Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-03
... Plastics Including On-Site Leased Workers From Kelly Services and Time Staffing; North Baltimore, OH... Adjustment Assistance on December 31, 2008, applicable to workers of Continental Structural Plastics, North... Baltimore, Ohio location of Continental Structural Plastics. The Department has determined that these...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-10
... Plastics, Including On-Site Leased Workers From Kelly Services and Doepker Group, Inc., Formerly Known As... Continental Structural Plastics, North Baltimore, Ohio. The workers produce exterior body panels and under... to TA-W-64,458 is hereby issued as follows: All workers of Continental Structural Plastics, including...
7 CFR 318.13-20 - Sharwil avocados from Hawaii to the continental United States.
Code of Federal Regulations, 2014 CFR
2014-01-01
... insect-proof screen or plastic tarpaulin while in transit to the packinghouse and while awaiting packing... with insect-proof mesh or a plastic tarpaulin, for transport to the continental United States. These... inspected for quarantine pests by an inspector, and a portion of the fruit will be cut open to detect...
Hidalgo-Ruz, Valeria; Thiel, Martin
2013-01-01
The accumulation of large and small plastic debris is a problem throughout the world's oceans and coastlines. Abundances and types of small plastic debris have only been reported for some isolated beaches in the SE Pacific, but these data are insufficient to evaluate the situation in this region. The citizen science project "National Sampling of Small Plastic Debris" was supported by schoolchildren from all over Chile who documented the distribution and abundance of small plastic debris on Chilean beaches. Thirty-nine schools and nearly 1000 students from continental Chile and Easter Island participated in the activity. To validate the data obtained by the students, all samples were recounted in the laboratory. The results of the present study showed that the students were able to follow the instructions and generate reliable data. The average abundance obtained was 27 small plastic pieces per m(2) for the continental coast of Chile, but the samples from Easter Island had extraordinarily higher abundances (>800 items per m(2)). The abundance of small plastic debris on the continental coast could be associated with coastal urban centers and their economic activities. The high abundance found on Easter Island can be explained mainly by the transport of plastic debris via the surface currents in the South Pacific Subtropical Gyre, resulting in the accumulation of small plastic debris on the beaches of the island. This first report of the widespread distribution and abundance of small plastic debris on Chilean beaches underscores the need to extend plastic debris research to ecological aspects of the problem and to improve waste management. Copyright © 2013 Elsevier Ltd. All rights reserved.
Presence of plastic particles in waterbirds faeces collected in Spanish lakes.
Gil-Delgado, J A; Guijarro, D; Gosálvez, R U; López-Iborra, G M; Ponz, A; Velasco, A
2017-01-01
Plastic intake by marine vertebrates has been widely reported, but information about its presence in continental waterfowl is scarce. Here we analyzed faeces of waterbirds species (European coot, Fulica atra, mallard, Anas platyrhynchos and shelduck, Tadorna tadorna) for plastic debris in five wetlands in Central Spain. We collected 89 faeces of shelduck distributed in four lakes, 43.8% of them presented plastic remnants. Sixty percent of 10 faeces of European coot and 45% of 40 faeces of mallard contained plastic debris. Plastic debris found was of two types, threads and fragments, and were identified as remnants of plastic objects used in agricultural fields surrounding the lakes. Differences in prevalence of plastic in faeces, number of plastic pieces per excrement and size of the plastic pieces were not statistically significant between waterfowl species. Thus, our results suggest that plastic may also be frequently ingested by waterfowl in continental waters, at least in our study area. Future studies should address this potential problem for waterbird conservation in other wetlands to evaluate the real impact of this pollutant on waterbirds living in inland water. Copyright © 2016 Elsevier Ltd. All rights reserved.
Phenotypic plasticity facilitates resistance to climate change in a highly variable environment.
Richter, Sarah; Kipfer, Tabea; Wohlgemuth, Thomas; Calderón Guerrero, Carlos; Ghazoul, Jaboury; Moser, Barbara
2012-05-01
Increased summer drought will exacerbate the regeneration of many tree species at their lower latitudinal and altitudinal distribution limits. In vulnerable habitats, introduction of more drought-tolerant provenances or species is currently considered to accelerate tree species migration and facilitate forest persistence. Trade-offs between drought adaptation and growth plasticity might, however, limit the effectiveness of assisted migration, especially if introductions focus on provenances or species from different climatic regions. We tested in a common garden experiment the performance of Pinus sylvestris seedlings from the continental Central Alps under increased temperatures and extended spring and/or summer drought, and compared seedling emergence, survival and biomass allocation to that of P. sylvestris and closely related Pinus nigra from a Mediterranean seed source. Soil heating had only minor effects on seedling performance but high spring precipitation doubled the number of continental P. sylvestris seedlings present after the summer drought. At the same time, twice as many seedlings of the Mediterranean than the continental P. sylvestris provenance were present, which was due to both higher emergence and lower mortality under dry conditions. Both P. sylvestris provenances allocated similar amounts of biomass to roots when grown under low summer precipitation. Mediterranean seedlings, however, revealed lower phenotypic plasticity than continental seedlings under high precipitation, which might limit their competitive ability in continental Alpine forests in non-drought years. By contrast, high variability in the response of individual seedlings to summer drought indicates the potential of continental P. sylvestris provenances to adapt to changing environmental conditions.
Rotation, narrowing and preferential reactivation of brittle structures during oblique rifting
NASA Astrophysics Data System (ADS)
Huismans, R. S.; Duclaux, G.; May, D.
2017-12-01
Occurrence of multiple faults populations with contrasting orientations in oblique continental rifts and passive margins has long sparked debate about relative timing of deformation events and tectonic interpretations. Here, we use high-resolution three-dimensional thermo-mechanical numerical modeling to characterize the evolution of the structural style associated with moderately oblique rifting in the continental lithosphere. Automatic analysis of the distribution of active extensional shears at the surface of the model demonstrates a characteristic deformation sequence. We show that upon localization, Phase 1 wide oblique en-échelon grabens develop, limited by extensional shears oriented orthogonal to σ3. Subsequent widening of the grabens is accompanied by a progressive rotation of the Phase 1 extensional shears that become sub-orthogonal the plate motion direction. Phase 2 is marked by narrowing of active deformation resulting from thinning of the continental lithosphere and development of a second-generation of extensional shears. During Phase 2 deformation localizes both on plate motion direction-orthogonal structures that reactivate rotated Phase 1 shears, and on new oblique structures orthogonal to σ3. Finally, Phase 3 consists in the oblique rupture of the continental lithosphere and produces an oceanic domain where oblique ridge segments are linked with highly oblique accommodation zones. We conclude that while new structures form normal to σ3 in an oblique rift, progressive rotation and long-term reactivation of Phase 1 structures promotes orthorhombic fault systems, critical to accommodate upper crustal extension and control oblique passive margin architecture. The distribution, orientation, and evolution of frictional-plastic structures observed in our models is remarkably similar to documented fault populations in the Gulf of Aden conjugate passive margins, which developed in moderately oblique extensional settings.
Seismo-thermo-mechanical modeling of mature and immature transform faults
NASA Astrophysics Data System (ADS)
Preuss, Simon; Gerya, Taras; van Dinther, Ylona
2016-04-01
Transform faults (TF) are subdivided into continental and oceanic ones due to their markedly different tectonic position, structure, surface expression, dynamics and seismicity. Both continental and oceanic TFs are zones of rheological weakness, which is a pre-requisite for their existence and long-term stability. Compared to subduction zones, TFs are typically characterized by smaller earthquake magnitudes as both their potential seismogenic width and length are reduced. However, a few very large magnitude (Mw>8) strike-slip events were documented, which are presumably related to the generation of new transform boundaries and/or sudden reactivation of pre-existing fossil structures. In particular, the 11 April 2012 Sumatra Mw 8.6 earthquake is challenging the general concept that such high magnitude events only occur at megathrusts. Hence, the processes of TF nucleation, propagation and their direct relation to the seismic cycle and long-term deformation at both oceanic and continental transforms needs to be investigated jointly to overcome the restricted direct observations in time and space. To gain fundamental understanding of involved physical processes the numerical seismo-thermo-mechanical (STM) modeling approach, validated in a subduction zone setting (Van Dinther et al. 2013), will be adapted for TFs. A simple 2D plane view model geometry using visco-elasto-plastic material behavior will be adopted. We will study and compare seismicity patterns and evolution in two end member TF setups, each with strain-dependent and rate-dependent brittle-plastic weakening processes: (1) A single weak and mature transform fault separating two strong plates (e.g., in between oceanic ridges) and (2) A nucleating or evolving (continental) TF system with disconnected predefined faults within a plate subjected to simple shear deformation (e.g., San Andreas Fault system). The modeling of TFs provides a first tool to establish the STM model approach for transform faults in a more general case.
NASA Astrophysics Data System (ADS)
Pusok, Adina E.; Kaus, Boris; Popov, Anton
2017-04-01
It is commonly accepted that slab detachment results from the development of extensional stresses within the subducting slab. Subduction slowdown due to arrival of buoyant continental material at the trench is considered to cause such stress build up in the slab. Following slab detachment, slab pull partially or completely loses its strength and hot asthenosphere may flow through the slab window, which can have major consequences for continental collision. The dynamics of slab detachment has been extensively studied in 2D (i.e. analytical and numerical), but 3D models of slab detachment during continental collision remain largely unexplored. Some of the previous 3D models have investigated the role of an asymmetric margin on the propagation of slab detachment (van Hunen and Allen, 2011), the impact of slab detachment on the curvature of orogenic belts (Capitanio and Replumaz, 2013), the role of the collision rate on slab detachment depth (Li et al., 2013) or the effect of along-trench variations on slab detachment (Duretz et al., 2014). However, rheology of mantle and lithosphere is known to have a major influence on the dynamics of subduction. Here, we explore a range of different rheological approximations to understand their sensitivity on the possible scenarios. We employ the code LaMEM (Kaus et al., 2016) to perform 3D simulations of subduction/continental collision in an integrated lithospheric and upper-mantle scale model. The models exhibit a wide range of behaviours depending on the rheological law employed: from linear, to temperature-dependent visco-elasto-plastic rheology that takes into account both diffusion and dislocation creep. For example, we find that slab dynamics varies drastically between end member models: in viscous approximations, slab detachment is slow, dominated by viscous thinning, while for a non-linear visco-elasto-plastic rheology, slab detachment is relatively fast, dominated by plastic breaking and inducing strong mantle flow in the slab window. Moreover, in models of viscous approximation, slab break-off starts in the slab interior due tot the nature of slab necking, while in models of non-linear visco-elasto-plastic rheology, slab tear will first occur at the edges of the continental collision.
The evolution of rifting process in the tectonic history of the Earth
NASA Technical Reports Server (NTRS)
Milanovsky, E. E.; Nikishin, A. M.
1985-01-01
The continental rifting is the response of the lithosphere to the oriented tension. The distribution of viscosity in the lithosphere plays an essential role during all stages of the rifting. The viscosity is a function of the temperature, the lithostatic pressure, the rock composition, the deformation rate and other factors. The temperature is the most important factor. The vertical section of continental lithosphere of the rift zone may be divided into the following layers: the upper crust, in which brittle deformation prevails; the medialcrust, in which the role of plastic deformation increases; the lower crust, in which plastic deformation prevails; and the uppermost plastic part of the mantle overlapping asthenosphere. The depth of the boundaries in the crust layers are mainly controlled by the temperature.
Microplastics as an emerging threat to terrestrial ecosystems.
de Souza Machado, Anderson Abel; Kloas, Werner; Zarfl, Christiane; Hempel, Stefan; Rillig, Matthias C
2018-04-01
Microplastics (plastics <5 mm, including nanoplastics which are <0.1 μm) originate from the fragmentation of large plastic litter or from direct environmental emission. Their potential impacts in terrestrial ecosystems remain largely unexplored despite numerous reported effects on marine organisms. Most plastics arriving in the oceans were produced, used, and often disposed on land. Hence, it is within terrestrial systems that microplastics might first interact with biota eliciting ecologically relevant impacts. This article introduces the pervasive microplastic contamination as a potential agent of global change in terrestrial systems, highlights the physical and chemical nature of the respective observed effects, and discusses the broad toxicity of nanoplastics derived from plastic breakdown. Making relevant links to the fate of microplastics in aquatic continental systems, we here present new insights into the mechanisms of impacts on terrestrial geochemistry, the biophysical environment, and ecotoxicology. Broad changes in continental environments are possible even in particle-rich habitats such as soils. Furthermore, there is a growing body of evidence indicating that microplastics interact with terrestrial organisms that mediate essential ecosystem services and functions, such as soil dwelling invertebrates, terrestrial fungi, and plant-pollinators. Therefore, research is needed to clarify the terrestrial fate and effects of microplastics. We suggest that due to the widespread presence, environmental persistence, and various interactions with continental biota, microplastic pollution might represent an emerging global change threat to terrestrial ecosystems. © 2017 John Wiley & Sons Ltd.
3D numerical simulations of multiphase continental rifting
NASA Astrophysics Data System (ADS)
Naliboff, J.; Glerum, A.; Brune, S.
2017-12-01
Observations of rifted margin architecture suggest continental breakup occurs through multiple phases of extension with distinct styles of deformation. The initial rifting stages are often characterized by slow extension rates and distributed normal faulting in the upper crust decoupled from deformation in the lower crust and mantle lithosphere. Further rifting marks a transition to higher extension rates and coupling between the crust and mantle lithosphere, with deformation typically focused along large-scale detachment faults. Significantly, recent detailed reconstructions and high-resolution 2D numerical simulations suggest that rather than remaining focused on a single long-lived detachment fault, deformation in this phase may progress toward lithospheric breakup through a complex process of fault interaction and development. The numerical simulations also suggest that an initial phase of distributed normal faulting can play a key role in the development of these complex fault networks and the resulting finite deformation patterns. Motivated by these findings, we will present 3D numerical simulations of continental rifting that examine the role of temporal increases in extension velocity on rifted margin structure. The numerical simulations are developed with the massively parallel finite-element code ASPECT. While originally designed to model mantle convection using advanced solvers and adaptive mesh refinement techniques, ASPECT has been extended to model visco-plastic deformation that combines a Drucker Prager yield criterion with non-linear dislocation and diffusion creep. To promote deformation localization, the internal friction angle and cohesion weaken as a function of accumulated plastic strain. Rather than prescribing a single zone of weakness to initiate deformation, an initial random perturbation of the plastic strain field combined with rapid strain weakening produces distributed normal faulting at relatively slow rates of extension in both 2D and 3D simulations. Our presentation will focus on both the numerical assumptions required to produce these results and variations in 3D rifted margin architecture arising from a transition from slow to rapid rates of extension.
78 FR 8987 - Interstate Movement of Sharwil Avocados From Hawaii
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-07
... problems. When necessary, corrective action will include removal of the packinghouse and orchard from the... fly infestation until moved. The fruit must be safeguarded by an insect-proof screen or plastic... a plastic tarpaulin, for transport to the continental United States. These safeguards must remain...
7 CFR 319.56-64 - Avocados from continental Spain.
Code of Federal Regulations, 2014 CFR
2014-01-01
... plastic tarpaulin while in transit to the packinghouse and while awaiting packing. (e) Packinghouse... mesh or a plastic tarpaulin, for transport to the United States. These safeguards must remain intact... by APHIS. Inspectors must visually inspect the fruit and cut a portion of the fruit to inspect for C...
NASA Astrophysics Data System (ADS)
Sarkarinejad, Khalil
2010-05-01
New approach to the boundary-parallel plastic / viscous diapiric flow patterns in the curvilinear boundary zones: an implication for structural geology studies Khalil Sarkarinejad and Abdolreza Partabian Department of Earth Sciences, College of Sciences, Shiraz University, Shiraz, Iran (Sarkarinejad@geology.susc.ac.ir). In the oceanic diverging away plates, the asthenospheric flow at solidus high-temperature conditions typically produces mineral foliations and lineations in peridotites. Foliation and lineation of mantle are defined by preferred flattening and alignment of olivine, pyroxene and spinel. In the areas with steep foliations trajectories which are associated with the steeply plunging stretching lineation trajectories, reflecting localized vertical flow and has been related to mantle diapir. The mantle flow patterns are well documented through detail structural mapping of the Neyriz ophiolite along the Zagros inclined dextral transpression and Oman ophiolite. Such models of the diverging asthenaspheric mantle flow and formation of mantle diapir are rarely discussed and paid any attention in the mathematical models of transpressional deformation in converging continental crusts. Systematic measurements of the mineral preferred orientations and construction of the foliation and lineation trajectories of the Zagros high-strain zone reveal two diapers with the shape of the inclined NW-SE boundary-parallel semi-ellipses shape and one rotated asymmetric diapir. These diapers made of quartzo-feldspathic gneiss and garnet amphibolite core with phyllite, phyllonite, muscovite schist and deformed conglomerate as a cover sequences. These boundary-parallel and rotated diapirs are formed by the interaction of Afro-Arabian lower to middle continental detachment and hot subdacting Tethyan oceanic crust, due to increasing effective pressure and temperature. The plastic/viscous gneissic diapers were squeezed between in Zagros transpression curvilinear boundary zones in an angle alpha=25°. Constructed finite strain ellipsoid based on the X-axes of the elliptical shaped deformed markers of the diapir cover sequences show trend X-axis of the strain ellipsoid making an angle phai=2° with the boundary zones. The steep plunging stretching lineation primarily controlled by the plastic/viscous flow. This also show that during inclined upwelling boundary-parallel diapers, X-, Y-axes of the strain ellipsoid rotated clockwise and Z-axis experienced counter clockwise rotation with triclinic symmetries relative to the Zagros curvilinear transpression boundary zones with an orientation of N42°plus/minus 24°W.
Investigating the fate of microplastics in the San Diego Bay area: A paleoenvironmental approach
NASA Astrophysics Data System (ADS)
Fontaine, R. M.; Hangsterfer, A.; Bhattacharya, A.
2017-12-01
Microplastics in marine waste surveys compare the observed amount of microplastic debris in the ocean with constructed models to determine availability of microplastics in the ocean. However, most of these studies have been constrained in the surface ocean and the surveys have found a substantial difference between estimated and observed amount of microplastic in the ocean. One possible reason could be that microplastics are settling along continental shelves or the ocean bottom. Via this research we have collected samples to study marine sediments (collected from increasing depth along the continental shelf around San Diego) for microplastics. Our goal is to determine the relationship between density and microplastic distribution. The main objective is to investigate sinks of microplastic (plastic products sizes less than 1 mm) along continental shelves; more specifically, this small study aims to investigate (a) what are the dominant types of microplastics (for example, heavy plastic or light plastic), (b) shapes of microplastics derived from commonly used heavy and light plastics, (c) is there specific locations (for example floating in water column vs. settling ocean floor along the continental shelves, which would be the first places where one might expect microplastics (that are delivered via river systems or from beaches) typically and finally, (d) is there any marine environmental preference between light and heavy microplastics. In this study, we provide observational evidence about the poorly understood fate of microplastics in the ocean as well as lend itself to the question: if and how long microplastics remain bioavailable. We have targeted four marine environments along San Diego that encompass several important connections between land and the ocean:Bays, river mouth, upwelling region and shelf. At each site listed above, we take four sets of 1-2ft cores: 20ft , 40ft, 60ft, 80ft. We combine traditional measurements (pH, salinity, density, DOC, N, P for water samples and grain size, mineralogy, chemistry, TOC and XRF for sediment samples) with microscopy to identify plastic types and amount. The comprehensive method allows us to understand water and sediment controls on microplastic distribution.
High-Resolution Lithosphere Viscosity and Dynamics Revealed by Magnetotelluric Imaging
NASA Astrophysics Data System (ADS)
Liu, L.; Hasterok, D. P.
2016-12-01
An accurate viscosity structure is critical to truthfully modeling continental lithosphere dynamics, especially at spatial scales of <200 km where active tectonic deformation and volcanism occur. However, the effective viscosity structure of the lithosphere remains a key challenge in geodynamics due to the intimate involvement of viscosity with time and its dependence on many factors including strain rate, plastic failure, composition, and grain size. Current efforts on inferring the detailed lithosphere viscosity structure are sparse and large uncertainties and discrepancies still exist. Here we report an attempt to infer the effective lithospheric viscosity from a high-resolution magnetotelluric (MT) survey across the western United States. The high sensitivity of MT fields to the presence of electrically conductive fluids makes it a promising proxy for determining mechanical strength variations throughout the lithosphere. We demonstrate how a viscosity structure, approximated from electrical resistivity, results in a geodynamic model that successfully predicts short-wavelength surface topography, lithospheric deformation, and mantle upwelling beneath recent volcanism. The results indicate that lithosphere viscosity structure rather than the buoyancy structure is the dominant controlling factor for short-wavelength topography and intra-plate deformation in tectonically active regions. We further show that this viscosity is consistent with and more effective than that derived from laboratory-based rheology. We therefore propose that MT imaging provides a practical observational constraint for quantifying the dynamic evolution of the continental lithosphere.
Terrane accretion: Insights from numerical modelling
NASA Astrophysics Data System (ADS)
Vogt, Katharina; Gerya, Taras
2016-04-01
The oceanic crust is not homogenous, but contains significantly thicker crust than norm, i.e. extinct arcs, spreading ridges, detached continental fragments, volcanic piles or oceanic swells. These (crustal) fragments may collide with continental crust and form accretionary complexes, contributing to its growth. We analyse this process using a thermo-mechanical computer model (i2vis) of an ocean-continent subduction zone. In this model the oceanic plate can bend spontaneously under the control of visco-plastic rheologies. It moreover incorporates effects such as mineralogical phase changes, fluid release and consumption, partial melting and melt extraction. Based on our 2-D experiments we suggest that the lithospheric buoyancy of the downgoing slab and the rheological strength of crustal material may result in a variety of accretionary processes. In addition to terrane subduction, we are able to identify three distinct modes of terrane accretion: frontal accretion, basal accretion and underplating plateaus. We show that crustal fragments may dock onto continental crust and cease subduction, be scrapped off the downgoing plate, or subduct to greater depth prior to slab break off and subsequent exhumation. Direct consequences of these processes include slab break off, subduction zone transference, structural reworking, formation of high-pressure terranes, partial melting and crustal growth.
Evolution of plant growth and defense in a continental introduction.
Agrawal, Anurag A; Hastings, Amy P; Bradburd, Gideon S; Woods, Ellen C; Züst, Tobias; Harvey, Jeffrey A; Bukovinszky, Tibor
2015-07-01
Substantial research has addressed adaptation of nonnative biota to novel environments, yet surprisingly little work has integrated population genetic structure and the mechanisms underlying phenotypic differentiation in ecologically important traits. We report on studies of the common milkweed Asclepias syriaca, which was introduced from North America to Europe over the past 400 years and which lacks most of its specialized herbivores in the introduced range. Using 10 populations from each continent grown in a common environment, we identified several growth and defense traits that have diverged, despite low neutral genetic differentiation between continents. We next developed a Bayesian modeling approach to account for relationships between molecular and phenotypic differences, confirming that continental trait differentiation was greater than expected from neutral genetic differentiation. We found evidence that growth-related traits adaptively diverged within and between continents. Inducible defenses triggered by monarch butterfly herbivory were substantially reduced in European populations, and this reduction in inducibility was concordant with altered phytohormonal dynamics, reduced plant growth, and a trade-off with constitutive investment. Freedom from the community of native and specialized herbivores may have favored constitutive over induced defense. Our replicated analysis of plant growth and defense, including phenotypically plastic traits, suggests adaptive evolution following a continental introduction.
NASA Astrophysics Data System (ADS)
Burov, E.; Guillou-Frottier, L.
2005-05-01
Current debates on the existence of mantle plumes largely originate from interpretations of supposed signatures of plume-induced surface topography that are compared with predictions of geodynamic models of plume-lithosphere interactions. These models often inaccurately predict surface evolution: in general, they assume a fixed upper surface and consider the lithosphere as a single viscous layer. In nature, the surface evolution is affected by the elastic-brittle-ductile deformation, by a free upper surface and by the layered structure of the lithosphere. We make a step towards reconciling mantle- and tectonic-scale studies by introducing a tectonically realistic continental plate model in large-scale plume-lithosphere interaction. This model includes (i) a natural free surface boundary condition, (ii) an explicit elastic-viscous(ductile)-plastic(brittle) rheology and (iii) a stratified structure of continental lithosphere. The numerical experiments demonstrate a number of important differences from predictions of conventional models. In particular, this relates to plate bending, mechanical decoupling of crustal and mantle layers and tension-compression instabilities, which produce transient topographic signatures such as uplift and subsidence at large (>500 km) and small scale (300-400, 200-300 and 50-100 km). The mantle plumes do not necessarily produce detectable large-scale topographic highs but often generate only alternating small-scale surface features that could otherwise be attributed to regional tectonics. A single large-wavelength deformation, predicted by conventional models, develops only for a very cold and thick lithosphere. Distinct topographic wavelengths or temporarily spaced events observed in the East African rift system, as well as over French Massif Central, can be explained by a single plume impinging at the base of the continental lithosphere, without evoking complex asthenospheric upwelling.
Three-dimensional frictional plastic strain partitioning during oblique rifting
NASA Astrophysics Data System (ADS)
Duclaux, Guillaume; Huismans, Ritske S.; May, Dave
2017-04-01
Throughout the Wilson cycle the obliquity between lithospheric plate motion direction and nascent or existing plate boundaries prompts the development of intricate three-dimensional tectonic systems. Where oblique divergence dominates, as in the vast majority of continental rift and incipient oceanic domains, deformation is typically transtensional and large stretching in the brittle upper crust is primarily achieved by the accumulation of displacement on fault networks of various complexity. In continental rift depressions such faults are initially distributed over tens to hundreds of kilometer-wide regions, which can ultimately stretch and evolve into passive margins. Here, we use high-resolution 3D thermo-mechanical finite element models to investigate the relative timing and distribution of localised frictional plastic deformation in the upper crust during oblique rift development in a simplified layered lithosphere. We vary the orientation of a wide oblique heterogeneous weak zone (representing a pre-existing geologic feature like a past orogenic domain), and test the sensitivity of the shear zones orientation to a range of noise distribution. These models allow us to assess the importance of material heterogeneities for controlling the spatio-temporal shear zones distribution in the upper crust during oblique rifting, and to discuss the underlying controls governing oblique continental breakup.
NASA Astrophysics Data System (ADS)
Molli, Giancarlo; Menegon, Luca; Malasoma, Alessandro
2017-04-01
The switching in deformation mode (from distributed to localized) and mechanism (viscous versus frictional) represent a relevant issue in the frame of processes of crustal deformation in turn connected with the concept of the brittle-"ductile" transition and seismogenesis. On the other hand the role of brittle precursors in nucleating crystal-plastic shear zones has received more and more consideration being now recognized as having a fundamental role in the localization of deformation and shear zone development, thus representing a case in which switching deformation mode and mechanisms interact and relate to each other. This contribution analyses an example of a crystal plastic shear zone localized by brittle precursor formed within a host granitic-mylonite during deformation in subduction-related environment. The studied sample come from the external Corsican continental crust units involved in alpine age subduction and characterized by a low grade blueschist facies peak assemblages. The blueschist facies host rock is cut by a thin (< 1 cm thick) brittle-viscous shear zone that preserves domains with a cataclastic microstructure overprinted by mylonitic deformation. Blue amphibole is stable in the shear zone foliation, which therefore formed under HP/LT metamorphic conditions in a subduction environment. Quartz microstructure in the damage zone flanking the brittle-viscous shear zone shows evidence of both microcracking and dislocation glide, with limited recrystallization localized in intracrystalline bands. In the mylonite portion of the shear zone, quartz forms polycrystalline ribbons of dynamically recrystallized grains with a crossed-girdle c-axis CPO. Extrapolation of laboratory-derived flow laws indicates strain rate of ca. 3.5 * 10-12 s-1 during viscous flow in the shear zone. The studied structures, possibly formed by transient instability related to episodic stress/strain rate variations, may be considered as a small scale example of fault behaviour associated with a cycle of interseismic creep with coseismic rupture and then a fossil example of stick-slip strain accommodation in subduction environment of continental crust.
