Science.gov

Sample records for continental scientific drilling

  1. Continental scientific drilling program data base: 1982

    SciTech Connect

    Pawloski, G.A.; Howard, N.; Hage, G.; Higuera; M.L.; Richardson, W.

    1982-05-18

    The Continental Scientific Drilling Program (CSDP) data base maintained at Lawrence Livermore National Laboratory is funded by the Office of Basic Energy Sciences of the Department of Energy. It is a central repository of information concerning approximately 1800 government funded and scientifically interesting drill holes in the United States. This data base can help reduce drilling costs and maximize scientific value of drilling efforts of government agencies and industry. The services of the CSDP data base are free of charge and available to all.

  2. Mineral resources: Research objectives for continental scientific drilling

    SciTech Connect

    Not Available

    1984-01-01

    The importance of a scientific drilling program to study mineralized hydrothermal systems has been emphasized in numerous workshops and symposia. To some degree the present report, prepared by the Panel on Mineral Resources of the Continental Scientific Drilling Committee, both reinforces and expands upon earlier recommendations. The report of the Los Alamos workshop, Continental Scientific Drilling Program, placed a major emphasis on maximizing the industry and government, supplementing these efforts with holes drilled solely for scientific purposes. Although the present report notes the importance of opportunities for scientific investigations added on to current, mission-oriented drilling activities, the Panel on Mineral Resources recognized that such opportunities are limited and thus focused on holes dedicated to broad scientific objectives. In the present report, the panel has developed a program that will provide answers to many scientific questions that have existed for almost 100 years concerning mineralized hydrothermal systems. The committee notes that research drilling may lead to results in addition to those anticipated, results that will provide new directions and ideas of equal or greater value that those basic ones originally posed. 58 refs.

  3. Workshop to develop deep-life continental scientific drilling projects

    NASA Astrophysics Data System (ADS)

    Kieft, T. L.; Onstott, T. C.; Ahonen, L.; Aloisi, V.; Colwell, F. S.; Engelen, B.; Fendrihan, S.; Gaidos, E.; Harms, U.; Head, I.; Kallmeyer, J.; Kiel Reese, B.; Lin, L.-H.; Long, P. E.; Moser, D. P.; Mills, H.; Sar, P.; Schulze-Makuch, D.; Stan-Lotter, H.; Wagner, D.; Wang, P.-L.; Westall, F.; Wilkins, M. J.

    2015-05-01

    The International Continental Scientific Drilling Program (ICDP) has long espoused studies of deep subsurface life, and has targeted fundamental questions regarding subsurface life, including the following: "(1) What is the extent and diversity of deep microbial life and what are the factors limiting it? (2) What are the types of metabolism/carbon/energy sources and the rates of subsurface activity? (3) How is deep microbial life adapted to subsurface conditions? (4) How do subsurface microbial communities affect energy resources? And (5) how does the deep biosphere interact with the geosphere and atmosphere?" (Horsfield et al., 2014) Many ICDP-sponsored drilling projects have included a deep-life component; however, to date, not one project has been driven by deep-life goals, in part because geomicrobiologists have been slow to initiate deep biosphere-driven ICDP projects. Therefore, the Deep Carbon Observatory (DCO) recently partnered with the ICDP to sponsor a workshop with the specific aim of gathering potential proponents for deep-life-driven ICDP projects and ideas for candidate drilling sites. Twenty-two participants from nine countries proposed projects and sites that included compressional and extensional tectonic environments, evaporites, hydrocarbon-rich shales, flood basalts, Precambrian shield rocks, subglacial and subpermafrost environments, active volcano-tectonic systems, megafan deltas, and serpentinizing ultramafic environments. The criteria and requirements for successful ICDP applications were presented. Deep-life-specific technical requirements were discussed and it was concluded that, while these procedures require adequate planning, they are entirely compatible with the sampling needs of other disciplines. As a result of this workshop, one drilling workshop proposal on the Basin and Range Physiographic Province (BRPP) has been submitted to the ICDP, and several other drilling project proponents plan to submit proposals for ICDP

  4. Workshop to develop deep-life continental scientific drilling projects

    SciTech Connect

    Kieft, T. L.; Onstott, T. C.; Ahonen, L.; Aloisi, V.; Colwell, F. S.; Engelen, B.; Fendrihan, S.; Gaidos, E.; Harms, U.; Head, I.; Kallmeyer, J.; Kiel Reese, B.; Lin, L.-H.; Long, P. E.; Moser, D. P.; Mills, H.; Sar, P.; Schulze-Makuch, D.; Stan-Lotter, H.; Wagner, D.; Wang, P.-L.; Westall, F.; Wilkins, M. J.

    2015-05-29

    The International Continental Scientific Drilling Program (ICDP) has long espoused studies of deep subsurface life, and has targeted fundamental questions regarding subsurface life, including the following: "(1) What is the extent and diversity of deep microbial life and what are the factors limiting it? (2) What are the types of metabolism/carbon/energy sources and the rates of subsurface activity? (3) How is deep microbial life adapted to subsurface conditions? (4) How do subsurface microbial communities affect energy resources? And (5) how does the deep biosphere interact with the geosphere and atmosphere?" (Horsfield et al., 2014) Many ICDP-sponsored drilling projects have included a deep-life component; however, to date, not one project has been driven by deep-life goals, in part because geomicrobiologists have been slow to initiate deep biosphere-driven ICDP projects. Therefore, the Deep Carbon Observatory (DCO) recently partnered with the ICDP to sponsor a workshop with the specific aim of gathering potential proponents for deep-life-driven ICDP projects and ideas for candidate drilling sites. Twenty-two participants from nine countries proposed projects and sites that included compressional and extensional tectonic environments, evaporites, hydrocarbon-rich shales, flood basalts, Precambrian shield rocks, subglacial and subpermafrost environments, active volcano–tectonic systems, megafan deltas, and serpentinizing ultramafic environments. The criteria and requirements for successful ICDP applications were presented. Deep-life-specific technical requirements were discussed and it was concluded that, while these procedures require adequate planning, they are entirely compatible with the sampling needs of other disciplines. As a result of this workshop, one drilling workshop proposal on the Basin and Range Physiographic Province (BRPP) has been submitted to the ICDP, and several other drilling project proponents plan to submit proposals for ICDP

  5. Workshop to develop deep-life continental scientific drilling projects

    DOE PAGES

    Kieft, T. L.; Onstott, T. C.; Ahonen, L.; Aloisi, V.; Colwell, F. S.; Engelen, B.; Fendrihan, S.; Gaidos, E.; Harms, U.; Head, I.; et al

    2015-05-29

    The International Continental Scientific Drilling Program (ICDP) has long espoused studies of deep subsurface life, and has targeted fundamental questions regarding subsurface life, including the following: "(1) What is the extent and diversity of deep microbial life and what are the factors limiting it? (2) What are the types of metabolism/carbon/energy sources and the rates of subsurface activity? (3) How is deep microbial life adapted to subsurface conditions? (4) How do subsurface microbial communities affect energy resources? And (5) how does the deep biosphere interact with the geosphere and atmosphere?" (Horsfield et al., 2014) Many ICDP-sponsored drilling projects have includedmore » a deep-life component; however, to date, not one project has been driven by deep-life goals, in part because geomicrobiologists have been slow to initiate deep biosphere-driven ICDP projects. Therefore, the Deep Carbon Observatory (DCO) recently partnered with the ICDP to sponsor a workshop with the specific aim of gathering potential proponents for deep-life-driven ICDP projects and ideas for candidate drilling sites. Twenty-two participants from nine countries proposed projects and sites that included compressional and extensional tectonic environments, evaporites, hydrocarbon-rich shales, flood basalts, Precambrian shield rocks, subglacial and subpermafrost environments, active volcano–tectonic systems, megafan deltas, and serpentinizing ultramafic environments. The criteria and requirements for successful ICDP applications were presented. Deep-life-specific technical requirements were discussed and it was concluded that, while these procedures require adequate planning, they are entirely compatible with the sampling needs of other disciplines. As a result of this workshop, one drilling workshop proposal on the Basin and Range Physiographic Province (BRPP) has been submitted to the ICDP, and several other drilling project proponents plan to submit proposals for ICDP

  6. Continental Scientific Drilling Program: Valles Caldera, New Mexico

    SciTech Connect

    1993-01-01

    The U.S. Continental Scientific Drilling Program attempts to develop a better understanding of the geologic and hydrologic mechanisms within the continental crust, under the auspices of an interagency group comprising the US Department of Energy, the National Science Foundation, and the U.S. Geological Survey. Ten years of research and drilling in the Valles caldera of northern New Mexico has provided a new understanding of volcanism and geothermal systems within a large caldera. Situated at the intersection of the Rio Grande rift and the Jemez volcanic lineament, the Valles caldera and Toledo calderas were formed during two massive eruptions 1.1 and 1.5 M a that vented approximately 300 to 400 km{sup 3} of high-silica rhyolitic tephra. The research at the Valles/Toledo caldera has provided more than 3000 m of corehole samples, which are stored in a repository in Grand Junction, Colorado, and are accessible to the public. This research has also helped support theories of mineral deposition within hydrothermal systems-hot water circulating through breccias, leaching elements from the rocks, and later depositing veins of economically valuable materials.

  7. Recent Fluids in Chinese Continental Scientific Drilling Project

    NASA Astrophysics Data System (ADS)

    Luo, L.; Sun, Q.; Zhan, X.; Tang, L.; He, H.; Rao, Z.

    2004-12-01

    The fluids and their origins in continental scientific drilling programs have widely been applied to the studies of crustal extension, fluid transportation paths and tectonization processes. The rare gases are good indicators of mantle fluids. The isotopes of carbon and hydrogen and the relationships between them can be used in revealing the fluid sources. And C/3He can provide more ambiguous distinguish between sources. The recent fluids in Chinese continental scientific drilling project (CCSD) have been analyzed and profiles were obtained. He, CO2, Ar, N2, O2, H2 and C1-C4 were determined by two on-line units, a mass spectrometer and a gas chromatograph. Cations and anions in mud samples were analyzed by an on-site high performance liquid chromatograph. Rare earth elements and other inorganic components were measured by ICP-AES and ICP-MS in our laboratory in Beijing. The isotopes of carbon, hydrogen, oxygen, and rare gases, especially helium, were analyzed by mass spectrometers in different laboratories. One key in studying the recent fluids in CCSD project is to identify whether the recent fluids were from the deep earth or not, even when their concentrations were higher than normal levels. Many disturbance components would usually be produced during drilling process. Such the disturbance includes many artifact gases from mud ferment, organic additive decomposition, bit erosion, etc. The analytical data of recent fluids could not be used in the investigation before removing the artifact components. It was found that the high contents of elements were related to the special rocks and minerals, such as sulfide and radiation ores. Carbon dioxide was related with carbonate. The high contents of gases were often found when the cracks or fissures occurred. The distribution of rare earth elements changed with the recent fluids. In some cases, a certain amount of helium gas was found with a high intensity of radiation detected. The high content of methane was once

  8. Priorities for a national program of continental drilling for scientific purposes

    SciTech Connect

    Not Available

    1984-01-01

    The two reports, Continental Drilling and Continental Scientific Drilling Program, form a basis for this report and provide comprehensive discussions of the subject of continental drilling for scientific purposes in a number of research areas. The purpose of this report is to present a specific recommendation of the Continental Scientific Drilling Committee on where the first deep hole dedicated to scientific exploration of the continental crust in the United States should be located. The most accessible and feasible hypothesis to test is the one of thin-skinned tectonics; the southern Appalachians, where the thrusting of crystalline rocks of the Blue Ridge and Piedmont Provinces over early Paleozoic sedimentary rocks is postulated, represents the best location for this drilling project. This hypothesis is of fundamental importance to the understanding of the evolution of continents. 4 refs.

  9. Application program of CRUST-1 10km continental scientific drilling rig in SK-2 scientific drilling well

    NASA Astrophysics Data System (ADS)

    Sun, Youhong; Gao, Ke; Yu, Ping; Liu, Baochang; Guo, Wei; Ma, Yinlong; Yang, Yang

    2014-05-01

    SK-2 Well is located in DaQing city,where is site of the largest oil field in China,Heilongjiang province, north-east of China.The objective of SK-2 well is to obtain full cores of cretaceous formation in Song Liao basin,and to build the time tunnel of Cretaceous greenhouse climate change,and to clarify the causes,processes and results of the formations of DaQing oil field. This will ensure to achieve our ultimate goals,to test the CRUST-1 drilling rig and improve China's deep scientific drilling technology,to form the scientific drilling technology,method and system with independent intellectual property rights,and to provide technical knowledge and information for China's ten kilometers super-deep scientific drilling technical resources.SK-2 Well is at 6400 meter depth, where the drilling inclination is 90 degree and the continuous coring length is 3535 meter that from 2865 to 6400 meter,the recovery rate of the core is greater or equal to 95 percent with 100 millimeters core diameter and 3.9 degree per 100 meter geothermal gradient.The CRUST-1 rig is designated with special drilling equipment for continental scientific drilling combined to the oil drilling equipment ability with advanced geological drilling technology which is highly automatic and intelligent. CRUST-1 drilling ability is 10000 meter with the maximum hook load 700 tons, the total power is 4610 Kilowatt.CRUST-1 will be integrated with a complete set of automation equipment,including big torque hydraulic top drive,high accuracy automatic drilling rod feeding system, suspended automatic drill string discharge device,hydraulic intelligent iron roughneck,and hydraulic automatic catwalk to fully meet the drilling process requirements of SK-2.Designed with advanced drilling technique for 260 degree in the bottom of SK-2 well and hard rock,including the drilling tools of high temperature hydraulic hammer,high temperature resistance and high strength aluminum drill pipe,high temperature preparation of mud

  10. Deep observation and sampling of the earth's continental crust (DOSECC): Continental scientific drilling workshop

    SciTech Connect

    Not Available

    1985-01-01

    Research summaries are presented of ongoing or proposed deep drilling programs to explore hydrothermal systems, buried astroblemes, continental crust, magma systems, mountain belt tectonics, subduction zones, and volcanoes. Separate abstracts have been prepared for individual papers. (ACR)

  11. Unique microbial community in drilling fluids from Chinese continental scientific drilling

    USGS Publications Warehouse

    Zhang, G.; Dong, H.; Jiang, H.; Xu, Z.; Eberl, D.D.

    2006-01-01

    Circulating drilling fluid is often regarded as a contamination source in investigations of subsurface microbiology. However, it also provides an opportunity to sample geological fluids at depth and to study contained microbial communities. During our study of deep subsurface microbiology of the Chinese Continental Scientific Deep drilling project, we collected 6 drilling fluid samples from a borehole from 2290 to 3350 m below the land surface. Microbial communities in these samples were characterized with cultivation-dependent and -independent techniques. Characterization of 16S rRNA genes indicated that the bacterial clone sequences related to Firmicutes became progressively dominant with increasing depth. Most sequences were related to anaerobic, thermophilic, halophilic or alkaliphilic bacteria. These habitats were consistent with the measured geochemical characteristics of the drilling fluids that have incorporated geological fluids and partly reflected the in-situ conditions. Several clone types were closely related to Thermoanaerobacter ethanolicus, Caldicellulosiruptor lactoaceticus, and Anaerobranca gottschalkii, an anaerobic metal-reducer, an extreme thermophile, and an anaerobic chemoorganotroph, respectively, with an optimal growth temperature of 50-68??C. Seven anaerobic, thermophilic Fe(III)-reducing bacterial isolates were obtained and they were capable of reducing iron oxide and clay minerals to produce siderite, vivianite, and illite. The archaeal diversity was low. Most archaeal sequences were not related to any known cultivated species, but rather to environmental clone sequences recovered from subsurface environments. We infer that the detected microbes were derived from geological fluids at depth and their growth habitats reflected the deep subsurface conditions. These findings have important implications for microbial survival and their ecological functions in the deep subsurface.

  12. Mineral resources: research objectives for continental scientific drilling

    SciTech Connect

    Not Available

    1984-01-01

    Many important metals are concentrated in mineral deposits formed by hydrothermal activity driven by heat from subvolcanic intrusions. The report identifies and prioritizes for research drilling specific mineral-deposit systems that are suitably accessible and geometrically complete in the sense that no portion of the deposit has been removed by faulting or erosion. Examples are given of ore types that should be considered in selecting areas of existing drill holes for further study, including porphyry copper systems, precious-metal environments, massive sulfide deposits, Mississippi Valley-type deposits, and sedimentary environments.

  13. Answers from deep inside the Earth; Continental Scientific Drilling at Cajon Pass, California

    USGS Publications Warehouse

    Russ, D.P.

    1989-01-01

    Drilling of a 12,000-foot-deep scientific well has been completed at Cajon Pass in southern California to measure crustal properties, to determine crustal structure, and to better understanding the generation of earthquakes along the San Andreas fault. A joint effort of the National Science Foundation (NFS) and the U.S Geological Survey (USGS), the well was begun in November 1986, and is one of the first projects to be undertaken in the new national Continental Scientific Drilling Program. This program aims to enchance our knowledge of the compostiion, sturcture, dynamics, and evolution of the continental crust and of how these factors affect the origin and distribution of mineral and energy resources and natural phenomena such as volcanic eruptions and earthquakes. 

  14. Continental Scientific Drilling (CSD): Technology Barriers to Deep Drilling Studies in Thermal Regimes

    SciTech Connect

    Kolstad, George A.; Rowley, John C.

    1987-01-16

    This report is the proceedings of a workshop. The primary thrust of these discussion was to identify the major key technology barriers to the Department of Energy (DOE) supported Thermal Regimes CSD projects and to set priorities for research and development. The major technological challenge is the high temperature to be encountered at depth. Specific problems derived from this issue were widely recognized among the participants and are reflected in this summary. A major concern for the projected Thermal Regimes CSD boreholes was the technology required for continuous coring, in contrast to that required for drilling without core or spot coring. Current commercial technology bases for these two techniques are quite different. The DOE has successfully fielded projects that used both technologies, i.e, shallow continuous coring (Inyo Domes and Valles Caldera) and deeper drilling with spot cores (Imperial Valley-SSSDP). It was concluded that future scientific objectives may still require both approaches, but continuous coring is the most likely requirement in the near term. (DJE-2005)

  15. Salton Sea Geothermal Field, Imperial Valley, California as a site for continental scientific drilling. [Abstract only

    SciTech Connect

    Elders, W.A.; Cohen, L.H.

    1983-03-01

    The Salton Trough, where seafloor spreading systems of the East Pacific Rise transition into the San Andreas transform fault system, is the site of such continental rifting and basin formation today. The largest thermal anomaly in the trough, the Salton Sea Geothermal Field (SSGF), is of interest to both thermal regimes and mineral resources investigators. At this site, temperatures >350/sup 0/C and metal-rich brines with 250,000 mg/L TDS have been encountered at <2 km depth. Republic Geothermal Inc. will drill a new well to 3.7 km in the SSGF early in 1983; we propose add-on experiments in it. If funded, we will obtain selective water and core samples and a large-diameter casing installed to 3.7 km will permit later deepening. In Phase 2, the well would be continuously cored to 5.5 km and be available for scientific studies until July 1985. The deepened well would encounter hydrothermal regimes of temperature and pressure never before sampled.

  16. The Deep Subsurface Microbiology Research in China: Results from Chinese Continental Scientific Drilling Project

    NASA Astrophysics Data System (ADS)

    Dong, H.; Zhang, G.; Huang, L.; Dai, X.; Wang, Y.; Lu, G.; Dong, Z.; Dong, X.

    2009-12-01

    Microbial abundance and community structure from ultra-high pressure metamorphic rocks and deep fluids from the Chinese Continental Scientific Drilling (CCSD) project were investigated by using geochemical and cultivation and molecular microbiology methods. The drilling site is located in the eastern part of the Dabie-Sulu ultra high-pressure metamorphic (UHPM) orogenic belt at the convergent plate boundary between the Sino-Korean and Yangtze Plates. This integrated approach conclusively demonstrates that microbes can survive in the deep continental subsurface (down to ~4500 m) and they play important roles in biogeochemical transformations of minerals and rocks. Direct cell counting and phospholipid fatty acid analysis identified microbial life in rock samples taken from as deep as ~4500 m, where the temperature was estimated to be approximately 130oC. The subsurface distribution of microorganisms was continuous and the abundance of microbial cells was unrelated to the depth. However, analysis of 16S rDNA sequences derived from the rock DNA samples by PCR showed that the diversity of microorganisms decreased with increasing depth. The bacterial clone sequences shifted from a Proteobacteria-dominated community to a Firmicutes-dominated one with increased depth. From the ground surface to 2030 m, most clone sequences were related to nitrate reducers, with a saline, alkaline, and cold habitat. From 2290 to ~4500 m most clone sequences were closely related to anaerobic, thermophilic, halophilic or alkaliphilic bacteria. The archaeal diversity was low. Most archaeal sequences were not related to any known cultivated species, but to environmental clone sequences recovered from subsurface marine environments. A number of enrichments and isolates were obtained from the rocks and fluids, including thermophilic metal reducers and alkaliphiles. Thermophilic iron-reducing bacteria were incubated with lactate as the electron donor and structural Fe(III) in solid minerals as

  17. Selected data fron continental scientific drilling core holes VC-1 and VC-2a, Valles Caldera, New Mexico

    SciTech Connect

    Musgrave, J.A.; Goff, F.; Shevenell, L.; Trujillo, P.E. Jr.; Counce, D.; Luedemann, G.; Garcia, S.; Dennis, B.; Hulen, J.B.; Janik, C.; Tomei, F.A.

    1989-02-01

    This report presents geochemical and isotopic data on rocks and water and wellbore geophysical data from the Continental Scientific Drilling Program core holes VC-1 and VC-2a, Valles Caldera, New Mexico. These core holes were drilled as a portion of a broader program that seeks to answer fundamental questions about magma, water/rock interactions, ore deposits, and volcanology. The data in this report will assist the interpretation of the hydrothermal system in the Jemez Mountains and will stimulate further research in magmatic processes, hydrothermal alteration, ore deposits, hydrology, structural geology, and hydrothermal solution chemistry. 37 refs., 36 figs., 28 tabs.

  18. Quo Vadis ICDP? The Science Plan of the International Continental Scientific Drilling Program.

    NASA Astrophysics Data System (ADS)

    Horsfield, Brian

    2014-05-01

    The rocks and fluids of our ever-changing planet contain heat, energy, and life as well as archived records of what has gone before. These precious relicts and living systems need to be probed, collected, monitored and analyzed. The science results obtained cover the spectrum of the earth sciences from climate change, natural hazards and earth resources to the origins of life on Earth. The need to drill has never been greater, and this requires improved coordination between the marine, terrestrial and ice-coring communities and the research and private sector communities, effectively addressing the needs of our growing population for energy, sustenance, and quality of life. The ICDP is an infrastructure for scientific drilling that facilitates outstanding science. It is the only international platform for scientific research drilling in terrestrial environments. ICDP brings together scientists and stakeholders from 24 nations to work together at the highest scientific and technical niveaux. More than 30 drilling projects and 55 planning workshops have been supported to date. It is an efficient organisation, run according to the philosophy "lean and mean", with an average annual budget of about 5 million, and further third-party drilling expenditures that more than doubles this yearly investment. Here we report on ICDP's 2013 Science Conference "Imaging the Past to Imagine our Future", held November 11-14, 2013 in Potsdam whose goal was to set the new ICDP Science Plan in motion. New insights into geoprocesses and the identification of hot topics were high on the agenda, and debated in closed sessions, via posters and through oral presentations, and where appropriate dovetailed with socio-economic challenges. The conference was used to strengthen and expand our ties with member countries, and to debate incorporating industry into selected ICDP strategic activities where it makes sense to do so (ICDP remains science-driven). In addition, the conference paved the way

  19. Environmental sampling and mud sampling program of CSDP (Continental Scientific Drilling Program) core hole VC-2B, Valles Caldera, New Mexico

    SciTech Connect

    Meeker, K.; Goff, F.; Gardner, J.N.; Trujillo, P.E.; Counce, D.

    1990-03-01

    An environmental sampling and drilling mud sampling program was conducted during the drilling operations of Continental Scientific Drilling Program (CSDP) core hole VC-2B, Valles caldera, New Mexico. A suite of four springs and creeks in the Sulphur Springs area were monitored on a regular basis to ensure that the VC-2B drilling program was having no environmental impact on water quality. In addition, a regional survey of springs in and around the Jemez Mountains was conducted to provide background data for the environmental monitoring. A drilling mud monitoring program was conducted during the operations to help identify major fluid entries in the core hole. 32 refs., 14 figs., 7 tabs.

  20. First CSDP (Continental Scientific Drilling Program)/thermal regimes core hole project at Valles Caldera, New Mexico (VC-1): Drilling report

    SciTech Connect

    Rowley, J.; Hawkins, W.; Gardner, J.

    1987-02-01

    This report is a review and summary of the core drilling operations of the first Valles Caldera research borehole (VC-1) under the Thermal Regimes element of the Continental Scientific Drilling Program (CSDP). The project is a portion of a broader program that seeks to answer fundamental scientific questions about magma, rock/water interactions, and volcanology through shallow (<1-km) core holes at Long Valley, California; Salton Sea, California; and the Valles Caldera, New Mexico. The report emphasizes coring operations with reference to the stratigraphy of the core hole, core quality description, core rig specifications, and performance. It is intended to guide future research on the core and in the borehole, as well as have applications to other areas and scientific problems in the Valles Caldera. The primary objectives of this Valles Caldera coring effort were (1) to study the hydrogeochemistry of a subsurface geothermal outflow zone of the caldera near the source of convective upflow, (2) to obtain structural and stratigraphic information from intracaldera rock formations in the southern ring-fracture zone, and (3) to obtain continuous core samples through the youngest volcanic unit in Valles Caldera, the Banco Bonito rhyolite (approximately 0.1 Ma). All objectives were met. The high percentage of core recovery and the excellent quality of the samples are especially notable. New field sample (core) handling and documentation procedures were successfully utilized. The procedures were designed to provide consistent field handling of the samples and logs obtained through the national CSDP.

  1. Microbial Diversity in Ultra-High-Pressure Rocks and Fluids from the Chinese Continental Scientific Drilling Project in China

    PubMed Central

    Zhang, Gengxin; Dong, Hailiang; Xu, Zhiqin; Zhao, Donggao; Zhang, Chuanlun

    2005-01-01

    Microbial communities in ultra-high-pressure (UHP) rocks and drilling fluids from the Chinese Continental Scientific Drilling Project were characterized. The rocks had a porosity of 1 to 3.5% and a permeability of ∼0.5 mDarcy. Abundant fluid and gas inclusions were present in the minerals. The rocks contained significant amounts of Fe2O3, FeO, P2O5, and nitrate (3 to 16 ppm). Acridine orange direct counting and phospholipid fatty acid analysis indicated that the total counts in the rocks and the fluids were 5.2 × 103 to 2.4 × 104 cells/g and 3.5 × 108 to 4.2 × 109 cells/g, respectively. Enrichment assays resulted in successful growth of thermophilic and alkaliphilic bacteria from the fluids, and some of these bacteria reduced Fe(III) to magnetite. 16S rRNA gene analyses indicated that the rocks were dominated by sequences similar to sequences of Proteobacteria and that most organisms were related to nitrate reducers from a saline, alkaline, cold habitat; however, some phylotypes were either members of a novel lineage or closely related to uncultured clones. The bacterial communities in the fluids were more diverse and included Proteobacteria, Bacteroidetes, gram-positive bacteria, Planctomycetes, and Candidatus taxa. The archaeal diversity was lower, and most sequences were not related to any known cultivated species. Some archaeal sequences were 90 to 95% similar to sequences recovered from ocean sediments or other subsurface environments. Some archaeal sequences from the drilling fluids were >93% similar to sequences of Sulfolobus solfataricus, and the thermophilic nature was consistent with the in situ temperature. We inferred that the microbes in the UHP rocks reside in fluid and gas inclusions, whereas those in the drilling fluids may be derived from subsurface fluids. PMID:15933024

  2. Caldera processes and magma-hydrothermal systems continental scientific drilling program: thermal regimes, Valles caldera research, scientific and management plan

    SciTech Connect

    Goff, F.; Nielson, D.L.

    1986-05-01

    Long-range core-drilling operations and initial scientific investigations are described for four sites in the Valles caldera, New Mexico. The plan concentrates on the period 1986 to 1993 and has six primary objectives: (1) study the origin, evolution, physical/chemical dynamics of the vapor-dominated portion of the Valles geothermal system; (2) investigate the characteristics of caldera fill and mechanisms of caldera collapse and resurgence; (3) determine the physical/chemical conditions in the heat transfer zone between crystallizing plutons and the hydrothermal system; (4) study the mechanism of ore deposition in the caldera environment; (5) develop and test high-temperature drilling techniques and logging tools; and (6) evaluate the geothermal resource within a large silicic caldera. Core holes VC-2a (500 m) and VC-2b (2000 m) are planned in the Sulphur Springs area; these core holes will probe the vapor-dominated zone, the underlying hot-water-dominated zone, the boiling interface and probable ore deposition between the two zones, and the deep structure and stratigraphy along the western part of the Valles caldera fracture zone and resurgent dome. Core hole VC-3 will involve reopening existing well Baca number12 and deepening it from 3.2 km (present total depth) to 5.5 km, this core hole will penetrate the deep-crystallized silicic pluton, investigate conductive heat transfer in that zone, and study the evolution of the central resurgent dome. Core hole VC-4 is designed to penetrate deep into the presumably thick caldera fill in eastern Valles caldera and examine the relationship between caldera formation, sedimentation, tectonics, and volcanism. Core hole VC-5 is to test structure, stratigraphy, and magmatic evolution of pre-Valles caldera rocks, their relations to Valles caldera, and the influences of regional structure on volcanism and caldera formation.

  3. SALTON SEA SCIENTIFIC DRILLING PROJECT: SCIENTIFIC PROGRAM.

    USGS Publications Warehouse

    Sass, J.H.; Elders, W.A.

    1986-01-01

    The Salton Sea Scientific Drilling Project, was spudded on 24 October 1985, and reached a total depth of 10,564 ft. (3. 2 km) on 17 March 1986. There followed a period of logging, a flow test, and downhole scientific measurements. The scientific goals were integrated smoothly with the engineering and economic objectives of the program and the ideal of 'science driving the drill' in continental scientific drilling projects was achieved in large measure. The principal scientific goals of the project were to study the physical and chemical processes involved in an active, magmatically driven hydrothermal system. To facilitate these studies, high priority was attached to four areas of sample and data collection, namely: (1) core and cuttings, (2) formation fluids, (3) geophysical logging, and (4) downhole physical measurements, particularly temperatures and pressures.

  4. Initial results from VC-1, first Continental Scientific Drilling Program core hole in Valles caldera, New Mexico

    SciTech Connect

    Goff, F.; Rowley, J.; Gardner, J.N.; Hawkins, W.; Goff, S.; Charles, R.; Wachs, D.; Maassen, L.; Heiken, G.

    1986-02-10

    Valles Caldera 1 (VC-1) is the first Continental Scientific Drilling Program (CSDP) core hole drilled in the Valles caldera and the first continuously cored well in the caldera region. The objectives of VC-1 were to penetrate a hydrothermal outflow plume near its source, to obtain structural and stratigraphic information near the intersection of the ring fracture zone and the precaldera Jemez fault zone, and to core the youngest volcanic unit inside the caldera (Banco Bonito obsidian). Coring of the 856-m well took only 35 days to finish, during which all objectives were attained and core recovery exceeded 95%. VC-1 penetrates 298 m of moat volcanics and caldera fill ignimbrites, 35 m of precaldera volcaniclastic breccia, and 523 m of Paleozoic carbonates, sandstones, and shales. A previously unknown obsidian flow was encountered at 160 m depth underlying the battleship Rock Tuff in the caldera moat zone. Hydrothermal alteration is concentrated in sheared, brecciated, and fractured zones from the volcaniclastic breccia to total depth with both the intensity and rank of alterations increasing with depth. Alteration assemblages consist primarily of clays, calcite, pyrite, quartz, and chlorite, but chalcopyrite and sphalerite have been identified as high as 450 m and molybdenite has been identified in a fractured zone at 847 m. Carbon 13 and oxygen 18 analyses of core show that the most intense zones of hydrothermal alteration occur in the Madera Limestone above 550 m and in the Madera and Sandia formations below 700 m. This corresponds with zones of most intense calcite and quartz veining. Thermal aquifers were penetrated at the 480-, 540-, and 845-m intervals. Although these intervals are associated with alteration, brecciation, and veining, they are also intervals where clastic layers occur in the Paleozoic sedimentary rocks.

  5. Continental Scientific Drilling Program thermal regimes: comparative site assessment geology of five magma-hydrothermal systems

    SciTech Connect

    Goff, F.; Waters, A.C.

    1980-10-01

    The geology and salient aspects of geophysics and hydrogeochemistry of five high-grade geothermal systems in the USA are reviewed. On the basis of this information, a target location is suggested for a deep (5- to 8-km) borehole that will maximize the amount of scientific information to be learned at each of the five geothermal areas.

  6. Drill Bits: Education and Outreach for Scientific Drilling Projects

    NASA Astrophysics Data System (ADS)

    Prose, D. V.; Lamacchia, D. M.

    2007-12-01

    Drill Bits is a series of short, three- to five-minute videos that explore the research and capture the challenging nature of large scientific drilling projects occurring around the world. The drilling projects, conducted under the auspices of the International Continental Scientific Drilling Program (ICDP), address fundamental earth science topics, including those of significant societal relevance such as earthquakes, volcanoes, and global climate change. The videos are filmed on location and aimed at nonscientific audiences. The purpose of the Drill Bits series is to provide scientific drilling organizations, scientists, and educators with a versatile tool to help educate the public, students, the media, and public officials about scientific drilling. The videos are designed to be viewed in multiple formats: on DVD; videotape; and science-related web sites, where they can be streamed or downloaded as video podcasts. Several Drill Bits videos will be screened, and their uses for outreach and education will be discussed.

  7. Valles caldera region, New Mexico, and the emerging continental scientific drilling program

    SciTech Connect

    Goff, F.; Gardner, J.N.

    1988-06-10

    Valles caldera is best known in recent years as an excellent example of a resurgent caldera and as the site of a high-temperature geothermal system. However, Valles caldera and the surrounding Jemez Mountains volcanic field possess a rich history of geologic research that dates back to the late 1880s. Through the years, the research focus has changed as different economic and scientific factors have exerted their influence. Early work emphasized mining activity, while modern work has stressed volcanology and, later, geothermal development. Only in the last 5 years has it been possible to view the region as a dynamic, integrated magma-hydrothermal system having a complex evolution lasting more than 13 m.y.

  8. Valles Caldera region, New Mexico, and the emerging continental scientific drilling program

    NASA Astrophysics Data System (ADS)

    Goff, Fraser; Gardner, Jamie N.

    1988-06-01

    Valles caldera is best known in recent years as an excellent example of a resurgent caldera [Smith and Bailey, 1968] and as the site of a high-temperature geothermal system [Dondanville, 1978]. However, Valles caldera and the surrounding Jemez Mountains volcanic field possess a rich history of geologic research that dates back to the late 1800s. Through the years, the research focus has changed as different economic and scientific factors have exerted their influence. Early work emphasized mining activity, while modern work has stressed volcanology and, later, geothermal development. Only in the last 5 years has it been possible to view the region as a dynamic, integrated magma-hydrothermal system having a complex evolution lasting more than 13 m.y. [Gardner et al., 1986; Goff and Nielson, 1986; Self et al., 1986].

  9. Wellbore breakouts of the main borehole of Chinese Continental Scientific Drilling (CCSD) and determination of the present tectonic stress state

    NASA Astrophysics Data System (ADS)

    Cui, Jun-wen; Wang, Lian-jie; Li, Pengwu; Tang, Zhe-min; Sun, Dong-sheng

    2009-09-01

    The Sulu-Dabie high-pressure (HP)-ultrahigh-pressure (UHP) metamorphic belt as the product of subduction-collision between the northern China plate and Yangtze plate underwent a process of formation and evolution from deep subduction→exhumation→extension→slow uplift. The study of its modern tectonic stress field has great significance for a complete understanding of the process of formation and evolution of the HP-UHP metamorphic belt, especially the exhumation and uplift of the belt. Wellbore breakouts are the most visual tectonic phenomenon which can characterize the modern stress action in the main borehole of Chinese Continental Scientific Drilling (CCSD). Ultrasonic borehole televiewer reflection wave data show that wellbore breakouts began to occur at 1216 m depth of the main borehole. A total of 143 borehole televiewer images were collected from 1216 to 5118 m depth (hole completion depth). After data processing and statistics, the average azimuth of the long dimension of the wellbore breakout obtained was 319.5° ± 3.5°, indicating that the average azimuth of the maximum horizontal principal stress causing wellbore breakout initiation was 49.5° ± 3.5°. The maximum and minimum horizontal principal stress values at 52 depths in the interval of 1269 to 5047 m were estimated using the elements of wellbore shapes (wellbore depth and width), combined with the cohesive strength and internal frictional angle of the rock obtained by rock mechanical tests on samples, and the static load stresses at corresponding depths were calculated according to the rock density logging data. The results indicate that: the maximum and minimum horizontal principal stresses are 41.4 and 25.3 MPa at 1269 m depth respectively and 164.7 and 122 MPa at 5047 m depth respectively; the maximum vertical stress is 141.3 MPa at 5047 m depth with a density of 2.8 g/cm 3; the in-situ stresses increase nearly linearly with depth. The magnitudes and directions of the three principal

  10. Tectonic stress field of brittle deformation within 2000 m of the main borehole of Chinese Continental Scientific Drilling

    NASA Astrophysics Data System (ADS)

    Cui, J.; Li, P.; Wang, L.

    2004-12-01

    Four phases of tectonic stress fields: There exist a complex brittle fracture system and a tectonic stress field within 2000 m of the main hole. According to the features of its fillings, three different types of brittle strain phenomena may distinguished; they are microfractures filled by quartz, calcite, chlorite and other minerals, microfractures with films of minerals such as quartz and calcite or with striation lineation, and microfractures with neither mineral filling nor mineral films. They represent the early, middle and late phases and deep, middle and shallow tectonic levels of brittle deformation, respectively. Preliminary analysis indicates that four phases of tectonic stress fields, i.e. dominantly ESE and WNW compression, NE-SW regional compression, N-S compression and vertical extension, occur in the stage of brittle deformation. The modern tectonic stress field on the eastern side of the Tanlu fault is regionally very stable. In the brittle and brittle-ductile transition belts, the dominant mode of stress action constraining the emplacement of the Sulu high-pressure and ultrahigh-pressure metamorphic belt is ESE-WNW compression, which shows certain stability in time and space. The determination of in-situ stress from wellbore breakouts: The breakouts began to occur under the depth of 1200m in the main borehole of Chinese Continental Scientific Drilling (CCSD), 82 breakout images are collected from acoustic borehole televiewer data between 1200m and 2010 m. The averaged orientation of breakouts is 324.8¡a¡A3.3¡a. The averaged orientation of maximum horizontal stress is 54.8¡a¡A3.3¡a. Using parameters measured from breakouts (depth and width of breakout) and rock cohesive strength determined from triaxial rock compression and deformation test, the magnitudes of principal stress are calculated at 16 different depths of 1269m, 1500m, 2000m and so on. Overburden stress is calculated using the density logging data. According to the orientations and

  11. Scientific drilling technologies for hostile environments

    SciTech Connect

    Traeger, R.K.

    1988-01-01

    This paper briefly reviews the current United States Department of Energy Continental Scientific Drilling Program for Thermal Regimes and the related technologies being developed for geothermal drilling. Plans for penetrating into a molten magma body at temperatures from 800 to 1000{degree}C are also reviewed. 7 refs., 3 figs., 1 tab.

  12. Salton Sea Scientific Drilling Program

    SciTech Connect

    Sass, J.H.

    1988-01-01

    The Salton Sea Scientific Drilling Program (SSSDP) was the first large-scale drilling project undertaken by the U.S. Continental Scientific Drilling Program. The objectives of the SSSDP were (1) to drill a deep well into the Salton Sea Geothermal Field in the Imperial Valley of California, (2) to retrieve a high percentage of core and cuttings along the entire depth of the well, (3) to obtain a comprehensive suite of geophysical logs, (4) to conduct flow tests at two depths (and to take fluid samples therefrom), and (5) to carry out several downhole experiments. These activities enabled the U.S. Geological Survey and cooperating agencies to study the physical and chemical processes involved in an active hydrothermal system driven by a molten-rock heat source. The SSSDP exceeded its target depth of 10,000 feet, and a comprehensive set of cuttings, cores, and downhole logs was obtained. Two flow tests at different depths were successfully completed. Hydrologic connection between the different producing horizons, however, made the data from the deeper test difficult to interpret. Temperature logging by the Geological Survey and Sandia National Laboratories to establish the equilibrium profile continued until August of 1987. The SSSDP provides a model for scientific cooperation among government agencies, universities, and private industry.

  13. Salton Sea Scientific Drilling Program

    USGS Publications Warehouse

    Sass, J.H.

    1988-01-01

    The Salton Sea Scientific Drilling Program (SSSDP) was the first large-scale drilling project undertaken by the U.S Continental Scientific Drilling Program. The objectives of the SSSDP were (1) to drill a deep well into the Salton Sea Geothermal Field in the Imperial Valley of California, (2) to retrieve a high percentage of core and cuttings along the entire depth of the well, (3) to obtain a comprehensive suite of geophysical logs, (4) to conduct flow tests at two depths  (and to take fluid samples therefrom), and (5) to carry out several downhole experiments. These activites enabled the U.S Geological Survey and cooperating agencies to study the physical and chemical processes involved in an active hydrothermal system driven by a molten-rock heat source. This program, orginally conceived by Wilfred A. Elders, professor of geology at the University of California at Riverside, was coordinated under an inter-agency accord among the Geological Survey, the U.S Department of Energy, and the National Science Foundation. 

  14. Exploring the deep continental crust by drilling

    NASA Astrophysics Data System (ADS)

    Elders, Wilfred A.

    Although geology transcends national boundaries, geologists are not free of national influences. To the question “Is continental scientific drilling an idea whose time has come?,” answers might range from an enthusiastic “yes” in the Soviet Union and the Federal Republic of Germany, and a qualified “yes” in Sweden, to “We hope so” in Canada, France, Japan, the United Kingdom, and elsewhere, but most likely “We don't know” in the United States.In August 1988 at Jaroslavl in the U.S.S.R., Y. A. Kozlovsky, Minister of Geology, challenged participants in the international seminar Superdeep Continental Drilling and Deep Geophysical Research with his proposal for Project GLOBUS, a very-large-scale collaborative study of Earth's crust [Kozlovsky, 1988; Sass and Barber, 1989]. GLOBUS would investigate the crust of all of the world's continents and oceans by a network of geophysical transects, supported by up to 50 deep (5-10 km), to superdeep (>10 km), research boreholes, situated at the nodal points of the net to calibrate the geophysical interpretations and serve as permanent crustal observatories (Figure 1).

  15. Fluid inclusions associated with exsolution quartz needles in omphacite of UHP eclogites from the main hole of Chinese continental scientific drilling project

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Shen, K.; Liou, J.; Xu, Z.

    2005-12-01

    Abundant primary fluid inclusions are recognized in omphacite of ultrahigh-pressure (UHP) eclogites from the main hole of the Chinese Continental Scientific Drilling (CCSD), located at the southern Sulu orogenic belt. The eclogites consist of garnet, omphacite, coesite and rutile. Mineral and fluid inclusions are distributed alternatively and parallel to each other. The solid inclusions occur as needles with a length of 10~100 m and a width of 1~10 m whereas the fluid inclusions occur as tubes with the size varying from less then 3~5 m to greater then 50 m. The mineral inclusions were identified as quartz. Most fluid inclusions contain a gas bubble, a liquid phase and one to several solids. The liquid and gas phases are determined as H2O. The solid phases include halite, quartz and calcite, as well as opaque and unknown minerals. Some small thin-tubed fluid inclusions contain little or no solid and even without gas bubble; they contain dominantly water. The inclusion fluid was estimated to contain components in the system of NaCl-CaCl2-CO2-H2O-SiO2 with possibly trace Fe and Mg. We suggest that these fluid inclusions were conventional primary ones, and trapped during omphacite crystallization; upon decompression they acted as nucleation site for the crystallographically controlled precipitation of quartz from the omphacite matrix. Therefore the omphacite is considered to be one of the major fluid carriers during subduction of continental crust to mantle depths.

  16. Hydrothermal brecciation in the Jemez Fault zone, Valles Caldera, New Mexico: Results from CSDP (Continental Scientific Drilling Program) corehole VC-1

    SciTech Connect

    Hulen, J.B.; Nielson, D.L.

    1987-06-01

    Paleozoic and Precambrian rocks intersected deep in Continental Scientific Drilling Program corehole VC-1, adjacent to the late Cenozoic Valles caldera complex, have been disrupted to form a spectacular breccia sequence. The breccias are of both tectonic and hydrothermal origin, and probably formed in the Jemez fault zone, a major regional structure with only normal displacement since mid-Miocene. Tectonic breccias are contorted, crushed, sheared, and granulated; slickensides are commmon. Hydrothermal breccias, by contrast, lack these frictional textures, but arej commonly characterized by fluidized matrix foliation and prominent clast rounding. Fluid inclusions in the hydrothermal breccias are dominantly two-phase, liquid-rich at room temperature, principally secondary, and form two distinctly different compositional groups. Older inclusions, unrelated to brecciation, are highly saline and homogenize to the liquid phase in the temperature range 189 to 246/sup 0/C. Younger inclusions, in part of interbreccia origin, are low-salinity and homogenize (also to liquid) in the range 230 to 283/sup 0/C. Vapor-rich inclusions locally trapped along with these dilute liquid-rich inclusions document periodic boiling. These fluid-inclusion data, together with alteration assemblages and textures as well as the local geologic history, have been combined to model hydrothermal brecciation at the VC-1 site.

  17. Noble gas composition and 40Ar/39Ar age in eclogites from the main hole of the Chinese Continental Scientific Drilling project

    NASA Astrophysics Data System (ADS)

    Hopp, Jens; Schwarz, Winfried H.; Trieloff, Mario; Meyer, Hans-Peter; Hanel, Michael; Altherr, Rainer

    2016-10-01

    We present the first comprehensive noble gas study on eclogites. The four eclogite samples were recovered during the Chinese Continental Scientific Drilling and are from two distinct profile depth sections differing in their degree of interaction with meteoric water, based on their δ 18O-values (surface related and of mantle-type). Hence, noble gas analyses offer the potential to further discriminate between shallow (meteoric) and deep (mantle) fluid sources. Noble gas compositions reveal typical crustal fluid compositions, characterized by a variable mixture of atmospheric gases with significant contributions of nucleogenic neon, radiogenic 4He*, radiogenic 40Ar*, fissiogenic 131-136Xe, and presumably bariogenic 131Xe, but no significant addition of mantle gases. This signature can be also considered to represent one endmember component of eclogitic diamonds. Concentrations of non-radiogenic noble gases are rather low, with depletion of light relative to the heavier noble gases. Eclogites from lower depth which experienced a higher degree of interaction with meteoric water also showed higher contributions of atmospheric gas compared with eclogites recovered from greater depth. This is interpreted to result from interaction with high-salinity fluids during ultrahigh pressure (UH P). It demonstrates that the atmospheric noble gas abundance is a proxy for interaction with surface related fluids. 40Ar/39Ar (inverse) isochron ages of two phengite separates (241.2 ± 0.4 Ma and 275.0 ± 1.8 Ma, 1 σ-errors) predate the main phase of UH P metamorphism (ca. 220 Ma). Biotite yields an integrated age of about 1100 Ma. These age values are interpreted to reflect the likely addition of excess 40Ar without any chronological meaning.

  18. Outreach, Diversity, and Education Supported by NSF Facilities LacCore and the Continental Scientific Drilling Coordination Office (CSDCO), University of Minnesota

    NASA Astrophysics Data System (ADS)

    Myrbo, A.

    2015-12-01

    Climatic and environmental change are a powerful hook to engage students and the public with geoscience. Recent lake sediments often feature visual and compositional evidence of anthropogenic changes, which can pique curiosity and serve as a gateway for interest in more remote past changes. Cores provide an integrative, place-based geoscience education/outreach platform: lake dynamics incorporate principles of chemistry, physics, and biology; lake basin formation and sedimentary signals trace back to numerous geoscience subdisciplines. Lakes reflect local changes, and so are inherently place-based and relevant to both rural and urban populations. The esthetics of lakes in the landscape and sediments under the microscope spark the artistic sensibilities of those who do not consider themselves scientists: lakes are readymade for STEAM education. LacCore has exploited the magic of lake sediment cores in its 15 years as an NSF Facility, and now expands to additional environments as the NSF Continental Scientific Drilling Coordination Office. Part of scaling up is the formalization of major support for the Broader Impacts (BI) activities of Facility users. LacCore/CSDCO now musters its collaborative experiences in site REUs and other undergrad research projects, in-depth training of students, teachers, and faculty, a long list of informal education experiences, and common-good software development, to provide assistance to researchers seeking meaningful broader impacts and educators seeking extra- or co-curricular field and laboratory research experiences for their students. Outreach, diversity, and education support includes dissemination of best practices, as well as coordination, administration, and basic capacity for such activities in collaboration with project PIs and students, through no-cost support, or collaborative proposals or supplements from NSF where necessary for project scale. Community-driven research and broadening participation are central to the

  19. Geochemistry, petrofabrics and seismic properties of eclogites from the Chinese Continental Scientific Drilling boreholes in the Sulu UHP terrane, eastern China

    NASA Astrophysics Data System (ADS)

    Wang, Qin; Burlini, Luigi; Mainprice, David; Xu, Zhiqin

    2009-09-01

    We present an integrated study of geochemistry, petrofabrics and seismic properties of strongly sheared eclogites from the Chinese Continental Scientific Drilling (CCSD) project in the Sulu ultrahigh-pressure (UHP) metamorphic terrane, eastern China. First, geochemical data characterize diverse protoliths of the studied eclogites. The positive Eu- and Sr-anomalies, negative Nb anomaly and flat portion of heavy rare earth elements in coarse-grained rutile eclogites (samples B270 and B295) suggest a cumulate origin in the continental crust, whereas the negative Nb anomaly and enrichment of light rare earth elements in retrograde eclogites (samples B504, B15 and B19) imply an origin of continental basalts or island arc basalts. Second, P-wave velocities ( Vp) of three typical eclogite samples were measured under confining pressures up to 500 MPa and temperatures to 700 °C. At 500 MPa and room temperature, the mean Vp reaches 8.50-8.53 km/s in samples B270 and B295 but drops to 7.86 km/s in sample B504, and the P-wave anisotropy changes from 1.7-2.7% to 5.5%, respectively. The pressure and temperature derivatives of Vp are larger in the retrograde eclogite than in fresh ones. Third, the electron backscatter diffraction (EBSD) measurements of the eclogites reveal random crystal preferred orientation (CPO) of garnet and pronounced CPO of omphacite, which is characterized by a strong concentration of [001]-axes sub-parallel to the lineation and of (010)-poles perpendicular to the foliation. The asymmetric CPO of omphacite in sample B270 recorded a top-to-the-south shear event during subduction of the Yangtze plate. The calculated fastest Vp is generally sub-parallel to the lineation, but a different deformation environment during exhumation could form second-order variations in omphacite CPO and affect the Vp distribution in eclogites (e.g., the fastest Vp is at ~ 35° from the foliation in sample B295). Comparison between measured and calculated seismic properties

  20. Salton Sea Scientific Drilling Project: A summary of drilling and engineering activities and scientific results

    SciTech Connect

    Ross, H.P.; Forsgren, C.K.

    1992-04-01

    The Salton Sea Scientific g Project (SSSDP) completed the first major well in the United States Continental Scientific Drilling Program. The well (State 2-14) was drilled to 10,W ft (3,220 m) in the Salton Sea Geothermal Field in California's Imperial Valley, to permit scientific study of a deep, high-temperature portion of an active geothermal system. The program was designed to investigate, through drilling and testing, the subsurface thermal, chemical, and mineralogical environments of this geothermal area. Extensive samples and data, including cores, cuttings, geothermal fluids and gases, and geophysical logs, were collected for future scientific analysis, interpretation, and publication. Short duration flow tests were conducted on reservoirs at a depth of approximately 6,120 ft (1,865 m) and at 10,136 ft (3,089 m). This report summarizes all major activities of the SSSDP, from project inception in the fall of 1984 through brine-pond cleanup and site restoration, ending in February 1989. This report presents a balanced summary of drilling, coring, logging, and flow-test operations, and a brief summary of technical and scientific results. Frequent reference is made to original records, data, and publication of results. The report also reviews the proposed versus the final well design, and operational summaries, such as the bit record, the casing and cementing program, and the coring program. Summaries are and the results of three flow tests. Several teamed during the project.

  1. A Ship for Scientific Drilling.

    ERIC Educational Resources Information Center

    Peterson, M. N. A.; MacTernan, F. C.

    1982-01-01

    Traces the history and development of the Deep Sea Drilling Project, focusing on the Glomar Challenger, drilling improvements, and international significance. Includes photographs, illustrations, and tables. (DC)

  2. The Swedish Deep Drilling Program - an emerging scientific drilling program and new infrastructure.

    NASA Astrophysics Data System (ADS)

    Lorenz, Henning; Juhlin, Christopher

    2010-05-01

    Scientific drilling projects imply numerous aspects that are difficult to handle for individual research groups. Therefore, about three years ago a joint effort was launched in the Swedish geoscientific community to establish a national program for scientific drilling, the Swedish Deep Drilling Program (SDDP). Soon afterwards, several working groups established drilling proposals with Nordic and, also, international participation. With this serious interest in scientific drilling SDDP was able to successfully promote the Swedish membership in ICDP which commenced in 2008. Two SDDP projects achieved workshop grants from the International Continental Scientific Drilling Program (ICDP) in 2009. In the same year the Swedish Research Council decided to support an application for a truck-mounted drill rig - a big success for the SDDP working group. Scientific Drilling infrastructure: SDDP envisages a mobile platform that is capable of core drilling to at least 2500 m depth. The procurement will be made during 2010 and first operations are planned for 2011. This drill rig is primarily intended for use in the SDDP drilling projects, but will be rented out to other scientific drilling projects or even commercial enterprises in the remaining time to cover maintenance and future upgrade costs. SDDP's drill rig will be unique in Europe and complementary to the deep drilling InnovaRig of the GFZ German Research Centre for Geosciences. Until now, drilling to 2000 - 3000 m implied the use of a full-sized drill rig like the InnovaRig or the mobilization of a core drill rig from another continent. This gap will now be filled by Sweden's upcoming scientific drilling infrastructure. Drilling projects and proposals: Presently, SDDP serves six projects: "Collisional Orogeny in the Scandinavian Caledonides" (COSC; ICDP workshop spring 2010), the "Postglacial Fault Drilling Project" (PFDP; ICDP workshop autumn 2010), a "Deep Rock Laboratory" (DRL), "Palaeoproterozoic Mineralized Volcanic

  3. Field procedures manual: Sample handling, Salton Sea Scientific Drilling Project

    SciTech Connect

    Goff, S.; Mehegan, J.; Michels, D.

    1989-02-01

    This Field Procedures Manual is the comprehensive operations guide that was used to curate samples obtained from the Salton Sea Scientific Drilling Project (SSSDP). It is being published in the form used on site by the curation team. Samples recovered from the SSSDP were curated following the Policy Guidelines established for the Department of Energy/Office of Basic Energy Sciences (DOE/OBES) Continental Scientific Drilling Program (CSDP)/Thermal Regimes effort, which recognizes the uniqueness and site-specific nature of each drilling project. The SSSDP is a rotary drilling project that has provided cuttings and spot cores as well as liquid and gas samples. This manual provides details on handling all of these sample types. 6 refs., 10 figs.

  4. A new scientific drilling infrastructure in Sweden

    NASA Astrophysics Data System (ADS)

    Rosberg, J.-E.; Lorenz, H.

    2012-04-01

    A new scientific drilling infrastructure is currently under commissioning at Lund University in southern Sweden and is intended primarily for Swedish scientific drilling projects. However, it will be available to the scientific community and even industry when not occupied. The drill rig, a crawler mounted Atlas Copco CT20, was funded by the Swedish Research Council (VR) after an application by the Swedish scientific drilling community under the lead of Prof. Leif Bjelm, Lund University. As a national resource it is, together with support of the Swedish Deep Drilling Program (SDDP) and the Swedish membership in ICDP, part of VR's commitment to scientific drilling. The Atlas Copco CT20 is a top modern, versatile diamond wireline core-drilling rig which can handle P, H and N sizes. It can operate on very small drill sites (500-800 m2) and, thus, leaves a minimal environmental footprint. The crawler makes the rig ideal for operations in remote locations. A total of only 3-4 truckloads is necessary for mobilization of the basic drilling equipment. Main technical specifications are: Depth capacity coring, based on vertical water filled hole: P-size to around 1050 m, hole size 123 mm and core size 85 mm. H-size to around 1600 m, hole size 96 mm and core size 63 mm. N-size to around 2500 m, hole size 76 mm and core size 48 mm. Weight: Complete rig including crawler, wet - 23500 kg Dimensions in (length, width, height) transport position: 11560 x 2500 x 3750 mm. Available in-hole equipment: Complete core retrieval system for PQ, HQ and NQ-sizes, including PHD, HRQ (V-Wall) and NRQ (V-Wall) drill rods covering the maximum drilling depth for each size (see rig depth capacity above). Both dual and triple tube for HQ and NQ-sizes. Casing advancers (PW, HW, NW and BW). Casing PWT, HWT, NW and BW. Bits and reamers. Additional equipment: Mud cleaning and mixing system. MWD-system (Measurements While Drilling). Cementing equipment. Fishing tools (Bowen Spear). Blow Out Preventer

  5. Salton Sea Scientific Drilling Project: A summary of drilling and engineering activities and scientific results. Final report

    SciTech Connect

    Ross, H.P.; Forsgren, C.K.

    1992-04-01

    The Salton Sea Scientific g Project (SSSDP) completed the first major well in the United States Continental Scientific Drilling Program. The well (State 2-14) was drilled to 10,W ft (3,220 m) in the Salton Sea Geothermal Field in California`s Imperial Valley, to permit scientific study of a deep, high-temperature portion of an active geothermal system. The program was designed to investigate, through drilling and testing, the subsurface thermal, chemical, and mineralogical environments of this geothermal area. Extensive samples and data, including cores, cuttings, geothermal fluids and gases, and geophysical logs, were collected for future scientific analysis, interpretation, and publication. Short duration flow tests were conducted on reservoirs at a depth of approximately 6,120 ft (1,865 m) and at 10,136 ft (3,089 m). This report summarizes all major activities of the SSSDP, from project inception in the fall of 1984 through brine-pond cleanup and site restoration, ending in February 1989. This report presents a balanced summary of drilling, coring, logging, and flow-test operations, and a brief summary of technical and scientific results. Frequent reference is made to original records, data, and publication of results. The report also reviews the proposed versus the final well design, and operational summaries, such as the bit record, the casing and cementing program, and the coring program. Summaries are and the results of three flow tests. Several teamed during the project.

  6. Inclusion of K-feldspar-Quartz Aggregate in Omphacite From Eclogites From the Chinese Continental Scientific Drilling (CCSD) Main Borehole: A Potassic Melt Inclusion That Experienced UHP Metamorphism?

    NASA Astrophysics Data System (ADS)

    Liang, F.; Zeng, L.; Xu, Z.

    2006-12-01

    How the potassium-bearing phases behave during subduction of continental and oceanic crustal materials has been a focus of a number of recent studies. Answers to this question are critical to (1) test the petrogenetic models for the formation of K-cymrite and other K-bearing phases at ultrahigh pressure conditions; (2) determine the formation mechanisms for generation of potassic melts in the upper mantle conditions; and (3) evaluate the recycling and fractionation of potassium over other large ion lithophile elements in the mantle. K- feldspar + quartz assemblages as inclusions in omphacite as well as in garnet have been reported in UHP metamorphic terrains such as the Erzgebirge, Germany (Massonne et al. 2000; Massonne and Nasdala, 2003), North Qaidam, NW China (Song et al. 2003), and the Kokchetav Massif (Hwang et al. 2004), and were interpreted to be pseudomorphs after K-cymrite. We report a K-feldspar-quartz aggregate of a size 58μm?2μm as an inclusion in omphacite from a phengite eclogite from the CCSD main borehole. This inclusion consist of exclusively K-feldspar (~70%) and quartz (~30%), and impart similar radial fractures in the omphacite as coesites. K-feldspar and quartz form vermicular intergrowth. Microprobe and EDS analyses show that K-feldspars have 65-72 wt% SiO2, 15-18 wt% Al2O3, 12-15 wt% K2O, and minor Na2O (~0.2wt%), CaO (~0.05 wt%), and FeO (0.2-0.3wt%), similar to those in the Kokchetav Massif (Massonne, 2003; Hwang et al. 2004). Based on the modal composition of K-feldspar and quartz in this inclusion, its reconstructed bulk composition consist of 77.7 wt% SiO2, 11.6 wt% Al2O3, 9.9 wt% K2O, and minor FeO, CaO, and Na2O (<0.15 wt%). This composition is similar to the experimentally determined melt compositions in the KCMASH system at pressures of 2.0-4.5 GPa and temperatures of 850-1150°C (Hermann, 2002; Hwang et al. 2004). This extraordinary omphacite-hosted inclusion might form originally as K-rich melts during subduction of the Yangtze

  7. New Era of Scientific Ocean Drilling

    NASA Astrophysics Data System (ADS)

    Eguchi, N.; Toczko, S.; Sanada, Y.; Igarashi, C.; Kubo, Y.; Maeda, L.; Sawada, I.; Takase, K.; Kyo, N.

    2014-12-01

    The D/V Chikyu, committed to scientific ocean drilling since 2007, has completed thirteen IODP expeditions, and Chikyu's enhanced drilling technology gives us the means to reach deep targets, enhanced well logging, deep water riserless drilling, and state of the art laboratory. Chikyu recovered core samples from 2466 meters below sea floor (mbsf) in IODP Exp. 337, and drilled to 3058.5 mbsf in IODP Exp. 348, but these are still not the limit of Chikyu's capability. As deep as these depths are, they are just halfway to the 5200 mbsf plate boundary target for the NanTroSEIZE deep riser borehole. There are several active IODP proposals in the pipeline. Each has scientific targets requiring several thousand meters of penetration below the sea floor. Riser technology is the only way to collect samples and data from that depth. Well logging has been enhanced with the adoption of riser drilling, especially for logging-while-drilling (LWD). LWD has several advantages over wireline logging, and provides more opportunities for continuous measurements even in unstable boreholes. Because of the larger diameter of riser pipes and enhanced borehole stability, Chikyu can use several state-of-the-art downhole tools, e.g. fracture tester, fluid sampling tool, wider borehole imaging, and the latest sonic tools. These new technologies and tools can potentially expand the envelope of scientific ocean drilling. Chikyu gives us access to ultra-deep water riserless drilling. IODP Exp. 343/343T investigating the March 2011 Tohoku Oki Earthquake, explored the toe of the landward slope of the Japan Trench. This expedition reached the plate boundary fault target at more than 800 mbsf in water depths over 6900 m for logging-while-drilling, coring, and observatory installation. This deep-water drilling capability also expands the scientific ocean drilling envelope and provides access to previously unreachable targets. On top of these operational capabilities, Chikyu's onboard laboratory is

  8. Tephrochronology of Lacustrine Ash Layers in Lake Petén Itzá Sediments drilled in the Frame of the International Continental Scientific Drilling Program (ICDP): Implications for Regional Volcanology and Central American Palaeoclimate

    NASA Astrophysics Data System (ADS)

    Kutterolf, S.; Schindlbeck, J. C.; Anselmetti, F.; Mueller, A.; Schwalb, A.; Eisele, S.; Hemming, S. R.; Wang, K. L.

