conversions from these discontinuities beneath individual seismic stations. This method is superior to P-wave receiver functions for identifying the LAB because P-to-S multiple reverberations from shallower discontinuities (such as the Moho) often mask the direct conversion from the LAB while S-to-P boundary conversions arrive earlier than the direct S phase and all multiples arrive later. We interpret crustal and lithospheric structure across the entire Arabian Peninsula from S-wave receiver functions computed at 29 stations from four different seismic networks. Generally, both the Moho and the LAB are shallowest near the Red Sea and become deeper towards the Arabian interior. Near the coast, the Moho increases from about 12 to 35 km, with a few exceptions showing a deeper Moho beneath stations that are situated on higher topography in the Asir Province. The crustal thickening continues until an average depth of about 40-45 km is reached over both the central Arabian Shield and Platform. The LAB near the coast is at a depth of about 50 km, increases rapidly, and reaches an average maximum depth of about 120 km beneath the Arabian Shield. At the Shield-Platform boundary, a distinct step is observed in the lithospheric thickness where the LAB depth increases to about 160 km. This step may reflect remnant lithospheric thickening associated with the Shield's accretion onto the Platform and has an important role in guiding asthenospheric flow beneath the eastern margin of the Red Sea. This work was performed in part under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under contract W-7405-Eng-48.
Crustal flow at the margin of high plateaux: A lithospheric-scale experimental approach
NASA Astrophysics Data System (ADS)
Bajolet, Flora; Chardon, Dominique; Gapais, Denis; Martinod, Joseph; Kermarrec, Jean-Jacques
2010-05-01
A serie of analogue models was performed in order to explore the mechanisms of exhumation of high grade rocks at the margin of high plateaux. Experiments are scaled for gravity and simulate convergence between a hot, weak and thin lithosphere lacking a resistant mantle layer (high plateau, HP) and a cold and thick cratonic lithosphere (CL). The HP consists in a three-layer crust made of a low-viscosity silicone simulating partially molten lower crust (PMLC), overlaid by a medium-viscosity silicone simulating the middle crust, and a thin sand layer modelling the brittle upper crust. The CL is made of three layers, from bottom to top: a high-viscosity silicone (resistant mantle layer), a medium-viscosity silicone (lower crust) and a sand layer (upper crust). The model lithospheres float on a low-viscosity and dense solution of sodium polytungstate, simulating the asthenosphere. A set of laterally constrained experiments was run by changing the velocity of convergence, and the strength / thickness of the layers, to explore various degrees of coupling amongst lithospheric layers and between the two lithospheres. Several sets of experiments with comparable parameters were performed and stopped at different amounts of shortening, then frozen and cut for observation on serial cross-sections. For all experiments, the same kinematic scenario occurs. First, shortening affects preferentially the HP. Shortening proceeds by homogeneous thickening of the entire ductile crust and the formation of pop-downs of upper brittle crust after preferential development of HP-verging thrust faults. The crust rapidly acquired a double thickness under the HP, whereas the inner parts of the CL became moderately thickened as a continental subduction of CL mantle initiates under the HP. The part of the PMLC in contact with the CL starts to form a CL-verging antiform evolving into a wedge-shaped channel being injected into the lower crust of the CL. The channel is exhumed by slip along the reverse shear zone acting as the ramp accommodating subduction of the CL mantle below the HP. Injection of PMLC induces far field horizontal displacements of lower crust of the CL towards the foreland. The main foreland-verging thrusts affecting the CL form at that time. After a certain amount of injection and amplification, the roof of the antiform is horizontally sheared backward (i.e., toward the HP) along a flat shear zone whose upper wall coincides with the brittle-ductile transition. This shear zone emerges as the latest back thrust developed in the model, which bounds the outermost pop-down formed in the HP. These results suggest the amplification of a domal antiform resulting in injection of a non-cylindrical channel of PMLC from under HP into the crust of the CL, producing large finite exhumation of the PMLC even in the absence of erosion at the margin of HP. Erosion would favour greater exhumation ending with the formation of a dome of PMLC at the surface, accompanied by back tilting (and consecutive reorganization) of the flat shear zone accommodating return flow of mid/upper crust toward the HP above the channel. Analogy with the Himalayan-Tibet orogen suggests the South Tibetan detachment system may result from such a late reorganization in the exhumation of the Higher Himalaya Crystalline. The experiments provide constraints on the initiation stages of crustal flow at the margin of HP and may allow refining the channel flow model.
NASA Astrophysics Data System (ADS)
Cowie, L.; Kusznir, N. J.
2012-12-01
It has been proposed that some continental rifted margins have anomalous subsidence histories and that at breakup they were elevated at shallower bathymetries than the isostatic response of classical rift models (McKenzie 1978) would predict. The existence of anomalous syn or post breakup subsidence of this form would have important implications for our understanding of the geodynamics of continental breakup and rifted continental margin formation, margin subsidence history and the evolution of syn and post breakup depositional systems. We have investigated three rifted continental margins; the Gulf of Aden, Galicia Bank and the Gulf of Lions, to determine whether the oceanic crust in the ocean-continent transition of these margins has present day anomalous subsidence and if so, whether it is caused by mantle dynamic topography or anomalous oceanic crustal thickness. Residual depth anomalies (RDA) corrected for sediment loading, using flexural backstripping and decompaction, have been calculated by comparing observed and age predicted oceanic bathymetries in order to identify anomalous oceanic bathymetry and subsidence at these margins. Age predicted bathymetric anomalies have been calculated using the thermal plate model predictions from Crosby & McKenzie (2009). Non-zero sediment corrected RDAs may result from anomalous oceanic crustal thickness with respect to the global average, or from mantle dynamic uplift. Positive RDAs may result from thicker than average oceanic crust or mantle dynamic uplift; negative RDAs may result from thinner than average oceanic crust or mantle dynamic subsidence. Gravity inversion incorporating a lithosphere thermal gravity anomaly correction and sediment thickness from 2D seismic data has been used to determine Moho depth and oceanic crustal basement thickness. The reference Moho depths used in the gravity inversion have been calibrated against seismic refraction Moho depths. The gravity inversion crustal basement thicknesses together with Airy isostasy have been used to predict a "synthetic" gravity derived RDA. Sediment corrected RDA for oceanic crust in the Gulf of Aden are positive (+750m) indicating anomalous uplift with respect to normal subsidence. Gravity inversion predicts normal thickness oceanic crust and a zero "synthetic" gravity derived RDA in the oceanic domain. The difference between the positive sediment corrected RDA and the zero "synthetic" gravity derived RDA, implies that the anomalous subsidence reported in the Gulf of Aden is the result of mantle dynamic uplift. For the oceanic crust outboard of Galicia Bank both the sediment corrected RDA and the "synthetic" gravity derived RDA are negative (-800m) and of similar magnitude, indicating anomalous subsidence, which is the result of anomalously thin oceanic crust, not mantle dynamic topography. We conclude that there is negligible mantle dynamic topography influencing the Galicia Bank region. In the Gulf of Lions, gravity inversion predicts thinner than average oceanic crust. Both sediment corrected RDA (-1km) and "synthetic" gravity derived RDA (-500m) are negative. The more negative sediment corrected RDA compared with the "synthetic" gravity derived RDA implies that the anomalous subsidence in the Gulf of Lions is the result of mantle dynamic subsidence as well as thinner than average oceanic crust.
NASA Astrophysics Data System (ADS)
Bartolome, R.; Danobeitia, J.; Barba, D. C., Sr.; Nunez-Cornu, F. J.; Cameselle, A. L.; Estrada, F.; Prada, M.; Bandy, W. L.
2014-12-01
During the spring of 2014, a team of Spanish and Mexican scientists explored the western margin of Mexico in the frame of the TSUJAL project. The two main objectives were to characterize the nature and structure of the lithosphere and to identify potential sources triggering earthquakes and tsunamis at the contact between Rivera plate-Jalisco block with the North American Plate. With these purposes a set of marine geophysical data were acquired aboard the RRS James Cook. This work is focus in the southern part of the TSUJAL survey, where we obtain seismic images from the oceanic domain up to the continental shelf. Thus, more than 800 km of MCS data, divided in 7 profiles, have been acquired with a 6km long streamer and using an air-gun sources ranging from 5800 c.i. to 3540 c.i. Furthermore, a wide-angle seismic profile of 190 km length was recorded in 16 OBS deployed perpendicular to the coast of Manzanillo. Gravity and magnetic, multibeam bathymetry and sub-bottom profiler data were recorded simultaneously with seismic data in the offshore area. Preliminary stacked MCS seismic sections reveal the crustal structure in the different domains of the Mexican margin. The contact between the Rivera and NA Plates is observed as a strong reflection at 6 s two way travel time (TWTT), in a parallel offshore profile (TS01), south of Manzanillo. This contact is also identified in a perpendicular profile, TS02, along a section of more than 100 km in length crossing the Rivera transform zone, and the plate boundary between Cocos and Rivera Plates. Northwards, offshore Pto. Vallarta, the MCS data reveals high amplitude reflections at around 7-8.5 s TWTT, roughly 2.5-3.5 s TWTT below the seafloor, that conspicuously define the subduction plane (TS06b). These strong reflections which we interpret as the Moho discontinuity define the starting bending of subduction of Rivera Plate. Another clear pattern observed within the first second of the MCS data shows evidences of a bottom simulating reflector (BSR) along the continental margin, particularly strong offshore Pto. Vallarta. The integration of all these acquired geophysical information will allow obtaining a comprehensive image of the lithosphere that will be valuable for the seismic and tsunamigenic hazard assessment.
NASA Astrophysics Data System (ADS)
Alvarez, T.; Mann, P.; Wood, L. J.; Vargas, C. A.; Latchman, J. L.
2013-12-01
Topography, basin structures and geomorphology of the southeast Caribbean-northeast South American margin are controlled by a 200-km-long transition from westward-directed subduction of South American lithosphere beneath the Caribbean plate, to east-west strike-slip motion of the Caribbean and South American plates. Our study of structures and basins present in the transitional area integrates a tomographic study of the lithospheric structures associated with lateral variations in the subduction of the South American lithosphere and orientation of the slab beneath the Caribbean plate as well as the evolution of overlying sedimentary basins imaged with deep-penetration seismic data kindly provided by the oil industry and Trinidad & Tobago government agencies. We use an earthquake dataset containing more than 700 events recorded by the eastern Caribbean regional seismograph network to build travel-time and attenuation tomography models used to image the mantle to depths of 100 km beneath transition zone. Approximately 10,000 km of 2D seismic reflection lines which are recorded to depths > 12 seconds TWT are used to interpret basin scale structures including tectono-stratigraphic sequences and structures which deform and displace sedimentary sequences. We use the observed satellite gravity to generate a gravity model for key sections traversing the tectonic transitional zone and to determine depth to basement in basins with sedimentary fill > 12 km. Within the study area, the dip of subducted South American oceanic lithosphere imaged on tomographic images is variable from ~44 to ~24 degrees. There is a distinct low gravity, low velocity, high attenuation, northwest - southeast trending lineation located east of Trinidad which defines the location of a Mesozoic oceanic fracture zone which accommodated the opening of the Central Atlantic during the Jurassic to Middle Cretaceous. This feature is also coincident with the present-day continent-ocean boundary and acts as a lithospheric weakness during subduction. We propose that this fracture zone is a key transition point between the subduction of South American/Atlantic oceanic lithosphere; which descends into the mantle, to the northeast, and the under-thrusting of transitional to continental South American lithosphere which resists subduction to the southwest. Maps of South American basement and its overlying Cretaceous passive margin illustrates a northwesterly basement dip with a distinct change in angle of the northwest dip across the paleo-fracture zone consistent with our tomographic model. We propose that flexure of the subducting South American plate at this location exerts a critical control on the formation and evolution of the basins and the lateral distribution of Cretaceous through Pleistocene stratigraphic fill. East of the fracture zone, the overlying strata is deformed by active subduction and accretionary prism processes with a wider zone of shortening with lower overall topography, while to the west of the fracture zone there is active oblique collision with a narrower zone of shortening and greater uplift.
NASA Astrophysics Data System (ADS)
Howell, Samuel M.; Ito, Garrett; Breivik, Asbjørn J.; Rai, Abhishek; Mjelde, Rolf; Hanan, Barry; Sayit, Kaan; Vogt, Peter
2014-04-01
The Iceland hotspot has profoundly influenced the creation of oceanic crust throughout the North Atlantic basin. Enigmatically, the geographic extent of the hotspot influence along the Mid-Atlantic Ridge has been asymmetric for most of the spreading history. This asymmetry is evident in crustal thickness along the present-day ridge system and anomalously shallow seafloor of ages ∼49-25 Ma created at the Reykjanes Ridge (RR), SSW of the hotspot center, compared to deeper seafloor created by the now-extinct Aegir Ridge (AR) the same distance NE of the hotspot center. The cause of this asymmetry is explored with 3-D numerical models that simulate a mantle plume interacting with the ridge system using realistic ridge geometries and spreading rates that evolve from continental breakup to present-day. The models predict plume-influence to be symmetric at continental breakup, then to rapidly contract along the ridges, resulting in widely influenced margins next to uninfluenced oceanic crust. After this initial stage, varying degrees of asymmetry along the mature ridge segments are predicted. Models in which the lithosphere is created by the stiffening of the mantle due to the extraction of water near the base of the melting zone predict a moderate amount of asymmetry; the plume expands NE along the AR ∼70-80% as far as it expands SSW along the RR. Without dehydration stiffening, the lithosphere corresponds to the near-surface, cool, thermal boundary layer; in these cases, the plume is predicted to be even more asymmetric, expanding only 40-50% as far along the AR as it does along the RR. Estimates of asymmetry and seismically measured crustal thicknesses are best explained by model predictions of an Iceland plume volume flux of ∼100-200 m/s, and a lithosphere controlled by a rheology in which dehydration stiffens the mantle, but to a lesser degree than simulated here. The asymmetry of influence along the present-day ridge system is predicted to be a transient configuration in which plume influence along the Reykjanes Ridge is steady, but is still widening along the Kolbeinsey Ridge, as it has been since this ridge formed at ∼25 Ma.
NASA Astrophysics Data System (ADS)
Rosenbaum, G.; Regenauer-Lieb, K.; Weinberg, R. F.
2009-12-01
We use numerical modelling to investigate the development of crustal and mantle detachment faults during lithospheric extension. Our models simulate a wide range of rift systems with varying values of crustal thickness and heat flow, showing how strain localization in the mantle interacts with localization in the upper crust and controls the evolution of extensional systems. Model results reveal a richness of structures and deformation styles, which grow in response to a self-organized mechanism that minimizes the internal stored energy of the system by localizing deformation at different levels of the lithosphere. Crustal detachment faults are well developed during extension of overthickened (60 km) continental crust, even when the initial heat flow is relatively low (50 mW/m2). In contrast, localized mantle deformation is most pronounced when the extended lithosphere has a normal crustal thickness (30-40 km) and an intermediate (60-70 mW/m2) heat flow. Results show a non-linear response to subtle changes in crustal thickness or heat flow, characterized by abrupt and sometime unexpected switches in extension modes (e.g. from diffuse rifting to effective lithospheric-scale rupturing) or from mantle- to crust-dominated strain localization. We interpret this non-linearity to result from the interference of doming wavelengths. Disharmony of crust and mantle doming wavelengths results in efficient communication between shear zones at different lithospheric levels, leading to rupturing of the whole lithosphere. In contrast, harmonious crust and mantle doming inhibits interaction of shear zones across the lithosphere and results in a prolonged rifting history prior to continental breakup.
NASA Astrophysics Data System (ADS)
Hassig, Marc; Rolland, Yann; Sosson, Marc; Galoyan, Ghazar; Sahakyan, Lilit; Topuz, Gultelin; Farouk Çelik, Omer; Avagyan, Ara; Muller, Carla
2014-05-01
During the Mesozoic, the Southern margin of the Eurasian continent was involved in the closure of the Paleotethys and opening Neotethys Ocean. Later, from the Jurassic to the Eocene, subductions, obductions, micro-plate accretions, and finally continent-continent collision occurred between Eurasia and Arabia, and resulted in the closure of Neotethys. In the Lesser Caucasus and NE Anatolia three main domains are distinguished from South to North: (1) the South Armenian Block (SAB) and the Tauride-Anatolide Platform (TAP), Gondwanian-derived continental terranes; (2) scattered outcrops of ophiolite bodies, coming up against the Sevan-Akera and Ankara-Erzincan suture zones; and (3) the Eurasian plate, represented by the Eastern Pontides margin and the Somkheto-Karabagh Arc. The slivers of ophiolites are preserved non-metamorphic relics of the now disappeared Northern Neotethys oceanic domain overthrusting onto the continental South Armenian Block (SAB) as well as on the Tauride-Anatolide plateform from the north to the south. It is important to point out that the major part of this oceanic lithosphere disappeared by subduction under the Eurasian Margin to the north. In the Lesser Caucasus, works using geochemical whole-rock analyses, 40Ar/39Ar dating of basalts and gabbro amphiboles and paleontological dating have shown that the obducted oceanic domain originates from a back-arc setting formed throughout Middle Jurassic times. The comprehension of the geodynamic evolution of the Lesser Caucasus supports the presence of two north dipping subduction zones: (1) a subduction under the Eurasian margin and to the south by (2) an intra-oceanic subduction allowing the continental domain to subduct under the oceanic lithosphere, thus leading to ophiolite emplacement. To the West, the NE Anatolian ophiolites have been intensely studied with the aim to characterize the type of oceanic crust which they originated from. Geochemical analyses have shown similar rock types as in Armenia, Mid Ocean Ridge Basalt (MORB) to volcanic arc rocks and Intra-Plate Basalts (IPB). Lithostratigraphic comparisons have shown that the relations between the three units, well identified in the Lesser Caucasus, are similar to those found in NE Anatolia, including the emplacement of stratigraphically conform and discordant deposits. New field data has also shed light on an outcrop of low-grade metamorphic rocks of volcanic origin overthrusted by the ophiolites towards the south on the northern side of the Erzincan basin, along the North Anatolian Fault (NAF). We extend our model for the Lesser Caucasus to NE Anatolia and infer that the missing of the volcanic arc formed above the intra-plate subduction may be explained by its dragging under the obducting ophiolite with scaling by faulting and tectonic erosion. In this large scale model the blueschists of Stepanavan, the garnet amphibolites of Amasia and the metamorphic arc complex of Erzincan correspond to this missing volcanic arc. We propose that the ophiolites of these two zones originate from the same oceanic domain and were emplaced during the same obduction event. This reconstructed ophiolitic nappe represents a preserved non-metamorphic oceanic domain over-thrusting up to 200km of continental domain along more than 500km. Distal outcrops of this exceptional object were preserved from latter collision which was concentrated along the suture zones.
A Comprehensive View Of Taiwan Orogeny From TAIGER Perspective
NASA Astrophysics Data System (ADS)
Wu, F. T.; Kuochen, H.; McIntosh, K. D.; Okaya, D. A.; Lavier, L. L.
