Physical oceanography of continental shelves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, J.S.; Beardlsey, R.C.; Blanton, J.O.
Knowledge of the physical oceanography of continental shelves has increased tremendously in recent years, primarily as a result of new current and hydrographic measurements made in locations where no comparable measurements existed previously. In general, observations from geographically distinct continental shelves have shown that the nature of the flow may vary considerably from region to region. Although some characteristics, such as the response of currents to wind forcing, are common to many shelves, the relative importance of various physical processes in influencing the shelf flow field frequently is different. In the last several years, the scientific literature on shelf studiesmore » has expanded rapidly, with that for separate regions, to some extent, developing independently because of the variable role played by different physical effects. Consequently, it seems that a simultaneous review of progress in physical oceanographic research in different shelf regions would be especially useful at this time in order to help assess the overall progress in the field. This multi-author report has been compiled as a result. Included are sections on the physical oceanography of continental shelves, in or off of, the eastern Bering Sea, northern Gulf of Alaska, Pacific Northwest, southern California, west Florida, southeastern US, Middle Atlantic Bight, Georges Bank and Peru. These discussions clearly point to the diverse nature of the dominant physics in several of the regions, as well as to some of the dynamical features they share in common. 390 references, 23 figures.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-01
... (Five Year Program). The Annual Progress Report is available for review at: www.boem.gov/Five-Year-Program-Annual-Progress-Report/ . Information on the Five Year Program is available online at http://www... final on August 27, 2012, after the required 60-day congressional review period. Section 18(e) of the...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-18
...: Availability of Revised North American Datum of 1983 (NAD 83) Outer Continental Shelf Official Protraction... that effective with this publication, the following NAD 83-based Outer Continental Shelf (OCS) Official...
NASA Astrophysics Data System (ADS)
Durán, Ruth; Canals, Miquel; Lastras, Galderic; Micallef, Aaron; Amblas, David; Pedrosa-Pàmies, Rut; Sanz, José Luis
2013-11-01
The Blanes submarine canyon (BC) deeply incises the Catalan continental shelf in the NW Mediterranean Sea. As a consequence of the closeness (only 4 km) of its head to the coastline and the mouth of the Tordera River, the canyon has a direct influence on the shelf dispersal system as it collects large amounts of sediment, mainly during high-energy events. Multibeam bathymetry, backscatter imagery and very-high resolution seismic reflection profiles have allowed characterizing the morphology of the continental shelf around the canyon head, also identifying sediment sources and transport pathways into the canyon. The morphological data have also been used to reconstruct the evolution of the continental shelf during the last sea-level transgression so that the current understanding of shelf-to-canyon sediment exchanges through time could be improved. The continental shelf surrounding the BC consists of both depositional and erosional or non-depositional areas. Depositional areas display prominent sediment bodies, a generally smooth bathymetry and variable backscatter. These include: (i) an area of modern coarse-grained sediment accumulation that comprises the inner shelf; (ii) a modern fine-grained sedimentation area on the middle shelf offshore Tossa de Mar; and (iii) a modern sediment depleted area that covers most of the middle and outer shelf to the west of the canyon head. Erosional and non-depositional areas display a rough topography and high backscatter, and occur primarily to the east of the canyon head, where the arrival of river-fed inputs is very small. In agreement with this pattern, the continental shelf north and west of the canyon head likely is the main source of shelf sediment into the canyon. To the north, a pattern of very high backscatter extends from the coastline to the canyon head, suggesting the remobilization and off-shelf export of fines. Additionally, relict near-shore sand bodies developed over the Barcelona shelf that extend to the canyon head rim constitute a source of coarse sediment. High-energy processes, namely river floods and coastal storms, are the main controls over the river-shelf-canyon sediment exchange. River floods increase the delivery of terrigenous particles to the coastal system. Storms, mainly from the east, remobilize the sediment temporarily accumulated on the shelf towards the canyon head, so that the finer fractions are preferentially removed and a coarse lag is normally left on the shelf floor. Exceptionally, very strong storms also remove the coarse fractions from the shelf drive them into the canyon. Processes like dense shelf water cascading, which is much more intense in canyons to the north of BC, and the Northern Current also contribute to the transport of suspended sediment from far distant northern sources. During the last post-glacial transgression the BC had a strong influence on the evolution of the inner continental margin, as it interrupted the shelf sediment dispersal system by isolating the shelves to its north and south, named La Planassa and Barcelona shelves, respectively. The detailed study of the geomorphology and uppermost sediment cover of the continental shelf surrounding the Blanes submarine canyon yields insight into the past and present shelf sediment dynamics and the shelf-to-canyon sediment exchanges. The continental shelf near the canyon head consists of mosaic where erosional, or non-depositional, and depositional zones coexist. East of the canyon and offshore Tossa de Mar, the modern sediment deposition is mostly confined to the inner and middle shelf, whilst most of the La Planassa shelf is sediment depleted with numerous relict morphosedimentary features cropping out. Rocky outcrops, narrow ridges and relict coarse sand deposits suggesting erosion or non-deposition of fine sediments in modern times occupy the middle and outer shelf floor east and northeast of the canyon head. In contrast, north and west of the canyon head, the middle and outer shelf comprises several large relict sand bodies that point out to long-term deposition. However, the lack of modern sediments on top of these bodies supports active erosion or by-pass in present times. The morphology of the continental shelf near the canyon head records the imprint of the main factors controlling the shelf sediment-dispersal system and provides evidence for the main sources and transport pathways of sediment from the shelf into the canyon. The depletion of fine sediments on the continental shelf, as evidenced by backscatter data, suggests that the Blanes Canyon acts as a sediment trap collecting the finest fractions resuspended primarily from the adjacent shelf to the north. The main processes that control the shelf-to-canyon transfer of sediment are eastern storms, which enhance the off-shelf export of mainly fine sediment from the shelf. Particularly severe storms are also able to remobilize and transport coarse sediment from the shelf and also from the relict sand bodies into the canyon. Other processes, such as DSWC and the Northern Current, contribute to a lesser extent to the transport of sediment along the shelf and into the canyon. During the last post-glacial transgression, the BC played a crucial role in the shaping of the continental shelf surrounding it by cutting the littoral drift of sediment between the shelf areas to the north and south, thus severely modifying the across- and along-shelf sediment pathways. As a result, to the east of the canyon, the poor development of transgressive deposits indicates the prevalence of erosion and non-deposition associated to a limited sediment supply and an effective action of the littoral drift leading to a south-westward transport of sediment towards the canyon head. To the north and west of the canyon the morphology of the continental shelf changed significantly during the sea-level rise. At the early stage of the transgression, the sediment supplied by the Tordera River was discharged directly into the canyon, thus preventing deposition over the shelf. Later, the progressive sea-level rise favoured the development of large depositional bodies on the Barcelona shelf favoured by the increase of accommodation space and the augmenting distance between the river mouth and the canyon head. A drastic change in the configuration of the shelf occurred when the sea-level raised enough to flood the entire continental shelf. The along-shelf sediment transport between the shelf areas to the north and south of the canyon head was then restored and new sediment bodies were formed between the coastline and the canyon tip. At present, these sediment bodies constitute the primary source of coarse sediment into the BC. These results confirm that the Blanes submarine canyon head is highly dynamic and sensitive to a variety of processes that enhance the transport of sediment from the shelf into the canyon, particularly during major storms.
California State Waters Map Series: offshore of Salt Point, California
Johnson, Samuel Y.; Dartnell, Peter; Golden, Nadine E.; Hartwell, Stephen R.; Erdey, Mercedes D.; Greene, H. Gary; Cochrane, Guy R.; Kvitek, Rikk G.; Manson, Michael W.; Endris, Charles A.; Dieter, Bryan E.; Watt, Janet T.; Krigsman, Lisa M.; Sliter, Ray W.; Lowe, Erik N.; Chinn, John L.; Johnson, Samuel Y.; Cochran, Susan A.
2015-01-01
Potential marine benthic habitats in the Offshore of Salt Point map area include unconsolidated continental shelf sediments, mixed continental shelf substrate, and hard continental shelf substrate. Rocky-shelf outcrops and rubble are considered to be promising potential habitats for rockfish and lingcod, both of which are recreationally and commercially important species.
California State Waters Map Series—Offshore of Fort Ross, California
Johnson, Samuel Y.; Dartnell, Peter; Golden, Nadine E.; Hartwell, Stephen R.; Erdey, Mercedes D.; Greene, H. Gary; Cochrane, Guy R.; Kvitek, Rikk G.; Manson, Michael W.; Endris, Charles A.; Dieter, Bryan E.; Watt, Janet T.; Krigsman, Lisa M.; Sliter, Ray W.; Lowe, Erik N.; Chin, John L.; Johnson, Samuel Y.; Cochran, Susan A.
2015-12-03
Potential marine benthic habitat types in the Offshore of Fort Ross map area include unconsolidated continental-shelf sediments, mixed continental-shelf substrate, and hard continental-shelf substrate. Rocky shelf outcrops and rubble are considered the primary habitat type for rockfish and lingcod, both of which are recreationally and commercially important species.
California State Waters Map Series—Offshore of Bodega Head, California
Johnson, Samuel Y.; Dartnell, Peter; Golden, Nadine E.; Hartwell, Stephen R.; Erdey, Mercedes D.; Greene, H. Gary; Cochrane, Guy R.; Kvitek, Rikk G.; Manson, Michael W.; Endris, Charles A.; Dieter, Bryan E.; Watt, Janet T.; Krigsman, Lisa M.; Sliter, Ray W.; Lowe, Erik N.; Chin, John L.; Johnson, Samuel Y.; Cochran, Susan A.
2015-08-06
Potential marine benthic habitats in the Offshore of Bodega Head map area include unconsolidated continental-shelf sediments, mixed continental-shelf substrate, and hard continental-shelf substrate. Rocky-shelf outcrops and rubble are considered to be promising potential habitats for rockfish and lingcod, both of which are recreationally and commercially important species.
30 CFR 256.0 - Authority for information collection.
Code of Federal Regulations, 2010 CFR
2010-07-01
... OF SULPHUR OR OIL AND GAS IN THE OUTER CONTINENTAL SHELF Outer Continental Shelf Oil, Gas, and... part 256, Leasing of Sulphur or Oil and Gas in the Outer Continental Shelf.” (b) MMS collects this...
Brink, K H
2016-01-01
Cross-shelf exchange dominates the pathways and rates by which nutrients, biota, and materials on the continental shelf are delivered and removed. This follows because cross-shelf gradients of most properties are usually far greater than those in the alongshore direction. The resulting transports are limited by Earth's rotation, which inhibits flow from crossing isobaths. Thus, cross-shelf flows are generally weak compared with alongshore flows, and this leads to interesting observational issues. Cross-shelf flows are enabled by turbulent mixing processes, nonlinear processes (such as momentum advection), and time dependence. Thus, there is a wide range of possible effects that can allow these critical transports, and different natural settings are often governed by different combinations of processes. This review discusses examples of representative transport mechanisms and explores possible observational and theoretical paths to future progress.
Code of Federal Regulations, 2011 CFR
2011-07-01
... OFFSHORE LEASING OF SULPHUR OR OIL AND GAS IN THE OUTER CONTINENTAL SHELF Outer Continental Shelf Oil, Gas... for oil and gas, and sulphur, in submerged lands of the outer Continental Shelf (OCS). The Act... major oil and gas producers. [64 FR 72795, Dec. 28, 1999] ...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-03
... Wind Lease Sale 2 (ATLW2) Commercial Leasing for Wind Power on the Outer Continental Shelf Offshore...), Interior. ACTION: Proposed Sale Notice for commercial leasing for wind power on the Outer Continental Shelf... sale of commercial wind energy leases on the Outer Continental Shelf (OCS) offshore Rhode Island and...
Late Pleistocene and Holocene sedimentary facies on the Ebro continental shelf
Diaz, J.; Nelson, C.H.; Barber, J.H.; Giro, S.
1990-01-01
Late Pleistocene-Holocene history of the Ebro continental shelf of northeastern Spain is recorded in two main sedimentary units: (1) a lower, transgressive unit that covers the shelf and is exposed on the outer shelf south of 40??40???N, and (2) an upper, progradational, prodeltaic unit that borders the Ebro Delta and extends southward along the inner shelf. The lower transgressive unit includes a large linear shoal found at a water depth of 90 m and hardground mounds at water depths of 70-80 m. Some patches of earlier Pleistocene prodelta mud remain also, exposed or covered by a thin veneer of transgressive sand on the northern outer shelf. This relict sand sheet is 2-3 m thick and contains 9000-12,500 yr old oyster and other shells at water depths of 78-88 m. The upper prodelta unit covers most of the inner shelf from water depths of 20-80 m and extends from the present Ebro River Delta to an area to the southwest where the unit progressively thins and narrows. Interpretation of high-resolution seismic reflection data shows the following facies occurring progressively offshore: (1) a thick stratified facies with thin progradational "foresets beds", (2) a faintly laminated facies with sparse reflectors of low continuity, and (3) a thin transparent bottomset facies underlain by a prominent flat-lying reflector. Deposition in the northern half of the prodelta began as soon as the shoreline transgressed over the mid-shelf, but progradation of the southern half did not begin until about 1000-3000 yrs after the transgression. A classic deltaic progradational sequence is shown in the Ebro prodelta mud by (1) gradation of seismic facies away from the delta, (2) coarsening-upward sequences near the delta and fining-upward sequences in the distal mud belt deposits, and (3) thin storm-sand layers and shell lags in the nearshore stratified facies. The boundaries of the prodeltaic unit are controlled by increased current speeds on the outer shelf (where the shelf narrows) and by development of the shoreface sand body resulting from shoaling waves on the inner shelf. ?? 1990.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-09
... Continental Shelf Air Permit for Anadarko Petroleum Corporation AGENCY: Environmental Protection Agency (EPA... final Outer Continental Shelf (OCS) air permit for Anadarko Petroleum Corporation (Anadarko). The permit... Petroleum Corporation regarding the project. EPA carefully reviewed each of the comments submitted and...
Dhar, Sunil Kumar; Jani, Kunal; Apte, Deepak A.; Shouche, Yogesh S.; Sharma, Avinash
2015-01-01
Marine microbes play a key role and contribute largely to the global biogeochemical cycles. This study aims to explore microbial diversity from one such ecological hotspot, the continental shelf of Agatti Island. Sediment samples from various depths of the continental shelf were analyzed for bacterial diversity using deep sequencing technology along with the culturable approach. Additionally, imputed metagenomic approach was carried out to understand the functional aspects of microbial community especially for microbial genes important in nutrient uptake, survival and biogeochemical cycling in the marine environment. Using culturable approach, 28 bacterial strains representing 9 genera were isolated from various depths of continental shelf. The microbial community structure throughout the samples was dominated by phylum Proteobacteria and harbored various bacterioplanktons as well. Significant differences were observed in bacterial diversity within a short region of the continental shelf (1–40 meters) i.e. between upper continental shelf samples (UCS) with lesser depths (i.e. 1–20 meters) and lower continental shelf samples (LCS) with greater depths (i.e. 25–40 meters). By using imputed metagenomic approach, this study also discusses several adaptive mechanisms which enable microbes to survive in nutritionally deprived conditions, and also help to understand the influence of nutrition availability on bacterial diversity. PMID:26066038
Kumbhare, Shreyas V; Dhotre, Dhiraj P; Dhar, Sunil Kumar; Jani, Kunal; Apte, Deepak A; Shouche, Yogesh S; Sharma, Avinash
2015-01-01
Marine microbes play a key role and contribute largely to the global biogeochemical cycles. This study aims to explore microbial diversity from one such ecological hotspot, the continental shelf of Agatti Island. Sediment samples from various depths of the continental shelf were analyzed for bacterial diversity using deep sequencing technology along with the culturable approach. Additionally, imputed metagenomic approach was carried out to understand the functional aspects of microbial community especially for microbial genes important in nutrient uptake, survival and biogeochemical cycling in the marine environment. Using culturable approach, 28 bacterial strains representing 9 genera were isolated from various depths of continental shelf. The microbial community structure throughout the samples was dominated by phylum Proteobacteria and harbored various bacterioplanktons as well. Significant differences were observed in bacterial diversity within a short region of the continental shelf (1-40 meters) i.e. between upper continental shelf samples (UCS) with lesser depths (i.e. 1-20 meters) and lower continental shelf samples (LCS) with greater depths (i.e. 25-40 meters). By using imputed metagenomic approach, this study also discusses several adaptive mechanisms which enable microbes to survive in nutritionally deprived conditions, and also help to understand the influence of nutrition availability on bacterial diversity.
Coupled ocean-shelf ecosystem modelling of northern North Atlantic
NASA Astrophysics Data System (ADS)
Harle, J.; Holt, J. T.; Butenschön, M.; Allen, J. I.
2016-02-01
The biogeochemistry and ecosystems of the open-ocean and shelf seas are intimately connected. For example Northwest European continental shelf receives a substantial fraction of its nutrients from the wider North Atlantic and exports carbon at depth, sequestering it from atmospheric exchange. In the EC FP7 EuroBasin project (Holt et al 2014) we have developed a 1/12 degree basin-scale NEMO-ERSEM model with specific features relevant to shelf seas (e.g. tides and advanced vertical mixing schemes). This model is eddy resolving in the open-ocean, and resolves barotropic scales on-shelf. We use this model to explore the interaction between finely resolved physical processes and the ecosystem. Here we focus on shelf-sea processes and the connection between the shelf seas and open-ocean, and compare results with a 1/4 degree (eddy permitting) model that does not include shelf sea processes. We find tidal mixing fronts and river plume are well represented in the 1/12 degree model. Using approaches developed for the NW Shelf (Holt et al 2012), we provide estimates of across-shelf break nutrient fluxes to the seas surrounding this basin, and relate these fluxes and their interannual variability to the physical processes driving ocean-shelf exchange. Holt, J., et al, 2012. Oceanic controls on the primary production of the northwest European continental shelf: model experiments under recent past conditions and a potential future scenario. Biogeosciences 9, 97-117. Holt, J., et al, 2014. Challenges in integrative approaches to modelling the marine ecosystems of the North Atlantic: Physics to Fish and Coasts to Ocean. Progress in Oceanography doi:10.1016/j.pocean.2014.04.024.
77 FR 24980 - Notice on Outer Continental Shelf Oil and Gas Lease Sales
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-26
... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management Notice on Outer Continental Shelf Oil... Outer Continental Shelf oil and gas lease sales to be held during the bidding period May 1, 2012... Corporation ExxonMobil Exploration Company Group II. Shell Oil Company Shell Offshore Inc. SWEPI LP Shell...
30 CFR 256.0 - Authority for information collection.
Code of Federal Regulations, 2011 CFR
2011-07-01
... OF THE INTERIOR OFFSHORE LEASING OF SULPHUR OR OIL AND GAS IN THE OUTER CONTINENTAL SHELF Outer Continental Shelf Oil, Gas, and Sulphur Management, General § 256.0 Authority for information collection. (a... information collection is “30 CFR part 256, Leasing of Sulphur or Oil and Gas in the Outer Continental Shelf...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-29
... No. BOEM-2010-0063] Commercial Leasing for Wind Power on the Outer Continental Shelf (OCS) Offshore..., Interior. ACTION: RFI in Commercial Wind Energy Leasing Offshore Massachusetts, and Invitation for Comments... the construction of a wind energy project(s) on the Outer Continental Shelf (OCS) offshore...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-06
...-2011-0039] Commercial Lease of Submerged Lands for Renewable Energy Development on the Outer... renewable energy leases on the Outer Continental Shelf. In the preamble to the April 29, 2009, Final Rule, ``Renewable Energy and Alternate Uses of Existing Facilities on the Outer Continental Shelf,'' BOEMRE stated...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-03
... Submerged Lands for Renewable Energy Development on the Outer Continental Shelf AGENCY: Bureau of Ocean... use Form 0008 to issue commercial renewable energy leases on the Outer Continental Shelf (OCS). In the preamble to the April 29, 2009, Final Rule, ``Renewable Energy and Alternate Uses of Existing Facilities on...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-03
... Wind One (ATLW1) Commercial Leasing for Wind Power on the Outer Continental Shelf Offshore Virginia... Notice for Commercial Leasing for Wind Power on the Outer Continental Shelf Offshore Virginia. SUMMARY... (FONSI) for commercial wind lease issuance and site assessment activities on the Atlantic OCS offshore...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-23
...-AA00 Safety Zone; NOBLE DISCOVERER, Outer Continental Shelf Drillship, Chukchi and Beaufort Seas... Chukchi and Beaufort Seas Outer Continental Shelf, Alaska, from 12:01 a.m. on July 1, 2012 through 11:59 p... order to drill exploratory wells in several prospects located in the Chukchi and Beaufort Seas during...
Shideler, G.L.
1981-01-01
A monitoring study of suspended sediment on the South Texas Continental Shelf indicates that a turbid benthic nepheloid layer is regionally persistent. A sequence of quasi-synoptic measurements of the water column obtained during six cruises in an 18-month period indicates substantial spatial and temporal variability in nepheloidlayer characteristics. Regionally, the thickness of the shelf nepheloid layer increases both seaward and in a convergent alongshelf direction. Greatest thicknesses occur over a muddy substrate, indicating a causal relationship; maximum observed local thickness is 35 m which occurs along the southern shelf break. Analyses of suspended particulate matter in shelf bottom waters indicate mean concentrations ranging from 49 ?? 104 to 111 ?? 104 particle counts/cc; concentrations persistently increase shoreward throughout the region. Bottom particulate matter is predominantly composed of inorganic detritus. Admixtures of organic skeletal particles, primarily diatoms, are generally present but average less than 10% of the total particulate composition. Texturally, the particulate matter in bottom waters is predominantly poorly sorted sediment composed of very fine silt (3.9-7.8 ??m). The variability in nepheloid-layer characteristics indicates a highly dynamic shelf feature. The relationship of nepheloid-layer characteristics to hydrographic and substrate conditions suggests a conceptual model whereby nepheloid-layer development and maintenance are the results of the resuspension of sea-floor sediment. Bottom turbulence is attributed primarily to vertical shear and shoaling progressive internal waves generated by migrating shelf-water masses, especially oceanic frontal systems, and secondarily to shoaling surface gravity waves. ?? 1981.
Very large dune formation along the Ebro outer continental shelf (Western Mediterranean)
NASA Astrophysics Data System (ADS)
Lo Iacono, Claudio; Guillén, Jorge; Puig, Pere; Ribó, Marta; Ballesteros, Maria; Palanques, Albert; Farrán, Marcelli; Acosta, Juan
2010-05-01
Large and very large subaqueous dunes have been observed in a number of outer shelf regions around the world, tipically developing on fossil sand bodies and ridges. Dunes observed on outer shelves usually display large dimensions with maximum wavelength reaching up to 500 m and heights up to 20 m. Forcing mechanisms able to induce their formation have been described as strong bottom currents related to tidal variations and water masses flowing under geostrophic conditions, generally controlled and enhanced by local geomorphologic configurations. In this study, such bed features have been recognized, mapped and measured around the Columbretes Islands (Ebro continental shelf - Western Mediterranean) with the aim to reconstruct which are the potential forcing processes that could generate them in relation to the local settings of the area. Swath-bathymetry around the Columbretes Islands was collected using 30 kHz and 180 kHz Multi Beam echo-sounders for a 50-400 m water depth range. Bathymetric data revealed the presence of three main relict sand bodies along the outer shelf, for a 80-116 m depth range, above which asymmetrical, slightly asymmetrical and symmetrical large and very large 2D and 3D subaqueous dunes were observed. Dunes range from 150 to 760 m in wavelength and from tens of cm to 6 m in height. These bedforms are composed of sandy sediments, presumably coming from the degraded relict sand bodies on which they developed, mixed to the fine fractions coming from the recent draping holocenic sediments. The orientation of the dunes is SSW and progressively turns to W directions moving towards the southernmost sector of the area, following the trend of the shelf-edge. Observed dunes display a strong asymmetric profile for those occurring along the shelf-edge (Symmetry Index (SI): 2.6) and lose progressively their asymmetry towards the inner portion of the shelf (SI: 0.5), being 0.6 the minimum SI value to classify the dunes as asymmetric. The subaqueous dunes observed along the studied region are amongst the largest ever recognized on an outer shelf setting. Morphologic characters and the orientation towards SW and W directions suggest the Liguro-Provenzal-Catalan geostrophic current as the primary forcing factor in their formation. Contemporary hydrodynamic measurement at the Ebro continental shelf-edge show that near-bottom wave action is negligible in this area, whereas maximum shear stresses induced by currents are able to resuspend fine sand particles and prevent the relict transgressive deposits from being covered by mud. However, recorded nearbottom currents generate shear stresses below the critical value for transport the relict coarse sands found in the study area and form large bedforms. The comparison of successive bathymetric images and the relation wavelength/height suggest that the described very large dunes are inactive features over long periods, as observed in similar environments along several continental margins. Thus, the morphological configuration of the Columbretes outer shelf must have played a crucial role in enhancing the southward flowing bottom currents during energetic hydrodynamic events, giving them the potential to generate such bedforms.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-06
...-Way Grant of Submerged Lands on the Outer Continental Shelf to Support Renewable Energy Development... will use Form 0009 to issue a renewable energy right-of- way (ROW) grant on the Outer Continental Shelf....gov/Renewable-Energy Program/ Regulatory-Information/Index.aspx. DATES: The ROW grant form will be...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-29
... of Submerged Lands on the Outer Continental Shelf to Support Renewable Energy Development AGENCY... would be used to issue Outer Continental Shelf (OCS) renewable energy right-of-way (ROW) grants in order... renewable energy, but does not constitute a project easement. The ability of an ROW grantee to install such...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-22
... Environmental Enforcement 30 CFR Part 250 Oil and Gas and Sulphur Operations on the Outer Continental Shelf--Oil and Gas Production Safety Systems; Proposed Rule #0;#0;Federal Register / Vol. 78 , No. 163 / Thursday...] RIN 1014-AA10 Oil and Gas and Sulphur Operations on the Outer Continental Shelf--Oil and Gas...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-02
... sensitivity of the environmental and subsistence importance to the indigenous population; (4) the lack of any... Outer Continental Shelf Lands Act and 33 C.F.R 147. Accordingly, State and Local law enforcement... due to the location of the MODU KULLUK on the Outer Continental Shelf and its distance from both land...
Code of Federal Regulations, 2010 CFR
2010-07-01
... separate decommissioning bond or other financial assurance instrument must meet the requirements specified... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Do my financial assurance requirements change... EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Payments and Financial Assurance Requirements Financial...
The stratigraphy of the southern Pab Range, Pakistan
NASA Astrophysics Data System (ADS)
White, H. J.
The Cretaceous strata exposed in the southern Pab Range, southeast Baluchistan, Pakistan is investigated. It records the precollision deposition history of the Indo-Pakistani continental shelf. The strata comprise two depositional successions, namely, The Early to Late Cretaceous Sembar-Goru-Parh sequence and the Maestrichtian Mughal Kot-Pab sequence. The former began with deposition of black shales on the continental slope (Sembar Formation), succeeded by calcareous shale, marl and micstone of outer shelf origin (Goru Formation), and ended with inner shelf platform carbonates (Parh Limestone). These deep to shallow water lithofacies prograted westward over the continental shelf of the north-advancing Subcontinent. The Mughal Kot-Pab propagation contains the first significant influx of terrigenous sand reaching the western portion of the continental shelf. Deposition environments in the Mughal Kot Formation include inner shelf, prodelta, delta front and distributary channel. A thick succession of shoreface cycles comprises the Pab sandstone.
Onshore-offshore movement of jumbo squid (Dosidicus gigas) on the continental shelf
NASA Astrophysics Data System (ADS)
Stewart, Julia S.; Gilly, William F.; Field, John C.; Payne, John C.
2013-10-01
Jumbo squid (Dosidicus gigas) have greatly extended their range in the California Current System, where they forage on a variety of ecologically and economically important species that inhabit both coastal and offshore mesopelagic regions. Swimming abilities and behavior are important factors in assessing the impacts of this range expansion, particularly in regard to foraging in conjunction with onshore-offshore movement over the continental shelf. Here we describe a study of horizontal movements by jumbo squid along and across the continental shelf off Washington, USA, using acoustic tags in association with the Census of Marine Life's Pacific Ocean Shelf Tracking Program (POST) receiver arrays. We detected frequent movements along the shelf break, movement onto the shelf at night, and no evidence of movement as a cohesive school. Our results demonstrate feasibility of using acoustic tags and arrays to document horizontal movements of jumbo squid along and across the continental shelf. This is important in order to determine how those movements overlap with those of other ecologically and commercially important fish species.
Land-Sea Correlation of Holocene Records in NW Iberian Peninsula
NASA Astrophysics Data System (ADS)
Gonzalez-Alvare, R.; Costas, S.; Bernardez, P.; Frances, G.; Alejo, I.
2005-12-01
Holocene climate fluctuations in the temperate region of the Northeast Atlantic have been established by comparing marine and terrestrial proxies. This work is based on suction-cores collected in the Cies Islands lagoon (NW Spain) and vibro-cores from the adjacent continental shelf. The lower Holocene marine record (9400-7000 yr BP) consists on sandy transgressive facies overlying fluvial Pleistocene deposits. During this time the continental shelf was dominated by high energy processes linked to the progressive and fast sea level rise. The rate of sea level rise sharply decelerated at 7000 yr BP and a high productive marine environment was fully established, as revealed by planktonic foraminifera assemblages and biogeochemical markers. In the terrestrial areas, peat deposits were formed beginning around 6000 yr BP in the deeper parts of the paleo-relief that was developed above the granitic basement. The peat was deposited in a fresh-water shallow coastal lake under warm and humid conditions that are brought about by prevailing SW winds. From 4800 yr BP, a progressive rainfall decrease provoked the lowering of the lake level and a weaker fluvial influence on the adjacent shelf. The prevailing eastern winds caused significantly drier conditions between 4000 and 3200 yr BP. During this period the coastal lake dried and the peat layer was covered by aeolian deposits. At the continental shelf a strong stratification of the water column induced a fall in the productivity. The end of this period is marked by the increase of storm regimes caused by a shift to prevailing SW winds. The last 3000 years are characterized by humid and warm conditions, and the enhancement of upwelling regime and terrestrial sediment supply. In Cies Islands, a sand barrier-lagoon complex was developed as a consequence of both the sea level rise and the inundation of the lower areas in the island.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-15
...-AA00 Safety Zone; VERMILION 380A at Block 380 Outer Continental Shelf Fixed Platform in the Gulf of... safety zone around VERMILION 380A, a fixed platform, at Block 380 in the Outer Continental Shelf, approximately 90 miles south of Vermilion Bay, Louisiana. The fixed platform is on fire and the safety zone is...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-02
.... ACTION: Availability of revised North American Datum of 1927 (NAD 27) Outer Continental Shelf Official...: Notice is hereby given that effective with this publication, the following NAD 27-based Outer Continental...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atkinson, L.P.
This study of continental shelf processes affecting the oceanography of the South Atlantic Bight (SAB) is part of the interdisciplinary DOE-sponsored South Atlantic Bight Program. Our part of the program involves hydrographic and nutrient characteristics of the region. Current research efforts in the SAB Program are being focused on the inner shelf region where effects of bottom friction, local wind forcing, river and estuarine discharge, and tides, which are all small scale processes, are important. Our major accomplishment during the past year was the completion of the FLEX (Fall Experiment) field study. Since most of our data collection is computerized,more » preliminary hydrographic data analysis was done on board ship during the cruise and preliminary results are available. These results will be presented in this report. We are just beginning our standard data processing and data analysis procedures. We continued the processing and analysis of SPREX data collected during April 1985. Work has also continued on the older GABEX I and II data sets. 8 refs., 19 figs., 2 tabs.« less
Sources and Distribution of Organic Matter in Sediments of the Louisiana Continental Shelf
Both riverine and marine sources of organic matter (OM) contribute to sediment organic pools, and either source can contribute significantly to sediment accumulation, burial, and remineralization rates on river dominated continental shelf systems. For the Louisiana continental sh...
NASA Astrophysics Data System (ADS)
Bever, A. J.; Harris, C. K.; McNinch, J.
2006-12-01
Poverty Bay is a small embayment located on the eastern shore of New Zealand's North Island. The modern Waipaoa River, a small mountainous river that drains highly erodible mudstone and siltstone, discharges ~15 million tons of sediment per year to Poverty Bay. Rates of bay infilling from fluvial sediment have varied since the maximum shoreline transgression, ~7000 kya. The evolving geometry of Poverty Bay has likely impacted sediment dispersal over these timescales, and thereby influenced the stratigraphic architecture, rates of shoreline progradation, and sediment supply to the continental shelf. This modeling study investigates sediment transport within both modern and paleo, ~7000 kya, Poverty Bays. The Regional Ocean Modeling System was used to examine sediment transport within modern and ~7000 kya Poverty Bay basin geometries. The numerical model includes hydrodynamics driven by winds and buoyancy, and sediment resuspension from energetic waves and currents. Strong winds and waves from the southeast were used, along with high Waipaoa freshwater and sediment discharge, consistent with storm conditions. Besides shedding light on short term transport mechanisms, these results are being incorporated into a stratigraphic model by Wolinsky and Swenson. The paleo basin geometry narrowed at the head of the bay, causing currents to converge and promoting near- field sediment deposition. Buoyancy and wind driven across-shelf currents in the modern bay transport sediment away from the river mouth. Sediment was deposited closer to the river mouth in the paleo than the modern bay, and the modern bay exported much more sediment to the continental shelf than predicted for the middle Holocene bay. Net across-shelf fluxes decreased from a maximum at the head of the bay to nearly zero at the mouth during the paleo run. The modern run, however, had net across-shelf fluxes still half the maximum at the bay mouth. Results from short term model runs indicated that, with similar river discharges, the 7000 kya Poverty Bay shoreline should have prograded rapidly as sediment was deposited near the river mouth at the head of the bay, an area of little accommodation space. The trapping of sediment within the bay would have lead to a relatively sediment starved continental shelf. As the river mouth progressed towards the wider section of the bay, progradation should have been reduced as both proximal accommodation space and sediment export to the continental shelf increased.
Carbon Dynamics on the Louisiana Continental Shelf and Cross-Shelf Feeding of Hypoxia
Large-scale hypoxia regularly develops during the summer on the Louisiana continental shelf. Traditionally, hypoxia has been linked to the vast winter and spring nutrient inputs from the Mississippi River and its distributary, the Atchafalaya River. However, recent studies indica...
NASA Technical Reports Server (NTRS)
Goldsmith, V.; Morris, W. D.; Byrne, R. J.; Whitlock, C. H.
1974-01-01
A computerized wave climate model is developed that applies linear wave theory and shelf depth information to predict wave behavior as they pass over the continental shelf as well as the resulting wave energy distributions along the coastline. Reviewed are also the geomorphology of the Mid-Atlantic Continental Shelf, wave computations resulting from 122 wave input conditions, and a preliminary analysis of these data.
Hyperpycnal plume-derived fans in the Santa Barbara Channel, California
Warrick, Jonathan A.; Simms, Alexander R.; Ritchie, Andy; Steel, Elisabeth; Dartnell, Pete; Conrad, James E.; Finlayson, David P.
2013-01-01
Hyperpycnal gravity currents rapidly transport sediment across shore from rivers to the continental shelf and deep sea. Although these geophysical processes are important sediment dispersal mechanisms, few distinct geomorphic features on the continental shelf can be attributed to hyperpycnal flows. Here we provide evidence of large depositional features derived from hyperpycnal plumes on the continental shelf of the northern Santa Barbara Channel, California, from the combination of new sonar, lidar, and seismic reflection data. These data reveal lobate fans directly offshore of the mouths of several watersheds known to produce hyperpycnal concentrations of suspended sediment. The fans occur on an upwardly concave section of the shelf where slopes decrease from 0.04 to 0.01, and the location of these fans is consistent with wave- and auto-suspending sediment gravity current theories. Thus, we provide the first documentation that the morphology of sediment deposits on the continental shelf can be dictated by river-generated hyperpycnal flows.
Potential for Suboxic Ammonium Oxidation in Louisiana Continental Shelf Sediments
Sediments deposited onto the Louisiana continental shelf (LCS) west of the Mississippi River Delta form mobile muds varying in thickness from meters near the outfall to centimeters on the western portion of the shelf. The muds have high concentrations of iron which promote rapid...
NASA Astrophysics Data System (ADS)
Durán, Ruth; Canals, Miquel; Sanz, José Luis; Lastras, Galderic; Amblas, David; Micallef, Aaron
2014-01-01
The northern Catalan continental shelf, in the northwestern Mediterranean Sea, extends along 200 km from the Cap de Creus submarine canyon to the Llobregat Delta, in the vicinity of the city of Barcelona. In this paper we present the results of a systematic investigation of this area by means of very high-resolution multibeam bathymetry to fully assess its morphological variability. The causative factors and processes determining such variability are subsequently interpreted. The shelf is divided in three segments by two prominent submarine canyons: the northernmost Roses Shelf is separated from the intermediate La Planassa Shelf by the La Fonera Canyon, while the boundary between the La Planassa Shelf and the southernmost Barcelona Shelf is marked by the Blanes Canyon. These two canyons are deeply incised in the continental margin, with their heads located at only 0.8 and 5 km from the shore, respectively. The seafloor character reflects the influence of external controlling factors on the geomorphology and sediment dynamics of the northern continental shelf of Catalonia. These factors are the geological setting, the volume and nature of sediment input, and the type and characteristics of processes leading to sediment redistribution, such as dense shelf water cascading (DSWC) and eastern storms. The interaction of all these factors determines sediment dynamics and allows subdividing the northern Catalan continental shelf into three segments: the erosional-depositional Roses Shelf to the north, the non-depositional La Planassa Shelf in the middle, and the depositional Barcelona Shelf to the south. Erosional features off the Cap de Creus Peninsula and an along-shelf subdued channel in the outer shelf illustrate prevailing sediment dynamics in the Roses segment, which is dominated by erosional processes, local sediment accumulations and the southward bypass of sediment. The rocky character of the seafloor immediately north of the Blanes Canyon head demonstrates that neither significant sediment inputs from the Tordera River nor from the northern sources reach the southern part of the La Planassa Shelf. Palaeo-shorelines depict a number of paleodeltas with steep delta fronts on the drowned Barcelona Shelf.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-13
... Protraction Diagram, Lease Maps, and Supplemental Official Outer Continental Shelf Block Diagrams AGENCY... Supplemental Official OCS Block Diagrams (SOBDs); Correction. SUMMARY: BOEM (formerly the Bureau of Ocean... Official OCS Shelf Block Diagrams'' that contained an error. This notice corrects the address of the Web...
Sediment metabolism on the Louisiana continental shelf - Eldridge
Rates of aerobic and anaerobic sediment metabolism were measured on the Louisiana Continental Shelf during 5 cruises in 2006 and 2007. On each cruise, 3-4 stations were occupied in regions of the shelf that experience summer bottom-water hypoxia. Net DIC, O2, N2, and nutrient f...
Observed Oceanic Response over the Upper Continental Slope and Outer Shelf during Hurricane Ivan
2007-09-01
the slope and rise. In addition, they were presumed to be along-shelf and cross-shelf components of group veloci- generated by pulsations of the Loop ...hits. Fortunately, all of exchange of mass, momentum, heat , and water proper- the SEED moorings survived this powerful storm and ties across the shelf...15. SUBJECT TERMS SEED, continental shelf, Doppler, waves 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF RESPONSIBLE
NASA Astrophysics Data System (ADS)
Vang Heinesen, Martin; Mørk, Finn
2017-04-01
The first partial submissions made by the Kingdom of Denmark, in respect of the continental shelf north of the Faroe Islands (North Faroe Margin, NFM), was submitted to the Commission on the Limits of the Continental Shelf in April 2009 as the result of 7 years of preparation which also included 4 additional continental shelf regions around the Faroe Islands and Greenland, on which individual partial submissions were made subsequently. The NFM covers parts of the NW European continental margin, it continues onto the Faroe-Iceland Ridge and the extinct Ægir (spreading) Ridge and overlaps with the continental margin of Iceland and Norway in the sediment rich Ægir Basin located between the European margin to the south and south-east, and the Jan Mayen Micro-continental margin to the west and north-west. Prior to the onset of the continental shelf project of the Kingdom of Denmark, arrangements had already been made with Norway and Iceland regarding the sharing of existing data and acquisition of new seismic data in the overlapping regions. Before that, the main database in the area included a comprehensive multi-beam bathymetric data set covering large parts of the Ægir Ridge with scattered single beam bathymetric lines in the remaining regions. It also comprised a number of single- and multi-channel seismic lines and a long refraction seismic line transecting the entire eastern part of the basin, from the Norwegian shelf to the Ægir Ridge, in addition to local side scan sonar and regional potential field data. During the project, additional high quality multi-channel seismic data, extensive multi-beam bathymetric data, and a comprehensive high resolution aeromagnetic dataset were acquired, allowing detailed mapping of the morphological and geological nature of the margin, including accurate identification of the base of the continental slope and mapping of the sediment thickness and sediment continuation in the basin. This data proved to be crucial for the documentation to the CLCS of the outer limits of the continental shelf to the north of the Faroe Islands.
Quaternary seismic stratigraphy and paleoenvironments on the continental shelf of the East China Sea
NASA Astrophysics Data System (ADS)
Liu, Zhen-Xia; Berne, Serge; Saito, Yoshiki; Lericolais, G.; Marsset, T.
2000-08-01
Paleoenvironments and stratigraphy have been interpreted from 4380 km of seismic profiling collected during a geological and geophysical cruise on the continental shelf of the East China Sea (ECS) undertaken in 1996. The geophysical data are correlated with a borehole situated on the outer shelf obtained by Shanghai Marine Geology Bureau, indicating that six seismic units have been preserved since oxygen-isotope stage 6, including four regressive-transgressive cycles. Seismic units U2, U3+U4+U5, U6, and U7 are interpreted to correspond respectively to oxygen-isotope stages 1, 3, 5, and 6, implying that sediment partitioning and sequence architecture in the ECS have been controlled by glacio-eustasy and global climate changes. Alternating continental and marine strata corresponding to glaciation and interglaciation are well preserved on the outer shelf of the ECS. Most of the cold environment strata, which formed on the outer shelf during oxygen-isotope stages 2 and 4, are too thin to be recognized on SIG 600J because of resolution, but corresponding erosion surfaces exist. Seismic unit U7 is widespread over the shelf, extending to the continental edge and showing little variation in thickness, as the regression was pronounced and lasted a long time. Thus, U7 can be used as a marker layer for correlation of Quaternary strata on the shelf of the ECS. Post-glacial transgression is obvious in the ECS. Marine strata with varied thickness were developed in the shallow sea of the inner shelf, thinning toward the outer shelf. The continental shelf of the ECS has been influenced by Pacific tide-wave systems for a long time, forming tidal sand-ridge sequences, developed during transgressions, corresponding to oxygen-isotope stages 7 (or 9), 5, 3 and 1.
Origin and extent of fresh paleowaters on the Atlantic continental shelf, USA
Cohen, D.; Person, M.; Wang, P.; Gable, C.W.; Hutchinson, D.; Marksamer, A.; Dugan, Brandon; Kooi, H.; Groen, K.; Lizarralde, D.; Evans, R.L.; Day-Lewis, F. D.; Lane, J.W.
2010-01-01
While the existence of relatively fresh groundwater sequestered within permeable, porous sediments beneath the Atlantic continental shelf of North and South America has been known for some time, these waters have never been assessed as a potential resource. This fresh water was likely emplaced during Pleistocene sea-level low stands when the shelf was exposed to meteoric recharge and by elevated recharge in areas overrun by the Laurentide ice sheet at high latitudes. To test this hypothesis, we present results from a high-resolution paleohydrologic model of groundwater flow, heat and solute transport, ice sheet loading, and sea level fluctuations for the continental shelf from New Jersey to Maine over the last 2 million years. Our analysis suggests that the presence of fresh to brackish water within shallow Miocene sands more than 100 km offshore of New Jersey was facilitated by discharge of submarine springs along Baltimore and Hudson Canyons where these shallow aquifers crop out. Recharge rates four times modern levels were computed for portions of New England's continental shelf that were overrun by the Laurentide ice sheet during the last glacial maximum. We estimate the volume of emplaced Pleistocene continental shelf fresh water (less than 1 ppt) to be 1300 km3 in New England. We also present estimates of continental shelf fresh water resources for the U.S. Atlantic eastern seaboard (104 km3) and passive margins globally (3 ?? 105 km3). The simulation results support the hypothesis that offshore fresh water is a potentially valuable, albeit nonrenewable resource for coastal megacities faced with growing water shortages. ?? 2009 National Ground Water Association.
2007-09-01
transport of nutrients, larvae, harmful algal blooms, and pollutants. The import aiid export between the continental shelf and the open ocean of heat...carbon and other nutrients on both regional and global scales. Estimated annual mean export production is espe- cially high over the continental...shelves, as compared to the rest of Earth’s oceans (Falkowski et al., 1998). The export production in the coastal regions supports most of the world’s
75 FR 1076 - Outer Continental Shelf Civil Penalties
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-08
...The Outer Continental Shelf Lands Act requires the MMS to review the maximum daily civil penalty assessment for violations of regulations governing oil and gas operations in the Outer Continental Shelf at least once every 3 years. This review ensures that the maximum penalty assessment reflects any increases in the Consumer Price Index as prepared by the Bureau of Labor Statistics, U.S. Department of Labor. After conducting the required review in August 2009, the MMS determined that no adjustment is necessary at this time.
Stevens, C.H.; Stone, P.
2007-01-01
The Bird Spring Shelf in southeastern California, along with coeval turbidite basins to the west, records a complex history of late Paleozoic sedimentation, sea-level changes, and deformation along the western North American continental margin. We herein establish detailed correlations between deposits of the shelf and the flanking basins, which we then use to reconstruct the depositional history, paleogeography, and deformational history, including Early Permian emplacement of the regionally significant Last Chance allochthon. These correlations are based on fusulinid faunas, which are numerous both on the shelf and in the adjoining basins. Study of 69 fusulinid species representing all major fusulinid-bearing Pennsylvanian and Lower Permian limestone outcrops of the Bird Spring Shelf in southeastern California, including ten new species of the genera Triticites, Leptotriticites, Stewartina, Pseudochusenella, and Cuniculinella, forms the basis for our correlations. We group these species into six fusulinid zones that we correlate with fusulinid-bearing strata in east-central and southern Nevada, Kansas, and West Texas, and we propose some regional correlations not previously suggested. In addition, we utilize recent conodont data from these areas to correlate our Early Permian fusulinid zones with the standard Global Permian Stages, strengthening their chronostratigraphic value. Our detailed correlations between the fusulinid-bearing rocks of the Bird Spring Shelf and deep-water deposits to the northwest reveal relationships between the history of shelf sedimentation and evolution of basins closer to the continental margin. In Virgilian to early Asselian (early Wolfcampian) time (Fusulinid Zones 1 and 2), the Bird Spring Shelf was flanked on the west by the deep-water Keeler Basin in which calcareous turbidites derived from the shelf were deposited. In early Sakmarian (early middle Wolfcampian) time (Fusulinid Zone 3), the Keeler Basin deposits were uplifted and transported eastward on the Last Chance thrust. By middle Sakmarian (middle middle Wolfcampian) time (within Fusulinid Zone 4), emplacement of the Last Chance allochthon was complete, and subsidence caused by thrust loading had resulted in development of a new turbidite basin (Darwin Basin) along the former western part of the Bird Spring Shelf. At the same time, farther east into the craton, paralic facies began prograding westward, so that the youngest fusulinid-bearing limestones on the shelf in this area become progressively younger to the west. Eventually, in Artinskian to Kungurian (late Wolfcampian to Leonardian) time (Fusulinid Zones 5 and 6), deposition of fusulinid-bearing limestone on the shelf was restricted to a marginal belt between the prograding paralic facies to the east and the Darwin Basin to the west. Development of the Keeler Basin in Pennsylvanian to earliest Permian time was approximately coeval with collision between South America-Africa (Gondwana) and North America (Laurentia) on the Ouachita-Marathon orogenic belt. This basin developed inboard of a northwest-trending, sinistral fault zone that truncated the continental margin. Later, in the Early Permian, the Last Chance allochthon, which was part of a northeast-trending belt of deformation that extended into northeastern Nevada, was emplaced. This orogenic belt probably was driven by convergence at the continental margin to the northwest. This work adds significant detail to existing interpretations of the late Paleozoic as a time of major tectonic instability on the continental margin of southeastern California as it changed from a relatively passive margin that had characterized most of the Paleozoic to an active convergent margin that would characterize the Mesozoic. ?? 2007 The Geological Society of America. All rights reserved.
Hypsometry, volume and physiography of the Arctic Ocean and their paleoceanographic implications
NASA Astrophysics Data System (ADS)
Jakobsson, M.; Macnab, R.; Grantz, A.; Kristoffersen, Y.
2003-04-01
Recent analyses of the International Bathymetric Chart of the Arctic Ocean (IBCAO) grid model include: Hypsometry (the distribution of surface area at various depths); ocean volume distribution; and physiographic provinces [Jakobsson 2002; Jakobsson et al., in press]. The present paper summarizes the main results from these recent studies and expands on the paleoceanographic implications for the Arctic Ocean, which in this work is defined as the broad continental shelves of the Barents, Kara, Laptev, East Siberian and Chukchi Seas, the White Sea and the narrow continental shelves of the Beaufort Sea, the Arctic continental margins off the Canadian Arctic Archipelago and northern Greenland. This, the World's smallest ocean, is a virtually land-locked ocean that makes up merely 2.6 % of the area, and 1.0 % of the volume, of the entire World Ocean. The continental shelf area, from the coastline out to the shelf break, comprises as much as 52.9 % of the total area in the Arctic Ocean, which is significantly larger in comparison to the rest of the world oceans where the proportion of shelves, from the coastline out to the foot of the continental slope, only ranges between about 9.1 % and 17.7 %. In Jakobsson [2002], the seafloor area and water volume were calculated for different depths starting from the present sea level and progressing in increments of 10 m to a depth of 500 m, and in increments of 50 m from 550 m down to the deepest depth within each of the analyzed Arctic Ocean seas. Hypsometric curves expressed as simple histograms of the frequencies in different depth bins were presented, along with depth plotted against cumulative area for each of the analyzed seas. The derived hypsometric curves show that most of the Arctic Ocean shelf seas besides the Barents Sea, Beaufort Sea and the shelf off northern Greenland have a similar shape with the largest seafloor area between 0 and 50 m. The East Siberian and Laptev seas, in particular, show area distributions concentrated in this shallow depth range, and together with the Chukchi Sea they form a large flat shallow shelf province comprising as much as 22 % of the entire Arctic Ocean area, but only 1 % of the volume. Given this vast shelf area it may be speculated that the Arctic Ocean circulation is more sensitive to eustatic sea level changes compared to the other world oceans. For example, during the LGM when the sea level was ca 120 m lower than today most, if not all, of the Arctic Ocean shelf region could not play a role in the ocean circulation. Besides being the world's smallest ocean with the by far largest shelf area in proportion to its size, the Arctic Ocean is unique in terms of its physiographic setting. The Fram Strait is the only real break in the barrier of vast continental shelves enclosing the Arctic Ocean. The second largest physiographic province after the continental shelves consists of ridges, which is in contrast to the rest of the World's oceans where abyssal plains dominate. As much as 15.8 % of the area is underlain by ridges indicating the profound effect they have on ocean circulation. Jakobsson, M., Grantz, A., Kristoffersen, Y., and Macnab, R., in press, Physiographic Provinces of the Arctic Ocean, GSA Bulletin. Jakobsson, M., 2002, Hypsometry and volume of the Arctic Ocean and its constituent’s seas, Geochemistry Geophysics Geosystems, v. 3, no. 2.
NASA Astrophysics Data System (ADS)
Anderson, J. B.; Simkins, L. M.; Prothro, L. O.
2016-12-01
On formerly glaciated Antarctic continental shelves, the crystalline inner shelf is commonly dissected by linked subglacial lake and channel systems; however, signatures of meltwater are rare within subglacial and glacial-marine deposits on the middle to outer continental shelf. Recent observations of ice-marginal landforms incised by meltwater channels in the western Ross Sea indicate pulses of meltwater outbursts at marine-based grounding lines during deglaciation of the continental shelf. Here we present sedimentological evidence of meltwater outbursts and associated plumes from new and legacy cores collected on the continental shelf and slope within the Ross Sea, Amundsen Sea, and Marguerite Bay. Discrete fine-grained silt deposits are found overlying till and within proximal grounding line deposits and open-marine diatomaceous sediments. The deposits are massive to laminated, contain little to no coarser material, moderately sorted and dominated by a 10 μm grain-size mode. Grain-size measurements show no indication of winnowing; therefore, we interpret these deposits as meltwater deposits, transported by subglacial meltwater drainage systems to the grounding line and dispersed further seaward by meltwater plumes. The similarity of the deposits down-core and between shelf and slope sites within the Ross Sea, Amundsen Sea, and Marguerite Bay indicate that sorting and/or production of the fine silts occurs due to subglacial hydrodynamic processes. These distinctive meltwater deposits within the stratigraphic record provide an accessible proxy for identifying meltwater discharge from the Antarctic Ice Sheet and potentially be used to correlate cores on and off the continental shelf. Dating events on the continental shelf is notoriously difficult; therefore, deeper ocean records offer an easier means of bracketing the timing of meltwater discharge events. Longer records of ice dynamics from off the continental shelf are commonly used to reconstruct IRD records, and now can be used to reconstruct meltwater discharge histories, perhaps even extending back to warmer periods when the Antarctic Ice Sheet was a more temperate system that experienced seasonal surface melt, similar to the modern Greenland Ice Sheet.
Gardner, James V.; Hughes-Clarke, John E.; Mayer, Larry A.
1999-01-01
The greater Los Angeles area of California is home to more than 10 million people. This large population puts increased pressure on the adjacent offshore continental shelf and margin with activities such as ocean disposal for dredged spoils, explosive disposal, waste-water outfall, and commercial fishing. The increased utilization of the shelf and margin in this area has generated accelerated multi-disciplinary research efforts in all aspects of the environment of the coastal zone. Prior to 1996 there were no highly accurate base maps of the continental shelf and slope upon which the research activities could be located and monitored. In 1996, the United States Geological Survey (USGS) Pacific Seafloor Mapping Project began to address this problem by mapping the Santa Monica shelf and margin (Fig. 1) using a state-of-the-art, high-resolution multibeam sonar system (Gardner, et al., 1996; 1999). Additional seafloor mapping in 1998 provided coverage of the continental margin from south of Newport to the proximal San Pedro Basin northwest of Palos Verdes Peninsula (Gardner, et al., 1998) (Fig. 1). The mapping of the seafloor in the greater Los Angeles continental shelf and margin was completed with a 30-day mapping of the Long Beach shelf in April and May 1999, the subject of this report. The objective of Cruise C-1-99-SC was to completely map the broad continental shelf from the eastern end of the Palos Verdes Peninsula to the narrow shelf south of Newport Beach, from the break in slope at about 120-m isobath to the inner shelf at about the 10-m isobath. Mapping the Long Beach shelf was jointly funded by the U.S. Geological Survey and the County of Orange (CA) Sanitation District and was conducted under a Cooperative Agreement with the Ocean Mapping Group from the University of New Brunswick (OMG/UNB). The OMG/UNB contracted with C&C Technologies, Inc. of Lafayette, LA for use of the RV Coastal Surveyor and the latest evolution of high-resolution multibeam sonars, a dual Kongsberg Simrad EM3000D.
Benthic oxygen consumption on continental shelves off eastern Canada
NASA Astrophysics Data System (ADS)
Grant, Jonathan; Emerson, Craig W.; Hargrave, Barry T.; Shortle, Jeannette L.
1991-08-01
The consumption of phytoplankton production by the benthos is an important component of organic carbon budgets for continental shelves. Sediment texture is a major factor regulating benthic processes because fine sediment areas are sites of enhanced deposition from the water column, resulting in increased organic content, bacterial biomass and community metabolism. Although continental shelves at mid- to high latitudes consist primarily of coarse relict sediments ( PIPER, Continental Shelf Research, 11, 1013-1035), shelf regions of boreal and subarctic eastern Canada contain large areas of silt and clay sediments ( FADER, Continental Shelf Research, 11, 1123-1153). We collated estimates of benthic oxygen consumption in coarse (<20% silt-clay, <0.5% organic matter) and fine sediments (20% silt-clay, 0.5% organic matter) for northwest Atlantic continental shelves including new data for Georges Bank, the Scotian Shelf, the Grand Banks of Newfoundland and Labrador Shelf. Estimates were applied to the areal distribution of sediment type on these shelves to obtain a general relationship between sediment texture and benthic carbon consumption. Mean benthic oxygen demand was 2.7 times greater in fine sediment than in coarse sediment, when normalized to mean annual temperature. In terms of carbon equivalents, shelf regions with minimal fine sediment (Georges Bank, the Grand Banks of Newfoundland-northeast Newfoundland) consumed only 5-8% of annual primary production. Benthos of the Gulf of Maine (100% fine sediment) and the Scotian Shelf (35% fine sediment) utilized 16-19% of primary production. Although 32% of the Labrador Shelf area contained fine sediments, benthic consumption of pelagic production (8%) was apparently limited by low mean annual temperature (2°C). These results indicate that incorporation of sediment-specific oxygen uptake into shelf carbon budgets may increase estimates of benthic consumption by 50%. Furthermore, respiration and production by large macrofauna allow an even greater proportion of primary production to enter benthic pathways. Fine sediment areas (shelf basins or "depocenters") are postulated to be sites of enhanced biological activity which must be considered in the modelling of shelf carbon budgets and the role of the benthos in demersal fisheries.
Cochran, James R; Tinto, Kirsty J; Bell, Robin E
2015-05-01
Inversion of NASA Operation IceBridge airborne gravity over the Abbot Ice Shelf in West Antarctica for subice bathymetry defines an extensional terrain made up of east-west trending rift basins formed during the early stages of Antarctica/Zealandia rifting. Extension is minor, as rifting jumped north of Thurston Island early in the rifting process. The Amundsen Sea Embayment continental shelf west of the rifted terrain is underlain by a deeper, more extensive sedimentary basin also formed during rifting between Antarctica and Zealandia. A well-defined boundary zone separates the mildly extended Abbot extensional terrain from the deeper Amundsen Embayment shelf basin. The shelf basin has an extension factor, β , of 1.5-1.7 with 80-100 km of extension occurring across an area now 250 km wide. Following this extension, rifting centered north of the present shelf edge and proceeded to continental rupture. Since then, the Amundsen Embayment continental shelf appears to have been tectonically quiescent and shaped by subsidence, sedimentation, and the advance and retreat of the West Antarctic Ice Sheet. The Bellingshausen Plate was located seaward of the Amundsen Sea margin prior to incorporation into the Antarctic Plate at about 62 Ma. During the latter part of its independent existence, Bellingshausen plate motion had a clockwise rotational component relative to Antarctica producing convergence across the north-south trending Bellingshausen Gravity Anomaly structure at 94°W and compressive deformation on the continental slope between 94°W and 102°W. Farther west, the relative motion was extensional along an east-west trending zone occupied by the Marie Byrd Seamounts. Abbot Ice Shelf is underlain by E-W rift basins created at ∼90 Ma Amundsen shelf shaped by subsidence, sedimentation, and passage of the ice sheet Bellingshausen plate boundary is located near the base of continental slope and rise.
Cochran, James R; Tinto, Kirsty J; Bell, Robin E
2015-01-01
Inversion of NASA Operation IceBridge airborne gravity over the Abbot Ice Shelf in West Antarctica for subice bathymetry defines an extensional terrain made up of east-west trending rift basins formed during the early stages of Antarctica/Zealandia rifting. Extension is minor, as rifting jumped north of Thurston Island early in the rifting process. The Amundsen Sea Embayment continental shelf west of the rifted terrain is underlain by a deeper, more extensive sedimentary basin also formed during rifting between Antarctica and Zealandia. A well-defined boundary zone separates the mildly extended Abbot extensional terrain from the deeper Amundsen Embayment shelf basin. The shelf basin has an extension factor, β, of 1.5–1.7 with 80–100 km of extension occurring across an area now 250 km wide. Following this extension, rifting centered north of the present shelf edge and proceeded to continental rupture. Since then, the Amundsen Embayment continental shelf appears to have been tectonically quiescent and shaped by subsidence, sedimentation, and the advance and retreat of the West Antarctic Ice Sheet. The Bellingshausen Plate was located seaward of the Amundsen Sea margin prior to incorporation into the Antarctic Plate at about 62 Ma. During the latter part of its independent existence, Bellingshausen plate motion had a clockwise rotational component relative to Antarctica producing convergence across the north-south trending Bellingshausen Gravity Anomaly structure at 94°W and compressive deformation on the continental slope between 94°W and 102°W. Farther west, the relative motion was extensional along an east-west trending zone occupied by the Marie Byrd Seamounts. Key Points: Abbot Ice Shelf is underlain by E-W rift basins created at ∼90 Ma Amundsen shelf shaped by subsidence, sedimentation, and passage of the ice sheet Bellingshausen plate boundary is located near the base of continental slope and rise PMID:26709352
NASA Astrophysics Data System (ADS)
Schaeffer, Amandine; Roughan, Moninya; Austin, Tim; Everett, Jason D.; Griffin, David; Hollings, Ben; King, Edward; Mantovanelli, Alessandra; Milburn, Stuart; Pasquer, Benedicte; Pattiaratchi, Charitha; Robertson, Robin; Stanley, Dennis; Suthers, Iain; White, Dana
2016-08-01
Since 2008, 26 glider missions have been undertaken along the continental shelf of southeastern Australia. Typically these missions have spanned the continental shelf on the inshore edge of the East Australian Current from 29.5-33.5°S. This comprehensive dataset of over 33,600 CTD profiles from the surface to within 10 m of the bottom in water depths ranging 25-200 m provides new and unprecedented high resolution observations of the properties of the continental shelf waters adjacent to a western boundary current, straddling the region where it separates from the coast. The region is both physically and biologically significant, and is also in a hotspot of ocean warming. We present gridded mean fields for temperature, salinity and density, but also dissolved oxygen and chlorophyll-a fluorescence indicative of phytoplankton biomass. This data will be invaluable for understanding shelf stratification, circulation, biophysical and bio-geochemical interactions, as well as for the validation of high-resolution ocean models or serving as teaching material.
Schaeffer, Amandine; Roughan, Moninya; Austin, Tim; Everett, Jason D; Griffin, David; Hollings, Ben; King, Edward; Mantovanelli, Alessandra; Milburn, Stuart; Pasquer, Benedicte; Pattiaratchi, Charitha; Robertson, Robin; Stanley, Dennis; Suthers, Iain; White, Dana
2016-08-30
Since 2008, 26 glider missions have been undertaken along the continental shelf of southeastern Australia. Typically these missions have spanned the continental shelf on the inshore edge of the East Australian Current from 29.5-33.5°S. This comprehensive dataset of over 33,600 CTD profiles from the surface to within 10 m of the bottom in water depths ranging 25-200 m provides new and unprecedented high resolution observations of the properties of the continental shelf waters adjacent to a western boundary current, straddling the region where it separates from the coast. The region is both physically and biologically significant, and is also in a hotspot of ocean warming. We present gridded mean fields for temperature, salinity and density, but also dissolved oxygen and chlorophyll-a fluorescence indicative of phytoplankton biomass. This data will be invaluable for understanding shelf stratification, circulation, biophysical and bio-geochemical interactions, as well as for the validation of high-resolution ocean models or serving as teaching material.
30 CFR 256.12 - Supplemental sales.
Code of Federal Regulations, 2011 CFR
2011-07-01
... INTERIOR OFFSHORE LEASING OF SULPHUR OR OIL AND GAS IN THE OUTER CONTINENTAL SHELF Outer Continental Shelf Oil, Gas, and Sulphur Management, General § 256.12 Supplemental sales. (a) The Secretary may conduct a...
30 CFR 256.10 - Information to States.
Code of Federal Regulations, 2011 CFR
2011-07-01
... INTERIOR OFFSHORE LEASING OF SULPHUR OR OIL AND GAS IN THE OUTER CONTINENTAL SHELF Outer Continental Shelf Oil, Gas, and Sulphur Management, General § 256.10 Information to States. (a) The information covered...
Code of Federal Regulations, 2011 CFR
2011-07-01
... LEASING OF SULPHUR OR OIL AND GAS IN THE OUTER CONTINENTAL SHELF Outer Continental Shelf Oil, Gas, and... administer a leasing program for oil, gas and sulphur. The procedures under which the Secretary will exercise...
NASA Astrophysics Data System (ADS)
Santín, Andreu; Grinyó, Jordi; Ambroso, Stefano; Uriz, Maria J.; Gori, Andrea; Dominguez-Carrió, Carlos; Gili, Josep-Maria
2018-01-01
Sponge assemblages on continental shelves and slopes around the world have been known about for centuries. However, due to limitations of the traditional sampling systems, data about individual sponge species rather than assemblages have been reported. This study characterizes sponge assemblages over a wide bathymetric range ( 50-350 m depth) and covering the entire continental shelf and the upper slope of the Menorca Channel, an area soon to be declared a Marine Protected Area (MPA) as part of the Natura 2000 Network. Quantitative analysis of 85 video-transects (a total linear distance of 75 km), together with representative collections to confirm species identifications, allowed us to discriminate six major assemblages. Differences in the assemblages mainly corresponded to differences in substrate type and depth. On the inner continental shelf, a semi-sciaphilous Axinellid assemblage dominated the rocky outcrops. Maërl beds on the inner continental shelf were dominated by Haliclona (Reniera) mediterranea, whereas the horny sponge Aplysina cavernicola and several other haliclonids mostly dominated maërl beds and rocky substrates of the outer shelf. Soft sediments on the shelf break hosted a monospecific Thenea muricata assemblage, whereas rocky substrates of the shelf break were characterized by a mixture of encrusting, columnar and fan-shaped sponges. Finally, the upper slope was dominated by Hamacantha (Vomerula) falcula and the hexactinellid Tretodictyum reiswigi. Overall, sponge diversity showed its highest values above the shelf break, plummeting severely on the upper slope. Despite this diversity decrease, we found very high densities (> 70 ind./m2) of sponges over vast areas of both the shelf break and the upper slope.
Downslope flow across the Ross Sea shelf break (Antarctica)
NASA Astrophysics Data System (ADS)
Bergamasco, A.; Budillon, G.; Carniel, S.; Defendi, V.; Meloni, R.; Paschini, E.; Sclavo, M.; Spezie, G.
2003-12-01
The analysis of some high-resolution hydrological data sets acquired during the 1997, 1998, 2001 and 2003 austral summers across the Ross Sea continental shelf break are here presented. The main focus of these cruises carried out in the framework of the Italian National Antarctic Program was the investigation of the downslope flow of the dense waters originated inside the Ross Sea. Such dense waters, flow near the bottom and, reaching the continental shelf break, ventilate the deep ocean. Two Antarctic continental shelf mechanisms can originate dense and deep waters. The former mechanism involves the formation, along the Victoria Land coasts, of a dense and saline water mass, the High Salinity Shelf Water (HSSW). The HSSW formation is linked to the rejection of salt into the water column as sea ice freezes, especially during winter, in the polynya areas, where the ice is continuously pushed offshore by the strong katabatic winds. The latter one is responsible of the formation of a supercold water mass, the Ice Shelf Water (ISW). The salt supplied by the HSSW recirculated below the Ross Ice Shelf, the latent heat of melting and the heat sink provided by the Ross Ice Shelf give rise to plumes of ISW, characterized by temperatures below the sea-surface freezing point. The dense shelf waters migrate to the continental shelf-break, spill over the shelf edge and descend the continental slope as a shelf-break gravity current, subject to friction and possibly enhanced by topographic channelling. Friction, in particular, breaks the constraint of potential vorticity conservation, counteracting the geostrophic tendency for along slope flow. The density-driven downslope motion or cascading entrains ambient water, namely the lower layer of the CDW, reaches a depth where density is the same and spreads off-slope. In fact, the cascading event is inhibited by friction without entrainment. The downslope processes are important for the ocean and climate system because they play a crucial role in the formation of oceanic deep water responsible for ocean/continental shelf exchange of organic carbon, suspended material and dissolved gases around Antarctica. In this context, this work presents the analysis of the 1997, 2001 and 2003 high-resolution surveys carried out in the western Ross Sea near Cape Adare, where the HSSW flows down the continental slope. The second study area was investigated during the 1998 survey of the Italian National Programme for Antarctic Research of the CLIMA Project, in order to follow the ISW overflow path at the shelf break in the central Ross Sea. A 3D primitive equation model was also implemented as a first step in the construction of a high-resolution process study model to explore the dynamical constraints involved in the downslope motion.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-10
... Shelf Permits Issued to Shell Gulf of Mexico, Inc., and Shell Offshore, Inc. for the Discoverer... Clean Air Act Outer Continental Shelf (OCS) permit applications, one from Shell Gulf of Mexico, Inc., for operation of the Discoverer drillship in the Chukchi Sea and one from Shell Offshore, Inc...
30 CFR 280.80 - Paperwork Reduction Act statement-information collection.
Code of Federal Regulations, 2010 CFR
2010-07-01
... OFFSHORE PROSPECTING FOR MINERALS OTHER THAN OIL, GAS, AND SULPHUR ON THE OUTER CONTINENTAL SHELF... CFR part 280, Prospecting for Minerals other than Oil, Gas, and Sulphur on the Outer Continental Shelf...
Canales-Aguirre, Cristian B.; Galleguillos, Ricardo; Oyarzun, Fernanda X.; Hernández, Cristián E.
2018-01-01
Previous studies of population genetic structure in Dissostichus eleginoides have shown that oceanographic and geographic discontinuities drive in this species population differentiation. Studies have focused on the genetics of D. eleginoides in the Southern Ocean; however, there is little knowledge of their genetic variation along the South American continental shelf. In this study, we used a panel of six microsatellites to test whether D. eleginoides shows population genetic structuring in this region. We hypothesized that this species would show zero or very limited genetic structuring due to the habitat continuity along the South American shelf from Peru in the Pacific Ocean to the Falkland Islands in the Atlantic Ocean. We used Bayesian and traditional analyses to evaluate population genetic structure, and we estimated the number of putative migrants and effective population size. Consistent with our predictions, our results showed no significant genetic structuring among populations of the South American continental shelf but supported two significant and well-defined genetic clusters of D. eleginoides between regions (South American continental shelf and South Georgia clusters). Genetic connectivity between these two clusters was 11.3% of putative migrants from the South American cluster to the South Georgia Island and 0.7% in the opposite direction. Effective population size was higher in locations from the South American continental shelf as compared with the South Georgia Island. Overall, our results support that the continuity of the deep-sea habitat along the continental shelf and the biological features of the study species are plausible drivers of intraspecific population genetic structuring across the distribution of D. eleginoides on the South American continental shelf. PMID:29362690
Impact of the Extreme Warming of 2012 on Shelfbreak Frontal Structure North of Cape Hatteras
NASA Astrophysics Data System (ADS)
Gawarkiewickz, G.