From rifting to subduction: the role of inheritance in the Wilson Cycle
NASA Astrophysics Data System (ADS)
Beaussier, Stéphane; Gerya, Taras; Burg, Jean-Pierre
2017-04-01
The Wilson Cycle entails that oceans close and reopen. This cycle is a fundamental principle in plate tectonics, inferring continuity from divergence to convergence and that continental rifting takes place along former suture zones. This view questions the role of inherited structures at each stage of the Wilson Cycle. Using the 3D thermo-mechanical code, I3ELVIS (Gerya and Yuen 2007) we present a high-resolution continuous model of the Wilson cycle from continental rifting, breakup and oceanic spreading to convergence and spontaneous subduction initiation. Therefore, all lateral and longitudinal structures of the lithospheres are generated self-consistently and are consequences of the initial continental structure, tectono-magmatic inheritance and material rheology. In the models, subduction systematically initiates off-ridge and is controlled by the convergence-induced swelling of the ridge. Geometry and dynamics of the developing off-ridge subduction is controlled by four main factors: (1) the obliquity of the ridge with respect to the convergence direction; (2) fluid-induced weakening of the oceanic crust; (3) irregularity of ridge and margins inherited from rifting and spreading; (4) strain localization at transform faults formed during ocean floor spreading. Further convergence can lead to obduction of the oceanic crust and segments of ridge after the oceanic lithosphere is entrained into subduction. We show that the main parameters controlling the occurrence and geometry of obducted ophiolite are the convergence rate and the inherited structure of the passive margins and ridge. Our numerical experiments results show the essential role played by inheritance during the Wilson Cycle and are consistent with nature observations such as the tectonic history of the Oman subduction-obduction system. REFERENCES Gerya, T. V., and D. A. Yuen. 2007: "Robust Characteristics Method for Modelling Multiphase Visco-Elasto-Plastic Thermo-Mechanical Problems, Physics of the Earth and Planetary Interiors, 163 (1-4), 83-105.
NASA Astrophysics Data System (ADS)
Gün, E.; Gogus, O.; Pysklywec, R.; Topuz, G.; Bodur, O. F.
2017-12-01
The Tethyan belt in the eastern Mediterranean region is characterized by the accretion of several micro-continental blocks (e.g. Anatolide-Tauride, Sakarya and Istanbul terranes). The accretion of a micro-continental block to the active continental margin and subsequent initiation of a new subduction are of crucial importance in understanding the geodynamic evolution of the region. Numerical geodynamic experiments are designed to investigate how these micro-continental blocks in the ocean-continent subduction system develops the aforementioned subduction, back-arc extension, surface uplift and the ophiolite emplacement in the eastern Mediterranean since Late Cretaceous. In a series set of experiments, we test various sizes of micro-continental blocks (ranging from 50 to 300 km), different rheological properties (e.g. dry-wet olivine mantle) and imposed plate convergence velocities (0 to 4 cm/year). For a prime present-day analogue to the micro-continental block collision-accretion, model predictions are compared against the collision between Eratosthenes and Cyprus. Preliminary results show that slab break-off occurs directly after the collision when the plate convergence velocities are less than 2 cm/yr and the mantle lithosphere of the continental block has viscoplastic rheology. On the other hand, there is no relationship between convergence rate and break-off event when the lithospheric mantle rheology is chosen to be plastic. Furthermore, the micro-continental block undergoes considerable extension before continental collision due to the slab pull force, if a viscoplastic rheology is assumed for the mantle lithosphere.
Intermittent sizing on carbon fiber for composite application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norris, Jr, Robert E.; Paulauskas, Felix L.; Ozcan, Soydan
Intermittent sizing is a technique designed to improve the bonding of carbon fiber to a resin when manufacturing composite parts. The purpose of this technique is to improve Sheet Molding Composites (SMC) made of non-continuous carbon fibers while using regular material. At the end of the project, tests showed that improved mechanical properties have been achieved using this technique compared to conventional process. Mechanical properties have been improved by 110% for the peak tensile stress and by 60% for the modulus at the laboratory scale. In this project, Continental Structural Plastics and ORNL have worked to demonstrate the scalability andmore » viability of commercialization of this technique.« less
Nicolau, Lídia; Marçalo, Ana; Ferreira, Marisa; Sá, Sara; Vingada, José; Eira, Catarina
2016-02-15
The accumulation of litter in marine and coastal environments is a major threat to marine life. Data on marine litter in the gastrointestinal tract of stranded loggerhead turtles, Caretta caretta, found along the Portuguese continental coast was presented. Out of the 95 analysed loggerheads, litter was present in 56 individuals (59.0%) and most had less than 10 litter items (76.8%) and less than 5 g (dm) (96.8%). Plastic was the main litter category (frequency of occurrence=56.8%), while sheet (45.3%) was the most relevant plastic sub-category. There was no influence of loggerhead stranding season, cause of stranding or size on the amount of litter ingested (mean number and dry mass of litter items per turtle). The high ingested litter occurrence frequency in this study supports the use of the loggerhead turtle as a suitable tool to monitor marine litter trends, as required by the European Marine Strategy Framework Directive. Copyright © 2015 Elsevier Ltd. All rights reserved.
40Ar/ 39Ar dating of the emplacement of the Muslim Bagh ophiolite, Pakistan
NASA Astrophysics Data System (ADS)
Mahmood, Khalid; Boudier, Françoise; Gnos, Edwin; Monié, Patrick; Nicolas, Adolphe
1995-11-01
The obduction-related basal part of the Muslim Bagh ophiolite (Baluchistan, Pakistan) and the underlying metamorphic sequence were studied structurally which demonstrated a WSW-ENE-trending thrusting sequence for the initial obduction. 40Ar/ 39Ar measurements on amphiboles and plagioclase from the subophiolitic metamorphic rocks, and on plastically deformed and recrystallized dolerite samples from the base of the sheeted dyke complex give apparent ages between 70.7 ± 5.0 and 65.1 ± 4.1 Ma interpreted as cooling ages dating approximately the formation of the plastic deformation and obduction. The results indicate that the Muslim Bagh ophiolite represents a segment of ocean floor from the small and slow-spreading ocean branch of the Neo-Tethys located between the Indo-Pakistani and the Afro-Arabian plates. The WSW-ENE-oriented obduction of the Muslim Bagh ophiolite onto the Indo-Pakistani continental margin occurred with the convergence of the Neo-Tethys branch during the Late Cretaceous and before the Tertiary collision of the Indo-Pakistani plate with the Eurasian plate.
NASA Astrophysics Data System (ADS)
Wilcox, C.; van Sebille, E.
2016-02-01
Several global studies have attempted to estimate the standing stock of plastic debris in the oceans at the global scale. However, recent work estimating the amount lost from land on an annual basis suggests that the standing stock should be several orders of magnitude larger than the global estimates. We investigate the role of coastal deposition within the first few weeks after plastic enters the ocean and very near its sources, one of the hypothesized sinks for the missing plastic in this mass balance. We utilize a continental scale dataset of plastics collected along Australia's coast and in the offshore regions together with models of plastic release and transport based on Lagrangian tracking to investigate the role of local deposition in the coastal environment. Our models predict that the vast majority of positively buoyant plastic is deposited within a very short distance from its release point, with only a small fraction escaping into the open ocean. These predictions match our coastal and offshore observations, providing clear evidence that this mechanism of immediate coastal deposition is, at least in part, driving the apparent mismatch between coastal emissions and the standing stock in the ocean.
NASA Astrophysics Data System (ADS)
Chassefiere, Bernard
1990-09-01
Mass-physical properties of the surficial (upper 5 m) sediments on the Gulf of Lions continental margin were analysed, from more than 100 short (1 m) and longer (5 m) cores obtained during several cruises. Data include water content, unit weight, Atterberg limits (liquid limit, plastic limit, plasticity index), shear strength and compression index, and are used to determine: first, the mass property distribution, according to the main parameters influencing mass-physical properties; the relationships between these properties and the nepheloid layer on the shelf. The shoreline (lagoons) and inner shelf are characterized by low density and shear strength and high water content deposits, due to electrochemical flocculation of the sediment. The outer shelf is blanketed by higher density and shear strength and lower water content deposits generated by normal settling of suspended particles. On the inner shelf, during river peak discharges, a short-term thin bottom layer of "yogurt-like" [ FASS (1985) Geomarine Letters, 4, 147-152; FASS (1986) Continental Shelf Research, 6, 189-208] fluid-mud (unit weight lower than 1.3 mg m -3) is supplied, by a bottom nepheloid layer. During stormy periods, this "yogurt-like" layer (about 10 cm thick) partly disappears by resuspension of suspended particulate matter; this is advected, in the bottom nepheloid layer, over the shelf and the canyons within the upper slope.
Patterns of Cross-Continental Variation in Tree Seed Mass in the Canadian Boreal Forest
Liu, Jushan; Bai, Yuguang; Lamb, Eric G.; Simpson, Dale; Liu, Guofang; Wei, Yongsheng; Wang, Deli; McKenney, Daniel W.; Papadopol, Pia
2013-01-01
Seed mass is an adaptive trait affecting species distribution, population dynamics and community structure. In widely distributed species, variation in seed mass may reflect both genetic adaptation to local environments and adaptive phenotypic plasticity. Acknowledging the difficulty in separating these two aspects, we examined the causal relationships determining seed mass variation to better understand adaptability and/or plasticity of selected tree species to spatial/climatic variation. A total of 504, 481 and 454 seed collections of black spruce (Picea mariana (Mill.) B.S.P.), white spruce (Picea glauca (Moench) Voss) and jack pine (Pinus banksiana Lamb) across the Canadian Boreal Forest, respectively, were selected. Correlation analyses were used to determine how seed mass vary with latitude, longitude, and altitude. Structural Equation Modeling was used to examine how geographic and climatic variables influence seed mass. Climatic factors explained a large portion of the variation in seed mass (34, 14 and 29%, for black spruce, white spruce and jack pine, respectively), indicating species-specific adaptation to long term climate conditions. Higher annual mean temperature and winter precipitation caused greater seed mass in black spruce, but annual precipitation was the controlling factor for white spruce. The combination of factors such as growing season temperature and evapotranspiration, temperature seasonality and annual precipitation together determined seed mass of jack pine. Overall, sites with higher winter temperatures were correlated with larger seeds. Thus, long-term climatic conditions, at least in part, determined spatial variation in seed mass. Black spruce and Jack pine, species with relatively more specific habitat requirements and less plasticity, had more variation in seed mass explained by climate than did the more plastic species white spruce. As traits such as seed mass are related to seedling growth and survival, they potentially influence forest species composition in a changing climate and should be included in future modeling of vegetation shifts. PMID:23593392
NASA Astrophysics Data System (ADS)
Berra, F.; Felletti, F.
2011-04-01
The Lower Permian succession of the Central Southern Alps (Lombardy, Northern Italy) was deposited in fault-controlled continental basins, probably related to transtensional tectonics. We focussed our study on the stratigraphic record of the Lower Permian Orobic Basin, which consists of a 1000 m thick succession of prevailing continental clastics with intercalations of ignimbritic flows and tuffs (Pizzo del Diavolo Formation, PDV) resting on the underlying prevailing pyroclastic flows of the Cabianca Volcanite. The PDV consists of a lower part (composed of conglomerates passing laterally to sandstones and distally to silt and shales), a middle part (pelitic, with carbonates) and an upper part (alternating sandstone, silt and volcanic flows). Syndepositional tectonics during the deposition of the PDV is recorded by facies distribution, thickness changes and by the presence of deformation and liquefaction structures interpreted as seismites. Deformation is recorded by both ductile structures (ball-and-pillow, plastic intrusion, disturbed lamination, convolute stratification and slumps) and brittle structures (sand dykes and autoclastic breccias). Both the sedimentological features and the geodynamic setting of the depositional basin confidently support the interpretation of the described deformation features as related to seismic shocks. The most significant seismically-induced deformation is represented by a slumped horizon (about 4 m thick on average) which can be followed laterally for more than 5 km. The slumped bed consists of playa-lake deposits (alternating pelites and microbial carbonates, associated with mud cracks and vertebrate tracks). The lateral continuity and the evidence of deposition on a very low-angle surface along with the deformation/liquefaction of the sediments suggest that the slump was triggered by a high-magnitude earthquake. The stratigraphic distribution of the seismites allows us to identify time intervals of intense seismic activity, which correspond to rapid and basin-wide changes in the stratigraphical architecture of the depositional basin and/or to the reprise of the volcanic activity. The nature of the structures and their distribution suggest that the magnitude of the earthquakes responsible for the observed structures was likely higher than 5 (in order to produce sediment liquefaction) and probably reached intensity as high as 7 or more. The basin architecture suggests that the foci of these earthquakes were located close to the fault-controlled borders of the basin or within the basin itself.
NASA Astrophysics Data System (ADS)
Cao, Wenrong; Kaus, Boris J. P.; Paterson, Scott
2016-06-01
We conducted a 2-D thermomechanical modeling study of intrusion of granitic magma into the continental crust to explore the roles of multiple pulsing and dike-diapir interactions in the presence of visco-elasto-plastic rheology. Multiple pulsing is simulated by replenishing source regions with new pulses of magma at a certain temporal frequency. Parameterized "pseudo-dike zones" above magma pulses are included. Simulation results show that both diking and pulsing are crucial factors facilitating the magma ascent and emplacement. Multiple pulses keep the magmatic system from freezing and facilitate the initiation of pseudo-dike zones, which in turn heat the host rock roof, lower its viscosity, and create pathways for later ascending pulses of magma. Without diking, magma cannot penetrate the highly viscous upper crust. Without multiple pulsing, a single magma body solidifies quickly and it cannot ascent over a long distance. Our results shed light on the incremental growth of magma chambers, recycling of continental crust, and evolution of a continental arc such as the Sierra Nevada arc in California.
Abundant plankton-sized microplastic particles in shelf waters of the northern Gulf of Mexico.
Di Mauro, Rosana; Kupchik, Matthew J; Benfield, Mark C
2017-11-01
Accumulation of marine debris is a global problem that affects the oceans on multiple scales. The majority of floating marine debris is composed of microplastics: plastic particles up to 5 mm in diameter. With similar sizes and appearances to natural food items, these small fragments pose potential risks to many marine organisms including zooplankton and zooplanktivores. Semi-enclosed seas are reported to have high concentrations of microplastics, however, the distribution and concentration of microplastics in one such system, the Gulf of Mexico, remains unknown. Our study documented and characterized microplastics in continental shelf waters off the Louisiana coast in the northern Gulf of Mexico, using bongo nets, neuston nets, and Niskin bottles. Additionally, we compared the size distributions of microplastics and zooplankton collected using the nets. Plastics were manually sorted from the samples, documented, and measured using digital microscopy. Confirmation of putative plastics was carried out by hydrofluoric acid digestion and a subsample was analyzed using FTIR microscopy. Estimated concentrations of microplastics collected on the inner continental shelf during this study are among the highest reported globally. Total microplastic concentrations ranged from 4.8 to 8.2 particles m -3 and 5.0-18.4 particles m -3 for the bongo and neuston samples, respectively. Niskin bottles collected smaller plastic particles than the nets and indicated total microplastic concentrations (primarily fibers) from 6.0E4 - 15.7E4 particles m -3 . Microplastic concentrations were greater than the abundances of all but four of the five most abundant taxa from bongo nets and were not statistically different from the abundances of any of the most numerous taxa from neuston nets. Sizes of microplastics and zooplankton partially or completely overlapped, suggesting the potential for confusion with natural prey. Copyright © 2017 Elsevier Ltd. All rights reserved.
Structure of the North American Atlantic Continental Margin.
ERIC Educational Resources Information Center
Klitgord, K. K.; Schlee, J. S.
1986-01-01
Offers explanations on the origin of the North American Atlantic continental margin. Provides an analysis and illustrations of structural and strategraphic elements of cross sections of the Atlantic continental margin. Also explains the operations and applications of seismic-relection profiles in studying ocean areas. (ML)
The Role of the Mantle on Structural Reactivation at the Plate Tectonics Scale (Invited)
NASA Astrophysics Data System (ADS)
Vauchez, A. R.; Tommasi, A.
2009-12-01
During orogeny, rifting, and in major strike-slip faults, the lithospheric mantle undergoes solid-state flow to accommodate the imposed strain. This deformation occurs mostly through crystal plasticity processes, like dislocation creep, and results in the development of a crystallographic preferred orientation (CPO) of olivine and pyroxene. Because these minerals, especially olivine, display strongly anisotropic physical properties, their preferred orientation confers anisotropic properties at the scale of the rock. When the deformation event comes to its end, the CPO are "frozen" and remain stable for millions or even billions years if no other deformation subsequently affects the lithospheric mantle. This means that anisotropic properties preserving a memory of previous deformation events may subsist in the continental mantle over very long periods of time. One of the main consequences of a well-developed olivine CPO is an anisotropic mantle viscosity and hence a deformation dependant on the orientation of the tectonic solicitations relative to the orientation of the olivine CPO inherited from the past orogenic events. The most obvious expression of this anisotropic mechanical behaviour is the influence of the inherited tectonic fabric on continental rifting. Most continental rifts that lead to successful continental breakup, like in the early Atlantic or the western Indian systems, formed parallel to ancient collisional belts. Moreover, the early stages of deformation in these systems are characterized by a transtensional strain regime involving a large component of strike-slip shearing parallel to the inherited fabric. The link between the lithospheric mantle fabric and the rift structure is further supported by seismic anisotropy measurements in major rifts (e.g., the East-African Rift) or at passive continental margins (e.g., the Atlantic Ocean) that show fast split S-waves polarized in a direction parallel to both the inherited fabric and the trend of the rift, and by the analysis of the CPO in mantle xenoliths collected in such areas. These observations are consistent with recent multi-scale numerical models showing that olivine CPO frozen in the lithospheric mantle result in an anisotropic mechanical behaviour. In a plate submitted to extension, CPO-induced anisotropy favours the reactivation in transtension of lithospheric-scale strike slip faults that are oblique to the imposed tensional stresses. Further investigation is needed to constrain the role of an inherited mechanical anisotropy of the lithosphere during compressional events and the possible feedbacks between an anisotropic viscous deformation of the lithospheric mantle and the seismic cycle. In both cases, crust-mantle coupling is likely for large-scale structures and mantle CPO may influence the kinematics of tectonic systems, at least during the initial stages of their evolution.
Seismic cycle feedbacks in a mid-crustal shear zone
NASA Astrophysics Data System (ADS)
Melosh, Benjamin L.; Rowe, Christie D.; Gerbi, Christopher; Smit, Louis; Macey, Paul
2018-07-01
Mid-crustal fault rheology is controlled by alternating brittle and plastic deformation mechanisms, which cause feedback cycles that influence earthquake behavior. Detailed mapping and microstructural observations in the Pofadder Shear Zone (Namibia and South Africa) reveal a lithologically heterogeneous shear zone core with quartz-rich mylonites and ultramylonites, plastically overprinted pseudotachylyte and active shear folds. We present evidence for a positive feedback cycle in which coseismic grain size reduction facilitates active shear folding by enhancing competency contrasts and promoting crystal plastic flow. Shear folding strengthens a portion of a shear zone by limb rotation, focusing deformation and promoting plastic flow or brittle slip in resulting areas of localized high stress. Using quartz paleopiezometry, we estimate strain and slip rates consistent with other studies of exhumed shear zones and modern plate boundary faults, helping establish the Pofadder Shear Zone as an ancient analogue to modern, continental-scale, strike-slip faults. This feedback cycle influences seismicity patterns at the scale of study (10s of meters) and possibly larger scales as well, and contributes to bulk strengthening of the brittle-plastic transition on modern plate boundary faults.
NASA Astrophysics Data System (ADS)
Brune, S.; Ulvrova, M.; Williams, S.
2017-12-01
The surface of the Earth is divided into a jigsaw of tectonic plates, some carrrying continents that disperse and aggregate through time, forming transient supercontinents like Pangea and Rodinia. Here, we study continental rifting using large-scale numerical simulations with self-consistent evolution of plate boundaries, where continental break-up emerges spontaneously due to slab pull, basal drag and trench suction forces.We use the StagYY convection code employing a visco-plastic rheology in a spherical annulus geometry. We consider an incompressible mantle under the Boussinesq approximation that is basally and internally heated.We show that continental separation follows a characteristic evolution with three distinctive phases: (1) A pre-rift phase that typically lasts for several hundreds of millions of years with tectonic quiescence in the suture and extensional stresses that are slowly building up. (2) A rift phase that further divides into a slow rift period of several tens of millions of years where stresses continuously increase followed by a rift acceleration period featuring an abrupt stress drop within several millions of years. The speed-up takes place before lithospheric break-up and therefore affects the structural architecture of the rifted margins. (3) The drifting phase with initially high divergence rates persists over tens of millions of years until the system adjust to new conditions and the spreading typically slows down.By illustrating the geodynamic connection between subduction dynamics and rift evolution, our results allow new interpretations of plate tectonic reconstructions. Rift acceleration within the second phase of rifting is compensated by enhanced convergence rates at subduction zones. This model outcome predicts enhanced subduction velocities, e.g. between North America and the Farallon plate during Central Atlantic rifting 200 My ago, or closure of potential back-arc basins such as in the proto-Andean ranges of South America during South Atlantic opening. Post-rift deceleration occurs when the global plate system re-equilibrates after continental rupture. This phenomenon of a plate slow-down after mechanical rupture is recorded by observations from rifted margins between Australia-Antarctica and Greenland-Eurasia.
NASA Astrophysics Data System (ADS)
Paulsen, G. E.; Nielsen, S. B.; Hansen, D. L.
The vertical movements during a regional stress reversal in a rifted basin or on a passive continental margin are examined using a numerical 2D thermo-mechanical finite element model with a visco-elastic-plastic rheology. Three different physical mechanisms are recognized in small-scale vertical movements at small inplane force variations: elastic dilatation, elastic flexure, and permanent deformation. Their rela- tive importance depend on the applied force, the duration of the force, and the thermal structure of the lithosphere. Elastic material dilatation occurs whenever the stress state changes. A reversal from extension to compression therefore immediately leads to elastic dilatation, and re- sults in an overall subsidence of the entire profile. Simultaneously with dilatation the lithosphere reacts with flexure. The significance of the flexural component strongly depends on the thermal structure of the lithosphere. The polarity and amplitude of the flexure depends on the initial (before compression) loading of the lithosphere. Gener- ally, the flexural effects lead to subsidence of the overdeep in the landward part of the basin and a small amount of uplift at the basin flanks. The amplitudes of the flexural response are small and comparable with the amplitudes of the elastic dilatation. With continuing compression permanent deformation and lithospheric thickening becomes increasingly important. Ultimately, the thickened part of the lithosphere stands out as an inverted zone. The amount of permanent deformation is directly connected with the size and duration of the applied force, but even a relatively small force leads to inversion tectonics in the landward part of the basin. The conclusions are: 1) small stress induced vertical movements in rift basins and at passive continental margins are the result of a complex interaction of at least three different processes, 2) the total sediment loaded amplitudes resulting from these pro- cesses are small (2-300 m) for inplane forces up to 1.5·1012 N/m.
Structural-tectonic zoning of the Arctic
NASA Astrophysics Data System (ADS)
Petrov, Oleg; Sobolev, Nikolay; Morozov, Andrey; Shokalsky, Sergey; Kashubin, Sergey; Grikurov, Garrik; Tolmacheva, Tatiana; Rekant, Pavel; Petrov, Evgeny
2017-04-01
Structural-tectonic zoning of the Arctic is based on the processing of geological and geophysical data and bottom sampling materials produced within the project "Atlas of Geological Maps of the Circumpolar Arctic." Zoning of the Arctic territories has been conducted taking into account the Earth's crust types, age of consolidated basement, and features of geological structure of the sedimentary cover. Developed legend for the zoning scheme incorporates five main groups of elements: continental and oceanic crust, folded platform covers, accretion-collision systems, and provinces of continental cover basalts. An important feature of the structural-tectonic zoning scheme is designation of continental crust in the central regions of the Arctic Ocean, the existence of which is assumed on the basis of numerous geological data. It has been found that most of the Arctic region has continental crust with the exception of the Eurasian Basin and the central part of the Canada Basin, which are characterized by oceanic crust type. Thickness of continental crust from seismic data varies widely: from 30-32 km on the Mendeleev Rise to 18-20 km on the Lomonosov Ridge, decreasing to 8-10 km in rift structures of the Podvodnikov-Makarov Basin at the expense of reduction of the upper granite layer. New data confirm similar basement structure on the western and eastern continental margins of the Eurasian oceanic basin. South to north, areas of Neoproterozoic (Baikalian) and Paleozoic (Ellesmerian) folding are successively distinguished. Neoproterozoic foldbelt is observed in Central Taimyr (Byrranga Mountains). Continuation of this belt in the eastern part of the Arctic is Novosibirsk-Chukchi fold system. Ellesmerian orogen incorporates the northernmost areas of Taimyr and Severnaya Zemlya, wherefrom it can be traced to the Geofizikov Spur of the Lomonosov Ridge and further across the De Long Archipelago and North Chukchi Basin to the north of Alaska Peninsula and in the Beaufort Sea. From the north, Ellesmerides are limited by the Precambrian continental blocks - North Kara and Mendeleev Rise, the sedimentary cover within which is represented by undisturbed Paleozoic and Mesozoic deposits. Analysis of the geological and tectonic maps and the map of the Arctic basement structure indicates that the heterogeneous crustal structure of the Arctic Ocean and its continental framing were formed as a result of simultaneous development and interaction of three large paleo-oceans in the Neoproterozoic and Phanerozoic - Paleo-Asian, Proto-Atlantic and Paleo-Pacific oceans. A conceptual model that represents our understanding of structural relationships and crustal types of the main Arctic Basin structures is quite simple. The Arctic Basin is bounded by continental margins with continental crust: relatively elevated Barents-Kara - in the west, and generally submerged Amerasia margin - in the east. The latter represents a continental "bridge" formed by thinned and stretched continental crust. It connects two opposite continents - Laurentia and Eurasia, and is essentially a fragmented, tectonically mobile structure.
Quantitative calculation and numerical modeling of the conjugate margins of the South China Sea
NASA Astrophysics Data System (ADS)
Dong, D.; Pérez-Gussinyé, M.; Wang, W.; Bai, Y.