2012-12-01
Arc-continent collision is one of the basic mechanisms for building continental masses. Taiwan is young and very active. Based on known geology a multi-disciplinary geophysical experiment was designed to image the orogeny in action. Logistics for R/V Langseth, OBS and PASSCAL instruments was complex; nevertheless the field works were completed within the project period. The resulting dataset allows us to map the structures of the shallow crust and the upper mantle. The amount of data gathered is large; some key observations and current interpretations are: (I) Observation: Crustal roots on both Eurasian and Philippine Sea plates, with a high velocity rise in between. Interpretation: Deformation throughout lithosphere on both sides of the initial suture; shortening of lithosphere near plate boundary produce high velocity rise. (II) Observation: Upper mantle high velocity anomaly coincides with a steep east-dippping Wadati-Benioff seismicity in southern Taiwan; the anomaly continues part of the way to central Taiwan but it is aseismic; under northern Taiwan the anomaly is very weak and disorganized. Interpretation: Active subduction in the south (up to 22.8°N) and may be eclogitization in the lower crust and delamination in central Taiwan. (III) Observation: Low Vp/Vs, low resistivity in the core of Central Range. Interp: dry, felsic rocks at relatively high temper (up to 750OC). (IV) Obs: Strong SKS splitting (~2 sec) with trend-parallel fast axis. Interp: Shearing throughout uppermost mantle. Preliminary 2-D geodynamic modeling produces the primary observed features from simple initial model of an arc impinging on continental margin.
NASA Astrophysics Data System (ADS)
Szymanski, E.; Stockli, D.; Johnson, P.; Kattan, F. H.; Al Shamari, A.
2006-12-01
Numerous models exploring the rupturing modes and mechanisms of continental lithosphere are based on geological evidence from the Red Sea/Gulf of Suez rift system. Individually, the Red Sea basin is the prototype for many models of orthogonal continental rifting. Despite being a classic example of continental extension, many temporal and spatial strain distribution aspects, as well as the dynamic evolution of the rift architecture of the Red Sea, remain poorly constrained. Critical data come mostly from the Gulf of Suez and the Egyptian and Yemeni margins of the Red Sea; the rift flanks in Sudan and Saudi Arabia have remained largely unstudied, leaving a large information gap along the central portions of the rift system. Improving continental lithosphere rupture models requires an absolute understanding of the timing and magnitude of strain partitioning along the full rift flank. This study focuses on the development of extensional structures, syn- extensional sedimentary deposits, and rift-related Tertiary basaltic volcanism along the central flank of the rift system in Saudi Arabia. Geo- and thermochronometric techniques are used to elucidate the evolution of inboard and outboard strain markers manifested by structurally-controlled extensional basins that parallel the trend of the main Red Sea rift. Constraints on the dynamics of rift flank deformation are achieved through the collection of thermochronometric transects that traverse both the entire Arabian shield and individual normal faults that bound inland basins. Preliminary results show inland basins as asymmetric half-grabens filled by tilted Cenozoic sedimentary strata and separated by exhumed basement fault blocks. The most prominent extensional basin is the NW-trending Hamd-Jizil basin, located north of Madinah, measuring ~200 km along strike and up to 20 km in width. The Hamd-Jizil basin is structurally characterized by two half-grabens exposing a series of syn-rift siliciclastic sedimentary sections below Tertiary basalts. In certain areas, thick basalt sequences provide basin infill and appear faulted by a younger series of normal faults. Work continues on the production of further geo- and thermochronologic data for the Tertiary basalt sequences as well as the entire rift flank region.
Variations in magmatic processes along the East Greenland volcanic margin
NASA Astrophysics Data System (ADS)
Voss, Max; Schmidt-Aursch, Mechita C.; Jokat, Wilfried
2009-05-01
Seismic velocities and the associated thicknesses of rifted and igneous crust provide key constraints on the rifting history, the differentiation between non-volcanic and volcanic rifted margins, the driving force of magmatism at volcanic margins, that is, active or passive upwelling and the temperature anomaly in the lithosphere. This paper presents two new wide-angle seismic transects of the East Greenland margin and combines the velocity models with a compilation of 30-wide-angle seismic velocity models from several publications along the entire East Greenland margin. Compiled maps show the depth to basement, depth to Moho, crustal thickness and thickness of high velocity lower crust (HVLC; with velocities above 7.0 km s-1). First, we present two new wide-angle seismic transects, which contribute to the compilation at the northeast Greenland margin and over the oceanic crust between Shannon Island and the Greenland Fracture Zone. Velocity models, produced by ray tracing result in total traveltime rms-misfits of 100-120 milliseconds and χ2 values of 3.7 and 2.3 for the northern and southern profiles with respect to the data quality and structural complexity. 2-D gravity modelling is used to verify the structural and lithologic constraints. The northernmost profile, AWI-20030200, reveals a magma starved break-up and a rapidly thinning oceanic crust until magnetic anomaly C21 (47.1 Ma). The southern seismic transect, AWI-20030300, exhibits a positive velocity anomaly associated with the Shannon High, and a basin of up to 15 km depth beneath flood basalts between Shannon Island and the continent-ocean boundary. Break-up is associated with minor crustal thickening and a rapidly decreasing thickness of oceanic crust out to anomaly C21. The continental region is proposed to be only sparsely penetrated by volcanism and not underplated by magmatic material at all compared to the vast amount of magmatism further south. Break-up is proposed to have occurred at the seaward boundaries of the continent-ocean transition zones at between ~50 and ~54 Ma, propagating from north to south based on a joint analysis incorporating transects from the Kejser Franz Joseph Fjord and Godthåb Gulf. Secondly, the variation of the HVLC along the East Greenland margin from 60° to 77°N and from transects of its conjugate margin shows inverted emplacement of prominent landward and seaward HVLC thickness portions from north to south in a distribution chart. The differences in the HVLC distribution are attributed to one or more of the following three models. In the first model it is inferred that a transfer zone/detachment acts as a barrier to northward magma flow. In the second model, underplating results in thicker and highly intruded lower crust with several small-scale feeder dykes that locally increase the lower crustal velocities. In the third model, a second magmatic event associated with the separation of the Jan Mayen microcontinent is considered. Lithospheric-scale inhomogeneities might be responsible for the heterogeneous melt generation, the inversion of the HVLC distribution in continental and oceanic domains and differences in its velocities.
Lithospheric Stress Tensor from Gravity and Lithospheric Structure Models
NASA Astrophysics Data System (ADS)
Eshagh, Mehdi; Tenzer, Robert
2017-07-01
In this study we investigate the lithospheric stresses computed from the gravity and lithospheric structure models. The functional relation between the lithospheric stress tensor and the gravity field parameters is formulated based on solving the boundary-value problem of elasticity in order to determine the propagation of stresses inside the lithosphere, while assuming the horizontal shear stress components (computed at the base of the lithosphere) as lower boundary values for solving this problem. We further suppress the signature of global mantle flow in the stress spectrum by subtracting the long-wavelength harmonics (below the degree of 13). This numerical scheme is applied to compute the normal and shear stress tensor components globally at the Moho interface. The results reveal that most of the lithospheric stresses are accumulated along active convergent tectonic margins of oceanic subductions and along continent-to-continent tectonic plate collisions. These results indicate that, aside from a frictional drag caused by mantle convection, the largest stresses within the lithosphere are induced by subduction slab pull forces on the side of subducted lithosphere, which are coupled by slightly less pronounced stresses (on the side of overriding lithospheric plate) possibly attributed to trench suction. Our results also show the presence of (intra-plate) lithospheric loading stresses along Hawaii islands. The signature of ridge push (along divergent tectonic margins) and basal shear traction resistive forces is not clearly manifested at the investigated stress spectrum (between the degrees from 13 to 180).
NASA Astrophysics Data System (ADS)
Babuska, Vladislav; Plomerova, Jaroslava; Vecsey, Ludek; Munzarova, Helena
2016-04-01
Subduction and orogenesis require a strong mantle layer (Burov, Tectonophys. 2010) and our findings confirm the leading role of the mantle lithosphere. We have examined seismic anisotropy of Archean, Proterozoic and Phanerozoic provinces of Europe by means of shear-wave splitting and P-wave travel-time deviations of teleseismic waves observed at dense arrays of seismic stations (e.g., Vecsey et al., Tectonophys. 2007). Lateral variations of seismic-velocity anisotropy delimit domains of the mantle lithosphere, each of them having its own consistent fabric. The domains, modeled in 3D by olivine aggregates with dipping lineation a, or foliation (a,c), represent microplates or their fragments that preserved their pre-assembly fossil fabrics. Evaluating seismic anisotropy in 3D, as well as mapping boundaries of the domains helps to decipher processes of the lithosphere formation. Systematically dipping mantle fabrics and other seismological findings seem to support a model of continental lithosphere built from systems of paleosubductions of plates of ancient oceanic lithosphere (Babuska and Plomerova, AGU Geoph. Monograph 1989), or from stacking of the plates (Helmstaedt and Schulze, Geol. Soc. Spec. Publ. 1989). Seismic anisotropy in the oceanic mantle lithosphere, explained mainly by the olivine A- or D-type fabric (Karato et al., Annu. Rev. Earth Planet. Sci. 2008), was discovered a half century ago (Hess, Nature 1964). Field observations and laboratory experiments indicate the oceanic olivine fabric might be preserved in the subducting lithosphere to a depth of at least 200-300 km. We thus interpret the dipping anisotropic fabrics in domains of the European mantle lithosphere as systems of "frozen" paleosubductions (Babuska and Plomerova, PEPI 2006) and the lithosphere base as a boundary between the fossil anisotropy in the lithospheric mantle and an underlying seismic anisotropy related to present-day flow in the asthenosphere (Plomerova and Babuska, Lithos 2010).
NASA Astrophysics Data System (ADS)
Haberland, Christian; Bohm, Mirjam; Asch, Günter
2014-12-01
Reassessment of travel time data from an exceptionally dense, amphibious, temporary seismic network on- and offshore Central and Eastern Java (MERAMEX) confirms the accretionary nature of the crust in this segment of the Sunda subduction zone (109.5-111.5E). Traveltime data of P- and S-waves of 244 local earthquakes were tomographically inverted, following a staggered inversion approach. The resolution of the inversion was inspected by utilizing synthetic recovery tests and analyzing the model resolution matrix. The resulting images show a highly asymmetrical crustal structure. The images can be interpreted to show a continental fragment of presumably Gondwana origin in the coastal area (east of 110E), which has been accreted to the Sundaland margin. An interlaced anomaly of high seismic velocities indicating mafic material can be interpreted to be the mantle part of the continental fragment, or part of obducted oceanic lithosphere. Lower than average crustal velocities of the Java crust are likely to reflect ophiolitic and metamorphic rocks of a subduction melange.
Re-Os-PGE constraints on continental lithosphere assembly: a case study in eastern Russia
NASA Astrophysics Data System (ADS)
Nelson, W. R.; Ionov, D. A.; Shirey, S. B.; Prikhod'Ko, V. S.
2010-12-01
Archean cratons are the old, stable nuclei around which continents are assembled as non-cratonic material is added to the periphery of cratons by subduction-driven accretion, volcanism, and reworking of existing material. In eastern Eurasia, Phanerozoic subduction-related processes have severely altered cratonic mantle at the SE margin of Siberia (Tok) and destabilized North China cratonic mantle, resulting in early Mesozoic delamination and possible recycling into the convecting mantle. It is unclear how younger, off-craton continental mantle lithosphere is produced and modified during subsequent subduction and collision events, what mantle compositions can form in these settings, and whether any previous cratonic lithosphere may be retained. In order to investigate this problem, we collected Re-Os and PGE data on 24 peridotite xenoliths from four basaltic eruptive centers - Fevralsky, Sveyagin, Medvezhy, and Kurose - located along a cross section of the eastern Eurasian mantle between the Siberian craton and Japan. Fevralsky spinel lherzolites are the closest xenoliths to the Siberian craton. Like peridotites from Tok (Ionov et al., 2006), some Fevralsky xenoliths record metasomatic influence (Al2O3 = 4.6-4.9 wt. %; Re =0.33-2.42 ppb). However, unlike the Tok peridotites, this event did not significantly affect primitive mantle-like abundances of Os (3.3-3.9 ppb) and other PGE, or 187Os/188Os ratios (0.1185-0.1282). Further south, Sveyagin spinel lherzolites are from a Proterozoic microcontinent accreted to Eurasia during the Mesozoic. Sveyagin xenoliths have not experienced Re addition. Instead, Re (0.06-0.20 ppb) and PGE concentrations, 187Os/188Os (0.120-0.129), and 187Re/188Os (0.182-0.433) are consistent with minor to moderate melt extraction from primitive mantle. A Re-Os isochron estimates that Sveyagin xenoliths formed at ~ 1.9 Ga, consistent with TMA ages (1.4-3.4 Ga). This may be coeval with a metasomatic event that affected the Tok region (Ionov et al., 2006) and coincident with an early period of localized lithosphere replacement in the Hannuoba region of the North China craton (Gao et al., 2002). Medvezhy (Sikhote-Alin mountains) and Kurose (SE Japan) xenoliths are associated with Cenozoic accretion of island arcs and microcontinents onto Eurasia. Unlike the Fevralsky and Sveyagin suites, Medvezhy and Kurose peridotites are dominantly refractory harzburgite, similar to cratonic peridotites but with lower Mg# (<0.92). While it may be possible to perturb the Re-Os isotopic system (and increase FeO) in delaminated cratonic lithosphere to generate more primitive 187Os/188Os signatures, the PGE concentrations for both suites indicate these samples have not experienced extensive reaction with evolved melts. Instead, the harzburgites likely represent portions of strongly melt-depleted oceanic mantle lithosphere. This lithospheric material was then accreted onto Eurasia along with other arc and microcontinent terrains.
On the initiation of subduction zones
NASA Astrophysics Data System (ADS)
Cloetingh, Sierd; Wortel, Rinus; Vlaar, N. J.
1989-03-01
Analysis of the relation between intraplate stress fields and lithospheric rheology leads to greater insight into the role that initiation of subduction plays in the tectonic evolution of the lithosphere. Numerical model studies show that if after a short evolution of a passive margin (time span a few tens of million years) subduction has not yet started, continued aging of the passive margin alone does not result in conditions more favorable for transformation into an active margin. Although much geological evidence is available in supporting the key role small ocean basins play in orogeny and ophiolite emplacement, evolutionary frameworks of the Wilson cycle usually are cast in terms of opening and closing of wide ocean basins. We propose a more limited role for large oceans in the Wilson cycle concept. In general, initiation of subduction at passive margins requires the action of external plate-tectonic forces, which will be most effective for young passive margins prestressed by thick sedimentary loads. It is not clear how major subduction zones (such as those presently ringing the Pacific Basin) form but it is unlikely they form merely by aging of oceanic lithosphere. Conditions likely to exist in very young oceanic regions are quite favorable for the development of subduction zones, which might explain the lack of preservation of back-arc basins and marginal seas. Plate reorganizations probably occur predominantly by the formation of new spreading ridges, because stress relaxation in the lithosphere takes place much more efficiently through this process than through the formation of new subduction zones.
NASA Astrophysics Data System (ADS)
Lei, Chao; Ren, Jianye; Sternai, Pietro; Fox, Matthew; Willett, Sean; Xie, Xinong; Clift, Peter D.; Liao, Jihua; Wang, Zhengfeng
2015-08-01
The temporal link between offshore stratigraphy and onshore topography is of key importance for understanding the long-term surface evolution of continental margins. Here we present a grid of regional, high-quality reflection seismic and well data to characterize the basin structure. We identify fast subsidence of the basin basement and a lack of brittle faulting of the offshore Red River fault in the Yinggehai-Song Hong basin since 5.5 Ma, despite dextral strike-slip movement on the onshore Red River fault. We calculate the upper-crustal, whole-crustal, and whole-lithospheric stretching factors for the Yinggehai-Song Hong basin, which show that the overall extension observed in the upper crust is substantially less than that observed for the whole crust or whole lithosphere. We suggest that fast basement subsidence after 5.5 Ma may arise from crustal to lithospheric stretching by the regional dynamic lower crustal/mantle flow originated by collision between India-Eurasia and Indian oceanic subduction below the Eurasian margin. In addition, we present a basin wide sediment budget in the Yinggehai-Song Hong basin to reconstruct the sedimentary flux from the Red River drainage constrained by high-resolution age and seismic stratigraphic data. The sediment accumulation rates show a sharp increase at 5.5 Ma, which suggests enhanced onshore erosion rates despite a slowing of tectonic processes. This high sediment supply filled the accommodation space produced by the fast subsidence since 5.5 Ma. Our data further highlight two prominent sharp decreases of the sediment accumulation at 23.3 Ma and 12.5 Ma, which could reflect a loss of drainage area following headwater capture from the Paleo-Red River. However, the low accumulation rate at 12.5 Ma also correlates with drier and therefore less erosive climatic conditions.
Block versus continuum deformation in the Western United States
King, G.; Oppenheimer, D.; Amelung, F.
1994-01-01
The relative role of block versus continuum deformation of continental lithosphere is a current subject of debate. Continuous deformation is suggested by distributed seismicity at continental plate margins and by cumulative seismic moment sums which yield slip estimates that are less than estimates from plate motion studies. In contrast, block models are favored by geologic studies of displacement in places like Asia. A problem in this debate is a lack of data from which unequivocal conclusions may be reached. In this paper we apply the techniques of study used in regions such as the Alpine-Himalayan belt to an area with a wealth of instrumental data-the Western United States. By comparing plate rates to seismic moment release rates and assuming a typical seismogenic layer thickness of 15 km it appears that since 1850 about 60% of the Pacific-North America motion across the plate boundary in California and Nevada has occurred seismically and 40% aseismically. The San Francisco Bay area shows similar partitioning between seismic and aseismic deformation, and it can be shown that within the seismogenic depth range aseismic deformation is concentrated near the surface and at depth. In some cases this deformation can be located on creeping surface faults, but elsewhere it is spread over a several kilometer wide zone adjacent to the fault. These superficial creeping deformation zones may be responsible for the palaeomagnetic rotations that have been ascribed elsewhere to the surface expression of continuum deformation in the lithosphere. Our results support the dominant role of non-continuum deformation processes with the implication that deformation localization by strain softening must occur in the lower crust and probably the upper mantle. Our conclusions apply only to the regions where the data are good, and even within the Western United States (i.e., the Basin and Range) deformation styles remain poorly resolved. Nonetheless, we maintain that block motion is the deformation style of choice for those continental regions where the data are best. ?? 1994.
NASA Astrophysics Data System (ADS)
Chin, E. J.; Lee, C.; Tollstrup, D. L.; Xie, L.; Wimpenny, J.; Yin, Q.