    2015-12-01

    Climate records from lacustrine systems have been established in the last years to improve our understanding of the regional and temporal expression of climate change on the continents, and how it influenced the human evolution. Lake Petén Itzá, located in the center of the climatically sensitive Peninsula Yucatán, is a surficial closed-basin lake located in the lowlands of northern Guatemala drilled by ICDP. The region itself exhibits characteristic climate conditions, making it an ideal region for paleoclimatological and paleoecological studies. A key problem in obtaining a long-lasting climate record is to establish robust chronologies beyond 40 ka since they exceed the range of 14C dating, but tephra layers within these sediments may provide good age-constraints >40 ka. We here use large-magnitude, widespread, Pleistocene to Holocene silicic eruptions from caldera volcanoes in the Central American volcanic arc (CAVA), contributing to the drilled Petén Itzá lake sediments in the form of numerous lacustrine tephras providing time markers to develop a new, extended age model. We established robust and well-constrained correlations between the tephras in Lake Petén Itzá and the deposits at the CAVA source as well as their marine equivalents in the sediments of the Pacific Ocean based on major and trace element glass compositions. We document here 8 well-constraint time markers for the Petén Itza age models, which so far were only based on younger 14C dates and some preliminary, only major-element based, tephra correlations. Additionally ongoing Ar/Ar age dating of the Los Chocoyos eruption will provide a new pinning point froma an important regional marker horizon. In summary we have been able to modify the current age models, extend the paleoclimate and paleoecological record in this neotropical region to ~300 ka, and contribute greatly to the determination of the magnitude (eruptive volumes) and more precise eruption dates of CAVA eruptions.

  9. Scientific Ocean Drilling to Assess Submarine Geohazards along European Margins

    NASA Astrophysics Data System (ADS)

    Ask, M. V.; Camerlenghi, A.; Kopf, A.; Morgan, J. K.; Ocean DrillingSeismic Hazard, P. E.

    2008-12-01

    Submarine geohazards are some of the most devastating natural events in terms of lives lost and economic impact. Earthquakes pose a big threat to society and infrastructure, but the understanding of their episodic generation is incomplete. Tsunamis are known for their potential of striking coastlines world-wide. Other geohazards originating below the sea surface are equally dangerous for undersea structures and the coastal population: submarine landslides and volcanic islands collapse with little warning and devastating consequences. The European scientific community has a strong focus on geohazards along European and nearby continental margins, especially given their high population densities, and long historic and prehistoric record of hazardous events. For example, the Mediterranean is surrounded by very densely-populated coastline and is the World's leading holiday destination, receiving up 30% of global tourism. In addition, its seafloor is criss-crossed by hydrocarbon pipelines and telecommunication cables. However, the governing processes and recurrence intervals of geohazards are still poorly understood. Examples include, but are not limited to, earthquakes and volcanic eruptions along the active tectonic margins of the Mediterranean and Sea of Marmara, landslides on both active and passive margins, and tsunamites and seismites in the sedimentary record that suggest a long history of similar events. The development of geophysical networks, drilling, sampling and long-term monitoring are crucial to the understanding of earthquake, landslide, and tsunami processes, and to mitigate the associated risks in densely populated and industrialized regions such as Europe. Scientific drilling, particularly in the submarine setting, offers a unique tool to obtain drill core samples, borehole measurements and long-term observations. Hence, it is a critical technology to investigate past, present, and possible future influences of hazardous processes in this area. The

  10. Addressing submarine geohazards through scientific drilling

    NASA Astrophysics Data System (ADS)

    Camerlenghi, A.

    2009-04-01

    Natural submarine geohazards (earthquakes, volcanic eruptions, landslides, volcanic island flank collapses) are geological phenomena originating at or below the seafloor leading to a situation of risk for off-shore and on-shore structures and the coastal population. Addressing submarine geohazards means understanding their spatial and temporal variability, the pre-conditioning factors, their triggers, and the physical processes that control their evolution. Such scientific endeavour is nowadays considered by a large sector of the international scientific community as an obligation in order to contribute to the mitigation of the potentially destructive societal effects of submarine geohazards. The study of submarine geohazards requires a multi-disciplinary scientific approach: geohazards must be studied through their geological record; active processes must be monitored; geohazard evolution must be modelled. Ultimately, the information must be used for the assessment of vulnerability, risk analysis, and development of mitigation strategies. In contrast with the terrestrial environment, the oceanic environment is rather hostile to widespread and fast application of high-resolution remote sensing techniques, accessibility for visual inspection, sampling and installation of monitoring stations. Scientific Drilling through the IODP (including the related pre site-survey investigations, sampling, logging and in situ measurements capability, and as a platform for deployment of long term observatories at the surface and down-hole) can be viewed as the centre of gravity of an international, coordinated, multi-disciplinary scientific approach to address submarine geohazards. The IODP Initial Science Plan expiring in 2013 does not address openly geohazards among the program scientific objectives. Hazards are referred to mainly in relation to earthquakes and initiatives towards the understanding of seismogenesis. Notably, the only drilling initiative presently under way is the

  11. Addressing submarine geohazards through scientific drilling

    NASA Astrophysics Data System (ADS)

    Camerlenghi, A.

    2009-04-01

    Natural submarine geohazards (earthquakes, volcanic eruptions, landslides, volcanic island flank collapses) are geological phenomena originating at or below the seafloor leading to a situation of risk for off-shore and on-shore structures and the coastal population. Addressing submarine geohazards means understanding their spatial and temporal variability, the pre-conditioning factors, their triggers, and the physical processes that control their evolution. Such scientific endeavour is nowadays considered by a large sector of the international scientific community as an obligation in order to contribute to the mitigation of the potentially destructive societal effects of submarine geohazards. The study of submarine geohazards requires a multi-disciplinary scientific approach: geohazards must be studied through their geological record; active processes must be monitored; geohazard evolution must be modelled. Ultimately, the information must be used for the assessment of vulnerability, risk analysis, and development of mitigation strategies. In contrast with the terrestrial environment, the oceanic environment is rather hostile to widespread and fast application of high-resolution remote sensing techniques, accessibility for visual inspection, sampling and installation of monitoring stations. Scientific Drilling through the IODP (including the related pre site-survey investigations, sampling, logging and in situ measurements capability, and as a platform for deployment of long term observatories at the surface and down-hole) can be viewed as the centre of gravity of an international, coordinated, multi-disciplinary scientific approach to address submarine geohazards. The IODP Initial Science Plan expiring in 2013 does not address openly geohazards among the program scientific objectives. Hazards are referred to mainly in relation to earthquakes and initiatives towards the understanding of seismogenesis. Notably, the only drilling initiative presently under way is the

  12. Accelerating Neoproterozoic Research through Scientific Drilling

    NASA Astrophysics Data System (ADS)

    Condon, Daniel; Prave, Anthony; Boggiani, Paulo; Fike, David; Halverson, Galen; Kasemann, Simone; Knoll, Andrew; Zhu, Maoyan

    2014-05-01

    The Neoproterozoic Era (1.0 to 0.541 Ga) and earliest Cambrian (541 to ca. 520 Ma) records geologic changes unlike any other in Earth history: supercontinental tectonics of Rodinia followed by its breakup and dispersal into fragments that form the core of today's continents; a rise in oxygen that, perhaps for the first time in Earth history, resulted in the deep oceans becoming oxic; snowball Earth, which envisages a blanketing of global ice cover for millions of years; and, at the zenith of these combined biogeochemical changes, the evolutionary leap from eukaryotes to animals. Such a concentration of hallmark events in the evolution of our planet is unparalleled and many questions regarding Earth System evolution during times of profound climatic and geological changes remain to be answered. Neoproterozoic successions also offer insight into the genesis of a number of natural resources. These include banded-iron formation, organic-rich shale intervals (with demonstrated hydrocarbon source rocks already economically viable in some countries), base and precious metal ore deposits and REE occurrences, as well as industrial minerals and dimension stone. Developing our understanding of the Neoproterozoic Earth-system, combined with regional geology has the potential to impact the viability of these resources. Our understanding of the Neoproterozoic and early Cambrian, though, is overwhelmingly dependent on outcrop-based studies, which suffer from lack of continuity of outcrop and, in many instances, deep weathering profiles. A limited number of research projects study Precambrian strata have demonstrated the potential impact of scientific drilling to augment and complement ongoing outcrop based studies and advancing research. An ICDP and ECORD sponsored workshop, to be held in March 2014, has been convened to discuss the utility of scientific drilling for accelerating research of the Neoproterozoic through early Cambrian (ca. 0.9 to 0.52 Ga) rock record. The aim is to

  13. Hawaii Scientific Drilling Project: Objectives, Successes, Surprises and Frustrations

    NASA Astrophysics Data System (ADS)

    Depaolo, D. J.; Stolper, E.; Thomas, D. M.

    2008-12-01

    The Hawaii Scientific Drilling Project (HSDP) is a long-running project undertaken with the objective of studying a mantle plume by drilling an extended sequence of lavas from a single Hawaiian volcano. The project originated with a proposal to NSF in late 1986 with the idea of drilling to the Moho under Hilo; the target depth was estimated at 12km, commensurate with the depth reached by the drilling program then being pursued by the USSR and that proposed in the U.S. for the southern Appalachians, and in line with the aspirations of the nascent DOSECC program. Subsequently, due to limitations in funding and reorganization of the drilling program into what later became the NSF Continental Dynamics Program, HSDP was re-scoped with the objective of drilling deeply enough (ca. 4.5km) to recover most of the eruptive history of a single volcano. The project first went to a pilot stage, which resulted in coring to a depth of 1.1km in late 1993. The pilot stage was relatively inexpensive (1M including science) and productive. Funding was then obtained from NSF and ICDP in 1995 (ca. 12M) with the objective of drilling to 4.5km. Drilling was originally planned for a five-year period, in two campaigns. The first campaign, in 1999, resulted in efficient coring to a depth of 3.1km over a period of 6 months; it used about 40 percent of the funds and was also highly productive. Deepening the hole below 3.1km turned out to be both difficult and expensive, although for interesting reasons. To facilitate deeper drilling the hole needed to be reamed to a larger diameter; but when this was done the well unexpectedly started to flow. We now know that there are several deep pressurized aquifers, with varying salt content, but these hydrological phenomena were totally unanticipated. A key finding, also unanticipated, is that cold seawater circulates through the volcanic pile in volumes sufficient to refrigerate the entire section below 700m depth to temperatures about 25 degrees below a

  14. Hydrocarbon shows in the scientific ocean drilling programs

    SciTech Connect

    Katz, B.J. ); Emeis, K.C. )

    1990-05-01

    For more than 20 yr, two major programs, the Deep Sea Drilling Project (DSDP) and the Ocean Drilling Program (ODP), have been coring the deep oceans for scientific purposes. For technological as well as financial reasons, drilling was and is performed without a riser. Precruise preparation, therefore, is aimed at preventing an accidental hydrocarbon discovery. During the course of drilling, at the more than 700 locations studied to date, numerous black shales of various ages were encountered. Many of these represent thermally immature hydrocarbon source rocks. Although these organic-rich rocks (up to 34 wt.% total organic carbon) by themselves did not pose a safety problem, hydrocarbon shows were detected on no less than ten legs. These shows represent heavy (C{sub 15+}), thermally generated hydrocarbons. Commonly, these shows can be attributed to migration through a porous and permeable network into the penetrated section. In these situations, migration commonly occurs over distances on the order of several tens of miles from a more mature, structurally deeper section (e.g., Challenger Knoll, DSDP Site 2). There are, however, instances where there is strong geochemical evidence for in-situ hydrocarbon generation. In-situ hydrocarbon generation appears to be the result of anomalous thermal conditions associated with high heat flow, igneous and/or hydrothermal activity (e.g., Tyrrhenian Sea, ODP Site 652). Such conditions are more commonly associated with young marginal basins. The distribution of these shows provides valuable information on the long-term exploratory potential of the deep oceans and continental margins.

  15. Proposed scientific activities for the Salton Sea Scientific Drilling Project

    SciTech Connect

    Not Available

    1984-05-01

    The Salton Sea Scientific Drilling Project (SSSDP) has been organized for the purpose of investigating a hydrothermal system at depths and temperatures greater than has been done before. Plans are to deepen an existing well or to drill a new well for research purposes for which temperatures of 300/sup 0/C will be reached at a depth of less than 3.7 km and then deepen that well a further 1.8 km. This report recounts the Congressional history of the appropriation to drill the hole and other history through March 1984, gives a review of the literature on the Salton Sea Geothermal Field and its relationship to other geothermal systems of the Salton Trough, and describes a comprehensive series of investigations that have been proposed either in the well or in conjunction with the SSSDP. Investigations in geophysics, geochemistry and petrology, tectonics and rock mechanics, and geohydrology are given. A tabulation is given of current commercial and state-of-the-art downhole tools and their pressure, temperature, and minimum hole size limitations.

  16. Scientific drilling and the evolution of the earth system: climate, biota, biogeochemistry and extreme systems

    NASA Astrophysics Data System (ADS)

    Soreghan, G. S.; Cohen, A. S.

    2013-11-01

    A US National Science Foundation-funded workshop occurred 17-19 May 2013 at the University of Oklahoma to stimulate research using continental scientific drilling to explore earth's sedimentary, paleobiological and biogeochemical record. Participants submitted 3-page "pre-proposals" to highlight projects that envisioned using drill-core studies to address scientific issues in paleobiology, paleoclimatology, stratigraphy and biogeochemistry, and to identify locations where key questions can best be addressed. The workshop was also intended to encourage US scientists to take advantage of the exceptional capacity of unweathered, continuous core records to answer important questions in the history of earth's sedimentary, biogeochemical and paleobiologic systems. Introductory talks on drilling and coring methods, plus best practices in core handling and curation, opened the workshop to enable all to understand the opportunities and challenges presented by scientific drilling. Participants worked in thematic breakout sessions to consider questions to be addressed using drill cores related to glacial-interglacial and icehouse-greenhouse transitions, records of evolutionary events and extinctions, records of major biogeochemical events in the oceans, reorganization of earth's atmosphere, Lagerstätte and exceptional fossil biota, records of vegetation-landscape change, and special sampling requirements, contamination, and coring tool concerns for paleobiology, geochemistry, geochronology, and stratigraphy-sedimentology studies. Closing discussions at the workshop focused on the role drilling can play in studying overarching science questions about the evolution of the earth system. The key theme, holding the most impact in terms of societal relevance, is understanding how climate transitions have driven biotic change, and the role of pristine, stratigraphically continuous cores in advancing our understanding of this linkage. Scientific drilling, and particularly drilling

  17. Scientific Drilling in the Samail Ophiolite, Sultanate of Oman

    NASA Astrophysics Data System (ADS)

    Matter, J. M.; Kelemen, P. B.; Teagle, D. A. H.

    2015-12-01

    The Samail ophiolite in Oman, a block of oceanic crust and upper mantle that was thrusted onto the Arabian continent ~100 million years ago and subsequently tilted and eroded, is an excellent field laboratory to explore rock forming processes that occurred near the surface down to 20 km depth in the Earth's interior. The exposure of these rocks to surface conditions provides a large reservoir of chemical potential energy that drives rapid reactions, heat generation, expansion and cracking. The Oman Drilling Project will address long-standing questions regarding mantle melting, melt transport and crystallization of lavas at ocean spreading ridges to form ocean crust, determine the nature and extent of chemical interactions between the oceans and newly formed oceanic crust, improve our understanding of CO2 and H2O uptake via weathering to form hydrated minerals and carbonates including reaction-driven cracking mechanisms as well as explore serpentinite-hosted microbial ecosystem. With funding from the International Continental Scientific Drilling Program (ICDP), U.S. NSF, NASA, IODP, Sloan Foundation and Deutsche Forschungsgesellschaft in place, we will address these objectives via observations on core, geophysical logging, fluid and microbiological sampling, and hydrological measurements in a series of newly drilled boreholes. Preliminary surveys showed that active low-T alteration of upper mantle rocks is an ongoing process. Dissolved hydrogen and methane concentrations in fluid samples collected in existing boreholes are up to 1.3 and 8 mmol/l, respectively [1]. Regarding the physical, chemical and biological processes related to near surface alteration of mantle rocks, a multi-borehole test site will be established in the southern massif of the Samail ophiolite. This test site will facilitate in-situ studies of water-rock-microbe interactions. Technical details and potential opportunities will be discussed. [1] Paukert A. PhD Thesis, Columbia University, New York

  18. Scientific Drilling in the Samail Ophiolite, Sultanate of Oman

    NASA Astrophysics Data System (ADS)

    Matter, Juerg; Kelemen, Peter; Teagle, Damon; Coggon, Judith

    2016-04-01

    The Samail ophiolite in Oman, a block of oceanic crust and upper mantle that was thrusted onto the Arabian continent ~100 million years ago and subsequently tilted and eroded, is an excellent field laboratory to explore rock forming processes that occurred near the surface down to 20 km depth in the Earth's interior. The exposure of these rocks to surface conditions provides a large reservoir of chemical potential energy that drives rapid reactions, heat generation, expansion and cracking. The Oman Drilling Project will address long-standing questions regarding mantle melting, melt transport and crystallization of lavas at ocean spreading ridges to form ocean crust, determine the nature and extent of chemical interactions between the oceans and newly formed oceanic crust, improve our understanding of CO2 and H2O uptake via weathering to form hydrated minerals and carbonates including reaction-driven cracking mechanisms as well as explore serpentinite-hosted microbial ecosystem. With funding from the International Continental Scientific Drilling Program (ICDP), U.S. NSF, NASA, IODP, Sloan Foundation and Deutsche Forschungsgesellschaft in place, we will address these objectives via observations on core, geophysical logging, fluid and microbiological sampling, and hydrological measurements in a series of newly drilled boreholes. Preliminary surveys showed that active low-T alteration of upper mantle rocks is an ongoing process. Dissolved hydrogen and methane concentrations in fluid samples collected in existing boreholes are up to 1.3 and 8 mmol/l, respectively [1]. Regarding the physical, chemical and biological processes related to near surface alteration of mantle rocks, a multi-borehole test site will be established in the southern massif of the Samail ophiolite. This test site will facilitate in-situ studies of water-rock-microbe interactions. Technical details and potential opportunities will be discussed.

  19. Open Core Data: Semantic driven data access and distribution for terrestrial and marine scientific drilling data

    NASA Astrophysics Data System (ADS)

    Fils, D.; Noren, A. J.; Lehnert, K. A.

    2015-12-01

    Open Core Data (OCD) is a science-driven, innovative, efficient, and scalable infrastructure for data generated by scientific drilling and coring projects across all Earth sciences. It is designed to make make scientific drilling data semantically discoverable, persistent, citable, and approachable to maximize their utility to present and future geoscience researchers. Scientific drilling and coring is crucial for the advancement of the Earth Sciences, unlocking new frontiers in the geologic record. Open Core Data will utilize and link existing data systems, services, and expertise of the JOIDES Resolution Science Operator (JRSO), the Continental Scientific Drilling Coordination Office (CSDCO), the Interdisciplinary Earth Data Alliance (IEDA) data facility, and the Consortium for Ocean Leadership (OL). Open Core Data will leverage efforts currently taking place under the EarthCube GeoLink Building Block and other previous efforts in Linked Open Data around ocean drilling data coordinated by OL. The OCD architecture for data distribution blends Linked Data Platform approaches with web services and schema.org use. OCD will further enable integration and tool development by assigning and using vocabularies, provenance, and unique IDs (DOIs, IGSN, URIs) in scientific drilling resources. A significant focus of this effort is to enable large scale automated access to the data by domain specific communities such as MagIC and Neotoma. Providing them a process to integrate the facility data into their data models, workflows and tools. This aspect will encompass methods to maintain awareness of authority information enabling users to trace data back to the originating facility. Initial work on OCD is taking place under a supplemental awarded to IEDA. This talk gives an overview of that work to date and planned future directions for the distribution of scientific drilling data by this effort.

  20. Salton Sea Scientific Drilling Plan and Well Designs

    SciTech Connect

    1985-02-01

    The purpose and goals of the Scientific Deep Drilling Program have been outlined in previous documents. The purpose of this report is to provide supporting documentation for the engineering recommendations and detailed specifications associated with the drilling program. The drilling plan developed for Bechtel and described in the report has been revised several times due to changes in the project scope and project guidelines. Some of these changes were made due to the unforeseen cost implications associated with certain drilling operations and specifications. Some of the revisions were in response to DOE requests to Bechtel. The revisions have required the rewriting of some of the draft input for resubmission to Bechtel. [DJE-2005

  1. The objectives for deep scientific drilling in Yellowstone National Park

    SciTech Connect

    Not Available

    1987-01-01

    The western area of the United Stated contains three young silicic calderas, all of which contain attractive targets for scientific drilling. Of the three, the Yellowstone caldera complex is the largest, has the most intense geothermal anomalies, and is the most seismically active. On the basis of scientific objectives alone. it is easily the first choice for investigating active hydrothermal processes. This report briefly reviews what is known about the geology of Yellowstone National Park and highlights unique information that could be acquired by research drilling only in Yellowstone. However, it is not the purpose of this report to recommend specific drill sites or to put forth a specific drilling proposal. 175 refs., 9 figs., 2 tabs.

  2. Future scientific drilling in the Arctic Ocean: Key objectives, areas, and strategies

    NASA Astrophysics Data System (ADS)

    Stein, R.; Coakley, B.; Mikkelsen, N.; O'Regan, M.; Ruppel, C.

    2012-04-01

    In spite of the critical role of the Arctic Ocean in climate evolution, our understanding of the short- and long-term paleoceanographic and paleoclimatic history through late Mesozoic-Cenozoic times, as well as its plate-tectonic evolution, remains behind that from the other world's oceans. This lack of knowledge is mainly caused by the major technological/logistic problems in reaching this permanently ice-covered region with normal research vessels and in retrieving long and undisturbed sediment cores. With the Arctic Coring Expedition - ACEX (or IODP Expedition 302), the first Mission Specific Platform (MSP) expedition within IODP, a new era in Arctic research began (Backman, Moran, Mayer, McInroy et al., 2006). ACEX proved that, with an intensive ice-management strategy, successful scientific drilling in the permanently ice-covered central Arctic Ocean is possible. ACEX is certainly a milestone in Arctic Ocean research, but - of course - further drilling activities are needed in this poorly studied ocean. Furthermore, despite the success of ACEX fundamental questions related to the long- and short-term climate history of the Arctic Ocean during Mesozoic-Cenozoic times remain unanswered. This is partly due to poor core recovery during ACEX and, especially, because of a major mid-Cenozoic hiatus in this single record. Since ACEX, a series of workshops were held to develop a scientific drilling strategy for investigating the tectonic and paleoceanographic history of the Arctic Ocean and its role in influencing the global climate system: - "Arctic Ocean History: From Speculation to Reality" (Bremerhaven/Germany, November 2008); - "Overcoming barriers to Arctic Ocean scientific drilling: the site survey challenge" (Copenhagen/Denmark, November 2011); - Circum-Arctic shelf/upper continental slope scientific drilling workshop on "Catching Climate Change in Progress" (San Francisco/USA, December 2011); - "Coordinated Scientific Drilling in the Beaufort Sea: Addressing

  3. Salton Sea Scientific Drilling Project Archival Reference, Final Draft

    SciTech Connect

    1991-03-13

    This report provides an archival reference to the scientific information and other pertinent documents and materials associated with the Salton Sea Scientific Drilling Project (SSDP). This archiving process ensures that valuable technical data and information obtained during the life of the project can be retrieved, organized and maintained as a historical record for future reference. This paper describes the background of the project and the process used for archiving the materials. [DJE-2005

  4. Semantic Approaches Applied to Scientific Ocean Drilling Data

    NASA Astrophysics Data System (ADS)

    Fils, D.; Jenkins, C. J.; Arko, R. A.

    2012-12-01

    The application of Linked Open Data methods to 40 years of data from scientific ocean drilling is providing users with several new methods for rich-content data search and discovery. Data from the Deep Sea Drilling Project (DSDP), Ocean Drilling Program (ODP) and Integrated Ocean Drilling Program (IODP) have been translated and placed in RDF triple stores to provide access via SPARQL, linked open data patterns, and by embedded structured data through schema.org / RDFa. Existing search services have been re-encoded in this environment which allows the new and established architectures to be contrasted. Vocabularies including computed semantic relations between concepts, allow separate but related data sets to be connected on their concepts and resources even when they are expressed somewhat differently. Scientific ocean drilling produces a wide range of data types and data sets: borehole logging file-based data, images, measurements, visual observations and the physical sample data. The steps involved in connecting these data to concepts using vocabularies will be presented, including the connection of data sets through Vocabulary of Interlinked Datasets (VoID) and open entity collections such as Freebase and dbPedia. Demonstrated examples will include: (i) using RDF Schema for inferencing and in federated searches across NGDC and IODP data, (ii) using structured data in the data.oceandrilling.org web site, (iii) association through semantic methods of age models and depth recorded data to facilitate age based searches for data recorded by depth only.

  5. The public's trust in scientific claims regarding offshore oil drilling.

    PubMed

    Carlisle, Juliet E; Feezell, Jessica T; Michaud, Kristy E H; Smith, Eric R A N; Smith, Leeanna

    2010-09-01

    Our study examines how individuals decide which scientific claims and experts to believe when faced with competing claims regarding a policy issue. Using an experiment in a public opinion survey, we test the source content and credibility hypotheses to assess how much confidence people have in reports about scientific studies of the safety of offshore oil drilling along the California coast. The results show that message content has a substantial impact. People tend to accept reports of scientific studies that support their values and prior beliefs, but not studies that contradict them. Previous studies have shown that core values influence message acceptance. We find that core values and prior beliefs have independent effects on message acceptance. We also find that the sources of the claims make little difference. Finally, the public leans toward believing reports that oil drilling is riskier than previously believed.

  6. The public's trust in scientific claims regarding offshore oil drilling.

    PubMed

    Carlisle, Juliet E; Feezell, Jessica T; Michaud, Kristy E H; Smith, Eric R A N; Smith, Leeanna

    2010-09-01

    Our study examines how individuals decide which scientific claims and experts to believe when faced with competing claims regarding a policy issue. Using an experiment in a public opinion survey, we test the source content and credibility hypotheses to assess how much confidence people have in reports about scientific studies of the safety of offshore oil drilling along the California coast. The results show that message content has a substantial impact. People tend to accept reports of scientific studies that support their values and prior beliefs, but not studies that contradict them. Previous studies have shown that core values influence message acceptance. We find that core values and prior beliefs have independent effects on message acceptance. We also find that the sources of the claims make little difference. Finally, the public leans toward believing reports that oil drilling is riskier than previously believed. PMID:21553598

  7. Keeping Research Data from the Continental Deep Drilling Programme (KTB) Accessible and Taking First Steps Towards Digital Preservation

    NASA Astrophysics Data System (ADS)

    Klump, J. F.; Ulbricht, D.; Conze, R.

    2014-12-01

    The Continental Deep Drilling Programme (KTB) was a scientific drilling project from 1987 to 1995 near Windischeschenbach, Bavaria. The main super-deep borehole reached a depth of 9,101 meters into the Earth's continental crust. The project used the most current equipment for data capture and processing. After the end of the project key data were disseminated through the web portal of the International Continental Scientific Drilling Program (ICDP). The scientific reports were published as printed volumes. As similar projects have also experienced, it becomes increasingly difficult to maintain a data portal over a long time. Changes in software and underlying hardware make a migration of the entire system inevitable. Around 2009 the data presented on the ICDP web portal were migrated to the Scientific Drilling Database (SDDB) and published through DataCite using Digital Object Identifiers (DOI) as persistent identifiers. The SDDB portal used a relational database with a complex data model to store data and metadata. A PHP-based Content Management System with custom modifications made it possible to navigate and browse datasets using the metadata and then download datasets. The data repository software eSciDoc allows storing self-contained packages consistent with the OAIS reference model. Each package consists of binary data files and XML-metadata. Using a REST-API the packages can be stored in the eSciDoc repository and can be searched using the XML-metadata. During the last maintenance cycle of the SDDB the data and metadata were migrated into the eSciDoc repository. Discovery metadata was generated following the GCMD-DIF, ISO19115 and DataCite schemas. The eSciDoc repository allows to store an arbitrary number of XML-metadata records with each data object. In addition to descriptive metadata each data object may contain pointers to related materials, such as IGSN-metadata to link datasets to physical specimens, or identifiers of literature interpreting the data

  8. X-ray Scanner for ODP Leg 204: Drilling Gas Hydrates on Hydrate Ridge, Cascadia Continental Margin

    SciTech Connect

    Freifeld, Barry; Kneafsey, Tim; Pruess, Jacob; Reiter, Paul; Tomutsa, Liviu

    2002-08-08

    An x-ray scanner was designed and fabricated at Lawrence Berkeley National Laboratory to provide high speed acquisition of x-ray images of sediment cores collected on the Ocean Drilling Program (ODP) Leg 204: Drilling Gas Hydrates On Hydrate Ridge, Cascadia Continental Margin. This report discusses the design and fabrication of the instrument, detailing novel features that help reduce the weight and increase the portability of the instrument. Sample x-ray images are included. The x-ray scanner was transferred to scientific drilling vessel, the JOIDES Resolution, by the resupply ship Mauna Loa, out of Coos Bay, Oregon on July 25. ODP technicians were trained in the instruments operation. The availability of the x-ray scanner at the drilling site allows real-time imaging of cores containing methane hydrate immediately after retrieval. Thus, imaging experiments on cores can yield information on the distribution and quantity of methane hydrates. Performing these measurements at the location of core collection eliminates the need for high pressures or low temperature core handling while the cores are stored and transported to a remote imaging laboratory.

  9. Coring technologies for scientific drilling projects: an overview

    SciTech Connect

    Rowley, J.C.

    1985-08-01

    This report outlines the well-developed continuous diamond-coring technology of the minerals industry and the deep-spot-coring procedures that have been optimized for petroleum exploration. The coring hardware, procedures, and technology developed for the sea floor sampling by the Deep Sea Drilling Program (DSDP) are presented as an example of a hybrid core drilling system adopted for scientific coring purposes. The important features and limitations of conventional coring technologies are set forth, and the alternate approaches that will optimize core quality and reduce time and costs are illustrated. Surface rotary drives and downhole motor drives are contrasted and compared. The most significant factors of long core bit life and continuous wireline core retrieval are stressed, and their influence on reduction of operating time and costs is indicated. Several types of core bits are illustrated, both those for slim hole mining and those for oil and gas applications, as well as several core bit designs that have been developed for scientific coring projects. Finally, after concepts, applications, and hardware have been considered, drilling strategies are recommended for deep, scientific coring in hard crustal rocks.

  10. Drilling the Thuringian Syncline, Germany: core processing during the INFLUINS scientific deep drilling campaign

    NASA Astrophysics Data System (ADS)

    Abratis, Michael; Methe, Pascal; Aehnelt, Michaela; Kunkel, Cindy; Beyer, Daniel; Kukowski, Nina; Totsche, Kai Uwe

    2014-05-01

    Deep drilling of the central Thuringian Syncline was carried out in order to gather substantial knowledge of subsurface fluid dynamics and fluid rock interaction within a sedimentary basin. The final depth of the borehole was successfully reached at 1179 m, just a few meters above the Buntsandstein - Zechstein boundary. One of the aspects of the scientific drilling was obtaining sample material from different stratigraphic units for insights in genesis, rock properties and fluid-rock interactions. Parts of the section were cored whereas cuttings provide record of the remaining units. Coring was conducted in aquifers and their surrounding aquitards, i.e. parts of the Upper Muschelkalk (Trochitenkalk), the Middle Muschelkalk, the Upper Buntsandstein (Pelitrot and Salinarrot) and the Middle Buntsandstein. In advance and in cooperation with the GFZ Potsdam team "Scientific Drilling" core handling was discussed and a workflow was developed to ensure efficient and appropriate processing of the valuable core material and related data. Core curation including cleaning, fitting, marking, measuring, cutting, boxing, photographing and unrolled scanning using a DMT core scanner was carried out on the drilling site in Erfurt. Due care was exercised on samples for microbiological analyses. These delicate samples were immediately cut when leaving the core tube and stored within a cooling box at -78°C. Special software for data input was used developed by smartcube GmbH. Advantages of this drilling information system (DIS) are the compatibility with formats of international drilling projects from the IODP and ICDP drilling programs and thus options for exchanges with the international data bases. In a following step, the drill cores were brought to the national core repository of the BGR in Berlin Spandau where the cores were logged for their physical rock properties using a GeoTek multi sensor core logger (MSCL). After splitting the cores into a working and archive half, the

  11. Ocean Drilling Program Leg 178 (Antarctic Peninsula): Sedimentology of glacially influenced continental margin topsets and foresets

    USGS Publications Warehouse

    Eyles, N.; Daniels, J.; Osterman, L.E.; Januszczak, N.

    2001-01-01

    Ocean Drilling Program Leg 178 (February-April 1998) drilled two sites (Sites 1097 and 1103) on the outer Antarctic Peninsula Pacific continental shelf. Recovered strata are no older than late Miocene or early Pliocene (<4.6 Ma). Recovery at shallow depths in loosely consolidated and iceberg-turbated bouldery sediment was poor but improved with increasing depth and consolidation to allow description of lithofacies and biofacies and interpretation of depositional environment. Site 1097 lies on the outer shelf within Marguerite Trough which is a major outlet for ice expanding seaward from the Antarctic Peninsula and reached a maximum depth drilled of 436.6 m below the sea floor (mbsf). Seismic stratigraphic data show flat-lying upper strata resting on strata that dip gently seaward. Uppermost strata, to a depth of 150 mbsf, were poorly recovered, but data suggest they consist of diamictites containing reworked and abraded marine microfauna. This interval is interpreted as having been deposited largely as till produced by subglacial cannibalization of marine sediments (deformation till) recording ice sheet expansion across the shelf. Underlying gently dipping strata show massive, stratified and graded diamictite facies with common bioturbation and slump stuctures that are interbedded with laminated and massive mudstones with dropstones. The succession contains a well-preserved in situ marine microfauna typical of open marine and proglacial marine environments. The lower gently dipping succession at Site 1097 is interpreted as a complex of sediment gravity flows formed of poorly sorted glacial debris. Site 1103 was drilled in that part of the continental margin that shows uppermost flat-lying continental shelf topsets overlying steeper dipping slope foresets seaward of a structural mid-shelf high. Drilling reached a depth of 363 mbsf with good recovery in steeply dipping continental slope foreset strata. Foreset strata are dominated by massive and chaotically

  12. The Hominin Sites and Paleolakes Drilling Project (HSPDP): Understanding the paleoenvironmental and paleoclimatic context of human origins through continental drilling

    NASA Astrophysics Data System (ADS)

    Cohen, Andrew S.; Campisano, Christopher; Asrat, Asfawossen; Arrowsmith, Ramon; Deino, Alan; Feibel, Craig; Hill, Andrew; Kingston, John; Lamb, Henry; Lowenstein, Tim; Olago, Daniel; Bernhart Owen, R.; Renaut, Robin; Schabitz, Frank; Trauth, Martin

    2015-04-01

    The influence of climate and environmental history on human evolution is an existential question that continues to be hotly debated, in part because of the paucity of high resolution records collected in close proximity to the key fossil and archaeological evidence. To address this issue and transform the scientific debate, the HSPDP was developed to collect lacustrine sediment drill cores from basins in Kenya and Ethiopia that collectively encompass critical time intervals and locations for Plio-Quaternary human evolution in East Africa. After a 17 month campaign, drilling was completed in November, 2014, with over 1750m of core collected from 11 boreholes from five areas (1930m total drilling length, avg. 91% recovery). The sites, from oldest to youngest, include 1) N. Awash, Ethiopia (~3.5-2.9Ma core interval); 2) Baringo-Tugen Hills, Kenya (~3.3-2.5Ma); 3) West Turkana, Kenya (~1.9-1.4Ma); L. Magadi, Kenya (0.8-0Ma) and the Chew Bahir Basin, Ethiopia (~0.5-0Ma). Initial core description (ICD) and sampling for geochronology, geochemistry and paleoecology studies had been completed by mid2014, with the two remaining sites (Magadi and Chew Bahir) scheduled for ICD work in early 2015. Whereas the primary scientific targets were the lacustrine deposits from the hominin-bearing basin depocenters, many intervals of paleosols (representative of low lake stands and probable arid periods) were also encountered in drill cores. Preliminary analyses of drill core sedimentology and geochemistry show both long-term lake level changes and cyclic variability in lake levels, both of which may be indicative of climatic forcing events of interest to paleoanthropologists. Authors of this abstract also include the entire HSPDP field team.

  13. Analyses of operational times and technical aspects of the Salton Sea scientific drilling project: (Final report)

    SciTech Connect

    Not Available

    1986-12-01

    The Deep Salton Sea Scientific Drilling Program (DSSSDP) was conducted in Imperial County of California at the Southeastern edge of the Salton Sea. Emphasis was on the acquisition of scientific data for the evaluation of the geological environment encountered during the drilling of the well. The scientific data acquisition activities consisted of coring, running of numerous downhole logs and tools in support of defining the geologic environment and conducting two full scale flow tests primarily to obtain pristine fluid samples. In addition, drill cuttings, gases and drilling fluid chemistry measurements were obtained from the drilling fluid returns concurrent with drilling and coring operations. The well was drilled to 10,564 feet. This report describes the field portions of the project and presents an analysis of the time spent on the various activities associated with the normal drilling operations, scientific data gathering operations and the three major downhole problem activities - lost circulation, directional control and fishing.

  14. Exploring frontiers of the deep biosphere through scientific ocean drilling

    NASA Astrophysics Data System (ADS)

    Inagaki, F.; D'Hondt, S.; Hinrichs, K. U.

    2015-12-01

    Since the first deep biosphere-dedicated Ocean Drilling Program (ODP) Leg 201 using the US drill ship JOIDES Resolution in 2002, scientific ocean drilling has offered unique opportunities to expand our knowledge of the nature and extent of the deep biosphere. The latest estimate of the global subseafloor microbial biomass is ~1029cells, accounting for 4 Gt of carbon and ~1% of the Earth's total living biomass. The subseafloor microbial communities are evolutionarily diverse and their metabolic rates are extraordinarily slow. Nevertheless, accumulating activity most likely plays a significant role in elemental cycles over geological time. In 2010, during Integrated Ocean Drilling Program (IODP) Expedition 329, the JOIDES Resolutionexplored the deep biosphere in the open-ocean South Pacific Gyre—the largest oligotrophic province on our planet. During Expedition 329, relatively high concentrations of dissolved oxygen and significantly low biomass of microbial populations were observed in the entire sediment column, indicating that (i) there is no limit to life in open-ocean sediment and (ii) a significant amount of oxygen reaches through the sediment to the upper oceanic crust. This "deep aerobic biosphere" inhabits the sediment throughout up to ~37 percent of the world's oceans. The remaining ~63 percent of the oceans is comprised of higher productivity areas that contain the "deep anaerobic biosphere". In 2012, during IODP Expedition 337, the Japanese drill ship Chikyu explored coal-bearing sediments down to 2,466 meters below the seafloor off the Shimokita Peninsula, Japan. Geochemical and microbiological analyses consistently showed the occurrence of methane-producing communities associated with the coal beds. Cell concentrations in deep sediments were notably lower than those expected from the global regression line, implying that the bottom of the deep biosphere is approached in these beds. Taxonomic composition of the deep coal-bearing communities profoundly

  15. 77 FR 15382 - Outer Continental Shelf Scientific Committee; Notice of Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-15

    ... and data being produced to meet BOEM's scientific information needs for decision-making and may... Outer Continental Shelf Scientific Committee; Notice of Renewal AGENCY: Bureau of Ocean Energy... the Outer Continental Shelf (OCS) Scientific Committee (Committee). The Committee provides advice...

  16. Drilling a Volcano: Scientific Experiment at Alban Hills, Italy

    NASA Astrophysics Data System (ADS)

    Mariucci, M.; Montone, P.; Pierdominici, S.

    2005-12-01

    Only a few deep boreholes have been drilled for scientific purposes on active volcanoes in the whole world. Indeed, data collected from deep wells are fundamental to better model geophysical processes. Within the Italian research project INGV-DPC-V3.1 (funded by the Italian Civil Protection Department), we planned to drill a 400m hole with the main goal to define the orientation and magnitude of present stress field in the shallow crust in the Alban Hills. The Alban Hills are considered a quiescent volcanic district, belonging to the Quaternary volcanic belt of the Tyrrhenian coast. They are located in a densely populated area close to Rome, then an eruption would be a real risk, also considering the type of their past activity. Alban Hills have been fully studied by means of surface or very shallow observations and indirect methods: now we are going to start the first scientific program to investigate them directly at depth. We will perform some hydrofracturing tests at different depth in the drilling located in a key area, to compute, for the first time beneath a volcano, the absolute values of stress principal axes and reconstruct the stress path along depth. Analysis on core samples will allow to better understand the geomechanical characters of volcanic rocks and their underlying sedimentary basement. Coupling these studies with structural, geochronological and palaeomagnetic investigations will constrain the recent volcano-tectonic processes. The comparison of new data with the available stratigraphic logs will give insights on the occurrence of tectonic movements. Analysis of the anisotropy of the magnetic susceptibility could provide information on the Middle Pleistocene strain to be compared with present-day data. These results will be integrated with new geodetic and seismological data obtained by other research units and will be used for physical and numerical modeling to understand the behavior of the whole volcanic complex. This experiment represent a

  17. The Cenozoic Arctic Ocean Unveiled through Scientific Ocean Drilling

    NASA Astrophysics Data System (ADS)

    Mayer, L.; Moran, K.; Backman, J.

    2007-12-01

    In late summer 2004, the Integrated Ocean Drilling Program (IODP) conducted one of the most transformational missions in the almost 40 year history of scientific ocean drilling: the Arctic Coring Expedition (ACEX). This technically-challenging expedition recovered the first Cenozoic sediment record from the Arctic Ocean-extending previous records from ~1.5 Ma to an unprecedented ~56 Ma. Glimpses of the breadth of this transformation were even seen during ACEX when the massulae from fresh water ferns were found and the presence of Apectodinium augustum confirmed that the Paleocene-Eocene Thermal Maximum (PETM) was unexpectedly recovered. Soon after the expedition, when the cores were opened and analyzed, ice-rafted debris was found to have occurred much earlier than previously thought-in the Eocene in an environment of high organic carbon content. The initial analyses also revealed an extensive hiatus that occurred between several of the most spectacular sediment cores in terms of color, e.g. turquoise, and structure, starkly contrasting black and white crossbedding that is now dubbed the "zebra" core. The exciting early results attracted other investigators that expanded the scientific investigating team to more than 40 people. This, in turn, extended the analyses to include new studies that revealed surprisingly high Arctic Ocean surface water temperatures and a hydrologically active system during the PETM. Although the hiatus is a lost window in time for the Arctic paleoclimate record, it spawned other studies that integrated the regional tectonic history with ACEX results revealing a major oceanographic reorganization at 17.5 Ma-ventilation of the Arctic Ocean to the North Atlantic through the Fram Strait. In this overview, recent results from the large ACEX scientific "family" are summarized and include: a new age model; detailed analyses of the middle Eocene that document a unique brackish water environment; sea ice and iceberg history reconstructions and

  18. Yellowstone National Park as an opportunity for deep continental drilling in thermal regions. [Abstract only

    SciTech Connect

    Fournier, R.O.

    1983-03-01

    The Yellowstone caldera represnets the most intense magnatic and thermal anomaly within the conterminous United States. Voluminous rhyolite ash flows, accompanied by formation of huge calderas, occurred approximately 2.0, 1.3, and 0.6 My B.P. Although the last lava flow was about 70,000 B.P., much evidence suggests that magma may still be present at relatively shallow depth. The evidence from gravity and magnetic lows, magnetotelluric soundings, seismic wave velocities, maximum depths of earthquake foci, significant recent uplift of the caldera floor, and exceptionally high heat flux suggest that magmatic temperatures may be attained 5 to 10 km beneath much of the caldera. Most of the hot-spring and geyser activity occurs within the caldera and along a fault zone that trends north from the caldera rim through Norris Geyser Basin and Mammoth Hot Springs. The thermal waters and gases have been extensively sampled and analyzed over a period of 100 years. The chemical, isotopic, and hydrologic data obtained from natural discharges and from shallow wells drilled in thermal areas, enable formulation of models of the hydrothermal system. No previous intermediate-depth drilling has been conducted at Yellowstone to help select the best location for a deep drill hole, and because Yellowstone is a National Park, no commercial drilling will be available for add-on experiments. Also, a deep drill hole in Yellowstone would have to be sited with great regard to environmental and ecological considerations. Nevertheless, the large amount of existing data is sufficient to formulate testable models. The Yellowstone thermal anomaly is so extensive and scientifically interesting that almost any suitable drilling site there may be superior to the best drilling site in any other silicic caldera complex in the United States.

  19. Petrogenesis of High-CaO Lavas Recovered from Hawaii Scientific Drilling Project

    NASA Astrophysics Data System (ADS)

    Huang, S.

    2015-12-01

    Mauna Kea tholeiitic lavas recovered from Hawaii Scientific Drilling Project (HSDP) can be divided into three groups based on their major element compositions: High-SiO2, Low-SiO2, and High-CaO groups. Detailed geochemical and isotopic studies have been focused on the High- and Low-SiO2 group lavas, and High-CaO lavas were not well studied because they were not included in the original reference suite samples. Here we report trace element compositions determined on a suite of High-CaO glasses, and use these data to constrain the petrogenesis of High-CaO lavas. When normalized to Low-SiO2 lavas, High-CaO lavas form a U-shaped trace element pattern. That is, High-CaO lavas are enriched in both the most (Nb, Th) and the least (Sc, V) incompatible elements. This trace element difference is best explained if High-CaO parental magma represents a mixture of low degree partial melt of the Low-SiO2 mantle source and a mafic cumulate component. This mafic cumulate must be clinopyroxene-rich, and it could be delaminated mafic cumulate formed under arcs during continent formation, lower continental crust, or lower oceanic crust.Mauna Kea tholeiitic lavas recovered from Hawaii Scientific Drilling Project (HSDP) can be divided into three groups based on their major element compositions: High-SiO2, Low-SiO2, and High-CaO groups. Detailed geochemical and isotopic studies have been focused on the High- and Low-SiO2 group lavas, and High-CaO lavas were not well studied because they were not included in the original reference suite samples. Here we report trace element compositions determined on a suite of High-CaO glasses, and use these data to constrain the petrogenesis of High-CaO lavas. When normalized to Low-SiO2 lavas, High-CaO lavas form a U-shaped trace element pattern. That is, High-CaO lavas are enriched in both the most (Nb, Th) and the least (Sc, V) incompatible elements. This trace element difference is best explained if High-CaO parental magma represents a mixture of

  20. Scientific Drilling of Impact Craters - Well Logging and Core Analyses Using Magnetic Methods (Invited)

    NASA Astrophysics Data System (ADS)

    Fucugauchi, J. U.; Perez-Cruz, L. L.; Velasco-Villarreal, M.

    2013-12-01

    Drilling projects of impact structures provide data on the structure and stratigraphy of target, impact and post-impact lithologies, providing insight on the impact dynamics and cratering. Studies have successfully included magnetic well logging and analyses in core and cuttings, directed to characterize the subsurface stratigraphy and structure at depth. There are 170-180 impact craters documented in the terrestrial record, which is a small proportion compared to expectations derived from what is observed on the Moon, Mars and other bodies of the solar system. Knowledge of the internal 3-D deep structure of craters, critical for understanding impacts and crater formation, can best be studied by geophysics and drilling. On Earth, few craters have yet been investigated by drilling. Craters have been drilled as part of industry surveys and/or academic projects, including notably Chicxulub, Sudbury, Ries, Vredefort, Manson and many other craters. As part of the Continental ICDP program, drilling projects have been conducted on the Chicxulub, Bosumtwi, Chesapeake, Ries and El gygytgyn craters. Inclusion of continuous core recovery expanded the range of paleomagnetic and rock magnetic applications, with direct core laboratory measurements, which are part of the tools available in the ocean and continental drilling programs. Drilling studies are here briefly reviewed, with emphasis on the Chicxulub crater formed by an asteroid impact 66 Ma ago at the Cretaceous/Paleogene boundary. Chicxulub crater has no surface expression, covered by a kilometer of Cenozoic sediments, thus making drilling an essential tool. As part of our studies we have drilled eleven wells with continuous core recovery. Magnetic susceptibility logging, magnetostratigraphic, rock magnetic and fabric studies have been carried out and results used for lateral correlation, dating, formation evaluation, azimuthal core orientation and physical property contrasts. Contributions of magnetic studies on impact

  1. Crustal Magnetization and Magnetic Petrology in Basalts - What Can We Learn from Scientific Drillings?

    NASA Astrophysics Data System (ADS)

    Kontny, A. M.

    2014-12-01

    Rock magnetic and magneto-mineralogical data from scientific drillings contribute to our understanding of the growth history and tectonic evolution of volcanic structures and allows for an improved interpretation of magnetic anomaly data. Such data are not only important for the magnetic structure of volcanic buildings and spreading ridges on Earth but may also provide basic data for the interpretation of extraterrestrial magnetic anomalies like on Mars. Crustal magnetization of basalts is well studied since decades and in general, the amplitude of magnetic anomalies is mainly related to the induced and remanent magnetization. Direct measurements of the magnetic field and measurements of magnetic properties of oceanic and continental crust have indicated that the crustal magnetization is very complex and depends on different factors like e.g. magma composition, cooling rate, age and hydrothermal alteration. Generally a high oxygen fugacity (above the NNO buffer) and a low Ti/(Ti+Fe) ratio of the basaltic melt are suggested as a precondition for high concentration of magnetic minerals and therefore high primary TRM. High temperature subsolidus reactions and hydrothermal alteration as e.g. observed in the strongly magnetic basalts from the Stardalur drill core, Iceland, seems to increase NRM intensity and magnetic susceptibility due to creation of small, secondary magnetite (Vahle et al. 2007). Probably the increase occurred after the extinction of the hydrothermal system because active high-temperature (>150 °C) geothermal areas like the Krafla caldera, NE-Iceland, often show distinct magnetic lows in aeromagnetic anomaly maps suggesting a destruction of magnetic minerals by hydrothermal activity (Oliva-Urcia et al. 2011). The destruction explains the significant magnetization loss, which is seen in many local magnetic anomaly lows within the oceanic crust and volcanic islands like Iceland or Hawaii. Borehole and core magnetic susceptibility measurements in

  2. PREFACE: Scientific and Technical Challenges in the Well Drilling Progress

    NASA Astrophysics Data System (ADS)

    2015-02-01

    The Conference "Advanced Engineering Problems in Drilling" was devoted to the 60th anniversary of the Drilling Department, Institute of Natural Resources. Today this Department is the "descendant" of two existing departments - Mining Exploration Technology and Oil and Gas Drilling. It should be mentioned that this remarkable date is associated with the first graduation class of mining engineers in "Mining Exploration Technologies", as well as the 30th anniversary of the Oil and Gas Well Drilling Department. Anniversary is an excellent occasion to remember one's historical past. At the beginning of the last century within the Tomsk Technological Institute n.a. Emperor Nikolai II the Mining Department was established which soon embraced the Obruchev-Usov Mining-Geological School. This School became the parent of mining-geological education in the Asian region of Russia, as well as the successor of mining-geological science. It was and is today one of the leading schools in the spheres of mineral resources exploration, surveying and mining. 1927 is the year of the establishment of the Department of Technology in Mineral Exploration. SibGeokom (Western-Siberia branch of the Geological Committee) under the supervision of M.A. Usov obtained the first Krelis rotary boring drill. Prior to that only the Keystone cable drilling rig was used in exploration. It was I.A. Molchanov who was responsible for the development and implementation of new technology in the field of exploration. In the yard of SibGeokom (now it is Building № 6, Usov St.) the first drilling rig was mounted. This was the beginning of the first training courses for Krelis drilling foremen under the supervision of I.A. Molchanov. In 1931 I.A. Molchanov headed the Department of Exploration which was located in Building № 6. In the outside territory of this building a drilling site was launched, including Keystone cable drilling rig, CAM-500 drilling rig and others. In the Building itself, i.e. in one study

  3. Development of downhole instruments for use in the Salton Sea Scientific Drilling Project

    SciTech Connect

    Carson, C.C.

    1986-01-01

    Sandia developed high temperature logging instruments for use in the Salton Sea Scientific Drilling Project. These tools - Kuster mechanical tools for measuring temperature, pressure, and flow; a temperature and pressure tool built around an electronic memory; and a timing and control unit to power a downhole sampler - were all designed for slickline operation to temperatures up to 400/sup 0/C. The drilling of the scientific well and the application of these tools in it were successful. The technology advances made in the development of these tools have been transferred to industry. These advances should prove valuable in future scientific and commercial applications.

  4. 75 FR 10809 - Outer Continental Shelf (OCS) Scientific Committee-Notice of Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-09

    ... to the Secretary of the Interior through the Director of the Minerals Management Service. The Committee reviews the relevance of the research and data being produced to meet MMS scientific information... Outer Continental Shelf (OCS) Scientific Committee--Notice of Renewal AGENCY: Minerals...

  5. Hawaii scientific drilling protect: Summary of preliminary results

    USGS Publications Warehouse

    DePaolo, D.; Stolper, E.; Thomas, D.; Albarede, F.; Chadwick, O.; Clague, D.; Feigenson, M.; Frey, F.; Garcia, M.; Hofmann, A.; Ingram, B.L.; Kennedy, B.M.; Kirschvink, J.; Kurz, M.; Laj, Carlo; Lockwood, J.; Ludwig, K.; McEvilly, T.; Moberly, R.; Moore, G.; Moore, J.; Morin, R.; Paillet, F.; Renne, P.; Rhodes, M.; Tatsumoto, M.; Taylor, H.; Walker, G.; Wilkins, R.

    1996-01-01

    Petrological, geochemical, geomagnetic, and volcanological characterization of the recovered core from a 1056-m-deep well into the flank of the Mauna Kea volcano in Hilo, Hawaii, and downhole logging and fluid sampling have provided a unique view of the evolution and internal structure of a major oceanic volcano unavailable from surface exposures. Core recovery was ???90%, yielding a time series of fresh, subaerial lavas extending back to ???400 ka. Results of this 1993 project provide a basis for a more ambitious project to core drill a well 4.5 km deep in a nearby location with the goal of recovering an extended, high-density stratigraphic sequence of lavas.

  6. Multiple Geophysical Observations by a newly developed multi-component borehole instrument at the Continental Deep Drilling Site of the CCSD, Donghai, China

    NASA Astrophysics Data System (ADS)

    Xu, J.; Zhao, Z.; Ishii, H.; Yamauchi, T.

    2004-12-01

    Multiple Geophysical Observations by a newly developed multi-component borehole instrument at the Continental Deep Drilling Site of the CCSD, Donghai, China Jiren Xu1 (+86-10-68992879; xujiren@ccsd.org.cn) Zhixin Zhao1 (+86-10-68999734; zhaozhixin@ccsd.org.cn) Hiroshi Ishii2 (+81-0572-67-3105; ishii@tries.gr.jp Tsuneo Yamauchi3 (+81-052-789-3045; yamauchi@seis.nagoya-u.ac.jp) 1 Institute of Geology, Chinese Academy of Geological Sciences, China 2 Tono Research Institute of Earthquake Science (TRIES), Japan 3 Graduate School of Environmental Studies, Nagoya University, Japan The Chinese Continental Scientific Drilling (CCSD) site is located in the Donghai area of the Dabie-Sulu belt, which is the largest UHPM belt in the world. The drilling of the main borehole with 5000m will finish in next year. Three satellite boreholes, PP1, PP2 and PP3 were drilled and various surveys have been performed in the Donghai area about 6 years ago. We are going to install a newly developed Multi-component Instrument for borehole observations in main hole near the large Tanlu fault, and establish a long-term underground observation laboratory, which is the first noiseless one in China. The seismic activity and various geophysical fields, viz. strain, geomagnetism, geothermy, tilt, pore pressure etc. will be investigated. Data from the underground laboratory will be open to scientific, engineering and public services. We will measure the initial stress in various depths of the borehole by overcoring method using a new developed wireless intelligent type strainmeter of in-situ stress. Establishing a long-term noiseless underground observation laboratory at deep borehole and investigating crustal movement in East China are important for observing the physical conditions of the earth¡_s interior and solving many social problems, such as resources, disasters and environment. Multiple geophysical observations and the study in deep borehole will speed up and develop the study on tectonics

  7. Research drilling in an active geothermal system: Salton Sea Scientific Drilling Project (SSSDP)

    SciTech Connect

    Elders, W.A.

    1987-05-01

    In March 1986 a research borehole, designed to study the processes occurring in an active, high-temperature, magmatically driven hydrothermal system, reached a depth of 3.22 km in the Salton Sea geothermal field at the northern end of the Gulf of California. Only 10% of the borehole was cored; however, an integrated set of drill cuttings, wireline logs, and downhole measurements were obtained using high-temperature tools and cables. Similarly, downhole VSP, gravity, and fluid sampling tools were successfully deployed. The borehole penetrates Pleistocene and upper Pliocene lake and delta sediments with minor extrusive and intrusive igneous rocks, all of which are being progressively altered to greenschist facies hornfelses. A flow test of a zone at 1865 m with a temperature of 305/sup 0/C, produced Na, Ca, and K chloride brines containing 24% of dissolved salts. Flows of up to 200 tons/hr of steam and brine were obtained. An even more productive zone, the deepest tested at 3215 m where the temperature was 355/sup 0/C, briefly attained a peak flow of 400 tons/hr during a 48-hour test. However, this test was marred by interference from other flow zones. Although the borehole was shut in after the 7-in. (17.78-cm) diameter liner parted, a comprehensive program of laboratory studies is underway in about 40 different institutions. Results to date have more than met their original goals. In the summer of 1987, field operations will resume and will include extensive reservoir engineering. However, drilling deeper to penetrate the magmatic rocks that underlie the explored hydrothermal system must await future funding.

  8. A new approach to hydrologic testing during drilling of a deep borehole and its application to the Swedish scientific deep drilling COSC project

    NASA Astrophysics Data System (ADS)

    Tsang, C. F.; Rosberg, J. E.; Juhlin, C.; Niemi, A. P.; Doughty, C.; Dobson, P. F.; Birkholzer, J. T.

    2015-12-01

    Drilling of a deep borehole does not normally allow for hydrogeologic testing during the drilling period. The only time hydraulic tests are performed is when drilling encounters a large-transmissivity zone as evidenced by a large loss (or high return) of drilling fluid. The present paper proposes a new approach, that of conducting Flowing Fluid Electric Conductivity (FFEC) logging during the drilling period, with negligible impact on drilling schedule, yet providing important and accurate information on depth locations of both high- and low-transmissivity zones and their in-situ hydraulic conductivities. The information can be used to guide downhole fluid sampling and post-drilling detailed testing of the borehole. The proposed method has been applied to the drilling of a 2500-m borehole at Åre, Northern Sweden, which was initiated on April 28 and completed on August 26, 2014, with 99% core recovery. This borehole, named COSC-1, was drilled as part of the Swedish Scientific Deep Drilling COSC project, where COSC stands for Collisional Orogeny in the Scandinavian Caledonides. The project is a multidisciplinary project with the aim of gaining a deeper understanding of mountain belt dynamics in the Scandinavian Caledonides. Scientific investigations which include a range of topics from studies of ancient orogeny to the present-day hydrological cycle are conducted under six working groups: (1) tectonics, (2) geophysics, (3) geothermics, (4) hydrology, (5) microbiology and (6) drilling management and technology. In this talk, the new approach to hydrologic testing during the drilling period will be described and its application to the drilling of COSC-1 borehole presented. Results show that from 300 m to the borehole bottom at 2500 m, there are eight hydraulically active zones or fractures in COSC-1, with very low transmissivity values ranging over one order of magnitude.

  9. Scientific Use of the Sampler, Drill and Distribution Subsystem (SD2)

    NASA Astrophysics Data System (ADS)

    Armellin, R.; Di Lizia, P.; Crepaldi, M.; Bernelli-Zazzera, F.; Ercoli Finzi, A.

    Rosetta is the third cornerstone mission of the European Space Agency scientific program "Horizon 2000". Rosetta will be the first spacecraft to orbit around a comet nucleus. It was launched in March 2004 and will reach the comet 67P/ChurymovGerasimenko in 2014. A lander (Philae) will be released and land on the comet surface for in-situ investigation. One of the key subsystems of the lander Philae is the Sampler, Drill and Distribution (SD2) subsystem. SD2 provides in-situ operations devoted to soil drilling, samples collection, and their distribution to two evolved gas analyzers (COSAC and PTOLEMY) and one imaging instrument (ÇIVA). Recent studies have proven the existence of a correlation between the drill behavior during perforation and the mechanical characteristics of the cometary soil. This outlines the possibility of using SD2 not only as a tool to support other instruments, but also as a scientific instrument itself. In this paper the possibility of using the drill as a quasi-static penetrator is presented. Within this approach, laboratory tests on glass-foam specimens of different porosity show that the drill behaviour during penetration can be exploited for cometary soil characterization.

  10. 76 FR 23331 - Outer Continental Shelf (OCS) Scientific Committee (SC); Announcement of Plenary Session

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-26

    ... status of the BOEMRE and its activities. There will be a presentation on Alternative Energy Programs... Bureau of Ocean Energy Management, Regulation and Enforcement Outer Continental Shelf (OCS) Scientific Committee (SC); Announcement of Plenary Session AGENCY: Bureau of Ocean Energy Management, Regulation...

  11. 77 FR 4056 - Outer Continental Shelf (OCS) Scientific Committee (SC); Announcement of Plenary Session

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-26

    ... Bureau of Ocean Energy Management Outer Continental Shelf (OCS) Scientific Committee (SC); Announcement of Plenary Session AGENCY: Bureau of Ocean Energy Management (BOEM), Interior. ACTION: Notice of..., Executive Secretary to the OCS SC, Bureau of Ocean Energy Management, 381 Elden Street, Mail Stop...

  12. Scientific drilling projects in ancient lakes: Integrating geological and biological histories

    NASA Astrophysics Data System (ADS)

    Wilke, Thomas; Wagner, Bernd; Van Bocxlaer, Bert; Albrecht, Christian; Ariztegui, Daniel; Delicado, Diana; Francke, Alexander; Harzhauser, Mathias; Hauffe, Torsten; Holtvoeth, Jens; Just, Janna; Leng, Melanie J.; Levkov, Zlatko; Penkman, Kirsty; Sadori, Laura; Skinner, Alister; Stelbrink, Björn; Vogel, Hendrik; Wesselingh, Frank; Wonik, Thomas

    2016-08-01

    Sedimentary sequences in ancient or long-lived lakes can reach several thousands of meters in thickness and often provide an unrivalled perspective of the lake's regional climatic, environmental, and biological history. Over the last few years, deep-drilling projects in ancient lakes became increasingly multi- and interdisciplinary, as, among others, seismological, sedimentological, biogeochemical, climatic, environmental, paleontological, and evolutionary information can be obtained from sediment cores. However, these multi- and interdisciplinary projects pose several challenges. The scientists involved typically approach problems from different scientific perspectives and backgrounds, and setting up the program requires clear communication and the alignment of interests. One of the most challenging tasks, besides the actual drilling operation, is to link diverse datasets with varying resolution, data quality, and age uncertainties to answer interdisciplinary questions synthetically and coherently. These problems are especially relevant when secondary data, i.e., datasets obtained independently of the drilling operation, are incorporated in analyses. Nonetheless, the inclusion of secondary information, such as isotopic data from fossils found in outcrops or genetic data from extant species, may help to achieve synthetic answers. Recent technological and methodological advances in paleolimnology are likely to increase the possibilities of integrating secondary information. Some of the new approaches have started to revolutionize scientific drilling in ancient lakes, but at the same time, they also add a new layer of complexity to the generation and analysis of sediment-core data. The enhanced opportunities presented by new scientific approaches to study the paleolimnological history of these lakes, therefore, come at the expense of higher logistic, communication, and analytical efforts. Here we review types of data that can be obtained in ancient lake drilling

  13. Geochemistry of pore waters from Shell Oil Company drill holes on the continental slope of the northern Gulf of Mexico

    USGS Publications Warehouse

    Manheim, F. T.; Bischoff, J.L.