2014-12-01
Continental shelf circulation north of Cape Hatteras is complex, with southward flowing Middle Atlantic Bight shelf water intersecting the Gulf Stream and subducting offshore into the Gulf Stream. In May, 2012, a cruise was conducted in order to study the shelf circulation and acoustic propagation through fish schools in the area. An important aspect of the study was to use Autonomous Underwater Vehicles to map fish schools with a sidescan sonar. High-resolution hydrographic surveys to map the continental shelf water masses and shelfbreak frontal structure were sampled to relate oceanographic conditions to the fish school distributions. The cold pool water mass over the continental shelf in May 2012 was extremely warm, with temperature anomalies of up to 5 Degrees C relative to observations from the same area in May, 1996. The normal cross-shelf temperature gradients within the shelfbreak front were not present because of the warming. As a result, the shelf density field was much more buoyant than usual, which led to an accelerated shelfbreak jet. Moored velocity measurements at the 60 m isobath recorded alongshelf flow of as much as 0.6 m/s. The anticipated fish species were not observed over the continental shelf. Some comments on the forcing leading to the large scale warming will be presented, along with a brief discussion of the impact of the warming on the marine ecosystem in the northeast U.S.
30 CFR 256.8 - Leasing maps and diagrams.
Code of Federal Regulations, 2011 CFR
2011-07-01
... INTERIOR OFFSHORE LEASING OF SULPHUR OR OIL AND GAS IN THE OUTER CONTINENTAL SHELF Outer Continental Shelf Oil, Gas, and Sulphur Management, General § 256.8 Leasing maps and diagrams. (a) Any area of the OCS...
Seals map bathymetry of the Antarctic continental shelf
NASA Astrophysics Data System (ADS)
Padman, Laurie; Costa, Daniel P.; Bolmer, S. Thompson; Goebel, Michael E.; Huckstadt, Luis A.; Jenkins, Adrian; McDonald, Birgitte I.; Shoosmith, Deborah R.
2010-11-01
We demonstrate the first use of marine mammal dive-depth data to improve maps of bathymetry in poorly sampled regions of the continental shelf. A group of 57 instrumented elephant seals made on the order of 2 × 105 dives over and near the continental shelf on the western side of the Antarctic Peninsula during five seasons, 2005-2009. Maximum dive depth exceeded 2000 m. For dives made near existing ship tracks with measured water depths H<700 m, ˜30% of dive depths were to the seabed, consistent with expected benthic foraging behavior. By identifying the deepest of multiple dives within small areas as a dive to the seabed, we have developed a map of seal-derived bathymetry. Our map fills in several regions for which trackline data are sparse, significantly improving delineation of troughs crossing the continental shelf of the southern Bellingshausen Sea.
Denitrification and Nitrogen Fixation in Alaskan Continental Shelf Sediments
Haines, John R.; Atlas, Ronald M.; Griffiths, Robert P.; Morita, Richard Y.
1981-01-01
Rates of nitrogen fixation and denitrification were measured in Alaskan continental shelf sediments. In some regions, rates of nitrogen fixation and denitrification appeared to be equal; in other areas, rates were significantly different. Potential rates of denitrification were found to be limited primarily by the available nitrate substrate. Major regional differences in rates of denitrification were not statistically significant, but significant differences were found for nitrogen fixation rates in different regions of the Alaskan continental shelf. Estimated net losses of nitrogen from Bering Sea sediments were calculated as 1.8 × 1012 g of N/yr. Experimental exposure of continental shelf sediments to petroleum hydrocarbons reduced rates of nitrogen fixation and denitrification in some cases but not others. Long-term exposure was necessary before a reduction in nitrogen fixation rates was observed; unamended rates of denitrification but not potential denitrification rates (NO3− added) were depressed after exposure to hydrocarbons. PMID:16345716
Sea ice and oceanic processes on the Ross Sea continental shelf
NASA Astrophysics Data System (ADS)
Jacobs, S. S.; Comiso, J. C.
1989-12-01
We have investigated the spatial and temporal variability of Antarctic sea ice concentrations on the Ross Sea continental shelf, in relation to oceanic and atmospheric forcing. Sea ice data were derived from Nimbus 7 scanning multichannel microwave radiometer (SMMR) brightness temperatures from 1979-1986. Ice cover over the shelf was persistently lower than above the adjacent deep ocean, averaging 86% during winter with little month-to-month or interannual variability. The large spring Ross Sea polynya on the western shelf results in a longer period of summer insolation, greater surface layer heat storage, and later ice formation in that region the following autumn. Newly identified Pennell and Ross Passage polynyas near the continental shelf break appear to be maintained in part by divergence above a submarine bank and by upwelling of warmer water near the slope front. Warmer subsurface water enters the shelf region year-round and will retard ice growth and enhance heat flux to the atmosphere when entrained in the strong winter vertical circulation. Temperatures at 125-m depth on a mooring near the Ross Ice Shelf during July 1984 averaged 0.15°C above freezing, sufficient to support a vertical heat flux above 100 W/m2. Monthly average subsurface ocean temperatures along the Ross Ice Shelf lag the air temperature cycle and begin to rise several weeks before spring ice breakout. The coarse SMMR resolution and dynamic ice shelf coastlines can compromise the use of microwave sea ice data near continental boundaries.
Source and dispersal of silt on northern Gulf of Mexico continental shelf
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, M.; Mazzullo, J.
1988-01-01
The surficial sediment on the continental shelf of the northern Gulf of Mexico is characterized by abundant silty clay which was deposited during the late Pleistocene lowstand and reworked during and after the Holocene transgression. The purposes of this study were to determine the sources of the silt fraction in this surficial sediment by quartz grain roundness and surface texture analysis, and to determine the effects of modern shelf currents upon the distribution of silt. Areal variations in quartz grain roundness and surface texture define six silt provinces on the northern Gulf of Mexico continental shelf. The Mississippi province ismore » the largest province and stretches from the Chandeleur Islands to Matagorda Bay. It is characterized by a mixture of rounded grains that were derived from the sedimentary rocks of the Gulf coastal plain and the Mid-Continent, and angular, fractured grains that were derived from glacial deposits in the northern United States. A comparison of the areal distribution of these six provinces with the late Pleistocene paleogeography of the continental shelf shows evidence for varying degrees of shore-parallel transport of silt by modern shelf currents.« less
Multidecadal warming of Antarctic waters.
Schmidtko, Sunke; Heywood, Karen J; Thompson, Andrew F; Aoki, Shigeru
2014-12-05
Decadal trends in the properties of seawater adjacent to Antarctica are poorly known, and the mechanisms responsible for such changes are uncertain. Antarctic ice sheet mass loss is largely driven by ice shelf basal melt, which is influenced by ocean-ice interactions and has been correlated with Antarctic Continental Shelf Bottom Water (ASBW) temperature. We document the spatial distribution of long-term large-scale trends in temperature, salinity, and core depth over the Antarctic continental shelf and slope. Warming at the seabed in the Bellingshausen and Amundsen seas is linked to increased heat content and to a shoaling of the mid-depth temperature maximum over the continental slope, allowing warmer, saltier water greater access to the shelf in recent years. Regions of ASBW warming are those exhibiting increased ice shelf melt. Copyright © 2014, American Association for the Advancement of Science.
Stratified coastal ocean interactions with tropical cyclones
Glenn, S. M.; Miles, T. N.; Seroka, G. N.; Xu, Y.; Forney, R. K.; Yu, F.; Roarty, H.; Schofield, O.; Kohut, J.
2016-01-01
Hurricane-intensity forecast improvements currently lag the progress achieved for hurricane tracks. Integrated ocean observations and simulations during hurricane Irene (2011) reveal that the wind-forced two-layer circulation of the stratified coastal ocean, and resultant shear-induced mixing, led to significant and rapid ahead-of-eye-centre cooling (at least 6 °C and up to 11 °C) over a wide swath of the continental shelf. Atmospheric simulations establish this cooling as the missing contribution required to reproduce Irene's accelerated intensity reduction. Historical buoys from 1985 to 2015 show that ahead-of-eye-centre cooling occurred beneath all 11 tropical cyclones that traversed the Mid-Atlantic Bight continental shelf during stratified summer conditions. A Yellow Sea buoy similarly revealed significant and rapid ahead-of-eye-centre cooling during Typhoon Muifa (2011). These findings establish that including realistic coastal baroclinic processes in forecasts of storm intensity and impacts will be increasingly critical to mid-latitude population centres as sea levels rise and tropical cyclone maximum intensities migrate poleward. PMID:26953963
A model study of sediment transport across the shelf break
NASA Astrophysics Data System (ADS)
Marchal, Olivier
2017-04-01
A variety of dynamical processes can contribute to the transport of material (e.g., particulate matter) across the shelf break - the region separating the continental shelf from the continental slope. Among these processes are (i) the reflection of internal waves on the outer shelf and upper slope, and (ii) the instability of hydrographic fronts, roughly aligned with isobaths, that are often present at the shelf break. On the one hand, internal waves reflecting on a sloping boundary can produce bottom shear stresses that are large enough to resuspend non-cohesive sediments into the water column. On the other hand, eddies shed from unstable shelf break fronts can incorporate into their core particle-rich waters from the outer shelf and upper slope, and transport these waters offshore. Here we present numerical experiments with a three-dimensional numerical model of ocean circulation and sediment transport, which illustrate the joint effect of internal waves and eddies on sediment transport across the shelf break. The model is based on the primitive equations and terrain-following coordinates. The model domain is square and idealized, comprising a flat continental shelf, a constant continental slope, and a flat abyssal basin. The model grid has O(1 km) horizontal resolution, so that (sub)mesoscale eddies observed in the vicinity of shelf breaks, such as south of New England, can be represented in detail. Internal waves are excited through the specification of a periodic variation in the across-slope component of velocity at the offshore boundary of the domain, and eddies are generated from the baroclinic instability of a shelf break jet that is initially in strict thermal wind balance. Numerical experiments are conducted that are characterized by (i) different slopes of internal wave characteristics relative to the continental slope, representing sub-critical, critical, and super-critical regimes, and (ii) different values for the dimensionless ratios that emerge from the linear stability analysis of shelf break fronts. Emphasis is placed on the physical conditions that are conducive to the formation and maintenance of bottom and intermediate nepheloid layers - the particle-rich layers that are often observed near oceanic margins in the traces of optical instruments.
Glacial morphology and depositional sequences of the Antarctic Continental Shelf
ten Brink, Uri S.; Schneider, Christopher
1995-01-01
Proposes a simple model for the unusual depositional sequences and morphology of the Antarctic continental shelf. It considers the regional stratal geometry and the reversed morphology to be principally the results of time-integrated effects of glacial erosion and sedimentation related to the location of the ice grounding line. The model offers several guidelines for stratigraphic interpretation of the Antarctic shelf and a Northern Hemisphere shelf, both of which were subject to many glacial advances and retreats. -Authors
Schaeffer, Amandine; Roughan, Moninya; Austin, Tim; Everett, Jason D.; Griffin, David; Hollings, Ben; King, Edward; Mantovanelli, Alessandra; Milburn, Stuart; Pasquer, Benedicte; Pattiaratchi, Charitha; Robertson, Robin; Stanley, Dennis; Suthers, Iain; White, Dana
2016-01-01
Since 2008, 26 glider missions have been undertaken along the continental shelf of southeastern Australia. Typically these missions have spanned the continental shelf on the inshore edge of the East Australian Current from 29.5–33.5°S. This comprehensive dataset of over 33,600 CTD profiles from the surface to within 10 m of the bottom in water depths ranging 25–200 m provides new and unprecedented high resolution observations of the properties of the continental shelf waters adjacent to a western boundary current, straddling the region where it separates from the coast. The region is both physically and biologically significant, and is also in a hotspot of ocean warming. We present gridded mean fields for temperature, salinity and density, but also dissolved oxygen and chlorophyll-a fluorescence indicative of phytoplankton biomass. This data will be invaluable for understanding shelf stratification, circulation, biophysical and bio-geochemical interactions, as well as for the validation of high-resolution ocean models or serving as teaching material. PMID:27575831
NASA Astrophysics Data System (ADS)
Cao, J.; Xia, S.; Sun, J.; Wan, K.; Xu, H.
2017-12-01
Known as a significant region to study tectonic relationship between South China block and South China Sea (SCS) block and the evolution of rifted basin in continental margin, the continental shelf of northern SCS documents the evolution from continental splitting to seafloor spreading of SCS. To investigate crustal structure of central continental shelf in northern SCS, two wide-angle onshore-offshore seismic experiments and coincident multi-channel seismic (MCS) profiles were carried out across the onshore-offshore transitional zone in northern SCS, 2010 and 2012. A total of 34 stations consisted of ocean bottom seismometers, portable and permanent land stations were deployed during the survey. The two-dimensional precise crustal structure models of central continental shelf in northern SCS was constructed from onshore to offshore, and the stretching factors along the P-wave velocity models were calculated. The models reveal that South China block is a typical continental crust with a 30-32 km Moho depth, and a localized high-velocity anomaly in middle-lower crust under land area near Hong Kong was imaged, which may reflect magma underplating caused by subduction of paleo-Pacific plate in late Mesozoic. The littoral fault zone is composed of several parallel, high-angle, normal faults that mainly trend northeast to northeast-to-east and dip to the southeast with a large displacement, and the fault is divided into several segments separated by the northwest-trending faults. The shelf zone south of LFZ was consisted of a differential thinning upper and lower continental crust, which indicate stretch thinning of passive continent margin during the Cenozoic spreading of the SCS. The results appear to further confirm that the northern margin of SCS experienced a transition from active margin to passive one during late Mesozoic and Cenozoic.
NASA Astrophysics Data System (ADS)
Harris, C. K.; Kniskern, T. A.; Arango, H.
2016-02-01
The supply of sediment from the continental shelf to deeper waters is of critical importance for building continental margin repositories of sediment, and may also factor into episodic events on the continental slope such as turbidity currents and slope failures. While numerical sediment transport models have been developed for coastal and continental shelf areas, they have not often been used to infer sediment delivery to deeper waters. A three-dimensional coupled hydrodynamic - suspended sediment transport model for the northern Gulf of Mexico has been developed and run to evaluate the types of conditions that are associated with delivery of suspended sediment to the continental slope. Accounting for sediment delivery by riverine plumes and for sediment resuspension by energetic waves and currents, the sediment transport calculations were implemented within the Regional Ocean Modeling System (ROMS). The model domain represents the northern Gulf of Mexico shelf and slope including the Mississippi birdfoot delta and the Mississippi and DeSoto Canyons. To investigate the role of storms in driving down-slope sediment fluxes, model runs that encompassed fall, 2007 through late summer, 2008 the summer and fall of 2008 were analyzed. This time period included several winter storms, and the passage of two hurricanes (Ike and Gustav) over the study area. Preliminary results indicated that sediment delivery to the continental slope was triggered by the passage of these storm events, and focused at certain locations, such as submarine canyons. Additionally, a climatological analysis indicates that storm track influences both the wind-driven currents and wave energy on the shelf, and as such plays an important role in determining which storms trigger delivery of suspended continental shelf sediment to the adjacent slope.
NASA Astrophysics Data System (ADS)
Cochran, J. R.; Tinto, K. J.; Bell, R. E.
2014-12-01
The Abbot Ice Shelf extends 450 km along the coast of West Antarctica between 103°W and 89°W and straddles the boundary between the Bellingshausen Sea continental margin, which overlies a former subduction zone, and Amundsen Sea rifted continental margin. Inversion of NASA Operation IceBridge airborne gravity data for sub-ice bathymetry shows that the western part of the ice shelf, as well as Cosgrove Ice Shelf to the south, are underlain by a series of east-west trending rift basins. The eastern boundary of the rifted terrain coincides with the eastern boundary of rifting between Antarctica and Zealandia and the rifts formed during the early stages of this rifting. Extension in these rifts is minor as rifting quickly jumped north of Thurston Island. The southern boundary of the Cosgrove Rift is aligned with the southern boundary of a sedimentary basin under the Amundsen Embayment continental shelf to the west, also formed by Antarctica-Zealandia rifting. The shelf basin has an extension factor, β, of 1.5 - 1.7 with 80 -100 km of extension occurring in an area now ~250 km wide. Following this extension early in the rifting process, rifting centered to the north of the present shelf edge and proceeded to continental rupture. Since then, the Amundsen Embayment continental shelf has been tectonically quiescent and has primarily been shaped though subsidence, sedimentation and the passage of the West Antarctic Ice Sheet back and forth across it. The former Bellingshausen Plate was located seaward of the Amundsen Sea margin prior to its incorporation into the Antarctic Plate at ~62 Ma. During the latter part of its existence, Bellingshausen plate motion had a clockwise rotational component relative to Antarctica producing convergence between the Bellingshausen and Antarctic plates east of 102°W. Seismic reflection and gravity data show that this convergence is expressed by an area of intensely deformed sediments beneath the continental slope from 102°W to 95°W and by incipient subduction beneath the Bellingshausen Gravity Anomaly on the western edge of a salient of the Antarctic plate near 94°W. West of 102°W, relative motion was extensional and occurred in a diffuse zone occupied by the Marie Byrd Seamounts that are dated at 65-56 Ma and extend 800 km along the continental margin near the base of the continental rise.
Phytoplankton Community Structure, Biomass and Diversity on the Louisiana Continental Shelf
Phytoplankton communities on the Louisiana continental shelf (LCS) respond to nutrient loading from the Mississippi and Atchafalaya River Basin (MARB). Enhanced phytoplankton biomass is a source of organic matter contributing to the development of seasonal hypoxia. Samples were ...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MARITIME SECURITY MARINE SECURITY: OUTER CONTINENTAL SHELF (OCS) FACILITIES Outer Continental Shelf (OCS) Facility Security Assessment (FSA) § 106.300 General. (a) The Facility Security Assessment (FSA) is a written document that is...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MARITIME SECURITY MARINE SECURITY: OUTER CONTINENTAL SHELF (OCS) FACILITIES Outer Continental Shelf (OCS) Facility Security Assessment (FSA) § 106.300 General. (a) The Facility Security Assessment (FSA) is a written document that is...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MARITIME SECURITY MARINE SECURITY: OUTER CONTINENTAL SHELF (OCS) FACILITIES Outer Continental Shelf (OCS) Facility Security Assessment (FSA) § 106.300 General. (a) The Facility Security Assessment (FSA) is a written document that is...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MARITIME SECURITY MARINE SECURITY: OUTER CONTINENTAL SHELF (OCS) FACILITIES Outer Continental Shelf (OCS) Facility Security Assessment (FSA) § 106.300 General. (a) The Facility Security Assessment (FSA) is a written document that is...
An instrument system for long-term sediment transport studies on the continental shelf
Butman, Bradford; Folger, David W.
1979-01-01
A bottom-mounted instrument system has been designed and built to monitor processes of bottom sediment movement on the continental shelf. The system measures bottom current speed and direction, pressure, temperature, and light transmission and photographs the bottom. The system can be deployed for periods of 2–6 months to monitor intermitent processes of sediment movement such as storms and to assess seasonal variability. Deployments of the system on the U.S. east coast continental shelf show sediment resuspension and changes in bottom microtopography due to surface waves, tidal currents, and storms.
Change in Dense Shelf Water and Adélie Land Bottom Water Precipitated by Iceberg Calving
NASA Astrophysics Data System (ADS)
Snow, K.; Rintoul, S. R.; Sloyan, B. M.; Hogg, A. McC.
2018-03-01
Antarctic Bottom Water supplies the deep limb of the global overturning circulation and ventilates the abyssal ocean. Antarctic Bottom Water has warmed, freshened, and contracted in recent decades, but the causes remain poorly understood. We use unique multiyear observations from the continental shelf and deep ocean near the Mertz Polynya to examine the sensitivity of this bottom water formation region to changes on the continental shelf, including the calving of a large iceberg. Postcalving, the seasonal cycle of Dense Shelf Water (DSW) density almost halved in amplitude and the volume of DSW available for export reduced. In the deep ocean, the density and volume of Adélie Land Bottom Water decreased sharply after calving, while oxygen concentrations remained high, indicating continued ventilation by DSW. This natural experiment illustrates how local changes in forcing over the Antarctic continental shelf can drive large and rapid changes in the abyssal ocean.
Manganese, Iron, and sulfur cycling in Louisiana continental shelf sediments
Sulfate reduction is considered the primary pathway for organic carbon remineralization on the northern Gulf of Mexico Louisiana continental shelf (LCS) where bottom waters are seasonally hypoxic, yet limited information is available on the importance of iron and manganese cyclin...
30 CFR 250.1405 - When is a case file developed?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 250.1405 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Outer Continental Shelf (OCS) Civil... Officer may administer oaths and issue subpoenas requiring witnesses to attend meetings, submit...
Code of Federal Regulations, 2010 CFR
2010-10-01
... regulations that concern fishing for fishery resources over which Russia exercises sovereign rights or fishery... entity of its government. Russian continental shelf or continental shelf of Russia means the seabed and subsoil of the submarine areas over which, consistent with international law, Russia exercises sovereign...
NASA Astrophysics Data System (ADS)
Goswami, A.; Olson, P. L.; Hinnov, L. A.; Gnanadesikan, A.
2015-09-01
We present a method for reconstructing global ocean bathymetry that combines a standard plate cooling model for the oceanic lithosphere based on the age of the oceanic crust, global oceanic sediment thicknesses, plus generalized shelf-slope-rise structures calibrated at modern active and passive continental margins. Our motivation is to develop a methodology for reconstructing ocean bathymetry in the geologic past that includes heterogeneous continental margins in addition to abyssal ocean floor. First, the plate cooling model is applied to maps of ocean crustal age to calculate depth to basement. To the depth to basement we add an isostatically adjusted, multicomponent sediment layer constrained by sediment thickness in the modern oceans and marginal seas. A three-parameter continental shelf-slope-rise structure completes the bathymetry reconstruction, extending from the ocean crust to the coastlines. Parameters of the shelf-slope-rise structures at active and passive margins are determined from modern ocean bathymetry at locations where a complete history of seafloor spreading is preserved. This includes the coastal regions of the North, South, and central Atlantic, the Southern Ocean between Australia and Antarctica, and the Pacific Ocean off the west coast of South America. The final products are global maps at 0.1° × 0.1° resolution of depth to basement, ocean bathymetry with an isostatically adjusted multicomponent sediment layer, and ocean bathymetry with reconstructed continental shelf-slope-rise structures. Our reconstructed bathymetry agrees with the measured ETOPO1 bathymetry at most passive margins, including the east coast of North America, north coast of the Arabian Sea, and northeast and southeast coasts of South America. There is disagreement at margins with anomalous continental shelf-slope-rise structures, such as around the Arctic Ocean, the Falkland Islands, and Indonesia.
Snyder, Richard A; Ederington-Hagy, Melissa; Hileman, Fredrick; Moss, Joseph A; Amick, Lauren; Carruth, Rebecca; Head, Marie; Marks, Joel; Tominack, Sarah; Jeffrey, Wade H
2014-12-15
The Florida Panhandle continental shelf environment was exposed to oil from the BP oil well failure in the Gulf of Mexico during 2010. Floating mats of oil were documented by satellite, but the distribution of dissolved components of the oil in this region was unknown. Shipek® grab samples of sediments were taken during repeated cruises between June 2010 and June 2012 to test for selected polycyclic aromatic hydrocarbons (PAHs) as indicators of this contamination. Sediments were collected as composite samples, extracted using standard techniques, and PAHs were quantified by GC/MS-SIM. PAHs in samples from the continental slope in May 2011 were highest near to the failed well site and were reduced in samples taken one year later. PAHs from continental shelf sediments during the spill (June 2010) ranged from 10 to 165 ng g(-1). Subsequent cruises yielded variable and reduced amounts of PAHs across the shelf. The data suggest that PAHs were distributed widely across the shelf, and their subsequent loss to background levels suggests these compounds were of oil spill origin. PAH half-life estimates by regression were 70-122 days for slope and 201 days for shelf stations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
... MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE LEASING OF SULPHUR OR OIL AND GAS IN THE OUTER CONTINENTAL SHELF Outer Continental Shelf Oil, Gas, and Sulphur Management, General § 256.1... Secretary of the Interior (Secretary) will exercise the authority to administer a leasing program for oil...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE LEASING OF SULPHUR OR OIL AND GAS IN THE OUTER CONTINENTAL SHELF Outer Continental Shelf Oil, Gas, and Sulphur Management, General... Secretary of the Interior to issue, on a competitive basis, leases for oil and gas, and sulphur, in...
76 FR 38555 - Reorganization of Title 30, Code of Federal Regulations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-01
..., Royalty relief. 30 CFR Part 1206 Coal, Continental shelf, Geothermal energy, Government contracts, Indians... recordkeeping requirements. 30 CFR Part 1218 Continental shelf, Electronic funds transfers, Geothermal energy... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management, Regulation and Enforcement 30 CFR...
A monthly time series of remotely sensed chlorophyll-a (Chlars) over the Louisiana continental shelf (LCS) was developed and examined for its relationship to river discharge, nitrate concentration, total phosphorus concentration, photosynthetically available radiation (PAR), wind...
NASA Astrophysics Data System (ADS)
Cochran, James R.; Tinto, Kirsty J.; Bell, Robin E.
2015-05-01
Inversion of NASA Operation IceBridge airborne gravity over the Abbot Ice Shelf in West Antarctica for subice bathymetry defines an extensional terrain made up of east-west trending rift basins formed during the early stages of Antarctica/Zealandia rifting. Extension is minor, as rifting jumped north of Thurston Island early in the rifting process. The Amundsen Sea Embayment continental shelf west of the rifted terrain is underlain by a deeper, more extensive sedimentary basin also formed during rifting between Antarctica and Zealandia. A well-defined boundary zone separates the mildly extended Abbot extensional terrain from the deeper Amundsen Embayment shelf basin. The shelf basin has an extension factor, β, of 1.5-1.7 with 80-100 km of extension occurring across an area now 250 km wide. Following this extension, rifting centered north of the present shelf edge and proceeded to continental rupture. Since then, the Amundsen Embayment continental shelf appears to have been tectonically quiescent and shaped by subsidence, sedimentation, and the advance and retreat of the West Antarctic Ice Sheet. The Bellingshausen Plate was located seaward of the Amundsen Sea margin prior to incorporation into the Antarctic Plate at about 62 Ma. During the latter part of its independent existence, Bellingshausen plate motion had a clockwise rotational component relative to Antarctica producing convergence across the north-south trending Bellingshausen Gravity Anomaly structure at 94°W and compressive deformation on the continental slope between 94°W and 102°W. Farther west, the relative motion was extensional along an east-west trending zone occupied by the Marie Byrd Seamounts. The copyright line for this article was changed on 5 JUN 2015 after original online publication.
NASA Astrophysics Data System (ADS)
Mangano, M. Cristina; Kaiser, Michel J.; Porporato, Erika M. D.; Lambert, Gwladys I.; Rinelli, Paola; Spanò, Nunziacarla
2014-03-01
Historically the majority of Mediterranean trawl fisheries occur on the continental shelf with a smaller proportion focused on the shelf slope and deep sea areas. Understanding how trawl fisheries affect the wider ecosystem is an important component of the ecosystem-based approach to fisheries management. In this context the current study examined the impact of the otter trawl fishery on the infaunal communities found on the continental shelf and upper slope off the coast of Sicily and Calabria, Italy. A total of thirty six sites were sampled across a gradient of fishing intensity and from within a large bay from which trawling has been excluded for 22 years. Fishing intensities were ascertained post-hoc from vessel monitoring system data. Seabed characteristics of the sites studied were uniform across the continental shelf and slope areas that were studied, such that the only factor that varied was fishing intensity. The density index (DI) and total number of species (S) were significantly higher in the fishery closure area compared with other continental shelf sites. In particular, bioturbating decapod fauna occurred only within the fishery closure area. Fished sites were dominated primarily by burrowing deposit feeding worms, small bivalves and scavenging biota. In contrast, the response to fishing on the upper slope was less clear. This observation was treated with caution as the power to detect fishing effects was lower for the upper slope sites as a result of possible illegal fishing that had compromised two of the four replicate sites within the closed area. While the present study was able to quantify the effect of the demersal trawl fleet on the benthic infauna of the continental shelf, the effects of trawling on the upper shelf slope remain unclear and warrant further study.
Australian developments in marine science
NASA Astrophysics Data System (ADS)
Coffin, Millard F.
2012-07-01
Australia is an island nation with about two thirds of its jurisdiction underwater. On 25 May 2012, Australia instituted the Seas and Submerged Lands (Limits of Continental Shelf) Proclamation 2012, confirming areas of seabed where Australia has exclusive rights to explore and exploit marine resources. This proclamation follows recommendations by the Commission on the Limits of the Continental Shelf, a body established under the United Nations Convention on the Law of the Sea, confirming Australia's entitlement to extended continental shelf, i.e., that beyond 200 nautical miles from the coastline, of some 2.56 million square kilometers, excluding Australian Antarctic Territory [Symonds et al., 2009] (Figure 1a).
Reactive Iron and Iron-Reducing Bacteria in Louisiana Continental Shelf Sediments
The Mississippi and Atchafalaya Rivers release sediments containing 15 x 106 t of iron onto the Louisiana continental shelf (LCS) each year. Iron oxides reaching the seafloor may be utilized as electron acceptors by iron-reducing bacteria for organic matter oxidation or become r...
30 CFR 256.12 - Supplemental sales.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Supplemental sales. 256.12 Section 256.12 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE LEASING OF SULPHUR OR OIL AND GAS IN THE OUTER CONTINENTAL SHELF Outer Continental Shelf Oil, Gas, and Sulphur Management...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Policy. 256.2 Section 256.2 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE LEASING OF SULPHUR OR OIL AND GAS IN THE OUTER CONTINENTAL SHELF Outer Continental Shelf Oil, Gas, and...
76 FR 29156 - Outer Continental Shelf Air Regulations Consistency Update for California
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-20
... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 55 [OAR-2004-0091; FRL-9304-4] Outer Continental Shelf Air Regulations Consistency Update for California AGENCY: Environmental Protection Agency (EPA... ``significant regulatory action'' subject to review by the Office of Management and Budget under Executive Order...
Microbial Communities in Sediments across the Louisiana Continental Shelf
The Louisiana continental Shelf (LCS) is a dynamic system that receives discharges from two large rivers. It has a stratified water column that is mixed by winter storms, hypoxic bottom water from spring to fall, and a muddy seafloor with highly mixed surficial sediments. Spatia...
75 FR 20859 - Outer Continental Shelf (OCS) Policy Committee; Notice and Agenda for Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-21
... DEPARTMENT OF THE INTERIOR Minerals Management Service Outer Continental Shelf (OCS) Policy Committee; Notice and Agenda for Meeting AGENCY: Minerals Management Service (MMS), Interior. ACTION: Notice.... Jeryne Bryant at Minerals Management Service, 381 Elden Street, Mail Stop 4001, Herndon, Virginia 20170...
Inorganic geochemistry of surface sediments of the Ebro shelf and slope, northwestern Mediterranean
Gardner, J.V.; Dean, W.E.; Alonso, B.
1990-01-01
Distributions of major, minor, and trace elements in surface sediment of the continental shelf and upper slope of the northeastern Spanish continental margin reflect the influences of discharge from the Ebro River and changes in eustatic sea levels. Multivariate factor analysis of sediment geochemistry was used to identify five groupings of samples (factors) on the shelf and slope. The first factor is an aluminosilicate factor that represents detrital clastic material. The second factor is a highly variable amount of excess SiO2 and probably represents a quartz residuum originating from winnowing of relict detrital sediments. A carbonate factor (Factor 3) has no positive correlation with other geochemical parameters but is associated with the sand-size fraction. The carbonate in these sediments consists of a mixture of biogenic calcite and angular to subangular detrital grains. Organic carbon is associated with the aluminosilicate factor (Factor 1) but also factors out by itself (Factor 4); this suggests that there may be two sources of organic matter, terrestrial and marine. The fifth factor comprises upper slope sediments that contain high concentrations of manganese. The most likely explanation for these high manganese concentrations is precipitation of Mn oxyhydroxides at the interface between Mn-rich, oxygen-deficient, intermediate waters and oxygenated surface waters. During eustatic low sea levels of the glacial Pleistocene, the Ebro Delta built across the outer continental shelf and deposited sediment with fairly high contents of organic carbon and continental components. The period of marine transgression from eustatic low (glacial) to eustatic high (interglacial) sea levels was characterized by erosion of the outer shelf delta and surficial shelf sediments and the transport of sediment across the slope within numerous canyons. Once eustatic high sea level was reached, delta progradation resumed on the inner shelf. Today, coarse-grained sediment (silt and sand) is transported to the continental shelf by Ebro River and is distributed along the inner shelf by currents generated by dominant northeasterly winds. Clay-size material is deposited on the mid- and outer-shelf. However, erosion and delta progradation during the last glacial period, and fine-grained Holocene sedimentation, have probably produced a distribution of sediment on a diachronous surface. ?? 1990.
Coastal ocean circulation during Hurricane Sandy
NASA Astrophysics Data System (ADS)
Miles, Travis; Seroka, Greg; Glenn, Scott
2017-09-01
Hurricane Sandy (2012) was the second costliest tropical cyclone to impact the United States and resulted in numerous lives lost due to its high winds and catastrophic storm surges. Despite its impacts little research has been performed on the circulation on the continental shelf as Sandy made landfall. In this study, integrated ocean observing assets and regional ocean modeling were used to investigate the coastal ocean response to Sandy's large wind field. Sandy's unique cross-shelf storm track, large size, and slow speed resulted in along-shelf wind stress over the coastal ocean for nearly 48 h before the eye made landfall in southern New Jersey. Over the first inertial period (˜18 h), this along-shelf wind stress drove onshore flow in the surface of the stratified continental shelf and initiated a two-layer downwelling circulation. During the remaining storm forcing period a bottom Ekman layer developed and the bottom Cold Pool was rapidly advected offshore ˜70 km. This offshore advection removed the bottom Cold Pool from the majority of the shallow continental shelf and limited ahead-of-eye-center sea surface temperature (SST) cooling, which has been observed in previous storms on the MAB such as Hurricane Irene (2011). This cross-shelf advective process has not been observed previously on continental shelves during tropical cyclones and highlights the need for combined ocean observing systems and regional modeling in order to further understand the range of coastal ocean responses to tropical cyclones.
Mixing in seasonally stratified shelf seas: a shifting paradigm.
Rippeth, Tom P
2005-12-15
Although continental shelf seas make up a relatively small fraction (ca 7%) of the world ocean's surface, they are thought to contribute significantly (20-50% of the total) to the open-ocean carbon dioxide storage through processes collectively known as the shelf sea pump. The global significance of these processes is determined by the vertical mixing, which drives the net CO(2) drawdown (which can occur only in stratified water). In this paper, we focus on identifying the processes that are responsible for mixing across the thermocline in seasonally stratified shelf seas. We present evidence that shear instability and internal wave breaking are largely responsible for thermocline mixing, a clear development from the first-order paradigm for the water column structure in continental shelf seas. The levels of dissipation observed are quantitatively consistent with the observed dissipation rates of the internal tide and near-inertial oscillations. It is perhaps because these processes make such a small contribution to the total energy dissipated in shelf seas that they are not well represented in current state-of-the-art numerical models of continental shelf seas. The results thus present a clear challenge to oceanographic models.
A PROBABILISTIC SURVEY OF FISH TISSUE CONTAMINATION FROM THE CONTINENTAL SHELF OF THE US WEST COAST
A probabilistic survey of environmental condition of the continental shelf of the US West Coast was conducted in 2003 by the US EPA National Coastal Assessment (NCA), with collaboration by the NOAA National Marine Fisheries Service. Metals and organic contaminants were analyzed ...
75 FR 24966 - Notice on Outer Continental Shelf Oil and Gas Lease Sales
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-06
... DEPARTMENT OF THE INTERIOR Minerals Management Service Notice on Outer Continental Shelf Oil and Gas Lease Sales AGENCY: Minerals Management Service, Interior. ACTION: List of Restricted Joint Bidders. SUMMARY: Pursuant to the authority vested in the Director of the Minerals Management Service by...
Effects of energy-related activities on the Atlantic Continental Shelf
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manowitz, B
1975-01-01
Sixteen papers were presented and are announced separately. Coastal waters, continental shelf geology and aquatic ecosystems are studied for modelling basic data for assessment of possible environmental impacts from offshore energy development. Sediment transport and wave phenomena are modelled for understanding water pollution transport and diffusion. (PCS)
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-25
... Continental Shelf (OCS) Renewable Energy Program Leasing for Marine Hydrokinetic Technology Testing Offshore... found online at: http://www.boem.gov/Renewable-Energy-Program/State-Activities/Florida.aspx . [[Page.... FOR FURTHER INFORMATION CONTACT: Michelle Morin, BOEM Office of Renewable Energy Programs, 381 Elden...
30 CFR 285.101 - What is the purpose of this part?
Code of Federal Regulations, 2010 CFR
2010-07-01
... RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF General Provisions...) grants for renewable energy production on the Outer Continental Shelf (OCS) and RUEs for the alternate... obligations when you undertake activities authorized in this part; and (c) Ensure that renewable energy...
76 FR 13205 - Notice on Outer Continental Shelf Oil and Gas Lease Sales
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-10
... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management, Regulation and Enforcement Notice on Outer Continental Shelf Oil and Gas Lease Sales AGENCY: Bureau of Ocean Energy Management, Regulation... the name of an oil company listed under Group VIII in that notice. FOR FURTHER INFORMATION CONTACT...
30 CFR 256.8 - Leasing maps and diagrams.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Leasing maps and diagrams. 256.8 Section 256.8 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE LEASING OF SULPHUR OR OIL AND GAS IN THE OUTER CONTINENTAL SHELF Outer Continental Shelf Oil, Gas, and Sulphur Management...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Policy. 256.2 Section 256.2 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE LEASING OF SULPHUR OR OIL AND GAS IN THE OUTER CONTINENTAL SHELF Outer Continental Shelf Oil, Gas, and Sulphur Management, General § 256.2 Policy...
30 CFR 256.10 - Information to States.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Information to States. 256.10 Section 256.10 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE LEASING OF SULPHUR OR OIL AND GAS IN THE OUTER CONTINENTAL SHELF Outer Continental Shelf Oil, Gas, and Sulphur Management...
75 FR 51968 - Outer Continental Shelf Air Regulations Consistency Update for Massachusetts
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-24
... comments to: Ida McDonnell, Air Permits, Toxics and Indoor Air Unit, Office of Ecosystem Protection, U.S... INFORMATION CONTACT: Ida E. McDonnell, Air Permits, Toxics and Indoor Air Unit, U.S. Environmental Protection... Continental Shelf Air Regulations Consistency Update for Massachusetts AGENCY: Environmental Protection Agency...
We report sediment and bottom water respiration rates from 10 cruises from 2003-2007 on the Louisiana Continental Shelf (LSC) where summer hypoxia regularly occurs. Cruises were conducted during spring (5 cruises), summer (3 cruises) and fall (2 cruises). Cruise average sediment ...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-05
... all requirements of NEPA, the Coastal Zone Management Act, Outer Continental Shelf Lands Act, and... consistent with each affected state's federally approved Coastal Zone Management program. Finally, the MMS...-circulation modeling, ecological effects of oil and gas activities, and hurricane impacts on coastal...
Notices of Intent (NOIs) submitted to EPA for coverage under the NPDES general permit for discharges from oil and gas exploration facilities on the outer continental shelf in the Chukchi Sea off Alaska.
77 FR 19321 - Geological and Geophysical Exploration on the Atlantic Outer Continental Shelf (OCS)
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-30
... by BOEM: (1) Oil and gas exploration and development; (2) renewable energy; and (3) marine minerals... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management Geological and Geophysical Exploration on the Atlantic Outer Continental Shelf (OCS) AGENCY: Bureau of Ocean Energy Management (BOEM...
76 FR 7518 - Outer Continental Shelf Air Regulations Consistency Update for Alaska
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-10
... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 55 [EPA-R10-OAR-2011-0045; FRL-9265-3] Outer Continental Shelf Air Regulations Consistency Update for Alaska AGENCY: Environmental Protection Agency (``EPA... Greaves, Federal and Delegated Air Programs Unit, U.S. Environmental Protection Agency, Region 10, 1200...
Hypoxia occurs during summer on the Louisiana Continental Shelf. We investigated whether resuspension of sediment organic matter and the reduced end products of anaerobic microbial metabolism contributes to the onset and maintenance of hypoxia. The potential oxygen demand due to...
30 CFR 250.1401 - Index table.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Index table. 250.1401 Section 250.1401 Mineral... OPERATIONS IN THE OUTER CONTINENTAL SHELF Outer Continental Shelf (OCS) Civil Penalties § 250.1401 Index table. The following table is an index of the sections in this subpart: § 250.1401Table Definitions...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-27
... Activities; Submission to OMB for Review and Approval; Comment Request; Air Pollution Regulations for Outer... electronic docket, go to www.regulations.gov . Title: Air Pollution Regulations for Outer Continental Shelf... Act gives EPA responsibility for regulating air pollution from outer continental shelf (OCS) sources...
We estimated surface salinity flux and solar penetration from satellite data, and performed model simulations to examine the impact of including the satellite estimates on temperature, salinity, and dissolved oxygen distributions on the Louisiana continental shelf (LCS) near the ...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-05
... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management, Regulation and Enforcement Intent To Prepare a Supplemental Environmental Impact Statement: Outer Continental Shelf, Alaska OCS Region, Chukchi Sea Planning Area, Oil and Gas Lease Sale 193 AGENCY: Bureau of Ocean Energy Management, Regulation...
Physical and biogeochemical processes determining the distribution and fate of nutrients delivered by the Mississippi and Atchafalaya rivers to the inner (<50 m depth) Louisiana continental shelf (LCS) were examined using a three-dimensional hydrodynamic model of the LCS and obse...
Rosenberger, Kurt J.; Noble, Marlene A.; Norris, Benjamin
2014-01-01
An array of seven moorings housing current meters and oceanographic sensors was deployed for 6 months at 5 sites on the Continental Shelf and slope off Newport Beach, California, from July 2011 to January 2012. Full water-column profiles of currents were acquired at all five sites, and a profile of water-column temperature was also acquired at two of the five sites for the duration of the deployment. In conjunction with this deployment, the Orange County Sanitation District deployed four bottom platforms with current meters on the San Pedro Shelf, and these meters provided water-column profiles of currents. The data from this program will provide the basis for an investigation of the interaction between the deep water flow over the slope and the internal tide on the Continental Shelf.
Cheriton, Olivia M.; McPhee-Shaw, Erika E.; Storlazzi, Curt D.; Rosenberger, Kurt J.; Shaw, William J.; Raanan, Ben Y.
2014-01-01
Several sequential upwelling events were observed in fall 2012, using measurements from the outer half of the continental shelf in Monterey Bay, during which the infiltration of dense water onto the shelf created a secondary, near-bottom pycnocline. This deep pycnocline existed in concert with the near-surface pycnocline and enabled the propagation of near-bottom, cold, semidiurnal internal tidal bores, as well as energetic, high-frequency, nonlinear internal waves of elevation (IWOE). The IWOE occurred within 20 m of the bottom, had amplitudes of 8–24 m, periods of 6–45 min, and depth-integrated energy fluxes up to 200 W m−1. Iribarren numbers (<0.03) indicate that these IWOE were nonbreaking in this region of the shelf. These observations further demonstrate how regional upwelling dynamics and the resulting bulk, cross-margin hydrography is a first-order control on the ability of internal waves, at tidal and higher frequencies, to propagate through continental shelf waters.
A Laboratory Model of a Cooled Continental Shelf
1993-06-01
26 Abstract A laboratory model of wintertime cooling over a continental shelf has a water surface cooled by air in an annular rotating...singular point where Froude number u/(g’hl)1/2 equaled a given value and flowed out along the bottom. In this formula, u is velocity of the water onto...support cross-shelf geostrophic currents. To accomplish this, an annular geometry was used. A cylindrical tank was fitted with a shallow but wide
NASA Astrophysics Data System (ADS)
Humphreys, Matthew; Moore, Mark; Achterberg, Eric; Chowdhury, Mohammed; Griffiths, Alex; Hartman, Susan; Hopkins, Joanne; Hull, Tom; Kivimäe, Caroline; Sivyer, Dave; Smilenova, Angelina; Wihsgott, Juliane; Woodward, Malcolm
2017-04-01
Continental shelf seas support 15-20% of global primary productivity despite covering only about 5% of the Earth's ocean surface area. As a result, they may have a significant role in oceanic uptake and storage of carbon dioxide (CO2) from the atmosphere, through the 'continental shelf pump' mechanism. The northwest European continental shelf, in particular the Celtic Sea (50°N 8°W), was the target of extensive biogeochemical sampling from March 2014 to September 2015, as part of the UK Shelf Sea Biogeochemistry research programme (UK-SSB). Here, we use the UK-SSB carbonate chemistry and macronutrient measurements to investigate the biogeochemical seasonality in the temperate, seasonally-stratifying Celtic Sea. During the spring-summer, near-surface biological activity removed dissolved inorganic carbon and nutrients, some of which were then exported into the deeper layer. We calculated vertical inventories of these variables throughout 1.5 seasonal cycles and attempted to correct these for air-sea CO2 exchange, advection and denitrification, thus isolating the combined effect of net community production and remineralisation on the inorganic macronutrient inventories, and revealing fluctuating deviations from Redfield stoichiometry. Here, we discuss the capacity of these stoichiometric inconsistencies to sustain the Celtic Sea nutrient supply, and thus examine whether an effective continental shelf pump for CO2 could operate in this region.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-07
... for all Mobile Offshore Drilling Units and Floating Outer Continental Shelf Facilities (as defined in... Commander. Vessels requiring Coast Guard inspection include Mobile Offshore Drilling Units (MODUs), Floating... engage directly in oil and gas exploration or production in the offshore waters of the Eighth Coast Guard...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-09
... Outer Continental Shelf Minor Source/Title V Minor Permit Modification Issued to Shell Offshore, Inc. for the Kulluk Conical Drilling Unit AGENCY: United States Environmental Protection Agency (EPA... decision granting Shell Offshore Inc.'s (``Shell'') request for minor modifications of Clean Air Act Outer...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-06
...] Commercial Wind Leasing and Site Assessment Activities on the Atlantic Outer Continental Shelf Offshore... governments, offshore wind energy developers, and the public in the Department of the Interior's (DOI) ``Smart from the Start'' wind energy initiative offshore Massachusetts. The purpose of the ``Smart from the...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-14
...-0005; OMB Number 1014-NEW] Information Collection Activities: Operations in the Outer Continental Shelf for Minerals Other Than Oil, Gas, and Sulphur; Submitted for Office of Management and Budget (OMB... (ICR) for approval of the paperwork requirements in the regulations under Operations in the Outer...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-28
... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management, Regulation and Enforcement [Docket ID No. BOEM-2010-0069] BOEMRE Information Collection Activities: 1010-0081, Operations in the Outer Continental Shelf for Minerals Other Than Oil, Gas, and Sulphur, Submitted for Office of Management and Budget...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-01
... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management, Regulation and Enforcement 30 CFR Part 250 [Docket ID: BOEM-2010-0076] Oil and Gas and Sulphur Operations in the Outer Continental Shelf--Safety and Environmental Management Systems; Public Workshop AGENCY: Bureau of Ocean Energy Management...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-22
.... BSEE-2011-0005; OMB Control Number 1014-NEW] Information Collection Activities: Operations in the Outer Continental Shelf for Minerals Other than Oil, Gas, and Sulphur; Submitted for Office of Management and Budget... Office of Management and Budget (OMB) for review and approval. The information collection request (ICR...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-12
... (BOEMRE), Interior. ACTION: Notice of Availability (NOA) of a Final Supplemental Environmental Impact... sale's incremental contribution to the cumulative impacts on environmental and socioeconomic resources... Mexico (GOM), Outer Continental Shelf (OCS), Western Planning Area (WPA), Oil and Gas Lease Sale for the...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-30
...; MMAA104000] Research Lease on the Outer Continental Shelf (OCS) Offshore Virginia, Request for Competitive... Unsolicited Request for an OCS Research Lease; Request for Competitive Interest (RFCI); and Request for Public... for wind energy research activities; (2) solicit indications of interest in a renewable energy lease...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-05
... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management [MMAA104000] Outer Continental Shelf...: Bureau of Ocean Energy Management (BOEM), Interior. ACTION: Notice of Intent; Notice of Scoping Meetings... 70123-2394, telephone (504) 736-3233. For information on the National Marine Fisheries Service (NMFS...
The structure of the wind-induced exchange between Indian River Bay, Delaware and the adjacent continental shelf is examined based on current measurements made at the Indian River Inlet which represents the only conduit of exchange between the bay and the coastal ocean. Local ...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-27
... Outer Continental Shelf Air Regulations to the Delaware Department of Natural Resources and.... SUMMARY: On July 21, 2010, EPA sent the Delaware Department of Natural Resources and Environmental Control... of Natural Resources and Environmental Control, 89 Kings Highway, P.O. Box 1401, Dover, Delaware. FOR...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-18
... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management [MMAA104000] North American Datum of 1983 (NAD 83) Outer Continental Shelf (OCS) Provisional Official Protraction Diagram (OPDs) AGENCY... OPDs. SUMMARY: Notice is hereby given that effective with this publication two NAD 83-based OCS...
33 CFR 106.415 - Amendment and audit.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Amendment and audit. 106.415 Section 106.415 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MARITIME SECURITY MARINE SECURITY: OUTER CONTINENTAL SHELF (OCS) FACILITIES Outer Continental Shelf (OCS) Facility Security Plan (FSP) § 106.415 Amendment and...
We conducted a multi-year study of the Louisiana continental shelf (LCS) to better understand the linkages between water column metabolism and the formation of hypoxia (dissolved oxygen <2 mg L-1) in the region. Water column community respiration rates (WR) were measured on 10 cr...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-17
... No. BOEM-2010-0063] Commercial Leasing for Wind Power on the Outer Continental Shelf (OCS) Offshore..., Regulation and Enforcement (BOEMRE), Interior. ACTION: Request for Interest (RFI) in Commercial Wind Energy... (BOEMRE) is reopening the comment period on the RFI in Commercial Wind Energy Leasing Offshore...
Gong, Zheng; Chen, Tianrun; Ratilal, Purnima; Makris, Nicholas C
2013-11-01
An analytical model derived from normal mode theory for the accumulated effects of range-dependent multiple forward scattering is applied to estimate the temporal coherence of the acoustic field forward propagated through a continental-shelf waveguide containing random three-dimensional internal waves. The modeled coherence time scale of narrow band low-frequency acoustic field fluctuations after propagating through a continental-shelf waveguide is shown to decay with a power-law of range to the -1/2 beyond roughly 1 km, decrease with increasing internal wave energy, to be consistent with measured acoustic coherence time scales. The model should provide a useful prediction of the acoustic coherence time scale as a function of internal wave energy in continental-shelf environments. The acoustic coherence time scale is an important parameter in remote sensing applications because it determines (i) the time window within which standard coherent processing such as matched filtering may be conducted, and (ii) the number of statistically independent fluctuations in a given measurement period that determines the variance reduction possible by stationary averaging.
NASA Astrophysics Data System (ADS)
Fewings, M. R.; Washburn, L.; Ohlmann, C.; Blanchette, C.; Caselle, J.; Gotschalk, C.
2008-12-01
We use seven-year time series of wind stress, water velocity, and temperature in 15-18 m water depth to describe the circulation and water temperature over the inner continental shelves of the Channel Islands and California mainland in the Santa Barbara Basin. This area is strongly influenced by the California Current upwelling system. In turn, the water circulation in the Santa Barbara Basin influences the local marine ecosystem by affecting the water temperature and the supply of nutrients and larval fish and invertebrates. Larvae and nutrients traveling from the coast to the open ocean and back again must somehow pass through the inner shelf. The water circulation over the inner continental shelf of the Northern Channel Islands has not been described. Due to the shallowness of the water, an inner shelf has different physical dynamics than either the surfzone or the middle and outer continental shelf. We discuss the relative importance of upwelling- favorable along-shelf winds and of cross-shelf winds as forcing mechanisms for coastal upwelling circulations over the inner shelf; test whether the cross-shelf wind stress and surface gravity waves are important for cross-shelf circulation in the Santa Barbara Basin; and describe the subtidal patterns of water temperature, stratification, and velocity around the Channel Islands and their relation to observed larval settlement patterns. Cross-shelf circulation and the movement of water masses into and out of the Basin have implications for settlement and recruitment of many coastal species, including the economically important kelp rockfish, kelp bass, and sea urchin. Understanding the circulation of the Santa Barbara Basin and its inner shelves is a precursor to determining the source locations of the planktonic larvae. That information on source locations is essential for the design, siting, and assessment of existing and future marine protected areas in California and elsewhere.
2013-10-02
and budgets on the inner margin of a river-dominated continental shelf, J. Geophys. Res. Oceans , 118, 4822–4838, doi:10.1002/jgrc.20362. 1...13/10.1002/jgrc.20362 4822 JOURNAL OF GEOPHYSICAL RESEARCH: OCEANS , VOL. 118, 4822–4838, doi:10.1002/jgrc.20362, 2013 Report Documentation Page Form...shelf, and current velocities obtained from a three-dimensional (3-D) hydro- dynamic model (the Navy Coastal Ocean Model). The budget terms were used to
The effects of trawling, dredging and ocean dumping on the eastern Canadian continental shelf seabed
NASA Astrophysics Data System (ADS)
Messieh, S. N.; Rowell, T. W.; Peer, D. L.; Cranford, P. J.
1991-08-01
This paper presents an overview of current knowledge on the effects of trawling, dredging and ocean dumping on the eastern Canadian continental shelf seabed. The impact of trawling and dredging for fish and shellfish on marine habitats has recently attracted international attention among fisheries and environmental scientists. In Atlantic Canada, trawling and dredging are the principal methods of harvesting groundfish and scallops and ocean clams, respectively. It is estimated that fish trawlers and scallop dredges have swept tracks, cris-crossing the Canadian continental shelf, approximately 4.3 million km in length in 1985. In the past few years several studies were carried out by scientists from Canada, the United States and Europe to assess the impacts of trawling and dredging but results were inconclusive. Some studies showed physical damage as well as biological effects, whereas others indicated that the adverse effects were not considered to be serious. Fishermen are not the only potential users of the resources of the continental shelf. There is an increasing demand for good-quality sand and gravel aggregate and the ocean seabed is being seen as a possible source. The eastern Canadian continental shelf also exhibits hydrocarbon potential and operational and accidental discharges are an environmental concern. Increased marine transportation and expansion of the fishing fleet have resulted in a greater need for harbour dredging. Dredging and dredge spoil disposal were controlled by the Ocean Dumping Control Act and now the Canadian Environmental Protection Act which places restrictions on the composition of material that can be disposed of in the sea. Nevertheless some harbours contain contaminant concentrations exceeding the maximum allowable limits. It is concluded that the impacts of human activities on the continental shelf seabed environment are inevitable and the long-term effects, while difficult to determine, must be assessed. The sub-lethal effects of increased suspended sediment loads on benthic organisms and potential changes to benthic community structure are major concerns and should be the focus of further research.
NASA Astrophysics Data System (ADS)
Lefèvre, Nathalie; da Silva Dias, Francisco Jose; de Torres, Audálio Rebelo; Noriega, Carlos; Araujo, Moacyr; de Castro, Antonio Carlos Leal; Rocha, Carlos; Jiang, Shan; Ibánhez, J. Severino P.
2017-06-01
To reduce uncertainty regarding the contribution of continental shelf areas in low latitude regions to the air-sea CO2 exchange, more data are required to understand the carbon turnover in these regions and cover gaps in coverage. For the first time, inorganic carbon and alkalinity were measured along a cross-shelf transect off the coast of Maranhão (North Brazil) in 9 cruises spawning from April 2013 to September 2014. On the last 4 transects, dissolved organic matter and nutrients were also measured. The highest inorganic and organic carbon concentrations are observed close to land. As a result of low productivity and significant remineralization, heterotrophy dominates along the transect throughout the year. Although the temporal variability is significantly reduced at the offshore station with carbon concentrations decreasing seaward, the fugacity of CO2 (fCO2) at this station remains significantly higher, especially during the wet season, than the open ocean values measured routinely by a merchant ship further west. Overall, the continental shelf is a weak source of CO2 to the atmosphere throughout the year with an annual mean flux of 1.81±0.84 mmol m-2 d-1. The highest magnitudes of fCO2 are observed during the wet season when the winds are the weakest. As a result, the CO2 flux does not show a clear seasonal pattern. Further offshore, fCO2 is significantly lower than on the continental shelf. However, the oceanic CO2 flux, with an annual mean of 2.32±1.09 mmol m-2 d-1, is not statistically different from the CO2 flux at the continental shelf because the wind is stronger in the open ocean.
High Resolution Quaternary Seismic Stratigraphy of the New York Bight Continental Shelf
Schwab, William C.; Denny, J.F.; Foster, D.S.; Lotto, L.L.; Allison, M.A.; Uchupi, E.; Swift, B.A.; Danforth, W.W.; Thieler, E.R.; Butman, Bradford
2003-01-01
A principal focus for the U.S. Geological Survey (USGS) Coastal and Marine Geology Program (marine.usgs.gov) is regional reconnaissance mapping of inner-continental shelf areas, with initial emphasis on heavily used areas of the sea floor near major population centers. The objectives are to develop a detailed regional synthesis of the sea-floor geology in order to provide information for a wide range of management decisions and to form a basis for further investigations of marine geological processes. In 1995, the USGS, in cooperation with the U.S. Army Corps of Engineers (USACOE), New York District, began to generate reconnaissance maps of the continental shelf seaward of the New York - New Jersey metropolitan area. This mapping encompassed the New York Bight inner-continental shelf, one of the most heavily trafficked and exploited coastal regions in the United States. Contiguous areas of the Hudson Shelf Valley, the largest physiographic feature on this segment of the continental shelf, also were mapped as part of a USGS study of contaminated sediments (Buchholtz ten Brink and others, 1994; 1996). The goal of the reconnaissance mapping was to provide a regional synthesis of the sea-floor geology in the New York Bight area, including: (a) a description of sea-floor morphology; (b) a map of sea-floor sedimentary lithotypes; (c) the geometry and structure of the Cretaceous strata and Quaternary deposits; and (d) the geologic history of the region. Pursuing the course of this mapping effort, we obtained sidescan-sonar images of 100 % of the sea floor in the study area. Initial interpretations of these sidescan data were presented by Schwab and others, (1997a, 1997b, 2000a). High-resolution seismic-reflection profiles collected along each sidescan-sonar line used multiple acoustic sources (e.g., watergun, CHIRP, Geopulse). Multibeam swath-bathymetry data also were obtained for a portion of the study area (Butman and others, 1998;). In this report, we present a series of structural and sediment isopach maps and interpretations of the Quaternary evolution of the inner-continental shelf off the New York - New Jersey metropolitan area based on subbottom, sidescan-sonar, and multibeam-bathymetric data.
Hutchinson, Deborah R.; Childs, Jonathan R.; Hammar-Klose, Erika; Dadisman, Shawn; Edgar, N. Terrence; Barth, Ginger A.
2004-01-01
Under the provisions of Articles 76 and 77 of the United Nations Convention on the Law of the Sea (UNCLOS), coastal States have sovereign rights over the continental shelf territory beyond 200-nautical mile (nm) from the baseline from which the territorial sea is measured if certain conditions are met regarding the geologic and physiographic character of the legal continental shelf as defined in those articles. These claims to an extended continental shelf must be supported by relevant bathymetric, geophysical and geological data according to guidelines established by the Commission on the Limits of the Continental Shelf (CLCS, 1999). In anticipation of the United States becoming party to UNCLOS, Congress in 2001 directed the Joint Hydrographic Center/Center for Coastal and Ocean Mapping at the University of New Hampshire to conduct a study to evaluate data relevant to establishing the outer limit of the juridical continental shelf beyond 200 nm and to recommend what additional data might be needed to substantiate such an outer limit (Mayer and others, 2002). The resulting report produced an impressive and sophisticated GIS database of data sources. Because of the short time allowed to complete the report, all seismic reflection data were classified together; the authors therefore recommended that USGS perform additional analysis on seismic and related data holdings. The results of this additional analysis are the substance of this report, including the status of geologic framework, sediment isopach research, and resource potential in the eight regions1 identified by Mayer and others (2002) where analysis of seismic data might be crucial for establishing an outer limit . Seismic reflection and refraction data are essential in determining sediment thickness, one of the criteria used in establishing the outer limits of the juridical continental shelf. Accordingly, the initial task has been to inventory public-domain seismic data sources, primarily those regionally extensive data held within the Department of the Interior (DOI). The numerous seismic reflection and refraction surveys collected prior to 1970 by academic and governmental institutions are generally not included in this compilation, except where they provide unique data in a region. These data sources were omitted from this report because they were deemed to be of insufficient quality (poorly navigated or low resolution) to meet the CLCS standards for a submission, or they were redundant with higher-quality, more modern data. Hence, this report attempts to identify those data sets of highest utility for establishing the outer limits of the juridical continental shelf. If there was any ambiguity or uncertainty about the relevance of a data set to a continental shelf submission, either by its quality, location, or other parameter, it was included in this compilation. This report does not summarize other geophysical data (such as marine magnetics or gravity) that might be relevant to understanding crustal provenance and geological continuity. Detailed metadata tables and maps are included to facilitate the location and utilization of these sources when a comprehensive assessment (?desktop study?) is undertaken.
Hernández-Ávila, Iván
2014-01-01
The diversity of deep-water corals in the Caribbean Sea was studied using records from oceanographic expeditions performed by the R/V Pillsbury. Sampled stations were sorted according to broad depth ranges and ecoregions and were analyzed in terms of species accumulation curves, variance in the species composition and contributions to alpha, beta and gamma diversity. According to the analysis of species accumulation curves using the Chao2 estimator, more diversity occurs on the continental slope (200–2000 m depth) than on the upper continental shelf (60–200 m depth). In addition to the effect of depth sampling, differences in species composition related to depth ranges were detected. However, the differences between ecoregions are dependent on depth ranges, there were fewer differences among ecoregions on the continental slope than on the upper continental shelf. Indicator species for distinctness of ecoregions were, in general, Alcyonaria and Antipatharia for the upper continental shelf, but also the scleractinians Madracis myriabilis and Cladocora debilis. In the continental slope, the alcyonarian Placogorgia and the scleractinians Stephanocyathus and Fungiacyathus were important for the distinction of ecoregions. Beta diversity was the most important component of gamma diversity in the Caribbean Basin. The contribution of ecoregions to alpha, beta and gamma diversity differed with depth range. On the upper continental shelf, the Southern Caribbean ecoregion contributed substantially to all components of diversity. In contrast, the northern ecoregions contributed substantially to the diversity of the Continental Slope. Strategies for the conservation of deep-water coral diversity in the Caribbean Basin must consider the variation between ecoregions and depth ranges. PMID:24671156
Sea ice and oceanic processes on the Ross Sea continental shelf
NASA Technical Reports Server (NTRS)
Jacobs, S. S.; Comiso, J. C.
1989-01-01
The spatial and temporal variability of Antarctic sea ice concentrations on the Ross Sea continental shelf have been investigated in relation to oceanic and atmospheric forcing. Sea ice data were derived from Nimbus 7 scanning multichannel microwave radiometer (SMMR) brightness temperatures from 1979-1986. Ice cover over the shelf was persistently lower than above the adjacent deep ocean, averaging 86 percent during winter with little month-to-month of interannual variability. The large spring Ross Sea polynya on the western shelf results in a longer period of summer insolation, greater surface layer heat storage, and later ice formation in that region the following autumn.
Structure and development of the southern Moroccan continental shelf
Dillon, William P.
1974-01-01
The structure of the continental shelf off southern Morocco was studied by means of 2,100 km of seismic reflection profiles, magnetic and bathymetric surveys, and dredge samples. The research area lies off four geologic divisions adjacent to the coast: the Atlas Mountains; the Souss Trough; the Anti-Atlas Mountains; and the Aaiun Basin. The continental shelf, along with the western Atlas Mountains, the western Souss Trough, and the entire Aaiun Basin, has subsided along a normal fault-flexure system. This system runs along the shore at the Anti-Atlas Mountains, and cuts off this cratonic block from the shelf subsidence. The shelf is narrow and characterized by out-building off the Anti-Atlas range, whereas it is broader and characterized by upbuilding to the north and south. Deposition was essentially continuous at least from Early Cretaceous through Eocene time. Published work suggests that the last cycle of sedimentation began during Permian rifting. After Eocene time, most sediments carried to the shelf must have bypassed it and gone to construct the slope and rise or to the deep sea. Tertiary orogenies caused extensive folding of Mesozoic and early Tertiary deposits off the Atlas Mountains. ?? 1974.
Pathways of warm water to the Northeast Greenland outlet glaciers
NASA Astrophysics Data System (ADS)
Schaffer, Janin; Timmermann, Ralph; Kanzow, Torsten; Arndt, Jan Erik; Mayer, Christoph; Schauer, Ursula
2015-04-01
The ocean plays an important role in modulating the mass balance of the Greenland Ice Sheet by delivering heat to the marine-terminating outlet glaciers surrounding the Greenland coast. The warming and accumulation of Atlantic Water in the subpolar North Atlantic has been suggested to be a potential driver of the glaciers' retreat over the last decades. The shelf regions thus play a critical role for the transport of Atlantic Water towards the glaciers, but also for the transfer of freshwater towards the deep ocean. A key region for the mass balance of the Greenland Ice Sheet is the Northeast Greenland Ice Stream. This large ice stream drains the second-largest basin of the Greenland Ice Sheet and feeds three outlet glaciers. The largest one is Nioghalvfjerdsfjorden (79°N-Glacier) featuring an 80 km long floating ice tongue. Both the ocean circulation on the continental shelf off Northeast Greenland and the circulation in the cavity below the ice tongue are weakly constrained so far. In order to study the relevant processes of glacier-ocean interaction we combine observations and model work. Here we focus on historic and recent hydrographic observations and on the complex bathymetry in the Northeast Greenland shelf region, which is thought to steer the flux of warm Atlantic water onto the continental shelf and into the sub-ice cavity beneath the 79°N-Glacier. We present a new global topography data set, RTopo-2, which includes the most recent surveys on the Northeast Greenland continental shelf and provides a detailed bathymetry for all around Greenland. In addition, RTopo-2 contains ice and bedrock surface topographies for Greenland and Antarctica. Based on the updated ocean bathymetry and a variety of hydrographic observations we show the water mass distribution on the continental shelf off Northeast Greenland. These maps enable us to discuss possible supply pathways of warm modified Atlantic waters on the continental shelf and thus potential ways of heat transport towards the base of the 79°N-Glacier.
U.S. Eastern Continental Shelf Carbon Cycling (USECoS): Modeling, Data Assimilation, and Analysis
NASA Technical Reports Server (NTRS)
Mannino, Antonio
2008-01-01
Although the oceans play a major role in the uptake of fossil fuel CO2 from the atmosphere, there is much debate about the contribution from continental shelves, since many key shelf fluxes are not yet well quantified: the exchange of carbon across the land-ocean and shelf-slope interfaces, air-sea exchange of CO2, burial, and biological processes including productivity. Our goal is to quantify these carbon fluxes along the eastern U.S. coast using models quantitatively verified by comparison to observations, and to establish a framework for predicting how these fluxes may be modified as a result of climate and land use change. Our research questions build on those addressed with previous NASA funding for the USECoS (U.S. Eastern Continental Shelf Carbon Cycling) project. We have developed a coupled biogeochemical ocean circulation model configured for this study region and have extensively evaluated this model with both in situ and remotely-sensed data. Results indicate that to further reduce uncertainties in the shelf component of the global carbon cycle, future efforts must be directed towards 1) increasing the resolution of the physical model via nesting and 2) making refinements to the biogeochemical model and quantitatively evaluating these via the assimilation of biogeochemical data (in situ and remotely-sensed). These model improvements are essential for better understanding and reducing estimates of uncertainties in current and future carbon transformations and cycling in continental shelf systems. Our approach and science questions are particularly germane to the carbon cycle science goals of the NASA Earth Science Research Program as well as the U.S. Climate Change Research Program and the North American Carbon Program. Our interdisciplinary research team consists of scientists who have expertise in the physics and biogeochemistry of the U.S. eastern continental shelf, remote-sensing data analysis and data assimilative numerical models.
NASA Astrophysics Data System (ADS)
Peters, Jared; Benetti, Sara; Dunlop, Paul; Cofaigh, Colm Ó.
2014-05-01
Recently interpreted marine geophysical data from the western Irish shelf has provided the first direct evidence that the last British-Irish Ice Sheet (BIIS) extended westwards onto the Irish continental shelf as a grounded ice mass composed of several lobes with marine-terminating margins. Marine terminating ice margins are known to be sensitive to external forcing mechanisms and currently there is concern regarding the future stability of marine based ice sheets, such as the West Antarctic Ice Sheet, in a warming world. Given its position, the glaciated western Irish continental shelf is a prime location to investigate the processes of how marine-based ice sheets responded to past climatic and oceanic events, which may in turn help us better predict the future trajectory of the marine sectors of modern Ice Sheets. However, despite the potential importance of the former Irish ice margin to our understanding of ice sheet behaviour, the timing and nature of its advance and retreat is currently poorly understood. This study aims to describe the depositional history of the last BIIS on the continental shelf west of Ireland and age-constrain the rate of retreat of two ice lobes that extended from Galway Bay and Clew Bay. This is being accomplished through a multifaceted analysis of at least 29 sediment cores gathered across the continental shelf offshore of counties Galway and Mayo, Ireland. This poster shows results from initial sedimentological descriptions of cores from the mid to outer shelf, which support previous geomorphic interpretations of BIIS history. Preliminary palaeoenvironmental results from ongoing micropaleontological analyses are also discussed and provide new data that verifies sedimentary interpretations on ice proximity. Finally, results from several radiocarbon dates are discussed, which limit these deposits to the last glacial maximum and constrain the timings of ice advance and retreat on the continental shelf west of Ireland.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-05
...] Commercial Wind Leasing and Site Assessment Activities on the Atlantic Outer Continental Shelf (OCS) Offshore... Assessment (EA) for Commercial Wind Leasing and Site Assessment Activities on the OCS Offshore North Carolina... INFORMATION: Background: On December 13, 2012, BOEM published the Notice in the Federal Register (77 FR 74218...
Elephant teeth from the atlantic continental shelf
Whitmore, F.C.; Emery, K.O.; Cooke, H.B.S.; Swift, D.J.P.
1967-01-01
Teeth of mastodons and mastodons have been recovered by fishermen from at least 40 sites on the continental shelf as deep as 120 meters. Also present are submerged shorelines, peat deposits, lagoonal shells, and relict sands. Evidently elephants and other large mammals ranged this region during the glacial stage of low sea level of the last 25.000 years.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-23
...-AA00 Safety Zone; KULLUK, Outer Continental Shelf Mobile Offshore Drilling Unit (MODU), Beaufort Sea... on location in order to drill exploratory wells at various prospects located in the Beaufort Sea... in order to drill exploratory wells in several prospects located in the Beaufort Sea during the 2012...