2017-12-01
South China margin rifted on the tectonic setting of the early active continental margin since Cenozoic. The present South China Sea (SCS) opened at 32 Ma and showed propagation from east to west, with different crustal and sedimentary structures at the conjugate continental margins. Based on the latest high-quality multi-channel seismic data, bathymetric data, and other obtained seismic profiles, the asymmetric characteristics between the conjugate margins of the SCS are revealed. Spatial variation of morphology, basement structure and marginal faults are discovered among the SCS margin profiles. We calculate the lithospheric stretching factors and analyze the anomalous post-rift subsidence from two typical seismic profiles in the conjugate margins of the SCS, with integrated method of 2D forward and inversion based on flexural-cantilever model. We propose a differential extension model to explain the spatial differences in the SCS margins and emphasize the role of detachment fault in evolutionary process. Numerical modeling has a great advantage in studying the rifted margin formation mechanism. Dynamic modeling for the formation of asymmetric conjugate margins of the SCS is carried out by solving the thermal-mechanical equation, based on the viscoelastic-plastic model. The results show that the width and symmetry of the margin are controlled by the crustal rheological structure and sedimentation rate. Crust with lower strength is prone to distributed and persistent faulting instead of strain localization, which results in the wider margin. On the contrary, the stronger crust would generate large faults and lead to strain localization in a small amount of them, easier to form narrow continental margin. Large sediment loading is favorable for the development of large faults, meanwhile, the subsequent thermal effect reduces the crustal viscosity. A sudden transition zone of sedimentation rate is prone to strain localization and accelerates the crust rift, which may affect the future break-up. The numerical modeling with full dynamics in SCS needs a further investigation. Acknowledge: This study was supported by the National Natural Science Foundation of China (No. 41476042, 41506055 )
Toward self-consistent tectono-magmatic numerical model of rift-to-ridge transition
NASA Astrophysics Data System (ADS)
Gerya, Taras; Bercovici, David; Liao, Jie
2017-04-01
Natural data from modern and ancient lithospheric extension systems suggest three-dimensional (3D) character of deformation and complex relationship between magmatism and tectonics during the entire rift-to-ridge transition. Therefore, self-consistent high-resolution 3D magmatic-thermomechanical numerical approaches stand as a minimum complexity requirement for modeling and understanding of this transition. Here we present results from our new high-resolution 3D finite-difference marker-in-cell rift-to-ridge models, which account for magmatic accretion of the crust and use non-linear strain-weakened visco-plastic rheology of rocks that couples brittle/plastic failure and ductile damage caused by grain size reduction. Numerical experiments suggest that nucleation of rifting and ridge-transform patterns are decoupled in both space and time. At intermediate stages, two patterns can coexist and interact, which triggers development of detachment faults, failed rift arms, hyper-extended margins and oblique proto-transforms. En echelon rift patterns typically develop in the brittle upper-middle crust whereas proto-ridge and proto-transform structures nucleate in the lithospheric mantle. These deep proto-structures propagate upward, inter-connect and rotate toward a mature orthogonal ridge-transform patterns on the timescale of millions years during incipient thermal-magmatic accretion of the new oceanic-like lithosphere. Ductile damage of the extending lithospheric mantle caused by grain size reduction assisted by Zenner pinning plays critical role in rift-to-ridge transition by stabilizing detachment faults and transform structures. Numerical results compare well with observations from incipient spreading regions and passive continental margins.
Zheng, Tian-Yu; He, Yu-Mei; Yang, Jin-Hui; Zhao, Liang
2015-01-01
Crustal rejuvenation is a key process that has shaped the characteristics of current continental structures and components in tectonic active continental regions. Geological and geochemical observations have provided insights into crustal rejuvenation, although the crustal structural fabrics have not been well constrained. Here, we present a seismic image across the North China Craton (NCC) and Central Asian Orogenic Belt (CAOB) using a velocity structure imaging technique for receiver functions from a dense array. The crustal evolution of the eastern NCC was delineated during the Mesozoic by a dominant low seismic wave velocity with velocity inversion, a relatively shallow Moho discontinuity, and a Moho offset beneath the Tanlu Fault Zone. The imaged structures and geochemical evidence, including changes in the components and ages of continental crusts and significant continental crustal growth during the Mesozoic, provide insight into the rejuvenation processes of the evolving crust in the eastern NCC caused by structural, magmatic and metamorphic processes in an extensional setting. The fossil structural fabric of the convergent boundary in the eastern CAOB indicates that the back-arc action of the Paleo-Pacific Plate subduction did not reach the hinterland of Asia. PMID:26443323
NASA Astrophysics Data System (ADS)
Ulvrova, Martina; Williams, Simon; Coltice, Nicolas; Tackley, Paul
2017-04-01
Plate tectonics is a prominent feature on Earth. Together with the underlying convecting mantle, plates form a self-organized system. In order to understand the dynamics of the coupled system, subduction of the lithospheric plates plays the key role since it links the exterior with the interior of the planet. In this work we study subduction initiation and death with respect to the position of the continental rafts. Using thermo-mechanical numerical calculations we investigate global convection models featuring self-consistent plate tectonics and continental drifting employing a pseudo-plastic rheology and testing the effect of a free surface. We consider uncompressible mantle convection in Boussinesq approximation that is basaly and internaly heated. Our calculations indicate that the presence of the continents alterns stress distribution within a certain distance from the margins. Intra-oceanic subudction initiation is favorable during super-continent cycles while the initiation at passive continental margin prevails when continents are dispersed. The location of subduction initiation is additionally controlled by the lithospheric strength. Very weak lithosphere results in domination of intra-oceanic subduction initiation. The subduction zones die more easily in the vicinity of the continent due to the strong rheological contrast between the oceanic and continental lithosphere. In order to compare our findings with subduction positions through time recorded on Earth, we analyse subduction birth in global plate reconstruction back to 410 My.
Microplastic pollution in deep-sea sediments.
Van Cauwenberghe, Lisbeth; Vanreusel, Ann; Mees, Jan; Janssen, Colin R
2013-11-01
Microplastics are small plastic particles (<1 mm) originating from the degradation of larger plastic debris. These microplastics have been accumulating in the marine environment for decades and have been detected throughout the water column and in sublittoral and beach sediments worldwide. However, up to now, it has never been established whether microplastic presence in sediments is limited to accumulation hot spots such as the continental shelf, or whether they are also present in deep-sea sediments. Here we show, for the first time ever, that microplastics have indeed reached the most remote of marine environments: the deep sea. We found plastic particles sized in the micrometre range in deep-sea sediments collected at four locations representing different deep-sea habitats ranging in depth from 1100 to 5000 m. Our results demonstrate that microplastic pollution has spread throughout the world's seas and oceans, into the remote and largely unknown deep sea. Copyright © 2013. Published by Elsevier Ltd.
Sims, Paul K.; Saltus, Richard W.; Anderson, Eric D.
2008-01-01
The Precambrian basement rocks of the continental United States are largely covered by younger sedimentary and volcanic rocks, and the availability of updated aeromagnetic data (NAMAG, 2002) provides a means to infer major regional basement structures and tie together the scattered, but locally abundant, geologic information. Precambrian basement structures in the continental United States have strongly influenced later Proterozoic and Phanerozoic tectonism within the continent, and there is a growing awareness of the utility of these structures in deciphering major younger tectonic and related episodes. Interest in the role of basement structures in the evolution of continents has been recently stimulated, particularly by publications of the Geological Society of London (Holdsworth and others, 1998; Holdsworth and others, 2001). These publications, as well as others, stress the importance of reactivation of basement structures in guiding the subsequent evolution of continents. Knowledge of basement structures is an important key to understanding the geology of continental interiors.
NASA Astrophysics Data System (ADS)
de Smet, J. H.; van den Berg, A. P.; Vlaar, N. J.
1998-10-01
The long-term growth and stability of compositionally layered continental upper mantle has been investigated by numerical modelling. We present the first numerical model of a convecting mantle including differentiation through partial melting resulting in a stable compositionally layered continental upper mantle structure. This structure includes a continental root extending to a depth of about 200 km. The model covers the upper mantle including the crust and incorporates physical features important for the study of the continental upper mantle during secular cooling of the Earth since the Archaean. Among these features are: a partial melt generation mechanism allowing consistent recurrent melting, time-dependent non-uniform radiogenic heat production, and a temperature- and pressure-dependent rheology. The numerical results reveal a long-term growth mechanism of the continental compositional root. This mechanism operates through episodical injection of small diapiric upwellings from the deep layer of undepleted mantle into the continental root which consists of compositionally distinct depleted mantle material. Our modelling results show the layered continental structure to remain stable during at least 1.5 Ga. After this period mantle differentiation through partial melting ceases due to the prolonged secular cooling and small-scale instabilities set in through continental delamination. This stable period of 1.5 Ga is related to a number of limitations in our model. By improving on these limitations in the future this stable period will be extended to more realistic values.
Deep structure of the Santos Basin-São Paulo Plateau System, SE Brazil
NASA Astrophysics Data System (ADS)
Evain, Mikael; Afilhado, Alexandra; Rigoti, Caesar; Loureiro, Afonso; Alves, Daniela; Klingelhoefer, Frauke; Schnurle, Philippe; Feld, Aurelie; Fuck, Reinhardt; Soares, Jose; Vinicius de Lima, Marcus; Corela, Carlos; Matias, Luis; Benabdellouahed, Massinissa; Baltzer, Agnes; Rabineau, Marina; Viana, Adriano; Moulin, Maryline; Aslanian, Daniel
2015-04-01
The structure and nature of the crust underlying the Santos Basin-São Paulo Plateau System (SSPS), in the SE Brazilian margin, is discussed based on five wide-angle seismic profiles acquired during the SanBa experiment in 2011. Velocity models allow us to precisely divide the SSPS in six domains from unthinned continental crust (Domain CC) to normal oceanic crust (Domain OC). A seventh domain (Domain D), a triangular shape region in the SE of the SSPS, is discussed by [Klingelhoefer et al., GJI, 2014]. Beneath the continental shelf, a ~100 km wide necking zone (Domain N) is imaged where continental crust thins abruptly from ~40 km to less than 15 km. Toward the ocean, most of the SSPS (Domain A and C) shows velocity ranges, velocity gradients and a Moho interface characteristic of thinned continental crust. The central domain (Domain B) has, however, a very heterogeneous structure. While its southwestern part still exhibits extremely thinned (7 km) continental crust, its northeastern part depicts a 2-4 km thick upper layer (6.0-6.5 km/s) overlying an anomalous velocity layer (7.0-7.8 km/s) and no evidence of a Moho interface. This structure is interpreted as atypical oceanic crust, exhumed lower crust or upper continental crust intruded by mafic material, overlying either altered mantle in the first two cases or intruded lower continental crust in the last case. The v-shaped structuration in this central domain confirms an initial episode of rifting within the SSPS oblique to the general opening direction of the South Atlantic central segment.
Upper mantle structure at Walvis Ridge from Pn tomography
NASA Astrophysics Data System (ADS)
Ryberg, Trond; Braeuer, Benjamin; Weber, Michael
2017-10-01
Passive continental margins offer the unique opportunity to study the processes involved in continental extension and break-up. Within the LISPWAL (LIthospheric Structure of the Namibian continental Passive margin at the intersection with the Walvis Ridge from amphibious seismic investigations) project, combined on- and offshore seismic experiments were designed to characterize the Southern African passive margin at the Walvis Ridge in northern Namibia. In addition to extensive analysis of the crustal structures, we carried out seismic investigations targeting the velocity structure of the upper mantle in the landfall region of the Walvis Ridge with the Namibian coast. Upper mantle Pn travel time tomography from controlled source, amphibious seismic data was used to investigate the sub-Moho upper mantle seismic velocity. We succeeded in imaging upper mantle structures potentially associated with continental break-up and/or the Tristan da Cunha hotspot track. We found mostly coast-parallel sub-Moho velocity anomalies, interpreted as structures which were created during Gondwana break-up.
Structure of the North American Atlantic Continental Margin
Schlee, J.S.; Klitgord, K.K.
1986-01-01
Off E N America, where the structure of the continental margin is essentially constructional, seismic profiles have approximated geologic cross sections up to 10-15km below the sea floor and revealed major structural and stratigraphic features that have regional hydrocarbon potential. These features include a) a block-faulted basement hinge zone; b) a deep, broad, rifted basement filled with clastic sediment and salt; and c) a buried paleoshelf-edge complex that has many forms. The mapping of seismostratigraphic units over the continental shelf, slope, and rise has shown that the margin's developmental state included infilling of a rifted margin, buildup of a carbonate platform, and construction of an onlapping continental-rise wedge that was accompanied by erosion of the slope. -from Authors
Accumulation and fragmentation of plastic debris in global environments
Barnes, David K. A.; Galgani, Francois; Thompson, Richard C.; Barlaz, Morton
2009-01-01
One of the most ubiquitous and long-lasting recent changes to the surface of our planet is the accumulation and fragmentation of plastics. Within just a few decades since mass production of plastic products commenced in the 1950s, plastic debris has accumulated in terrestrial environments, in the open ocean, on shorelines of even the most remote islands and in the deep sea. Annual clean-up operations, costing millions of pounds sterling, are now organized in many countries and on every continent. Here we document global plastics production and the accumulation of plastic waste. While plastics typically constitute approximately 10 per cent of discarded waste, they represent a much greater proportion of the debris accumulating on shorelines. Mega- and macro-plastics have accumulated in the highest densities in the Northern Hemisphere, adjacent to urban centres, in enclosed seas and at water convergences (fronts). We report lower densities on remote island shores, on the continental shelf seabed and the lowest densities (but still a documented presence) in the deep sea and Southern Ocean. The longevity of plastic is estimated to be hundreds to thousands of years, but is likely to be far longer in deep sea and non-surface polar environments. Plastic debris poses considerable threat by choking and starving wildlife, distributing non-native and potentially harmful organisms, absorbing toxic chemicals and degrading to micro-plastics that may subsequently be ingested. Well-established annual surveys on coasts and at sea have shown that trends in mega- and macro-plastic accumulation rates are no longer uniformly increasing: rather stable, increasing and decreasing trends have all been reported. The average size of plastic particles in the environment seems to be decreasing, and the abundance and global distribution of micro-plastic fragments have increased over the last few decades. However, the environmental consequences of such microscopic debris are still poorly understood. PMID:19528051
Accumulation and fragmentation of plastic debris in global environments.
Barnes, David K A; Galgani, Francois; Thompson, Richard C; Barlaz, Morton
2009-07-27
One of the most ubiquitous and long-lasting recent changes to the surface of our planet is the accumulation and fragmentation of plastics. Within just a few decades since mass production of plastic products commenced in the 1950s, plastic debris has accumulated in terrestrial environments, in the open ocean, on shorelines of even the most remote islands and in the deep sea. Annual clean-up operations, costing millions of pounds sterling, are now organized in many countries and on every continent. Here we document global plastics production and the accumulation of plastic waste. While plastics typically constitute approximately 10 per cent of discarded waste, they represent a much greater proportion of the debris accumulating on shorelines. Mega- and macro-plastics have accumulated in the highest densities in the Northern Hemisphere, adjacent to urban centres, in enclosed seas and at water convergences (fronts). We report lower densities on remote island shores, on the continental shelf seabed and the lowest densities (but still a documented presence) in the deep sea and Southern Ocean. The longevity of plastic is estimated to be hundreds to thousands of years, but is likely to be far longer in deep sea and non-surface polar environments. Plastic debris poses considerable threat by choking and starving wildlife, distributing non-native and potentially harmful organisms, absorbing toxic chemicals and degrading to micro-plastics that may subsequently be ingested. Well-established annual surveys on coasts and at sea have shown that trends in mega- and macro-plastic accumulation rates are no longer uniformly increasing: rather stable, increasing and decreasing trends have all been reported. The average size of plastic particles in the environment seems to be decreasing, and the abundance and global distribution of micro-plastic fragments have increased over the last few decades. However, the environmental consequences of such microscopic debris are still poorly understood.
Potentially exploitable supercritical geothermal resources in the ductile crust
Watanabe, Noriaki; Numakura, Tatsuya; Sakaguchi, Kiyotoshi; Saishu, Hanae; Okamoto, Atsushi; Ingebritsen, Steven E.; Tsuchiya, Noriyoshi
2017-01-01
The hypothesis that the brittle–ductile transition (BDT) drastically reduces permeability implies that potentially exploitable geothermal resources (permeability >10−16 m2) consisting of supercritical water could occur only in rocks with unusually high transition temperatures such as basalt. However, tensile fracturing is possible even in ductile rocks, and some permeability–depth relations proposed for the continental crust show no drastic permeability reduction at the BDT. Here we present experimental results suggesting that the BDT is not the first-order control on rock permeability, and that potentially exploitable resources may occur in rocks with much lower BDT temperatures, such as the granitic rocks that comprise the bulk of the continental crust. We find that permeability behaviour for fractured granite samples at 350–500 °C under effective confining stress is characterized by a transition from a weakly stress-dependent and reversible behaviour to a strongly stress-dependent and irreversible behaviour at a specific, temperature-dependent effective confining stress level. This transition is induced by onset of plastic normal deformation of the fracture surface (elastic–plastic transition) and, importantly, causes no ‘jump’ in the permeability. Empirical equations for this permeability behaviour suggest that potentially exploitable resources exceeding 450 °C may form at depths of 2–6 km even in the nominally ductile crust.
Canales-Aguirre, Cristian B.; Galleguillos, Ricardo; Oyarzun, Fernanda X.; Hernández, Cristián E.
2018-01-01
Previous studies of population genetic structure in Dissostichus eleginoides have shown that oceanographic and geographic discontinuities drive in this species population differentiation. Studies have focused on the genetics of D. eleginoides in the Southern Ocean; however, there is little knowledge of their genetic variation along the South American continental shelf. In this study, we used a panel of six microsatellites to test whether D. eleginoides shows population genetic structuring in this region. We hypothesized that this species would show zero or very limited genetic structuring due to the habitat continuity along the South American shelf from Peru in the Pacific Ocean to the Falkland Islands in the Atlantic Ocean. We used Bayesian and traditional analyses to evaluate population genetic structure, and we estimated the number of putative migrants and effective population size. Consistent with our predictions, our results showed no significant genetic structuring among populations of the South American continental shelf but supported two significant and well-defined genetic clusters of D. eleginoides between regions (South American continental shelf and South Georgia clusters). Genetic connectivity between these two clusters was 11.3% of putative migrants from the South American cluster to the South Georgia Island and 0.7% in the opposite direction. Effective population size was higher in locations from the South American continental shelf as compared with the South Georgia Island. Overall, our results support that the continuity of the deep-sea habitat along the continental shelf and the biological features of the study species are plausible drivers of intraspecific population genetic structuring across the distribution of D. eleginoides on the South American continental shelf. PMID:29362690
Geodynamic inversion to constrain the rheology of the lithosphere: What is the effect of elasticity?
NASA Astrophysics Data System (ADS)
Baumann, Tobias; Kaus, Boris; Thielmann, Marcel
2016-04-01
The concept of elastic thickness (T_e) is one of the main methods to describe the integrated strength of oceanic lithosphere (e.g. Watts, 2001). Observations of the Te are in general agreement with yield strength envelopes estimated from laboratory experiments (Burov, 2007, Goetze & Evans 1979). Yet, applying the same concept to the continental lithosphere has proven to be more difficult (Burov & Diament, 1995), which resulted in an ongoing discussion on the rheological structure of the lithosphere (e.g. Burov & Watts, 2006, Jackson, 2002; Maggi et al., 2000). Recently, we proposed a new approach, which constrains rheological properties of the lithosphere directly from geophysical observations such as GPS-velocity, topography and gravity (Baumann & Kaus, 2015). This approach has the advantage that available data sets (such as Moho depth) can be directly taken into account without making the a-priori assumption that the lithosphere is thin elastic plate floating on the mantle. Our results show that a Bayesian inversion method combined with numerical thermo-mechanical models can be used as independent tool to constrain non-linear viscous and plastic parameters of the lithosphere. As the rheology of the lithosphere is strongly temperature dependent, it is even possible to add a temperature parameterisation to the inversion method and constrain the thermal structure of the lithosphere in this manner. Results for the India-Asia collision zone show that existing geophysical data require India to have a quite high effective viscosity. Yet, the rheological structure of Tibet less well constrained and a number of scenarios give a nearly equally good fit to the data. Yet, one of the assumptions that we make while doing this geodynamic inversion is that the rheology is viscoplastic, and that elastic effects do not significantly alter the large-scale dynamics of the lithosphere. Here, we test the validity of this assumption by performing synthetic forward models and retrieving the rheological parameters of these models with viscoplastic geodynamic inversions. We focus on a typical intra-oceanic subduction system as well as a typical scenario of subduction of an oceanic plate underneath a continental arc. Baumann, T. S. & Kaus, B. J. P., 2015. Geodynamic inversion to constrain thenon-linear rheology of the lithosphere, Geophys. J. Int., 202(2), 1289-1316. Burov, E. B. & Diament, M., 1995. The effective elastic thickness (Te) of continental lithosphere: What does it really mean?, J. Geophys. Res., 100, 3905-3927. Burov, E. B. & Watts, A. B., 2006. The long-term strength of continental lithosphere : jelly sandwich or crème brûlée?, GSA today, 16(1), 4-10. Burov, E. B., 2007. Crust and Lithosphere Dynamics: Plate Rheology and Mechanics, in Treatise Geophys., vol. 6, chap. 3, pp. 99-151, ed. Watts, A. B., Elsevier. Goetze, C. & Evans, B., 1979. Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics, Geophys. J. Int., 59(3), 463-478. Jackson, J., 2002. Strength of the continental lithosphere: Time to abandon the jelly sandwich?, GSA today, 12(9), 4-9. Maggi, A., Jackson, J. A., McKenzie, D., & Priestley, K., 2000a. Earthquake focal depths, effective elastic thickness, and the strength of the continental lithosphere, Geology, 28, 495-498. Watts, A. B., 2001. Isostasy and Flexure of the Lithosphere, Cambridge University Press.
The continent-ocean transition on the northwestern South China Sea
NASA Astrophysics Data System (ADS)
Cameselle, Alejandra L.; Ranero, César R.; Franke, Dieter; Barckhausen, Udo
2015-04-01
Rifted margins are created as a result of stretching and breakup of continental lithosphere that eventually leads to oceanic spreading and formation of a new oceanic basin. A cornerstone for understanding how rift characteristics vary along strike in the same system and what processes control the final transition to seafloor spreading is the continent-ocean transition (COT). We use four regional multichannel seismic profiles and published magnetic lineations to study the structure and variability of COT on the northwest subbasin (NWSB) of the South China Sea and to discern continental from oceanic domains. The continental domain is characterized by tilted fault blocks overlaid by thick syn-rift sedimentary units and fairly continuous Moho reflections typically at 8-10 s twtt. Thickness of the continental crust changes from ~20-25 km under the uppermost slope to ~9-6 km under the lower slope. The oceanic domain is interpreted where a highly reflective top of basement, little faulting, no syntectonic strata, and fairly constant thickness basement (4-8 km) occur. The COT is imaged as a ~5-10 km wide zone where oceanic-type features abut continental-type structures. The South China margin is deformed by abundant normal faults dissecting the continental crust, whereas the conjugate Macclesfield Bank margin displays comparatively abrupt thinning and little faulting. Seismic profiles show an along-strike variation in the tectonic structure of the continental margin. The NE-most lines display ~20-40 km wide segments of intense faulting under the slope and associated continental-crust thinning. Towards the SW, faulting and thinning of the continental crust occurs across a ~100-110 km wide segment. We interpret this 3D structural variability and the narrow COT as a consequence of the abrupt termination of continental rifting tectonics by the NE to SW propagation of a spreading center. We suggest that breakup occurred by spreading center propagation to a larger degree than by lithospheric thinning during continental rifting. Based on the sedimentary successions overlying the oceanic crust, we propose a kinematic evolution for the oceanic domain of the NWSB consisting of a southward spreading center propagation followed by a first narrow ridge jump to the north, and then a younger larger jump to the SW into the east subbasin.
NASA Astrophysics Data System (ADS)
Li, Fucheng; Sun, Zhen; Zhang, Jiangyang
2018-06-01
Although the presence of low-viscosity middle crustal layer in the continental crust has been detected by both geophysical and geochemical studies, its influence on the deformation behavior of continental crust during subduction remains poorly investigated. To illustrate the crustal deformation associated with layered crust during continental subduction, we conducted a suite of 2-D thermo-mechanical numerical studies with visco-brittle/plastic rheology based on finite-differences and marker-in-cell techniques. In the experiments, we established a three-layer crustal model with a quartz-rich middle crustal layer embedded between the upper and lower continental crust. Results show that the middle crustal layer determines the amount of the accreted upper crust, maximum subduction depth, and exhumation path of the subducted upper crust. By varying the initial effective viscosity and thickness of the middle crustal layer, the further effects can be summarized as: (1) a rheologically weaker and/or thicker middle crustal layer results in a larger percentage of the upper crust detaching from the underlying slab and accreting at the trench zone, thereby leading to more serious crustal deformation. The rest of the upper crust only subducts into the depths of high pressure (HP) conditions, causing the absence of ultra-high pressure (UHP) metamorphic rocks; (2) a rheologically stronger and/or thinner middle crustal layer favors the stable subduction of the continental crust, dragging the upper crust to a maximum depth of ∼100 km and forming UHP rocks; (3) the middle crustal layer flows in a ductile way and acts as an exhumation channel for the HP-UHP rocks in both situations. In addition, the higher convergence velocity decreases the amount of subducted upper crust. A detailed comparison of our modeling results with the Himalayan collisional belt are conducted. Our work suggests that the presence of low-viscosity middle crustal layer may be another possible mechanism for absence of UHP rocks in the southern Tibet.
NASA Astrophysics Data System (ADS)
Goswami, A.; Olson, P. L.; Hinnov, L. A.; Gnanadesikan, A.
2015-09-01
We present a method for reconstructing global ocean bathymetry that combines a standard plate cooling model for the oceanic lithosphere based on the age of the oceanic crust, global oceanic sediment thicknesses, plus generalized shelf-slope-rise structures calibrated at modern active and passive continental margins. Our motivation is to develop a methodology for reconstructing ocean bathymetry in the geologic past that includes heterogeneous continental margins in addition to abyssal ocean floor. First, the plate cooling model is applied to maps of ocean crustal age to calculate depth to basement. To the depth to basement we add an isostatically adjusted, multicomponent sediment layer constrained by sediment thickness in the modern oceans and marginal seas. A three-parameter continental shelf-slope-rise structure completes the bathymetry reconstruction, extending from the ocean crust to the coastlines. Parameters of the shelf-slope-rise structures at active and passive margins are determined from modern ocean bathymetry at locations where a complete history of seafloor spreading is preserved. This includes the coastal regions of the North, South, and central Atlantic, the Southern Ocean between Australia and Antarctica, and the Pacific Ocean off the west coast of South America. The final products are global maps at 0.1° × 0.1° resolution of depth to basement, ocean bathymetry with an isostatically adjusted multicomponent sediment layer, and ocean bathymetry with reconstructed continental shelf-slope-rise structures. Our reconstructed bathymetry agrees with the measured ETOPO1 bathymetry at most passive margins, including the east coast of North America, north coast of the Arabian Sea, and northeast and southeast coasts of South America. There is disagreement at margins with anomalous continental shelf-slope-rise structures, such as around the Arctic Ocean, the Falkland Islands, and Indonesia.
NASA Technical Reports Server (NTRS)
Toksoz, M. N.; Molnar, P.
1983-01-01
Studies of the structure of the continental collision zones using seismic and body waves, theoretical modelling of the thermal regime of the convergence processes, and studies of earthquake mechanisms and deformation aspects of the model are covered.