    1969-01-01

    Pore waters were analyzed from 6 holes drilled from M.V. "Eureka" as a part of the Shell Oil Co. deeper offshore study. The holes were drilled in water depths of 600-3,000 ft. (approximately 180-550 m) and penetrated up to 1,000 ft. (300 m) of Pliocene-Recent clayey sediments. Salt and anhydrite caprock was encountered in one diapiric structure on the continental slope. Samples from holes drilled near diapiric structures showed systematic increases of pore-water salinity with depth, suggestive of salt diffusion from underlying salt plugs. Anomalous concentrations of K and Br indicate that at least one plug contains late-stage evaporite minerals. Salinities approaching halite saturation were observed. Samples from holes away from diapiric structures showed little change in pore-water chemistry, except for loss of SO4 and other variations attributable to early-stage diagenetic reactions with enclosing sediments. Thus, increased salt concentrations in even shallow sediments from this part of the Gulf appear to provide an indicator of salt masses at depth. ?? 1969.

  14. San Andreas fault zone drilling project: scientific objectives and technological challenges

    USGS Publications Warehouse

    Hickman, Stephen; Younker, Leland; Zobeck, Mark; Cooper, George

    1994-01-01

    We are leading a new international initiative to conduct scientific drilling within the San Andreas fault zone at depths of up to 10 km. This project is motivated by the need to understand the physical and chemical processes operating within the fault zone and to answer fundamental questions about earthquake generation along major plate-boundary faults. Through an integrated program of coring, fluid sampling, in-situ and laboratory experimentation and long-term monitoring, we hope to provide fundamental constraints on the structure, composition, mechanical behavior and physical state of the San Andreas fault system at depths comparable to the nucleation zones of great earthquakes. The drilling, sampling and observational requirements needed to ensure the success of this project are stringent. These include: 1) drilling stable vertical holes to depths of about 9 km in fractured rock at temperatures of up to 300??C; 2) continuous coring of inclined holes branched off these vertical boreholes to intersect the fault at depths of 3, 6 and 9 km; 3) conducting sophisticated borehole geophysical measurements and fluid/rock sampling at high temperatures and pressures; and 4) instrumenting some or all of these inclined core holes for continuous monitoring of seismicity and a broad range of physical and chemical properties over periods of up to several decades. For all of these tasks, because of the overpressured clay-rich formations anticipated within the fault zone at depth, we expect to encounter difficult drilling, coring and hole-completion conditions in the regions of greatest scientific interest.

  15. San Andreas fault zone drilling project: scientific objectives and technological challenges

    USGS Publications Warehouse

    Hickman, S.H.; Younker, L.W.; Zoback, M.D.

    1995-01-01

    We are leading a new international initiative to conduct scientific drilling within the San Andreas fault zone at depths of up to 10 km. This project is motivated by the need to understand the physical and chemical processes operating within the fault zone and to answer fundamental questions about earthquake generation along major plate-boundary faults. Through a comprehensive program of coring, fluid sampling, downhole measurements, laboratory experimentation, and long-term monitoring, we hope to obtain critical information on the structure, composition, mechanical behavior and physical state of the San Andreas fault system at depths comparable to the nucleation zones of great earthquakes. The drilling, sampling and observational requirements needed to ensure the success of this project are stringent. These include: 1) drilling stable vertical holes to depths of about 9 km in fractured rock at temperatures of up to 300°C; 2) continuous coring and completion of inclined holes branched off these vertical boreholes to intersect the fault at depths of 3, 6, and 9 km; 3) conducting sophisticated borehole geophysical measurements and fluid/rock sampling at high temperatures and pressures; and 4) instrumenting some or all of these inclined core holes for continuous monitoring of earthquake activity, fluid pressure, deformation and other parameters for periods of up to several decades. For all of these tasks, because of the overpressured clay-rich formations anticipated within the fault zone at depth, we expect to encounter difficult drilling, coring and hole-completion conditions in the region of greatest scientific interest.

  16. Riser technology for deepwater scientific drilling in the 21st century

    SciTech Connect

    Sparks, C.P.

    1995-12-31

    Scientific drilling and coring in the deep ocean is at present carried out in riserless mode using oil industry type equipment. Penetration, hole stability and core recovery could be greatly improved if riser technology were available to allow the use of mud, and if mining technology could be adapted for use in deep water. This paper explores the possibility of using a slimline riser (9 5/8 inch O.D.) for scientific drilling and coring in 4,000 m of water. The mode of operation is described and preliminary analyses of such a riser made from different materials (steel, titanium, aluminum and composite) are presented. In 4,000 m of water it is shown that one of the principal problems is the axial dynamic behavior of the riser in the hung-off mode. Analyses show that, in such conditions, slimline risers have greatly improved behavior compared to oil industry risers. They are also much simpler, and are an order of magnitude less massive. Mining drilling systems (3 1/2 inch O.D.) with diamond bits show great promise for improving core recovery in fractured basalt. They can be deployed through a standard drill string (5 inch O.D.) which then acts as a mini-riser. The paper shows that one of the keys to their use is a clear understanding of the axial dynamic behavior of the mini-riser in the connected mode (connected to the seabed).

  17. Problems of deep drilling in abnormally pressured zones of the Kara Sea continental shelf

    SciTech Connect

    Simonov, V.I.

    1996-12-31

    There are discussed results of drilling operations in shelf hydrocarbon areas of the Far North of Tyumen Region (Kharassavieskaya, Bovanenkovskaya and Krusenshternskaya ones) and on the Bely Island. The author describes equipment and technologies used, problems arising in the process of operations and possible ways of solving them. Application of the results discussed in the report seems rather attractive in connection with possible realization of joint projects on development of the mentioned areas. Thus, Amoco Eurasia plans to participate in development of Bovanenkovskoye and Novoportovskoye fields. Well planning for Amoco has been done of specialists of ZapSibBurNIPI. Experience of Russian drilling companies in the Yamal area (Far North of Tyumen Region) has proved that well planning for shelf areas requires special attention as drilling-in both overpressured zones (Bovanenkovskoye field) and underpressured ones (Novoportovskoye field) is done actually in balance. Investigated are reasons for such drilling problems as kicks and lost circulation. Taking them into consideration will help to decrease considerably the cost of well drilling in shelf areas.

  18. Salton Sea Scientific Drilling Program: Seventh quarterly progress report, April-June 1986

    SciTech Connect

    Not Available

    1986-09-01

    The progress and direction of the Salton Sea Scientific Drilling Program (SSSDP) is outlined. This reporting period, from April 1 through June 30, 1986, began with initiation of the 6-month shut-in period. Emphasis was placed upon conducting experiments such as downhole temperature and pressure surveys, distribution of samples to researchers, reporting and disseminating data thus far analyzed, and planning future operations in the SSSDP well.

  19. A national drilling program to study the roots of active hydrothermal systems related to young magmatic intrusions

    SciTech Connect

    Not Available

    1984-01-01

    The importance of studies of active hydrothermal-magma systems as part of a national continental scientific drilling program has been emphasized in numerous workshops and symposia. The present report, prepared by the Panel on Thermal Regimes of the Continental Scientific Drilling Committee, both reinforces and expands on earlier recommendations. The US Geodynamics Committee 1979 report of the Los Almos workshop, Continental Scientific Drilling Program, placed major emphasis on maximizing the scientific value of current and planned drilling by industry and government, supplementing these efforts with holes drilled solely for scientific purposes. Although the present report notes the importance of opportunities for scientific investigations that may be added on to current, mission-oriented drilling activities, the Panel on Thermal Regimes recognizes that such opportunities are limited and thus focused its study on holes dedicated to broad scientific objectives. 16 refs., 2 figs., 4 tabs.

  20. New roles of LWD and wireline logging in scientific ocean drilling

    NASA Astrophysics Data System (ADS)

    Sanada, Y.; Kido, Y. N.; Moe, K.; Aoike, K.

    2014-12-01

    D/V Chikyu implemented by CDEX/JAMSTEC joined IODP from 2007. Various LWD (Logging While Drilling) and wireline logging have been carried out in many expeditions and for various purposes. Significant features of logging in Chikyu expeditions are many use of LWD than wireline logging, and riser dirlling. riser selected specific tools for each scientific target, and 3) carried out various borehole experiments. LWD has been more popular than wireline logging in Chikyu expeditions, because its advantages match theirs science targets. The advantages are followings. 1) LWD has more opportunities for measurement in unstable borehole, such as in the series of Nankai trough drilling expeditions. 2) LWD realtime data allows us to make realtime interpretation and operational decision. Realtime interpretation was required to set obsevartory at the properposition. 3) LWD before coring allows us to make a strategy of spot coring.We can design coring intervals for our interest and core length to improve core recovery.Riser drilling brings us merits for logging. One is hole stability (good hole condition) and the other is the use of large diameter tools. Controled drilling mud in riser drilling system prevent mud invasion to formation and mitigates collapse of borehole wall. They reduce the risk of tool stack and improve data quality. Large diameter of riser pipe enhances variation of tool seizes. A couple of new tools were used for new measurement and improvement of the data quality. For example, SonicScanner (trademark of Schulumberger) successfully measured compressional and share velocity in very low velocities at the soft sediment, where it has been difficult to measure them with conventional DSI tool (Exp319). The stress and pore pressure in the borehole were measured with the wireline logging tool, (Schlumberger MDT). The single probe tool enable to measure temporal formation fluid pressure. The double packer tool enable to fracture test by sealing and pumping in the

  1. Constraining Crustal Anisotropy by Receiver Functions at the Deep Continental Drilling Site KTB in Southern Germany

    NASA Astrophysics Data System (ADS)

    Bianchi, Irene; Qorbani, Ehsan; Bokelmann, Götz

    2016-04-01

    As one of the rare observational tools for studying deformation and stress within the Earth, seismic anisotropy has been one of the focuses of geophysical studies over the last decade. In order to unravel the anisotropic properties of the crust, the teleseismic receiver functions (RF) methodology has started to be widely applied recently. Such effects of anisotropy on RF were illustrated in theoretical studies, showing the strong backazimuthal dependence of RF on the 3D characteristics of the media sampled by the waves. The use of teleseismic RF has the advantage of not being affected by a heterogeneous depth distribution of local earthquakes, since teleseismic rays sample the entire crust beneath the stations. The application of this technique however, needs to be critically assessed using a suitable field test. To test the technique, we need a crustal block where the underground structure is reasonably well-known, e.g., where there is extensive knowledge from local seismic experiments and drilling. A field experiment has thus been carried out around the KTB (Kontinental Tiefbohrung) site in the Oberpfalz area in Southeastern Germany, in order to compare with previous results from deep drilling, and high-frequency seismic experiments around the drill site. The investigated region has been studied extensively by local geophysical experiments, and geological studies. The deep borehole was placed into gneiss rocks of the Zone Erbendorf-Vohenstrauss. The drilling activity lasted from 1987 to 1994, and descended down to a depth of 9101 meters, sampling an alternating sequence of paragneiss and amphibolite, with metamorphism of upper amphibolite facies conditions, and ductile deformation produced a strong foliation of the rocks. The application of the RFs reveals strong seismic anisotropy in the upper crust related to the so-called Erbendorf body. The SKS shear-wave splitting method has been applied as well, revealing coherent results for the whole region with exception

  2. Drilling's value stressed at hearing

    NASA Astrophysics Data System (ADS)

    Katzoff, Judith A.

    A Senate subcommittee recently heard testimony from government, university, and industry geoscientists in support of a bill that would formalize the planning and coordination of continental scientific drilling. Among the reasons given in favor of the bill by the 13 witnesses at the July 24, 1986, hearing were the possible benefits of a continental drilling program for our understanding of the history of the earth's crust, the origins of mineral and energy resources, the mechanisms of earthquakes and volcanos, and the migration of toxic wastes. The hearing was held by the Subcommittee on Natural Resources Development and Production, chaired by Sen. John W. Warner (R-Va.).

  3. International Collaboration in Data Management for Scientific Ocean Drilling: Preserving Legacy Data While Implementing New Requirements.

    NASA Astrophysics Data System (ADS)

    Rack, F. R.

    2005-12-01

    The Integrated Ocean Drilling Program (IODP: 2003-2013 initial phase) is the successor to the Deep Sea Drilling Project (DSDP: 1968-1983) and the Ocean Drilling Program (ODP: 1985-2003). These earlier scientific drilling programs amassed collections of sediment and rock cores (over 300 kilometers stored in four repositories) and data organized in distributed databases and in print or electronic publications. International members of the IODP have established, through memoranda, the right to have access to: (1) all data, samples, scientific and technical results, all engineering plans, data or other information produced under contract to the program; and, (2) all data from geophysical and other site surveys performed in support of the program which are used for drilling planning. The challenge that faces the individual platform operators and management of IODP is to find the right balance and appropriate synergies among the needs, expectations and requirements of stakeholders. The evolving model for IODP database services consists of the management and integration of data collected onboard the various IODP platforms (including downhole logging and syn-cruise site survey information), legacy data from DSDP and ODP, data derived from post-cruise research and publications, and other IODP-relevant information types, to form a common, program-wide IODP information system (e.g., IODP Portal) which will be accessible to both researchers and the public. The JANUS relational database of ODP was introduced in 1997 and the bulk of ODP shipboard data has been migrated into this system, which is comprised of a relational data model consisting of over 450 tables. The JANUS database includes paleontological, lithostratigraphic, chemical, physical, sedimentological, and geophysical data from a global distribution of sites. For ODP Legs 100 through 210, and including IODP Expeditions 301 through 308, JANUS has been used to store data from 233,835 meters of core recovered, which are

  4. Participation in the Creede Scientific Drilling Project as on-site Principal Investigator

    SciTech Connect

    Hulen, J.B.

    1992-06-01

    Scientific questions addressed by the Creede Scientific Drilling Project were as follows (Bethke et al., 1992): (1) Did the lacustrine sedimentary sequence filling the moat of Creede caldera serve as reservoir for the moderately-saline aqueous fluids which scavenged and then transported silver and base metals to ore-depositional sites for the rich epithermal deposits of the Creede mining district (Fig. 1) ; (2) what were the chemical and isotopic compositions of these fluids prior to their entry into the Creede fracture (later vein) system; (3) how did these chemical and isotopic compositions evolve in transit to the ore-depositional site ; (4) how did the Creede caldera form and evolve ; (5) what is the present thermal regime in Creede caldera moat [hor ellipsis]the, paleothermal regime ; (5) what are the hydrologic transport properties of the moat sedimentary rocks ; (6) what diagenetic or hydrothermal veins disrupt the moat sedimentary sequence, and what do their paragenetic relationships, mineralogic compositions, fluid-inclusion characteristics, and stable-isotope systematics reveal about evolution of the Creede hydrothermal system Two Creede caldera moat drill holes were completed for this project.

  5. Participation in the Creede Scientific Drilling Project as on-site Principal Investigator. Final report

    SciTech Connect

    Hulen, J.B.

    1992-06-01

    Scientific questions addressed by the Creede Scientific Drilling Project were as follows (Bethke et al., 1992): (1) Did the lacustrine sedimentary sequence filling the moat of Creede caldera serve as reservoir for the moderately-saline aqueous fluids which scavenged and then transported silver and base metals to ore-depositional sites for the rich epithermal deposits of the Creede mining district (Fig. 1)?; (2) what were the chemical and isotopic compositions of these fluids prior to their entry into the Creede fracture (later vein) system; (3) how did these chemical and isotopic compositions evolve in transit to the ore-depositional site?; (4) how did the Creede caldera form and evolve?; (5) what is the present thermal regime in Creede caldera moat? {hor_ellipsis}the, paleothermal regime?; (5) what are the hydrologic transport properties of the moat sedimentary rocks?; (6) what diagenetic or hydrothermal veins disrupt the moat sedimentary sequence, and what do their paragenetic relationships, mineralogic compositions, fluid-inclusion characteristics, and stable-isotope systematics reveal about evolution of the Creede hydrothermal system? Two Creede caldera moat drill holes were completed for this project.

  6. First Riser Logging in Scientific Ocean Drilling: Operational Planning and results/reality

    NASA Astrophysics Data System (ADS)

    Sanada, Yoshinori; Kyaw Thu, Moe; Kido, Yukari; Kawamura, Yoshihisa; Hino, Ryota; Eguchi, Nabuhisa; Toczko, Sean; Takahashi, Kyoma; 319 Science Party, Iodp

    2010-05-01

    distribution. The 16 sets of the no planned 3-C geophone are clumped with 15m spacing at ~1300-1600mbsf in the cased C0009 hole by Chikyu. Eight OBS (Ocean Bottom Seismometer)s deployed at the seafloor. JAMSTEC R/V Kairei shot along 53km line (maximum offset from the hole is ~30km) and round 3.5km circle with 16-array tuned air-gun. Zero-offset VSP was conducted to measure velocity and create seismogram along the well as well. Using high resolution data obtained from the equipment, detailed structural interpretation, anisotropy analysis, and shear velocity analysis are being carried out. Riser drilling takes not only operational advantages such as deeper and safety hole, but also scientific advantage such as increasing measurement items which has never done in riserless drilling and improving data quality. It enlarge the options to approach new discovery and Science.

  7. Unzen Volcano Scientific Drilling: Well Logging Data of the USDP-4

    NASA Astrophysics Data System (ADS)

    Kajiwara, T.; Ikeda, R.; Nakada, S.; Uto, K.; Nishi, M.

    2004-12-01

    The Unzen Volcano Scientific Drilling Project (USDP) has been conducted to target the magma conduit shortly after the 1990-1995 eruption. After two drillings of 752 m and 1463 m deep at the flank site, the conduit surveying well (USDP-4) was drilled to the depth of 1995.75 m in the mountainside to clarify the ascending and degassing mechanisms of magma. We have conducted physical logging in the USDP-4 well to elucidate the structure and material properties in and around the conduit. The logging items are as follows: Gamma Ray (167 to 1780 m), Resistivity (167 to 1795 m), Self-Potential (167 to 1775 m), Density (392 to 1782 m), Neutron Porosity (770 to 1777 m), Sonic velocity (392 to 1787 m), Full-bore Formation Micro Imager (FMI : 167 to 1540 m), Formation Micro Scanner (FMS : 1550 to 1791.5 m) and VSP (237 to 737m). Because of the high inclination of this well (Sakuma et al., this meeting), we used the Tough Logging Condition System (TLCS) below the depth of 800 m where the well inclination is up to 70 degrees. We had some concern because of a possible well collapse and high temperatures at the conduit zone before drilling. However, a good well condition and low temperature enabled us to obtain good logging data from this well. Comparing the logging data and lithology, determined mainly from drilled cores and cuttings (Nakada et al., this meeting), we can make clear the features of its formation and material properties found within the well. Gamma Ray varies between 40 API to 100 API, with the high (90 to 100 API) value coinciding with a lava dike. Resistivity structure can be classified into 5 layers. The value of resistivity above 240 m, 240 to 550 m, 550 to 1100 m, 1100 to 1760 m and below 1760 m are a few hundred ohm-m, 500 to 1000 ohm-m, about 100 ohm-m, about 10 ohm-m, about 100 ohm-m, respectively. The lava dike indicates a characteristic feature of about 100 ohm-m even though it is distributed in the 10 ohm-m layer. P-wave velocity varies 3 to 5 km

  8. Early Cretaceous rifting and exposure of periodotite on the Galicia continental margin: preliminary results of ocean drilling program Leg 103

    SciTech Connect

    Winterer, E.; Boillot, G.; Meyer, A.; Applegate, J.; Baltuck, M.; Bergen, J.; Comas, M.; Davies, T.; Dunham, K.; Evans, C.; Girardeau, J.

    1985-01-01

    Results of drilling near the ocean-continent boundary on the Galicia margin of Iberia shed new light on the timing of rifting and demonstrate the presence at the foot of the margin of a ridge of foliated, lineated, sheared and serpentinized harzburgite, probably representing oceanic mantle. Fifty km east of the periodotite ridge, on a continental fault block, the stratigraphic section sampled during Leg 103 above Hercynian basement comprises: (1) at least 250m of Upper Jurassic and possibly lowest Cretaceous limestone, dolomite and minor sandstone and claystone deposited in relatively shallow water before rifting began; (2) about 20m of Valanginian calpionellid marlstone, probably deposited in moderate depths at the onset of rifting; (3) from about 500 to 1500m of Valanginian and Hauterivian turbidite sandstone rich in terrestrial plant debris, and Barremian and Aptian( ) claystone and marlstone deposited in deeper water during rifting; and (4) about 700m of sediments deposited after Aptian time, when rifting ceased and oceanic spreading between Iberia and Newfoundland began. The lithology and seismic stratigraphy of the wedges of clastic sediments laid down during rifting show the progressive filling of basins that formed by episodic listric faulting that began very early in the Cretaceous and continued for about 25 my. The Lower Cretaceous turbidite sandstone cored on the Galicia margin correlates with thick Lower Cretaceous turbidites cored off Morocco during DSDP Leg 50, and with Wealden deltaic and fluviatile deposits on both sides of the Atlantic.

  9. Investigations related to scientific deep drilling to study reservoir-triggered earthquakes at Koyna, India

    NASA Astrophysics Data System (ADS)

    Gupta, Harsh; Purnachandra Rao, N.; Roy, Sukanta; Arora, Kusumita; Tiwari, V. M.; Patro, Prasanta K.; Satyanarayana, H. V. S.; Shashidhar, D.; Mallika, K.; Akkiraju, Vyasulu V.; Goswami, Deepjyoti; Vyas, Digant; Ravi, G.; Srinivas, K. N. S. S. S.; Srihari, M.; Mishra, S.; Dubey, C. P.; Raju, D. Ch. V.; Borah, Ujjal; Chinna Reddy, K.; Babu, Narendra; Rohilla, Sunil; Dhar, Upasana; Sen, Mrinal; Bhaskar Rao, Y. J.; Bansal, B. K.; Nayak, Shailesh

    2015-09-01

    Artificial water reservoir-triggered earthquakes have continued at Koyna in the Deccan Traps province, India, since the impoundment of the Shivaji Sagar reservoir in 1962. Existing models, to comprehend the genesis of triggered earthquakes, suffer from lack of observations in the near field. To investigate further, scientific deep drilling and setting up a fault zone observatory at depth of 5-7 km is planned in the Koyna area. Prior to undertaking deep drilling, an exploratory phase of investigations has been launched to constrain subsurface geology, structure and heat flow regime in the area that provide critical inputs for the design of the deep borehole observatory. Two core boreholes drilled to depths of 1,522 and 1,196 m have penetrated the Deccan Traps and sampled the granitic basement in the region for the first time. Studies on cores provide new and direct information regarding the thickness of the Deccan Traps, the absence of infra-Trappean sediments and the nature of the underlying basement rocks. Temperatures estimated at a depth of 6 km in the area, made on the basis of heat flow and thermal properties data sets, do not exceed 150 °C. Low-elevation airborne gravity gradient and magnetic data sets covering 5,012 line km, together with high-quality magnetotelluric data at 100 stations, provide both regional information about the thickness of the Deccan Traps and the occurrence of localized density heterogeneities and anomalous conductive zones in the vicinity of the hypocentral zone. Acquisition of airborne LiDAR data to obtain a high-resolution topographic model of the region has been completed over an area of 1,064 km2 centred on the Koyna seismic zone. Seismometers have been deployed in the granitic basement inside two boreholes and are planned in another set of six boreholes to obtain accurate hypocentral locations and constrain the disposition of fault zones.

  10. Preliminary Palaeomagnetic Results from ICDP Barberton Greenstone Belt Scientific Drill Cores.

    NASA Astrophysics Data System (ADS)

    Roberts Artal, Laura; Biggin, Andy; Langereis, Cor; Wilson, Allan; Arndt, Nicholas; Hill, Mimi

    2013-04-01

    Four drill cores from the ICDP Barberton Greenstone Belt Scientific Drilling Project have been sampled for palaeomagnetic analysis. Some 350 oriented mini-samples (10mm diameter) were collected from cores BARB1 to BARB 4, allowing units from the Onverwacht (Komatii and Hooggenoeg Formations) and Fig Tree Groups to be studied. Previous work has indicated that rocks from the Noisy and Hooggenoeg Formations have the potential to record a near-primary direction of remanence and suggest the presence of a reversing geomagnetic field of similar magnitude to the recent field at ca. 3.5Ga. Previous paleomagnetic studies carried out on the Komatii Formation have yielded one of the oldest paleomagnetic poles and intensities in the world but these results are even more questionable. So far, no paleomagnetic work has been carried out on the Buck Reef Chert Formation or the Fig Tree Group. This sampling forms part of a larger study aiming, firstly to constrain the reliability of previous results by performing improved field stability tests. A positive fold test would constrain the age of the magnetic signal recorded by the Komatii and Hooggenoeg Formations to older than 3.2 Ga. Confirmation of the presence of a viable and reversing field during the Palaeoarchean would place a strong constraint on processes occurring in the outer core during this time with implications for planetary evolution. Rates of polar wander will also be constrained by the directional findings, shedding some light on mantle convection processes at the time. Preliminary directional work on samples from drill cores will be presented here.

  11. Scientific results of the Second Gas Hydrate Drilling Expedition in the Ulleung Basin (UBGH2)

    USGS Publications Warehouse

    Ryu, Byong-Jae; Collett, Timothy S.; Riedel, Michael; Kim, Gil-Young; Chun, Jong-Hwa; Bahk, Jang-Jun; Lee, Joo Yong; Kim, Ji-Hoon; Yoo, Dong-Geun

    2013-01-01

    As a part of Korean National Gas Hydrate Program, the Second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2) was conducted from 9 July to 30 September, 2010 in the Ulleung Basin, East Sea, offshore Korea using the D/V Fugro Synergy. The UBGH2 was performed to understand the distribution of gas hydrates as required for a resource assessment and to find potential candidate sites suitable for a future offshore production test, especially targeting gas hydrate-bearing sand bodies in the basin. The UBGH2 sites were distributed across most of the basin and were selected to target mainly sand-rich turbidite deposits. The 84-day long expedition consisted of two phases. The first phase included logging-while-drilling/measurements-while-drilling (LWD/MWD) operations at 13 sites. During the second phase, sediment cores were collected from 18 holes at 10 of the 13 LWD/MWD sites. Wireline logging (WL) and vertical seismic profile (VSP) data were also acquired after coring operations at two of these 10 sites. In addition, seafloor visual observation, methane sensing, as well as push-coring and sampling using a Remotely Operated Vehicle (ROV) were conducted during both phases of the expedition. Recovered gas hydrates occurred either as pore-filling medium associated with discrete turbidite sand layers, or as fracture-filling veins and nodules in muddy sediments. Gas analyses indicated that the methane within the sampled gas hydrates is primarily of biogenic origin. This paper provides a summary of the operational and scientific results of the UBGH2 expedition as described in 24 papers that make up this special issue of the Journal of Marine and Petroleum Geology.

  12. Thermal regime of the State 2--14 well, Salton Sea Scientific Drilling Project

    SciTech Connect

    Sass, J.H.; Priest, S.S.; Duda, L.E.; Carson, C.C.; Hendricks, J.D.; Robison, L.C.

    1988-11-10

    Temperature logs were made repeatedly during breaks in drilling and both during and after flow tests in the Salton Sea Scientific Drilling Project well (State 2--14). The purpose of these logs was to assist in identifying zones of fluid loss or grain and to characterize reservoir temperatures. At the conclusion of the active phase of the project, a series of logs was begun in an attempt to establish the equilibrium temperature profile. Initially, we were able to log to depths below 3 km, but beginning in late May of 1986, it was impossible to log below about 1.8 km owing to casing failure. Our best estimates of formation temperature below 1.8 km are 305/sup 0/ +- 5 /sup 0/C at 1890 m and 355/sup 0/ +- 10 /sup 0/C at 3170 m. For the upper 1.8 km the latest temperature log (October 24, 1986), using a digital ''slickline'' (heat-shielded downhole recording) device, was within a few degrees Celsius of equilibrium, as confirmed by a more recent log (July 31, 1987) to a depth of approx.1 km.

  13. Thermal regime of the State 2-14 well, Salton Sea Scientific Drilling Project

    USGS Publications Warehouse

    Sass, J.H.; Priest, S.S.; Duda, L.E.; Carson, C.C.; Hendricks, J.D.; Robison, L.C.

    1988-01-01

    Temperature logs were made repeatedly during breaks in drilling and both during and after flow tests in the Salton Sea Scientific Drilling Project well (State 2-14). The purpose of these logs was to assist in identifying zones of fluid loss or gain and to characterize reservoir temperatures. At the conclusion of the active phase of the project, a series of logs was begun in an attempt to establish the equilibrium temperature profile. Thermal gradients decrease from about 250 mK m-1 in the upper few hundred meters to just below 200 mK m-1 near the base of the conductive cap. Using one interpretation, thermal conductivities increase with depth (mainly because of decreasing porosity), resulting in component heat flows that agree reasonably well with the mean of about 450 mW m-2. This value agrees well with heat flow data from the shallow wells within the Salton Sea geothermal field. A second interpretation, in which measured temperature coefficients of quartz- and carbonate-rich rocks are used to correct thermal conductivity, results in lower mean conductivities that are roughly constant with depth and, consequently, systematically decreasing heat flux averaging about 350 mW m-2 below 300 m. This interpretation is consistent with the inference (from fluid inclusion studies) that the rocks in this part of the field were once several tens of degrees Celsius hotter than they are now. The age of this possible disturbance is estimated at a few thousand years. -from Authors

  14. Borehole gravity measurements in the Salton Sea Scientific Drilling Project well State 2--14

    SciTech Connect

    Kasameyer, P.W.; Hearst, J.R.

    1988-11-10

    Borehole gravity measurements over a depth range from 1737 to 1027 m and the vertical gradient of gravity above ground were measured at the Salton Sea Scientific Drilling Project well State 2--14. Uncorrected borehole gravimetric densities match values from gamma-gamma logs, indicating that the high densities seen in State 2--14 in the depth range 0.5--3 km extend for a few kilometers from the well. The aboveground gradient was found to be 4.1 ..mu..Gal/m higher than expected; correcting for this value increases the gravimetric density in the borehole. Combining the borehole gravity and estimated vertical gravity gradients on the surface, we find that this densified zone coincides with much of a broad thermal anomaly that has been found to the northeast of the Salton Sea geothermal field. copyright American Geophysical Union 1988

  15. Borehole Gravity Measurements In The Salton Sea Scientific Drilling Program Well State 2-14

    SciTech Connect

    Kasameyer, P. W.; Hearst, J. R.

    1987-01-01

    Borehole gravity measurements over a depth range from 1737 to 1027 m, and the vertical gradient of gravity were measured at the Salton Sea Scientific Drilling Program well State 2-14. The borehole gravimetric densities matched the well logs, but the surface gradient was found to be 0.0040 mgal/m higher than expected. When the borehole observations are corrected for the observed free air gradient above ground, they produce densities which are nearly uniformly higher than log densities by about 0.07 gm/cm{sup 3}. These measurements require densities in the depth range .5 to 3 km, for a radius of a few kilometers around State 2-14 to be as dense as those found in State 2-14. Combining the borehole gravity and calculated vertical gravity gradients on the surface, we find that this densified zone covers much of a broad thermal anomaly to the northeast of the Salton Sea Geothermal Field.

  16. Borehole Gravity Measurements in the Salton Sea Scientific Drilling Program Well State 2-14

    SciTech Connect

    Kasameyer, P. W.; Hearst, J. R.

    1988-01-01

    Borehole gravity measurements over a depth range from 1737 to 1027 m, and the vertical gradient of gravity above ground were measured at the Salton Sea Scientific Drilling Program well State 2-14. Uncorrected borehole gravimetric densities match values from gamma-gamma logs, indicating that the high densities seen in State 2-14 in the depth range 0.5 to 3 km extend for a few kilometers from the well. The above-ground gradient was found to be 4.1 {micro}gal/m higher than expected; correcting for this value increases the gravimetric density in the borehole. Combining the borehole gravity and estimated vertical gravity gradients on the surface, they find that this densified zone coincides with much of a broad thermal anomaly that has been found to the northeast of the Salton Sea Geothermal Field.

  17. Borehole Gravity Measurements in the Salton Sea Scientific Drilling Program Well State 2-14

    SciTech Connect

    Kasameyer, P. W.; Hearst, J. R.

    1988-01-01

    Borehole gravity measurements over a depth range from 1737 to 1027 m, and the vertical gradient of gravity above ground were measured at the Salton Sea Scientific Drilling Program well State 2-14. Uncorrected borehole gravimetric densities match values from gamma-gamma logs, indicating that the high densities seen in State 2-14 in the depth range 0.5 to 3 km extend for a few kilometers from the well. The above-ground gradient was found to be 0.0040 mgal/m higher than expected; correcting for this value increases the gravimetric density in the borehole. Combining the borehole gravity and estimated vertical gravity gradients on the surface, they find that this densified zone coincides with much of a broad thermal anomaly that has been found to the northeast of the Salton Sea Geothermal Field.

  18. Chemistry and geothermometry of brine produced from the Salton Sea Scientific drill hole, Imperial Valley, California

    USGS Publications Warehouse

    Thompson, J.M.; Fournier, R.O.

    1988-01-01

    The December 29-30, 1985, flow test of the State 2-14 well, also known as the Salton Sea Scientific drill hole, produced fluid from a depth of 1865-1877 m at a reservoir temperature of 305????5??C. Samples were collected at five different flashing pressures. The brines are Na-Ca-K-Cl-type waters with very high metal and low SO4 and HCO3 contents. Compositions of the flashed brines were normalized relative to the 25??C densities of the solutions, and an ionic charge balance was achieved by adjusting the Na concentration. Calculated Na/K geothermometer temperatures, using equations suggested by different investigators, range from 326?? to 364??C. The Mg/K2 method gives a temperature of about 350??C, Mg/Li2 about 282??, and Na/Li 395??-418??C. -from Authors

  19. Scientific Objectives of the Gulf of Mexico Gas Hydrate JIP Leg II Drilling

    SciTech Connect

    Jones, E.; Latham, T.; McConnell, D.; Frye, M.; Hunt, J.; Shedd, W.; Shelander, D.; Boswell, R.M.; Rose, K.K.; Ruppel, C.; Hutchinson, D.; Collett, T.; Dugan, B.; Wood, W.

    2008-05-01

    The Gulf of Mexico Methane Hydrate Joint Industry Project (JIP) has been performing research on marine gas hydrates since 2001 and is sponsored by both the JIP members and the U.S. Department of Energy. In 2005, the JIP drilled the Atwater Valley and Keathley Canyon exploration blocks in the Gulf of Mexico to acquire downhole logs and recover cores in silt- and clay-dominated sediments interpreted to contain gas hydrate based on analysis of existing 3-D seismic data prior to drilling. The new 2007-2009 phase of logging and coring, which is described in this paper, will concentrate on gas hydrate-bearing sands in the Alaminos Canyon, Green Canyon, and Walker Ridge protraction areas. Locations were selected to target higher permeability, coarser-grained lithologies (e.g., sands) that have the potential for hosting high saturations of gas hydrate and to assist the U.S. Minerals Management Service with its assessment of gas hydrate resources in the Gulf of Mexico. This paper discusses the scientific objectives for drilling during the upcoming campaign and presents the results from analyzing existing seismic and well log data as part of the site selection process. Alaminos Canyon 818 has the most complete data set of the selected blocks, with both seismic data and comprehensive downhole log data consistent with the occurrence of gas hydrate-bearing sands. Preliminary analyses suggest that the Frio sandstone just above the base of the gas hydrate stability zone may have up to 80% of the available sediment pore space occupied by gas hydrate. The proposed sites in the Green Canyon and Walker Ridge areas are also interpreted to have gas hydrate-bearing sands near the base of the gas hydrate stability zone, but the choice of specific drill sites is not yet complete. The Green Canyon site coincides with a 4-way closure within a Pleistocene sand unit in an area of strong gas flux just south of the Sigsbee Escarpment. The Walker Ridge site is characterized by a sand

  20. 77 FR 10711 - Safety Zone; KULLUK, Outer Continental Shelf Mobile Offshore Drilling Unit (MODU), Beaufort Sea, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-23

    ... Offshore Drilling Unit (MODU), Beaufort Sea, AK AGENCY: Coast Guard, DHS. ACTION: Notice of proposed... identified lease blocks will be conducted with the KULLUK. The KULLUK is a true Mobile Offshore Drilling Unit... Offshore Drilling Unit (MODU), Beaufort Sea, Alaska. (a) Description. The KULLUK will be engaged...

  1. Deep observation and sampling of the earth's continental crust (DOSECC). Final report

    SciTech Connect

    Not Available

    1985-05-01

    The need to validate and refine concepts regarding the structure, properties, and dynamic processes of the earth's continental crust through the use of the drill was the subject of the workshop sponsored by DOSECC, Inc. and held April 29 through May 1, 1985 in Houston, Texas and attended by more than 145 scientists. Scientific objectives and targets for a program of research drilling as part of basic studies of the continental lithosphere were discussed, with over 30 scientific proposals presented. Individual drilling proposals were grouped under several themes; basement structures and deep continental basins, active fault zones, thermal regimes and fossil mineralized hydrothermal/magma systems.

  2. Pressure-dependent seismic reflection amplitude changes in crystalline crust: lessons learned at the Continental Deep Drilling Site (KTB)

    NASA Astrophysics Data System (ADS)

    Beilecke, T.; Bram, K.; Buske, S.

    2010-01-01

    We conducted an active seismic experiment aimed at measuring changes in seismic reflection amplitudes as a consequence of fresh water injection and corresponding pressure changes at the German Continental Deep Drilling site (KTB). The injection took place at the bottom of the 4-km-deep pilot borehole in the SE2 fault zone in crystalline rock units between the springs of 2004 and 2005. Prior to the experiment, theoretical calculations indicated a possible increase in the compressional wave reflection coefficient as a result of an injection-induced reduction of the seismic velocities within the fault zone. Despite good repeatability of the emitted source signals, the experiment suffered from missing the clear reflection signals expected from the fault zone with regard to seismic data from past experiments. Applying various data-processing steps did not enhance the signals enough to obtain clear reflections or even pressure-dependent reflection amplitude changes. The signal-to-noise ratio remains smaller than the effects under observation. Provided that reflections are present in the data, the error bar of the recorded signals is of the order of 100 per cent. Therefore, we conclude that the experiment was not successful in seismically measuring pressure variations. However, important lessons for land seismic time-lapse measurements in crystalline environments have been learned: (i) The source should be capable of emitting frequencies below 30 Hz. (ii) The detector array setup proved to be partly questionable because in a scattering environment like the crystalline rocks at the KTB site, the incidence of a plane wave precondition might be violated for high-frequency signals. (iii) Near-surface variations of elastic properties likely influence seismic monitoring. (iv) Using a step function, that is a first-order pressure discontinuity, to model the subsurface pressure build-up, is very likely too simple an approach.

  3. Bacteria Community in the Terrestrial Deep Subsurface Microbiology Research of the Chinese Continent Scientific Drilling

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Xia, Y.; Dong, H.; Dong, X.; Yang, K.; Dong, Z.; Huang, L.

    2005-12-01

    Microbial communities in the deep drill cores from the Chinese Continent Scientific Drilling were analyzed with culture-independent and dependent techniques. Genomic DNA was extracted from two metamorphic rocks: S1 from 430 and S13 from 1033 meters below the ground surface. The 16S rRNA gene was amplified by polymerase chain reaction (PCR) followed by cloning and sequencing. The total cell number was counted using the 4',6-diamidino-2-phenylindole (DAPI) staining and biomass of two specific bacteria were quantified using real-time PCR. Enrichment was set up for a rock from 3911 meters below the surface in medium for authotrophic methanogens (i.e., CO2 + H2). The total cell number in S13 was 1.0 × 104 cells per gram of rock. 16S rRNA gene analysis indicated that low G + C Gram positive sequences were dominant (50 percent of all 54 clone sequenced) followed by the alpha-, beta, and gamma-Proteobacteria. Within the low G + C Gram positive bacteria, most clone sequences were similar to species of Bacillus from various natural environments (deserts, rivers etc.). Within the Proteobacteria, our clone sequences were similar to species of Acinetobacter, Acidovorax, and Aeromonas. The RT-RCP results showed that biomass of two particular clone sequences (CCSD1305, similar to Aeromonas caviae and CCSD1307, similar to Acidovorax facilis) was 95 and 1258 cells/g, respectively. A bacterial isolate was obtained from the 3911-m rock in methanogenic medium. It was Gram negative with no flagella, immobile, and facultative anaerobic, and grows optimally at 65oC. Phylogenetic analysis indicated that it was closely related to the genus of Bacillus. Physiological tests further revealed that it was a strain of Bacillus caldotenax.

  4. Intrinsic and scattering attenuation as derived from fluid induced microseismicity at the German Continental Deep Drilling site

    NASA Astrophysics Data System (ADS)

    Fielitz, D.; Wegler, U.

    2015-06-01

    Hydraulically induced microseismicity is used to study high-frequency attenuation properties (6-72 Hz) in an enhanced geothermal system. Intrinsic and scattering attenuation are separated by jointly inverting seismogram envelopes for structural parameters, source and site effects. Modelling of synthetic envelopes is based on radiative transfer theory. To speed up inversion, an analytical solution of the radiative transfer equation for a 3-D isotropic scattering medium is implemented. In order to compensate for the actual anisotropic scattering, a smoothing algorithm is applied to introduce envelope broadening and peak delay. The approach is tested with seismic data from four fluid-induced earthquakes (Mw ≤ 1) recorded by a temporary seismic network at the German Continental Deep Drilling (KTB) site at epicentral distances of less than 20 km. Full S-wave envelopes are inverted in 12 overlapping frequency bands with centre frequencies between 1.5 and 72 Hz. With data sampling at 200 Hz and high-frequency S-wave sources, attenuation estimates are obtained for the rarely probed frequency range between 30 and 70 Hz. From the inversion, we infer average values of the transport scattering coefficient g*, and the intrinsic absorption parameter b, as well as corresponding quality factors Qs and Qi. By comparison with attenuation estimates from regions with different tectonic activities, we see that both Qs and Qi for the investigated geothermal region fit best to moderate scattering and intrinsic regimes as obtained in tectonically active regions. A comparison with a regional attenuation model for southern Germany proves that attenuation estimates are scale-dependent. To compare intrinsic and scattering attenuation in the KTB region the transport mean free path (TMFP) and the absorption length (la) are calculated. For both, we find a clear frequency dependence proportional to f -0.8 (TMFP) and f -0.3 (la). TMFP decreases from 340 km at 6 Hz to 60 km at 72 Hz, whereas

  5. From Arctic greenhouse to icehouse: the Cenozoic development of the West Greenland-Baffin Bay margin and the case for scientific drilling

    NASA Astrophysics Data System (ADS)

    Knutz, Paul; Gregersen, Ulrik; Hopper, John R.; Dybkjær, Karen; Nøhr-Hansen, Henrik; Sheldon, Emma; Huuse, Mads

    2016-04-01

    The long-term evolution of glaciated margins plays an essential role in understanding the driving forces and interactions that determine the build-up and decay of ice sheets. The Greenland continental margin towards Baffin Bay is densely covered by industry seismic data and several exploration wells have been drilled, providing a regional stratigraphic framework for the sedimentary successions. This presentation provides an overview of the major depositional units and stratigraphy of the mid-late Cenozoic (since mid-Eocene), with examples demonstrating the different processes that have formed this margin. A sedimentary succession up to 3.5 km thick, of mid-Eocene to mid-Miocene age (mega-unit D), infills the pronounced ridge-basin structures of the rifted and tectonically inverted margin. The lower part of this interval, presumably late Eocene-Oligocene in age, is interpreted as basin-floor fan deposits, while the upper section, of early-middle Miocene age, is mainly marine mudstone. The basin infilling strata are overlain by a late Miocene-Pliocene succession consisting of two mega-units (B and C), with typical thicknesses of 0.5-1 km. The units are characterised by upslope-climbing sediment waves and along-slope trending sedimentary prisms reminiscent of giant contourite drifts. The borehole data associates the prism accumulations with a deep shelf environment influenced by strong marine currents and nearby fluvial sources. On the slope and in the deep basin of Baffin Bay the late Neogene succession is strongly influenced by mass wasting correlated with erosional scars updip. The uppermost seismic mega-unit (A) is dominated by aggradational wedges and prograding fan deposits displaying depocentres >3 km thick, formed at the terminus of palaeo-ice streams. Borehole information associates this interval with deposition of primarily diamict sediments and suggests a late Pliocene onset of major shelf based glaciations on the NW Greenland margin. The southwest margin

  6. Laboratory-determined transport properties of core from the Salton Sea Scientific Drilling Project

    SciTech Connect

    Lin, W.; Daily, W.

    1988-11-10

    Two cores from the Salton Sea Scientific Drilling Project have been studied in the laboratory to determine electrical resistivity, ultrasonic velocity, and brine permeability at pressures and temperatures close to estimated borehole conditions. Both samples were siltstones; the first sample was from 1158-m depth, and the other was from 919-m depth. A synthetic brine with 13.6 weight percent NaCl, 7.5 weight percent CaCl/sub 2/, and 3.2 weight percent KCl was used as a pore fluid. The dry bulk density of the first sample was 2.44 Mg m/sup -3/ with an effective porosity of 8.7%. The second sample had a dry bulk density of 2.06 Mg m/sup -3/ with an effective porosity of 22.2%. At the midplane of the first sample, electrical impedance tomography was used to map the spatial variation of resistivity during the experiment. Also, at the midplane of both samples, ultrasonic tomography was used to map the spatial variation of P wave velocity.

  7. Seismic monitoring of the June, 1988 Salton Sea Scientific Drilling Program flow/injection test

    SciTech Connect

    Jarpe, S.P.; Kasameyer, P.W.; Hutchings, L.J.; Hauk, T.F.

    1988-10-04

    The purpose of the seismic monitoring project was to characterize in detail the micro-seismic activity related to the Salton Sea Scientific Drilling Program (SSSDP) flow-injection test in the Salton Sea Geothermal Field. Our goal was to determine if any sources of seismic energy related to the test were observable at the surface. We deployed our recording stations so that we could detect and locate both impulsive microearthquakes and continuous seismic noise energy. Our network, which was sensitive enough to be triggered by magnitude 0.0 or larger events, found no impulsive microearthquakes in the vicinity of the flow test in the 8 month period before the test and only one event during the flow test. This event has provided the opportunity to compare the detection and location capabilities of small networks and arrays in a geothermal environment. At present, we are carefully scanning all of the data that we collected during the flow test for evidence of anomalous seismic noise sources and for impulsive events smaller than the network detection threshold (magnitude 0.0). 8 refs., 4 figs.

  8. Initial Results of Scientific Drilling on Lake Malawi, East African Rift

    NASA Astrophysics Data System (ADS)

    Scholz, C. A.; Johnson, T. C.; King, J.; Cohen, A. S.; Lyons, R. P.; Kalindekafe, L.; Forman, S. L.; McHargue, L. R.; Singer, B. S.

    2005-12-01

    Lake Malawi is one of the largest and oldest lakes in the southern hemisphere and in the tropical latitudes, measuring more than 580 km in length, with a maximum depth of 700 m, and with an estimated age of more than 7 Ma. The lake water column is anoxic below 200 m, thus preserving an extensive record of laminated (varved) sediments. The lake's hydrologic budget is hypersensitive to minor changes in precipitation:evaporation, and signals of lake level and limnologic change respond markedly to regional climate variations. During February-March 2005 a scientific drilling program was conducted on the deep, open waters of Lake Malawi, using a converted local fuel barge outfitted with a deep-water-capable geotechnical drilling rig, a portable dynamic positioning system, and a suite of sampling tools designed for deep lake coring. A total of 623 m of core was recovered in seven holes at two sites on the lake. The high-resolution North Basin site (water depth 359 m) was triple-cored, providing redundant sampling of the sedimentary section representing the past ~75-100 kyr; the Central Basin deep site (592 m water depth) was double cored over the period of the past ~200 kyr, and single-cored to 380 m, covering perhaps 1.5 million years. The North Basin high-resolution site targeted a hemipelagic sequence, which in core samples consists of alternating zones of laminated and homogenous silty mud. At the base of these cores we observe well-sorted medium-grained shoreface sand deposits, that we interpret to be a transgressive surface deposited following a severe (500 m) lake lowstand. Density, magnetic susceptibility, TOC, and C/N profiles closely follow lithologic changes, and correspond to periods of enhanced or diminished productivity and dramatically varying lake level. Initial dating of the North Basin site (total core length 38 m) is underway using a combination of Radiocarbon, Tephra Ar-Ar, and Optically-Stimulated Luminescence methods, and initial results indicate a

  9. Deep Sea Drilling Project

    ERIC Educational Resources Information Center

    Kaneps, Ansis

    1977-01-01

    Discusses the goals of the ocean drilling under the International Phase of Ocean Drilling, which include sampling of the ocean crust at great depths and sampling of the sedimentary sequence of active and passive continental margins. (MLH)

  10. Preliminary report on geophysical well-logging activity on the Salton Sea Scientific Drilling Project, Imperial Valley, California

    USGS Publications Warehouse

    Paillet, Frederick L.; Morin, R.H.; Hodges, H.E.

    1986-01-01

    The Salton Sea Scientific Drilling Project has culminated in a 10,564-ft deep test well, State 2-14 well, in the Imperial Valley of southern California. A comprehensive scientific program of drilling, coring, and downhole measurements, which was conducted for about 5 months, has obtained much scientific information concerning the physical and chemical processes associated with an active hydrothermal system. This report primarily focuses on the geophysical logging activities at the State 2-14 well and provides early dissemination of geophysical data to other investigators working on complementary studies. Geophysical-log data were obtained by a commercial logging company and by the U.S. Geological Survey (USGS). Most of the commercial logs were obtained during three visits to the site; only one commercial log was obtained below a depth of 6,000 ft. The commercial logs obtained were dual induction, natural gamma, compensated neutron formation density, caliper and sonic. The USGS logging effort consisted of four primary periods, with many logs extending below a depth of 6,000 ft. The USGS logs obtained were temperature, caliper, natural gamma, gamma spectral, epithermal neutron, acoustic velocity, full-waveform, and acoustic televiewer. Various problems occurred throughout the drilling phase of the Salton Sea Scientific Drilling Project that made successful logging difficult: (1) borehole constrictions, possibly resulting from mud coagulation, (2) maximum temperatures of about 300 C, and (3) borehole conditions unfavorable for logging because of numerous zones of fluid loss, cement plugs, and damage caused by repeated trips in and out of the hole. These factors hampered and compromised logging quality at several open-hole intervals. The quality of the logs was dependent on the degree of probe sophistication and sensitivity to borehole-wall conditions. Digitized logs presented were processed on site and are presented in increments of 1,000 ft. A summary of the numerous

  11. Scientific drilling into the San Andreas fault and site characterization research: Planning and coordination efforts. Final technical report

    SciTech Connect

    Zoback, M.D.

    1998-08-30

    The fundamental scientific issue addressed in this proposal, obtaining an improved understanding of the physical and chemical processes responsible for earthquakes along major fault zones, is clearly of global scientific interest. By sampling the San Andreas fault zone and making direct measurements of fault zone properties to 4.0 km at Parkfield they will be studying an active plate-boundary fault at a depth where aseismic creep and small earthquakes occur and where a number of the scientific questions associated with deeper fault zone drilling can begin to be addressed. Also, the technological challenges associated with drilling, coring, downhole measurements and borehole instrumentation that may eventually have to be faced in deeper drilling can first be addressed at moderate depth and temperature in the Parkfield hole. Throughout the planning process leading to the development of this proposal they have invited participation by scientists from around the world. As a result, the workshops and meetings they have held for this project have involved about 350 scientists and engineers from about a dozen countries.

  12. Structure and stress state of Hawaiian island basalts penetrated by the Hawaii Scientific Drilling Project deep core hole

    USGS Publications Warehouse

    Morin, R.H.; Wilkens, R.H.

    2005-01-01

    As part of the Hawaii Scientific Drilling Project (HSDP), an exploratory hole was drilled in 1993 to a depth of 1056 meters below sea level (mbsl) and a deeper hole was drilled to 3098 mbsl in 1999. A set of geophysical well logs was obtained in the deeper hole that provides fundamental information regarding the structure and the state of stress that exist within a volcanic shield. The acoustic televiewer generates digital, magnetically oriented images of the borehole wall, and inspection of this log yields a continuous record of fracture orientation with depth and also with age to 540 ka. The data depict a clockwise rotation in fracture strike through the surficial Mauna Loa basalts that settles to a constant heading in the underlying Mauna Kea rocks. This behavior reflects the depositional slope directions of lavas and the locations of volcanic sources relative to the drill site. The deviation log delineates the trajectory of the well bore in three-dimensional space. This path closely follows changes in fracture orientation with depth as the drill bit is generally prodded perpendicular to fracture strike during the drilling process. Stress-induced breakouts observed in the televiewer log identify the orientations ot the maximum and minimum horizontal principal stresses to be north-south and east-west, respectively. This stress state is attributed to the combination of a sharp break in onshore-offshore slope that reduces stress east-west and the emergence of Kilauea that increases stress north-south. Breakouts are extensive and appear over approximately 30% of the open hole. Copyright 2005 by the American Geophysical Union.

  13. Physical rock properties in and around a conduit zone by well-logging in the Unzen Scientific Drilling Project, Japan

    USGS Publications Warehouse

    Ikeda, R.; Kajiwara, T.; Omura, K.; Hickman, S.

    2008-01-01

    The objective of the Unzen Scientific Drilling Project (USDP) is not only to reveal the structure and eruption history of the Unzen volcano but also to clarify the ascent and degassing mechanisms of the magma conduit. Conduit drilling (USDP-4) was conducted in 2004, which targeted the magma conduit for the 1990-95 eruption. The total drilled length of USDP-4 was 1995.75??m. Geophysical well logging, including resistivity, gamma-ray, spontaneous potential, sonic-wave velocity, density, neutron porosity, and Fullbore Formation MicroImager (FMI), was conducted at each drilling stage. Variations in the physical properties of the rocks were revealed by the well-log data, which correlated with not only large-scale formation boundaries but also small-scale changes in lithology. Such variations were evident in the lava dike, pyroclastic rocks, and breccias over depth intervals ranging from 1 to 40??m. These data support previous models for structure of the lava conduit, in that they indicate the existence of alternating layers of high-resistivity and high P-wave velocity rocks corresponding to the lava dikes, in proximity to narrower zones exhibiting high porosity, low resistivity, and low P-wave velocity. These narrow, low-porosity zones are presumably higher in permeability than the adjacent rocks and may form preferential conduits for degassing during magma ascent. ?? 2008 Elsevier B.V.

  14. Geoscience Research Drilling Office Operations I: the North INYO Drilling Program, 1984

    SciTech Connect

    Lysne, P.

    1986-05-01

    The North Inyo Drilling Program was part of the Continental Scientific Drilling Program/Thermal Regimes and it was put forth by the Department of Energy/Office of Basic Energy Sciences to explore roots of a 600 year old volcanic system which is found in the north-west corner of Long Valley Caldera, California. The responsibility of the Geoscience Research Drilling Office was to provide logistical support to the scientific drilling team. This support consisted of obtaining the necessary permits, obtaining a drilling contract and providing field services involving logging and core handling/laboratory facilities. The first portion of this program was successful when hole RDO-2b traversed the conduit which fed Obsidian Dome; the second portion succeeded when RDO-3a traversed the dike underlying the Inyo Chain of volcanoes.

  15. Alteration of Basalt and Hyaloclastite in the Project Hotspot MHC-2 Core with Some Comparison to Hyaloclastites of the Hawaii Scientific Drilling Program #2 (HSDP) Core

    NASA Astrophysics Data System (ADS)

    Walton, A. W.; Walker, J. R.

    2015-12-01

    Project Hotspot's 1821m coring operation at Mountain Home Air Force Base, Idaho (MHC), sought to examine interaction of hotspot magmas with continental crust and evaluate geothermal resources. Subsurface temperature increased at a gradient of 76˚/km. Alteration was uniform and not intense over the upper part of the core and at the bottom, but differed markedly in an anomalous zone (AZ) from 1700 to 1800m. The MHC core contains diatomite, basalt lava and minor hyaloclastite. Olivine (Ol) in lavas is more-or-less altered to iddingsite. Plagioclase (Plag) has altered to smectite along cleavage planes and fractures except in the AZ, where it is intensely altered to corrensite. Clinopyroxene (CPX, pinkish in thin section) is little altered, as are apatite and opaque minerals (probably ilmenite with magnetite or pyrite in different samples). Interstitial material is converted to smectite or, in the AZ, to corrensite. Phyllosilicate lines vesicles, and calcite, zeolite and phyllosilicate fill them. Pore-lining phillipsite is common shallow in the core, with vesicle-filling analcime and heulandite at greater depth. A fibrous zeolite, probably stilbite, is also present. Hyaloclasts are altered to concentrically layered masses of smectite. MHC hyaloclastites do not display the microbial traces and palagonite ("gel-palagonite") alteration common in Hawaii Scientific Drilling Project #2 (HSDP) samples. HSDP samples do contain pore-lining phillipsite, but pore fillings are chabazite. Calcite is absent in HSDP hyaloclastites. Neither Ol nor Plag were altered in HSDP hyaloclastites. HSPD glasses are less silicic and Ti-rich than MHC lavas, containing Ol rather than CPX as a dominant mafic. However the differences in alteration of hyaloclastites probably reflect either the fact that the HSDP core was collected at temperatures equivalent to those at the top of the MHC-2 core or HSDP samples were from beds that were in modified marine pore water, rather than continental waters.

  16. Magnetic properties of cores from the Wenchuan Earthquake Fault Scientific Drilling Hole-2 (WFSD-2), China

    NASA Astrophysics Data System (ADS)

    Zhang, L., Jr.; Sun, Z.; Li, H.; Cao, Y.; Ye, X.; Wang, L.; Zhao, Y.; Han, S.

    2015-12-01

    During an earthquake, seismic slip and frictional heating may cause the physical and chemical alterations of magnetic minerals within the fault zone. Rock magnetism provides a method for understanding earthquake dynamics. The Wenchuan earthquake Fault Scientific Drilling Project (WFSD) started right after 2008 Mw7.9 Wenchuan earthquake, to investigate the earthquake faulting mechanism. Hole 2 (WFSD-2) is located in the Pengguan Complex in the Bajiaomiao village (Dujiangyan, Sichuan), and reached the Yingxiu-Beichuan fault (YBF). We measured the surface magnetic susceptibility of the cores in WFSD-2 from 500 m to 1530 m with an interval of 1 cm. Rocks at 500-599.31 m-depth and 1211.49-1530 m-depth are from the Neoproterozoic Pengguang Complex while the section from 599.31 m to 1211.49 m is composed of Late Triassic sediments. The magnetic susceptibility values of the first part of the Pengguan Complex range from 1 to 25 × 10-6 SI, while the second part ranges from 10 to 200 × 10-6 SI, which indicate that the two parts are not from the same rock units. The Late Triassic sedimentary rocks have a low magnetic susceptibility values, ranging from -5 to 20 × 10-6 SI. Most fault zones coincide with the high value of magnetic susceptibility in the WFSD-2 cores. Fault rocks, mainly fault breccia, cataclasite, gouge and pseudotachylite within the WFSD-2 cores, and mostly display a significantly higher magnetic susceptibility than host rocks (5:1 to 20:1). In particular, in the YBF zone of the WFSD-2 cores (from 600 to 960 m), dozens of stages with high values of magnetic susceptibility have been observed. The multi-layered fault rocks with high magnetic susceptibility values might indicate that the YBF is a long-term active fault. The magnetic susceptibility values change with different types of fault rocks. The gouge and pseudotachylite have higher values of magnetic susceptibility than other fault rocks. Other primary rock magnetism analyses were then performed to

  17. Ocean drilling program: Recent results and future drilling plans

    SciTech Connect

    Rabinowitz, P.D.; Francis, T.J.G.; Baldauf, J.G.; Allan, J.F.; Heise, E.A.; Seymour, J.C. )

    1993-02-01

    The Ocean Drilling Program (ODP) has completed 48 internationally-staffed expeditions of scientific ocean drilling in search of answers relating to the evolution of passive and active continental margins, evolution of oceanic crust, origin and evolution of marine sedimentary sequences, and paleoceanography. During the past year of drilling operations, ODP expeditions cored Cretaceous reef-bearing guyots of the Western Pacific, with the objective of using them as monitors of relative sea-level changes and thereby of the combined effects of the tectonic subsidence (and uplift) history of the seamounts and of global fluctuations of sea level (Legs 143 and 144); studied high-resolution variations of surface and deep-water circulation and chemistry during the Neogene, the late Cretaceous and Cenozoic history of atmospheric circulation, ocean chemistry, and continental climate, and the age and nature of the seafloor in the North Pacific (Leg 145); studied the relationship between fluid flow and tectonics in the accretionary wedge formed at the Cascadia convergent plate boundary off Vancouver and Oregon (Leg 146); drilled in Hess Deep to understand igneous, tectonic and metamorphic evolution of fast spreading oceanic crust and to understand the processes of rifting in young ocean crust (Leg 147); and continued efforts at Hole 504B at 2,000 mbsf, the deepest hole they have beneath seafloor (Leg 148). After Leg 148 (March 1993), the JOIDES Resolution will commence an Atlantic Ocean drilling campaign.

  18. Esmeralda Energy Company, Final Scientific Technical Report, January 2008. Emigrant Slimhole Drilling Project, DOE GRED III

    SciTech Connect

    Deymonaz, John; Hulen, Jeffrey B.; Nash, Gregory D.; Schriener, Alex

    2008-01-22

    The Emigrant Slimhole Drilling Project (ESDP) was a highly successful, phased resource evaluation program designed to evaluate the commercial geothermal potential of the eastern margin of the northern Fish Lake Valley pull-apart basin in west-central Nevada. The program involved three phases: (1) Resource evaluation; (2) Drilling and resource characterization; and (3) Resource testing and assessment. Efforts included detailed geologic mapping; 3-D modeling; compilation of a GIS database; and production of a conceptual geologic model followed by the successful drilling of the 2,938 foot deep 17-31 slimhole (core hole), which encountered commercial geothermal temperatures (327⁰ F) and exhibits an increasing, conductive, temperature gradient to total depth; completion of a short injection test; and compilation of a detailed geologic core log and revised geologic cross-sections. Results of the project greatly increased the understanding of the geologic model controlling the Emigrant geothermal resource. Information gained from the 17-31 core hole revealed the existence of commercial temperatures beneath the area in the Silver Peak Core Complex which is composed of formations that exhibit excellent reservoir characteristics. Knowledge gained from the ESDP may lead to the development of a new commercial geothermal field in Nevada. Completion of the 17-31 core hole also demonstrated the cost-effectiveness of deep core drilling as an exploration tool and the unequaled value of core in understanding the geology, mineralogy, evolutional history and structural aspects of a geothermal resource.

  19. Scientific results from Gulf of Mexico Gas Hydrates Joint Industry Project Leg 1 drilling: introduction and overview

    USGS Publications Warehouse

    Ruppel, C.; Boswell, R.; Jones, E.

    2008-01-01

    The Gulf of Mexico Gas Hydrates Joint Industry Project (JIP) is a consortium of production and service companies and some government agencies formed to address the challenges that gas hydrates pose for deepwater exploration and production. In partnership with the U.S. Department of Energy and with scientific assistance from the U.S. Geological Survey and academic partners, the JIP has focused on studies to assess hazards associated with drilling the fine-grained, hydrate-bearing sediments that dominate much of the shallow subseafloor in the deepwater (>500 m) Gulf of Mexico. In preparation for an initial drilling, logging, and coring program, the JIP sponsored a multi-year research effort that included: (a) the development of borehole stability models for hydrate-bearing sediments; (b) exhaustive laboratory measurements of the physical properties of hydrate-bearing sediments; (c) refinement of new techniques for processing industry-standard 3-D seismic data to constrain gas hydrate saturations; and (d) construction of instrumentation to measure the physical properties of sediment cores that had never been removed from in situ hydrostatic pressure conditions. Following review of potential drilling sites, the JIP launched a 35-day expedition in Spring 2005 to acquire well logs and sediment cores at sites in Atwater Valley lease blocks 13/14 and Keathley Canyon lease block 151 in the northern Gulf of Mexico minibasin province. The Keathley Canyon site has a bottom simulating reflection at ???392 m below the seafloor, while the Atwater Valley location is characterized by seafloor mounds with an underlying upwarped seismic reflection consistent with upward fluid migration and possible shoaling of the base of the gas hydrate stability (BGHS). No gas hydrate was recovered at the drill sites, but logging data, and to some extent cores, suggest the occurrence of gas hydrate in inferred coarser-grained beds and fractures, particularly between 220 and 330 m below the seafloor

  20. Tectonic significance of the Eratosthenes Seamount: a continental fragment in the process of collision with a subduction zone in the eastern Mediterranean (Ocean Drilling Program Leg 160)

    NASA Astrophysics Data System (ADS)

    Robertson, Alastair H. F.