In June of 2003 a partnership between EPA, NOAA, and the western coastal states conducted a joint survey of ecological condition of aquatic resources along the U.S. western continental shelf (30-120 m), using multiple indicators of ecological condition. The study is an element o...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-12
... on location in order to drill exploratory wells at various prospects located in the Chukchi and Beaufort Sea Outer Continental Shelf, Alaska, during the 2010 drilling season. The purpose of the temporary... allisions, oil spills, and releases of natural gas, and thereby protect the safety of life, property, and...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-23
... 211111, Crude Petroleum and Natural Gas Extraction and 213111, Drilling Oil and Gas Wells. For these... identify measures necessary to improve the safety of oil and gas exploration and development on the Outer Continental Shelf in light of the Deepwater Horizon event on April 20, 2010, and resulting oil spill. To...
30 CFR 250.1497 - When will BOEMRE monitor my financial solvency?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false When will BOEMRE monitor my financial solvency? 250.1497 Section 250.1497 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Outer Continental Shelf Civil Penaltie...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-09
... will use responses to this RFI to enable BOEMRE to gauge specific interest in commercial development of... BOEMRE Maryland Renewable Energy Task Force. A detailed description of the RFI area is found later in... Energy and Alternate Uses of Existing Facilities on the Outer Continental Shelf (REAU) rule. If...
The report describes the process of developing and conducting two series of workshops on 'Onshore Impact of Outer Continental Shelf Oil and Gas Development'. The purpose of this report is to evaluate the workshops from the standpoint of their objectives, content, teaching methods...
We conducted a multi-year study of the Louisiana continental shelf (LCS) to better understand the linkages between water column net metabolism and the formation of hypoxia (dissolved oxygen <2 ml O2 L-1) in the region. Rates of water column community respiration (R) and primary p...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-10
... Commercial Leasing for Wind Power on the Outer Continental Shelf (OCS) Offshore Maine; Request for Interest... Request for a Commercial OCS Wind Lease, Request for Interest, and Request for Public Comment SUMMARY: The... (Statoil NA) to acquire an OCS wind lease; (2) solicit public input regarding the proposal, its potential...
76 FR 20367 - Commercial Leasing for Wind Power on the Outer Continental Shelf (OCS) Off Delaware...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-12
... No. BOEM-2011-0008] Commercial Leasing for Wind Power on the Outer Continental Shelf (OCS) Off... determination that no competitive interest exists in acquiring a commercial wind lease in the area offshore... a Request for Interest (RFI) in the Federal Register on April 26, 2010 (75 FR 21653). Bluewater Wind...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-26
... No. BOEM-2010-0075] Commercial Leasing for Wind Power on the Outer Continental Shelf (OCS) Off... commercial wind development on the OCS off Delaware and requests submission of indications of competitive... received two nominations of proposed lease areas: One from Bluewater Wind Delaware LLC (Bluewater) and...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-05
...] Commercial Leasing for Wind Power on the Outer Continental Shelf (OCS) Offshore North Carolina--Call for... Commercial Leasing for Wind Power Offshore North Carolina (Call), published on December 13, 2012 (77 FR 7204). DATES: BOEM must receive your nomination describing your interest in obtaining a commercial wind lease...
NASA Astrophysics Data System (ADS)
Caburlotto, A.; de Santis, L.; Lucchi, R. G.; Giorgetti, G.; Damiani, D.; Macri', P.; Tolotti, R.; Presti, M.; Armand, L.; Harris, P.
2004-12-01
The George Vth Land represents the ending of one of the largest subglacial basin (Wilkes Basin) of the East Antarctic Ice Sheet (EAIS). Furthermore, its coastal areas are zone of significant production of High Salinity Shelf Water (HSSW). Piston and gravity cores and high resolution echo-sounding (3.5 kHz) and Chirp profiles collected in the frame of the joint Australian and Italian WEGA (WilkEs Basin GlAcial History) project provide new insights into the Quaternary history of the EAIS and the HSSW across this margin: from the sediment record filling and draping valleys and banks along the continental shelf, to the continuous sedimentary section of the mound-channel system on the continental rise. The discovery of a current-lain sediment drift (Mertz Drift, MD) provides clues to understanding the age of the last glacial erosive events, as well as to infer flow-pathways of bottom-water masses changes. The MD shows disrupted, fluted reflectors due to glacial advance during the LGM (Last Glacial Maximum) in shallow water, while undisturbed sediment drift deposited at greater water depth, indicates that during the LGM the ice shelf was floating over the deep sector of the basin. The main sedimentary environment characterising the modern conditions of the continental rise is dominated by the turbiditic processes with a minor contribution of contour currents action. Nevertheless, some areas (WEGA Channel) are currently characterised by transport and settling of sediment through HSSW, originating in the shelf area. This particular environment likely persisted since pre-LGM times. It could indicate a continuous supply of sedimentary material from HSSW during the most recent both glacial and interglacial cycles. This would be consistent with the results obtained in the continental shelf suggesting that the Ice Sheet was not grounding over some parts of the continental shelf. Furthermore, the comparison of the studied area with other Antarctic margins indicate that, contrary to what happens on the Antarctic Peninsula margin, the relation between the Quaternary sedimentation and the glacial - interglacial cycles are less evident in the lithofacies observed on the continental rise area. This characteristic suggests a different glacial dynamic along the Wilkes Land continental margin that is less sensitive to the small climatic changes, with respect to the western (Antarctic Peninsula) margin.
Eyles, N.; Daniels, J.; Osterman, L.E.; Januszczak, N.
2001-01-01
Ocean Drilling Program Leg 178 (February-April 1998) drilled two sites (Sites 1097 and 1103) on the outer Antarctic Peninsula Pacific continental shelf. Recovered strata are no older than late Miocene or early Pliocene (<4.6 Ma). Recovery at shallow depths in loosely consolidated and iceberg-turbated bouldery sediment was poor but improved with increasing depth and consolidation to allow description of lithofacies and biofacies and interpretation of depositional environment. Site 1097 lies on the outer shelf within Marguerite Trough which is a major outlet for ice expanding seaward from the Antarctic Peninsula and reached a maximum depth drilled of 436.6 m below the sea floor (mbsf). Seismic stratigraphic data show flat-lying upper strata resting on strata that dip gently seaward. Uppermost strata, to a depth of 150 mbsf, were poorly recovered, but data suggest they consist of diamictites containing reworked and abraded marine microfauna. This interval is interpreted as having been deposited largely as till produced by subglacial cannibalization of marine sediments (deformation till) recording ice sheet expansion across the shelf. Underlying gently dipping strata show massive, stratified and graded diamictite facies with common bioturbation and slump stuctures that are interbedded with laminated and massive mudstones with dropstones. The succession contains a well-preserved in situ marine microfauna typical of open marine and proglacial marine environments. The lower gently dipping succession at Site 1097 is interpreted as a complex of sediment gravity flows formed of poorly sorted glacial debris. Site 1103 was drilled in that part of the continental margin that shows uppermost flat-lying continental shelf topsets overlying steeper dipping slope foresets seaward of a structural mid-shelf high. Drilling reached a depth of 363 mbsf with good recovery in steeply dipping continental slope foreset strata. Foreset strata are dominated by massive and chaotically stratified diamictites interbedded with massive and graded sandstones and mudstones. The sedimentary record and seismic stratigraphy is consistent with deposition on a continental slope from debris flows and turbidity currents released from a glacial source. Data from Sites 1097 and 1103 suggest the importance of aggradation of the Antarctic Peninsula continental shelf by tilt deposition and progradation of the slope by mass flow. This may provide a model for the interpretation of Palaeozoic and Proterozoic glacial successions that accumulated on glacially influenced continental margins.
NASA Astrophysics Data System (ADS)
Cowie, G.; Mowbray, S.; Kurian, S.; Sarkar, A.; White, C.; Anderson, A.; Vergnaud, B.; Johnstone, G.; Brear, S.; Woulds, C.; Naqvi, S. W.; Kitazato, H.
2014-02-01
Surface sediments from sites across the Indian margin of the Arabian Sea were analysed for their carbon and nitrogen compositions (elemental and stable isotopic), grain size distributions and biochemical indices of organic matter (OM) source and/or degradation state. Site locations ranged from the estuaries of the Mandovi and Zuari rivers to depths of ~ 2000 m on the continental slope, thus spanning nearshore muds and sands on the shelf and both the semi-permanent oxygen minimum zone (OMZ) on the upper slope (~ 200-1300 m) and the seasonal hypoxic zone that impinges on the shelf. Source indices showed mixed marine and terrigenous OM within the estuaries, and overwhelming predominance (80%+) of marine OM on the shelf and slope. Thus, riverine OM is heavily diluted by autochthonous marine OM and/or is efficiently remineralised within or immediately offshore of the estuaries. Any terrigenous OM that is exported appears to be retained in nearshore muds; lignin phenols indicate that the small terrigenous OM content of slope sediments is of different origin, potentially from rivers to the north. Organic C contents of surface shelf and slope sediments varied from < 0.5 wt % in relict shelf sands to over 7 wt % at slope sites within the OMZ, decreasing to ≤ 1 wt % at 2000 m. Major variability (~ 5 wt %) was found at slope sites within the OMZ of similar depth and near-identical bottom-water oxygen concentration. A strong relationship between organic C and sediment grain size was seen for sediments within the OMZ, but lower C loadings were found for sites on the shelf and below the OMZ. Diagenetic indices confirmed that lower C content below the OMZ is associated with greater extent of OM degradation, but that C-poor shelf sediments are not consistently more degraded than those within the OMZ. Together, the results indicate that OM enrichment on the upper slope can be explained by physical controls (winnowing and/or dilution) on the shelf and progressive OM degradation with increasing oxygen exposure below the OMZ. Reduced oxygen exposure may contribute to OM enrichment at some sites within the OMZ, but hydrodynamic processes are the overriding control on sediment OM distribution.
Developments in Coastal Ocean Modeling
NASA Astrophysics Data System (ADS)
Allen, J. S.
2001-12-01
Capabilities in modeling continental shelf flow fields have improved markedly in the last several years. Progress is being made toward the long term scientific goal of utilizing numerical circulation models to interpolate, or extrapolate, necessarily limited field measurements to provide additional full-field information describing the behavior of, and providing dynamical rationalizations for, complex observed coastal flow. The improvement in modeling capabilities has been due to several factors including an increase in computer power and, importantly, an increase in experience of modelers in formulating relevant numerical experiments and in analyzing model results. We demonstrate present modeling capabilities and limitations by discussion of results from recent studies of shelf circulation off Oregon and northern California (joint work with Newberger, Gan, Oke, Pullen, and Wijesekera). Strong interactions between wind-forced coastal currents and continental shelf topography characterize the flow regimes in these cases. Favorable comparisons of model and measured alongshore currents and other variables provide confidence in the model-produced fields. The dependence of the mesoscale circulation, including upwelling and downwelling fronts and flow instabilities, on the submodel used to parameterize the effects of small scale turbulence, is discussed. Analyses of model results to provide explanations for the observed, but previously unexplained, alongshore variability in the intensity of coastal upwelling, which typically results in colder surface water south of capes, and the observed development in some locations of northward currents near the coast in response to the relaxation of southward winds, are presented.
NASA Astrophysics Data System (ADS)
Qu, Lixin; Lin, Xiaopei; Hetland, Robert D.; Guo, Jingsong
2018-01-01
The primary goal of this study is to investigate the asymmetric structure of continental shelf wave in a semienclosed double-shelf basin, such as the Yellow Sea. Supported by in situ observations and realistic numerical simulations, it is found that in the Yellow Sea, the shelf wave response to the synoptic wind forcing does not match the mathematically symmetric solution of classic double-shelf wave theory, but rather exhibits a westward shift. To study the formation mechanism of this asymmetric structure, an idealized model was used and two sets of experiments were conducted. The results confirm that the asymmetric structure is due to the existence of a topographic waveguide connecting both shelves. For a semienclosed basin, such as the Yellow Sea, a connection at the end of the basin eliminates the potential vorticity barrier between the two shelves and hence plays a role as a connecting waveguide for shelf waves. This waveguide enables the shelf wave to propagate from one shelf to the other shelf and produces the asymmetric response in sea level and upwind flow evolutions.
Morphology and stratal geometry of the Antarctic continental shelf: Insights from models
Cooper, Alan K.; Barker, Peter F.; Brancolini, Giuliano
1997-01-01
Reconstruction of past ice-sheet fluctuations from the stratigraphy of glaciated continental shelves requires understanding of the relationships among the stratal geometry, glacial and marine sedimentary processes, and ice dynamics. We investigate the formation of the morphology and the broad stratal geometry of topsets on the Antarctic continental shelf with numerical models. Our models assume that the stratal geometry and morphology are principally the results of time-integrated effects of glacial erosion and sedimentation related to the location of the seaward edge of the grounded ice. The location of the grounding line varies with time almost randomly across the shelf. With these simple assumptions, the models can successfully mimic salient features of the morphology and the stratal geometry. The models suggest that the current shelf has gradually evolved to its present geometry by many glacial advances and retreats of the grounding line to different locations across the shelf. The locations of the grounding line do not appear to be linearly correlated with either fluctuations in the 5 l s O record (which presumably represents changes in the global ice volume) or with the global sea-level curve, suggesting that either a more complex relationship exists or local effects dominate. The models suggest that erosion of preglacial sediments is confined to the inner shelf, and erosion decreases and deposition increases toward the shelf edge. Some of the deposited glacial sediments must be derived from continental erosion. The sediments probably undergo extensive transport and reworking obliterating much of the evidence for their original depositional environment. The flexural rigidity and the tectonic subsidence of the underlying lithosphere modify the bathymetry of the shelf, but probably have little effect on the stratal geometry. Our models provide several guidelines for the interpretation of unconformities, the nature of preserved topset deposits, and the significance of progradation versus aggradation of shelf sediments.
Lozano-Cobo, Horacio; Prado-Rosas, María Del Carmen Gómez Del; Sánchez-Velasco, Laura; Gómez-Gutiérrez, Jaime
2017-03-30
Chaetognaths are abundant carnivores with broad distributions that are intermediate hosts of trophically transmitted parasites. Monthly variations in chaetognath and parasite species distributions, abundance, prevalence, and intensity related to seasonal environmental changes were recorded in 2004 and 2005 in Laguna Nichupté, a coral reef, and the adjoining continental shelf of Quintana Roo, Mexico. Of 12 chaetognath species plus Sagitta spp., only 5 (Ferosagitta hispida, Flaccisagitta enflata, Sagitta spp., Serratosagitta serratodentata, and Pterosagitta draco) were parasitized. These species were parasitized with 33 types of flatworms and unidentified cysts (likely protozoan ciliates), having an overall mean prevalence of 6%. Digenean metacercaria larvae numerically dominated the parasite assemblages. Cluster analysis defined 2 chaetognath species assemblages. One included 7 species inside Laguna Nichupté, where F. hispida was numerically dominant (98.9%); the other contained 13 chaetognath species in the continental shelf-coral reef region, where F. enflata was abundant (53%). Canonical correspondence analysis showed that Laguna Nichupté had highly variable and hostile conditions (relatively low salinity and high temperature) for chaetognath species except for F. hispida. The higher density of F. hispida promoted greater parasite diversity (23 types), dominated by Brachyphallus sp. metacercariae. F. enflata prevailed in the continental shelf-coral reef area, which had stable high salinity and relatively low temperature. Monilicaecum and unidentified digenean 'type g' infected 5 chaetognath species on the continental shelf. Distinct primary hosts (mollusks and copepods) and contrasting environmental conditions (salinity, dissolved oxygen concentration, and temperature) between Laguna Nichupté and the continental shelf promoted distinct chaetognath species assemblages, resulting in distinct parasite diversity and prevalence patterns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pomeroy, L.R.
There are three distinct but not mutually exclusive areas of research in this contract, studies of intrusions of the west wall of the Gulf Stream onto the outer continental shelf, studies of the flux of materials across nearshore density fronts, and advances in understanding of the planktonic food web of the continental shelf. Studies of frontal events on the outer and inner continental shelf involve distinctive physical and chemical regimes and have proven to require distinctive biological approaches. The studies of the food web run through our work on both of the frontal regimes, but certain aspects have become subjectsmore » in their own right. We have developed a simulation model of the flux of energy through the continental shelf food web which we believe to be more realistic than previous ones of its type. We have examined several of the many roles of dissolved organic compounds in sea water which originate either from release by phytoplankton, digestive processes or metabolites of zooplankton, or extracellular digestion of microorganisms. Methods have been developed under this contract to measure both the chelating capacity of naturally occurring organic materials and the copper concentration in the water. It has been possible to characterize the effects, both toxic and stimulatory, of copper on photosynthesis of naturally occurring phytoplankton populations. It is possible to characterize in considerable detail the course of biological events associated with meanders of the Gulf Stream. We are now in a position to explain the limits to biological productivity of the outer continental shelf of the southeastern US and the reasons why that biological production moves through the food web in the characteristic way that it does.« less
California State Waters Map Series: offshore of Tomales Point, California
Johnson, Samuel Y.; Dartnell, Peter; Golden, Nadine E.; Hartwell, Stephen R.; Greene, H. Gary; Erdey, Mercedes D.; Cochrane, Guy R.; Watt, Janet Tilden; Kvitek, Rikk G.; Manson, Michael W.; Endris, Charles A.; Dieter, Bryan E.; Krigsman, Lisa M.; Sliter, Ray W.; Lowe, Erik N.; Chinn, John L.; Johnson, Samuel Y.; Cochran, Susan A.
2015-01-01
Potential marine benthic habitats in the Offshore of Tomales Point map area range from unconsolidated continental-shelf sediment, to rocky continental-shelf substrate, to unconsolidated estuary sediments. Rocky-shelf outcrops and rubble are considered to be promising potential habitats for rockfish and lingcod, both of which are recreationally and commercially important species. Dynamic bedforms, such as the sand waves at the mouth of Tomales Bay, are considered potential foraging habitat for juvenile lingcod and possibly migratory fishes, as well as for forage fish such as Pacific sand lance.
Uncovering the glacial history of the Irish continental shelf (Invited)
NASA Astrophysics Data System (ADS)
Dunlop, P.; Benetti, S.; OCofaigh, C.
2013-12-01
In 1999 the Irish Government initiated a €32 million survey of its territorial waters known as the Irish National Seabed Survey (INSS). The INSS is amongst the largest marine mapping programmes ever undertaken anywhere in the world and provides high-resolution multibeam, backscatter and seismic data of the seabed around Ireland. These data have been used to provide the first clear evidence for extensive glaciation of the continental shelf west and northwest of Ireland. Streamlined drumlins on the mid to outer shelf record former offshore-directed ice flow towards the shelf edge and show that the ice sheet was grounded in a zone of confluence where ice flowing onto the shelf from northwest Ireland merged with ice flowing across the Malin Shelf from southwest Scotland. The major glacial features on the shelf are well developed nested arcuate moraine systems that mark the position of the ice sheet margin and confirm that the former British Irish Ice Sheet was grounded as far as the shelf edge around 100 km offshore of west Donegal at the last glacial maximum. Distal to the moraines, on the outermost shelf, prominent zones of iceberg plough marks give way to the Barra/Donegal fan and a well developed system of gullies and canyons which incise the continental slope. Since 2008 several scientific cruises have retrieved cores from the shelf and slope to help build a more detailed understanding of glacial events in this region. This presentation will provide an overview of the glacial history of the Irish shelf and will discuss ongoing research programmes that are building on the initial research findings to produce a better understanding of the nature and timing of ice sheet events in this region.
Continental shelf landscapes of the southeastern United States since the last interglacial
NASA Astrophysics Data System (ADS)
Harris, M. Scott; Sautter, Leslie Reynolds; Johnson, Kacey L.; Luciano, Katherine E.; Sedberry, George R.; Wright, Eric E.; Siuda, Amy N. S.
2013-12-01
The wide, sediment-starved continental shelf and modern coastal areas of the southeastern United States retain well-preserved but scattered remnants of a submerged paleolandscape. This paper presents a conceptual model of stratigraphic deposition and landscape formation since the last interglacial on the continental shelf of South Carolina, with portions of North Carolina, Georgia, and Florida (USA). Data for this study include multibeam bathymetry surveys, sidescan sonar mosaics, high-resolution subbottom profiles, and ground-truth surveys from - 250 m to the modern tidewater region. Four bathymetric zones are recognized with eleven landforms and landform indicators. The described zones range in depths from the modern shoreline, across the shelf, and over the shelf edge to - 250 m MSL. Relative sea level curves are presented for the area and discussed in conjunction with cultural and climatic events. The potential for preservation of Paleoamerican sites is high at the shelf edge between - 130 m and - 45 m, with Archaic and later occupations likely in depths of less than - 25 m. Prominent vantage points for Paleoamericans (> 11 kya) would have existed at the shelf edge, and tidewater resources would have been available nearby for a period of almost 6 ka. Rapid transgression rates (> 60 km/ka) after the sea level rose over the shelf edge make preservation of tidewater sites less likely on the outer and middle shelf. Searches for the earliest Paleoamericans should focus on promontories at the edge of the shelf and along future discoveries of paleoincisions on the shelf. Mapping and delineating this paleolandscape and associated unconsolidated sedimentary deposits interspersed with rocky plains and ledges will continue to be a priority to marine archeologists, coastal managers, fishery scientists, and marine spatial planners over the next several decades.
NASA Astrophysics Data System (ADS)
Detoni, A. M. S.; Yunes, J. S., Sr.; Ciotti, Á. M.; Calil, P. H. R.; Tavano, V. M.
2016-02-01
Trichodesmium can accumulate high biomass, particularly in the oligotrophic regions of North and Tropical Atlantic, and North Pacific. Large Trichodesmium slicks have been reported in the South Atlantic as well, associated with the Brazil Currrent (BC) that flows southwards over the continental shelf-break. Regional variations of the width of the Brazilian continental shelf, as well as changes in the bottom topography, generate cyclonic and anti-cyclonic eddies as BC crosses the southeastern Brazil. Thus, the general conditions of the BC - characterized as a warm, saline and oligotrophic current - are expected to change not only with latitude but also by the influence of mesoscale instabilities. In this study, three oceanographic cruises were carried out to characterize the distribution of Trichodesmium along the southeastern Brazilian continental shelf-break and their relationship with temperature and upper layer nutrients concentrations. As in other oceanic regions, high concentrations of Trichodesmium (maximum 212.6 × 105 trichomes L-1) were observed in waters with temperatures between 22° C to 25° C, low nitrogen (< 2.4 μM), and moderate phosphate concentrations (> 0.08 μM), where wind speeds were low (< 11 m s-1). Generally, slicks were present where phosphate concentration in the upper 25 m was slightly higher than that of adjacent waters. Wind and hydrographic observations suggested that wind divergence at micro-regions (approximately 625 km2), as well as shelf-break dynamics can drive sporadic shelf-break upwelling, favouring Trichodesmium growth between 23° S to 28° S. Although shelf-break upwelling may occur along the entire domain of the BC flow, Trichodesmium densities were low at latitudes between 28° S to 33° S likely a result of the lower sea surface temperature.
Application of remote sensing to study nearshore circulation. [and the continental shelf
NASA Technical Reports Server (NTRS)
Zeigler, J.; Lobecker, R.; Stauble, D.; Welch, C.; Haas, L.; Fang, C. S.
1974-01-01
The research to use remote sensing techniques for studying the continental shelf is reported. The studies reported include: (1) nearshore circulation in the vincinity of a natural tidal inlet; (2) identification of indicators of biological activity; (3) remote navigation system for tracking free drifting buoys; (4) experimental design of an estuaring tidal circulation; and (5) Skylab support work.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-15
... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management Outer Continental Shelf (OCS), Central and Western Gulf of Mexico, Oil and Gas Lease Sales for Years 2012-2017 AGENCY: Bureau of Ocean... 229, Western GOM 2012 Sale 227, Central GOM 2013 Sale 233, Western GOM 2013 Sale 231, Central GOM 2014...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-02
... Continental Shelf (OCS) Oil and Gas Leasing Program for 2007-2012 AGENCY: Minerals Management Service... (MMS) requests comments on the Preliminary Revised 5-Year OCS Oil and Gas Leasing Program for 2007... Elden Street, MS-4010; Herndon, Virginia 20170-4817. Please reference ``Remand of the 2007-2012 OCS Oil...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-05
... environmental assessment (EA) for proposed Gulf of Mexico Outer Continental Shelf (OCS) oil and gas Lease Sale... Environmental Impact Statement; Volumes I and II (Multisale EIS, OCS EIS/EA MMS 2007-018) and in the Gulf of...; Western Planning Area Sales 210, 215, and 218--Final Supplemental Environmental Impact Statement...
Storm-Generated Sediment Distribution Along the Northwest Florida Inner Continental Shelf
2009-10-04
grain shape, direct shear, radiocarbon isotope, and lignin -phenol analyses were performed on grab or vibracore samples collected after the storm...near-shore continental shelf. 15. SUBJECT TERMS Lignin , seafloor imagery, sedimentation, sediments 16. SECURITY CLASSIFICATION OF: a. REPORT...direct shear, radiocarbon isotope, and lignin -phenol analyses were performed on grab or vibracore samples collected after the storm. Sonar
NASA Astrophysics Data System (ADS)
Liao, Yibo; Shou, Lu; Tang, Yanbin; Zeng, Jiangning; Gao, Aigen; Chen, Quanzhen; Yan, Xiaojun
2017-05-01
To assess the effects of hypoxia, macrobenthic communities along an estuarine gradient of the Changjiang estuary and adjacent continental shelf were analyzed. This revealed spatial variations in the communities and relationships with environmental variables during periods of reduced dissolved oxygen (DO) concentration in summer. Statistical analyses revealed significant differences in macrobenthic community composition among the three zones: estuarine zone (EZ), mildly hypoxic zone (MHZ) in the continental shelf, and normoxic zone (NZ) in the continental shelf (Global R =0.206, P =0.002). Pairwise tests showed that the macrobenthic community composition of the EZ was significantly different from the MHZ (pairwise test R =0.305, P =0.001) and the NZ (pairwise test R =0.259, P =0.001). There was no significant difference in macrobenthic communities between the MHZ and the NZ (pairwise test R =0.062, P =0.114). The taxa included small and typically opportunistic polychaetes, which made the greatest contribution to the dissimilarity between the zones. The effects of mild hypoxia on the macrobenthic communities are a result not only of reduced DO concentration but also of differences in environmental variables such as temperature, salinity, and nutrient concentrations caused by stratification.
NASA Astrophysics Data System (ADS)
Belleggia, Mauro; Villanueva-Gomila, Gabriela Lujan; Buratti, Claudio; Colombo, Gustavo Alvarez; Figueroa, Daniel Enrique; Venerus, Leonardo Ariel
2018-06-01
We updated the distribution and habitat patterns of Maurolicus stehmanni in the Southwest Atlantic Ocean by compiling data obtained from research surveys conducted on the Argentinean continental shelf, as well as from opportunistic records. This paper confirms the presence of M. stehmanni in the Argentinean continental shelf, extending its southernmost distributional limit by ca. 1000 km (from 43.0°S to 52.2°S). Adult specimens of M. stehmanni were collected in various locations from 2004 to 2016. Eggs and larvae of Maurolicus spp. were caught during ichthyoplankton tows carried out from 2003 to 2013. The present paper furthermore extends the habitat type in which this species was recorded: specimens were found in the inner continental shelf (between 46.2°S and 52.2°S) instead of the shelf break and continental slope. Two specimens were found lying dead upon the beach of Puerto Madryn, Nuevo Gulf (42.8°S). The presence of eggs and larvae in coastal embayments (San Matías and San José gulfs), in concomitant occurrence with adults, may suggest the establishment of this species in the region.
Internal tidal mixing as a control on continental margin ecosystems
NASA Astrophysics Data System (ADS)
Sharples, Jonathan; Moore, C. Mark; Hickman, Anna E.; Holligan, Patrick M.; Tweddle, Jacqueline F.; Palmer, Matthew R.; Simpson, John H.
2009-12-01
We show that a breaking internal tide at a shelf edge is a fundamental control on the structural and functional properties of ecosystems. Contrasts in vertical mixing of nitrate between the shelf and the open ocean correspond with horizontal and vertical changes in phytoplankton communities, with largest cells found in surface waters at the shelf edge. Intense fishing activity is commonly seen at continental shelf edges, targeting spawning fish stocks. We suggest that the internal tide, a globally ubiquitous physical process at steep shelf edge bathymetry, supports shelf edge fisheries by providing large-celled phytoplankton for first-feeding fish larvae. The repeatability of the internal tide removes fish from the need to time spawning with a spring bloom. Also, with large phytoplankton cells dominating particulate organic carbon export, the internal tides could be an important influence on spatial and temporal variability in patterns of global carbon sequestration in deep water and sediments.
The influence of surface waves on water circulation in a mid-Atlantic continental shelf region
NASA Technical Reports Server (NTRS)
Whitlock, C. H.; Talay, T. A.
1974-01-01
The importance of wave-induced currents in different weather conditions and water depths (18.3 m and 36.6 m) is assessed in a mid-Atlantic continental-shelf region. A review of general circulation conditions is conducted. Factors which perturb the general circulation are examined using analytic techniques and limited experimental data. Actual wind and wave statistics for the region are examined. Relative magnitudes of the various currents are compared on a frequency of annual occurrence basis. Results indicated that wave-induced currents are often the same order of magnitude as other currents in the region and become more important at higher wind and wave conditions. Wind-wave and ocean-swell characteristics are among those parameters which must be monitored for the analytical computation of continental-shelf circulation.
Light attenuation (kd), chlorophyll a (chl a), and primary production (PP) were measured across the Louisiana shelf, encompassing the area of the shelf where summer hypoxia forms, on 7 spring/summer cruises from 2005 to 2007. Shelf-wide average kd (1/m) co-varied with Mississipp...
Modelling the bathymetry of the Antarctic continental shelf
ten Brink, Uri S.; Rogers, William P.; Kirkham, R.M.
1992-01-01
Continental shelves are typically covered by relatively shallow waters (<200 m) which deepen gradually from the coast to the shelf edge. The continental shelf around Antarctica is deeper than normal (400-700m) and is characterized in many areas by a nearshore trough (up to 1 km deep) that gradually shallows toward the shelf edge. We examine the cause for the unusual shelf bathymetry of Antarctica by 2-D numerical models that simulate the bathymetry along seismic line ODP-119 in Prydz Bay. Line ODP-119 was chosen because it is tied to to 5 ODP boreholes, and because the margin underwent little recent tectonic activity or changes in the glacial drainage pattern. The numerical models incorporate several factors that are likely to influence the bathymetry, such as the load of the ice cap, the isostatic response of the lithosphere, thermal and tectnoic subsidence of the margin, sea level changes, and the patterns of erosion and sedimentation across the margin. The models show that the observed bathymetry can be produced almost entirely by the sum of the outer-shelf sediment loading and inner-shelf unloading and by the load of the slope sediments. A simple statistical mdoel demonstrates that this distribution pattern of erosion and deposition can be generated by multiple cycles of ice sheet advances across the shelf, whereby in each cycle a thin (a few tens of meters) uniform layer of sediments is eroded from under the ice sheet and is redeposited seaward of the grounding line.
NASA Astrophysics Data System (ADS)
Deb, Pranab; Orr, Andrew; Bromwich, David H.; Nicolas, Julien P.; Turner, John; Hosking, J. Scott
2018-05-01
Satellite data and a 35-year hindcast of the Amundsen Sea Embayment summer climate using the Weather Research and Forecasting model are used to understand how regional and large-scale atmospheric variability affects thinning of ice shelves in this sector of West Antarctica by melting from above and below (linked to intrusions of warm water caused by anomalous westerlies over the continental shelf edge). El Niño episodes are associated with an increase in surface melt but do not have a statistically significant impact on westerly winds over the continental shelf edge. The location of the Amundsen Sea Low and the polarity of the Southern Annular Mode (SAM) have negligible impact on surface melting, although a positive SAM and eastward shift of the Amundsen Sea Low cause anomalous westerlies over the continental shelf edge. The projected future increase in El Niño episodes and positive SAM could therefore increase the risk of disintegration of West Antarctic ice shelves.
NASA Astrophysics Data System (ADS)
Bart, Philip J.; Anderson, John B.; Nitsche, Frank
2017-10-01
The West Antarctic Ice Sheet (WAIS) retreated more than 1,000 km since last grounding at the Ross Sea outer continental shelf. Here we show an interpretation of former grounding line positions from a new large-area multibeam survey and a regional grid of chirp cross-sectional data from the Whales Deep Basin in eastern Ross Sea. The basin is a paleo-glacial trough that was occupied by the Bindschadler Ice Stream when grounded ice advanced to the shelf edge during the Last Glacial Maximum. These new geophysical data provide unambiguous evidence that the WAIS occupied at least seven grounding line positions within 60 km of the shelf edge. Four of seven grounding zone wedges (GZWs) are partly exposed over large areas of the trough. The overlapping stratal arrangement created a large-volume compound GZW. Some of the groundings involved local readvance of the grounding line. Subsequent to these seven outer continental shelf groundings, the ice sheet retreated more than 200 km towards Roosevelt Island on the middle continental shelf. The major retreat across the middle continental shelf is recorded by small-scale moraine ridges that mantle the top of GZW7, and these are suggestive of relatively continuous grounding line recession. The results indicate that retreat was considerably more complex than was possible to reconstruct with reconnaissance-level data. The added details are important to climate models, which must first be able to reproduce the recent retreat pattern in all of its complexities to improve confidence in model predictions of the system's future response.
NASA Astrophysics Data System (ADS)
Schaeffer, A.; Roughan, M.; Wood, J. E.
2014-08-01
Western boundary currents strongly influence the dynamics on the adjacent continental shelf and in particular the cross-shelf transport and uplift through the bottom boundary layer. Four years of moored in situ observations on the narrow southeastern Australian shelf (in water depths of between 65 and 140 m) were used to investigate bottom cross-shelf transport, both upstream (30°S) and downstream (34°S) of the separation zone of the East Australian Current (EAC). Bottom transport was estimated and assessed against Ekman theory, showing consistent results for a number of different formulations of the boundary layer thickness. Net bottom cross-shelf transport was onshore at all locations. Ekman theory indicates that up to 64% of the transport variability is driven by the along-shelf bottom stress. Onshore transport in the bottom boundary layer was more intense and frequent upstream than downstream, occurring 64% of the time at 30°S. Wind-driven surface Ekman transport estimates did not balance the bottom cross-shelf flow. At both locations, strong variability was found in bottom water transport at periods of approximately 90-100 days. This corresponds with periodicity in EAC fluctuations and eddy shedding as evidenced from altimeter observations, highlighting the EAC as a driver of variability in the continental shelf waters. Ocean glider and HF radar observations were used to identify the bio-physical response to an EAC encroachment event, resulting in a strong onshore bottom flow, the uplift of cold slope water, and elevated coastal chlorophyll concentrations.
Schwab, William C.; Baldwin, Wayne E.; Warner, John C.; List, Jeffrey; Denny, Jane F.; Liste Munoz, Maria; Safak, Ilgar
2017-01-01
Seafloor mapping investigations conducted on the lower shoreface and inner continental shelf offshore of Fire Island, New York in 2011 and 2014, the period encompassing the impacts of Hurricanes Irene and Sandy, provide an unprecedented perspective regarding regional inner continental shelf sediment dynamics during large storm events. Analyses of these studies demonstrate that storm-induced erosion and sediment transport occurred throughout the study area in water depths up to 30 m. Acoustic backscatter patterns were observed to move from ~1 m to 450 m with a mean of 20 m and movement tended to decrease with increasing water depth. These patterns indicate that both of the primary inner continental shelf sedimentary features in the study area, linear sorted bedforms offshore of eastern Fire Island and shoreface-attached sand ridges offshore of central and western Fire island, migrated alongshore to the southwest. The migration of the sorted bedforms represents the modification of an active ravinement surface and is thought to have liberated a significant volume of sediment. Comparison of isopach maps of sediment thickness show that the volume of modern sediment composing the lower shoreface and shoreface-attached sand ridges decreased by ~2.8 × 106 m3 across the ~73 km2 of common seafloor mapped in both surveys. However, a similar analysis for the relatively calmer 15-yr period prior to 2011 revealed significant accretion. This allows speculation that the shoreface-attached sand ridges are maintained over decadal timescales via sediment supplied through erosion of Pleistocene outwash and lower Holocene transgressive channel-fill deposits exposed on the inner continental shelf, but that the sand ridges also periodically erode and move to the southwest during large storm events. Analyses show that significant storminduced erosion and sediment transport occurs far seaward of the 5 to 9 m depth of closure assumed for Fire Island, where it is thought that an onshore-directed sediment flux from the inner continental shelf to the littoral system is required to balance the coastal sediment budget. It is also thought that the morphology of the shoreface-attached sand ridges controls the persistent shape of the adjacent shoreline through modification of incident waves. Thus, we suggest that the sediment dynamics of the inner continental shelf and both storminduced and anthropogenic modification of the field of shoreface-attached sand ridges be considered in future coastal resiliency planning.
Davey, F.J.; Jacobs, S.S.
2007-01-01
Multibeam sonar bathymetry documents a lack of significant channels crossing outer continental shelf and slope of the western Ross Sea. This indicates that movement of bottom water across the shelf break into the deep ocean in this area is mainly by laminar or sheet flow. Subtle, ~20 m deep and up to 1000 m wide channels extend down the continental slope, into tributary drainage patterns on the upper rise, and then major erosional submarine canyons. These down-slope channels may have been formed by episodic pulses of rapid down slope water flow, some recorded on bottom current meters, or by sub-ice melt water erosion from an icesheet grounded at the margin. Narrow, mostly linear furrows on the continental shelf thought to be caused by iceberg scouring are randomly oriented, have widths generally less than 400 m and depths less than 30m, and extend to water depths in excess of 600 m.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The final report for the project is presented in five volumes. This volume is the Programmer's Manual. It covers: a system overview, attractiveness component of gravity model, trip-distribution component of gravity model, economic-effects model, and the consumer-surplus model. The project sought to determine the impact of Outer Continental Shelf development on recreation and tourism.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-15
... Continental Shelf, Alaska OCS Region, Chukchi Sea Planning Area, Oil and Gas Lease Sale 193 AGENCY: Bureau of... development; (2) determine whether missing information identified by BOEMRE in the 193 FEIS was essential or... in the FEIS for Chukchi Sea Lease Sale 193 was essential or relevant under 40 CFR 1502.22; and (3...
Revised oil-spill risk analysis: Beaufort Sea outer continental shelf lease sale 170. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, C.; Johnson, W.; Marshall, C.
1997-11-01
The Federal Government has proposed to offer Outer Continental Shelf lands in the Beaufort Sea for oil and gas leasing. Because oil spills may occur from activities associated with offshore oil production, the Minerals Management Service conducts a formal risk assessment. This report summarizes results of oil-spill risk analysis conducted for the proposed Beaufort Sea lease sale.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-27
... Continental Shelf, Alaska OCS Region, Chukchi Sea Planning Area, Oil and Gas Lease Sale 193 AGENCY: Bureau of...: BOEMRE announces the availability of a Revised Draft SEIS, OCS Oil and Gas Lease Sale 193, Chukchi Sea.... The Revised Draft SEIS augments the analysis of the Final EIS, Oil and Gas Lease Sale 193, Chukchi Sea...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-05
... Notice of Sale (NOS) for Outer Continental Shelf (OCS) Oil and Gas Lease Sale 215 in the Western Planning... matter of information to the public. With regard to oil and gas leasing on the OCS, the Secretary of the... NOS for Sale 215 and a ``Proposed Notice of Sale Package'' containing information essential to...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-22
... Availability of the Proposed Notice of Sale (NOS) for Outer Continental Shelf (OCS) Oil and Gas Lease Sale 218... matter of information to the public. With regard to oil and gas leasing on the OCS, the Secretary of the... NOS for Sale 218 and a ``Proposed Notice of Sale Package'' containing information essential to...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-30
... Continental Shelf (OCS), Western Planning Area (WPA) and Central Planning Area (CPA), Oil and Gas Lease Sales... prepared a Draft EIS on oil and gas lease sales tentatively scheduled in 2012-2017 in the WPA and CPA... scheduled for the WPA and five annual areawide lease sales are scheduled for the CPA. The proposed WPA lease...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-24
... Proposed Notice of Sale for Outer Continental Shelf (OCS) Oil and Gas Lease Sale 229 in the Western...: Notice of Availability of the Proposed Notice of Sale for Proposed Sale 229. SUMMARY: BOEM announces the availability of the Proposed Notice of Sale (NOS) for proposed Sale 229 in the WPA. This sale will be the first...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-27
... Proposed Notice of Sale for Outer Continental Shelf (OCS) Oil and Gas Lease Sale 216/222 in the Central...: Notice of Availability of the Proposed Notice of Sale for Proposed Sale 216/222. SUMMARY: BOEM announces the availability of the proposed Notice of Sale (NOS) for proposed Sale 216/222 in the CPA. This...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, J.B.
1987-05-01
There have been a number of multichannel seismic reflection and seismic refraction surveys of the Antarctic continental shelf. While glacial erosion has left acoustic basement exposed on portions of the inner shelf, thick sedimentary sequences occur on the passive margin of east Antarctica. The thickness and age of these strata vary due to different breakup histories of the margin. Several sedimentary basins have been identified. Most are rift basins formed during the early stages of Antarctica's separation from other Gondwana continents and plateaus. The west Antarctic continental shelf is extensive, being approximately twice the size of the Gulf of Mexicomore » shelf. It has been poorly surveyed to date, owing mainly to its perennial sea ice cover. Gradual subduction of the spreading center from south to north along the margin resulted in old active margin sequences being buried beneath passive margin sequences. The latter should increase in thickness from north to south along the margin although no data bear this out. Hydrocarbon potential on the northern portion of the west Antarctic margin is considered low due to a probable lack of reservoir rocks. Establishment of ice sheets on Antarctica caused destruction of land vegetation and greatly restricted siliciclastic sand-producing environments. So only sedimentary basins which contain pre-early Miocene deposits have good hydrocarbon prospectivity. The Antarctic continental shelf is the deepest in the world, averaging 500 m and in places being more than a kilometer deep. The shelf has been left rugged by glacial erosion and is therefore prone to sediment mass movement. Widespread sediment gravity flow deposits attest to this. The shelf is covered with sea ice most of the year and in a few areas throughout the year. Icebergs, drift freely in the deep waters of the shelf; drift speeds of 1 to 2.5 km/year are not uncommon.« less
NASA Astrophysics Data System (ADS)
Yang, Yun-ping; Zhang, Ming-jin; Li, Yi-tian; Fan, Yong-yang
2016-12-01
Based on the measured data in recent 20 years, the variation trends of the median grain size of the surface sediment, the sand-silt boundary and the mud area on the adjacent continental shelf of the Yangtze Estuary were analyzed in depth, and the effects of natural mechanism and human activities were discussed. The results show that: (1) In recent years (2006-2013), the median grain size of sediment and the distribution pattern of grouped sediments in the adjacent continental shelf area to the Yangtze Estuary have presented no obvious change compared with those before 2006; (2) The median diameter of the surface sediment in the continental shelf area displayed a coarsening trend with the decrease of sediment discharge from the basin and the drop in suspended sediment concentration in the shore area; (3) In 2004-2007, the sand-silt boundary in the north part (31°30'N) of the continental shelf area presented no significant changes, while that in the south part (31°30'S) moved inwards; In 2008-2013, both the sand-silt boundaries in the north and south parts of the continental shelf area moved inwards, mainly due to the fact that in the dry season, a relatively enhanced hydrodynamic force of the tides was generated in the Yangtze River, as well as a decreased suspended sediment concentration and a flow along the banks in North Jiangsu; (4) The mud area where the maximum deposition rate is found in the Yangtze Estuary, tends to shrink due to the drop in sediment discharge from the basin, and the decrease in suspended sediment concentration in the shore area and erosion in the delta. Moreover, it tended to shift to the south at the same time because the implement of the training works on the deep-water channel of the North Passage changed the split ratio between the North and South Passages with an increase in the power of the discharged runoff in the South Passage.
NASA Astrophysics Data System (ADS)
Goswami, A.; Olson, P. L.; Hinnov, L. A.; Gnanadesikan, A.
2015-04-01
We present a method for reconstructing global ocean bathymetry that uses a plate cooling model for the oceanic lithosphere, the age distribution of the oceanic crust, global oceanic sediment thicknesses, plus shelf-slope-rise structures calibrated at modern active and passive continental margins. Our motivation is to reconstruct realistic ocean bathymetry based on parameterized relationships of present-day variables that can be applied to global oceans in the geologic past, and to isolate locations where anomalous processes such as mantle convection may affect bathymetry. Parameters of the plate cooling model are combined with ocean crustal age to calculate depth-to-basement. To the depth-to-basement we add an isostatically adjusted, multicomponent sediment layer, constrained by sediment thickness in the modern oceans and marginal seas. A continental shelf-slope-rise structure completes the bathymetry reconstruction, extending from the ocean crust to the coastlines. Shelf-slope-rise structures at active and passive margins are parameterized using modern ocean bathymetry at locations where a complete history of seafloor spreading is preserved. This includes the coastal regions of the North, South, and Central Atlantic Ocean, the Southern Ocean between Australia and Antarctica, and the Pacific Ocean off the west coast of South America. The final products are global maps at 0.1° × 0.1° resolution of depth-to-basement, ocean bathymetry with an isostatically adjusted, multicomponent sediment layer, and ocean bathymetry with reconstructed continental shelf-slope-rise structures. Our reconstructed bathymetry agrees with the measured ETOPO1 bathymetry at most passive margins, including the east coast of North America, north coast of the Arabian Sea, and northeast and southeast coasts of South America. There is disagreement at margins with anomalous continental shelf-slope-rise structures, such as around the Arctic Ocean, the Falkland Islands, and Indonesia.
NASA Astrophysics Data System (ADS)
Grinyó, Jordi; Gori, Andrea; Ambroso, Stefano; Purroy, Ariadna; Calatayud, Clara; Dominguez-Carrió, Carlos; Coppari, Martina; Lo Iacono, Claudio; López-González, Pablo J.; Gili, Josep-Maria
2016-06-01
Gorgonians are a key group of organisms in benthic marine communities with a wide bathymetric and geographical distribution. Although their presence on continental shelves and slopes has been known for more than 100 years, knowledge concerning the ecology of deep gorgonian species is still in a very preliminary stage. To overcome this situation, gorgonian assemblages located at 40-360 m depth were studied over a large geographical area on the continental shelf and upper slope of the Menorca Channel (Western Mediterranean Sea). A quantitative analysis of video transects recorded by a manned submersible and a remotely operated vehicle, were used to examine the diversity, distribution and demography of gorgonian species. Results showed high gorgonian diversity within this depth range (a total of nine species were observed) compared to Mediterranean coastal areas. Gorgonian assemblages on the continental shelf and upper slope were mostly monospecific (respectively 73% and 76% of occupied sampling units contained one single species), whereas shelf edge assemblages were highly multispecific (92% of occupied sampling units contained several species). This contrasts with the monospecificity of Mediterranean coastal gorgonian assemblages. Gorgonian populations on the continental shelf were mostly dominated by small colonies (88% of measured colonies) with few intermediate and large colonies (12% of measured colonies). In deeper areas small colonies were still dominant (60% of measured colonies), but intermediate and large colonies were much more abundant (40% of measured colonies). This suggests high recruitment rates on the continental shelf, but perturbations (trammel nets, long lines and strong storms) may limit the presence of intermediate and large colonies. Conversely, on the shelf edge and upper slope a more stable environment may allow colonies to reach larger dimensions. The identification and ecological characterization of these deep assemblages further extends the current knowledge about Mediterranean gorgonians, and is fundamental in improving the management and conservation of deep benthic ecosystems.
Seafloor geology of the Monterey Bay area continental shelf
Eittreim, S.L.; Anima, R.J.; Stevenson, A.J.
2002-01-01
Acoustic swath-mapping of the greater Monterey Bay area continental shelf from Point An??o Nuevo to Point Sur reveals complex patterns of rock outcrops on the shelf, and coarse-sand bodies that occur in distinct depressions on the inner and mid-shelves. Most of the rock outcrops are erosional cuestas of dipping Tertiary rocks that make up the bedrock of the surrounding lands. A mid-shelf mud belt of Holocene sediment buries the Tertiary rocks in a continuous, 6-km-wide zone on the northern Monterey Bay shelf. Rock exposures occur on the inner shelf, near tectonically uplifting highlands, and on the outer shelf, beyond the reach of the mud depositing on the mid-shelf since the Holocene sea-level rise. The sediment-starved shelf off the Monterey Peninsula and south to Point Sur has a very thin cover of Holocene sediment, and bedrock outcrops occur across the whole shelf, with Salinian granite outcrops surrounding the Monterey Peninsula. Coarse-sand deposits occur both bounded within low-relief rippled scour depressions, and in broad sheets in areas like the Sur Platform where fine sediment sources are limited. The greatest concentrations of coarse-sand deposits occur on the southern Monterey Bay shelf and the Sur shelf. ?? 2002 Elsevier Science B.V. All rights reserved.
Storlazzi, Curt D.; Reid, Jane A.
2010-01-01
Ocean surface waves are the dominant temporally and spatially variable process influencing sea floor sediment resuspension along most continental shelves. Wave-induced sediment mobility on the continental shelf and upper continental slope off central California for different phases of El Niño-Southern Oscillation (ENSO) events was modeled using monthly statistics derived from more than 14 years of concurrent hourly oceanographic and meteorologic data as boundary input for the Delft SWAN wave model, gridded sea floor grain-size data from the usSEABED database, and regional bathymetry. Differences as small as 0.5 m in wave height, 1 s in wave period, and 10° in wave direction, in conjunction with the spatially heterogeneous unconsolidated sea-floor sedimentary cover, result in significant changes in the predicted mobility of continental shelf surficial sediment in the study area. El Niño events result in more frequent mobilization on the inner shelf in the summer and winter than during La Niña events and on the outer shelf and upper slope in the winter months, while La Niña events result in more frequent mobilization on the mid-shelf during spring and summer months than during El Niño events. The timing and patterns of seabed mobility are addressed in context of geologic and biologic processes. By understanding the spatial and temporal variability in the disturbance of the sea floor, scientists can better interpret sedimentary patterns and ecosystem structure, while providing managers and planners an understanding of natural impacts when considering the permitting of offshore activities that disturb the sea floor such as trawling, dredging, and the emplacement of sea-floor engineering structures.
Remote Versus Local Forcing of Chlorophyll Variability in the South Atlantic Bight
NASA Technical Reports Server (NTRS)
Signorini, Sergio R.; McClain, Charles R.
2006-01-01
This TM documents results of analyses addressing the local versus remote forcing of chlorophyll variability on the shelf and slope regions of the South Atlantic Bight (SAB) based on satellite-derived products and a limited amount of in situ data. This study is part of a larger multi-disciplinary, multi-institutional effort to study the Eastern U.S. Continental Shelf carbon budget (U.S. Eastern Continental Shelf Carbon Budget: Modeling, Data Assimilation, and Analysis, U.S. ECoS), a project funded by the NASA Earth System Enterprise Interdisciplinary Science Program that started in the summer of 2004.
NASA Astrophysics Data System (ADS)
Willard, D. A.; Robinson, M. M.; Self-Trail, J. M.; Wandless, G. A.; Sluijs, A.
2014-12-01
Analyses of pollen and palynofacies from Paleocene-Eocene Thermal Maximum (PETM) sediments from three cores collected on the Atlantic Coastal Plain provide insights into the timing of vegetation and hydrologic changes associated with the PETM in eastern North America. The Mattawoman Creek-Billingsley Road (MCBR2), South Dover Bridge (SDB), and Bass River (ODP Site 1074AX) cores were collected at progressively greater distances from the paleoshoreline in continental shelf deposits in Maryland and New Jersey, USA. The PETM carbon isotope excursion (CIE) at each site is accompanied by sharp increases in pollen and spore concentrations, as well as changes in terrestrial palynomorph assemblage composition. In the two sites proximal to the paleoshoreline in Maryland, CIE fern spore abundance was two- to three times greater than in pre-CIE assemblages. At the distal site at Bass River, fern spores are present in CIE sediments and absent in pre-CIE sediments. Angiosperm pollen is most common in CIE sediments at all three sites. Palynofacies analyses, which quantify contributions of organic material from marine and non-marine sources, indicate that terrestrial influx increased sharply at the CIE onset. This observation is consistent with seasonally increased runoff from the continent.
Evolutionary dynamics at high latitudes: speciation and extinction in polar marine faunas
Clarke, Andrew; Crame, J. Alistair
2010-01-01
Ecologists have long been fascinated by the flora and fauna of extreme environments. Physiological studies have revealed the extent to which lifestyle is constrained by low temperature but there is as yet no consensus on why the diversity of polar assemblages is so much lower than many tropical assemblages. The evolution of marine faunas at high latitudes has been influenced strongly by oceanic cooling during the Cenozoic and the associated onset of continental glaciations. Glaciation eradicated many shallow-water habitats, especially in the Southern Hemisphere, and the cooling has led to widespread extinction in some groups. While environmental conditions at glacial maxima would have been very different from those existing today, fossil evidence indicates that some lineages extend back well into the Cenozoic. Oscillations of the ice-sheet on Milankovitch frequencies will have periodically eradicated and exposed continental shelf habitat, and a full understanding of evolutionary dynamics at high latitude requires better knowledge of the links between the faunas of the shelf, slope and deep-sea. Molecular techniques to produce phylogenies, coupled with further palaeontological work to root these phylogenies in time, will be essential to further progress. PMID:20980314
Trace Metals and Lead Isotopes in modern Sediments Near Rio de Janeiro, Brazil
NASA Astrophysics Data System (ADS)
Boyle, E. A.; Lazzari, L.; Wagener, A. L.; Carreira, R.; Godoy, J. M.; Noble, A.; Carrasco, G. G.; Moos, S. B.
2014-12-01
This work focuses on the export of trace metals and combustion residues from land to ocean and on the Southeast continental margin of Brazil and its historical variability using stable lead isotopes. Two sediment cores were collected, one in highly impacted Guanabara Bay and the other on the Southeast continental shelf. Continental shelf samples were analyzed for trace element concentrations [Mn (117±50 ppm), Ni (6.5±2.3 ppm), Zn (5.0±1.5), (233±46 ppm), ], Pb (5.4±2.4 ppm), as well as Cu, Ag, Cd, Sr, Ba, Tl, U and Pb isotope ratios & Pb-210. Most of the elements show higher concentrations on the upper part of the core compared to the bottom. Downcore changes of the concentrations of these elements were similar. The sediments of adjacent rivers and bays around the upper section of the southeast continental shelf of Brazil are considered highly enriched with Pb, Zn, Cu and Cr such as Guanabara Bay, Sepetiba Bay and Paraíba do Sul River compared with the natural concentrations and other regions in the world. A [Pb] maximum is seen between samples from 24 to 43 cm (~8 ppm). Utilization of tetraethyl lead (TEL) gasoline in Brazil was phased out beginning in 1983 and was largely completed by 1988. Continental shelf Pb-206/Pb-207 varies between 1.174 near the core top to 1.190 at 100 cm, with a sharp difference between samples at 6 and 8 cm. Higher core top Pb, Zn, and Ni corroborate the recent anthropogenic influence on the southeast continental shelf of Brazil. For Guanabara Bay sediment samples [Pb] varies between 90 ppm near the top to 1 ppm at the bottom. Pb-206/Pb-207 varies between 1.161 near the core top to 1.165 near the bottom. Using triple isotope plots we can discern different sources of lead to the region and how these vary with time.
Kelly, Noreen E.; Shea, Elizabeth K.; Metaxas, Anna; Haedrich, Richard L.; Auster, Peter J.
2010-01-01
Background In contrast to the well-studied continental shelf region of the Gulf of Maine, fundamental questions regarding the diversity, distribution, and abundance of species living in deep-sea habitats along the adjacent continental margin remain unanswered. Lack of such knowledge precludes a greater understanding of the Gulf of Maine ecosystem and limits development of alternatives for conservation and management. Methodology/Principal Findings We use data from the published literature, unpublished studies, museum records and online sources, to: (1) assess the current state of knowledge of species diversity in the deep-sea habitats adjacent to the Gulf of Maine (39–43°N, 63–71°W, 150–3000 m depth); (2) compare patterns of taxonomic diversity and distribution of megafaunal and macrofaunal species among six distinct sub-regions and to the continental shelf; and (3) estimate the amount of unknown diversity in the region. Known diversity for the deep-sea region is 1,671 species; most are narrowly distributed and known to occur within only one sub-region. The number of species varies by sub-region and is directly related to sampling effort occurring within each. Fishes, corals, decapod crustaceans, molluscs, and echinoderms are relatively well known, while most other taxonomic groups are poorly known. Taxonomic diversity decreases with increasing distance from the continental shelf and with changes in benthic topography. Low similarity in faunal composition suggests the deep-sea region harbours faunal communities distinct from those of the continental shelf. Non-parametric estimators of species richness suggest a minimum of 50% of the deep-sea species inventory remains to be discovered. Conclusions/Significance The current state of knowledge of biodiversity in this deep-sea region is rudimentary. Our ability to answer questions is hampered by a lack of sufficient data for many taxonomic groups, which is constrained by sampling biases, life-history characteristics of target species, and the lack of trained taxonomists. PMID:21124960
Adams, Maurice V.; John, C.B.; Kelly, R.F.; LaPointe, A.E.; Meurer, R.W.
1975-01-01
An important function of the Geological Survey is the evaluation and management of the mineral resources of the Outer Continental Shelf, particularly with respect to oil and gas, salt, and sulfur. Production of oil and gas from the Outer Continental Shelf of the United States has increased substantially over the past 20 years and represents an increasing percentage of total United States production. As discovery of major onshore production of oil and gas has become more difficult, the search has moved into the surrounding waters where submerged sedimentary formations are conducive to the accumulation of oil and gas. Increased energy demands of recent years have accelerated the pace of offshore operations with a corresponding improvement in technology as exploration and development have proceeded farther from shore and into deeper water. While improved technology and enforcement of more stringent regulations have made offshore operations safer, it is unrealistic to believe that completely accident-free operations can ever be achieved. Only slightly more than six percent of the world's continental terrace is adjacent to the United States, but less than one percent has been explored for oil and gas. Since the lead time for the development of offshore oil and gas resources can be as much as a decade, they do not provide an immediate energy supply but should be viewed in the light of a near-term source with a potential of becoming a medium-range source of supply pending the development of alternative energy sources. Revenues from the Outer Continental Shelf are deposited to the general fund of the United States Treasury. A major portion of these funds is allocated to the Land and Water Conservation Fund, the largest Federal grant-in-aid program of assistance to States, counties, and cities for the acquisition and development of public parks, open space, and recreation lands and water.
Boss, S.K.; Hoffman, C.W.; Cooper, B.
2002-01-01
Digital, single-channel, high-resolution seismic reflection profiles were acquired from the insular continental shelf of North Carolina, USA along a data grid extending from Oregon Inlet northward 48 km to Duck, North Carolina and from the nearshore zone seaward approximately 28 km (total surveyed area= 1334 km2). These data were processed and interpreted to delineate principal reflecting horizons and develop a three-dimensional seismic stratigraphic framework for the continental shelf that was compared to stratigraphic data from the shoreward back-barrier (estuarine) and barrier island system. Six principal reflecting horizons (designated R0 through R5) were present within the upper 60 m of the shelf stratigraphic succession. Three-dimensional mapping of reflector R1 demonstrated its origin from fluvial incision of the continental shelf during an episode (or episodes) of lowered sea-level. Fluvial processes during development of reflector R1 were responsible for extensive reworking and re-deposition of sediment throughout most of the northern half of the study area. Five seismic stratigraphic units (designated S1 through S5) were tentatively correlated with depositional sequences previously identified from the North Carolina back-barrier (estuarine) and barrier island system. These five stratigraphic units span the Quaternary Period (S1 = early Holocene; S2 = 51-78 ka; S3 = 330-530 ka; S4 = 1.1-1.8 Ma; S5 = earliest Pleistocene). Unit S1 is composed of fine-grained fluvial/estuarine sediment that back-filled incised streams during early Holocene sea-level rise. The four other stratigraphic units (S2-S5) display tabular depositional geometries, low total relief, and thicken toward the east-southeast as their basal reflectors dip gently between 0.41 m km-1 (0.02??) and 0.54 m km-1 (0.03??). Knowledge of the three-dimensional subsurface stratigraphic architecture of the continental shelf enhances understanding of the development of shelf depositional successions and provides a framework for development of better Quaternary sea-level data, especially offshore North Carolina where such data are sparse. ?? 2002 Elsevier Science B.V. All rights reserved.
Grantz, Arthur; Eittreim, Stephen L.; Whitney, O.T.
1979-01-01
The continental margin north of Alaska is of Atlantic type. It began to form probably in Early Jurassic time but possibly in middle Early Cretaceous time, when the oceanic Canada Basin of the Arctic Ocean is thought to have opened by rifting about a pole of rotation near the Mackenzie Delta. Offsets of the rift along two fracture zones are thought to have divided the Alaskan margin into three sectors of contrasting structure and stratigraphy. In the Barter Island sector on the east and the Chukchi sector on the west the rift was closer to the present northern Alaska mainland than in the Barrow sector, which lies between them. In the Barter Island and Chukchi sectors the continental shelf is underlain by prisms of clastic sedimentary rocks that are inferred to include thick sections of Jurassic and Neocomian (lower Lower Cretaceous) strata of southern provenance. In the intervening Barrow sector the shelf is underlain by relatively thin sections of Jurassic and Neocomian strata derived from northern sources that now lie beneath the outer continental shelf. The rifted continental margin is overlain by a prograded prism of Albian (upper Lower Cretaceous) to Tertiary clastic sedimentary rocks that comprises the continental terrace of the western Beaufort and northern Chukchi Seas. On the south the prism is bounded by Barrow arch, which is a hingeline between the northward-tilted basement surface beneath the continental shelf of the western Beaufort Sea and the southward-tilted Arctic Platform of northern Alaska. The Arctic platform is overlain by shelf clastic and carbonate strata of Mississippian to Cretaceous age, and by Jurassic and Cretaceous clastic strata of the Colville foredeep. Both the Arctic platform and Colville foredeep sequences extend from northern Alaska beneath the northern Chukchi Sea. At Herald fault zone in the central Chukchi Sea they are overthrust by more strongly deformed Cretaceous to Paleozoic sedimentary rocks of Herald arch, which trends northwest from Cape Lisburne. Hope basin, an extensional intracontinental sedimentary basin of Tertiary age, underlies the Chukchi Sea south of Herald arch.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The final report for the project is presented in five volumes. The project sought to determine the impact of Outer Continental Shelf development on recreation and tourism in California. This volume is the User's Guide. It includes the following topics: Introduction and Summary Guide; Input Data Files; Gravity Model Programs; Economic Effects Model Programs; Consumer Surplus Model Programs; References; and Appendices.
Military Activities in the Exclusive Economic Zone: Preventing Uncertainty and Defusing Conflict
2002-03-01
citing Presidential Declaration Concerning Continental Shelf of 23 June 1947, EL MERCURIO, Santiago de Chile (June 29, 1947), and Presidential Decree...Presidential Declaration Concerning Continental Shelf of 23 June 1947, EL MERCURIO, Santiago de Chile June 29, 1947). Peru also established a 200...Organization, 1987); James E. Bailey, Comment, The Exclusive Economic Zone: Its De - velopment and Future in International and Domestic Law, 45 LA. L
The Occurrence of Tidal Hybrid Kelvin-Edge Waves in the Global Ocean
NASA Astrophysics Data System (ADS)
Kaur, H.; Buijsman, M. C.; Yankovsky, A. E.; Zhang, T.; Jeon, C. H.
2017-12-01
This study presents the analysis of hybrid Kelvin-edge waves on the continental shelves in a global ocean model. Our objective is to find areas where the transition occurs from Kelvin waves to hybrid Kelvin-edge waves. The change in continental shelf width may convert a Kelvin wave into a hybrid Kelvin-edge wave. In this process the group velocity reaches a minimum and tidal energy is radiated on and/or offshore [Zhang 2016]. We extract M2 SSH (Sea Surface Height) and velocity from the Hybrid Coordinate Ocean Model (HYCOM) and calculate barotropic energy fluxes. We analyze these three areas: the Bay of Biscay, the Amazon Shelf and North West Africa. In these three regions, the continental shelf widens in the propagation direction and the alongshore flux changes its direction towards the coast. A transect is taken at different points in these areas to compute the dispersion relations of the waves on the continental shelf. In model simulations, we change the bathymetry of the Bay of Biscay to study the behavior of the hybrid Kelvin-edge waves. BibliographyZhang, T., and A. E Yankovsky. (2016), On the nature of cross-isobath energy fluxes in topographically modified barotropic semidiurnal Kelvin waves, J. Geophys. Res. Oceans, 121, 3058-3074, doi:10.1002/2015JC011617.
Transport processes near coastal ocean outfalls
Noble, M.A.; Sherwood, C.R.; Lee, Hooi-Ling; Xu, Jie; Dartnell, P.; Robertson, G.; Martini, M.
2001-01-01
The central Southern California Bight is an urbanized coastal ocean where complex topography and largescale atmospheric and oceanographic forcing has led to numerous sediment-distribution patterns. Two large embayments, Santa Monica and San Pedro Bays, are connected by the short, very narrow shelf off the Palos Verdes peninsula. Ocean-sewage outfalls are located in the middle of Santa Monica Bay, on the Palos Verdes shelf and at the southeastern edge of San Pedro Bay. In 1992, the US Geological Survey, together with allied agencies, began a series of programs to determine the dominant processes that transport sediment and associated pollutants near the three ocean outfalls. As part of these programs, arrays of instrumented moorings that monitor currents, waves, water clarity, water density and collect resuspended materials were deployed on the continental shelf and slope information was also collected on the sediment and contaminant distributions in the region. The data and models developed for the Palos Verdes shelf suggest that the large reservoir of DDT/DDE in the coastal ocean sediments will continue to be exhumed and transported along the shelf for a long time. On the Santa Monica shelf, very large internal waves, or bores, are generated at the shelf break. The near-bottom currents associated with these waves sweep sediments and the associated contaminants from the shelf onto the continental slope. A new program underway on the San Pedro shelf will determine if water and contaminants from a nearby ocean outfall are transported to the local beaches by coastal ocean processes. The large variety of processes found that transport sediments and contaminants in this small region of the continental margin suggest that in regions with complex topography, local processes change markedly over small spatial scales. One cannot necessarily infer that the dominant transport processes will be similar even in adjacent regions.
Transport and Fate of Nutrients Along the U.S. East Coast
NASA Astrophysics Data System (ADS)
Hofmann, E. E.; Narvaez, D.; Friedrichs, M. A. M.; Najjar, R.; Tian, H.; Hyde, K.; Mannino, A.; Signorini, S. R.; Wilkin, J.; St-Laurent, P.
2017-12-01
As part of a NASA-funded multi-investigator project, a land-estuarine-ocean biogeochemical modeling system was implemented and verified with remote sensing and in situ data to examine processes controlling fluxes on land, their coupling to riverine systems, the delivery of materials to estuaries and the coastal ocean, and marine ecosystem responses to these changing riverine inputs and changing climate forcing. This modeling system is being used to develop nutrient budgets for the U.S. east coast continental shelf and to examine seasonal and interannual variability in nutrient fluxes. An important aspect of these nutrient budgets is the transport and fate of nutrients released along the inner shelf. Results from a five-year simulation (2004 to 2008) that used tracer releases from the main rivers along the Middle Atlantic Bight (MAB) and South Atlantic Bight (SAB) provide insights into transport pathways that connect the inner and outer continental shelf. Tracers released along the inner MAB spread along the shelf with a general southward and offshore transport. Inner shelf inputs from the large estuarine systems are transported to the mid and outer MAB shelf. Tracers that reach the mid to outer shelf can be entrained in the Gulf Stream. Export from the MAB to the SAB occurs during periods of southerly winds. Transport processes along the SAB are similar, but Gulf Stream entrainment is a larger component of tracer transport. Superimposed on the MAB and SAB transport patterns is considerable seasonal and interannual variability. The results from these retrospective simulations improve understanding of the coupling at the land-water interface and shelf-wide transport patterns that advance the ability to predict the effects of localized human impacts and broader-scale climate-related impacts on the U.S. east coast continental shelf system.
NASA Astrophysics Data System (ADS)
Sancho, G.; Edman, R.; Frazier, B.; Bubley, W.
2016-02-01
Understanding the trophic dynamics and habitat utilization of apex predators is central to inferring their influence on different marine landscapes and to help design effective management plans for these animals. Tiger sharks (Galeocerdo cuvier) are abundant in shelf and offshore Gulf Stream waters of the western North Atlantic Ocean, and based on movements from individuals captured in Florida and Bahamas, seem to avoid coastal and shelf waters off South Carolina and Georgia. This contradicts reports of tiger sharks regularly being caught nearshore by anglers in these states, indicating that separate sub-populations may exist in the western North Atlantic. In the present study we captured Tiger Sharks in coastal waters off South Carolina in 2014 and 2015 in order to describe their movement patterns through acoustic and satellite tagging, and trophic dynamics through stable isotope analyses. Movement data show that these tiger sharks repeatedly visit particular inshore areas and mainly travel over the continental shelf, but rarely venture offshore beyond the continental shelf edge. Ongoing C and N stable isotope analyses of muscle, blood and skin tissues from adult and juvenile tiger sharks, as well as from potential prey species and primary producers, will help determine if their diets are based on inshore, shelf or offshore based food webs. Tiger sharks exploiting nearshore environments and shelf waters have much higher probabilities of interacting with humans than individuals occupying far offshore Gulf Stream habitats.
Nineteenth-century collapse of a benthic marine ecosystem on the open continental shelf
Tomašových, Adam; Kidwell, Susan M.
2017-01-01
The soft-sediment seafloor of the open continental shelf is among the least-known biomes on Earth, despite its high diversity and importance to fisheries and biogeochemical cycling. Abundant dead shells of epifaunal suspension-feeding terebratulid brachiopods (Laqueus) and scallops on the now-muddy mainland continental shelf of southern California reveal the recent, previously unsuspected extirpation of an extensive offshore shell-gravel ecosystem, evidently driven by anthropogenic siltation. Living populations of attached epifauna, which formerly existed in a middle- and outer-shelf mosaic with patches of trophically diverse muds, are restricted today to rocky seafloor along the shelf edge and to the sandier shelves of offshore islands. Geological age-dating of 190 dead brachiopod shells shows that (i) no shells have been produced on the mainland shelf within the last 100 years, (ii) their shell production declined steeply during the nineteenth century, and (iii) they had formerly been present continuously for at least 4 kyr. This loss, sufficiently rapid (less than or equal to 100 years) and thorough to represent an ecosystem collapse, coincides with intensification of alluvial-plain land use in the nineteenth century, particularly livestock grazing. Extirpation was complete by the start of twentieth-century urbanization, warming, bottom fishing and scientific surveys. The loss of this filter-feeding fauna and the new spatial homogeneity and dominance of deposit- and detritus-feeders would have altered ecosystem functioning by reducing habitat heterogeneity and seawater filtering. This discovery, attesting to the power of this geological approach to recent ecological transitions, also strongly increases the spatial scope attributable to the negative effects of siltation, and suggests that it has been under-recognized on continental shelves elsewhere as a legacy of coastal land use. PMID:28592668
NASA Technical Reports Server (NTRS)
Mulholland, M.R.; Bernhardt, P. W.; Blanco-Garcia, J. L.; Mannino, A.; Hyde, K.; Mondragon, E.; Turk, K.; Moisander, P. H.; Zehr, J. P.