2D Geodynamic models of Microcontinent Formation
NASA Astrophysics Data System (ADS)
Tetreault, Joya; Buiter, Susanne
2013-04-01
Continental fragments (microcontinents and continental ribbons) are rifted-off blocks of relatively unthinned continental crust situated among the severely thinned crust of passive margins. The existence of these large crustal blocks would suggest that the passive margin containing them either underwent simultaneous differential rifting or multi-stage rifting in order to produce continental breakup and seafloor spreading in more than one location in the span of approximately 100 km. Also, because continental fragments do not occur on every passive margin, there must be something particular about the crust and/or lithosphere that led to the production of these features. Some proposed mechanisms for microcontinent and continental ribbon formation include (1) structural inheritance, (2) strain localization by serpentinized mantle or magmatic underplating, and (3) plume interaction with an active rift. Pre-existing weakness and inherited structural fabrics in typical continental crust from past tectonic events, such as varying rheology of accreted terranes and collisional suture zones, could be reactivated and serve as foci for deformation. The second theory is that strain is localized in certain regions by large amounts of weakened material that are either serpentinized mantle or mafic bodies underplating the thinned crust. Another possible process that could lead to continental fragment formation is magmatic influence of hot plume material that focuses in various regions, producing rifts in separate areas. The Jan Mayen and Seychelles microcontinents both have geological and plate reconstruction evidence to support the plume interaction theory. We use 2-D geodynamic experiments to assess the importance of structural inheritance, strain localization by regions of weakened mantle material, and contributions to rifting from plume material on producing crustal blocks surrounded by seafloor or thinned/hyperextended crust. Our preliminary results suggest that each of these three mechanisms, working alone, cannot produce concurrent or multi-stage differential thinning and continental break-up. We infer that multistage extension produced by a combination of these mechanisms could be necessary to produce microcontinents and continental ribbons.
Knoblauch, Andreas; Körner, Edgar; Körner, Ursula; Sommer, Friedrich T.
2014-01-01
Although already William James and, more explicitly, Donald Hebb's theory of cell assemblies have suggested that activity-dependent rewiring of neuronal networks is the substrate of learning and memory, over the last six decades most theoretical work on memory has focused on plasticity of existing synapses in prewired networks. Research in the last decade has emphasized that structural modification of synaptic connectivity is common in the adult brain and tightly correlated with learning and memory. Here we present a parsimonious computational model for learning by structural plasticity. The basic modeling units are “potential synapses” defined as locations in the network where synapses can potentially grow to connect two neurons. This model generalizes well-known previous models for associative learning based on weight plasticity. Therefore, existing theory can be applied to analyze how many memories and how much information structural plasticity can store in a synapse. Surprisingly, we find that structural plasticity largely outperforms weight plasticity and can achieve a much higher storage capacity per synapse. The effect of structural plasticity on the structure of sparsely connected networks is quite intuitive: Structural plasticity increases the “effectual network connectivity”, that is, the network wiring that specifically supports storage and recall of the memories. Further, this model of structural plasticity produces gradients of effectual connectivity in the course of learning, thereby explaining various cognitive phenomena including graded amnesia, catastrophic forgetting, and the spacing effect. PMID:24858841
NASA Astrophysics Data System (ADS)
Hubert-Ferrari, Aurélia; King, Geoffrey; Manighetti, Isabelle; Armijo, Rolando; Meyer, Bertrand; Tapponnier, Paul
2003-04-01
The evolution of the Gulf of Aden and the Anatolian Fault systems are modelled using the principles of elastic fracture mechanics usually applied to smaller scale cracks or faults. The lithosphere is treated as a plate, and simple boundary conditions are applied that correspond to the known plate boundary geometry and slip vectors. The models provide a simple explanation for many observed geological features. For the Gulf of Aden the model predicts why the ridge propagated from east to west from the Owen Fracture Zone towards the Afar and the overall form of its path. The smaller en echelon offsets can be explained by upward propagation from the initially created mantle dyke while the larger ones may be attributed to the propagating rupture interacting with pre-existing structures. For Anatolia the modelling suggests that the East Anatolian Fault was created before the North Anatolian Fault could form. Once both faults were formed however, activity could switch between them. The time scales over which this should take place are not known, but evidence for switching can be found in the historical seismicity. For Aden and Anatolia pre-existing structures or inhomogeneous stress fields left from earlier orogenic events have modified the processes of propagation and without an understanding of the existence of such features the propagation processes cannot be fully understood. Furthermore a propagating fault can extend into an active region where it would not have initiated. The North Anatolian Fault encountered slow but active extension when it entered the Aegean about 5 Ma and the stress field associated with the extending fault has progressively modified Aegean extension. In the central Aegean activity has been reduced while to the north-west on features such as the Gulfs of Evvia and Corinth activity has been increased. The field observation that major structures propagate and the success of simple elastic models suggest that the continental crust behaves in an elastic-brittle or elastic-plastic fashion even though laboratory tests may be interpreted to suggest viscous behaviour. There are major problems in scaling from the behaviour of small homogeneous samples to the large heterogeneous mantle and large-scale observations should be treated more seriously than extrapolations of the behaviour of laboratory experiments over many orders of magnitude in space and time. The retention of long-term elasticity and localised failure suggests a similar gross rheology for the oceanic and continental lithospheres. Even though it is incorrect to attribute differences in behaviour to the former being rigid (i.e. elastic) and the latter viscous, oceanic and continental lithosphere behave in different ways. Unlike oceanic crust, continental crust is buoyant and cannot be simply created or destroyed. The process of thickening or thinning works against gravity preventing large displacements on extensional or contractional features in the upper mantle. The equivalents of ridge or subduction systems are suppressed before they can accommodate large displacements and activity must shift elsewhere. On the other hand, strike-slip boundaries and extrusion processes are favoured.
Disentangling plasticity of serotiny, a key adaptive trait in a Mediterranean conifer.
Martín-Sanz, Ruth C; Santos-Del-Blanco, Luis; Notivol, Eduardo; Chambel, M Regina; San-Martín, Roberto; Climent, José
2016-09-01
Serotiny, the maintenance of ripe seeds in closed fruits or cones until fire causes dehiscence, is a key adaptive trait of plants in fire-prone ecosystems, but knowledge of phenotypic plasticity for cone retention in woody plants is extremely scarce. On the basis of published literature and our field observations, we hypothesized that increased aridity might decrease the aerial seed bank as a plastic response, not necessarily adaptive. We used a Pinus halepensis common garden replicated in three contrasted sites (mild, cold, and dry) to separate population differentiation from phenotypic plasticity of cone serotiny and canopy cone bank (CCB). Differences in growth among trees of the same provenance allowed us to include size effect as a proxy of ontogenetic age for the same chronological age of the trees. Tree size had a strong negative effect on serotiny, but serotiny degree differed among trial sites even after accounting for size effects. As hypothesized, serotiny was lower at the harsh (dry and cold) sites compared with the mild site. Genetic variation for size-dependent cone serotiny and significant population × site interaction were confirmed, the latter implying different plasticity of serotiny among populations. Population differentiation for CCB showed an ecotypic trend, with positive correlation with temperature oscillation (continentality) and negative correlation with summer rainfall. Growth-limiting environments exacerbated the precocious release of seeds, contrary to the ecotypic trend found for the aerial cone bank, suggesting a counter-gradient plasticity. This plastic response is potentially maladaptive under a scenario of frequent wildfires. © 2016 Botanical Society of America.
NASA Astrophysics Data System (ADS)
Cao, J.; Xia, S.; Sun, J.; Wan, K.; Xu, H.
2017-12-01
Known as a significant region to study tectonic relationship between South China block and South China Sea (SCS) block and the evolution of rifted basin in continental margin, the continental shelf of northern SCS documents the evolution from continental splitting to seafloor spreading of SCS. To investigate crustal structure of central continental shelf in northern SCS, two wide-angle onshore-offshore seismic experiments and coincident multi-channel seismic (MCS) profiles were carried out across the onshore-offshore transitional zone in northern SCS, 2010 and 2012. A total of 34 stations consisted of ocean bottom seismometers, portable and permanent land stations were deployed during the survey. The two-dimensional precise crustal structure models of central continental shelf in northern SCS was constructed from onshore to offshore, and the stretching factors along the P-wave velocity models were calculated. The models reveal that South China block is a typical continental crust with a 30-32 km Moho depth, and a localized high-velocity anomaly in middle-lower crust under land area near Hong Kong was imaged, which may reflect magma underplating caused by subduction of paleo-Pacific plate in late Mesozoic. The littoral fault zone is composed of several parallel, high-angle, normal faults that mainly trend northeast to northeast-to-east and dip to the southeast with a large displacement, and the fault is divided into several segments separated by the northwest-trending faults. The shelf zone south of LFZ was consisted of a differential thinning upper and lower continental crust, which indicate stretch thinning of passive continent margin during the Cenozoic spreading of the SCS. The results appear to further confirm that the northern margin of SCS experienced a transition from active margin to passive one during late Mesozoic and Cenozoic.
The life cycle of continental rifts: Numerical models of plate tectonics and mantle convection.
NASA Astrophysics Data System (ADS)
Ulvrova, Martina; Brune, Sascha; Williams, Simon
2017-04-01
Plate tectonic processes and mantle convection form a self-organized system whose surface expression is characterized by repeated Wilson cycles. Conventional numerical models often capture only specific aspects of plate-mantle interaction, due to imposed lateral boundary conditions or simplified rheologies. Here we study continental rift evolution using a 2D spherical annulus geometry that does not require lateral boundary conditions. Instead, continental extension is driven self-consistently by slab pull, basal drag and trench suction forces. We use the numerical code StagYY to solve equations of conservation of mass, momentum and energy and transport of material properties. This code is capable of computing mantle convection with self-consistently generated Earth-like plate tectonics using a pseudo-plastic rheology. Our models involve an incompressible mantle under the Boussinesq approximation with internal heat sources and basal heating. Due to the 2D setup, our models allow for a comparably high resolution of 10 km at the mantle surface and 15 km at the core mantle boundary. Viscosity variations range over 7 orders of magnitude. We find that the causes for rift initiation are often related to subduction dynamics. Some rifts initiate due to increasing slab pull, others because of developing trench suction force, for instance by closure of an intra-oceanic back-arc basin. In agreement with natural settings, our models reproduce rifts forming in both young and old collision zones. Our experiments show that rift dynamics follow a characteristic evolution, which is independent of the specific setting: (1) continental rifts initiate during tens of million of years at low extension rates (few millimetres per year) (2) the extension velocity increases during less than 10 million years up to several tens of millimetres per year. This speed-up takes place before lithospheric break-up and affects the structural architecture of rifted margins. (3) high divergence rates persist until break-up is achieved and often reduce several tens of millions of years after continental separation. By illustrating the geodynamic connection between subduction dynamics and rift evolution, our results allow new interpretations of plate tectonic reconstructions. Rift acceleration during the transition from phase 1 to phase 2 induces elevated convergence rates at the opposite side of the continents. This leads to enhanced subduction velocities, e.g. between North America and the Farallon plate 200 million years ago, or to the closure of potential back-arc basins such as in the proto-Andean ranges of South America. Post-rift deceleration occurs when the global plate system re-equilibrates after the phase of enhanced stress during continental rupture. This phenomenon of a plate slow-down after mechanical rupture occurred in the real-world aftermath of Australia-Antarctica separation, South Atlantic opening, and North Atlantic break-up.
Habitat-specific foraging strategies in Australasian gannets
Wells, Melanie R.; Arnould, John P. Y.
2016-01-01
ABSTRACT Knowledge of top predator foraging adaptability is imperative for predicting their biological response to environmental variability. While seabirds have developed highly specialised techniques to locate prey, little is known about intraspecific variation in foraging strategies with many studies deriving information from uniform oceanic environments. Australasian gannets (Morus serrator) typically forage in continental shelf regions on small schooling prey. The present study used GPS and video data loggers to compare habitat-specific foraging strategies at two sites of contrasting oceanographic regimes (deep water near the continental shelf edge, n=23; shallow inshore embayment, n=26), in south-eastern Australia. Individuals from the continental shelf site exhibited pelagic foraging behaviours typical of gannet species, using local enhancement to locate and feed on small schooling fish; in contrast only 50% of the individuals from the inshore site foraged offshore, displaying the typical pelagic foraging strategy. The remainder adopted a strategy of searching sand banks in shallow inshore waters in the absence of conspecifics and other predators for large, single prey items. Furthermore, of the individuals foraging inshore, 93% were male, indicating that the inshore strategy may be sex-specific. Large inter-colony differences in Australasian gannets suggest strong plasticity in foraging behaviours, essential for adapting to environmental change. PMID:27305927
Origin and late quaternary tectonism of a western Canadian continental shelf trough
NASA Astrophysics Data System (ADS)
Moslow, Thomas F.; Luternauer, John L.; Rohr, Kristin
1991-08-01
Analyses of high resolution and multi-channel seismic profiles from the central continental shelf of western Canada ascribe a late Quaternary glacial origin to large-scale troughs. Along the margins of Moresby Trough, one of three large-scale cross-shelf bathymetric depressions in Queen Charlotte Sound, seismic profiles within Quaternary sediments show a divergence of reflectors, thickening and folding of seismic units, and concavity of reflectors suggestive of drag. Compactional subsidence, growth faulting, and compaction faulting are also observed. Fault traces commonly terminate below the seabed. Deformation of Quaternary sediments due to faulting is plastic in nature and maximum offset of reflectors is 2.5 m. The observed Quaternary deformation appears to be a product of rapid deposition, loading and subsidence of late Quaternary sediment, which is unrelated to seismic activity. In addition, Quaternary faulting was probably activated by post-glacial loading and isostatic rebound of consolidated Tertiary strata along the margins of continental shelf troughs. The presence of mass movement (slump or debris flow) deposits overlying lithified Tertiary strata along the flanks of Moresby Trough provides the only evidence of seismic activity in the study area. The lack of a mud drape over these deposits implies a late Holocene age for the timing of their emplacement. The Quaternary troughs are incised into Tertiary-aged sedimentary fill of the Queen Charlotte basin. Previous workers had interpreted seafloor escarpments paralleling the trough margins to indicate that the location of Moresby Trough was controlled by renewed or continued activity on Tertiary-aged faults. A multi-channel seismic line across Moresby Trough shows that such an escarpment on the seafloor does not correlate to faults either in the Tertiary basin fill or the underlying basement. Tertiary reflectors are continuous underneath Moresby Trough; the seafloor escarpment is an erosional feature and was not created by reactivation of Tertiary structures. Trough erosion and subsequent fill (up to 175 m thick) are entirely of Quaternary age.
Hierarchical structure and physicochemical properties of plasticized chitosan.
Meng, Qingkai; Heuzey, Marie-Claude; Carreau, Pierre J
2014-04-14
Plasticized chitosan with hierarchical structure, including multiple length scale structural units, was prepared by a "melt"-based method, that is, thermomechanical mixing, as opposed to the usual casting-evaporation procedure. Chitosan was successfully plasticized by thermomechanical mixing in the presence of concentrated lactic acid and glycerol using a batch mixer. Different plasticization formulations were compared in this study, in which concentrated lactic acid was used as protonation agent as well as plasticizer. The microstructure of thermomechanically plasticized chitosan was investigated by X-ray diffraction, scanning electron microscopy, and optical microscopy. With increasing amount of additional plasticizers (glycerol or water), the crystallinity of the plasticized chitosan decreased from 63.7% for the original chitosan powder to almost zero for the sample plasticized with additional water. Salt linkage between lactic acid molecules and amino side chains of chitosan was confirmed by FTIR spectroscopy: the lactic acid molecules expanded the space between the chitosan molecules of the crystalline phase. In the presence of other plasticizers (glycerol and water), various levels of structural units including an amorphous phase, nanofibrils, nanofibril clusters, and microfibers were produced under mechanical shear and thermal energy and identified for the first time. The thermal and thermomechanical properties of the plasticized chitosan were measured by thermogravimetric analysis, differential scanning calorimetric, and DMA. These properties were correlated with the different levels of microstructure, including multiple structural units.
Acrylic Plastic Spherical Pressure Hull for Continental Shelf Depths
1993-03-01
the con- l and secure conduit for the instrumentation leads at cave surface of the sphere (figure 26). The meridi- any external pressure to which the...constant pressure monitoring. In-line pressure CEA-06-1 25WT-120 with a gage factor of 2.11, transducers sense chamber pressures and send a bonded to the...wired to a strain gage conditioner that sensed strain as an analog FINDINGS voltage corresponding to the change in resistance occuring in each gage as it
NRC Continental Margins Workshop
NASA Astrophysics Data System (ADS)
Katsouros, Mary Hope
The Ocean Studies Board of the National Research Council is organizing a workshop, “Continental Margins: Evolution of Passive Continental Margins and Active Marginal Processes,” to stimulate discussion and longterm planning in the scientific community about the evolution of all types of continental margins. We want to coordinate academic, industry, and government agency efforts in this field, and to enhance communication between sea-based and land-based research programs.The continental margins constitute the only available record of the long-term dynamic interaction of oceanic and continental lithosphere. Of great interest are the unique structures and thick sedimentary sequences associated with this interaction. A major focus of the workshop will be to define strategies for exploring and understanding the continental margins in three dimensions and through geologic time. The workshop will be divided into 7 working groups, each concentrating on a major issue in continental margins research. A background document is being prepared summarizing recent research in specific continental margin fields and identifying key scientific and technical issues.
Thinning of heterogeneous lithosphere: insights from field observations and numerical modelling
NASA Astrophysics Data System (ADS)
Petri, B.; Duretz, T.; Mohn, G.; Schmalholz, S. M.
2017-12-01
The nature and mechanisms of formation of extremely thinned continental crust (< 10 km) and lithosphere during rifting remain debated. Observations from present-day and fossil continental passive margins document the heterogeneous nature of the lithosphere characterized, among others, by lithological variations and structural inheritance. This contribution aims at investigating the mechanisms of extreme lithospheric thinning by exploring in particular the role of initial heterogeneities by coupling field observations from fossil passive margins and numerical models of lithospheric extension. Two field examples from the Alpine Tethys margins outcropping in the Eastern Alps (E Switzerland and N Italy) and in the Southern Alps (N Italy) were selected for their exceptional level of preservation of rift-related structures. This situation enables us to characterize (1) the pre-rift architecture of the continental lithosphere, (2) the localization of rift-related deformation in distinct portion of the lithosphere and (3) the interaction between initial heterogeneities of the lithosphere and rift-related structures. In a second stage, these observations are integrated in high-resolution, two-dimensional thermo-mechanical models taking into account various patterns of initial mechanical heterogeneities. Our results show the importance of initial pre-rift architecture of the continental lithosphere during rifting. Key roles are given to high-angle and low-angle normal faults, anastomosing shear-zones and decoupling horizons. We propose that during the first stages of thinning, deformation is strongly controlled by the complex pre-rift architecture of the lithosphere, localized along major structures responsible for the lateral extrusion of mid to lower crustal levels. This extrusion juxtaposes mechanically stronger levels in the hyper-thinned continental crust, being exhumed by subsequent low-angle normal faults. Altogether, these results highlight the critical role of the extraction of mechanically strong layers of the lithosphere during the extreme thinning of the continental lithosphere and allows to propose a new model for the formation of continental passive margins.
Plastic and Large-Deflection Analysis of Nonlinear Structures
NASA Technical Reports Server (NTRS)
Thomson, R. G.; Hayduk, R. J.; Robinson, M. P.; Durling, B. J.; Pifko, A.; Levine, H. S.; Armen, H. J.; Levy, A.; Ogilvie, P.
1982-01-01
Plastic and Large Deflection Analysis of Nonlinear Structures (PLANS) system is collection of five computer programs for finite-element static-plastic and large deflection analysis of variety of nonlinear structures. System considers bending and membrane stresses, general three-dimensional bodies, and laminated composites.
NASA Astrophysics Data System (ADS)
Escalas, Arthur; Ferraton, Franck; Paillon, Christelle; Vidy, Guy; Carcaillet, Frédérique; Salen-Picard, Chantal; Le Loc'h, François; Richard, Pierre; Darnaude, Audrey Michèle
2015-01-01
Effective conservation of marine fish stocks involves understanding the impact, on population dynamics, of intra-specific variation in nursery habitats use at the juvenile stage. In some regions, an important part of the catching effort is concentrated on a small number of marine species that colonize coastal lagoons during their first year of life. To determine the intra-specific variation in lagoon use by these fish and their potential demographic consequences, we studied diet spatiotemporal variations in the group 0 juveniles of a highly exploited sparid, the gilthead seabream (Sparus aurata L.), during their ∼6 months stay in a NW Mediterranean lagoon (N = 331, SL = 25-198 mm) and traced the origin of the organic matter in their food webs, at two lagoon sites with contrasted continental inputs. This showed that the origin (marine, lagoonal or continental) of the organic matter (OM) available in the water column and the sediment can vary substantially within the same lagoon, in line with local variations in the intensity of marine and continental inputs. The high trophic plasticity of S. aurata allows its juveniles to adapt to resulting differences in prey abundances at each site during their lagoon residency, thereby sustaining high growth irrespective of the area inhabited within the lagoon. However, continental POM incorporation by the juveniles through their diet (of 21-37% on average depending on the site) is proportional to its availability in the environment and could be responsible for the greater fish sizes (of 28 mm SL on average) and body weights (of 40.8 g on average) observed at the site under continental influence in the autumn, when the juveniles are ready to leave the lagoon. This suggests that continental inputs in particulate OM, when present, could significantly enhance fish growth within coastal lagoons, with important consequences on the local population dynamics of the fish species that use them as nurseries. As our results indicate that continental OM can represent up to 62% of the flesh of the juveniles originating from these ecosystems, particular care should be taken to preserve or improve the chemical quality of riverine inputs to coastal lagoons.
NASA Technical Reports Server (NTRS)
Burke, Kevin
1988-01-01
Effort was concentrated in problems of continental evolution and a presentation was made to a workshop on the Deep Continental Growth of South India. An interpretation of the lithospheric structure of Africa as related to continental collision (together with its volcanism and topography) was prepared and a paper on this topic is about to be submitted. No expenditures were charged to the grant during this 6 month period.
Hiratani, Naoki; Fukai, Tomoki
2016-01-01
In the adult mammalian cortex, a small fraction of spines are created and eliminated every day, and the resultant synaptic connection structure is highly nonrandom, even in local circuits. However, it remains unknown whether a particular synaptic connection structure is functionally advantageous in local circuits, and why creation and elimination of synaptic connections is necessary in addition to rich synaptic weight plasticity. To answer these questions, we studied an inference task model through theoretical and numerical analyses. We demonstrate that a robustly beneficial network structure naturally emerges by combining Hebbian-type synaptic weight plasticity and wiring plasticity. Especially in a sparsely connected network, wiring plasticity achieves reliable computation by enabling efficient information transmission. Furthermore, the proposed rule reproduces experimental observed correlation between spine dynamics and task performance. PMID:27303271
Kooyman, Robert M; Rossetto, Maurizio; Sauquet, Hervé; Laffan, Shawn W
2013-01-01
Identify patterns of change in species distributions, diversity, concentrations of evolutionary history, and assembly of Australian rainforests. We used the distribution records of all known rainforest woody species in Australia across their full continental extent. These were analysed using measures of species richness, phylogenetic diversity (PD), phylogenetic endemism (PE) and phylogenetic structure (net relatedness index; NRI). Phylogenetic structure was assessed using both continental and regional species pools. To test the influence of growth-form, freestanding and climbing plants were analysed independently, and in combination. Species richness decreased along two generally orthogonal continental axes, corresponding with wet to seasonally dry and tropical to temperate habitats. The PE analyses identified four main areas of substantially restricted phylogenetic diversity, including parts of Cape York, Wet Tropics, Border Ranges, and Tasmania. The continental pool NRI results showed evenness (species less related than expected by chance) in groups of grid cells in coastally aligned areas of species rich tropical and sub-tropical rainforest, and in low diversity moist forest areas in the south-east of the Great Dividing Range and in Tasmania. Monsoon and drier vine forests, and moist forests inland from upland refugia showed phylogenetic clustering, reflecting lower diversity and more relatedness. Signals for evenness in Tasmania and clustering in northern monsoon forests weakened in analyses using regional species pools. For climbing plants, values for NRI by grid cell showed strong spatial structuring, with high diversity and PE concentrated in moist tropical and subtropical regions. Concentrations of rainforest evolutionary history (phylo-diversity) were patchily distributed within a continuum of species distributions. Contrasting with previous concepts of rainforest community distribution, our findings of continuous distributions and continental connectivity have significant implications for interpreting rainforest evolutionary history and current day ecological processes, and for managing rainforest diversity in changing circumstances.
Structural Crashworthiness and Failure
1993-04-16
body motion occurs. This rigid -plastic idealization for dynamically loaded structures is based upon the fact that the plastic deformation of a...in general, for any tensor variable x, i represents the convective derivative. It should be noted that the rigid body rotation is included in the...clamped, impulsively loaded, rigid - plastic beam.’ (a) First phase of motion with stationary transverse plastic hinges at A and E and stationary plastic
NASA Astrophysics Data System (ADS)
Lu, Y. M.; Zeng, J. F.; Huang, J. C.; Kuan, S. Y.; Nieh, T. G.; Wang, W. H.; Pan, M. X.; Liu, C. T.; Yang, Y.
2017-03-01
It has been decade-long and enduring efforts to decipher the structural mechanism of plasticity in metallic glasses; however, it still remains a challenge to directly reveal the structural change, if any, that precedes; and dominant plastics flow in them. Here, by using the dynamic atomic force microscope as an "imaging" as well as a "forcing" tool, we unfold a real-time sequence of structural evolution occurring on the surface of an Au-Si thin film metallic glass. In sharp contrast to the common notion that plasticity comes along with mechanical softening in bulk metallic glasses, our experimental results directly reveal three types of nano-sized surface regions, which undergo plasticity but exhibit different characters of structural evolution following the local plasticity events, including stochastic structural rearrangement, unusual local relaxation and rejuvenation. As such, yielding on the metallic-glass surface manifests as a dynamic equilibrium between local relaxation and rejuvenation as opposed to shear instability in bulk metallic-glasses. Our finding demonstrates that plasticity on the metallic glass surface of Au-Si metallic glass bears much resemblance to that of the colloidal gels, of which nonlinear rheology rather than shear instability governs the constitutive behavior of plasticity.
Net Rotation of the Lithosphere in Mantle Convection Models with Self-consistent Plate Generation
NASA Astrophysics Data System (ADS)
Gerault, M.; Coltice, N.
2017-12-01
Lateral variations in the viscosity structure of the lithosphere and the mantle give rise to a discordant motion between the two. In a deep mantle reference frame, this motion is called the net rotation of the lithosphere. Plate motion reconstructions, mantle flow computations, and inferences from seismic anisotropy all indicate some amount of net rotation using different mantle reference frames. While the direction of rotation is somewhat consistent across studies, the predicted amplitudes range from 0.1 deg/Myr to 0.3 deg/Myr at the present-day. How net rotation rates could have differed in the past is also a subject of debate and strong geodynamic arguments are missing from the discussion. This study provides the first net rotation calculations in 3-D spherical mantle convection models with self-consistent plate generation. We run the computations for billions of years of numerical integration. We look into how sensitive the net rotation is to major tectonic events, such as subduction initiation, continental breakup and plate reorganisations, and whether some governing principles from the models could guide plate motion reconstructions. The mantle convection problem is solved with the finite volume code StagYY using a visco-pseudo-plastic rheology. Mantle flow velocities are solely driven by buoyancy forces internal to the system, with free slip upper and lower boundary conditions. We investigate how the yield stress, the mantle viscosity structure and the properties of continents affect the net rotation over time. Models with large lateral viscosity variations from continents predict net rotations that are at least threefold faster than those without continents. Models where continents cover a third of the surface produce net rotation rates that vary from nearly zero to over 0.3 deg/Myr with rapide increase during continental breakup. The pole of rotation appears to migrate along no particular path. For all models, regardless of the yield stress and the presence of continental material, the most substantial variations in amplitude and direction of rotation occur over a few tenth of millions of years. It suggests that, to first order, the net rotation is closely related to the tectonic make-up of the surface, evolving with the nature of plate boundaries and the physical arrangement of the plates.