2011-12-01
The North American Cordillera experienced lithospheric thickening during the Cretaceous as a result of subduction-induced magmatism and tectonic shortening. Several studies suggest correlations between increased plate convergence rates and crustal underthrusting with apparent magmatic flux and evolved isotopic excursions, yet questions still remain regarding causality between tectonic and magmatic thickening. Here, we use lower crustal garnet-bearing metaquartzite (80% SiO2) xenoliths hosted in late Miocene basalts in the central Sierra Nevada Batholith, California to constrain the P-T-t (pressure-temperature-time) history of crustal thickening. The xenoliths are equigranular in texture and are comprised of >50% quartz, ~10% metamorphic garnet, <40% plagioclase, and trace rutile, kyanite, and biotite. High quartz mode, abundant well-rounded detrital zircons, and oriented graphite laths demonstrating sedimentary or metamorphic layering point to a supracrustal sedimentary protolith. However, final equilibration temperatures using titanium-in-quartz thermometry are 700 - 800 °C, and final equilibration pressures using the GASP barometer yield 0.9 - 1.3 GPa, indicating the metaquartzites equilibrated within a hot lower crust (18 - 45 km). Low whole-rock REE totals, lack of whole-rock HREE enrichment relative to LREE and MREE, and absence of positive Eu anomalies suggest that significant melting in the garnet or plagioclase fields did not occur. The whole-rock trace element geochemistry is also consistent with an initially garnet-free protolith. Simultaneous LA-ICP-MS measurements of U-Pb and Hf isotopes in detrital zircons show that all zircons have discordant U-Pb with variable upper intercept ages (1.7, 2.7, 3.3 Ga; consistent with Hf model ages), but common lower intercept ages (100 Ma). The above indicate that protoliths of the metaquartzites were North American Proterozoic to Paleozoic passive margin sediments which were simultaneously emplaced into the lower crust at ~100 Ma, during the peak of Cretaceous arc magmatism. We envision underthrusting of N. American lithosphere beneath the active Sierran arc as the mechanism for transporting these sediments to high P, T conditions, but underthrusting cold continental lithosphere alone cannot explain the xenoliths' high final temperatures. An additional heat source, derived from deep crustal magmatic "hot zones", seems required. We are currently exploring diffusion modeling in garnet porphyroblasts as a way to estimate rates of thickening. Because the protoliths were initially garnet-free, growth of metamorphic garnet can potentially record the length of time it took the metaquartzites to achieve their high P, T conditions. We will also use Ti zonation in detrital zircons as an added constraint on timescales involved in thickening. So far, our results indicate firsthand that tectonic underthrusting of continental supracrustal rocks extends all the way into deep magmatic zones beneath arcs, implying that magmatic differentiation alone is not the only mechanism by which continental crust achieves its felsic composition.
NASA Astrophysics Data System (ADS)
Grebennikov, Andrei V.; Khanchuk, Alexander I.; Gonevchuk, Valeriy G.; Kovalenko, Sergey V.
2016-09-01
The Mesozoic and Cenozoic geological history of NE Asia comprises alternating episodes of subduction or transform strike-slip movement of the oceanic plate along the continental margin of Eurasia. This sequence resulted in the regular generation of granitoid suites that are characterized by different ages, compositions, and tectonic settings. The Hauterivian-Aptian orogenic stage of the Sikhote-Alin, associated with the strike-slip displacement of the early Paleozoic continental blocks, the successive deformation of the Jurassic and Early Cretaceous terranes, and the injection of the earliest S-type granitoids. During late Albian, the area underwent syn-strike-slip compression caused by collision with the Aptian island arc and resulted in the injection of voluminous magmas of calc-alkaline magnesian (S- and I-type) and alkali-calcic ferroan (A-type) granitoids into syn-faulting compressional and extensional basins, respectively. Northwestward to westward movement of the Izanagi Plate resulted in the initiation of frontal subduction of the Paleo-Pacific Plate during the Cenomanian-Maastrichtian. In turn, this resulted in the generation of plateau-forming ignimbrites and their intrusive analogs formed from metaluminous I-type felsic magmas. Paleocene-Eocene magmatism in the Sikhote-Alin area commenced after the termination of subduction in a rifting regime related to strike-slip movement of the oceanic plate relative to the continent. The break-off of the subducted plate and the injection of oceanic asthenospheric material into the subcontinental lithosphere resulted in the eruption of lamproites and fayalite rhyolites, and coeval intrusions of gabbro and alkali feldspar granites (A-type). The A-type granitic-rocks and coeval gabbro-monzonites are considered to be reliable indicators of the transform continental margin geodynamic settings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, T.M.; Yin, An; Copeland, P.
1992-03-27
Thermochronologic, sedimentologic, oceanographic, and paleoclimatic studies suggest that rapid uplift and unroofing of southern Tibet began about 20 million years ago and that the present elevation of much of the Tibetan plateau was attained by about 8 million years ago. Hypotheses advanced to explain the tectonic evolution of the India-Asia collision, which began about 40 to 50 million years ago, predict the timing and rates of crustal thickening of the southern margin of Asia. However, these models do not predict the prominently enhanced early Miocene denudation and uplift that are manifested in a variety of geological records. A model involvingmore » continental extrusion, development of a crustal-scale thrust ramp of the Main Central Thrust beneath the Gangdese belt, and lithospheric delamination provides a history consistent with these observations.« less
NASA Astrophysics Data System (ADS)
Tian, X.; Choi, E.; Buck, W. R.
2015-12-01
The offset of faults and related topographic relief varies hugely at both continental rifts and mid-ocean ridges (MORs). In some areas fault offset is measured in 10s of meters while in places marked by core complexes it is measured in 10s of kilometers. Variation in the magma supply is thought to control much of these differences. Magma supply is most usefully described by the ratio (M) between rates of lithospheric extension accommodated by magmatic dike intrusion and that occurring via faulting. 2D models with different values of M successfully explain much of the observed cross-sectional structure seen at rifts and ridges. However, magma supply varies along the axis of extension and the interactions between the tectonics and magmatism are inevitably three-dimensional. We investigate the consequences of this along-axis variation in diking in terms of faulting patterns and the associated structures using a 3D parallel geodynamic modeling code, SNAC. Many observed 3D structural features are reproduced: e.g., abyssal hill, oceanic core complex (OCC), inward fault jump, mass wasting, hourglass-shaped median valley, corrugation and mullion structure. An estimated average value of M = 0.65 is suggested as a boundary value for separating abyssal hills and OCCs formation. Previous inconsistency in the M range for OCC formation between 2D model results (M = 0.3˜0.5) and field observations (M < 0.3 or M > 0.5) is reconciled by the along-ridge coupling between different faulting regimes. We also propose asynchronous faulting-induced tensile failure as a new possibility for explaining corrugations seen on the surface of core complexes. For continental rifts, we will describe a suite of 2D and 3D model calculations with a range of initial lithospheric structures and values of M. In one set of the 2D models we limit the extensional tectonic force and show how this affects the maximum topographic relief produced across the rift. We are also interested in comparing models in which the value of M varies as the rift evolves with observations from real rifts and continental margins. Finally, we plan to show how the faulting pattern in 3D can depend on the distribution of dike opening rate along segments for incipient continental rifts.
Mantle beneath the Gibraltar Arc from receiver functions
NASA Astrophysics Data System (ADS)
Morais, Iolanda; Vinnik, Lev; Silveira, Graça; Kiselev, Sergey; Matias, Luís
2015-02-01
P and S receiver functions (PRF and SRF) from 19 seismograph stations in the Gibraltar Arc and the Iberian Massif reveal new details of the regional deep structure. Within the high-velocity mantle body below southern Spain the 660-km discontinuity is depressed by at least 20 km. The Ps phase from the 410-km discontinuity is missing at most stations in the Gibraltar Arc. A thin (˜50 km) low-S-velocity layer atop the 410-km discontinuity is found under the Atlantic margin. At most stations the S410p phase in the SRFs arrives 1.0-2.5 s earlier than predicted by IASP91 model, but, for the propagation paths through the upper mantle below southern Spain, the arrivals of S410p are delayed by up to +1.5 s. The early arrivals can be explained by elevated Vp/Vs ratio in the upper mantle or by a depressed 410-km discontinuity. The positive residuals are indicative of a low (˜1.7 versus ˜ 1.8 in IASP91) Vp/Vs ratio. Previously, the low ratio was found in depleted lithosphere of Precambrian cratons. From simultaneous inversion of the PRFs and SRFs we recognize two types of the mantle: `continental' and `oceanic'. In the `continental' upper mantle the S-wave velocity in the high-velocity lid is 4.4-4.5 km s-1, the S-velocity contrast between the lid and the underlying mantle is often near the limit of resolution (0.1 km s-1), and the bottom of the lid is at a depth reaching 90-100 km. In the `oceanic' domain, the S-wave velocities in the lid and the underlying mantle are typically 4.2-4.3 and ˜ 4.0 km s-1, respectively. The bottom of the lid is at a shallow depth (around 50 km), and at some locations the lid is replaced by a low S-wave velocity layer. The narrow S-N-oriented band of earthquakes at depths from 70 to 120 km in the Alboran Sea is in the `continental' domain, near the boundary between the `continental' and `oceanic' domains, and the intermediate seismicity may be an effect of ongoing destruction of the continental lithosphere.
NASA Technical Reports Server (NTRS)
Burke, Kevin
1988-01-01
Effort was concentrated in problems of continental evolution and a presentation was made to a workshop on the Deep Continental Growth of South India. An interpretation of the lithospheric structure of Africa as related to continental collision (together with its volcanism and topography) was prepared and a paper on this topic is about to be submitted. No expenditures were charged to the grant during this 6 month period.
NASA Astrophysics Data System (ADS)
Hopper, E.; Fischer, K. M.
2016-12-01
The lithosphere preserves a record of past and present tectonic processes in its internal structures and its boundary with the underlying asthenosphere. We use common conversion point stacked Sp converted waves recorded by EarthScope's Transportable Array, as well as other available permanent and temporary broadband stations, to image such structures in the lithospheric mantle of the contiguous U.S. In the tectonically youngest western U.S., a shallow, sharp velocity gradient at the base of the lithosphere suggests a boundary defined by ponded melt. The lithosphere thickens with age of volcanism, implying the lithosphere is a melt-mitigated, conductively cooling thermal boundary layer. Beneath older, colder lithosphere where melt fractions are likely much lower, the velocity gradient at the base of such a layer should be a more diffuse, primarily thermal boundary. This is consistent with observations in the eastern U.S. where the lithosphere-asthenosphere boundary (LAB) is locally sharp and shallower only in areas of inferred enhanced upwelling - such as ancient hot spot tracks and areas of inferred delamination. In the cratonic interior, the LAB is even more gradual in depth, and is transparent to Sp waves with dominant periods of 10 s. Although seismic imaging only provides a snapshot of the lithosphere as it is today, preserved internal structures extend the utility of this imaging back into deep geological time. Ancient accretion within the cratonic lithospheric mantle is preserved as dipping structures associated with relict subducted slabs from Paleoproterozoic continental accretion, suggesting that lateral accretion was integral to the cratonic mantle root formation process. Metasomatism, melt migration and ponding below a carbonated peridotite solidus explain a sub-horizontal mid-lithospheric discontinuity (MLD) commonly observed at 70-100 km depth. This type of MLD is strongest in Mesoproterozoic and older lithosphere, suggesting that it formed more vigorously in the deep past, that a billion years or more are required to build up an observable volatile-rich layer, or that strong, ancient lithosphere is required to support an inherently weak, volatilized layer.
Viscoelastic Lithosphere Response and Stress Memory of Tectonic Force History (Invited)
NASA Astrophysics Data System (ADS)
Kusznir, N. J.
2009-12-01
While great attention is often paid to the details of creep deformation mechanisms, brittle failure and their compositional controls when predicting the response of lithosphere to tectonic forces, the lithosphere’s elastic properties are usually neglected; a viscous rheology alone is often used to predict the resulting distribution of stress with depth or to determine lithosphere strength. While this may simplify geodynamic modelling of lithosphere response to tectonic processes, the omission of the elastic properties can often give misleading or false predictions. The addition of the elastic properties of lithosphere material in the form of a visco-elastic rheology results is a fundamentally different lithosphere response. This difference can be illustrated by examining the application of horizontal tectonic force to a section of lithosphere incorporating the brittle-visco-elastic response of each infinitesimal lithosphere layer with temperature and stress dependent viscous rheology. The transient response of a visco-elastic lithosphere to a constant applied tectonic force and the resulting distribution of stress with depth are substantially different from that predicted by a viscous lithosphere model, with the same lithosphere composition and temperature structure, subjected to a constant lateral strain rate. For visco-elastic lithosphere subject to an applied horizontal tectonic force, viscous creep in the lower crust and mantle leads to stress decay in these regions and to stress amplification in the upper lithosphere through stress redistribution. Cooling of lithosphere with a visco-elastic rheology results in thermal stresses which, as a consequence of stress dissipation by creep and brittle failure, results in a complex and sometimes counter-intuitive distribution of stress with depth. This can be most clearly illustrated for the cooling of oceanic lithosphere, however similar or more complex behaviour can be expected to occur for continental lithosphere. The application of changes in applied tectonic force with time to a visco-elastic lithosphere model results in reversals in the sign of stress with depth as a consequence of the “memory” of past stress dissipation by creep and brittle deformation. Because of this “memory”, locally stress polarity may be opposite to that of the current applied tectonic force. A lithosphere with viscous rheology displays no such “memory” of the applied tectonic stress history. The stress “memory” of lithosphere with visco-elastic rheology to its history of applied tectonic force, heating and cooling adds to its effective rheological complexity, particularly for continental lithosphere.
Late Cenozoic flexural deformation of the middle U.S. Atlantic passive margin
NASA Technical Reports Server (NTRS)
Pazzaglia, Frank J.; Gardner, Thomas, W.
1994-01-01
Despite the century-long recognition of regional epeirogeny along the middle Atlantic passive margin, relatively few studies have focused on understanding postrift uplift mechanisms. Here, we demonstrate that epeirogenic uplift of the central Appalachian Piedmont and subsidence of the Salisbury Embayment represent first-order, flexural isostatic processes driven by continental denudation and offshore deposition. Our results show that regional epeirogenic processes, present on all Atlantic-type passive margins, are best resolved by specific stratigraphic and geomorphic relationships, rather than topography. A simple one-dimensional geodynamic model, constrained by well-dated Baltimore Canyon trough, Coastal Plain, and lower Susquehanna River (piedmont) stratigraphy, simulates flexural deforamtion of the U.S. Atlantic margin. The model represents the passive margin lithosphree as a uniformly thick elastic plate, without horizontal compressive stresses, that deforms flexurally under the stress of strike-averaged, vertically applied line loads. Model results illustrate a complex interaction among margin stratigraphy and geomorphology, the isostatic repsonse to denudational and depositional processes, and the modulating influence of exogenic forces such as eustasy. The current elevation, with respect to modern sea level, of fluvial terraces and correlateive Coastal Plain deposits or unconformities is successfully predicted through the synthesis of paleotopography, eustatic change, and margin flexure. Results suggest that the middle U.S. Atlantic margin landward of East Coast Magnetic Anomaly is underlain by lithoshpere with an average elastic thickness of 40 km (flexural rigidity, D = 4 X 10(exp 23) N m), the margin experience an average, long-term denudation rate of approximately 10m/m.y., and the Piedmont has been flexurally upwaped between 35 and 130 meters in the last 15 m.y. Long term isostatic continental uplift resulting rom denudation and basin subsidence resulting rom sediment loading are accomodated primately by a convex-up flexural hinge, physiographically represented by the Fall Zone. Our results elucidate an inherent danger in using topography alone to constrain late-stage passive margin deformation mechanisms. Only through careful synthesis of field stratigraphic and geomorphic elements such as fluvial terraces, Coastal Plain deposits, and offshore stratigraphy can age control be extended from the offshore depositional setting to the erosionally dominated continent. This sudy demonstrates that despite a relatively subdued topography, the middle U.S. Atlantic margin experiences progressive flexural isostatic deformation similar to that proposed for high-relief margins characterized by great escarpments. Thus margin topographic diversity remains a function of other factors, such as lithospheric composition and/or structure, supracrustal stratigraphy and structure, degree of drainage integration, drainage divide migration and climate.
3D numerical modeling of India-Asia-like collision
NASA Astrophysics Data System (ADS)
-Erika Püsök, Adina; Kaus, Boris; Popov, Anton
2013-04-01
One of the most striking features of plate tectonics and lithospheric deformation is the India-Asia collision zone, which formed when the Indian continent collided with Eurasia, around 50 million years ago. The rise of the abnormally thick Tibetan plateau, the deformation at its Eastern and Western syntaxes, the transition from subduction to collision and uplift and the interaction of tectonics and climate are processes not fully understood. Though various geophysical methods have been employed to shed light on the present structure of the Indian-Asian lithosphere, the driving mechanisms that uplifted the Tibetan plateau remain highly controversial and different hypotheses imply contradictory scenarios. Models for double crustal thickness include: wholescale underthrusting of Indian lithospheric mantle under Tibet (Argand model), distributed homogeneous shortening or the thin-sheet model (England and Houseman, 1986), slip-line field model to also explain extrusion of Eastern side of Tibet away from Indian indentor (Tapponier and Molnar, 1976) or lower crustal flow models for the exhumation of the Himalayan units and lateral spreading of the Tibetan plateau (Royden et al., 1998, Beaumont et al., 2004). The thin-sheet model has emerged as a more successful (or at least more widely used) model, but one of its major shortcomings is that it cannot simultaneously represent channel flow and gravitational collapse of the mantle lithosphere (Lechmann et al., 2011), since these mechanisms require the lithosphere to interact with the underlying mantle, or to have a vertically non-homogeneous rheology. Of those who favour a layered structure of the lithosphere beneath Tibet, some attribute the lack of substantial seismicity underneath the Moho as evidence that all the strength of the lithosphere resides in the upper crust and the mantle is weak - the crème brulée model (Jackson, 2002), while others point out that some processes can be well explained if the crust resides above a strong mantle lithosphere - the jelly sandwich model (Burov and Watts, 2006). 3D models are thus needed to investigate these hypotheses. However, fully 3D models of the dynamics of continent collision zones have only been developed very recently, and presently most research groups have relied on certain explicit assumptions for their codes. Here, we employ the parallel 3D code LaMEM (Lithosphere and Mantle Evolution Model), with a finite difference staggered grid solver, which is capable of simulating lithospheric deformation while simultaneously taking mantle flow and a free surface into account. We here report on first lithospheric and upper-mantle scale simulations in which the Indian lithosphere is indented into Asia. Acknowledgements. Funding was provided by the European Research Council under the European Community's Seventh Framework Program (FP7/2007-2013) / ERC Grant agreement #258830. Numerical computations have been performed on JUQUEEN of the Jülich high-performance computing center. • Beaumont, C., Jamieson, R.A., Nguyen, M.H., Medvedev, S.E., 2004. Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan-Tibetan orogeny. J. Geophys. Res. 109, B06406. • Burov, E. & Watts, W.S., 2006. The long-term strength of continental lithosphere: "jelly sandwich" or "crème brûlée"?. GSA Today, 16, doi: 10.1130/1052-5173(2006)1016<1134:TLTSOC>1132.1130.CO;1132. • England P., Houseman, G., 1986. Finite strain calculations of continental deformation. 2. Comparison with the India-Asia collision zone. J. Geophys. Res.- Solid Earth and Planets 91 (B3), 3664-3676. • Jackson, J., 2002. Strength of the continental lithosphere: time to abandon the jelly sandwich?. GSA Today, September, 4-10. • Lechmann, S.M., May, D.A., Kaus, B.J.P., Schmalholz, S.M., 2011. Comparing thin-sheet models with 3D multilayer models for continental collision. Geophy. Int. J. doi: 10.1111/j.1365-246X.2011.05164.x • Royden, L.H., Burchfiel, B.C., King, R.W., Wang, E., Chen, Z.L., Shen, F., Liu, Y.P., 1997. Surface deformation and lower crustal flow in eartern Tibet. Science 276 (5313), 788-790. • Tapponier, P., Molnar, P., 1976. Slip-line field-theory and large-scale continental tectonics. Nature 264 (5584), 319-324.