2012-01-01
We coupled dinitrogen (N2) fixation rate estimates with molecular biological methods to determine the activity and abundance of diazotrophs in coastal waters along the temperate North American Mid-Atlantic continental shelf during multiple seasons and cruises. Volumetric rates of N2 fixation were as high as 49.8 nmol N L(sup -1) d(sup -1) and areal rates as high as 837.9 micromol N m(sup -2) d(sup -1) in our study area. Our results suggest that N2 fixation occurs at high rates in coastal shelf waters that were previously thought to be unimportant sites of N2 fixation and so were excluded from calculations of pelagic marine N2 fixation. Unicellular N2-fixing group A cyanobacteria were the most abundant diazotrophs in the Atlantic coastal waters and their abundance was comparable to, or higher than, that measured in oceanic regimes where they were discovered. High rates of N2 fixation and the high abundance of diazotrophs along the North American Mid-Atlantic continental shelf highlight the need to revise marine N budgets to include coastal N2 fixation. Integrating areal rates of N2 fixation over the continental shelf area between Cape Hatteras and Nova Scotia, the estimated N2 fixation in this temperate shelf system is about 0.02 Tmol N yr(sup -1), the amount previously calculated for the entire North Atlantic continental shelf. Additional studies should provide spatially, temporally, and seasonally resolved rate estimates from coastal systems to better constrain N inputs via N2 fixation from the neritic zone.
Nineteenth-century collapse of a benthic marine ecosystem on the open continental shelf.
Tomašových, Adam; Kidwell, Susan M
2017-06-14
The soft-sediment seafloor of the open continental shelf is among the least-known biomes on Earth, despite its high diversity and importance to fisheries and biogeochemical cycling. Abundant dead shells of epifaunal suspension-feeding terebratulid brachiopods ( Laqueus ) and scallops on the now-muddy mainland continental shelf of southern California reveal the recent, previously unsuspected extirpation of an extensive offshore shell-gravel ecosystem, evidently driven by anthropogenic siltation. Living populations of attached epifauna, which formerly existed in a middle- and outer-shelf mosaic with patches of trophically diverse muds, are restricted today to rocky seafloor along the shelf edge and to the sandier shelves of offshore islands. Geological age-dating of 190 dead brachiopod shells shows that (i) no shells have been produced on the mainland shelf within the last 100 years, (ii) their shell production declined steeply during the nineteenth century, and (iii) they had formerly been present continuously for at least 4 kyr. This loss, sufficiently rapid (less than or equal to 100 years) and thorough to represent an ecosystem collapse, coincides with intensification of alluvial-plain land use in the nineteenth century, particularly livestock grazing. Extirpation was complete by the start of twentieth-century urbanization, warming, bottom fishing and scientific surveys. The loss of this filter-feeding fauna and the new spatial homogeneity and dominance of deposit- and detritus-feeders would have altered ecosystem functioning by reducing habitat heterogeneity and seawater filtering. This discovery, attesting to the power of this geological approach to recent ecological transitions, also strongly increases the spatial scope attributable to the negative effects of siltation, and suggests that it has been under-recognized on continental shelves elsewhere as a legacy of coastal land use. © 2017 The Author(s).
NASA Astrophysics Data System (ADS)
Chassefiere, Bernard
1990-09-01
Mass-physical properties of the surficial (upper 5 m) sediments on the Gulf of Lions continental margin were analysed, from more than 100 short (1 m) and longer (5 m) cores obtained during several cruises. Data include water content, unit weight, Atterberg limits (liquid limit, plastic limit, plasticity index), shear strength and compression index, and are used to determine: first, the mass property distribution, according to the main parameters influencing mass-physical properties; the relationships between these properties and the nepheloid layer on the shelf. The shoreline (lagoons) and inner shelf are characterized by low density and shear strength and high water content deposits, due to electrochemical flocculation of the sediment. The outer shelf is blanketed by higher density and shear strength and lower water content deposits generated by normal settling of suspended particles. On the inner shelf, during river peak discharges, a short-term thin bottom layer of "yogurt-like" [ FASS (1985) Geomarine Letters, 4, 147-152; FASS (1986) Continental Shelf Research, 6, 189-208] fluid-mud (unit weight lower than 1.3 mg m -3) is supplied, by a bottom nepheloid layer. During stormy periods, this "yogurt-like" layer (about 10 cm thick) partly disappears by resuspension of suspended particulate matter; this is advected, in the bottom nepheloid layer, over the shelf and the canyons within the upper slope.
Outer continental shelf, Beaufort Sea, oil and gas lease sale 170 (proposed notice of sale)
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-12-31
The Minerals Management Service (MMS) is issuing this proposed Notice of Sale under the Outer Continental Shelf (OCS) Lands Act (43 U.S.C. 1331-1356, as amended) and the regulations issued thereunder (30 CFR Part 256). A `Sale Notice Package,` containing this Notice and several supporting and essential documents referenced in the Notice, is available from the MMS Alaska OCS Regional Office Public Information Unit.
An oilspill risk analysis for the North Atlantic outer continental shelf lease area
Smith, Richard Allmon; Slack, James Richard; Davis, Robert K.
1976-01-01
The Federal Government has proposed to lease 1,172,795 acres of Outer Continental Shelf (OCS) lands on Georges Bank off the New England Coast for oil and gas development. Estimated recoverable petroleum resources for the proposed 206 tract sale area range from 180 to 650 million barrels. Contingent upon actual discovery of this quantity of oil, production is expected to span a period of about 20 years. An oilspill risk analysis was conducted to determine relative environmental hazards of developing oil in the North Atlantic Outer Continental Shelf lease area. The study analyzed probability of spill occurrence, likely path of pollutants from spills, and locations in space and time of recreational and biological resources likely to be vulnerable. These results are combined to yield estimates of the overall oilspill risk associated with development of the lease area. (Woodard-USGS)
Butman, Bradford; Bryden, Cynthia G.; Pfirman, Stephanie L.; Strahle, William J.; Noble, Marlene A.
1984-01-01
An instrument system that measures bottom current, temperature, light transmission, and pressure, and that photographs the bottom at 2- to 6-hour intervals has been developed to study sediment transport on the Atlantic Continental Shelf. Instruments have been deployed extensively along the United States East Coast Continental Shelf for periods of from 2 to 6 months to study the frequency, direction, and rate of bottom sediment movement, and the processes causing movement. The time-lapse photographs are used to (1) characterize the bottom benthic community and surface microtopography; (2) monitor changes in the bottom topography and near-bottom water column caused by currents and storms (for example, ripple generation and migration, sediment resuspension); and (3) monitor seasonal changes in the bottom benthic community and qualitative effects of this community on the bottom sediments.
NASA Technical Reports Server (NTRS)
Poole, L. R.
1976-01-01
An initial attempt was made to verify the Langley Research Center and Virginia Institute of Marine Science mid-Atlantic continental-shelf wave refraction model. The model was used to simulate refraction occurring during a continental-shelf remote sensing experiment conducted on August 17, 1973. Simulated wave spectra compared favorably, in a qualitative sense, with the experimental spectra. However, it was observed that most of the wave energy resided at frequencies higher than those for which refraction and shoaling effects were predicted, In addition, variations among the experimental spectra were so small that they were not considered statistically significant. In order to verify the refraction model, simulation must be performed in conjunction with a set of significantly varying spectra in which a considerable portion of the total energy resides at frequencies for which refraction and shoaling effects are likely.
NASA Astrophysics Data System (ADS)
Feely, R. A.; Alin, S. R.; Hales, B. R.; Juranek, L.; Greeley, D.
2012-12-01
The Washington-Oregon continental shelf region is exposed to conditions of low aragonite saturation state during the late spring/early summer upwelling season. However, the extent of its evolution in late summer/early fall has been largely unknown. Along this continental margin, ocean acidification, upwelling, biological productivity, and respiration processes in subsurface waters are major contributors to the variability in dissolved inorganic carbon (DIC), pH and aragonite saturation state. The persistence of water with aragonite saturation state <1 on the continental shelf off Washington and Oregon has been previously identified and could have profound ecological consequences for benthic and pelagic calcifying organisms such as mussels, oysters, abalone, echinoderms, and pteropods. In the late summer of 2012 we studied the extent of acidification conditions employing shipboard cruises and profiling gliders. We conducted several large-scale chemical and hydrographic surveys of the region in order to better understand the interrelationships between these natural and human-induced processes and their effects on aragonite saturation. We will compare the results of these new surveys with our previous work in 2011 and 2007.
Cetacean high-use habitats of the northeast United States continental shelf
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenney, R.D.; Winn, H.E.
1986-04-01
Results of the Cetacean and Turtle Assessment Program previously demonstrated at a qualitative level that specific areas of the continental shelf waters off the northeastern US coast consistently showed high-density utilization by several cetacean species. They have quantified, on a multispecies basis and with adjustment for level of survey effort, the intensity of habitat use by whales and dolphins, and defined areas of especially high-intensity utilization. The results demonstrate that the area off the northeast US, which is used most intensively as cetacean habitat, is the western margin of the Gulf of Maine, from the Great South Channel to Stellwagenmore » Bank and Jeffreys Ledge. Secondary high-use areas include the continental shelf edge and the region around the eastern end of Georges Bank. High-use areas for piseivorous cetaceans are concentrated mainly in the western Gulf of Maine and secondarily at mid-shelf east of the Chesapeake region, for planktivores in the western Gulf of Maine and the southwestern and eastern portions of Georges Bank, and for teuthivores in the western Gulf of Maine and the southwestern and eastern portions of Georges Bank, and for teuthivores along the edge of the shelf. In general, habitat use by cetaceans is highest in spring and summer, and lowest in fall and winter.« less
NASA Astrophysics Data System (ADS)
Roest, W. R.; Herzer, R.; Barker, D. H.; Lafoy, Y.
2005-12-01
The UN Convention on the Law of the Sea allows coastal states to claim a legal continental shelf beyond the 200 nautical miles that constitutes the Exclusive Economic Zone. One of the opportunities presented by UNCLOS article 76 is to align essential - and expensive - data acquisition in poorly mapped shelf regions with scientific research interests, thus maximising data value. The Noucaplac-1 survey that took place in August 2004 in the South Fiji Basin is an example of collaboration between neighboring states aiming to address both UNCLOS article 76 requirements and scientific objectives. The Noucaplac-1 survey was designed by the French EXTRAPLAC (reasoned extension of the continental shelf) program to identify the natural prolongation of the New Caledonian territory along the Loyalty Ridge. At the same time, the environs of the potential extended continental shelf claim was identified by the New Zealand collaborators as a key region for study to improve understanding of the regional tectonic evolution and the survey scope was modified accordingly. This contribution describes the data acquired on board the French RV L'Atalante during the Noucaplac-1 cruise. In addition to the multibeam bathymetric data collected with the EM-12 multibeam echo sounder and showing basement tectonic fabric at the sea floor, high-speed seismic data are of particular interest, as they allow the interpretation of basement morphology in this area that is covered by relatively sparse sediments. Regional magnetic data provide additional evidence for distinct morphotectonic regions that may help a New Caledonian extended continental shelf claim
NASA Astrophysics Data System (ADS)
Freire, J.; González-Gurriarán, E.; Olaso, I.
1992-12-01
Geostatistical methodology was used to analyse spatial structure and distribution of the epibenthic crustaceans Munida intermedia and M. sarsi within sets of data which had been collected during three survey cruises carried out on the Galician continental shelf (1983 and 1984). This study investigates the feasibility of using geostatistics for data collected according to traditional methods and of enhancing such methodology. The experimental variograms were calculated (pooled variance minus spatial covariance between samples taken one pair at a time vs. distance) and fitted to a 'spherical' model. The spatial structure model was used to estimate the abundance and distribution of the populations studied using the technique of kriging. The species display spatial structures, which are well marked during high density periods and in some areas (especially northern shelf). Geostatistical analysis allows identification of the density gradients in space as well as the patch grain along the continental shelf of 16-25 km diameter for M. intermedia and 12-20 km for M. sarsi. Patches of both species have a consistent location throughout the different cruises. As in other geographical areas, M. intermedia and M. sarsi usually appear at depths ranging from 200 to 500 m, with the highest densities in the continental shelf area located between Fisterra and Estaca de Bares. Althouh sampling was not originally designed specifically for geostatistics, this assay provides a measurement of spatial covariance, and shows variograms with variable structure depending on population density and geographical area. These ideas are useful in improving the design of future sampling cruises.
NASA Astrophysics Data System (ADS)
Zhu, Chun; Wagner, Thomas; Pan, Jian-Ming; Pancost, Richard D.
2011-08-01
The fate of organic carbon in marine sediments is closely linked to atmospheric CO2 concentrations and thus to climate variability over geological time scales. The East China Sea (ECS) is characterized not only by massive terrestrial organic matter (TOM) inputs from the Yangtze (Changjiang) River but also by a shallow (<130 m) and broad (>500 km) continental shelf with widespread relict sands, such that it is distinct from other continental margins. We examine the diagenesis of sedimentary TOM and the impacts of relict sands on TOM in the ECS. The results reveal that bulk δ13Corg values correlate with terrestrial biomarker concentrations in muddy and accumulative areas; in contrast, depleted δ13Corg values around -24.5‰ co-occur with almost absent terrestrial biomarkers in sandy/erosional areas. We suggest that mixing of contemporary TOM and marine OM dominates in the muddy/accumulative shelf areas, whereas a putative relict OM, associated with relict sands, appears to be significant in many sandy/erosional shelf areas. Given the global occurrence of relict sands, a persistent amount of relict OC (e.g., 0.1%) may complicate TOM budget calculations. In addition, our observations reveal that TOM is extensively partitioned and degraded in the estuary and continues to be partitioned and degraded during the along-shore and across-shelf transport, which is reflected by decreases in terrestrial biomarker concentrations and increases in degradation indices. This study highlights the unique and dynamic role of shallow and wide continental shelves with massive relict sands on TOM cycling.
NASA Astrophysics Data System (ADS)
Choi, Dong-Lim; Shin, Dong-Hyeok; Kum, Byung-Cheol; Jang, Seok; Cho, Jin-Hyung; Jou, Hyeong-Tae; Jang, Nam-Do
2018-06-01
High-resolution multichannel seismic data were collected to identify depositional sequences on the southwestern shelf of the Ulleung Basin, where a unidirectional ocean current is dominant at water depths exceeding 130 m. Four aggradational stratigraphic sequences with a 100,000-year cycle were recognized since marine isotope stage (MIS) 10. These sequences consist only of lowstand systems tracts (LSTs) and falling-stage systems tracts (FSSTs). Prograding wedge-shaped deposits are present in the LSTs near the shelf break. Oblique progradational clinoforms of forced regressive deposits are present in the FSSTs on the outer continental shelf. Each FSST has non-uniform forced regressional stratal geometries, reflecting that the origins of sediments in each depositional sequence changed when sea level was falling. Slump deposits are characteristically developed in the upper layer of the FSSTs, and this was used as evidence to distinguish the sequence boundaries. The subsidence rates around the shelf break reached as much as 0.6 mm/year since MIS 10, which contributed to the well-preserved depositional sequence. During the Quaternary sea-level change, the water depth in the Korea Strait declined and the intensity of the Tsushima Current flowing near the bottom of the inner continental shelf increased. This resulted in greater erosion of sediments that were delivered to the outer continental shelf, which was the main cause of sediment deposition on the deep, low-angled outer shelf. Therefore, a depositional sequence formation model that consists of only FSSTs and LSTs, excluding highstand systems tracts (HSTs) and transgressive systems tracts (TSTs), best explains the depositional sequence beneath this shelf margin dominated by a geostrophic current.
NASA Astrophysics Data System (ADS)
Choi, Dong-Lim; Shin, Dong-Hyeok; Kum, Byung-Cheol; Jang, Seok; Cho, Jin-Hyung; Jou, Hyeong-Tae; Jang, Nam-Do
2017-11-01
High-resolution multichannel seismic data were collected to identify depositional sequences on the southwestern shelf of the Ulleung Basin, where a unidirectional ocean current is dominant at water depths exceeding 130 m. Four aggradational stratigraphic sequences with a 100,000-year cycle were recognized since marine isotope stage (MIS) 10. These sequences consist only of lowstand systems tracts (LSTs) and falling-stage systems tracts (FSSTs). Prograding wedge-shaped deposits are present in the LSTs near the shelf break. Oblique progradational clinoforms of forced regressive deposits are present in the FSSTs on the outer continental shelf. Each FSST has non-uniform forced regressional stratal geometries, reflecting that the origins of sediments in each depositional sequence changed when sea level was falling. Slump deposits are characteristically developed in the upper layer of the FSSTs, and this was used as evidence to distinguish the sequence boundaries. The subsidence rates around the shelf break reached as much as 0.6 mm/year since MIS 10, which contributed to the well-preserved depositional sequence. During the Quaternary sea-level change, the water depth in the Korea Strait declined and the intensity of the Tsushima Current flowing near the bottom of the inner continental shelf increased. This resulted in greater erosion of sediments that were delivered to the outer continental shelf, which was the main cause of sediment deposition on the deep, low-angled outer shelf. Therefore, a depositional sequence formation model that consists of only FSSTs and LSTs, excluding highstand systems tracts (HSTs) and transgressive systems tracts (TSTs), best explains the depositional sequence beneath this shelf margin dominated by a geostrophic current.
Edwards, B.D.
2002-01-01
The storm-protected continental shelf of Monterey Bay, part of the Monterey Bay National Marine Sanctuary, north-central California, is subject to abundant, episodic sediment input from fluvial sources. North of Monterey Bay, conditions of reduced sediment supply combined with the exposed nature of the shelf provide an effective laboratory for studying the contrasting effects of storm- versus fluvial-dominated conditions on modern sedimentation. Textural analyses performed on surface sediment samples collected from more than 380 box cores and MultiCores??? document the existence of a clearly defined mud belt occupying the mid-shelf throughout the region. Inshore sands combined with these mid-shelf muds represent deposits from modern sedimentation processes. In Monterey Bay, where episodic fluvial input from winter storms dominates sedimentation, the mid-shelf mud belt extends across the shelf to the shelf break. North of Monterey Bay, where sediment loads are reduced and both oceanographic and storm processes dominate, the mid-shelf mud belt is bordered by relict sediments occupying the outer shelf. In the study area, mass accumulation rates established by radiochemical studies support the contention that storm-induced along-shelf processes result in northward transport of sediment within the mud belt. The continuity of transport, however, is interrupted by topographic highs which are barriers or inhibitors to sediment transport created by wrench-style tectonics associated with the San Andreas fault system.
Draut, Amy E.; Hart, Patrick E.; Lorenson, T.D.; Ryan, Holly F.; Wong, Florence L.; Sliter, Ray W.; Conrad, James E.
2009-01-01
Small, steep, uplifting coastal watersheds are prolific sediment producers that contribute significantly to the global marine sediment budget. This study illustrates how sedimentation evolves in one such system where the continental shelf is largely sediment-starved, with most terrestrial sediment bypassing the shelf in favor of deposition in deeper basins. The Santa Barbara-Ventura coast of southern California, USA, is considered a classic area for the study of active tectonics and of Tertiary and Quaternary climatic evolution, interpretations of which depend upon an understanding of sedimentation patterns. High-resolution seismic-reflection data over >570 km2 of this shelf show that sediment production is concentrated in a few drainage basins, with the Ventura and Santa Clara River deltas containing most of the upper Pleistocene to Holocene sediment on the shelf. Away from those deltas, the major factor controlling shelf sedimentation is the interaction of wave energy with coastline geometry. Depocenters containing sediment 5-20 m thick exist opposite broad coastal embayments, whereas relict material (bedrock below a regional unconformity) is exposed at the sea floor in areas of the shelf opposite coastal headlands. Locally, natural hydrocarbon seeps interact with sediment deposition either to produce elevated tar-and-sediment mounds or as gas plumes that hinder sediment settling. As much as 80% of fluvial sediment delivered by the Ventura and Santa Clara Rivers is transported off the shelf (some into the Santa Barbara Basin and some into the Santa Monica Basin via Hueneme Canyon), leaving a shelf with relatively little recent sediment accumulation. Understanding factors that control large-scale sediment dispersal along a rapidly uplifting coast that produces substantial quantities of sediment has implications for interpreting the ancient stratigraphic record of active and transform continental margins, and for inferring the distribution of hydrocarbon resources in relict shelf deposits.
An oilspill risk analysis for the Mid-Atlantic Outer Continental Shelf lease area
Smith, Richard Allmon; Slack, James Richard; Davis, Robert K.
1976-01-01
An oilspill risk analysis was conducted to determine relative environmental impacts of developing oil in different regions of the Mid-Atlantic Outer Continental Shelf lease area. The study analyzed probability of spills, likely path of pollutants from spills, and locations in space and time of recreational and biological resources likely to be vulnerable. These results are combined to yield estimates of the overall oilspill risk associated with development of the lease area. (Woodard-USGS)
Atlantic water variability on the SE Greenland continental shelf and its relationship to SST
NASA Astrophysics Data System (ADS)
Sutherland, D. A.; Straneo, F.; Rosing-Asvid, A.; Stenson, G.; Davidson, F. J.; Hammill, M.
2012-12-01
Interaction of warm, Atlantic-origin water (AW) and colder, polar origin water (PW) advecting southward in the East Greenland Current (EGC) influences the heat content of water entering Greenland's outlet glacial fjords. Here we use depth and temperature data derived from deep-diving seals to map out water mass variability across the continental shelf and to augment existing bathymetric products. We find two dominant modes in the vertical temperature structure: a cold mode, with the typical AW/PW layering observed in the EGC, and a warm mode, where AW is present throughout the water column. The prevalence of these modes varies seasonally and spatially across the continental shelf, implying distinct AW pathways. In addition, we find that satellite sea surface temperatures (SST) correlate significantly with temperatures in the upper 50 m (R=0.54), but this correlation decreases with depth (R=0.22 at 200 m), and becomes insignificant below 250 m. Thus, care must be taken in using SST as a proxy for heat content, as AW mainly resides in these deeper layers. Regional map showing the location of all seal tracks originating from Canada and Greenland (stars). Tracks passing inside (red) or outside (blue) the SE Greenland region (black) were subdivided into continental shelf regions (green boxes) near Sermilik Fjord (SF), Cape Farewell (CF) and Kangerdlugssuaq Fjord (KG). GEBCO bathymetry is contoured at 200, 1000, 2000, and 3000 m.
The formation of a cold-core eddy in the East Australian Current
NASA Astrophysics Data System (ADS)
Macdonald, H. S.; Roughan, M.; Baird, M. E.; Wilkin, J.
2016-02-01
Cold-core eddies (CCEs) frequently form in western boundary currents and can affect continental shelf processes. It is not always clear, however, if baroclinic or barotropic instabilities contribute more to their formation. The Regional Ocean Modelling System (ROMS) is used to investigate the ocean state during the formation of a CCE in the East Australian Current (EAC) during October 2009. The observed eddy initially appeared as a small billow (approx. 50 km in length) that perturbed the landward edge of the EAC. The billow grew into a mesoscale CCE (approx. 100 km in diameter), diverting the EAC around it. A ROMS simulation with a realistic wind field reproduced a similar eddy. This eddy formed from negative vorticity waters found on the continental shelf south of the EAC separation point. A sensitivity analysis is performed whereby the impact of 3 different wind forcing scenarios, upwelling, downwelling, and no winds, are investigated. A CCE formed in all wind scenarios despite the wind induced changes in hydrographic conditions in the continental shelf and slope waters. As such, the source of energy for eddy formation did not come from the interactions of wind with the continental shelf waters. Analysis of strain and energy transformation confirms this by showing that the prevailing source of CCE energy was kinetic energy of the offshore EAC. These results clearly link the formation of the CCE to the swift flowing EAC and barotropic instabilities.
Turner, R Eugene; Rabalais, Nancy N; Justić, Dubravko
2017-01-01
We quantified trends in the 1985 to 2015 summer bottom-water temperature on the northern Gulf of Mexico (nGOM) continental shelf for data collected at 88 stations with depths ranging from 3 to 63 m. The analysis was supplemented with monthly data collected from 1963 to 1965 in the same area. The seasonal summer peak in average bottom-water temperature varied concurrently with air temperature, but with a 2- to 5-month lag. The summer bottom-water temperature declined gradually with depth from 30 oC at stations closest to the shore, to 20 oC at the offshore edge of the study area, and increased an average 0.051 oC y-1 between1963 and 2015. The bottom-water warming in summer for all stations was 1.9 times faster compared to the rise in local summer air temperatures, and 6.4 times faster than the concurrent increase in annual global ocean sea surface temperatures. The annual rise in average summer bottom-water temperatures on the subtropical nGOM continental shelf is comparable to the few published temperature trend estimates from colder environments. These recent changes in the heat storage on the nGOM continental shelf will affect oxygen and carbon cycling, spatial distribution of fish and shrimp, and overall species diversity.
Siemering, Beatrix; Bresnan, Eileen; Painter, Stuart C; Daniels, Chris J; Inall, Mark; Davidson, Keith
2016-01-01
The edge of the North West European Shelf (NWES) is characterised by a steep continental slope and a northward flowing slope current. These topographic/hydrographic features separate oceanic water and shelf water masses hence potentially separate phytoplankton communities. The slope current may facilitate the advective transport of phytoplankton, with mixing at the shelf edge supporting nutrient supply and therefore phytoplankton production. On the west Scottish shelf in particular, little is known about the phytoplankton communities in and around the shelf break and adjacent waters. Hence, to improve our understanding of environmental drivers of phytoplankton communities, biological and environmental data were collected on seven cross-shelf transects across the Malin and Hebridean Shelves during autumn 2014. Density profiles indicated that shelf break and oceanic stations had a 100 m deep mixed surface layer while stations on the shelf were generally well mixed. Analysis of similarity and multidimensional scaling of phytoplankton counts revealed that phytoplankton communities on the shelf were significantly different to those found at the shelf break and at oceanic stations. Shelf stations were dominated by dinoflagellates, with diatoms contributing a maximum of 37% of cells. Shelf break and oceanic stations were also dinoflagellate dominated but displayed a lower species diversity. Significant difference between shelf and shelf break stations suggested that the continental slope limited cross shelf phytoplankton exchange. Northern and southern phytoplankton communities on the shelf were approximately 15% dissimilar while there was no latitudinal gradient for stations along the slope current, suggesting this current provided south to north connectivity. Fitting environmental data to phytoplankton ordination showed a significant relationship between phytoplankton community dissimilarities and nutrient concentrations and light availability on the shelf compared to shelf break and oceanic stations in the study area.
Phytoplankton Distribution in Relation to Environmental Drivers on the North West European Shelf Sea
Siemering, Beatrix; Bresnan, Eileen; Painter, Stuart C.; Daniels, Chris J.; Inall, Mark; Davidson, Keith
2016-01-01
The edge of the North West European Shelf (NWES) is characterised by a steep continental slope and a northward flowing slope current. These topographic/hydrographic features separate oceanic water and shelf water masses hence potentially separate phytoplankton communities. The slope current may facilitate the advective transport of phytoplankton, with mixing at the shelf edge supporting nutrient supply and therefore phytoplankton production. On the west Scottish shelf in particular, little is known about the phytoplankton communities in and around the shelf break and adjacent waters. Hence, to improve our understanding of environmental drivers of phytoplankton communities, biological and environmental data were collected on seven cross-shelf transects across the Malin and Hebridean Shelves during autumn 2014. Density profiles indicated that shelf break and oceanic stations had a 100 m deep mixed surface layer while stations on the shelf were generally well mixed. Analysis of similarity and multidimensional scaling of phytoplankton counts revealed that phytoplankton communities on the shelf were significantly different to those found at the shelf break and at oceanic stations. Shelf stations were dominated by dinoflagellates, with diatoms contributing a maximum of 37% of cells. Shelf break and oceanic stations were also dinoflagellate dominated but displayed a lower species diversity. Significant difference between shelf and shelf break stations suggested that the continental slope limited cross shelf phytoplankton exchange. Northern and southern phytoplankton communities on the shelf were approximately 15% dissimilar while there was no latitudinal gradient for stations along the slope current, suggesting this current provided south to north connectivity. Fitting environmental data to phytoplankton ordination showed a significant relationship between phytoplankton community dissimilarities and nutrient concentrations and light availability on the shelf compared to shelf break and oceanic stations in the study area. PMID:27736920
33 CFR 106.260 - Security measures for access control.
Code of Federal Regulations, 2013 CFR
2013-07-01
... SECURITY MARITIME SECURITY MARINE SECURITY: OUTER CONTINENTAL SHELF (OCS) FACILITIES Outer Continental... unattended spaces that adjoin areas to which OCS facility personnel and visitors have access; (9) Ensure OCS...
33 CFR 106.260 - Security measures for access control.
Code of Federal Regulations, 2012 CFR
2012-07-01
... SECURITY MARITIME SECURITY MARINE SECURITY: OUTER CONTINENTAL SHELF (OCS) FACILITIES Outer Continental... unattended spaces that adjoin areas to which OCS facility personnel and visitors have access; (9) Ensure OCS...
33 CFR 106.260 - Security measures for access control.
Code of Federal Regulations, 2011 CFR
2011-07-01
... SECURITY MARITIME SECURITY MARINE SECURITY: OUTER CONTINENTAL SHELF (OCS) FACILITIES Outer Continental... unattended spaces that adjoin areas to which OCS facility personnel and visitors have access; (9) Ensure OCS...
33 CFR 106.260 - Security measures for access control.
Code of Federal Regulations, 2014 CFR
2014-07-01
... SECURITY MARITIME SECURITY MARINE SECURITY: OUTER CONTINENTAL SHELF (OCS) FACILITIES Outer Continental... unattended spaces that adjoin areas to which OCS facility personnel and visitors have access; (9) Ensure OCS...
33 CFR 106.260 - Security measures for access control.
Code of Federal Regulations, 2010 CFR
2010-07-01
... SECURITY MARITIME SECURITY MARINE SECURITY: OUTER CONTINENTAL SHELF (OCS) FACILITIES Outer Continental... unattended spaces that adjoin areas to which OCS facility personnel and visitors have access; (9) Ensure OCS...
NASA Astrophysics Data System (ADS)
Lastras, G.; Acosta, J.; Muñoz, A.; Canals, M.
2011-05-01
In the framework of the Vulnerable Marine Ecosystems (VME) of the High Seas of the South West Atlantic, large areas of the Argentine Continental Margin (ACM) between 44°30'S and 48°S have been swath-mapped for the first time, obtaining full data coverage of the seafloor in this region between the outermost continental shelf and the middle slope down to 1600 m water depth. The slope is characterized by the presence of smooth terraces (Nagera, Perito Moreno and Piedra Buena) that widen towards the south, limited by morphological steps with evident signs of erosion in the form of scours. These terraces form part of the Argentine contourite depositional systems, generated by the interaction of the northwards flowing Antarctic water masses with the seafloor. Within the studied area, seven canyons and their multiple branches dissect the upper and middle continental slopes, from west to east, across the terraces and the steps. These canyons, which belong to the Patagonia submarine canyon system and are collected at a depth of ~ 3.5 km by a slope-parallel, SSW-NNE-oriented channel known as the Almirante Brown transverse canyon, display a large variety of morphologies. These include incisions from just a dozen of metres to 650 m, straight to highly meandering sections with sharp bends, well-developed levees and walls that reach 35° in slope gradient, hanging branches, conspicuous axial incisions and multiple knickpoints. Only the northernmost canyon indents in the continental shelf, whereas the others start at the limit between the upper and middle slopes, and are often fed by small, straight, leveed gullies. The action of both across-slope processes represented by submarine canyons and along-slope processes represented by terracing and scouring conform the ACM as a peculiar mixed margin, with the presence of both contour and gravity currents at the same place at the same time. We propose that at present, along-slope erosion and transport mainly occurs along the Perito Moreno terrace, whereas across-slope processes are much more dominant in the Nagera terrace. Erosive bedforms such as crescent scours, generated by contour currents, contribute to the progressive bottom-up erosion of the Nagera terrace and act as an initial collector of across-slope transported sediment, that later, due to flow focusing and recurrence, incise and interconnect creating definitive canyons that progress upslope by retrogressive erosion until their head indents the shelf break. Changes in the balance between across-slope and along-slope transport would imply a disequilibrium in the combination of processes leading to canyon formation, producing canyon abandonment, and partial or total filling. These changes could be produced by a variation in the depth of the main interfaces of Antarctic water masses leading to either an increase or a decrease in the erosion and transport capacity of contour currents, and/or by an enhancement of across-slope transport related to an increase of sediment availability.
NASA Astrophysics Data System (ADS)
Oms, Pierre-Emmanuel; Bailly du Bois, Pascal; Dumas, Franck; Lazure, Pascal; Morillon, Mehdi; Solier, Luc; Voiseux, Claire; Le Corre, Cédric; Maire, Donovan
2017-04-01
New measurements of a radioactive tracer (tritium) on the whole continental shelf of the Bay of Biscay during several oceanographic campaigns between 2008 and 2016 allow comparison with results of the plume dispersion from the regional circulation model, MARS3D (Lazure and Dumas, 2008). Seaward dispersion of freshwater in the Bay of Biscay is highly variable in time and depends on many processes like tide, wind, freshwater runoff or water mass stratification. Until now salinity was a useful tracer to describe dispersion of freshwater, but the complexity to account for these different sources require an additional conservative tracer. Tritium (3H) is a radionuclide tracer released as HTO in the Bay of Biscay by nuclear power plant through two French rivers, Loire and Gironde. Tritium inflow from Loire and Gironde are well known thanks to plants operator data and an effort of daily measurements. Indeed an automated and daily integrated sampling system is deployed in the Loire River and the Gironde Estuary. These plumes are clearly detectable over the continental shelf despite very low tritium concentrations (0.05 - 0.5 Bq/L, 0.5 - 5 TU). In order to determine such low tritium concentrations in the Bay of Biscay, we use a mass spectrometer to measure the 3He (gas) produced by radioactive disintegration of tritium after 3He ingrowth (1 - 6 months). The aim of this work is to describes and quantify the dispersion processes occurring in the continental shelf according to seasons. Thanks to assessments of the model dispersion compared to in-situ measurements, quantification of the residential time of freshwater in the continental shelf as well as quantification of their transfer from continental shelf to abyssal plain is possible. The 3H/S ratio will allow an estimation of respective inputs from Loire and Gironde in the bay.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dmitriyevskiy, A.N.; Kireyev, F.A.; Bochko, R.A.
1993-07-01
Oil-saturated granites, with mineral parageneses typical of hydrothermal metasomatism and leaching haloes, have been found near faults in the crystalline basement of the South Vietnam continental shelf. The presence of native silver, barite, zincian copper, and iron chloride indicates a deep origin for the mineralizing fluids. Hydrothermally altered granites are a new possible type of reservoir and considerably broaden the possibilities of oil and gas exploration. 15 refs., 22 figs., 1 tab.
NASA Astrophysics Data System (ADS)
2002-09-01
The Federal Government plans to offer U.S. Outer Continental Shelf (OCS) lands in the Eastern Planning Area of the Gulf of Mexico (GOM) for oil and gas leasing. This report summarizes results of that analysis, the objective of which was to estimate the risk of oil-spill contact to sensitive offshore and onshore environmental resources and socioeconomic features from oil spills accidentally occurring from the OCS activities.
Recent Advances in Bathymetric Surveying of Continental Shelf Regions Using Autonomous Vehicles
NASA Astrophysics Data System (ADS)
Holland, K. T.; Calantoni, J.; Slocum, D.
2016-02-01
Obtaining bathymetric observations within the continental shelf in areas closer to the shore is often time consuming and dangerous, especially when uncharted shoals and rocks present safety concerns to survey ships and launches. However, surveys in these regions are critically important to numerical simulation of oceanographic processes, as bathymetry serves as the bottom boundary condition in operational forecasting models. We will present recent progress in bathymetric surveying using both traditional vessels retrofitted for autonomous operations and relatively inexpensive, small team deployable, Autonomous Underwater Vehicles (AUV). Both systems include either high-resolution multibeam echo sounders or interferometric sidescan sonar sensors with integrated inertial navigation system capabilities consistent with present commercial-grade survey operations. The advantages and limitations of these two configurations employing both unmanned and autonomous strategies are compared using results from several recent survey operations. We will demonstrate how sensor data collected from unmanned platforms can augment or even replace traditional data collection technologies. Oceanographic observations (e.g., sound speed, temperature and currents) collected simultaneously with bathymetry using autonomous technologies provide additional opportunities for advanced data assimilation in numerical forecasts. Discussion focuses on our vision for unmanned and autonomous systems working in conjunction with manned or in-situ systems to optimally and simultaneously collect data in environmentally hostile or difficult to reach areas.
NASA Technical Reports Server (NTRS)
Druon, J.N.; Mannino, A.; Signorini, Sergio R.; McClain, Charles R.; Friedrichs, M.; Wilkin, J.; Fennel, K.
2009-01-01
Continental shelves are believed to play a major role in carbon cycling due to their high productivity. Particulate organic carbon (POC) burial has been included in models as a carbon sink, but we show here that seasonally produced dissolved organic carbon (DOC) on the shelf can be exported to the open ocean by horizontal transport at similar rates (1-2 mol C/sq m/yr) in the southern U.S. Mid-Atlantic Bight (MAB). The dissolved organic matter (DOM) model imbedded in a coupled circulation-biogeochemical model reveals a double dynamics: the progressive release of dissolved organic nitrogen (DON) in the upper layer during summer increases the regenerated primary production by 30 to 300%, which, in turns ; enhances the DOC production mainly from phytoplankton exudation in the upper layer and solubilization of particulate organic matter (POM) deeper in the water column. This analysis suggests that DOM is a key element for better representing the ecosystem functioning and organic fluxes in models because DOM (1) is a major organic pool directly related to primary production, (2) decouples partially the carbon and nitrogen cycles (through carbon excess uptake, POM solubilization and DOM mineralization) and (3) is intimately linked to the residence time of water masses for its distribution and export.
NASA Astrophysics Data System (ADS)
Ohara, Y.; Yoshida, T.; Nishizawa, A.
2013-12-01
The United Nations Commission on the Limits of the Continental Shelf (CLCS) issued its recommendations on Japan's extended continental shelf in April 2012, confirming Japan's rights over the vast areas within the Philippine Sea and Pacific Plates. Japan submitted information on the limits of its continental shelf beyond the EEZ to the CLCS on November 2008, which was the result of 25 years of nation's continental shelf survey project since 1983, involving all of Japan's agency relevant to geosciences. The huge geological and geophysical data obtained through the project give the scientists unprecedented opportunity to study the geology and tectonics of the Philippine Sea and Pacific Plates. In this contribution, we show such an example from the Philippine Sea Plate, relevant to the global mid-ocean ridge problem. Oceanic core complexes (OCC) are dome-shaped bathymetric highs identified in mid-ocean ridges, interpreted as portions of the lower crust and/or upper mantle denuded via low-angle detachment faulting. OCCs are characterized morphologically by axis-normal striations (corrugations, or mullion structure) on the dome, and exposures of mantle peridotite and/or lower crustal gabbro. A strikingly giant OCC (named 'Godzilla Megamullion') was discovered in the Parece Vela Basin by the continental shelf survey project in 2001. Godzilla Megamullion is morphologically the largest OCC in the world, consisting mainly of fertile mantle peridotite along its entire length of over 125 km. Following its discovery in 2001, several academic cruises investigated the structure in detail, providing numerous important findings relevant to mid-ocean ridge tectono-magmatic processes and Philippine Sea evolution, including the slow- to ultraslow-spreading environment for denudation of the detachment fault (< 2.5 cm/y) and associated decreasing degree of partial melting of the peridotites towards the termination of Godzilla Megamullion. In addition to Godzilla Megamullion, several potential OCCs have been discovered in the Philippine Sea Plate by the continental shelf survey project. These are: (1) the ones in the Shikoku Basin spreading axis at around 24 degrees north, (2) the Chaotic Terrain in the Parece Vela Basin, (3) Chaotic Terrain in the West Philippine Basin, near the CBF Rift (formerly known as the Central Basin Fault), (4) Chaotic Terrain in the Kita-Daito Basin, (5) the one in the Shikoku Basin floor to the east of Kyushu-Palau Ridge at 25 degrees north, (6) the Higashi-Ryusei Spur of the Kyushu-Palau Ridge at 26 degrees north, and (7) the one in the Daito Ridge adjoining to the Kida-Daito Basin. OCCs are commonly developed in slow-spreading ridges, providing excellent opportunities as tectonic windows to study the composition and structure of deep oceanic lithosphere. The OCCs in the Philippine Sea Plate in turn provide the opportunities to study the backarc basin lithosphere as well as the continental lithosphere (at the above examples 6 and 7). Although Godzilla Megamullion has been studied very well, the other OCCs are not well documented yet. The next step is to focus on these interesting targets to understand the lithospheric process in the Philippine Sea Plate.
Knebel, Harley J.
1974-01-01
A deductive approach to the problem of determining the movement and effects of spilled oil over the Outer Continental Shelf requires that the potential paths of oil be determined first, in order that critical subareas may be defined for later studies. The paths of spilled oil, in turn, depend primarily on the temporal and spatial variability of four factors: the thermohaline structure of the waters, the circulation of the water, the winds, and the distribution of suspended matter. A review of the existent data concerning these factors for the Baltimore Canyon Trough area (a relatively well studied segment of the Continental Shelf) reveals that the movement and dispersal of potential oil spills cannot be reliably predicted. Variations in the thermohaline structure of waters and in the distribution of suspended matter are adequately known; the uncertainty is due to insufficient wind and storm statistics and to the lack of quantitative understanding of the relationship between the nontidal drift and its basic driving mechanisms. Similar inadequacies should be anticipated for other potentially leasable areas of the shelf because an understanding of the movement of spilled oil has not been the underlying aim of most previous studies.
NASA Technical Reports Server (NTRS)
Steinberg, S. M.; Venkatesan, M. I.; Kaplan, I. R.
1987-01-01
Total organic carbon (TOC), lignin, amino acids, sugars and amino sugars were measured in recent sediments for the continental margin off southern New England. The various organic carbon fractions decreased in concentration with increasing distance from shore. The fraction of the TOC that was accounted for by these major components also decreased with increasing distance from shore. The concentration of lignin indicated that only about 3-5% of the organic carbon in the nearshore sediment was of terrestrial origin. The various fractions were highly correlated, which was consistent with a simple linear mixing model of shelf organic matter with material form the slope and rise and indicated a significant transport of sediment from the continental shelf to the continental slope and rise.
NASA Astrophysics Data System (ADS)
Green, A. N.; Cooper, J. A. G.
2018-02-01
This special issue of Geo-Marine Letters comprises seven contributions to the session "Stratigraphic and morphologic signatures of continental shelves" of the 35th International Geological Congress held in Cape Town (Republic of South Africa) on 27 August-4 September 2016. There is an additional article not presented at the conference but falling into the same general theme. The guest editors are A.N. Green and J.A.G. Cooper. The eight articles address several contemporary themes in continental shelf geology. They include the role of antecedent conditioning on the development of shelf stratigraphy and geomorphology; erosion of submerged shorelines and their preservation during (stepped) postglacial sea-level rise; the role of glacial processes (e.g. iceberg scouring during ice-sheet retreat); and the utility of archival data in addressing contemporary issues such as Holocene climate change and global oceanographic circulation systems. The continental shelf holds important information for understanding past and present global circulation and earth-ice-atmosphere interactions including sea-level change. It is hoped that these themes will spur further research that is slowly coming to the fore in several new and innovative mapping and exploration programmes emerging from an increasing number of coastal nations.
Schwab, William C.; Baldwin, Wayne E.; Denny, Jane F.; Hapke, Cheryl J.; Gayes, Paul T.; List, Jeffrey; Warner, John C.
2014-01-01
The inner-continental shelf off Fire Island, New York was mapped in 2011 using interferometric sonar and high-resolution chirp seismic-reflection systems. The area mapped is approximately 50 km long by 8 km wide, extending from Moriches Inlet to Fire Island Inlet in water depths ranging from 8 to 32 m. The morphology of this inner-continental shelf region and modern sediment distribution patterns are determined by erosion of Pleistocene glaciofluvial sediments during the ongoing Holocene marine transgression; much of the shelf is thus an actively forming ravinement surface. Remnants of a Pleistocene outwash lobe define a submerged headland offshore of central Fire Island. East of the submerged headland, relatively older Pleistocene outwash is exposed over much of the inner-continental shelf and covered by asymmetric, sorted bedforms interpreted to indicate erosion and westward transport of reworked sediment. Erosion of the eastern flank of the submerged Pleistocene headland over the last ~ 8000 years yielded an abundance of modern sand that was transported westward and reworked into a field of shoreface-attached ridges offshore of western Fire Island. West of the submerged headland, erosion of Pleistocene outwash continues in troughs between the sand ridges, resulting in modification of the lower shoreface. Comparison of the modern sand ridge morphology with the morphology of the underlying ravinement surface suggests that the sand ridges have moved a minimum of ~ 1000 m westward since formation. Comparison of modern sediment thickness mapped in 1996–1997 and 2011 allows speculation that the nearshore/shoreface sedimentary deposit has gained sediment at the expense of deflation of the sand ridges.
Interactions of phytoplankton, zooplankton and microorganisms
NASA Astrophysics Data System (ADS)
Pomeroy, L. R.; Paffenhöfer, G.-A.; Yoder, J. A.
We present evidence that there are significant interactions between heterotrophic microorganisms, doliolids and Fritillaria within intrusions of nutrient-rich Gulf Stream water stranding on the continental shelf. During the summer of 1981 cold, nutrient-rich water from below the surface of the Gulf Stream was repeatedly intruded and stranded on the continental shelf off northeastern Florida. On August 6 old, stranded Gulf Stream water depleted of nitrate occupied the lower layer on the outer shelf. The upper water was continental shelf water, older but of undefined age. On August 6 free-living bacteria were >10 6ml -1 everywhere at all depths, an order of magnitude greater than normal bacterial numbers on the northeastern Florida continental shelf. Over 10 days the numbers of free bacteria doubled while bacteria attached to particles increased by a factor of four. The adenylate/chlorophyll ratio showed that phytoplankton dominated the lower layers of intruded water, while the surface water became increasingly dominated by heterotrophic microorganisms (bacteria and protozoa) over 10 days. There were significant, negative correlations between bacteria and doliolids and between bacteria and Fritillaria. Regions of maximum bacterial numbers did not coincide with locations of salp swarms. The increased numbers of bacteria at all depths in a highly stratified system in which most phytoplankton are in the lower layer suggests a diverse source of bacterial growth substrates, some of which involve zooplankton as intermediaries. Production of autotrophs is more than twice that of microheterotrophs on average, but because of their differential distribution, microheterotrophs are the dominant biomass in much of the surface water and may be significant in energy flux to metazoan consumers as well as competitors for mutually useable sources of nutrition.
,
1975-01-01
The area designated for possible oil and gas lease sale in Bureau of Land Management memorandum 3310 #43 (722) and referred to therein as part of the United States South Atlantic Outer Continental Shelf (OCS) contains about 98,000 square kilometres of the continental margin seaward of the 3 mile offshore limit and within the 600 metre isobath. The designated area, offshore of North Carolina, South Carolina, Georgia, and Florida, encompasses parts of three physiographic provinces: the Continental Shelf, the Florida-Hatteras Slope, and the Blake Plateau. The structural framework of the U.3. South Atlantic region is dominated by the Southeast Georgia Embayment --an east-plunging depression recessed into the Atlantic Coastal Plain and shelf between Cape Fear, North Carolina and Jacksonville, Florida. The embayment is bounded to the north by the Cape Fear Arch and to southeast by the Peninsular Arch. Refraction data indicate a minor basement(?) ridge beneath the outer shelf between 30? and 32?N at 80?W. Drill hole data also suggest a gentle fold or accretionary structure (reef?) off the east coast of Florida. Several other structural features have been identified by refraction and reflection techniques and drilling. These are the Yamacraw Uplift, Burton High, Stone Arch, and the Suwannee Channel. Gravity and magnetic anomalies within the area probably result from emplacement of magma bodies along linear features representing fundamental crustal boundaries. Of these anomalies, the most prominent, is a segment of the East Coast Magnetic Anomaly which crosses the coast at Brunswick, Georgia. This anomaly has been interpreted as representing an ancient continental boundary where two formerly separate continental plates collided and were welded together. There may be as much as 5,000 m of sedimentary rocks in the Southeast Georgia Embayment out to the 600 m isobath. Basement rocks beneath the Southeast Georgia Embayment are expected to be similar to those exposed in the Appalachian Piedmont province. Triassic deposits are likely to exist beneath the inner Continental Shelf, and probably consist of nonmarine arkosic sandstones, shales, basalt flows, and diabase intrusions deposited in relatively narrow northeast-trending grabens. Jurassic marine carbonates in the Bahamas grade northward to carbonates, shales, sand, and arkose in North Carolina. Salt may be present in the basal Jurassic section in the Southeast Georgia Embayment. Up to 4,000 m of Jurassic-Lower Cretaceous rocks are expected out to the 600 m water depth. Lower Cretaceous rocks in southern Florida are shallow-water marine limestone and dolomites with beds of anhydrite. In coastal North Carolina the Lower Cretaceous is a marine section made up of shales, sand, and sandy limestone. The Upper Cretaceous is composed almost entirely of marine carbonates in southern Florida grading northward to nonmarine to marginal marine, sandstones and shales with minor amounts of carbonates. In general, Upper Cretaceous rocks will probably maintain a fairly constant thickness (600 m) on the Continental Shelf and grade downdip from terrigeneous sands and shales to more marine chalks, limestones, and dolomites. The Cenozoic rocks are predominantly shallow-water marine carbonates in Florida grading northward into a marginal marine to marine clastic facies composed of sands, marls, and limestones. The offshore Cenozoic section is expected to range in thickness from 600 to 1100 m. A reconstruction of the geologic history suggests that the present continental margin is a result of a collision of the North American and African continental plates during late Paleozoic time and later modification during Late Triassic time when the continental plates separated, forming the present Atlantic Ocean. No commercial production of hydrocarbons has been developed on the Atlantic Coastal Plain immediately adjacent to the studied area even though hydrocarbon shows have been encountered in ons
NASA Astrophysics Data System (ADS)
Caricchi, C.; Lucchi, R. G.; Sagnotti, L.; Macrì, P.; Morigi, C.; Melis, R.; Caffau, M.; Rebesco, M.; Hanebuth, T. J. J.
2018-01-01
Paleomagnetic and rock magnetic data were measured on glaciomarine silty-clay successions along an E-W sediment-core transect across the continental shelf and slope of the Kveithola paleo-ice stream system (south of Svalbard, north-western Barents Sea), representing a stratigraphic interval spanning the last deglaciation and the Holocene. The records indicate that magnetite is the main magnetic mineral and that magnetic minerals are distinctly less abundant on the shelf than at the continental slope. The paleomagnetic properties allow for the reconstruction of a well-defined characteristic remanent magnetization (ChRM) throughout the sedimentary successions. The stratigraphic trends of rock magnetic and paleomagnetic parameters are used for a shelf-slope core correlation and sediment facies analysis is applied for depositional processes reconstruction. The new paleomagnetic records compare to the PSV and RPI variation predicted for the core sites by a simulation using the global geomagnetic field variation models SHA.DIF.14k and CALS7K.2 and closest PSV and RPI regional stack curves. The elaborated dataset, corroborated by available 14C ages, provides a fundamental chronological framework to constrain the coupling of shelf-slope sedimentary processes and environmental changes in the NW Barents Sea region during and after deglaciation.
Minimum distribution of subsea ice-bearing permafrost on the US Beaufort Sea continental shelf
Brothers, Laura L.; Hart, Patrick E.; Ruppel, Carolyn D.
2012-01-01
Starting in Late Pleistocene time (~19 ka), sea level rise inundated coastal zones worldwide. On some parts of the present-day circum-Arctic continental shelf, this led to flooding and thawing of formerly subaerial permafrost and probable dissociation of associated gas hydrates. Relict permafrost has never been systematically mapped along the 700-km-long U.S. Beaufort Sea continental shelf and is often assumed to extend to ~120 m water depth, the approximate amount of sea level rise since the Late Pleistocene. Here, 5,000 km of multichannel seismic (MCS) data acquired between 1977 and 1992 were examined for high-velocity (>2.3 km s−1) refractions consistent with ice-bearing, coarse-grained sediments. Permafrost refractions were identified along <5% of the tracklines at depths of ~5 to 470 m below the seafloor. The resulting map reveals the minimum extent of subsea ice-bearing permafrost, which does not extend seaward of 30 km offshore or beyond the 20 m isobath.
Large and giant hydrocarbon accumulations in the transitional continent-ocean zone
NASA Astrophysics Data System (ADS)
Khain, V. E.; Polyakova, I. D.
2008-05-01
The petroleum resource potential is considered for the Atlantic, West Pacific, and East Pacific types of deepwater continental margins. The most considerable energy resources are concentrated at the Atlantic-type passive margins in the zone transitional to the ocean. The less studied continental slope of backarc seas of the generally active margins of the West Pacific type is currently not so rich in discoveries as the Atlantic-type margin, but is not devoid of certain expectations. In some of their parameters, the margins bounded by continental slopes may be regarded as analogs of classical passive margins. At the margins of the East Pacific type, the petroleum potential is solely confined to transform segments. In the shelf-continental-slope basins of the rift and pull-apart nature, petroleum fields occur largely in the upper fan complex, and to a lesser extent in the lower graben (rift) complex. In light of world experience, the shelf-continental-slope basins of the Arctic and Pacific margins of Russia are evaluated as highly promising.
NASA Astrophysics Data System (ADS)
Kang, S. G.; Hong, J. K.; Jin, Y. K.; Jang, U.; Niessen, F.; Baranov, B.
2017-12-01
2016 IBRV ARAON Arctic Cruise Leg-2, Expedition ARA07C was a multidisciplinary undertaking carried out in the East Siberian Sea (ESS) from August 25 to September 10, 2016. The program was conducted as a collaboration between the Korea Polar Research Institute (KOPRI), P.P. Shirshov Institute of Oceanology (IORAS), and Alfred Wegener Institute (AWI). During this expedition, the multi-channel seismic (MCS) data were acquired on the continental shelf and the upper slope of the ESS, totaling 3 lines with 660 line-kilometers. The continental shelf of ESS is one of the widest shelf seas in the world and it is believed to cover the largest area of sub-sea permafrost in the Arctic. According to the present knowledge of the glacial history of the western Arctic Ocean, it is likely that during the LGM with a sea level approximately 120 m below present, the entire shelf area of the ESS was exposed to very cold air temperatures so that thick permafrost should have formed. Indeed, in water depths shallower than 80 m, sub-bottom profiles in the ESS recorded from the shelf edge to a latitude of 74°30' N in 60 m water depth exhibited acoustic facies, suggesting that at least relicts of submarine permafrost are present. In order to identify the existence and/or non-existence of subsea permafrost in our study area, we analyze the MCS data using the Laplace domain full waveform inversion (FWI). In case of the Canadian continental shelf of the Beaufort Sea, subsea permafrost has high seismic velocity values (over 2.6 km/sec) and strong refraction events were found in the MCS shotgathers. However, in the EES our proposed P-wave velocity models derived from FWI have neither found high velocity structures (over 2.6 km/sec) nor indicate strong refraction events by subsea permafrost. Instead, in 300 m depth below sea floor higher P-wave velocity structures (1.8 2.2 km/s) than normal subsea sediment layers were found, which are interpreted as cemented strata by glaciation activities.
Evolution of Nonlinear Internal Waves in China Seas
NASA Technical Reports Server (NTRS)
Liu, Antony K.; Hsu, Ming-K.; Liang, Nai K.
1997-01-01
Synthetic Aperture Radar (SAR) images from ERS-I have been used to study the characteristics of internal waves of Taiwan in the East China Sea, and east of Hainan Island in the South China Sea. Rank-ordered packets of internal solitons propagating shoreward from the edge of the continental shelf were observed in the SAR images. Based on the assumption of a semidiurnal tidal origin, the wave speed can be estimated and is consistent with the internal wave theory. By using the SAR images and hydrographic data, internal waves of elevation have been identified in shallow water due to a thicker mixed layer as compared with the bottom layer on the continental shelf. The generation mechanism includes the influences of the tide and the Kuroshio intrusion across the continental shelf for the formations of elevation internal waves. The effects of water depth on the evolution of solitons and wave packets are modeled by nonlinear Kortweg-deVries (KdV) type equation and linked to satellite image observations. The numerical calculations of internal wave evolution on the continental shelf have been performed and compared with the SAR observations. For a case of depression waves in deep water, the solitons first disintegrate into dispersive wave trains and then evolve to a packet of elevation waves in the shallow water area after they pass through a turning point of approximately equal layer depths has been observed in the SAR image and simulated by numerical model.
NASA Astrophysics Data System (ADS)
Mignard, Salomé; Mulder, Thierry; Martinez, Philippe; Garlan, Thierry
2016-04-01
In many cases (Hedges et al., 1995, Xing et al., 2011) the supply of terrestrial organic matter (OM) in the oceanic environment is confined to the continental and upper slope of continental margins. However, some recent studies (Huc et al., 2001, Baudin et al., 2010, Biscara et al., 2011, Stetten et al., 2015) demonstrated that significant amounts of continental OM can be transported and deposited in deep sea sediments. This transfer is more efficient in turbiditic systems which are linked to important river deltas. In such systems, the terrigenous influx are important and the downslope sediment-laden currents can indeed transport and rapidly bury important quantities of TOM transferred from the river mouth and the shelf to the abyssal plain. The turbiditic system associated with the Ogooué River offshore Gabon has been selected to study more precisely the modalities of transfer of continental OM from the shelf to the deep offshore. The works focuses on the concentration of OM in both hemipelagites and turbidites as well as the different parameters influencing the spatial distribution and concentration. For this study 10 cores located along the system from the continental shelf to the distal lobes have been selected. The quantity of OM in the sediments as well as its origin (continental vs marine) have been measured using bulk geochemical analyses (% OC, δ13Corg). The stratigraphy of the cores was determined using a combination of planktonic foraminiferal assemblages, δ18O on benthic foraminifers and 14C dates on planktonic foraminifers, and calcium carbonate content calibrated with XRF measurements. The studied cores contain various amounts of organic carbon ranging from 0.7wt% to more than 9wt%. The highest contents are found in turbidite beds where woody detritus and well preserved fragmentary leaf debris are concentrated. In the hemipelagic facies, organic matter is composed of a mixture of marine and land derived organic matter associated with clay-size sediments. This organic sedimentation is highly sensitive to the variations of the sea level due to the alternation between glacial and interglacial times. Glacial periods are characterized by higher amounts of organic matter in hemipelagic deposits, with a higher contribution of continental material, and by the presence of frequent organic rich turbiditic beds. On the contrary, during interglacial periods very few turbiditic events are recorded and the OM in hemipelagic sediments is mainly of marine origin and in lesser quantity. When the sea-level is high, the Ogooué delta is disconnected from the canyon heads and the sediments delivered by the river are deposited on the shelf and mobilized by the strong South-North coastal drift currents. During low sea-level periods, the river discharges its sediments rich in terrestrial OM directly in the canyons heads bypassing the shelf. The low sea level also generates increased erosion of the shelf sediments containing globally high rate of reworked continental OM.
Sediment fluxes of dissolved inorganic carbon (DIC), O2, nutrients, and N2 (denitrification) were measured on the Louisiana Continental Shelf during six cruises from 2005 to 2007. On each cruise, three to seven stations were occupied in regions of the shelf that experience summer...
U.s. Geological survey core drilling on the atlantic shelf.
Hathaway, J C; Poag, C W; Valentine, P C; Manheim, F T; Kohout, F A; Bothner, M H; Miller, R E; Schultz, D M; Sangrey, D A
1979-11-02
The first broad program of scientific shallow drilling on the U.S. Atlantic continental shelf has delineated rocks of Pleistocene to Late Cretaceous age, including phosphoritic Miocene strata, widespread Eocene carbonate deposits that serve as reflective seismic markers, and several regional unconformities. Two sites, off Maryland and New Jersey, showed light hydrocarbon gases having affinity to mature petroleum. Pore fluid studies showed that relatively fresh to brackish water occurs beneath much of the Atlantic continental shelf, whereas increases in salinity off Georgla and beneath the Florida-Hatteras slope suggest buried evaporitic strata. The sediment cores showed engineering properties that range from good foundation strength to a potential for severe loss of strength through interaction between sediments and man-made structures.
Southeastern U.S.A. Continental Shelf Respiratory Rates Revisited
NASA Technical Reports Server (NTRS)
Sheldon, Joan E.; Griffith, Peter C.; Peters Francesc; Sheldon, Wade M., Jr.; Blanton, Jackson O.; Amft, Julie; Pomeroy, Lawrence R.
2010-01-01
Respiratory rates on the U. S. southeastern continental shelf have been estimated several times by different investigators, most recently by Jiang et al. (Biogeochemistry 98:101-113, 2010) who report lower mean rates thanwere found in earlier work and attribute the differences to analytical error in all methods used in earlier studies. The differences are, instead, attributable to the differences in the geographical scope of the studies. The lower estimates of regional organic carbon flux of Jiang et al. (Biogeochemistry 98:101-113, 2010) are a consequence of their extrapolation of data from a small portion of the shelf to the entire South Atlantic Bight. This comment examines the methodologies used as well as the variability of respiratory rates in this region over space and time.
NASA Astrophysics Data System (ADS)
Mannino, Antonio; Signorini, Sergio R.; Novak, Michael G.; Wilkin, John; Friedrichs, Marjorie A. M.; Najjar, Raymond G.
2016-02-01
Continental margins play an important role in global carbon cycle, accounting for 15-21% of the global marine primary production. Since carbon fluxes across continental margins from land to the open ocean are not well constrained, we undertook a study to develop satellite algorithms to retrieve dissolved organic carbon (DOC) and combined these satellite data with physical circulation model products to quantify the shelf boundary fluxes of DOC for the U.S. Middle Atlantic Bight (MAB). Satellite DOC was computed through seasonal relationships of DOC with colored dissolved organic matter absorption coefficients, which were derived from an extensive set of in situ measurements. The multiyear time series of satellite-derived DOC stocks (4.9 Teragrams C; Tg) shows that freshwater discharge influences the magnitude and seasonal variability of DOC on the continental shelf. For the 2010-2012 period studied, the average total estuarine export of DOC into the MAB shelf is 0.77 Tg C yr-1 (year). The integrated DOC tracer fluxes across the shelf boundaries are 12.1 Tg C yr-1 entering the MAB from the southwest alongshore boundary, 18.5 Tg C yr-1 entering the MAB from the northeast alongshore boundary, and 29.0 Tg C yr-1 flowing out of the MAB across the entire length of the 100 m isobath. The magnitude of the cross-shelf DOC flux is quite variable in time (monthly) and space (north to south). The highly dynamic exchange of water along the shelf boundaries regulates the DOC budget of the MAB at subseasonal time scales.
NASA Astrophysics Data System (ADS)
O'Cofaigh, Colm; Callard, S. Louise; Benetti, Sara; Chiverell, Richard C.; Saher, Margot; van Landeghem, Katrien; Livingstone, Stephen J.; Scourse, James; Clark, Chris D.
2015-04-01
The record of glaciation on the continental shelf west of Ireland has, until recently, been relatively poorly studied. The UK NERC funded project BRITICE-CHRONO collected marine geophysical data in the form of multibeam swath bathymetry and sub-bottom profiles supplemented by over 50 vibro- and piston cores across the continental shelf west of Ireland during cruise JC106 of the RRS James Cook in 2014. Across the western Irish shelf, offshore of counties Galway and Clare, a series of large arcuate moraines record the former presence of a grounded ice sheet on the shelf. However, geophysical data from further to the west across the Porcupine Bank show a series of ridges and wedge-shaped sedimentary features whose form is consistent with an origin as moraines and/or grounding-zone wedges. Sediment cores from several of these landforms recovered stiff, massive diamictons containing reworked shells that are interpreted as subglacial tills. Cores from the eastern Porcupine Bank recovered laminated muds with cold-water glacimarine foraminifera, in some cases overlying till. Collectively the geophysical and sedimentary data imply the presence of grounded ice across the northern Porcupine Bank and thus much further west on the Irish margin than has previously been considered. This ice underwent retreat in a glacimarine setting. The large 'Olex Moraine' on the western Irish shelf is thus interpreted as recessional feature. Work is currently underway to dates these features and to obtain a retreat chronology for this sector of the last British-Irish Ice Sheet.
Mannino, Antonio; Signorini, Sergio R; Novak, Michael G; Wilkin, John; Friedrichs, Marjorie A M; Najjar, Raymond G
2016-02-01
Continental margins play an important role in global carbon cycle, accounting for 15-21% of the global marine primary production. Since carbon fluxes across continental margins from land to the open ocean are not well constrained, we undertook a study to develop satellite algorithms to retrieve dissolved organic carbon (DOC) and combined these satellite data with physical circulation model products to quantify the shelf boundary fluxes of DOC for the U.S. Middle Atlantic Bight (MAB). Satellite DOC was computed through seasonal relationships of DOC with colored dissolved organic matter absorption coefficients, which were derived from an extensive set of in situ measurements. The multiyear time series of satellite-derived DOC stocks (4.9 Teragrams C; Tg) shows that freshwater discharge influences the magnitude and seasonal variability of DOC on the continental shelf. For the 2010-2012 period studied, the average total estuarine export of DOC into the MAB shelf is 0.77 Tg C yr -1 (year). The integrated DOC tracer fluxes across the shelf boundaries are 12.1 Tg C yr -1 entering the MAB from the southwest alongshore boundary, 18.5 Tg C yr -1 entering the MAB from the northeast alongshore boundary, and 29.0 Tg C yr -1 flowing out of the MAB across the entire length of the 100 m isobath. The magnitude of the cross-shelf DOC flux is quite variable in time (monthly) and space (north to south). The highly dynamic exchange of water along the shelf boundaries regulates the DOC budget of the MAB at subseasonal time scales.
The Physical Oceanography of Australia's Sunshine Coast
NASA Astrophysics Data System (ADS)
Ribbe, Joachim
2017-04-01
Australia's Sunshine coast is located to the south of the Great Barrier Reef and Fraser Island between about 25 oS to 28 oS. With a width of nearly 70-80 km, the eastern Australian continental shelf is at its widest here. The shelf region is referred to as the Southeast Queensland Marine Coastal Zone due to its unique physical oceanographic characteristics. The most prominent large-scale oceanic feature is the southward flowing East Australian Current (EAC). It forms to the north of Fraser Island from Coral Sea outflows, intensifies, and follows the continental shelf as a swift continental shelf hugging current but variable in strength; stronger in the southern hemisphere summer and weaker in winter. Little attention has been paid to the physical oceanography of this region, although important physical processes take place that drive regional marine environmental conditions, drive cross-shelf exchanges and interactions with the EAC, and that represent marine connectivity processes significant to the larger scale eastern Australian fisheries. This presentation reviews recent discoveries that include the Southeast Fraser Island Upwelling System, the Fraser Island Gyre, and document the role of cyclonic mesoscale eddies in driving cross-shelf exchanges and contribute to the formation of the Fraser Island Gyre. The Southeast Fraser Island Upwelling System appears to be predominately driven by the interaction of the EAC with the continental shelf leading to the establishment of one of eight important marine ecological hotspots along the east Australian coast. The Fraser Island Gyre is most prominent during the southern hemisphere autumn and winter months. It is characterised by on-shelf northerly flow, turning eastward south of Fraser Island before joining the EAC. It emerges that cyclonic eddy formation as well as the south-easterly trade winds drive the gyre's establishment and strength. A census of short-lived (7-28 days) cyclonic eddies, the first for any western boundary current region, found that the Southeast Queensland Marine Coastal Zone appears to be characterised by the highest number of eddies found along the east Australian Coast. About 43% of all eddies or about 4-5 per year were detected and tracked in this region. All these recent discoveries were made possible by analysing data provided via Australia's Integrated Marine Observing System (IMOS). A future effort is to be made to obtain additional in-situ data in order to support these new findings.
Cyclonic entrainment of preconditioned shelf waters into a frontal eddy
NASA Astrophysics Data System (ADS)
Everett, J. D.; Macdonald, H.; Baird, M. E.; Humphries, J.; Roughan, M.; Suthers, I. M.
2015-02-01
The volume transport of nutrient-rich continental shelf water into a cyclonic frontal eddy (entrainment) was examined from satellite observations, a Slocum glider and numerical simulation outputs. Within the frontal eddy, parcels of water with temperature/salinity signatures of the continental shelf (18-19°C and >35.5, respectively) were recorded. The distribution of patches of shelf water observed within the eddy was consistent with the spiral pattern shown within the numerical simulations. A numerical dye tracer experiment showed that the surface waters (≤50 m depth) of the frontal eddy are almost entirely (≥95%) shelf waters. Particle tracking experiments showed that water was drawn into the eddy from over 4° of latitude (30-34.5°S). Consistent with the glider observations, the modeled particles entrained into the eddy sunk relative to their initial position. Particles released south of 33°S, where the waters are cooler and denser, sunk 34 m deeper than their release position. Distance to the shelf was a critical factor in determining the volume of shelf water entrained into the eddy. Entrainment reduced to 0.23 Sv when the eddy was furthest from the shelf, compared to 0.61 Sv when the eddy was within 10 km of the shelf. From a biological perspective, quantifying the entrainment of shelf water into frontal eddies is important, as it is thought to play a significant role in providing an offshore nursery habitat for coastally spawned larval fish.
Karl, Herman A.; Carlson, P.R.
1987-01-01
Samples of total suspended matter (TSM) were collected at the surface over the northern outer continental margin of the Bering Sea during the summers of 1980 and 1981. Volume concentrations of surface TSM averaged 0.6 and 1.1 mg l-1 for 1980 and 1981, respectively. Organic matter, largely plankton, made up about 65% of the near-surface TSM for both years. Distributions of TSM suggested that shelf circulation patterns were characterized either by meso- and large- scale eddies or by cross-shelf components of flow superimposed on a general northwesterly net drift. These patterns may be caused by large submarine canyons which dominate the physiography of this part of the Bering Sea continental margin. ?? 1987.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, C.M.; Johnson, W.R.; Marshall, C.F.
1995-01-01
The Federal Government has proposed to offer Outer Continental Shelf lands in the Gulf of Alaska/Yakutat for oil and gas leasing. Because oil spills may occur from activities associated with offshore oil production, the Minerals Management Service conducts a formal risk assessment. The report summarizes results of an oil-spill risk analysis conducted for OCS Lease Sale 158, Gulf of Alaska/Yakutat. The objective of this analysis was to estimate relative risks associated with oil and gas production for the proposed lease sale.