NASA Astrophysics Data System (ADS)
Burov, Evgueni; Gerya, Taras
2013-04-01
It has been long assumed that the dynamic topography associated with mantle-lithosphere interactions should be characterized by long-wavelength features (> 1000 km) correlating with morphology of mantle flow and expanding beyond the scale of tectonic processes. For example, debates on the existence of mantle plumes largely originate from interpretations of expected signatures of plume-induced topography that are compared to the predictions of analytical and numerical models of plume- or mantle-lithosphere interactions (MLI). Yet, most of the large-scale models treat the lithosphere as a homogeneous stagnant layer. We show that in continents, the dynamic topography is strongly affected by rheological properties and layered structure of the lithosphere. For that we reconcile mantle- and tectonic-scale models by introducing a tectonically realistic continental plate model in 3D large-scale plume-mantle-lithosphere interaction context. This model accounts for stratified structure of continental lithosphere, ductile and frictional (Mohr-Coulomb) plastic properties and thermodynamically consistent density variations. The experiments reveal a number of important differences from the predictions of the conventional models. In particular, plate bending, mechanical decoupling of crustal and mantle layers and intra-plate tension-compression instabilities result in transient topographic signatures such as alternating small-scale surface features that could be misinterpreted in terms of regional tectonics. Actually thick ductile lower crustal layer absorbs most of the "direct" dynamic topography and the features produced at surface are mostly controlled by the mechanical instabilities in the upper and intermediate crustal layers produced by MLI-induced shear and bending at Moho and LAB. Moreover, the 3D models predict anisotropic response of the lithosphere even in case of isotropic solicitations by axisymmetric mantle upwellings such as plumes. In particular, in presence of small (i.e. insufficient to produce solely any significant deformation) uniaxial extensional tectonic stress field, the plume-produced surface and LAB features have anisotropic linear shapes perpendicular to the far-field tectonic forces, typical for continental rifts. Compressional field results in singular sub-linear folds above the plume head, perpendicular to the direction of compression. Small bi-axial tectonic stress fields (compression in one direction and extension in the orthogonal direction) result in oblique, almost linear segmented normal or inverse faults with strike-slip components (or visa verse , strike-slip faults with normal or inverse components)
Octocoral Species Assembly and Coexistence in Caribbean Coral Reefs.
Velásquez, Johanna; Sánchez, Juan A
2015-01-01
What are the determinant factors of community assemblies in the most diverse ecosystem in the ocean? Coral reefs can be divided in continental (i.e., reefs that develop on the continental shelf, including siliciclastic reefs) and oceanic (i.e., far off the continental shelf, usually on volcanic substratum); whether or not these habitat differences impose community-wide ecological divergence or species exclusion/coexistence with evolutionary consequences, is unknown. Studying Caribbean octocorals as model system, we determined the phylogenetic community structure in a coral reef community, making emphasis on species coexistence evidenced on trait evolution and environmental feedbacks. Forty-nine species represented in five families constituted the species pool from which a phylogenetic tree was reconstructed using mtDNA. We included data from 11 localities in the Western Caribbean (Colombia) including most reef types. To test diversity-environment and phenotype-environment relationships, phylogenetic community structure and trait evolution we carried out comparative analyses implementing ecological and evolutionary approaches. Phylogenetic inferences suggest clustering of oceanic reefs (e.g., atolls) contrasting with phylogenetic overdispersion of continental reefs (e.g., reefs banks). Additionally, atolls and barrier reefs had the highest species diversity (Shannon index) whereas phylogenetic diversity was higher in reef banks. The discriminant component analysis supported this differentiation between oceanic and continental reefs, where continental octocoral species tend to have greater calyx apertures, thicker branches, prominent calyces and azooxanthellate species. This analysis also indicated a clear separation between the slope and the remaining habitats, caused by the presence or absence of Symbiodinium. K statistic analysis showed that this trait is conserved as well as the branch shape. There was strong octocoral community structure with opposite diversity and composition patterns between oceanic and continental reefs. Even habitats with similar depths and overall environmental conditions did not share similar communities between oceanic and continental reefs. This indicates a strong regional influence over the local communities, probably due to water transparency differences between major reef types, i.e., oceanic vs. continental shelf-neritic. This was supported by contrasting patterns found in morphology, composition and evolutionary history of the species between atolls and reef banks.
Octocoral Species Assembly and Coexistence in Caribbean Coral Reefs
Velásquez, Johanna; Sánchez, Juan A.
2015-01-01
Background What are the determinant factors of community assemblies in the most diverse ecosystem in the ocean? Coral reefs can be divided in continental (i.e., reefs that develop on the continental shelf, including siliciclastic reefs) and oceanic (i.e., far off the continental shelf, usually on volcanic substratum); whether or not these habitat differences impose community-wide ecological divergence or species exclusion/coexistence with evolutionary consequences, is unknown. Methods Studying Caribbean octocorals as model system, we determined the phylogenetic community structure in a coral reef community, making emphasis on species coexistence evidenced on trait evolution and environmental feedbacks. Forty-nine species represented in five families constituted the species pool from which a phylogenetic tree was reconstructed using mtDNA. We included data from 11 localities in the Western Caribbean (Colombia) including most reef types. To test diversity-environment and phenotype-environment relationships, phylogenetic community structure and trait evolution we carried out comparative analyses implementing ecological and evolutionary approaches. Results Phylogenetic inferences suggest clustering of oceanic reefs (e.g., atolls) contrasting with phylogenetic overdispersion of continental reefs (e.g., reefs banks). Additionally, atolls and barrier reefs had the highest species diversity (Shannon index) whereas phylogenetic diversity was higher in reef banks. The discriminant component analysis supported this differentiation between oceanic and continental reefs, where continental octocoral species tend to have greater calyx apertures, thicker branches, prominent calyces and azooxanthellate species. This analysis also indicated a clear separation between the slope and the remaining habitats, caused by the presence or absence of Symbiodinium. K statistic analysis showed that this trait is conserved as well as the branch shape. Discussion There was strong octocoral community structure with opposite diversity and composition patterns between oceanic and continental reefs. Even habitats with similar depths and overall environmental conditions did not share similar communities between oceanic and continental reefs. This indicates a strong regional influence over the local communities, probably due to water transparency differences between major reef types, i.e., oceanic vs. continental shelf-neritic. This was supported by contrasting patterns found in morphology, composition and evolutionary history of the species between atolls and reef banks. PMID:26177191
NASA Astrophysics Data System (ADS)
Gross, Felix; Krastel, Sebastian; Behrmann, Jan-Hinrich; Papenberg, Cord; Geersen, Jacob; Ridente, Domenico; Latino Chiocci, Francesco; Urlaub, Morelia; Bialas, Jörg; Micallef, Aaron
2015-04-01
Mount Etna is the largest active volcano in Europe. Its volcano edifice is located on top of continental crust close to the Ionian shore in east Sicily. Instability of the eastern flank of the volcano edifice is well documented onshore. The continental margin is supposed to deform as well. Little, however, is known about the offshore extension of the eastern volcano flank and its adjacent continental margin, which is a serious shortcoming in stability models. In order to better constrain the active tectonics of the continental margin offshore the eastern flank of the volcano, we acquired and processed a new marine high-resolution seismic and hydro-acoustic dataset. The data provide new detailed insights into the heterogeneous geology and tectonics of shallow continental margin structures offshore Mt Etna. In a similiar manner as observed onshore, the submarine realm is characterized by different blocks, which are controlled by local- and regional tectonics. We image a compressional regime at the toe of the continental margin, which is bound to an asymmetric basin system confining the eastward movement of the flank. In addition, we constrain the proposed southern boundary of the moving flank, which is identified as a right lateral oblique fault movement north of Catania Canyon. From our findings, we consider a major coupled volcano edifice instability and continental margin gravitational collapse and spreading to be present at Mt Etna, as we see a clear link between on- and offshore tectonic structures across the entire eastern flank. The new findings will help to evaluate hazards and risks accompanied by Mt Etna's slope- and continental margin instability and will be used as a base for future investigations in this region.
Castable plastic mold with electroplatable base
Domeier, Linda A.; Morales, Alfredo M.; Gonzales, Marcela G.; Keifer, Patrick M.
2004-01-20
A sacrificial plastic mold having an electroplatable backing is provided as are methods of making such a mold via the infusion of a castable liquid formulation through a porous metal substrate (sheet, screen, mesh or foam) and into the features of a micro-scale master mold. Upon casting and demolding, the porous metal substrate is embedded within the cast formulation and projects a plastic structure with features determined by the mold tool. The plastic structure provides a sacrificial plastic mold mechanically bonded to the porous metal substrate, which provides a conducting support suitable for electroplating either contiguous or non-contiguous metal replicates. After electroplating and lapping, the sacrificial plastic can be dissolved, leaving the desired metal structure bonded to the porous metal substrate. Optionally, the electroplated structures may be debonded from the porous substrate by selective dissolution of the porous substrate or a coating thereon.
Artemieva, I.M.; Mooney, W.D.; Perchuc, E.; Thybo, H.
2002-01-01
We discuss the structure of the continental lithosphere, its physical properties, and the mechanisms that formed and modified it since the early Archean. The structure of the upper mantle and the crust is derived primarily from global and regional seismic tomography studies of Eurasia and from global and regional data on seismic anisotropy. These data as documented in the papers of this special issue of Tectonophysics are used to illustrate the role of different tectonic processes in the lithospheric evolution since Archean to present. These include, but are not limited to, cratonization, terrane accretion and collision, continental rifting (both passive and active), subduction, and lithospheric basal erosion due to a relative motion of cratonic keels and the convective mantle. ?? 2002 Elsevier Science B.V. All rights reserved.
The effects of hormones and physical exercise on hippocampal structural plasticity.
Triviño-Paredes, Juan; Patten, Anna R; Gil-Mohapel, Joana; Christie, Brian R
2016-04-01
The hippocampus plays an integral role in certain aspects of cognition. Hippocampal structural plasticity and in particular adult hippocampal neurogenesis can be influenced by several intrinsic and extrinsic factors. Here we review how hormones (i.e., intrinsic modulators) and physical exercise (i.e., an extrinsic modulator) can differentially modulate hippocampal plasticity in general and adult hippocampal neurogenesis in particular. Specifically, we provide an overview of the effects of sex hormones, stress hormones, and metabolic hormones on hippocampal structural plasticity and adult hippocampal neurogenesis. In addition, we also discuss how physical exercise modulates these forms of hippocampal plasticity, giving particular emphasis on how this modulation can be affected by variables such as exercise regime, duration, and intensity. Understanding the neurobiological mechanisms underlying the modulation of hippocampal structural plasticity by intrinsic and extrinsic factors will impact the design of new therapeutic approaches aimed at restoring hippocampal plasticity following brain injury or neurodegeneration. Copyright © 2016 Elsevier Inc. All rights reserved.
Sacrificial plastic mold with electroplatable base
Domeier, Linda A.; Hruby, Jill M.; Morales, Alfredo M.
2002-01-01
A sacrificial plastic mold having an electroplatable backing is provided. One embodiment consists of the infusion of a softened or molten thermoplastic through a porous metal substrate (sheet, screen, mesh or foam) and into the features of a micro-scale molding tool contacting the porous metal substrate. Upon demolding, the porous metal substrate will be embedded within the thermoplastic and will project a plastic structure with features determined by the mold tool. This plastic structure, in turn, provides a sacrificial plastic mold mechanically bonded to the porous metal substrate which provides a conducting support suitable for electroplating either contiguous or non-contiguous metal replicates. After electroplating and lapping, the sacrificial plastic can be dissolved to leave the desired metal structure bonded to the porous metal substrate. Optionally, the electroplated structures may be debonded from the porous substrate by selective dissolution of the porous substrate or a coating thereon.
Sacrificial Plastic Mold With Electroplatable Base
Domeier, Linda A.; Hruby, Jill M.; Morales, Alfredo M.
2005-08-16
A sacrificial plastic mold having an electroplatable backing is provided. One embodiment consists of the infusion of a softened or molten thermoplastic through a porous metal substrate (sheet, screen, mesh or foam) and into the features of a micro-scale molding tool contacting the porous metal substrate. Upon demolding, the porous metal substrate will be embedded within the thermoplastic and will project a plastic structure with features determined by the mold tool. This plastic structure, in turn, provides a sacrificial plastic mold mechanically bonded to the porous metal substrate which provides a conducting support suitable for electroplating either contiguous or non-contiguous metal replicates. After electroplating and lapping, the sacrificial plastic can be dissolved to leave the desired metal structure bonded to the porous metal substrate. Optionally, the electroplated structures may be debonded from the porous substrate by selective dissolution of the porous substrate or a coating thereon.
Integrated geologic and geophysical studies of North American continental intraplate seismicity
Van Lanen, X.; Mooney, W.D.
2007-01-01
The origin of earthquakes within stable continental regions has been the subject of debate over the past thirty years. Here, we examine the correlation of North American stable continental region earthquakes using five geologic and geophysical data sets: (1) a newly compiled age-province map; (2) Bouguer gravity data; (3) aeromagnetic anomalies; (4) the tectonic stress field; and (5) crustal structure as revealed by deep seismic-reflection profiles. We find that: (1) Archean-age (3.8-2.5 Ga) North American crust is essentially aseismic, whereas post-Archean (less than 2.5 Ga) crust shows no clear correlation of crustal age and earthquake frequency or moment release; (2) seismicity is correlated with continental paleorifts; and (3) seismicity is correlated with the NE-SW structural grain of the crust of eastern North America, which in turn reflects the opening and closing of the proto- and modern Atlantic Ocean. This structural grain can be discerned as clear NE-SW lineaments in the Bouguer gravity and aeromagnetic anomaly maps. Stable continental region seismicity either: (1) follows the NE-SW lineaments; (2) is aligned at right angles to these lineaments; or (3) forms clusters at what have been termed stress concentrators (e.g., igneous intrusions and intersecting faults). Seismicity levels are very low to the west of the Grenville Front (i.e., in the Archean Superior craton). The correlation of seismicity with NE-SW-oriented lineaments implies that some stable continental region seismicity is related to the accretion and rifting processes that have formed the North American continental crust during the past 2 b.y. We further evaluate this hypothesis by correlating stable continental region seismicity with recently obtained deep seismic-reflection images of the Appalachian and Grenville crust of southern Canada. These images show numerous faults that penetrate deep (40 km) into the crust. An analysis of hypocentral depths for stable continental region earthquakes shows that the frequency and moment magnitude of events are nearly uniform for the entire 0-35 km depths over which crustal earthquakes extend. This is in contradiction with the hypothesis that larger events have deeper focal depths. We conclude that the deep structure of the crust, in particular the existence of deeply penetrating faults, is the controlling parameter, rather than lateral variations in temperature, rheology, or high pore pressure. The distribution of stable continental region earthquakes in eastern North America is consistent with the existence of deeply penetrating crustal faults that have been reactivated in the present stress field. We infer that future earthquakes may occur anywhere along the geophysical lineations that we have identified. This implies that seismic hazard is more widespread in central and eastern North America than indicated by the limited known historical distribution of seismicity. ?? 2007 The Geological Society of America.
NASA Astrophysics Data System (ADS)
Davy, R. G.; Morgan, J. V.; Minshull, T. A.; Bayrakci, G.; Bull, J. M.; Klaeschen, D.; Reston, T. J.; Sawyer, D. S.; Lymer, G.; Cresswell, D.
2018-01-01
Continental hyperextension during magma-poor rifting at the Deep Galicia Margin is characterized by a complex pattern of faulting, thin continental fault blocks and the serpentinization, with local exhumation, of mantle peridotites along the S-reflector, interpreted as a detachment surface. In order to understand fully the evolution of these features, it is important to image seismically the structure and to model the velocity structure to the greatest resolution possible. Traveltime tomography models have revealed the long-wavelength velocity structure of this hyperextended domain, but are often insufficient to match accurately the short-wavelength structure observed in reflection seismic imaging. Here, we demonstrate the application of 2-D time-domain acoustic full-waveform inversion (FWI) to deep-water seismic data collected at the Deep Galicia Margin, in order to attain a high-resolution velocity model of continental hyperextension. We have used several quality assurance procedures to assess the velocity model, including comparison of the observed and modeled waveforms, checkerboard tests, testing of parameter and inversion strategy and comparison with the migrated reflection image. Our final model exhibits an increase in the resolution of subsurface velocities, with particular improvement observed in the westernmost continental fault blocks, with a clear rotation of the velocity field to match steeply dipping reflectors. Across the S-reflector, there is a sharpening in the velocity contrast, with lower velocities beneath S indicative of preferential mantle serpentinization. This study supports the hypothesis that normal faulting acts to hydrate the upper-mantle peridotite, observed as a systematic decrease in seismic velocities, consistent with increased serpentinization. Our results confirm the feasibility of applying the FWI method to sparse, deep-water crustal data sets.
Extrusive and Intrusive Magmatism Greatly Influence the Tectonic Mode of Earth-Like Planets
NASA Astrophysics Data System (ADS)
Lourenco, D.; Tackley, P. J.; Rozel, A.; Ballmer, M.
2017-09-01
Plate tectonics on Earth-like planets is typically modelling using a strongly temperature-dependent visco-plastic rheology. Previous analyses have generally focussed on purely thermal convection. However, we have shown that the influence of compositional heterogeneity in the form of continental or oceanic crust can greatly influence plate tectonics by making it easier (i.e. it occurs at a lower yield stress or friction coefficient). Here we present detailed results on this topic, in particular focussing on the influence of intrusive vs. extrusive magmatism on the tectonic mode.
Evaluation of engineering plastic for rollover protective structure (ROPS) mounting.
Comer, R S; Ayers, P D; Liu, J
2007-04-01
Agriculture has one of the highest fatality rates of any industry in America. Tractor rollovers are a significant contributor to the high death rate. Rollover protective structures (ROPS) have helped lower these high fatality rates on full-size tractors. However, a large number of older tractors still do not use ROPS due to the difficulty of designing and creating a mounting structure. To help reduce this difficulty, engineering plastics were evaluated for use in a ROPS mounting structure on older tractors. The use of engineering plastics around axle housings could provide a uniform mounting configuration as well as lower costs for aftermarket ROPS. Various plastics were examined through shear testing, scale model testing, and compressive strength testing. Once a material was chosen based upon strength and cost, full-scale testing of the plastic's strength on axle housings was conducted. Finally, a mounting structure was tested in static ROPS tests, and field upset tests were performed in accordance with SAE Standard J2194. Initial tests revealed that the ROPS mounting structure and axle housing combination had higher torsional strength with less twisting than the axle housing alone. An engineering plastic ROPS mounting structure was easily successful in withstanding the forces applied during the static longitudinal and lateral ROPS tests. Field upset testing revealed that the mounting structure could withstand the impact loads seen during actual upsets without a failure. During both static testing and field upset testing, no permanent twisting of the mounting structure was found. Engineering plastic could therefore be a viable option for a universal ROPS mounting structure for older tractors.
NASA Astrophysics Data System (ADS)
Harris, R. A.
2011-12-01
The active Banda arc/continent collision of the Timor region provides many important contrasts to what is observed in Taiwan, which is mostly a function of differences in the nature of the subducting plate. One of the most important differences is the thermal state of the respective continental margins: 30 Ma China passive margin versus 160 Ma NW Australian continental margin. The subduction of the cold and strong NW Australian passive margin beneath the Banda trench provides many new constraints for resolving longstanding issues about the formative stages of collision and accretion of continental crust. Some of these issues include evidence for slab rollback and subduction erosion, deep continental subduction, emplacement or demise of forearc basement, relative amounts of uplift from crustal vs. lithospheric processes, influence of inherited structure, partitioning of strain away from the thrust front, extent of mélange development, metamorphic conditions and exhumation mechanisms, continental contamination and accretion of volcanic arcs, does the slab tear, and does subduction polarity reverse? Most of these issues link to the profound control of lower plate crustal heterogeneity, thermal state and inherited structure. The thermomechanical characteristics of subducting an old continental margin allow for extensive underthrusting of lower plate cover units beneath the forearc and emplacement and uplift of extensive nappes of forearc basement. It also promotes subduction of continental crust to deep enough levels to experience high pressure metamorphism (not found in Taiwan) and extensive contamination of the volcanic arc. Seismic tomography confirms subduction of continental lithosphere beneath the Banda Arc to at least 400 km with no evidence for slab tear. Slab rollback during this process results in massive subduction erosion and extension of the upper plate. Other differences in the nature of the subducting plates in Taiwan in Timor are differences in the lateral continuity of the continental margins. The northern Australian continental margin is highly irregular with many rift basins subducting parallel to their axes. This feature gives rise to irregularities in the uplift pattern of the collision and its continental margin parallel structural grain. Another major difference between Taiwan and Timor is the mechanical stratigraphy entering the trench. The Australian continental margin bears a carbonate rich pre and post rift sequence that is separated by a 1000 m thick, over pressured mudstone unit that acts as major detachment and promotes extensive mud diapirism. The post breakup Australian Passive Margin Sequence is incorporated into the orogenic wedge by frontal accretion and forms a classic imbricate thrust stack near the front of the Banda forearc. The pre breakup Gondwana Sequence below the detachment continues at least to depth of 30 km in the subduction channel beneath the Banda forearc upper plate and stacks up into a duplex zone that forms structural culminations throughout Timor. The upper plate of both collisions is similar in nature but is deformed in different ways due to the strong influence of the lower plate. However, both have extensive subduction erosion and demise of the forearc and systematic accretion of the arc.
NASA Astrophysics Data System (ADS)
Bellahsen, N.; Leroy, S.; Autin, J.; Razin, P.; d'Acremont, E.; Sloan, H.; Pik, R.; Ahmed, A.; Khanbari, K.
2013-11-01
Transfer zones are ubiquitous features in continental rifts and margins, as are transform faults in oceanic lithosphere. Here, we present a structural study of the Hadibo Transfer Zone (HTZ), located in Socotra Island (Yemen) in the southeastern Gulf of Aden. There, we interpret this continental transfer fault zone to represent a reactivated pre-existing structure. Its trend is oblique to the direction of divergence and it has been active from the early up to the latest stages of rifting. One of the main oceanic fracture zones (FZ), the Hadibo-Sharbithat FZ, is aligned with and appears to be an extension of the HTZ and is probably genetically linked to it. Comparing this setting with observations from other Afro-Arabian rifts as well as with passive margins worldwide, it appears that many continental transfer zones are reactivated pre-existing structures, oblique to divergence. We therefore establish a classification system for oceanic FZ based upon their relationship with syn-rift structures. Type 1 FZ form at syn-rift structures and are late syn-rift to early syn-OCT. Type 2 FZ form during the OCT formation and Type 3 FZ form within the oceanic domain, after the oceanic spreading onset. The latter are controlled by far-field forces, magmatic processes, spreading rates, and oceanic crust rheology.
The crustal structure of the continental margin east of the Falkland Islands
NASA Astrophysics Data System (ADS)
Schimschal, Claudia Monika; Jokat, Wilfried
2018-01-01
The 1500 km long Falkland Plateau is the most prominent morphological structure in the southern South Atlantic Ocean, which crustal composition and development is mainly unknown. At the westernmost boundary of the plateau, the Falkland Islands' Precambrian geology provides the only insight into basement structure and age. The question of whether continental basement of a similar age and origin underlies the Falkland Plateau further east is strongly disputed. We present new high quality constraints on the crustal fabric of the plateau east of the Falkland Islands, based on wide-angle seismic and potential field data acquired in 2013. The P-wave velocity model, supported by amplitude and density modelling, shows that the Falkland Plateau Basin is filled with 8 km of sediments. Continental crust of 34 km thickness underlies the Falkland Islands. The eastern continental margin of the Falkland Islands can be classified as a volcanic rifted margin. The Falkland Plateau Basin is floored by up to 20 km thick oceanic crust. The exceptionally thick igneous crust and its high lower crustal velocities (up to 7.4 km/s) indicate the influence of a regional thermal mantle anomaly during its formation, which provided extra melt material. The wide-angle model revises published crustal models, which predicted thin oceanic or thick extended continental crust below the Falkland Plateau Basin. Our results provide a sound basis for future tectonic interpretations of the area.
NASA Astrophysics Data System (ADS)
Yin, Y.; Jin, S.; Wei, W.; Ye, G.; Dong, H.; Zhang, L.
2017-12-01
The Shanxi Rift being located within the interior of the North China Craton and far from any plate boundaries has undergone dramatic deformation and seismicity during the Cenozoic. In this study, we build 3-D lithospheric resistivity model by MT array data, across the Linfen Basin which is the most active segment of this intraplate rift. Accordingly, combined with previous rock physics experimental results, we estimate the fluid contents of lower crustal granulites and upper mantle peridotites and thereby the rough distribution of lithospheric rheological strength. On the two sides of Linfen Basin, lithosphere beneath the Precambrian terranes are of high strength. By contrast, a high-conductivity nearly upright lithosphere weak zone occurs beneath the eastern margin of the Linfen Basin and appears to be connected to the high-conductivity and therefore weak lower crust just beneath the basin, probably indicating a structure of asthenospheric upwelling causing the lower crustal decoupling through lateral drag forces. The distribution of lithospheric weak zones, brittle faults, ductile shear zones and detachment structures determined from our resistivity model is in good agreement with the 8-My stage model of a previous numerical geodynamic simulation for continental rift evolution by reconstruction of the South Atlantic plate. Accordingly, we suggest that the lithospheric weak zone could be a preexisting Precambrian shear zone and has reactivated as an asthenospheric upwelling conduit under the far-field effects of Indo- Asian collision or Pacific Plate subduction since the late Mesozoic. This process could have caused the upper crustal extension and rifting through the stress regulation by the plastic lower crust, which could be the mechanism of rift formation. In summary, we suggest the Linfen segment of the Shanxi Rift, is a simple shear mode rift in the incipient stage of rift evolution, rather than a mature pure shear mode one as determined by precious seismic imaging.
NASA Astrophysics Data System (ADS)
Yasuda, Natsumi; Miyamoto, Norio; Fujiwara, Yoshihiro; Yamamoto, Tomoko; Yusa, Yoichi
2016-02-01
Sessile animals living on continental shelves or slopes may adjust their growth and reproduction according to temporally and spatially variable food availability, but little information is available on these animals to date. We collected the pedunculate barnacle Heteralepas canci on a continental slope at a depth of 229 m off Cape Nomamisaki in southern Japan. We developed a rearing method for the barnacles and studied their growth and reproduction at different food levels in the laboratory. A total of 136 individual H. canci were fed with Artemia salina larvae and brewer's yeast at three different food levels for 100 days. Both the growth and the ovary development were delayed when food availability was low, whereas the survival rate was lower at the high food level. In addition, an individual survived under complete starvation for 167 days. We concluded that H. canci has plastic life history traits that are adaptive for variable food availability.
Phytoplankton Community Structure, Biomass and Diversity on the Louisiana Continental Shelf
Phytoplankton communities on the Louisiana continental shelf (LCS) respond to nutrient loading from the Mississippi and Atchafalaya River Basin (MARB). Enhanced phytoplankton biomass is a source of organic matter contributing to the development of seasonal hypoxia. Samples were ...
NASA Astrophysics Data System (ADS)
Montesi, L.; Gueydan, F.