NASA Astrophysics Data System (ADS)
Schildgen, T. F.; Cosentino, D.; Caruso, A.; Yildirim, C.; Echtler, H.; Strecker, M. R.
2011-12-01
The Central Anatolian plateau in Turkey borders one of the most complex tectonic regions on Earth, where collision of the Arabian plate with Eurasia in Eastern Anatolia transitions to a cryptic pattern of subduction of the African beneath the Eurasian plate, with concurrent westward extrusion of the Anatolian microplate. Topographic growth of the southern margin of the Central Anatolian plateau has proceeded in discrete stages that can be distinguished based on the outcrop pattern and ages of uplifted marine sediments. These marine units, together with older basement rocks and younger continental sedimentary fills, also record an evolving nature of crustal deformation and uplift patterns that can be used to test the viability of different uplift mechanisms that have contributed to generate the world's third-largest orogenic plateau. Late Miocene marine sediments outcrop along the SW plateau margin at 1.5 km elevation, while they blanket the S and SE margins at up to more than 2 km elevation. Our new biostratigraphic data limit the age of 1.5-km-high marine sediments along the SW plateau margin to < 7.17 Ma, while regional lithostratigraphic correlations imply that the age is < 6.7 Ma. After reconstructing the post-Late Miocene surface uplift pattern from elevations of uplifted marine sediments and geomorphic reference surfaces, it is clear that regional surface uplift reaches maximum values along the modern plateau margin, with the SW margin experiencing less cumulative uplift compared to the S and SE margins. Our structural measurements and inversion modeling of faults within the uplifted region agree with previous findings in surrounding regions, with early contraction followed by strike-slip and extensional deformation. Shallow earthquake focal mechanisms show that the extensional phase has continued to the present. Broad similarities in the onset of surface uplift (after 7 Ma) and a change in the kinematic evolution of the plateau margin (after 8 Ma) suggest that these phenomena may have been linked with a change in the tectonic stress field associated with the process(es) causing post-7 Ma surface uplift. The complex geometry of lithospheric slabs beneath the southern plateau margin, early Pliocene to recent alkaline volcanism, and the localized uplift pattern with accompanying tensional/transtensional stresses point toward slab tearing and localized heating at the base of the lithosphere as a probable mechanism for post-7 Ma uplift of the SW margin. Considering previous work in the region, slab break-off is more likely responsible for non-contractional uplift along the S and SE margins. Overall there appears to be an important link between slab dynamics and surface uplift across the whole southern margin of the Central Anatolian plateau.
NASA Astrophysics Data System (ADS)
Heron, Philip J.; Pysklywec, Russell N.
2016-05-01
Continents have a rich tectonic history that have left lasting crustal impressions. In analyzing Central Australian intraplate orogenesis, complex continental features make it difficult to identify the controls of inherited structure. Here the tectonics of two types of inherited structures (e.g., a thermally enhanced or a rheologically strengthened region) are compared in numerical simulations of continental compression with and without "glacial buzzsaw" erosion. We find that although both inherited structures produce deformation in the upper crust that is confined to areas where material contrasts, patterns of deformation in the deep lithosphere differ significantly. Furthermore, our models infer that glacial buzzsaw erosion has little impact at depth. This tectonic isolation of the mantle lithosphere from glacial processes may further assist in the identification of a controlling inherited structure in intraplate orogenesis. Our models are interpreted in the context of Central Australian tectonics (specifically the Petermann and Alice Springs orogenies).
How the continents deform: The evidence from tectonic geodesy
Thatcher, Wayne R.
2009-01-01
Space geodesy now provides quantitative maps of the surface velocity field within tectonically active regions, supplying constraints on the spatial distribution of deformation, the forces that drive it, and the brittle and ductile properties of continental lithosphere. Deformation is usefully described as relative motions among elastic blocks and is block-like because major faults are weaker than adjacent intact crust. Despite similarities, continental block kinematics differs from global plate tectonics: blocks are much smaller, typically ∼100–1000 km in size; departures from block rigidity are sometimes measurable; and blocks evolve over ∼1–10 Ma timescales, particularly near their often geometrically irregular boundaries. Quantitatively relating deformation to the forces that drive it requires simplifying assumptions about the strength distribution in the lithosphere. If brittle/elastic crust is strongest, interactions among blocks control the deformation. If ductile lithosphere is the stronger, its flow properties determine the surface deformation, and a continuum approach is preferable.
Gravity anomalies and flexure of the lithosphere at the Middle Amazon Basin, Brazil
NASA Astrophysics Data System (ADS)
Nunn, Jeffrey A.; Aires, Jose R.
1988-01-01
The Middle Amazon Basin is a large Paleozoic sedimentary basin on the Amazonian craton in South America. It contains up to 7 km of mainly shallow water sediments. A chain of Bouguer gravity highs of approximately +40 to +90 mGals transects the basin roughly coincident with the axis of maximum thickness of sediment. The gravity highs are flanked on either side by gravity lows of approximately -40 mGals. The observed gravity anomalies can be explained by a steeply sided zone of high density in the lower crust varying in width from 100 to 200 km wide. Within this region, the continental crust has been intruded/replaced by more dense material to more than half its original thickness of 45-50 km. The much wider sedimentary basin results from regional compensation of the subsurface load and the subsequent load of accumulated sediments by flexure of the lithosphere. The observed geometry of the basin is consistent with an elastic lithosphere model with a mechanical thickness of 15-20 km. Although this value is lower than expected for a stable cratonic region of Early Proterozoic age, it is within the accepted range of effective elastic thicknesses for the earth. Rapid subsidence during the late Paleozoic may be evidence of a second tectonic event or lithospheric relaxation which could lower the effective mechanical thickness of the lithosphere. The high-density zone in the lower crust, as delineated by gravity and flexural modeling, has a complex sinuous geometry which is narrow and south of the axis of maximum sediment thickness on the east and west margins and wide and offset to the north in the center of the basin. The linear trough geometry of the basin itself is a result of smoothing by regional compensation of the load in the lower crust.
Convective thinning of the lithosphere - A mechanism for the initiation of continental rifting
NASA Technical Reports Server (NTRS)
Spohn, T.; Schubert, G.
1982-01-01
A model of lithospheric thinning, in which heat is convected to the base and conducted within the lithosphere, is presented. An analytical equation for determinining the amount of thinning attainable on increasing the heat flux from the asthenosphere is derived, and a formula for lithosphere thickness approximations as a function of time is given. Initial and final equilibrium thicknesses, thermal diffusivity, transition temperature profile, and plume temperature profile are all factors considered for performing rate of thinning determinations. In addition, between initial and final equilibrium states, lithospheric thinning occurs at a rate which is inversely proportional to the square root of the time. Finally, uplift resulting from thermal expansion upon lithospheric thinning is on the order of 10 to the 2nd to 10 to the 3rd m.
Can sea level rise cause large submarine landslides on continental slopes?
NASA Astrophysics Data System (ADS)
Urlaub, Morelia
2014-05-01
Submarine landslides are one of the volumetrically most important sediment transport processes at continental margins. Moreover, these landslides are a major geohazard as they can cause damaging tsunamis and destroy seabed infrastructure. Due to their inaccessibility our understanding of what causes these landslides is limited and based on hypotheses that are difficult to test. Some of the largest submarine landslides, such as the Storegga Slide off Norway, occurred during times of eustatic sea level rise. It has been suggested that this global sea level rise was implicated in triggering of the landslides by causing an increase in excess pore pressure in the subseafloor. However, in a homogeneous slope a change in the thickness of the overlying water mass is not expected to affect its stability, as only the hydrostatic pressure component will change, whereas pore pressures in excess of hydrostatic will remain unaltered. Whether sufficiently rapid sea level rise, aided by rather impermeable sediment and complex layering, could cause excess pore pressures that may destabilise a continental slope is more difficult to answer and has not yet been tested. I use Finite Element Modelling to explore and quantify the direct effect of changes in the thickness of the overlying water mass on the stability of a generic sediment column with different stratigraphic conditions and hydro-mechanical properties. The results show that the direct effect of sea level rise on continental slope stability is minimal. Nevertheless, sea level rise may foster other processes, such as lithospheric stress changes resulting in increased seismicity, that could potentially cause large submarine landslides on continental slopes.
Continent-arc collision in the Banda Arc imaged by ambient noise tomography
NASA Astrophysics Data System (ADS)
Porritt, Robert W.; Miller, Meghan S.; O'Driscoll, Leland J.; Harris, Cooper W.; Roosmawati, Nova; Teofilo da Costa, Luis
2016-09-01
The tectonic configuration of the Banda region in southeast Asia captures the spatial transition from subduction of Indian Ocean lithosphere to subduction and collision of the Australian continental lithosphere beneath the Banda Arc. An ongoing broadband seismic deployment funded by NSF is aimed at better understanding the mantle and lithospheric structure in the region and the relationship of the arc-continent collision to orogenesis. Here, we present results from ambient noise tomography in the region utilizing this temporary deployment of 30 broadband instruments and 39 permanent stations in Indonesia, Timor Leste, and Australia. We measure dispersion curves for over 21,000 inter-station paths resulting in good recovery of the velocity structure of the crust and upper mantle beneath the Savu Sea, Timor Leste, and the Nusa Tenggara Timur (NTT) region of Indonesia. The resulting three dimensional model indicates up to ∼25% variation in shear velocity throughout the plate boundary region; first-order velocity anomalies are associated with the subducting oceanic lithosphere, subducted Australian continental lithosphere, obducted oceanic sediments forming the core of the island of Timor, and high velocity anomalies in the Savu Sea and Sumba. The structure in Sumba and the Savu Sea is consistent with an uplifting forearc sliver. Beneath the island of Timor, we confirm earlier inferences of pervasive crustal duplexing from surface mapping, and establish a link to underlying structural features in the lowermost crust and uppermost mantle that drive upper crustal shortening. Finally, our images of the volcanic arc under Flores, Wetar, and Alor show high velocity structures of the Banda Terrane, but also a clear low velocity anomaly at the transition between subduction of oceanic and continental lithosphere. Given that the footprint of the Banda Terrane has previously been poorly defined, this model provides important constraints on tectonic reconstructions that formerly have lacked information on the lower crust and uppermost mantle.
Kinematics of a large-scale intraplate extending lithosphere: The Basin-Range
NASA Technical Reports Server (NTRS)
Smith, R. B.; Eddington, P. K.
1985-01-01
Upper lithospheric structure of the Cordilleran Basin Range (B-R) is characterised by an E-W symmetry of velocity layering. The crust is 25 km thick on its eastern active margin, thickening to 30 km within the central portion and thinning to approx. 25 km on the west. Pn velocities of 7.8 to 7.9 km/s characterize the upper mantle low velocity cushion, 7.4 km/s to 7.5 km/s, occurs at a depth of approx. 25 km in the eastern B-R and underlies the area of active extension. An upper-crustal low-velocity zone in the eastern B-R shows a marked P-wave velocity inversion of 7% at depths of 7 to 10 km also in the area of greatest extension. The seismic velocity models for this region of intraplate extension suggest major differences from that of a normal, thermally underformed continental lithosphere. Interpretations of seismic reflection data demonstrate the presence of extensive low-angle reflections in the upper-crust of the eastern B-R at depths from near-surface to 7 to 10 km. These reflections have been interpreted to represent low-angle normal fault detachments or reactivated thrusts. Seismic profiles across steeply-dipping normal faults in unconsolidated sediments show reflections from both planar to downward flatening (listric) faults that in most cases do not penetrate the low-angle detachments. These faults are interpreted as late Cenozoic and cataclastic mylonitic zones of shear displacement.
Effects of a temperature-dependent rheology on large scale continental extension
NASA Technical Reports Server (NTRS)
Sonder, Leslie J.; England, Philip C.
1988-01-01
The effects of a temperature-dependent rheology on large-scale continental extension are investigated using a thin viscous sheet model. A vertically-averaged rheology is used that is consistent with laboratory experiments on power-law creep of olivine and that depends exponentially on temperature. Results of the calculations depend principally on two parameters: the Peclet number, which describes the relative rates of advection and diffusion of heat, and a dimensionless activation energy, which controls the temperature dependence of the rheology. At short times following the beginning of extension, deformation occurs with negligible change in temperature, so that only small changes in lithospheric strength occur due to attenuation of the lithosphere. However, after a certain critical time interval, thermal diffusion lowers temperatures in the lithosphere, strongly increasing lithospheric strength and slowing the rate of extension. This critical time depends principally on the Peclet number and is short compared with the thermal time constant of the lithosphere. The strength changes cause the locus of high extensional strain rates to shift with time from regions of high strain to regions of low strain. Results of the calculations are compared with observations from the Aegean, where maximum extensional strains are found in the south, near Crete, but maximum present-day strain rates are largest about 300 km further north.
Global model for the lithospheric strength and effective elastic thickness
NASA Astrophysics Data System (ADS)
Tesauro, Magdala; Kaban, Mikhail K.; Cloetingh, Sierd A. P. L.
2013-08-01
Global distribution of the strength and effective elastic thickness (Te) of the lithosphere are estimated using physical parameters from recent crustal and lithospheric models. For the Te estimation we apply a new approach, which provides a possibility to take into account variations of Young modulus (E) within the lithosphere. In view of the large uncertainties affecting strength estimates, we evaluate global strength and Te distributions for possible end-member 'hard' (HRM) and a 'soft' (SRM) rheology models of the continental crust. Temperature within the lithosphere has been estimated using a recent tomography model of Ritsema et al. (2011), which has much higher horizontal resolution than previous global models. Most of the strength is localized in the crust for the HRM and in the mantle for the SRM. These results contribute to the long debates on applicability of the "crème brulée" or "jelly-sandwich" model for the lithosphere structure. Changing from the SRM to HRM turns most of the continental areas from the totally decoupled mode to the fully coupled mode of the lithospheric layers. However, in the areas characterized by a high thermal regime and thick crust, the layers remain decoupled even for the HRM. At the same time, for the inner part of the cratons the lithospheric layers are coupled in both models. Therefore, rheological variations lead to large changes in the integrated strength and Te distribution in the regions characterized by intermediate thermal conditions. In these areas temperature uncertainties have a greater effect, since this parameter principally determines rheological behavior. Comparison of the Te estimates for both models with those determined from the flexural loading and spectral analysis shows that the 'hard' rheology is likely applicable for cratonic areas, whereas the 'soft' rheology is more representative for young orogens.
NASA Astrophysics Data System (ADS)
Elston, Wolfgang E.
1984-04-01
An "extensional orogeny" deformed the Basin and Range province, probably beginning in the late Eocene (about 40 ± 3 Ma). Its characteristics include partial melting of the continental lithosphere during the "ignimbrite flareup," massive ductile extension (including detachment faulting), and rise of metamorphic core complexes. The affected zone became about 1200 km wide, possibly double its original width. It rose an average of 1-2 km, despite crustal thinning. Locally, some of the highest mountains of North America, up to 4.3 km high, rose through resurgence of ignimbrite cauldrons and isostatic uplift of underlying plutons. The climax of extension occurred prior to the development of the present basin and range topography. Modeling of major and trace elements and Sr and Pb isotopes strongly suggests that mid-Tertiary volcanic magmas equilibrated, and probably originated, in the continental lithosphere. Components attributable to subducted oceanic lithosphere have not yet been identified. The rocks seem to belong to two provinces, separated by the quartz diorite boundary line of Moore (1959), which also marks the western limit of North America at the end of the late Paleozoic Sonoman orogeny. To the west, low-K rocks rest on a basement of predominantly oceanic accreted terranes; to the east, high-K rocks rest on an autochthonous sialic basement. Within the high-K province, potassium variations can be correlated with crustal thickness; there is no need to invoke a K-h relationship. Conventional models of plate convergence and back arc extension which involve subduction of old, rigid, cool, and dense oceanic lithosphere may not apply to the mid-Tertiary Basin and Range province. The overridden Farallon plate is more likely to have been young, hot, ductile, buoyant, and no denser than continental asthenosphere, having been generated in a spreading center close to North America. Under these conditions, motion of the subducting plate slows and slab-pull is likely to approach zero. Even prior to ridge-trench collision, overridden oceanic lithosphere may have become underplated beneath the continental lithosphere and ruptured by rising mantle diapirs. Subducted oceanic lithosphere no longer acted as a heat sink, which could partly account for the great width of the affected zone and the anomalous thermal gradients required for partial melting, extension, and metamorphism. Had these processes not died down, after ridge-trench collision, the western segment of the Cordillera might have separated from North America to form a Japanlike archipelago, while the Basin and Range province foundered into an analog to the Sea of Japan. Instead of rupturing completely, the Basin and Range province fractured into fault blocks.
NASA Astrophysics Data System (ADS)
Dilek, Yildirim; Altunkaynak, Safak
2010-05-01
The geochemical and temporal evolution of the Cenozoic magmatism in the Aegean, Western Anatolian and peri-Arabian regions shows that plate tectonic events, mantle dynamics, and magmatism were closely linked in space and time. The mantle responded to collision-driven crustal thickening, slab breakoff, delamination, and lithospheric tearing swiftly, within geologically short time scales (few million years). This geodynamic continuum resulted in lateral mantle flow, whole-sale extension and accompanying magmatism that in turn caused the collapse of tectonically and magmatically weakened orogenic crust. Initial stages of post-collisional magmatism (~45 Ma) thermally weakened the orogenic crust in Tethyan continental collision zones, giving way into large-scale extension and lower crustal exhumation via core complex formation starting around 25-23 Ma. Slab breakoff was the most common driving force for the early stages of post-collisional magmatism in the Tethyan mountain belts in the eastern Mediterranean region. Magmatic rocks produced at this stage are represented by calc-alkaline-shoshonitic to transitional (in composition) igneous suites. Subsequent lithospheric delamination or partial convective removal of the sub-continental lithospheric mantle in collision-induced, overthickened orogenic lithosphere caused decompressional melting of the upwelling asthenosphere that in turn resulted in alkaline basaltic magmatism (<12 Ma). Attendant crustal extension and widespread thinning of the lithosphere facilitated rapid ascent of basaltic (OIB) magmas without much residence time in the crust and hence the eruption of relatively uncontaminated, asthenosphere-derived magmas at the surface (i.e. Kula lavas in SW Anatolia). Subduction of the Tethyan mantle lithosphere northward beneath Eurasia was nearly continuous since the latest Cretaceous, only temporarily punctuated by the collisional accretion of several ribbon continents (i.e. Pelagonia, Sakarya, Tauride-South Armenian) to the southern margin of Eurasia, and by related slab breakoff events. Exhumation of middle to lower crustal rocks and the formation of extensional metamorphic domes occurred in the backarc region of this progressively southward-migrated trench and the Tethyan (Afro-Arabian) slab throughout the Cenozoic. Thus, slab retreat played a major role in the Cenozoic geodynamic evolution of the Aegean and Western Anatolian regions. However, the subducting African lithospheric slab beneath the Aegean-Western Anatolian region is delimited to the east by a subduction-transform edge propagator (STEP) fault, which corresponds to the sharp cusp between the Hellenic and Cyprus trenches whose surface expression is marked by the Isparta Angle in the Western Taurides. This lithospheric tear in the downgoing African plate allowed the mantle to rise beneath SW Anatolia, inducing decompressional melting of shallow asthenosphere and producing linearly distributed alkaline magmatism younging in the direction of tear propagation (southward). The N-S-trending potassic and ultra-potassic volcanic fields stretching from the Kirka and Afyon-Suhut region (~17 Ma) in the north to the Isparta-Gölcük area (4.6 Ma-Recent) in the south are the result of this melting of the sub-slab (asthenospheric) mantle, which was metasomatized by recent subduction events in the region. Asthenospheric low velocities detected through Pn tomographic imaging in this region support the existence of shallow asthenosphere beneath the Isparta Angle at present. These observations suggest that currently there is no active subduction underneath much of Western Anatolia.