    1998-11-01

    One of the objectives of ODP Leg 160 in the eastern Mediterranean Sea (April-May, 1995) was concerned with the study of processes of genesis and incipient collision of an inferred crustal fragment, the Eratosthenes Seamount, with the active margin of the Eurasian plate to the north, represented by southern Cyprus. The upper part of the Eratosthenes Seamount (i.e. upper several hundred metres) was found to include both shallow- and deep-water carbonates dating back to Early Cretaceous time. Shallow-water platform carbonate deposition, similar to that of the onshore Levant continental margin to the east (i.e. part of the North African plate), was followed by submergence to bathyal depths (>1000 m) in the Late Cretaceous to Middle Eocene, punctuated by depositional and tectonic hiatuses. Tectonic uplift (approximately 1 km) was followed by shallow-water carbonate deposition in the Early Miocene. The platform was exposed during the Messinian desiccation crisis. During the Early Pliocene the platform subsided to bathyal depths associated with localised accumulation of limestone debris flows. Subsidence accelerated in the Late Pliocene-Early Pleistocene, reaching a present-day maximum depth of ca. 2500 m. Deformation of the Eratosthenes Seamount (i.e. subsidence and high-angle faulting) resulted from crustal flexure, induced by southward overthrusting of the Cyprus active margin. Tectonic subsidence of the Eratosthenes Seamount was approximately synchronous with rapid surface uplift of the over-riding plate, the Troodos Ophiolite of southern Cyprus. This uplift is explained in terms of incipient collision of an Eratosthenes continental fragment with a subduction trench, coupled with the effects of diapiric protrusion of serpentinite located within the core of the Troodos Ophiolite. The Eratosthenes drilling, thus, documented a modern analogue of subduction/collisional processes leading to accretion of continental fragments and carbonate platforms in orogenic belts.

  1. Application of scientific core drilling to geothermal exploration: Platanares, Honduras and Tecuamburro Volcano, Guatemala, Central America

    SciTech Connect

    Goff, S.J.; Goff, F.E.; Heiken, G.H.; Duffield, W.A.; Janik, C.J.

    1994-04-01

    Our efforts in Honduras and Guatemala were part of the Central America Energy Resource Project (CAERP) funded by the United States Agency for International Development (AID). Exploration core drilling operations at the Platanares, Honduras and Tecuamburro Volcano, Guatemala sites were part of a geothermal assessment for the national utility companies of these countries to locate and evaluate their geothermal resources for electrical power generation. In Honduras, country-wide assessment of all thermal areas determined that Platanares was the site with the greatest geothermal potential. In late 1986 to middle 1987, three slim core holes were drilled at Platanares to a maximum depth of 680 m and a maximum temperature of 165{degree}C. The objectives were to obtain information on the geothermal gradient, hydrothermal alterations, fracturing, and possible inflows of hydrothermal fluids. Two holes produced copious amounts of water under artesian conditions and a total of 8 MW(t) of energy. Geothermal investigations in Guatemala focused on the Tecuamburro Volcano geothermal site. The results of surface geological, volcanological, hydrogeochemical, and geophysical studies at Tecuamburro Volcano indicated a substantial shallow heat source. In early 1990 we drilled one core hole, TCB-1, to 808 m depth. The measured bottom hole temperature was 238{degree}C. Although the borehole did not flow, in-situ samples indicate the hole is completed in a vapor-zone above a probable 300{degree}C geothermal reservoir.

  2. Drilling the solid earth: global geodynamic cycles and earth evolution

    NASA Astrophysics Data System (ADS)

    Shervais, John W.; Arndt, Nicholas; Goodenough, Kathryn M.

    2015-09-01

    The physical and chemical evolution of the Earth is driven by geodynamic cycles that are global in scale, operating over 4.57 Ga of Earth's history. Some processes are truly cyclic, e.g., the Wilson Cycle, while others are irreversible (e.g., core formation). Heat and mass transfer between the lowermost mantle (e.g., core-mantle boundary) and the surface drives these global geodynamic processes. Subduction of lithospheric plates transfers cool fractionated material into the lower mantle and leads indirectly to the formation of new oceanic lithosphere, while the rise of thermochemical plumes recycles the remnants of these plates back to the surface, driven by heat transfer across the core-mantle boundary. These global geodynamic cycles are responsible for hotspot volcanism, the formation of continental crust, collisional orogenies, continental rifting, subduction zone processes (arcs, accretionary prisms), and ore deposits. Each of these presents opportunities for investigation by continental scientific drilling. In addition, these cycles affect other processes that are targets of continental scientific drilling: the origin and evolution of life and an oxygenated atmosphere, the impact of large volcanic eruptions on climate, and geological hazards such as earthquakes and volcanic eruptions. In this paper, we present the scientific rationale for continental scientific drilling to study global geodynamic processes, review past successes in this realm that were sponsored in part by ICDP, and suggest potential new targets for drilling campaigns that focus on solid earth evolution. This paper builds on discussions at the 2013 ICDP Science Meeting on the future of continental scientific drilling, held in Potsdam in November 2013.

  3. Natural constraints on exploring Antarctica's continental margin, existing geophysical and geological data basis, and proposed drilling program

    SciTech Connect

    Anderson, J.B.

    1987-05-01

    There have been a number of multichannel seismic reflection and seismic refraction surveys of the Antarctic continental shelf. While glacial erosion has left acoustic basement exposed on portions of the inner shelf, thick sedimentary sequences occur on the passive margin of east Antarctica. The thickness and age of these strata vary due to different breakup histories of the margin. Several sedimentary basins have been identified. Most are rift basins formed during the early stages of Antarctica's separation from other Gondwana continents and plateaus. The west Antarctic continental shelf is extensive, being approximately twice the size of the Gulf of Mexico shelf. It has been poorly surveyed to date, owing mainly to its perennial sea ice cover. Gradual subduction of the spreading center from south to north along the margin resulted in old active margin sequences being buried beneath passive margin sequences. The latter should increase in thickness from north to south along the margin although no data bear this out. Hydrocarbon potential on the northern portion of the west Antarctic margin is considered low due to a probable lack of reservoir rocks. Establishment of ice sheets on Antarctica caused destruction of land vegetation and greatly restricted siliciclastic sand-producing environments. So only sedimentary basins which contain pre-early Miocene deposits have good hydrocarbon prospectivity. The Antarctic continental shelf is the deepest in the world, averaging 500 m and in places being more than a kilometer deep. The shelf has been left rugged by glacial erosion and is therefore prone to sediment mass movement. Widespread sediment gravity flow deposits attest to this. The shelf is covered with sea ice most of the year and in a few areas throughout the year. Icebergs, drift freely in the deep waters of the shelf; drift speeds of 1 to 2.5 km/year are not uncommon.

  4. A ~1.3Ma paleoecological record from scientific drilling at Lake Malawi, East Africa

    NASA Astrophysics Data System (ADS)

    Cohen, Andrew S.; Blome, Margaret; Ivory, Sarah; King, John; Cole, Julie; McGlue, Michael

    2016-04-01

    Long records of Quaternary ecological and climatic change are critical to understanding the range of potential responses of ecosystems to environmental forcing. Here we present an integrated lake and watershed paleoecological analysis from drill core records obtained by the Lake Malawi Drilling Project, documenting extraordinary fluctuations in climate, hydrology and ecosystem response for the southern tropics of Africa. High resolution lacustrine and terrestrial paleoecology and sedimentology data sets from these Early Pleistocene-Holocene drill cores provide the most complete record of this duration currently available from Africa. Time series analyses of these records demonstrate strong orbital forcing of regional hydroclimate that drives high-amplitude changes in Malawi ecosystems. Prior to ~600ka we also observe a secondary overprint of watershed processes involving river capture or diversion that may have a tectonic origin. We observe shifts between more arid conditions (shallow alkaline and well mixed lake, with discontinuous desert vegetation) and more humid environments (deep, stratified, freshwater lake with dense forest). These broadly synchronous changes in lake paleoecology, lake sedimentology, and watershed vegetation demonstrate the major role of climate in regulating this system. Transitions between these lake/watershed state extremes is often very abrupt, suggesting that the combined lake/watershed repeatedly passed through hydroclimate thresholds, with important implications for the evolution of the lake's endemic biodiversity and ecosystem. The tempo of lake/watershed state fluctuations changes at the Mid-Pleistocene Transition, altering from one of higher frequency/lower amplitude variability prior to 900ka to lower frequency/higher amplitude variability after that time.

  5. Deep Scientific Drilling at Koyna, India to Investigate Reservoir Triggered Earthquakes

    NASA Astrophysics Data System (ADS)

    Gupta, Harsh; Nayak, Shailesh; Bansal, Brijesh; Roy, Sukanta; Purnachandra Rao, Nemalikanti; S, Satyanarayana H. V.; M, Tiwari V.; Arora, Kusumita; K, Patro B. P.; Dodla, Shashidhar; Kothamasu, Mallika

    2015-04-01

    The Koyna region, located in the ~65 Ma old Deccan Traps of India, is globally the most prominent site of artificial water reservoir triggered earthquakes (RTS). Triggered earthquakes are occurring since impoundment of the Koyna Dam in 1962 including M 6.3 December 10, 1967; 22 M>5, and thousands of smaller earthquakes. Filling of the nearby Warna Reservoir gave an impetus to triggered earthquakes. The entire earthquake activity is limited to an area of about 20 km x 30 km, with most focal depths being within 6 km. There is no other earthquakes source within 50 km of the Koyna Dam. An ICDP Workshop held at Hyderabad and Koyna in March 2011 found Koyna to be the most suitable site to investigate RTS through deep drilling. A preparatory phase of investigations was recommended. Studies carried out since 2011 in the preparatory phase were recently reviewed in the second ICDP Workshop held at Koyna from May 16 to 18, 2014. Results of detailed airborne magnetic and gravity-gradient surveys, MT surveys, drilling of 6 boreholes going to depths of ~ 1500 m and logging, heat flow measurements, seismological investigations including the deployment of two borehole seismometers, and LiDAR surveys were reviewed. Significant results include absence of sediments below the basalt cover, the thickness of the basalt column and its relation with the surface elevation, and almost flat topography of the basement. The temperatures at the depth of 5 km would be around 130 to 150 degrees Celsius, in confirmation of earlier estimates. To achieve desired accuracies of ~ 50 meters in focal parameters, seismometers need to be placed below the basalt cover. This has led to the plan of putting eight borehole seismometers with good azimuthal coverage around the earthquake zone. Four of them are already in operation and four more are likely to be installed in the months to come. The future plan of work includes: • Submitting a proposal to ICDP for two pilot boreholes by Jan 15, 2015.

  6. "Probing Reservoir Triggered Earthquakes at Koyna, India through Scientific Deep Drilling"

    NASA Astrophysics Data System (ADS)

    Gupta, H. K.; Nayak, S.; Bansal, B.; Rao, P.; Roy, S.; Arora, K.

    2014-12-01

    The Koyna region, located in the ~65 Ma old Deccan Traps of India, is globally the most prominent site of artificial water reservoir triggered earthquakes (RTS). Triggered earthquakes are occurring since impoundment of the Koyna Dam in1962 including M 6.3 December 10, 1967; 22 M>5, and thousands of smaller earthquakes. Filling of the nearby Warna Reservoir gave a further impetus to triggered earthquakes. The entire earthquake activity is limited to an area of about 20 km x 30 km, with most focal depths being within 6 km. There is no other earthquakes source within 50 km of the Koyna Dam. An ICDP Workshop held at Hyderabad and Koyna in March 2011 found Koyna to be the most suitable site to investigate RTS through deep drilling. A preparatory phase of investigations was recommended. Studies carried out since 2011 in the preparatory phase were recently reviewed in the second ICDP Workshop held at Koyna from May 16 to 18, 2014. Results of detailed airborne magnetic and gravity-gradient surveys, MT surveys, drilling of 6 boreholes going to depths of ~ 1500 m and logging, heat flow measurements, seismological investigations including the deployment of two borehole seismometers, and LiDAR surveys were reviewed. Significant results include absence of sediments below the basalt cover, the thickness of the basalt column and its relation with the surface elevation, and almost flat topography of the basement. The temperatures at the depth of 5 km would be around 130 to 150 degrees Celsius, in confirmation of earlier estimates. To achieve desired accuracies of a few tens of meters in focal parameters, seismometers need to be placed below the basalt cover. This has led to the plan of putting eight borehole seismometers with good azimuthal coverage around the earthquake zone. Two of them have been already in operation and six more are likely to be installed in the months to come. The future plan of work include: Submitting a proposal to ICDP for the main boreholes by Jan 15, 2015

  7. Overview of the extensive logging use in the scientific ocean drilling's most challenging project, Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE)

    NASA Astrophysics Data System (ADS)

    Kyaw Thu, Moe; Sanada, Yoshinori; Kido, Yukari; Kawamura, Yoshihisa; Kuramoto, Shin'ichi; Matsuda, Shigemi

    2010-05-01

    First of its kind in scientific drilling history, NanTroSEIZE is complex drilling project with multiyear and multistage effort, aimed at drilling, coring, logging, and instrumenting the seismogenic zone of an active subduction margin, in a region thought to generate megathrust earthquakes of magnitude >8.0 on the moment-magnitude scale. Four stages are divided to realize ambitious scientific objectives using CHIKYU, most advanced floating laboratory in scientific drilling. Unlike the industry use of logging technology, expeditions in the scientific ocean drilling used logging data in much wider applications by working various software onboard Chikyu and laboratory measurements of core-cuttings throughout single or multiple expeditions, ranging from 40 to 56 days. Instead of traditional full coring, logging-while-drilling was made across the transect at the beginning to quickly access the geological and structural information from the formation. In line with changing tactic of heavy use on logging, four working groups were organized and worked on the logging data; lithologic characterization/lithostratigraphy, physical properties and hydrogeology, structural geology and geomechanics and cuttings/core-log-seismic integration (CLSI). During the Stage 1 with three expeditions, a transect of eight sites were drilled frontal thrust region, the midslope megasplay fault region, and the Kumano forearc basin region using full suite of MWD-LWD and made coring and downhole measurements. Stage 2 composed of two expeditions with the aims of building on the results of Stage 1 and preparing for later observatory installations for long-term monitoring of deformation at the updip limit of the seismogenic zone. Extensive logging program at riser site, first ever in scientific ocean drilling history, includes conventional wireline logging with long-awaited formation stress measurements and wide-angle walk-away VSP with longest-ever offset to have better

  8. The Oman Drilling Project

    NASA Astrophysics Data System (ADS)

    Matter, J.; Kelemen, P. B.; Teagle, D. A. H.

    2014-12-01

    With seed funds from the Sloan Foundation, the International Continental Drilling Program (ICDP) approved a proposal by 39 international proponents for scientific drilling in the Oman ophiolite. Via observations on core, geophysical logging, fluid sampling, hydrological measurements, and microbiological sampling in a series of boreholes, we will address long-standing, unresolved questions regarding melt and solid transport in the mantle beneath oceanic spreading ridges, igneous accretion of oceanic crust, mass transfer between the oceans and the crust via hydrothermal alteration, and recycling of volatile components in subduction zones. We will undertake frontier exploration of subsurface weathering processes in mantle peridotite, including natural mechanisms of carbon dioxide uptake from surface waters and the atmosphere, and the nature of the subsurface biosphere. Societally relevant aspects include involvement and training of university students, including numerous students from Sultan Qaboos University in Oman. Studies of natural mineral carbonation will contribute to design of engineered systems for geological carbon dioxide capture and storage. Studies of alteration will contribute to fundamental understanding of the mechanisms of reaction-driven cracking, which could enhance geothermal power generation and extraction of unconventional hydrocarbon resources. We hope to begin drilling in late 2015. Meanwhile, we are seeking an additional $2M to match the combined Sloan and ICDP funding from national and international funding agencies. Matching funds are needed for operational costs of drilling, geophysical logging, downhole fluid sampling, and core description. Information on becoming part of the named investigator pool is in Appendix 14 (page 70) of the ICDP proposal, available at https://www.ldeo.columbia.edu/gpg/projects/icdp-workshop-oman-drilling-project. This formal process should begin at about the time of the 2014 Fall AGU Meeting. Meanwhile, potential

  9. Orbital- versus glacial-mode forcing of tropical African climate: Results of scientific drilling in Lake Malawi, East Africa

    NASA Astrophysics Data System (ADS)

    Scholz, C. A.; Cohen, A. S.; Johnson, T. C.; King, J. W.; Brown, E. T.; Lyons, R. P.; Stone, J. R.; Beuning, K. R.

    2007-12-01

    Lake Malawi extends from 9-14 degrees S within the East African Rift Valley, and at 700 m deep, contains more than 20 percent of the surface water on the African continent. In 2005 the Lake Malawi Scientific Drilling Project drilled 7 holes at two sites in the lake, recovering a continuous sediment record that samples much of the Quaternary. Detailed studies completed to date on sediments deposited during the past 145 ka indicate periods of severe aridity at precessional frequency between 135 and 75 ka, when the lake's water volume was periodically reduced by at least 95 percent. These dramatic drops in lake level (more than 550 m), signifying markedly arid conditions in the catchment, are documented in sediment lithology (decreased organic carbon content and increased authigenic carbonate content during severe lowstands), aquatic microfossils (appearance of a littoral ostracode fauna, and saline/alkaline lake diatom flora during extreme low lake stages), as well as in dramatic reductions in catchment pollen production. These intervals of pronounced tropical African aridity in the early late-Pleistocene were much more severe than the Last Glacial Maximum, and are consistent with sediment records from Lakes Tanganyika (East Africa) and Bosumtwi (West Africa). In all three lakes a major rise in water levels and a shift to more humid conditions is observed after ~70 ka. The transition to wetter, more stable conditions coincides with the relaxation of orbital eccentricity and a reduction in the amplitude of precession. The observed climate mode switch to decreased environmental variability is consistent with terrestrial and marine records from in and around tropical Africa, but these new drill cores provide evidence for dramatically drier conditions prior to 70 ka that have not as yet been detected in marine sediment records. Such climate change may have stimulated the expansion and migrations of early modern human populations.

  10. Drilling reorganizes

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    As the first in a proposed series of steps that would move scientific ocean drilling from its own niche within the National Science Foundation's (NSF) Directorate for Astronomical, Atmospheric, Earth, and Ocean Sciences (AAEO) into the agency's Division of Ocean Sciences, Grant Gross, division director, has been appointed acting director of the Office of Scientific Ocean Drilling (OSOD). Gross will retain the directorship of the division, which also is part of AAEO. Allen M. Shinn, Jr., OSOD director for nearly 2 years, has been reassigned effective July 10 to a position in NSF's Office of Planning and Resource Management.The move aims to tie drilling operations more closely to the science with which it is associated, Gross said. This first step is an organizational response to the current leaning toward using a commercial drilling vessel as the drilling platform, he said. Before the market for such commercial drill ships opened (Eos, February 22, 1983, p . 73), other ship options for scientific ocean drilling included refurbishing the aging Glomar Challenger or renovating, at great expense, the Glomar Explorer. A possible next step in the reorganization is to make OSOD the third section within the Ocean Sciences Division. Currently, the division is divided into the Oceanographic Facilities and Support Section and the Ocean Sciences Research Section.

  11. Impact Lithologies and Post-Impact Hydrothermal Alteration Exposed by the Chicxulub Scientific Drilling Project, Yaxcopoil, Mexico

    NASA Technical Reports Server (NTRS)

    Kring, David A.; Zurcher, Lukas; Horz, Friedrich

    2003-01-01

    The Chicxulub Scientific Drilling Project recovered a continuous core from the Yaxcopoil-1 (YAX-1) borehole, which is approx.60-65 km from the center of the Chicxulub structure, approx.15 km beyond the limit of the estimated approx.50 km radius transient crater (excavation cavity), but within the rim of the estimated approx.90 km radius final crater. Approximately approx.100 m of melt-bearing impactites were recoverd from a depth of 794 to 895 m, above approx.600 m of underlying megablocks of Cretaceous target sediments, before bottoming at 1511 m. Compared to lithologies at impact craters like the Ries, the YAX-1 impactite sequence is incredibly rich in impact melts of unusual textural variety and complexity. The impactite sequence has also been altered by hydrothermal activity that may have largely been produced by the impact event.

  12. Initial Assessment of the Excavation and Deposition of Impact Lithologies Exposed by the Chicxulub Scientific Drilling Project, Yaxcopoil, Mexico

    NASA Technical Reports Server (NTRS)

    Kring, David A.; Horz, Friedrich; Zurcher, Lukas

    2003-01-01

    The Chicxulub Scientific Drilling Project (www.icdp-online.de) recovered a continuous core from a depth of 404 m (in Tertiary cover) to 1511 m (in a megablock of Cretaceous target sediments), penetrating approx. 100 m of melt-bearing impactites between 794 and 895 m. The Yaxcopoil-1 (YAX-1) borehole is approx. 60-65 km from the center of the Chicxulub structure, which is approx. 15 km beyond the limit of the estimated approx. 50 km radius transient crater (excavation cavity), but within the rim of the estimated approx. 90 km radius final crater. In general, the impactite sequence is incredibly rich in impact melts of unusual textural variety and complexity, quite unlike melt-bearing impact formations from other terrestrial craters.

  13. Cenozoic global sea level, sequences, and the New Jersey transect: Results from coastal plain and continental slope drilling

    USGS Publications Warehouse

    Miller, K.G.; Mountain, Gregory S.; Browning, J.V.; Kominz, M.; Sugarman, P.J.; Christie-Blick, N.; Katz, M.E.; Wright, J.D.

    1998-01-01

    The New Jersey Sea Level Transect was designed to evaluate the relationships among global sea level (eustatic) change, unconformity-bounded sequences, and variations in subsidence, sediment supply, and climate on a passive continental margin. By sampling and dating Cenozoic strata from coastal plain and continental slope locations, we show that sequence boundaries correlate (within ??0.5 myr) regionally (onshore-offshore) and interregionally (New Jersey-Alabama-Bahamas), implicating a global cause. Sequence boundaries correlate with ??18O increases for at least the past 42 myr, consistent with an ice volume (glacioeustatic) control, although a causal relationship is not required because of uncertainties in ages and correlations. Evidence for a causal connection is provided by preliminary Miocene data from slope Site 904 that directly link ??18O increases with sequence boundaries. We conclude that variation in the size of ice sheets has been a primary control on the formation of sequence boundaries since ~42 Ma. We speculate that prior to this, the growth and decay of small ice sheets caused small-amplitude sea level changes (<20 m) in this supposedly ice-free world because Eocene sequence boundaries also appear to correlate with minor ??18O increases. Subsidence estimates (backstripping) indicate amplitudes of short-term (million-year scale) lowerings that are consistent with estimates derived from ??18O studies (25-50 m in the Oligocene-middle Miocene and 10-20 m in the Eocene) and a long-term lowering of 150-200 m over the past 65 myr, consistent with estimates derived from volume changes on mid-ocean ridges. Although our results are consistent with the general number and timing of Paleocene to middle Miocene sequences published by workers at Exxon Production Research Company, our estimates of sea level amplitudes are substantially lower than theirs. Lithofacies patterns within sequences follow repetitive, predictable patterns: (1) coastal plain sequences consist

  14. Geothermal modelling of faulted metamorphic crystalline crust: a new model of the Continental Deep Drilling Site KTB (Germany)

    NASA Astrophysics Data System (ADS)

    Szalaiová, Eva; Rabbel, Wolfgang; Marquart, Gabriele; Vogt, Christian

    2015-11-01

    The area of the 9.1-km-deep Continental Deep Drillhole (KTB) in Germany is used as a case study for a geothermal reservoir situated in folded and faulted metamorphic crystalline crust. The presented approach is based on the analysis of 3-D seismic reflection data combined with borehole data and hydrothermal numerical modelling. The KTB location exemplarily contains all elements that make seismic prospecting in crystalline environment often more difficult than in sedimentary units, basically complicated tectonics and fracturing and low-coherent strata. In a first step major rock units including two known nearly parallel fault zones are identified down to a depth of 12 km. These units form the basis of a gridded 3-D numerical model for investigating temperature and fluid flow. Conductive and advective heat transport takes place mainly in a metamorphic block composed of gneisses and metabasites that show considerable differences in thermal conductivity and heat production. Therefore, in a second step, the structure of this unit is investigated by seismic waveform modelling. The third step of interpretation consists of applying wavenumber filtering and log-Gabor-filtering for locating fractures. Since fracture networks are the major fluid pathways in the crystalline, we associate the fracture density distribution with distributions of relative porosity and permeability that can be calibrated by logging data and forward modelling of the temperature field. The resulting permeability distribution shows values between 10-16 and 10-19 m2 and does not correlate with particular rock units. Once thermohydraulic rock properties are attributed to the numerical model, the differential equations for heat and fluid transport in porous media are solved numerically based on a finite difference approach. The hydraulic potential caused by topography and a heat flux of 54 mW m-2 were applied as boundary conditions at the top and bottom of the model. Fluid flow is generally slow and

  15. Scientific drilling into the San Andreas Fault Zone - an overview of SAFOD's first five years

    USGS Publications Warehouse

    Zoback, Mark; Hickman, Stephen; Ellsworth, William; ,

    2011-01-01

    The San Andreas Fault Observatory at Depth (SAFOD) was drilled to study the physical and chemical processes controlling faulting and earthquake generation along an active, plate-bounding fault at depth. SAFOD is located near Parkfield, California and penetrates a section of the fault that is moving due to a combination of repeating microearthquakes and fault creep. Geophysical logs define the San Andreas Fault Zone to be relatively broad (~200 m), containing several discrete zones only 2–3 m wide that exhibit very low P- and S-wave velocities and low resistivity. Two of these zones have progressively deformed the cemented casing at measured depths of 3192 m and 3302 m. Cores from both deforming zones contain a pervasively sheared, cohesionless, foliated fault gouge that coincides with casing deformation and explains the observed extremely low seismic velocities and resistivity. These cores are being now extensively tested in laboratories around the world, and their composition, deformation mechanisms, physical properties, and rheological behavior are studied. Downhole measurements show that within 200 m (maximum) of the active fault trace, the direction of maximum horizontal stress remains at a high angle to the San Andreas Fault, consistent with other measurements. The results from the SAFOD Main Hole, together with the stress state determined in the Pilot Hole, are consistent with a strong crust/weak fault model of the San Andreas. Seismic instrumentation has been deployed to study physics of faulting—earthquake nucleation, propagation, and arrest—in order to test how laboratory-derived concepts scale up to earthquakes occurring in nature.

  16. The ``Adopt A Microbe'' project: Web-based interactive education connected with scientific ocean drilling

    NASA Astrophysics Data System (ADS)

    Orcutt, B. N.; Bowman, D.; Turner, A.; Inderbitzen, K. E.; Fisher, A. T.; Peart, L. W.; Iodp Expedition 327 Shipboard Party

    2010-12-01

    We launched the "Adopt a Microbe" project as part of Integrated Ocean Drilling Program (IODP) Expedition 327 in Summer 2010. This eight-week-long education and outreach effort was run by shipboard scientists and educators from the research vessel JOIDES Resolution, using a web site (https://sites.google.com/site/adoptamicrobe) to engage students of all ages in an exploration of the deep biosphere inhabiting the upper ocean crust. Participants were initially introduced to a cast of microbes (residing within an ‘Adoption Center’ on the project website) that live in the dark ocean and asked to select and virtually ‘adopt’ a microbe. A new educational activity was offered each week to encourage learning about microbiology, using the adopted microbe as a focal point. Activities included reading information and asking questions about the adopted microbes (with subsequent responses from shipboard scientists), writing haiku about the adopted microbes, making balloon and fabric models of the adopted microbes, answering math questions related to the study of microbes in the ocean, growing cultures of microbes, and examining the gases produced by microbes. In addition, the website featured regular text, photo and video updates about the science of the expedition using a toy microbe as narrator, as well as stories written by shipboard scientists from the perspective of deep ocean microbes accompanied by watercolor illustrations prepared by a shipboard artist. Assessment methods for evaluating the effectiveness of the Adopt a Microbe project included participant feedback via email and online surveys, website traffic monitoring, and online video viewing rates. Quantitative metrics suggest that the “Adope A Microbe” project was successful in reaching target audiences and helping to encourage and maintain interest in topics related to IODP Expedition 327. The “Adopt A Microbe” project mdel can be adapted for future oceanographic expeditions to help connect the

  17. The East China Sea continental shelf data and it¡¦s scientific merits

    NASA Astrophysics Data System (ADS)

    Lee, C.; Hilde, T.

    2007-12-01

    About 40 years ago (1968), when the US Naval research vessel Hunt surveyed in the East China Sea and Taiwan Strait, 3 leaders of the cruise (Emory, Wageman and Hilde, co-author of this paper) first discovered several thick sedimentary deposits forming the sub-basins. Some of these sedimentary sub-basins can be up to 9 kms thick. This was quickly translated to be a possible for the petroleum resource. The marine surveys of both the geological and geophysical fields in the East China Sea continental shelf have been increased significantly, even up to date. Our collections of the seismic, magnetic, gravity, and bathymetry data include the sources from Taiwan, USA, France, and Japan as well as from the commercial oil companies. The total seismic profiles alone can be up to 20,000 kms. This big data base has been gathered as a focus to better understand the tectonic structure, geological evolution, marine slope stability, and also be treated as an early tsunami warning system for the East Asia region. Some of the data can also be used to evaluate the local hydrocarbon potentials.

  18. Deep-Sea Drilling.

    ERIC Educational Resources Information Center

    White, Stan M.

    1979-01-01

    Drilling during 1978 focused on three major geologic problems: the nature and origin of the oceanic crust, the nature and geologic history of the active continental margins, and the oceanic paleoenvironment. (Author/BB)

  19. CHAPHOLO (scientific drilling project): Paleolimnological Evaluation of Lake Chapala, western Mexico, During Holocene (CONACYT grant: CB2011-168685)

    NASA Astrophysics Data System (ADS)

    Zarate, P. F.; Fritz, S. C.; Ramirez Sanchez, U.; Gomez Salazar, S.; Ceja Andrade, I.; Priyadarsi Debajyoti, R.; Brenner, M.

    2012-12-01

    CHAPHOLO ( CHAP: Chapala; HOLO: Holocene) has as goal to evaluate paleoenvironmental variations recorded in the sediment of neotectonic Lake Chapala (LCH), western Mexico (20°15.129'N, 103° 02.996'W). The lake lies about 1524 m asl. LCH is the largest lake in Mexico (1,100 kmyr2), but is shallow (zmax = 7.20 m). It is located in a basin belonging to the Citala Rift, the east-west branch of three continental rifts that join to form the so-called Jalisco triple junction. Our working hypothesis is that recent (Holocene) paleolimnological changes in LCH were caused by major climate variations and by minor regional/local processes (e.g. volcanism). We will drill a 40m long core from the lake depocenter, with the objective of recovering a full Holocene record, and likely more, assuming a mean sedimentation rate of 2 mm yr-1. Core chronology will be established using AMS 14C and 210Pb techniques and climate inferences will be made using geochemical, geophysical and micropaleontological proxies. Particularly, we pretend to identify the six "short" fluctuations of climate that characterized the Holocene (Mayewski et al., 2004) and the identification of Mediewal Warm Period and the droughts affected the mayan culture (Hodell et al., 1995). We will verify the application of Ti as a proxy to rainfall (Metcalfe et al., 2010). During the last 10,000 the fact about the dissolution of diatom in LCH sediments must be evaluated (Ryves et al., 2009). The working group is multidisciplinary (Geochemistry, Micropaleontology, Paleolimnology, Geophysics) and involves multiple institutions (Guadalajara University, Mexican National University-UNAM, University of Florida, University of Nebraska-Lincoln). CHAPHOLO is supported by funds from the Mexican government and from the Guadalajara University. The theme of CHAPHOLO is consistent with global environmental programs such as PAGES and CLIVAR. This project will be developed in stages over three years.

  20. Project Hotspot: Mineral chemistry of high-MgO basalts from the Kimama core, Snake River Scientific Drilling Project, Idaho

    NASA Astrophysics Data System (ADS)

    Bradshaw, R. W.; Christiansen, E. H.; Dorais, M. J.; Potter, K. E.; Shervais, J. W.

    2011-12-01

    Mineral compositions can be used to deduce magma crystallization temperatures and to infer key characteristics of magma source regions including delving into the plume or no-plume sources of intraplate basalts. To this end, mineral compositions in basalt acquired by the Snake River Scientific Drilling Project have been analyzed by electron microprobe. The samples are from the Kimama drill hole on the axis of the Central Snake River Plain, Idaho which was drilled through 1912 m of basalt and interbedded sediments. Five of the least evolved basalt flows (i.e., low Fe, Ti, and high Ni and Cr) were chosen based on semiquantitative analyses using a Bruker Tracer IV handheld X-ray fluorescence spectrometer. Phenocryst phases include olivine and plagioclase; many olivine phenocrysts also contain inclusions of Cr-Al-rich spinel. Groundmass phases are olivine, plagioclase, clinopyroxene, magnetite, and ilmenite. Olivine phenocrysts are normally zoned with cores of Fo 81-70; the rims of Fo 70-50 overlap with the compositions of olivine in the groundmass. Spinels included in olivines in the most MgO-rich lavas are Al-rich (up to 34 wt% Al2O3), similar to those in ocean island basalts (Barnes and Roeder, 2001) and some zone to higher Fe and Ti. Plagioclase phenocryst cores (An 76-65) overlap significantly with the compositions of groundmass plagioclase (An 72-40). Clinopyroxene is confined to the groundmass and creates an ophitic texture. Pyroxene compositions are typically: Wo 45-37, En 42-30, Fs 30-15 and more evolved pyroxenes trend towards Craters of the Moon pyroxenes which have lower Ca. Temperature and oxygen fugacity were calculated from magnetite-ilmenite pairs using QUILF (Anderson et al., 1993), which yielded temperatures of 750-1000°C and fO2 near or just below the QFM buffer. The magnetite-ilmenite pairs are all groundmass phases; thus, these are post-eruption temperatures and fO2 estimates. Olivine compositions were used to test if the source of the Snake River

  1. Fault-rock Magnetism from Wenchuan earthquake Fault Scientific Drilling project (WFSD) Implies the Different Slip Dynamics

    NASA Astrophysics Data System (ADS)

    Liu, D.; Li, H.; Lee, T. Q.; Sun, Z.

    2015-12-01

    The 2008 Mw 7.9 Wenchuan Earthquake had caused great human and financial loss, and it had induced two major earthquake surface rupture zones, including the Yingxiu-Beichuan earthquake fault (Y-B F.) and Guanxian-Anxian earthquake fault (G-A F.) earthquake surface rupture zones. After main shock, the Wenchuan earthquake Fault Scientific Drilling project (WFSD) was co-organized by the Ministry of Science and Technology, Ministry of Land and Resources and China Bureau of Seismology, and this project focused on earthquake fault mechanics, earthquake slip process, fault physical and chemical characteristics, mechanical behavior, fluid behavior, fracture energy, and so on. Fault-rocks magnetism is an effective method for the earthquake fault research, such as earthquake slip dynamics. In this study, the fault-rocks from the drilling-hole cores and close to the Wenchuan Earthquake surface rupture zone were used to do the rock-magnetism and discuss the earthquake slip dynamics. The measurement results of magnetic susceptibility (MS) show that the relative high or low MS values are corresponded to the fault-rocks from the Y-B F. and G-A F., respectively. Other rock-magnetism gives more evidence to the magnetic mineral assemblage of fault-rocks from the two earthquake fault zones. The relative high MS in the drilling-holes and trench along the Y-B F. was caused by the new-formed ferrimagnetic minerals during the high temperature and rapid speed earthquake slip process, such as magnetite and hematite, so the Y-B F. had experienced high temperature and rapid speed thermal pressurization earthquake slip mechanism. The relative low MS in the trench along the G-A F. was possible caused by high content of Fe-sulfides, and the G-A F. had possibly experienced the low temperature and slow speed mechanical lubrication earthquake slip mechanism. The different earthquake slip mechanism was possibly controlled by the deep structure of the two earthquake faults, such as the fault

  2. Magnetofabrics of ultrahigh-pressure gneisses from the Chinese Continental Scientific Drilling (CCSD) project: Retrogression of ferromagnetic gneisses

    NASA Astrophysics Data System (ADS)

    Grimmer, J.-C.; Qi, X. X.; Xu, Z. Q.

    2009-04-01

    In order to better understand retrograde processes during exhumation of ultrahigh pressure (UHP) rocks the anisotropy of magnetic susceptibility (AMS) was measured on UHP-gneisses from the 5138 m deep CCSD-mainhole. The Sulu UHP-gneisses are composed of variable proportions of quartz, K-feldspar, plagioclase, biotite, and white mica with variable contents of garnet, chlorite, epidote, amphibole, and accessory phases such as zircon, apatite, and Fe-Ti-oxides. 111 samples from 21 oriented core pieces from the uppermost 1800 m of the CCSD-mainhole were measured for their AMS. The mean susceptibilities (Kmean) of the gneisses vary from 0.1x10-3 to 37.2x10-3 SI. Some core pieces outline a large intra-sample variation of Kmean. The anisotropies (Ṕ) of the gneisses vary from 1.05 to 1.62. 83% of the samples display positive shape factors (T) and thus oblate AMS-ellipsoids. Magnetic foliations coincide with metamorphic foliations dipping to the ENE with variable dip angles. The orientations of the principal susceptibility axes show no systematic variation with Kmean at the intra- and inter-sample scale. The average gneiss density is 2.67±0.12 g/cm3. The main carrier of susceptibility is biotite for the paramagnetic gneisses (Kmean < 0.5x10-3 SI) and magnetite for the ferromagnetic gneisses (Kmean > 5x10-3 SI). Variation diagram of Kmean versus density outlines a well-constrained positive correlation for paramagnetic gneisses since higher contents of biotite augment both density and Kmean. For the ferromagnetic gneisses the correlation is also well constrained and positive since higher contents of magnetite augment both density and Kmean. Cogenetic gneisses with a large intra-sample variation of Kmean are in particular suitable to better understand possible genetic links between the para- and ferromagnetic gneisses. These particular samples outline diffuse, but nevertheless negative correlations between Kmean and the density corroborating decomposition of magnetite and concomitant biotite formation. Since no impact on the orientation of the AMS-ellipsoids is observed magnetite decomposition took place during or after the major ductile deformation phase. This can be well documented by SEM imaging, which shows fractured magnetite with newly grown biotite and magnetite inclusions in biotite. AMS data may thus be better interpreted as tracing retrograde fluid-induced decomposition of magnetite and concomitant biotite growth rather than primary compositional variation.

  3. Drilling to investigate processes in active tectonics and magmatism

    NASA Astrophysics Data System (ADS)

    Shervais, J.; Evans, J.; Toy, V.; Kirkpatrick, J.; Clarke, A.; Eichelberger, J.

    2014-12-01

    Coordinated drilling efforts are an important method to investigate active tectonics and magmatic processes related to faults and volcanoes. The US National Science Foundation (NSF) recently sponsored a series of workshops to define the nature of future continental drilling efforts. As part of this series, we convened a workshop to explore how continental scientific drilling can be used to better understand active tectonic and magmatic processes. The workshop, held in Park City, Utah, in May 2013, was attended by 41 investigators from seven countries. Participants were asked to define compelling scientific justifications for examining problems that can be addressed by coordinated programs of continental scientific drilling and related site investigations. They were also asked to evaluate a wide range of proposed drilling projects, based on white papers submitted prior to the workshop. Participants working on faults and fault zone processes highlighted two overarching topics with exciting potential for future scientific drilling research: (1) the seismic cycle and (2) the mechanics and architecture of fault zones. Recommended projects target fundamental mechanical processes and controls on faulting, and range from induced earthquakes and earthquake initiation to investigations of detachment fault mechanics and fluid flow in fault zones. Participants working on active volcanism identified five themes: the volcano eruption cycle; eruption sustainability, near-field stresses, and system recovery; eruption hazards; verification of geophysical models; and interactions with other Earth systems. Recommended projects address problems that are transferrable to other volcanic systems, such as improved methods for identifying eruption history and constraining the rheological structure of shallow caldera regions. Participants working on chemical geodynamics identified four major themes: large igneous provinces (LIPs), ocean islands, continental hotspot tracks and rifts, and

  4. Geological and geochemical criteria for the continental nature of the Mendeleev Rise (the Arctic Ocean) from the data of drilling and dredging of seabed rock material

    NASA Astrophysics Data System (ADS)

    Morozov, Andrey; Petrov, Oleg; Kremenetskiy, Alexander; Kashubin, Sergey; Rekant, Pavel; Gusev, Eugene; Shokalskiy, Sergey; Shevchenko, Sergey; Sergeev, Sergey; Artyushkov, Eugene

    2013-04-01

    The results are presented of geological and geophysical studies on the Mendeleev Rise at 10 test sites at 79°N to 83°N (expedition "Arktika-2012" in August-September 2012). During the expedition, for the first time, three boreholes were drilled in the bedrocks of the Mendeleev Rise basement at a depth of 1700-2600 m, and more than 20 thousand fragments of seabed rock material were dredged. Among them carbonate-bearing rocks including dolomite with relicts of trilobites and ostracoderms (D3-C) constitute up 65 %. Up to 20% are terrigenous rocks with a predominance of quartz sandstones. Magmatic rocks constitute 10-15% of the samples (including 8% of gabbro-dolerite and 2 % of granite) with 5% of metamorphic rocks. The boreholes revealed magmatic mafic rocks of basalt to basaltic andesite to trachyandesite series (SiO2-48-58% K2O+Na2O-3,4-9,2%) including epigenically altered volcanic breccias. All fragments of magmatic mafic rocks have a similar mineral and chemical composition and are grouped with gabbro dolerite (SiO2-49-51%, K2O+Na2O-2,5-3,0%). Preliminary results of mineralogic, geochemical and of isotopic geochemical (ICP-OEC, ICP-MS, RFA, Sm-Nd, Rb-Sr, EPMA and others) analyses suggest the continental nature of the studied rocks and show a distinct difference from rocks of the Gakkel Ridge in the Eurasian part of the ocean, which are of the oceanic origin. U-Pb dating of zircons from the core rocks and seabed rock material (SIMS SHRIMP II) indicate a wide range of their formation age: 2940-995, 639-385 and 303-203 Ma and thus suggest that they belong to volcanogenic terrigeneous carbonate-bearing bed of the ancient platform composing the floor of Amerasian part of the Arctic Ocean.

  5. Downhole fluid sampling at the SSSDP (Salton Sea Scientific Drilling Project) California State 2-14 well, Salton Sea, California

    SciTech Connect

    Goff, F.; Shevenell, L.; Grigsby, C.O.; Dennis, B.

    1987-07-01

    In situ fluid sampling activities were conducted at the Salton Sea Scientific Drilling Project (SSSDP) well during late December 1985 and late March 1986 to obtain unflashed samples of Salton Sea brine. In late December, three sampling runs were made to depths of approximately 1800 m and temperatures of 300/sup 0/C. In late March, 10 sampling runs were made to depths of approximately 3150 m and temperatures of 350/sup 0/C. In brief, the Los Alamos tool obtained samples from four of eight runs; the Lawrence Berkeley tool obtained samples from one of one run; the Leutert Instruments, Inc., tool obtained samples from zero of three runs; and the USGS quartz crystal experiment was lost in the well. The most complete sample was obtained from run No. 11, using the Los Alamos sampler and Sandia battery pack/controller on a wireline. About 1635 ml of brine, two noble gas samples, and two bulk gas samples were collected from this run. Samples of brine and gas from productive runs have been distributed to about 15 researchers for various types of analyses. Chemical analyses by the Los Alamos and US Geological Survey analytical teams are presented in this report, although they are not corrected for flashing and precipitation.

  6. Hydrogeology of the Hawaii Scientific Drilling Project borehole KP-1 1. Hydraulic conditions adjacent to the well bore

    USGS Publications Warehouse

    Paillet, Frederick L.; Thomas, D.M.

    1996-01-01

    Temperature and formation resistivity logs obtained in borehole KP-1 of the Hawaii Scientific Drilling Project indicate that the adjacent formation is characterized by several zones of distinctly different average temperature and water salinity. A series of hydraulic analyses and water sampling programs were conducted to rule out the possibility of local hydraulic effects associated with the presence of the borehole in the generation of these apparent groundwater zones. Hydraulic tests and sampling with the borehole cased to a depth of 710 m and open below that depth indicate that the deep aquifer contains seawater at a temperature nearly identical to that of the open ocean at the same depth. Various analyses give estimates of aquifer transmissivity of about 10-3 m2/s in the vicinity of the borehole. Isolation of this deeper aquifer from the overlying groundwater zones was investigated by perforating the casing at six locations and then measuring the changes in water level in the borehole, in the salinity of the fluid column, in the temperature profile of the fluid column, and in the rate of flow in the fluid column induced by the perforations. These results positively confirm that the zones of distinctly different formation properties indicated on the temperature and resistivity logs are not caused by flow in or around casing. Flow and fluid column salinity induced by the perforations also confirm significant differences between the hydraulic heads and geochemistry of the different groundwater zones inferred from the well logs.

  7. Effect of eight outer continental shelf drilling muds on the calcification rate and free amino acid pool of the coral Acropora cervicornis

    SciTech Connect

    Powell, E.N.; Kendall, J.J. Jr.; Connor, S.J.; Zastrow, C.E.; Bright, T.J.

    1984-09-01

    During most offshore drilling operations, drilling muds are routinely discharged into surrounding waters. Because corals are relatively sensitive to many environmental perturbations and can be adversely affected by offshore drilling operations, the effects of drilling muds on corals have received considerable attention. Because drilling muds are discharged intermittently, only periodic exposures of short duration should impact nearby coral reefs. To fully assess the impact of a drilling mud discharge on corals requires an assessment of the capacity for corals to recover from short-term exposure. The purpose of this study was to assess the relative toxicity of a number of muds that were slated for marine disposal for the coral Acropora cervicornis after a 48-hr recovery period. Calcification rate and free amino acid pool were investigated.

  8. Analysis of P and S wave vertical seismic profile data from the Salton Sea Scientific Drilling Project

    SciTech Connect

    Daley, T.M.; McEvilly, T.V.; Majer, E.L.

    1988-11-10

    As part of the Salton Sea Scientific Drilling Project at California State well 2--14, vertical seismic profile (VSP) data were collected from P and S wave sources at two distances from the well. Use of a three-component geophone, along with rotation of the recorded data traces into a wave front-based coordinate system, allows analysis of many aspects of seismic wave propagation properties around the well. Standard VSP analysis techniques were used to measure interval P and S wave velocities and to identify reflecting horizons both within and below the survey interval (from 455 to 1735 m). A reflection from below the survey interval, seen with both P and S sources, seems to be associated with a fractured reservoir near 2100 m. Indications of fracturing were observed, including vertical scattering of P waves from a zone near 915 m. Orthogonally polarized shear waves were generated at each offset to study anisotropy by travel time measurement and particle motion analysis of the shear wave arrivals. Three component particle motion analysis of shear wave arrivals was found to be effective for characterizing the subtleties in the S wave splitting throughout the various zones in the well. The SH/sub t/ source (horizontal and transverse to the well) produced complicated, elliptical particle motion while the SV source (in-line with the well) produced linear particle motion. The difference in linearity of particle motion from orthogonally polarized shear wave sources was unexpected and may be related to regional tectonics. Anomalous zones may be related to transition depths in the Salton Sea geothermal field. Travel time difference between SV and SH waves, while clearly observable, indicates only about 1% average anisotropy.

  9. Drilling through the largest magma chamber on Earth: Bushveld Igneous Complex Drilling Project (BICDP)

    NASA Astrophysics Data System (ADS)

    Trumbull, R. B.; Ashwal, L. D.; Webb, S. J.; Veksler, I. V.

    2015-05-01

    A scientific drilling project in the Bushveld Igneous Complex in South Africa has been proposed to contribute to the following scientific topics of the International Continental Drilling Program (ICDP): large igneous provinces and mantle plumes, natural resources, volcanic systems and thermal regimes, and deep life. An interdisciplinary team of researchers from eight countries met in Johannesburg to exchange ideas about the scientific objectives and a drilling strategy to achieve them. The workshop identified drilling targets in each of the three main lobes of the Bushveld Complex, which will integrate existing drill cores with new boreholes to establish permanently curated and accessible reference profiles of the Bushveld Complex. Coordinated studies of this material will address fundamental questions related to the origin and evolution of parental Bushveld magma(s), the magma chamber processes that caused layering and ore formation, and the role of crust vs. mantle in the genesis of Bushveld granites and felsic volcanic units. Other objectives are to study geophysical and geodynamic aspects of the Bushveld intrusion, including crustal stresses and thermal gradient, and to determine the nature of deep groundwater systems and the biology of subsurface microbial communities.

  10. Isotopic evolution of Mauna Kea volcano: Results from the initial phase of the Hawaii Scientific Drilling Project

    USGS Publications Warehouse

    Lassiter, J.C.; DePaolo, D.J.; Tatsumoto, M.

    1996-01-01

    We have examined the Sr, Nd, and Pb isotopic compositions of Mauna Kea lavas recovered by the first drilling phase of the Hawaii Scientific Drilling Project. These lavas, which range in age from ???200 to 400 ka, provide a detailed record of chemical and isotopic changes in basalt composition during the shied/postshield transition and extend our record of Mauna Kea volcanism to a late-shield period roughly equivalent to the last ???100 ka of Mauna Loa activity. Stratigraphic variations in isotopic composition reveal a gradual shift over time toward a more depleted source composition (e.g., higher 143Nd/144Nd, lower 87Sr/86Sr, and lower 3He/4He). This gradual evolution is in sharp contrast with the abrupt appearance of alkalic lavas at ???240 ka recorded by the upper 50 m of Mauna Kea lavas from the core. Intercalated tholeiitic and alkalic lavas from the uppermost Mauna Kea section are isotopically indistinguishable. Combined with major element evidence (e.g., decreasing SiO2 and increasing FeO) that the depth of melt segregation increased during the transition from tholeiitic to alkalic volcanism, the isotopic similarity of tholeiitic and alkalic lavas argues against significant lithosphere involvement during melt generation. Instead, the depleted isotopic signatures found in late shield-stage lavas are best explained by increasing the proportion of melt generated from a depleted upper mantle component entrained and heated by the rising central plume. Direct comparison of Mauna Kea and Mauna Loa lavas erupted at equivalent stages in these volcanoes' life cycles reveals persistent chemical and isotopic differences independent of the temporal evolution of each volcano. The oldest lavas recovered from the drillcore are similar to modern Kilauea lavas, but are distinct from Mauna Loa lavas. Mauna Kea lavas have higher 143Nd/144Nd and 206Pb/204Pb and lower 87Sr/86Sr. Higher concentrations of incompatible trace elements in primary magmas, lower SiO2, and higher FeO also

  11. Drill, Baby, Drill

    ERIC Educational Resources Information Center

    Kerkhoff, Todd

    2009-01-01

    School fire drills are quickly becoming insignificant and inconvenient to school administrators. When the time for the monthly fire drill rolls around, it is often performed with a "let's get this over with" attitude. Although all schools conduct fire drills, seldom do they effectively train students and staff members how to respond in a real…

  12. Active seismic monitoring of changes of the reflection response of a crystalline shear zone due to fluid injection in the crust at the Continental Deep Drilling Site, Germany

    NASA Astrophysics Data System (ADS)

    Beilecke, T.; Kurt, B.; Stefan, B.

    2005-12-01

    In theory and in the laboratory variations of the hydraulic pressure can be detected with seismic methods: A lowering of the hydraulic pressure leads to the closure of micro-cracks within the rock (increase of the differential or effective pressure). Subsequently, the seismic velocities increase. An increase of the hydraulic pressure leads to reverse seismic effects. Consequently, seismic impedance contrasts and associated reflection amplitudes vary in the case of a propagating fluid pressure front in a rock matrix with inhomogeneous permeability - as is the case at shear zones. The largest amplitude changes can be expected with vertical ray inclination on the impedance contrast. Generally, the expected effects are small however (Kaselow, 2004). The practical utilization of active seismics for the detection of pressure changes at large scale in hard rock is currently being studied at the Continental Deep Drilling Site (KTB). The injection of water (200 l/min) in a depth of about 4000 m into the so-called SE2 shear zone in the KTB pilot hole was monitored with active seismics between May 2004 and April 2005. The core of the experiment layout is a fixed 5-arm geophone array consisting of 24 3-component geophones, buried at about 70 cm depth. The source signal is a vertical vibrator sweep of 30 s length with the spectrum 30-120 Hz. The signal is sent into the ground 32 times during each cycle, detected with the array and recorded separately for each geophone channel, without prior correlation with the source signal. This allows maximum post-processing with seismic processing and analysis tools and especially permits the use of array properties to increase the signal-to-noise ratio. Critical parameters of the experiment are the repeatability of the source signal as well as the stability of the receiver properties. Another pivot is the hydraulic pressure and its distribution built up within the rock matrix. Estimations based on model calculations show that a change of

  13. Elastic properties and seismic anisotropy of the Seve Nappe Complex - Laboratory core measurements from the International Continental Drilling Project COSC-1 well, Åre, Sweden

    NASA Astrophysics Data System (ADS)

    Wenning, Q. C.; Almqvist, B. S. G.; Zappone, A. S.

    2015-12-01

    The COSC-1 scientific borehole was drilled in the summer of 2014 to ~2.5 km depth to study the structure and composition of the Middle Allochthon of the Central Scandinavian Caledonides. It crosscuts the amphibolite-grade lower part of the Seve nappe and intersects a mylonite zone in the lower 800 m of the borehole. We selected six core samples representing the primary lithologies in the COSC-1 borehole for laboratory investigation of elastic properties. The cores consisted of two amphibolites with differing grain sizes, a calc-silicate gneiss, a felsic gneiss, a coarse grained amphibole bearing gneiss, and a garnet bearing mylonitic schist from the basal shear zone. Both P- and S-waves were measured at ultrasonic frequency (1 MHz), and room temperature hydrostatic pressure conditions up to 260 MPa. Measurements were made along three mutually perpendicular directions, one perpendicular to foliation and two parallel to the foliation with one aligned with mineral lineation. Vp and Vs, anisotropy, and elastic properties are reported as an extrapolation of the high-pressure portion of the ultrasonic measurements back to the intersection with the zero pressure axis. The Vp and Vs in the direction perpendicular to foliation ranges from 5.51-6.67 km/s and 3.18-4.13 km/s, respectively. In the direction parallel to foliation the Vp and Vs ranges from 6.31-7.25 km/s and 3.52-4.35 km/s, respectively. Vp anisotropy ranges from 3% in the calc-silicate gneiss to 18% in mylonitic schist. Acoustic impedance estimations at lithostatic pressure conditions at base of the borehole (70 MPa) show that acoustic impedance contrast generating reflection coefficients between the basal shear zone and overlying units are significant enough to cause seismic reflections. Above the mylonite zone/shear zone, the reflectivity within the lower Seve nappe is due to the impedance contrast between the felsic gneiss and the amphibolite. This result fits with 3D seismic reflection imaging in the area of

  14. Compositional variation within thick (>10 m) flow units of Mauna Kea Volcano cored by the Hawaii Scientific Drilling Project

    NASA Astrophysics Data System (ADS)

    Huang, Shichun; Vollinger, Michael J.; Frey, Frederick A.; Rhodes, J. Michael; Zhang, Qun

    2016-07-01

    Geochemical analyses of stratigraphic sequences of lava flows are necessary to understand how a volcano works. Typically one sample from each lava flow is collected and studied with the assumption that this sample is representative of the flow composition. This assumption may not be valid. The thickness of flows ranges from <1 to >100 m. Geochemical heterogeneity in thin flows may be created by interaction with the surficial environment whereas magmatic processes occurring during emplacement may create geochemical heterogeneities in thick flows. The Hawaii Scientific Drilling Project (HSDP) cored ∼3.3 km of basalt erupted at Mauna Kea Volcano. In order to determine geochemical heterogeneities in a flow, multiple samples from four thick (9.3-98.4 m) HSDP flow units were analyzed for major and trace elements. We found that major element abundances in three submarine flow units are controlled by the varying proportion of olivine, the primary phenocryst phase in these samples. Post-magmatic alteration of a subaerial flow led to loss of SiO2, CaO, Na2O, K2O and P2O5, and as a consequence, contents of immobile elements, such as Fe2O3 and Al2O3, increase. The mobility of SiO2 is important because Mauma Kea shield lavas divide into two groups that differ in SiO2 content. Post-magmatic mobility of SiO2 adds complexity to determining if these groups reflect differences in source or process. The most mobile elements during post-magmatic subaerial and submarine alteration are K and Rb, and Ba, Sr and U were also mobile, but their abundances are not highly correlated with K and Rb. The Ba/Th ratio has been used to document an important role for a plagioclase-rich source component for basalt from the Galapagos, Iceland and Hawaii. Although Ba/Th is anomalously high in Hawaiian basalt, variation in Ba abundance within a single flow shows that it is not a reliable indicator of a deep source component. In contrast, ratios involving elements that are typically immobile, such as La

  15. Olivine compositions from the Hawaii Scientific Drilling Project, Phase 2: Evidence for a peridotite mantle source region

    SciTech Connect

    Putirka, K D; Ryerson, F J

    2008-10-27

    To the extent that mantle plumes reflect whole mantle convection, Hawaii may provide the clearest window into Earth's lower mantle. Samples from the Hawaii Scientific Drilling Project (HSDP) thus provide valuable tests for models of mantle mineralogy and composition. In this vein, it has been argued recently that Hawaiian olivines, especially those from the shield-building phase as sampled by HSDP, are so high in Ni (Sobolev et al., 2005, 2007), and that Hawaiian whole rocks are so low in CaO (Herzberg, 2006) and high in SiO{sub 2} (Hauri, 1996) that a peridotite mantle source cannot generate such compositions. The Hawaiian plume, so the argument goes, is thus supposedly rich in pyroxenite, and possibly olivine-free. However, comparisons of HSDP olivines to lherzolites, and HSDP whole rocks to lherzolites and partial melting experiments belie these premises. Testable predictions of the pyroxenite model also fail. New comparisons instead show that Hawaiian lavas can be produced from a peridotite source. First, it is unclear that the Hawaiian source is enriched in NiO. The NiO contents of olivines hosted by lherzolites (GEOROC) have the same range as olivines from the HSDP; indeed, the maximum NiO for olivines from lherzolites (0.6 wt.%) is as high as that reported for olivines from any oceanic volcano locality. There is a compositional separation between lherzolite- and HSDP-hosted olivines. But HSDP olivines are not NiO enriched so much as lherzolite olivines are higher in Fo at a given NiO. Lower Fo contents at Hawaii (at a given NiO) ensue because olivine compositions there follow a liquid line of descent, where both Ni and Mg decrease with differentiation. In contrast, subsolidus equilibria involving orthopyroxene enforce a higher and less variable Fo content for lherzolite-derived olivines. Moreover, the pyroxenite mantle model predicts that whole rocks with low CaO and high SiO{sub 2} should host olivines with high NiO. But in HSDP samples, neither correlation

  16. Scientific Discoveries in the Central Arctic Ocean Based on Seafloor Mapping Carried out to Support Article 76 Extended Continental Shelf Claims (Invited)

    NASA Astrophysics Data System (ADS)

    Jakobsson, M.; Mayer, L. A.; Marcussen, C.

    2013-12-01

    Despite the last decades of diminishing sea-ice cover in the Arctic Ocean, ship operations are only possible in vast sectors of the central Arctic using the most capable polar-class icebreakers. There are less than a handful of these icebreakers outfitted with modern seafloor mapping equipment. This implies either fierce competition between those having an interest in using these icebreakers for investigations of the shape and properties of Arctic Ocean seafloor or, preferably, collaboration. In this presentation examples will be shown of scientific discoveries based on mapping data collected during Arctic Ocean icebreaker expeditions carried out for the purpose of substantiating claims for an extended continental shelf under United Nations Convention of the Law of the Sea (UNCLOS) Article 76. Scientific results will be presented from the suite of Lomonosov Ridge off Greenland (LOMROG) expeditions (2007, 2009, and 2012), shedding new light on Arctic Ocean oceanography and glacial history. The Swedish icebreaker Oden was used in collaboration between Sweden and Denmark during LOMROG to map and sample portions of the central Arctic Ocean; specifically focused on the Lomonosov Ridge north of Greenland. While the main objective of the Danish participation was seafloor and sub-seabed mapping to substantiate their Article 76 claim, LOMROG also included several scientific components, with scientists from both countries involved. Other examples to be presented are based on data collected using US Coast Guard Cutter Healy, which for several years has carried out mapping in the western Arctic Ocean for the US continental shelf program. All bathymetric data collected with Oden and Healy have been contributed to the International Bathymetric Chart of the Arctic Ocean (IBCAO). This is also the case for bathymetric data collected by Canadian Coast Guard Ship Louis S. St-Laurent for Canada's extended continental shelf claim. Together, the bathymetric data collected during these

  17. Submarine record of volcanic island construction and collapse in the Lesser Antilles arc: First scientific drilling of submarine volcanic island landslides by IODP Expedition 340

    NASA Astrophysics Data System (ADS)

    Le Friant, A.; Ishizuka, O.; Boudon, G.; Palmer, M. R.; Talling, P. J.; Villemant, B.; Adachi, T.; Aljahdali, M.; Breitkreuz, C.; Brunet, M.; Caron, B.; Coussens, M.; Deplus, C.; Endo, D.; Feuillet, N.; Fraas, A. J.; Fujinawa, A.; Hart, M. B.; Hatfield, R. G.; Hornbach, M.; Jutzeler, M.; Kataoka, K. S.; Komorowski, J.-C.; Lebas, E.; Lafuerza, S.; Maeno, F.; Manga, M.; Martínez-Colón, M.; McCanta, M.; Morgan, S.; Saito, T.; Slagle, A.; Sparks, S.; Stinton, A.; Stroncik, N.; Subramanyam, K. S. V.; Tamura, Y.; Trofimovs, J.; Voight, B.; Wall-Palmer, D.; Wang, F.; Watt, S. F. L.

    2015-02-01

    IODP Expedition 340 successfully drilled a series of sites offshore Montserrat, Martinique and Dominica in the Lesser Antilles from March to April 2012. These are among the few drill sites gathered around volcanic islands, and the first scientific drilling of large and likely tsunamigenic volcanic island-arc landslide deposits. These cores provide evidence and tests of previous hypotheses for the composition and origin of those deposits. Sites U1394, U1399, and U1400 that penetrated landslide deposits recovered exclusively seafloor sediment, comprising mainly turbidites and hemipelagic deposits, and lacked debris avalanche deposits. This supports the concepts that i/ volcanic debris avalanches tend to stop at the slope break, and ii/ widespread and voluminous failures of preexisting low-gradient seafloor sediment can be triggered by initial emplacement of material from the volcano. Offshore Martinique (U1399 and 1400), the landslide deposits comprised blocks of parallel strata that were tilted or microfaulted, sometimes separated by intervals of homogenized sediment (intense shearing), while Site U1394 offshore Montserrat penetrated a flat-lying block of intact strata. The most likely mechanism for generating these large-scale seafloor sediment failures appears to be propagation of a decollement from proximal areas loaded and incised by a volcanic debris avalanche. These results have implications for the magnitude of tsunami generation. Under some conditions, volcanic island landslide deposits composed of mainly seafloor sediment will tend to form smaller magnitude tsunamis than equivalent volumes of subaerial block-rich mass flows rapidly entering water. Expedition 340 also successfully drilled sites to access the undisturbed record of eruption fallout layers intercalated with marine sediment which provide an outstanding high-resolution data set to analyze eruption and landslides cycles, improve understanding of magmatic evolution as well as offshore sedimentation

  18. 33 CFR 146.125 - Emergency drills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Emergency drills. 146.125 Section... CONTINENTAL SHELF ACTIVITIES OPERATIONS Manned OCS Facilities § 146.125 Emergency drills. (a) Emergency drills shall be conducted at least once each month by the person in charge of the manned facility. The...