2016-12-01
Global strain rate maps reveal 1000-fold contrasts between plate interiors, oceanic or continental diffuse plate boundaries and narrow plate boundaries. Here, we show that rheological models based on the concepts of shear zone localization and the evolution of rock structure upon strain can explain these strain rate contrasts. Ductile shear zones constitute a mechanical paradox in the lithosphere. As every plastic deformation mechanism is strain-rate-hardening, ductile rocks are expected to deform at low strain rate and low stress (broad zone of deformation). Localized ductile shear zones require either a localized forcing (locally high stress) or a thermal or structural anomaly in the shear zone; either can be inherited or develop progressively as rocks deform. We previously identified the most effective process at each depth level of the lithosphere. In the upper crust and middle crust, rocks fabric controls localization. Grain size reduction is the most efficient mechanism in the uppermost mantle. This analysis can be generalized to consider a complete lithospheric section. We assume strain rate does not vary with depth and that the depth-integrated strength of the lithospheric does not change over time, as the total force is controlled by external process such as mantle convection and plate and slab buoyancy. Reducing grain size from a coarse value typical of undeformed peridotite to a value in agreement with the stress level (piezometer) while letting that stress vary from depth to depth (the integrated stress remains the same) increases the lithospheric strain rate by about a factor of 1000. This can explain the development of diffuse plate boundaries. The slightly higher strain rate of continental plate boundary may reflect development of a layered rock fabric in the middle crust. Narrow plate boundaries require additional weakening process. The high heat flux near mid-ocean ridge implies a thin lithosphere, which enhances stress (for constant integrated stress). While this can increase strain rate by another factor of 1000, another process must generate the lithospheric thickness variation in the first place. One possibility is serpentinization, which reduces the strength of the brittle crust, especially when coupled with the development of a fabric in brittle faults.
Kooyman, Robert M.; Rossetto, Maurizio; Sauquet, Hervé; Laffan, Shawn W.
2013-01-01
Objectives Identify patterns of change in species distributions, diversity, concentrations of evolutionary history, and assembly of Australian rainforests. Methods We used the distribution records of all known rainforest woody species in Australia across their full continental extent. These were analysed using measures of species richness, phylogenetic diversity (PD), phylogenetic endemism (PE) and phylogenetic structure (net relatedness index; NRI). Phylogenetic structure was assessed using both continental and regional species pools. To test the influence of growth-form, freestanding and climbing plants were analysed independently, and in combination. Results Species richness decreased along two generally orthogonal continental axes, corresponding with wet to seasonally dry and tropical to temperate habitats. The PE analyses identified four main areas of substantially restricted phylogenetic diversity, including parts of Cape York, Wet Tropics, Border Ranges, and Tasmania. The continental pool NRI results showed evenness (species less related than expected by chance) in groups of grid cells in coastally aligned areas of species rich tropical and sub-tropical rainforest, and in low diversity moist forest areas in the south-east of the Great Dividing Range and in Tasmania. Monsoon and drier vine forests, and moist forests inland from upland refugia showed phylogenetic clustering, reflecting lower diversity and more relatedness. Signals for evenness in Tasmania and clustering in northern monsoon forests weakened in analyses using regional species pools. For climbing plants, values for NRI by grid cell showed strong spatial structuring, with high diversity and PE concentrated in moist tropical and subtropical regions. Conclusions/Significance Concentrations of rainforest evolutionary history (phylo-diversity) were patchily distributed within a continuum of species distributions. Contrasting with previous concepts of rainforest community distribution, our findings of continuous distributions and continental connectivity have significant implications for interpreting rainforest evolutionary history and current day ecological processes, and for managing rainforest diversity in changing circumstances. PMID:24312493
Geodynamic models of the Wilson Cycle: From rifts to mountains to rifts
NASA Astrophysics Data System (ADS)
Buiter, Susanne; Tetreault, Joya; Torsvik, Trond
2015-04-01
The Wilson Cycle theory that oceans close and reopen along the former suture is a fundamental concept in plate tectonics. The theory suggests that subduction initiates at a passive margin, closing the ocean, and that future continental extension localises at the ensuing collision zone. Each stage of the Wilson Cycle will therefore be characterised by inherited structural and thermal heterogeneities. Here we investigate the role of Wilson Cycle inheritance by considering the influence of (1) passive margin structure on continental collision and (2) collision zones on passive margin formation. Passive margins may be preferred locations for subduction initiation because inherited faults and areas of exhumed serpentinized mantle may weaken a margin enough to localise shortening. If subduction initiates at a passive margin, the shape and structure of the passive margins will affect future continental collision. Our review of present-day passive margins along the Atlantic and Indian Oceans reveals that most passive margins are located on former collision zones. Continental break-up occurs on relatively young sutures, such as Morocco-Nova Scotia, and on very old sutures, such as the Greenland-Labrador and East Antarctica-Australia systems. This implies that it is not always post-collisional collapse that initiates the extensional phase of a Wilson Cycle. We highlight the impact of collision zone inheritance on continental extension and rifted margin architecture. We show numerical experiments of one Wilson Cycle of subduction, collision, and extension. Subduction initiates at a tapered passive margin. Closure of a 60 Ma ocean leads to continental collision and slab break-off, followed by some tens of kilometres of slab eduction. Mantle flow above the sinking detached slab enhances deformation in the rift area. The resulting rift exposes not only continental crust, but also subduction-related sediments and oceanic crust remnants. Renewed subduction in the post-collision phase is enabled by lithosphere delamination and slab rollback, leading to back-arc extension in a style similar to the Tyrrhenian Sea.
Exploring the Geological Structure of the Continental Crust.
ERIC Educational Resources Information Center
Oliver, Jack
1983-01-01
Discusses exploration and mapping of the continental basement using the seismic reflection profiling technique as well as drilling methods. Also discusses computer analysis of gravity and magnetic fields. Points out the need for data that can be correlated to surface information. (JM)
NASA Astrophysics Data System (ADS)
Goswami, A.; Olson, P. L.; Hinnov, L. A.; Gnanadesikan, A.
2015-04-01
We present a method for reconstructing global ocean bathymetry that uses a plate cooling model for the oceanic lithosphere, the age distribution of the oceanic crust, global oceanic sediment thicknesses, plus shelf-slope-rise structures calibrated at modern active and passive continental margins. Our motivation is to reconstruct realistic ocean bathymetry based on parameterized relationships of present-day variables that can be applied to global oceans in the geologic past, and to isolate locations where anomalous processes such as mantle convection may affect bathymetry. Parameters of the plate cooling model are combined with ocean crustal age to calculate depth-to-basement. To the depth-to-basement we add an isostatically adjusted, multicomponent sediment layer, constrained by sediment thickness in the modern oceans and marginal seas. A continental shelf-slope-rise structure completes the bathymetry reconstruction, extending from the ocean crust to the coastlines. Shelf-slope-rise structures at active and passive margins are parameterized using modern ocean bathymetry at locations where a complete history of seafloor spreading is preserved. This includes the coastal regions of the North, South, and Central Atlantic Ocean, the Southern Ocean between Australia and Antarctica, and the Pacific Ocean off the west coast of South America. The final products are global maps at 0.1° × 0.1° resolution of depth-to-basement, ocean bathymetry with an isostatically adjusted, multicomponent sediment layer, and ocean bathymetry with reconstructed continental shelf-slope-rise structures. Our reconstructed bathymetry agrees with the measured ETOPO1 bathymetry at most passive margins, including the east coast of North America, north coast of the Arabian Sea, and northeast and southeast coasts of South America. There is disagreement at margins with anomalous continental shelf-slope-rise structures, such as around the Arctic Ocean, the Falkland Islands, and Indonesia.
Castoe, Todd A; Spencer, Carol L; Parkinson, Christopher L
2007-01-01
The western diamondback rattlesnake (Crotalus atrox) is a prominent member of North American desert and semi-arid ecosystems, and its importance extends from its impact on the region's ecology and imagery, to its medical relevance as a large deadly venomous snake. We used mtDNA sequences to identify population genetic structure and historical demographic patterns across the range of this species, and relate these to broader patterns of historical biogeography of desert and semi-arid regions of the southwestern USA and adjacent Mexico. We inferred a Late Pliocene divergence between peninsular and continental lineages of Crotalus, followed by an Early Mid Pleistocene divergence across the continental divide within C. atrox. Within desert regions (Sonoran and Chihuahuan Deserts, Southern Plains, and Tamaulipan Plain) we observed population structure indicating isolation of populations in multiple Pleistocene refugia on either side of the continental divide, which we attempt to identify. Evidence of post-glacial population growth and range expansion was inferred, particularly in populations east of the continental divide. We observed clear evidence of (probably recent) gene flow across the continental divide and secondary contact of haplotype lineages. This recent gene flow appears to be particularly strong in the West-to-East direction. Our results also suggest that Crotalus tortugensis (Tortuga Island rattlesnake) and a population of 'C. atrox' inhabiting Santa Cruz Island (in the Gulf of California) previously suggested to be an unnamed species, are in fact deeply phylogenetically nested within continental lineages of C. atrox. Accordingly, we suggest C. tortugensis and 'C. atrox' from Santa Cruz Island be placed in the synonymy of C. atrox.
NASA Astrophysics Data System (ADS)
Pearson, David M.; MacLeod, Douglas R.; Ducea, Mihai N.; Gehrels, George E.; Jonathan Patchett, P.
2017-10-01
Though continental magmatic arcs are factories for new continental crust, a significant proportion of continental arc magmas are recycled from supracrustal material. To evaluate the relative contributions of retroarc underthrusting and trench side partial sediment subduction for introducing supracrustal rocks to the middle and lower crust of continental magmatic arcs, we present results from the deeply exposed country rocks of the Coast Mountains batholith of western British Columbia. Prior work demonstrates that these rocks underwent widespread partial melting that contributed to the Coast Mountains batholith. We utilize U-Pb zircon geochronology, Sm-Nd thermochronology, and field-based studies to document the protoliths and early burial history of amphibolite and granulite-facies metasedimentary rocks in the Central Gneiss Complex. U-Pb detrital zircon data from the structurally highest sample localities yielded 190 Ma unimodal age peaks and suggest that retroarc rocks of the Stikine terrane constitute a substantial portion of the Central Gneiss Complex. These supracrustal rocks underwent thrust-related burial and metamorphism at >25 km depths prior to 80 Ma. These rocks may also be underlain at the deepest exposed structural levels by Upper Cretaceous metasedimentary rocks, which may have been emplaced as a result of trench side underplating or intraarc burial. These results further our understanding of the mechanisms of material transport within the continental lithosphere along Cordilleran subduction margins.
Structural elements of the Sulu Sea, Philippines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinz, K.; Block, M.; Kudrass, H.R.
1994-07-01
The structure and tectonic history of the Sulu Sea are described on the basis of seismic reflection data combined with the findings of onshore and offshore geological studies, and the results of ODP Leg 124 drilling. Closing of a hypothetical Mesozoic proto-South China Sea associated with the formation of oceanic crustal splinters in the late Eocene followed by southward subduction and, in turn, progressive collision of the north Palawan continental terrane with the micro-continental Borneo plate since the middle Miocene, resulted in the formation of the structurally complex Sulu-Borneo collision belt. The latter comprises north Sabah, southern and central Palawan,more » and the northwest Sulu basin. Fracturing of the Borneo micro-continental plate into the Sulu and Cagayan ridges initiated the opening of the southeast Sulu basin during the late Oligocene through the early Miocene. Collision of the north Palawan continental terrane with Cagayan Ridge in the late early Miocene and oblique collision of these blocks with the central Philippines resulted in the still ongoing closing of the southeast Sulu basin since the middle or late Miocene. Closing of the southeast Sulu basin began with the formation of an oceanic crustal slab.« less
Pichancourt, Jean-Baptiste; van Klinken, Rieks D.
2012-01-01
Phenotypic plasticity has long been suspected to allow invasive species to expand their geographic range across large-scale environmental gradients. We tested this possibility in Australia using a continental scale survey of the invasive tree Parkinsonia aculeata (Fabaceae) in twenty-three sites distributed across four climate regions and three habitat types. Using tree-level responses, we detected a trade-off between seed mass and seed number across the moisture gradient. Individual trees plastically and reversibly produced many small seeds at dry sites or years, and few big seeds at wet sites and years. Bigger seeds were positively correlated with higher seed and seedling survival rates. The trade-off, the relation between seed mass, seed and seedling survival, and other fitness components of the plant life-cycle were integrated within a matrix population model. The model confirms that the plastic response resulted in average fitness benefits across the life-cycle. Plasticity resulted in average fitness being positively maintained at the wet and dry range margins where extinction risks would otherwise have been high (“Jack-of-all-Trades” strategy JT), and fitness being maximized at the species range centre where extinction risks were already low (“Master-of-Some” strategy MS). The resulting hybrid “Jack-and-Master” strategy (JM) broadened the geographic range and amplified average fitness in the range centre. Our study provides the first empirical evidence for a JM species. It also confirms mechanistically the importance of phenotypic plasticity in determining the size, the shape and the dynamic of a species distribution. The JM allows rapid and reversible phenotypic responses to new or changing moisture conditions at different scales, providing the species with definite advantages over genetic adaptation when invading diverse and variable environments. Furthermore, natural selection pressure acting on phenotypic plasticity is predicted to result in maintenance of the JT and strengthening of the MS, further enhancing the species invasiveness in its range centre. PMID:22384216
A computer program for cyclic plasticity and structural fatigue analysis
NASA Technical Reports Server (NTRS)
Kalev, I.
1980-01-01
A computerized tool for the analysis of time independent cyclic plasticity structural response, life to crack initiation prediction, and crack growth rate prediction for metallic materials is described. Three analytical items are combined: the finite element method with its associated numerical techniques for idealization of the structural component, cyclic plasticity models for idealization of the material behavior, and damage accumulation criteria for the fatigue failure.
Is the Kapuskasing structure the site of a cryptic suture
NASA Technical Reports Server (NTRS)
Burke, K.
1983-01-01
The demonstration that the Kapuskasing structure involves substantial thrusting of deep continental crustal rocks over shallower continental rocks calls into question an earlier suggestion (by Wilson) that the Circum-Ungaua suture zone continued through the Kapuskasing to join the Penokean fold belt (implying that the Kapuskasing marked the site of what has since come to be called a cryptic suture). Problems are discussed which arose in attempting to reconcile Wilson's idea with data from more recent studies: whether the Kapuskasing and the Thompson belt both mark sutures of about 1700 Ma age; why there is no age difference across the Kapuskasing if it does mark the site of continental collision, and why there is no offset of Superior subprovinces across the Kapuskasing.
The Continental Margins of the Western North Atlantic.
ERIC Educational Resources Information Center
Schlee, John S.; And Others
1979-01-01
Presents an interpretation of geological and geophysical data, which provides a summary of the structural and sedimentary history of the United States Atlantic Margin. The importance of an understanding of the development of the outer continental shelf to future hydrocarbon exploration is detailed. (BT)
The Munson-Nygren slide: A major lower-slope slide off Georges Bank
O'Leary, Dennis W.
1986-01-01
The Munson-Nygren slide is a large compound slide located between Munson and Nygren Canyons below 1900 m depth on the Continental Slope off Georges Bank. Its structural and morphological features are recognized in high-resolution seismic-reflection profiles. The slide comprises an axial trough which has a relief as great as 325 m and a width of 6-10 km. The trough is flanked by displaced and disrupted strata for a total lateral extent of approximately 20 km and a downslope extent of at least 35 km. The slide is unrelated genetically to the adjacent canyons and may postdate Munson Canyon. There is evidence of plastic deformation at the base of the section subjected to sliding. Certain features of the slide complex resemble those seen in landforms on the Laurentian Rise and attributed by Emery et al.* * Emery et al. (1970). to the 1929 Grand Banks earthquake. The Munson-Nygren slide may have been triggered by a large earthquake in late Pleistocene time or later. Destructional landforms associated with the slide are similar to those widely present along the lower slope off Georges Bank. ?? 1986.
Plasticity in the Human Visual Cortex: An Ophthalmology-Based Perspective
Rosa, Andreia Martins; Silva, Maria Fátima; Murta, Joaquim
2013-01-01
Neuroplasticity refers to the ability of the brain to reorganize the function and structure of its connections in response to changes in the environment. Adult human visual cortex shows several manifestations of plasticity, such as perceptual learning and adaptation, working under the top-down influence of attention. Plasticity results from the interplay of several mechanisms, including the GABAergic system, epigenetic factors, mitochondrial activity, and structural remodeling of synaptic connectivity. There is also a downside of plasticity, that is, maladaptive plasticity, in which there are behavioral losses resulting from plasticity changes in the human brain. Understanding plasticity mechanisms could have major implications in the diagnosis and treatment of ocular diseases, such as retinal disorders, cataract and refractive surgery, amblyopia, and in the evaluation of surgical materials and techniques. Furthermore, eliciting plasticity could open new perspectives in the development of strategies that trigger plasticity for better medical and surgical outcomes. PMID:24205505
NASA Astrophysics Data System (ADS)
Xia, Kan-yuan; Huang, Ci-liu; Jiang, Shao-ren; Zhang, Yi-xiang; Su, Da-quan; Xia, Si-gao; Chen, Zhong-rong
1994-07-01
A comparison of the tectonics and geophysics of the major structural belts of the northern and the southern continental margins of South China Sea has been made, on the basis of measured geophysical data obtained by ourselves over a period of 8 years (1984-1991). This confirmed that the northern margin is a divergent one and the southern margin is characterized by clearly convergent features. The main extensional structures of the northern margin are, from north to south: (1) The Littoral Fault Belt, a tectonic boundary between the continental crust and a transitional zone, along the coast of the provinces of Guangdong and Fujian in South China. It is characterised by earthquake activities, high magnetic anomalies and a rapid change in crustal thickness. (2) The Northern and Southern Depression zones (i.e., the Pearl River Mouth Basin), this strikes NE-ENE and is a very large Cenozoic depression which extends from offshore Shantou westwards to Hainan Island. (3) The Central Uplift Zone. This includes the Dongsha Uplift, Shenhu Uplift and may be linked with the Penghu uplift and Taiwan shoals to the east, forming a large NE-striking uplift zone along the northern continental slope. It is characterized by high magnetic anomalies. (4) Southern Boundary Fault Belt of the transitional crust. This has positive gravity anomalies on the land side and negative ones on the sea side. (5) The Magnetic Quiet Zone. This is located south of the southern Boundary Fault Belt and between the continental margin and the Central Basin of the South China Sea. Magnetic anomalies in this belt are of small amplitude and low gradient. We consider the Magnetic Quiet Zone to be a very important tectonic zone. The major structures of southern continental margin southwards are: (1) The Northern Fault Belt of the Nansha Block. This extends along the continental slope north of the Liyue shoal (Reed Bank) and Zhongye reef, and is a tectonic boundary between oceanic crust and the Nansha Block continental crust. (2) The Nansha Block Uplift Zone. Due to the development of reefs and shoals, there are many channels and valleys. Our long-distance multichannel seismic profiles indicated that there are thick Paleogene sediments and thin Neogene sediments all over the central part of the block. (3) The Nansha Trough, a nappe structure formed by the southeastward drifting of Nansha Block and northwestward overthrusting of Palawan-northwest Borneo. (4) Zengmu Shoal Basin, southwest of the Nansha Block; the maximum thickness of Cenozoic strata is over 9 km in this important petroliferous basin.
Temunović, Martina; Franjić, Jozo; Satovic, Zlatko; Grgurev, Marin; Frascaria-Lacoste, Nathalie; Fernández-Manjarrés, Juan F
2012-01-01
Tree species with wide distributions often exhibit different levels of genetic structuring correlated to their environment. However, understanding how environmental heterogeneity influences genetic variation is difficult because the effects of gene flow, drift and selection are confounded. We investigated the genetic variation and its ecological correlates in a wind-pollinated Mediterranean tree species, Fraxinus angustifolia Vahl, within a recognised glacial refugium in Croatia. We sampled 11 populations from environmentally divergent habitats within the Continental and Mediterranean biogeographical regions. We combined genetic data analyses based on nuclear microsatellite loci, multivariate statistics on environmental data and ecological niche modelling (ENM). We identified a geographic structure with a high genetic diversity and low differentiation in the Continental region, which contrasted with the significantly lower genetic diversity and higher population divergence in the Mediterranean region. The positive and significant correlation between environmental and genetic distances after controlling for geographic distance suggests an important influence of ecological divergence of the sites in shaping genetic variation. The ENM provided support for niche differentiation between the populations from the Continental and Mediterranean regions, suggesting that contemporary populations may represent two divergent ecotypes. Ecotype differentiation was also supported by multivariate environmental and genetic distance analyses. Our results suggest that despite extensive gene flow in continental areas, long-term stability of heterogeneous environments have likely promoted genetic divergence of ashes in this region and can explain the present-day genetic variation patterns of these ancient populations.
Temunović, Martina; Franjić, Jozo; Satovic, Zlatko; Grgurev, Marin; Frascaria-Lacoste, Nathalie; Fernández-Manjarrés, Juan F.
2012-01-01
Tree species with wide distributions often exhibit different levels of genetic structuring correlated to their environment. However, understanding how environmental heterogeneity influences genetic variation is difficult because the effects of gene flow, drift and selection are confounded. We investigated the genetic variation and its ecological correlates in a wind-pollinated Mediterranean tree species, Fraxinus angustifolia Vahl, within a recognised glacial refugium in Croatia. We sampled 11 populations from environmentally divergent habitats within the Continental and Mediterranean biogeographical regions. We combined genetic data analyses based on nuclear microsatellite loci, multivariate statistics on environmental data and ecological niche modelling (ENM). We identified a geographic structure with a high genetic diversity and low differentiation in the Continental region, which contrasted with the significantly lower genetic diversity and higher population divergence in the Mediterranean region. The positive and significant correlation between environmental and genetic distances after controlling for geographic distance suggests an important influence of ecological divergence of the sites in shaping genetic variation. The ENM provided support for niche differentiation between the populations from the Continental and Mediterranean regions, suggesting that contemporary populations may represent two divergent ecotypes. Ecotype differentiation was also supported by multivariate environmental and genetic distance analyses. Our results suggest that despite extensive gene flow in continental areas, long-term stability of heterogeneous environments have likely promoted genetic divergence of ashes in this region and can explain the present-day genetic variation patterns of these ancient populations. PMID:22905171
75 FR 7931 - Airworthiness Directives; Airbus Model A380-841, -842, and -861 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-23
... addition, delamination has been observed within the monolithic Carbon Fibre Reinforced Plastic (CFRP... observed within the monolithic Carbon Fibre Reinforced Plastic (CFRP) structure around the pivot support... monolithic Carbon Fibre Reinforced Plastic (CFRP) structure around the pivot support-ring. This condition, if...
NASA Astrophysics Data System (ADS)
Zhang, Letian
2017-09-01
The Asian continent was formed through the amalgamation of several major continental blocks that were formerly separated by the Paleo-Asian and Tethyan Oceans. During this process, the Asian continent underwent a long period of continental crustal growth and tectonic deformation, making it the largest and youngest continent on Earth. This paper presents a review of the application of geophysical electromagnetic methods, mainly the magnetotelluric (MT) method, in recent investigations of the diverse tectonic features across the Asian continent. The case studies cover the major continental blocks of Asia, the Central Asian orogenic system, the Tethyan orogenic system, as well as the western Pacific subduction system. In summary, most of the major continental blocks of Asia exhibit a three-layer structure with a resistive upper crust and upper mantle and a relatively conductive mid-lower crust. Large-scale conductors in the upper mantle were interpreted as an indication of lithospheric modification at the craton margins. The electrical structure of the Central Asian orogenic system is generally more resistive than the bordering continental blocks, whereas the Tethyan orogenic system displays more conductive, with pervasive conductors in the lower crust and upper mantle. The western Pacific subduction system shows increasing complexity in its electrical structure from its northern extent to its southern extent. In general, the following areas of the Asian continent have increasingly conductive lithospheric electrical structures, which correspond to a transition from the most stable areas to the most active tectonic areas of Asia: the major continental blocks, the accretionary Central Asian orogenic system, the collisional Tethyan orogenic system, and the western Pacific subduction system. As a key part of this review, a three-dimensional (3-D) model of the lithospheric electrical structure of a large portion of the Tibetan Plateau is presented and discussed in detail; the model indicates tearing of the underthrusting Indian slab as well as complex crustal conductor geometries, which are not obviously consistent with the hypothesis of a continuous, eastward channel flow. These studies have greatly enhanced our knowledge of the formation and deformation processes of the Asian continent. Lastly, future research to expand field data coverage, improve related techniques, and integrate data from other disciplines is suggested.
An elastic-plastic contact model for line contact structures
NASA Astrophysics Data System (ADS)
Zhu, Haibin; Zhao, Yingtao; He, Zhifeng; Zhang, Ruinan; Ma, Shaopeng
2018-06-01
Although numerical simulation tools are now very powerful, the development of analytical models is very important for the prediction of the mechanical behaviour of line contact structures for deeply understanding contact problems and engineering applications. For the line contact structures widely used in the engineering field, few analytical models are available for predicting the mechanical behaviour when the structures deform plastically, as the classic Hertz's theory would be invalid. Thus, the present study proposed an elastic-plastic model for line contact structures based on the understanding of the yield mechanism. A mathematical expression describing the global relationship between load history and contact width evolution of line contact structures was obtained. The proposed model was verified through an actual line contact test and a corresponding numerical simulation. The results confirmed that this model can be used to accurately predict the elastic-plastic mechanical behaviour of a line contact structure.
Solar photovoltaic reflective trough collection structure
Anderson, Benjamin J.; Sweatt, William C.; Okandan, Murat; Nielson, Gregory N.
2015-11-19
A photovoltaic (PV) solar concentration structure having at least two troughs encapsulated in a rectangular parallelepiped optical plastic structure, with the troughs filled with an optical plastic material, the troughs each having a reflective internal surface and approximately parabolic geometry, and the troughs each including photovoltaic cells situated so that light impinging on the optical plastic material will be concentrated onto the photovoltaic cells. Multiple structures can be connected to provide a solar photovoltaic collection system that provides portable, efficient, low-cost electrical power.
NASA Astrophysics Data System (ADS)
Kusznir, Nick; Alvey, Andy; Roberts, Alan
2017-04-01
The 3D mapping of crustal thickness for continental shelves and oceanic crust, and the determination of ocean-continent transition (OCT) structure and continent-ocean boundary (COB) location, represents a substantial challenge. Geophysical inversion of satellite derived free-air gravity anomaly data incorporating a lithosphere thermal anomaly correction (Chappell & Kusznir, 2008) now provides a useful and reliable methodology for mapping crustal thickness in the marine domain. Using this we have produced the first comprehensive maps of global crustal thickness for oceanic and continental shelf regions. Maps of crustal thickness and continental lithosphere thinning factor from gravity inversion may be used to determine the distribution of oceanic lithosphere, micro-continents and oceanic plateaux including for the inaccessible polar regions (e.g. Arctic Ocean, Alvey et al.,2008). The gravity inversion method provides a prediction of continent-ocean boundary location which is independent of ocean magnetic anomaly and isochron interpretation. Using crustal thickness and continental lithosphere thinning factor maps with superimposed shaded-relief free-air gravity anomaly, we can improve the determination of pre-breakup rifted margin conjugacy and sea-floor spreading trajectory during ocean basin formation. By restoring crustal thickness & continental lithosphere thinning to their initial post-breakup configuration we show the geometry and segmentation of the rifted continental margins at their time of breakup, together with the location of highly-stretched failed breakup basins and rifted micro-continents. For detailed analysis to constrain OCT structure, margin type (i.e. magma poor, "normal" or magma rich) and COB location, a suite of quantitative analytical methods may be used which include: (i) Crustal cross-sections showing Moho depth and crustal basement thickness from gravity inversion. (ii) Residual depth anomaly (RDA) analysis which is used to investigate OCT bathymetric anomalies with respect to expected oceanic values. This includes flexural backstripping to produce bathymetry corrected for sediment loading. (iii) Subsidence analysis which is used to determine the distribution of continental lithosphere thinning. (iv) Joint inversion of time-domain deep seismic reflection and gravity anomaly data which is used to determine lateral variations in crustal basement density and velocity across the OCT, and to validate deep seismic reflection interpretations of Moho depth. The combined interpretation of these independent quantitative measurements is used to determine crustal thickness and composition across the ocean-continent-transition. This integrated approach has been validated on the Iberian margin where ODP drilling provides ground-truth of ocean-continent-transition crustal structure, continent-ocean-boundary location and magmatic type.
Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses.
Ocker, Gabriel Koch; Litwin-Kumar, Ashok; Doiron, Brent
2015-08-01
The synaptic connectivity of cortical networks features an overrepresentation of certain wiring motifs compared to simple random-network models. This structure is shaped, in part, by synaptic plasticity that promotes or suppresses connections between neurons depending on their joint spiking activity. Frequently, theoretical studies focus on how feedforward inputs drive plasticity to create this network structure. We study the complementary scenario of self-organized structure in a recurrent network, with spike timing-dependent plasticity driven by spontaneous dynamics. We develop a self-consistent theory for the evolution of network structure by combining fast spiking covariance with a slow evolution of synaptic weights. Through a finite-size expansion of network dynamics we obtain a low-dimensional set of nonlinear differential equations for the evolution of two-synapse connectivity motifs. With this theory in hand, we explore how the form of the plasticity rule drives the evolution of microcircuits in cortical networks. When potentiation and depression are in approximate balance, synaptic dynamics depend on weighted divergent, convergent, and chain motifs. For additive, Hebbian STDP these motif interactions create instabilities in synaptic dynamics that either promote or suppress the initial network structure. Our work provides a consistent theoretical framework for studying how spiking activity in recurrent networks interacts with synaptic plasticity to determine network structure.
Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses
Ocker, Gabriel Koch; Litwin-Kumar, Ashok; Doiron, Brent
2015-01-01
The synaptic connectivity of cortical networks features an overrepresentation of certain wiring motifs compared to simple random-network models. This structure is shaped, in part, by synaptic plasticity that promotes or suppresses connections between neurons depending on their joint spiking activity. Frequently, theoretical studies focus on how feedforward inputs drive plasticity to create this network structure. We study the complementary scenario of self-organized structure in a recurrent network, with spike timing-dependent plasticity driven by spontaneous dynamics. We develop a self-consistent theory for the evolution of network structure by combining fast spiking covariance with a slow evolution of synaptic weights. Through a finite-size expansion of network dynamics we obtain a low-dimensional set of nonlinear differential equations for the evolution of two-synapse connectivity motifs. With this theory in hand, we explore how the form of the plasticity rule drives the evolution of microcircuits in cortical networks. When potentiation and depression are in approximate balance, synaptic dynamics depend on weighted divergent, convergent, and chain motifs. For additive, Hebbian STDP these motif interactions create instabilities in synaptic dynamics that either promote or suppress the initial network structure. Our work provides a consistent theoretical framework for studying how spiking activity in recurrent networks interacts with synaptic plasticity to determine network structure. PMID:26291697
Martin, Jake; Lusher, Amy; Thompson, Richard C; Morley, Audrey
2017-09-07
Microplastics are widely dispersed throughout the marine environment. An understanding of the distribution and accumulation of this form of pollution is crucial for gauging environmental risk. Presented here is the first record of plastic contamination, in the 5 mm-250 μm size range, of Irish continental shelf sediments. Sixty-two microplastics were recovered from 10 of 11 stations using box cores. 97% of recovered microplastics were found to reside shallower than 2.5 cm sediment depth, with the area of highest microplastic concentration being the water-sediment interface and top 0.5 cm of sediments (66%). Microplastics were not found deeper than 3.5 ± 0.5 cm. These findings demonstrate that microplastic contamination is ubiquitous within superficial sediments and bottom water along the western Irish continental shelf. Results highlight that cores need to be at least 4-5 cm deep to quantify the standing stock of microplastics within marine sediments. All recovered microplastics were classified as secondary microplastics as they appear to be remnants of larger items; fibres being the principal form of microplastic pollution (85%), followed by broken fragments (15%). The range of polymer types, colours and physical forms recovered suggests a variety of sources. Further research is needed to understand the mechanisms influencing microplastic transport, deposition, resuspension and subsequent interactions with biota.
NASA Astrophysics Data System (ADS)
Hansen, M.; Moucha, R.; Rooney, T. O.; Stein, S.; Stein, C. A.
2016-12-01
The Mid-Continent Rift System (MCRS) is a 2000 kilometer-long failed rift which formed within the Precambrian continent of Laurentia ca. 1.1 Ga. The MCRS is part of the Keweenaw large igneous province (LIP), and is dominantly composed of flood basalts, with subordinate rhyolite. While continental rifts and LIPs are frequently spatially related, it is unusual for a rift to be filled with flood basalts. Existing work has suggested that the presence of large volumes of flood basalts within the MCRS is the result of the rift interacting with anomalously hot mantle material, possibly a mantle plume. However, ambient mantle conditions were much hotter during the late Proterozoic than in the modern mantle. This raises the question - could rifting alone generate the significant volume of decompressive melt from the ambient atmosphere without the need for a mantle plume? In this contribution, we utilize a 2D particle-in-cell thermomechanical visco-elasto-plastic code (e.g. Gerya, 2010; & references therein) to numerically explore the parameter space: specifically, the mantle potential temperature, plume excess temperature and volume, extension rates and rheology, and estimate the amount of melt produced in a Precambrian continental rift setting. *This submission is a result of Hansen's participation in GLADE, a nine week summer REU program directed by Dave Stegman (SIO/UCSD).
NASA Astrophysics Data System (ADS)
Toucanne, S.; Howlett, S.; Garziglia, S.; Silva Jacinto, R.; Courgeon, S.; Sabine, M.; Riboulot, V.; Marsset, B.
2016-12-01
In the aftermath of the devastating tsunami on the Japanese coast in 2011, a French multi-partnership project called TANDEM has been launched to assess the impact of tsunamis generated or propagated in the vicinity of French Channel and Atlantic coastlines. Tsunami are usually generated by earthquakes, but can also be triggered by submarine landslides. This study focuses on submarine landslides along the French Atlantic continental slope using data that were mainly collected in August 2015 during the GITAN cruise (R/V Pourquoi Pas?). Following geomorphological, geophysical and sedimentological analysis of the Bay of Biscay, efforts were oriented towards the determination of the sediment properties controlling landslide dynamics from in situ and laboratory measurements. Preliminary results show over 700 landslide scars on the French Atlantic continental slope, with most of them occurring between 400 and 1000m water depth and in canyon environments. The Plio-Quaternary sediments draping the majority of the Bay of Biscay are generally normally consolidated and composed of high plasticity clays. They show similar geomechanical properties throughout the area studied, with linear evolutions with depth and good reproducibility for rheological parameters such as Storage and Loss modulus. These similarities allow to extend geotechnical and rheological models to a regional scale in the Bay of Biscay. Our multi-disciplinary approach will provide the tools to assess continental slope failures and submarine landslides generation. Finally, we will aim to qualify and quantify the volumes and flow properties of sediment transported obtained through slope-stability modeling on SAMU-3D and rheology modelling on Nixes-SPH. These results will provide the TANDEM actors with the information necessary to simulate tsunami wave generation.
Plate tectonics beyond plate boundaries: the role of ancient structures in intraplate orogenesis
NASA Astrophysics Data System (ADS)
Heron, Philip; Pysklywec, Russell; Stephenson, Randell
2015-04-01
The development of orogens that occur at a distance from plate boundaries (i.e., `intraplate' deformation) cannot be adequately explained through conventional plate tectonic theory. Intraplate deformation infers a more complex argument for lithospheric and mantle interaction than plate tectonic theory allows. As a result, the origins of intraplate orogenesis are enigmatic. One hypothesis is the amalgamation of continental material (i.e., micro-plates) leaves inherent scars on the crust and mantle lithosphere. Previous studies into continent-continent collisions identify a number of scenarios from accretionary tectonics that affect the crust and mantle (namely, the development of a Rayleigh-Taylor instability, lithospheric underplating, lithospheric delamination, and lithospheric subduction). Any of these processes may weaken the lithosphere allowing episodic reactivation of faults within continental interiors. Hence, continental convergence (i.e., shortening) at a time after continental collision may cause the already weakened crust and mantle lithosphere to produce intraplate deformation. In order to better understand the processes involved in deformation away from plate boundaries, we present suites of continental shortening models (using the high-resolution thermal-mechanical modelling code SOPALE) to identify the preferred style of deformation. We model ancient structures by applying weak subduction scarring, changing the rheological conditions, and modifying the thermal structure within the lithosphere. To highlight the role of surface processes on plate and lithosphere deformation, the effect of climate-driven erosion and deposition on the tectonic structure of intraplate deformation is also addressed. We explore the relevance of the models to previously studied regions of intraplate orogenesis, including the Pyrenees in Europe, the Laramide orogen in North America, Tien Shan orogen in Central Asia, and Central Australia. The findings of the simulations with regards to past and future North American intraplate deformation are also discussed. Our results indicate that there exists a number of tectonic environments that can be produced relating to continental accretion, and that specific observational constraints to the local area (e.g., geological, geophysical, geodetic) are required to be integrated directly into the analyses for better interpretation. The models shown here find that although rheological changes to the lithosphere can produce a range of deformation during continental convergence (i.e., crustal thickening, thinning, and folding), mantle weak zones from ancient subduction can generate more localized deformation and topography.
NASA Technical Reports Server (NTRS)
Froidevaux, C.; Schubert, G.; Yuen, D. A.
1976-01-01
Temperature, velocity, and viscosity profiles for coupled thermal and mechanical models of the upper mantle beneath continental shields and old ocean basins show that under the continents, both tectonic plates and the asthenosphere, are thicker than they are beneath the oceans. The minimum value of viscosity in the continental asthenosphere is about an order of magnitude larger than in the shear zone beneath oceans. The shear stress or drag underneath continental plates is also approximately an order of magnitude larger than the drag on oceanic plates. Effects of shear heating may account for flattening of ocean floor topography and heat flux in old ocean basins.
Structural and Functional Plasticity in the Maternal Brain Circuitry
ERIC Educational Resources Information Center
Pereira, Mariana
2016-01-01
Parenting recruits a distributed network of brain structures (and neuromodulators) that coordinates caregiving responses attuned to the young's affect, needs, and developmental stage. Many of these structures and connections undergo significant structural and functional plasticity, mediated by the interplay between maternal hormones and social…
NASA Astrophysics Data System (ADS)
Lyakhovsky, V.; Segev, A.; Schattner, U.; Weinberger, R.
2012-01-01
We study the propagation of a continental rift and its interaction with a continental margin utilizing a 3-D lithospheric model with a seismogenic crust governed by a damage rheology. A long-standing problem in rift-mechanics, known as thetectonic force paradox, is that the magnitude of the tectonic forces required for rifting are not large enough in the absence of basaltic magmatism. Our modeling results demonstrate that under moderate rift-driving tectonic forces the rift propagation is feasible even in the absence of magmatism. This is due to gradual weakening and "long-term memory" of fractured rocks that lead to a significantly lower yielding stress than that of the surrounding intact rocks. We show that the style, rate and the associated seismicity pattern of the rift zone formation in the continental lithosphere depend not only on the applied tectonic forces, but also on the rate of healing. Accounting for the memory effect provides a feasible solution for thetectonic force paradox. Our modeling results also demonstrate how the lithosphere structure affects the geometry of the propagating rift system toward a continental margin. Thinning of the crystalline crust leads to a decrease in the propagation rate and possibly to rift termination across the margin. In such a case, a new fault system is created perpendicular to the direction of the rift propagation. These results reveal that the local lithosphere structure is one of the key factors controlling the geometry of the evolving rift system and seismicity pattern.
Influence of the lithosphere-asthenosphere boundary on the stress field northwest of the Alps
NASA Astrophysics Data System (ADS)
Maury, J.; Cornet, F. H.; Cara, M.
2014-11-01
In 1356, a magnitude 6-7 earthquake occurred near Basel, in Switzerland. But recent compilations of GPS measurements reveal that measured horizontal deformation rates in northwestern continental Europe are smaller than error bars on the measurements, proving present tectonic activity, if any, is very small in this area. We propose to reconcile these apparently antinomic observations with a mechanical model of the lithosphere that takes into account the geometry of the lithosphere-asthenosphere boundary, assuming that the only loading mechanism is gravity. The lithosphere is considered to be an elastoplastic material satisfying a Von Mises plasticity criterion. The model, which is 400 km long, 360 km wide and 230 km thick, is centred near Belfort in eastern France, with its width oriented parallel to the N145°E direction. It also takes into account the real topography of both the ground surface and that of the Moho discontinuity. Not only does the model reproduce observed principal stress directions orientations, it also identifies a plastic zone that fits roughly the most seismically active domain of the region. Interestingly, a somewhat similar stress map may be produced by considering an elastic lithosphere and an ad-hoc horizontal `tectonic' stress field. However, for the latter model, examination of the plasticity criterion suggests that plastic deformation should have taken place. It is concluded that the present-day stress field in this region is likely controlled by gravity and rheology, rather than by active Alpine tectonics.
Geology of continental margins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
With continued high interest in offshore petroleum exploration, the 1977 AAPG Short Course presents the latest interpretations of new data bearing on the geology and geophysics of continental margins. Seven well-known earth scientists have organized an integrated program covering major topics involved in the development of ocean basins and continental margins with emphasis on the slopes and rises. The discussion of plate tectonics and evolution of continental margins is followed by presentations on the stratigraphy and structure of pull-apart and compressional margins. Prospective petroleum source rocks, their organic content, rate of burial, and distribution on slopes and rises of differentmore » margin types is covered. Prospective reservoir rock patterns are related to depositional processes and to the sedimentary and structural histories for different types of continental margins. Finally, the seismic recognition of depositional facies on slopes and rises for different margin types with varying rates of sediment supply during eustatic sea-level changes are discussed. The course with this syllabus offers an invaluable opportunity for explorationists to refresh their understanding of the geology associated with an important petroleum frontier. In addition, the course sets forth a technical frame of reference for the case-histoy papers to be presented later in the AAPG Research Symposium on the Petroleum Potential of Slopes, Rises, and Plateaus.« less
Oceanic-type accretion may begin before complete continental break-up
NASA Astrophysics Data System (ADS)
Geoffroy, L.; Zalan, P. V.; Viana, A. R.
2011-12-01
Oceanic accretion is thought to be the process of oceanic crust (and lithosphere) edification through adiabatic melting of shallow convecting mantle at oceanic spreading ridges. It is usually considered as a post-breakup diagnostic process following continents rupturing. However, this is not always correct. The structure of volcanic passive margins (representing more than 50% of passive continental margins) outlines that the continental lithosphere is progressively changed into oceanic-type lithosphere during the stage of continental extension. This is clear at least, at crustal level. The continental crust is 'changed' from the earliest stages of extension into a typical -however thicker- oceanic crust with the typical oceanic magmatic layers (from top to bottom: lava flows/tuffs, sheeted dyke complexes, dominantly (sill-like) mafic intrusions in the lower crust). The Q-rich continental crust is highly extended and increases in volume (due to the magma) during the extensional process. At the continent-ocean transition there is, finally, no seismic difference between this highly transformed continental crust and the oceanic crust. Using a large range of data (including deep seismic reflection profiles), we discuss the mantle mechanisms that governs the process of mantle-assisted continental extension. We outline the large similarity between those mantle processes and those acting at purely-oceanic spreading axis and discuss the effects of the inherited continental lithosphere in the pattern of new mafic crust edification.
An experiment on the use of disposable plastics as a reinforcement in concrete beams
NASA Technical Reports Server (NTRS)
Chowdhury, Mostafiz R.
1992-01-01
Illustrated here is the concept of reinforced concrete structures by the use of computer simulation and an inexpensive hands-on design experiment. The students in our construction management program use disposable plastic as a reinforcement to demonstrate their understanding of reinforced concrete and prestressed concrete beams. The plastics used for such an experiment vary from plastic bottles to steel reinforced auto tires. This experiment will show the extent to which plastic reinforcement increases the strength of a concrete beam. The procedure of using such throw-away plastics in an experiment to explain the interaction between the reinforcement material and concrete, and a comparison of the test results for using different types of waste plastics are discussed. A computer analysis to simulate the structural response is used to compare the test results and to understand the analytical background of reinforced concrete design. This interaction of using computers to analyze structures and to relate the output results with real experimentation is found to be a very useful method for teaching a math-based analytical subject to our non-engineering students.
NASA Astrophysics Data System (ADS)
Cowie, Leanne; Kusznir, Nick; Leroy, Sylvie; Manatshal, Gianreto
2013-04-01
Knowledge and understanding of the ocean-continent transition (OCT) structure and continent-ocean boundary (COB) location, the distribution of thinned continental crust and lithosphere, its distal extent and the start of unequivocal oceanic crust are of critical importance in evaluating rifted continental margin formation and evolution. In order to determine the OCT structure and COB location for the eastern Gulf of Aden, along the Oman margin, we use a combination of gravity inversion, subsidence analysis and residual depth anomaly (RDA) analysis. Gravity inversion has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning; subsidence analysis has been used to determine the distribution of continental lithosphere thinning; and RDAs have been used to investigate the OCT bathymetric anomalies with respect to expected oceanic bathymetries at rifted margins. The gravity inversion method, which is carried out in the 3D spectral domain, incorporates a lithosphere thermal gravity anomaly and includes a correction for volcanic addition due to decompression melting. Reference Moho depths used in the gravity inversion have been calibrated against seismic refraction Moho depths. RDAs have been calculated by comparing observed and age predicted oceanic bathymetries, using the thermal plate model predictions from Crosby and McKenzie (2009). RDAs have been computed along profiles and have been corrected for sediment loading using flexural back-stripping and decompaction. In addition, gravity inversion crustal basement thicknesses together with Airy isostasy have been used to predict a synthetic RDA. The RDA results show a change in RDA signature and may be used to estimate the distal extent of thinned continental crust and where oceanic crust begins. Continental lithosphere thinning has been determined using flexural back-stripping and subsidence analysis assuming the classical rift model of McKenzie (1978) with a correction for volcanic addition due to decompression melting based on White & McKenzie (1989). Gravity inversion and the "synthetic" gravity derived RDA both show generally normal thickness oceanic crust, with some localised thin oceanic crust. Continental lithosphere thinning factors determined from gravity inversion and subsidence analysis are in good agreement and have been used to constrain COB location along the profile lines. These techniques show that the OCT in the eastern Gulf of Aden, is relatively narrow, with the distance between the COB and the margin hinge measuring less than 100km.
NASA Astrophysics Data System (ADS)
Tymms, V. J.; Kusznir, N. J.
2005-05-01
We numerically model continental lithosphere deformation leading to breakup and sea floor spreading initiation in response to an imposed upwelling and divergent flow field applied to continental lithosphere and asthenosphere. The model is used to predict rifted continental margin lithosphere thinning and temperature structure. Model predictions are compared with observed rifted margin structure for four diverse case studies. Prior to application of the upwelling divergent flow field the continental lithosphere is undeformed with a uniform temperature gradient. The upwelling divergent flow field is defined kinematically using boundary conditions consisting of the upwelling velocity Vz at the divergence axis and the half divergence rate Vx . The resultant velocity field throughout the continuum is computed using finite element (FE) code incorporating a Newtonian temperature dependent rheology. The flow field is used to advect the continental lithosphere material and lithospheric and asthenospheric temperatures. Viscosity structure is hence modified and the velocities change correspondingly in a feedback loop. We find the kinematic boundary conditions Vz and Vx to be of first order importance. A high Vz/Vx (greater than10), corresponding to buoyancy assisted flow, leads to minimal mantle exhumation and a well defined continent ocean transition consistent with observations at volcanic margins. For Vz/Vx near unity, corresponding to plate boundary driven divergence, mantle exhumation over widths of up to 100 km is predicted which is consistent with observations at non-volcanic margins. The FE method allows the upwelling velocity Vz to be propagated upwards from the top of the asthenosphere to the Earth's surface without the requirement of imposing Vx. When continental breakup is achieved the half divergence velocity Vx can be applied at the lithosphere surface and the upwelling velocity Vz left free. We find this time and space dependent set of boundary conditions is more plausible than a constant corner flow type solution and predicts levels of depth dependent stretching and continent ocean transitions consistent with observation. Depth dependent lithosphere stretching, which is observed at rifted continental margins, is predicted to occur before continental breakup and sea-floor spreading initiation. The model may be used to predict surface heat flow and bathymetry, and to provide estimates of melt production rates and cumulative thickness. We compare model predictions with observed margin structure for four diverse rifted margins: the Lofoten Margin (a mature volcanic margin), Goban Spur (a mature non-volcanic margin), the Woodlark Basin (a neotectonic young ocean basin) and the Faroe-Shetland Basin (a failed attempt at continental breakup). This work forms part of the NERC Margins iSIMM project. iSIMM investigators are from Liverpool and Cambridge Universities, Badley Geoscience & Schlumberger Cambridge Research supported by the NERC, the DTI, Agip UK, BP, Amerada Hess Ltd, Anadarko, Conoco¬Phillips, Shell, Statoil and WesternGeco. The iSIMM team comprises NJ Kusznir, RS White, AM Roberts, PAF Christie, A Chappell, J Eccles, R Fletcher, D Healy, N Hurst, ZC Lunnon, CJ Parkin, AW Roberts, LK Smith, V Tymms & R Spitzer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-01-01
The Senate Committee on Energy and Natural Resources report on S. 1026 recommends without amendment the bill which directs the Secretaries of the Interior and the National Science Foundation to cooperate in implementing the Continental Scientific Drilling Program (CSDP). The purpose of the CSDP is to enhance the knowledge and understanding of the composition, structure, dynamics, and evolution of the continental crust, including how such processes affect natural phenomena. The report includes background and the need for the legislation and summarizes the four sections.
MAGSAT anomaly map and continental drift
NASA Technical Reports Server (NTRS)
Lemouel, J. L. (Principal Investigator); Galdeano, A.; Ducruix, J.
1981-01-01
Anomaly maps of high quality are needed to display unambiguously the so called long wave length anomalies. The anomalies were analyzed in terms of continental drift and the nature of their sources is discussed. The map presented confirms the thinness of the oceanic magnetized layer. Continental magnetic anomalies are characterized by elongated structures generally of east-west trend. Paleomagnetic reconstruction shows that the anomalies found in India, Australia, and Antarctic exhibit a fair consistency with the African anomalies. It is also shown that anomalies are locked under the continents and have a fixed geometry.
The structure of the wind-induced exchange between Indian River Bay, Delaware and the adjacent continental shelf is examined based on current measurements made at the Indian River Inlet which represents the only conduit of exchange between the bay and the coastal ocean. Local ...
NASA Astrophysics Data System (ADS)
Behrmann, Jan H.; Planert, Lars; Jokat, Wilfried; Ryberg, Trond; Bialas, Jörg; Jegen, Marion
2013-04-01
The opening of the South Atlantic ocean basin was accompanied by voluminous magmatism on the conjugate continental margins of Africa and South America, including the formation of the Parana and Entendeka large igneous provinces (LIP), the build-up of up to 100 km wide volcanic wedges characterized by seaward dipping reflector sequences (SDR), as well as the formation of paired hotspot tracks on the rifted African and South American plates, the Walvis Ridge and the Rio Grande Rise. The area is considered as type example for hotspot or plume-related continental break-up. However, SDR, and LIP-related features on land are concentrated south of the hotspot tracks. The segmentation of the margins offers a prime opportunity to study the magmatic signal in space and time, and investigate the interrelation with rift-related deformation. A globally significant question we address here is whether magmatism drives continental break-up, or whether even rifting accompanied by abundant magmatism is in response to crustal and lithospheric stretching governed by large-scale plate kinematics. In 2010/11, an amphibious set of wide-angle seismic data was acquired around the landfall of Walvis Ridge at the Namibian passive continental margin. The experiments were designed to provide crustal velocity information and to investigate the structure of the upper mantle. In particular, we aimed at identifying deep fault zones and variations in Moho depth, constrain the velocity signature of SDR sequences, as well as the extent of magmatic addition to the lower crust near the continent-ocean transition. Sediment cover down to the igneous basement was additionally constrained by reflection seismic data. Here, we present tomographic analysis of the seismic data of one long NNW oriented profile parallel to the continental margin across Walvis Ridge, and a second amphibious profile from the Angola Basin across Walvis Ridge and into the continental interior, crossing the area of the Etendeka Plateau basalts. The most striking feature is the sharp transition in crustal structure and thickness across the northern boundary of Walvis Ridge. Thin oceanic crust (6.5 km) of the Angola Basin lies next to the up to 35 km thick igneous crustal root founding the highest elevated northern portions of Walvis Ridge. Both structures are separated by a very large transform fault zone. The velocity structure of Walvis Ridge lower crust is indicative of gabbro, and, in the lowest parts, of cumulate sequences. On the southern side of Walvis Ridge there is a smooth gradation into the adjacent 25-30 km thick crust underlying the ocean-continent boundary, with a velocity structure resembling that of Walvis Ridge The second profile shows a sharp transition from oceanic to rifted continental crust. The transition zone may be underlain by hydrated uppermost mantle. Below the Etendeka Plateau, an extensive high-velocity body, likely representing gabbros and their cumulates at the base of the crust, indicates magmatic underplating. We summarize by stating that rift-related lithospheric stretching and associated transform faulting play an overriding role in locating magmatism, dividing the margin in a magmatic-dominated segment to the south, and an amagmatic segment north of Walvis Ridge.
NASA Astrophysics Data System (ADS)
Biemiller, J.; Ellis, S. M.; Little, T.; Mizera, M.; Wallace, L. M.; Lavier, L.
2017-12-01
The structural, mechanical and geometric evolution of rifted continental crust depends on the lithospheric conditions in the region prior to the onset of extension. In areas where tectonic activity preceded rift initiation, structural and physical properties of the previous tectonic regime may be inherited by the rift and influence its development. Many continental rifts form and exhume metamorphic core complexes (MCCs), coherent exposures of deep crustal rocks which typically surface as arched or domed structures. MCCs are exhumed in regions where the faulted upper crust is displaced laterally from upwelling ductile material along a weak detachment fault. Some MCCs form during extensional inversion of a subduction thrust following failed subduction of continental crust, but the degree to which lithospheric conditions inherited from the preceding subduction phase control the extensional style in these systems remains unclear. For example, the Dayman Dome in Southeastern Papua New Guinea exposes prehnite-pumpellyite to greenschist facies rocks in a smooth 3 km-high dome exhumed with at least 24 km of slip along one main detachment normal fault, the Mai'iu Fault, which dips 21° at the surface. The extension driving this exhumation is associated with the cessation of northward subduction of Australian continental crust beneath the oceanic lithosphere of the Woodlark Plate. We use geodynamic models to explore the effect of pre-existing crustal structures inherited from the preceding subduction phase on the style of rifting. We show that different geometries and strengths of inherited subduction shear zones predict three distinct modes of subsequent rift development: 1) symmetric rifting by newly formed high-angle normal faults; 2) asymmetric rifting along a weak low-angle detachment fault extending from the surface to the brittle-ductile transition; and 3) extension along a rolling-hinge structure which exhumes deep crustal rocks in coherent rounded exposures. We propose the latter mode as an exhumation model for Dayman Dome and compare the model predictions to regional geophysical and geological evidence. Our models find that tectonically inherited subduction structures may strongly control subsequent extension style when the subduction thrust is weak and well-oriented for reactivation.