NASA Technical Reports Server (NTRS)
Poole, L. R.
1976-01-01
The Langley Research Center and Virginia Institute of Marine Science wave refraction computer model was applied to the Baltimore Canyon region of the mid-Atlantic continental shelf. Wave refraction diagrams for a wide range of normally expected wave periods and directions were computed by using three bottom topography approximation techniques: quadratic least squares, cubic least squares, and constrained bicubic interpolation. Mathematical or physical interpretation of certain features appearing in the computed diagrams is discussed.
NASA Technical Reports Server (NTRS)
Klemas, V. (Principal Investigator); Davis, G. R.; Wang, H.
1975-01-01
The author has identified the following significant results. An integrated satellite-aircraft-drogue approach was developed which employs remotely tracked expendable drogues together with satellite and aircraft observations of oil slicks, waste plumes, and natural tracers, such as suspended sediment. Tests conducted on the Continental Shelf and in Delaware Bay indicate that the system provides a cost effective means of monitoring current circulation and verifying oil slick and ocean waste dispersion models even under severe environmental conditions.
Mean Lagrangian drift in continental shelf waves
NASA Astrophysics Data System (ADS)
Drivdal, M.; Weber, J. E. H.
2012-04-01
The time- and depth-averaged mean drift induced by barotropic continental shelf waves (CSW's) is studied theoretically for idealized shelf topography by calculating the mean volume fluxes to second order in wave amplitude. The waves suffer weak spatial damping due to bottom friction, which leads to radiation stress forcing of the mean fluxes. In terms of the total wave energy density E¯ over the shelf region, the radiation stress tensor component S¯11 for CSW's is found to be different from that of shallow water surface waves in a non-rotating ocean. For CSW's, the ratio ¯S11/¯E depends strongly on the wave number. The mean Lagrangian flow forced by the radiation stress can be subdivided into a Stokes drift and a mean Eulerian drift current. The magnitude of the latter depends on the ratio between the radiation stress and the bottom stress acting on the mean flow. When the effect of bottom friction acts equally strong on the waves and the mean current, calculations for short CSW's show that the Stokes drift and the friction-dependent wave-induced mean Eulerian current varies approximately in anti-phase over the shelf, and that the latter is numerically the largest. For long CSW's they are approximately in phase. In both cases the mean Lagrangian current, which is responsible for the net particle drift, has its largest numerical value at the coast on the shallow part of the shelf. Enhancing the effect of bottom friction on the Eulerian mean flow, results in a general current speed reduction, as well as a change in spatial structure for long waves. Applying realistic physical parameters for the continental shelf west of Norway, calculations yield along-shelf mean drift velocities for short CSW's that may be important for the transport of biological material, neutral tracers, and underwater plumes of dissolved oil from deep water drilling accidents.
Radiation stress and mean drift in continental shelf waves
NASA Astrophysics Data System (ADS)
Weber, Jan Erik H.; Drivdal, Magnus
2012-03-01
The time- and depth-averaged mean drift induced by barotropic continental shelf waves (CSW's) is studied theoretically for idealized shelf topography by calculating the mean volume fluxes to second order in wave amplitude. The waves suffer weak spatial damping due to bottom friction, which leads to radiation stress forcing of the mean fluxes. In terms of the total wave energy density E̅̅ over the shelf region, the radiation stress tensor component S̅11 for CSW's is found to be different from that of shallow water surface waves in a non-rotating ocean. For CSW's, the ratio S̅11/E̅ depends strongly on the wave number. The mean Lagrangian flow forced by the radiation stress can be subdivided into a Stokes drift and a mean Eulerian drift current. The magnitude of latter depends on ratio between the radiation stress and the bottom stress acting on the mean flow. When the effect of bottom friction acts equally strong on the waves and the mean current, calculations for short CSW's show that the Stokes drift and the friction-dependent wave-induced mean Eulerian current varies approximately in anti-phase over the shelf, and that the latter is numerically the largest. For long CSW's they are approximately in phase. In both cases the mean Lagrangian current, which is responsible for the net particle drift, has its largest numerical value at the coast on the shallow part of the shelf. Enhancing the effect of bottom friction on the Eulerian mean flow, results in a general current speed reduction, as well as a change in spatial structure for long waves. Applying realistic physical parameters for the continental shelf west of Norway, calculations yield along-shelf mean drift velocities for short CSW's that may be important for the transport of biological material, neutral tracers, and underwater plumes of dissolved oil from deepwater drilling accidents.
Background/Objectives. The Palos Verdes Shelf (PVS) Superfund site is in over 50 meters of water on the continental shelf and slope off the coast of southern California (USA). The site includes over 25 km2 of sediments contaminated over several decades by municipal treatment pla...
The structure and stratigraphy of deepwater Sarawak, Malaysia: Implications for tectonic evolution
NASA Astrophysics Data System (ADS)
Madon, Mazlan; Kim, Cheng Ly; Wong, Robert
2013-10-01
The structural-stratigraphic history of the North Luconia Province, Sarawak deepwater area, is related to the tectonic history of the South China Sea. The Sarawak Basin initiated as a foreland basin as a result of the collision of the Luconia continental block with Sarawak (Sarawak Orogeny). The foreland basin was later overridden by and buried under the prograding Oligocene-Recent shelf-slope system. The basin had evolved through a deep foreland basin ('flysch') phase during late Eocene-Oligocene times, followed by post-Oligocene ('molasse') phase of shallow marine shelf progradation to present day. Seismic interpretation reveals a regional Early Miocene Unconformity (EMU) separating pre-Oligocene to Miocene rifted basement from overlying undeformed Upper Miocene-Pliocene bathyal sediments. Seismic, well data and subsidence analysis indicate that the EMU was caused by relative uplift and predominantly submarine erosion between ˜19 and 17 Ma ago. The subsidence history suggests a rift-like subsidence pattern, probably with a foreland basin overprint during the last 10 Ma. Modelling results indicate that the EMU represents a major hiatus in the sedimentation history, with an estimated 500-2600 m of missing section, equivalent to a time gap of 8-10 Ma. The EMU is known to extend over the entire NW Borneo margin and is probably related to the Sabah Orogeny which marks the cessation of sea-floor spreading in the South China Sea and collision of Dangerous Grounds block with Sabah. Gravity modelling indicates a thinned continental crust underneath the Sarawak shelf and slope and supports the seismic and well data interpretation. There is a probable presence of an overthrust wedge beneath the Sarawak shelf, which could be interpreted as a sliver of the Rajang Group accretionary prism. Alternatively, magmatic underplating beneath the Sarawak shelf could equally explain the free-air gravity anomaly. The Sarawak basin was part of a remnant ocean basin that was closed by oblique collision along the NW Borneo margin. The closure started in the Late Eocene in Sarawak and moved progressively northeastwards into Sabah until the Middle Miocene. The present-day NW Sabah margin may be a useful analogue for the Oligocene-Miocene Sarawak foreland basin.
Inner-shelf ocean dynamics and seafloor morphologic changes during Hurricane Sandy
Warner, John C.; Schwab, William C.; List, Jeffrey; Safak, Ilgar; Liste, Maria; Baldwin, Wayne E.
2017-01-01
Hurricane Sandy was one of the most destructive hurricanes in US history, making landfall on the New Jersey coast on Oct 30, 2012. Storm impacts included several barrier island breaches, massive coastal erosion, and flooding. While changes to the subaerial landscape are relatively easily observed, storm-induced changes to the adjacent shoreface and inner continental shelf are more difficult to evaluate. These regions provide a framework for the coastal zone, are important for navigation, aggregate resources, marine ecosystems, and coastal evolution. Here we provide unprecedented perspective regarding regional inner continental shelf sediment dynamics based on both observations and numerical modeling over time scales associated with these types of large storm events. Oceanographic conditions and seafloor morphologic changes are evaluated using both a coupled atmospheric-ocean-wave-sediment numerical modeling system and observation analysis from a series of geologic surveys and oceanographic instrument deployments focused on a region offshore of Fire Island, NY. The geologic investigations conducted in 2011 and 2014 revealed lateral movement of sedimentary structures of distances up to 450 m and in water depths up to 30 m, and vertical changes in sediment thickness greater than 1 m in some locations. The modeling investigations utilize a system with grid refinement designed to simulate oceanographic conditions with progressively increasing resolutions for the entire US East Coast (5-km grid), the New York Bight (700-m grid), and offshore of Fire Island, NY (100-m grid), allowing larger scale dynamics to drive smaller scale coastal changes. Model results in the New York Bight identify maximum storm surge of up to 3 m, surface currents on the order of 2 ms-1 along the New Jersey coast, waves up to 8 m in height, and bottom stresses exceeding 10 Pa. Flow down the Hudson Shelf Valley is shown to result in convergent sediment transport and deposition along its axis. Modeled sediment redistribution along Fire Island showed erosion across the crests of inner shelf sand ridges and sedimentation in adjacent troughs, consistent with the geologic observations.
Inner-shelf ocean dynamics and seafloor morphologic changes during Hurricane Sandy
NASA Astrophysics Data System (ADS)
Warner, John C.; Schwab, William C.; List, Jeffrey H.; Safak, Ilgar; Liste, Maria; Baldwin, Wayne
2017-04-01
Hurricane Sandy was one of the most destructive hurricanes in US history, making landfall on the New Jersey coast on October 30, 2012. Storm impacts included several barrier island breaches, massive coastal erosion, and flooding. While changes to the subaerial landscape are relatively easily observed, storm-induced changes to the adjacent shoreface and inner continental shelf are more difficult to evaluate. These regions provide a framework for the coastal zone, are important for navigation, aggregate resources, marine ecosystems, and coastal evolution. Here we provide unprecedented perspective regarding regional inner continental shelf sediment dynamics based on both observations and numerical modeling over time scales associated with these types of large storm events. Oceanographic conditions and seafloor morphologic changes are evaluated using both a coupled atmospheric-ocean-wave-sediment numerical modeling system that covered spatial scales ranging from the entire US east coast (1000 s of km) to local domains (10 s of km). Additionally, the modeled response for the region offshore of Fire Island, NY was compared to observational analysis from a series of geologic surveys from that location. The geologic investigations conducted in 2011 and 2014 revealed lateral movement of sedimentary structures of distances up to 450 m and in water depths up to 30 m, and vertical changes in sediment thickness greater than 1 m in some locations. The modeling investigations utilize a system with grid refinement designed to simulate oceanographic conditions with progressively increasing resolutions for the entire US East Coast (5-km grid), the New York Bight (700-m grid), and offshore of Fire Island, NY (100-m grid), allowing larger scale dynamics to drive smaller scale coastal changes. Model results in the New York Bight identify maximum storm surge of up to 3 m, surface currents on the order of 2 ms-1 along the New Jersey coast, waves up to 8 m in height, and bottom stresses exceeding 10 Pa. Flow down the Hudson Shelf Valley is shown to result in convergent sediment transport and deposition along its axis. Modeled sediment redistribution along Fire Island showed erosion across the crests of inner shelf sand ridges and sedimentation in adjacent troughs, consistent with the geologic observations.
NASA Astrophysics Data System (ADS)
McGann, M.; Maier, K. L.; Gales, J. A.; Paull, C. K.; Gwiazda, R.; Barry, J.; Carvajal, C.; Clare, M. A.; Cartigny, M.; Chaffey, M. R.; Parsons, D. R.; O'Reilly, T. C.; Rosenberger, K. J.; Wolfson-Schwehr, M.; Simmons, S.; Sumner, E.; Talling, P.; Xu, J.
2017-12-01
Submarine canyons are found along the slopes of most continental margins and turbidity currents are thought to be the primary mechanism responsible for transporting sediment through them to deep-sea fans. The initiation sites of these flows are difficult to locate with any degree of precision from lithology alone. Fortunately, the presence of allochthonous microscopic remains, such as benthic foraminifers, can aid in the identification of the source of the displaced sediments. In Monterey Canyon, offshore California, a Seafloor Instrument Node (SIN) and adjacent mooring in the Coordinated Canyon Experiment indicate that a February 2017 turbidity current reached 1840 m water depth. In April 2017, one push core was obtained on each of four sides of the SIN just outside its frame and six others from 30-100 m away. Each was cut into 1 cm slices, stained with rose Bengal, washed, and analyzed for their microscopic constituents. Material recovered included terrestrial debris (wood, leaves, seeds, highway safety spheres, and volcanic glass) as well as foraminiferal tests. Dead benthic foraminifers from the estuarine (0-10 m), inner shelf (0-50 m), outer shelf (50-150 m), slope break (150 m), upper bathyal (150-500 m), and middle bathyal (500-2000 m) biofacies were present, suggesting a staged progression of sediment downslope from the continental shelf and slope. Living (rose Bengal stained) foraminifers recovered represent estuarine (Ammonia tepida, Elphidium excavatum), inner shelf (Buccella frigida, B. tenerrima, Buliminella elegantissima, Cibicides fletcheri, Nonionella spp., Rotorbinella turbinata), and upper bathyal (Bolivina pacifica, B. spissa, Epistominella exigua, Uvigerina peregrina) species as well as an in-situ middle bathyal biofacies (Bolivina argentea, B. spissa, Buliminella tenuata, Epistominella pacifica, Globobulimina spp., Uvigerina peregrina, U. hispida). The presence of living allochthonous benthic foraminifers from these shallower biofacies suggests the flow that covered portions of the SIN frame and the surrounding area originated in the estuarine to shallow shelf environment. Because the shallow water species were still alive when deposited at 1840 m water depth, the sediment gravity flow was a rapid event that transported sediment down canyon to this deep-marine site.
Amazon water lenses and the influence of the North Brazil Current on the continental shelf
NASA Astrophysics Data System (ADS)
Prestes, Yuri O.; Silva, Alex Costa da; Jeandel, Catherine
2018-05-01
The exchange processes on the Amazon continental shelf in northern Brazil are subject to complex interactions that involve forcings derived from distinct sources. The Amazon shelf is a unique and highly dynamic environment in which considerable discharge of freshwater enters the Atlantic Ocean, producing extensive Amazon Water Lenses (AWL). In addition to the presence of the AWL, the shelf is influenced by the semidiurnal oscillations of the tides and the strong North Brazil Current (NBC), a boundary current of the western Atlantic. The present study was based primarily on the influence of the freshwater input and the NBC on the shelf and the Amazon Shelf Break (ASB) off the mouth of the Pará River. For this purpose, hydrographic and hydrodynamic data were obtained by moorings of the AMANDES Project (April-July 2008), located on the Amazon shelf and the ASB. Spectral analysis and the continuous wavelet transform were applied to define tidal (high frequency/short period) and subtidal (low frequency/long period) signals. The results indicated that on both the shelf and the break, the semidiurnal tides are responsible for the residual landward transport and are predominantly across-shelf. Low-frequency motions in the synoptic bands and the AWL are related to spatial changes in the velocity field, mainly on the ASB in the along-shelf direction. The flow of the NBC can be interpreted as an along-shelf low-frequency oscillation capable of altering the spatial configuration of the velocity field, although its influence is perceived only in the absence of the AWL.
NASA Astrophysics Data System (ADS)
Hatcher, P.; Ware, S. A.; Vaughn, D.; Waggoner, D. C.; Bianchi, T. S.
2017-12-01
Sediment samples extending from the main channel of the Mississippi River to edge of the continental shelf of the Gulf of Mexico were extracted to recover humic acids from the organic matter and subjected to molecular level characterization by electrospray ionization coupled to Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS). The data show that sedimentary organic matter at the river mouth contains humic substances with a predominantly terrestrial signature resembling those obtained from soils. Condensed aromatic molecules and carboxyl rich alicyclic molecules (CRAM) typify the major structures observed. The CRAM-like molecules persist progressing seaward into the Gulf while the condensed aromatic molecules diminish in relative abundance. This trend is characteristic of traditional mixing of allochthonous terrestrial with autochthonous source materials, consistent with published isotope and lignin phenol biomarker data. Alternatively, the trend could also be explained by oxidative degradation of mainly terrestrial organic matter whereby the condensed aromatic molecules would be selectively oxidized. CRAM molecules would then become selectively enriched as one progresses from the channel to the continental shelf. Laboratory studies show that aromatic molecules (like those in lignin) subjected to oxidative degradation mainly by hydroxyl radical attack, either biologically or non-biologically, undergo molecular rearrangement via ring-opening to form reactive species. These can interact with nucleophilic molecules such as peptides and sulfur-containing species and/or can undergo cycloaddition reactions to produce CRAM-like species. This latter explanation suggests that the main source of organic matter in this coastal depocenter is terrestrial and that autochthonous organic matter contributes little to sedimentary organic matter.
Continental Margins of the Arctic Ocean: Implications for Law of the Sea
NASA Astrophysics Data System (ADS)
Mosher, David
2016-04-01
A coastal State must define the outer edge of its continental margin in order to be entitled to extend the outer limits of its continental shelf beyond 200 M, according to article 76 of the UN Convention on the Law of the Sea. The article prescribes the methods with which to make this definition and includes such metrics as water depth, seafloor gradient and thickness of sediment. Note the distinction between the "outer edge of the continental margin", which is the extent of the margin after application of the formula of article 76, and the "outer limit of the continental shelf", which is the limit after constraint criteria of article 76 are applied. For a relatively small ocean basin, the Arctic Ocean reveals a plethora of continental margin types reflecting both its complex tectonic origins and its diverse sedimentation history. These factors play important roles in determining the extended continental shelves of Arctic coastal States. This study highlights the critical factors that might determine the outer edge of continental margins in the Arctic Ocean as prescribed by article 76. Norway is the only Arctic coastal State that has had recommendations rendered by the Commission on the Limits of the Continental Shelf (CLCS). Russia and Denmark (Greenland) have made submissions to the CLCS to support their extended continental shelves in the Arctic and are awaiting recommendations. Canada has yet to make its submission and the US has not yet ratified the Convention. The various criteria that each coastal State has utilized or potentially can utilize to determine the outer edge of the continental margin are considered. Important criteria in the Arctic include, 1) morphological continuity of undersea features, such as the various ridges and spurs, with the landmass, 2) the tectonic origins and geologic affinities with the adjacent land masses of the margins and various ridges, 3) sedimentary processes, particularly along continental slopes, and 4) thickness and continuity of the sediment stratigraphy within the basins. The enclosed nature of the Arctic basin and the undersea ridges that transect the width of the basin result in complex geographies for the coastal States. The relevant fact, therefore, is that the five coastal States surrounding the ocean should have a common understanding of the geological and morphological features and the use of these features in determining the outer edge of the continental margin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Federal responsibility for oil and gas development on the U.S. outer continental shelf (OCS) resides with the Minerals Management Service (MMS) of the U.S. Department of the Interior (DOI). The DOI's Environmental Studies Program (ESP) is the program through which MMS conducts environmental studies on the OCS and collects information to prepare environmental impact statements (EISs). It appeared to MMS in 1986 that the time was ripe to assess the status of the present program and to explore the needs for future studies. MMS requested an evaluation of the adequacy and applicability of ESP studies, a review of the generalmore » state of knowledge in the appropriate disciplines, and recommendations for future studies. Three panels were established, one of which, the Physical Oceanography Panel, investigated the physical oceanographic aspects of the ESP, the subject of the report, which is the first of three in a series. In reviewing the ESP's physical oceanography program, the panel evaluated the quality and relevance of studies carried out in waters under federal control, which extend from the limits of state jurisdictions (3-12 miles offshore) and include the central and outer continental shelf waters and the continental slope.« less
Denudation of the continental shelf between Britain and France at the glacial–interglacial timescale
Mellett, Claire L.; Hodgson, David M.; Plater, Andrew J.; Mauz, Barbara; Selby, Ian; Lang, Andreas
2013-01-01
The erosional morphology preserved at the sea bed in the eastern English Channel dominantly records denudation of the continental shelf by fluvial processes over multiple glacial–interglacial sea-level cycles rather than by catastrophic flooding through the Straits of Dover during the mid-Quaternary. Here, through the integration of multibeam bathymetry and shallow sub-bottom 2D seismic reflection profiles calibrated with vibrocore records, the first stratigraphic model of erosion and deposition on the eastern English Channel continental shelf is presented. Published Optical Stimulated Luminescence (OSL) and 14C ages were used to chronometrically constrain the stratigraphy and allow correlation of the continental shelf record with major climatic/sea-level periods. Five major erosion surfaces overlain by discrete sediment packages have been identified. The continental shelf in the eastern English Channel preserves a record of processes operating from Marine Isotope Stage (MIS) 6 to MIS 1. Planar and channelised erosion surfaces were formed by fluvial incision during lowstands or relative sea-level fall. The depth and lateral extent of incision was partly conditioned by underlying geology (rock type and tectonic structure), climatic conditions and changes in water and sediment discharge coupled to ice sheet dynamics and the drainage configuration of major rivers in Northwest Europe. Evidence for major erosion during or prior to MIS 6 is preserved. Fluvial sediments of MIS 2 age were identified within the Northern Palaeovalley, providing insights into the scale of erosion by normal fluvial regimes. Seismic and sedimentary facies indicate that deposition predominantly occurred during transgression when accommodation was created in palaeovalleys to allow discrete sediment bodies to form. Sediment reworking over multiple sea-level cycles (Saalian–Eemian–early Weichselian) by fluvial, coastal and marine processes created a multi-lateral, multi-storey succession of palaeovalley-fills that are preserved as a strath terrace. The data presented here reveal a composite erosional and depositional record that has undergone a high degree of reworking over multiple sea-level cycles leading to the preferential preservation of sediments associated with the most recent glacial–interglacial period. PMID:24748702
Mellett, Claire L; Hodgson, David M; Plater, Andrew J; Mauz, Barbara; Selby, Ian; Lang, Andreas
2013-12-01
The erosional morphology preserved at the sea bed in the eastern English Channel dominantly records denudation of the continental shelf by fluvial processes over multiple glacial-interglacial sea-level cycles rather than by catastrophic flooding through the Straits of Dover during the mid-Quaternary. Here, through the integration of multibeam bathymetry and shallow sub-bottom 2D seismic reflection profiles calibrated with vibrocore records, the first stratigraphic model of erosion and deposition on the eastern English Channel continental shelf is presented. Published Optical Stimulated Luminescence (OSL) and 14 C ages were used to chronometrically constrain the stratigraphy and allow correlation of the continental shelf record with major climatic/sea-level periods. Five major erosion surfaces overlain by discrete sediment packages have been identified. The continental shelf in the eastern English Channel preserves a record of processes operating from Marine Isotope Stage (MIS) 6 to MIS 1. Planar and channelised erosion surfaces were formed by fluvial incision during lowstands or relative sea-level fall. The depth and lateral extent of incision was partly conditioned by underlying geology (rock type and tectonic structure), climatic conditions and changes in water and sediment discharge coupled to ice sheet dynamics and the drainage configuration of major rivers in Northwest Europe. Evidence for major erosion during or prior to MIS 6 is preserved. Fluvial sediments of MIS 2 age were identified within the Northern Palaeovalley, providing insights into the scale of erosion by normal fluvial regimes. Seismic and sedimentary facies indicate that deposition predominantly occurred during transgression when accommodation was created in palaeovalleys to allow discrete sediment bodies to form. Sediment reworking over multiple sea-level cycles (Saalian-Eemian-early Weichselian) by fluvial, coastal and marine processes created a multi-lateral, multi-storey succession of palaeovalley-fills that are preserved as a strath terrace. The data presented here reveal a composite erosional and depositional record that has undergone a high degree of reworking over multiple sea-level cycles leading to the preferential preservation of sediments associated with the most recent glacial-interglacial period.
Carrara, P.E.; Ager, T.A.; Baichtal, J.F.
2007-01-01
The interpretation of the extent of late Wisconsin glaciation in southeastern Alaska has varied between geologists and biologists. Maps and reports of the region prepared by geologists commonly indicated that late Wisconsin ice extended as a large uniform front west to the edge of the continental shelf. However, the distribution of plants and animals in the region has led many biologists to suggest that there may have been ice-free areas that served as refugia during the late Wisconsin. Based on analyses of aerial photographs, topographic maps, and bathymetric charts, in conjunction with a review of previous literature and reconnaissance fieldwork throughout the region, this study presents data supporting a limited ice extent in the Alexander Archipelago during the late Wisconsin and identifies possible ice-free areas that may have served as refugia. These areas include (1) the Fairweather Ground, (2) the Herbert Graves Island area, (3) the western coast of southern Baranof Island and adjacent continental shelf, (4) Coronation Island and the adjacent continental shelf, (5) the Warren Island area, (6) the continental shelf from west of Heceta Island to Forrester Island in the south, (7) parts of the west coast of southern Dall Island, and (8) lowland areas in southern Prince of Wales Island. The identification of these possible refugia has bearing on the recolonization of the Alexander Archipelago, as they could have served as centers of biotic dispersal upon regional deglaciation and as stepping stones for early humans with a maritime tradition entering the western hemisphere from Asia. ?? 2007 NRC Canada.
Stratigraphy of Atlantic coastal margin of United States north of Cape Hatteras; brief survey
Perry, W.J.; Minard, J.P.; Weed, E.G.A.; Robbins, E.I.; Rhodehamel, E.C.
1975-01-01
A synthesis of studies of sea-floor outcrops of the sedimentary wedge beneath the northeastern United States continental shelf and slope and a reassessment of coastal plain Mesozoic stratigraphy, particularly of the coastal margin, provide insight for estimating the oil and gas potential and provide geologic control for marine seismic investigations of the Atlantic continental margin. The oldest strata known to crop out on the continental slope are late Campanian in age. The Cretaceous-Tertiary contact along the slope ranges from a water depth of 0.6 to 1.5 km south of Georges Bank to 1.8 km in Hudson Canyon. Few samples are available from Tertiary and Late Cretaceous outcrops along the slope. Sediments of the Potomac Group, chiefly of Early Cretaceous age, constitute a major deltaic sequence in the emerged coastal plain. This thick sequence lies under coastal Virginia, Maryland, Delaware, southeastern New Jersey, and the adjacent continental shelf. Marine sands associated with this deltaic sequence may be present seaward under the outer continental shelf. South of the Norfolk arch, under coastal North Carolina, carbonate rocks interfinger with Lower Cretaceous clastic strata. From all available data, Mesozoic correlations in coastal wells between coastal Virginia and Long Island have been revised. The Upper-Lower Cretaceous boundary is placed at the transition between Albian and Cenomanian floras. Potential hydrocarbon source beds are present along the coast in the subsurface sediments of Cretaceous age. Potential reservoir sandstones are abundant in this sequence.
Mannino, Antonio; Signorini, Sergio R.; Novak, Michael G.; Wilkin, John; Friedrichs, Marjorie A. M.; Najjar, Raymond G.
2017-01-01
Continental margins play an important role in global carbon cycle, accounting for 15–21% of the global marine primary production. Since carbon fluxes across continental margins from land to the open ocean are not well constrained, we undertook a study to develop satellite algorithms to retrieve dissolved organic carbon (DOC) and combined these satellite data with physical circulation model products to quantify the shelf boundary fluxes of DOC for the U.S. Middle Atlantic Bight (MAB). Satellite DOC was computed through seasonal relationships of DOC with colored dissolved organic matter absorption coefficients, which were derived from an extensive set of in situ measurements. The multiyear time series of satellite-derived DOC stocks (4.9 Teragrams C; Tg) shows that freshwater discharge influences the magnitude and seasonal variability of DOC on the continental shelf. For the 2010–2012 period studied, the average total estuarine export of DOC into the MAB shelf is 0.77 Tg C yr−1 (year). The integrated DOC tracer fluxes across the shelf boundaries are 12.1 Tg C yr−1 entering the MAB from the southwest alongshore boundary, 18.5 Tg C yr−1 entering the MAB from the northeast alongshore boundary, and 29.0 Tg C yr−1 flowing out of the MAB across the entire length of the 100 m isobath. The magnitude of the cross-shelf DOC flux is quite variable in time (monthly) and space (north to south). The highly dynamic exchange of water along the shelf boundaries regulates the DOC budget of the MAB at subseasonal time scales. PMID:29201582
Robb, James M.
1983-01-01
Because of the need for knowledge of an offshore area that is undergoing exploration for oil and gas resources, since 1975 the U.S. Bureau of Land Management (BLM) has funded studies of the environmental characteristics of the Mid-Atlantic Outer Continental Shelf. This volume briefly summarizes a final report to the BLM on the results of U.S. Geological Survey investigations stemming from data acquired during 1978 and 1979. The parent final report contains complete accounts of those investigations. The subjects of the studies range from the geologic effects of water currents and their capabilities of erosion and transportation, to delineation of potentially hazardous geologic characteristics of the area. Nine specific studies address the complexities of water currents, the nature of materials suspended in the sea waters, rates of mixing-in of material deposited on the bottom, and the sites of probable deposition of such materials, as well as sites and mechanisms of possible submarine landsliding or unstable bottom (engineering characteristics) of the Continental Slope and shelf.
Geochemistry of the Amazon Estuary
Smoak, Joseph M.; Krest, James M.; Swarzenski, Peter W
2006-01-01
The Amazon River supplies more freshwater to the ocean than any other river in the world. This enormous volume of freshwater forces the estuarine mixing out of the river channel and onto the continental shelf. On the continental shelf, the estuarine mixing occurs in a very dynamic environment unlike that of a typical estuary. The tides, the wind, and the boundary current that sweeps the continental shelf have a pronounced influence on the chemical and biological processes occurring within the estuary. The dynamic environment, along with the enormous supply of water, solutes and particles makes the Amazon estuary unique. This chapter describes the unique features of the Amazon estuary and how these features influence the processes occurring within the estuary. Examined are the supply and cycling of major and minor elements, and the use of naturally occurring radionuclides to trace processes including water movement, scavenging, sediment-water interaction, and sediment accumulation rates. The biogeochemical cycling of carbon, nitrogen, and phosphorus, and the significances of the Amazon estuary in the global mass balance of these elements are examined.
Near-real-time mosaics from high-resolution side-scan sonar
Danforth, William W.; O'Brien, Thomas F.; Schwab, W.C.
1991-01-01
High-resolution side-scan sonar has proven to be a very effective tool for stuyding and understanding the surficial geology of the seafloor. Since the mid-1970s, the US Geological Survey has used high-resolution side-scan sonar systems for mapping various areas of the continental shelf. However, two problems typically encountered included the short range and the high sampling rate of high-resolution side-scan sonar systems and the acquisition and real-time processing of the enormous volume of sonar data generated by high-resolution suystems. These problems were addressed and overcome in August 1989 when the USGS conducted a side-scan sonar and bottom sampling survey of a 1000-sq-km section of the continental shelf in the Gulf of Farallones located offshore of San Francisco. The primary goal of this survey was to map an area of critical interest for studying continental shelf sediment dynamics. This survey provided an opportunity to test an image processing scheme that enabled production of a side-scan sonar hard-copy mosaic during the cruise in near real-time.
NASA Astrophysics Data System (ADS)
Ishiwa, T.; Yokoyama, Y.; McHugh, C.; Reuning, L.; Gallagher, S. J.
2017-12-01
The transition from cold to warm conditions during the last deglaciation influenced climate variability in the Indian Ocean and Pacific as a result of submerge of continental shelf and variations in the Indonesian Throughflow and Australian Monsoon. The shallow continental shelf (< 200 m water depth) developed along the northwestern Australian margin is influenced by the Australian Monsoon and Leeuwin Current (one of branch of the Indonesian Throughflow). The International Ocean Discovery Program Expedition 356 Indonesian Throughflow drilled in the northwestern Australian shallow continental shelf and recovered an interval from the Last Glacial Maximum to Holocene in Site U1461. Radiocarbon dating on macrofossils, foraminifera, and bulk organic matter provided a precise age-depth model, leading to high-resolved paleoclimate reconstruction. X-ray elemental analysis results are interpreted as an indicator of sedimentary environmental changes. The upper 20-m part of Site U1461 apparently records the climate transition from the LGM to Holocene in the northwestern Australia, which could be associated with sea-level change, Leeuwin Current activity, and the Australian Monsoon.
Behrendt, John C.; Wotorson, Cletus S.
1970-01-01
An aeromagnetic survey has shown the existence of several basins in which magnetic basement depths are greater than 5 km on the continental shelf off Liberia. Magnetic diabase of 176 to 192 m.y. (Jurassic) in age intruding the Paleozoic (?) rocks and overlain by younger rocks onshore requires the distinction between “magnetic basement” and “basement.” Several lines of evidence suggest that the Paleozoic(?) rocks are less than 1 km thick; this implies that the diabase does not introduce a large error in depth-to-basement estimates. The dikes or their extrusive equivalents are traceable, on the basis of the magnetic data, beneath the younger sedimentary rock in the basins to the edge of the continental slope. The magnetic data also delineate a second zone of diabase dikes 90 km inland, parallel to the coast, which cross the entire country. The intrusion of the younger dikes probably coincides with rifting at the beginning of the separation of Africa and South America, and the associated magnetic anomaly zones appear to be parallel with and continuous into the anomaly bands in the Atlantic. A major northeast-trending break in the magnetic fabric intersects the coast near 9° W. and is associated with Eburnean age rocks (about 2000 m.y.) to the southeast as contrasted with Liberian-age rocks (about 2700 m.y.) to the northwest. Change in magnetic fabric direction inland from northeast to northwest in the coastal area allows recognition of a boundary between the Liberian-age rocks inland and Pan-African-age (about 550 m.y.) rocks in the coastal area northwest of about 9° 20'W. Sets of north-northwest-and west-northwest—trending faults of 1 to 2 km vertical displacement cut the Cretaceous sedimentary rocks onshore and can be traced into the offshore basins. Vertical displacements of several kilometers in the magnetic basement underlying the continental shelf suggest a pattern of block faulting all along the coast and continental shelf. Negative Bouguer anomalies exist over two Cretaceous basins in the coastal area; a negative Bouguer anomaly exists over one of the basins southwest of Monrovia, as shown by a marine traverse, suggesting that Cretaceous or younger sedimentary rocks fill these basins also. A 50 to 60 mgal positive Bouguer anomaly area exists along the coast from Sierra Leone to Ivory Coast. This anomaly correlates with mafic granulites in the Monrovia region, where the gradient is too steep to be entirely due to crustal thickening at the continental margin and may be related to tectonic activity associated with the basins. The only major break in this positive anomaly above basement rocks along the entire coast of Liberia is over granite gneiss adjacent to (and presumably underlying) the only onshore basins on the Liberian coast. Three seismic reflection profiles support the interpretation of a substantial section of sedimentary rock offshore. A suggested sequence of events indicates tectonic activity in the periods about 2700, about 2000, and about 550 m.y. B.P.; uplift and exposure of deep crustal rocks; deposition of Paleozoic sediments; intrusion of diabase dikes in inland zones; intrusion of 176 to 192 m.y.-old dikes and sills accompanying separation of Africa and South and North America; block faulting along coast and continental shelf, and active sea-floor spreading; filling of basins in Cretaceous and Tertiary(?) time; basaltic extrusion on spreading sea floor and sedimentation on continental shelf and slope.
The oceanography and ecology of the Ross Sea.
Smith, Walker O; Ainley, David G; Arrigo, Kevin R; Dinniman, Michael S
2014-01-01
The continental shelf of the Ross Sea exhibits substantial variations in physical forcing, ice cover, and biological processes on a variety of time and space scales. Its circulation is characterized by advective inputs from the east and exchanges with off-shelf regions via the troughs along the northern portions. Phytoplankton biomass is greater there than anywhere else in the Antarctic, although nitrate is rarely reduced to levels below 10 μmol L(-1). Overall growth is regulated by irradiance (via ice at the surface and by the depths of the mixed layers) and iron concentrations. Apex predators reach exceptional abundances, and the world's largest colonies of Adélie and emperor penguins are found there. Krill are represented by two species (Euphausia superba near the shelf break and Euphausia crystallorophias throughout the continental shelf region). Equally important and poorly known is the Antarctic silverfish (Pleuragramma antarcticum), which is also consumed by most upper-trophic-level predators. Future changes in the Ross Sea environment will have profound and unpredictable effects on the food web.
NASA Astrophysics Data System (ADS)
Juranek, L. W.; Feely, R. A.; Peterson, W. T.; Alin, S. R.; Hales, B.; Lee, K.; Sabine, C. L.; Peterson, J.
2009-12-01
We developed a multiple linear regression model to robustly determine aragonite saturation state (Ωarag) from observations of temperature and oxygen (R2 = 0.987, RMS error 0.053), using data collected in the Pacific Northwest region in late May 2007. The seasonal evolution of Ωarag near central Oregon was evaluated by applying the regression model to a monthly (winter)/bi-weekly (summer) water-column hydrographic time-series collected over the shelf and slope in 2007. The Ωarag predicted by the regression model was less than 1, the thermodynamic calcification/dissolution threshold, over shelf/slope bottom waters throughout the entire 2007 upwelling season (May-November), with the Ωarag = 1 horizon shoaling to 30 m by late summer. The persistence of water with Ωarag < 1 on the continental shelf has not been previously noted and could have notable ecological consequences for benthic and pelagic calcifying organisms such as mussels, oysters, abalone, echinoderms, and pteropods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horne, D.J.
1986-01-01
The West Flower Garden Bank is a coral reef on the Texas Continental shelf. The corals on the bank are vulnerable to sediment contamination and to excess turbidity in the overlying water column. Concern for the environmental impact on this and other banks in the region exposed to nearby hydrocarbon production prompted the Bureau of Land Management to fund a data collection effort on the Texas/Louisiana shelf which provided the data analyzed here. Data analyzed includes profiles of velocity, temperature and salinity taken around the Bank in Oct., 1980 and March, 1981. Fixed current meter moorings and a dye experimentmore » conducted in the bottom boundary layer provided additional input. The data reveals a very complicated flow regime around the bank, with some intensification of flow around and over the bank but no movement of water from the bottom of the surrounding shelf up onto the bank.« less
Han, Dukki; Nam, Seung-Il; Ha, Ho Kyung; Kim, Hyoungjun; Sadowsky, Michael J; Lee, Yoo Kyung; Hur, Hor-Gil
2016-02-01
It has been known that continental shelves around the Arctic Ocean play a major role in the ventilation of the deep basins as a consequence of shelf-basin exchange. In the present study, we found that bacterial assemblage of the surface sediment was different from that of seawater while seawater harboured local bacterial assemblages in response to the Arctic hydrography. This finding suggests that the Arctic seafloor sediments may have distinctive bacterial biogeography. Moreover, the distribution of bacterial assemblages and physicochemical properties in surface sediments changed gradually from the Arctic continental shelf to deep-sea basin. Based on the results, bacterial biogeography in the Arctic seafloor sediments may be influenced by winnowing and re-deposition of surface sediments through the sediment gravity flow. The present study offers a deeper understanding of shelf convection and its role for the construction of bacterial assemblages in the Arctic Ocean. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
The Oceanography and Ecology of the Ross Sea
NASA Astrophysics Data System (ADS)
Smith, Walker O.; Ainley, David G.; Arrigo, Kevin R.; Dinniman, Michael S.
2014-01-01
The continental shelf of the Ross Sea exhibits substantial variations in physical forcing, ice cover, and biological processes on a variety of time and space scales. Its circulation is characterized by advective inputs from the east and exchanges with off-shelf regions via the troughs along the northern portions. Phytoplankton biomass is greater there than anywhere else in the Antarctic, although nitrate is rarely reduced to levels below 10 μmol L-1. Overall growth is regulated by irradiance (via ice at the surface and by the depths of the mixed layers) and iron concentrations. Apex predators reach exceptional abundances, and the world's largest colonies of Adélie and emperor penguins are found there. Krill are represented by two species (Euphausia superba near the shelf break and Euphausia crystallorophias throughout the continental shelf region). Equally important and poorly known is the Antarctic silverfish (Pleuragramma antarcticum), which is also consumed by most upper-trophic-level predators. Future changes in the Ross Sea environment will have profound and unpredictable effects on the food web.
Regional geologic framework off northeastern United States
Schlee, J.; Behrendt, John C.; Grow, J.A.; Robb, James M.; Mattick, R.; Taylor, P.T.; Lawson, B.J.
1976-01-01
Six multichannel seismic-reflection profiles taken across the Atlantic continental margin Previous HitoffTop the northeastern United States show an excess of 14 km of presumed Mesozoic and younger sedimentary rocks in the Baltimore Canyon trough and 8 km in the Georges Bank basin. Beneath the continental rise, the sedimentary prism thickness exceeds 7 km south of New Jersey and Maryland, and it is 4.5 km thick south of Georges Bank. Stratigraphically, the continental slope--outer edge of the continental shelf is a transition zone of high-velocity sedimentary rock, probably carbonate, that covers deeply subsided basement. Acoustically, the sedimentary sequence beneath the shelf is divided into three units which are correlated speculatively with the Cenozoic, the Cretaceous, and the Jurassic-Triassic sections. These units thicken offshore, and some have increased seismic velocities farther offshore. The uppermost unit thickens from a fraction of a kilometer to slightly more than a kilometer in a seaward direction, and velocity values range from 1.7 to 2.2 km/sec. The middle unit thickens from a fraction of a kilometer to as much as 5 km (northern Baltimore Canyon trough), and seismic velocity ranges from 2.2 to 5.4 km/sec. The lowest unit thickens to a maximum of 9 km (northern Baltimore Canyon), and velocities span the 3.9 to 5.9-km/sec interval. The spatial separation of magnetic and gravity anomalies on line 2 (New Jersey) suggests that in the Baltimore Canyon region the magnetic-slope anomaly is due to edge effects and that the previously reported free-air and isostatic gravity anomalies over the outer shelf may be due in part to a lateral increase in sediment density (velocity) near the shelf edge. The East Coast magnetic anomaly and the free-air gravity high both coincide over the outer shelf edge on line 1 (Georges Bank) but are offset by 20 km from the ridge on the reflection profile. Because the magnetic-slope-anomaly wavelength is nearly 50 km across, a deep source is likely. In part, the positive free-air gravity anomaly likewise may represent the significant lateral density increase within the sedimentary section to ard the outer edge of the shelf.
Schwab, William C.; Denny, Jane F.; Baldwin, Wayne E.
2014-01-01
The U.S. Geological Survey mapped approximately 336 square kilometers of the lower shoreface and inner continental shelf offshore of Fire Island, New York, in 2011 by using interferometric sonar and high-resolution chirp seismic-reflection systems. This report presents maps of bathymetry, acoustic backscatter, the coastal plain unconformity, the Holocene marine transgressive surface, and modern sediment thickness. These spatial data support research on the Quaternary evolution of the Fire Island coastal system and provide baseline information for research on coastal processes along southern Long Island.
Measurements of storm-generated bottom stresses on the continental shelf.
Cacchione, D.A.; Drake, D.E.
1982-01-01
Large values of bottom friction velocity, u., and roughness length, zo, determined from burst-averaged speed data taken on the continental shelf in outer Norton Sound, Alaska, with the GEOPROBE tripod during a storm are correlated with extremely large values of near-bottom concentration of total suspended particulate matter (TSM). The values obtained from the 'law of the wall' velocity-depth relationship are diminished substantially throughout the storm period when the turbulence-reducing effects of the vertical cncentration gradient of TSM are considered. The values are compared to those obtained from other workers. -from Authors
NASA Astrophysics Data System (ADS)
Sato, Takeshi; No, Tetsuo; Miura, Seiichi; Kodaira, Shuichi
2018-02-01
The crustal structure of the Yamato Bank, the central Yamato Basin, and the continental shelf in the southern Japan Sea back-arc basin is obtained based on a seismic survey using ocean bottom seismographs and seismic shot to elucidate the back-arc basin formation processes. The central Yamato Basin can be divided into three domains based on the crustal structure: the deep basin, the seamount, and the transition domains. In the deep basin domain, the crust without the sedimentary layer is about 12-13 km thick. Very few units have P-wave velocity of 5.4-6.0 km/s, which corresponds to the continental upper crust. In the seamount and transition domains, the crust without the sedimentary layer is about 12-16 km thick. The P-wave velocities of the upper and lower crusts differs among the deep basin, the seamount, and the transition domains. These results indicate that the central Yamato Basin displays crustal variability in different domains. The crust of the deep basin domain is oceanic in nature and suggests advanced back-arc basin development. The seamount domain might have been affected by volcanic activity after basin opening. In the transition domain, the crust comprises mixed characters of continental and oceanic crust. This crustal variation might represent the influence of different processes in the central Yamato Basin, suggesting that crustal development was influenced not only by back-arc opening processes but also by later volcanic activity. In the Yamato Bank and continental shelf, the upper crust has thickness of about 17-18 km and P-wave velocities of 3.3-4.1 to 6.6 km/s. The Yamato Bank and the continental shelf suggest a continental crustal character.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhaoqing; Khangaonkar, Tarang; Wang, Taiping
In this report we describe the 1) the expansion of the PNNL hydrodynamic model domain to include the continental shelf along the coasts of Washington, Oregon, and Vancouver Island; and 2) the approach and progress in developing the online/Internet disseminations of model results and outreach efforts in support of the Puget Sound Operational Forecast System (PS-OPF). Submittal of this report completes the work on Task 2.1.2, Effects of Physical Systems, Subtask 2.1.2.1, Hydrodynamics, for fiscal year 2010 of the Environmental Effects of Marine and Hydrokinetic Energy project.
NASA Astrophysics Data System (ADS)
Dutu, F.; Ion, G.; Jugaru Tiron, L.
2009-04-01
The Black Sea is a large marginal sea surrounded by a system of Alpine orogenic chains, including the Balkanides-Pontides, Caucasus, Crimea and North Dobrogea located to the south, northeast, north and northwest, respectively (Dinu et al., 2005). The north-western part of the Black Sea is the main depocentre for sediment supply from Central Europe via the Danube River, but also from Eastern Europe through the Ukrainian rivers Dniepr, Dniestr and Southern Bug (Popescu et al., 2004). The shelfbreak is located at water depths of 120-140 m southward of the Danube Canyon, and up to 170 m northward of the canyon possibly due to recent faulting which is very common in this area. The continental slope is dissected by numerous canyons, each of which is fed by several tributaries. The Danube Canyon (also known as Viteaz Canyon) is a large shelf-indenting canyon located in the north-western Black Sea and connected to the youngest channel-levee system of the Danube Fan (Popescu et al., 2004). The acoustic methods are a useful way for investigate the shelf break and the continental slope giving us information about landslides on the continental slope, the topography of the investigated area, the sedimentary zones affected by instability and to quantify the geometry of the underwater landslides. The measurements made on the continental slope from north-western part of the Black Sea gave us the possibility to make a digital terrain model. After processing the data the model offer information about the main access ways of the sediments through gravitational slide on the submarines canyons, with forming of turbidity currents, debris flows and also other transport/transformation phenomena of the sediments on the continental slope like submarine landslides and submarine collapse. References Dinu, C., Wong, H.K., Tambrea, D., Matenco, L., 2005. Stratigraphic and structural characteristics of the Romanian Black Sea shelf. Tectonophysics 410, 417-435. Popescu, I., Lericolais, G., Panin, N., Normand, A., Dinu, C., Le Drezen, E., 2004. The Danube submarine canyon (Black Sea): morphology and sedimentary processes. Marine Geology 206, 249- 265.
Maps showing late Pleistocene and Holocene evolution of the South Texas continental shelf
Pyle, Carroll A.; Berryhill, Henry L.; Trippet, Anita R.
1979-01-01
Interpretation of acoustical profiles has provided insight into the late Quaternary geologic history of the Continental Shelf off South Texas. (See the geographic index map on sheet 1 for location of the area studied.) The profiles reveal the interplay of tectonism, sedimentation, and cyclic fluctuations of sea level in the building and geologic evolution of the continental terrace. The sequence of sediments studied extends to about 200 meters (m) beneath the sea-floor surface. Four seismic-stratigraphic units underlain by four prominent sound reflectors were identified and mapped. This geologic synthesis, for which the research was funded by the U.S. Bureau of Land Management (BLM), is but one aspect of a coordinated, multidisciplinary environmental study of the South Texas Outer Continental Shelf sponsored by BLM (Berryhill, 1976, 1977). The environmental studies are keyed to the leasing of Federal Outer Continental Shelf (OCS) lands for petroleum exploration and production. Their purpose is to provide the data development of petroleum resources on the OCS, as well as to provide the basis for predicting the impact of oil and gas exploration and production on the marine environment. Of primary concern is the recognition of geologic conditions that might be hazardous to structures placed on the sea floor. Geologic hazards relate directly to the potential for significant movement of the sea floor in the future. Judging sea-floor stability and recognizing geologic features that are potentially hazardous require an understanding of the recent geologic history of the area, which, in turn, entails determining the relative rates and interactions of sedimentation and tectonism through time. In addition to the primary objective, the synthesis provides knowledge about the magnitude and extent of sea-level fluctuations in the western Gulf of Mexico, and it provides a depositional facies model of possible use in appraising the resource potential of the more deeply buried sediments.
Preliminary report on geology along Atlantic Continental Margin of northeastern United States
Minard, J.P.; Perry, W.J.; Weed, E.G.A.; Rhodehamel, E.C.; Robbins, E.I.; Mixon, R.B.
1974-01-01
The U.S. Geological Survey is conducting a geologic and geophysical study of the northeastern United States outer continental shelf and the adjacent slope from Georges Bank to Cape Hatteras. The study also includes the adjacent coastal plain because it is a more accessible extension of the shelf. The total study area is about 324,000 sq km, of which the shelf and slope constitute about 181,000 sq km and the coastal plain constitutes 143,000 sq km. The shelf width ranges from about 30 km at Cape Hatteras to about 195 km off Raritan Bay and on Georges Bank. Analyses of bottom samples make it possible to construct a preliminary geologic map of the shelf and slope to a water depth of 2,000 m. The oldest beds cropping out in the submarine canyons and on the slope are of early ate Cretaceous age. Beds of Early Cretaceous and Jurassic age are present in deep wells onshore and probably are present beneath the shelf in the area of this study. Such beds are reported beneath the Scotian shelf on the northeast where they include limestone, salt, and anhydrite. Preliminary conclusions suggest a considerably thicker Mesozoic sedimentary sequence than has been described previously. The region is large; the sedimentary wedge is thick; structures seem favorable; and the hydrocarbon potential may be considerable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, S.Y.; Watkins, J.S.
Mapping of Miocene stratigraphy and structure of the Sabine Pass, West Cameron, and East Cameron areas of the western Louisiana outer continental shelf - based on over 1300 mi of seismic data on a 4-mi grid, paleotops from 60 wells, and logs from 35 wells - resulted in time-structure and isochron maps at six intervals from the upper Pliocene to lower Miocene. The most pronounced structural features are the fault systems, which trend east-northeast to east along the Miocene stratigraphic trend. Isolated normal faults with small displacements characterize the inner inner shelf, whereas interconnected faults with greater displacements characterize themore » outer inner shelf. The inner inner shelf faults exhibit little growth, but expansion across the interconnected outer inner shelf fault ranges up to 1 sec two-way traveltime. The interconnected faults belong to two structurally independent fault families. The innermost shelf faults appear to root in the sediment column. A third set of faults located in the Sabine Pass area trends north-south. This fault set is thought to be related to basement movement and/or basement structure. Very little salt is evident in the area. A single diapir is located in West Cameron Block 110 and vicinity. There is little evidence of deep salt. Overall sediment thickness probably exceeds 20,000 ft, with the middle Miocene accounting for 8000 ft.« less
Tidal Impacts on Oceanographic and Sea-ice Processes in the Southern Ocean
NASA Astrophysics Data System (ADS)
Padman, L.; Muench, R. D.; Howard, S.; Mueller, R.
2008-12-01
We review recent field and modeling results that demonstrate the importance of tides in establishing the oceanographic and sea-ice conditions in the boundary regions of the Southern Ocean. The tidal component dominates the total oceanic kinetic energy throughout much of the circum-Antarctic seas. This domination is especially pronounced over the continental slope and shelf including the sub-ice-shelf cavities. Tides provide most of the energy that forces diapycnal mixing under ice shelves and thereby contributes to basal melting. The resulting Ice Shelf Water is a significant component of the Antarctic Bottom Water (AABW) filling much of the deep global ocean. Tides exert significant divergent forcing on sea ice along glacial ice fronts and coastal regions, contributing to creation and maintenance of the coastal polynyas where much of the High Salinity Shelf Water component of AABW is formed. Additional tidally forced ice divergence along the shelf break and upper slope significantly impacts area-averaged ice growth and upper-ocean salinity. Tidally forced cross- slope advection, and mixing by the benthic stress associated with tidal currents along the shelf break and upper slope, strongly influence the paths, volume fluxes and hydrographic properties of benthic outflows of dense water leaving the continental shelf. These outflows provide primary source waters for the AABW. These results confirm that general ocean circulation and coupled ocean/ice/atmosphere climate models must incorporate the impacts of tides.
The Continental Margins of the Western North Atlantic.
ERIC Educational Resources Information Center
Schlee, John S.; And Others
1979-01-01
Presents an interpretation of geological and geophysical data, which provides a summary of the structural and sedimentary history of the United States Atlantic Margin. The importance of an understanding of the development of the outer continental shelf to future hydrocarbon exploration is detailed. (BT)
33 CFR 106.305 - Facility Security Assessment (FSA) requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., including computer systems and networks; (vi) Existing agreements with private security companies; (vii) Any... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Facility Security Assessment (FSA... SECURITY MARITIME SECURITY MARINE SECURITY: OUTER CONTINENTAL SHELF (OCS) FACILITIES Outer Continental...
33 CFR 106.305 - Facility Security Assessment (FSA) requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., including computer systems and networks; (vi) Existing agreements with private security companies; (vii) Any... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Facility Security Assessment (FSA... SECURITY MARITIME SECURITY MARINE SECURITY: OUTER CONTINENTAL SHELF (OCS) FACILITIES Outer Continental...
33 CFR 106.305 - Facility Security Assessment (FSA) requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., including computer systems and networks; (vi) Existing agreements with private security companies; (vii) Any... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Facility Security Assessment (FSA... SECURITY MARITIME SECURITY MARINE SECURITY: OUTER CONTINENTAL SHELF (OCS) FACILITIES Outer Continental...
33 CFR 106.305 - Facility Security Assessment (FSA) requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., including computer systems and networks; (vi) Existing agreements with private security companies; (vii) Any... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Facility Security Assessment (FSA... SECURITY MARITIME SECURITY MARINE SECURITY: OUTER CONTINENTAL SHELF (OCS) FACILITIES Outer Continental...
Octocoral Species Assembly and Coexistence in Caribbean Coral Reefs.
Velásquez, Johanna; Sánchez, Juan A
2015-01-01
What are the determinant factors of community assemblies in the most diverse ecosystem in the ocean? Coral reefs can be divided in continental (i.e., reefs that develop on the continental shelf, including siliciclastic reefs) and oceanic (i.e., far off the continental shelf, usually on volcanic substratum); whether or not these habitat differences impose community-wide ecological divergence or species exclusion/coexistence with evolutionary consequences, is unknown. Studying Caribbean octocorals as model system, we determined the phylogenetic community structure in a coral reef community, making emphasis on species coexistence evidenced on trait evolution and environmental feedbacks. Forty-nine species represented in five families constituted the species pool from which a phylogenetic tree was reconstructed using mtDNA. We included data from 11 localities in the Western Caribbean (Colombia) including most reef types. To test diversity-environment and phenotype-environment relationships, phylogenetic community structure and trait evolution we carried out comparative analyses implementing ecological and evolutionary approaches. Phylogenetic inferences suggest clustering of oceanic reefs (e.g., atolls) contrasting with phylogenetic overdispersion of continental reefs (e.g., reefs banks). Additionally, atolls and barrier reefs had the highest species diversity (Shannon index) whereas phylogenetic diversity was higher in reef banks. The discriminant component analysis supported this differentiation between oceanic and continental reefs, where continental octocoral species tend to have greater calyx apertures, thicker branches, prominent calyces and azooxanthellate species. This analysis also indicated a clear separation between the slope and the remaining habitats, caused by the presence or absence of Symbiodinium. K statistic analysis showed that this trait is conserved as well as the branch shape. There was strong octocoral community structure with opposite diversity and composition patterns between oceanic and continental reefs. Even habitats with similar depths and overall environmental conditions did not share similar communities between oceanic and continental reefs. This indicates a strong regional influence over the local communities, probably due to water transparency differences between major reef types, i.e., oceanic vs. continental shelf-neritic. This was supported by contrasting patterns found in morphology, composition and evolutionary history of the species between atolls and reef banks.
Octocoral Species Assembly and Coexistence in Caribbean Coral Reefs
Velásquez, Johanna; Sánchez, Juan A.
2015-01-01
Background What are the determinant factors of community assemblies in the most diverse ecosystem in the ocean? Coral reefs can be divided in continental (i.e., reefs that develop on the continental shelf, including siliciclastic reefs) and oceanic (i.e., far off the continental shelf, usually on volcanic substratum); whether or not these habitat differences impose community-wide ecological divergence or species exclusion/coexistence with evolutionary consequences, is unknown. Methods Studying Caribbean octocorals as model system, we determined the phylogenetic community structure in a coral reef community, making emphasis on species coexistence evidenced on trait evolution and environmental feedbacks. Forty-nine species represented in five families constituted the species pool from which a phylogenetic tree was reconstructed using mtDNA. We included data from 11 localities in the Western Caribbean (Colombia) including most reef types. To test diversity-environment and phenotype-environment relationships, phylogenetic community structure and trait evolution we carried out comparative analyses implementing ecological and evolutionary approaches. Results Phylogenetic inferences suggest clustering of oceanic reefs (e.g., atolls) contrasting with phylogenetic overdispersion of continental reefs (e.g., reefs banks). Additionally, atolls and barrier reefs had the highest species diversity (Shannon index) whereas phylogenetic diversity was higher in reef banks. The discriminant component analysis supported this differentiation between oceanic and continental reefs, where continental octocoral species tend to have greater calyx apertures, thicker branches, prominent calyces and azooxanthellate species. This analysis also indicated a clear separation between the slope and the remaining habitats, caused by the presence or absence of Symbiodinium. K statistic analysis showed that this trait is conserved as well as the branch shape. Discussion There was strong octocoral community structure with opposite diversity and composition patterns between oceanic and continental reefs. Even habitats with similar depths and overall environmental conditions did not share similar communities between oceanic and continental reefs. This indicates a strong regional influence over the local communities, probably due to water transparency differences between major reef types, i.e., oceanic vs. continental shelf-neritic. This was supported by contrasting patterns found in morphology, composition and evolutionary history of the species between atolls and reef banks. PMID:26177191
Authigenesis of trace metals in energetic tropical shelf environments
Breckel, E.J.; Emerson, S.; Balistrieri, L.S.
2005-01-01
We evaluated authigenic changes of Fe, Mn, V, U, Mo, Cd and Re in suboxic, periodically remobilized, tropical shelf sediments from the Amazon continental shelf and the Gulf of Papua. The Cd/Al, Mo/Al, and U/Al ratios in Amazon shelf sediments were 82%, 37%, and 16% less than those in Amazon River suspended sediments, respectively. Very large depletions of U previously reported in this environment were not observed. The Cd/Al ratios in Gulf of Papua sediments were 76% lower than measurements made on several Papua New Guinea rivers, whereas U/Al ratios in the shelf sediments were enriched by approximately 20%. Other metal/Al ratios in the Papua New Guinea river suspended sediments and continental shelf sediments were not distinguishably different. Comparison of metal/Al ratios to grain size distributions in Gulf of Papua samples indicates that our observations cannot be attributed to differences in grain size between the river suspended sediments and continental shelf sediments. These two shelves constitute a source of dissolved Cd to the world ocean equal to 29-100% of the dissolved Cd input from rivers, but only 3% of the dissolved Mo input and 4% of the dissolved U input. Release of Cd, Mo, and U in tropical shelf sediments is likely a result of intense Fe and Mn oxide reduction in pore waters and resuspension of the sediments. Since we do not observe depletions of particulate Fe and Mn in the shelf sediments most of these dissolved metals must reoxidize in the overlying waters and reprecipitate. As Cd exhibits the largest losses on these tropical shelves, we examined the ability of newly formed Fe and Mn oxides to adsorb dissolved Cd using a geochemical diffuse double-layer surface complexation model and found the oxide surfaces are relatively ineffective at readsorbing Cd in seawater due to surface-site competition by Mg and Ca. If the remobilization and reoxidation of Fe and Mn occurs frequently enough before sediment is buried significant amounts of Cd may be removed from the oxide surfaces. Because a much greater percentage of Mn than Fe becomes remobilized in these shelf sediments, metals closely associated with Mn oxides (like Cd) are more likely to show losses during deposition. ?? 2005 Elsevier Ltd. All rights reserved.
Spatial Extent of Wave-Supported Fluid Mud on the Waipaoa Continental Margin
NASA Astrophysics Data System (ADS)
Hale, R. P.; Ogston, A. S.; Walsh, J. P.; Orpin, A. R.
2013-12-01
Data from acoustic and optical sensors provide a powerful tool to connect near-bed water-column processes with the deposits they generate. Ideally, the product of water-column and seabed interactions can then be applied more broadly to understand systems as a whole, in both space and time. Recent observational research has allowed for an improved understanding of shelf sediment-transport dynamics in many coastal systems, including the dynamic Waipaoa Sedimentary System (WSS), on the east coast of the north island of New Zealand. This narrow shelf (~20 km) on an active continental margin is subject to strong environmental forcings in the form of high waves (>5 m), strong currents (>50 cm/s), and frequent floods of the Waipaoa River, which delivers an average of 15 MT of sediment to Poverty Bay and the coastal environment each year. A year-long study of the WSS during 2010-2011 combined observational data from instrumented tripods at three locations on the continental shelf, with repeat sediment cores collected in four-month intervals, to identify and assess the mechanisms of cross- and off-shelf sediment transport. Observational data identified that cross-shelf sediment transport is stochastic, typically driven by high-wave events, with 40% of the net annual cross-shelf flux for one tripod location occurring during a single wave-supported fluid mud (WSFM) in July 2010. Fortunately, this event was recorded in the instrument data, and the resulting deposit was plainly visible in x-radiograph images. This particular WSFM was observed in x-radiographs collected as deep as ~50 m, and as far as ~28 km from the mouth of the Waipaoa River, and is more prevalent on the northern portion of the shelf. A critical water depth is not the only criteria for WSFM deposition, as some shallower areas on the southern shelf, which were subject to high bed stress, show no evidence of WSFM in this event, while cores collected in deeper areas (e.g. lower bed stress) on the northern shelf did observe WSFM. Interestingly, several cores on the southern shelf do appear to preserve evidence of previous wave-reworking of the seabed. It appears that the presence of a river plume and associated sediment, as well as the direction in which it is advected, are instrumental in WSFM generation.
Map of Distribution of Bottom Sediments on the Continental Shelf, Gulf of Alaska
Evans, Kevin R.; Carlson, Paul R.; Hampton, Monty A.; Marlow, Michael S.; Barnes, Peter W.
2000-01-01
Introduction The U.S. Geological Survey has a long history of exploring marine geology in the Gulf of Alaska. As part of a cooperative program with other federal and state agencies, the USGS is investigating the relations between ocean-floor geology and benthic marine biohabitats. This bottom sediment map, compiled from published literature will help marine biologists develop an understanding of sea-floor geology in relation to various biological habitats. The pattern of sea-floor sedimentation and bottom morphology in the Gulf of Alaska reflects a complex interplay of regional tectonism, glacial advances and retreats, oceanic and tidal currents, waves, storms, eustatic change, and gravity-driven processes. This map, based on numerous cruises during the period of 1970-1996, shows distribution of bottom sediments in areas of study on the continental shelf. The samples were collected with piston, box, and gravity corers, and grab samplers. The interpretations of sediment distribution are the products of sediment size analyses combined with interpretations of high-resolution seismic reflection profiles. The sea floor was separated into several areas as follows: Cook Inlet -- Hazards studies in this embayment emphasized sediment distribution, sediment dynamics, bedforms, shallow faults, and seafloor stability. Migrating mega-sandwaves, driven by strong tidal currents, influence seabed habitats and stability of the seafloor, especially near pipelines and drilling platforms. The coarseness of the bottom sediment reinforces the influence of the strong tidal currents on the seafloor habitats. Kodiak Shelf -- Tectonic framework studies demonstrate the development of an accretionary wedge as the Pacific Plate underthrusts the Alaskan landmass. Seismic data across the accretionary wedge reveal anomalies indicative of fluid/gas vent sites in this segment of the continental margin. Geologic hazards research shows that movement along numerous shallow faults poses a risk to sea floor structures. Sea-floor sediment on shallow banks is eroded by seasonal wave-generated currents. The winnowing action of the large storm waves results in concentrations of gravel over broad segments of the Kodiak shelf. Northeastern Gulf of Alaska -- Tectonic framework studies demonstrate that rocks of distant origin (Yakutat terrane) are currently attached to and moving with the Pacific Plate, as it collides with and is subducted beneath southern Alaska. This collision process has led to pronounced structural deformation of the continental margin and adjacent southern Alaska. Consequences include rapidly rising mountains and high fluvial and glacial sedimentation rates on the adjacent margin and ocean floor. The northeastern Gulf of Alaska shelf also has concentrations of winnowed (lag) gravel on Tarr Bank and on the outer shelf southeast of Yakutat Bay. Between Kayak Island and Yakutat Bay the outer shelf consists of pebbly mud (diamict). This diamict is a product of glacial marine sedimentation during the Pleistocene and is present today as a relict sediment. A prograding wedge of Holocene sediment consisting of nearshore sand grading seaward into clayey silt and silty clay covers the relict pebbly mud to mid-shelf and beyond. Shelf and slope channel systems transport glacially derived sediment across the continental margin into Surveyor Channel, an abyssal fan and channel system that reaches over 1,000 km to the Aleutian Trench.
Seismic stratigraphy of the Mississippi-Alabama shelf and upper continental slope
Kindinger, J.L.
1988-01-01
The Mississippi-Alabama shelf and upper continental slope contain relatively thin Upper Pleistocene and Holocene deposits. Five stages of shelf evolution can be identified from the early Wisconsinan to present. The stages were controlled by glacioeustatic or relative sea-level changes and are defined by the stratigraphic position of depositional and erosional episodes. The stratigraphy was identified on seismic profiles by means of geomorphic pattern, high-angle clinoform progradational deposits, buried stream entrenchments, planar conformities, and erosional unconformities. The oldest stage (stage 1) of evolution occurred during the early Wisconsinan lowstand; the subaerially exposed shelf was eroded to a smooth seaward-sloping surface. This paleosurface is overlain by a thin (< 10 m) drape of transgressive deposits (stage 2). Stage 3 occurred in three phases as the late Wisconsinan sea retreated: (1) fluvial channel systems eroded across the shelf, (2) deposited a thick (90 m) shelf-margin delta, and (3) contemporaneously deposited sediments on the upper slope. Stage 4 included the rapid Holocene sea-level rise that deposited a relatively thin transgressive facies over parts of the shelf. The last major depositional episode (stage 5) was the progradation of the St. Bernard delta over the northwestern and central parts of the area. A depositional hiatus has occurred since the St. Bernard progradation. These Upper Quaternary shelf and slope deposits provide models for analogous deposits in the geologic record. Primarily, they are examples of cyclic sedimentation caused by changes in sea level and may be useful in describing short-term, sandy depositional episodes in prograding shelf and slope sequences. ?? 1988.
Eastern U.S. Continental Shelf Carbon Budget: Integrating Models,Data Assimilation, and Analysis
NASA Technical Reports Server (NTRS)
Hofmann, Eileen; Mannino, Antonio; McClain, Charles R.
2007-01-01
The U.S. East Coast Continental Shelf (USECoS) project was initiated in 2004 with the overall goal of developing carbon budgets for Mid-Atlantic and South Atlantic regions of the eastern U.S. coast. We addressed this goal through a series of specific research questions that were designed to understand carbon inputs and fates in the two regions, dominant food web pathways for carbon cycling, and similarities/differences in carbon cycling in the two continental shelf systems. The USECoS project represents a major effort to simultaneously synthesize and integrate diverse data sets, field measurements, models, and modeling approaches. We expect that the type of approach taken here will result in more insight than would be possible if each component of the program moved forward independently. The primary significance of this project is in providing a strong quantitative basis for the development of future observational and modeling studies of carbon budgets of continental shelf systems. A strong aspect of the USECoS project is the integration of modeling and extensive physical, chemical, and biological data sets, which provides an opportunity for modeling and data analyses to inform one another from the outset. This research is particularly germane to NASA's carbon cycle research focus and coastal research initiative and the U.S. Climate Change Research Program, all of which support the goals of the North American Carbon Program. We highlight primary approaches that have been used, and some of the challenges and results that have come from interactions among our team of investigators. The global scale and interdisciplinary nature of the science questions that we now face in Earth Science are such that integrated teams of investigators are needed to address them.
NASA Astrophysics Data System (ADS)
Eriksson, Kenneth A.
1982-01-01
Archean supracrustal sequences in the Barberton Mountain Land, South Africa, and the Pilbara Block, Australia, consist of lower volcanic and upper dominantly terrigenous clastic intervals. As evidenced by the paleoenvironments of intercalated sedimentary horizons, volcanism occurred mainly in shallow waters. The overlying ca 3.3 Ga sedimentary intervals contain various common as well as unique paleoenvironments, the understanding of which places significant constraints on Archean crustal models. Lateral and vertical associations of inferred paleoenvironments are used to interpret the geotectonic history of the Archean depositories. The early sedimentary history of the greenstone belts is characterized by terrestrial and subaqueous graben-fill associations of facies related to the initial rift stage of basin development. Continued rifting and initial spreading produced submarine grabens within which ironformations accumulated in response to waning volcanism. Source area uplift resulted in progradation of submarine fans across the basinal chemical sediments. The turbidites are gradational directly into braided alluvial sediments, in part of fan delta origin, suggesting that the continental to marine transition occurred along a narrow continental shelf. In the Barberton Mountain Land the steep-rift margin was succeeded by the development of a stable continental shelf or shelf rise margin through progradation of the turbidite wedge possibly in association with a eustatic rise in sea-level related to continued spreading. On this shelf extensive tidal, deltaic and barrier beach sediments accumulated. Sedimentation was terminated by closure of the passive margin oceans. The late-Archean Pongola Supergroup in South Africa is considered to be the late-orogenic molasse response to this closure and represents the completion of the Wilson cycle.
Is there a distinct continental slope fauna in the Antarctic?
NASA Astrophysics Data System (ADS)
Kaiser, Stefanie; Griffiths, Huw J.; Barnes, David K. A.; Brandão, Simone N.; Brandt, Angelika; O'Brien, Philip E.