NASA Astrophysics Data System (ADS)
Liu, Jingao; Scott, James M.; Martin, Candace E.; Pearson, D. Graham
2015-08-01
The role played by ancient melt-depleted lithospheric mantle in preserving continental crust through time is critical in understanding how continents are built, disrupted and recycled. While it has become clear that much of the extant Archean crust is underpinned by Archean mantle roots, reports of Proterozoic melt depletion ages for peridotites erupted through Phanerozoic terranes raise the possibility that ancient buoyant lithospheric mantle acts as a "life-raft" for much of the Earth's continental crust. Here we report the largest crust-lithospheric mantle age decoupling (∼2.4 Ga) so far observed on Earth and examine the potential cause for such extreme age decoupling. The Phanerozoic (<300 Ma) continental crust of West Otago, New Zealand, is intruded by Cenozoic diatremes that have erupted cratonic mantle-like highly depleted harzburgites and dunites. These peridotites have rhenium depletion Os model ages that vary from 0.5 to 2.7 Ga, firmly establishing the record of an Archean depletion event. However, the vast range in depletion ages does not correlate with melt depletion or metasomatic tracer indices, providing little support for the presence of a significant volume of ancient mantle root beneath this region. Instead, the chemical and isotopic data are best explained by mixing of relict components of Archean depleted peridotitic mantle residues that have cycled through the asthenosphere over Ga timescales along with more fertile convecting mantle. Extensive melt depletion associated with the "docking" of these melt residues beneath the young continental crust of the Zealandia continent explains the decoupled age relationship that we observe today. Hence, the newly formed lithospheric root incorporates a mixture of ancient and modern mantle derived from the convecting mantle, cooled and accreted in recent times. We argue that in this case, the ancient components played no earlier role in continent stabilization, but their highly depleted nature along with that of their younger counterparts now represents a highly viscous, stable continental keel. This model could account for the large spectrum of ages observed in fertile to moderately depleted peridotites sampled from lithospheric mantle beneath SE Australia, W Antarctica and other locations in Zealandia, as well as the oceanic mantle. Our data confirm the longevity and dispersal of ancient depleted mantle domains in the convecting mantle and their re-appearance beneath young continents.
NASA Astrophysics Data System (ADS)
Brune, S.; Ulvrova, M.; Williams, S.
2017-12-01
The surface of the Earth is divided into a jigsaw of tectonic plates, some carrrying continents that disperse and aggregate through time, forming transient supercontinents like Pangea and Rodinia. Here, we study continental rifting using large-scale numerical simulations with self-consistent evolution of plate boundaries, where continental break-up emerges spontaneously due to slab pull, basal drag and trench suction forces.We use the StagYY convection code employing a visco-plastic rheology in a spherical annulus geometry. We consider an incompressible mantle under the Boussinesq approximation that is basally and internally heated.We show that continental separation follows a characteristic evolution with three distinctive phases: (1) A pre-rift phase that typically lasts for several hundreds of millions of years with tectonic quiescence in the suture and extensional stresses that are slowly building up. (2) A rift phase that further divides into a slow rift period of several tens of millions of years where stresses continuously increase followed by a rift acceleration period featuring an abrupt stress drop within several millions of years. The speed-up takes place before lithospheric break-up and therefore affects the structural architecture of the rifted margins. (3) The drifting phase with initially high divergence rates persists over tens of millions of years until the system adjust to new conditions and the spreading typically slows down.By illustrating the geodynamic connection between subduction dynamics and rift evolution, our results allow new interpretations of plate tectonic reconstructions. Rift acceleration within the second phase of rifting is compensated by enhanced convergence rates at subduction zones. This model outcome predicts enhanced subduction velocities, e.g. between North America and the Farallon plate during Central Atlantic rifting 200 My ago, or closure of potential back-arc basins such as in the proto-Andean ranges of South America during South Atlantic opening. Post-rift deceleration occurs when the global plate system re-equilibrates after continental rupture. This phenomenon of a plate slow-down after mechanical rupture is recorded by observations from rifted margins between Australia-Antarctica and Greenland-Eurasia.
NASA Astrophysics Data System (ADS)
Varas-Reus, María Isabel; Garrido, Carlos J.; Bosch, Delphine; Marchesi, Claudio; Hidas, Károly; Booth-Rea, Guillermo; Acosta-Vigil, Antonio
2015-04-01
Unraveling the tectonic settings and processes involved in the annihilation of subcontinental mantle lithosphere is of paramount importance for our understanding of the endurance of continents through Earth history. Unlike ophiolites -- their oceanic mantle lithosphere counterparts -- the mechanisms of emplacement of the subcontinental mantle lithosphere in orogens is still poorly known. The emplacement of subcontinental lithospheric mantle peridotites is often attributed to extension in rifted passive margins or continental backarc basins, accretionary processes in subduction zones, or some combination of these processes. One of the most prominent features of the westernmost Mediterranean Alpine orogenic arcs is the presence of the largest outcrops worldwide of diamond facies, subcontinental mantle peridotite massifs; unveiling the mechanisms of emplacement of these massifs may provide important clues on processes involved in the destruction of continents. The western Mediterranean underwent a complex Alpine evolution of subduction initiation, slab fragmentation, and rollback within a context of slow convergence of Africa and Europe In the westernmost Mediterranean, the alpine orogeny ends in the Gibraltar tight arc, which is bounded by the Betic, Rif and Tell belts that surround the Alboran and Algero-Balearic basins. The internal units of these belts are mostly constituted of an allochthonous lithospheric domain that collided and overthrusted Mesozoic and Tertiary sedimentary rocks of the Mesozoic-Paleogene, South Iberian and Maghrebian rifted continental paleomargins. Subcontinental lithospheric peridotite massifs are intercalated between polymetamorphic internal units of the Betic (Ronda, Ojen and Carratraca massifs), Rif (Beni Bousera), and Tell belts. In the Betic chain, the internal zones of the allochthonous Alboran domain include, from bottom to top, polymetamorphic rock of the Alpujarride and Malaguide complexes. The Ronda peridotite massif -- the largest outcrop (> 300 km2) of subcontinental lithospheric mantle peridotite in westernmost Mediterranean -- occurs at the basal units of the western Alpujarride. Late, intrusive mantle, high-Mg pyroxenite dykes in the Ronda peridotite (Betic Cordillera, S. Spain) show geochemical signature akin to high-pressure (> 1 GPa) segregates of high-Mg andesite and boninite found in island arc terrains and ophiolite, where they usually witness nascent subduction and/or oceanic accretion in a forearc setting. These pyroxenites point to a suprasubduction environment prior to the intracrustal emplacement of subcontinental peridotites drawing some parallels between the crustal emplacement environment of some ophiolites and that of sublithospheric mantle in the westernmost Mediterranean. Here, we present new Sr-Nd-Pb-isotopic data from a variety of crustal rocks that might account for the crustal components seen in high-Mg Ronda pyroxenites. This data allows the origin of this crustal component to be unveiled, providing fundamentally constraints on the processes involved in the emplacement of large massifs of subcontinental mantle lithosphere in the westernmost Mediterranean. In order to test the hypothesis that the crustal component in Ronda high-Mg pyroxenites was acquired during the Alpine evolution of the Betic-Rif orogen, we selected samples from crustal sections that might have been underthrusted beneath the Alboran lithospheric mantle before the putative Miocene intra-crustal emplacement of peridotites. Samples are from the western Betics and comprise sediments from the Gibraltar Arc Flysch Trough units, which forms a fold-and-thrust belt between the Iberian paleomargin and the allochthonous Alboran domain, and metasedimentary rocks from the Jubrique and Blanca units of the Alpujarride complex, which underlie and overlie the Ronda peridotite and constitute the crustal section of the Alboran lithosphere domain to which the Ronda peridotite pertains. Sr-Nd-Pb systematic of sediments strongly support Alboran geodynamic models that envisage slab roll-back as the tectonic mechanism responsible for Miocene lithospheric thinning, and consistent with a scenario where back-arc inversion leading to subduction initiation of crustal units at the front of the Alboran wedge
NASA Astrophysics Data System (ADS)
Parker, Don F.; Ren, Minghua; Adams, David T.; Tsai, Heng; Long, Leon E.
2012-07-01
Tertiary magmatism in the Big Bend region of southwestern Texas spanned 47 to 17 Ma and included representatives of all three phases (Early, Main and Late) of the Trans-Pecos magmatic province. Early phase magmatism was manifested in the Alamo Creek Basalt, an alkalic lava series ranging from basalt to benmoreite, and silicic alkalic intrusions of the Christmas Mountains. Main phase magmatism in the late Eocene/early Oligocene produced Bee Mountain Basalt, a lava series ranging from hawaiite and potassic trachybasalt to latite, widespread trachytic lavas of Tule Mountain Trachyte and silicic rocks associated with the Pine Mountain Caldera in the Chisos Mountains. Late main phase magmatism produced trachyte lava and numerous dome complexes of peralkaline Burro Mesa Rhyolite (~ 29 Ma) in western Big Bend National Park. Late stage basaltic magmatism is sparsely represented by a few lavas in the Big Bend Park area, the adjacent Black Gap area and, most notably, in the nearby Bofecillos Mountains, where alkalic basaltic rocks were emplaced as lava and dikes concurrent with active normal faulting. Trace element modeling, Nd isotope ratios and calculated depths of segregation for estimated ancestral basaltic magmas suggest that Alamo Creek basalts (ɛNdt ~ 6.15 to 2.33) were derived from depths (~ 120 to 90 km) near the lithosphere/asthenosphere boundary at temperatures of ~ 1600 to1560 °C, whereas primitive Bee Mountain basalts (ɛNdt ~ 0.285 to - 1.20) may have been segregated at shallower depths (~ 80 to 50 km) and lower temperatures (~ 1520 to 1430 °C) within the continental lithosphere. Nb/La versus Ba/La plots suggest that all were derived from OIB-modified continental lithosphere. Late stage basaltic rocks from the Bofecillos Mountains may indicate a return to source depths and temperatures similar to those calculated for Alamo Creek Basalt primitive magmas. We suggest that a zone of melting ascended into the continental lithosphere during main-phase activity and then descended as magmatism died out. Variation within Burro Mesa Rhyolite is best explained by fractional crystallization of a mix of alkali feldspar, fayalite and Fe-Ti oxide. Comendite of the Burro Mesa Rhyolite evolved from trachyte as batches in relatively small independent magma systems, as suggested by widespread occurrence of trachytic magma enclaves within Burro Mesa lava and results of fractionation modeling. Trachyte may have been derived by fractional crystallization of intermediate magma similar to that erupted as part of Bee Mountain Basalt. ɛNdt values of trachyte lava (0.745) and two samples of Burro Mesa Rhyolite (- 0.52 and 1.52) are consistent with the above models. In all, ~ 5 wt.% comendite may be produced from 100 parts of parental trachybasalt. Negative Nb anomalies in some Bee Mountain, Tule Mountain Trachyte and Burro Mesa incompatible element plots may have been inherited from lithospheric mantle rather than from a descending plate associated with subduction. Late phase basalts lack such a Nb anomaly, as do all of our Alamo Creek analyses but one. Even if some slab fluids partially metasomatized lithospheric mantle, these igneous rocks are much more typical of continental rifts than continental arcs. We relate Big Bend magmatism to asthenospheric mantle upwelling accompanying foundering of the subducted Farallon slab as the convergence rate between the North American and the Farallon plates decreased beginning about 50 Ma. Upwelling asthenosphere heated the base of the continental lithosphere, producing the Alamo Creek series; magmatism climaxed with main phase magmatism generated within middle continental lithosphere, and then, accompanying regional extension, gradually died out by 18 Ma.
NASA Astrophysics Data System (ADS)
Morgan, R. L.; Watts, A. B.
2016-12-01
Seaward Dipping Reflectors (SDRs) are ubiquitous features of volcanic rifted continental margins where they comprise characteristic wedge-shaped packages of mainly extrusive lava flows. However, their origin has been disputed with some workers suggesting they form by progressive subsidence of extended crust while others propose they are accommodated within the crust by one or more continent-dipping normal faults. We present here a simple model in which SDRs are formed by successive dykes, which intrude and load the crust causing a surface flexure which is subsequently infilled and then loaded by volcanic material, including lava flows. The model explains the arcuate shape, limited offlap geometries and down-dip thickening of SDRs as observed in seismic reflection profiles. By comparing observed and calculated dips we have been able to constrain the elastic plate model type and the effective elastic thickness of rifted lithosphere, Te. Results suggest a broken rather than continuous plate model and Te in the range 3-15 km. The thickness of the resulting SDR package increases with decreasing Te and decreasing compensation density. Decreasing the Tefor successive loads as rifting progresses produces offlap of sub-packages. We have verified our results using process-oriented gravity modelling, in which the gravity effect of surface volcanic infill loads is calculated and combined with the gravity effect of buried dyke loads. Results show good general agreement between observed Airy isostatic anomalies and calculated gravity anomalies. This suggests that the steep gradient that is often observed in the Airy isostatic gravity anomaly at rifted margins is a useful proxy for the landward edge of the dykes that intrude the crust prior to seafloor spreading, rather than a change in basement elevation at the boundary between oceanic and continental crust, as proposed by previous workers.
NASA Astrophysics Data System (ADS)
Corre, B.; Boulvais, P.; Boiron, M. C.; Lagabrielle, Y.; Marasi, L.; Clerc, C.
2018-02-01
Sub-continental lithospheric mantle rocks are exhumed in the distal part of magma-poor passive margins. Remnants of the North Iberian paleo-passive margin are now exposed in the North-Pyrenean Zone (NPZ) and offers a field analogue to study the processes of continental crust thinning, subcontinental mantle exhumation and associated fluid circulations. The Saraillé Massif which belongs to the `Chaînons Béarnais' range (Western Pyrenees), displays field, petrographic and stable isotopic evidence of syn-kinematic fluid circulations. Using electron probe micro-analyses on minerals, O, C, Sr isotopes compositions and micro thermometry/Raman spectrometry of fluid inclusions, we investigate the history of fluid circulations along and in the surroundings of the Saraillé detachment fault. The tectonic interface between the pre-rift Mesozoic sedimentary cover and the mantle rocks is marked by a metasomatic talc-chlorite layer. This layer formed through the infiltration of a fluid enriched in chemical elements like Cr leached from the exhuming serpentinized mantle rocks. In the overlying sediments (dolomitic and calcitic marbles of Jurassic to Aptian age), a network of calcitic veins, locally with quartz, formed as a consequence of the infiltration of aqueous saline fluids (salinities up to 34 wt% NaCl are recorded in quartz-hosted fluid inclusions) at moderate temperatures ( 220 °C). These brines likely derived from the dissolution of the local Triassic evaporites. In the upper part of the metasomatic system, upward movement of fluids is limited by the Albian metasediments, which likely acted as an impermeable layer. The model of fluid circulation in the Saraillé Massif sheds light onto other synchronous metasomatic systems in the Pyrenean realm.
NASA Astrophysics Data System (ADS)
Martín-Barajas, Arturo; González-Escobar, Mario; Fletcher, John M.; Pacheco, Martín.; Oskin, Michael; Dorsey, Rebecca
2013-09-01
transition from distributed continental extension to the rupture of continental lithosphere is imaged in the northern Gulf of California across the obliquely conjugate Tiburón-Upper Delfin basin segment. Structural mapping on a 5-20 km grid of seismic reflection lines of Petroleos Mexicanos demonstrates that ~1000% extension is accommodated on a series of NNE striking listric-normal faults that merge at depth into a detachment fault. The detachment juxtaposes a late-Neogene marine sequence over thinned continental crust and contains an intrabasinal divide due to footwall uplift. Two northwest striking, dextral-oblique faults bound both ends of the detachment and shear the continental crust parallel to the tectonic transport. A regional unconformity in the upper 0.5 s (two-way travel time) and crest erosion of rollover anticlines above the detachment indicates inversion and footwall uplift during the lithospheric rupture in the Upper Delfin and Lower Delfin basins. The maximum length of new crust in both Delfin basins is less than 40 km based on the lack of an acoustic basement and the absence of a lower sedimentary sequence beneath a wedge-shaped upper sequence that reaches >5 km in thickness. A fundamental difference exists between the Tiburón-Delfin segment and the Guaymas segment to the south in terms of presence of low-angle normal faults and amount of new oceanic lithosphere, which we attribute to thermal insulation, diffuse upper-plate extension, and slip on low-angle normal faults engendered by a thick sedimentary lid.
NASA Astrophysics Data System (ADS)
Martin, A.; González-Escobar, M.; Fletcher, J. M.; Pacheco, M.; Oskin, M. E.; Dorsey, R. J.
2013-12-01
The transition from distributed continental extension to the rupture of continental lithosphere is imaged in the northern Gulf of California across the obliquely conjugate Tiburón-Upper Delfín basin segment. Structural mapping on a 5-20 km grid of seismic reflection lines of Petroleos Mexicanos (PEMEX) demonstrates that ~1000% extension is accommodated on a series of NNE-striking listric-normal faults that merge at depth into a detachment fault. The detachment juxtaposes a late-Neogene marine sequence over thinned continental crust and contains an intrabasinal divide due to footwall uplift. Two northwest striking, dextral-oblique faults bound both ends of the detachment and shear the continental crust parallel to the tectonic transport. A regional unconformity in the upper 0.5 seconds (TWTT) and crest erosion of rollover anticlines above the detachment indicates inversion and footwall uplift during the lithospheric rupture in the Upper Delfin and Lower Delfin basins. The maximum length of new crust in both Delfin basins is less than 40 km based on the lack of an acoustic basement and the absence of a lower sedimentary sequence beneath a wedge shaped upper sequence that reaches >5 km in thickness. A fundamental difference exists between the Tiburón-Delfin segment and the Guaymas segment to the south in terms of presence of low angle normal faults and amount of new oceanic lithosphere, which we attribute to thermal insulation, diffuse upper-plate extension, and slip on low angle normal faults engendered by a thick sedimentary lid.