  19. 33 CFR 146.125 - Emergency drills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Emergency drills. 146.125 Section... CONTINENTAL SHELF ACTIVITIES OPERATIONS Manned OCS Facilities § 146.125 Emergency drills. (a) Emergency drills shall be conducted at least once each month by the person in charge of the manned facility. The...

  20. 33 CFR 146.125 - Emergency drills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Emergency drills. 146.125 Section... CONTINENTAL SHELF ACTIVITIES OPERATIONS Manned OCS Facilities § 146.125 Emergency drills. (a) Emergency drills shall be conducted at least once each month by the person in charge of the manned facility. The...

  1. 33 CFR 146.125 - Emergency drills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Emergency drills. 146.125 Section... CONTINENTAL SHELF ACTIVITIES OPERATIONS Manned OCS Facilities § 146.125 Emergency drills. (a) Emergency drills shall be conducted at least once each month by the person in charge of the manned facility. The...

  2. 33 CFR 146.125 - Emergency drills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Emergency drills. 146.125 Section... CONTINENTAL SHELF ACTIVITIES OPERATIONS Manned OCS Facilities § 146.125 Emergency drills. (a) Emergency drills shall be conducted at least once each month by the person in charge of the manned facility. The...

  3. 30 CFR 250.1605 - Drilling requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Drilling requirements. 250.1605 Section 250... SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Sulphur Operations § 250.1605 Drilling requirements. (a) Lessees of OCS sulphur leases shall conduct drilling operations in accordance with §§ 250.1605 through...

  4. Drilling tools for continuous offshore operations

    SciTech Connect

    Gelfgat, M.Y.; Surkov, D.V.; Buyanovsky, I.N.

    1995-12-31

    Offshore drilling tools are still the object of improvement aimed in achieving maximum production or scientific effect of minimum costs. One of perspective ways of improving offshore scientific drilling indices is utilization of drilling systems which provide continuous hole penetration without pulling out the drill string aboard of drill vessel for bit replacement. The report presents specific features of the drilling tools supplying Complete Coring System (CCS) operations. CCS can provide continuous coring and drilling as well as logging in any geological profiles from the soft to very hard formations. One of the basic principles in coring is slimhole pilot drilling, thus giving many advantages. Development of drilling tools for CCS is based upon vast experience in designing drilling tools, including the retractable bits. In perspective CCS can be applied in stratigraphic and scientific drilling in deep water, especially in complicated geological conditions.

  5. The Towuti Drilling Project: paleoenvironments, biological evolution, and geomicrobiology of a tropical Pacific lake

    NASA Astrophysics Data System (ADS)

    Russell, James M.; Bijaksana, Satria; Vogel, Hendrik; Melles, Martin; Kallmeyer, Jens; Ariztegui, Daniel; Crowe, Sean; Fajar, Silvia; Hafidz, Abdul; Haffner, Doug; Hasberg, Ascelina; Ivory, Sarah; Kelly, Christopher; King, John; Kirana, Kartika; Morlock, Marina; Noren, Anders; O'Grady, Ryan; Ordonez, Luis; Stevenson, Janelle; von Rintelen, Thomas; Vuillemin, Aurele; Watkinson, Ian; Wattrus, Nigel; Wicaksono, Satrio; Wonik, Thomas; Bauer, Kohen; Deino, Alan; Friese, André; Henny, Cynthia; Imran; Marwoto, Ristiyanti; Ode Ngkoimani, La; Nomosatryo, Sulung; Ode Safiuddin, La; Simister, Rachel; Tamuntuan, Gerald

    2016-07-01

    The Towuti Drilling Project (TDP) is an international research program, whose goal is to understand long-term environmental and climatic change in the tropical western Pacific, the impacts of geological and environmental changes on the biological evolution of aquatic taxa, and the geomicrobiology and biogeochemistry of metal-rich, ultramafic-hosted lake sediments through the scientific drilling of Lake Towuti, southern Sulawesi, Indonesia. Lake Towuti is a large tectonic lake at the downstream end of the Malili lake system, a chain of five highly biodiverse lakes that are among the oldest lakes in Southeast Asia. In 2015 we carried out a scientific drilling program on Lake Towuti using the International Continental Scientific Drilling Program (ICDP) Deep Lakes Drilling System (DLDS). We recovered a total of ˜ 1018 m of core from 11 drilling sites with water depths ranging from 156 to 200 m. Recovery averaged 91.7 %, and the maximum drilling depth was 175 m below the lake floor, penetrating the entire sedimentary infill of the basin. Initial data from core and borehole logging indicate that these cores record the evolution of a highly dynamic tectonic and limnological system, with clear indications of orbital-scale climate variability during the mid- to late Pleistocene.

  6. 30 CFR 250.462 - What are the requirements for well-control drills?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and...-control drills? You must conduct a weekly well-control drill with each drilling crew. Your drill must... and efficiently. (a) Well-control drill plan. You must prepare a well control drill plan for each...

  7. 30 CFR 250.462 - What are the requirements for well-control drills?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and...-control drills? You must conduct a weekly well-control drill with each drilling crew. Your drill must... and efficiently. (a) Well-control drill plan. You must prepare a well control drill plan for each...

  8. 30 CFR 250.462 - What are the requirements for well-control drills?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and...-control drills? You must conduct a weekly well-control drill with each drilling crew. Your drill must... and efficiently. (a) Well-control drill plan. You must prepare a well control drill plan for each...

  9. 30 CFR 250.462 - What are the requirements for well-control drills?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Other Drilling Requirements § 250.462 What are the requirements for well-control drills? You must conduct a weekly well-control drill with each drilling crew. Your drill must familiarize the crew with...

  10. Initial faulting age of the Longmen Shan thrust fault belt: Paleo-earthquake information from Scientific Drilling (WFSD)

    NASA Astrophysics Data System (ADS)

    Wang, H.; Li, H.; Sun, Z.; Si, J.; Huang, Y.

    2013-12-01

    The Longmen Shan thrust fault belt has got much more attention after the 2008 Wenchuan earthquake, but there is still no accordant cognition about its formation age. The frequently fault activities of the Longmen Shan thrust fault belt have triggered several strong ancient seismic activities in the geological history, and induced unconsolidated soft-sediment deformed. Soft-sediment deformation structures formed during or shortly after deposition are important indicators of past seismic activity. These structures are a direct response to processes of fluid escape during liquefaction and fluidization related to past seismic activity in the area, suggest they could play an important role in analyzing the distribution and intensity of ancient tectonic activity. Many layers of conglomerate with peculiar shapes of breccias occur in the Xujiahe Formation sediments in the WFSD-1 drilling core. The peculiar conglomerate layers spaced at irregular intervals, which can be classified into 4 groups, from top to bottom, the depths are: 759.03-812.48 m, 932.8-978 m, 991.88-1025.25 m and 1097.4-1156.51 m. The breccias in the peculiar conglomerate are mostly black calcareous fine-grained siltstone, with the sizes varying from a few millimeters to dozens of centimeters, mostly are 1-5 cm. The cementing material is fine-grained quartz sandstone (particle diameter: 0.05-0.2 mm). The content of the calcareous siltstone breccia in sandstone is about 5-60%. The breccias vary in their morphology and pattern, such as embay structure, small irregular flame structure, liquefied droplet and homogeneous layer. Those are typical liquefied deformation features caused by earthquake without remote transport. The original rock is alternating layers of black calcium siltstone and yellow-grey fine-grained sandstone, formed below epicontinental sea wave base. Strong earthquake triggered the fine-grained sandstone liquefied, then traversed and flowed into the soft sedimentary siltstone layer made it

  11. Hydrogeology of the Hawaii Scientific Drilling Project borehole KP-1 2. Groundwater geochemistry and regional flow patterns

    USGS Publications Warehouse

    Thomas, D.M.; Paillet, Frederick L.; Conrad, M.E.

    1996-01-01

    A series of downhole and surface water samples were taken from the 1-km-deep KP-1 borehole located on the eastern flank of the island of Hawaii. Early samples from depths of more than 700 m showed salinities nearly equivalent to seawater but having anomalous cation concentrations that are attributed to ion exchange between formation fluids and residual drilling mud clays. Later deep samples found only minor variations from seawater cation chemistry that are consistent with low-temperature weathering of basalts; ??18O values are equivalent to seawater values and are consistent with this interpretation. Carbon 14 activities of dissolved inorganic carbonate indicate a water age ranging from 5890 to 7170 years B.P. and fluid transport rates of 1.8 to 2.2 m/yr. Fluid samples from perforations at 310 m in the borehole demonstrate that a freshwater aquifer is present at the Mauna Kea/Mauna Loa interface; borehole resistivity logs indicate that it is ???200 m thick. Although it has not yet been possible to obtain samples of the freshwater zone without contamination from the deep saline fluids, the chloride concentrations of the low-salinity zone are estimated using a mixing enthalpy calculation to be less than 100 mg/L. Light stable isotope data indicate that the fresh water at 320 m is derived from recharge entering the island at an average elevation of 2000 m. Inferred 14C activities of the dissolved bicarbonate in the freshwater zone indicate an average calibrated age of 2200 years B.P. and an average fluid velocity of at least 14 m/yr. A regional water flow model is proposed that suggests that the fresh water found at the 320-m depth is derived from rainfall recharge from the middle elevations of Mauna Kea volcano. This rainfall is channeled beneath the Mauna Loa lavas by the thick soil layer separating the two volcanoes. A second shallow fresh-to-brackish water zone, derived from Mauna Loa recharge, is also inferred to exist below the carbonate formation that

  12. Hydrogeology of the Hawaii Scientific Drilling Project borehole KP-1 -- 2. Groundwater geochemistry and regional flow patterns

    SciTech Connect

    Thomas, D.M.; Paillet, F.L.; Conrad, M.E.

    1995-11-01

    A series of downhole and surface water samples were taken from the I-km-deep KP-1 borehole located on the eastern flank of the island of Hawaii. Early samples from depths of more than 700 m showed salinities nearly equivalent to seawater but having anomalous cation concentrations that are attributed to ion exchange between formation fluids and residual drilling mud clays. Later deep samples found only minor variations from seawater cation chemistry that are consistent with low-temperature weathering of basalts; delta(18)O values are equivalent to seawater values and are consistent with this interpretation. Carbon 14 activities of dissolved inorganic carbonate indicate a water age ranging from 5890 to 7170 years B.P. and fluid transport rates of 1.8 to 2.2 m/yr. Fluid samples from perforations at 310 m in the borehole demonstrate that a freshwater aquifer is present at the Mauna Kea/Mauna Loa interface; borehole resistivity logs indicate that it is similar to 200 m thick. Although it ha s not yet been possible to obtain samples of the freshwater zone without contamination from the deep saline fluids, the chloride concentrations of the low-salinity zone are estimated using a mixing enthalpy calculation to be less than 100 mg/L. Light stable isotope data indicate that the fresh water at 320 m is derived from recharge entering the island at an average elevation of 2000 m. Inferred C-14 activities of the dissolved bicarbonate in the freshwater zone indicate an average calibrated age of 2200 years B.P. and an average fluid velocity of at least 14 m/yr. A regional water flow model is proposed that suggests that the fresh water found at the 320-m depth is derived from rainfall recharge from the middle elevations of Mauna Kea volcano. This rainfall is channeled beneath the Mauna Loa lavas by the thick soil layer separating the two volcanoes. A second shallow fresh-to-brackish water zone, derived from Mauna Loa recharge, is also inferred to exist below the carbonate

  13. A key continental archive for the last 2 Ma of climatic history of the central Mediterranean region: A pilot drilling in the Fucino Basin, central Italy

    NASA Astrophysics Data System (ADS)

    Giaccio, B.; Regattieri, E.; Zanchetta, G.; Wagner, B.; Galli, P.; Mannella, G.; Niespolo, E.; Peronace, E.; Renne, P. R.; Nomade, S.; Cavinato, G. P.; Messina, P.; Sposato, A.; Boschi, C.; Florindo, F.; Marra, F.; Sadori, L.

    2015-12-01

    An 82 m long sedimentary succession was retrieved from the Fucino Basin, the largest intermountain tectonic depression of the central Apennines. The basin hosts a succession of fine-grained lacustrine sediments (ca. 900 m-thick) possibly continuously spanning the last 2 Ma. A preliminary tephrostratigraphy study allows us to ascribe the drilled 82 m long record to the last 180 ka. Multi-proxy geochemical analyses (XRF scanning, total organic/inorganic carbon, nitrogen and sulfur, oxygen isotopes) reveal noticeable variations, which are interpreted as paleohydrological and paleoenvironmental expressions related to classical glacial-interglacial cycles from the marine isotope stage (MIS) 6 to present day. In light of the preliminary results, the Fucino sedimentary succession is likely to provide a long, continuous, sensitive, and independently dated paleoclimatic archive of the central Mediterranean area.

  14. 30 CFR 250.463 - Who establishes field drilling rules?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Who establishes field drilling rules? 250.463... INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Other Drilling Requirements § 250.463 Who establishes field drilling rules? (a) The...

  15. 30 CFR 250.463 - Who establishes field drilling rules?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Who establishes field drilling rules? 250.463... INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Other Drilling Requirements § 250.463 Who establishes field drilling rules? (a) The...

  16. 30 CFR 250.463 - Who establishes field drilling rules?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Who establishes field drilling rules? 250.463... INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Other Drilling Requirements § 250.463 Who establishes field drilling rules? (a) The...

  17. 30 CFR 250.1612 - Well-control drills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Well-control drills. 250.1612 Section 250.1612... OPERATIONS IN THE OUTER CONTINENTAL SHELF Sulphur Operations § 250.1612 Well-control drills. Well-control drills shall be conducted for each drilling crew in accordance with the requirements set forth in §...

  18. 30 CFR 250.463 - Who establishes field drilling rules?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Who establishes field drilling rules? 250.463... GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Other Drilling Requirements § 250.463 Who establishes field drilling rules? (a) The District Manager...

  19. The DOE Thermal Regimes Drilling Program through 1987

    SciTech Connect

    Not Available

    1988-07-01

    In response to strong endorsement from the scientific community, in the form of a report by the Continental Scientific Drilling Committee of the National Academy of Sciences (CSDC, 1984), the Office of Basic Energy Sciences of the DOE undertook a program of investigations of young magmatic intrusions and their associated thermal systems. To date, the effort has encompassed the first phases of a program to investigate the roots of active hydrothermal systems and has also investigated the thermal, chemical, and mechanical behavior of geologically recent (less than 600 years) magmatic extrusions. Shallow to intermediate-depth holes have been drilled and cored into hydrothermal systems in the silicic Valles and Long Valley calderas and at the crustal spreading center of the Salton Trough. These projects are briefly summarized here and are covered in greater detail in the accompanying appendices.

  20. Paleomagnetic and Magnetostratigraphic Studies in Drilling Projects of Impact Craters - Recent Studies, Challenges and Perspectives

    NASA Astrophysics Data System (ADS)

    Fucugauchi, J. U.; Velasco-Villarreal, M.; Perez-Cruz, L. L.

    2013-05-01

    Paleomagnetic studies have long been successfully carried out in drilling projects, to characterize the borehole columns and to investigate the subsurface structure and stratigraphy. Magnetic susceptibility logging and magnetostratigraphic studies provide data for lateral correlation, formation evaluation, azimuthal core orientation, physical properties, etc., and are part of the tools available in the ocean and continental drilling programs. The inclusion of continuous core recovery in scientific drilling projects have greatly expanded the range of potential applications of paleomagnetic and rock magnetic studies, by allowing laboratory measurements on core samples. For this presentation, we concentrate on drilling studies of impact structures and their usefulness for documenting the structure, stratigraphy and physical properties at depth. There are about 170-180 impact craters documented in the terrestrial record, which is a small number compared to what is observed in the Moon, Mars, Venus and other bodies of the solar system. Of the terrestrial impact craters, only a few have been studied by drilling. Some craters have been drilled as part of industry exploration surveys and/or academic projects, including notably the Sudbury, Ries, Vredefort, Manson and many other craters. As part of the Continental ICDP program, drilling projects have been conducted on the Chicxulub, Bosumtwi, Chesapeake and El gygytgyn craters. Drilling of terrestrial craters has proved important in documenting the shallow stratigraphy and structure, providing insight on the cratering and impact dynamics. Questions include several that can only be addressed by retrieving core samples and laboratory analyses. Paleomagnetic, rock magnetic and fabric studies have been conducted in the various craters, which are here summarized with emphasis on the Chicxulub crater and Yucatan carbonate platform. Chicxulub is buried under a kilometer of younger sediments, making drilling an essential tool. Oil

  1. Longhole drilling

    SciTech Connect

    Not Available

    1993-10-01

    This paper describes new drilling equipment used to drill blasting holes for underground mining operations. Although this method was originally designed for caving or stopping, it is now suitable for all highly mechanized mining operations. It describes the automated methods to monitor drilling progress, align drill holes, and handling of drill rods. It also gives some case examples of the use of this equipment showing the reduction in mining costs, increase in safety, and increase in productivity at an Australian gold mine.

  2. Deep drilling in the Chesapeake Bay impact structure - An overview

    USGS Publications Warehouse

    Gohn, G.S.; Koeberl, C.; Miller, K.G.; Reimold, W.U.

    2009-01-01

    The late Eocene Chesapeake Bay impact structure lies buried at moderate depths below Chesapeake Bay and surrounding landmasses in southeastern Virginia, USA. Numerous characteristics made this impact structure an inviting target for scientific drilling, including the location of the impact on the Eocene continental shelf, its threelayer target structure, its large size (??85 km diameter), its status as the source of the North American tektite strewn field, its temporal association with other late Eocene terrestrial impacts, its documented effects on the regional groundwater system, and its previously unstudied effects on the deep microbial biosphere. The Chesapeake Bay Impact Structure Deep Drilling Project was designed to drill a deep, continuously cored test hole into the central part of the structure. A project workshop, funding proposals, and the acceptance of those proposals occurred during 2003-2005. Initial drilling funds were provided by the International Continental Scientific Drilling Program (ICDP) and the U.S. Geological Survey (USGS). Supplementary funds were provided by the National Aeronautics and Space Administration (NASA) Science Mission Directorate, ICDP, and USGS. Field operations were conducted at Eyreville Farm, Northampton County, Virginia, by Drilling, Observation, and Sampling of the Earth's Continental Crust (DOSECC) and the project staff during September-December 2005, resulting in two continuously cored, deep holes. The USGS and Rutgers University cored a shallow hole to 140 m in April-May 2006 to complete the recovered section from land surface to 1766 m depth. The recovered section consists of 1322 m of crater materials and 444 m of overlying postimpact Eocene to Pleistocene sediments. The crater section consists of, from base to top: basement-derived blocks of crystalline rocks (215 m); a section of suevite, impact melt rock, lithic impact breccia, and cataclasites (154 m); a thin interval of quartz sand and lithic blocks (26 m); a

  3. Ocean drilling ship chosen

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    The Sedco/BP 471, owned jointly by Sedco, Inc., of Dallas, Tex., and British Petroleum, has been selected as the drill ship for the Ocean Drilling Program (ODP). The contract, with a specified initial term of 4 years with 10 1-year options after that, is expected to be signed by mid March by Texas A&M University, the ODP science operator, and Sedco, Inc. Texas A&M will develop the design for scientific and laboratory spaces aboard the Sedco/BP 471 and will oversee the ship conversion. Testing and shakedown of the ship is scheduled for the coming autumn; the first scientific cruise is scheduled for next January.One year ago, the commercial drilling market sagged, opening up the option for leasing a commercial drill ship (Eos, February 22, 1983, p. 73). Previously, the ship of choice had been the Glomar Explorer; rehabilitating the former CIA salvage ship would have been extremely expensive, however.

  4. Nature and Significance of Igneous Rocks Cored in the State 2-14 Research Borehole: Salton Sea Scientific Drilling Project, California

    NASA Astrophysics Data System (ADS)

    Herzig, Charles T.; Elders, Wilfred A.

    1988-11-01

    The State 2-14 research borehole of the Salton Sea Scientific Drilling Project penetrated 3.22 km of Pleistocene to Recent sedimentary rocks in the Salton Sea geothermal system, located in the Salton Trough of southern California and northern Baja California, Mexico. In addition, three intervals of igneous rocks were recovered; a silicic tuff and two sills of altered diabase. The chemical composition of the silicic tuff at 1704 m depth suggests that it is correlative with the Durmid Hill tuff, cropping out 25 km NW of the geothermal system. In turn, both of these tuffs may be deposits of the Bishop Tuff, erupted from the Long Valley caldera of central California at 0.7 Ma. The diabases are similar to basaltic xenoliths found in the nearby Salton Buttes rhyolite domes. These diabase are interpreted as hypabyssal intrusions resulting from magmatism due to rifting of the Salton Trough as part of the East Pacific Rise/Gulf of California transtensional system. The sills apparently intruded an already developed geo-thermal system and were in turn altered by it.

  5. 30 CFR 250.414 - What must my drilling prognosis include?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What must my drilling prognosis include? 250... OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Applying for A Permit to Drill § 250.414 What must my drilling prognosis include? Your drilling...

  6. 30 CFR 250.462 - What are the requirements for well-control drills?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Other Drilling Requirements § 250.462 What are the requirements for well-control drills? You must conduct a weekly well-control drill with each drilling crew....

  7. Results from shallow research drilling at Inyo Domes, Long Valley Caldera, California and Salton Sea geothermal field, Salton Trough, California

    SciTech Connect

    Younker, L.W.; Eichelberger, J.C.; Kasameyer, P.W.; Newmark, R.L.; Vogel, T.A.

    1987-09-01

    This report reviews the results from two shallow drilling programs recently completed as part of the United States Department of Energy Continental Scientific Drilling Program. The purpose is to provide a broad overview of the objectives and results of the projects, and to analyze these results in the context of the promise and potential of research drilling in crustal thermal regimes. The Inyo Domes drilling project has involved drilling 4 shallow research holes into the 600-year-old Inyo Domes chain, the youngest rhyolitic event in the coterminous United States and the youngest volcanic event in Long Valley Caldera, California. The purpose of the drilling at Inyo was to understand the thermal, chemical and mechanical behavior of silicic magma as it intrudes the upper crust. This behavior, which involves the response of magma to decompression and cooling, is closely related to both eruptive phenomena and the establishment of hydrothermal circulation. The Salton Sea shallow research drilling project involved drilling 19 shallow research holes into the Salton Sea geothermal field, California. The purpose of this drilling was to bound the thermal anomaly, constrain hydrothermal flow pathways, and assess the thermal budget of the field. Constraints on the thermal budget links the local hydrothermal system to the general processes of crustal rifting in the Salton Trough.

  8. CSDP: The seismology of continental thermal regimes

    SciTech Connect

    Aki, K.

    1990-05-01

    This is a progress report for the past one year of research (year 3 of 5-year project) under the project titled CSDP: Seismology of Continental Thermal Regime'', in which we proposed to develop seismological interpretation theory and methods applicable to complex structures encountered in continental geothermal areas and apply them to several candidate sites for the Continental Scientific Drilling Project. The past year has been extremely productive especially in the area of interpretation theory, including the following two major break-throughs. One is the derivation of an integral equation for time-dependent power spectra, which unified all the existing theories on seismic scattering (including the radiative transfer theory for total energy and single and multiple scattering theories based on the ray approach) and offers more complete and economical solutions to the problems of seismic scattering and attenuation. The other is the new formula for synthetic seismograms for layered media with irregular interfaces, combining the T-matrix method for an arbitrary shaped inclusion and the method of global generalized reflection/transmission coefficients for layered media. Both breakthroughs will enable us to deal with seismic observations in complex earth structures more efficiently and accurately. In the area of experimental studies, we discovered seismic guided waves trapped in the San Andreas fault near Parkfield, California. 54 refs., 14 figs.

  9. FY 1983 Funding for ocean drilling

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    Proposed funding for scientific ocean drilling within the National Science Foundation (NSF) in fiscal 1983 totals $14 million, $6 million less than the current fiscal 1982 plan and about half of the original FY 1982 budget request of $26 million. However, there is more to these numbers than simple subtraction: Additional funding for scientific ocean drilling programs is on hold while decisions are being made about a future drilling program called Advanced Ocean Drilling (AOD).With the demise of the Ocean Margin Drilling Program (OMDP) when industry withdrew its support (Eos, October 20, 1981, p. 705) and with the Deep Sea Drilling Project (DSDP) long ago scheduled to end in fiscal 1983, the future for scientific ocean drilling within NSF was uncertain. To steer ocean drilling toward scientific objectives for the decade, the Conference on Scientific Ocean Drilling (COSOD) (Eos, December 22, 1981, p. 1197) examined four ocean drilling options and decided that the Glomar Explorer, converted to the current capabilities of the DSDP mainstay Glomar Challenger (i.e., without riser and well-control technologies), would meet scientific objectives through the decade. In December, the National Research Council's Committee on Ocean Margin Drilling came to the identical conclusion in its interim report. Both of these decisions were based solely on scientific merit and did not consider costs.

  10. Ocean Drilling Simulation Activity.

    ERIC Educational Resources Information Center

    Telese, James A.; Jordan, Kathy

    The Ocean Drilling Project brings together scientists and governments from 20 countries to explore the earth's structure and history as it is revealed beneath the oceans' basins. Scientific expeditions examine rock and sediment cores obtained from the ocean floor to learn about the earth's basic processes. The series of activities in this…

  11. New Scientific Drilling in the Bering Sea--Results Imply Contribution of Thermogenic Methane to Beringian Margin BSR and Miocene Termination of Subduction Beneath Bowers Ridge

    NASA Astrophysics Data System (ADS)

    Scholl, D. W.

    2011-12-01

    METHANE BENEATH THE BERINGIAN MARGIN: Based on an acoustically prominent BSR (~450 m), it has long been surmised that large volumes of methane gas and methane hydrate occur within the Cenozoic deposits that thickly (5-10 km) drape the Beringian continental margin. In 2009, IODP Exp. 323 drilled three sites along the margin to recover the late Cenozoic paleoceanographic history stored there. On deck, warming sediment cores vigorously released interstitial methane gas. Disassociation of pore-space methane hydrate was inferred, but hydrate was not visually seen. P/T conditions at the BSR (24 C at 360 bars) matched those of the expected phase transition from methane gas below to methane hydrate above. Reflection records below bright sectors of the BSR display gas-blanking effects traceable to subsurface depths of several km, at which the thermal gradient of 50-55 deg C/km implies thermogenic methane would be generated. Since at least the early Miocene, surface water overlying the Beringian margin has been a biologically productive garden spot. Large quantities of organic matter can be expected to have accumulated in the underlying slope deposits. Deep, glacial-age canyon cutting, normal faulting, and diagenetic fracturing of siliceous shale (opal-A to opal-CT) provide venting paths for deep-generated methane. It is posited that ascending thermogenic methane importantly nourishes the sub-margin hydrate BSR. END OF SUBDUCTION AND ARC VOLCANISM AT BOWERS RIDGE: Submarine Bowers Ridge, which is not volcanically active, projects oddly northward and curvingly westward into the Bering Sea Basin from the mid point of the Aleutian Arc. The ridge rises as high as 3500 m to flatten near 600 m at wave-planed platforms cut across basement rock. The ridge's magnetic, velocity, and gravity characteristics are typical of an arc massif. A sediment-filled, trench-shaped trough along the base of the ridge's northern flank implies a former subduction zone underthrust the ridge to the

  12. Proceedings of the symposium on the Long Valley Caldera: A pre-drilling data review

    SciTech Connect

    Goldstein, N.E.

    1987-09-01

    This proceedings volume contains papers or abstracts of papers presented at a two-day symposium held at the Lawrence Berkeley Laboratory (LBL) on 17 and 18 March 1987. Speakers presented a large body of new scientific results and geologic-hydrogeoloic interpretations for the Long Valley caldera. The talks and the discussions that followed focused on concepts and models for the present-day magmatic-hydrothermal system. Speakers at the symposium also addressed the topic of where to site future scientific drill holes in the caldera. Deep scientific drilling projects such as those being contemplated by the DOE Division of Geothermal Technology (DGT), under the Magma Energy Program, and by the DOE Office of Energy Research, Division of Engineering and Geosciences (DEG), along with the USGS and NSE, under the Continental Scientific Drilling Program (CSDP), will be major and expensive national undertakings. DOE/DEG is sponsoring a program of relatively shallow coreholes in the caldera, and DOE/DGT is considering the initiation of a multiphase program to drill a deep hole for geophysical observations and sampling of the ''near magmatic'' environment as early as FY 1988, depending on the DOE budget. Separate abstracts have been prepared for the individual papers.

  13. Lockdown Drills

    ERIC Educational Resources Information Center

    North Dakota Department of Public Instruction, 2011

    2011-01-01

    As a result of House Bill 1215, introduced and passed during the 2011 North Dakota legislative session, every school building in North Dakota must conduct a lockdown drill. While no timeframe, tracking or penalty was identified in the state law, the North Dakota Department of Public Instruction (DPI) advocates annual drills, at a minimum, which…

  14. Disaster Drill.

    ERIC Educational Resources Information Center

    Jones, Rebecca

    1998-01-01

    Bus disaster drills have been held all over country for years. A drill in Blairsville, Pennsylvania, taught officials important lessons: (1) keep roster of students and stops in designated area on bus, and ensure emergency workers know where location; (2) send at least three school officials to accident scene; (3) provide school officials with…

  15. The Future of Deep-Ocean Drilling

    ERIC Educational Resources Information Center

    Heirtzler, J. R.; Maxwell, A. E.

    1978-01-01

    Describes the scientific accomplishments of the International Program of Ocean Drilling (IPOD) during its first decade. Notable are the scientific contributions to understanding the sea floor. Critical decisions for the second decade include economic and social implications. (MA)

  16. Drilling systems for extraterrestrial subsurface exploration.

    PubMed

    Zacny, K; Bar-Cohen, Y; Brennan, M; Briggs, G; Cooper, G; Davis, K; Dolgin, B; Glaser, D; Glass, B; Gorevan, S; Guerrero, J; McKay, C; Paulsen, G; Stanley, S; Stoker, C

    2008-06-01

    Drilling consists of 2 processes: breaking the formation with a bit and removing the drilled cuttings. In rotary drilling, rotational speed and weight on bit are used to control drilling, and the optimization of these parameters can markedly improve drilling performance. Although fluids are used for cuttings removal in terrestrial drilling, most planetary drilling systems conduct dry drilling with an auger. Chip removal via water-ice sublimation (when excavating water-ice-bound formations at pressure below the triple point of water) and pneumatic systems are also possible. Pneumatic systems use the gas or vaporization products of a high-density liquid brought from Earth, gas provided by an in situ compressor, or combustion products of a monopropellant. Drill bits can be divided into coring bits, which excavate an annular shaped hole, and full-faced bits. While cylindrical cores are generally superior as scientific samples, and coring drills have better performance characteristics, full-faced bits are simpler systems because the handling of a core requires a very complex robotic mechanism. The greatest constraints to extraterrestrial drilling are (1) the extreme environmental conditions, such as temperature, dust, and pressure; (2) the light-time communications delay, which necessitates highly autonomous systems; and (3) the mission and science constraints, such as mass and power budgets and the types of drilled samples needed for scientific analysis. A classification scheme based on drilling depth is proposed. Each of the 4 depth categories (surface drills, 1-meter class drills, 10-meter class drills, and deep drills) has distinct technological profiles and scientific ramifications.

  17. Drilling systems for extraterrestrial subsurface exploration.

    PubMed

    Zacny, K; Bar-Cohen, Y; Brennan, M; Briggs, G; Cooper, G; Davis, K; Dolgin, B; Glaser, D; Glass, B; Gorevan, S; Guerrero, J; McKay, C; Paulsen, G; Stanley, S; Stoker, C

    2008-06-01

    Drilling consists of 2 processes: breaking the formation with a bit and removing the drilled cuttings. In rotary drilling, rotational speed and weight on bit are used to control drilling, and the optimization of these parameters can markedly improve drilling performance. Although fluids are used for cuttings removal in terrestrial drilling, most planetary drilling systems conduct dry drilling with an auger. Chip removal via water-ice sublimation (when excavating water-ice-bound formations at pressure below the triple point of water) and pneumatic systems are also possible. Pneumatic systems use the gas or vaporization products of a high-density liquid brought from Earth, gas provided by an in situ compressor, or combustion products of a monopropellant. Drill bits can be divided into coring bits, which excavate an annular shaped hole, and full-faced bits. While cylindrical cores are generally superior as scientific samples, and coring drills have better performance characteristics, full-faced bits are simpler systems because the handling of a core requires a very complex robotic mechanism. The greatest constraints to extraterrestrial drilling are (1) the extreme environmental conditions, such as temperature, dust, and pressure; (2) the light-time communications delay, which necessitates highly autonomous systems; and (3) the mission and science constraints, such as mass and power budgets and the types of drilled samples needed for scientific analysis. A classification scheme based on drilling depth is proposed. Each of the 4 depth categories (surface drills, 1-meter class drills, 10-meter class drills, and deep drills) has distinct technological profiles and scientific ramifications. PMID:18598141

  18. 30 CFR 250.409 - May I obtain departures from these drilling requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations... discuss the departure you are requesting in your APD (see § 250.414(h)). Applying for a Permit To Drill...

  19. 30 CFR 250.409 - May I obtain departures from these drilling requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations General Requirements § 250.409 May I obtain departures from these...)). Applying for a Permit To Drill...

  20. Phase III Drilling Operations at the Long Valley Exploratory Well (LVF 51-20)

    SciTech Connect

    Finger, J.T.; Jacobson, R.D.

    1999-06-01

    During July-September, 1998, a jointly funded drilling operation deepened the Long Valley Exploratory Well from 7178 feet to 9832 feet. This was the third major drilling phase of a project that began in 1989, but had sporadic progress because of discontinuities in tiding. Support for Phase III came from the California Energy Commission (CEC), the International Continental Drilling Program (ICDP), the US Geological Survey (USGS), and DOE. Each of these agencies had a somewhat different agenda: the CEC wants to evaluate the energy potential (specifically energy extraction from magma) of Long Valley Caldera; the ICDP is studying the evolution and other characteristics of young, silicic calderas; the USGS will use this hole as an observatory in their Volcano Hazards program; and the DOE, through Sandia, has an opportunity to test new geothermal tools and techniques in a realistic field environment. This report gives a description of the equipment used in drilling and testing; a narrative of the drilling operations; compiled daily drilling reports; cost information on the project; and a brief summary of engineering results related to equipment performance and energy potential. Detailed description of the scientific results will appear in publications by the USGS and other researchers.

  1. 30 CFR 551.7 - Test drilling activities under a permit.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Test drilling activities under a permit. 551.7... GEOLOGICAL AND GEOPHYSICAL (G&G) EXPLORATIONS OF THE OUTER CONTINENTAL SHELF § 551.7 Test drilling activities under a permit. (a) Shallow test drilling. Before you begin shallow test drilling under a permit,...

  2. 30 CFR 250.458 - What quantities of drilling fluids are required?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What quantities of drilling fluids are required... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Drilling Fluid Requirements § 250.458 What quantities of drilling fluids are required? (a) You must...

  3. 30 CFR 551.7 - Test drilling activities under a permit.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Test drilling activities under a permit. 551.7... GEOLOGICAL AND GEOPHYSCIAL (G&G) EXPLORATIONS OF THE OUTER CONTINENTAL SHELF § 551.7 Test drilling activities under a permit. (a) Shallow test drilling. Before you begin shallow test drilling under a permit,...

  4. 30 CFR 551.7 - Test drilling activities under a permit.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Test drilling activities under a permit. 551.7... GEOLOGICAL AND GEOPHYSICAL (G&G) EXPLORATIONS OF THE OUTER CONTINENTAL SHELF § 551.7 Test drilling activities under a permit. (a) Shallow test drilling. Before you begin shallow test drilling under a permit,...

  5. 30 CFR 250.455 - What are the general requirements for a drilling fluid program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... drilling fluid program? 250.455 Section 250.455 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT... OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Drilling Fluid Requirements § 250.455 What are the general requirements for a drilling fluid program? You must design and implement your...

  6. 30 CFR 250.459 - What are the safety requirements for drilling fluid-handling areas?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... fluid-handling areas? 250.459 Section 250.459 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT... OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Drilling Fluid Requirements § 250.459 What are the safety requirements for drilling fluid-handling areas? You must classify drilling...

  7. 30 CFR 250.410 - How do I obtain approval to drill a well?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Applying for A Permit to Drill § 250.410 How do I obtain approval to drill a well? You must obtain written approval from the District Manager before you begin drilling any well or before...

  8. 30 CFR 250.410 - How do I obtain approval to drill a well?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Applying for A Permit to Drill § 250.410 How do I obtain approval to drill a well? You must obtain written approval from the District Manager before you begin drilling any well or before...

  9. 30 CFR 250.410 - How do I obtain approval to drill a well?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Applying for A Permit to Drill § 250.410 How do I obtain approval to drill a well? You must obtain written approval from the District Manager before you begin drilling any well or before...

  10. 30 CFR 250.410 - How do I obtain approval to drill a well?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false How do I obtain approval to drill a well? 250... OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Applying for A Permit to Drill § 250.410 How do I obtain approval to drill a well? You must obtain...

  11. Lunar deep drill apparatus

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Proposed as a baseline configuration, this rotary drill apparatus is designed to produce 100-mm diameter holes in the lunar surface at depths up to 50 meters. The drill is intended to acquire samples for scientific analysis, mineral resource location, calibration of electronic exploration devices, and foundation analysis at construction sites. It is also intended to prepare holes for emplacement of scientific instruments, the setting of structural anchors, and explosive methods in excavation and mining activities. Defined as a deep drill because of the modular drill string, it incorporates an automatic rod changer. The apparatus is teleoperated from a remote location, such as earth, utilizing supervisory control techniques. It is thus suitable for unmanned and man-tended operation. Proven terrestrial drilling technology is used to the extent it is compatible with the lunar environment. Augers and drive tubes form holes in the regolith and may be used to acquire loose samples. An inertial cutting removal system operates intermittently while rock core drilling is in progress. The apparatus is carried to the work site by a three-legged mobile platform which also provides a 2-meter feed along the hole centerline, an off-hole movement of approximately .5 meters, an angular alignment of up to 20 deg. from gravity vertical, and other dexterity required in handling rods and samples. The technology can also be applied using other carriers which incorporate similar motion capabilities. The apparatus also includes storage racks for augers, rods, and ancillary devices such as the foot-plate that holds the down-hole tooling during rod changing operations.

  12. Drilling fluids

    SciTech Connect

    Swanson, B.L.

    1984-01-10

    Polyethylene glycols in combination with at least one water-dispersible polymeric viscosifier comprising cellulose ethers, cellulose sulfate esters, polyacrylamides, guar gum, or heteropolysaccharides improve the water loss properties of water-based drilling fluids, particularly in hard brine environments.

  13. Production drilling

    SciTech Connect

    Not Available

    1993-03-01

    This paper is actually a composite of two papers dealing with automation and computerized control of underground mining equipment. The paper primarily discusses drills, haulage equipment, and tunneling machines. It compares performance and cost benefits of conventional equipment to the new automated methods. The company involved are iron ore mining companies in Scandinavia. The papers also discusses the different equipment using air power, water power, hydraulic power, and computer power. The different drill rigs are compared for performance and cost.

  14. First time real-time mud gas monitoring during riser drilling in the Kumano Basin (IODP Exp 319)

    NASA Astrophysics Data System (ADS)

    Wiersberg, T.; Erzinger, J.; Horiguchi, K.; Saffer, D. M.; Byrne, T. B.; McNeill, L. C.; Araki, E.; Takahashi, K.; Eguchi, N. O.; Toczko, S.

    2009-12-01

    Chikyu Expedition 319 was the first cruise of the Integrated Ocean Drilling Program (IODP) where riser drilling was performed and real-time mud gas monitoring was conducted, because this technique requires drill-mud circulation. In contrast to conventional IODP drilling that uses drill water in combination with lost circulation, during riser drilling the drill mud returns back to the surface through a riser pipe which encases the drill pipe. The dissolved gas is extracted from returning drill mud, analyzed in real time and sampled for noble gas and stable isotopes studies. This technique has been applied in the past on scientific continental drilling projects of e.g. the International Continental Drilling Program. Expedition 319 is part of the NanTroSEIZE project, a multiexpedition, multistage IODP drilling program focused on understanding the mechanics of seismogenesis and ruptures propagation along the Nankai accretionary prism. Riser drilling was carried out on Hole C0009 that intersects the cover sediments of the Kumano Basin and probably penetrates into the accretionary prism below. Site NT2-11 is located approx. 60 km SE of the harbour of Shingu, Japan. Real-time mud gas monitoring was performed in Hole C0009 during drilling from 703 mbsf (meter below sea floor) down to 1594 mbsf and during hole enlargement from 703 mbsf to 1569 mbsf. Both datasets show similar gas distribution at depth. Gas was furthermore extracted, sampled and analyzed from drill cuttings. Drill mud gas is generally composed of air and gases that derive from the formation. The principal formation gas in drill mud from both drilling phases and in cuttings was methane. Up to 14 vol % CH4 was detected during drilling and up to 3 vol % during hole enlargement. Down to 800 mbsf and below 1280 mbsf, the methane concentration in drill mud is lower than in the surrounded interval, where methane peaks at several depths. At 1280 mbsf an unconformity is indicated from lihology, in seismic and

  15. Investigation of the thermal regime and geologic history of the Cascade volcanic arc: First phase of a program for scientific drilling in the Cascade Range

    SciTech Connect

    Priest, G.R.

    1987-01-01

    A phased, multihole drilling program with associated science is proposed as a means of furthering our understanding of the thermal regime and geologic history of the Cascade Range of Washington, Oregon, and northern California. The information obtained from drilling and ancillary geological and geophysical investigations will contribute to our knowledge in the following general areas: (1) the magnitude of the regional background heat flow of parts of the Quaternary volcanic belt dominated by the most abundant volcanic rock types, basalt and basaltic andesite; (2) the nature of the heat source responsible for the regional heat-flow anomaly; (3) the characteristics of the regional hydrothermal and cold-water circulation; the rates of volcanism for comparison with models for the rate and direction of plate convergence of the Cascades; (5) the history of deformation and volcanism in the volcanic arc that can be related to subduction; (6) the present-day stress regime of the volcanic arc and the relation of these stresses to plate interactions and possible large earthquakes; and the current geometry of the subducted oceanic plate below the Cascade Range and the relationship of the plate to the distribution of heat flow, Quaternary volcanism, and Quaternary deformation. Phase I research will be directed toward a detailed investigation of the Santiam Pass segment. In concert with the Santiam Pass research, a detailed study of the nearby Breitenbush Hot Springs area is also recommended as a component of Phase I. The object of the Breitenbush research is to study one of the hottest known Cascade hydrothermal systems, which coincidentally also has a good geological and geophysical data base. A coordinated program of drilling, sampling, subsurface measurements, and surface surveys will be associated with the drilling of several holes.

  16. Direct Observation of Rhyolite Magma by Drilling: The Proposed Krafla Magma Drilling Project

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.; Sigmundsson, F.; Papale, P.; Markusson, S.; Loughlin, S.

    2014-12-01

    populated calderas (e.g., Campi Flegrei, Italy). Experiments with the live system will aid in hazard assessment and eruption forecasting for this most difficult of volcano hazard problems. We will report on an International Continental Scientific Drilling Program (ICDP) workshop held to assess feasibility and to develop a plan for KMDP.

  17. CSDP: Seismology of continental thermal regime

    SciTech Connect

    Aki, K.

    1989-04-01

    This is a progress report for the past one year of research (year 2 of 5-year project) under the project titled CSDP: Seismology of Continental Thermal Regime'', in which we proposed to develop seismological interpretation theory and methods applicable to complex structures encountered in continental geothermal areas and apply them to several candidate sites for the Continental Scientific Drilling Project. During the past year, two Ph.D. thesis works were completed under the present project. One is a USC thesis on seismic wave propagation in anisotropic media with application to defining fractures in the earth. The other is a MIT thesis on seismic Q and velocity structure for the magma-hydrothermal system of the Valles Caldera, New Mexico. The P.I. co-organized the first International Workshop on Volcanic Seismology at Capri, Italy in October 1988, and presented the keynote paper on the state-of-art of volcanic seismology''. We presented another paper at the workshop on Assorted Seismic Signals from Kilauea Volcano, Hawaii. Another international meeting, namely, the Chapman Conference on seismic anisotropy in the earth's crust at Berkeley, California in May 1988, was co-organized by the co-P.I. (P.C.L), and we presented our work on seismic waves in heterogeneous and anisotropic media. Adding the publications and presentations made in the past year to the list for the preceding year, the following table lists 21 papers published, submitted or presented in the past two years of the present project. 65 refs., 334 figs., 1 tab.

  18. An developing ICDP drilling project on intraplate seismicity: Drilling Active Faults in Northern Europe (DAFNE)

    NASA Astrophysics Data System (ADS)

    Ask, M. V.; Kukkonen, I. T.; Olesen, O.; Steffen, H.; Schmitt, D.

    2011-12-01

    The combined effects of reduced ice load and glacially affected rock stresses are believed to have generated dramatic postglacial fault (PGF) structures in northern Europe, reflecting a special type of intraplate seismicity. A total of 14 PGFs have been identified up to date, with fault scarps up to 160 km in length and 30 m in height. They are usually SE dipping, SW-NE oriented thrusts that represent reactivated, pre-existing crustal discontinuities. Local and national seismic networks reveal that, at least some of the faults are still very active, with several hundreds of microseismic events each year. It is evident that if they were formed in single events, they would imply massive intraplate earthquakes (up to M 7-8). Hence, PGFs may generate larger intraplate earthquakes than generally assumed. Similar structures in North America have not been reported yet. Currently, an International Continental Drilling Program (ICDP) project on Drilling Active Faults in Northern Europe (DAFNE) is under development. The aim of the project is to investigate tectonic and structural characteristics of PGFs in northern Fennoscandia, including their hydrogeology and associated deep biosphere. The research is anticipated to advance science in neotectonics, hydrogeology and deep biosphere studies, and provide important information for nuclear waste and CO2 disposal, petroleum exploration on the Norwegian continental shelf and studies of mineral resources in PG fault areas. We expect that multidisciplinary research applying shallow and deep drilling of PGFs would provide significant scientific results through generating new data and models, namely: 1. Understanding PGF genesis and controls of their locations; 2. Deep structure and depth extent of PGFs; 3. Textural, mineralogical and physical alteration of rocks in the PGFs; 4. State of stress and estimates of paleostress of PGFs; 5. Hydrogeology, hydrochemistry and hydraulic properties of PGFs; 6. Dating of tectonic reactivation

  19. Why deep drilling in the Colônia Basin (Brazil)?

    NASA Astrophysics Data System (ADS)

    Ledru, M.-P.; Reimold, W. U.; Ariztegui, D.; Bard, E.; Crósta, A. P.; Riccomini, C.; Sawakuchi, A. O.

    2015-12-01

    The Colônia Deep Drilling Project held its first International Continental Scientific Drilling Program (ICDP) workshop in September 2014 at the University of São Paulo (Brazil). Twenty-seven experts from six countries discussed the feasibility and the expectations of a deep drilling in the structure of Colônia located at the southwestern margin of the city of São Paulo. After presenting the studies performed at the site during the last decades, participants focused on the objectives, priorities and detailed planning for a full deep-drilling proposal. An excursion to the site and new auger coring showed the importance of the Colônia site for studying the evolution of a tropical rainforest and to evaluate the interplay between the South American summer monsoon, the Intertropical Convergence Zone (ITCZ) and the southern Westerlies belt during the last 5 million years. In addition, deep drilling will eventually solve the still unresolved issue of the origin of the structure of Colônia as a result of meteorite impact or endogenous processes.

  20. Drilling Automation Tests At A Lunar/Mars Analog Site

    NASA Technical Reports Server (NTRS)

    Glass, B.; Cannon, H.; Hanagud, S.; Lee, P.; Paulsen, G.

    2006-01-01

    Future in-situ lunar/martian resource utilization and characterization, as well as the scientific search for life on Mars, will require access to the subsurface and hence drilling. Drilling on Earth is hard - an art form more than an engineering discipline. The limited mass, energy and manpower in planetary drilling situations makes application of terrestrial drilling techniques problematic. The Drilling Automation for Mars Exploration (DAME) project is developing drilling automation and robotics for projected use in missions to the Moon and Mars in the 2011-15 period. This has been tested recently, drilling in permafrost at a lunar/martian analog site (Haughton Crater, Devon Island, Canada).

  1. Continental Flood Basalts

    NASA Astrophysics Data System (ADS)

    Continental flood basalts have been receiving considerable scientific attention lately. Recent publications have focused on several particular flood-basalt provinces (Brito-Arctic, Karoo, Parana', Deccan, and Columbia Plateau), and much attention has been given to the proposed connection between flood-basalt volcanism, bolide impacts, and mass extinctions. The editor of Continental Flood Basalts, J. D. Macdougall, conceived the book to assemble in a single volume, from a vast and scattered literature, an overview of each major post-Cambrian flood-basalt province.Continental Flood Basalts has 10 chapters; nine treat individual flood-basalt provinces, and a summary chapter compares and contrasts continental flood-basalts and mid-oceanic ridge basalts. Specifically, the chapters address the Columbia River basalt, the northwest United States including the Columbia River basalt, the Ethiopian Province, the North Atlantic Tertiary Province, the Deccan Traps, the Parana' Basin, the Karoo Province, the Siberian Platform, and Cenozoic basaltic rocks in eastern China. Each chapter is written by one or more individuals with an extensive background in the province.

  2. Incorporating Cutting Edge Scientific Results from the Margins-Geoprisms Program into the Undergraduate Curriculum, Rupturing Continental Lithosphere Part I: Introducing Seismic Interpretation and Isostasy Principles Using Gulf of California Examples

    NASA Astrophysics Data System (ADS)

    Lamb, M. A.; Cashman, S. M.; Dorsey, R. J.; Bennett, S. E. K.; Loveless, J. P.; Goodliffe, A. M.

    2014-12-01

    The NSF-MARGINS Program funded a decade of research on continental margin processes. The NSF-GeoPRISMS Mini-lesson Project, funded by NSF-TUES, is designed to integrate the significant findings from the MARGINS program into open-source college-level curriculum. The Gulf of California (GOC) served as the focus site for the Rupturing Continental Lithosphere initiative, which addressed several scientific questions: What forces drive rift initiation, localization, propagation and evolution? How does deformation vary in time and space, and why? How does crust evolve, physically and chemically, as rifting proceeds to sea-floor spreading? What is the role of sedimentation and magmatism in continental extension? We developed two weeks of curriculum designed for an upper-division structural geology, tectonics or geophysics course. The curriculum includes lectures, labs, and in-class activities that can be used as a whole or individually. The first set of materials introduces the RCL initiative to students and has them analyze the bathymetry and oblique-rifting geometry of the GOC in an exercise using GeoMapApp. The second set of materials has two goals: (1) introduce students to fundamental concepts of interpreting seismic reflection data via lectures and in-class interpretation of strata, basement, and faults from recent GOC seismic data, and (2) encourage students to discover the structural geometry and rift evolution, including the east-to-west progression of faulting and transition from detachment to high-angle faulting in the northern GOC, and changes in deformation style from north to south. In the third set of materials, students investigate isostatic affects of sediment fill in GOC oblique rift basins. This activity consists of a problem set, introduced in a lecture, where students integrate their findings from the previous bathymetry- and seismic-interpretation exercises.

  3. Incorporating Cutting Edge Scientific Results from the Margins-Geoprisms Program into the Undergraduate Curriculum, Rupturing Continental Lithosphere Part II: Introducing Euler Poles Using Baja-North America Relative Plate Motion Across the Gulf of California

    NASA Astrophysics Data System (ADS)

    Loveless, J. P.; Bennett, S. E. K.; Cashman, S. M.; Dorsey, R. J.; Goodliffe, A. M.; Lamb, M. A.

    2014-12-01

    The NSF-MARGINS Program funded a decade of research on continental margin processes. The NSF-GeoPRISMS Mini-lesson Project, funded by NSF-TUES, is designed to integrate the significant findings from the MARGINS program into open-source college-level curriculum. The Gulf of California (GOC) served as the focus site for the Rupturing Continental Lithosphere (RCL) initiative, which addressed several scientific questions: What forces drive rift initiation, localization, propagation and evolution? How does deformation vary in time and space, and why? How does crust evolve, physically and chemically, as rifting proceeds to sea-floor spreading? What is the role of sedimentation and magmatism in continental extension? We developed two weeks of curriculum, including lectures, labs, and in-class activities that can be used as a whole or individually. This component of the curriculum introduces students to the Euler pole description of relative plate motion (RPM) by examining the tectonic interactions of the Baja California microplate and North American plate. The plate boundary varies in rift obliquity along strike, from highly oblique and strike-slip dominated in the south to slightly less oblique and with a larger extensional component in the north. This Google Earth-based exercise provides students with a visualization of RPM using small circle contours of the local direction and magnitude of Baja-North America movement on a spherical Earth. Students use RPM to calculate the fault slip rates on transform, normal, and oblique-slip faults and examine how the varying faulting styles combine to accommodate RPM. MARGINS results are integrated via comparison of rift obliquity with the structural style of rift-related faults around the GOC. We find this exercise to fit naturally into courses about plate tectonics, geophysics, and especially structural geology, given the similarity between Euler pole rotations and stereonet-based rotations of structural data.

  4. U.S. geological survey core drilling on the Atlantic shelf

    USGS Publications Warehouse

    Hathaway, J.C.; Poag, C.W.; Valentine, P.C.; Miller, R.E.; Schultz, D.M.; Manheim, F. T.; Kohout, F.A.; Bothner, Michael H.; Sangrey, D.A.

    1979-01-01

    The first broad program of scientific shallow drilling on the U.S. Atlantic continental shelf has delineated rocks of Pleistocene to Late Cretaceous age, including phosphoritic Miocene strata, widespread Eocene carbonate deposits that serve as reflective seismic markers, and several regional unconformities. Two sites, off Maryland and New Jersey, showed light hydrocarbon gases having affinity to mature petroleum. Pore fluid studies showed that relatively fresh to brackish water occurs beneath much of the Atlantic continental shelf, whereas increases in salinity off Georgia and beneath the Florida-Hatteras slope suggest buried evaporitic strata. The sediment cores showed engineering properties that range from good foundation strength to a potential for severe loss of strength through interaction between sediments and manmade structures. Copyright ?? 1979 AAAS.

  5. 30 CFR 250.403 - What drilling unit movements must I report?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What drilling unit movements must I report? 250... OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations General Requirements § 250.403 What drilling unit movements must I report? (a) You must report...

  6. 30 CFR 250.422 - When may I resume drilling after cementing?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false When may I resume drilling after cementing? 250... OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Casing and Cementing Requirements § 250.422 When may I resume drilling after cementing? (a)...

  7. 77 FR 70172 - Lifesaving and Fire-Fighting Equipment, Training and Drills Onboard Offshore Facilities and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-23

    ... SECURITY Coast Guard Lifesaving and Fire-Fighting Equipment, Training and Drills Onboard Offshore Facilities and Mobile Offshore Drilling Units (MODUs) Operating on the U.S. Outer Continental Shelf (OCS... Offshore Drilling Unit (MODU) DEEPWATER HORIZON, in the Gulf of Mexico on April 20, 2010, with loss of...

  8. 30 CFR 250.409 - May I obtain departures from these drilling requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations General Requirements § 250.409 May I obtain departures from these drilling requirements? The District Manager may approve departures from the drilling requirements specified in...

  9. 30 CFR 250.409 - May I obtain departures from these drilling requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations General Requirements § 250.409 May I obtain departures from these drilling requirements? The District Manager may approve departures from the drilling requirements specified in...

  10. 30 CFR 250.409 - May I obtain departures from these drilling requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations General Requirements § 250.409 May I obtain departures from these drilling requirements? The District Manager may approve departures from the drilling requirements specified in...

  11. 30 CFR 250.456 - What safe practices must the drilling fluid program follow?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling...); (g) You must install an operable drilling fluid-gas separator and degasser before you begin drilling... industry-accepted practices and include density, viscosity, and gel strength; hydrogenion...

  12. High Temperature Piezoelectric Drill

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Scott, James; Boudreau, Kate; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom; Zhang, Shujun

    2009-01-01

    The current NASA Decadal mission planning effort has identified Venus as a significant scientific target for a surface in-situ sampling/analyzing mission. The Venus environment represents several extremes including high temperature (460 deg C), high pressure (9 MPa), and potentially corrosive (condensed sulfuric acid droplets that adhere to surfaces during entry) environments. This technology challenge requires new rock sampling tools for these extreme conditions. Piezoelectric materials can potentially operate over a wide temperature range. Single crystals, like LiNbO3, have a Curie temperature that is higher than 1000 deg C and the piezoelectric ceramics Bismuth Titanate higher than 600 deg C. A study of the feasibility of producing piezoelectric drills that can operate in the temperature range up to 500 deg C was conducted. The study includes the high temperature properties investigations of engineering materials and piezoelectric ceramics with different formulas and doping. The drilling performances of a prototype Ultrasonic/Sonic Drill/Corer (USDC) using high temperate piezoelectric ceramics and single crystal were tested at temperature up to 500 deg C. The detailed results of our study and a discussion of the future work on performance improvements are presented in this paper.

  13. Project Hotspot: Temporal Compositional Variation in Basalts of the Kimama Core and Implications for Magma Source Evolution, Snake River Scientific Drilling Project, Idaho

    NASA Astrophysics Data System (ADS)

    Potter, K. E.; Shervais, J. W.; Champion, D.; Duncan, R. A.; Christiansen, E. H.

    2012-12-01

    Project Hotspot produced continuous core from three drill sites in the Snake River plain, including 1912 m of core from the Kimama drill site on the axis of the plain. Ongoing major and trace element chemical characterization of the Kimama core and new 40Ar/39Ar and paleomagnetic age data demonstrate temporal variations in the evolution of Snake River Plain volcanism. Cyclic fluctuations in magma chemistry identify over a hundred chemically distinct basalt flow groups (comprising 550 individual lava flows) within 54 periods of volcanic activity, separated by hiatuses of decades to many millennia. From a surface age of 700 ka to a bottom-hole age of 6.5 Ma, the Kimama core records the presence of several nearly coeval but compositionally different lava flows, ranging from highly evolved lavas to non-evolved tholeiites. Determining whether Kimama lavas are genetically unrelated or extreme differentiates of a single magma batch relies upon a combination of detailed chemostratigraphy and absolute and relative age data. Age and geochemical data introduce new ideas on the role of multiple magma sources and/or differentiation processes in the development of central Snake River Plain volcanic systems. The relatively short gestation of evolved liquids is demonstrated throughout the Kimama core, with evidence for cyclic fractionation of mafic lavas at depths of 318 m, 350 m, 547 m, and 1078 m. Here, highly evolved lava flows (FeOT 16.0-18.4 wt %; TiO2 3.43-4.62 wt %) are stratigraphically bounded by more primitive tholeiitic basalts (FeOT 9.9-14.8 wt%; TiO2 1.22-3.56 wt%) within the same inclination range, suggesting that cyclic fractionation is a regular feature of shield volcano development on the central Snake River Plain. Between 1.60 ± 0.13 Ma (453.5 m depth) and 1.54 ± 0.15 Ma (320.0 m depth), Kimama lavas ranged in composition from primitive tholeiite (FeOT 11.7 wt %; TiO2 1.76 wt %) to evolved basalt (FeOT 16.0 wt %; TiO2 4.00 wt %). At depths of 1119 m and 1138 m

  14. Ocean drilling program sets FY 92 schedule

    NASA Astrophysics Data System (ADS)

    Austin, James A., ames A. Austin, Jr.

    At its November 28-December 1, 1990, meeting in Kailua-Kona, Hawaii, the Planning Committee (PCOM) of the Ocean Drilling Program, in association with chairpersons of ODP's scientific advisory structure, has established its Program Plan for Fiscal Year 1992 (approximately mid-November 1991 through mid-January 1993). ODP is the successor to the Deep Sea Drilling Project and the International Phase of Ocean Drilling, and is a consortium of countries led by the United States with a broad mandate to conduct scientific ocean drilling in the world's ocean basins. Based upon ODP's Long Range Plan (available from Joint Oceanographic Institutions, Inc., Washington, D.C.) and the scientific priorities set by ODP's thematic panels, PCOM has placed seven 56-day drilling legs on the proposed schedule, beginning with Leg 141.The new schedule is generally consistent with long-term ODP planning, which has stipulated that drilling operations will be concentrated in the eastern Pacific until late 1992, when the drill ship JOIDES Resolution will transit to the North Atlantic for operations there during calendar 1993. Each program in FY 1992 is briefly summarized below (see also Figure 1), both to alert the Earth sciences community to future opportunities for direct participation aboard the drill ship and to publicize a new ODP policy for “supplemental science” (see accompanying sidebar), which will be initiated for the period covered by legs 141-147.

  15. Drill string enclosure

    DOEpatents

    Jorgensen, Douglas K.; Kuhns, Douglass J.; Wiersholm, Otto; Miller, Timothy A.

    1993-01-01

    The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

  16. Drill string enclosure

    DOEpatents

    Jorgensen, D.K.; Kuhns, D.J.; Wiersholm, O.; Miller, T.A.

    1993-03-02

    The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

  17. WRITING ORAL DRILLS.

    ERIC Educational Resources Information Center

    NEY, JAMES W.

    ALL ORAL LANGUAGE DRILLS MAY BE SEPARATED INTO TWO TYPES--(1) MIM-MEM OR MIMICRY MEMORIZATION DRILLS OR (2) PATTERN PRACTICE DRILLS. THESE TWO LARGER CATEGORIES CAN BE SUB-DIVIDED INTO A NUMBER OF OTHER TYPES, SUCH AS TRANSFORMATION AND SUBSTITUTION DRILLS. THE USE OF ANY PARTICULAR TYPE DEPENDS ON THE PURPOSE TO WHICH THE DRILL IS PUT. IN ANY…

  18. Shaft drilling rig

    SciTech Connect

    Wada, M.; Ajiro, S.

    1986-06-17

    A shaft drilling rig is described which consists of: a supporting structure for a drill string having a plurality of components for drilling a shaft into the earth by imparting a turning and thrust for drilling at least to a drill bit on the drill string, the drilling being down to a predetermined depth, and then a further drill string component having at least at the bottom end thereof an inner wall extending substantially in the axial direction of the component being newly added to the drill string for further drilling; means for receiving at least the bottom end of the further drill string component and for supporting it, and having a member with the outer circumference engageable with the inner wall of the further component, the receiving means supporting the further drill string component in a free standing position; means for supporting the receiving means and having a guiding device for guiding the receiving means between a position where the further drill string component is to be added to the drill string and a parking position spaced laterally of the drill string from the first mentioned position; and means for holding a lower part of the drill string which has been separated from the upper part of the drill string preparatory to adding the further drill string component so that the axis of the lower part is substantially aligned with the drilling direction.