2011-02-01
The Antarctic continental slope spans the depths from the shelf break (usually between 500 and 1000 m) to ˜3000 m, is very steep, overlain by 'warm' (2-2.5 °C) Circumpolar Deep Water (CDW), and life there is poorly studied. This study investigates whether life on Antarctica's continental slope is essentially an extension of the shelf or the abyssal fauna, a transition zone between these or clearly distinct in its own right. Using data from several cruises to the Weddell Sea and Scotia Sea, including the ANDEEP (ANtarctic benthic DEEP-sea biodiversity, colonisation history and recent community patterns) I-III, BIOPEARL (BIOdiversity, Phylogeny, Evolution and Adaptive Radiation of Life in Antarctica) 1 and EASIZ (Ecology of the Antarctic Sea Ice Zone) II cruises as well as current databases (SOMBASE, SCAR-MarBIN), four different taxa were selected (i.e. cheilostome bryozoans, isopod and ostracod crustaceans and echinoid echinoderms) and two areas, the Weddell Sea and the Scotia Sea, to examine faunal composition, richness and affinities. The answer has important ramifications to the link between physical oceanography and ecology, and the potential of the slope to act as a refuge and resupply zone to the shelf during glaciations. Benthic samples were collected using Agassiz trawl, epibenthic sledge and Rauschert sled. By bathymetric definition, these data suggest that despite eurybathy in some of the groups examined and apparent similarity of physical conditions in the Antarctic, the shelf, slope and abyssal faunas were clearly separated in the Weddell Sea. However, no such separation of faunas was apparent in the Scotia Sea (except in echinoids). Using a geomorphological definition of the slope, shelf-slope-abyss similarity only changed significantly in the bryozoans. Our results did not support the presence of a homogenous and unique Antarctic slope fauna despite a high number of species being restricted to the slope. However, it remains the case that there may be a unique Antarctic slope fauna, but the paucity of our samples could not demonstrate this in the Scotia Sea. It is very likely that various ecological and evolutionary factors (such as topography, water-mass and sediment characteristics, input of particulate organic carbon (POC) and glaciological history) drive slope distinctness. Isopods showed greatest species richness at slope depths, whereas bryozoans and ostracods were more speciose at shelf depths; however, significance varied across Weddell Sea and Scotia Sea and depending on bathymetric vs. geomorphological definitions. Whilst the slope may harbour some source populations for localised shelf recolonisation, the absence of many shelf species, genera and even families (in a poorly dispersing taxon) from the continental slope indicate that it was not a universal refuge for Antarctic shelf fauna.
George, D.A.; Hill, P.S.; Milligan, T.G.
2007-01-01
Across a limited depth range (5-10 m) on many continental shelves, the dominant sediment size changes from sand to mud. This important boundary, called the sand-mud transition (SMT), separates distinct benthic habitats, causes a significant change in acoustic backscatter, represents a key facies change, and delimits more surface-reactive mud from less surface-reactive sand. With the goal of improving dynamical understanding of the SMT, surficial sediments were characterized across two SMTs on the Adriatic continental shelf of Italy. Geometric mean diameter, specific surface area (SSA), mud fraction (<63 ??m) and heavy metal concentrations were all measured. The SMT related to the Tronto River is identified between 15 and 20 m water depth while the SMT associated with the Pescara River varies between 15 and 25 m water depth. The sediment properties correlate with a new, process-based sedimentological parameter that quantifies the fraction of the sediment in the seabed that was delivered as flocs. These correlations suggest that floc dynamics exert strong influence over sediment textural properties and metal concentrations. Relative constancy in the depth of the SMT along this portion of the margin and its lack of evolution over a period during which sediment input to the margin has dramatically decreased suggest that on the Adriatic continental shelf energy is the dominant control on the depth of the SMT. ?? 2006 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dmitrenko, Igor A.; Kirillov, Sergei A.; Rudels, Bert; Babb, David G.; Pedersen, Leif T.; Rysgaard, Soeren; Kristoffersen, Yngve; Barber, David G.
2016-04-01
The first-ever conductivity-temperature-depth (CTD) observations on the Wandel Sea shelf in North Eastern Greenland were collected from the land-fast ice in April-May 2015 as a part of the Arctic Science Partnership collaboration during the first research campaign at the Villum Research Station. They were complemented by (i) the ice-tethered profiler (ITP) and Acoustic Dopler Current Profiler (ADCP) mooring observations in ~300 m of the tidewater glacier outlet from the Flade Isblink Ice Cap and (ii) CTDs taken in June-July 2015 along the Wandel Sea continental slope during the Norwegian FRAM 2014-15 sea ice drift. The CTD profiles deeper than 100 m are used to reveal the origin of water masses and determine the extent to which these water masses have interacted with ambient water from the continental slope. The subsurface water layer from ~20-70 m depth is comprised of freshened water (30-32 psu) that is likely associated with the Pacific Water outflow from the Arctic Ocean through the western Fram Strait. The underlying halocline layer centered at ~80 m (~33 psu) separates the Pacific Water layer from a deeper (<140 m) layer of modified Polar Water that has interacted with the warm Atlantic Water outflow through Fram Strait. The Atlantic Water layer with temperature above 0°C is recorded below 140 m. Over the outer shelf, the halocline layer shows numerous cold density-compensated intrusions indicating lateral interaction with an ambient Polar Water mass across the continental slope. Mooring data shows an enhanced shelf-slope interaction responding the storm event in 23-24 April 2015 with northerly winds exceeding 10 m/s. The on-shelf transport of a cold and turbid water from the upper continental slope results in enhanced interleaving within the depth range of the halocline layer (~70-100 m). Our observations of Pacific Water in the Wandel Sea subsurface layer are set in the context of upstream observations in the Beaufort Sea for 2002-2011 and downstream observations from the Northeast Water Polynya (1992-1993), and clearly show the modification of Pacific Water during its advection across the Arctic Ocean from the Bering Strait to Fram Strait. Moreover, the Wandel Sea shelf and continental slope water shows a different water mass structure indicating the different origin and pathways of the on-shore and off-shore branches of the Arctic Ocean outflow through the Western Fram Strait.
To investigate the relative importance of microphytobenthos (MPB) oxygen (O2) production on a river-dominated shelf, we made sediment core incubation measurements of MPB O2 production and sediment O2 consumption, and compared these to water-column measures of primary production ...
Ecology of Great Salt Pond, Block Island
Great Salt Pond is an island of estuarine water on Block Island, which sits in the middle of the Northwest Atlantic Continental Shelf. When the last continental glaciers retreated, they left a high spot on a terminal moraine. The rising sea from melting glaciers formed two island...
Ocean processes at the Antarctic continental slope
Heywood, Karen J.; Schmidtko, Sunke; Heuzé, Céline; Kaiser, Jan; Jickells, Timothy D.; Queste, Bastien Y.; Stevens, David P.; Wadley, Martin; Thompson, Andrew F.; Fielding, Sophie; Guihen, Damien; Creed, Elizabeth; Ridley, Jeff K.; Smith, Walker
2014-01-01
The Antarctic continental shelves and slopes occupy relatively small areas, but, nevertheless, are important for global climate, biogeochemical cycling and ecosystem functioning. Processes of water mass transformation through sea ice formation/melting and ocean–atmosphere interaction are key to the formation of deep and bottom waters as well as determining the heat flux beneath ice shelves. Climate models, however, struggle to capture these physical processes and are unable to reproduce water mass properties of the region. Dynamics at the continental slope are key for correctly modelling climate, yet their small spatial scale presents challenges both for ocean modelling and for observational studies. Cross-slope exchange processes are also vital for the flux of nutrients such as iron from the continental shelf into the mixed layer of the Southern Ocean. An iron-cycling model embedded in an eddy-permitting ocean model reveals the importance of sedimentary iron in fertilizing parts of the Southern Ocean. Ocean gliders play a key role in improving our ability to observe and understand these small-scale processes at the continental shelf break. The Gliders: Excellent New Tools for Observing the Ocean (GENTOO) project deployed three Seagliders for up to two months in early 2012 to sample the water to the east of the Antarctic Peninsula in unprecedented temporal and spatial detail. The glider data resolve small-scale exchange processes across the shelf-break front (the Antarctic Slope Front) and the front's biogeochemical signature. GENTOO demonstrated the capability of ocean gliders to play a key role in a future multi-disciplinary Southern Ocean observing system. PMID:24891389
Ocean processes at the Antarctic continental slope.
Heywood, Karen J; Schmidtko, Sunke; Heuzé, Céline; Kaiser, Jan; Jickells, Timothy D; Queste, Bastien Y; Stevens, David P; Wadley, Martin; Thompson, Andrew F; Fielding, Sophie; Guihen, Damien; Creed, Elizabeth; Ridley, Jeff K; Smith, Walker
2014-07-13
The Antarctic continental shelves and slopes occupy relatively small areas, but, nevertheless, are important for global climate, biogeochemical cycling and ecosystem functioning. Processes of water mass transformation through sea ice formation/melting and ocean-atmosphere interaction are key to the formation of deep and bottom waters as well as determining the heat flux beneath ice shelves. Climate models, however, struggle to capture these physical processes and are unable to reproduce water mass properties of the region. Dynamics at the continental slope are key for correctly modelling climate, yet their small spatial scale presents challenges both for ocean modelling and for observational studies. Cross-slope exchange processes are also vital for the flux of nutrients such as iron from the continental shelf into the mixed layer of the Southern Ocean. An iron-cycling model embedded in an eddy-permitting ocean model reveals the importance of sedimentary iron in fertilizing parts of the Southern Ocean. Ocean gliders play a key role in improving our ability to observe and understand these small-scale processes at the continental shelf break. The Gliders: Excellent New Tools for Observing the Ocean (GENTOO) project deployed three Seagliders for up to two months in early 2012 to sample the water to the east of the Antarctic Peninsula in unprecedented temporal and spatial detail. The glider data resolve small-scale exchange processes across the shelf-break front (the Antarctic Slope Front) and the front's biogeochemical signature. GENTOO demonstrated the capability of ocean gliders to play a key role in a future multi-disciplinary Southern Ocean observing system.
NASA Astrophysics Data System (ADS)
Dottori, Marcelo; Castro, Belmiro Mendes
2018-06-01
Data analysis of continental shelf currents and coastal sea level, together with the application of a semi-analytical model, are used to estimate the importance of remote wind forcing on the subinertial variability of the current in the central and northern areas of the South Brazil Bight. Results from both the data analysis and from the semi-analytical model are robust in showing subinertial variability that propagates along-shelf leaving the coast to the left in accordance with theoretical studies of Continental Shelf Waves (CSW). Both the subinertial variability observed in along-shelf currents and sea level oscillations present different propagation speeds for the narrow northern part of the SBB ( 6-7 m/s) and the wide central SBB region ( 11 m/s), those estimates being in agreement with the modeled CSW propagation speed. On the inner and middle shelf, observed along-shelf subinertial currents show higher correlation coefficients with the winds located southward and earlier in time than with the local wind at the current meter mooring position and at the time of measurement. The inclusion of the remote (located southwestward) wind forcing improves the prediction of the subinertial currents when compared to the currents forced only by the local wind, since the along-shelf-modeled currents present correlation coefficients with observed along-shelf currents up to 20% higher on the inner and middle shelf when the remote wind is included. For most of the outer shelf, on the other hand, this is not observed since usually, the correlation between the currents and the synoptic winds is not statistically significant.
NASA Astrophysics Data System (ADS)
Goddard, P.; Dufour, C.; Yin, J.; Griffies, S. M.; Winton, M.
2017-12-01
Ocean warming near the Antarctic ice shelves has critical implications for future ice sheet mass loss and global sea level rise. A global climate model (GFDL CM2.6) with an eddying ocean is used to quantify and better understand the mechanisms contributing to ocean warming on the Antarctic continental shelf in an idealized 2xCO2 experiment. The results indicate that the simulated shelf region warming varies in magnitude at different locations. Relatively large warm anomalies occur both in the upper 100 m and at depth, which are controlled by different mechanisms. Here, we focus on the deep shelf warming and its relationship to shelf freshening. Under CO2-forcing, enhanced runoff from Antarctica, more regional precipitation, and reduction of sea ice contribute to the shelf freshening. The freshening increases the lateral density gradient of the Antarctic Slope Front, which can limit along-isopycnal onshore transport of heat from the Circumpolar Deep Water across the shelf break. Thus, the magnitude and location of the freshening anomalies govern the magnitude and location of onshore heat transport and deep warm anomalies. Additionally, the freshening increases vertical stratification on the shelf. The enhanced stratification reduces vertical mixing of heat associated with diffusion and gravitational instabilities, further contributing to the build-up of temperature anomalies at depth. Freshening is a crucial driver of the magnitude and location of the warming; however, other drivers influence the warming such as CO2-forced weakening of the easterly wind stress and associated shoaling of isotherms. Understanding the relative role of freshening in the inhomogeneous ocean warming of the Antarctic continental shelf would lead to better projections of future ice sheet mass loss, especially near the most vulnerable calving fronts.
NASA Astrophysics Data System (ADS)
Dottori, Marcelo; Castro, Belmiro Mendes
2018-05-01
Data analysis of continental shelf currents and coastal sea level, together with the application of a semi-analytical model, are used to estimate the importance of remote wind forcing on the subinertial variability of the current in the central and northern areas of the South Brazil Bight. Results from both the data analysis and from the semi-analytical model are robust in showing subinertial variability that propagates along-shelf leaving the coast to the left in accordance with theoretical studies of Continental Shelf Waves (CSW). Both the subinertial variability observed in along-shelf currents and sea level oscillations present different propagation speeds for the narrow northern part of the SBB ( 6-7 m/s) and the wide central SBB region ( 11 m/s), those estimates being in agreement with the modeled CSW propagation speed. On the inner and middle shelf, observed along-shelf subinertial currents show higher correlation coefficients with the winds located southward and earlier in time than with the local wind at the current meter mooring position and at the time of measurement. The inclusion of the remote (located southwestward) wind forcing improves the prediction of the subinertial currents when compared to the currents forced only by the local wind, since the along-shelf-modeled currents present correlation coefficients with observed along-shelf currents up to 20% higher on the inner and middle shelf when the remote wind is included. For most of the outer shelf, on the other hand, this is not observed since usually, the correlation between the currents and the synoptic winds is not statistically significant.
Fisher, M.A.; Normark, W.R.; Bohannon, R.G.; Sliter, R.W.; Calvert, A.J.
2003-01-01
We interpret seismic-reflection data, which were collected in Santa Monica Bay using a 70-in3 generator-injector air gun, to show the geologic structure of the continental shelf and slope and of the deep-water, Santa Monica and San Pedro Basins. The goal of this research is to investigate the earthquake hazard posed to urban areas by offshore faults. These data reveal that northwest of the Palos Verdes Peninsula, the Palos Verdes Fault neither offsets the seafloor nor cuts through an undeformed sediment apron that postdates the last sea level rise. Other evidence indicates that this fault extends northwest beneath the shelf in the deep subsurface. However, other major faults in the study area, such as the Dume and San Pedro Basin Faults, were active recently, as indicated by an arched seafloor and offset shallow sediment. Rocks under the lower continental slope are deformed to differing degrees on opposite sides of Santa Monica Canyon. Northwest of this canyon, the continental slope is underlain by a little-deformed sediment apron; the main structures that deform this apron are two lower-slope anticlines that extend toward Point Dume and are cored by faults showing reverse or thrust separation. Southeast of Santa Monica Canyon, lower-slope rocks are deformed by a complex arrangement of strike-slip, normal, and reverse faults. The San Pedro Escarpment rises abruptly along the southeast side of Santa Monica Canyon. Reverse faults and folds underpinning this escarpment steepen progressively southeastward. Locally they form flower structures and cut downward into basement rocks. These faults merge downward with the San Pedro Basin fault zone, which is nearly vertical and strike slip. The escarpment and its attendant structures diverge from this strike-slip fault zone and extend for 60 km along the margin, separating the continental shelf from the deep-water basins. The deep-water Santa Monica Basin has large extent but is filled with only a thin (less than 1.5-km) section of what are probably post-Miocene rocks and sediment. Extrapolating ages obtained from Ocean Drilling Program site 1015 indicates that this sedimentary cover is Quaternary, possibly no older than 600 ka. Folds and faults along the base of the San Pedro Escarpment began to form during 8-13 ka ago. Refraction-velocity data show that high-velocity rocks, probably the Catalina Schist or Miocene volcanic rocks, underlie the sedimentary section. The San Pedro Basin developed along a strike-slip fault, widens to the southeast, and is deformed by faults having apparent reverse separation and by folds near Redondo Canyon and the Palos Verdes Peninsula.
Chen, De; Chang, Jiang; Li, Shou-Hsien; Liu, Yang; Liang, Wei; Zhou, Fang; Yao, Cheng-Te; Zhang, Zhengwang
2015-02-01
Research on island biotas has greatly contributed to the development of modern evolutionary and biogeographic theories. Until now, most studies have suggested that continental islands received their biotas directly from the adjacent mainland. However, only a few studies have indicated that species on continental islands might originate from other distantly non-adjacent regions. Here, we used the hill partridges (genus Arborophila) that are widely distributed in the southwest and southeast China mainland, Indochina, Hainan and Taiwan islands to test whether species on continental islands might originate from distant regions rather than the adjacent mainland. Based on molecular phylogenies inferred from three mitochondrial fragments and three nuclear introns, together with ancestral area reconstruction, we found that the ancestors of the endemic Hainan and Taiwan partridges (A. ardens and A. crudigularis) likely originated from Indochina, rather than the nearby southeast China mainland. The divergence time estimates demonstrate that their ancestors likely colonized Hainan and Taiwan islands using the long exposed continental shelf between Indochina, Hainan and Taiwan islands during glacial periods, which had not been demonstrated before. Thus, integrating distribution data with phylogenetic information can shed new lights on the historical biogeography of continental islands and surrounding mainland regions. Copyright © 2014 Elsevier Inc. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-03
...-0006; OMB Control Number 1014-NEW] Information Collection Activities: Oil, Gas, and Sulphur Operations in the Outer Continental Shelf, Subpart A, General; Submitted for Office of Management and Budget... Office of Management and Budget (OMB) for review and approval. The information collection request (ICR...
26 CFR 1.638-1 - Continental Shelf areas.
Code of Federal Regulations, 2013 CFR
2013-04-01
... exploitation of oil and is physically present on an offshore oil drilling platform operated by employees of L... a foreign country, designs equipment for use on oil drilling platforms affixed to the continental... corporation, to engage in exploratory oil drilling activities on a leasehold held by Y Corporation. Such...
26 CFR 1.638-1 - Continental Shelf areas.
Code of Federal Regulations, 2014 CFR
2014-04-01
... exploitation of oil and is physically present on an offshore oil drilling platform operated by employees of L... a foreign country, designs equipment for use on oil drilling platforms affixed to the continental... corporation, to engage in exploratory oil drilling activities on a leasehold held by Y Corporation. Such...
26 CFR 1.638-1 - Continental Shelf areas.
Code of Federal Regulations, 2012 CFR
2012-04-01
... exploitation of oil and is physically present on an offshore oil drilling platform operated by employees of L... a foreign country, designs equipment for use on oil drilling platforms affixed to the continental... corporation, to engage in exploratory oil drilling activities on a leasehold held by Y Corporation. Such...
26 CFR 1.638-1 - Continental Shelf areas.
Code of Federal Regulations, 2011 CFR
2011-04-01
... exploitation of oil and is physically present on an offshore oil drilling platform operated by employees of L... a foreign country, designs equipment for use on oil drilling platforms affixed to the continental... corporation, to engage in exploratory oil drilling activities on a leasehold held by Y Corporation. Such...
75 FR 10809 - Outer Continental Shelf (OCS) Scientific Committee-Notice of Renewal
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-09
... AGENCY: Minerals Management Service (MMS), Interior. ACTION: Notice of renewal of the Outer Continental... Minerals Management Service. The Committee reviews the relevance of the research and data being produced to meet MMS scientific information needs for decisionmaking and may recommend changes in scope, direction...
NASA Astrophysics Data System (ADS)
Ha, Sangbeom; Khim, Boo-Keun; Colizza, Ester; Marci, Patrizia; Sagnotti, Leonardo; Caricchi, Chiara; Langone, Leonardo; Giglio, Federico; Kuhn, Gerhard
2017-04-01
High latitude marine environments including the Antarctic continental margin have sensitively responded to the climate change, and the Ross Sea is one of these examples. Subglacial marine sedimentary changes have been studied extensively in the continental shelf areas of the Ross Sea to understand the growth and retreat of glaciers in response to the glacial-interglacial changes. However, the continental slope areas of the Ross Sea have not been investigated comparatively less. Thus, in order to comprehend the glaciomarine sedimentation change on the continental slope of the Ross Sea, 3 gravity cores (GC1, GC2, GC3) and 3 box cores (BC1, BC2, BC3) were collected from 3 sites (RS14-C1, C2, C3 by decreasing water depth), respectively, across the continental slope to the eastern side of the Pennell-Iselin Bank during XXIX PNRA (Rosslope II) cruise in 2014. A variety of sedimentological (grain size, magnetic susceptibility, XRF) and geochemical (biogenic opal, total organic carbon, CaCO3, δ13C of organic matter) properties were analyzed along with AMS 14C dating of bulk sediments. All core sediments consist of mostly hemipelagic sandy clay or silty clay with scattered IRD (Ice-Rafted Debris). Sediment color of three cores changes consistently downward from brown to gray with some alternations in core GC1. Based on the basic sediment properties such as sediment color, grain size, and magnetic susceptibility, sediment lithology was decided to divide Unit A and Unit B, both of which were further divided into two subunits. Despite old carbon effect, AMS 14C dates confirm that Unit A belongs to the Holocene and Unit B covers the deglacial to last glacial period at the top of cores. Unit A is characterized by low TOC, low CaCO3, low biogenic opal content and low C/N ratios, whereas Unit B is characterized by high TOC, high CaCO3, moderate to high biogenic opal content and high C/N ratios. Consequently, Unit A represents the modern and interglacial sediments deposited mainly by the suspension settling of biogenic particles in the open marine condition. In contrast, because Unit B shows higher TOC, CaCO3 content and C/N ratios, these sediments might be supplied by the lateral melt-water plume or distal part of debris flow originated from the front of grounding ice in the subglacial continental shelf under the ice shelf and during the glacial or post-glacial period. Thus, Unit B contains mostly reworked and eroded continental shelf sediments and IRDs. In addition, because the peaks of biogenic opal and TOC contents at Site C1 are distinctly higher than Sites C2 and C3, surface water production occurred under seasonally open marine condition at the deeper Site C1. In conclusion, the influence of subglacial continental shelf sedimentation in terms of melt-water transport and/or distal stage of debris flow was limited as far as to Site C2 during the deglacial and glacial period. However, such depositional effect was insignificant, but the seasonal open marine condition was recognized, at the deeper Site C1 in the continental slope of the Ross Sea.
The Project for the Extension of the Continental Shelf - the Portuguese experience
NASA Astrophysics Data System (ADS)
Madureira, Pedro; Ribeiro, Luísa P.; Roque, Cristina; Henriques, Guida; Brandão, Filipe; Dias, Frederico; Simões, Maria; Neves, Mariana; Conceição, Patricia; Botelho Leal, Isabel; Emepc, Equipa
2017-04-01
Under the United Nations Convention on the Law of the Sea (UNCLOS), the continental shelf is a juridical term used to define a submarine area that extends throughout the natural prolongation of a land territory, where the coastal State exercises sovereign rights for the purpose of exploring it and exploiting its natural resources. Article 76 provides a methodology for determining the outer edge of the continental margin and to delineate the outer limits of the continental shelf. The task of preparing the Portuguese submission to the Commission on the Limits of the Continental Shelf was committed to the Task Group for the Extension of the Continental Shelf (EMEPC), which formally began its activity in January 2005. At that time, the existing national capacity to conduct such a task was very limited in its hydrographic, geological and geophysical components. A great effort has been made by Portugal to overcome these weaknesses and develop a strategy to submit the proposal for the extension of the continental shelf beyond 200 nautical miles on 11th May of 2009. The execution of the project involved the implementation of several complementary strategies including: 1) intensive bathymetric, geophysical and, locally, geological data acquisition; 2) acquisition/development of new stand-alone and ship mounted equipment; 3) interactions with universities and research institutes, with emphasis in R&D initiatives; 4) creation of critical mass in deep-sea research by promoting advanced studies on: International Law, Geophysics, Geology, Hydrography, Biology, amongst others; 5) promotion of the sea as a major national goal, coupled with an outreach strategy. Until now, more than 1050 days of surveying have resulted in a large scale seafloor mapping using two EM120 and one EM710 multibeam echosounders from Kongsberg mounted on two hydrographic vessels. The surveys follow IHO Order 2 Standard (SP44, 5th Edition) and cover an area over 2.6 million km2. A multichannel reflection and wide angle refraction seismic survey provided 2600 km of high quality MCS data, allowing an accurate imaging of the sediment cover. Also, the data collected under the project has been used to foster the collaboration with universities and research institutes and to support research projects and post graduate studies on the deep-sea. An educational strategy has been emplaced in order to promote Ocean Literacy among children and youngsters. Since 2008, EMEPC is responsible for the operation and maintenance of Luso, a work class ROV rated to 6,000 metres depth. More than 170 ROV dives allowed the direct observation of the deep-sea for almost 800 hours of video footages, which also provided key information on biodiversity and deep sea ecosystems, which stand as the base for the creation of a database on biological data and to develop a strategy to protect the marine environment. Portugal has now the capacity to access its entire maritime areas, reinforcing the knowledge on the natural processes that shape the deep-sea. Some views on the Portuguese interpretation and application of article 76 will be discussed based on the data gathered within the scope of the project, which is still ongoing.
Schwab, William C.; Baldwin, Wayne E.; Denny, Jane F.
2015-01-01
The U.S. Geological Survey mapped approximately 336 square kilometers of the lower shoreface and inner continental shelf offshore of Fire Island, New York, in 1996 and 1997, using high-resolution sidescan-sonar and seismic-reflection systems, and again in 2011, using interferometric sonar and high-resolution chirp seismic-reflection systems. This report presents a comparison of sediment thickness and distribution as mapped during these two investigations. These spatial data support research on the Quaternary evolution of the Fire Island coastal system and provide baseline information for research on coastal processes along southern Long Island.
Gas hydrate potential of the mid Atlantic outer continental shelf
Shedd, William W.; Hutchinson, Deborah R.
2006-01-01
For the last two years, the Minerals Management Service (MMS) has been studying the resource potential of gas hydrates in federal offshore lands of the Outer Continental Shelf (OCS) off the Atlantic, Gulf of Mexico, Pacific, and Alaska in collaboration with the U.S. Geological Survey (USGS), the Department of Energy (DOE), the National Oceanic and Atmospheric Administration (NOAA), the Naval Research Lab (NRL) and academia. Utilizing its extensive seismic, well, and geochemical databases, the MMS will be reporting the in-place resource numbers within the next few months. Though the methodology of the study was not prospect oriented, discrete prospects have been recognized.
NASA Astrophysics Data System (ADS)
Dickinson, William R.
2011-09-01
Discovery of the Monte Verde archeological site in Chile overturned the previous consensus that the first Americans into the New World from Asia were the makers of Clovis projectile points, and rejuvenated the hypothesis that migration through the Americas occurred largely on portions of the Pacific continental shelf exposed by Pleistocene drawdown in eustatic sea level. The postulate of travel along a paleoshoreline now hidden underwater is an attractive means to posit pre-Clovis human movement southward from Beringia to Chile without leaving traces of migration onshore. Geologic analyses of the Pleistocene paleoenvironment at Monte Verde and of the morphology of the potential migration route along the continental shelf raise questions that have not been fully addressed. The periglacial setting of Monte Verde may call its antiquity into question and the narrowness of the Pacific continental shelf of the Americas makes it unlikely that people could travel the length of the Americas without impacting ground still onshore and no farther inland than Monte Verde itself. Geological perspectives on Monte Verde and coastal migration jointly suggest that the Clovis-first hypothesis for peopling the New World may have been abandoned prematurely.
Habitat-specific foraging strategies in Australasian gannets
Wells, Melanie R.; Arnould, John P. Y.
2016-01-01
ABSTRACT Knowledge of top predator foraging adaptability is imperative for predicting their biological response to environmental variability. While seabirds have developed highly specialised techniques to locate prey, little is known about intraspecific variation in foraging strategies with many studies deriving information from uniform oceanic environments. Australasian gannets (Morus serrator) typically forage in continental shelf regions on small schooling prey. The present study used GPS and video data loggers to compare habitat-specific foraging strategies at two sites of contrasting oceanographic regimes (deep water near the continental shelf edge, n=23; shallow inshore embayment, n=26), in south-eastern Australia. Individuals from the continental shelf site exhibited pelagic foraging behaviours typical of gannet species, using local enhancement to locate and feed on small schooling fish; in contrast only 50% of the individuals from the inshore site foraged offshore, displaying the typical pelagic foraging strategy. The remainder adopted a strategy of searching sand banks in shallow inshore waters in the absence of conspecifics and other predators for large, single prey items. Furthermore, of the individuals foraging inshore, 93% were male, indicating that the inshore strategy may be sex-specific. Large inter-colony differences in Australasian gannets suggest strong plasticity in foraging behaviours, essential for adapting to environmental change. PMID:27305927
A model of the methane cycle, permafrost, and hydrology of the Siberian continental margin
Archer, D.
2014-06-03
A two-dimensional model of a passive continental margin was adapted to the simulation of the methane cycle on Siberian continental shelf and slope, attempting to account for the impacts of glacial/interglacial cycles in sea level, alternately exposing the continental shelf to freezing conditions with deep permafrost formation during glacial times, and immersion in the ocean in interglacial times. The model is used to gauge the impact of the glacial cycles, and potential anthropogenic warming in the deep future, on the atmospheric methane emission flux, and the sensitivities of that flux to processes such as permafrost formation and terrestrial organic carbonmore » (Yedoma) deposition. Hydrological forcing drives a freshening and ventilation of pore waters in areas exposed to the atmosphere, which is not quickly reversed by invasion of seawater upon submergence, since there is no analogous saltwater pump. This hydrological pump changes the salinity enough to affect the stability of permafrost and methane hydrates on the shelf. Permafrost formation inhibits bubble transport through the sediment column, by construction in the model. The impact of permafrost on the methane budget is to replace the bubble flux by offshore groundwater flow containing dissolved methane, rather than accumulating methane for catastrophic release when the permafrost seal fails during warming. By far the largest impact of the glacial/interglacial cycles on the atmospheric methane flux is attenuation by dissolution of bubbles in the ocean when sea level is high. Methane emissions are highest during the regression (soil freezing) part of the cycle, rather than during transgression (thawing). The model-predicted methane flux to the atmosphere in response to a warming climate is small, relative to the global methane production rate, because of the ongoing flooding of the continental shelf. A slight increase due to warming could be completely counteracted by sea level rise on geologic time scales, decreasing the efficiency of bubble transit through the water column. The methane cycle on the shelf responds to climate change on a long time constant of thousands of years, because hydrate is excluded thermodynamically from the permafrost zone by water limitation, leaving the hydrate stability zone at least 300 m below the sediment surface.« less
Durophagous Predation by King Crabs on the Continental Slope off Antarctica
NASA Astrophysics Data System (ADS)
Smith, K.; Aronson, R. B.; Steffel, B. V.; McClintock, J. B.; Amsler, M.; Thatje, S.
2016-02-01
For perhaps tens of millions of years, marine communities in Antarctica have been essentially devoid of durophagous (shell-crushing) predators, which have been excluded by low temperatures. In their absence, the resident species have evolved in isolation and are slow-moving with limited defenses. Rapidly rising sea temperatures around Antarctica are now relaxing the cold-thermal barrier and appear to be allowing deep-water king crabs (Lithodidae) to move up the continental slope, into shallower water. Their potential to emerge on the continental shelf could drastically restructure the endemic communities that live there; in other areas of the world, lithodids are typically generalist predators of invertebrates. Their diet in Antarctic waters remains unknown and it has been speculated that they are opportunistic scavengers. We report the findings of a trapping study conducted in deep water off the western Antarctic Peninsula in 2015. Stomach contents were analyzed for 18 adult Paralomis birsteini trapped on the continental slope. P. birsteini feed primarily on invertebrates such as echinoderms, gastropods and polychaetes. By understanding the prey species targeted by slope-dwelling lithodids, we can begin to project the future impact of an expansion of king crabs onto the Antarctic continental shelf.
Geologist argues for renewed, deeper look at US Gulf Coast
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pratsch, J.C.
1992-09-01
Over 10 bbo (billion barrels of oil) and about 130 Tcf of gas have been reported as proved reserves discovered in the offshore U.S. continental shelf (OCS or outer continental shelf) along the northern Gulf Coast. Of these reserves, only 2.5 bbo and 36,146 Bcf of gas remain, which seem small in comparison to a U.S. consumption rate of over 5 bbo/yr. Reserves, new additions and production levels in the Gulf Coast region have fallen for the last decade and more. Rig and crew boat counts are down, employment is down, and it is difficult for most to remain optimistic.more » This paper reports that there is good reason for optimism---A major new exploration play for oil and gas exists on the Texas/Louisiana shelf. Modern geological, geophysical (mainly seismic) and geochemical data, when combined, offer a sound base for a major renewed exploration campaign.« less
Pendleton, Elizabeth A.; Baldwin, Wayne E.; Barnhardt, Walter A.; Ackerman, Seth D.; Foster, David S.; Andrews, Brian D.; Schwab, William C.
2013-01-01
The Massachusetts inner continental shelf between Nahant and northern Cape Cod Bay has been profoundly affected by the occupation and retreat of glacial ice sheets and relative sea-level change during the Quaternary. Marine geologic mapping of this area is a component of a statewide cooperative effort involving the U.S. Geological Survey and the Massachusetts Office of Coastal Zone Management. Interpretation of high-resolution geophysical data (interferometric and multibeam swath bathymetry, lidar, backscatter, and seismic reflection), sediment samples, and bottom photographs was used to produce a series of maps that describe the distribution and texture of seafloor sediments, shallow geologic framework, and physiographic zones of this inner-shelf region. These data and interpretations are intended to aid efforts to inventory and manage coastal and marine resources, and provide baseline information for research focused on coastal evolution and environmental change.
High particle export over the continental shelf of the west Antarctic Peninsula
NASA Astrophysics Data System (ADS)
Buesseler, Ken O.; McDonnell, Andrew M. P.; Schofield, Oscar M. E.; Steinberg, Deborah K.; Ducklow, Hugh W.
2010-11-01
Drifting cylindrical traps and the flux proxy 234Th indicate more than an order of magnitude higher sinking fluxes of particulate carbon and 234Th in January 2009 than measured by a time-series conical trap used regularly on the shelf of the west Antarctic Peninsula (WAP). The higher fluxes measured in this study have several implications for our understanding of the WAP ecosystem. Larger sinking fluxes result in a revised export efficiency of at least 10% (C flux/net primary production) and a requisite lower regeneration efficiency in surface waters. High fluxes also result in a large supply of sinking organic matter to support subsurface and benthic food webs on the continental shelf. These new findings call into question the magnitude of seasonal and interannual variability in particle flux and reaffirm the difficulty of using moored conical traps as a quantitative flux collector in shallow waters.
Direct observations of American eels migrating across the continental shelf to the Sargasso Sea
Béguer-Pon, Mélanie; Castonguay, Martin; Shan, Shiliang; Benchetrit, José; Dodson, Julian J.
2015-01-01
Since inferring spawning areas from larval distributions in the Sargasso Sea a century ago, the oceanic migration of adult American eels has remained a mystery. No adult eel has ever been observed migrating in the open ocean or in the spawning area. Here, we track movements of maturing eels equipped with pop-up satellite archival tags from the Scotian Shelf (Canada) into the open ocean, with one individual migrating 2,400 km to the northern limit of the spawning site in the Sargasso Sea. The reconstructed routes suggest a migration in two phases: one over the continental shelf and along its edge in shallow waters; the second in deeper waters straight south towards the spawning area. This study is the first direct evidence of adult Anguilla migrating to the Sargasso Sea and represents an important step forward in the understanding of routes and migratory cues. PMID:26505325
Seabed fluid expulsion along the upper slope and outer shelf of the U.S. Atlantic continental margin
Brothers, D.S.; Ruppel, C.; Kluesner, J.W.; ten Brink, Uri S.; Chaytor, J.D.; Hill, J.C.; Andrews, B.D.; Flores, C.
2014-01-01
Identifying the spatial distribution of seabed fluid expulsion features is crucial for understanding the substrate plumbing system of any continental margin. A 1100 km stretch of the U.S. Atlantic margin contains more than 5000 pockmarks at water depths of 120 m (shelf edge) to 700 m (upper slope), mostly updip of the contemporary gas hydrate stability zone (GHSZ). Advanced attribute analyses of high-resolution multichannel seismic reflection data reveal gas-charged sediment and probable fluid chimneys beneath pockmark fields. A series of enhanced reflectors, inferred to represent hydrate-bearing sediments, occur within the GHSZ. Differential sediment loading at the shelf edge and warming-induced gas hydrate dissociation along the upper slope are the proposed mechanisms that led to transient changes in substrate pore fluid overpressure, vertical fluid/gas migration, and pockmark formation.
NASA Astrophysics Data System (ADS)
Bourrin, François; Many, Gaël; Durrieu de Madron, Xavier; Martín, Jacobo; Puig, Pere; Houpert, Loic; Testor, Pierre; Kunesch, Stéphane; Mahiouz, Karim; Béguery, Laurent
2015-10-01
Transfers of particulate matter on continental margins primarily occur during energetic events. As part of the CASCADE (CAscading, Storm, Convection, Advection and Downwelling Events) experiment, a glider equipped with optical sensors was deployed in the coastal area of the Gulf of Lions, NW Mediterranean in March 2011 to assess the spatio-temporal variability of hydrology, suspended particles properties and fluxes during energetic conditions. This deployment complemented a larger observational effort, a part of the MOOSE (Mediterranean Ocean Observing System of the Environment) network, composed of a coastal benthic station, a surface buoy and moorings on the continental slope. This set of observations permitted to measure the impact of three consecutive storms and a flood event across the entire continental shelf. Glider data showed that the sediment resuspension and transport observed at the coastal station during the largest storm (Hs>4 m) was effective down to a water depth of 80 m. The mid-shelf mud belt, located between 40 and 90 m depth, appears as the zone where the along-shelf flux of suspended sediment is maximum. Besides, the across-shelf flux of suspended sediment converges towards the outer limit of the mid-shelf mud belt, where deposition of suspended particles probably occurs and contributes to the nourishment of this area. Hydrological structures, suspended particles transport and properties changed drastically during stormy periods and the following flood event. Prior to the storms, the shelf waters were weakly stratified due in particular to the presence of cold dense water on the inner- and mid-shelf. The storms rapidly swept away this dense water, as well as the resuspended sediments, along the shelf and towards a downstream submarine canyon. The buoyant river plumes that spread along the shelf after the flooding period provoked a restratification of the water column on the inner- and mid-shelf. The analysis of glider's optical data at different wavelengths suggests that the coastal area and the bottom nepheloid layer during the largest storm are primarily composed of coarse particles, probably macroflocs, and that the size of particles decreases further offshore. A similar trend, albeit less contrasted, is observed after the flooding. This work provided a unique synoptic view across the entire shelf of the impact of a typical Mediterranean storm on bottom sediment erosion and particulate fluxes. Repeated glider transects across the south-western part of the Gulf of Lions shelf permitted for the first time to measure continuously the thermo-haline structures, the suspended particles concentrations and size, the current speed, and to estimate the particulate transport before, during and after typical Mediterranean storm events. Glider data complement and compare well with concomitant high frequency time series at fixed stations along the coast and in a downstream submarine canyon.
A mass balance eutrophication model, Gulf of Mexico Dissolved Oxygen Model (GoMDOM), has been developed and applied to describe nitrogen, phosphorus and primary production in the Louisiana shelf of the Gulf of Mexico. Features of this model include bi-directional boundary exchan...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-08
... Shelf Oil and Gas Exploration and Development'' (August 16, 2010). Furthermore, this notice provides the... amended, established a national policy to protect the environment and also established the President's... procedures to implement NEPA, to consult with CEQ during their development, to provide an opportunity for...
NASA Astrophysics Data System (ADS)
Gohl, K.; Freudenthal, T.; Hillenbrand, C.-D.; Klages, J.; Larter, R.; Bickert, T.; Bohaty, S.; Ehrmann, W.; Esper, O.; Frederichs, T.; Gebhardt, C.; Küssner, K.; Kuhn, G.; Pälike, H.; Ronge, T.; Simões Pereira, P.; Smith, J.; Uenzelmann-Neben, G.; van de Flierdt, C.
2017-11-01
A multibarrel seabed drill rig was used for the first time to drill unconsolidated sediments and consolidated sedimentary rocks from an Antarctic shelf with core recoveries between 7% and 76%. We deployed the MARUM-MeBo70 drill device at nine drill sites in the Amundsen Sea Embayment. Three sites were located on the inner shelf of Pine Island Bay from which soft sediments, presumably deposited at high sedimentation rates in isolated small basins, were recovered from drill depths of up to 36 m below seafloor. Six sites were located on the middle shelf of the eastern and western embayment. Drilling at five of these sites recovered consolidated sediments and sedimentary rocks from dipping strata spanning ages from Cretaceous to Miocene. This report describes the initial coring results, the challenges posed by drifting icebergs and sea ice, and technical issues related to deployment of the MeBo70. We also present recommendations for similar future drilling campaigns on polar continental shelves.
NASA Astrophysics Data System (ADS)
Xu, Fangjian; Hu, Bangqi; Dou, Yanguang; Liu, Xiting; Wan, Shiming; Xu, Zhaokai; Tian, Xu; Liu, Zhaoqing; Yin, Xuebo; Li, Anchun
2017-07-01
The late Quaternary paleoceanography and paleoenvironment of the South China Sea (SCS) have been well reconstructed over the last decade. In contrast, the provenance of the terrigenous sediments that have accumulated in the northwestern continental shelf mud area remains enigmatic. This study investigated the provenance of these sediments and the paleoenvironmental changes archived in Core X2 via the analysis of geochemical elements, grain size, and accelerator mass spectrometry (AMS) 14C ages. Based on the upper continental crust (UCC)-normalized REE patterns and REE fractionation parameters, southwestern and western Taiwanese rivers and the Pearl River were identified as the main sources of the fine-grained sediment deposited in the northwestern shelf mud area off Hainan Island. This finding further confirms the long-distance transport (> 1000 km) of fine-grained sediment from Taiwanese rivers to the northern SCS shelf and slope. Obvious changes in the grain size and Chemical Index of Alteration (CIA) record occurred at approximately 4.0 cal kyr BP and were likely caused by increased Hainan Island inputs due to sea level changes.
The three scales of submarine groundwater flow and discharge across passive continental margins
Bratton, John F.
2010-01-01
Increased study of submarine groundwater systems in recent years has provided a wealth of new data and techniques, but some ambiguity has been introduced by insufficient distinguishing of the relevant spatial scales of the phenomena studied. Submarine groundwater flow and discharge on passive continental margins can be most productively studied and discussed by distinct consideration of the following three spatial scales: (1) the nearshore scale, spanning approximately 0–10 m offshore and including the unconfined surficial aquifer; (2) the embayment scale, spanning approximately 10 m to as much as 10 km offshore and including the first confined submarine aquifer and its terminus; and (3) the shelf scale, spanning the width and thickness of the aquifers of the entire continental shelf, from the base of the first confined aquifer downward to the basement, and including influences of geothermal convection and glacio-eustatic change in sea level.
NASA Astrophysics Data System (ADS)
Kavanaugh, Maria T.; Rheuban, Jennie E.; Luis, Kelly M. A.; Doney, Scott C.
2017-12-01
The U.S. Northeast Continental Shelf is experiencing rapid warming, with potentially profound consequences to marine ecosystems. While satellites document multiple scales of spatial and temporal variability on the surface, our understanding of the status, trends, and drivers of the benthic environmental change remains limited. We interpolated sparse benthic temperature data along the New England Shelf and upper Slope using a seasonally dynamic, regionally specific multiple linear regression model that merged in situ and remote sensing data. The statistical model predicted nearly 90% of the variability of the data, resulting in a synoptic time series spanning over three decades from 1982 to 2014. Benthic temperatures increased throughout the domain, including in the Gulf of Maine. Rates of benthic warming ranged from 0.1 to 0.4°C per decade, with fastest rates occurring in shallow, nearshore regions and on Georges Bank, the latter exceeding rates observed in the surface. Rates of benthic warming were up to 1.6 times faster in winter than the rest of the year in many regions, with important implications for disease occurrence and energetics of overwintering species. Drivers of warming varied over the domain. In southern New England and the mid-Atlantic shallow Shelf regions, benthic warming was tightly coupled to changes in SST, whereas both regional and basin-scale changes in ocean circulation affect temperatures in the Gulf of Maine, the Continental Shelf, and Georges Banks. These results highlight data gaps, the current feasibility of prediction from remotely sensed variables, and the need for improved understanding on how climate may affect seasonally specific ecological processes.
Kavanaugh, Maria T; Rheuban, Jennie E; Luis, Kelly M A; Doney, Scott C
2017-12-01
The U.S. Northeast Continental Shelf is experiencing rapid warming, with potentially profound consequences to marine ecosystems. While satellites document multiple scales of spatial and temporal variability on the surface, our understanding of the status, trends, and drivers of the benthic environmental change remains limited. We interpolated sparse benthic temperature data along the New England Shelf and upper Slope using a seasonally dynamic, regionally specific multiple linear regression model that merged in situ and remote sensing data. The statistical model predicted nearly 90% of the variability of the data, resulting in a synoptic time series spanning over three decades from 1982 to 2014. Benthic temperatures increased throughout the domain, including in the Gulf of Maine. Rates of benthic warming ranged from 0.1 to 0.4°C per decade, with fastest rates occurring in shallow, nearshore regions and on Georges Bank, the latter exceeding rates observed in the surface. Rates of benthic warming were up to 1.6 times faster in winter than the rest of the year in many regions, with important implications for disease occurrence and energetics of overwintering species. Drivers of warming varied over the domain. In southern New England and the mid-Atlantic shallow Shelf regions, benthic warming was tightly coupled to changes in SST, whereas both regional and basin-scale changes in ocean circulation affect temperatures in the Gulf of Maine, the Continental Shelf, and Georges Banks. These results highlight data gaps, the current feasibility of prediction from remotely sensed variables, and the need for improved understanding on how climate may affect seasonally specific ecological processes.
NASA Astrophysics Data System (ADS)
Rogers, Bryan E.; Kulp, Mark A.; Miner, Michael D.
2009-12-01
Several shore-parallel marine sand bodies lie on the Louisiana continental shelf. They are Trinity Shoal, Ship Shoal, Outer Shoal, and the St. Bernard Shoals. These shoals mark the submerged positions of ancient shorelines associated with abandoned deltas. Three of these shoals are single elongate deposits. The fourth shoal, the St. Bernard Shoals, consists of a group of discrete sand bodies ranging in size from 44 to 0.05 km2, 25 km southeast of the Chandeleur Islands in 15-18 m of water. The St. Bernard Shoals are stratigraphically above the St. Bernard delta complex, which was active 2,500-1,800 years b. p. Understanding the evolution of the St. Bernard Shoals is necessary to reconstruct the Holocene chronology of the St. Bernard delta complex and the eastern Louisiana continental shelf. For this study, 47 vibracores and 400 km of shallow seismic reflection data collected in 1987 across the Louisiana shelf were analyzed. In June 2008, 384 km of higher-resolution seismic reflection data were acquired across the study area and appended to the preexisting datasets. Vibracores were integrated with seismic profiles to identify facies and their regional distribution. Our results demonstrate that the deltaic package stratigraphically below the St. Bernard Shoals is chronologically younger than the northern distributaries, but derived from the same trunk distributary channel (Bayou la Loutre). The river eventually bypassed the northern distributaries, and began to deposit sediment further onto the continental shelf. After abandonment, the overextended delta lobe was rapidly transgressed, creating a transgressive shoreline that eventually coalesced with earlier shorelines in the region to form the Chandeleur Islands. The St. Bernard Shoals formed by the reworking of the relict distributary deposits exposed on the inner to mid shelf during and subsequent to shoreface ravinement.
Pendleton, Elizabeth; Brothers, Laura; Thieler, E. Robert; Sweeney, Edward
2017-01-01
The U.S. Geological Survey and the National Oceanographic and Atmospheric Administration conducted geophysical and hydrographic surveys, respectively, along the inner-continental shelf of Fenwick and Assateague Islands, Maryland and Virginia over the last 40 years. High resolution bathymetry and backscatter data derived from surveys over the last decade are used to describe the morphology and presence of sand ridges on the inner-continental shelf and measure the change in the position of smaller-scale (10–100 s of meters) seafloor features. Bathymetric surveys from the last 30 years link decadal-scale sand ridge migration patterns to the high-resolution measurements of smaller-scale bedform features. Sand ridge morphology on the inner-shelf changes across-shore and alongshore. Areas of similar sand ridge morphology are separated alongshore by zones where ridges are less pronounced or completely transected by transverse dunes. Seafloor-change analyses derived from backscatter data over a 4–7 year period show that southerly dune migration increases in magnitude from north to south, and the east-west pattern of bedform migration changes ~ 10 km north of the Maryland-Virginia state line. Sand ridge morphology and occurrence and bedform migration changes may be connected to observed changes in geologic framework including topographic highs, deflated zones, and sand availability. Additionally, changes in sand ridge occurrence and morphology may help explain changes in the long-term shoreline trends along Fenwick and Assateague Islands. Although the data presented here cannot quantitatively link sand ridges to sediment transport and shoreline change, it does present a compelling relationship between inner-shelf sand availability and movement, sand ridge occurrence and morphology, geologic framework, and shoreline behavior.
NASA Astrophysics Data System (ADS)
Pendleton, Elizabeth A.; Brothers, Laura L.; Thieler, E. Robert; Sweeney, Edward M.
2017-07-01
The U.S. Geological Survey and the National Oceanographic and Atmospheric Administration conducted geophysical and hydrographic surveys, respectively, along the inner-continental shelf of Fenwick and Assateague Islands, Maryland and Virginia over the last 40 years. High resolution bathymetry and backscatter data derived from surveys over the last decade are used to describe the morphology and presence of sand ridges on the inner-continental shelf and measure the change in the position of smaller-scale (10-100 s of meters) seafloor features. Bathymetric surveys from the last 30 years link decadal-scale sand ridge migration patterns to the high-resolution measurements of smaller-scale bedform features. Sand ridge morphology on the inner-shelf changes across-shore and alongshore. Areas of similar sand ridge morphology are separated alongshore by zones where ridges are less pronounced or completely transected by transverse dunes. Seafloor-change analyses derived from backscatter data over a 4-7 year period show that southerly dune migration increases in magnitude from north to south, and the east-west pattern of bedform migration changes 10 km north of the Maryland-Virginia state line. Sand ridge morphology and occurrence and bedform migration changes may be connected to observed changes in geologic framework including topographic highs, deflated zones, and sand availability. Additionally, changes in sand ridge occurrence and morphology may help explain changes in the long-term shoreline trends along Fenwick and Assateague Islands. Although the data presented here cannot quantitatively link sand ridges to sediment transport and shoreline change, it does present a compelling relationship between inner-shelf sand availability and movement, sand ridge occurrence and morphology, geologic framework, and shoreline behavior.
Geology of the head of Lydonia Canyon, U.S. Atlantic outer continental shelf
Twichell, David C.
1983-01-01
The geology of the part of Lydonia Canyon shoreward of the continental shelf edge on the southern side of Georges Bank was mapped using high-resolution seismic-reflection and side-scan sonar techniques and surface sediment grab samples. The head of the canyon incises Pleistocene deltaic deposits and Miocene shallow marine strata. Medium sand containing some coarse sand and gravel covers the shelf except for a belt of very fine sand containing no gravel on either side of the canyon in water depths of 125–140 m. Gravel and boulders, presumably ice-rafted debris, cover the rim of the canyon. The canyon floor and canyon wall gullies are covered by coarse silt of Holocene age which is as much as 25 m thick, and Miocene and Pleistocene strata are exposed on the spurs between gullies. The Holocene sediment is restricted to the canyon shoreward of the shelf edge and has been winnowed from the shelf. Furrows cut in the shelf sands and ripples on the shelf and in the canyon suggest that sediment continues to be moved in this area. Sediment distribution, however, is inconsistent with that expected from the inferred westward sediment transport on the shelf. Either the fine-grained deposits on the shelf to either side of the canyon head are relict or there is a significant component of offshore transport around the canyon head.In the head of Oceanographer Canyon, only 40 km west of Lydonia Canyon, present conditions are strikingly different. The floor of Oceanographer Canyon is covered by sand waves, and their presence indicates active reworking of the bottom sediments by strong currents. The close proximity of the two canyons suggests that the relative importance of processes acting in canyons can be variable over short distances.
NASA Astrophysics Data System (ADS)
Roughan, M.
2016-02-01
The East Australian Current (EAC) flows as a jet over the narrow shelf of southeastern Australia, dominating shelf circulation, and shedding vast eddies at the highly variable separation point. These characteristics alone make it a dynamically challenging region to measure, model and predict. In recent years a significant effort has been placed on understanding continental shelf processes along the coast of SE Australia, adjacent to the EAC, our major Western Boundary Current. We have used a multi-pronged approach by combining state of the art in situ observations and data assimilation modelling. Observations are obtained from a network of moorings, HF Radar and ocean gliders deployed in shelf waters along SE Australia, made possible through Australia's Integrated Marine Observing System (IMOS). In addition, we have developed a high resolution reanalysis of the East Australian Current using ROMS and 4DVar data Assimilation. In addition to the traditional data streams (SST, SSH and ARGO) we assimilate the newly available IMOS observations in the region. These include velocity and hydrographic observations from the EAC transport array, 1km HF radar measurements of surface currents, CTD casts from ocean gliders, and temperature, salinity and velocity measurements from a network of shelf mooring arrays. We use these vast data sets and numerical modelling tools combined with satellite remote sensed data to understand spatio-temporal variability of shelf processes and water mass distributions on synoptic, seasonal and inter-annual timescales. We have quantified the cross shelf transport variability inshore of the EAC, the driving mechanisms, the seasonal cycles in shelf waters and to some extent variability in the biological (phytoplankton) response. I will present a review of some of the key results from a number of recent studies.
NASA Astrophysics Data System (ADS)
Meng, Feifei; Dai, Minhan; Cao, Zhimian; Wu, Kai; Zhao, Xiaozheng; Li, Xiaolin; Chen, Junhui; Gan, Jianping
2017-12-01
We examined the distribution and seasonality of dissolved organic carbon (DOC) based on a large data set collected from the northern South China Sea (NSCS) shelf under complex circulation schemes influenced by river plume, coastal upwelling, and downwelling. The highest surface values of ˜117 μmol L-1 were observed nearshore in summer suggesting high DOC supplies from the river inputs, whereas the lowest surface values of ˜62 μmol L-1 were on the outer shelf in winter due to entrainment of DOC-poor subsurface water under strengthened vertical mixing. While the summer coastal upwelling brought lower DOC from offshore depth to the nearshore surface, the winter coastal downwelling delivered higher surface DOC to the midshelf deep waters from the inner shelf fueled by the China Coastal Current (CCC) transporting relatively high DOC from the East China Sea to the NSCS. The intensified winter downwelling generated a cross-shelf DOC transport of 3.1 × 1012 g C over a large shelf area, which induced a significant depression of the NSCS DOC inventory in winter relative to in autumn. In addition to the variable physical controls, net biological production of DOC was semiquantified in both the river plume (2.8 ± 3.0 μmol L-1) and coastal upwelling (3.1 ± 1.3 μmol L-1) in summer. We demonstrated that the NSCS shelf had various origins of DOC including riverine inputs, inter-shelf transport and in situ production. Via cross-shelf transport, the accumulated DOC would be exported to and stored in the deep ocean, suggesting that continental shelves are a potentially effective carbon sink.
Wave-driven sediment mobilization on a storm-controlled continental shelf (Northwest Iberia)
Oberle, Ferdinand; Storlazzi, Curt D.; Hanebuth, Till
2014-01-01
Seafloor sediment mobilization on the inner Northwest Iberian continental shelf is caused largely by ocean surface waves. The temporal and spatial variability in the wave height, wave period, and wave direction has a profound effect on local sediment mobilization, leading to distinct sediment mobilization scenarios. Six grain-size specific sediment mobilization scenarios, representing seasonal average and storm conditions, were simulated with a physics-based numerical model. Model inputs included meteorological and oceanographic data in conjunction with seafloor grain-size and the shelf bathymetric data. The results show distinct seasonal variations, most importantly in wave height, leading to sediment mobilization, specifically on the inner shelf shallower than 30 m water depth where up to 49% of the shelf area is mobilized. Medium to severe storm events are modeled to mobilize up to 89% of the shelf area above 150 m water depth. The frequency of each of these seasonal and storm-related sediment mobilization scenarios is addressed using a decade of meteorological and oceanographic data. The temporal and spatial patterns of the modeled sediment mobilization scenarios are discussed in the context of existing geological and environmental processes and conditions to assist scientific, industrial and environmental efforts that are directly affected by sediment mobilization. Examples, where sediment mobilization plays a vital role, include seafloor nutrient advection, recurrent arrival of oil from oil-spill-laden seafloor sediment, and bottom trawling impacts.
Modern and relict sedimentary systems of the semi-arid continental shelf in NE Brazil
NASA Astrophysics Data System (ADS)
Ximenes Neto, Antonio Rodrigues; Morais, Jáder Onofre de; Ciarlini, Clairton
2018-07-01
This paper describes the carbonate-siliciclastic system of the equatorial continental shelf of NE Brazil (East Ceará) based on X-ray fluorescence (XRF), grain size, CaCO3, shallow seismic and remotely operated vehicle (ROV) analyses. Data were obtained for two sectors: 1) Halimeda Bank (HB), inner shelf (-12 m), and 2) transverse profile (TP), inner to outer shelf-upper slope (-5 to -100 m). In total, 72 samples were collected, and 29 km of seismic lines (HB) and ROV profiles (HB and TP) were surveyed. The main chemical elements were Ca and Si (93%). These elements occur in two types of shallow marine sediments: carbonate (mainly autochthonous) and siliciclastics (terrigenous/allochthonous/relict). With respect to the chemical elements, a strong negative correlation was observed between calcareous (Ca and Sr) and siliciclastic (Si, Al, and K) components. Strontium does not always show a strong positive correlation with Ca. The average CaCO3 contents of 81% and 91% were determined for the HB and TP, respectively. The profiles show a predominance of carbonate sediments; however, the HB demonstrates a greater continental influence (inner shelf). The grain size presents a prevalence of sand (82%) in relation to gravel (18%). This particle size variation is mainly due to the breakdown of Halimeda nodules, siliciclastic sediments in the finer fraction (>2.5Φ), and the presence of gravel with iron coating (relict). Two types of echo-characters have been identified. Both are associated with the large presence of carbonate sediments. Echo I shows the bottom surface with continuity in the sub-bottom without a subsurface reflector. Echo II presents a discontinuous subsurface reflector. The ROV allowed the observation of algae patches in higher floors and gravelly and sandy bioclastics in the lowest sectors. Large patches of calcareous green algae, Halimeda, occur in the inner shelf below the 15 m isobath, mainly due to the semi-arid climate (weak sediment supply from the mainland), geographical position (equatorial) and oceanographic conditions (hydrodynamic and biogeochemistry). It has been concluded that the seafloor of the semi-arid continental shelf of East Ceará (NE Brazil) shows modern predominance of carbonate deposition based on the lack of contaminants, geochemical purity of carbonate sediments, and high percentage of CaCO3. The conditions for exploitation in the intermediate sector are provided. However, it would be ideal to perform punctual extraction and analyze the resilience and regeneration of Halimeda incrassata and the consequences for fisheries (important economic resource of the region).
Increased Ocean Access to Totten Glacier, East Antarctica
NASA Astrophysics Data System (ADS)
Blankenship, D. D.; Greenbaum, J. S.; Young, D. A.; Richter, T. G.; Roberts, J. L.; Aitken, A.; Legresy, B.; Warner, R. C.; van Ommen, T. D.; Siegert, M. J.
2015-12-01
The Totten Glacier is the largest ice sheet outlet in East Antarctica, draining 3.5 meters of eustatic sea level potential from the Aurora Subglacial Basin (ASB) into the Sabrina Coast. Recent work has shown that the ASB has drained and filled many times since largescale glaciation began including evidence that it collapsed during the Pliocene. Steady thinning rates observed near Totten Glacier's grounding line since the beginning of the satellite altimetry record are the largest in East Antarctica and the nature of the thinning suggests that it is driven by enhanced basal melting due to ocean processes. Warm Modified Circumpolar Deep Water (MCDW), which has been linked to glacier retreat in West Antarctica, has been observed in summer and winter on the Sabrina Coast continental shelf in the 400-500 m depth range. Using airborne geophysical data acquired over multiple years we delineate seafloor valleys connecting the inner continental shelf to the cavity beneath Totten Glacier that cut through a large sill centered along the ice shelf calving front. The sill shallows to depths of about 300 mbsl and was likely a grounding line pinning point during Holocene retreat, however, the two largest seafloor valleys are deeper than the observed range of thermocline depths. The deeper of the two valleys, a 4 km-wide trough, connects to the ice shelf cavity through an area of the coastline that was previously believed to be grounded but that our analysis demonstrates is floating, revealing a second, deeper entryway to ice shelf cavity. The previous coastline was charted using satellite-based mapping techniques that infer subglacial properties based on surface expression and behavior; the new geophysical analysis techniques we use enable inferences of subglacial characteristics using direct observations of the ice-water interface. The results indicate that Totten Glacier and, by extension, the Aurora Subglacial Basin are vulnerable to MCDW that has been observed on the nearby Sabrina Coast continental shelf by multiple shipborne expeditions beginning in 1996.
NASA Astrophysics Data System (ADS)
Kanari, M.; Ketter, T.; Tibor, G.; Schattner, U.
2017-12-01
We aim to characterize the seafloor morphology and its shallow sub-surface structures and deformations in the deep part of the Levant basin (eastern Mediterranean) using recently acquired high-resolution shallow seismic reflection data and multibeam bathymetry, which allow quantitative analysis of morphology and structure. The Levant basin at the eastern Mediterranean is considered a passive continental margin, where most of the recent geological processes were related in literature to salt tectonics rooted at the Messinian deposits from 6Ma. We analyzed two sets of recently acquired high-resolution data from multibeam bathymetry and 3.5 kHz Chirp sub-bottom seismic reflection in the deep basin of the continental shelf offshore Israel (water depths up to 2100 m). Semi-automatic mapping of seafloor features and seismic data interpretation resulted in quantitative morphological analysis of the seafloor and its underlying sediment with penetration depth up to 60 m. The quantitative analysis and its interpretation are still in progress. Preliminary results reveal distinct morphologies of four major elements: channels, faults, folds and sediment waves, validated by seismic data. From the spatial distribution and orientation analyses of these phenomena, we identify two primary process types which dominate the formation of the seafloor in the Levant basin: structural and sedimentary. Characterization of the geological and geomorphological processes forming the seafloor helps to better understand the transport mechanisms and the relations between sediment transport and deposition in deep water and the shallower parts of the shelf and slope.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-09
...-0045] RIN 1010-AD79 Renewable Energy Alternate Uses of Existing Facilities on the Outer Continental... rule related to acquiring a lease non-competitively for offshore renewable energy projects. DATES... or Timothy Redding, Renewable Energy, BOEM, at (703) 787-1219 or email [email protected
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-15
... Environmental Impact Statement (Multisale FEIS). Authority: This NOA is published pursuant to the regulations... NEPA process. The Multisale FEIS evaluated the environmental and socioeconomic impacts for WPA Lease... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management Gulf of Mexico, Outer Continental...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-11
... Environmental Impact Statement (Multisale FEIS). Authority: This NOA is published pursuant to the regulations... the NEPA process. The Multisale FEIS evaluated the environmental and socioeconomic impacts for CPA... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management Gulf of Mexico, Outer Continental...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-12
... 1625-AC05 Safety and Environmental Management System Requirements for Vessels on the U.S. Outer... ``Safety and Environmental Management System Requirements for Vessels on the U.S. Outer Continental Shelf... of industry to ensure stakeholders have adequate time to submit complete responses. DATES: Comments...
NASA Astrophysics Data System (ADS)
Wang, F.; Liang, Q.
2016-12-01
Marine sediment contains large amount of methane, estimated approximately 500-2500 gigatonnes of dissolved and hydrated methane carbon stored therein, mainly in continental margins. In localized specific areas named cold seeps, hydrocarbon (mainly methane) containing fluids rise to the seafloor, and support oases of ecosystem composed of various microorganisms and faunal assemblages. South China Sea (SCS) is surrounded by passive continental margins in the west and north and convergent margins in the south and east. Thick organic-rich sediments have accumulated in the SCS since the late Mesozoic, which are continuing sources to form gas hydrates in the sediments of SCS. Here, Microbial ecosystems, particularly those involved in methane transformations were investigated in the cold seep areas (Qiongdongnan, Shenhu, and Dongsha) in the northern continental shelf of SCS. Multiple interdisciplinary analytic tools such as stable isotope probing, geochemical analysis, and molecular ecology, were applied for a comprehensive understanding of the microbe mediated methane transformation in this project. A variety of sediments cores have been collected, the geochemical profiles and the associated microbial distribution along the sediment cores were recorded. The major microbial groups involved in the methane transformation in these sediment cores were revealed, known methane producing and oxidizing archaea including Methanosarcinales, anaerobic methane oxidizing groups ANME-1, ANME-2 and their niche preference in the SCS sediments were found. In-depth comparative analysis revealed the presence of SCS-specific archaeal subtypes which probably reflected the evolution and adaptation of these methane metabolizing microbes to the SCS environmental conditions. Our work represents the first comprehensive analysis of the methane metabolizing microbial communities in the cold seep areas along the northern continental shelf of South China Sea, would provide new insight into the mechanisms of methane biotransformation.
NASA Astrophysics Data System (ADS)
Abookire, Alisa A.; Bailey, Kevin M.
2007-02-01
Dover sole ( Microstomus pacificus) and rex sole ( Glyptocephalus zachirus) are both commercially valuable, long-lived pleuronectids that are distributed widely throughout the North Pacific. While their ecology and life cycle have been described for southern stocks, few investigations have focused on these species at higher latitudes. We synthesized historical research survey data among critical developmental stages to determine the distribution of life cycle stages for both species in the northern Gulf of Alaska (GOA). Bottom trawl survey data from 1953 to 2004 (25 519 trawls) were used to characterize adult distribution during the non-spawning and spawning seasons, ichthyoplankton data from 1972 to 2003 (10 776 tows) were used to determine the spatial and vertical distribution of eggs and larvae, and small-meshed shrimp trawl survey data from 1972 to 2004 (6536 trawls) were used to characterize areas utilized by immature stages. During the non-spawning season, adult Dover sole and rex sole were widely distributed from the inner shelf to outer slope. While both species concentrated on the continental slope to spawn, Dover sole spawning areas were more geographically specific than rex sole. Although spawned in deep water, eggs of both species were found in surface waters near spawning areas. Dover sole larvae did not appear to have an organized migration from offshore spawning grounds toward coastal nursery areas, and our data indicated facultative settling to their juvenile habitat in winter. Rex sole larvae progressively moved cross-shelf toward shore as they grew from April to September, and larvae presumably settled in coastal nursery areas in the autumn. In contrast with studies in the southern end of their range, we found no evidence in the GOA that Dover or rex sole have pelagic larval stages longer than nine months; however, more sampling for large larvae is needed in winter offshore of the continental shelf as well as sampling for newly settled larvae over the shelf to verify an abbreviated pelagic larval stage for both species at the northern end of their range.
Carpenter, G.B.; Cardinell, A.P.; Francois, D.K.; Good, L.K.; Lewis, R.L.; Stiles, N.T.
1982-01-01
Analysis of high-resolution geophysical data collected over 540 blocks tentatively selected for leasing in proposed OCS Oil and Gas Lease Sale 52 (Georges Bank) revealed a number of potential geologic hazards to oil and gas exploration and development activities: evidence of mass movements and shallow gas deposits on the continental slope. No potential hazards were observed on the continental shelf or rise. Other geology-related problems, termed constraints because they pose a relatively low degree of risk and can be routinely dealt with by the use of existing technology have been observed on the continental shelf. Constraints identified in the proposed sale area are erosion, sand waves, filled channels and deep faults. Piston cores were collected for geotechnical analysis at selected locations on the continental slope in the proposed lease sale area. The core locations were selected to provide information on slope stability and to establish the general geotechnical properties of the sediments. Preliminary results of a testing program suggest that the surficial sediment cover is stable with respect to mass movement.
Circulation in the Chesapeake Bay entrance region: Estuary-shelf interaction
NASA Technical Reports Server (NTRS)
Boicourt, W. C.
1981-01-01
Current meters and temperature-salinity recorders confirm the assumption that the upper layers of the continental shelf waters off Chesapeake Bay can be banded in summer, such that the coastal boundary layer (consisting of the Bay outflow) and the outer shelf flow southward while the inner shelf flows to the north, driven by the prevailing southerly winds. These measurements show that the estuary itself may also be banded in its lower reaches such that the inflow is confined primarily to the deep channel, while the upper layer outflow is split into two flow maxima on either side of this channel.
Stevens, Calvin H.; Poole, Forrest G.; Amaya-Martínez, Ricardo
2014-01-01
Three sets of fusulinid faunas in Sonora, Mexico, discussed herein, record different depositional and paleotectonic settings along the southwestern margin of Laurentia (North America) during Pennsylvanian and Permian time. The settings include: offshelf continental rise and ocean basin (Rancho Nuevo Formation in the Sonora allochthon), shallow continental shelf (La Cueva Limestone), and foredeep basin on the continental shelf (Mina México Formation). Our data represent 41 fusulinid collections from 23 localities with each locality providing one to eight collections.Reworked fusulinids in the Middle and Upper Pennsylvanian part of the Rancho Nuevo Formation range in age from Desmoinesian into Virgilian (Moscovian-Gzhelian). Indigenous Permian fusulinids in the La Cueva Limestone range in age from middle or late Wolfcampian to middle Leonardian (late Sakmarian-late Artinskian), and reworked Permian fusulinids in the Mina México Formation range in age from early to middle Leonardian (middle-late Artinskian). Conodonts of Guadalupian age occur in some turbidites in the Mina México Formation, indicating the youngest foredeep deposit is at least Middle Permian in age. Our fusulinid collections indicate a hiatus of at least 10 m.y. between the youngest Pennsylvanian (Virgilian) rocks in the Sonora allochthon and the oldest Permian (middle Wolfcampian) rocks in the region.Most fusulinid faunas in Sonora show affinities to those of West Texas, New Mexico, and Arizona; however, some genera and species are similar to those in southeastern California. As most species are similar to those east of the southwest-trending Transcontinental arch in New Mexico and Arizona, this arch may have formed a barrier preventing large-scale migration and mixing of faunas between the southern shelf of Laurentia in northwestern Mexico and the western shelf in the southwestern United States.The Sonora allochthon, consisting of pre-Permian (Lower Ordovician to Upper Pennsylvanian) deep-water continental-rise and ocean-basin rocks, was thrust northward 50–200 km over Permian and older shallow-water carbonate-shelf rocks and Permian deep-water foredeep rocks of southern Laurentia. As Triassic rocks unconformably overlie the Sonora allochthon, we conclude that terminal movement of the allochthon was in Late Permian time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Archer, D.