NASA Astrophysics Data System (ADS)
Rosenbaum, Gideon; Regenauer-Lieb, Klaus; Weinberg, Roberto F.
2010-11-01
We use numerical modeling to investigate the development of crustal and mantle detachments during lithospheric extension. Our models simulate a wide range of extensional systems with varying values of crustal thickness and heat flow, showing how strain localization in the mantle interacts with localization in the upper crust and controls the evolution of extensional systems. Model results reveal a richness of structures and deformation styles as a response to a self-organized mechanism that minimizes the internal stored energy of the system by localizing deformation. Crustal detachments, here referred as low-angle normal decoupling horizons, are well developed during extension of overthickened (60 km) continental crust, even when the initial heat flow is relatively low (50 mW m-2). In contrast, localized mantle deformation is most pronounced when the extended lithosphere has a normal crustal thickness (30-40 km) and an intermediate heat flow (60-70 mW m-2). Results show a nonlinear response to subtle changes in crustal thickness or heat flow, characterized by abrupt and sometimes unexpected switches in extension modes (e.g., from diffuse extensional deformation to effective lithospheric-scale rupturing) or from mantle- to crust-dominated strain localization. We interpret this nonlinearity to result from the interference of doming wavelengths in the presence of multiple necking instabilities. Disharmonic crust and mantle doming wavelengths results in efficient communication between shear zones at different lithospheric levels, leading to rupturing of the whole lithosphere. In contrast, harmonic crust and mantle doming inhibits interaction of shear zones across the lithosphere and results in a prolonged history of extension prior to continental breakup.
NASA Astrophysics Data System (ADS)
Quinn, D. P.; Saleeby, J.; Ducea, M. N.; Luffi, P. I.
2013-12-01
We present the first petrogenetic analysis of a suite of peridotite xenoliths from the Crystal Knob volcanic neck in the Santa Lucia Range, California. The neck was erupted during the Plio-Pleistocene through the Salinia terrane, a fragment of the Late Cretaceous southern Sierra-northwest Mojave supra-subduction core complex that was displaced ~310 km in the late Cenozoic along the dextral San Andreas fault. The marginal tectonic setting makes these xenoliths ideal for testing different models of upper-mantle evolution along the western North American plate boundary. Possible scenarios include the early Cenozoic underplating of Farallon-plate mantle lithosphere nappes (Luffi et al., 2009), Neogene slab window opening (Atwater and Stock, 1998), and the partial subduction and stalling of the Monterey microplate (Pisker et al., 2012). The xenoliths from Crystal Knob are spinel lherzolites, which sample the mantle lithosphere underlying Salinia, and dunite cumulates apparently related to the olivine-basalt host. Initial study is focused on the spinel lherzolites: these display an allotriomorphic granular texture with anisotropy largely absent. However, several samples exhibit a weak shape-preferred orientation in elongate spinels. Within each xenolith, the silicate phases are in Fe-Mg equilibrium; between samples, Mg# [molar Mg/(Mg+Fe)*100] ranges from 87 to 91. Spinels have Cr# [molar Cr/(Cr+Al)*100] ranging from 10 to 27. Clinopyroxene Rb-Sr and Sm-Nd radiogenic isotope data show that the lherzolites are depleted in large-ion lithophile (LIL) elements, with uniform enrichment in 143Nd (ɛNd from +10.3 to +11.0) and depletion in 87Sr (87/86Sr of .702). This data rules out origin in the continental lithosphere, such as that observed in xenoliths from above the relict subduction interface found at at Dish Hill and Cima Dome in the Mojave (Luffi et al., 2009). The Mesozoic mantle wedge, which is sampled by xenoliths from beneath the southern Sierra Nevada batholith (Ducea and Saleeby, 1998), is also ruled out as a source locale. The isotopic data are consistent with oceanic mantle originating from either the Farallon plate (underplated during Paleocene shallow subduction) or the Monterey plate (partially subducted during the Miocene). Ascended asthenosphere, presumably of slab-window origin, is also a possible source. Pyroxene Ca-Mg exchange geothermometry is in progress and will enable thermal modeling and comparisons with contemporary heat flow data. These results, along with trace-element analysis of clinopyroxene crystals, will be used to distinguish between the possible sources of LIL-depleted mantle in the sub-Salinia mantle lithosphere. The full petrogenetic survey of these xenoliths adds a distal constraint to the makeup of the mantle lithosphere beneath the western North American margin.
NASA Astrophysics Data System (ADS)
Piccardo, G. B.
2009-04-01
The Monte Maggiore peridotite body, cropping out within the Alpine Corsica metamorphic belt, is an ophiolite massif derived from the more internal setting of the Jurassic Ligurian Tethys basin. It is mostly composed by spinel and plagioclase peridotites that are cut by MORB gabbroic dykes. The spinel peridotites, similarly to other ophiolitic peridotites from the Internal Ligurides, have been considered, on the basis of their low abundance of fusible components, low Si and high Mg contents, as refractory residua after MORB-type partial melting related to the formation of the Jurassic basin (e.g. Rampone et al., 1997). Recent studies (e.g. Müntener & Piccardo 2003; Rampone et al. 2008) have evidenced that these depleted spinel peridotites show diffuse melt-rock interaction micro-textures and contrasting bulk vs. mineral chemistry features which cannot be simply reconciled with partial melting. Accordingly, these peridotites have been recognized as reactive peridotites, formed by interaction of pristine peridotites with melts percolating by porous flow. Geochemical data have evidenced the depleted MORB signature of the percolating melts. Recent field studies at Monte Maggiore (Piccardo, 2007; Piccardo & Guarnieri, 2009), have revealed: 1) the presence and local abundance of pyroxenite-bearing, cpx-rich spinel lherzolites and 2) the replacement relationships of the reactive peridotites on the pyroxenite-bearing lherzolite rock-types. The pyroxenite-veined spinel lherzolites record a composite history of subsolidus evolution under lithospheric P-T conditions, thus indicating their provenance from the sub-continental lithospheric mantle. Accordingly, the pristine sub-continental mantle protoliths were infiltrated by MORB melts and transformed by melt-rock interaction to reactive spinel peridotites and refertilized by melt impregnation to plagioclase-enriched peridotites. Available isotopic data on the Mt. Maggiore spinel and plagioclase peridotites and gabbroic rocks (Rampone, 2004; Rampone et al., 2008; 2009) provide reliable geochronological informations (i.e. Sm-Nd cpx-plg-wr isochron ages and Sm-Nd model ages) and evidence that the whole mafic and ultramafic rocks show an overall Sm/Nd isotopic homogeneity. Cpx-plg-wr data from gabbroic dykes define internal isochrones yielding Jurassic ages (162+/-10 Ma and 159+/-15 Ma, respectively). The plg-cpx(-wr) isochrons for impregnated plagioclase peridotites yields age of 155+/-6 Ma. The initial ɛNd values (8.9-9.7) are indicative of a MORB affinity. Calculated DM model ages for both spinel and plagioclase peridotites point to a Late Jurassic age (150 Ma). Isotope ratios of cpx from spinel and plagioclase peridotites conform to the linear array defined by overall gabbroic rocks. The isotopic evidence from the melt-percolated, reactive and impregnated peridotites indicates that the pristine lithospheric mantle protoliths were isotopically homogenized by the melt-rock interaction during percolation/impregnation processes which erased any pre-existing isotopic signature. Moreover, the overall Sm/Nd isotopic homogeneity indicates that the asthenospheric mantle sources of the infiltrating melts were isotopically homogeneous. Accordingly, it is plausible that percolation and intrusion were operated by similar and coeval Late Jurassic MORB-type melts. In conclusion, petrologic and isotopic data allow to recognize that the extending sub-continental lithospheric mantle was infiltrated by Late Jurassic MORB melts, formed by asthenospheric decompression-induced partial melting during continental extension and rifting. Melt-peridotite interaction modified the compositional features of the lithospheric mantle and caused its isotopic resetting. Accordingly, the sub-continental lithospheric mantle underwent an "oceanization" process (i.e. isotope resetting to "oceanic" MORB signatures) during Late Jurassic times operated by asthenospheric MORB melts. Depending on the melt composition, the lithospheric level and the mode of melt-rock interaction, fertile peridotites from the sub-continental lithospheric mantle were transformed, concomitantly, to depleted spinel peridotites and refertilized plagioclase peridotites.
NASA Astrophysics Data System (ADS)
Burov, Evgueni; Gerya, Taras
2013-04-01
It has been long assumed that the dynamic topography associated with mantle-lithosphere interactions should be characterized by long-wavelength features (> 1000 km) correlating with morphology of mantle flow and expanding beyond the scale of tectonic processes. For example, debates on the existence of mantle plumes largely originate from interpretations of expected signatures of plume-induced topography that are compared to the predictions of analytical and numerical models of plume- or mantle-lithosphere interactions (MLI). Yet, most of the large-scale models treat the lithosphere as a homogeneous stagnant layer. We show that in continents, the dynamic topography is strongly affected by rheological properties and layered structure of the lithosphere. For that we reconcile mantle- and tectonic-scale models by introducing a tectonically realistic continental plate model in 3D large-scale plume-mantle-lithosphere interaction context. This model accounts for stratified structure of continental lithosphere, ductile and frictional (Mohr-Coulomb) plastic properties and thermodynamically consistent density variations. The experiments reveal a number of important differences from the predictions of the conventional models. In particular, plate bending, mechanical decoupling of crustal and mantle layers and intra-plate tension-compression instabilities result in transient topographic signatures such as alternating small-scale surface features that could be misinterpreted in terms of regional tectonics. Actually thick ductile lower crustal layer absorbs most of the "direct" dynamic topography and the features produced at surface are mostly controlled by the mechanical instabilities in the upper and intermediate crustal layers produced by MLI-induced shear and bending at Moho and LAB. Moreover, the 3D models predict anisotropic response of the lithosphere even in case of isotropic solicitations by axisymmetric mantle upwellings such as plumes. In particular, in presence of small (i.e. insufficient to produce solely any significant deformation) uniaxial extensional tectonic stress field, the plume-produced surface and LAB features have anisotropic linear shapes perpendicular to the far-field tectonic forces, typical for continental rifts. Compressional field results in singular sub-linear folds above the plume head, perpendicular to the direction of compression. Small bi-axial tectonic stress fields (compression in one direction and extension in the orthogonal direction) result in oblique, almost linear segmented normal or inverse faults with strike-slip components (or visa verse , strike-slip faults with normal or inverse components)
NASA Astrophysics Data System (ADS)
Basuyau, C.; Tiberi, C.; Leroy, S.; Stuart, G.; Al-Lazki, A.; Al-Toubi, K.; Ebinger, C.
2010-02-01
Gravity data and P-wave teleseismic traveltime residuals from 29 temporary broad-band stations spread over the northern margin of the Gulf of Aden (Dhofar region, Oman) were used to image lithospheric structure. We apply a linear relationship between density and velocity to provide consistent density and velocity models from mid-crust down to about 250 km depth. The accuracy of the resulting models is investigated through a series of synthetic tests. The analysis of our resulting models shows: (1) crustal heterogeneities that match the main geological features at the surface; (2) the gravity edge effect and disparity in anomaly depth locations for layers at 20 and 50 km; (3) two low-velocity anomalies along the continuation of Socotra-Hadbeen and Alula-Fartak fracture zones between 60 and 200 km depth; and (4) evidence for partial melting (3-6 per cent) within these two negative anomalies. We discuss the presence of partial melting in terms of interaction between the Sheba ridge melts and its along-axis segmentation.
Report of the panel on lithospheric structure and evolution, section 3
NASA Technical Reports Server (NTRS)
Chase, Clement G.; Lang, Harold; Mcnutt, Marcia K.; Paylor, Earnest D.; Sandwell, David T.; Stern, Robert J.
1991-01-01
The panel concluded that NASA can contribute to developing a refined understanding of the compositional, structural, and thermal differences between continental and oceanic lithosphere through a vigorous program in solid Earth science with the following objectives: determine the most fundamental geophysical property of the planet; determine the global gravity field to an accuracy of a few milliGals at wavelengths of 100 km or less; determine the global lithospheric magnetic field to a few nanoTeslas at a wavelength of 100 km; determine how the lithosphere has evolved to its present state via acquiring geologic remote sensing data over all the continents.
NASA Astrophysics Data System (ADS)
Somoza, Luis; Medialdea, Teresa; Vázquez, Juan T.; González, Francisco J.; León, Ricardo; Palomino, Desiree; Fernández-Salas, Luis M.; Rengel, Juan
2017-04-01
Spain presented on 11 May 2009 a partial submission for delimiting the extended Continental Shelf in respect to the area of Galicia to the Commission on the Limits of the Continental Shelf (CLCS). The Galicia margin represents an example of the transition between two different types of continental margins (CM): a western hyperpextended margin and a northern convergent margin in the Bay of Biscay. The western Galicia Margin (wGM 41° to 43° N) corresponds to a hyper-extended rifted margin as result of the poly-phase development of the Iberian-Newfoundland conjugate margin during the Mesozoic. Otherwise, the north Galicia Margin (nGM) is the western end of the Cenozoic subduction of the Bay of Biscay along the north Iberian Margin (NIM) linked to the Pyrenean-Mediterranean collisional belt Following the procedure established by the CLCS Scientific and Technical Guidelines (CLCS/11), the points of the Foot of Slope (FoS) has to be determined as the points of maximum change in gradient in the region defined as the Base of the continental Slope (BoS). Moreover, the CLCS guidelines specify that the BoS should be contained within the continental margin (CM). In this way, a full-coverage multibeam bathymetry and an extensive dataset of up 4,736 km of multichannel seismic profiles were expressly obtained during two oceanographic surveys (Breogham-2005 and Espor-2008), aboard the Spanish research vessel Hespérides, to map the outer limit of the CM.In order to follow the criteria of the CLCS guidelines, two types of models reported in the CLCS Guidelines were applied to the Galicia Margin. In passive margins, the Commission's guidelines establish that the natural prolongation is based on that "the natural process by which a continent breaks up prior to the separation by seafloor spreading involves thinning, extension and rifting of the continental crust…" (para. 7.3, CLCS/11). The seaward extension of the wGM should include crustal continental blocks and the so-called Peridotite Ridge (PR), composed by serpentinized exhumed continental mantle. Thus, the PR should be regarded as a natural component of the continental margin since these seafloor highs were formed by hyperextension of the margin. Regarding convergent margins, the architecture of the nGM can be classified according the CLCS/11 as a "poor- or non-accretionary convergent continental margin" characterized by a poorly developed accretionary wedge, which is composed of: a large sedimentary apron mainly formed by large slumps and thrust wedges of igneous (ophiolitic/continental) body overlying subducting oceanic crust (Fig. 6.1B, CLCS/11). According to para. 6.3.6. (CLCS/11), the seaward extent of this type of continental convergent margins is defined by the seaward edge of the accretionary wedge. Applying this definition, the seaward extent of the margin is defined by the outer limit of the ophiolitic deformed body that marks the edge of the accretionary wedge. These geological criteria were strictly applied for mapping the BoS region, where the FoS were determinate by using the maximum change in gradient within this mapped region. Acknowledgments: Project for the Extension of the Spanish Continental according UNCLOS (CTM2010-09496-E) and Project CTM2016-75947-R
Volcanoes of the passive margin: The youngest magmatic event in eastern North America
Mazza, Sarah E; Gazel, Esteban; Johnson, Elizabeth A; Kunk, Michael J.; McAleer, Ryan J.; Spotila, James A; Bizimis, Michael; Coleman, Drew S
2014-01-01
The rifted eastern North American margin (ENAM) provides important clues to the long-term evolution of continental margins. An Eocene volcanic swarm exposed in the Appalachian Valley and Ridge Province of Virginia and West Virginia (USA) contains the youngest known igneous rocks in the ENAM. These magmas provide the only window into the most recent deep processes contributing to the postrift evolution of this margin. Here we present new 40Ar/39Ar ages, geochemical data, and radiogenic isotopes that constrain the melting conditions and the timing of emplacement. Modeling of the melting conditions on primitive basalts yielded an average temperature and pressure of 1412 ± 25 °C and 2.32 ± 0.31 GPa, corresponding to a mantle potential temperature of ∼1410 °C, suggesting melting conditions slightly higher than average mantle temperatures beneath mid-ocean ridges. When compared with magmas from Atlantic hotspots, the Eocene ENAM samples share isotopic signatures with the Azores and Cape Verde. This similarity suggests the possibility of a large-scale dissemination of similar sources in the upper mantle left over from the opening of the Atlantic Ocean. Asthenosphere upwelling related to localized lithospheric delamination is a possible process that can explain the intraplate signature of these magmas that lack evidence of a thermal anomaly. This process can also explain the Cenozoic dynamic topography and evidence of rejuvenation of the central Appalachians.
Large and giant hydrocarbon accumulations in the transitional continent-ocean zone
NASA Astrophysics Data System (ADS)
Khain, V. E.; Polyakova, I. D.
2008-05-01
The petroleum resource potential is considered for the Atlantic, West Pacific, and East Pacific types of deepwater continental margins. The most considerable energy resources are concentrated at the Atlantic-type passive margins in the zone transitional to the ocean. The less studied continental slope of backarc seas of the generally active margins of the West Pacific type is currently not so rich in discoveries as the Atlantic-type margin, but is not devoid of certain expectations. In some of their parameters, the margins bounded by continental slopes may be regarded as analogs of classical passive margins. At the margins of the East Pacific type, the petroleum potential is solely confined to transform segments. In the shelf-continental-slope basins of the rift and pull-apart nature, petroleum fields occur largely in the upper fan complex, and to a lesser extent in the lower graben (rift) complex. In light of world experience, the shelf-continental-slope basins of the Arctic and Pacific margins of Russia are evaluated as highly promising.
NASA Astrophysics Data System (ADS)
Corchete, V.
2017-04-01
A 3D imaging of S-velocity for the Arabian Sea crust and upper mantle structure is presented in this paper, determined by means of Rayleigh wave analysis, for depths ranging from zero to 300 km. The crust and upper mantle structure of this region of the earth never has been the subject of a surface wave tomography survey. The Moho map performed in the present study is a new result, in which a crustal thickening beneath the Arabian Fan sediments can be observed. This crustal thickening can be interpreted as a quasi-continental oceanic transitional structure. A crustal thickness of up to 20 km also can be observed for the Murray Ridge system in this Moho map. This crustal thickening can be due to that the Murray Ridge System consists of Indian continental crust. This continental crust is extremely thinned to the southwest of this region, as shown in this Moho map. This area can be interpreted as oceanic in origin. In the depth range from 30 to 60 km, the S-velocity presents its lower values at the Carlsberg Ridge region, because it is the younger region of the study area. In the depth range from 60 to 105 km of depth, the S-velocity pattern is very similar to that shown for the previous depth range, except for the regions in which the asthenosphere is reached, for these regions appear a low S-velocity pattern. The lithosphere-asthenosphere boundary (LAB), or equivalently the lithosphere thickness, determined in the present study is also a new result, in which the lithosphere thickness for the Arabian Fan can be estimated in 60-70 km. The lower lithospheric thickness observed in the LAB map, for the Arabian Fan, shows that this region may be in the transition zone between continental and oceanic structure. Finally, a low-velocity zone (LVZ) has been determined, for the whole study area, located between the LAB and the boundary of the asthenosphere base (or equivalently the lithosphere-asthenosphere system thickness). The asthenosphere-base map calculated in the present study is also a new result.