  19. Methane Hydrate Field Program: Development of a Scientific Plan for a Methane Hydrate-Focused Marine Drilling, Logging and Coring Program

    SciTech Connect

    None, None

    2014-02-01

    This final report document summarizes the activities undertaken and the output from three primary deliverables generated during this project. This fifteen month effort comprised numerous key steps including the creation of an international methane hydrate science team, determining and reporting the current state of marine methane hydrate research, convening an international workshop to collect the ideas needed to write a comprehensive Marine Methane Hydrate Field Research Plan and the development and publication of that plan. The following documents represent the primary deliverables of this project and are discussed in summary level detail in this final report: Historical Methane Hydrate Project Review Report; Methane Hydrate Workshop Report; Topical Report: Marine Methane Hydrate Field Research Plan; and Final Scientific/Technical Report.

  20. Technology assessment of vertical and horizontal air drilling potential in the United States. Final report

    SciTech Connect

    Carden, R.S.

    1993-08-18

    The objective of the research was to assess the potential for vertical, directional and horizontal air drilling in the United States and to evaluate the current technology used in air drilling. To accomplish the task, the continental United States was divided into drilling regions and provinces. The map in Appendix A shows the divisions. Air drilling data were accumulated for as many provinces as possible. The data were used to define the potential problems associated with air drilling, to determine the limitations of air drilling and to analyze the relative economics of drilling with air versus drilling mud. While gathering the drilling data, operators, drilling contractors, air drilling contractors, and service companies were contacted. Their opinion as to the advantages and limitations of air drilling were discussed. Each was specifically asked if they thought air drilling could be expanded within the continental United States and where that expansion could take place. The well data were collected and placed in a data base. Over 165 records were collected. Once in the data base, the information was analyzed to determine the economics of air drilling and to determine the limiting factors associated with air drilling.

  1. Gains in efficiency and scientific potential of continental climate reconstruction provided by the LRC LacCore Facility, University of Minnesota

    NASA Astrophysics Data System (ADS)

    Noren, A.; Brady, K.; Myrbo, A.; Ito, E.

    2007-12-01

    Lacustrine sediment cores comprise an integral archive for the determination of continental paleoclimate, for their potentially high temporal resolution and for their ability to resolve spatial variability in climate across vast sections of the globe. Researchers studying these archives now have a large, nationally-funded, public facility dedicated to the support of their efforts. The LRC LacCore Facility, funded by NSF and the University of Minnesota, provides free or low-cost assistance to any portion of research projects, depending on the specific needs of the project. A large collection of field equipment (site survey equipment, coring devices, boats/platforms, water sampling devices) for nearly any lacustrine setting is available for rental, and Livingstone-type corers and drive rods may be purchased. LacCore staff can accompany field expeditions to operate these devices and curate samples, or provide training prior to device rental. The Facility maintains strong connections to experienced shipping agents and customs brokers, which vastly improves transport and importation of samples. In the lab, high-end instrumentation (e.g., multisensor loggers, high-resolution digital linescan cameras) provides a baseline of fundamental analyses before any sample material is consumed. LacCore staff provide support and training in lithological description, including smear-slide, XRD, and SEM analyses. The LRC botanical macrofossil reference collection is a valuable resource for both core description and detailed macrofossil analysis. Dedicated equipment and space for various subsample analyses streamlines these endeavors; subsamples for several analyses may be submitted for preparation or analysis by Facility technicians for a fee (e.g., carbon and sulfur coulometry, grain size, pollen sample preparation and analysis, charcoal, biogenic silica, LOI, freeze drying). The National Lacustrine Core Repository now curates ~9km of sediment cores from expeditions around the world

  2. Drilling equipment to shrink

    SciTech Connect

    Silverman, S.

    2000-01-01

    Drilling systems under development will take significant costs out of the well construction process. From small coiled tubing (CT) drilling rigs for North Sea wells to microrigs for exploration wells in ultra-deepwater, development projects under way will radically cut the cost of exploratory holes. The paper describes an inexpensive offshore system, reeled systems drilling vessel, subsea drilling rig, cheap exploration drilling, laser drilling project, and high-pressure water jets.

  3. Drill user's manual. [drilling machine automation

    NASA Technical Reports Server (NTRS)

    Pitts, E. A.

    1976-01-01

    Instructions are given for using the DRILL computer program which converts data contained in an Interactive Computer Graphics System (IGDS) design file to production of a paper tape for driving a numerically controlled drilling machine.

  4. Worldwide drilling: Drilling improves in eastern hemisphere

    SciTech Connect

    1996-02-01

    This paper provides forecast drilling information for oil and gas producing countries excluding the US. It provides a forecast on the number of wells expected to be drilled and contrasts that to actual figures of wells drilled during 1995. Major countries have narratives to explain the causes of any significant changes, including geopolitical and economic issues.

  5. > Exploring the Scandinavian Mountain Belt by Deep Drilling (COSC)

    NASA Astrophysics Data System (ADS)

    Juhlin, C.; Gee, D. G.; Lorenz, H.; Pascal, C.; Pedersen, K.; Tsang, C.-F.

    2012-04-01

    The Collisional Orogeny in the Scandinavian Caledonides (COSC) project proposes to drill two fully cored scientific boreholes, both to c. 2.5 km depth, in the Swedish Caledonides, one near the town of Åre (COSC 1) and the other further east (COSC 2). Together they will provide a c. 5 km deep high-resolution mid-crustal section through this major mid-Palaeozoic orogen. Main project objectives include (i) improved understanding of mountain building processes (orogeny), (ii) investigation of the geothermal gradient and its response to palaeoclimatic influences, (iii) the hydrogeological-hydrochemical state of the mountain belt, (iv) the deep biosphere in the metamorphic rocks and crystalline basement, and (v) calibration of surface geophysics and geology. The Caledonide Orogen is comparable in size and many other respects to today's Himalayan mountain belt. Silurian collision with underthrusting of the paleo-continent Baltica below Laurentia resulted in widespread formation of eclogite. Major allochthons were transported many hundreds of kilometers onto the Baltoscandian Platform, including high-grade metamorphic rocks and migmatites which were generated during continental margin subduction and emplaced ductilely at mid-crustal levels. COSC will provide detailed insight into mid-Palaeozoic mountain building processes and further our understanding of past, present and future orogen dynamics. Located in a key-area for Caledonian geology, it is close to a major geophysical transect across the mountain belt which has been complemented recently with high-resolution reflection seismics and aerogeophysics for site-selection. The COSC research program is being developed by five working groups, geology, geophysics, geothermics, hydrogeology and microbiology. It has direct relevance for society by improving our understanding of mountain building processes, hydrological-hydrochemical regimes in mountain areas and Precambrian shields, deep subsurface conditions for underground

  6. Oil and gas developments in Atlantic Coastal Plain and Outer Continental Shelf in 1985 and 1986

    SciTech Connect

    Amato, R.V.

    1987-10-01

    Drilling activity for 1985 was not reported previously due to the low level of activity. No exploratory drilling took place on the Atlantic outer continental shelf in 1985 or 1986. One shallow well was drilled onshore in Georgia on the Atlantic coastal plan in 1985, and 2 wells were completed in Georgia in 1986. Texaco drilled 6 core holes on the Virginia coastal plain in 1986. 2 tables.

  7. Drilling to Supercritical Conditions: the Iceland Deep Drilling Project (IDDP).

    NASA Astrophysics Data System (ADS)

    Elders, W. A.; Fridleifsson, G. O.; Saito, S.

    2001-05-01

    Geothermal wells produce mixtures of water and steam in the range 200-350 C, however the high cost of drilling and completing these wells relative to the cost of oil and gas wells is a hindrance to the geothermal industry worldwide. Rather than trying only to reduce this cost, the Icelandic Deep Drilling Project (IDDP) is trying the approach of increasing the power output per well. Funded by a consortium of energy companies in Iceland, the IDDP plans to drill a series of boreholes, to depths greater than 4 to 5 km. The aim is to produce hydrothermal fluids systems at temperatures of 400-500 C, and to investigate the technical and economic aspects of producing supercritical fluids for use in power generation and other energy intensive processes, such as mineral recovery. The first phase feasibility and site selection study began in March 2001 and drilling of the first deep well is expected to begin in 2003. The IDDP faces difficult technical challenges to drill, complete, sample and maintain wells under hot, and potentially acid, conditions. However the IDDP also presents the opportunity to investigate very high-temperature hydrothermal regimes that have rarely been available for direct study. It will address important scientific issues, ranging from the coupling of magmatic and hydrothermal systems, supercritical phenomena, the transition from brittle to ductile behavior at relatively shallow depths, to land based analogues of submarine hot springs, the black smokers of the mid-ocean ridges. Fortunately, the IDDP industrial consortium is willing, or even anxious, to integrate its engineering activities with scientific investigations. The consortium will seek international participation by scientists and engineers to formulate a strategy to achieve both the engineering and scientific goals of the IDDP.

  8. Quantification of subsurface pore pressure through IODP drilling

    NASA Astrophysics Data System (ADS)

    Saffer, D. M.; Flemings, P. B.

    2010-12-01

    It is critical to understand the magnitude and distribution of subsurface pore fluid pressure: it controls effective stress and thus mechanical strength, slope stability, and sediment compaction. Elevated pore pressures also drive fluid flows that serve as agents of mass, solute, and heat fluxes. The Ocean Drilling Program (ODP) and Integrated Ocean Drilling Program (IODP) have provided important avenues to quantify pore pressure in a range of geologic and tectonic settings. These approaches include 1) analysis of continuous downhole logs and shipboard physical properties data to infer compaction state and in situ pressure and stress, 2) laboratory consolidation testing of core samples collected by drilling, 3) direct downhole measurements using pore pressure probes, 3) pore pressure and stress measurements using downhole tools that can be deployed in wide diameter pipe recently acquired for riser drilling, and 4) long-term monitoring of formation pore pressure in sealed boreholes within hydraulically isolated intervals. Here, we summarize key advances in quantification of subsurface pore pressure rooted in scientific drilling, highlighting with examples from subduction zones, the Gulf of Mexico, and the New Jersey continental shelf. At the Nankai, Costa Rican, and Barbados subduction zones, consolidation testing of cores samples, combined with analysis of physical properties data, indicates that even within a few km landward of the trench, pore pressures in and below plate boundary décollement zones reach a significant fraction of the lithostatic load (λ*=0.25-0.91). These results document a viable and quantifiable mechanism to explain the mechanical weakness of subduction décollements, and are corroborated by a small number of direct measurements in sealed boreholes and by inferences from seismic reflection data. Recent downhole measurements conducted during riser drilling using the modular formation dynamics tester wireline tool (MDT) in a forearc basin ~50

  9. Optimizing drilling performance using a selected drilling fluid

    DOEpatents

    Judzis, Arnis; Black, Alan D.; Green, Sidney J.; Robertson, Homer A.; Bland, Ronald G.; Curry, David Alexander; Ledgerwood, III, Leroy W.

    2011-04-19

    To improve drilling performance, a drilling fluid is selected based on one or more criteria and to have at least one target characteristic. Drilling equipment is used to drill a wellbore, and the selected drilling fluid is provided into the wellbore during drilling with the drilling equipment. The at least one target characteristic of the drilling fluid includes an ability of the drilling fluid to penetrate into formation cuttings during drilling to weaken the formation cuttings.

  10. Project DAFNE - Drilling Active Faults in Northern Europe

    NASA Astrophysics Data System (ADS)

    Kukkonen, I. T.; Ask, M. S. V.; Olesen, O.

    2012-04-01

    We are currently developing a new ICDP project 'Drillling Active Faults in Northern Europe' (DAFNE) which aims at investigating, via scientific drilling, the tectonic and structural characteristics of postglacial (PG) faults in northern Fennoscandia, including their hydrogeology and associated deep biosphere [1, 2]. During the last stages of the Weichselian glaciation (ca. 9,000 - 15,000 years B.P.), reduced ice load and glacially affected stress field resulted in active faulting in Fennoscandia with fault scarps up to 160 km long and 30 m high. These postglacial (PG) faults are usually SE dipping, SW-NE oriented thrusts, and represent reactivated, pre-existing crustal discontinuities. Postglacial faulting indicates that the glacio-isostatic compensation is not only a gradual viscoelastic phenomenon, but includes also unexpected violent earthquakes, suggestively larger than other known earthquakes in stable continental regions. The research is anticipated to advance science in neotectonics, hydrogeology and deep biosphere studies, and provide important information for nuclear waste and CO2 disposal, petroleum exploration on the Norwegian continental shelf and studies of mineral resources in PG fault areas. We expect that multidisciplinary research applying shallow and deep drilling of postglacial faults would provide significant scientific results through generating new data and models, namely: (1) Understanding PG fault genesis and controls of their locations; (2) Deep structure and depth extent of PG faults; (3) Textural, mineralogical and physical alteration of rocks in the PG faults; (4) State of stress and estimates of paleostress of PG faults; (5) Hydrogeology, hydrochemistry and hydraulic properties of PG faults; (6) Dating of tectonic reactivation(s) and temporal evolution of tectonic systems hosting PG faults; (7) Existence/non-existence of deep biosphere in PG faults; (8) Data useful for planning radioactive waste disposal in crystalline bedrock; (9) Data

  11. Optically Aligned Drill Press

    NASA Technical Reports Server (NTRS)

    Adderholdt, Bruce M.

    1994-01-01

    Precise drill press equipped with rotary-indexing microscope. Microscope and drill exchange places when turret rotated. Microscope axis first aligned over future hole, then rotated out of way so drill axis assumes its precise position. New procedure takes less time to locate drilling positions and produces more accurate results. Apparatus adapted to such other machine tools as milling and measuring machines.

  12. Rotary blasthole drilling update

    SciTech Connect

    Fiscor, S.

    2008-02-15

    Blasthole drilling rigs are the unsung heroes of open-pit mining. Recently manufacturers have announced new tools. Original equipment manufactures (OEMs) are making safer and more efficient drills. Technology and GPS navigation systems are increasing drilling accuracy. The article describes features of new pieces of equipment: Sandvik's DR460 rotary blasthole drill, P & H's C-Series drills and Atlas Copco's Pit Viper PV275 multiphase rotary blasthole drill rig. DrillNav Plus is a blasthole navigation system developed by Leica Geosystems. 5 photos.

  13. Advanced Drilling through Diagnostics-White-Drilling

    SciTech Connect

    FINGER,JOHN T.; GLOWKA,DAVID ANTHONY; LIVESAY,BILLY JOE; MANSURE,ARTHUR J.; PRAIRIE,MICHAEL R.

    1999-10-07

    A high-speed data link that would provide dramatically faster communication from downhole instruments to the surface and back again has the potential to revolutionize deep drilling for geothermal resources through Diagnostics-While-Drilling (DWD). Many aspects of the drilling process would significantly improve if downhole and surface data were acquired and processed in real-time at the surface, and used to guide the drilling operation. Such a closed-loop, driller-in-the-loop DWD system, would complete the loop between information and control, and greatly improve the performance of drilling systems. The main focus of this program is to demonstrate the value of real-time data for improving drilling. While high-rate transfer of down-hole data to the surface has been accomplished before, insufficient emphasis has been placed on utilization of the data to tune the drilling process to demonstrate the true merit of the concept. Consequently, there has been a lack of incentive on the part of industry to develop a simple, low-cost, effective high-speed data link. Demonstration of the benefits of DWD based on a high-speed data link will convince the drilling industry and stimulate the flow of private resources into the development of an economical high-speed data link for geothermal drilling applications. Such a downhole communication system would then make possible the development of surface data acquisition and expert systems that would greatly enhance drilling operations. Further, it would foster the development of downhole equipment that could be controlled from the surface to improve hole trajectory and drilling performance. Real-time data that would benefit drilling performance include: bit accelerations for use in controlling bit bounce and improving rock penetration rates and bit life; downhole fluid pressures for use in the management of drilling hydraulics and improved diagnosis of lost circulation and gas kicks; hole trajectory for use in reducing directional

  14. Geothermal drilling technology update

    SciTech Connect

    Glowka, D.A.

    1997-04-01

    Sandia National Laboratories conducts a comprehensive geothermal drilling research program for the US Department of Energy, Office of Geothermal Technologies. The program currently includes seven areas: lost circulation technology, hard-rock drill bit technology, high-temperature instrumentation, wireless data telemetry, slimhole drilling technology, Geothermal Drilling Organization (GDO) projects, and drilling systems studies. This paper describes the current status of the projects under way in each of these program areas.

  15. Geothermal drilling research overview

    SciTech Connect

    Glowka, D.A.

    1996-04-10

    Sandia conducts a comprehensive geothermal drilling research program for the US Department of Energy. The program currently consists of eight program areas: lost circulation technology; advanced synthetic-diamond drill bit technology, high-temperature logging technology; acoustic technology; slimhole drilling technology; drilling systems studies; Geothermal Drilling Organization projects; and geothermal heat pump technology. This paper provides justification and describes the projects underway in each program area.

  16. Microwave drilling of bones.

    PubMed

    Eshet, Yael; Mann, Ronit Rachel; Anaton, Abby; Yacoby, Tomer; Gefen, Amit; Jerby, Eli

    2006-06-01

    This paper presents a feasibility study of drilling in fresh wet bone tissue in vitro using the microwave drill method [Jerby et al, 2002], toward testing its applicability in orthopaedic surgery. The microwave drill uses a near-field focused energy (typically, power under approximately 200 W at 2.45-GHz frequency) in order to penetrate bone in a drilling speed of approximately 1 mm/s. The effect of microwave drilling on mechanical properties of whole ovine tibial and chicken femoral bones drilled in vitro was studied using three-point-bending strength and fatigue tests. Properties were compared to those of geometrically similar bones that were equivalently drilled using the currently accepted mechanical rotary drilling method. Strength of mid-shaft, elastic moduli, and cycles to failure in fatigue were statistically indistinguishable between specimen groups assigned for microwave and mechanical drilling. Carbonized margins around the microwave-drilled hole were approximately 15% the hole diameter. Optical and scanning electron microscopy studies showed that the microwave drill produces substantially smoother holes in cortical bone than those produced by a mechanical drill. The hot spot produced by the microwave drill has the potential for overcoming two major problems presently associated with mechanical drilling in cortical and trabecular bone during orthopaedic surgeries: formation of debris and rupture of bone vasculature during drilling.

  17. Influence of drilling operations on drilling mud gas monitoring during IODP Exp. 338 and 348

    NASA Astrophysics Data System (ADS)

    Hammerschmidt, Sebastian; Toczko, Sean; Kubo, Yusuke; Wiersberg, Thomas; Fuchida, Shigeshi; Kopf, Achim; Hirose, Takehiro; Saffer, Demian; Tobin, Harold; Expedition 348 Scientists, the

    2014-05-01

    The history of scientific ocean drilling has developed some new techniques and technologies for drilling science, dynamic positioning being one of the most famous. However, while industry has developed newer tools and techniques, only some of these have been used in scientific ocean drilling. The introduction of riser-drilling, which recirculates the drilling mud and returns to the platform solids and gases from the formation, to the International Ocean Drilling Program (IODP) through the launch of the Japan Agency of Marine Earth-Science and Technology (JAMSTEC) riser-drilling vessel D/V Chikyu, has made some of these techniques available to science. IODP Expedition 319 (NanTroSEIZE Stage 2: riser/riserless observatory) was the first such attempt, and among the tools and techniques used was drilling mud gas analysis. While industry regularly conducts drilling mud gas logging for safety concerns and reservoir evaluation, science is more interested in other components (e.g He, 222Rn) that are beyond the scope of typical mud logging services. Drilling mud gas logging simply examines the gases released into the drilling mud as part of the drilling process; the bit breaks and grinds the formation, releasing any trapped gases. These then circulate within the "closed circuit" mud-flow back to the drilling rig, where a degasser extracts these gases and passes them on to a dedicated mud gas logging unit. The unit contains gas chromatographs, mass spectrometers, spectral analyzers, radon gas analyzers, and a methane carbon isotope analyzer. Data are collected and stored in a database, together with several drilling parameters (rate of penetration, mud density, etc.). This initial attempt was further refined during IODP Expeditions 337 (Deep Coalbed Biosphere off Shimokita), 338 (NanTroSEIZE Stage 3: NanTroSEIZE Plate Boundary Deep Riser 2) and finally 348 (NanTroSEIZE Stage 3: NanTroSEIZE Plate Boundary Deep Riser 3). Although still in its development stage for scientific

  18. 75 FR 26091 - Safety Zone; Riser for DEEPWATER HORIZON at Mississippi Canyon 252 Outer Continental Shelf MODU...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-11

    ... HORIZON, a Mobile Offshore Drilling Unit (MODU), at Mississippi Canyon 252 in the Outer Continental Shelf... Mobile Offshore Drilling Unit (MODU), which has sunk in the deepwater area of the Gulf of Mexico near....T08-849 DEEPWATER HORIZON Mobile Offshore Drilling Unit Safety Zone. (a) Location. All areas...

  19. A 600,000 year long continental pollen record from Lake Van, eastern Turkey

    NASA Astrophysics Data System (ADS)

    Litt, T.; Pickarski, N.; Heumann, G.

    2014-12-01

    Lake Van is the fourth largest terminal lake in the world (38.5°N, 43 °E, volume 607 km3, area 3570 km2, maximum water depth 460 m), extending for 130 km WSW-ENE on the Eastern Anatolian High Plateau, Turkey. The sedimentary record of Lake Van, partly laminated, obtains a long and continuous continental sequence that covers multiple interglacial-glacial cycles. Promoted by the potential of the sedimentary sequence for reconstructing the paleoecological and paleoclimate development of the Near East, a deep drilling operation was carried out in 2010 supported by the International Continental Scientific Drilling Program (ICDP). The 119 m long continental record is based on a well-dated composite profile drilled on the so-called Ahlat Ridge in water depth of 360 m encompassing the last 600,000 years. It contains the longest continuous continental pollen record of the Quaternary in the entire Near East and central Asia obtained to date. It documents glacial and interglacial stages as well as pronounced interstadials encompassing the entire 600 ka of the sedimentary record. The cold-adapted vegetation in the Lake Van region during glacial stages and stadial substages can be described as dwarf-shrub steppe and desert steppe very similar to each other. The climax vegetation of the interglacial stages in the Lake Van region is characterized by an oak steppe-forest with pistachio and juniper. It is interesting to note that, in contrast to the atmospheric CO2 concentration from Antarctic ice cores or marine isotope values based on benthic foraminifera, there is no clear subdivision in the Lake Van pollen record between low-amplitude interglacials (cooler cycles) prior the mid-Brunhes event (MBE) at 430 ka and high-amplitude, post MBE interglacials. Lower CO2 concentrations in the atmosphere might be compensated by stronger insolation forcing during Marine Isotope Stages (MIS) 13a and 15a. A similar pattern can be observed during the triplicate interglacial complex MIS 7

  20. Drill wear monitoring in cortical bone drilling.

    PubMed

    Staroveski, Tomislav; Brezak, Danko; Udiljak, Toma

    2015-06-01

    Medical drills are subject to intensive wear due to mechanical factors which occur during the bone drilling process, and potential thermal and chemical factors related to the sterilisation process. Intensive wear increases friction between the drill and the surrounding bone tissue, resulting in higher drilling temperatures and cutting forces. Therefore, the goal of this experimental research was to develop a drill wear classification model based on multi-sensor approach and artificial neural network algorithm. A required set of tool wear features were extracted from the following three types of signals: cutting forces, servomotor drive currents and acoustic emission. Their capacity to classify precisely one of three predefined drill wear levels has been established using a pattern recognition type of the Radial Basis Function Neural Network algorithm. Experiments were performed on a custom-made test bed system using fresh bovine bones and standard medical drills. Results have shown high classification success rate, together with the model robustness and insensitivity to variations of bone mechanical properties. Features extracted from acoustic emission and servomotor drive signals achieved the highest precision in drill wear level classification (92.8%), thus indicating their potential in the design of a new type of medical drilling machine with process monitoring capabilities.

  1. Drill wear monitoring in cortical bone drilling.

    PubMed

    Staroveski, Tomislav; Brezak, Danko; Udiljak, Toma

    2015-06-01

    Medical drills are subject to intensive wear due to mechanical factors which occur during the bone drilling process, and potential thermal and chemical factors related to the sterilisation process. Intensive wear increases friction between the drill and the surrounding bone tissue, resulting in higher drilling temperatures and cutting forces. Therefore, the goal of this experimental research was to develop a drill wear classification model based on multi-sensor approach and artificial neural network algorithm. A required set of tool wear features were extracted from the following three types of signals: cutting forces, servomotor drive currents and acoustic emission. Their capacity to classify precisely one of three predefined drill wear levels has been established using a pattern recognition type of the Radial Basis Function Neural Network algorithm. Experiments were performed on a custom-made test bed system using fresh bovine bones and standard medical drills. Results have shown high classification success rate, together with the model robustness and insensitivity to variations of bone mechanical properties. Features extracted from acoustic emission and servomotor drive signals achieved the highest precision in drill wear level classification (92.8%), thus indicating their potential in the design of a new type of medical drilling machine with process monitoring capabilities. PMID:25922212

  2. First drilling in Norwegian sea off Norway yields encouraging results

    SciTech Connect

    Bergsager, E.

    1981-06-08

    Three exploratory wells drilled in the Norwegian Sea penetrated Jurassic sandstones with excellent reservoir qualities, rich source rock, and some evidence of hydrocarbons. Constituting the first wells drilled north of the 62nd parallel off Norway, they produced encouraging evidence of prospective structures. The Norwegian continental shelf north of the North Sea contains areas of thick sedimentary basins having an areal extent 8-9 times that of the Norwegian North Sea.

  3. Hydraulic properties of samples retrieved from the Wenchuan earthquake Fault Scientific Drilling Project Hole-1 (WFSD-1) and the surface rupture zone: Implications for coseismic slip weakening and fault healing

    NASA Astrophysics Data System (ADS)

    Chen, Jianye; Yang, Xiaosong; Ma, Shengli; Yang, Tao; Niemeijer, André

    2016-07-01

    In this study, we report the hydraulic properties of samples recovered from the first borehole of the Wenchuan earthquake Fault Scientific Drilling and from outcrops associated with the surface rupture zone of the 2008 Wenchuan earthquake. Compositional and microstructural analyses have also been performed on selected samples. Using the pore pressure oscillation method, the permeability measurements show that (1) fault gouge samples have low permeabilities, decreasing from 2 × 10-18 m2 at an effective pressure (Pe) of 10 MPa (equivalent to an in situ depth of 600 m) to 9 × 10-21 m2 at 155 MPa. (2) Intact and cemented samples are impermeable with permeabilities less than 2 × 10-20 m2 at 10 MPa. (3) Fractured samples have variable permeabilities, ranging from 3 × 10-15 to 1 × 10-20 m2 at 10 MPa, and are most insensitive to changes in the effective pressure. (4) Granitic cataclasites have a moderate permeability at low pressure (i.e., 10-16 to 10-17 m2 at 10 MPa); which decreases rapidly with increasing Pe. Hydraulic conduction of the fault is believed to be influenced by the permeability of the fractures developed, which is controlled by the density, aperture, and/or connectivity of the fractures. Microstructural and compositional analyses of the samples indicate that the fault zone heals through chemically mediated fracture closure related to mineral precipitation, possibly assisted by pressure solution of stressed fracture asperities. Although other weakening mechanisms remain possible, our laboratory measurements combined with numerical modeling reveal that thermal/thermochemical pressurization, perhaps leading to gouge fluidization, played an important role in the dynamic weakening of the Wenchuan earthquake, at least in the study area.

  4. A New Paradigm for Ice Core Drilling

    NASA Astrophysics Data System (ADS)

    Albert, Mary; Bentley, Charles; Twickler, Mark

    2010-09-01

    The search for answers to questions about the changing climate has created an urgent need to discover past climate signatures archived in glaciers and ice sheets, and to understand current ice sheet behavior. Recognizing that U.S. scientific productivity in this area depends upon a mechanism for ensuring continuity and international cooperation in ice coring and drilling efforts, along with the availability of appropriate drills, drilling expertise, and innovations in drilling technology, the U.S. National Science Foundation (NSF) has established the Ice Drilling Program Office (IDPO) and its partner, the Ice Drilling Design and Operations group (IDDO), together known as IDPO/IDDO (Figure 1). This approach to integrated research and technology planning and delivery replaces the prior approach to drilling, which involved a series of NSF contracts with the Polar Ice Coring Office (PICO) and Ice Coring and Drilling Services (ICDS). This contracting approach lacked integrated planning. Previously, NSF had no way to forecast what science the community would propose—it would get compelling climate proposals that needed ice cores for data, but in many cases no existing drill could retrieve the core needed in the proposal. Constructing the needed drill—a process that takes years—forced science objectives to be put on hold. Now the science community is able to give feedback on its needs to IDPO/IDDO continually, allowing those who develop drilling technology to begin designing and constructing drills that scientists will need for the science proposals that they will submit years in the future. As such, IDPO/IDDO represents a new paradigm for integrated science and science support.

  5. Ultrasonic drilling apparatus

    DOEpatents

    Duran, E.L.; Lundin, R.L.

    1988-06-20

    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation. 3 figs.

  6. Ultrasonic drilling apparatus

    DOEpatents

    Duran, Edward L.; Lundin, Ralph L.

    1989-01-01

    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation.

  7. Robotic Planetary Drill Tests

    NASA Technical Reports Server (NTRS)

    Glass, Brian J.; Thompson, S.; Paulsen, G.

    2010-01-01

    Several proposed or planned planetary science missions to Mars and other Solar System bodies over the next decade require subsurface access by drilling. This paper discusses the problems of remote robotic drilling, an automation and control architecture based loosely on observed human behaviors in drilling on Earth, and an overview of robotic drilling field test results using this architecture since 2005. Both rotary-drag and rotary-percussive drills are targeted. A hybrid diagnostic approach incorporates heuristics, model-based reasoning and vibration monitoring with neural nets. Ongoing work leads to flight-ready drilling software.

  8. 30 CFR 250.408 - May I use alternative procedures or equipment during drilling operations?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and... alternative procedures or equipment in your Application for Permit to Drill (APD) (Form MMS-123) (see §...

  9. Expeditions to Drill Atlantic, Gulf of Mexico, and Pacific Sites

    NASA Astrophysics Data System (ADS)

    Coffin, Millard F.

    2005-04-01

    The Integrated Ocean Drilling Program (IODP), an international collaboration of Earth, ocean, and life scientists that began in 2003, offers scientists worldwide unprecedented opportunities to address a vast array of scientific problems in all submarine settings. Recently, the scientific advisory structure of the proposal-driven IODP scheduled drilling expeditions, targeting critical scientific problems in the Atlantic Ocean, Gulf of Mexico, and Pacific Ocean, for 2005 and early 2006 (Figure 1, Table 1). The IODP, which is co-led by Japan and the United States, with strong contributions from the European Consortium for Ocean Research Drilling (ECORD) and China, is guided by an initial science plan, ``Earth, Oceans, and Life'' (www.iodp.org). For the first time, through the IODP, scientists have at their disposal both a riser (drilling vessel which has a metal tube surrounding the drill pipe that enables the return of drilling fluid and cuttings to the drill ship; the ``riser'' is attached to a ``blow-out preventer'' or shut-off device at the seafloor) and riserless drilling vessel (which lacks a riser pipe and blow-out preventer), as well as mission-specific capabilities such as drilling barges and jack-up rigs for shallow-water and Arctic drilling.

  10. The COSC-1 drill core - a geological sample through a hot allochthon and the underlying thrust zone

    NASA Astrophysics Data System (ADS)

    Lorenz, Henning; Almqvist, Bjarne; Berthet, Théo; Klonowska, Iwona

    2015-04-01

    The ICDP (International Continental Scientific Drilling Program) supported Collisional Orogeny in the Scandinavian Caledonides (COSC) scientific drilling project has the aim to study mountain building processes in a major Paleozoic orogen. COSC-1, drilled in 2014 near Åre (Sweden), was planned to sample a section from the hot allochthon of the Lower Seve Nappe through the thrust zone and into the underlying less metamorphic rocks of the Särv and/or Jämtlandian nappes. Diamond core drilling operations resulted in 2396.0 m of drill core with only about 2.5 m documented core loss (technical failure of the core catcher). Down to about 1800 m, the COSC-1 drill hole penetrated a succession that is dominated by gneisses of varying compositions (felsic, amphibole, calc-silicate gneisses, and more), often garnet and diopside bearing. Meta-gabbros and amphibolites are common and apparently correlate well with seismic reflectors between 500 and 1000 m depth. Also marbles, pegmatite dykes and minor mylonites occur. These rocks are highly strained. Small scale structures (e.g. isoclinal folding) are occasionally discernible in the narrow section provided by the drill cores. (Young) Fractures are sparse. Only a set of very steep fractures results in fluid conduction zones at several levels throughout the drill hole. At 175 m and between 1200 and 1300 m, this results in the dissolution of calcite-rich bands in the gneisses to form "micro-karst". First signs of the thrust zone below the Seve Nappe appear just below 1700 m in form of narrow deformation bands and thin mylonites. The mylonites increase in thickness and reach a thickness of around 1 m between 1900 and 2000 m. Below c. 2100 m, mylonites are dominating and garnets become common (but are not present in all mylonites). The deepest rock of mafic origin (possibly amphibolite in the Seve Nappe) was identified at 2314 m, a transition from gneiss into lower grade metasedimentary rocks occurs between 2345 and 2360 m. The

  11. The Continental Crust: A Geophysical Approach

    NASA Astrophysics Data System (ADS)

    Christensen, Nikolas I.

    Nearly 80 years ago, Yugoslavian seismologist Andrija Mohorovicic recognized, while studying a Balkan earthquake, that velocities of seismic waves increase abruptly at a few tens of kilometers depth , giving rise to the seismological definition of the crust. Since that discovery, many studies concerned with the nature of both the continental and oceanic crusts have appeared in the geophysical literature.Recently, interest in the continental crust has cascaded. This is largely because of an infusion of new data obtained from major reflection programs such as the Consortium for Continental Reflection Profiling (COCORP) and British Institutions Reflection Profiling Syndicate (BIRPS) and increased resolution of refraction studies. In addition, deep continental drilling programs are n ow in fashion. The Continental Crust: A Geophysical Approach is a summary of present knowledge of the continental crust. Meissner has succeeded in writing a book suited to many different readers, from the interested undergraduate to the professional. The book is well documented , with pertinent figures and a complete and up-to-date reference list.

  12. The Iceland Deep Drilling Project (IDDP): (I) A New Era in Geothermal Development?

    NASA Astrophysics Data System (ADS)

    Elders, W. A.; Fridleifsson, G. O.; Bird, D. K.; Reed, M. H.; Schiffman, P.; Zierenberg, R.

    2007-12-01

    the Reykjanes geothermal fields during 2009-2010, and subsequently deepened. In contrast to the fresh water systems at Krafla and Hengill, the Reykjanes geothermal system produces hydrothermally modified seawater on the Reykjanes peninsula, in southern Iceland, where the Mid-Atlantic Ridge comes on land in southern Iceland. Processes at depth at Reykjanes should be similar to those responsible for black smokers on ocean spreading centers. The IDDP has engendered considerable international scientific interest. The US National Science Foundation and the International Continental Scientific Drilling Program will jointly fund the coring and sampling for scientific studies. In preparation for studying the data and samples that will be recovered by deep drilling research is underway on samples from existing wells in the target geothermal fields, and on exposed "fossil" geothermal systems and active mid-ocean ridge systems that have conditions believed to be similar to those that will be encountered in deep drilling by the IDDP. Some of these initial scientific studies by US investigators are reported in the accompanying papers.

  13. Plug and drill template

    NASA Technical Reports Server (NTRS)

    Orella, S.

    1979-01-01

    Device installs plugs and then drills them after sandwich face sheets are in place. Template guides drill bit into center of each concealed plug thereby saving considerable time and fostering weight reduction with usage of smaller plugs.

  14. Hydromechanical drilling device

    DOEpatents

    Summers, David A.

    1978-01-01

    A hydromechanical drilling tool which combines a high pressure water jet drill with a conventional roller cone type of drilling bit. The high pressure jet serves as a tap drill for cutting a relatively small diameter hole in advance of the conventional bit. Auxiliary laterally projecting jets also serve to partially cut rock and to remove debris from in front of the bit teeth thereby reducing significantly the thrust loading for driving the bit.

  15. Drilling technique for crystals

    NASA Technical Reports Server (NTRS)

    Hunter, T.; Miyagawa, I.

    1977-01-01

    Hole-drilling technique uses special crystal driller in which drill bit rotates at fixed position at speed of 30 rpm while crystal slowly advances toward drill. Technique has been successfully applied to crystal of Rochell salt, Triglycine sulfate, and N-acetyglycine. Technique limits heat buildup and reduces strain on crystal.

  16. Drilling at Advanced Levels

    ERIC Educational Resources Information Center

    Case, Doug

    1977-01-01

    Instances where drilling is useful for advanced language are discussed. Several types of drills are recommended, with the philosophy that advanced level drills should have a lighter style and be regarded as a useful, occasional means of practicing individual new items. (CHK)

  17. HydroPulse Drilling

    SciTech Connect

    J.J. Kolle

    2004-04-01

    Tempress HydroPulse{trademark} tool increases overbalanced drilling rates by generating intense suction pulses at the drill bit. This report describes the operation of the tool; results of pressure drilling tests, wear tests and downhole drilling tests; and the business case for field applications. The HydroPulse{trademark} tool is designed to operate on weighted drilling mud at conventional flow rates and pressures. Pressure drilling tests confirm that the HydroPulse{trademark} tool provides 33% to 200% increased rate of penetration. Field tests demonstrated conventional rotary and mud motor drilling operations. The tool has been operated continuous for 50 hours on weighted mud in a wear test stand. This level of reliability is the threshold for commercial application. A seismic-while-drilling version of the tool was also developed and tested. This tool was used to demonstrate reverse vertical seismic profiling while drilling an inclined test well with a PDC bit. The primary applications for the HydroPulse{trademark} tool are deep onshore and offshore drilling where rate of penetration drives costs. The application of the seismic tool is vertical seismic profiling-while-drilling and look-ahead seismic imaging while drilling.

  18. An international and multidisciplinary drilling project into a young complex impact structure: The 2004 ICDP Bosumtwi Crater Drilling Project—An overview

    NASA Astrophysics Data System (ADS)

    Koeberl, Christian; Milkereit, Bernd; Overpeck, Jonathan T.; Scholz, Christopher A.; Amoako, Philip Y. O.; Boamah, Daniel; Danuor, Sylvester; Karp, Tobias; Kueck, Jochem; Hecky, Robert E.; King, John W.; Peck, John A.

    The Bosumtwi impact crater in Ghana, arguably the best-preserved complex young impact structure known on Earth, displays a pronounced rim and is almost completely filled by Lake Bosumtwi, a hydrologically closed basin. It is the source crater of the Ivory Coast tektites. The structure was excavated in 2.1-2.2 Gyr old metasediments and metavolcanics of the Birimian Supergroup. A drilling project was conceived that would combine two major scientific interests in this crater: 1) to obtain a complete paleoenvironmental record from the time of crater formation about one million years ago, at a near-equatorial location in Africa for which very few data are available so far, and 2) to obtain a complete record of impactites at the central uplift and in the crater moat, for ground truthing and comparison with other structures. Within the framework of an international and multidisciplinary drilling project led by the International Continental Scientific Drilling Program (ICDP), 16 drill cores were obtained from June to October 2004 at six locations within Lake Bosumtwi, which is 8.5 km in diameter. The 14 sediment cores are currently being investigated for paleoenvironmental indicators. The two impactite cores LB-07A and LB-08A were drilled into the deepest section of the annular moat (540 m) and the flank of the central uplift (450 m), respectively. They are the main subject of this special issue of Meteoritics & Planetary Science, which represents the first detailed presentations of results from the deep drilling into the Bosumtwi impactite sequence. Drilling progressed in both cases through the impact breccia layer into fractured bedrock. LB-07A comprises lithic (in the uppermost part) and suevitic impact breccias with appreciable amounts of impact melt fragments. The lithic clast content is dominated by graywacke, besides various metapelites, quartzite, and a carbonate target component. Shock deformation in the form of quartz grains with planar microdeformations is

  19. Drilling gas hydrates with the sea floor drill rig MARUM-MeBo

    NASA Astrophysics Data System (ADS)

    Freudenthal, Tim; Bohrmann, Gerhard; Wefer, Gerold

    2015-04-01

    Large amounts of methane are bound in marine gas hydrate deposits. Local conditions like pressure, temperature, gas and pore water compositions define the boundaries of gas hydrate stability within the ocean sediments. Depending on those conditions gas hydrates can occur within marine sediments at depth down to several hundreds of meters up to sea floor. These oceanic methane deposits are widespread along continental margins. By forming cement in otherwise soft sediments gas hydrates are stabilizing the seafloor on continental slopes. Drilling operations are required for understanding the distribution of gas hydrates as well as for sampling them to study the composition, microstructure and its geomechanical and geophysical properties. The sea floor drill rig MARUM-MeBo200 has the capability to drill down to 200 m below sea floor well within the depth of major gas hydrate occurrences at continental margins. This drill rig is a transportable sea floor drill rig that can be deployed from a variety of multi-purpose research vessels. It is deployed on the sea bed and controlled from the vessel. It is the second generation MeBo (Freudenthal and Wefer, 2013) and was developed from 2011 to 2014 by MARUM in cooperation with BAUER Maschinen GmbH. Long term experiences with the first generation MeBo70 that was operated since 2005 on 15 research expeditions largely contributed to the development of MeBo200. It was first tested in October 2014 from the research vessel RV SONNE in the North Sea. In this presentation the suitability of MARUM-MeBo for drilling marine gas hydrates is discussed. We report on experiences drilling gas hydrates on two research expeditions with MeBo70. A research expedition for sampling gas hydrates in the Danube Paleodelta with MeBo200 as well as technical developments for improving the suitability of MeBo for gas hydrate exploration works are planned within the project SUGAR3 funded by the Federal Government for Economy and Energy (BMWi). Freudenthal

  20. Impacts of gas drilling on human and animal health.

    PubMed

    Bamberger, Michelle; Oswald, Robert E

    2012-01-01

    Environmental concerns surrounding drilling for gas are intense due to expansion of shale gas drilling operations. Controversy surrounding the impact of drilling on air and water quality has pitted industry and lease-holders against individuals and groups concerned with environmental protection and public health. Because animals often are exposed continually to air, soil, and groundwater and have more frequent reproductive cycles, animals can be used as sentinels to monitor impacts to human health. This study involved interviews with animal owners who live near gas drilling operations. The findings illustrate which aspects of the drilling process may lead to health problems and suggest modifications that would lessen but not eliminate impacts. Complete evidence regarding health impacts of gas drilling cannot be obtained due to incomplete testing and disclosure of chemicals, and nondisclosure agreements. Without rigorous scientific studies, the gas drilling boom sweeping the world will remain an uncontrolled health experiment on an enormous scale. PMID:22446060

  1. 30 CFR 250.455 - What are the general requirements for a drilling fluid program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... well control. This program must address drilling fluid safe practices, testing and monitoring equipment... drilling fluid program? 250.455 Section 250.455 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil...

  2. 30 CFR 250.459 - What are the safety requirements for drilling fluid-handling areas?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What are the safety requirements for drilling fluid-handling areas? 250.459 Section 250.459 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling...

  3. Introduction to drilling research

    SciTech Connect

    Hamblin, J. )

    1993-01-01

    This paper is a brief introduction to research projects in the area of drilling technology. A technical panel, composed of representatives of geothermal operators, drilling contractors, and service companies, met in Albuquerque, and heard presentations on various drilling related projects which are ongoing or planned. These projects are fairly small scale, partially funded by DOE, administered through Sandia National Laboratory, and generally cooperative in nature between industry and the laboratory. The author briefly discusses the seven highest rated projects, both by the researchers and the conferees. They are: hard rock bits, slimhole drilling, memory logging tools, lost circulation, the Geothermal Drilling Organization, the Long Valley Exploratory Well, and acoustic telemetry.

  4. Rock melting technology and geothermal drilling

    NASA Technical Reports Server (NTRS)

    Rowley, J. C.

    1974-01-01

    National awareness of the potential future shortages in energy resources has heightened interest in exploration and utilization of a variety of geothermal energy (GTE) reservoirs. The status of conventional drilling of GTE wells is reviewed briefly and problem areas which lead to higher drilling costs are identified and R and D directions toward solution are suggested. In the immediate future, an expanded program of drilling in GTE formations can benefit from improvements in drilling equipment and technology normally associated with oil or gas wells. Over a longer time period, the new rock-melting drill bits being developed as a part of the Los Alamos Scientific Laboratory's Subterrene Program offer new solutions to a number of problems which frequently hamper GTE drilling, including the most basic problem - high temperature. Two of the most favorable characteristics of rock-melting penetrators are their ability to operate effectively in hot rock and produce glass linings around the hole as an integral part of the drilling process. The technical advantages to be gained by use of rock-melting penetrators are discussed in relation to the basic needs for GTE wells.

  5. Attenuation of sound waves in drill strings

    SciTech Connect

    Drumheller, D.S. )

    1993-10-01

    During drilling of deep wells, digital data are often transmitted from sensors located near the drill bit to the surface. Development of a new communication system with increased data capacity is of paramount importance to the drilling industry. Since steel drill strings are used, transmission of these data by elastic carrier waves traveling within the drill pipe is possible, but the potential communication range is uncertain. The problem is complicated by the presence of heavy-threaded tool joints every 10 m, which form a periodic structure and produce classical patterns of passbands and stop bands in the wave spectra. In this article, field measurements of the attenuation characteristics of a drill string in the Long Valley Scientific Well in Mammoth Lakes, California are presented. Wave propagation distances approach 2 km. A theoretical model is discussed which predicts the location, width, and attenuation of the passbands. Mode conversion between extensional and bending waves, and spurious reflections due to deviations in the periodic spacings of the tool joints are believed to be the sources of this attenuation. It is estimated that attenuation levels can be dramatically reduced by rearranging the individual pipes in the drill string according to length. 7 refs., 20 figs., 4 tabs.

  6. Age and compositional data of zircon from sepiolite drilling mud to identify contamination of ocean drilling samples

    NASA Astrophysics Data System (ADS)

    Andrews, Graham D. M.; Schmitt, Axel K.; Busby, Cathy J.; Brown, Sarah R.; Blum, Peter; Harvey, Janet. C.

    2016-08-01

    Zircon extracted from drilled oceanic rocks is increasingly used to answer geologic questions related to igneous and sedimentary sequences. Recent zircon studies using samples obtained from marine drill cores revealed that drilling muds used in the coring process may contaminate the samples. The JOIDES Resolution Science Operator of the International Ocean Discovery Program has been using two types of clays, sepiolite and attapulgite, which both have salt water viscosifier properties able to create a gel-like slurry that carries drill cuttings out of the holes several hundred meters deep. The dominantly used drilling mud is sepiolite originating from southwestern Nevada, USA. This sepiolite contains abundant zircon crystals with U-Pb ages ranging from 1.89 to 2889 Ma and continental trace element, δ18O, and ɛHf isotopic compositions. A dominant population of 11-16 Ma zircons in sepiolite drilling mud makes identification of contamination in drilled Neogene successions particularly challenging. Interpretation of zircon analyses related to ocean drilling should be cautious of zircon ages in violation of independently constrained age models and that have age populations overlapping those in the sepiolite. Because individual geochronologic and geochemical characteristics lack absolute discriminatory power, it is recommended to comprehensively analyze all dated zircon crystals from cores exposed to drill mud for trace element, δ18O, and ɛHf isotopic compositions. Zircon analyzed in situ (i.e., in petrographic sections) are assumed to be trustworthy.

  7. COSC-1 - drilling of a subduction-related allochthon in the Palaeozoic Caledonide orogen of Scandinavia

    NASA Astrophysics Data System (ADS)

    Lorenz, H.; Rosberg, J.-E.; Juhlin, C.; Bjelm, L.; Almqvist, B. S. G.; Berthet, T.; Conze, R.; Gee, D. G.; Klonowska, I.; Pascal, C.; Pedersen, K.; Roberts, N. M. W.; Tsang, C.-F.

    2015-05-01

    The Collisional Orogeny in the Scandinavian Caledonides (COSC) scientific drilling project focuses on mountain building processes in a major mid-Palaeozoic orogen in western Scandinavia and its comparison with modern analogues. The project investigates the subduction-generated Seve Nape Complex. These in part under ultra-high-pressure conditions metamorphosed outer continental margin and continent-ocean transition zone assemblages were emplaced onto the Baltoscandian platform and there influenced the underlying allochthons and the basement. COSC-1 is the first of two ca. 2.5 km deep, fully cored drill holes located in the vicinity of the abandoned Fröå mine, close to the town of Åre in Jämtland, central Sweden. It sampled a thick section of the lower part of the Seve Complex and was planned to penetrate its basal thrust zone into the underlying lower-grade metamorphosed allochthon. The drill hole reached a depth of 2495.8 m and nearly 100 % core recovery was achieved. Although planning was based on existing geological mapping and new high-resolution seismic surveys, the drilling resulted in some surprises: the Lower Seve Nappe proved to be composed of rather homogenous gneisses, with only subordinate mafic bodies, and its basal thrust zone was unexpectedly thick (> 800 m). The drill hole did not penetrate the bottom of the thrust zone. However, lower-grade metasedimentary rocks were encountered in the lowermost part of the drill hole together with garnetiferous mylonites tens of metres thick. The tectonostratigraphic position is still unclear, and geological and geophysical interpretations are under revision. The compact gneisses host only eight fluid conducting zones of limited transmissivity between 300 m and total depth. Downhole measurements suggest an uncorrected average geothermal gradient of ~ 20 °C km-1. This paper summarizes the operations and preliminary results from COSC-1 (ICDP 5054-1-A), drilled from early May to late August 2014, and is

  8. Exploring the Geological Structure of the Continental Crust.

    ERIC Educational Resources Information Center

    Oliver, Jack

    1983-01-01

    Discusses exploration and mapping of the continental basement using the seismic reflection profiling technique as well as drilling methods. Also discusses computer analysis of gravity and magnetic fields. Points out the need for data that can be correlated to surface information. (JM)

  9. Advanced drilling systems study

    SciTech Connect

    Pierce, K.G.; Livesay, B.J.

    1995-03-01

    This work was initiated as part of the National Advanced Drilling and Excavation Technologies (NADET) Program. It is being performed through joint finding from the Department of Energy Geothermal Division and the Natural Gas Technology Branch, Morgantown Energy Technology Center. Interest in advanced drilling systems is high. The Geothermal Division of the Department of Energy has initiated a multi-year effort in the development of advanced drilling systems; the National Research Council completed a study of drilling and excavation technologies last year; and the MIT Energy Laboratory recently submitted a proposal for a national initiative in advanced drilling and excavation research. The primary reasons for this interest are financial. Worldwide expenditures on oil and gas drilling approach $75 billion per year. Also, drilling and well completion account for 25% to 50% of the cost of producing electricity from geothermal energy. There is incentive to search for methods to reduce the cost of drilling. Work on ideas to improve or replace rotary drilling technology dates back at least to the 1930`s. There was a significant amount of work in this area in the 1960`s and 1970`s; and there has been some continued effort through the 1980`s. Undoubtedly there are concepts for advanced drilling systems that have yet to be studied; however, it is almost certain that new efforts to initiate work on advanced drilling systems will build on an idea or a variation of an idea that has already been investigated. Therefore, a review of previous efforts coupled with a characterization of viable advanced drilling systems and the current state of technology as it applies to those systems provide the basis for the current study of advanced drilling.

  10. Method of deep drilling

    DOEpatents

    Colgate, Stirling A.

    1984-01-01

    Deep drilling is facilitated by the following steps practiced separately or in any combination: (1) Periodically and sequentially fracturing zones adjacent the bottom of the bore hole with a thixotropic fastsetting fluid that is accepted into the fracture to overstress the zone, such fracturing and injection being periodic as a function of the progression of the drill. (2) Casing the bore hole with ductile, pre-annealed casing sections, each of which is run down through the previously set casing and swaged in situ to a diameter large enough to allow the next section to run down through it. (3) Drilling the bore hole using a drill string of a low density alloy and a high density drilling mud so that the drill string is partially floated.

  11. Mars Science Laboratory Drill

    NASA Technical Reports Server (NTRS)

    Okon, Avi B.

    2010-01-01

    The Drill for the Mars Science Laboratory mission is a rotary-percussive sample acquisition device with an emphasis on toughness and robustness to handle the harsh environment on Mars. The unique challenges associated with autonomous drilling from a mobile robot are addressed. A highly compressed development schedule dictated a modular design architecture that satisfies the functional and load requirements while allowing independent development and testing of the Drill subassemblies. The Drill consists of four actuated mechanisms: a spindle that rotates the bit, a chuck that releases and engages bits, a novel voice-coil-based percussion mechanism that hammers the bit, and a linear translation mechanism. The Drill has three passive mechanisms: a replaceable bit assembly that acquires and collects sample, a contact sensor / stabilizer mechanism, and, lastly a flex harness service loop. This paper describes the various mechanisms that makeup the Drill and discusses the solutions to their unique design and development challenges.

  12. Drilling cost-cutting

    SciTech Connect

    Capuano, L.E. Jr.

    1996-12-31

    This presentation by Louis E. Capuano, Jr., President, ThermaSource, Inc., discusses cost-cutting in the drilling phase of geothermal energy exploration and production. All aspects of a geothermal project including the drilling must be streamlined to make it viable and commercial. If production could be maximized from each well, there would be a reduction in drilling costs. This could be achieved in several ways, including big hole and multi-hole completion, directional drilling, better knowledge of the resource and where to penetrate, etc.

  13. Horizontal drilling developments

    SciTech Connect

    Gust, D.

    1997-05-01

    The advantages of horizontal drilling are discussed. Use of horizontal drilling has climbed in the past half decade as technology and familiarity offset higher costs with higher production rates and greater recoveries from new and existing wells. In essence, all types of horizontal wells expose a larger section of the reservoir to the wellbore with a resulting increase in flow rates. (A horizontal well may also be drilled to provide coning control or to intersect vertical fractures.) Thus, drilling horizontally, both onshore and offshore, reduces the number of wells necessary to develop a field.

  14. Remote drill bit loader

    SciTech Connect

    Dokos, James A.

    1997-01-01

    A drill bit loader for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned.

  15. Remote drill bit loader

    DOEpatents

    Dokos, J.A.

    1997-12-30

    A drill bit loader is described for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned. 5 figs.

  16. Research activities on submarine landslides in gentle continental slope

    NASA Astrophysics Data System (ADS)

    Morita, S.; Goto, S.; Miyata, Y.; Nakamura, Y.; Kitahara, Y.; Yamada, Y.

    2013-12-01

    In the north Sanrikuoki Basin off Shimokita Peninsula, NE Japan, a great number of buried large slump deposits have been identified in the Pliocene and younger formations. The basin has formed in a very gentle continental slope of less than one degree in gradient and is composed of well-stratified formations which basically parallel to the present seafloor. This indicates that the slumping have also occurred in such very gentle slope angle. The slump units and their slip surfaces have very simple and clear characteristics, such as layer-parallel slip on the gentle slope, regularly imbricated internal structure, block-supported with little matrix structure, widespread dewatering structure, and low-amplitude slip surface layer. We recognize that the large slump deposits group of layer-parallel slip in this area is an appropriate target to determine 'mechanism of submarine landslides', that is one of the subjects on the new IODP science plan for 2013 and beyond. So, we started some research activities to examine the feasibility of the future scientific drilling. The slump deposits were recognized basically by 3D seismic analysis. Further detailed seismic analysis using 2D seismic data in wider area of the basin is being performed for better understanding of geologic structure of the sedimentary basin and the slump deposits. This will be good source to extract suitable locations for drill sites. Typical seismic features and some other previous studies imply that the formation fluid in this study area is strongly related to natural gas, of which condition is strongly affected by temperature. So, detailed heat flow measurements was performed in the study area in 2013. For that purpose, a long-term water temperature monitoring system was deployed on the seafloor in October, 2012. The collected water temperature variation is applied to precise correction of heat flow values. Vitrinite reflectance analysis is also being carried out using sediments samples recovered by IODP

  17. Technologies for measurement while drilling

    SciTech Connect

    Not Available

    1982-01-01

    Technology for measurement while drilling in the ocean margin drilling program is discussed. Mud pulse telemetry, hardwire telemetry, detection needs for well control, pressure measurements downhole while drilling, and continuous wave mud telemetry are considered. Data utilization from measurement while drilling in seismic calibrations, drilling efficiency measurements, directional control with regard to telemetry, and measurement while coring are also reviewed.

  18. Continental Margins: Linking Ecosystems

    NASA Astrophysics Data System (ADS)

    Kelly-Gerreyn, Boris; Rabalais, Nancy; Middelburg, Jack; Roy, Sylvie; Liu, Kon-Kee; Thomas, Helmuth; Zhang, Jing

    2008-02-01

    Impacts of Global, Local and Human Forcings on Biogeochemical Cycles and Ecosystems, IMBER/LOICZ Continental Margins Open Science Conference; Shanghai, China, 17-21 September 2007; More than 100 scientists from 25 countries came together to address global, regional, local, and human pressures interactively affecting continental margin biogeochemical cycles, marine food webs, and society. Continental margins cover only 12% of the global ocean area yet account for more than 30% of global oceanic primary production. In addition, continental margins are the most intensely used regions of the world's ocean for natural commodities, including productive fisheries and mineral and petroleum resources. The land adjacent to continental margins hosts about 50% of the world's population, which will bear many direct impacts of global change on coastal margins. Understanding both natural and human-influenced alterations of biogeochemical cycles and ecosystems on continental margins and the processes (including feedbacks) that threaten sustainability of these systems is therefore of global interest.

  19. 8. annual international energy week conference and exhibition: Conference papers. Book 3: Drilling and production operations

    SciTech Connect

    1997-07-01

    The three volumes within this book are subdivided as follows: (1) Drilling Technology -- underbalanced drilling; field and laboratory testing; drilling systems and dynamics; advances in drill bits; coiled tubing and tubulars; advances in drilling fluids; novel/scientific drilling; and drillstrings; (2) Petroleum Production Technology -- environmental health and safety issues; production technology for deepwater; disposal methods for production waste; and offshore facility abandonment; and (3) Offshore Engineering and Operations -- floating production systems; strategic service alliance; offshore facility abandonment; offshore development economics; heavy construction, transportation, and installation for offshore fields; and subsea technology. Papers have been processed separately for inclusion on the data base.

  20. Reverse laser drilling

    NASA Technical Reports Server (NTRS)

    Anthony, Thomas R. (Inventor)

    1984-01-01

    This invention provides a method for laser drilling small diameter, closely-spaced, and accurately located holes in a body of material which is transparent or substantially transparent to the laser radiation employed whereby the holes are drilled through the thickness of the body from the surface opposite to that on which the laser beam impinges to the surface of laser beam impingement.

  1. Drilling Square Holes.

    ERIC Educational Resources Information Center

    Smith, Scott G.

    1993-01-01

    A Reuleaux triangle is constructed by drawing an arc connecting each pair of vertices of an equilateral triangle with radius equal to the side of the triangle. Investigates the application of drilling a square hole using a drill bit in the shape of a Reuleaux triangle. (MDH)

  2. Ultrasonic Drilling and Coring

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    1998-01-01

    A novel drilling and coring device, driven by a combination, of sonic and ultrasonic vibration, was developed. The device is applicable to soft and hard objects using low axial load and potentially operational under extreme conditions. The device has numerous potential planetary applications. Significant potential for commercialization in construction, demining, drilling and medical technologies.

  3. Lunar deep drill apparatus

    NASA Technical Reports Server (NTRS)

    Harvey, Jill (Editor)

    1989-01-01

    A self contained, mobile drilling and coring system was designed to operate on the Lunar surface and be controlled remotely from earth. The system uses SKITTER (Spatial Kinematic Inertial Translatory Tripod Extremity Robot) as its foundation and produces Lunar core samples two meters long and fifty millimeters in diameter. The drill bit used for this is composed of 30 per carat diamonds in a sintered tungsten carbide matrix. To drill up to 50 m depths, the bit assembly will be attached to a drill string made from 2 m rods which will be carried in racks on SKITTER. Rotary power for drilling will be supplied by a Curvo-Synchronous motor. SKITTER is to support this system through a hexagonal shaped structure which will contain the drill motor and the power supply. A micro-coring drill will be used to remove a preliminary sample 5 mm in diameter and 20 mm long from the side of the core. This whole system is to be controlled from earth. This is carried out by a continuously monitoring PLC onboard the drill rig. A touch screen control console allows the operator on earth to monitor the progress of the operation and intervene if necessary.

  4. The ICDP-Hominin Sites and Paleolakes Drilling Project (HSPDP): new data from the Chew Bahir site in Ethiopia

    NASA Astrophysics Data System (ADS)

    Leng, Melanie; Dean, Jonathan; Asrat, Asfawossen; Cohen, Andrew; Foerster, Verena; Just, Janna; Klasen, Nicole; Lamb, Henry; Schäbitz, Frank; Trauth, Martin; Viehberg, Finn; Wagner, Bernd

    2016-04-01

    There are currently few long, continuous, Pleistocene records from East Africa, meaning it has been difficult to establish the relative influence of low- versus high-latitude forcing on East African climate and climatic conditions at the time of anatomically modern human origin and subsequent dispersal. We have been attempting to address these gaps in our knowledge by analysing lake sediments taken from Chew Bahir, an area of playa mudflats in southern Ethiopia close to the site of the oldest-known anatomically modern human fossils at Omo-Kibish. In March 2014, Chew Bahir was cored to a depth of ~40 metres, and the resulting sediment sequence is estimated to cover the last ~115ka. In December 2014, a nearby site was drilled to a depth of ~280 metres as part of the International Continental scientific Drilling Programme - Hominin Sites and Paleolakes Drilling Project (HSPDP). The oxygen and carbon isotope composition of endogenic calcite and other data from these cores will be presented. The data show some significant changes in water balance variability, the period prior to 70ka appears very unstable with some significant periods of drought and flood. Between 70-20ka the lake was stable and evaporative. The last 20ka years was wetter.

  5. Distributed downhole drilling network

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Fox, Joe; Pixton, David S.

    2006-11-21

    A high-speed downhole network providing real-time data from downhole components of a drilling strings includes a bottom-hole node interfacing to a bottom-hole assembly located proximate the bottom end of a drill string. A top-hole node is connected proximate the top end of the drill string. One or several intermediate nodes are located along the drill string between the bottom-hole node and the top-hole node. The intermediate nodes are configured to receive and transmit data packets transmitted between the bottom-hole node and the top-hole node. A communications link, integrated into the drill string, is used to operably connect the bottom-hole node, the intermediate nodes, and the top-hole node. In selected embodiments, a personal or other computer may be connected to the top-hole node, to analyze data received from the intermediate and bottom-hole nodes.

  6. Advanced drilling systems study.

    SciTech Connect

    Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis

    1996-05-01

    This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

  7. Drill-motor holding fixture

    NASA Technical Reports Server (NTRS)

    Chartier, E. N.; Culp, L. N.

    1980-01-01

    Guide improves accuracy and reduces likelihood of bit breakage in drilling large work pieces. Drill motor is mounted on pipe that slides on furniture clamp. Drill is driven into work piece by turning furniture-clamp handle.

  8. Drill drive mechanism

    DOEpatents

    Dressel, Michael O.

    1979-01-01

    A drill drive mechanism is especially adapted to provide both rotational drive and axial feed for a drill of substantial diameter such as may be used for drilling holes for roof bolts in mine shafts. The drill shaft is made with a helical pattern of scroll-like projections on its surface for removal of cuttings. The drill drive mechanism includes a plurality of sprockets carrying two chains of drive links which are arranged to interlock around the drill shaft with each drive link having depressions which mate with the scroll-like projections. As the chain links move upwardly or downwardly the surfaces of the depressions in the links mate with the scroll projections to move the shaft axially. Tangs on the drive links mate with notch surfaces between scroll projections to provide a means for rotating the shaft. Projections on the drive links mate together at the center to hold the drive links tightly around the drill shaft. The entire chain drive mechanism is rotated around the drill shaft axis by means of a hydraulic motor and gear drive to cause rotation of the drill shaft. This gear drive also connects with a differential gearset which is interconnected with a second gear. A second motor is connected to the spider shaft of the differential gearset to produce differential movement (speeds) at the output gears of the differential gearset. This differential in speed is utilized to drive said second gear at a speed different from the speed of said gear drive, this speed differential being utilized to drive said sprockets for axial movement of said drill shaft.