A two-dimensional model of a passive continental margin was adapted to the simulation of the methane cycle on Siberian continental shelf and slope, attempting to account for the impacts of glacial/interglacial cycles in sea level, alternately exposing the continental shelf to freezing conditions with deep permafrost formation during glacial times, and immersion in the ocean in interglacial times. The model is used to gauge the impact of the glacial cycles, and potential anthropogenic warming in the deep future, on the atmospheric methane emission flux, and the sensitivities of that flux to processes such as permafrost formation and terrestrial organic carbonmore » (Yedoma) deposition. Hydrological forcing drives a freshening and ventilation of pore waters in areas exposed to the atmosphere, which is not quickly reversed by invasion of seawater upon submergence, since there is no analogous saltwater pump. This hydrological pump changes the salinity enough to affect the stability of permafrost and methane hydrates on the shelf. Permafrost formation inhibits bubble transport through the sediment column, by construction in the model. The impact of permafrost on the methane budget is to replace the bubble flux by offshore groundwater flow containing dissolved methane, rather than accumulating methane for catastrophic release when the permafrost seal fails during warming. By far the largest impact of the glacial/interglacial cycles on the atmospheric methane flux is attenuation by dissolution of bubbles in the ocean when sea level is high. Methane emissions are highest during the regression (soil freezing) part of the cycle, rather than during transgression (thawing). The model-predicted methane flux to the atmosphere in response to a warming climate is small, relative to the global methane production rate, because of the ongoing flooding of the continental shelf. A slight increase due to warming could be completely counteracted by sea level rise on geologic time scales, decreasing the efficiency of bubble transit through the water column. The methane cycle on the shelf responds to climate change on a long time constant of thousands of years, because hydrate is excluded thermodynamically from the permafrost zone by water limitation, leaving the hydrate stability zone at least 300 m below the sediment surface.« less
NASA Astrophysics Data System (ADS)
Gallegos, S. C.; Gould, R. W.; Arnone, R. A.; Teague, W. J.; Mitchell, D. A.; Ko, D.
2005-05-01
The continental shelf of the northeastern Gulf of Mexico between 87.5 W and 88.5 W is an ideal place to study coastal processes. In this region, the shelf slopes gently down to depths of 100 m, and then increases rapidly to depths greater than a mile. The Naval Research Laboratory at Stennis Space Center in Mississippi is currently undertaking an intensive measurement and modeling program to determine the cross-shelf exchange processes and their relation to the optical parameters of this area. In this study, we report our efforts to quantify the variability of the spectral backscattering coefficient derived from SeaWiFS imagery via empirical orthogonal functions. We compare the most relevant modes with the spatial distribution of Eddy Kinetic Energy (EKE) computed by the Inter Americas Seas (IAS) model and in-situ measurements by acoustic Doppler current profilers deployed between May 2004 and May 2005. The results indicate that most of the backscattering variability is contained in areas north of 29.2N which coincides with the edge of the continental shelf (100 m depth). Sporadic increases in backscattering are observed as far south as 29.0 N and to the east of 88.1W. These increases can be explained by fluctuations in surface EKE.
NASA Astrophysics Data System (ADS)
Couto, Nicole; Martinson, Douglas G.; Kohut, Josh; Schofield, Oscar
2017-07-01
We use autonomous underwater vehicles to characterize the spatial distribution of Upper Circumpolar Deep Water (UCDW) on the continental shelf of the West Antarctic Peninsula (WAP) and present the first near-synoptic measurements of mesoscale features (eddies) containing UCDW on the WAP. Thirty-three subsurface eddies with widths on the order of 10 km were detected during four glider deployments. Each eddy contributed an average of 5.8 × 1016 J to the subpycnocline waters, where a cross-shelf heat flux of 1.37 × 1019 J yr-1 is required to balance the diffusive loss of heat to overlying winter water and to the near-coastal waters. Approximately two-thirds of the heat coming onto the shelf diffuses across the pycnocline and one-third diffuses to the coastal waters; long-term warming of the subpycnocline waters is a small residual of this balance. Sixty percent of the profiles that contained UCDW were part of a coherent eddy. Between 20% and 53% of the lateral onshore heat flux to the WAP can be attributed to eddies entering Marguerite Trough, a feature in the southern part of the shelf which is known to be an important conduit for UCDW. A northern trough is identified as additional important location for eddy intrusion.
Galveston Symposium: Physical Oceanography of the Louisiana/Texas Continental Shelf
NASA Astrophysics Data System (ADS)
Mitchell, Thomas M.; Brown, Murray
The Minerals Management Service (MMS), Gulf of Mexico Outer Continental Shelf (OCS) Region sponsored a symposium on the Physical Oceanography of the Louisiana/Texas (LA/TX) Shelf in Galveston, Texas, on May 24-26, 1988. The symposium brought together a number of physical oceanographers, meteorologists, and ecologists to discuss the state of knowledge and to begin the planning process for a long-term study of shelf circulation covering the region from the mouth of the Mississippi River to approximately 24° latitude along the Mexican coast and from the shore out to a depth of approximately 500 m. The proposed study, to be a component of the ongoing MMS Environmental Studies Program, is expected to take place during the period 1989-1991. It is anticipated that the work will be done principally through contracts after a competitive procurement process. Specific charges to the participants were as follows:to assess the current state of knowledge concerning the circulation on the LA/TX shelfto identify significant gaps in that knowledgeto recommend a field measurement program to address these gapsto recommend a circulation modeling program for the LA/TX shelf that will improve MMS' oil spill risk assessmentsto identify and initiate coordination mechanisms and data-sharing arrangements with other proposed research efforts
Modeling the Spreading of Glacial Melt Water from the Amundsen and Bellingshausen Seas
NASA Astrophysics Data System (ADS)
Nakayama, Y.; Timmermann, R.; Rodehacke, C. B.; Schröder, M.; Hellmer, H. H.
2014-12-01
The ice shelves and glaciers of the West Antarctic Ice Sheet (WAIS) are rapidly thinning, especially in the Amundsen Sea (AS) and Bellingshausen Sea (BS). The high basal melting of these small ice shelves is caused by relatively warm Circumpolar Deep Water (CDW) that, based on observations, mainly intrudes via two submarine glacial troughs located at the eastern and central AS continental shelf break. When CDW reaches the grounding line of the fringing glaciers, it melts the glaciers and forms buoyant melt water plumes. As the glacial melt becomes part of the AS shelf circulation, it may cause a freshening of the shelf water locally as well as remotely in the Ross Sea (RS). To test whether the observed freshening of the RS is a consequence of the enhanced basal melting of AS ice shelves, we use Finite-Element Sea-ice/ice-shelf/Ocean Model (FESOM) with a horizontal resolution of 2-10 km on the AS and BS continental shelves. The model is forced with 6-hourly atmospheric data from the National Centers for Environmental Prediction Climate Forecast System Reanalysis (NCEP-CFSR) for the period 1979-1988. The model results show bottom temperatures in the AS and BS close to observations, and basal melt rates of AS and BS ice shelves consistent with other observation-based estimates. Using several independent virtual passive tracers to identify pathways of the glacial melt, we find that the melt water from the ice shelves in the AS flows towards the Ross Ice Shelf front. After 10 years of simulation, about half of the melt water in the Ross Sea originates from the Getz Ice Shelf. Further, we investigate the sensitivity of the melt water transport into the RS associated with the strength of the basal melt water flux. When this flux is increased by 30%, the transport of glacial melt into the RS more than doubles, supporting the idea that the basal melting of AS and BS ice shelves is one of the main reasons for the freshening of the RS continental shelf.
Cacchione, D.A.; Wiberg, P.L.; Lynch, J.; Irish, J.; Traykovski, P.
1999-01-01
Energetic waves, strong bottom currents, and relatively high rates of sediment discharge from the Eel River combined to produce large amounts of suspended-sediment transport on the inner continental shelf near the Eel River during the winter of 1995-1996. Bottom-boundary-layer (BBL) measurements at a depth of ~50 m using the GEOPROBE tripod showed that the strongest near-bottom flows (combined wave and current speeds of over 1 m/s) and highest sediment concentrations (exceeding 2 g/l at ~1.2 m above the bed) occurred during two storms, one in December 1995 and the other in February 1996. Discharge from the Eel River during these storms was estimated at between 2 and 4 x 103 m3/s. Suspended-sediment flux (SSF) was measured 1.2 m above the bed and calculated throughout the BBL, by applying the tripod data to a shelf sediment-transport model. These results showed initially northward along-shelf SSF during the storms, followed by abrupt and persistent southward reversals. Along-shelf flux was more pronounced during and after the December storm than in February. Across-shelf SSF over the entire measurement period was decidedly seaward. This seaward transport could be responsible for surficial deposits of recent sediment on the outer shelf and upper continental slope in this region. Sediment ripples and larger bedforms were observed in the very fine to fine sand at 50-m depth using a sector-scanning sonar mounted on the tripod. Ripple wavelengths estimated from the sonar images were about 9 cm, which compared favorably with photographs of the bottom taken with a camera mounted on the tripod. The ripple patterns were stable during periods of low combined wave-current bottom stresses, but changed significantly during high-stress events, such as the February storm. Two different sonic altimeters recorded changes in bed elevation of 10 to 20 cm during the periods of measurement. These changes are thought to have been caused principally by the migration of low-amplitude, long-wavelength sand waves into the measurement area.
Kelly, W.M.; Albanese, J.R.; Coch, N.K.; Harsch, A.A.
1999-01-01
The ridge-and-swale topography on the continental shelf south of Fire Island, New York, is characterized by northeast-trending linear shoals that are shore attached and shore oblique on the inner shelf and isolated and shore parallel on the middle shelf. High-resolution seismic reflection profiles show that the ridges and swales occur independent of, and are not controlled by, the presence of internal structures (for example, filled tidal inlet channels, paleobarrier strata) or underlying structure (for example, high-relief Cretaceous unconformity). Grab samples of surficial sediments on the shelf south of Fire Island average 98% sand. Locally, benthic fauna increase silt and clay content through fecal pellet production or increase the content of gravel-size material by contribution of their fragmented shell remains. Surficial sand on the ridges is unimodal at 0.33 mm (medium sand, about 50 mesh), and surficial sand in troughs is bimodal at 0.33 mm and 0.15 mm (fine sand, about 100 mesh). In addition to seismic studies, 26 vibracores were recovered from the continental shelf in state and federal waters from south of Rockaway and Long Beaches, Long Island, New York. Stratigraphic and sedimentological data gleaned from these cores were used to outline the geologic framework in the study area. A variety of sedimentary features were noted in the cores, including burrow-mottled sections of sand in a finer silty-sand, rhythmic lamination of sand and silty-sand that reflect cyclic changes in sediment transport, layers of shell hash and shells that probably represent tempestites, and changes from dark color to light color in the sediments that probably represent changes in the oxidation-reduction conditions in the area with time. The stratigraphic units identified are an upper, generally oxidized, nearshore facies, an underlying fine- to medium-sand and silty-clay unit considered to be an estuarine facies, and a lower, coarse-grained deeply oxidized, cross-laminated pre-Holocene unit. Grain-size analysis shows that medium- to fine-grained sand makes up most (68-99%) of the surficial sediments. Gravel exists in trace amounts up to 19%. Silt ranges between 3% and 42% and clay ranges from 1% to 10%.The ridge-and-swale topography on the continental shelf south of Fire Island, New York, is characterized by northeast-trending linear shoals that are shore attached and shore oblique on the inner shelf and isolated and shore parallel on the middle shelf. High-resolution seismic reflection profiles show that the ridges and swales occur independent of, and are not controlled by, the presence of internal structures (for example, filled tidal inlet channels, paleobarrier strata) or underlying structure (for example, high-relief Cretaceous unconformity). Grab samples of surficial sediments on the shelf south of Fire Island average 98% sand. Locally, benthic fauna increase silt and clay content through fecal pellet production or increase the content of gravel-size material by contribution of their fragmented shell remains. Surficial sand on the ridges is unimodal at 0.33 mm (medium sand, about 50 mesh), and surficial sand in troughts is bimodal at 0.33 mm and 0.15 mm (fine sand, about 100 mesh). In addition to seismic studies, 26 vibracores were recovered from the continental shelf in state and federal waters from south of Rockaway and Long Beaches, Long Island, New York. Stratigraphic and sedimentological data gleaned from these cores were used to outline the geologic framework in the study area. A variety of sedimentary features were noted in the cores, including burrow-mottled sections of sand in a finer silty-sand, rhythmic lamination of sand and silty-sand that reflect cyclic changes in sediment transport, layers of shell hash and shells that probably represent tempestites, and changes from dark color to light color in the sediments that probably represent changes in the oxidation-reduction conditions in the area with time. The stratigraphic un
The Palos Verdes Superfund site is located in over 50 meters of water on the continental shelf and slope off the coast of southern California (USA). The site includes 27 km2 of seabed contaminated over several decades by municipal treatment plant effluent discharged via outfall ...
Radar Backscatter Study of Sea Ice.
1980-02-01
CRINC/RS-TR-331-14 N END 11111 .0 W 2.0 =il I.0 i IIIB ii 2 IIIII Bill IlIIIl 8 [(25 I 4 Bi l 1.6 MICROCOPY RE SOL UTIION TEIST CHART 177 slopes...Research, 1978. 51. Continentai Shelf Data Systems, Beaufort Sea-Arctic Coast: Oceano - graphic and Climatologic Data, Vol. 1, Continental Shelf Data Systems
Salinity variability along the eastern continental shelf of Canada and the United States, 1973-2013
NASA Astrophysics Data System (ADS)
Bisagni, James J.
2016-09-01
Continental shelf waters located off the east coast of Canada and the United States are part of a long shelf current system that is partly comprised of colder, less-saline waters originating from high latitudes, including waters from the North Atlantic sub-polar gyre, along with ice-melt and freshwater input from local rivers. A 41-year analysis (1973-2013) of near-surface salinity (NSS) using three hydrographic datasets (Bedford Institute of Oceanography "Climate", NOAA/ESDIM, and Canadian Marine Environmental Data Service (MEDS)) allowed an examination of NSS variability within 11 continental shelf sub-regions, extending from the southern Newfoundland Shelf of eastern Canada to the DelMarVa/Hatteras Shelf of the United States. Although the periods of record containing sufficient data vary between sub-regions, regional mean NSS values are lowest within the Gulf of St. Lawrence and highest on the DelMarVa/Hatteras shelf, with largest annual variability within the Gulf of St. Lawrence. After removal of outliers, long-term linear trends computed from annual mean NSS were detected along the Newfoundland Shelf (+0.011 y-1), Western Scotian Shelf (-0.007 y-1), Gulf of Maine (-0.014 y-1), Georges Bank (-0.011 y-1), and DelMarVa/Hatteras Shelf (+0.024 y-1). A long-term quadratic fit to annual mean NSS from the Eastern Scotian Shelf displays a salinity increase through 1992 of +0.026 y-1, decreasing thereafter until 2013 by -0.028 y-1. A quadratic fit for the Western Grand Banks displays a NSS increase through 2007 of +0.022 y-1, decreasing thereafter through 2013 by -0.006 y-1. Annual mean NSS from the Eastern Grand Banks, Tail of the Grand Banks, Gulf of St. Lawrence, and Middle Atlantic Bight display no long-term trends. Inter-annual variability (IAV) of NSS residuals shows similar small mean squared error (mse) of 0.02-0.04 for the four northern-most sub-regions (Newfoundland Shelf, Eastern, Tail and Western Grand Banks) and are correlated at 0-year lag. IAV of NSS residuals (mse) are larger for the Gulf of St. Lawrence (~0.19), Eastern and Western Scotian Shelf (~0.09-0.06), Gulf of Maine and Georges Bank (~0.08-0.06), Middle Atlantic Bight (~0.19), and maximal for the DelMarVa/Hatteras Shelf (~0.36), and are also correlated at 0-year lag, but are uncorrelated with the four northern-most sub-regions. Consideration of a simple "flux variation" model that includes along-shelf, altimeter-derived velocity anomalies measured upstream on the Western Scotian Shelf and the positive along-shelf mean salinity gradient between the Eastern Scotian Shelf and the DelMarVa/Hatteras Shelf, may explain the synchronous nature of NSS residuals for the southern-most 6 sub-regions. Furthermore, the flux variation model results in calculated NSS residuals that are within a factor of two of observed NSS residuals for the southern-most DelMarVa/Hatteras Shelf. Co-varying broad-scale coastal sea level and shelf break front position anomalies also support the flux variation model, as do CMV Oleander temperature anomalies across a limited Middle Atlantic Bight shelf region. Overall, the relationships between along-shelf observations of NSS and other shelf parameters support an existing wind-driven dynamical shelf model. Specifically, a flux variation model is able to describe IAV of NSS along a section of the Canadian and U.S shelf for periods greater than one year. In the future, this model may be able to provide useful indices of regime change as noted within the Northeast Shelf Large Marine Ecosystem by other workers.
Oil-spill risk analysis: Outer continental shelf lease sale 144, Beaufort Sea. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, C.M.; Johnson, W.R.; Marshall, C.F.
1995-08-01
The Federal Government has proposed to offer Outer Continental Shelf lands in the Beaufort Sea for oil and gas leasing. Because oil spills may occur from activities associated with offshore oil production, the Minerals Management Service conducts a formal risk assessment. In evaluating the significance of accidental oil spills, it is important to remember that the occurrence of such spills is fundamentally probabilistic. This report summarizes results of an oil-spill risk analysis conducted for OCS Lease Sale 144, Beaufort Sea. The objective of this analysis was to estimate relative risks associated with oil and gas production for the proposed leasemore » sale.« less
Comparative geochemistry of Indian margin (Arabian Sea) sediments: Estuary to continental slope.
NASA Astrophysics Data System (ADS)
Cowie, Greg; Mowbray, Stephen; Kurian, Siby; Sarkar, Amit; White, Carol; Anderson, Amy; Vergnaud, Bianca; Johnstone, Gisele; Brear, Samuel; Woulds, Clare; Naqvi, Wajih; Kitazato, Hiroshi
2014-05-01
Factors controlling the distribution of organic matter in the Arabian Sea have been the subject of much research and debate ever since organic-rich slope deposits were associated with the mid-water oxygen minimum zone (OMZ) However, the debate remains open, and numerous interacting factors have been invoked as important controls. A limitation of most previous studies is that they have been restricted to limited portions of the margin, and have not included molecular-level tracers that allow distinction of organic matter (OM) source and degradation state as factors in OM distribution. We report results from sites across the Indian margin of the Arabian Sea, which were analysed for carbon and nitrogen compositions (elemental and isotopic), grain size and indices of OM source and degradation state. Site locations ranged from the Mandovi/Zuari estuaries to depths of ~2000m on the continental slope, thus spanning both the semi-permanent OMZ on the upper slope (~200-1300m) and the seasonal hypoxic zone that impinges on the shelf. Source indices showed mixed marine and terrigenous OM within the estuaries, but overwhelming predominance (80%+) of marine OM on the shelf and slope, even in nearshore deposits. Thus, riverine OM is heavily diluted or efficiently remineralised within or immediately offshore of the estuaries. Any terrigenous OM that is exported appears to be retained in nearshore muds; lignin phenols indicate that the small terrigenous OM content of slope sediments is of different origin, potentially from rivers to the north. Organic C contents of surface shelf and slope sediments varied from <0.5 wt% in relict shelf sands to a maximum of >7 wt% at upper slope sites within the OMZ, then decreasing to ≤1wt% at 2000m. However, major variability (~5 wt%) occured within the OMZ at sites with near-identical depths and bottom-water oxygen. A strong relationship between organic C and grain size was seen for OMZ sediments, but lower C loadings were found for sites on the shelf and below the OMZ. Diagenetic indices confirmed that lower C content below the OMZ is associated with greater extent of OM degradation, but that C-poor shelf sediments are not consistently more degraded than those within the OMZ. Together, results indicate that OM enrichment on the upper slope, where it occurs, can be explained by winnowing or other physical processes on the shelf combined with progressive OM degradation with increasing oxygen exposure below the OMZ. Reduced oxygen exposure may contribute to observed OM enrichment with the OMZ, but hydrodynamic processes are the overriding control on sediment OM distribution, even within the OMZ.
The main characteristics, problems, and prospects for Western European coastal seas.
Dauvin, Jean-Claude
2008-01-01
Located to the far West of Western Europe, France has a western maritime coastal zone of more than 3800 km, which is widely influenced by the North-eastern Atlantic. The English Channel, an epi-continental shallow sea with very strong tides, runs along 650 km of the French coast and 1100 km of the English coast. It is also a bio-geographical crossroad encompassing a much wider range of ecological conditions than other European seas. France's Atlantic coast north of the Gironde estuary is a succession of rocky and sandy shorelines, including a sizeable intertidal zone, a wide continental shelf, and two major estuaries (Loire and Gironde). South of the Gironde, the 260 km of coastline is low, sandy and straight, with a narrowing continental shelf further on South due to the presence of the Cape Breton canyon in the bathyal and abyssal zones. Interface between the continental and oceanic systems, these bordering seas--North Sea, English Channel and Atlantic Ocean--have been the subject of many recent research programmes (the European Mast-FLUXMANCHE and INTERREG programmes; the national coastal environment programme and the LITEAU programme in France), designed to improve comprehension of the functions, production, and dynamics of these seas as well as their future evolution. Given the many conflicting practices in these littoral zones, integrated coastal zone management appears to be essential in order to cope with both natural phenomena, such as the infilling of estuarine zones, cliff erosion, and rising sea levels, and chronic anthropogenic pressures, such as new harbour installations (container dikes, marinas), sea aggregate extraction for human constructions, and offshore wind mill farms. This article provides as complete an overview as possible of the research projects on these bordering seas, both those that have recently been accomplished and those that are currently in progress, in order to highlight the main characteristics of these ecosystems and to underline the future challenges for European marine research in terms of the integrated coastal zone management of these highly significant coastal zones.
NASA Astrophysics Data System (ADS)
Limmer, David R.; BöNing, Philipp; Giosan, Liviu; Ponton, Camilo; KöHler, Cornelia M.; Cooper, Matthew J.; Tabrez, Ali R.; Clift, Peter D.
2012-01-01
We present a multiproxy geochemical analysis of two cores recovered from the Indus Shelf spanning the Early Holocene to Recent (<14 ka). Indus-23 is located close to the modern Indus River, while Indus-10 is positioned ˜100 km further west. The Holocene transgression at Indus-10 was over a surface that was strongly weathered during the last glacial sea level lowstand. Lower Holocene sediments at Indus-10 have higherɛNdvalues compared to those at the river mouth indicating some sediment supply from the Makran coast, either during the deposition or via reworking of older sediments outcropping on the shelf. Sediment transport from Makran occurred during transgressive intervals when sea level crossed the mid shelf. The sediment flux from non-Indus sources to Indus-10 peaked between 11 ka and 8 ka. A hiatus at Indus-23 from 8 ka until 1.3 ka indicates non-deposition or erosion of existing Indus Shelf sequences. HigherɛNdvalues seen on the shelf compared to the delta imply reworking of older delta sediments in building Holocene clinoforms. Chemical Index of Alteration (CIA), Mg/Al and Sr isotopes are all affected by erosion of detrital carbonate, which reduced through the Holocene. K/Al data suggest that silicate weathering peaked ca. 4-6 ka and was higher at Indus-10 compared to Indus-23. Fine-grained sediments that make up the shelf have geochemical signatures that are different from the coarser grained bulk sediments measured in the delta plain. The Indus Shelf data highlight the complexity of reconstructing records of continental erosion and provenance in marine settings.
Larval Transport on the Atlantic Continental Shelf of North America: a Review
NASA Astrophysics Data System (ADS)
Epifanio, C. E.; Garvine, R. W.
2001-01-01
This review considers transport of larval fish and crustaceans on the continental shelf. Previous reviews have contained only limited treatments of the physical processes involved. The present paper provides a physical background that is considerably more comprehensive. It includes a discussion of three principal forcing agents: (1) wind stress; (2) tides propagating from the deep ocean; and (3) differences in density associated with the buoyant outflow of estuaries, surface heat flux, or the interaction of coastal and oceanic water masses at the seaward margin of the shelf. The authors discuss the effects of these forcing agents on transport of larvae in the Middle Atlantic and South Atlantic Bights along the east coast of North America. The discussion concentrates on three species (blue crab, menhaden, bluefish) that have been the subject of a very recent multi-disciplinary study. Taken as a whole, the reproductive activities of these three species span the entire year and utilize the entire shelf, from the most seaward margin to the estuarine nursery. The blue crab is representative of species affected by physical processes occurring during summer and early autumn on the inner and mid-shelf. Menhaden are impacted by processes occurring in winter on the outer and mid-shelf. Bluefish are influenced primarily by processes occurring during early spring at the outer shelf margin near the western boundary current. The authors conclude that alongshore wind stress and density differences, i.e. buoyancy-driven flow, are the primary agents of larval transport in the region. Circulation associated with the western boundary current is only important at the shelf margin and tidally driven processes are generally inconsequential.
NASA Astrophysics Data System (ADS)
Duchemin, Gérald; Jorissen, Frans J.; Le Loc'h, François; Andrieux-Loyer, Françoise; Hily, Christian; Thouzeau, Gérard
2008-08-01
Living benthic foraminiferal faunas of six stations from the continental shelf of the Bay of Biscay have been investigated during three successive seasons (spring, summer and autumn 2002). For the three investigated stations, bottom water oxygen concentration, oxygen penetration into the sediment and sediment organic carbon contents are all relatively similar. Therefore, we think that the density and the composition of the foraminiferal faunas is mainly controlled by the quantity and quality of organic input resulting from a succession of phytoplankton bloom events, occurring from late February to early September. The earliest blooms are positioned at the shelf break, late spring and early summer blooms occur off Brittany, whereas in late summer and early autumn, only coastal blooms appear, often in the vicinity of river outlets. In spring, the benthic foraminiferal faunas of central (B, C and D) and outer (E) continental shelf stations are characterised by strong dominance in the first area and strong presence in the second area of Nonionella iridea. In fact, station E does not serve as a major depocenter for the remains of phytoplankton blooms. If station E is not considered, the densities of this taxon show a clear gradient from the shelf-break, where the species dominates the assemblages, to the coast, where it attains very low densities. We explain this gradient as a response to the presence, in early spring, of an important phytoplankton bloom, mainly composed of coccolithophorids, over the shelf break. This observation is supported by the maximum particles flux values at stations close to the shelf break (18.5 g m - 2 h - 1 ) and lower values in a station closer to the coast (6.8 g m - 2 h - 1 ). In summer, the faunal density is maximum at station A, relatively close to more varied phytoplancton blooms that occur off Brittany until early June. We suggest that the dominant species, Nonion fabum, Cassidulina carinata and Bolivina ex. gr. dilatata respond to phytodetritus input from these blooms. In autumn, the rich faunas of inner shelf station G are dominated by N. fabum, B. ex. gr. dilatata, Hyalinea balthica and Nonionella turgida. These taxa seem to be correlated with the presence of coastal blooms phenomena, in front of river outlets. They may be favoured by an organic input with a significant contribution of terrestrial, rather low quality organic matter.
NASA Astrophysics Data System (ADS)
Malatesta, L. C.; Finnegan, N. J.; Kushwaha, G.
2017-12-01
Sea level defines the elevation where wave-base erosion is the dominant erosive process. Hence, submarine erosion of the margin and creation of a continental shelf depend on the time distribution of sea level relative to bedrock by correcting eustasy for local rock uplift. Eustasy and wave-base erosion also impact most fluvial systems on Earth by affecting the vertical and lateral position of their lower boundary condition, the coastline. When uplift rate is slow, the concentration of wave-base erosion on a restricted range of elevation promotes the creation of wide shelves and of a relatively stable average base level for coastal rivers. While interfluves above the shelf are steep, fluvial valleys in slow uplift regions grade into the shelf and form estuaries that trap sediment at high stand. Alternatively, a fast coastal uplift rate distributes wave-base erosion over a wide range of bedrock elevations that are quickly uplifted above the eustatic range, preventing the beveling of a shelf and the establishment of a river profile equilibrated around an average sea-level. In that case, river base level is highly dependent on the gradient of the continental slope. We show that the width of the shelf is inversely correlated with the uplift rate along the Oregon and northern California coast. The extent of the shelf can be a valuable counterpart to (often absent) marine terraces that provides a record for coastline retreat, local uplift rate and river base level.
Cheriton, Olivia M.; McPhee-Shaw, Erika E.; Shaw, William J.; Stanton, Timothy P.; Bellingham, James G.; Storlazzi, Curt D.
2014-01-01
Physical and optical measurements taken over the mud belt on the southern continental shelf of Monterey Bay, California documented the frequent occurrence of suspended particulate matter features, the majority of which were detached from the seafloor, centered 9–33 m above the bed. In fall 2011, an automated profiling mooring and fixed instrumentation, including a thermistor chain and upward-looking acoustic Doppler current profiler, were deployed at 70 m depth for 5 weeks, and from 12 to 16 October a long-range autonomous underwater vehicle performed across-shelf transects. Individual SPM events were uncorrelated with local bed shear stress caused by surface waves and bottom currents. Nearly half of all observed SPM layers occurred during 1 week of the study, 9–16 October 2011, and were advected past the fixed profiling mooring by the onshore phase of semidiurnal internal tide bottom currents. At the start of the 9–16 October period, we observed intense near-bed vertical velocities capable of lifting particulates into the middle of the water column. This “updraft” event appears to have been associated with nonlinear adjustment of high-amplitude internal tides over the mid and outer shelf. These findings suggest that nonlinear internal tidal motions can erode material over the outer shelf and that, once suspended, this SPM can then be transported shoreward to the middle and shallow sections of the mud belt. This represents a fundamental broadening of our understanding of how shelf mud belts may be built up and sustained.
Depositional history of Louisiana-Mississippi outer continental shelf
Kindinger, J.L.; Miller, R.J.; Stelting, C.E.
1982-01-01
A geological study was undertaken in 1981 in the Louisiana-Mississippi outer continental shelf for the Bureau of Land Management. The study included a high-resolution seismic reflection survey, surficial sediment sampling and surface current drifter sampling. Approximately 7100 sq km of the Louisiana-Mississippi shelf and upper slope were surveyed. The sea floor of the entire area is relatively smooth except for occasional areas of uplift produced by diapiric intrusion along the upper slope. Characteristics of the topography and subsurface shelf sediments are the result of depositional sequences due to delta outbuilding over transgressive sediments with intervening periods of erosion during low sea level stands. Little evidence of structural deformation such as faults, diapirs, and shallow gas is present on the shelf and only a few minor faults and scarps are found on the slope. Minisparker seismic records in combination with air gun (40 and 5 cu in) and 3.5-kHz subbottom profile records reveal that seven major stages of shelf development have occurred since the middle Pleistocene. The shelf development has been controlled by the rise and fall of sea level. These stages are defined by four major unconformities, several depositions of transgressive sediments, sequences of river channeling and progradational delta deposits. Surficial sediment sample and seismic records indicate tat the last major depositional event was the progradation of the St. Bernard Delta lobe. This delta lobe covered the northwestern and central regions. Surficial sediments in most of the study area are the product of the reworking of the San Bernard Delta lobe and previous progradations.
Processes influencing seasonal hypoxia in the northern California Current System
Connolly, T. P.; Hickey, B. M.; Geier, S. L.; Cochlan, W. P.
2010-01-01
This paper delineates the role of physical and biological processes contributing to hypoxia, dissolved oxygen (DO) < 1.4 mL/L, over the continental shelf of Washington State in the northern portion of the California Current System (CCS). In the historical record (1950–1986) during the summer upwelling season, hypoxia is more prevalent and severe off Washington than further south off northern Oregon. Recent data (2003–2005) show that hypoxia over the Washington shelf occurred at levels previously observed in the historical data. 2006 was an exception, with hypoxia covering ~5000 km2 of the Washington continental shelf and DO concentrations below 0.5 mL/L at the inner shelf, lower than any known previous observations at that location. In the four years studied, upwelling of low DO water and changes in source water contribute to interannual variability, but cannot account for seasonal decreases below hypoxic concentrations. Deficits of DO along salinity surfaces, indicating biochemical consumption of DO, vary significantly between surveys, accounting for additional decreases of 0.5–2.5 mL/L by late summer. DO consumption is associated with denitrification, an indicator of biochemical sediment processes. Mass balances of DO and nitrate show that biochemical processes in the water column and sediments each contribute ~50% to the total consumption of DO in near-bottom water. At shorter than seasonal time scales on the inner shelf, along-shelf advection of hypoxic patches and cross-shelf advection of seasonal gradients are both shown to be important, changing DO concentrations by 1.5 mL/L or more over five days. PMID:20463844
NASA Astrophysics Data System (ADS)
Diez, Mariano J.; Cabreira, Ariel G.; Madirolas, Adrián; Lovrich, Gustavo A.
2016-08-01
Squat lobsters are highly diversified and widespread decapods, of which only three species form pelagic swarms. Here we infer the expansion of Munida gregaria populations in the Beagle Channel and the Argentine Patagonian Shelf by means of acoustic surveys of pelagic swarms. We also describe the habitat characteristics in which these swarms occur. Acoustic data was collected during three multidisciplinary scientific cruises on board of the R/V Puerto Deseado during 2009, 2012 and 2014. Despite differences in the environmental conditions between the two surveyed areas, between 2009 and 2014 pelagic swarms increased their occurrence and abundance both in the Beagle Channel and on the Argentine Patagonian Shelf. Towards the end of the studied period, pelagic swarms of M. gregaria occurred in new locations, supporting the notion of a population expansion. Within the Beagle Channel swarm expansions were more marked than on the Patagonian Shelf. We here postulate that M. gregaria expansions occur in association with productive areas of the Argentine continental shelf, such as frontal zones, favoured by the squat lobster phenotypic plasticity that permit to exploit resources in both the neritic and benthic environments. At a regional scale on the Patagonian Shelf, three main groups of pelagic swarms of M. gregaria were clearly associated to respective frontal zones. The information presented here is necessary to understand fluctuations in both distribution and abundance patterns of a key species on the Argentine continental shelf. These fluctuations could be direct or indirect indicators of changes in the ecosystem.
NASA Astrophysics Data System (ADS)
Cheriton, Olivia M.; McPhee-Shaw, Erika E.; Shaw, William J.; Stanton, Timothy P.; Bellingham, James G.; Storlazzi, Curt D.
2014-01-01
Physical and optical measurements taken over the mud belt on the southern continental shelf of Monterey Bay, California documented the frequent occurrence of suspended particulate matter features, the majority of which were detached from the seafloor, centered 9-33 m above the bed. In fall 2011, an automated profiling mooring and fixed instrumentation, including a thermistor chain and upward-looking acoustic Doppler current profiler, were deployed at 70 m depth for 5 weeks, and from 12 to 16 October a long-range autonomous underwater vehicle performed across-shelf transects. Individual SPM events were uncorrelated with local bed shear stress caused by surface waves and bottom currents. Nearly half of all observed SPM layers occurred during 1 week of the study, 9-16 October 2011, and were advected past the fixed profiling mooring by the onshore phase of semidiurnal internal tide bottom currents. At the start of the 9-16 October period, we observed intense near-bed vertical velocities capable of lifting particulates into the middle of the water column. This "updraft" event appears to have been associated with nonlinear adjustment of high-amplitude internal tides over the mid and outer shelf. These findings suggest that nonlinear internal tidal motions can erode material over the outer shelf and that, once suspended, this SPM can then be transported shoreward to the middle and shallow sections of the mud belt. This represents a fundamental broadening of our understanding of how shelf mud belts may be built up and sustained.
Sheridan, R.E.; Ashley, G.M.; Miller, K.G.; Waldner, J.S.; Hall, D.W.; Uptegrove, J.
2000-01-01
High-resolution seismic reflection profiles (~ 1-5 m resolution), including Geopulse(TM), Uniboom(TM), minisparker, small air gun, and water gun sources, are used to trace the ?? 18O stage 5 portion of the outcropping Cape May Formation across the shelf to the continental slope. The ?? 18O stage 5/6 boundary identified at Ocean Drilling Project (ODP) Site 903 on the continental slope anchors the onshore-offshore seismic correlations. Above the ?? 18O stage 5 sequence, there are distinguishable lowstand systems tracts (LST), transgressive systems tracts (TST) and highstand systems tracts (HST) that correlate with ?? 18O stages 4 through 1. Atlantic Margin Coring Project (AMCOR) holes 6009, 6010, 6011, 6020, and 6021C provide age and paleoenvironmental indicators that agree with these correlations. The sub-arctic paleoenvironmental indicators in sequences of ?? 18O stage 3 agree with the cooler temperatures and lower sea-level highstands of that time. Thicker ?? 18O stage 3 and 4 sequences are preserved in the Paleo-Hudson River incised valley across the shelf. The expanded ice sheets during stage ?? 18O 3 compared to ?? 18O stages 1 and 5 probably increased sediment discharge in the Hudson River drainage system. (C) 2000 Elsevier Science B.V. All rights reserved.
Variability of High-Resolution Sea Surface Heights on a Broad, Shallow Continental Shelf
NASA Astrophysics Data System (ADS)
Crout, R. L.; Rice, A. E.
2017-12-01
Recent satellite altimeter technologies and processing methodologies are allowing investigation of the dynamics of the continental shelf as never before. The region seaward of 20 km from the coast is a region where winds, tides, currents, river discharge, and bathymetry interact. All of these are important parameters to understand when applying coastal altimetry to coastal sea level monitoring. Processing of 8 years (July 2008 to July 2016) of Jason-2 altimeter 20 Hz data from the L2 AVISO-PISTACH experimental products yields nearly 300 crossings of the broad continental shelf to the southeast of Delaware Bay from Cape May, NJ. Removal of a mean surface yields individual crossings that, plotted together, form an envelope that shows high water level variability near the coast. Water level changes near the coast begin at a hinge point that occurs approximately 50 km from shore in less than 30 meters of water. Comparison of individual Jason-2 passes with regional weather patterns, cold front passages, local winds, tides, surface currents, river discharge, and regional oceanography provides information regarding the forcing factors for these regional water levels. The water levels farther than 20 km from shore show similar patterns to the low pass filtered tide data at Cape May, NJ and respond primarily to regional forcing.
Coral forests diversity in the outer shelf of the south Sardinian continental margin
NASA Astrophysics Data System (ADS)
Cau, Alessandro; Moccia, Davide; Follesa, Maria Cristina; Alvito, Andrea; Canese, Simonepietro; Angiolillo, Michela; Cuccu, Danila; Bo, Marzia; Cannas, Rita
2017-04-01
Ecological theory predicts that heterogeneous habitats allow more species to co-exist in a given area, but to date, knowledge on relationships between habitat heterogeneity and biodiversity of coral forests in the outer shelf and upper slope along continental margins is rather limited. We investigated biodiversity of coral forests from 8 sites spread over two different geomorphological settings (namely, pinnacles vs. canyons) in the outer shelf along Sardinian continental margin. Using a combination of multivariate statistical analyses, we show here that differences in the composition of coral assemblages among contrasting geomorphological settings were not statistically significant, whereas significant differences emerged among sites within similar geomorphologies (i.e. among pinnacles and among canyons). Our results reveal that environmental and bathymetric factors such as sediment coverage, slope of the substrate, terrain ruggedness, bathymetric positioning index and aspect were important drivers of the observed patterns of coral biodiversity, in both settings. Spatial variability of coral forests' biodiversity is affected by environmental factors that act at the scale of each geomorphological setting (i.e. within each pinnacle and canyon) rather than by the contrasting geomorphological settings themselves. This result allows us to suggest that simple categorization of benthic communities according topographically defined habitat is unlikely to be sufficient for addressing conservation purposes.
Philip A. Marcus; Ethan T. Smith
1979-01-01
Five petroleum-related facilities often sited in the coastal zone during development of Outer Continental oil and gas can change the visual appearance of coastal areas. These facilities are service bases, platform fabrication yards, marine terminals and associated storage facilities, oil and gas processing facilities, and liquified natural gas terminals. Examples of...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-14
... Policy Leasing for Renewable Energy Data Collection Facility on the Outer Continental Shelf off the Coast..., tribes, local governments, and the public in the preparation of an EA. The EA will consider the environmental consequences associated with issuing a lease for an offshore data collection facility located on...
NASA Astrophysics Data System (ADS)
Gulick, S. P. S.; Montelli, A.; Swartz, J. M.; Morey, S.; Jaeger, J. M.; Mix, A. C.; Reece, R.; Somchat, K.; Wagner, P. F.; Worthington, L. L.
2015-12-01
The oblique collision of the Yakutat microplate into southeast Alaska generates the St. Elias Mountains, a coastal orogen with significant moisture from the Gulf of Alaska resulting in large, temperate glacial systems that expand to and eventually cross the continental shelf during glacial maxima. We present an overview of the evolution of sediment routing on this margin from integration of seismic images, updated age models and core-log-seismic correlations from IODP Expedition 341 drilling sites, and mapping efforts from shelf, slope, and fan. We focus on the three dominant glacial systems during the climatically important intensification of Northern Hemisphere glaciation at the Plio-Pleistocene transition and the further intensification of glaciation since the mid-Pleistocene transition. Along strike, sediment delivery to deepwater from the three glacial systems varied according to Pleistocene shelf accommodation space. The Alsek crossed a narrower shelf with a bedrock high near the shelf edge; the Malaspina-Hubbard system crossed an undeformed, ~1 km deep shelf; the Bering-Bagley system crossed a several km deep shelf deforming as an active fold and thrust belt. The Malaspina and Bering catchments exhibit high exhumation rates onshore due to the Yakutat collision and upon reaching the shelf edge these glaciers generate trough mouth fans (TMFs) on the adjacent continental slope but only after first filling the available accommodation with glacigenic sediment and lowering the slope gradient through progradation. The Alsek crosses the shelf earliest but never with sufficient sediment flux to generate a TMF. An east-west transition in adjacent deepwater submarine channels that feed and generate the Surveyor Fan suggests that shelf accommodation and sediment flux are primary controls on sediment routing from orogen to submarine fan. Both of these parameters are in turn a function of initial tectonic architecture and ongoing orogen dynamics.
Cascading of high salinity bottom waters from the Arabian/Persian Gulf to the northern Arabian Sea
NASA Astrophysics Data System (ADS)
Shapiro, Georgy; Wobus, Fred; Solovyev, Vladimir; Francis, Xavier; Hyder, Patrick; Chen, Feng; Asif, Muhammad
2017-04-01
Cascading (aka shelf convection) is a specific type of buoyancy driven current in which dense water is formed over the continental shelf and then descends down the slope to a greater depth. The cascades of dense water down continental slopes provide a mechanism for shelf-ocean exchange in many parts of the world's oceans (Shapiro et al, 2003). Dense water is formed on the shelf by a number of processes, with high evaporation, limited river discharge and low precipitation being the major processes in warm climates (Ivanov et al, 2004). The formation and outflow of high salinity waters in the near-bottom layer of the Arabian/Persian Gulf is an example of dense water cascading (Bower et al 2000). Despite of its importance for the self-cleaning and the state of the marine ecosystem in the Arabian/Persian Gulf, the properties of the outflow have so far mainly been analysed using climatologically averaged data or observations of a limited set of parameters (mainly temperature), see (Bower et al 2000). In this paper we study the dynamics of the flow using a comprehensive set of observational data (temperature, salinity velocity and turbidity profiles) obtained during the GRASP (Gulf Reconnaissance And Selective Profiling) observational campaign in the Gulf of Oman, which are complemented by the results of numerical modelling of the area using a number of 3D ocean models, and some ARGO T/S profiles. The GRASP measurements were carried out using an Aqualog climbing moored profiler, which was equipped with a Seabird CTD sensor, a Nortek Aquadopp current meter and a Seapoint turbidity meter. The Ocean circulation models used in the study include PGM4 and IND12 (UK Met Office); and AS20 and AG60 (University of Plymouth). All models are based on NEMO (Nucleus for European Modelling of the Ocean) codebase with a resolution from 9 km down to 1.8 km. The models were calibrated and validated against ARGO float profiles in the area. The study revealed the mesoscale and sub-mesoscale circulation patterns of the outflow, their spatial and temporal variability over time scales from a few days to seasonal. References Shapiro, G.I.; Huthnance, J.M.; Ivanov, V.V.. 2003 Dense water cascading off the continental shelf. Journal of Geophysical Research, 108 (C12). 3390.10.1029/2002JC001610 Ivanov, V.V.; Shapiro, G.I.; Huthnance, J.M.; Aleynik, D.L.; Golovin, P.N.. 2004 Cascades of dense water around the world ocean. Progress in Oceanography, 60 (1). 47-98.10.1016/j.pocean.2003.12.002 Bower, A. S., H. D. Hunt and J. Price, 2000. Character and Dynamics of the Red Sea and Persian Gulf Outflows. Journal of Geophysical Research - Oceans, Vol. 105, No. C3, pp. 6387-6414.
Popenoe, Peter; Popenoe, Peter
1981-01-01
This report is a summary of the second year of marine environmental research activities by the U.S. Geological Survey (USGS) on the southeaster U.S. Atlantic Continental Margin, in accordance with with Memorandum of Understanding (MOU) AA551-MU8-13 between the USGS and the Bureau of Land Management (BLM). The report covers studies whose fieldwork was conducted during the period from 1 October 1977 to 30 September 1978. The results of the first year of study are reported in Popenoe (1978a and b) and as U.S. Department of Commerce NTIS report PB 300-820. The purpose of these investigations is to provide basic geologic and oceanographic data to the BLM Outer Continental Shelf (OCS) Marine Environmental Studies Program in support of management decisions which relate to possible development of oil and gas resources of the continental shelf. The objectives of the USGS-BLM geologic research program for fiscal year 1978 (FY-78) were 1) to determine the sedimentation rates and processes on the upper slope and inner Blake Plateau; 2) to determine the distribution, areal extent, and vertical characteristics of geological features supportive of biological communities; 3) to monitor the transport of bottom sediment across the OCS, evaluate its possible effect on pollutant transfer along the seabed and the potential of sediment as a pollutant sink, determine the implications of erosion/deposition on pipeline emplacement, and aid the interpretation of chemical, biological, and physical data; 4) to determine the concentration levels of chosen trace metals and silica in three chemically defined fractions of the suspended particulate matter (seston); 5) to study the shelf edge and slope near areas of oil and gas interest, and the northern portion of the Blake Plateau for evidence of slope instability and other geologic hazards, and 6) to determine the depth and rate of sediment mixing caused by large storms and/or by benthic organisms and where possible to estimate the rate of active sediment accumulation.
Di Tullio, Juliana Couto; Gandra, Tiago B. R.; Zerbini, Alexandre N.; Secchi, Eduardo R.
2016-01-01
Temporal and spatial patterns of cetacean diversity and distribution were investigated through eight ship-based surveys carried out during spring and autumn between 2009 and 2014 on the outer continental shelf (~150m) and slope (1500m) off southeastern and southern Brazil (~23°S to ~34°S). The survey area was divided into southeast and south areas according to their oceanographic characteristics. Twenty-one species were observed in 503 sightings. The overall number of species was similar between the two areas, though it was higher in the spring in the south area. Five species were dominant and diversity varied more seasonally than spatially. ANOVA and kernel analyses showed that overall cetacean densities were higher in spring compared to autumn. Physeter macrocephalus, the most frequent species, concentrated throughout the south area at depths over 1000m in both seasons. Despite the overlapped occurrence at a broader scale, small delphinids presented latitudinal and in-offshore gradients as well as seasonal variation in distribution patterns, which could indicate habitat partitioning between some species. Delphinus delphis was only recorded in the south and its density decreased in areas where the presence of Stenella frontalis increased, mainly beyond the 250m isobath. Densities of S. longirostris and S. attenuata increased in lower latitudes and beyond the shelf break. The large delphinids Tursiops truncatus and Globicephala melas formed mixed groups in many occasions and were observed along the study area around depths of 500m. Grampus griseus was twice as frequent in the south area and densities increased in waters deeper than 600m. As expected, densities of both small and large migratory whales were higher during spring, over the continental slope, in the southeast area. The results presented here provided strong evidence on the importance of the outer continental shelf and slope to a diverse community of cetaceans occurring in the subtropical Southwestern Atlantic. PMID:27243455
Di Tullio, Juliana Couto; Gandra, Tiago B R; Zerbini, Alexandre N; Secchi, Eduardo R
2016-01-01
Temporal and spatial patterns of cetacean diversity and distribution were investigated through eight ship-based surveys carried out during spring and autumn between 2009 and 2014 on the outer continental shelf (~150m) and slope (1500m) off southeastern and southern Brazil (~23°S to ~34°S). The survey area was divided into southeast and south areas according to their oceanographic characteristics. Twenty-one species were observed in 503 sightings. The overall number of species was similar between the two areas, though it was higher in the spring in the south area. Five species were dominant and diversity varied more seasonally than spatially. ANOVA and kernel analyses showed that overall cetacean densities were higher in spring compared to autumn. Physeter macrocephalus, the most frequent species, concentrated throughout the south area at depths over 1000m in both seasons. Despite the overlapped occurrence at a broader scale, small delphinids presented latitudinal and in-offshore gradients as well as seasonal variation in distribution patterns, which could indicate habitat partitioning between some species. Delphinus delphis was only recorded in the south and its density decreased in areas where the presence of Stenella frontalis increased, mainly beyond the 250m isobath. Densities of S. longirostris and S. attenuata increased in lower latitudes and beyond the shelf break. The large delphinids Tursiops truncatus and Globicephala melas formed mixed groups in many occasions and were observed along the study area around depths of 500m. Grampus griseus was twice as frequent in the south area and densities increased in waters deeper than 600m. As expected, densities of both small and large migratory whales were higher during spring, over the continental slope, in the southeast area. The results presented here provided strong evidence on the importance of the outer continental shelf and slope to a diverse community of cetaceans occurring in the subtropical Southwestern Atlantic.
NASA Astrophysics Data System (ADS)
Jakobsson, M.; Mayer, L. A.; Marcussen, C.
2013-12-01
Despite the last decades of diminishing sea-ice cover in the Arctic Ocean, ship operations are only possible in vast sectors of the central Arctic using the most capable polar-class icebreakers. There are less than a handful of these icebreakers outfitted with modern seafloor mapping equipment. This implies either fierce competition between those having an interest in using these icebreakers for investigations of the shape and properties of Arctic Ocean seafloor or, preferably, collaboration. In this presentation examples will be shown of scientific discoveries based on mapping data collected during Arctic Ocean icebreaker expeditions carried out for the purpose of substantiating claims for an extended continental shelf under United Nations Convention of the Law of the Sea (UNCLOS) Article 76. Scientific results will be presented from the suite of Lomonosov Ridge off Greenland (LOMROG) expeditions (2007, 2009, and 2012), shedding new light on Arctic Ocean oceanography and glacial history. The Swedish icebreaker Oden was used in collaboration between Sweden and Denmark during LOMROG to map and sample portions of the central Arctic Ocean; specifically focused on the Lomonosov Ridge north of Greenland. While the main objective of the Danish participation was seafloor and sub-seabed mapping to substantiate their Article 76 claim, LOMROG also included several scientific components, with scientists from both countries involved. Other examples to be presented are based on data collected using US Coast Guard Cutter Healy, which for several years has carried out mapping in the western Arctic Ocean for the US continental shelf program. All bathymetric data collected with Oden and Healy have been contributed to the International Bathymetric Chart of the Arctic Ocean (IBCAO). This is also the case for bathymetric data collected by Canadian Coast Guard Ship Louis S. St-Laurent for Canada's extended continental shelf claim. Together, the bathymetric data collected during these Article 76 mapping missions comprises, by far, the most comprehensive contribution to the last Version 3.0 of IBCAO.
NASA Astrophysics Data System (ADS)
Wilson, Matthew T.; Mier, Kathryn L.; Cooper, Dan W.
2016-05-01
According to the nursery size hypothesis, flatfish recruitment is constrained by nursery area. Thus, if resource selection models can be shown to accurately predict the location and geographic extent of flatfish nursery areas, they will become important tools in the management and study of flatfish population dynamics. We demonstrate that some resource selection models derived previously to predict the presence and absence of juvenile flatfishes near shore were applicable to the broader continental shelf. For other age-species groups, derivation of new models for the continental shelf was necessary. Our study was conducted in the western Gulf of Alaska (GoA) during October 2011 on four groups of age-0 juvenile flatfishes: Pacific halibut (Hippoglossus stenolepis), arrowtooth flounder (Atheresthes stomias), northern rock sole (Lepidopsetta polyxystra), and flathead sole (Hippoglossoides elassodon); and three groups of age-1 juvenile flatfishes: northern rock sole, flathead sole, and yellowfin sole (Limanda aspera). Sampling occurred at 33 sites across the continental shelf. Fish were collected using a 3-m beam trawl, and a midwater trawl. Environmental data were collected on sediment composition and water temperature and depth. Many of the age-species groups co-occurred in the Shumagin and Barnabus sea valleys; however, age-0 arrowtooth flounder occurred at more locations than other juveniles, perhaps due to a relatively broad tolerance of environmental conditions and to the utilization of midwater habitat. Thus, the large nursery area of arrowtooth flounder may be one reason why they are currently the most abundant GoA flatfish. In fact, among all species, mean recruitment at age 3 increased with the percent occurrence of age-0 juveniles at the 33 sites, a proxy for relative nursery area, in accordance with the nursery size hypothesis, suggesting that mean recruitment among GoA flatfishes is structured by nursery size.
Diversity of the benthic macrofauna off northern Namibia from the shelf to the deep sea
NASA Astrophysics Data System (ADS)
Eisenbarth, Simone; Zettler, Michael L.
2016-03-01
In late summer 2011, shortly after an upwelling event, 17 stations ranging from 30 to 2513 m water depth have been sampled at 20° south in the northern part of the Benguela Current Large Marine Ecosystem (BCLME) for the investigation of the benthic macrofauna. Sediments of this area are dominated by silt. At the time of sampling, oxygen conditions on the shelf were poor (between 0.42 and 0.68 ml l- 1) but not hypoxic. Below 400 m, however, concentrations rose steadily up to 5.28 ml l- 1. Macrozoobenthic communities along this depth gradient are described, revealing among others the community structure for the continental margin area and the deep sea off northern Namibia for the first time. Cluster analysis revealed 5 different communities along the depth gradient with three shelf communities, one continental margin community and one deep-sea community. All in all, 314 different taxa were found with polychaetes being the most abundant group. Diversity index (Shannon) was lowest for the shallow water community with 2.21 and highest for the deep-sea community with 4.79, showing a clear trend with increasing water depth. Species richness, however, reached its maximum with 187 taxa along the continental margin between 400 and 1300 m water depth. Dominant species for each community are named with the two Cumacea, Iphinoeafricana and Upselaspis caparti, being characteristic for the shallow water community. On the shelf, we found surprisingly high biomass values (23-123 g m- 2), mainly caused by polychaetes, the bivalve Sinupharus galatheae and the gastropod Nassarius vinctus. In terms of composition, the remaining communities were dominated by polychaetes with members of the Paraonidae dominating along the continental margin where we also found surprisingly high abundances of the bivalves Pecten sp. and Dosinia sp. Spionid polychaetes and some representatives of the genus Paraonis were the most common organisms for the deep-sea community.
Nelson, C.H.
1990-01-01
Because of the extensive data base of seismic profiles, radiometric ages, and stratigraphic time markers such as the subaerial Messinian surface, sedimentation rates and Ebro River sediment discharge can be estimated for different periods and environments of the Ebro continental margin. New values for sediment discharge (i.e., 6.2 versus previous estimates of 2-3.5 million t/yr) for the Holocene highstand are more reliable but remain minimum estimates because a small proportion of Ebro sediment advected to the Balearic Rise and Abyssal Plain cannot be accounted for, especially during lowstands. The general highstand conditions of the Pliocene, which were similar to those of the Holocene, resulted in a low discharge of Ebro River sediment (ca. 6.5 million t/yr) and an even thickness of sediment across the margin that deposited at rates of about 24-40 cm/ky. In contrast, sediment supply increased two-three times during the Pleistocene, the margin prograded rapidly and deposition occurred at rates of 101-165 cm/ky on the outer shelf and slope, but basin floor rates remained anomalously low (21-26 cm/ky) because sediment was drained and broadly dispersed eastward in Valencia Trough. During the late Pleistocene rise of sea level, the main depocenters progressively shifted shoreward and sedimentation rates greatly decreased from 175 cm/ky on the upper slope during the early transgression to 106 cm/ky on the outer shelf and then to 63 cm/ky on the mid-shelf during the late transgression as the river sediment discharge dropped to half by Holocene time. Maximal sedimentation rates occurred in active depocenters of sediment dispersal such as the Holocene delta (370 cm/ky) or the youngest Pleistocene Oropesa channel-levee complex (705 cm/ky) where deposition rates increased by an order of magnitude or more compared to average Ebro shelf (38 cm/ky) or base-of-slope rates in the Pleistocene (21 cm/ky). The sedimentation rates verify the importance of sea-level control on the progressive change in location of depocenters and amount of sediment supply, but Pleistocene climatic change and deforestation alone can be observed to double river sediment discharge. The latter observation helps explain the anomalously high deposition rates in Pleistocene turbidite systems compared with older systems that may be controlled more by tectonic and sea-level changes alone. During the past 2000 years, in contrast, man has controlled deposition in the Ebro margin system, first by deforestation that more than doubled river sediment discharge and shelf deposition rates to equal those of Pleistocene time; and second by dam contruction that reduced sediment discharge to less than 5% of the normal Holocene discharge. Similar recent discharge reductions from the Nile and Rhone Rivers suggest that loss of the majority of the river sediment supply in the Mediterranean Sea may result in significant erosion of biologically and agriculturally important lobate delta areas. ?? 1990.
NASA Astrophysics Data System (ADS)
Dente, Elad; Lensky, Nadav G.; Morin, Efrat; Grodek, Tamir; Sheffer, Nathan A.; Enzel, Yehouda
2017-12-01
The geomorphic response of channels to base-level fall is an important factor in landscape evolution. To better understand the complex interactions between the factors controlling channel evolution in an emerging continental shelf setting, we use an extensive data set (high-resolution digital elevation models, aerial photographs, and Landsat imagery) of a newly incising, perennial segment of Nahal (Wadi) HaArava, Israel. This channel responds to the rapid and progressive lowering of its base-level, the Dead Sea (>30 m in 35 years; 0.5-1.3 m yr-1). Progressively evolving longitudinal profiles, channel width, sinuosity, and knickpoint retreat during the last few decades were documented or reconstructed. The results indicate that even under fast base-level fall, rapid delta progradation on top of the shelf and shelf edge can moderate channel mouth slopes and, therefore, largely inhibit channel incision and knickpoint propagation. This channel elongation stage ends when the delta reaches an extended accommodation within the receiving basin and fails to keep the channel mouth slopes as low as the channel bed slopes. Then, processes of incision, narrowing, and meandering begin to shape the channel and expand upstream. When the down-cutting channel encounters a more resistant stratum within the channel substrate, these processes are restricted to a downstream reach by formation of a retreating vertical knickpoint. When the knickpoint and the channel incise to a level below this stratum, a spatially continuous, diffusion-like evolution characterizes the channel's response and source-to-sink transport can be implemented. These results emphasize the mouth slope and channel substrate resistance as the governing factors over long-term channel evolution, whereas flash floods have only local and short-lived impacts in a confined, continuously incising channel. The documented channel response applies to eustatic base-level fall under steepening basin bathymetry, rapid delta progradation, and lithologic variations in the channel substrate.
NASA Astrophysics Data System (ADS)
Tagliaro, G.; Fulthorpe, C.; Gallagher, S. J.; McHugh, C.; Kominz, M. A.; Lavier, L.
2017-12-01
The Bare Formation represents a unique episode of Neogene siliciclastic deposition on the carbonate-dominated Australian Northwest Shelf (NWS). International Ocean Discovery Program (IODP) Expedition 356 drilling results, coupled with interpretation of 3D seismic data, allow us to constrain the timing of siliciclastic deposition and the associated sedimentary processes. IODP Sites U1462, U1463 and U1464 provide age control that reveals the relationship of the Bare Fm. to the adjacent carbonate sediments. The Bare Fm. is preceded by middle to late Miocene shelf exposure and karstification. Elongate beach barrier deposits with small lobate deltas to the NE developed during the late Miocene. However, fluvial deposition increased markedly in the Zanclean, resulting in development of a large tide-and-wave-influenced delta, with evidence of tidal channels, comprising the thickest component of the Bare Fm. Siliciclastic input decreased in the Piacenzian, leading to margin retreat and final termination near the Plio-Pleistocene boundary. The results correlate with regional climate and sedimentary records derived from Sites U1459, U1463 and U1464, that indicate an arid middle to late Miocene, followed by a humid interval in the Zanclean and a return to arid conditions during the Piacenzian. Therefore, we suggest that fluctuation of surface runoff patterns in the continental hinterlands is the primary control of Bare Fm. evolution. Hence, Neogene siliciclastic distribution is a result of regional climate variability on the NWS. Up to 40 km of shoreline advance is verified in the Late Miocene and Pliocene, an example of climate-driven modification of a continental margin. Additionally, longshore transport intensifies during the Pliocene humid interval, causing NE migration of the deltaic system. Sedimentary and climate transitions are linked to reorganization of Indian Ocean paleoceanography, accompanying northward migration of the Australian continent and progressive restriction of the Indonesian Throughflow.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-08
... Shelf Permits Issued to Shell Offshore, Inc. for the Kulluk Conical Drilling Unit AGENCY: United States... (OCS) permit to construct and Title V air quality operating permit to Shell Offshore, Inc. (``Shell'') for operation of the Kulluk conical drilling unit in the Beaufort Sea off the north coast of Alaska...
Bowhead whale acoustic activity in the southeast Beaufort Sea during late summer 2008-2010.
Charif, Russell A; Rahaman, Ashakur; Muirhead, Charles A; Pitzrick, Michael S; Warde, Ann M; Hall, James; Pyć, Cynthia; Clark, Christopher W
2013-12-01
Autonomous passive acoustic recorders were deployed to record sounds of bowhead whales (Balaena mysticetus) in the southeast Beaufort Sea for periods of 30-55 days during the late summer, open-water seasons of 2008-2010. Recordings were made in three areas licensed for hydrocarbon exploration, spanning the continental slope and adjacent outer shelf, and in a shallow inner-shelf area where bowheads have been observed congregating to feed in recent decades. Bowhead sounds were counted in samples comprising 10% of each recorded hour. In mid-August and September in all 3 years, the rate of bowhead calling at outer shelf sites exceeded that at adjacent continental slope sites by one to two orders of magnitude. Higher rates of calling occurred on the slope in late July and early August than at later dates. Calling rates varied by an order of magnitude between years in the one area that was monitored in different years. The highest rates of calling occurred on the inner shelf, offshore of the northern Tuktoyaktuk Peninsula. These trends are consistent with patterns of habitat use previously reported from aerial surveys in this and nearby areas of the Beaufort Sea and with the results of satellite tagging studies.
NASA Astrophysics Data System (ADS)
Sañé, E.; Isla, E.; Gerdes, D.; Montiel, A.; Gili, J.-M.
2012-03-01
Lipid, protein and carbohydrate concentrations have been determined in sediment cores from the continental shelf in the South Eastern Weddell Sea (SEWS), where no ice shelves have been present at least for thousands of years, and the continental shelf off the Eastern Antarctic Peninsula (EAP), in the area where two ice shelf collapses occurred in 1995 and 2002. On one hand, SEWS presents an important flux of fresh organic matter to the seabed during summer, whereas on the other hand, the presence of ice shelves in EAP hampered photosynthesis restricting the input of organic matter to advected refractory material. In the present study, biochemical variables and benthic macrofauna abundance, biomass and diversity confirmed differences between the two regions. Lipid concentrations were higher in SEWS than in EAP, whereas carbohydrate concentrations were higher in the latter region. These differences were attributed to the higher concentration of labile and refractory material, respectively. Biomass, abundance and diversity of the macrofauna were higher in SEWS than in EAP, where benthic communities started receiving a fresh organic matter input only after the recent ice shelf collapses. As regards macrofauna composition, both regions presented macrobenthic communities associated to early stages of recolonization.
Variations in organic carbon fluxes from Long Island Sound to the Continental Shelf
NASA Astrophysics Data System (ADS)
Vlahos, P.; Whitney, M. M.
2017-12-01
Organic carbon balances for the Long Island Sound estuary over the years 2009-2012 are presented to assess the particulate and dissolved organic carbon contributions of the estuary to the adjacent shelf waters with respect to the Delaware and Chesapeake. Observations were coupled to a hydrodynamic model (ROMS) for both seasonal and annual estimates. During stratified summer periods, LIS was consistently a net exporter of OC to the continental shelf. LIS annual net carbon export however, varied with river flow. The heterotrophic or autotrophic nature of LIS also shifted seasonally and inter-annually. During the mass balance analysis period LIS ranged between net OC import from the continental shelf and heterotrophy in the lowest river flow year (2012) and net export of OC and autotrophy in the highest flow year (2011). Analysis suggests that LIS switches from net OC import to export when the annual river inputs exceed 19 km3 yr-1. Applying these thresholds to the annual river flow record suggests that net import occurred in 15% of the last 20 years and that LIS usually is a net exporter of OC (85%). Annually averaged LIS carbon export values based on river flow conditions over the last 20 yr are estimated at 56 ± 64 x 106 km3 yr-1. Analysis also suggests that LIS shifts from net heterotrophic to net autotrophic when annual river flow exceeds 26 km3 yr-1 (35% of the last 20 yr). Net heterotrophic conditions are most common, representing 65% of the last 20 yr.
Effect of a fast-moving tropical storm Washi on phytoplankton in the northwestern South China Sea
NASA Astrophysics Data System (ADS)
Zhao, Hui; Pan, Jiayi; Han, Guoqi; Devlin, Adam T.; Zhang, Shuwen; Hou, Yijun
2017-04-01
Tropical cyclones may augment nutrients in the ocean surface layer through mixing, entrainment, and upwelling, triggering phytoplankton blooms in oligotrophic waters such as the South China Sea (SCS). Previous studies focused mainly on responses of marine environments to strong or slow-moving typhoons in the SCS. In this study, we analyze variations of chlorophyll a (Chl a) and oceanic conditions in the continental shelf region east of Hainan Island during the fast-moving tropical storm Washi and investigate its influences on phytoplankton bloom and related dynamic mechanisms. Results indicate that there was significant variation of Chl a concentration in the continental shelf region, with low values (about 0.1 mg m-3) before the storm and a 30% increase after the storm. This increase was spatially variable, much larger nearshore than offshore. Power spectral analysis of Acoustic Doppler Current Profiler (ADCP) data at a shelf site near the study region reveals strong near-inertial oscillations (NIOs) in the upper layer, with a period of about 36 h, close to the local inertial period. The NIOs intensified mixing and modified the stratification of the upper layer, inducing uplift of nutrients and Chl a into the mixed layer from below, and leading to surface Chl a increase. The relatively shallow nutricline and thermocline in the continental shelf region before the storm were favorable for upwelling of nutrients and generation of NIOs. Advection of nutrients from enhanced runoff during and after the storm may be responsible for the larger increase of the Chl a nearshore.
NASA Astrophysics Data System (ADS)
Glickson, D.; Pomponi, S. A.
2016-02-01
The Cooperative Institute for Ocean Exploration, Research, and Technology (CIOERT) serves NOAA priorities in three theme areas: exploring the eastern U.S. continental shelf, improving the understanding of coral and sponge ecosystems, and developing advanced underwater technologies. CIOERT focuses on the exploration and research of ecosystems and habitats along frontier regions of the eastern U.S. continental shelf that are of economic, scientific, or cultural importance or of natural hazards concern. One particular focus is supporting ocean exploration and research through the use of advanced underwater technologies and techniques in order to improve the understanding of vulnerable deep and shallow coral and sponge ecosystems. CIOERT expands the scope and efficiency of exploration and research by developing, testing, and applying new and/or innovative uses of existing technologies to ocean exploration and research activities. In addition, CIOERT is dedicated to expanding ocean literacy and building NOAA's technical and scientific workforce through hands-on, at-sea experiences. A recent CIOERT cruise characterized Gulf of Mexico mesophotic and deepwater reef ecosystems off the west Florida shelf, targeting northern Pulley Ridge. This project created and ground-truthed new sonar maps made with an autonomous underwater vehicle; conducted video and photographic transects of benthic habitat and fish using a remotely operated vehicle; and examined the connectivity of fauna from shallow to deep reef ecosystems. CIOERT was established in 2009 by FAU-Harbor Branch Oceanographic Institute, with University of North Carolina, Wilmington, SRI International, and the University of Miami. The primary NOAA partner is the Office of Oceanic and Atmospheric Research's Office of Ocean Exploration and Research.
NASA Astrophysics Data System (ADS)
Glickson, D.; Pomponi, S.
2015-12-01
The Cooperative Institute for Ocean Exploration, Research, and Technology (CIOERT) serves NOAA priorities in three theme areas: exploring the eastern U.S. continental shelf, improving the understanding of coral and sponge ecosystems, and developing advanced underwater technologies. CIOERT focuses on the exploration and research of ecosystems and habitats along frontier regions of the eastern U.S. continental shelf that are of economic, scientific, or cultural importance or of natural hazards concern. One particular focus is supporting ocean exploration and research through the use of advanced underwater technologies and techniques in order to improve the understanding of vulnerable deep and shallow coral and sponge ecosystems. CIOERT expands the scope and efficiency of exploration and research by developing, testing, and applying new and/or innovative uses of existing technologies to ocean exploration and research activities. In addition, CIOERT is dedicated to expanding ocean literacy and building NOAA's technical and scientific workforce through hands-on, at-sea experiences. A recent CIOERT cruise characterized Gulf of Mexico mesophotic and deepwater reef ecosystems off the west Florida shelf, targeting northern Pulley Ridge. This project created and ground-truthed new sonar maps made with an autonomous underwater vehicle; conducted video and photographic transects of benthic habitat and fish using a remotely operated vehicle; and examined the connectivity of fauna from shallow to deep reef ecosystems. CIOERT was established in 2009 by FAU-Harbor Branch Oceanographic Institute, with University of North Carolina, Wilmington, SRI International, and the University of Miami. The primary NOAA partner is the Office of Oceanic and Atmospheric Research's Office of Ocean Exploration and Research.
Walrus areas of use in the Chukchi Sea during sparse sea ice cover
Jay, Chadwick V.; Fischbach, Anthony S.; Kochnev, Anatoly A.
2012-01-01
The Pacific walrus Odobenus rosmarus divergens feeds on benthic invertebrates on the continental shelf of the Chukchi and Bering Seas and rests on sea ice between foraging trips. With climate warming, ice-free periods in the Chukchi Sea have increased and are projected to increase further in frequency and duration. We radio-tracked walruses to estimate areas of walrus foraging and occupancy in the Chukchi Sea from June to November of 2008 to 2011, years when sea ice was sparse over the continental shelf in comparison to historical records. The earlier and more extensive sea ice retreat in June to September, and delayed freeze-up of sea ice in October to November, created conditions for walruses to arrive earlier and stay later in the Chukchi Sea than in the past. The lack of sea ice over the continental shelf from September to October caused walruses to forage in nearshore areas instead of offshore areas as in the past. Walruses did not frequent the deep waters of the Arctic Basin when sea ice retreated off the shelf. Walruses foraged in most areas they occupied, and areas of concentrated foraging generally corresponded to regions of high benthic biomass, such as in the northeastern (Hanna Shoal) and southwestern Chukchi Sea. A notable exception was the occurrence of concentrated foraging in a nearshore area of northwestern Alaska that is apparently depauperate in walrus prey. With increasing sea ice loss, it is likely that walruses will increase their use of coastal haul-outs and nearshore foraging areas, with consequences to the population that are yet to be understood.