Structure of the North American Atlantic Continental Margin.
ERIC Educational Resources Information Center
Klitgord, K. K.; Schlee, J. S.
1986-01-01
Offers explanations on the origin of the North American Atlantic continental margin. Provides an analysis and illustrations of structural and strategraphic elements of cross sections of the Atlantic continental margin. Also explains the operations and applications of seismic-relection profiles in studying ocean areas. (ML)
NASA Astrophysics Data System (ADS)
Darbyshire, F. A.; Afonso, J. C.; Porritt, R. W.
2015-12-01
The Paleozoic Hudson Bay intracratonic basin conceals a Paleoproterozoic Himalayan-scale continental collision, the Trans-Hudson Orogen (THO), which marks an important milestone in the assembly of the Canadian Shield. The geometry of the THO is complex due to the double-indentor geometry of the collision between the Archean Superior and Western Churchill cratons. Seismic observations at regional scale show a thick, seismically fast lithospheric keel beneath the entire region; an intriguing feature of recent models is a 'curtain' of slightly lower wavespeeds trending NE-SW beneath the Bay, which may represent the remnants of more juvenile material trapped between the two Archean continental cores. The seismic models alone, however, cannot constrain the nature of this anomaly. We investigate the thermal and compositional structure of the Hudson Bay lithosphere using a multi-observable probabilistic inversion technique. This joint inversion uses Rayleigh wave phase velocity data from teleseismic earthquakes and ambient noise, geoid anomalies, surface elevation and heat flow to construct a pseudo-3D model of the crust and upper mantle. Initially a wide range of possible mantle compositions is permitted, and tests are carried out to ascertain whether the lithosphere is stratified with depth. Across the entire Hudson Bay region, low temperatures and a high degree of chemical depletion characterise the mantle lithosphere. Temperature anomalies within the lithosphere are modest, as may be expected from a tectonically-stable region. The base of the thermal lithosphere lies at depths of >250 km, reaching to ~300 km depth in the centre of the Bay. Lithospheric stratification, with a more-depleted upper layer, is best able to explain the geophysical data sets and surface observables. Some regions, where intermediate-period phase velocities are high, require stronger mid-lithospheric depletion. In addition, a narrow region of less-depleted material extends NE-SW across the Bay, likely associated with the trace of the THO collision and the entrapment of juvenile material between the highly-depleted Archean cores.
Continental tectonics in the aftermath of plate tectonics
NASA Technical Reports Server (NTRS)
Molnar, Peter
1988-01-01
It is shown that the basic tenet of plate tectonics, rigid-body movements of large plates of lithosphere, fails to apply to continental interiors. There, buoyant continental crust can detach from the underlying mantle to form mountain ranges and broad zones of diffuse tectonic activity. The role of crustal blocks and of the detachment of crustal fragments in this process is discussed. Future areas of investigation are addressed.
NASA Astrophysics Data System (ADS)
Hopper, E.; Gaherty, J. B.; Shillington, D. J.
2016-12-01
Continental extension comes in many guises, often described in terms of two endmembers. Narrow rifting is typified by a rift valley narrower than lithospheric thickness (50-100 km), presumed to result in steep lateral changes in crustal and lithospheric topography; wide rifting by a broad zone (<1000 km) of normal faulting associated with much smaller topographic gradients. A type example for the former is the East African Rift Valley; for the latter, the Basin and Range in the western U.S.A. An important control on rift development is the state of the lithosphere: for example, its strength and thickness. We analyse common conversion point stacked Sp converted wave images of the lithosphere beneath rift systems in the contiguous U.S., both the wide Basin and Range, and narrow rift systems such as the Rio Grande Rift and Salton Trough. We use Sp waves recorded by EarthScope's Transportable Array and other available permanent and temporary broadband stations. Beneath the Basin and Range, we observe a very strong, shallow velocity decrease (the lithosphere-asthenosphere boundary, or LAB) that is relatively uniform over 100s of km. The strength of this feature indicates melt has ponded at this transition. We have not observed a clear relationship between lithospheric thickness beneath the Basin and Range, and total degree of extension, current extension rate, or age since surface volcanism. Beneath narrow rifts in the western U.S., however, more localised thinning of the lithosphere has been observed. We also compare these observations with seismic images of the Malawi Rift, at the southern end of the Western Branch of the East African Rift System, using broadband data acquired as part of the Study of Extension and MaGmatism in Malawi aNd Tanzania (SEGMeNT) experiment. The Malawi Rift is extending slowly in a magma-poor region of relatively strong lithosphere. We constrain the pattern of plate-scale extension by observations of crustal thinning, and image complex variations in deeper lithospheric structure.
NASA Astrophysics Data System (ADS)
Hopper, E.; Gaherty, J. B.; Shillington, D. J.
2017-12-01
Continental extension comes in many guises, often described in terms of two endmembers. Narrow rifting is typified by a rift valley narrower than lithospheric thickness (50-100 km), presumed to result in steep lateral changes in crustal and lithospheric topography; wide rifting by a broad zone (<1000 km) of normal faulting associated with much smaller topographic gradients. A type example for the former is the East African Rift Valley; for the latter, the Basin and Range in the western U.S.A. An important control on rift development is the state of the lithosphere: for example, its strength and thickness. We analyse common conversion point stacked Sp converted wave images of the lithosphere beneath rift systems in the contiguous U.S., both the wide Basin and Range, and narrow rift systems such as the Rio Grande Rift and Salton Trough. We use Sp waves recorded by EarthScope's Transportable Array and other available permanent and temporary broadband stations. Beneath the Basin and Range, we observe a very strong, shallow velocity decrease (the lithosphere-asthenosphere boundary, or LAB) that is relatively uniform over 100s of km. The strength of this feature indicates melt has ponded at this transition. We have not observed a clear relationship between lithospheric thickness beneath the Basin and Range, and total degree of extension, current extension rate, or age since surface volcanism. Beneath narrow rifts in the western U.S., however, more localised thinning of the lithosphere has been observed. We also compare these observations with seismic images of the Malawi Rift, at the southern end of the Western Branch of the East African Rift System, using broadband data acquired as part of the Study of Extension and MaGmatism in Malawi aNd Tanzania (SEGMeNT) experiment. The Malawi Rift is extending slowly in a magma-poor region of relatively strong lithosphere. We constrain the pattern of plate-scale extension by observations of crustal thinning, and image complex variations in deeper lithospheric structure.
Continental margin sedimentation: From sediment transport to sequence stratigraphy
Nittrouer, Charles A.; Austin, James A.; Field, Michael E.; Kravitz, Joseph H.; Syvitski, James P. M.; Wiberg, Patricia L.
2007-01-01
This volume on continental margin sedimentation brings together an expert editorial and contributor team to create a state-of-the-art resource. Taking a global perspective, the book spans a range of timescales and content, ranging from how oceans transport particles, to how thick rock sequences are formed on continental margins.- Summarizes and integrates our understanding of sedimentary processes and strata associated with fluvial dispersal systems on continental shelves and slopes- Explores timescales ranging from particle transport at one extreme, to deep burial at the other- Insights are presented for margins in general, and with focus on a tectonically active margin (northern California) and a passive margin (New Jersey), enabling detailed examination of the intricate relationships between a wide suite of sedimentary processes and their preserved stratigraphy- Includes observational studies which document the processes and strata found on particular margins, in addition to numerical models and laboratory experimentation, which provide a quantitative basis for extrapolation in time and space of insights about continental-margin sedimentation- Provides a research resource for scientists studying modern and ancient margins, and an educational text for advanced students in sedimentology and stratigraphy
Craton destruction and related resources
NASA Astrophysics Data System (ADS)
Zhu, Rixiang; Zhang, Hongfu; Zhu, Guang; Meng, Qingren; Fan, Hongrui; Yang, Jinhui; Wu, Fuyuan; Zhang, Zhiyong; Zheng, Tianyu
2017-10-01
Craton destruction is a dynamic event that plays an important role in Earth's evolution. Based on comprehensive observations of many studies on the North China Craton (NCC) and correlations with the evolution histories of other cratons around the world, craton destruction has be defined as a geological process that results in the total loss of craton stability due to changes in the physical and chemical properties of the involved craton. The mechanisms responsible for craton destruction would be as the follows: (1) oceanic plate subduction; (2) rollback and retreat of a subducting oceanic plate; (3) stagnation and dehydration of a subducting plate in the mantle transition zone; (4) melting of the mantle above the mantle transition zone caused by dehydration of a stagnant slab; (5) non-steady flow in the upper mantle induced by melting, and/or (6) changes in the nature of the lithospheric mantle and consequent craton destruction caused by non-steady flow. Oceanic plate subduction itself does not result in craton destruction. For the NCC, it is documented that westward subduction of the paleo-Pacific plate should have initiated at the transition from the Middle-to-Late Jurassic, and resulted in the change of tectonic regime of eastern China. We propose that subduction, rollback and retreat of oceanic plates and dehydration of stagnant slabs are the main dynamic factors responsible for both craton destruction and concentration of mineral deposits, such as gold, in the overriding continental plate. Based on global distribution of gold deposits, we suggest that convergent plate margins are the most important setting for large gold concentrations. Therefore, decratonic gold deposits appear to occur preferentially in regions with oceanic subduction and overlying continental lithospheric destruction/modification/growth.
Why does continental convergence stop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hynes, A.
1985-01-01
Convergence between India and Asia slowed at 45 Ma when they collided, but continues today. This requires that substantial proportions of the Indian and/or Asian lithospheric mantle are still being subducted. The resulting slab-pull is probably comparable with that from complete lithospheric slabs and may promote continued continental convergence even after collision. Since descending lithospheric slabs are present at all collision zones at the time of collision such continued convergence may be general after continental collisions. It may cease only when there is a major (global) plate reorganization which results in new forces on the convergent continents that may counteractmore » the slab-pull. These inferences may be tested on the late Paleozoic collision between Gondwanaland and Laurasia. This is generally considered to have been complete by mid-Permian time (250 Ma). However, this may be only the time of docking of Gondwanaland with North America, not that of the cessation of convergence. Paleomagnetic polar-wander paths for the Gondwanide continents exhibit consistently greater latitudinal shifts from 250 Ma to 200 Ma than those of Laurasia when corrected for post-Triassic drift, suggesting that convergence continued through late Permian well into the Triassic. It may have been accommodated by crustal thickening under what is now the US Coastal Plain, or by strike-slip faulting. Convergence may have ceased only when Pangea began to fragment again, in which case the cause for its cessation may be related to the cause of continental fragmentation.« less
NASA Astrophysics Data System (ADS)
Hughes, Hannah S. R.; McDonald, Iain; Faithfull, John W.; Upton, Brian G. J.; Loocke, Matthew
2016-01-01
Abundances of precious metals and cobalt in the lithospheric mantle are typically obtained by bulk geochemical analyses of mantle xenoliths. These elements are strongly chalcophile and the mineralogy, texture and trace element composition of sulphide phases in such samples must be considered. In this study we assess the mineralogy, textures and trace element compositions of sulphides in spinel lherzolites from four Scottish lithospheric terranes, which provide an ideal testing ground to examine the variability of sulphides and their precious metal endowments according to terrane age and geodynamic environment. Specifically we test differences in sulphide composition from Archaean-Palaeoproterozoic cratonic sub-continental lithospheric mantle (SCLM) in northern terranes vs. Palaeozoic lithospheric mantle in southern terranes, as divided by the Great Glen Fault (GGF). Cobalt is consistently elevated in sulphides from Palaeozoic terranes (south of the GGF) with Co concentrations > 2.9 wt.% and Co/Ni ratios > 0.048 (chondrite). In contrast, sulphides from Archaean cratonic terranes (north of the GGF) have low abundances of Co (< 3600 ppm) and low Co/Ni ratios (< 0.030). The causes for Co enrichment remain unclear, but we highlight that globally significant Co mineralisation is associated with ophiolites (e.g., Bou Azzer, Morocco and Outokumpu, Finland) or in oceanic peridotite-floored settings at slow-spreading ridges. Thus we suggest an oceanic affinity for the Co enrichment in the southern terranes of Scotland, likely directly related to the subduction of Co-enriched oceanic crust during the Caledonian Orogeny. Further, we identify a distinction between Pt/Pd ratio across the GGF, such that sulphides in the cratonic SCLM have Pt/Pd ≥ chondrite whilst Palaeozoic sulphides have Pt/Pd < chondrite. We observe that Pt-rich sulphides with discrete Pt-minerals (e.g., PtS) are associated with carbonate and phosphates in two xenolith suites north of the GGF. This three-way immiscibility (carbonate-sulphide-phosphate) indicates carbonatitic metasomatism is responsible for Pt-enrichment in this (marginal) cratonic setting. These Co and Pt-enrichments may fundamentally reflect the geodynamic setting of cratonic vs. non-cratonic lithospheric terranes and offer potential tools to facilitate geochemical mapping of the lithospheric mantle.
African hot spot volcanism: small-scale convection in the upper mantle beneath cratons.
King, S D; Ritsema, J
2000-11-10
Numerical models demonstrate that small-scale convection develops in the upper mantle beneath the transition of thick cratonic lithosphere and thin oceanic lithosphere. These models explain the location and geochemical characteristics of intraplate volcanos on the African and South American plates. They also explain the presence of relatively high seismic shear wave velocities (cold downwellings) in the mantle transition zone beneath the western margin of African cratons and the eastern margin of South American cratons. Small-scale, edge-driven convection is an alternative to plumes for explaining intraplate African and South American hot spot volcanism, and small-scale convection is consistent with mantle downwellings beneath the African and South American lithosphere.
NASA Astrophysics Data System (ADS)
Whitechurch, Hubert; Agard, Philippe; Ulrich, Marc
2015-04-01
Diversity of ophiolites and obduction processes: examples from Eastern Tethyan regions and New Caledonia. Whitechurch H.(1) Agard P.(2), Ulrich M.(1) (1) EOST - University of Strasbourg (France) (2) ISTeP - University Pierre et Marie Curie, Paris (France) Ophiolites are considered as pieces of oceanic lithosphere that escaped subduction to be obducted on continental margins. After the Penrose Conference in 1972, they have all been regarded as issued from mid-ocean ridges of large oceans. Subsequently, most of ophiolites have been considered as generated in supra-subduction zone (SSZ) environment, mainly on the basis of geochemical arguments. However, this characterization encompasses very different geological situations, somewhat in contradiction with a univocal geochemical interpretation, both in terms of where ophiolite formed (i.e., ocean-continent transition zones, ocean ridges, marginal basins) and were obducted (contrasting nature of the margins). Examples from eastern Mesozoic Tethyan ophiolites (Cyprus, Turkey, Syria, Iran, Oman) and tertiary New Caledonia ophiolites all show this diversity, both in their internal structures and geological setting of obduction. Several questions will be addressed in this debate: the relationships and paradoxes between the nature of ophiolites, their geodynamic environment of formation, their geochemistry, their modality of obduction and ultimately the mountain range style where they are found.
Lawsonite Blueschists in Recycled Mélange Involved in K-Rich Orogenic Magmatism
NASA Astrophysics Data System (ADS)
Wang, Y.; Prelevic, D.; Foley, S. F.; Buhre, S.; Galer, S. J. G.
2014-12-01
The origin of K-rich orogenic magmatism in the Alpine-Himalayan belt and its relationship to the large-scale elevations in several massifs of the orogen is controversial, particularly the significance of the widespread presence of a geochemical signal typical for recycled continental crust. Two competing scenarios invoke direct melting of continental crust during deep intercontinental subduction and removal of heavily metasomatised mantle lithosphere by delamination into the convecting mantle. Here we investigate the coupling of high Th/La ratio with crustal isotopic signatures in K-rich orogenic lavas that does not occur in volcanic rocks from other collisional environments to distinguish between these two models. High-pressure experimental results on a phyllite representing upper crustal composition and a detailed mineral and geochemical study of blueschists from Tavşanlı mélange, Turkey, indicate that this geochemical fingerprint originates by melting of subducted mélange. Melting of crust at the top of the subducted continental lithosphere cannot produce observed fingerprint, whereas lawsonites, especially those with terrigenous sediment origin from blueschists with high Th/La can. Lawsonites that grow in various components of a subduction mélange inherit the geochemical characteristics of either oceanic or continental protoliths. It is currently uncertain whether those carrying the high Th/La signature originate by direct melting of continental blocks in the mélange or by the introduction of supercritical fluids from lawsonite blueschist of continental origin that infiltrate oceanic sediment blocks. Either way, the high Th/La is later released into subsequently formed melts. This confirms the supposition that lawsonite is the main progenitor of the high Th/La and Sm/La ratio. However, lawsonite must break down completely to impart this unique feature to subsequent magmas. The source regions of the potassic volcanic rocks consist of blueschist facies mélanges imbricated together with extremely depleted fore-arc peridotites in a mantle lithosphere that was newly formed during the convergence of small continental blocks and oceans. This process takes place entirely at shallow depths (<60-80km) and does not require any deep subduction of continental materials.
Shear Wave Structure in the Lithosphere of Texas from Ambient Noise Tomography
NASA Astrophysics Data System (ADS)
Yao, Y.; Li, A.
2014-12-01
Texas contains several distinct tectonic provinces, the Laurentia craton, the Ouachita belt, and the Gulf coastal plain. Although numerous geophysical experiments have been conducted in Texas for petroleum exploration, the lithosphere structure of Texas has not been well studied. We present here the Texas-wide shear wave structure using seismic ambient noise data recorded at 87 stations from the Transportable Array of the USArray between March 2010 and February 2011. Rayleigh wave phase velocities between pairs of stations are obtained by cross-correlating long ambient noise sequences and are used to develop phase velocity maps from 6 to 40 s. These measured phase velocities are used to construct 1-D and 3-D shear wave velocity models, which consist of four crust layers and one upper mantle layer. Shear wave velocity maps reveal a close correlation with major geological features. From the surface to 25 km depth, Positive anomalies coincide with the Laurentia craton, and negative anomalies coincide with the continental margin. The boundary of positive-negative anomaly perfectly matches the Ouachita belt. The Llano Uplift is imaged as the highest velocity through the mid-crust because the igneous rock forming the uplift has faster seismic velocity than the normal continental crust. Similarly, three small high-velocity areas exist beneath the Waco Uplift, Devils River Uplift, and Benton Uplift, even though surface geological traces are absent in these areas. The lowest velocity at the shallow crust appears in northeastern and southeastern Texas separated by the San Marcos Arch, correlating with thick sediment layers. An exceptional low velocity is imaged in southernmost Texas in the lower crust and upper mantle, probably caused by subducted wet oceanic crust before the rifting in the Gulf of Mexico. In the uppermost mantle, positive shear wave anomalies extend southeastward from the Ouachita belt to the Gulf coast, likely evidencing the subducted oceanic lithosphere during the Ouachita orogeny. This observation need be further tested using long period surface wave dispersions from earthquakes, which help to improve model resolution in the upper mantle.