  9. Gas hydrates of outer continental margins

    SciTech Connect

    Kvenvolden, K.A. )

    1990-05-01

    Gas hydrates are crystalline substances in which a rigid framework of water molecules traps molecules of gas, mainly methane. Gas-hydrate deposits are common in continental margin sediment in all major oceans at water depths greater than about 300 m. Thirty-three localities with evidence for gas-hydrate occurrence have been described worldwide. The presence of these gas hydrates has been inferred mainly from anomalous lacoustic reflectors seen on marine seismic records. Naturally occurring marine gas hydrates have been sampled and analyzed at about tensites in several regions including continental slope and rise sediment of the eastern Pacific Ocean and the Gulf of Mexico. Except for some Gulf of Mexico gas hydrate occurrences, the analyzed gas hydrates are composed almost exclusively of microbial methane. Evidence for the microbial origin of methane in gas hydrates includes (1) the inverse relation between methane occurence and sulfate concentration in the sediment, (2) the subparallel depth trends in carbon isotopic compositions of methane and bicarbonate in the interstitial water, and (3) the general range of {sup 13}C depletion ({delta}{sub PDB}{sup 13}C = {minus}90 to {minus}60 {per thousand}) in the methane. Analyses of gas hydrates from the Peruvian outer continental margin in particular illustrate this evidence for microbially generated methane. The total amount of methane in gas hydrates of continental margins is not known, but estimates of about 10{sup 16} m{sup 3} seem reasonable. Although this amount of methane is large, it is not yet clear whether methane hydrates of outer continental margins will ever be a significant energy resource; however, these gas hydrates will probably constitute a drilling hazard when outer continental margins are explored in the future.

  10. Technology Development and Field Trials of EGS Drilling Systems at Chocolate Mountain

    DOE Data Explorer

    Steven Knudsen

    2012-01-01

    Polycrystalline diamond compact (PDC) bits are routinely used in the oil and gas industry for drilling medium to hard rock but have not been adopted for geothermal drilling, largely due to past reliability issues and higher purchase costs. The Sandia Geothermal Research Department has recently completed a field demonstration of the applicability of advanced synthetic diamond drill bits for production geothermal drilling. Two commercially-available PDC bits were tested in a geothermal drilling program in the Chocolate Mountains in Southern California. These bits drilled the granitic formations with significantly better Rate of Penetration (ROP) and bit life than the roller cone bit they are compared with. Drilling records and bit performance data along with associated drilling cost savings are presented herein. The drilling trials have demonstrated PDC bit drilling technology has matured for applicability and improvements to geothermal drilling. This will be especially beneficial for development of Enhanced Geothermal Systems whereby resources can be accessed anywhere within the continental US by drilling to deep, hot resources in hard, basement rock formations.

  11. Preliminary analysis of downhole logging data from ICDP Lake Junin drilling Project, Peru

    NASA Astrophysics Data System (ADS)

    Pierdominici, Simona; Kück, Jochem; Rodbell, Donald T.; Abbott, Mark B.

    2016-04-01

    The International Continental Drilling Programm (ICDP) has supported a scientific drilling campaign in Peru during the summer season 2015. The Lake Junin Drilling Project mainly aims at obtaining high-resolution paleoclimate records from lacustrine sediments to reconstruct the history of the continental records covering the glacial-interglacial cycles. Lake Junín is located at 4000 m a.s.l. in the tropical Andes of Peru, and is characterized by a thick (> 125 m) sediment package deposited at a high rate (0.2 to 1.0 mm yr-1). Lake Junín is one of the few lakes in the tropical Andes that predates the maximum extent of glaciation and is in a geomorphic position to record the waxing and waning of glaciers in nearby cordillera, hence making the lake a key site for the investigation of the Quaternary climate evolution in the inner-tropics of the Southern Hemisphere. Continous coring was performed at three sites in overall 11 boreholes on the lake with at least two overlapping boreholes per site to avoid core gaps. The depth of the boreholes varied between approx. 30 m and 110 m depending on the drill site. The core bit had a bit size of 122.6 mm and yielded a core diameter of 85 mm. Upon completion of coring operations downhole geophysical logging was performed in five of the 11 boreholes (1A, 1C, 1D, 2A and 3B) by the Operational Support Group of ICDP. The main objective was to record in-situ the physical properties of the lacustrine sediments of Lake Junin. Downhole logs provide a powerful tool to fill in information at intervals with core gaps and as depth reference for depth matching of the discontinous cores. Furthermore it will be used for the lithological reconstruction and interpretation. The OSG downhole logging comprised total and spectrum gamma ray, magnetic susceptibility, borehole geometry, temperature, and sonic P-wave velocity. Unstable and collapsing borehole walls made it neccessary to carry out logging in several sections instead of in one run. The

  12. Deep continental margin reflectors

    USGS Publications Warehouse

    Ewing, J.; Heirtzler, J.; Purdy, M.; Klitgord, Kim D.

    1985-01-01

    In contrast to the rarity of such observations a decade ago, seismic reflecting and refracting horizons are now being observed to Moho depths under continental shelves in a number of places. These observations provide knowledge of the entire crustal thickness from the shoreline to the oceanic crust on passive margins and supplement Consortium for Continental Reflection Profiling (COCORP)-type measurements on land.

  13. Freshly brewed continental crust

    NASA Astrophysics Data System (ADS)

    Gazel, E.; Hayes, J. L.; Caddick, M. J.; Madrigal, P.

    2015-12-01

    Earth's crust is the life-sustaining interface between our planet's deep interior and surface. Basaltic crusts similar to Earth's oceanic crust characterize terrestrial planets in the solar system while the continental masses, areas of buoyant, thick silicic crust, are a unique characteristic of Earth. Therefore, understanding the processes responsible for the formation of continents is fundamental to reconstructing the evolution of our planet. We use geochemical and geophysical data to reconstruct the evolution of the Central American Land Bridge (Costa Rica and Panama) over the last 70 Ma. We also include new preliminary data from a key turning point (~12-6 Ma) from the evolution from an oceanic arc depleted in incompatible elements to a juvenile continental mass in order to evaluate current models of continental crust formation. We also discovered that seismic P-waves (body waves) travel through the crust at velocities closer to the ones observed in continental crust worldwide. Based on global statistical analyses of all magmas produced today in oceanic arcs compared to the global average composition of continental crust we developed a continental index. Our goal was to quantitatively correlate geochemical composition with the average P-wave velocity of arc crust. We suggest that although the formation and evolution of continents may involve many processes, melting enriched oceanic crust within a subduction zone, a process probably more common in the Achaean where most continental landmasses formed, can produce the starting material necessary for juvenile continental crust formation.

  14. Integrated Drill Core Data Analysis Tools

    NASA Astrophysics Data System (ADS)

    Conze, Ronald; Reed, Josh; Chen, Yu-Chung; Krysiak, Frank

    2010-05-01

    Data management in scientific drilling programs such IODP, ICDP, and ANDRILL is applied to capture drilling and science data during an expedition and for long-term data storage and dissemination. Currently data management tools are linked directly with capture and visualization applications to allow for both, a two-way flow of data between the database and the applications, and an integrated data environment. The new system has meanwhile been tested by recent IODP and ICDP projects. The components comprise the Expedition Drilling Information System (ExpeditionDIS) used for data acquisition, PSICAT, the Paleontological Stratigraphic Interval Construction and Analysis Tool, for graphical editing and viewing of core description diagrams, and Corelyzer as part of CoreWall for scalable, extensible visualization, developed to enhance the study of geological cores. This interoperable configuration of tools provides an excellent all-in-one toolbox for core analysis.

  15. Rapid and Quiet Drill

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Badescu, Mircea; Bar-Cohen, Yoseph; Chang, Zensheu; Bao, Xiaoqi

    2007-01-01

    This describes aspects of the rapid and quiet drill (RAQD), which is a prototype apparatus for drilling concrete or bricks. The design and basic principle of operation of the RAQD overlap, in several respects, with those of ultrasonic/ sonic drilling and coring apparatuses described in a number of previous NASA Tech Briefs articles. The main difference is that whereas the actuation scheme of the prior apparatuses is partly ultrasonic and partly sonic, the actuation scheme of the RAQD is purely ultrasonic. Hence, even though the RAQD generates considerable sound, it is characterized as quiet because most or all of the sound is above the frequency range of human hearing.

  16. Continental drift under the Third Reich.

    PubMed

    Buffetaut, Eric

    2003-12-01

    Contrary to what happened in many other countries in the 1930s and 1940s, Alfred Wegener's theory of continental drift was not generally rejected in Nazi Germany, although several leading German geologists of the time did not accept it. It was actually presented as the modern view of Earth history in books and magazine articles aimed at the general public. Although outlandish geological theories such as Hörbiger's Welteislehre were favoured by some Nazi dignitaries, they were not widely accepted in scientific circles. On the other hand, continental drift received official support under the Third Reich, at a time when it was ignored or ridiculed by most earth scientists outside Germany.

  17. 30 CFR 250.417 - What must I provide if I plan to use a mobile offshore drilling unit (MODU)?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... offshore drilling unit (MODU)? 250.417 Section 250.417 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and... a mobile offshore drilling unit (MODU)? If you plan to use a MODU, you must provide: (a)...

  18. 30 CFR 250.417 - What must I provide if I plan to use a mobile offshore drilling unit (MODU)?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... offshore drilling unit (MODU)? 250.417 Section 250.417 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL... plan to use a mobile offshore drilling unit (MODU)? If you plan to use a MODU, you must provide:...

  19. 30 CFR 250.417 - What must I provide if I plan to use a mobile offshore drilling unit (MODU)?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... offshore drilling unit (MODU)? 250.417 Section 250.417 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL... plan to use a mobile offshore drilling unit (MODU)? If you plan to use a MODU, you must provide:...

  20. 30 CFR 250.417 - What must I provide if I plan to use a mobile offshore drilling unit (MODU)?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... offshore drilling unit (MODU)? 250.417 Section 250.417 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL... plan to use a mobile offshore drilling unit (MODU)? If you plan to use a MODU, you must provide:...

  1. 75 FR 10501 - Drill Pipe and Drill Collars from China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-08

    ... publishing the notice in the Federal Register of January 6, 2010 (75 FR 877). The conference was held in... COMMISSION Drill Pipe and Drill Collars from China Determinations On the basis of the record \\1\\ developed in... injury by reason of imports from China of drill pipe and drill collars, provided for in subheadings...

  2. 76 FR 11812 - Drill Pipe and Drill Collars From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-03

    ... Register on September 9, 2010 (75 FR 54912). The hearing was held in Washington, DC, on January 5, 2011... COMMISSION Drill Pipe and Drill Collars From China Determinations On the basis of the record \\1\\ developed in... of imports of drill pipe and drill collars from China, provided for in subheadings 7304.22,...

  3. Modified drill permits one-step drilling operation

    NASA Technical Reports Server (NTRS)

    Libertone, C.

    1966-01-01

    Drill with modified cutting faces permits one-step drilling operation without chatter upon contact and premature wear. The modification of the drill, which has the same diameter as that of the desired hole, consists of a groove across the bottom of each of the cutting faces of the drill flutes.

  4. Overview of the Barberton Drilling Project

    NASA Astrophysics Data System (ADS)

    Arndt, Nicholas T.; Wilson, Allan; Mason, Paul; Hofmann, Axel; Lowe, Don

    2013-04-01

    The Barberton Greenstone Belt in South Africa is one of the best-preserved successions of mid- Archean (3.5-3.2 Ga) supracrustal rocks in the world, and, as such, a remarkable natural laboratory where conditions and processes at the surface of the Archean Earth can be studied in detail. Volcanic and sedimentary sequences in the belt provide information on the environment in which life emerged and evolved. A drilling project, sponsored by the International Continental Drilling Program (ICDP), and many national funding agencies, was completed in May 2012. More than 3000 m of core from 5 holes at four sites were recovered. At the Tjakastad site, two ca. 300 m holes were drilling through sequences of komatiites and komatiitic basalts. The other three holes targeted sedimentary rocks: the Buck Reef hole sampled over 700m of mainly banded black and white cherts; the Mid Fig Tree hole sampled a sequence of ferruginous charts and mudstones; and the Barite Valley hole samples a more varied sequence including sandstone, shale, cherts and volcaniclastic rocks. The core is stored and has been logged in facilities of the University of the Wirwatersrand. Core logs can be found at tp://www.peeringintobarberton.com/Sites.html . An open call for proposals to work on the core, sent out in November 2012, was answered by over 50 scientists from 12 countries who plan to study the core using techniques ranging from petrography, through major and trace-element analysis, to sophisticated isotopic analysis. A workshop to discuss the drilling project and to view the core is planned at the University of the Witwatersrand in Johannesburg from Mon 18th to Wed the 21st February 2013, followed by a short trip to the Barberton belt to visit the drilling sites.

  5. Sub-Ocean Drilling

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The National Science Foundation (NSF) initialized a new phase of exploration last year, a 10 year effort jointly funded by NSF and several major oil companies, known as the Ocean Margin Drilling Program (OMDP). The OMDP requires a ship with capabilities beyond existing drill ships; it must drill in 13,000 feet of water to a depth 20,000 feet below the ocean floor. To meet requirements, NSF is considering the conversion of the government-owned mining ship Glomar Explorer to a deep ocean drilling and coring vessel. Feasibility study performed by Donhaiser Marine, Inc. analyzed the ship's characteristics for suitability and evaluated conversion requirement. DMI utilized COSMIC's Ship Motion and Sea Load Computer program to perform analysis which could not be accomplished by other means. If approved for conversion, Glomar Explorer is expected to begin operations as a drillship in 1984.

  6. Drill pipe protector development

    SciTech Connect

    Thomerson, C.; Kenne, R.; Wemple, R.P.

    1996-03-01

    The Geothermal Drilling Organization (GDO), formed in the early 1980s by the geothermal industry and the U.S. Department of Energy (DOE) Geothermal Division, sponsors specific development projects to advance the technologies used in geothermal exploration, drilling, and production phases. Individual GDO member companies can choose to participate in specific projects that are most beneficial to their industry segment. Sandia National Laboratories is the technical interface and contracting office for the DOE in these projects. Typical projects sponsored in the past have included a high temperature borehole televiewer, drill bits, muds/polymers, rotary head seals, and this project for drill pipe protectors. This report documents the development work of Regal International for high temperature geothermal pipe protectors.

  7. Drilling fluid filter

    DOEpatents

    Hall, David R.; Fox, Joe; Garner, Kory

    2007-01-23

    A drilling fluid filter for placement within a bore wall of a tubular drill string component comprises a perforated receptacle with an open end and a closed end. A hanger for engagement with the bore wall is mounted at the open end of the perforated receptacle. A mandrel is adjacent and attached to the open end of the perforated receptacle. A linkage connects the mandrel to the hanger. The linkage may be selected from the group consisting of struts, articulated struts and cams. The mandrel operates on the hanger through the linkage to engage and disengage the drilling fluid filter from the tubular drill string component. The mandrel may have a stationary portion comprising a first attachment to the open end of the perforated receptacle and a telescoping adjustable portion comprising a second attachment to the linkage. The mandrel may also comprise a top-hole interface for top-hole equipment.

  8. Drilling Productivity Report

    EIA Publications

    2016-01-01

    Energy Information Administration’s (EIA) new Drilling Productivity Report (DPR) takes a fresh look at oil and natural gas production, starting with an assessment of how and where drilling for hydrocarbons is taking place. The DPR uses recent data on the total number of drilling rigs in operation along with estimates of drilling productivity and estimated changes in production from existing oil and natural gas wells to provide estimated changes in oil and natural gas production for six key fields. EIA's approach does not distinguish between oil-directed rigs and gas-directed rigs because once a well is completed it may produce both oil and gas; more than half of the wells produce both.

  9. Subsurface drill string

    DOEpatents

    Casper, William L.; Clark, Don T.; Grover, Blair K.; Mathewson, Rodney O.; Seymour, Craig A.

    2008-10-07

    A drill string comprises a first drill string member having a male end; and a second drill string member having a female end configured to be joined to the male end of the first drill string member, the male end having a threaded portion including generally square threads, the male end having a non-threaded extension portion coaxial with the threaded portion, and the male end further having a bearing surface, the female end having a female threaded portion having corresponding female threads, the female end having a non-threaded extension portion coaxial with the female threaded portion, and the female end having a bearing surface. Installation methods, including methods of installing instrumented probes are also provided.

  10. The microwave drill.

    PubMed

    Jerby, E; Dikhtyar, V; Aktushev, O; Grosglick, U

    2002-10-18

    We present a drilling method that is based on the phenomenon of local hot spot generation by near-field microwave radiation. The microwave drill is implemented by a coaxial near-field radiator fed by a conventional microwave source. The near-field radiator induces the microwave energy into a small volume in the drilled material under its surface, and a hot spot evolves in a rapid thermal-runaway process. The center electrode of the coaxial radiator itself is then inserted into the softened material to form the hole. The method is applicable for drilling a variety of nonconductive materials. It does not require fast rotating parts, and its operation makes no dust or noise. PMID:12386331

  11. Directional drilling pipelay

    SciTech Connect

    Langner, C.G.

    1987-10-20

    A method is described for laying a pipeline beneath a seabottom subject to ice gouging, comprising: forming a borehole with drilling means; gripping the inside of the borehole with at least one tractor; applying thrust from at least one tractor to propel the drilling means forward until a deep arcuate borehole is formed beneath the seabottom sufficiently deep to avoid ice gouging and inserting a pipeline into the borehole.

  12. Update on slimhole drilling

    SciTech Connect

    Finger, J.T.

    1996-01-01

    Sandia National Laboratories manages the US Department of Energy program for slimhole drilling. The principal objective of this program is to expand proven geothermal reserves through increased exploration made possible by lower-cost slimhole drilling. For this to be a valid exploration method, however, it is necessary to demonstrate that slimholes yield enough data to evaluate a geothermal reservoir, and that is the focus of Sandia`s current research.

  13. MACHINERY RESONANCE AND DRILLING

    SciTech Connect

    Leishear, R.; Fowley, M.

    2010-01-23

    New developments in vibration analysis better explain machinery resonance, through an example of drill bit chattering during machining of rusted steel. The vibration of an operating drill motor was measured, the natural frequency of an attached spring was measured, and the two frequencies were compared to show that the system was resonant. For resonance to occur, one of the natural frequencies of a structural component must be excited by a cyclic force of the same frequency. In this case, the frequency of drill bit chattering due to motor rotation equaled the spring frequency (cycles per second), and the system was unstable. A soft rust coating on the steel to be drilled permitted chattering to start at the drill bit tip, and the bit oscillated on and off of the surface, which increased the wear rate of the drill bit. This resonant condition is typically referred to as a motor critical speed. The analysis presented here quantifies the vibration associated with this particular critical speed problem, using novel techniques to describe resonance.

  14. Cenozoic prograding sequences of the Antarctic continental margin: a record of glacio-eustatic and tectonic events

    USGS Publications Warehouse

    Cooper, A. K.; Barrett, P.J.; Hinz, K.; Traube, V.; Letichenkov, G.; Stagg, H.M.J.

    1991-01-01

    times, like today, by little or no clastic sedimentation on the continental shelf other than beneath retreated ice shelves lying far from the continental sheld edge. Ice streams carve broad depressions across the shelf and carry abundant basal sediments directly to the continental shelf edge, thereby creating troughmouth fans and sheet-like prograding sequences (i.e. type IA sequences). Numerous acoustic unconformities and multiple overcompacted layers within the prograding sequences suggest major fluctuations of the Antarctic Ice Sheet. The available drilling and seismic interpretations provide the following history: (1) Cenozoic ice sheets have existed in places near the continental shelf since middle to late Eocene time. (2) A grounded Antarctic ice sheet first expanded to the continental shelf edge, with probable overdeepening of the outer shelf, in late Eucene to early Oligocene time in Prydz Bay, possibly in early Miocene time in the Ross Sea, and at least by middle Miocene time in the Weddell Sea. (3) The relative amounts of shelf prograding and inferred ice-volume variations (and related sea-level changes) have increased since middle to late Miocene time in the eastern Ross Sea, Prydz Bay, and possibly Weddell Sea. Our analysis is preliminary. Further acoustic surveys and scientific drilling are needed to resolve the proximal Antarctic record of glacio-eustatic, climatic, and tectonic events recorded by the prograding sequences. ?? 1991.

  15. Continental Basaltic Rocks

    NASA Astrophysics Data System (ADS)

    Farmer, G. L.

    2003-12-01

    During the past few decades, geochemical studies of continental basaltic rocks and their petrologic kin have become mainstays of studies of the continental lithosphere. These igneous rocks have taken on such an important role largely because the chemical and isotopic composition of continental basaltic rocks and their mantle (see Chapter 2.05) and crustal xenoliths (see Chapter 3.01) provide the best proxy record available to earth scientists for the chemical and physical evolution of the deep continental lithosphere and underlying mantle, areas that are otherwise resistant to direct study. Keeping this in mind, the primary goal of this chapter is to illustrate how geochemical data can be used both to assess the origin of these rocks and to study the evolution of the continental lithosphere.A complete overview of continental basaltic rocks will not be attempted here, because continental "basalts" come in too wide a range of compositions, and because of the sheer volume of geochemical data available for such rocks worldwide. The scope of the chapter is limited to a discussion of a select group of ultramafic to mafic composition "intraplate" continental igneous rocks consisting primarily of kimberlites, potassic and sodic alkali basalts, and continental flood basalts. Igneous rocks forming at active continental margins, such as convergent or transform plate margins, are important examples of continental magmatism but are not directly discussed here (convergent margin magmas are discussed in Chapters 2.11, 3.11, and 3.18). The geochemistry of intraplate igneous rocks of the ocean basins are covered in Chapters 2.04 and 3.16. Although basaltic magmatism has occurred throughout the Earths history, the majority of the examples presented here are from Mesozoic and Cenozoic volcanic fields due to the more complete preservation of younger continental mafic igneous rocks. While considerable effort has been expended in studying the chemical differentiation of mafic magmas

  16. While drilling system and method

    DOEpatents

    Mayes, James C.; Araya, Mario A.; Thorp, Richard Edward

    2007-02-20

    A while drilling system and method for determining downhole parameters is provided. The system includes a retrievable while drilling tool positionable in a downhole drilling tool, a sensor chassis and at least one sensor. The while drilling tool is positionable in the downhole drilling tool and has a first communication coupler at an end thereof. The sensor chassis is supported in the drilling tool. The sensor chassis has a second communication coupler at an end thereof for operative connection with the first communication coupler. The sensor is positioned in the chassis and is adapted to measure internal and/or external parameters of the drilling tool. The sensor is operatively connected to the while drilling tool via the communication coupler for communication therebetween. The sensor may be positioned in the while drilling tool and retrievable with the drilling tool. Preferably, the system is operable in high temperature and high pressure conditions.

  17. Reaching 1 m deep on Mars: the Icebreaker drill.

    PubMed

    Zacny, K; Paulsen, G; McKay, C P; Glass, B; Davé, A; Davila, A F; Marinova, M; Mellerowicz, B; Heldmann, J; Stoker, C; Cabrol, N; Hedlund, M; Craft, J

    2013-12-01

    The future exploration of Mars will require access to the subsurface, along with acquisition of samples for scientific analysis and ground-truthing of water ice and mineral reserves for in situ resource utilization. The Icebreaker drill is an integral part of the Icebreaker mission concept to search for life in ice-rich regions on Mars. Since the mission targets Mars Special Regions as defined by the Committee on Space Research (COSPAR), the drill has to meet the appropriate cleanliness standards as requested by NASA's Planetary Protection Office. In addition, the Icebreaker mission carries life-detection instruments; and in turn, the drill and sample delivery system have to meet stringent contamination requirements to prevent false positives. This paper reports on the development and testing of the Icebreaker drill, a 1 m class rotary-percussive drill and triple redundant sample delivery system. The drill acquires subsurface samples in short, approximately 10 cm bites, which makes the sampling system robust and prevents thawing and phase changes in the target materials. Autonomous drilling, sample acquisition, and sample transfer have been successfully demonstrated in Mars analog environments in the Arctic and the Antarctic Dry Valleys, as well as in a Mars environmental chamber. In all environments, the drill has been shown to perform at the "1-1-100-100" level; that is, it drilled to 1 m depth in approximately 1 hour with less than 100 N weight on bit and approximately 100 W of power. The drilled substrate varied and included pure ice, ice-rich regolith with and without rocks and with and without 2% perchlorate, and whole rocks. The drill is currently at a Technology Readiness Level (TRL) of 5. The next-generation Icebreaker drill weighs 10 kg, which is representative of the flightlike model at TRL 5/6.

  18. Reaching 1 m deep on Mars: the Icebreaker drill.

    PubMed

    Zacny, K; Paulsen, G; McKay, C P; Glass, B; Davé, A; Davila, A F; Marinova, M; Mellerowicz, B; Heldmann, J; Stoker, C; Cabrol, N; Hedlund, M; Craft, J

    2013-12-01

    The future exploration of Mars will require access to the subsurface, along with acquisition of samples for scientific analysis and ground-truthing of water ice and mineral reserves for in situ resource utilization. The Icebreaker drill is an integral part of the Icebreaker mission concept to search for life in ice-rich regions on Mars. Since the mission targets Mars Special Regions as defined by the Committee on Space Research (COSPAR), the drill has to meet the appropriate cleanliness standards as requested by NASA's Planetary Protection Office. In addition, the Icebreaker mission carries life-detection instruments; and in turn, the drill and sample delivery system have to meet stringent contamination requirements to prevent false positives. This paper reports on the development and testing of the Icebreaker drill, a 1 m class rotary-percussive drill and triple redundant sample delivery system. The drill acquires subsurface samples in short, approximately 10 cm bites, which makes the sampling system robust and prevents thawing and phase changes in the target materials. Autonomous drilling, sample acquisition, and sample transfer have been successfully demonstrated in Mars analog environments in the Arctic and the Antarctic Dry Valleys, as well as in a Mars environmental chamber. In all environments, the drill has been shown to perform at the "1-1-100-100" level; that is, it drilled to 1 m depth in approximately 1 hour with less than 100 N weight on bit and approximately 100 W of power. The drilled substrate varied and included pure ice, ice-rich regolith with and without rocks and with and without 2% perchlorate, and whole rocks. The drill is currently at a Technology Readiness Level (TRL) of 5. The next-generation Icebreaker drill weighs 10 kg, which is representative of the flightlike model at TRL 5/6. PMID:24303959

  19. Borehole data to model caldera unrest: the example of Campi Flegrei Deep Drilling Project

    NASA Astrophysics Data System (ADS)

    Carlino, S.; De Natale, G.; Somma, R.; Troise, C.; Kilburn, C.; Tramelli, A.; Troiano, A.; Di Guiseppe, M.; Piochi, M.

    2013-12-01

    To understand the genesis and the physics governing the volcanic area of Campi Flegrei (Southern Italy) a drilling project started on July 2012, in the framework of the International Continental Scientific Drilling Program (ICDP). The Campi Flegrei Deep Drilling Project (CFDDP) schedules two phases: a pilot well, 500 m deep (I phase), and a 3.5 km deeper well (II planned phase), both located within the active resurgent caldera of Campi Flegrei, west to the city of Naples. In this framework new filed data from pilot borehole have been recorded by using a novel procedure of Leak Off Test (LOT). The test has been performed in order to obtain, before the onset of rock failure (which furnishes indication of the minimum principal stress value), a reliable value of in situ permeability. These new data, particularly the actual permeability, are fundamental to calibrate the caldera unrest model at Campi Flegrei and to advance in the quantitative analysis of volcanoes behavior for the assessment of possible future eruptive scenarios. Calderas worldwide are, in fact, characterized by frequent episodes of unrest which, only in few cases, culminate with eruption. This behavior is generally explained in terms of magma intrusion and/or disturbance of geothermal fluids in the shallow crust, which are both source of ground deformations and seismicity. A major goal is, thus, to determine the relative contribution of each process, because the potential for eruptions significantly enhanced if magma movements emerges as the primary component. Here we report the new results of the LOT and its implication in the modeling of Campi Flegrei caldera unrest.

  20. New Proposed Drilling at Surtsey Volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Jackson, Marie D.

    2014-12-01

    Surtsey, an isolated oceanic island and a World Heritage Site of the United Nations Educational, Scientific and Cultural Organization, is a uniquely well-documented natural laboratory for investigating processes of rift zone volcanism, hydrothermal alteration of basaltic tephra, and biological colonization and succession in surface and subsurface pyroclastic deposits. Deposits from Surtsey's eruptions from 1963 to 1967 were first explored via a 181-meter hole drilled in 1979 by the U.S. Geological Survey and Icelandic Museum of Natural History.

  1. HYDRATE CORE DRILLING TESTS

    SciTech Connect

    John H. Cohen; Thomas E. Williams; Ali G. Kadaster; Bill V. Liddell

    2002-11-01

    The ''Methane Hydrate Production from Alaskan Permafrost'' project is a three-year endeavor being conducted by Maurer Technology Inc. (MTI), Noble, and Anadarko Petroleum, in partnership with the U.S. DOE National Energy Technology Laboratory (NETL). The project's goal is to build on previous and ongoing R&D in the area of onshore hydrate deposition. The project team plans to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope includes drilling and coring one well on Anadarko leases in FY 2003 during the winter drilling season. A specially built on-site core analysis laboratory will be used to determine some of the physical characteristics of the hydrates and surrounding rock. Prior to going to the field, the project team designed and conducted a controlled series of coring tests for simulating coring of hydrate formations. A variety of equipment and procedures were tested and modified to develop a practical solution for this special application. This Topical Report summarizes these coring tests. A special facility was designed and installed at MTI's Drilling Research Center (DRC) in Houston and used to conduct coring tests. Equipment and procedures were tested by cutting cores from frozen mixtures of sand and water supported by casing and designed to simulate hydrate formations. Tests were conducted with chilled drilling fluids. Tests showed that frozen core can be washed out and reduced in size by the action of the drilling fluid. Washing of the core by the drilling fluid caused a reduction in core diameter, making core recovery very difficult (if not impossible). One successful solution was to drill the last 6 inches of core dry (without fluid circulation). These tests demonstrated that it will be difficult to capture core when drilling in permafrost or hydrates without implementing certain safeguards. Among the coring tests was a simulated hydrate formation comprised of coarse, large

  2. Continental drift before 1900.

    PubMed

    Rupke, N A

    1970-07-25

    The idea that Francis Bacon and other seventeenth and eighteenth century thinkers first conceived the notion of continental drift does not stand up to close scrutiny. The few authors who expressed the idea viewed the process as a catastrophic event.

  3. Research drilling in young silicic volcanoes

    SciTech Connect

    Eichelberger, J.C.

    1989-06-30

    Magmatic activity, and particularly silicic magmatic activity, is the fundamental process by which continental crust forms and evolves. The transport of magma from deep crustal reservoirs to the surface is a neglected but important aspect of magmatic phenomena. It encompasses problems of eruptive behavior, hydrothermal circulation, and ore deposition, and must be understood in order to properly interpret deeper processes. Drilling provides a means for determining the relationship of shallow intrusive processes to eruption processes at young volcanoes where eruptions are best understood. Drilling also provides a means for directly observing the processes of heat and mass transfer by which recently emplaced intrusions approach equilibrium with their new environment. Drilling in the Inyo Chain, a 600-year-old chain of volcanic vents in California, has shown the close relationship of silicic eruption to shallow dike emplacement, the control of eruptive style by shallow porous-flow degassing, the origin of obsidian by welding, the development of igneous zonation by viscosity segregation, and the character and size of conduits in relation to well-understood magmatic and phreatic eruptions. 36 refs., 9 figs.

  4. COSC-1 technical operations: drilling and borehole completion

    NASA Astrophysics Data System (ADS)

    Rosberg, Jan-Erik; Bjelm, Leif; Larsson, Stellan; Juhlin, Christopher; Lorenz, Henning; Almqvist, Bjarne

    2015-04-01

    COSC-1, the first out of the two planned fully cored boreholes within the COSC-project, was completed in late August 2014. Drilling was performed using the national scientific drilling infrastructure, the so called Riksriggen, operated by Lund University, and resulted in a 2495.8 m deep borehole with almost 100 % core recovery. The rig is an Atlas Copco CT20C diamond core-drill rig, a rig type commonly used for mineral exploration. A major advantage with this type of drill rig compared to conventional rotary rigs is that it can operate on very small drill sites. Thus, it leaves a small environmental footprint, in this case around 1000 m2. The rig was operated by 3 persons over 12 hour shifts. Before the core drilling started a local drilling company installed a conductor casing down to 103 m, which was required for the installation of a Blow Out Preventer (BOP). The core drilling operation started using H-size and a triple tube core barrel (HQ3), resulting in a hole diameter of 96 mm and a core diameter of 61.1 mm down to 1616 m. In general, the drilling using HQ3 was successful with 100 % core recovery and core was acquired at rate on the order 30-60 m/day when the drilling wasn't interrupted by other activities, such as bit change, servicing or testing. The HRQ-drill string was installed as a temporary casing from surface down to 1616 m. Subsequently, drilling was conducted down to 1709 m with N-size and a triple tube core barrel (NQ3), resulting in a hole diameter of 75.7 mm and a core diameter of 45 mm. At 1709 m the coring assembly was changed to N-size double tube core barrel (NQ), resulting in a hole diameter of 75.7 mm and a core diameter of 47.6 mm and the core barrel extended to 6 m. In this way precious time was saved and the good rock quality ensured high core recovery even with the double tube. In general, the drilling using NQ3 and NQ was successful with 100 % core recovery at around 36 m/day by the end of the drilling operation. The main problem

  5. Energy week `96: Conference papers. Book 3: Drilling and production economics

    SciTech Connect

    1996-09-01

    The papers of Section 1, Drilling Technology, relate to advanced materials for downhole tools, underbalanced drilling, horizontal drilling technology/new trajectory control device, horizontal drilling HP/HT well control, advances in drill bits, slim-hole drill bits and tubulars, novel/scientific drilling, and coiled tubing/slim-hole drilling/short radius. The topics of Section 2, Ocean Engineering, include marine pollution and diving equipment. Section 3, Petroleum Production Technology, relate to what`s new in regulations and standards in petroleum production. Papers in Section 4, Offshore and Arctic Operations, cover offshore platforms, floating production systems, offshore pipelines, offshore construction and installation, offshore facilities, and environmental and safety issues. Most papers have been processed separately for inclusion on the data base.

  6. Drilling cuttings on the sea bed: The options

    SciTech Connect

    Booth, M.J.

    1996-12-31

    The paper considers the options available to operators for the treatment of drilling cuttings on the seabed under and around the offshore installations on the UKCS (UK Continental Shelf). The options range from leaving in place to removal or bioremediation. There are a number of practical problems to be overcome and not enough is known about the environmental effects of disturbing the cuttings. Further research and development is suggested.

  7. Cenozoic prograding sequences of the Antarctic continental margin - What balance between structural and eustatic control

    SciTech Connect

    Cooper, A.K. ); Barrett, P. ); Hinz, K. ); Stagg, H. ); Traube, V. )

    1990-05-01

    Multichannel seismic reflection profiles across the Antarctic continental margin commonly reveal prograding sedimentary sequences that are bounded by unconformities. These sequences are as much as 5 km thick and, where sampled, are composed entirely of late Eocene( )-early Oligocene and younger glacial rocks. On nonpolar margins, prograding sequences generally are attributed to relative changes in sea level, sediment supply, and tectonism. Around Antarctica, ice sheets have also been important in controlling the geometry and location of prograding sequences. The Antarctic sequences may provide a proximal record of major Cenozoic ice volume changes and related sea level changes not obtainable from low-latitude continental shelves. Presently, the Antarctic record is poorly known because of limited core data. Two categories of prograding (P) and aggrading (A) sigmoidal sequences are observed around Antarctica: (1) P sequences that build principally outward (common) and (2) AP sequences that build largely upward and outward (less common). P sequences may result principally from grounded ice sheets, and AP sequences from open-marine basinal processes. Major rift embayments of Antarctica (e.g., eastern Ross Sea eastern Weddell Sea Lambert graben Wilkes basin) are also pathways for major ice movement. In general, most areas with P sequences lie within or adjacent to Mesozoic or older rift embayment, whereas the primary area with AP sequences (eastern Ross Sea) lies within a likely Cenozoic rift embayment. The Pacific side of the Antarctic Peninsula where Cenozoic ice sheets and Cenozoic tectonism have been active, is also marked by a P sequence. Scientific drilling on the Antarctic continental shelf has recovered openwater glacial deposits (Ross Sea) as well as glacial diamicts that were deposited beneath and in front of grounded glacier ice (Ross Sea and Prydz Bay).

  8. Optimizing rotary drill performance

    SciTech Connect

    Schivley, G.P. Jr.

    1995-12-31

    Data is presented showing Penetration Rate (PR) versus Force-on-the-Bit (FB) and Bit Angular Speed (N). Using this data, it is shown how FB and N each uniquely contribute to the PR for any particular drilling situation. This data represents many mining situations; including coal, copper, gold, iron ore and limestone quarrying. The important relationship between Penetration per Revolution (P/R) and the height of the cutting elements of the bit (CH) is discussed. Drill performance is then reviewed, considering the effect of FB and N on bit life. All this leads to recommendations for the operating values of FB and N for drilling situations where the rock is not highly abrasive and bit replacements are because of catastrophic failure of the bit cone bearings. The contribution of compressed air to the drilling process is discussed. It is suggested that if the air issuing from the bit jets is supersonic that may enhance the sweeping of the hole bottom. Also, it is shown that not just uphole air velocity is enough to provide adequate transport of the rock cuttings up the annulus of a drilled hole. In addition, air volume flow rate must be considered to assure there is adequate particle spacing so the mechanism of aerodynamic drag can effectively lift the cuttings up and out of the hole annulus.

  9. Impacts on seafloor geology of drilling disturbance in shallow waters.

    PubMed

    Corrêa, Iran C S; Toldo, Elírio E; Toledo, Felipe A L

    2010-08-01

    This paper describes the effects of drilling disturbance on the seafloor of the upper continental slope of the Campos Basin, Brazil, as a result of the project Environmental Monitoring of Offshore Drilling for Petroleum Exploration--MAPEM. Field sampling was carried out surrounding wells, operated by the company PETROBRAS, to compare sediment properties of the seafloor, including grain-size distribution, total organic carbon, and clay mineral composition, prior to drilling with samples obtained 3 and 22 months after drilling. The sampling grid used had 74 stations, 68 of which were located along 7 radials from the well up to a distance of 500 m. The other 6 stations were used as reference, and were located 2,500 m from the well. The results show no significant sedimentological variation in the area affected by drilling activity. The observed sedimentological changes include a fining of grain size, increase in total organic carbon, an increase in gibbsite, illite, and smectite, and a decrease in kaolinite after drilling took place.

  10. Impacts on seafloor geology of drilling disturbance in shallow waters.

    PubMed

    Corrêa, Iran C S; Toldo, Elírio E; Toledo, Felipe A L

    2010-08-01

    This paper describes the effects of drilling disturbance on the seafloor of the upper continental slope of the Campos Basin, Brazil, as a result of the project Environmental Monitoring of Offshore Drilling for Petroleum Exploration--MAPEM. Field sampling was carried out surrounding wells, operated by the company PETROBRAS, to compare sediment properties of the seafloor, including grain-size distribution, total organic carbon, and clay mineral composition, prior to drilling with samples obtained 3 and 22 months after drilling. The sampling grid used had 74 stations, 68 of which were located along 7 radials from the well up to a distance of 500 m. The other 6 stations were used as reference, and were located 2,500 m from the well. The results show no significant sedimentological variation in the area affected by drilling activity. The observed sedimentological changes include a fining of grain size, increase in total organic carbon, an increase in gibbsite, illite, and smectite, and a decrease in kaolinite after drilling took place. PMID:20532617

  11. Compact drilling and sample system

    NASA Technical Reports Server (NTRS)

    Gillis-Smith, Greg R.; Petercsak, Doug

    1998-01-01

    The Compact Drilling and Sample System (CDSS) was developed to drill into terrestrial, cometary, and asteroid material in a cryogenic, vacuum environment in order to acquire subsurface samples. Although drills were used by the Apollo astronauts some 20 years ago, this drill is a fraction of the mass and power and operates completely autonomously, able to drill, acquire, transport, dock, and release sample containers in science instruments. The CDSS has incorporated into its control system the ability to gather science data about the material being drilled by measuring drilling rate per force applied and torque. This drill will be able to optimize rotation and thrust in order to achieve the highest drilling rate possible in any given sample. The drill can be commanded to drill at a specified force, so that force imparted on the rover or lander is limited. This paper will discuss the cryo dc brush motors, carbide gears, cryogenic lubrication, quick-release interchangeable sampling drill bits, percussion drilling and the control system developed to achieve autonomous, cryogenic, vacuum, lightweight drilling.

  12. Novel drilling technology and reduction in drilling costs

    SciTech Connect

    Enger, T.; Torvund, T.; Mikkelsen, J.

    1995-12-31

    Historically offshore drilling costs represent a large part of Norsk Hydro`s E and P investments. Thus a reduction in drilling costs is a major issue. Consequently an aggressive approach to drilling has taken place focusing upon: (1) Reduction in conventional drilling costs, both in exploration and production drilling. An ambitious program to reduce drilling costs by 50% has been introduced. The main improvement potentials include rapid drilling, improved contracts and more selective data gathering. (2) Drilling of long reach wells up to approximately 9 km to reduce the number of subsea wells and fixed platforms, and thus improving the total field economy. Norsk Hydro has also been aggressive in pursuing drilling techniques which could improve the total oil recovery. Horizontal drilling has made possible the development of the giant Troll oil field, even though the oil leg is only 0--26 m thick. Oil reserves in the order of up to 650 mill bbl will be recovered solely due to introduction of horizontal wells. Recently, offshore tests of techniques such as coiled tubing drilling and conventional slim hole drilling have been carried out. The aim is to qualify a concept which could enable them to use a light vessel for exploration drilling, and not the large semi submersible rigs presently used. Potential future savings could be substantial.

  13. Mars Drilling Status

    NASA Technical Reports Server (NTRS)

    Mandell, Humboldt, C., Jr.

    2002-01-01

    This slide presentation reviews the current status of work to explore Mars beneath the surface of planet. One of the objective of this work is to enable further exploration of Mars by humans. One of the requirements for this is to find water on Mars. The presences of water is critical for Human Exploration and a permanent presence on Mars. If water is present beneath the surface it is the best chance of finding life on Mars. The presentation includes a timeline showing the robotic missions, those that have already been on Mars, and planned missions, an explanation of why do we want to drill on Mars, and some of the challenges, Also include are reviews of a missions that would drill 200 and 4,000 to 6,000 meters into the Martian bedrock, and a overview description of the drill. There is a view of some places where we have hopes of finding water.

  14. Drilling technology/GDO

    SciTech Connect

    Kelsey, J.R.

    1985-01-01

    The Geothermal Technology Division of the US Department of Energy is sponsoring two programs related to drilling technology. The first is aimed at development of technology that will lead to reduced costs of drilling, completion, and logging of geothermal wells. This program has the official title ''Hard Rock Penetration Mechanics.'' The second program is intended to share with private industry the cost of development of technology that will result in solutions to the near term geothermal well problems. This program is referred to as the ''Geothermal Drilling Organization''. The Hard Rock Penetration Mechanics Program was funded at $2.65M in FY85 and the GDO was funded at $1.0M in FY85. This paper details the past year's activities and accomplishments and projects the plans for FY86 for these two programs.

  15. Barriers to slimhole drilling

    SciTech Connect

    Murray, P.

    1994-03-01

    Over the years, interest in slimhole drilling has ebbed and flowed on about a 10-year cycle. But recent interest in slimhole has been different. There has been a more concerted effort to develop techniques embodying an engineered approach emphasizing state-of-the-art technology. Material strengths are being pushed to the limit to reduce size without loss of strength, integrity and reliability. As a result of this effort, slimhole wells have been drilled in a number of diverse areas, from frontier locations to mature provinces. In most applications, savings have been undeniable, ranging from 40% in remote areas to 10--15% in more mature provinces. Yet, despite the savings, and reduction in environmental impact, adoption of the technique has not met expectations. This article examines the issue by looking at barriers to slimhole drilling and suggesting possible solutions.

  16. Critique of Drilling Research

    SciTech Connect

    Hamblin, Jerry

    1992-03-24

    For a number of years the Department of Energy has been funding research to reduce the cost of drilling geothermal wells. Generally that research has been effective and helped to make geothermal energy economically attractive to developers. With the increased competition for the electrical market, geothermal energy needs every advantage it can acquire to allow it to continue as a viable force in the marketplace. In drilling related research, there is essentially continuous dialogue between industry and the national laboratories. Therefore, the projects presented in the Program Review are focused on subjects that were previously recommended or approved by industry.

  17. 13. RADIAL DRILL, ENGINE LATHE, DRILL PRESS, AND GRINDER (L ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. RADIAL DRILL, ENGINE LATHE, DRILL PRESS, AND GRINDER (L TO R)-LOOKING SOUTHEAST. - W. A. Young & Sons Foundry & Machine Shop, On Water Street along Monongahela River, Rices Landing, Greene County, PA

  18. 31. VIEW OF DRILL HALL FROM NORTH END OF DRILL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. VIEW OF DRILL HALL FROM NORTH END OF DRILL FLOOR FACING SOUTH. SHOWS EAST AND WEST BALCONIES, VEHICLE ENTRANCE AT THE SOUTHWEST CORNER OF THE DRILL FLOOR, THE CONCESSION STAND IN THE SOUTHEAST CORNER OF THE DRILL FLOOR AND THE FOUR WINDOWS IN THE SOUTH TRUSS SPACE. NOTE CRACKS IN THE UPPER RIGHT CORNER (WEST) OF THE SOUTH WALL. - Yakima National Guard Armory, 202 South Third Street, Yakima, Yakima County, WA

  19. Developers set drilling pace

    SciTech Connect

    McNally, R.

    1981-01-01

    Thums four man-made islands each have a rock perimeter - 160,000 tons of granite - and an inner core of 900,000 yards of hydraulically placed dredged-sand fill. Because of the shallow depths of Long Beach Harbor, islands were constructed instead of installing conventional drilling and production platforms. The majority of drilling rigs and their equipment - casing racks and mud tanks - are mounted on steel rails and moved by hydraulic jacks at a rate of 3/4 ft/min. Each island has a central plant supplying mud and kill fluid services. Logging and perforating are performed by conventional land-based equipment. Many of THUMS' wells are drilled at exceedingly high angles to reach reserves beneath the harbor or Long Beach's downtown area. All but six or seven of the more than 800 wells are deviated, at angles ranging from 0 to 80/degree/, with an average deviation of 65 to 70/degree/. Each well has an S-curve well program and is assigned a 100-ft cylindrical diameter course. A simulated drilling program is fed into a computer to make sure the proposed course does not come within 25 ft of any other well bore. Production procedures are outlined along with a discussion of auxiliary equipment.

  20. Proposed Drill Sites

    SciTech Connect

    Lane, Michael

    2013-06-28

    Proposed drill sites for intermediate depth temperature gradient holes and/or deep resource confirmation wells. Temperature gradient contours based on shallow TG program and faults interpreted from seismic reflection survey are shown, as are two faults interpreted by seismic contractor Optim but not by Oski Energy, LLC.

  1. Red sea drillings.

    PubMed

    Ross, D A; Whitmarsh, R B; Ali, S A; Boudreaux, J E; Coleman, R; Fleisher, R L; Girdler, R; Manheim, F; Matter, A; Nigrini, C; Stoffers, P; Supko, P R

    1973-01-26

    Recent drilling in the Red Sea has shown that much of the basin is underlain by evaporites of a similar age to that of evaporites found in the Mediterranean Sea. These evaporites and their structural positions indicate that other brine areas are present-and, indeed, several others have been discovered. PMID:17843766

  2. Red sea drillings.

    PubMed

    Ross, D A; Whitmarsh, R B; Ali, S A; Boudreaux, J E; Coleman, R; Fleisher, R L; Girdler, R; Manheim, F; Matter, A; Nigrini, C; Stoffers, P; Supko, P R

    1973-01-26

    Recent drilling in the Red Sea has shown that much of the basin is underlain by evaporites of a similar age to that of evaporites found in the Mediterranean Sea. These evaporites and their structural positions indicate that other brine areas are present-and, indeed, several others have been discovered.

  3. Combination drilling and skiving tool

    DOEpatents

    Stone, William J.

    1989-01-01

    A combination drilling and skiving tool including a longitudinally extending hollow skiving sleeve slidably and concentrically mounted on a right-handed twist drill. Dogs or pawls provided on the internal periphery of the skiving sleeve engage with the helical grooves of the drill. During a clockwise rotation of the tool, the drill moves downwardly and the sleeve translates upwardly, so that the drill performs a drilling operation on a workpiece. On the other hand, the drill moves upwardly and the sleeve translates downwardly, when the tool is rotated in a counter-clockwise direction, and the sleeve performs a skiving operation. The drilling and skiving operations are separate, independent and exclusive of each other.

  4. Stroke Drills for Swimming Instructors.

    ERIC Educational Resources Information Center

    Cahill, Peter J.

    1982-01-01

    Stroke drills to be used by swimming instructors to teach four competitive swim strokes are described. The drills include: one arm swims; (2) alternative kicks; (3) fist swims; and (4) catch-up strokes. (JN)

  5. Mars Science Laboratory Drill

    NASA Technical Reports Server (NTRS)

    Okon, Avi B.; Brown, Kyle M.; McGrath, Paul L.; Klein, Kerry J.; Cady, Ian W.; Lin, Justin Y.; Ramirez, Frank E.; Haberland, Matt

    2012-01-01

    This drill (see Figure 1) is the primary sample acquisition element of the Mars Science Laboratory (MSL) that collects powdered samples from various types of rock (from clays to massive basalts) at depths up to 50 mm below the surface. A rotary-percussive sample acquisition device was developed with an emphasis on toughness and robustness to handle the harsh environment on Mars. It is the first rover-based sample acquisition device to be flight-qualified (see Figure 2). This drill features an autonomous tool change-out on a mobile robot, and novel voice-coil-based percussion. The drill comprises seven subelements. Starting at the end of the drill, there is a bit assembly that cuts the rock and collects the sample. Supporting the bit is a subassembly comprising a chuck mechanism to engage and release the new and worn bits, respectively, and a spindle mechanism to rotate the bit. Just aft of that is a percussion mechanism, which generates hammer blows to break the rock and create the dynamic environment used to flow the powdered sample. These components are mounted to a translation mechanism, which provides linear motion and senses weight-on-bit with a force sensor. There is a passive-contact sensor/stabilizer mechanism that secures the drill fs position on the rock surface, and flex harness management hardware to provide the power and signals to the translating components. The drill housing serves as the primary structure of the turret, to which the additional tools and instruments are attached. The drill bit assembly (DBA) is a passive device that is rotated and hammered in order to cut rock (i.e. science targets) and collect the cuttings (powder) in a sample chamber until ready for transfer to the CHIMRA (Collection and Handling for Interior Martian Rock Analysis). The DBA consists of a 5/8-in. (.1.6- cm) commercial hammer drill bit whose shank has been turned down and machined with deep flutes designed for aggressive cutting removal. Surrounding the shank of the

  6. Diamond-Cutter Drill Bits

    SciTech Connect

    1995-11-01

    Geothermal Energy Program Office of Geothermal and Wind Technologies Diamond-Cutter Drill Bits Diamond-cutter drill bits cut through tough rock quicker, reducing the cost of drilling for energy resources The U.S. Department of Energy (DOE) contributed markedly to the geothermal, oil, and gas industries through the development of the advanced polycrystalline diamond compact (PDC) drill bit. Introduced in the 1970s by General Electric Company (GE), the PDC bit uses thin, diamond layers bonded to t

  7. Lubricating additive for drilling muds

    SciTech Connect

    Gutierrez, A.; Brois, S. J.; Brownawell, D. W.; Walker, T. O.

    1985-01-01

    Aqueous drilling fluids containing a minor amount of an additive composition featuring oxazolines of C/sub 1/-C/sub 30/ alkylthioglycolic acid. Such fluids are especially useful where reduced torque drilling fluids are needed. Another embodiment of this invention relates to a method of drilling utilizing the above-described fluids.

  8. Drilling Precise Orifices and Slots

    NASA Technical Reports Server (NTRS)

    Richards, C. W.; Seidler, J. E.

    1983-01-01

    Reaction control thrustor injector requires precisely machined orifices and slots. Tooling setup consists of rotary table, numerical control system and torque sensitive drill press. Components used to drill oxidizer orifices. Electric discharge machine drills fuel-feed orifices. Device automates production of identical parts so several are completed in less time than previously.

  9. Pros and cons of hydraulic drilling

    SciTech Connect

    Not Available

    1984-06-01

    The advantages and disadvantages of using hydraulic drilling are discussed. The low maintenance, energy efficiency, drilling speeds, and operating costs are the main advantages of the hydraulic drills. The economics and maintenance of air drills are also compared.

  10. Modified Cobalt Drills With Oil Passages

    NASA Technical Reports Server (NTRS)

    Hutchison, E.; Richardson, D.

    1986-01-01

    Oil forced through drill shanks to lubricate cutting edges. Drill bits cooled and lubricated by oil forced through drill shanks and out holes adjacent to bits. This cooling technique increases drillbit life and allows increased drill feed rates.

  11. Continental magnetic anomaly constraints on continental reconstruction

    NASA Technical Reports Server (NTRS)

    Vonfrese, R. R. B.; Hinze, W. J.; Olivier, R.; Bentley, C. R.

    1985-01-01

    Crustal magnetic anomalies mapped by the MAGSAT satellite for North and South America, Europe, Africa, India, Australia and Antarctica and adjacent marine areas were adjusted to a common elevation of 400 km and differentially reduced to the radial pole of intensity 60,000 nT. These radially polarized anomalies are normalized for differential inclination, declination and intensity effects of the geomagnetic field, so that in principle they directly reflected the geometric and magnetic polarization attributes of sources which include regional petrologic variations of the crust and upper mantle, and crustal thickness and thermal perturbations. Continental anomalies demonstrate remarkably detailed correlation of regional magnetic sources across rifted margins when plotted on a reconstruction of Pangea. Accordingly, they suggest further fundamental constraints on the geologic evolution of the continents and their reconstructions.

  12. Continental drift before 1900.

    PubMed

    Rupke, N A

    1970-07-25

    The idea that Francis Bacon and other seventeenth and eighteenth century thinkers first conceived the notion of continental drift does not stand up to close scrutiny. The few authors who expressed the idea viewed the process as a catastrophic event. PMID:16057953

  13. The Continental Crust.

    ERIC Educational Resources Information Center

    Burchfiel, B. Clark

    1983-01-01

    Continental crust underlies the continents, their margins, and also small shallow regions in oceans. The nature of the crust (much older than oceanic crust) and its dynamics are discussed. Research related to and effects of tectonics, volcanism, erosion, and sedimentation on the crust are considered. (JN)

  14. Operating requirements for and historical operations of Arctic offshore drilling systems in the United States

    SciTech Connect

    Regg, J.; Breitmeier, J.; Walker, J.

    1995-12-31

    Many of the floating and bottom-founded drilling structures used for oil and gas exploration in the US Arctic have recently been proposed for use in the Russian Arctic offshore. This paper describes the US Arctic environmental conditions in terms of operation capabilities for the various types of drilling systems. A brief description of the various types of drilling systems used to date in the US Arctic is provided as background information. Also presented are the special regulatory requirements and contingency plans which have been developed for offshore Arctic drilling-system operations. The paper will summarize information on the operating experiences of the various drilling systems used in the US Arctic Outer Continental Shelf (OCS) to date.

  15. Drilling to gabbro in intact ocean crust.

    PubMed

    Wilson, Douglas S; Teagle, Damon A H; Alt, Jeffrey C; Banerjee, Neil R; Umino, Susumu; Miyashita, Sumio; Acton, Gary D; Anma, Ryo; Barr, Samantha R; Belghoul, Akram; Carlut, Julie; Christie, David M; Coggon, Rosalind M; Cooper, Kari M; Cordier, Carole; Crispini, Laura; Durand, Sedelia Rodriguez; Einaudi, Florence; Galli, Laura; Gao, Yongjun; Geldmacher, Jörg; Gilbert, Lisa A; Hayman, Nicholas W; Herrero-Bervera, Emilio; Hirano, Nobuo; Holter, Sara; Ingle, Stephanie; Jiang, Shijun; Kalberkamp, Ulrich; Kerneklian, Marcie; Koepke, Jürgen; Laverne, Christine; Vasquez, Haroldo L Lledo; Maclennan, John; Morgan, Sally; Neo, Natsuki; Nichols, Holly J; Park, Sung-Hyun; Reichow, Marc K; Sakuyama, Tetsuya; Sano, Takashi; Sandwell, Rachel; Scheibner, Birgit; Smith-Duque, Chris E; Swift, Stephen A; Tartarotti, Paola; Tikku, Anahita A; Tominaga, Masako; Veloso, Eugenio A; Yamasaki, Toru; Yamazaki, Shusaku; Ziegler, Christa

    2006-05-19

    Sampling an intact sequence of oceanic crust through lavas, dikes, and gabbros is necessary to advance the understanding of the formation and evolution of crust formed at mid-ocean ridges, but it has been an elusive goal of scientific ocean drilling for decades. Recent drilling in the eastern Pacific Ocean in Hole 1256D reached gabbro within seismic layer 2, 1157 meters into crust formed at a superfast spreading rate. The gabbros are the crystallized melt lenses that formed beneath a mid-ocean ridge. The depth at which gabbro was reached confirms predictions extrapolated from seismic experiments at modern mid-ocean ridges: Melt lenses occur at shallower depths at faster spreading rates. The gabbros intrude metamorphosed sheeted dikes and have compositions similar to the overlying lavas, precluding formation of the cumulate lower oceanic crust from melt lenses so far penetrated by Hole 1256D.

  16. Drilling to gabbro in intact ocean crust.

    PubMed

    Wilson, Douglas S; Teagle, Damon A H; Alt, Jeffrey C; Banerjee, Neil R; Umino, Susumu; Miyashita, Sumio; Acton, Gary D; Anma, Ryo; Barr, Samantha R; Belghoul, Akram; Carlut, Julie; Christie, David M; Coggon, Rosalind M; Cooper, Kari M; Cordier, Carole; Crispini, Laura; Durand, Sedelia Rodriguez; Einaudi, Florence; Galli, Laura; Gao, Yongjun; Geldmacher, Jörg; Gilbert, Lisa A; Hayman, Nicholas W; Herrero-Bervera, Emilio; Hirano, Nobuo; Holter, Sara; Ingle, Stephanie; Jiang, Shijun; Kalberkamp, Ulrich; Kerneklian, Marcie; Koepke, Jürgen; Laverne, Christine; Vasquez, Haroldo L Lledo; Maclennan, John; Morgan, Sally; Neo, Natsuki; Nichols, Holly J; Park, Sung-Hyun; Reichow, Marc K; Sakuyama, Tetsuya; Sano, Takashi; Sandwell, Rachel; Scheibner, Birgit; Smith-Duque, Chris E; Swift, Stephen A; Tartarotti, Paola; Tikku, Anahita A; Tominaga, Masako; Veloso, Eugenio A; Yamasaki, Toru; Yamazaki, Shusaku; Ziegler, Christa

    2006-05-19

    Sampling an intact sequence of oceanic crust through lavas, dikes, and gabbros is necessary to advance the understanding of the formation and evolution of crust formed at mid-ocean ridges, but it has been an elusive goal of scientific ocean drilling for decades. Recent drilling in the eastern Pacific Ocean in Hole 1256D reached gabbro within seismic layer 2, 1157 meters into crust formed at a superfast spreading rate. The gabbros are the crystallized melt lenses that formed beneath a mid-ocean ridge. The depth at which gabbro was reached confirms predictions extrapolated from seismic experiments at modern mid-ocean ridges: Melt lenses occur at shallower depths at faster spreading rates. The gabbros intrude metamorphosed sheeted dikes and have compositions similar to the overlying lavas, precluding formation of the cumulate lower oceanic crust from melt lenses so far penetrated by Hole 1256D. PMID:16627698

  17. 30 CFR 57.7009 - Drill helpers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drill helpers. 57.7009 Section 57.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7009 Drill helpers. If a drill helper assists the drill operator during...

  18. 30 CFR 57.7009 - Drill helpers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drill helpers. 57.7009 Section 57.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7009 Drill helpers. If a drill helper assists the drill operator during...

  19. 30 CFR 56.7009 - Drill helpers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drill helpers. 56.7009 Section 56.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7009 Drill helpers. If a drill helper assists the drill operator during movement of a...

  20. 30 CFR 56.7009 - Drill helpers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drill helpers. 56.7009 Section 56.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7009 Drill helpers. If a drill helper assists the drill operator during movement of a...

  1. 30 CFR 57.7009 - Drill helpers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drill helpers. 57.7009 Section 57.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7009 Drill helpers. If a drill helper assists the drill operator during...

  2. Drilling subsurface wellbores with cutting structures

    DOEpatents

    Mansure, Arthur James; Guimerans, Rosalvina Ramona

    2010-11-30

    A system for forming a wellbore includes a drill tubular. A drill bit is coupled to the drill tubular. One or more cutting structures are coupled to the drill tubular above the drill bit. The cutting structures remove at least a portion of formation that extends into the wellbore formed by the drill bit.

  3. 30 CFR 56.7009 - Drill helpers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drill helpers. 56.7009 Section 56.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7009 Drill helpers. If a drill helper assists the drill operator during movement of a...

  4. 30 CFR 57.7009 - Drill helpers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drill helpers. 57.7009 Section 57.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7009 Drill helpers. If a drill helper assists the drill operator during...

  5. 30 CFR 56.7009 - Drill helpers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drill helpers. 56.7009 Section 56.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7009 Drill helpers. If a drill helper assists the drill operator during movement of a...

  6. 30 CFR 57.7009 - Drill helpers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drill helpers. 57.7009 Section 57.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7009 Drill helpers. If a drill helper assists the drill operator during...

  7. 30 CFR 56.7009 - Drill helpers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drill helpers. 56.7009 Section 56.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7009 Drill helpers. If a drill helper assists the drill operator during movement of a...

  8. Drilling techniques for osteochondritis dissecans.

    PubMed

    Heyworth, Benton E; Edmonds, Eric W; Murnaghan, M Lucas; Kocher, Mininder S

    2014-04-01

    Although the advanced stages of osteochondritis dissecans remain challenging to treat, most early-stage lesions in skeletally immature patients, if managed appropriately, can be stimulated to heal. For stable lesions that do not demonstrate adequate healing with nonoperative measures, such as activity modification, weight-bearing protection, or bracing, drilling of the subchondral bone has emerged as the gold standard of management. Several techniques of drilling exist, including transarticular drilling, retroarticular drilling, and notch drilling. Although each technique has been shown to be effective in small retrospective studies, higher-powered prospective comparative studies are needed to better elucidate their relative advantages and disadvantages.

  9. High Temperature Piezoelectric Drill

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom

    2012-01-01

    Venus is one of the planets in the solar systems that are considered for potential future exploration missions. It has extreme environment where the average temperature is 460 deg C and its ambient pressure is about 90 atm. Since the existing actuation technology cannot maintain functionality under the harsh conditions of Venus, it is a challenge to perform sampling and other tasks that require the use of moving parts. Specifically, the currently available electromagnetic actuators are limited in their ability to produce sufficiently high stroke, torque, or force. In contrast, advances in developing electro-mechanical materials (such as piezoelectric and electrostrictive) have enabled potential actuation capabilities that can be used to support such missions. Taking advantage of these materials, we developed a piezoelectric actuated drill that operates at the temperature range up to 500 deg C and the mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) configuration. The detailed results of our study are presented in this paper

  10. Drilling mud dispersants

    SciTech Connect

    Gleason, P. A.; Brase, I. E.