How well do we know the infaunal biomass of the continental shelf?
NASA Astrophysics Data System (ADS)
Powell, Eric N.; Mann, Roger
2016-03-01
Benthic infauna comprise a wide range of taxa of varying abundances and sizes, but large infaunal taxa are infrequently recorded in community surveys of the shelf benthos. These larger, but numerically rare, species may contribute disproportionately to biomass, however. We examine the degree to which standard benthic sampling gear and survey design provide an adequate estimate of the biomass of large infauna using the Atlantic surfclam, Spisula solidissima, on the continental shelf off the northeastern coast of the United States as a test organism. We develop a numerical model that simulates standard survey designs, gear types, and sampling densities to evaluate the effectiveness of vertically-dropped sampling gear (e.g., boxcores, grabs) for estimating density of large species. Simulations of randomly distributed clams at a density of 0.5-1 m-2 within an 0.25-km2 domain show that lower sampling densities (1-5 samples per sampling event) resulted in highly inaccurate estimates of clam density with the presence of clams detected in less than 25% of the sampling events. In all cases in which patchiness was present in the simulated clam population, surveys were prone to very large errors (survey availability events) unless a dense (e.g., 100-sample) sampling protocol was imposed. Thus, commercial quantities of surfclams could easily go completely undetected by any standard benthic community survey protocol using vertically-dropped gear. Without recourse to modern high-volume sampling gear capable of sampling many meters at a swath, such as hydraulic dredges, biomass of the continental shelf will be grievously underestimated if large infauna are present even at moderate densities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruns, T.R.; Carlson, P.R.; Stevenson, A.J.
1990-06-01
GLORIA images collected in 1989 along southeast Alaska and British Columbia strikingly show the active trace of the Fairweather-Queen Charlotte transform fault system beneath the outer shelf and slope; seismic-reflection data are used to track the fault system across the continental shelf where GLORIA data are not available. From Cross Sound to Chatham Strait, the fault system is comprised of two sets of subparallel fault traces separated by 3 to 6 km. The fault system crosses the shelf from Icy Point to south of Yakobi Valley, then follows the shelf edge to Chatham Strait. Between Chatham Strait and Dixon Entrance,more » a single, sharply defined active fault trace underlies the upper and middle slope. This fault segment is bounded on the seaward side by a high, midslope ridge and by lower slope Quaternary( ) anticlines up to 35 km wide. Southeast of Dixon Entrance, the active fault trace trends back onto the outer shelf until midway along the Queen Charlotte Islands, then cuts back to and stays at midslope to the Tuzo Wilson Knolls south of the Queen Charlotte Islands. The fault steps westward at Tuzo Wilson Knolls, which are likely part of a spreading ridge segment. Major deep-sea fans along southeast Alaska show a southeastward age progression from older to younger and record both point source deposition at Chatham Strait and Dixon Entrance and subsequent (Quaternary ) offset along the fault system. Subsidence of ocean plate now adjacent to the Chatham Strait-Dixon Entrance fault segment initiated development of both Mukluk and Horizon Channels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gough, M.A.; Fauzi, R.; Mantoura, C.
The vascular land plant biopolymers lignin and cutin were surveyed in the surface sediments of coastal and open ocean waters by controlled alkaline CuO oxidation/reaction. Two contrasting oceanic regimes were studied: the northwest Mediterranean (NWM) Sea, which receives significant particulate terrigenous debris through riverine discharge; and the northeast Atlantic (NEA) Ocean, with poorly characterized terrestrial carbon inputs. In the NWM products of lignin and cutin co-occurred at all stations, elevated levels (ca. 0.5-3.0 mg lignin phenols/100 mg organic carbon; ca. 0.01-0.09 mg cutin acids/100 mg organic carbon) were observed for near-shore deltaic and shelf sediments. The influence of terrestrial landmore » plant inputs extended across the shelf and through the slope to the abyssal plain, providing molecular evidence for advective offshore transfer of terrestrial carbon. Mass balance estimates for the basin suggest riverine inputs account for the majority of surface sedimentary ligin/cutin, most of which (>90%) is deposited on the shelf. Products of CuO oxidation of lignin and cutin were also detected in NEA surface sediments, at levels comparable to those observed for the NWM continental slope, and were detectable at low concentrations in the sediments of the abyssal plains (>4,000 m depth). While atmospheric deposition of lignin/cutin-derived material cannot be discounted in this open ocean system, lateral advective transfer of enriched shelf sediments is inferred as a possible transport process. A progressive enrichment in cutin-derived material relative to lignin was observed offshore, with evidence of an increase in the degree of oxidative alteration of lignin residues. Preliminary mass balance calculations applied to the global ocean margin suggest riverine sources of both particulate lignin and cutin are important and that most (>95%) deposition of recognizable land plant biopolymers occurs in shelf seas. 74 refs., 7 figs., 5 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powers, K.D.
1978-07-01
From 27 March to 20 June 1978, 7 cruises aboard U.S. Coast Guard cutters DECISIVE, VIGILANT, and VIGOROUS and the National Marine Fisheries Service research vessel ALBATROSS IV were made on outer continental shelf waters in regions from the mid-Atlantic to the Gulf of Maine and Scotian Shelf. A total of 13916 marine birds of at least 27 species were counted in 711.16 km/sup 2/ sampled from 730 fixed-area transects (300m wide by 10 minutes cruising time). An equal number of 10-minute total bird counts (no fixed area) were conducted at the same time. All of MBO cruises conducted inmore » 1978 have been transcribed onto computer data sheets and were proofed and verified. Seven of 24 MBO cruises made in 1977 have been transcribed. U.S. Fish and Wildlife Service Migratory Bird and Habitat Research Laboratory will keypunch the data. From a review of over 100 scientific papers and books, food habits of fulmars, shearwaters, storm-petrels, gannets, gulls, and alcids were referenced by bird species and author.« less
Bryozoans from rio grande do sul continental shelf, southern Brazil.
Ramalho, Laís V; Calliari, Lauro
2015-05-06
The continental shelf of Rio Grande do Sul (RS) is predominantly composed of unconsolidated sediments with a few hard substrates represented principally by beachrock. In this area there are elongate deposits of shell gravel material which are interpreted as indicators of the palaeo-shorelines. These Pleistocene deposits are overlapped by Holocene sediments (Recent), but are exposed during erosive events caused by extra-tropical cyclones, which provide the mixture of both sediments mainly during autumn and winter. The few studies on bryozoans made in this area previously recorded seven species, one fossil and the other six from Recent fluvial and marine environments. The aim of the present study was to describe the eight most abundant bryozoan species that occur in the inner RS shelf. Of these, four are new records for RS State (Arachnopusia aff. pusae, Hippomonavella brasiliensis, Turbicellepora pourtalesi, and Lifuella gorgonensis), and the other four are new to science (Chaperia taylori, Micropora nodimagna, Cellaria riograndensis, and Exochella moyani).
Anomalous topography on the continental shelf around Hudson Canyon
Knebel, H.J.
1979-01-01
Recent seismic-reflection data show that the topography on the Continental Shelf around Hudson Canyon is composed of a series of depressions having variable spacings (< 100 m to 2 km), depths (1-10 m), outlines, and bottom configurations that give the sea floor an anomalous "jagged" appearance in profile. The acoustic and sedimentary characteristics, the proximity to relict shores, and the areal distribution indicate that this rough topography is an erosional surface formed on Upper Pleistocene silty sands about 13,000 to 15,000 years ago by processes related to Hudson Canyon. The pronounced southward extension of the surface, in particular, may reflect a former increase in the longshore-current erosion capacity caused by the loss of sediments over the canyon. Modern erosion or nondeposition of sediments has prevented the ubiquitous sand sheet on the Middle Atlantic shelf from covering the surface. The "anomalous" topography may, in fact, be characteristic of areas near other submarine canyons that interrupt or have interrupted the longshore drift of sediments. ?? 1979.
Quaternary geology of the Rhode Island inner shelf
Needell, S. W.; O'Hara, C. J.; Knebel, H.J.
1983-01-01
Five sedimentary units and three erosional unconformities identified in high-resolution seismic-reflection profiles reveal the stratigraphic framework and Quaternary history of the inner continental shelf south of Narragansett Bay, Rhode Island. Late Tertiary to early Pleistocene rivers eroded the pre-Mesozoic bedrock and the Upper Cretaceous to lower Tertiary coastal plain and continental shelf strata to form a lowland and cuesta having a north-facing escarpment. The lowland and landward flanks of the cuesta were modified by glaciers during Pleistocene time and subsequently were overlain by drift and end moraine deposits of the late Wisconsinan ice advance. During deglaciation, freshwater lakes formed between the retreating ice and end moraines. Prior to sea-level rise, the drift and older deposits were cut by streams flowing south and southwestward toward Block Island Sound. As sea level rose, postglacial valleys were partly filled by fluvial, freshwater-peat, estuarine and salt-marsh deposits. Transgressing seas eroded the sea floor, exposing bedrock and coastal plain outcrops, and deposited marine sediments. ?? 1983.
NASA Astrophysics Data System (ADS)
Muelbert, José H.; Acha, Marcelo; Mianzan, Hermes; Guerrero, Raúl; Reta, Raúl; Braga, Elisabete S.; Garcia, Virginia M. T.; Berasategui, Alejandro; Gomez-Erache, Mónica; Ramírez, Fernando
2008-07-01
The physical aspects of the Subtropical Shelf Front (STSF) for the Southwest Atlantic Continental Shelf were previously described. However, only scarce data on the biology of the front is available in the literature. The main goal of this paper is to describe the physical, chemical and biological properties of the STSF found in winter 2003 and summer 2004. A cross-section was established at the historically determined location of the STSF. Nine stations were sampled in winter and seven in summer. Each section included a series of conductivity-temperature-depth (CTD) stations where water samples from selected depths were filtered for nutrient determination. Surface samples were taken for chlorophyll a (Chl- a) determination and plankton net tows carried out above and below the pycnocline. Results revealed that winter was marked by an inner-shelf salinity front and that the STSF was located on the mid-shelf. The low salinity waters in the inner-shelf indicated a strong influence of freshwater, with high silicate (72 μM), suspended matter (45 mg l -1), phosphate (2.70 μM) and low nitrate (1.0 μM) levels. Total dissolved nitrogen was relatively high (22.98 μM), probably due to the elevated levels of organic compound contribution close to the continental margin. Surface Chl -a concentration decreased from coastal well-mixed waters, where values up to 8.0 mg m -3 were registered, to offshore waters. Towards the open ocean, high subsurface nutrients values were observed, probably associated to South Atlantic Central Waters (SACW). Zooplankton and ichthyoplankton abundance followed the same trend; three different groups associated to the inner-, mid- and outer-shelf region were identified. During summer, diluted waters extended over the shelf to join the STSF in the upper layer; the concentration of inorganic nutrients decreased in shallow waters; however, high values were observed between 40 and 60 m and in deep offshore waters. Surface Chl -a ranged 0.07-1.5 mg m -3; winter levels were higher. Three groups of zoo and ichthyoplankton, separated by the STSF, were also identified. Results of the study performed suggest that the influence of freshwater was stronger during winter and that abundance distribution of Chl -a, copepods and ichthyoplankton was related to the Plata Plume Waters (PPW), rather than to the presence of the STSF. During summer, when the presence of freshwater decreases, plankton interactions seem to take place in the STSF.
Disturbance, colonization and development of Antarctic benthic communities.
Barnes, David K A; Conlan, Kathleen E
2007-01-29
A decade has yielded much progress in understanding polar disturbance and community recovery-mainly through quantifying ice scour rates, other disturbance levels, larval abundance and diversity, colonization rates and response of benthos to predicted climate change. The continental shelf around Antarctica is clearly subject to massive disturbance, but remarkably across so many scales. In summer, millions of icebergs from sizes smaller than cars to larger than countries ground out and gouge the sea floor and crush the benthic communities there, while the highest wind speeds create the highest waves to pound the coast. In winter, the calm associated with the sea surface freezing creates the clearest marine water in the world. But in winter, an ice foot encases coastal life and anchor ice rips benthos from the sea floor. Over tens and hundreds of thousands of years, glaciations have done the same on continental scales-ice sheets have bulldozed the seabed and the zoobenthos to edge of shelves. We detail and rank modern disturbance levels (from most to least): ice; asteroid impacts; sediment instability; wind/wave action; pollution; UV irradiation; volcanism; trawling; non-indigenous species; freshwater inundation; and temperature stress. Benthic organisms have had to recolonize local scourings and continental shelves repeatedly, yet a decade of studies have demonstrated that they have (compared with lower latitudes) slow tempos of reproduction, colonization and growth. Despite massive disturbance levels and slow recolonization potential, the Antarctic shelf has a much richer fauna than would be expected for its area. Now, West Antarctica is among the fastest warming regions and its organisms face new rapid changes. In the next century, temperature stress and non-indigenous species will drastically rise to become dominant disturbances to the Antarctic life. Here, we describe the potential for benthic organisms to respond to disturbance, focusing particularly on what we know now that we did not a decade ago.
Disturbance, colonization and development of Antarctic benthic communities
Barnes, David K.A; Conlan, Kathleen E
2006-01-01
A decade has yielded much progress in understanding polar disturbance and community recovery—mainly through quantifying ice scour rates, other disturbance levels, larval abundance and diversity, colonization rates and response of benthos to predicted climate change. The continental shelf around Antarctica is clearly subject to massive disturbance, but remarkably across so many scales. In summer, millions of icebergs from sizes smaller than cars to larger than countries ground out and gouge the sea floor and crush the benthic communities there, while the highest wind speeds create the highest waves to pound the coast. In winter, the calm associated with the sea surface freezing creates the clearest marine water in the world. But in winter, an ice foot encases coastal life and anchor ice rips benthos from the sea floor. Over tens and hundreds of thousands of years, glaciations have done the same on continental scales—ice sheets have bulldozed the seabed and the zoobenthos to edge of shelves. We detail and rank modern disturbance levels (from most to least): ice; asteroid impacts; sediment instability; wind/wave action; pollution; UV irradiation; volcanism; trawling; non-indigenous species; freshwater inundation; and temperature stress. Benthic organisms have had to recolonize local scourings and continental shelves repeatedly, yet a decade of studies have demonstrated that they have (compared with lower latitudes) slow tempos of reproduction, colonization and growth. Despite massive disturbance levels and slow recolonization potential, the Antarctic shelf has a much richer fauna than would be expected for its area. Now, West Antarctica is among the fastest warming regions and its organisms face new rapid changes. In the next century, temperature stress and non-indigenous species will drastically rise to become dominant disturbances to the Antarctic life. Here, we describe the potential for benthic organisms to respond to disturbance, focusing particularly on what we know now that we did not a decade ago. PMID:17405206
NASA Astrophysics Data System (ADS)
Salvadó, Joan A.; Grimalt, Joan O.; López, Jordi F.; Durrieu de Madron, Xavier; Pasqual, Catalina; Canals, Miquel
2013-11-01
Superficial sediments from Cap de Creus to the Rhone Delta, in the Gulf of Lion, Northwestern Mediterranean Sea, including the mid-shelf mud belt and the continental slope were collected between 2005 and 2008 to assess the levels, main sources and distribution patterns of organochlorine pollutants. Discharges from the Rhone River are the main source for all these compounds around the area. The spatial distribution of organochlorine pollutants was also related to their physicochemical properties and to sediment grain size and composition. The concentrations of polychlorobiphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT) and its metabolites (DDD and DDE), and the chlorobenzenes (CBzs) - pentachlorobenzene (PeCB) and hexachlorobenzene (HCB) - decreased westwards along the mid-shelf mud belt. In contrast, hexachlorocyclohexane isomers (HCHs), namely lindane (γ-HCH), followed another concentration pattern suggesting a different transport mode. The major concentrations of organochlorine compounds were observed off the Rhone River mouth, in the prodelta, where PCB, DDT and CBz concentrations reached 38, 29 and 8.3 ng g-1, respectively. These average concentrations in the mid continental shelf were two to ten times lower than those found in a study performed about 20 years ago, albeit in almost all the sites the values of PCBs and DDTs still exceed the NOAA’s Sediment Quality Guidelines. In contrast, the concentrations in the continental slope were nearly the same as 20 years ago, which may evidence that even most of these compounds were banned decades ago, their background concentrations associated to diffuse pollution have not decreased in the deep continental margin.
Shideler, Gerald L.
1988-01-01
The establishment of the Exclusive Economic Zone (EEZ) in 1983 by Presidential Proclamation opened for natural resource exploration a vast offshore frontier area contiguous to the United States and its territories. The EEZ extends from the seaward limit of state waters (3 nautical mi from shore) to 200 nautical mi offshore, and it includes the continental shelves. Within the context of the EEZ natural resource assessment effort, the purpose of this study is to delineate, on a regional basis, the potential for heavy-mineral placers on the U.S. Continental Shelf in the western and northern Gulf of Mexico from the United States-Mexico border to the Alabama-Florida state line. This map is intended to serve as a general guide for placer exploration. It shows favorable sea-floor areas for placer occurrence in water depths ranging from 0 to 100 fathoms (600 ft). The map can be used as a guide for focusing costly exploratory efforts, such as coring operations and geophysical surveys. The potential economic value of heavy-mineral placer concentrations on the U.S. Continental Shelf is a function of both geologic and economic variables. Geologic variables include the composition and concentration of the heavy-mineral assemblages and their environment of deposition. Economic variables include the current world market price of extracted metals, as well as the cost of mining, processing, and marketing the metals. These economic factors, in turn, are tempered by the nation1s socio-political climate, which determines its need for specific mineral resources at any given time.
33 CFR 143.200 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... CONTINENTAL SHELF ACTIVITIES DESIGN AND EQUIPMENT Mobile Offshore Drilling Units § 143.200 Applicability. This subpart applies to mobile offshore drilling units when engaged in OCS activities. ...
Localized rapid warming of West Antarctic subsurface waters by remote winds
NASA Astrophysics Data System (ADS)
Spence, Paul; Holmes, Ryan M.; Hogg, Andrew Mcc.; Griffies, Stephen M.; Stewart, Kial D.; England, Matthew H.
2017-08-01
The highest rates of Antarctic glacial ice mass loss are occurring to the west of the Antarctica Peninsula in regions where warming of subsurface continental shelf waters is also largest. However, the physical mechanisms responsible for this warming remain unknown. Here we show how localized changes in coastal winds off East Antarctica can produce significant subsurface temperature anomalies (>2 °C) around much of the continent. We demonstrate how coastal-trapped barotropic Kelvin waves communicate the wind disturbance around the Antarctic coastline. The warming is focused on the western flank of the Antarctic Peninsula because the circulation induced by the coastal-trapped waves is intensified by the steep continental slope there, and because of the presence of pre-existing warm subsurface water offshore. The adjustment to the coastal-trapped waves shoals the subsurface isotherms and brings warm deep water upwards onto the continental shelf and closer to the coast. This result demonstrates the vulnerability of the West Antarctic region to a changing climate.
Buffler, Richard T.; Watkins, Joel S.; Dillon, William P.
1979-01-01
The sedimentary section is divided into three major seismic intervals. The intervals are separated by unconformities and can be mapped regionally. The oldest interval ranges in age from Early Cretaceous through middle Late Cretaceous, although it may contain Jurassic rocks where it thickens beneath the Blake Plateau. It probably consists of continental to nearshore clastic rocks where it onlaps basement and grades seaward to a restricted carbonate platform facies (dolomite-evaporite). The middle interval (Upper Cretaceous) is characterized by prograding clinoforms interpreted as open marine slope deposits. This interval represents a Late Cretaceous shift of the carbonate shelf margin from the Blake Escarpment shoreward to about its present location, probably due to a combination of co tinued subsidence, an overall Late Cretaceous rise in sea level, and strong currents across the Blake Plateau. The youngest (Cenozoic) interval represents a continued seaward progradation of the continental shelf and slope. Cenozoic sedimentation on the Blake Plateau was much abbreviated owing mainly to strong currents.
Wyant, Timothy; Slack, James R.
1978-01-01
An oilspill risk analysis was conducted to determine the relative environmental hazards of developing oil in different regions of the Eastern Gulf of Mexico Outer Continental Shelf lease area. The study analyzed the probability of spill occurrence, likely paths of the spills, and locations in space and time of such objects as recreational and biological resources likely to be vulnerable. These results combined to yield estimates of the overall oilspill risk associated with development of the proposed lease area. This risk is compared to the existing oilspill risk from existing leases in the area. The analysis implicitly includes estimates of weathering rates and slick dispersion and an indication of the possible mitigating effects of cleanups.
California State Waters Map Series: offshore of Refugio Beach, California
Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Golden, Nadine E.; Phillips, Eleyne L.; Ritchie, Andrew C.; Krigsman, Lisa M.; Dieter, Bryan E.; Conrad, James E.; Greene, H. Gary; Seitz, Gordon G.; Endris, Charles A.; Sliter, Ray W.; Wong, Florence L.; Erdey, Mercedes D.; Gutierrez, Carlos I.; Yoklavich, Mary M.; East, Amy E.; Hart, Patrick E.; Johnson, Samuel Y.; Cochran, Susan A.
2015-01-01
Seafloor habitats in the broad Santa Barbara Channel region consist of significant amounts of soft, unconsolidated sediment interspersed with isolated areas of rocky habitat that support kelp-forest communities nearshore and rocky-reef communities in deep water. The potential marine benthic habitat types mapped in the Offshore of Refugio Beach map area are directly related to its Quaternary geologic history, geomorphology, and active sedimentary processes. These potential habitats, which lie primarily within the Shelf (continental shelf) but also partly within the Flank (basin flank or continental slope) megahabitats, primarily are composed of soft sediment interrupted by a few carbonate mounds. This homogeneous seafloor of sediment and low-relief bedrock provides promising habitat for groundfish, crabs, shrimp, and other marine benthic organisms.
NASA Astrophysics Data System (ADS)
Muenchow, A.; Ryan, P. A.; Badiey, M.; Elmer, C.; Eickmeier, J.
2017-12-01
The shallow-water component of the Canada Basin Acoustic Propagation Experiment (CANAPE) will quantify how ocean properties vary at daily to seasonal time scales over the outer continental shelf of the Chukchi Sea. We here describe initial results related to a weak sound channel above warm Atlantic and below seasonally modulated surface waters. It coincides with the cold halocline layer that often slopes up- or downward at the edge of the continental shelf in response to surface forcing. Sloping topography supports isopycnal oscillations whose time scales vary from hours to months. These Kelvin or Rossby waves will become more pronounced in a increasingly dynamic, wind-forced Arctic Ocean with a diminished, thinner, and more mobile ice cover.
Sources, extent and history of methane seepage on the continental shelf off northern Norway
NASA Astrophysics Data System (ADS)
Sauer, Simone; Lepland, Aivo; Chand, Shyam; Schubert, Carsten J.; Eichinger, Florian; Knies, Jochen
2014-05-01
Active natural hydrocarbon gas seepage was recently discovered in the Hola area on the continental shelf off Vesterålen, northern Norway. We conducted acoustic and geochemical investigations to assess the modern and past extent, source and pathways of the gas seepage . Water column echosounder surveys showed bubble plumes up to several tens of metres above the seafloor. Analyses of dissolved methane in the water column indicated slightly elevated concentrations (50 nM) close to the seafloor. To identify fluxes and origin of methane in the sediments we analysed sediment pore water chemistry, the isotopic composition of methane and of dissolved inorganic carbon (d13CCH4, d2HCH4, d13CDIC) in three closely spaced (
Role of mesoscale eddies on exchanges between coastal regions
NASA Astrophysics Data System (ADS)
Kersalé, M.; Petrenko, A. A.; Doglioli, A. M.; Nencioli, F.; Bouffard, J.; Dekeyser, I.
2012-04-01
The general circulation in the northwestern Mediterranean Sea is characterized by a cyclonic circulation. The northern part of this gyre is formed by the Northern Current (NC), which flows along the continental slope from the Ligurian Sea towards the Catalan Shelf. The NC has an important influence on the Gulf of Lion (GoL), a large continental margin in the northern part of the basin. The NC constitutes an effective dynamical barrier which blocks coastal waters on the continental shelf. The western part of the GoL is a key region for regulating the outflow from the continental shelf to the Catalan Basin. These exchanges are mainly induced by partially ageostrophic processes originating from the interaction between the NC and mesoscale activity like meanders, filaments and eddies. Both GoL and Catalan shelf are characterized by an intense mesoscale activity. Eddies in the GoL are baroclinic structures extending throughout the mixed layer (30 to 50m), often elliptic in shape and about 20-30km in diameter. Catalan eddies are characterized by a vertical extension between 70 and 100m and a diameter of about 45km. The LAgrangian Transport EXperiment (LATEX, 2008-2011) was designed to study the mechanisms of formation of anticyclones in the western part of the GoL and their influence on cross-shelf exchanges. Mesoscale anticyclones have been observed in the western part of the GoL and over the Catalan shelf by the combined use of data from satellite observations, in situ measurements and numerical modeling. Recent numerical experiments show an anticyclonic circulation extending over a large part of the coastal area (latitudinal range : 41°50' to 43°N ; longitudinal range : 3°10' to 4°10'E). Interaction with a meander of the NC induces the separation of this circulation in two different eddies, one in the GoL and the other in the Catalan shelf. These eddies exhibit strong interaction between them, resulting in important exchanges between the two coastal regions. On one hand the Catalan eddy causes a heat transfer to the GoL; and, on the other hand, the interaction between the GoL eddy and a topographic barrier (Cap Creus) leads to a transfer of energy to the Catalan eddy. In order to quantify this exchange, a balance of kinetic energy has been analyzed from the model results. Numerical results are also discussed in comparison with in situ observations collected during the Latex09 campaign (August 24-28, 2009). The analysis of Sea Surface Temperature (SST) satellite images, Acoustic Doppler Current Profiler (ADCP) and Lagrangian drifter trajectories, confirmed the above interpretation derived from numerical model.
NASA Astrophysics Data System (ADS)
Ocakoğlu, Neslihan; İşcan, Yeliz; Kılıç, Fatmagül; Özel, Oğuz
2018-06-01
Multi-beam bathymetric and multi-channel seismic reflection data obtained offshore Cide-Sinop have revealed important records on the latest transgression of the Black Sea for the first time. A relatively large shelf plain within the narrow southern continental shelf characterized by a flat seafloor morphology at -100 water depth followed by a steep continental slope leading to -500 m depth. This area is widely covered by submerged morphological features such as dunes, lagoons, possible aeolianites, an eroded anticline and small channels that developed by aeolian and fluvial processes. These morphological features sit upon an erosional surface that truncates the top of all seismic units and constitutes the seafloor over the whole shelf. The recent prograded delta deposits around the shelf break are also truncated by the similar erosional surface. These results indicate that offshore Cide-Sinop was once a terrestrial landscape that was then submerged. The interpreted paleoshoreline varies from -100 to -120 m. This variation can be explained by not only sea level changes but also the active faults observed on the seismic section. The effective protection of morphological features on the seafloor is the evidence of abrupt submergence rather than gradual. In addition, the absence of coastal onlaps suggests that these morphological features should have developed at low sea level before the latest sea level rise in the Black Sea.
NASA Astrophysics Data System (ADS)
Pritchard, Mark; Weller, Robert A.
2005-03-01
During July-August 2001, oceanographic variability on the New England inner continental shelf was investigated with an emphasis on temporal scales shorter than tidal periods. Mooring and ship survey data showed that subtidal variation of inner shelf stratification was in response to regional Ekman upwelling and downwelling wind driven dynamics. High-frequency variability in the vertical structure of the water column at an offshore mooring site was linked to the baroclinic internal tide and the onshore propagation of nonlinear solitary waves of depression. Temperature, salinity, and velocity data measured at an inshore mooring detected a bottom bore that formed on the flood phase of the tide. During the ebb tide, a second bottom discontinuity and series of nonlinear internal waves of elevation (IWOE) formed when the water column became for a time under hydraulic control. A surface manifestation of these internal wave crests was also observed in aircraft remote sensing imagery. The coupling of IWOE formation to the offshore solitary waves packets was investigated through internal wave breaking criterion derived in earlier laboratory studies. Results suggested that the offshore solitons shoaled on the sloping shelf, and transformed from waves of depression to waves of elevation. The coupling of inshore bore formation to the offshore solitary waves and the possible impact of these periodic features on mixing on the inner shelf region are discussed.
NASA Astrophysics Data System (ADS)
Galperin, Boris; Mellor, George L.
1990-09-01
The three-dimensional model of Delaware Bay, River and adjacent continental shelf was described in Part 1. Here, Part 2 of this two-part paper demonstrates that the model is capable of realistic simulation of current and salinity distributions, tidal cycle variability, events of strong mixing caused by high winds and rapid salinity changes due to high river runoff. The 25-h average subtidal circulation strongly depends on the wind forcing. Monthly residual currents and salinity distributions demonstrate a classical two-layer estuarine circulation wherein relatively low salinity water flows out at the surface and compensating high salinity water from the shelf flows at the bottom. The salinity intrusion is most vigorous along deep channels in the Bay. Winds can generate salinity fronts inside and outside the Bay and enhance or weaken the two-layer circulation pattern. Since the portion of the continental shelf included in the model is limited, the model shelf circulation is locally wind-driven and excludes such effects as coastally trapped waves and interaction with Gulf Stream rings; nevertheless, a significant portion of the coastal elevation variability is hindcast by the model. Also, inclusion of the shelf improves simulation of salinity inside the Bay compared with simulations where the salinity boundary condition is specified at the mouth of the Bay.
What a drag: Quantifying the global impact of chronic bottom trawling on continental shelf sediment
Oberle, Ferdinand K.J.; Storlazzi, Curt; Hanebuth, Till J.J.
2016-01-01
Continental shelves worldwide are subject to intense bottom trawling that causes sediment to be resuspended. The widely used traditional concepts of modern sedimentary transport systems on the shelf rely only on estimates for naturally driven sediment resuspension such as through storm waves, bottom currents, and gravity-driven flows but they overlook a critical anthropogenic factor. The strong influence of bottom trawling on a source-to-sink sediment budget is explored on the NW Iberian shelf. Use of Automated Information System vessel tracking data provides for a high-resolution vessel track reconstruction and the accurate calculation of the spatial distribution of bottom trawling intensity and associated resuspended sediment load. The mean bottom trawling-induced resuspended sediment mass for the NW Iberian shelf is 13.50 Mt yr− 1, which leads to a six-fold increase in off-shelf sediment transport when compared to natural resuspension mechanisms. The source-to-sink budget analysis provides evidence that bottom trawling causes a rapid erosion of the fine sediment on human time scales. Combining global soft sediment distribution data of the shelves with worldwide bottom trawling intensity estimates we show that the bottom trawling-induced resuspended sediment mass amounts to approximately the same mass of all sediment entering the shelves through rivers. Spatial delineations between natural and anthropogenic sediment resuspension areas are presented to aid in marine management questions.
Steel, Elisabeth; Simms, Alexander R.; Warrick, Jonathan; Yokoyama, Yusuke
2016-01-01
Although sea-level highstands are typically associated with sediment-starved continental shelves, high sea level does not hinder major river floods. Turbidity currents generated by plunging of sediment-laden rivers at the fluvial-marine interface, known as hyperpycnal flows, allow for cross-shelf transport of suspended sand beyond the coastline. Hyperpycnal flows in southern California have deposited six subaqueous fans on the shelf of the northern Santa Barbara Channel in the Holocene. Using eight cores and nine grab samples, we describe the deposits, age, and stratigraphic architecture of two fans in the Santa Barbara Channel. Fan lobes have up to 3 m of relief and are composed of multiple hyperpycnite beds ∼5 cm to 40 cm thick. Deposit architecture and geometry suggest the hyperpycnal flows became positively buoyant and lifted off the seabed, resulting in well-sorted, structureless, elongate sand lobes. Contrary to conventional sequence stratigraphic models, the presence of these features on the continental shelf suggests that active-margin shelves may locally develop high-quality reservoir sand bodies during sea-level highstands, and that such shelves need not be solely the site of sediment bypass. These deposits may provide a Quaternary analogue to many well-sorted sand bodies in the rock record that are interpreted as turbidites but lack typical Bouma-type features.
Law of the sea, the continental shelf, and marine research
Hutchinson, Deborah R.; Rowland, Robert W.
2007-01-01
The question of the amount of seabed to which a coastal nation is entitled is addressed in the United Nations Convention on the Law of the Sea (UNCLOS). This treaty, ratified by 153 nations and in force since 1994, specifies national obligations, rights, and jurisdiction in the oceans, and it allows nations a continental shelf out to at least 200 nautical miles or to a maritime boundary. Article 76 (A76) of the convention enables coastal nations to establish their continental shelves beyond 200 nautical miles and therefore to control, among other things, access for scientific research and the use of seabed resources that would otherwise be considered to lie beyond national jurisdiction. To date, seven submissions for extended continental shelves (ECS) have been filed under UNCLOS (Table 1). These submissions have begun to define the ambiguities in A76. How these ambiguities are resolved into final ECS boundaries will probably set important precedents guiding the future delimitation of the ECS by the United States, which has not ratified the convention, and other coastal nations. This report uses examples from the first three submissions—by the Russian Federation, Brazil, and Australia—to identify outstanding issues encountered in applying A76 to ECS delimitation.
NASA Technical Reports Server (NTRS)
Marshall, H. G.
1981-01-01
The Chesapeake Bay plume was identified and plotted in relation to the presence and high concentrations of phytoplankton assemblages. Seasonal differences occurred within the plume during the collection period, with Skeletonema costatum and an ultraplankton component the dominant forms. Patchiness was found along the transects, with variations in composition and concentrations common on consecutive day sampling within the plume in its movement along the shelf. The presence of 236 species is noted, with their presence indicated for plume and shelf stations during the March, June, and October 1980 collections.
Dillon, William P.
1981-01-01
This report summarizes our general knowledge of the geology and petroleum potential, as well as potential problems and hazards associated with development of petroleum resources, of the area proposed for nominations for lease sale number 78. This area includes the U.S. eastern continental margin from the mouth of Chesapeake Bay to approximately Cape Canaveral, Florida, including the upper Continental Slope and inner Blake Plateau. The area for possible sales and the previous areas leased are shown in figure 1; physiographic features of the region are shown in figure 2. Six exploration wells have been drilled within the proposed lease area (figs. 3 and 4) but no commercial discoveries have been made. All six wells were drilled on the Continental Shelf in the Southeast Georgia Embayment. No commercial production has been obtained onshore in the region. The areas already drilled have thin sedimentary sections, and the deeper rocks are dominantly continental facies. Petroleum formation may have been hindered by a lack of organic material and sufficient burial for thermal maturation. Analysis of drill and seismic profiling data presented here, however, indicates that a much thicker sedimentary rock section containing a much higher proportion of marine deposits exists seaward of the exploratory wells on the Continental Shelf. These geologic conditions imply that the offshore basins may be more favorable environments for generating petroleum.
Dillon, William P.
1983-01-01
This report summarizes our general knowledge of the geology and petroleum potential, as well as potential problems and hazards associated with development of petroleum resources, within the area proposed for nominations for lease sale number 90. This area includes the U.S. eastern continental margin from Raleigh Bay, just south of Cape Hatteras, to southern Florida, including the upper Continental Slope and inner Blake Plateau. The area for possible sales for lease sale number 90, as well as the area for lease sale number 78 and the previous areas leased are shown in figure 1; physiographic features of the region are shown in figure 2. Six exploration wells have been drilled within the proposed lease area (figs. 3 and 4), but no commercial discoveries have been made. All six wells were drilled on the Continental Shelf. No commercial production has been obtained onshore in the region. The areas already drilled have thin sedimentary rock sections, and the deeper strata are dominantly of continental facies. Petroleum formation may have been hindered by a lack of organic material and lack of sufficient burial for thermal maturation. However, analyses of drilling and seismic profiling data presented here indicate that a much thicker section of sedimentary rocks containing a much higher proportion of marine deposits, exists seaward of the Continental Shelf. These geologic conditions imply that the basins farther offshore may be more favorable environments for generating petroleum.
Klegarth, A R; Sanders, S A; Gloss, A D; Lane-deGraaf, K E; Jones-Engel, L; Fuentes, A; Hollocher, H
2017-08-01
Cyclical submergence and re-emergence of the Sunda Shelf throughout the Pleistocene served as a dynamic biogeographic landscape, across which long-tailed macaques (Macaca fascicularis) have migrated and evolved. Here, we tested the integrity of the previously reported continental-insular haplotype divide reported among Y and mitochondrial DNA lineages across multiple studies. The continental-insular haplotype divide was tested by heavily sampling wild macaques from two important biogeographic regions within Sundaland: (1) Singapore, the southernmost tip of continental Asia and (2) Bali, Indonesia, the southeastern edge of the Indonesian archipelago, immediately west of Wallace's line. Y DNA was haplotyped for samples from Bali, deep within the Indonesian archipelago. Mitochondrial D-loop from both islands was analyzed against existing data using Maximum Likelihood and Bayesian approaches. We uncovered both "continental" and "insular" Y DNA haplotypes in Bali. Between Singapore and Bali we found 52 unique mitochondrial haplotypes, none of which had been previously described. Phylogenetic analyses confirmed a major haplogroup division within Singapore and identified five new Singapore subclades and two primary subclades in Bali. While we confirmed the continental-insular divide among mtDNA haplotypes, maintenance of both Y DNA haplotypes on Bali, deep within the Indonesian archipelago calls into question the mechanism by which Y DNA diversity has been maintained. It also suggests the continental-insular designation is less appropriate for Y DNA, leading us to propose geographically neutral Y haplotype designations. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Chen, Nianhong; Bianchi, Thomas S.; Bland, John M.
2003-06-01
In April 2000, we collected box cores from five stations along a cross-shelf transect on the Louisiana (LA) continental shelf. Novel esters of carotenols and chlorins (carotenoid chlorin esters, CCEs), which are highly specific grazing markers, were identified in surface and deep sediments (>10 cm) from the LA shelf. Chlorophyll- a inventory indicated that CCEs are one of the major decay products of chlorophyll- a in shelf sediments. Abundances of total CCEs (9-18%) in surface sediments along the cross-shelf transect were comparable to the abundance of pheophytin- a, pyropheophytin- a, and total steryl chlorin esters (SCEs). Prior work has identified four CCEs which have dehydrated fucoxanthin/fucoxanthinol as a substitute alcohol of phytol. We report on four newly identified CCEs associated with nondehydrated fuxocanthin/fucoxanthinol esterified to (pyro)pheophorbide- a. These nondehydrated CCEs were generally present in lower concentrations than their dehydrated counterparts, but were detectable by atmospheric pressure chemical ionization (APCI) mass spectrometry coupled with high-performance liquid chromatography (HPLC). We attributed differences between this study and previous work to the time allowed for predepositional decay and grazing processes to occur. The rapid sedimentation of CCEs in the shallow water column (ca. 10 m) on the LA shelf allowed for effective burial of all CCEs compared to the deeper water column regions sampled by previous work. This speculation is supported by the fact that the concentrations of CCEs with nondehydrated fucoxanthin/fucoxanthinol were extremely low in sediments from the site on the outer LA shelf with a deeper (253 m) water column. We also tentatively identified an additional CCE and its isomer as fucoxanthinol didehydrate pyropheophorbide- a ester. We suggest that the formation and transformation of CCEs are primarily controlled by the following three biologically mediated reactions: demethoxycarbonylation, dehydration, and deacetylation. Our laboratory copepod grazing experiment also confirmed that CCEs can be excellent class-specific biomarkers of zooplankton grazing on phytoplankton.
Code of Federal Regulations, 2010 CFR
2010-07-01
... OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Plans and Information Requirements Contents of the Construction and Operations Plan § 285.630 [Reserved] Activities Under an Approved COP ...
33 CFR 142.21 - Purpose and applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) OUTER CONTINENTAL SHELF ACTIVITIES WORKPLACE SAFETY AND HEALTH Personal Protective Equipment § 142.21 Purpose and applicability. This subpart prescribes requirements concerning personal protection on OCS...
33 CFR 142.21 - Purpose and applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) OUTER CONTINENTAL SHELF ACTIVITIES WORKPLACE SAFETY AND HEALTH Personal Protective Equipment § 142.21 Purpose and applicability. This subpart prescribes requirements concerning personal protection on OCS...
California State Waters Map Series--Hueneme Canyon and vicinity, California
Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Golden, Nadine E.; Phillips, Eleyne L.; Ritchie, Andrew C.; Kvitek, Rikk G.; Greene, H. Gary; Krigsman, Lisa M.; Endris, Charles A.; Clahan, Kevin B.; Sliter, Ray W.; Wong, Florence L.; Yoklavich, Mary M.; Normark, William R.
2012-01-01
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California's State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Hueneme Canyon and vicinity map area lies within the eastern Santa Barbara Channel region of the Southern California Bight. The area is part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland. Significant clockwise rotation - at least 90° - since the early Miocene has been proposed for the Western Transverse Ranges, and the region is presently undergoing north-south shortening. This geologically complex region forms a major biogeographic transition zone, separating the cold-temperate Oregonian province north of Point Conception from the warm-temperate California province to the south. The map area, which is offshore of the Oxnard plain and west of and along the trend of the south flank of the Santa Monica Mountains, lies at the east end of the Santa Barbara littoral cell, characterized by west-to-east littoral transport of sediment derived mainly from coastal watersheds. The Hueneme Canyon and vicinity map area in California's State Waters is characterized by two major physiographic features: (1) the nearshore continental shelf, and (2) the Hueneme and Mugu Submarine Canyon system, which, in the map area, includes Hueneme Canyon and parts of three smaller, unnamed headless canyons incised into the shelf southeast of Hueneme Canyon. The shelf is underlain by tens of meters of interbedded upper Quaternary shelf, estuarine, and fluvial deposits that formed as sea level fluctuated in the last several hundred thousand years. Hueneme Canyon extends about 15 km offshore from its canyon head near the dredged navigation channel of the Port of Hueneme. The canyon is relatively deep (about 150 m at the California's State Waters limit) and steep (canyon flanks as steep as 25° to 30°). Historically, Hueneme Canyon functioned as the eastern termination of the Santa Barbara littoral cell by trapping all eastward littoral drift, not only feeding the large Hueneme submarine fan but acting as the major conduit of sediment to the deep Santa Monica Basin; however, recent dredging programs needed to maintain Channel Islands Harbor and the Port of Hueneme have moved the nearshore sediment trapped by jetties and breakwaters to an area southeast of the Hueneme Canyon head. Seafloor habitats in the broad Santa Barbara Channel region consist of significant amounts of soft sediment and isolated areas of rocky habitat that support kelp-forest communities nearshore and rocky-reef communities in deep water. The potential marine benthic habitat types mapped in the Hueneme Canyon and vicinity map area are related directly to the geomorphology and sedimentary processes that are the result of its Quaternary geologic history. The two basic megahabitats in the map area are Shelf (continental shelf) and Flank (continental slope). The flat seafloor of the continental shelf in the Hueneme Canyon and vicinity map area is dynamic, as indicated by mobile sand sheets and coarser grained scour depressions. The active Hueneme Canyon provides considerable relief to the continental shelf in the map area, and its irregular morphology of eroded walls, landslide scarps, and deposits and gullies provide promising habitat for groundfish, crabs, shrimp, and other marine benthic organisms. Most invertebrates observed in the map area during camera ground-truth field operations are found on the edge of Hueneme Canyon, which may be an important area of recruitment and retention to other invertebrates and fishes. The smaller, more subtle, nonactive headless canyons located primarily on the continental slope also offer relief that provides habitat for groundfish and other organisms.
NASA Astrophysics Data System (ADS)
Lin, Changsong; Zhang, Zhongtao; liu, Jingyan; Jiang, Jing
2016-04-01
The Pear River Mouth Basin is located in the northern continent margin of the South China Sea. Since the Late Oligocene, the long-term active fluvial systems (Paleo-Zhujiang) from the western basin margin bebouched into the northern continental margin of the South China Sea and formed widespread deltaic deposits in various depositional geomorphologies and tectonic settings. Based of integral analysys of abundant seismic, well logging and drilling core data, Depositional architecture and evolution of these delta systems and their respone to the tectonic and sea level change are documented in the study. There are two basic types of the delta systems which have been recognized: inner shelf delta deposited in shallow water enviroments and the outer shelf or shelf-edge delta systems occurred in deep water settings. The paleowater depths of these delta systems are around 30 to 80m (inner shelf delta) and 400-1000m (shelf-edge delta) estimated from the thickness (decompaction) of the delta front sequences. The study shows that the inner shelf delta systems are characterized by relatively thin delta forests (20-40m), numereous stacked distributary channel fills, relative coarse river mouth bar deposits and thin distal delta front or distal bar and prodelta deposits. In contrast, the outer shelf or shelf edge delta systems are characteristic of thick (300-800m) and steep (4-60) of deltaic clinoforms, which commonly display in 3D seismic profiles as "S" shape reflection. Large scale soft-sediment deformation structures, slump or debris flow deposits consisting mainly of soft-sediment deformed beds, blocks of sandstones and siltstones or mudstones widely developed in the delta front deposits. The shelf edge delta systems are typically associated with sandy turbidite fan deposits along the prodelta slopes, which may shift basinwards as the progradation of the delta systems. The delta systems underwent several regional cycles of evolution from inner shelf deltas to shelf edge deltas since the Late Oligocene in the study area, and this is consistent with relative sea level changes constrained by interplay of tectonic subsidence or global sea level change and sediment supply. The shelf-edge delta sandy deposits and the associated prodelta turbidite fan systems are the most important oil/gas bearing reservoirs in the continental slope area.
Community Sediment Transport Modeling, National Ocean Partnership Program
2009-12-01
delta . A high-resolution, one-dimensional model that resolves the phase of the forcing gravity waves is being used to test the hypothesized mechanisms...dimensional process models to operational elements in the CSTMS framework. Sherwood and Ferre modified the existing algorithms for tracking stratigraphy ...Verdes shelf, California. Continental Shelf Research ( revised manuscript submitted), [refereed] Frank, D. P., D. L. Foster, and C. R. Sherwood
NASA Astrophysics Data System (ADS)
Aleck Wang, Zhaohui; Cai, Wei-Jun; Wang, Yongchen; Ji, Hongwei
2005-10-01
The US southeastern continental shelf, also known as the South Atlantic Bight (SAB), is a strong source of CO 2 to the atmosphere, which is in direct contrast to recent reports regarding other major continental shelves. Both spatial (cross-shelf) and seasonal variations of the CO 2 system were pronounced in the SAB. Sea surface pCO 2 in winter was undersaturated relative to the atmosphere, while oversaturation of pCO 2 dominated the entire shelf water in all other seasons. Annually, the SAB releases CO 2 to the atmosphere at an average rate of 30 g C m -2 (2.5 mol C m -2). This system also discharges dissolved inorganic carbon to the open ocean (30 g C m -2 yr -1). Methods of estimating CO 2 flux and DIC flux are critically evaluated and compared. A carbon mass balance model in the SAB is presented based on inorganic carbon fluxes from this study and organic carbon fluxes from literature. The carbon budget is much closer to balance by using this carbon flux approach than by direct measurements of primary production and respiration. It is concluded that the SAB is a net heterotrophic system annually. Intensified heating, elevated input of inorganic carbon from coastal salt marshes, microbial respiration of marsh-exported organic carbon and the lack of annual spring blooms all contribute to maintaining the SAB as a strong CO 2 source to the atmosphere during the warm seasons. In winter, the primary factor that governs the CO 2 sink in the SAB is likely the cooling process. Strong heterotrophy during warm seasons also sustains the SAB to be an exporter of inorganic carbon to the open ocean annually. The SAB shelf functions differently from the East China Sea, the North Atlantic European Shelves, and the Mid-Atlantic Bight as a source or sink of atmospheric CO 2. The SAB is classified as a "marsh-dominated" shelf as compared to other shelves in terms of carbon dynamics. Further work to study carbon dynamics in coastal margins is warranted to interpret their roles in the global CO 2 budget.
Marine pelagic ecosystems: the West Antarctic Peninsula
Ducklow, Hugh W; Baker, Karen; Martinson, Douglas G; Quetin, Langdon B; Ross, Robin M; Smith, Raymond C; Stammerjohn, Sharon E; Vernet, Maria; Fraser, William
2006-01-01
The marine ecosystem of the West Antarctic Peninsula (WAP) extends from the Bellingshausen Sea to the northern tip of the peninsula and from the mostly glaciated coast across the continental shelf to the shelf break in the west. The glacially sculpted coastline along the peninsula is highly convoluted and characterized by deep embayments that are often interconnected by channels that facilitate transport of heat and nutrients into the shelf domain. The ecosystem is divided into three subregions, the continental slope, shelf and coastal regions, each with unique ocean dynamics, water mass and biological distributions. The WAP shelf lies within the Antarctic Sea Ice Zone (SIZ) and like other SIZs, the WAP system is very productive, supporting large stocks of marine mammals, birds and the Antarctic krill, Euphausia superba. Ecosystem dynamics is dominated by the seasonal and interannual variation in sea ice extent and retreat. The Antarctic Peninsula is one among the most rapidly warming regions on Earth, having experienced a 2°C increase in the annual mean temperature and a 6°C rise in the mean winter temperature since 1950. Delivery of heat from the Antarctic Circumpolar Current has increased significantly in the past decade, sufficient to drive to a 0.6°C warming of the upper 300 m of shelf water. In the past 50 years and continuing in the twenty-first century, the warm, moist maritime climate of the northern WAP has been migrating south, displacing the once dominant cold, dry continental Antarctic climate and causing multi-level responses in the marine ecosystem. Ecosystem responses to the regional warming include increased heat transport, decreased sea ice extent and duration, local declines in ice-dependent Adélie penguins, increase in ice-tolerant gentoo and chinstrap penguins, alterations in phytoplankton and zooplankton community composition and changes in krill recruitment, abundance and availability to predators. The climate/ecological gradients extending along the WAP and the presence of monitoring systems, field stations and long-term research programmes make the region an invaluable observatory of climate change and marine ecosystem response. PMID:17405208
Obelcz, Jeffrey; Brothers, Daniel S.; Chaytor, Jason D.; ten Brink, Uri S.; Ross, Steve W.; Brooke, Sandra
2013-01-01
Shelf-sourced submarine canyons are common features of continental margins and are fundamental to deep-sea sedimentary systems. Despite their geomorphic and geologic significance, relatively few passive margin shelf-breaching canyons worldwide have been mapped using modern geophysical methods. Between 2007 and 2012 a series of geophysical surveys was conducted across four major canyons of the US Mid-Atlantic margin: Wilmington, Baltimore, Washington, and Norfolk canyons. More than 5700 km2 of high-resolution multibeam bathymetry and 890 line-km of sub-bottom CHIRP profiles were collected along the outer shelf and uppermost slope (depths of 80-1200 m). The data allowed us to compare and contrast the fine-scale morphology of each canyon system. The canyons have marked differences in the morphology and orientation of canyon heads, steepness and density of sidewall gullies, and the character of the continental shelf surrounding canyon rims. Down-canyon axial profiles for Washington, Baltimore and Wilmington canyons have linear shapes, and each canyon thalweg exhibits morphological evidence for recent, relatively small-scale sediment transport. For example, Washington Canyon displays extremely steep wall gradients and contains ~100 m wide, 5–10 m deep, v-shaped incisions down the canyon axis, suggesting modern or recent sediment transport. In contrast, the convex axial thalweg profile, the absence of thalweg incision, and evidence for sediment infilling at the canyon head, suggest that depositional processes strongly influence Norfolk Canyon during the current sea-level high-stand. The north walls of Wilmington, Washington and Norfolk canyons are steeper than the south walls due to differential erosion, though the underlying cause for this asymmetry is not clear. Furthermore, we speculate that most of the geomorphic features observed within the canyons (e.g., terraces, tributary canyons, gullies, and hanging valleys) were formed during the Pleistocene, and show only subtle modification by Holocene processes active during the present sea-level high-stand.
NASA Astrophysics Data System (ADS)
Williams, G. D.; Hindell, M.; Houssais, M.-N.; Tamura, T.; Field, I. C.
2010-11-01
Southern elephant seals (Mirounga leonina), fitted with Conductivity-Temperature-Depth sensors at Macquarie Island in January 2005 and 2010, collected unique oceanographic observations of the Adélie and George V Land continental shelf (140-148° E) during the summer-fall transition (late February through April). This is a key region of dense shelf water formation from enhanced sea ice growth/brine-rejection in the local coastal polynyas. In 2005 two seals occupied the continental shelf break near the grounded icebergs at the northern end of the Mertz Glacier Tongue for nearly two weeks at the onset of sea ice growth. One of the seals migrated north thereafter and the other headed west, possibly utilising the Antarctic Slope Front current near the continental shelf break. In 2010, after that years calving of the Mertz Glacier Tongue, two seals migrated to the same region but penetrated much further southwest across the Adélie Depression and occupied the Commonwealth Bay polynya from March through April. Here we present unique observations of the regional oceanography during the summer-fall transition, in particular (a) the zonal distribution of modified Circumpolar Deep Water exchange across the shelf break, (b) the upper ocean stratification across the Adélie Depression, including alongside iceberg C-28 that calved from the Mertz Glacier and (c) the convective overturning of the deep remnant seasonal mixed layer in Commonwealth Bay from sea ice growth (7.5-12.5 cm s-1). Heat and freshwater budgets to 200-300 m are used to estimate the ocean heat content, heat flux and sea ice growth rates. We speculate that the continuous foraging by the seals within Commonwealth Bay during the summer-fall transition was due to favorable feeding conditions resulting from the convective overturning of the deep seasonal mixed layer and chlorophyll maximum that is a reported feature of this location.
NASA Astrophysics Data System (ADS)
Smith, Craig R.; Mincks, Sarah; DeMaster, David J.
2008-11-01
The impact of the highly seasonal Antarctic primary production cycle on shelf benthic ecosystems remains poorly evaluated. Here we describe a times-series research project on the West Antarctic Peninsula (WAP) shelf designed to evaluate the seafloor deposition, and subsequent ecological and biogeochemical impacts, of the summer phytoplankton bloom along a transect crossing the Antarctic shelf near Anvers Island. During this project, entitled Food for Benthos on the Antarctic Continental Shelf (FOODBANCS), we deployed replicate sediment traps 150-170 m above the seafloor (total water-column depth of 590 m) on the central shelf from December 1999 to March 2001, recovering trap samples every 3-4 months. In addition, we used a seafloor time-lapse camera system, as well as video surveys conducted at 3-4 months intervals, to monitor the presence and accumulation of phytodetritus at the sediment-water interface. The fluxes of particulate organic carbon and chlorophyll- a into sediment traps (binned over 3-4 month intervals) showed patterns consistent with seasonal variability, with average summer fluxes during the first year exceeding winter fluxes by a factor of ˜2-3. However, inter-annual variability in summer fluxes was even greater than seasonal variability, with 4-10-fold differences in the flux of organic carbon and chlorophyll- a between the summer seasons of 1999-2000 and 2000-2001. Phytodetrital accumulation at the shelf floor also exhibited intense inter-annual variability, with no visible phytodetritus from essentially December 1999 to November 2000, followed by pulsed accumulation of 1-2 cm of phytodetritus over a ˜30,000 km 2 shelf area by March 2001. Comparisons with other studies suggest that the levels of inter-annual variability we observed are typical of the Antarctic shelf over decadal time scales. We conclude that fluxes of particulate organic carbon, chlorophyll- a and phytodetritus to WAP-shelf sediments vary intensely on seasonal to inter-annual time scales, yielding dramatic temporal variability in the flux of food for detritivores to the Antarctic shelf floor.
33 CFR 142.81 - Purpose and applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) OUTER CONTINENTAL SHELF ACTIVITIES WORKPLACE SAFETY AND HEALTH General Workplace Conditions § 142.81 Purpose and applicability. This subpart prescribes requirements relating to general working conditions on...
Code of Federal Regulations, 2010 CFR
2010-10-01
... COMMERCE CONTINENTAL SHELF FISHERMEN'S CONTINGENCY FUND § 296.1 Purpose. These regulations implement title... establishes a Fishermen's Contingency Fund to compensate commercial fishermen for damage or loss caused by...
NASA Astrophysics Data System (ADS)
Islabão, C. A.; Mendes, C. R. B.; Detoni, A. M. S.; Odebrecht, C.
2017-12-01
The continental shelf in Southern Brazil is characterized by high biological productivity associated with horizontal and vertical density gradients due to the mixing of distinct water masses. Phytoplankton biomass and composition were evaluated in summer 2013 along an on-offshore transect off the mouth of the Patos Lagoon (Lat. 32°12S). Photosynthetic active radiation, temperature, salinity and fluorescence vertical profiles were carried out and Brünt-Väisäla frequency was estimated. Three water bodies were identified: the Subtropical Shelf Water along the entire transect, the Plata Plume Water on the middle shelf surface and the Tropical Water farther offshore. The water was sampled (N = 40) for the analyses of dissolved inorganic nutrients, phytoplankton cell density and composition. Phytoplankton present in the water was identified and quantified by the classical microscope sedimentation technique, complemented with CHEMTAX analysis of high-performance liquid chromatography (HPLC) pigment data. From the results obtained, chlorophyll a concentration was higher at both coastal stations (1.6-2.0 mg m-3) where the water column was homogeneous and diatoms dominated the stations. This group was replaced by dinoflagellates in stratified conditions on the shelf and farther offshore. Along the onshore-offshore gradient, two types of dinoflagellates were found: the peridinin-containing dinoflagellates Prorocentrum and Scrippsiella with a small contribution at the coastal stations, and the fucoxantin-containing small Gymnodiniales cells (< 15 μm) with more than 50% of the total chlorophyll a at the stations on the continental shelf, especially associated with the chlorophyll maximum at the base of the euphotic zone. The positive (negative) relationship between the biomass of dinoflagellates (diatoms) with the Brünt-Väisäla frequency, respectively, support the hypothesis that stratification is the most important environmental factor that determines the biomass of phytoplankton communities and distribution on the shelf and in coastal waters off Southern Brazil in summer. Picoplankton cells (Prochlorococcus and Synechococcus), recorded for the first time in the region under study, were predominant in the nutrient-poor and well-lit surface layers along the transect, indicating the importance of their low sedimentation rates (small size) and photo-adaptive strategies to survive on the upper layers of the water column.
Correlation of offshore seismic profiles with onshore New Jersey Miocene sediments
Monteverde, D.H.; Miller, K.G.; Mountain, Gregory S.
2000-01-01
The New Jersey passive continental margin records the interaction of sequences and sea-level, although previous studies linking seismically defined sequences, borehole control, and global ??18O records were hindered by a seismic data gap on the inner-shelf. We describe new seismic data from the innermost New Jersey shelf that tie offshore seismic stratigraphy directly to onshore boreholes. These data link the onshore boreholes to existing seismic grids across the outer margin and to boreholes on the continental slope. Surfaces defined by age; facies, and log signature in the onshore boreholes at the base of sequences Kw2b, Kw2a, Kw1c, and Kw0 are now tied to seismic sequence boundaries m5s, m5.2s, m5.4s, and m6s, respectively, defined beneath the inner shelf. Sequence boundaries recognized in onshore boreholes and inner shelf seismic profiles apparently correlate with reflections m5, m5.2, m5.4, and m6, respectively, that were dated at slope boreholes during ODP Leg 150. We now recognize an additional sequence boundary beneath the shelf that we name m5.5s and correlate to the base of the onshore sequence Kw1b. The new seismic data image prograding Oligocene clinoforms beneath the inner shelf, consistent with the results from onshore boreholes. A land-based seismic profile crossing the Island Beach borehole reveals reflector geometries that we tie to Lower Miocene litho- and bio-facies in this borehole. These land-based seismic profiles image well-defined sequence boundaries, onlap and downlap truncations that correlate to Transgressive Systems Tracts (TST) and Highstand Systems Tracts (HST) identified in boreholes. Preliminary analysis of CH0698 data continues these system tract delineations across the inner shelf The CH0698 seismic profiles tie seismically defined sequence boundaries with sequences identified by lithiologic and paleontologic criteria. Both can now be related to global ??18O increases and attendant glacioeustatic lowerings. This integration of core, log, and seismic character of mid-Tertiary sediments across the width of the New Jersey margin is a major step in the long-standing effort to evaluate the impact of glaciouestasy on siliciclastic sediments of a passive continental margin. (C) 2000 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Assumpção, M.; Dourado, J. C.; Ribotta, L. C.; Mohriak, W. U.; Dias, Fábio L.; Barbosa, J. R.
2011-12-01
The continental margin and shelf of most stable intraplate regions tend to be relatively more seismically active than the continental interior. In the southeast continental margin of Brazil, a seismic zone extends from Rio Grande do Sul to Espírito Santo, with seismic activity occurring mainly along the continental slope and suggesting a close relationship with flexural stresses caused by the weight of the sediments. In this region, earthquakes with magnitudes larger than 5 mb occur every 20-25 yr, on average. The focal mechanism solutions of previous earthquakes in this zone indicated reverse faulting on planes dipping approximately 45° with horizontal P-axes. The recent 5.2 mb earthquake of 2008 April 23 occurred 125 km south of São Vicente and was well recorded by many stations in SE Brazil, as well as at teleseismic distances in North America and Africa. Its focal depth was 17 km, locating the hypocentre in the lower crust. A well-determined focal mechanism solution shows one vertical nodal plane and one subhorizontal nodal plane. The P- and T-axes exhibit large dips, which were confirmed by a regional moment tensor inversion. This unusual orientation of the fault mechanism can be attributed to a rotation of the principal stress directions in the lower crust caused by flexural effects due to the load of recent sedimentation.
Martin, Jake; Lusher, Amy; Thompson, Richard C; Morley, Audrey
2017-09-07
Microplastics are widely dispersed throughout the marine environment. An understanding of the distribution and accumulation of this form of pollution is crucial for gauging environmental risk. Presented here is the first record of plastic contamination, in the 5 mm-250 μm size range, of Irish continental shelf sediments. Sixty-two microplastics were recovered from 10 of 11 stations using box cores. 97% of recovered microplastics were found to reside shallower than 2.5 cm sediment depth, with the area of highest microplastic concentration being the water-sediment interface and top 0.5 cm of sediments (66%). Microplastics were not found deeper than 3.5 ± 0.5 cm. These findings demonstrate that microplastic contamination is ubiquitous within superficial sediments and bottom water along the western Irish continental shelf. Results highlight that cores need to be at least 4-5 cm deep to quantify the standing stock of microplastics within marine sediments. All recovered microplastics were classified as secondary microplastics as they appear to be remnants of larger items; fibres being the principal form of microplastic pollution (85%), followed by broken fragments (15%). The range of polymer types, colours and physical forms recovered suggests a variety of sources. Further research is needed to understand the mechanisms influencing microplastic transport, deposition, resuspension and subsequent interactions with biota.
Petroleum geology of the mid-Atlantic continental margin, offshore Virginia
Bayer, K.C.; Milici, R.C.
1989-01-01
The Baltimore Canyon Trough, a major sedimentary basin on the Atlantic continental shelf, contains up to 18 km of Mesozoic and Cenozoic strata. The basin has been studied extensively by multichannel common depth point (CDP) seismic reflection profiles and has been tested by drilling for hydrocarbon resources in several places. The Mesozoic and Cenozoic strata contained in the basin were deposited in littoral to bathyal depositional settings and contain immature to marginally mature oil-prone and gas-prone kerogen. The more deeply buried strata of Early Mesozoic age are more likely to be thermally mature than are the younger strata with respect to hydrocarbon generation, but contain terrestrially derived coaly organic matter that would be prone to yield gas, rather than oil. An analysis of available CDP seismic reflection data has indicated that there are several potential hydrocarbon plays in the area offshore of Virginia. These include: (1) Lower Mesozoic synrift basins that appear similar to those exposed in the Appalachian Piedmont, (2) a stratigraphic updip pinchout of strata of Early Mesozoic age in the offshore region near the coast, (3) a deeply buried paleoshelf edge, where seismic reflectors dip sharply seaward; and (4) a Cretaceous/Jurassic shelf edge beneath the present continental rise. Of these, the synrift basins and Cretaceous/Jurassic shelf edge are considered to be the best targets for exploration. ?? 1989.
Vertical Variability of Anoxia Along the Northern Omani Shelf.
NASA Astrophysics Data System (ADS)
Queste, B. Y.; Piontkovski, S.; Heywood, K. J.
2016-02-01
Three autonomous underwater gliders were deployed along a 80 km transect extending from Muscat out into the Gulf during both monsoons and the intermonsoon season as part of a project funded by ONR Global and the UK NERC. The gliders surveyed the top 1000m across the continental shelf, the steep continental slope, and the Sea of Oman while measuring temperature, salinity, oxygen, chlorophyll a fluorescence, optical backscatter, photosyntheticall active radiation and providing estimates of depth-averaged currents and up/downwelling. The data show the depth of the surface oxycline varying by 50m across the transect as a function of mixed layer depth. Below, we observed high variability, on the order of days, in the oxygen profile with the boundary of the suboxic zone (< 6 µmol.kg-1) varying by up to 250m. This upper boundary was determined by the volume of the Persian Gulf Water (PGW) outflow which travels along the shelf edge. Below 400m, oxygen concentrations reached levels below 1 µmol.kg-1. The physical drivers of PGW transport therefore double, or reduce by half, the available habitat for macrofauna. The across-shelf transect allowed estimation of along-slope transport and variability of the PGW, identified by its higher salinity, temperature, optical backscatter and oxygen content. The structure and volume of the outflow was highly variable. During peak outflow, the core extended beyond the glider transect. During periods of minimal flow, it was constrained to 10km beyond the shelf break. PGW was also present in mesoscale eddies beyond the shelf break.
NASA Astrophysics Data System (ADS)
Ke, Ziming; Yankovsky, Alexander E.
2011-06-01
A set of numerical experiments has been performed in order to analyze the long-wave response of the coastal ocean to a translating mesoscale atmospheric cyclone approaching the coastline at a normal angle. An idealized two-slope shelf topography is chosen. The model is forced by a radially symmetric atmospheric pressure perturbation with a corresponding gradient wind field. The cyclone's translation speed, radius, and the continental shelf width are considered as parameters whose impact on the long wave period, modal structure, and amplitude is studied. Subinertial continental shelf waves (CSW) dominate the response under typical forcing conditions and on the narrower shelves. They propagate in the downstream (in the sense of Kelvin wave propagation) direction. Superinertial edge wave modes have higher free surface amplitudes and faster phase speeds than the CSW modes. While potentially more dangerous, edge waves are not as common as subinertial shelf waves because their generation requires a wide, gently sloping shelf and a storm system translating at a relatively high (˜10 m s -1 or faster) speed. A relatively smaller size of an atmospheric cyclone also favors edge wave generation. Edge waves with the highest amplitude (up to 60% of the forced storm surge) propagate upstream. They are produced by a storm system with an Eulerian time scale equal to the period of a zero-mode edge wave with the wavelength of the storm spatial scale. Large amplitude edge waves were generated during Hurricane Wilma's landfall (2005) on the West Florida shelf with particularly severe flooding occurring upstream of the landfall site.
The Blake Plateau Basin and Carolina Trough
Dillon, William P.; Popenoe, Peter; Sheridan, R.E.; Grow, John A.
1988-01-01
Presently, the continental margin of the southeastern United States (Fig. 1) forms a zone of transition between the actively building, steep-fronted carbonate platform of the Bahamas and the typical eastern North American terrigenous clastic-dominated, drowned, shelf-slope-rise configuration. This region of the continental margin is underlain by two major sedimentary basins—the Blake Plateau Basin and the Carolina Trough (Fig. 2)—which are different in shape, basement structure, and history. Indeed, the two southern basins show some of the greatest contrasts of any basins of eastern North America, especially in their early response to rifting and in the change from rifting to drifting. The region has experienced abrupt major changes in geological conditions, most notably the onset of Gulf Stream flow in the early Tertiary.Morphologically, the area is dominated by the broad, flat Blake Plateau at about 800-1,000 m water depth (Fig. 1). The plateau is bounded to the east by the extremely steep Blake Escarpment, descending to 5,000 m water depths. To the west, a short continental slope rises to a continental shelf. This Blake Plateau morphology characterizes the margin east of Florida and north of the Bahamas. North of Florida the margin merges into the typical shelf-slope-rise morphology. Just north of the Blake Escarpment and its northern projection, the Blake Spur, the Blake Ridge extends away from the continental slope at water depths exceeding 2,000 m (Fig. 1). This broad ridge is a Cenozoic, sedimentary drift deposit controlled by bottom currents. (For the reader who is beginning to wonder why half of the features of this region seem to be named "Blake", the Blake was a Coast Survey steamer from which investigations off the southeastern U.S. were carried out in 1877 to 1880. Ferromanganese nodules were discovered on the Blake Plateau at that time [Murray, 1885].)
NASA Astrophysics Data System (ADS)
De Santis, L.; Bergamasco, A.; Colizza, E.; Geletti, R.; Accaino, F.; Wardell, N.; Olivo, E.; Petronio, L.; Henrys, S. A.; Black, J.; Mckay, R. M.; Bohm, G.
2015-12-01
The modern seabed of the Antarctic continental slope generally does not show a rugged geomorphology. Channel systems incise the lower continental rise, but in most cases they are inherited features formed as channel-levee turbiditic systems during past, more temperate times. The Hillary Canyon cuts the eastern Ross Sea continental slope and rise, to the Southeast of the Iselin Bank, and is directly connected to the Glomar Challenger Trough on the continental shelf. Cold dense salty water forms today in the Ross Sea polynya, spreads below the Ross Ice Shelf, becomes supercooled, fills up the landward deepening Glomar Challenger Trough and then spills over the sill of the shelf edge and flows downslope, often along the Hillary Canyon, in a geostrophic way, deviated westwards by the Coriolis Force, but sometimes also with a cascading a-geostrophic behaviour. This supercold water signal was found on the continental slope down to 1200 m depth. The shape of this tongue of modified ISW, whose thickness reaches up to 100 m, is very narrow, suggesting that the overflow occurs in very localized areas along the slope. Here we combine seismic stratigraphy analysis of multichannel seismic reflection profiles, box and gravity cores in the Hillary Canyon and along the eastern flank of the Iselin Bank, with seabed bathymetry and numerical modelling of thevertical and spatial distribution of the water masses, in order to identify modern and past pathways of the Ross Sea Bottom Water current. The results of this work show that the Hillary Canyon and the sediment mounds that formed along its flanks have been active since early Miocene times. Sediment drift-moat features and sediment waves are indicative of strong Northwest bottom currents reworking the seabed sediments at different water depths along the slope, possibly since the late Miocene. These sediment drifts are some of the targets of the IODP proposal 751-full.