NASA Astrophysics Data System (ADS)
Schmerr, N. C.; Beghein, C.; Kostic, D.; Baldridge, A. M.; West, J. D.; Nittler, L. R.; Bull, A. L.; Montesi, L.; Byrne, P. K.; Hummer, D. R.; Plescia, J. B.; Elkins-Tanton, L. T.; Lekic, V.; Schmidt, B. E.; Elkins, L. J.; Cooper, C. M.; ten Kate, I. L.; Van Hinsbergen, D. J. J.; Parai, R.; Glass, J. B.; Ni, J.; Fuji, N.; McCubbin, F. M.; Michalski, J. R.; Zhao, C.; Arevalo, R. D., Jr.; Koelemeijer, P.; Courtier, A. M.; Dalton, H.; Waszek, L.; Bahamonde, J.; Schmerr, B.; Gilpin, N.; Rosenshein, E.; Mach, K.; Ostrach, L. R.; Caracas, R.; Craddock, R. A.; Moore-Driskell, M. M.; Du Frane, W. L.; Kellogg, L. H.
2015-12-01
Seismic discontinuities within the mantle arise from a wide range of mechanisms, including changes in mineralogy, major element composition, melt content, volatile abundance, anisotropy, or a combination of the above. In particular, the depth and sharpness of upper mantle discontinuities at 410 and 660 km depth are attributed to solid-state phase changes sensitive to both mantle temperature and composition, where regions of thermal heterogeneity produce topography and chemical heterogeneity changes the impedance contrast across the discontinuity. Seismic mapping of this topography and sharpness thus provides constraint on the thermal and compositional state of the mantle. The EarthScope USArray is providing unprecedented access to a wide variety of new regions previously undersampled by the SS precursors. This includes the boundary between the oceanic plate in the western Atlantic Ocean and continental margin of eastern North America. Here we use a seismic array approach to image the depth, sharpness, and topography of the upper mantle discontinuities, as well as other possible upper mantle reflectors beneath this region. This array approach utilizes seismic waves that reflect off the underside of a mantle discontinuity and arrive several hundred seconds prior to the SS seismic phase as precursory energy. In this study, we collected high-quality broadband data SS precursors data from shallow focus (< 30 km deep), mid-Atlantic ridge earthquakes recorded by USArray seismometers in Alaska. We generated 4th root vespagrams to enhance the SS precursors and determine how they sample the mantle. Our data show detection of localized structure on the discontinuity boundaries as well as additional horizons, such as the X-discontinuity and a potential reflection from a discontinuity near the depth of the lithosphere-asthenosphere boundary. These structures are related to the transition from predominantly old ocean lithosphere to underlying continental lithosphere, as while deeper reflectors are associated with the subduction of the ancient Farallon slab. A comparison of the depth of upper mantle discontinuities to changes in seismic velocity and anisotropy will further quantify the relationship to mantle flow, compositional layering, and phases changes.
NASA Astrophysics Data System (ADS)
Marchesi, Claudio; Griffin, William L.; Garrido, Carlos J.; Bodinier, Jean-Louis; O'Reilly, Suzanne Y.; Pearson, Norman J.
2010-03-01
The western part of the Ronda peridotite massif (Southern Spain) consists mainly of highly foliated spinel-peridotite tectonites and undeformed granular peridotites that are separated by a recrystallization front. The spinel tectonites are interpreted as volumes of ancient subcontinental lithospheric mantle and the granular peridotites as a portion of subcontinental lithospheric mantle that underwent partial melting and pervasive percolation of basaltic melts induced by Cenozoic asthenospheric upwelling. The Re-Os isotopic signature of sulfides from the granular domain and the recrystallization front mostly coincides with that of grains in the spinel tectonites. This indicates that the Re-Os radiometric system in sulfides was highly resistant to partial melting and percolation of melts induced by Cenozoic lithospheric thermal erosion. The Re-Os isotopic systematics of sulfides in the Ronda peridotites thus mostly conserve the geochemical memory of ancient magmatic events in the subcontinental lithospheric mantle. Os model ages record two Proterozoic melting episodes at ~1.6 to 1.8 and 1.2-1.4 Ga, respectively. The emplacement of the massif into the subcontinental lithospheric mantle probably coincided with one of these depletion events. A later metasomatic episode caused the precipitation of a new generation of sulfides at ~0.7 to 0.9 Ga. These Proterozoic Os model ages are consistent with results obtained for several mantle suites in Central/Western Europe and Northern Africa as well as with the Nd model ages of the continental crust of these regions. This suggests that the events recorded in mantle sulfides of the Ronda peridotites reflect different stages of generation of the continental crust in the ancient Gondwana supercontinent.
Quantifying precambrian crustal extraction: The root is the answer
Abbott, D.; Sparks, D.; Herzberg, C.; Mooney, W.; Nikishin, A.; Zhang, Y.-S.
2000-01-01
We use two different methods to estimate the total amount of continental crust that was extracted by the end of the Archean and the Proterozoic. The first method uses the sum of the seismic thickness of the crust, the eroded thickness of the crust, and the trapped melt within the lithospheric root to estimate the total crustal volume. This summation method yields an average equivalent thickness of Archean crust of 49 ?? 6 km and an average equivalent thickness of Proterozoic crust of 48 ?? 9 km. Between 7 and 9% of this crust never reached the surface, but remained within the continental root as congealed, iron-rich komatiitic melt. The second method uses experimental models of melting, mantle xenolith compositions, and corrected lithospheric thickness to estimate the amount of crust extracted through time. This melt column method reveals that the average equivalent thickness of Archean crust was 65 ?? 6 km. and the average equivalent thickness of Early Proterozoic crust was 60 ?? 7 km. It is likely that some of this crust remained trapped within the lithospheric root. The discrepancy between the two estimates is attributed to uncertainties in estimates of the amount of trapped, congealed melt, overall crustal erosion, and crustal recycling. Overall, we find that between 29 and 45% of continental crust was extracted by the end of the Archean, most likely by 2.7 Ga. Between 51 and 79% of continental crust was extracted by the end of the Early Proterozoic, most likely by 1.8-2.0 Ga. Our results are most consistent with geochemical models that call upon moderate amounts of recycling of early extracted continental crust coupled with continuing crustal growth (e.g. McLennan, S.M., Taylor, S.R., 1982. Geochemical constraints on the growth of the continental crust. Journal of Geology, 90, 347-361; Veizer, J., Jansen, S.L., 1985. Basement and sedimentary recycling - 2: time dimension to global tectonics. Journal of Geology 93(6), 625-643). Trapped, congealed, iron-rich melt within the lithospheric root may represent some of the iron that is 'missing' from the lower crust. The lower crust within Archean cratons may also have an unexpectedly low iron content because it was extracted from more primitive, undepleted mantle. (C) 2000 Elsevier Science B.V. All rights reserved.
The Ankara Mélange: an indicator of Tethyan evolution of Anatolia
NASA Astrophysics Data System (ADS)
Çakir, Üner; Üner, Tijen
2016-08-01
The Ankara Mélange is a complex formed by imbricated slices of limestone block mélanges (Karakaya and Hisarlıkaya Formations), Neotethyan ophiolites (Eldivan, Ahlat and Edige ophiolites), post-ophiolitic cover units (Mart and Kavak formations) and Tectonic Mélange Unit (Hisarköy Formation or Dereköy Mélange). The Karakaya and Hisarlıkaya formations are roughly similar and consist mainly of limestone block mélange. Nevertheless, they represent some important geological differences indicating different geological evolution. Consequently, the Karakaya and Hisarlıkaya formations are interpreted as Eurasian and Gondwanian marginal units formed by fragmentation of the Gondwanian carbonate platform during the continental rifting of the Neotethys in the Middle Triassic time. During the latest Triassic, Neotethyan lithosphere began to subduct beneath the Eurasian continent and caused intense deformation of the marginal units. The Eldivan, Ahlat and Edige ophiolites represent different fragments of the Neotethyan oceanic lithosphere emplaced onto the Gondwanian margin during the Albian-Aptian, middle Turonian and middle Campanian, respectively. The Eldivan Ophiolite is a NE-SW trending and a nearly complete assemblage composed, from bottom to top, of a volcanic-sedimentary unit, a metamorphic unit, peridotite tectonites, cumulates and sheeted dykes. The Eldivan Ophiolite is unconformably covered by Cenomanian-Lower Turonian sedimentary unit. The Eldivan Ophiolite is overthrust by the Ahlat Ophiolite in the north and Edige Ophiolite in the west. The Ahlat ophiolite is an east-west oriented assemblage comprised of volcanic-sedimentary unit, metamorphic unit, peridotite tectonites and cumulates. The Edige Ophiolite consists of a volcanic-sedimentary unit, peridotite tectonites, dunite, wherlite, pyroxenite and gabbro cumulates. The Tectonic Mélange Unit is a chaotic formation of various blocks derived from ophiolites, from the Karakaya and Hisarlıkaya formations and from post-ophiolitic sedimentary units. It was formed during the collision between Anatolian Promontory and Eurasian Continent in the middle Campanian time.
NASA Astrophysics Data System (ADS)
Gross, Felix; Krastel, Sebastian; Behrmann, Jan-Hinrich; Papenberg, Cord; Geersen, Jacob; Ridente, Domenico; Latino Chiocci, Francesco; Urlaub, Morelia; Bialas, Jörg; Micallef, Aaron
2015-04-01
Mount Etna is the largest active volcano in Europe. Its volcano edifice is located on top of continental crust close to the Ionian shore in east Sicily. Instability of the eastern flank of the volcano edifice is well documented onshore. The continental margin is supposed to deform as well. Little, however, is known about the offshore extension of the eastern volcano flank and its adjacent continental margin, which is a serious shortcoming in stability models. In order to better constrain the active tectonics of the continental margin offshore the eastern flank of the volcano, we acquired and processed a new marine high-resolution seismic and hydro-acoustic dataset. The data provide new detailed insights into the heterogeneous geology and tectonics of shallow continental margin structures offshore Mt Etna. In a similiar manner as observed onshore, the submarine realm is characterized by different blocks, which are controlled by local- and regional tectonics. We image a compressional regime at the toe of the continental margin, which is bound to an asymmetric basin system confining the eastward movement of the flank. In addition, we constrain the proposed southern boundary of the moving flank, which is identified as a right lateral oblique fault movement north of Catania Canyon. From our findings, we consider a major coupled volcano edifice instability and continental margin gravitational collapse and spreading to be present at Mt Etna, as we see a clear link between on- and offshore tectonic structures across the entire eastern flank. The new findings will help to evaluate hazards and risks accompanied by Mt Etna's slope- and continental margin instability and will be used as a base for future investigations in this region.
Shear wave velocity, seismic attenuation, and thermal structure of the continental upper mantle
Artemieva, I.M.; Billien, M.; Leveque, J.-J.; Mooney, W.D.
2004-01-01
Seismic velocity and attenuation anomalies in the mantle are commonly interpreted in terms of temperature variations on the basis of laboratory studies of elastic and anelastic properties of rocks. In order to evaluate the relative contributions of thermal and non-thermal effects on anomalies of attenuation of seismic shear waves, QS-1, and seismic velocity, VS, we compare global maps of the thermal structure of the continental upper mantle with global QS-1 and Vs maps as determined from Rayleigh waves at periods between 40 and 150 S. We limit the comparison to three continental mantle depths (50, 100 and 150 km), where model resolution is relatively high. The available data set does not indicate that, at a global scale, seismic anomalies in the upper mantle are controlled solely by temperature variations. Continental maps have correlation coefficients of <0.56 between VS and T and of <0.47 between QS and T at any depth. Such low correlation coefficients can partially be attributed to modelling arrefacts; however, they also suggest that not all of the VS and QS anomalies in the continental upper mantle can be explained by T variations. Global maps show that, by the sign of the anomaly, VS and QS usually inversely correlate with lithospheric temperatures: most cratonic regions show high VS and QS and low T, while most active regions have seismic and thermal anomalies of the opposite sign. The strongest inverse correlation is found at a depth of 100 km, where the attenuation model is best resolved. Significantly, at this depth, the contours of near-zero QS anomalies approximately correspond to the 1000 ??C isotherm, in agreement with laboratory measurements that show a pronounced increase in seismic attenuation in upper mantle rocks at 1000-1100 ??C. East-west profiles of VS, QS and T where continental data coverage is best (50??N latitude for North America and 60??N latitude for Eurasia) further demonstrate that temperature plays a dominant, but non-unique, role in determining the value of lithospheric VS and QS. At 100 km depth, where the resolution of seismic models is the highest, we compare observed seismic VS and QS with theoretical VST and QST values, respectively, that are calculated solely from temperature anomalies and constrained by experimental data on temperature dependencies of velocity and attenuation. This comparison shows that temperature variations alone are sufficient to explain seismic VS and QS in ca 50 per cent of continental regions. We hypothesize that compositional anomalies resulting from Fe depletion can explain the misfit between seismic and theoretical VS in cratonic lithosphere. In regions of active tectonics, temperature effects alone cannot explain seismic VS and QS in the lithosphere. It is likely that partial melts and/or fluids may affect seismic parameters in these regions. This study demonstrates that lithospheric temperature plays the dominant role in controlling VS and QS anomalies, but other physical parameters, such as compositional variations, fluids, partial melting and scattering, may also play a significant role in determining VS and QS variations in the continental mantle. ?? 2004 RAS.
Lithosphere thickness in the Gulf of California region
NASA Astrophysics Data System (ADS)
Fernández, Alejandra; Pérez-Campos, Xyoli
2017-11-01
The Gulf of California has a long tectonic history. Before the subduction of the Guadalupe and Magdalena plates ceased, extension of the Gulf began to the east, at the Basin and Range province. Later, it was focused west of the Sierra Madre Occidental and the opening of the Gulf started. Currently, the Gulf rifting has different characteristics to the north than to the south. In this study, we analyze the lithosphere thickness in the Gulf of California region by means of P-wave and S-wave receiver functions. We grouped our lithosphere-thickness estimates into five froups: 1) North of the Gulf, with a thin lithosphere ( 50 km) related to the extension observed in the Salton Through region; 2) the northwestern part of Baja California, with a thicker lithosphere ( 80 km), thinning towards the Gulf due to the extension and opening processes ( 65 km); 3) central Baja California, with no converted phase corresponding to the lithosphere-asthenosphere boundary but evidence of the presence of a slab remnant; 4) the southern Baja California peninsula, showing a shallow lithosphere-astenosphere boundary (LAB) (< 55 km) and a lithosphere thinning towards the Gulf; and 5) the eastern Gulf margin with lithosphere thinning towards the south. These groups can be further assembled into three regions: A) The northernmost Gulf, where both margins of the Gulf show a relatively constant lithosphere thickness, consistent with an old basement in Sonora and the presence of the Peninsular Ranges batholith in northern Baja California, thinning up towards the axis of the rift in the northernmost Gulf. B) Central and southern Gulf, where the lithosphere thickness in this region ranges from 40 to 55 km, which is consistent with the presence of a younger crust. C) Central Baja California peninsula, where LAB is not detected; but there is evidence of a slab remnant.
Extension of continental lithosphere - A model for two scales of basin and range deformation
NASA Technical Reports Server (NTRS)
Zuber, M. T.; Parmentier, E. M.; Fletcher, R. C.
1986-01-01
The development of a model for deformation in an extending continental lithosphere that is stratified in density and strength is described. The lithosphere model demonstrates that the necking instabilities at two wavelengths originate due to a strong upper crust, a mantle layer, and a weak lower crust. It is observed that the dominant wavelengths of necking are controlled by layer thickness and the strength of the layers control the amplitude of the instabilities. The model is applied to the Basin and Range Province of the western U.S. where deformations in ranges and tile domains are detected. The relation between the Bouguer gravity anomaly and the deformations is studied. The data reveal that the horizontal scale of short wavelength necking correlates with the spacings of individual basins and ranges, and the longer wavelength corresponds to the width of tilt domains. The control of the Basin and Range deformation by two scales of extensional instability is proposed.
Crustal rheology controls on the Tibetan plateau formation during India-Asia convergence
Chen, Lin; Capitanio, Fabio A.; Liu, Lijun; Gerya, Taras V.
2017-01-01
The formation of the Tibetan plateau during the India-Asia collision remains an outstanding issue. Proposed models mostly focus on the different styles of Tibetan crustal deformation, yet these do not readily explain the observed variation of deformation and deep structures along the collisional zone. Here we use three-dimensional numerical models to evaluate the effects of crustal rheology on the formation of the Himalayan-Tibetan orogenic system. During convergence, a weaker Asian crust allows strain far north within the upper plate, where a wide continental plateau forms behind the orogeny. In contrast, a stronger Asian crust suppresses the plateau formation, while the orogeny accommodates most of the shortening. The stronger Asian lithosphere is also forced beneath the Indian lithosphere, forming a reversed-polarity underthrusting. Our results demonstrate that the observed variations in lithosphere deformation and structures along the India-Asia collision zone are primarily controlled by the strength heterogeneity of the Asian continental crust. PMID:28722008
Continental Margins of the Arctic Ocean: Implications for Law of the Sea
NASA Astrophysics Data System (ADS)
Mosher, David
2016-04-01
A coastal State must define the outer edge of its continental margin in order to be entitled to extend the outer limits of its continental shelf beyond 200 M, according to article 76 of the UN Convention on the Law of the Sea. The article prescribes the methods with which to make this definition and includes such metrics as water depth, seafloor gradient and thickness of sediment. Note the distinction between the "outer edge of the continental margin", which is the extent of the margin after application of the formula of article 76, and the "outer limit of the continental shelf", which is the limit after constraint criteria of article 76 are applied. For a relatively small ocean basin, the Arctic Ocean reveals a plethora of continental margin types reflecting both its complex tectonic origins and its diverse sedimentation history. These factors play important roles in determining the extended continental shelves of Arctic coastal States. This study highlights the critical factors that might determine the outer edge of continental margins in the Arctic Ocean as prescribed by article 76. Norway is the only Arctic coastal State that has had recommendations rendered by the Commission on the Limits of the Continental Shelf (CLCS). Russia and Denmark (Greenland) have made submissions to the CLCS to support their extended continental shelves in the Arctic and are awaiting recommendations. Canada has yet to make its submission and the US has not yet ratified the Convention. The various criteria that each coastal State has utilized or potentially can utilize to determine the outer edge of the continental margin are considered. Important criteria in the Arctic include, 1) morphological continuity of undersea features, such as the various ridges and spurs, with the landmass, 2) the tectonic origins and geologic affinities with the adjacent land masses of the margins and various ridges, 3) sedimentary processes, particularly along continental slopes, and 4) thickness and continuity of the sediment stratigraphy within the basins. The enclosed nature of the Arctic basin and the undersea ridges that transect the width of the basin result in complex geographies for the coastal States. The relevant fact, therefore, is that the five coastal States surrounding the ocean should have a common understanding of the geological and morphological features and the use of these features in determining the outer edge of the continental margin.