    1985-05-21

    Dispersants useful in aqueous drilling mud formulations employed in the drilling of subterranean wells where high temperature and high pressure environments are encountered are disclosed. The dispersants, when used in amounts of about 0.1 to 25 ppb provide muds containing colloidal material suspended in an aqueous medium with improved high temperature and high pressure stability. The dispersants are water soluble sulfonated vinyl toluene-maleic anhydride copolymers which have a molar ratio of vinyl toluene to maleic anhydride of about 1:1 to less than about 2:1, a molecular weight of 1,000 to 25,000 and at least about 0.7 sulfonic acid groups per vinyl toluene unit.

  11. Steerable percussion air drilling system

    SciTech Connect

    Bui, H.D.; Meyers, J.A.; Yost, A.B. II

    1998-12-31

    By increasing penetration rates and bit life, especially in hard formations, the use of down-hole air hammers in the oil field has significantly reduced drilling costs in the Northeast US and West Texas. Unfortunately, drilling by this percussion method has been limited mostly to straight hole applications. This paper presents a new concept of a percussion drilling tool which performs both the function of a down-hole hammer as well as that of a down-hole motor. Such a drilling tool, being introduced here as Steerable Percussion Air Drilling System (SPADS), eliminates the necessity to rotate the drill string and, consequently, enables the use of down-hole air hammers to drill directional wells.

  12. Robotic and Human-Tended Collaborative Drilling Automation for Subsurface Exploration

    NASA Technical Reports Server (NTRS)

    Glass, Brian; Cannon, Howard; Stoker, Carol; Davis, Kiel

    2005-01-01

    Future in-situ lunar/martian resource utilization and characterization, as well as the scientific search for life on Mars, will require access to the subsurface and hence drilling. Drilling on Earth is hard - an art form more than an engineering discipline. Human operators listen and feel drill string vibrations coming from kilometers underground. Abundant mass and energy make it possible for terrestrial drilling to employ brute-force approaches to failure recovery and system performance issues. Space drilling will require intelligent and autonomous systems for robotic exploration and to support human exploration. Eventual in-situ resource utilization will require deep drilling with probable human-tended operation of large-bore drills, but initial lunar subsurface exploration and near-term ISRU will be accomplished with lightweight, rover-deployable or standalone drills capable of penetrating a few tens of meters in depth. These lightweight exploration drills have a direct counterpart in terrestrial prospecting and ore-body location, and will be designed to operate either human-tended or automated. NASA and industry now are acquiring experience in developing and building low-mass automated planetary prototype drills to design and build a pre-flight lunar prototype targeted for 2011-12 flight opportunities. A successful system will include development of drilling hardware, and automated control software to operate it safely and effectively. This includes control of the drilling hardware, state estimation of both the hardware and the lithography being drilled and state of the hole, and potentially planning and scheduling software suitable for uncertain situations such as drilling. Given that Humans on the Moon or Mars are unlikely to be able to spend protracted EVA periods at a drill site, both human-tended and robotic access to planetary subsurfaces will require some degree of standalone, autonomous drilling capability. Human-robotic coordination will be important

  13. Robotic and Human-Tended Collaborative Drilling Automation for Subsurface Exploration

    NASA Technical Reports Server (NTRS)

    Glass, Brian; Cannon, Howard; Stoker, Carol; Davis, Kiel

    2005-01-01

    Future in-situ lunar/martian resource utilization and characterization, as well as the scientific search for life on Mars, will require access to the subsurface and hence drilling. Drilling on Earth is hard - an art form more than an engineering discipline. Human operators listen and feel drill string vibrations coming from kilometers underground. Abundant mass and energy make it possible for terrestrial drilling to employ brute-force approaches to failure recovery and system performance issues. Space drilling will require intelligent and autonomous systems for robotic exploration and to support human exploration. Eventual in-situ resource utilization will require deep drilling with probable human-tended operation of large-bore drills, but initial lunar subsurface exploration and near-term ISRU will be accomplished with lightweight, rover-deployable or standalone drills capable of penetrating a few tens of meters in depth. These lightweight exploration drills have a direct counterpart in terrestrial prospecting and ore-body location, and will be designed to operate either human-tended or automated. NASA and industry now are acquiring experience in developing and building low-mass automated planetary prototype drills to design and build a pre-flight lunar prototype targeted for 2011-12 flight opportunities. A successful system will include development of drilling hardware, and automated control software to operate it safely and effectively. This includes control of the drilling hardware, state estimation of both the hardware and the lithography being drilled and state of the hole, and potentially planning and scheduling software suitable for uncertain situations such as drilling. Given that Humans on the Moon or Mars are unlikely to be able to spend protracted EVA periods at a drill site, both human-tended and robotic access to planetary subsurfaces will require some degree of standalone, autonomous drilling capability. Human-robotic coordination will be important

  14. 75 FR 18404 - Safety Zone; FRONTIER DISCOVERER, Outer Continental Shelf Drillship, Chukchi and Beaufort Sea...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-12

    ... Continental Shelf Drillship, Chukchi and Beaufort Sea, Alaska'' in the Federal Register (75 FR 803). The NPRM... discussion of the background and purpose for this rule can be found in the preamble to the NPRM (75 FR 803..., while anchored or deploying and recovering moorings on location in order to drill exploratory wells...

  15. Measurement-while-drilling (MWD) development for air drilling

    SciTech Connect

    Rubin, L.A.; Harrison, W.H.

    1992-01-01

    The objective of this program is to tool-harden and make commercially available an existing wireless MWD tool to reliably operate in an air, air-mist, or air-foam environment during Appalachian Basin oil and gas directional drilling operations in conjunction with downhole motors and/or (other) bottom-hole assemblies. The application of this technology is required for drilling high angle (holes) and horizontal well drilling in low-pressure, water sensitive, tight gas formations that require air, air-mist, and foam drilling fluids. The basic approach to accomplishing this objective was to modify GEC's existing electromagnetic (e-m) CABLELESS''{trademark} MWD tool to improve its reliability in air drilling by increasing its tolerance to higher vibration and shock levels (hardening). Another important aim of the program is to provide for continuing availability of the resultant tool for use on DOE-sponsored, and other, air-drilling programs.

  16. Measurement-while-drilling (MWD) development for air drilling

    SciTech Connect

    Rubin, L.A.; Harrison, W.H.

    1992-06-01

    The objective of this program is to tool-harden and make commercially available an existing wireless MWD tool to reliably operate in an air, air-mist, or air-foam environment during Appalachian Basin oil and gas directional drilling operations in conjunction with downhole motors and/or (other) bottom-hole assemblies. The application of this technology is required for drilling high angle (holes) and horizontal well drilling in low-pressure, water sensitive, tight gas formations that require air, air-mist, and foam drilling fluids. The basic approach to accomplishing this objective was to modify GEC`s existing electromagnetic (e-m) ``CABLELESS``{trademark} MWD tool to improve its reliability in air drilling by increasing its tolerance to higher vibration and shock levels (hardening). Another important aim of the program is to provide for continuing availability of the resultant tool for use on DOE-sponsored, and other, air-drilling programs.

  17. Drill bit assembly for releasably retaining a drill bit cutter

    DOEpatents

    Glowka, David A.; Raymond, David W.

    2002-01-01

    A drill bit assembly is provided for releasably retaining a polycrystalline diamond compact drill bit cutter. Two adjacent cavities formed in a drill bit body house, respectively, the disc-shaped drill bit cutter and a wedge-shaped cutter lock element with a removable fastener. The cutter lock element engages one flat surface of the cutter to retain the cutter in its cavity. The drill bit assembly thus enables the cutter to be locked against axial and/or rotational movement while still providing for easy removal of a worn or damaged cutter. The ability to adjust and replace cutters in the field reduces the effect of wear, helps maintains performance and improves drilling efficiency.

  18. The French initiative for scientific cores virtual curating : a user-oriented integrated approach

    NASA Astrophysics Data System (ADS)

    Pignol, Cécile; Godinho, Elodie; Galabertier, Bruno; Caillo, Arnaud; Bernardet, Karim; Augustin, Laurent; Crouzet, Christian; Billy, Isabelle; Teste, Gregory; Moreno, Eva; Tosello, Vanessa; Crosta, Xavier; Chappellaz, Jérome; Calzas, Michel; Rousseau, Denis-Didier; Arnaud, Fabien

    2016-04-01

    Managing scientific data is probably one the most challenging issue in modern science. The question is made even more sensitive with the need of preserving and managing high value fragile geological sam-ples: cores. Large international scientific programs, such as IODP or ICDP are leading an intense effort to solve this problem and propose detailed high standard work- and dataflows thorough core handling and curating. However most results derived from rather small-scale research programs in which data and sample management is generally managed only locally - when it is … The national excellence equipment program (Equipex) CLIMCOR aims at developing French facilities for coring and drilling investigations. It concerns indiscriminately ice, marine and continental samples. As part of this initiative, we initiated a reflexion about core curating and associated coring-data management. The aim of the project is to conserve all metadata from fieldwork in an integrated cyber-environment which will evolve toward laboratory-acquired data storage in a near future. In that aim, our demarche was conducted through an close relationship with field operators as well laboratory core curators in order to propose user-oriented solutions. The national core curating initiative currently proposes a single web portal in which all scientifics teams can store their field data. For legacy samples, this will requires the establishment of a dedicated core lists with associated metadata. For forthcoming samples, we propose a mobile application, under Android environment to capture technical and scientific metadata on the field. This application is linked with a unique coring tools library and is adapted to most coring devices (gravity, drilling, percussion, etc...) including multiple sections and holes coring operations. Those field data can be uploaded automatically to the national portal, but also referenced through international standards or persistent identifiers (IGSN, ORCID and INSPIRE

  19. Geological Setting of Diamond Drilling for the Archean Biosphere Drilling Project, Pilbara Craton, Western Australia

    NASA Astrophysics Data System (ADS)

    Hickman, A.

    2004-12-01

    The Archean Biosphere Drilling Project (ABDP) is a collaborative international research project conducting systematic (bio)geochemical investigations to improve our understanding of the biosphere of the early Earth. The Pilbara Craton of Western Australia, which includes exceptionally well preserved 3.52 to 2.70 Ga sedimentary sequences, was selected for an innovative sampling program commencing in 2003. To avoid near-surface alteration and contamination effects, sampling was by diamond drilling to depths of between 150 and 300 m, and was located at sites where the target lithologies were least deformed and had lowest metamorphic grade (below 300°C). The first of five successful drilling sites (Jasper Deposit) targeted red, white and black chert in the 3.46 Ga Marble Bar Chert Member. This chert marks the top of a thick mafic-felsic volcanic cycle, the third of four such cycles formed by mantle plumes between 3.52 and 3.43 Ga. The geological setting was a volcanic plateau founded on 3.72 to 3.60 Ga sialic crust (isotopic evidence). The second hole (Salgash) was sited on the basal section of the fourth cycle, and sampled sulfidic (Cu-Zn-Fe), carbon-rich shale and sandstone units separated by flows of peridotite. The third hole (Eastern Creek) was sited on the margin of a moderately deep-water rift basin, the 2.95 to 2.91 Ga Mosquito Creek Basin. This is dominated by turbidites, but the sandstones and carbon-rich shales intersected at the drilling site were deposited in shallower water. The fourth and fifth holes, located 300 km apart, sampled 2.77 to 2.76 Ga continental formations of the Fortescue Group; both holes included black shales.

  20. Method for detecting drilling events from measuremt while drilling sensors

    SciTech Connect

    Bible, M.; Lesage, M., Falconer, I.

    1989-10-31

    This patent describes a method for determining subsurface conditions encountered by a drill bit while drilling a borehole. It comprises: during the drilling process, determining rate of penetration and generation a signal indicative thereof; during the drilling process, determining downhole torque and generating a signal indicative thereof; in response to signals indicative of rate of penetration and downhole torque, generating an indication of the occurrence of a subsurface condition selected from the group comprising high formation porosity, a damaged bit bearing and the development of an undergauge bit.

  1. Continental Margins and the Law of the Sea - an `Arranged Marriage' with Huge Research Potential

    NASA Astrophysics Data System (ADS)

    Parson, L.

    2005-12-01

    The United Nations Convention on the Law of the Sea (UNCLOS) requires coastal states intending to secure sovereignty over continental shelf territory extending beyond 200 nautical miles to submit geological/geophysical data, along with their analysis and synthesis of the relevant continental margin in support of their claim. These submissions are scrutinised and assessed by a UN Commission of experts who decide if the claim is justified, and thereby ultimately allowing the exploitation of non-living resources into this extended maritime space. The amount of data required to support the case will vary from margin to margin, depending on the local geological evolution, but typically will involve the running of new, dedicated marine surveys, mostly bathymetric and seismic. Key geological/geophysical issues revolve around proof of `naturalness' of the prolongation of land mass (cue - wide-angle seismics, deep drilling and sampling programmes) and shelf and slope morphology and sediment section thickness (cue - swath bathymetry and multichannel seismics programmes). These surveys, probably primarily funded by government agencies anxious not to lose out on the `land grab', will generate datasets which will inevitably boost not only the research effort leading to increased understanding of margin evolution in academic terms, but also contribute to wider applied aspects of the work such as those leading to refinement of deepwater hydrocarbon resource potential. It is conservatively estimated that in the region of fifty coastal states world-wide have a significant potential for claiming continental shelf beyond 200 nautical miles, and that the total area available as extended shelf could easily exceed 7 million square kilometres. However, while for the vast majority of these states a UNCLOS deadline of 2009 exists for submitting a claim - to date only four have done so (Russia, Brazil, Australia and Ireland). It is therefore predictable, if not inevitable, that within the

  2. Fractal behavior in continental crustal heat production

    NASA Astrophysics Data System (ADS)

    Vedanti, N.; Srivastava, R. P.; Pandey, O. P.; Dimri, V. P.

    2011-02-01

    The distribution of crustal heat production, which is the most important component in the elucidation of continental thermal structure, still remains a theoretical assumption. In general the heat production values must decrease with depth, but the form of decrease of heat production in the crust is not well understood. The commonly used heat production models are: "block model", in which heat production is constant from the surface to a given depth and the "exponential model", in which heat production diminishes as an exponential function of depth. The exponential model is more widely used wherein sources of the errors are heterogeneity of rock and long wavelength changes due to changes in lithology and tectonic elements, and as such exponential distribution does not work satisfactorily for the entire crust. In the present study, we analyze for the first time, deep crustal heat production data of six global areas namely Dharwar craton (India), Kaapvaal craton (South Africa), Baltic shield (Kola, Russia), Hidaka metamorphic belt (Japan), Nissho pluton (Japan) and Continental Deep Drilling site (KTB, Germany). The power spectrum of all the studied data sets exhibits power law behaviour. This would mean slower decay of heat production with depth, which conforms to the known geologic composition of the crust. Minimum value of the scaling exponent has been found for the KTB borehole, which is apparently related to higher heat production of gneisses, however for other study areas, scaling exponent is almost similar. We also found that the lower values of scaling exponents are related to higher heat production in the crust as is the case in KTB. Present finding has a direct relevance in computation of temperature-depth profiles in continental regions.

  3. Drilling and general petroleum engineering

    SciTech Connect

    Not Available

    1994-01-01

    Forty-nine papers are included in the Drilling and General Petroleum Engineering Volume of the SPE Annual Conference and Exhibition proceedings. The conference was held in New Orleans, Louisiana, September 25-28, 1994. The papers cover such topics as: extended reach well drilling, development of marginal satellite fields, slim hole drilling, pressure loss predictions, models for cuttings transport, ester-based drilling fluid systems, borehole stability, cementing, operations, bit failures, roller core bits, well tracking techniques, nitrogen drilling systems, plug failures, drill bit and drillstring dynamics, slim hole vibrations, reserve estimates, enhanced recovery methods, waste disposal, and engineering salary trends. A separate abstract and indexing was prepared for each paper for inclusion in the Energy Science and Technology Database.

  4. Apparatus in a drill string

    DOEpatents

    Hall, David R.; Dahlgren, Scott; Hall, Jr., Tracy H.; Fox, Joe; Pixton, David S.

    2007-07-17

    An apparatus in a drill string comprises an internally upset drill pipe. The drill pipe comprises a first end, a second end, and an elongate tube intermediate the first and second ends. The elongate tube and the ends comprising a continuous an inside surface with a plurality of diameters. A conformable spirally welded metal tube is disposed within the drill pipe intermediate the ends thereof and terminating adjacent to the ends of the drill pipe. The conformable metal tube substantially conforms to the continuous inside surface of the metal tube. The metal tube may comprise a non-uniform section which is expanded to conform to the inside surface of the drill pipe. The non-uniform section may comprise protrusions selected from the group consisting of convolutions, corrugations, flutes, and dimples. The non-uniform section extends generally longitudinally along the length of the tube.

  5. Drilling successful from ROV Ventana

    NASA Astrophysics Data System (ADS)

    Stakes, Debra S.; McFarlane, James A. R.; Holloway, G. Leon; Greene, H. Gary

    Cores of granite and deformed sediment from the walls of Monterey Canyon were successfully recovered from December 30 to 31, 1992, by Monterey Bay Aquarium Research Institute's (MBARI) Remotely Operated Vehicle (ROV) Ventana using a small-diameter, double-barrel drill with a diamond bit. This HSTR (Holloway-Stakes-Tengdin-Rajcula) drill was developed to drill cores horizontally from sulfide/sulfate walls of active black smokers. The drill was first successfully used by the submersible Alvin in October 1991 to drill into massive sulfide chimneys, on the Juan de Fuca Ridge (Eos, June 30, 1992, p. 273), and it was subsequently used with equal success on the chalcopyrite-rich chimneys from 21°N and 9°N on the East Pacific Rise. The recent December dives, however, marked the first time that drilling has ever been attempted from the smaller ROV and the first time coring into the harder igneous rock substrate has been attempted.

  6. High temperature drilling fluids

    SciTech Connect

    Stong, R.E.; Walinsky, S.W.

    1986-01-28

    This patent describes an aqueous drilling fluid suitable for high-temperature use. This fluid is composed of a water base. Clay is suspended in the base and from about 0.01-25 pounds per barrel total composition of a hydrolyzed terpolymer of maleic anhydride, styrene and a third monomer selected from acrylamide, methacrylamide, acrylic acid and metacrylic acid. The molar ratio of maleic anhydride to styrene to the third monomer is from about 30:10:60 to 50:40:10, and the alkali metal, ammonium and lower aliphatic amine salts thereof, the weight-average molecular weight of the hydrolyzed terpolymer is from about 500-10,000.

  7. Portable rapid and quiet drill

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph (Inventor); Badescu, Mireca (Inventor); Bao, Xiaoqi (Inventor); Chang, Zenshea (Inventor); Sherrit, Stewart (Inventor)

    2010-01-01

    A hand-held drilling device, and method for drilling using the device, has a housing, a transducer within the housing, with the transducer effectively operating at ultrasonic frequencies, a rotating motor component within the housing and rigid cutting end-effector rotationally connected to the rotating motor component and vibrationally connected to the transducer. The hand-held drilling device of the present invention operates at a noise level of from about 50 decibels or less.

  8. The thermal spallation drilling process

    SciTech Connect

    Williams, R.E.

    1986-01-01

    Holes can be produced in very hard rock more easily and less expensively by thermal spallation than by conventional means. This drilling process has been used for producing blast holes in the taconite iron mines and for quarrying granite. It is potentially valuable for drilling holes in very hard rock for the exploitation of geothermal energy and the storage of various commodities. However, investigation and development of the thermal spallation drilling process is proceeding slowly.

  9. MWD aids vital drilling decisions

    SciTech Connect

    Fontenot, J.E.; Rao, M.V.

    1988-03-14

    Measurement-While-Drilling (MWD) sensors can supply much of the critical downhole information needed in a systems approach to improving drilling efficiency. The author looks at some areas where MWD information has helped to improve drilling efficiency. To date, most use of MWD has been for directional survey, pressure prediction, and formation evaluation. As MWD systems become more reliable and cost effective, their applications will expand.

  10. Transducer for downhole drilling components

    DOEpatents

    Hall, David R; Fox, Joe R

    2006-05-30

    A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. The transmission element may include an annular housing forming a trough, an electrical conductor disposed within the trough, and an MCEI material disposed between the annular housing and the electrical conductor.

  11. Apparatus for washing drill cuttings

    SciTech Connect

    Lott, W. G.

    1985-10-15

    An apparatus for cleansing a stream of drilling fluid fouled drill cuttings having a housing divided into a plurality of compartments each designed to retain cleansing fluid. A spinning force is imparted into the incoming fouled drill cuttings in an inlet chamber wherein cleansing fluid is intimately mixed with the fouled drill cuttings. A decanting chamber removes liberated drilling fluid from the cuttings and disposes of such drilling fluid from the apparatus via a drain trough assembly. The underflow from the decanter is passed through a solids concentrating assembly wherein the coarse solids are deposited in a concentrating assembly bottoms chamber wherein the settled drill cuttings are removed from the apparatus. The overhead stream from the solids concentrating assembly is driected to a second decanter for removal of any remaining drilling fluid and fine drill cuttings entrained therein from the apparatus via the drain trough assembly. The remaining fluid in the concentrating assembly bottoms chamber is recirculated to the second decanting chamber and the inlet chamber.

  12. Lunar drill and test apparatus

    NASA Technical Reports Server (NTRS)

    Norrington, David W.; Ardoin, Didier C.; Alexander, Stephen G.; Rowland, Philip N.; Vastakis, Frank N.; Linsey, Steven L.

    1988-01-01

    The design of an experimental lunar drill and a facility to test the drill under simulated lunar conditions is described. The drill utilizes a polycrystalline diamond compact drag bit and an auger to mechanically remove cuttings from the hole. The drill will be tested in a vacuum chamber and powered through a vacuum seal by a drive mechanism located above the chamber. A general description of the design is provided followed by a detailed description and analysis of each component. Recommendations for the further development of the design are included.

  13. Drilling the ``perfect'' well

    SciTech Connect

    1999-12-01

    In northeastern British Columbia, near Fort St. John, Calahoo Petroleum is chasing the elusive finger channels of a vast alluvial fan formed by runoff from the Rocky Mountains. The Cadomin formation is a thin, shallow, tight Cretaceous sandstore lying about 1,150m below the surface and loaded with gas at virgin pressure. Reserves are estimated at 3 Bcf per section. The formation is extremely fragile, and subject to damage if drilled improperly. Pores are lined with a thin layer of kaolinite, which when invaded will flocculate and clog pore throats, reducing permeability is estimated at 1 to 2 md, and wells that strike a channel can produce up to 3 MMcf/d of gas. Miss the sweet spot in the channel, and the best one can hope for is 0.5 md and 0.5 MMcf/d of gas. Finding the channels is a real challenge. There are only a few 2D spec seismic lines criss-crossing the play, few offset wells to correlate and a blanket of shallow coal seams above the Cadomin that tunes the seismic image and makes interpretation difficult. The combination of limited formation data and drilling challenges presents a complex set of problems. The paper discusses these challenges and what Calahoo is doing to meet them using a multidisciplinary team approach.

  14. Spills, drills, and accountability

    SciTech Connect

    1993-12-31

    NRDC seeks preventive approaches to oil pollution on U.S. coasts. The recent oil spills in Spain and Scotland have highlighted a fact too easy to forget in a society that uses petroleum every minute of every day: oil is profoundly toxic. One tiny drop on a bald eagle`s egg has been known to kill the embryo inside. Every activity involving oil-drilling for it, piping it, shipping it-poses risks that must be taken with utmost caution. Moreover, oil production is highly polluting. It emits substantial air pollution, such as nitrogen oxides that can form smog and acid rain. The wells bring up great quantities of toxic waste: solids, liquids and sludges often contaminated by oil, toxic metals, or even radioactivity. This article examines the following topics focusing on oil pollution control and prevention in coastal regions of the USA: alternate energy sources and accountability of pollutor; ban on offshore drilling as exemplified by the energy policy act; tanker free zones; accurate damage evaluations. Policy of the National Resource Defence Council is articulated.

  15. 75 FR 54912 - Drill Pipe and Drill Collars From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-09

    ... permitted by section 201.8 of the Commission's rules, as amended, 67 FR 68036 (November 8, 2002). Even where... specified in II (C) of the Commission's Handbook on Electronic Filing Procedures, 67 FR 68168, 68173... COMMISSION Drill Pipe and Drill Collars From China AGENCY: United States International Trade...

  16. 78 FR 59972 - Drill Pipe and Drill Collars from China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-30

    ... FR 68036 (Nov. 8, 2002). In accordance with sections 201.16(c) and 207.3 of the Commission's rules... COMMISSION Drill Pipe and Drill Collars from China AGENCY: United States International Trade Commission... from China. For further information concerning the conduct of this proceeding and rules of...

  17. 30 CFR 56.7004 - Drill mast.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drill mast. 56.7004 Section 56.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7004 Drill mast. Persons shall not be on a mast while the drill-bit is in operation...

  18. 30 CFR 56.7052 - Drilling positions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drilling positions. 56.7052 Section 56.7052... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7052 Drilling positions. Persons shall not drill from— (a) Positions which...

  19. 30 CFR 56.7004 - Drill mast.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drill mast. 56.7004 Section 56.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7004 Drill mast. Persons shall not be on a mast while the drill-bit is in operation...

  20. 30 CFR 56.7004 - Drill mast.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drill mast. 56.7004 Section 56.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7004 Drill mast. Persons shall not be on a mast while the drill-bit is in operation...

  1. 30 CFR 56.7004 - Drill mast.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drill mast. 56.7004 Section 56.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7004 Drill mast. Persons shall not be on a mast while the drill-bit is in operation...

  2. 30 CFR 57.7004 - Drill mast.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drill mast. 57.7004 Section 57.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7004 Drill mast. Persons shall not be on a mast while the drill-bit is...

  3. 30 CFR 57.7004 - Drill mast.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drill mast. 57.7004 Section 57.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7004 Drill mast. Persons shall not be on a mast while the drill-bit is...

  4. 30 CFR 57.7004 - Drill mast.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drill mast. 57.7004 Section 57.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7004 Drill mast. Persons shall not be on a mast while the drill-bit is...

  5. 30 CFR 57.7004 - Drill mast.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drill mast. 57.7004 Section 57.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7004 Drill mast. Persons shall not be on a mast while the drill-bit is...

  6. 30 CFR 250.1605 - Drilling requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Drilling requirements. 250.1605 Section 250... Operations § 250.1605 Drilling requirements. (a) Lessees of OCS sulphur leases shall conduct drilling... this part, as appropriate. (b) Fitness of drilling unit. (1) Drilling units shall be capable...

  7. 30 CFR 56.7052 - Drilling positions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drilling positions. 56.7052 Section 56.7052... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7052 Drilling positions. Persons shall not drill from— (a) Positions which...

  8. 30 CFR 56.7052 - Drilling positions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drilling positions. 56.7052 Section 56.7052... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7052 Drilling positions. Persons shall not drill from— (a) Positions which...

  9. 30 CFR 33.34 - Drilling test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drilling test. 33.34 Section 33.34 Mineral... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test Requirements § 33.34 Drilling test. (a) A drilling test shall consist of drilling a set of 10 test holes,...

  10. 30 CFR 56.7052 - Drilling positions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drilling positions. 56.7052 Section 56.7052... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7052 Drilling positions. Persons shall not drill from— (a) Positions which...

  11. 30 CFR 56.7052 - Drilling positions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drilling positions. 56.7052 Section 56.7052... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7052 Drilling positions. Persons shall not drill from— (a) Positions which...

  12. 30 CFR 57.7004 - Drill mast.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drill mast. 57.7004 Section 57.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7004 Drill mast. Persons shall not be on a mast while the drill-bit is...

  13. 30 CFR 33.34 - Drilling test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drilling test. 33.34 Section 33.34 Mineral... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test Requirements § 33.34 Drilling test. (a) A drilling test shall consist of drilling a set of 10 test holes,...

  14. 30 CFR 56.7004 - Drill mast.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drill mast. 56.7004 Section 56.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7004 Drill mast. Persons shall not be on a mast while the drill-bit is in operation...

  15. 30 CFR 33.34 - Drilling test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drilling test. 33.34 Section 33.34 Mineral... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test Requirements § 33.34 Drilling test. (a) A drilling test shall consist of drilling a set of 10 test holes,...

  16. 30 CFR 33.34 - Drilling test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drilling test. 33.34 Section 33.34 Mineral... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test Requirements § 33.34 Drilling test. (a) A drilling test shall consist of drilling a set of 10 test holes,...

  17. 30 CFR 33.34 - Drilling test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drilling test. 33.34 Section 33.34 Mineral... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test Requirements § 33.34 Drilling test. (a) A drilling test shall consist of drilling a set of 10 test holes,...

  18. The Brazilian continental margin

    NASA Astrophysics Data System (ADS)

    Martins, L. R.; Coutinho, P. N.

    1981-04-01

    The Brazilian continental margin, with its interesting morphology, structure and sediments, has become better known only during the last two decades. Six physiographical provinces can be recognized at the continental margin and the adjacent coast: (1) Cabo Orange-Parnaiba delta; (2) Parnaiba delta-Cabo Sa˜o Roque; (3) Cabo Sa˜o Roque-Belmonte; (4) Belmonte-Cabo Frio; (5) Cabo Frio-Cabo Santa Marta; and (6) Cabo Santa Marta-Chui. The shelf is rather wide near the Amazon Mouth, becoming narrower eastwards, continuing very narrow along the northeastern and eastern coast, and becoming wider again in the south towards the Plate River. Prominent morphological features along the margin are the Amazon cone, the marginal plateaus off northeastern Brazil, the Sa˜o Francisco cone and canyon, the Abrolhos Bank, and the deep-sea plateaus of Pernambuco and Sa˜o Paulo. On the shelf proper a number of relief elements exist, such as sand waves east of the Amazon, submarine terraces at various places, and irregularities of structural origin. The shelf break is rather smooth in the far north and south, more abrupt in the remainder. Surface sediments of the Brazilian shelf show five distinct facies types: littoral quartz sands, mud, transition sand-mud, coralline algae, and biodetrital. The terrigenous elastic fractions dominate off the Amazon and in southern Brazil; between these areas they occupy a very narrow strip near the coast. The carbonate facies, predominantly composed of calcareous algae, is abundant between the Parnaiba delta and Cabo Frio; to the south this facies is more biodetrital and restricted to the outer shelf. Economically important on the Brazilian continental margin besides oil, are sands and gravels, carbonate deposits, evaporites and some subsurface coal. Other possible mineral resources could be phosphate, heavy minerals and clays for ceramics.

  19. Activity plan: Directional drilling and environmental measurements while drilling

    SciTech Connect

    Myers, D.A.

    1998-07-16

    This activity plan describes the testing of directional drilling combined with environmental measurements while drilling at two Hanford Site locations. A cold test is to be conducted at the 105A Mock Tank Leak Facility in the 200 East Area. A hot test is proposed to be run at the 216-B-8 tile field north of the 241-B Tank Farm in 200 East Area. Criteria to judge the success, partial success or failure of various aspects of the test are included. The TWRS program is assessing the potential for use of directional drilling because of an identified need to interrogate the vadose zone beneath the single-shell tanks. Because every precaution must be taken to assure that investigation activities do not violate the integrity of the tanks, control of the drill bit and ability to follow a predetermined drill path are of utmost importance and are being tested.

  20. Scientific Communication.

    ERIC Educational Resources Information Center

    Abelson, Philip H.

    1980-01-01

    The value of communication in the preservation of scientific knowledge is described as it relates to the specialized scientific journals. The discipline of peer review is described as the major factor in keeping the scientific enterprise relatively honest. (SA)

  1. OM300 Direction Drilling Module

    DOE Data Explorer

    MacGugan, Doug

    2013-08-22

    OM300 – Geothermal Direction Drilling Navigation Tool: Design and produce a prototype directional drilling navigation tool capable of high temperature operation in geothermal drilling Accuracies of 0.1° Inclination and Tool Face, 0.5° Azimuth Environmental Ruggedness typical of existing oil/gas drilling Multiple Selectable Sensor Ranges High accuracy for navigation, low bandwidth High G-range & bandwidth for Stick-Slip and Chirp detection Selectable serial data communications Reduce cost of drilling in high temperature Geothermal reservoirs Innovative aspects of project Honeywell MEMS* Vibrating Beam Accelerometers (VBA) APS Flux-gate Magnetometers Honeywell Silicon-On-Insulator (SOI) High-temperature electronics Rugged High-temperature capable package and assembly process

  2. Ultrasonic rotary-hammer drill

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph (Inventor); Badescu, Mircea (Inventor); Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor); Kassab, Steve (Inventor)

    2010-01-01

    A mechanism for drilling or coring by a combination of sonic hammering and rotation. The drill includes a hammering section with a set of preload weights mounted atop a hammering actuator and an axial passage through the hammering section. In addition, a rotary section includes a motor coupled to a drive shaft that traverses the axial passage through the hammering section. A drill bit is coupled to the drive shaft for drilling by a combination of sonic hammering and rotation. The drill bit includes a fluted shaft leading to a distal crown cutter with teeth. The bit penetrates sampled media by repeated hammering action. In addition, the bit is rotated. As it rotates the fluted bit carries powdered cuttings helically upward along the side of the bit to the surface.

  3. Advances in core drilling technology

    NASA Astrophysics Data System (ADS)

    Holdsworth, G.

    Some notable technical advances in drill design were reported at the meeting, held in Canada August 30-September 1, 1982, at the University of Calgary. Chief amongst these was a battery powered, computer assisted electromechanical core drill which has recently been used by the Danes in Greenland to continuously core to the base of the ice sheet at 2038 m. This is the deepest coring operation so far on the Greenland ice sheet. (The record for deep glacier drilling is held by the U.S. Army Cold Regions Research and Engineering Laboratory for the continuous coring through 2164 m of ice to bedrock at Byrd Station, Antarctica, in 1968). In early 1982, a current Soviet core drilling operation was reported to be at a depth of 2000 m at Vostok station, Antarctica, where the total ice thickness is about 4000 m; the goal of core drilling the entire ice thickness there could be achieved before the end of 1983.

  4. Designer drilling increases recovery

    SciTech Connect

    Eck-Olsen, J.; Drevdal, K.E.

    1995-04-01

    Implementation of a new designer-well profile has resulted in increased recovery and production rates. The geologically complex Gullfaks field, located in the Norwegian sector of the North Sea, required a new type of well profile to increase total recovery and production rates from Gullfaks A, B and C platforms. Advances in steerable technology and directional drilling performance enabled a 3-D horizontal, extended-reach well profile, now designated as a designer well, to penetrate multiple targets. This article presents the concept, implementation and conclusions drawn from designer well application. Gullfaks field, in Norwegian North Sea Block 34/10, is the first license ever run by a fully Norwegian joint venture corporation. The license group consists of Statoil (operator), Norsk Hydro and Saga Petroleum. The field currently produces more than 535,000 bopd from three main Jurassic reservoirs.

  5. Proceedings of the drilling technology symposium 1990

    SciTech Connect

    Weiner, P.D.; Kastor, R.L. )

    1990-01-01

    This book contains the proceedings of a symposium on drilling technology. Topics covered include: Improvement in rock bit performance; Coring the horizontal hole; Drill pipe failures; and Slim drill horizontal workover system.

  6. Jack-up rig for marine drilling

    SciTech Connect

    Mueller, S. R.

    1981-05-26

    This invention relates to a mobile drilling platform of the jack -up type equipped with a special system which allows the said drilling platform to work as a drilling derrick and alternatively as a hoisting crane rig for marine service.

  7. Large hole rotary drill performance

    SciTech Connect

    Workman, J.L.; Calder, P.N.

    1996-12-31

    Large hole rotary drilling is one of the most common methods of producing blastholes in open pit mining. Large hole drilling generally refers to diameters from 9 to 17 inch (229 to 432 mm), however a considerable amount of rotary drilling is done in diameters from 6{1/2} to 9 inch (165 to 229 mm). These smaller diameters are especially prevalent in gold mining and quarrying. Rotary drills are major mining machines having substantial capital cost. Drill bit costs can also be high, depending on the bit type and formation being drilled. To keep unit costs low the drills must perform at a high productivity level. The most important factor in rotary drilling is the penetration rate. This paper discusses the factors affecting penetration rate. An empirical factor in rotary drilling is the penetration rate. This paper discusses the factors affecting penetration rate. An empirical factor is given for calculating the penetration rate based on rock strength, pulldown weight and the RPM. The importance of using modern drill performance monitoring systems to calibrate the penetration equation for specific rock formations is discussed. Adequate air delivered to the bottom of the hole is very important to achieving maximum penetration rates. If there is insufficient bailing velocity cuttings will not be transported from the bottom of the hole rapidly enough and the penetration rate is very likely to decrease. An expression for the balancing air velocity is given. The amount by which the air velocity must exceed the balancing velocity for effective operation is discussed. The effect of altitude on compressor size is also provided.

  8. Environmental monitoring of three exploratory oil and gas wells drilled near the East Flower Garden Bank in the Gulf of Mexico

    SciTech Connect

    Gettleson, D.A.; Putt, R.E.; Hammer, R.M.; Laird, C.E.

    1981-01-01

    The results of two marine environmental monitoring programs associated with the drilling of three exploratory wells near the East Flower Garden Bank on the outer continental shelf of the northwest Gulf of Mexico are described. The purpose of the monitoring programs was to define the spatial distribution of the discharged drilling fluids relative to the Bank and assess the apparent health of the predominant reef-building corals of the East Flower Garden Bank before, during, and after the drilling operations. The monitoring programs demonstrated that detectable quantities of the drilling fluids in the surficial sediments were distributed to a distance exceeding 1000 meters from the near-surface discharged well.

  9. Microgravity Drill and Anchor System

    NASA Technical Reports Server (NTRS)

    Parness, Aaron; Frost, Matthew A.; King, Jonathan P.

    2013-01-01

    This work is a method to drill into a rock surface regardless of the gravitational field or orientation. The required weight-on-bit (WOB) is supplied by a self-contained anchoring mechanism. The system includes a rotary percussive coring drill, forming a complete sampling instrument usable by robot or human. This method of in situ sample acquisition using micro - spine anchoring technology enables several NASA mission concepts not currently possible with existing technology, including sampling from consolidated rock on asteroids, providing a bolt network for astronauts visiting a near-Earth asteroid, and sampling from the ceilings or vertical walls of lava tubes and cliff faces on Mars. One of the most fundamental parameters of drilling is the WOB; essentially, the load applied to the bit that allows it to cut, creating a reaction force normal to the surface. In every drilling application, there is a minimum WOB that must be maintained for the system to function properly. In microgravity (asteroids and comets), even a small WOB could not be supported conventionally by the weight of the robot or astronaut. An anchoring mechanism would be needed to resist the reactions, or the robot or astronaut would push themselves off the surface and into space. The ability of the system to anchor itself to a surface creates potential applications that reach beyond use in low gravity. The use of these anchoring mechanisms as end effectors on climbing robots has the potential of vastly expanding the scope of what is considered accessible terrain. Further, because the drill is supported by its own anchor rather than by a robotic arm, the workspace is not constrained by the reach of such an arm. Yet, if the drill is on a robotic arm, it has the benefit of not reflecting the forces of drilling back to the arm s joints. Combining the drill with the anchoring feet will create a highly mobile, highly stable, and highly reliable system. The drilling system s anchor uses hundreds of

  10. NSF Continental Lithosphere Program

    NASA Astrophysics Data System (ADS)

    Mayhew, Michael; MacGregor, Ian

    For several months the Continental Lithosphere Program (CL) of the National Science Foundation has been subject to a major review. The process was stimulated by a series of budget setbacks over the past few years. Although Presidential budget requests have been very favorable for the Division of Earth Sciences (EAR), and there has been strong support within the National Science Foundation and Congress, actual appropriations by Congress have been disappointing.In each year the final allocation to EAR has been affected by external factors beyond the control of the Foundation. In the four fiscal years from 1986 through 1989 the factors include reductions tied to the Gramm-Rudman deficit reduction measures, congressional reaction to the October 1987 stock market crash, and two years of protection for the Ocean Sciences part of the NSF budget that was paid for from the budgets of the Atmospheric and Earth Sciences divisions.

  11. Establishing nuclear facility drill programs

    SciTech Connect

    1996-03-01

    The purpose of DOE Handbook, Establishing Nuclear Facility Drill Programs, is to provide DOE contractor organizations with guidance for development or modification of drill programs that both train on and evaluate facility training and procedures dealing with a variety of abnormal and emergency operating situations likely to occur at a facility. The handbook focuses on conducting drills as part of a training and qualification program (typically within a single facility), and is not intended to included responses of personnel beyond the site boundary, e.g. Local or State Emergency Management, Law Enforcement, etc. Each facility is expected to develop its own facility specific scenarios, and should not limit them to equipment failures but should include personnel injuries and other likely events. A well-developed and consistently administered drill program can effectively provide training and evaluation of facility operating personnel in controlling abnormal and emergency operating situations. To ensure the drills are meeting their intended purpose they should have evaluation criteria for evaluating the knowledge and skills of the facility operating personnel. Training and evaluation of staff skills and knowledge such as component and system interrelationship, reasoning and judgment, team interactions, and communications can be accomplished with drills. The appendices to this Handbook contain both models and additional guidance for establishing drill programs at the Department`s nuclear facilities.

  12. MWD tools improve drilling performance

    SciTech Connect

    Moore, S.D.

    1986-02-01

    Downhole measurement while drilling technology is changing the way many wells are drilled. The capability to understand what is occurring at the drill bit as it actually happens is improving drilling performance, safety, and ultimately cost effectiveness. MWD evolved because of the need to acquire real-time data at the well site. The technology was not developed by vendors as simply an ''add-on'' tool - something an operator didn't realize he needed. MWD, with state-of-the-art, rugged, electronic downhole tools, is the closest thing the petroleum industry has to aerospace engineering. The constraints placed on MWD tools are greater than any other downhole tool-including wireline electric logs - because they are in the hole for long durations, operating under severe hole conditions. MWD tools were first used to monitor directional drilling operations on a real-time basis, More recently vendors have developed formation capabilities for MWD. Tools capable of measuring other drilling parameters such as weight on bit and downhole torque and pressure are also available. MWD technology continues to advance rapidly as the second and third generation of tools and equipment are introduced. Improvements are coming in many areas, but the biggest change will be in the development of new surface equipment to analyze retrieved data. For several years, MWD has been providing a reliable and accurate stream of real-time data from downhole. New software packages for surface equipment will allow the data to be analyzed in new ways to improve drilling efficiencies.

  13. Cascading Off Continental Shelves

    NASA Astrophysics Data System (ADS)

    Huthnance, J.

    Cascading is the motion of dense water that is formed by cooling, evaporation or freezing in the surface layer, along a sloping sea bottom to a greater depth. It is in- fluential in water-mass formation and particularly in ventilation of intermediate and abyssal layers, hence affecting thermohaline circulation and global climate. Cascad- ing is intermittent in time and space, takes place in the bottom layers and cannot be traced via satellites. Hence it is rarely observed while in progress, and there is a dearth of knowledge of the statistical and main individual characteristics of cascading: most favourable locations, frequency of occurrence, density difference, speed of sinking, off-shore volume fluxes etc. The INTAS 99-1600 project "Dense water overflows off continental shelves (cascading)" aims to (i) improve understanding and modelling of dense water overflows, ie. cascading as a meso-scale process (ii) extrapolate from spe- cific observations (focused on the edge of the continental shelf) using generic models and (iii) estimate its influence on fluxes of dissolved and particulate matter between the shelf and open ocean in the bottom boundary layer. An overview of the project to date will be given: - collation of existing confirmed observations of cascading, and data of relevant laboratory experiments, to provide a common data base for modelling; - search of oceanographic data banks and collation of wider relevant data; - systematic analysis; inter-comparison, identifying factors and mechanisms in pre-conditioning, initiation, the evolving form and the end-stages of dense water overflow. - developing a linked set of new or modified models (1.5-layer to 3-D full-physics) capable of sim- ulating the main driving mechanisms and predicting the characteristics of cascading; - developing a model to study the generation and movement of mudslides that the cas- cading process can trigger if sediment material becomes unstable over a steep bottom slope.

  14. Geologic report on the Sand Wash Drilling Project, Moffat and Routt Counties, Colorado

    SciTech Connect

    Carter, T.E.; Wayland, T.E.

    1981-09-01

    The Sand Wash Basin Drilling Project comprises twenty-seven (27) drill holes located in Moffat and Routt Counties, northwest Colorado, having an aggregate depth of 26,107.5 feet (7957.6 m). The holes penetrate the Browns Park Formation of Miocene age, which is a tuffaceous continental sandstone deposited in fluvial, eolian, and lacustrine environments. Partly based on project drilling results, uranium potential resource estimates for this formation in the $50/lb U/sub 3/O/sub 8/ forward-cost category have been increased by 34,476 tons U/sub 3/O/sub 8/ (35,036 metric tons). Three areas between Maybell and Craig, Colorado, considered favorable for uranium occurrences were verified as favorable by project drilling, and a fourth favorable area northwest of Maybell has been expanded. In addition, project drilling results indicate two new favorable areas, one north and northwest and one south of Steamboat Springs, Colorado. Anomalous radioactivity was detected in drill holes in all six study areas of the project. The most important factor in concentrating significant amounts of uranium in the target formation appears to be the availability of gaseous or liquid hydrocarbons and/or hydrogen sulfide gas as reductants. Where subjacent formations supply these reductants to the Browns Park Formation, project drilling encountered 0.05 percent to 0.01 percent uranium concentrations. Potential, though unproven, sources of these reductants are believed to underlie parts of all six project study areas.

  15. Artic ice and drilling structures

    SciTech Connect

    Sodhl, D.S.

    1985-04-01

    The sea ice in the southern Beaufort Sea is examined and subdivided into three zones: the fast ice zone, the seasonal pack-ice zone, an the polar pack ice zone. Each zone requires its own type of system. Existing floating drilling systems include ice-strengthened drill ships, conical drilling systems, and floating ice platforms in deep-water land-fast ice. The development of hydrocarbon resources in the Arctic presents great challenges to engineers, since the structures are required to operate safely under various conditions. Significant progress has yet to be made in understanding the behavior of ice.

  16. Modular island drilling system

    SciTech Connect

    Wetmore, Sh. B.

    1985-04-16

    A gravity-type offshore structure, useful as an offshore drilling platform, e.g., is provided for use in ice-covered waters such as offshore of the Alaskan and Canadian North Slope. The structure is composed of a plurality of floatable and controllably ballastable modules, each of which can be fully submerged. The modules are stackable by selective ballasting and deballasting operations in a suitable sequence to define a mobile offshore structure. The structure is assemblable adjacent a site of use and is floatable after assembly to, from and between successive sites of use. At each site of use the assembled structure is ballasted by sea water to be supported by the sea floor and to have sufficient deadweight, in combination with its support by the sea floor, to stand against ice loads urging the structure laterally of the site. Major ones of the modules preferably are constructed of reinforced concrete arranged within the modules in a honeycomb cellular fashion. A reinforced concrete armor belt is removably installed around the structure at its on-site load waterline. The structure is useful in a range of water depths. The armor belt is mountable to the structure at a number of different elevations on the structure to suit differing on-site load waterline locations. Individual modules can be used with other modules of the same or different size in a series of offshore structures individually useful in a characteristic range of water depths.

  17. Proposed resource evaluation plan. Salton Sea scientific drilling program

    SciTech Connect

    Not Available

    1985-03-01

    The report presents a plan for evaluating the deep geothermal resource in the Salton Sea area of Imperial County, California. The plan is divided into two testing programs, followed by the modeling and evaluation of the underground geothermal resource. The testing program related to geological data collection includes acquiring and analyzing the core, running geophysical and temperature/pressure logs in both the deep well and the injection well, and carrying out extensive mud-logging activities. The flow testing program includes temperature, pressure, and flow measurements made in the well and surface facilities. Sampling and analysis of fluid and scale both in the well and at the surface facilities will also be carried out. 6 refs., 7 figs., 7 tabs. (ACR)

  18. Scientific drilling into the San Andreas Fault Zone

    USGS Publications Warehouse

    Zoback, Mark; Hickman, Stephen; Ellsworth, William

    2010-01-01

    This year, the world has faced energetic and destructive earthquakes almost every month. In January, an M = 7.0 event rocked Haiti, killing an estimated 230,000 people. In February, an M = 8.8 earthquake and tsunami claimed over 500 lives and caused billions of dollars of damage in Chile. Fatal earthquakes also occurred in Turkey in March and in China and Mexico in April.

  19. Scientific Drilling Into the San Andreas Fault Zone

    NASA Astrophysics Data System (ADS)

    Zoback, Mark; Hickman, Stephen; Ellsworth, William

    2010-06-01

    This year, the world has faced energetic and destructive earthquakes almost every month. In January, an M = 7.0 event rocked Haiti, killing an estimated 230,000 people. In February, an M = 8.8 earthquake and tsunami claimed over 500 lives and caused billions of dollars of damage in Chile. Fatal earthquakes also occurred in Turkey in March and in China and Mexico in April.

  20. El'gygytgyn impact crater, Chukotka, Arctic Russia: Impact cratering aspects of the 2009 ICDP drilling project

    NASA Astrophysics Data System (ADS)

    Koeberl, Christian; Pittarello, Lidia; Reimold, Wolf Uwe; Raschke, Ulli; Brigham-Grette, Julie; Melles, Martin; Minyuk, Pavel

    2013-07-01

    The El'gygytgyn impact structure in Chukutka, Arctic Russia, is the only impact crater currently known on Earth that was formed in mostly acid volcanic rocks (mainly of rhyolitic, with some andesitic and dacitic, compositions). In addition, because of its depth, it has provided an excellent sediment trap that records paleoclimatic information for the 3.6 Myr since its formation. For these two main reasons, because of the importance for impact and paleoclimate research, El'gygytgyn was the subject of an International Continental Scientific Drilling Program (ICDP) drilling project in 2009. During this project, which, due to its logistical and financial challenges, took almost a decade to come to fruition, a total of 642.3 m of drill core was recovered at two sites, from four holes. The obtained material included sedimentary and impactite rocks. In terms of impactites, which were recovered from 316.08 to 517.30 m depth below lake bottom (mblb), three main parts of that core segment were identified: from 316 to 390 mblb polymict lithic impact breccia, mostly suevite, with volcanic and impact melt clasts that locally contain shocked minerals, in a fine-grained clastic matrix; from 385 to 423 mblb, a brecciated sequence of volcanic rocks including both felsic and mafic (basalt) members; and from 423 to 517 mblb, a greenish rhyodacitic ignimbrite (mostly monomict breccia). The uppermost impactite (316-328 mblb) contains lacustrine sediment mixed with impact-affected components. Over the whole length of the impactite core, the abundance of shock features decreases rapidly from the top to the bottom of the studied core section. The distinction between original volcanic melt fragments and those that formed later as the result of the impact event posed major problems in the study of these rocks. The sequence that contains fairly unambiguous evidence of impact melt (which is not very abundant anyway, usually less than a few volume%) is only about 75 m thick. The reason for

  1. Stress feature interpretation from ICDP drill holes to constrain the orientations of the three principal stresses: Snake River Plain (USA)

    NASA Astrophysics Data System (ADS)

    Pierdominici, Simona; Kück, Jochem; Harms, Ulrich; Schmitt, Douglas R.

    2016-04-01

    Downhole data from drilled holes provide a unique opportunity to identify wellbore failure and understand physical properties of the deep sediments and rocks. In the framework of the ICDP (International Continental Scientific Drilling Program) we have obtained and analysed a set of geophysical logging data of two deep boreholes (Kimama and Kimberly) in the Snake River Plain in southern Idaho for the ICDP Hot Spot project. The Snake River Plain represents the track of a deep-seated mantle hotspot that has thinned the lithosphere and fuelled the intrusion of up to 10 km of hot basaltic-rhyolitic magma into the lower and middle crust. This area represents the ideal place for geothermal exploration and exploitation. For that a study of the complete state of stress in this region becomes a key point to know and understand the distribution of fractures and failures and how they can influence the permeability of the Hot Spot geothermal reservoir. Processed acoustic borehole images acquired along two boreholes detect a variety of natural and drilling induced features on the borehole wall, including bedding, fractures and breakouts. Three primary types of stress-induced drillhole indicators, breakouts, petal centre-line fractures and tensile fractures, were analysed in detail in order to define the orientation of the present-day stress state. Borehole breakouts are stress-induced elongations of a borehole cross section and on borehole images they appear as dark features and in some cases, incipient breakouts have been identified by conjugate shear fractures, where no spalling of the borehole wall has occurred. The drilling induced tensile fractures appear as dark electrically conductive features, with a strike parallel to the direction of the far-field greatest horizontal stress. They can be differentiated from natural fractures because they do not cross the borehole, do not form complete sinusoids shape on BHTV images and show a discontinuous nature. On the contrary the

  2. El'gygytgyn impact crater, Chukotka, Arctic Russia: Impact cratering aspects of the 2009 ICDP drilling project

    PubMed Central

    Koeberl, Christian; Pittarello, Lidia; Reimold, Wolf Uwe; Raschke, Ulli; Brigham-Grette, Julie; Melles, Martin; Minyuk, Pavel; Spray, John

    2013-01-01

    The El'gygytgyn impact structure in Chukutka, Arctic Russia, is the only impact crater currently known on Earth that was formed in mostly acid volcanic rocks (mainly of rhyolitic, with some andesitic and dacitic, compositions). In addition, because of its depth, it has provided an excellent sediment trap that records paleoclimatic information for the 3.6 Myr since its formation. For these two main reasons, because of the importance for impact and paleoclimate research, El'gygytgyn was the subject of an International Continental Scientific Drilling Program (ICDP) drilling project in 2009. During this project, which, due to its logistical and financial challenges, took almost a decade to come to fruition, a total of 642.3 m of drill core was recovered at two sites, from four holes. The obtained material included sedimentary and impactite rocks. In terms of impactites, which were recovered from 316.08 to 517.30 m depth below lake bottom (mblb), three main parts of that core segment were identified: from 316 to 390 mblb polymict lithic impact breccia, mostly suevite, with volcanic and impact melt clasts that locally contain shocked minerals, in a fine-grained clastic matrix; from 385 to 423 mblb, a brecciated sequence of volcanic rocks including both felsic and mafic (basalt) members; and from 423 to 517 mblb, a greenish rhyodacitic ignimbrite (mostly monomict breccia). The uppermost impactite (316–328 mblb) contains lacustrine sediment mixed with impact-affected components. Over the whole length of the impactite core, the abundance of shock features decreases rapidly from the top to the bottom of the studied core section. The distinction between original volcanic melt fragments and those that formed later as the result of the impact event posed major problems in the study of these rocks. The sequence that contains fairly unambiguous evidence of impact melt (which is not very abundant anyway, usually less than a few volume%) is only about 75 m thick. The reason for

  3. Geothermal drilling in Cerro Prieto

    SciTech Connect

    Dominguez A., Bernardo

    1982-08-10

    The number of characteristics of the different wells that have been drilled in the Cerro Prieto geothermal field to date enable one to summarize the basic factors in the applied technology, draw some conclusions, improve systems and procedures, and define some problems that have not yet been satisfactorily solved, although the existing solution is the best now available. For all practical purposes, the 100 wells drilled in the three areas or blocks into which the Cerro Prieto field has been divided have been completed. Both exploratory and production wells have been drilled; problems of partial or total lack of control have made it necessary to abandon some of these wells, since they were unsafe to keep in production or even to be used for observation and/or study. The wells and their type, the type of constructed wells and the accumulative meters that have been drilled for such wells are summarized.

  4. Simulation of Martian Bedrock Drilling

    NASA Video Gallery

    This animation depicts NASA's Mars rover Curiosity drilling a hole tocollect a rock-powder sample at a target site called "John Klein."Credit: NASA/JPL-Caltech› Curiosity's mission site › ...

  5. Performance of drill string hardfacings

    SciTech Connect

    Williamson, J.S.; Bolton, J.

    1984-06-01

    Drill string hardfacings are composites of steel and tungsten carbide applied by welding techniques. This paper discusses the important variables involved and gives experimental results for casing wear and abrasive wear resistance.

  6. Toroidal coupled measurements while drilling

    SciTech Connect

    Smith, H.C.

    1983-02-01

    When drilling a well, data from downhole is currently brought to the surface primarily by mud pulse or wireline systems. This paper describes a unique system to accomplish this data transmission through the use of Electro-Magnetics (EM).

  7. Drilling below the salt in the Western Mediterranean Sea : the GOLD-1 (Gulf of Lion Drilling) Project.

    NASA Astrophysics Data System (ADS)

    Rabineau, Marina; Aslanian, Daniel; Gorini, Christian; Alain, Karine; Participants, International

    2010-05-01

    In recent years the Gulf of Lion within the Occidental Mediterranean Sea has become a unique natural laboratory for the study both the evolution and interaction of deep processes (geodynamics, tectonics, subsidence, isostasy) and surficial processes (river behavior, sedimentary fluxes, sea-level changes, climatic impacts). Here, representing a large group of international researchers, we present the main objectives for a deep drilling project at the foot of the continental slope (2400 m water depth) in the Gulf of Lion. This position is the only place in the Gulf of Lion where the sedimentary column is expected to be complete without major erosional hiatuses or time gaps. It is located sufficiently far from the shelf and slope to not have been affected by the extraordinarly erosional event of the Messinian, and at the same time be free from salt-related faulting and diapirism. At this position we have recorded nearly a complete high-resolution history of the last 23 through 30 Ma of Mediterranean history in some 7.7 km of sedimentary archive. From the petroleum exploration perspective the deepest part of the margin reamain underexplored since all existing wells were drilled on the shelf and slope GLP1 & 2 being the deepest one. New interpretations in the region (especially concerning the Messinian event) have considerably changed earlier views of potential hydrocarbon reservoirs. New results expected from deep drilling are numerous: 1) For the substratum: the upper continental crust thins to less than 5 km, and changes laterally to a relatively thin crust with high velocities whose precise nature is still undetermined (Gailler et al., 2009). The aim of the drilling is to reach this crucial information which is essential for the understanding of the evolution of the sedimentary basin (Aslanian et al., 2009). 2) The drilling will allow the dating and characterization of the impact of the initiation and changes in glacioeustatic cyclicity in alpine glaciers and

  8. Going Online With Ocean Drilling Publications

    NASA Astrophysics Data System (ADS)

    Klaus, A. D.; Petronotis, K. E.

    2003-12-01

    In 1999, the Ocean Drilling Program (ODP) transitioned from a print publication format to a hybrid print/electronic format of its Initial Reports (IR) series. A year later, the Scientific Results (SR) series joined the electronic era. Our mandate was to produce a fully functional electronic publication in HTML and PDF formats that would also function as a professionally typeset printed publication. The IR series disseminates the preliminary scientific knowledge gained during each ODP cruise, whereas the SR series is a venue for publishing independent research conducted after each cruise and often includes extensive data sets and many color images. Although both series are published as a print/CD-ROM hybrid and on the Web, the IR online version follows publication of the CD, whereas the SR online version precedes it. This unique format--neither all print, all electronic, or print with electronic replica of print--led to interesting challenges that few other publishers had to grapple with when going electronic. ODP's formal transition from print to electronic publication was concentrated in a 2-year period, but fortunately, staff members had honed many valuable online editing and production skills prior to that time as a cost-saving means of publishing hardcover books. This made the transition rather seamless for the staff; however, issues pertaining to multiplatform publications still had to be addressed. These included word choices that made sense regardless of whether the material was being viewed on paper, on CD, or on the Web; the creation of alternative citation formats; policies on revising already published electronic material; etc. In our experience, the advantages for publishers and readers have outweighed the growing pains of moving to electronic publishing. For example, SR authors typically see their manuscripts published 4-5 months after acceptance, whereas it used to take 7-9 months. The accessibility of the online publications has significantly widened

  9. Laser Oil and Gas Well Drilling Demonstration Videos

    DOE Data Explorer

    ANL's Laser Applications Laboratory and collaborators are examining the feasibility of adapting high-power laser technology to drilling for gas and oil. The initial phase is designed to establish a scientific basis for developing a commercial laser drilling system and determine the level of gas industry interest in pursuing future research. Using lasers to bore a hole offers an entirely new approach to mechanical drilling. The novel drilling system would transfer light energy from lasers on the surface, down a borehole by a fiber optic bundle, to a series of lenses that would direct the laser light to the rock face. Researchers believe that state-of-the-art lasers have the potential to penetrate rock many times faster than conventional boring technologies - a huge benefit in reducing the high costs of operating a drill rig. Because the laser head does not contact the rock, there is no need to stop drilling to replace a mechanical bit. Moreover, researchers believe that lasers have the ability to melt the rock in a way that creates a ceramic sheath in the wellbore, eliminating the expense of buying and setting steel well casing. A laser system could also contain a variety of downhole sensors, including visual imaging systems that could communicate with the surface through the fiber optic cabling. Earlier studies have been promising, but there is still much to learn. One of the primary objectives of the new study will be to obtain much more precise measurements of the energy requirements needed to transmit light from surface lasers down a borehole with enough power to bore through rocks as much as 20,000 feet or more below the surface. Another objective will be to determine if sending the laser light in sharp pulses, rather than as a continuous stream, could further increase the rate of rock penetration. A third aspect will be to determine if lasers can be used in the presence of drilling fluids. In most wells, thick fluids called "drilling muds" are injected into

  10. Ultracapacitor-Powered Cordless Drill

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2007-01-01

    The figure depicts a portable, hand-held power drill with its attached power-supply unit, in which ultracapacitors, rather than batteries, are used to store energy. This ultra capacitor-powered drill is a product of continuing efforts to develop the technological discipline known as hybrid power management (HPM), which is oriented toward integration of diverse electric energy-generating, energy-storing, and energy-consuming devices in optimal configurations.

  11. 75 FR 71734 - Outer Continental Shelf (OCS), Scientific Committee (SC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ... of field and laboratory studies in biology, chemistry, and physical oceanography, as well as studies... vacancies in the following disciplines: Biological oceanography/marine biology; social science;...

  12. 30 CFR 56.7801 - Jet drills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Jet drills. 56.7801 Section 56.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing § 56.7801 Jet drills. Jet piercing drills shall be provided with— (a) A system...

  13. 30 CFR 77.1009 - Drill; operation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drill; operation. 77.1009 Section 77.1009... Control § 77.1009 Drill; operation. (a) While in operation drills shall be attended at all times. (b) Men shall not drill from positions that hinder their access to the control levers, or from insecure...

  14. 30 CFR 57.7052 - Drilling positions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drilling positions. 57.7052 Section 57.7052... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7052 Drilling positions. Persons shall not...

  15. 30 CFR 56.7801 - Jet drills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Jet drills. 56.7801 Section 56.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing § 56.7801 Jet drills. Jet piercing drills shall be provided with— (a) A system...

  16. 46 CFR 199.250 - Drills.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Drills. 199.250 Section 199.250 Shipping COAST GUARD... CERTAIN INSPECTED VESSELS Additional Requirements for Passenger Vessels § 199.250 Drills. (a) An abandon-ship drill and a fire drill, as described in § 199.180, must be conducted on each passenger vessel...

  17. 46 CFR 199.250 - Drills.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Drills. 199.250 Section 199.250 Shipping COAST GUARD... CERTAIN INSPECTED VESSELS Additional Requirements for Passenger Vessels § 199.250 Drills. (a) An abandon-ship drill and a fire drill, as described in § 199.180, must be conducted on each passenger vessel...

  18. 30 CFR 77.1009 - Drill; operation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drill; operation. 77.1009 Section 77.1009... Control § 77.1009 Drill; operation. (a) While in operation drills shall be attended at all times. (b) Men shall not drill from positions that hinder their access to the control levers, or from insecure...

  19. 46 CFR 199.250 - Drills.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Drills. 199.250 Section 199.250 Shipping COAST GUARD... CERTAIN INSPECTED VESSELS Additional Requirements for Passenger Vessels § 199.250 Drills. (a) An abandon-ship drill and a fire drill, as described in § 199.180, must be conducted on each passenger vessel...

  20. 30 CFR 57.7801 - Jet drills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Jet drills. 57.7801 Section 57.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7801 Jet drills. Jet piercing drills shall be provided with: (a)...