Analysis of reverse martensitic transformation of prehardened 16XCH steel
NASA Astrophysics Data System (ADS)
Muravyev, Vasily; Frolov, Alexey; Lonchakov, Sergey; Bakhmatov, Pavel
2015-10-01
In the paper the structural evolution of previously tempered 16XCH steel is investigated. The influence of temperature and time conditions of heating on temperature of austenization is revealed and the influence of structural changes on steel properties is defined. The analysis of the obtained results showed an increase of plasticity at the initial stage of reverse martensitic transformation and an increase of plasticity at increased durability. It is experimentally found that reverse transformation of packet and lath martensite into the initial phase (holding for a fraction of a second, temperature 400-450°C) leads to a sharp, more than 2-fold, reduction of strength and increase of plasticity. The effect of increased plasticity under reverse martensitic transformation conditions is observed. The structure of packet and lath martensite is more fine-grained in comparison with initial quenching; the durability and plasticity are much higher. Despite the derived results, the revealed effects of increased plasticity and strength require further exploration to increase the reliability of constructions made of low-alloyed steels.
Takei, Atsushi; Jin, Lihua; Fujita, Hiroyuki; Takei, A; Fujita, H; Jin, Lihua
2016-09-14
Wrinkles on thin film/elastomer bilayer systems provide functional surfaces. The aspect ratio of these wrinkles is critical to their functionality. Much effort has been dedicated to creating high-aspect-ratio structures on the surface of bilayer systems. A highly prestretched elastomer attached to a thin film has recently been shown to form a high-aspect-ratio structure, called a ridge structure, due to a large strain induced in the elastomer. However, the prestretch requirements of the elastomer during thin film attachment are not compatible with conventional thin film deposition methods, such as spin coating, dip coating, and chemical vapor deposition (CVD). Thus, the fabrication method is complex, and ridge structure formation is limited to planar surfaces. This paper presents a new and simple method for constructing ridge structures on a nonplanar surface using a plastic thin film/elastomer bilayer system. A plastic thin film is attached to a stress-free elastomer, and the resulting bilayer system is highly stretched one- or two-dimensionally. Upon the release of the stretch load, the deformation of the elastomer is reversible, while the plastically deformed thin film stays elongated. The combination of the length mismatch and the large strain induced in the elastomer generates ridge structures. The morphology of the plastic thin film/elastomer bilayer system is experimentally studied by varying the physical parameters, and the functionality and the applicability to a nonplanar surface are demonstrated. Finally, we simulate the effect of plasticity on morphology. This study presents a new technique for generating microscale high-aspect-ratio structures and its potential for functional surfaces.
Dense-body aggregates as plastic structures supporting tension in smooth muscle cells.
Zhang, Jie; Herrera, Ana M; Paré, Peter D; Seow, Chun Y
2010-11-01
The wall of hollow organs of vertebrates is a unique structure able to generate active tension and maintain a nearly constant passive stiffness over a large volume range. These properties are predominantly attributable to the smooth muscle cells that line the organ wall. Although smooth muscle is known to possess plasticity (i.e., the ability to adapt to large changes in cell length through structural remodeling of contractile apparatus and cytoskeleton), the detailed structural basis for the plasticity is largely unknown. Dense bodies, one of the most prominent structures in smooth muscle cells, have been regarded as the anchoring sites for actin filaments, similar to the Z-disks in striated muscle. Here, we show that the dense bodies and intermediate filaments formed cable-like structures inside airway smooth muscle cells and were able to adjust the cable length according to cell length and tension. Stretching the muscle cell bundle in the relaxed state caused the cables to straighten, indicating that these intracellular structures were connected to the extracellular matrix and could support passive tension. These plastic structures may be responsible for the ability of smooth muscle to maintain a nearly constant tensile stiffness over a large length range. The finding suggests that the structural plasticity of hollow organs may originate from the dense-body cables within the smooth muscle cells.
Alomar, Carme; Deudero, Salud
2017-04-01
Microplastic (<5 mm) ingestion has been recorded in Galeus melastomus, the blackmouth catshark, around the Balearic Islands. In total 125 individuals were analyzed for microplastic ingestion. Results have shown that 16.80% of the specimens had ingested a mean value of 0.34 ± 0.07 microplastics/individual. Stomach fullness index ranged from 0.86 to 38.89% and regression analyses showed that fuller stomachs contained more microplastics. A higher quantity of filament type microplastics were identified compared to granular or hard plastic type. No significant differences were given between ingestion values of two locations over the continental shelf providing further evidence of the ubiquitous distribution of microplastics. The findings in this study reflect the availability of this man made contaminant to marine species in seafloor habitats. Based on results from this study, data on microplastic ingestion could be used to study trends in the amount and composition of litter ingested by marine animals in accordance with descriptor 10 of the Marine Strategy Framework Directive. Copyright © 2017 Elsevier Ltd. All rights reserved.
Magma-poor vs. magma-rich continental rifting and breakup in the Labrador Sea
NASA Astrophysics Data System (ADS)
Gouiza, M.; Paton, D.
2017-12-01
Magma-poor and magma-rich rifted margins show distinct structural and stratigraphic geometries during the rift to breakup period. In magma-poor margins, crustal stretching is accommodated mainly by brittle faulting and the formation of wide rift basins shaped by numerous graben and half-graben structures. Continental breakup and oceanic crust accretion are often preceded by a localised phase of (hyper-) extension where the upper mantle is embrittled, serpentinized, and exhumed to the surface. In magma-rich margins, the rift basin is narrow and extension is accompanied by a large magmatic supply. Continental breakup and oceanic crust accretion is preceded by the emplacement of a thick volcanic crust juxtaposing and underplating a moderately thinned continental crust. Both magma-poor and magma-rich rifting occur in response to lithospheric extension but the driving forces and processes are believed to be different. In the former extension is assumed to be driven by plate boundary forces, while in the latter extension is supposed to be controlled by sublithospheric mantle dynamics. However, this view fails in explaining observations from many Atlantic conjugate margins where magma-poor and magma-rich segments alternate in a relatively abrupt fashion. This is the case of the Labrador margin where the northern segment shows major magmatic supply during most of the syn-rift phase which culminate in the emplacement of a thick volcanic crust in the transitional domain along with high density bodies underplating the thinned continental crust; while the southern segment is characterized mainly by brittle extension, mantle seprentinization and exhumation prior to continental breakup. In this work, we use seismic and potential field data to describe the crustal and structural architectures of the Labrador margin, and investigate the tectonic and mechanical processes of rifting that may have controlled the magmatic supply in the different segments of the margin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cozar, O.; Filip, C.; Tripon, C.
The plasticizing - antiplasticizing effect of water and glycerol contents on native corn starch samples is investigated by FT-Raman and {sup 13}C CP/MAS NMR spectroscopy. The presence of both amorphous and crystalline structural phases was evidenced in pure native corn starch and also in the samples containing plasticizers. Among the crystalline starch structures, the A- and V- types were suggested by CP/MAS NMR spectra.
The effects of musical training on structural brain development: a longitudinal study.
Hyde, Krista L; Lerch, Jason; Norton, Andrea; Forgeard, Marie; Winner, Ellen; Evans, Alan C; Schlaug, Gottfried
2009-07-01
Long-term instrumental music training is an intense, multisensory and motor experience that offers an ideal opportunity to study structural brain plasticity in the developing brain in correlation with behavioral changes induced by training. Here, for the first time, we demonstrate structural brain changes after only 15 months of musical training in early childhood, which were correlated with improvements in musically relevant motor and auditory skills. These findings shed light on brain plasticity, and suggest that structural brain differences in adult experts (whether musicians or experts in other areas) are likely due to training-induced brain plasticity.
NASA Astrophysics Data System (ADS)
Krasnoveikin, V. A.; Kozulin, A. A.; Skripnyak, V. A.
2017-11-01
Severe plastic deformation by equal channel angular pressing has been performed to produce light aluminum and magnesium alloy billets with ultrafine-grained structure. The physical and mechanical properties of the processed alloys are examined by studying their microstructure, measuring microhardness, yield strength, and uniaxial tensile strength. A nondestructive testing technique using three-dimensional X-ray tomography is proposed for detecting internal structural defects and monitoring damage formation in the structure of alloys subjected to severe plastic deformation. The investigation results prove the efficiency of the chosen method and selected mode of producing ultrafine-grained light alloys.
Analysis of fluid-structure interaction in a frame pipe undergoing plastic deformations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khamlichi, A.; Jezequel, L.; Jacques, Y.
1995-11-01
Water hammer pressure waves of sufficiently large magnitude can cause plastic flexural deformations in a frame pipe. In this study, the authors propose a modelization of this problem based on plane wave approximation for the fluid equations and approximation of the structure motion by a single-degree-of-freedom elastic-plastic oscillator. Direct analytical integration of elastic-plastic equations through pipe sections, then over the pipe length is performed in order to identify the oscillator parameters. Comparison of the global load-displacement relationship obtained with the finite element solution was considered and has shown good agreement. Fluid-structure coupling is achieved by assuming elbows to act likemore » plane monopole sources, where localized jumps of fluid velocity occur and where net pressure forces are exerted on the structure. The authors have applied this method to analyze the fluid-structure interaction in this range of deformations. Energy exchange between the fluid and the structure and energy dissipation are quantified.« less
Zhao, Yunan; Wang, Zhongli; Dai, Jianguo; Chen, Lin; Huang, Yufang; Zhan, Zhen
2012-03-17
Whether benzodiazepines (BZDs) have beneficial effects on the progress of chronic stress-induced impairment of hippocampal structural plasticity and major depression is uncertain. The present study designed four preclinical experiments to determine the effects of BZDs using chronic unpredictable stress model. In Experiment 1, several time course studies on behavior and hippocampus response to stress were conducted using the forced swim and tail suspension tests (FST and TST) as well as hippocampal structural plasticity markers. Chronic stress induced depression-like behavior in the FST and TST as well as decreased hippocampal structural plasticity that returned to normal within 3 wk. In Experiment 2, mice received p.o. administration of three diazepam dosages prior to each variate stress session for 4 wk. This treatment significantly antagonized the elevation of stress-induced corticosterone levels. Only low- (0.5mg/kg) and medium-dose (1mg/kg) diazepam blocked the detrimental effects of chronic stress. In Experiment 3, after 7 wk of stress sessions, daily p.o. diazepam administration during 1 wk recovery phase dose-dependently accelerated the recovery of stressed mice. In Experiment 4, 1 wk diazepam administration to control mice enhanced significantly hippocampal structural plasticity and induced an antidepressant-like behavioral effect, whereas 4 wk diazepam administration produced opposite effects. Hence, diazepam can slow the progress of chronic stress-induced detrimental consequences by normalizing glucocorticoid hormones. Considering the adverse effect of long-term diazepam administration on hippocampal plasticity, the preventive effects of diazepam may depend on the proper dose. Short-term diazepam treatment enhances hippocampal structural plasticity and is beneficial to recovery following chronic stress. Copyright © 2011 Elsevier B.V. All rights reserved.
Zagrebelsky, Marta; Lonnemann, Niklas; Fricke, Steffen; Kellner, Yves; Preuß, Eike; Michaelsen-Preusse, Kristin; Korte, Martin
2017-02-01
Behavioral learning has been shown to involve changes in the function and structure of synaptic connections of the central nervous system (CNS). On the other hand, the neuronal circuitry in the mature brain is characterized by a high degree of stability possibly providing a correlate for long-term storage of information. This observation indicates the requirement for a set of molecules inhibiting plasticity and promoting stability thereby providing temporal and spatial specificity to plastic processes. Indeed, signaling of Nogo-A via its receptors has been shown to play a crucial role in restricting activity-dependent functional and structural plasticity in the adult CNS. However, whether Nogo-A controls learning and memory formation and what are the cellular and molecular mechanisms underlying this function is still unclear. Here we show that Nogo-A signaling controls spatial learning and reference memory formation upon training in the Morris water maze and negatively modulates structural changes at spines in the mouse hippocampus. Learning processes and the correlated structural plasticity have been shown to involve changes in excitatory as well as in inhibitory neuronal connections. We show here that Nogo-A is highly expressed not only in excitatory, but also in inhibitory, Parvalbumin positive neurons in the adult hippocampus. By this means our current and previous data indicate that Nogo-A loss-of-function positively influences spatial learning by priming the neuronal structure to a higher plasticity level. Taken together our results link the role of Nogo-A in negatively regulating plastic processes to a physiological function in controlling learning and memory processes in the mature hippocampus and open the interesting possibility that it might mainly act by controlling the function of the hippocampal inhibitory circuitry. Copyright © 2016 Elsevier Inc. All rights reserved.
Schmitt, H; Guidez, A; Prashantha, K; Soulestin, J; Lacrampe, M F; Krawczak, P
2015-01-22
Starch was combined with plasticizers such as glycerol, sorbitol, glycerol/sorbitol and urea/ethanolamine blends by means of high shear extrusion process to prepare thermoplastic starch (TPS). Effect of storage time and plasticizers on the structural stability of melt processed TPS was investigated. Morphological observation, X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy reveal that melt extrusion process is efficient in transforming granular starch into a plasticized starch for all plasticizer compositions. XRD analysis highlights major changes in the microstructure of plasticized starch, and dependence of crystalline type and degree of crystallinity mainly on the plasticizer composition and storage time. Dynamical mechanical analysis (DMA) yields a decrease of the peak intensity of loss factor with aging time. The effect of ageing on tensile strength also appears to be highly dependent on the plasticizer composition. Thus, through different plasticizer combinations and ageing, starch-based materials with significant differences in tensile properties can be obtained, which may be tuned to meet the requirements of a wide range of applications. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Tengfei; Spinella, Laura; Im, Jay
2013-11-18
In this paper, we demonstrated the plasticity mechanism for copper (Cu) extrusion in through-silicon via structures under thermal cycling. The local plasticity was directly observed by synchrotron x-ray micro-diffraction near the top of the via with the amount increasing with the peak temperature. The Cu extrusion was confirmed by Atomic Force Microscopy (AFM) measurements and found to be consistent with the observed Cu plasticity behavior. A simple analytical model elucidated the role of plasticity during thermal cycling, and finite element analyses were carried out to confirm the plasticity mechanism as well as the effect of the via/Si interface. The modelmore » predictions were able to account for the via extrusions observed in two types of experiments, with one representing a nearly free sliding interface and the other a strongly bonded interface. Interestingly, the AFM extrusion profiles seemed to contour with the local grain structures near the top of the via, suggesting that the grain structure not only affects the yield strength of the Cu and thus its plasticity but could also be important in controlling the pop-up behavior and the statistics for a large ensemble of vias.« less
NASA Astrophysics Data System (ADS)
Martinez, Guillermo F.; Gupta, Hoshin V.
2011-12-01
Methods to select parsimonious and hydrologically consistent model structures are useful for evaluating dominance of hydrologic processes and representativeness of data. While information criteria (appropriately constrained to obey underlying statistical assumptions) can provide a basis for evaluating appropriate model complexity, it is not sufficient to rely upon the principle of maximum likelihood (ML) alone. We suggest that one must also call upon a "principle of hydrologic consistency," meaning that selected ML structures and parameter estimates must be constrained (as well as possible) to reproduce desired hydrological characteristics of the processes under investigation. This argument is demonstrated in the context of evaluating the suitability of candidate model structures for lumped water balance modeling across the continental United States, using data from 307 snow-free catchments. The models are constrained to satisfy several tests of hydrologic consistency, a flow space transformation is used to ensure better consistency with underlying statistical assumptions, and information criteria are used to evaluate model complexity relative to the data. The results clearly demonstrate that the principle of consistency provides a sensible basis for guiding selection of model structures and indicate strong spatial persistence of certain model structures across the continental United States. Further work to untangle reasons for model structure predominance can help to relate conceptual model structures to physical characteristics of the catchments, facilitating the task of prediction in ungaged basins.
NASA Astrophysics Data System (ADS)
Zalan, Pedro
2014-05-01
Three facts helped to establish a revolution in the understanding of how mega-continents stretch, rupture and breakup to form new continents and related passive margins: (1) the penetration of the distal portions of the Iberia-Newfoundland conjugate margins by several ODP wells (late 70's/early 80's), with the discovery of hyperextended crust and exhumation of lower crust and mantle between typical continental and oceanic domains, (2) field works in the Alps and in the Pyrenees that re-interpreted sedimentary successions and associated "ophiolites" as remnants of old Tethyan passive margins that recorded structural domains similar to those found in Iberia-Newfoundland, and (3) the acquisition of long and ultra-deep reflection seismic sections that could image for the first time sub-crustal levels (25-40 km) in several passive margins around the world. The interpretation of such sections showed that the concepts developed in the Iberia-Newfoundland margins and in the Alps could be applied to a great extent to most passive margins, especially those surrounding the North and South Atlantic Oceans. The new concepts of (i) decoupled deformation (upper brittle X lower ductile) within the proximal domain of the continental crust, (ii) of coupled deformation (hyperextension) in the distal crust and, (iii) of exhumation of deeper levels in the outer domain, with the consequent change in the physical properties of the rising rocks, defined an end-member in the new classification of passive margins, the magma-poor type (as opposed to volcanic passive margins). These concepts, together with the new reflection seismic views of the entire crustal structure of passive margins, forced the re-interpretation of older refraction and potential field data and the re-drawing of long established models. Passive margins are prime targets for petroleum exploration, thus, the great interest raised by this subject in both the academy and in the industry. Interestingly enough, the deformation modes envisaged by Manatschal and Peron-Pinvidic in several works published in the last ten years, dealing with the development of conjugate rifted margins (stretching, thinning, hyperextension/exhumation, oceanization/breakup), can be found in physical analogs of geological nature and of mundane phenomena, in a much smaller scale than that of a continental rupture. Rocks strained and cut by normal faults, especially the brittle sedimentary rocks, display geometries and structural domains, which in turn were formed by the particular deformation modes, very similar to those published for the Norwegian, Angolan and Southeastern Brazilian margins. A non-geological and non-conventional physical analog is the everyday breakup of a chocolate bar. Given it is stuffed by a thick ductile filling and covered by a thin, brittle chocolate layer; it is incredible how such a common phenomenon can replicate the rupture and breakup of a mega-continent. Such physical analogs can be compared to ultra-deep seismic sections and raise a cloud of incertitude on the definition of hyperextension. Instead of representing the coupling of the deformation of the upper and lower crusts into a brittle mode, rather, hyperextension could correspond to their coupling into a plastic or, at least, into a semi-brittle mode, but not into an entirely brittle mode.
The chemical structure of plastics greatly differs from natural marine particulate matter and therefore plastics likely are creating new and unique niches for microorganisms in the ocean. It is hypothesized that the microbes found on plastic particles will be taxonomically ...
Emergent spatial synaptic structure from diffusive plasticity.
Sweeney, Yann; Clopath, Claudia
2017-04-01
Some neurotransmitters can diffuse freely across cell membranes, influencing neighbouring neurons regardless of their synaptic coupling. This provides a means of neural communication, alternative to synaptic transmission, which can influence the way in which neural networks process information. Here, we ask whether diffusive neurotransmission can also influence the structure of synaptic connectivity in a network undergoing plasticity. We propose a form of Hebbian synaptic plasticity which is mediated by a diffusive neurotransmitter. Whenever a synapse is modified at an individual neuron through our proposed mechanism, similar but smaller modifications occur in synapses connecting to neighbouring neurons. The effects of this diffusive plasticity are explored in networks of rate-based neurons. This leads to the emergence of spatial structure in the synaptic connectivity of the network. We show that this spatial structure can coexist with other forms of structure in the synaptic connectivity, such as with groups of strongly interconnected neurons that form in response to correlated external drive. Finally, we explore diffusive plasticity in a simple feedforward network model of receptive field development. We show that, as widely observed across sensory cortex, the preferred stimulus identity of neurons in our network become spatially correlated due to diffusion. Our proposed mechanism of diffusive plasticity provides an efficient mechanism for generating these spatial correlations in stimulus preference which can flexibly interact with other forms of synaptic organisation. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Bouyahiaoui, Boualem; Abtout, Abdeslam; Sage, Françoise; Klingelhoeffer, Frauke; Collot, Jean-yves; Yelles-chaouche, Abdelkarim; Marok, Abbas; Djellit, Hamou; Galves, Audrey; Bracène, Rabah; Schnurle, Philippe; Graindorge, David; party, Scientific
2013-04-01
The Algerian continental margin North Africa presents one of only a few examples of a passive continental margin formed in a back-arc environment, which undergoes current compression and is proposed to be reactivated today. In the framework of the Algerian - French SPIRAL research program (Sismique Profonde et Investigation Regionale du nord de l'ALgérie), a seismic cruise was conducted on the R/V Atalante from September to November 2009. During the cruise, deep penetrating low frequency multichannel and wide-angle seismic data were acquired in order to study the deep structure of the Algerian margin. In this work, we present the preliminary results from wide-angle modeling of the North-east Algerian margin in the region of Annaba along a N-S transect using a data set of 42 OBS (ocean bottom seismometers) along a profile extending 117km, and 13 broadband seismological stations along a profile of 80 km length. Travel-time tomography and forward modeling were undertaken to model the velocity structure in this region. The resulting velocity models image the thickness of the sedimentary layers, which varies between a few hundred meters on the continental margin of more than 4 km in the basin. The crust is about 6 km thick in the basin, and thickens to 7-8 km between 40 and 60km distance from the margin toe. Crustal thickness increases to about 22 km at the continental slope over a distance of ~ 90 km. The nature of the crust was determined to be thin oceanic with abnormal velocity gradient in the basin, and thinned continental from around 30 km distance from the coast landward. Integration of the wide-angle seismic data with multichannel seismic, gravity and magnetic data will help to better understand the structure of the Algerian margin and the adjacent oceanic basin in the Annaba region, and to discuss the numerous cinematic models proposed in literature regarding the formation of the north-Algerian basin.
NASA Astrophysics Data System (ADS)
Harmon, N.; Rychert, C.
2013-12-01
Billions of years ago primary mantle magmas evolved to form the continental crust, although no simple magmatic differentiation process explains the progression to average andesitic crustal compositions observed today. A multiple stage process is often invoked, involving subduction and or oceanic plumes, to explain the strong depletion observed in Archean xenoliths and as well as pervasive tonalite-trondhjemite-granodiorite and komatiite protoliths in the greenstone belts in the crust in the cratons. Studying modern day analogues of oceanic plateaus that are currently interacting with subductions zones can provide insights into continental crust formation. Here we use surface waves to image crustal isotropic and radially anisotropic shear velocity structure above the central American subduction system in Nicaragua and Costa Rica, which juxtaposes thickened ocean island plateau crust in Costa Rica with continental/normal oceanic crust in Nicaragua. We find low velocities beneath the active arc regions (3-6% slower than the surrounding region) and up to 6% radially anisotropic structures within the oceanic crust of the Caribbean Large Igneous Province beneath Costa Rica. The low velocities and radial anisotropy suggest the anomalies are due to pervasive deep crustal magma sills. The inferred sill structures correlate spatially with increased silicic outputs in northern Costa Rica, indicating that deep differentiation of primary magmas is more efficient beneath Costa Rica relative to Nicaragua. Subduction zone alteration of large igneous provinces promotes efficient, deep processing of primary basalts to continental crust. This scenario can explain the formation of continental lithosphere and crust, by both providing strongly depleted mantle lithosphere and a means for rapidly generating a silicic crustal composition.
Geology and tectonic development of the continental margin north of Alaska
Grantz, A.; Eittreim, S.; Dinter, D.A.
1979-01-01
The continental margin north of Alaska, as interpreted from seismic reflection profiles, is of the Atlantic type and consists of three sectors of contrasting structure and stratigraphy. The Chukchi sector, on the west, is characterized by the deep late Mesozoic and Tertiary North Chukchi basin and the Chukchi Continental Borderland. The Barrow sector of central northern Alaska is characterized by the Barrow arch and a moderately thick continental terrace build of Albian to Tertiary clastic sediment. The terrace sedimentary prism is underlain by lower Paleozoic metasedimentary rocks. The Barter Island sector of northeastern Alaska and Yukon Territory is inferred to contain a very thick prism of Jurassic, Cretaceous and Tertiary marine and nonmarine clastic sediment. Its structure is dominated by a local deep Tertiary depocenter and two regional structural arches. We postulate that the distinguishing characteristics of the three sectors are inherited from the configuration of the rift that separated arctic Alaska from the Canadian Arctic Archipelago relative to old pre-rift highlands, which were clastic sediment sources. Where the rift lay relatively close to northern Alaska, in the Chukchi and Barter Island sectors, and locally separated Alaska from the old source terranes, thick late Mesozoic and Tertiary sedimentary prisms extend farther south beneath the continental shelf than in the intervening Barrow sector. The boundary between the Chukchi and Barrow sectors is relatively well defined by geophysical data, but the boundary between the Barrow and Barter Island sectors can only be inferred from the distribution and thickness of Jurassic and Cretaceous sedimentary rocks. These boundaries may be extensions of oceanic fracture zones related to the rifting that is postulated to have opened the Canada Basin, probably beginning during the Early Jurassic. ?? 1979.
NASA Astrophysics Data System (ADS)
Ma, X.; Lowry, A. R.
2015-12-01
The composition and thickness of crustal layering is fundamental to understanding the evolution and dynamics of continental lithosphere. Lowry and Pérez-Gussinyé (2011) found that the western Cordillera of the United States, characterized by active deformation and high heat flow, is strongly correlated with low bulk crustal seismic velocity ratio. They interpreted this observation as evidence that quartz controls continental tectonism and deformation. We will present new imaging of two-layer crustal composition and structure from cross-correlation of observed receiver functions and model synthetics. The cross-correlation coefficient of the two-layer model increases significantly relative to an assumed one-layer model, and the lower crustal thickness map from raw two-layer modeling (prior to Bayesian filtering with gravity models and Optimal Interpolation) clearly shows Colorado plateau and Appalachian boundaries, which are not apparent in upper crustal models, and also the high vP/vS fill the most of middle continental region while low vP/vS are on the west and east continental edge. In the presentation, we will show results of a new algorithm for joint Bayesian inversion of thickness and vP/vS of two-layer continental crustal structure. Recent thermodynamical modeling of geophysical models based on lab experiment data (Guerri et al., 2015) found that a large impedance contrast can be expected in the midcrust due to a phase transition that decreases plagioclase and increases clinopyroxene, without invoking any change in crustal chemistry. The depth of the transition depends on pressure, temperature and hydration, and in this presentation we will compare predictions of layer thicknesses and vP/vS predicted by mineral thermodynamics to those we observe in the USArray footprint.
NASA Astrophysics Data System (ADS)
Lang, Guy; Lazar, Michael; Schattner, Uri
2017-04-01
Transform faults accommodate lateral motion between two adjacent plates. Records of plate motion and consequent boundary development on land is, at times, scarce and limited to structures along the fault axis. Investigation of a passive continental margin adjacent to the plate boundary might broaden the scope and provide estimates for its structural development. To examine this hypothesis, we analyzed depth and time migrated 3D seismic data together with four boreholes located along the southern Levant continental margin, ca. 100 Km from the continental Dead Sea fault (DSF). The analysis focus on the Plio-Pleistocene sequence, a key period in the development of the DSF. It includes formation of structural maps, stacking pattern investigation and calculation of sedimentation rates based on decompacted 3D depth data. These, in turn, enabled the reconstruction of margin development. This includes Messinian-earliest Zanclean NNE-SSW sinistral strike-slip faulting followed by Zanclean-Late Gelasian syn-depositional folding striking in the same direction. Abrupt change is marked by the Top Gelasian surface that shows indications of regional mass slumping. Successive Mid-Late Pleistocene progradation marks a basinward shift of the depocenter. Progradation controls margin sedimentation rates during the mid-late Pleistocene. These were found to increase throughout the whole Plio-Pleistocene, in contrast to reported sediment discharge from the Nile, which was shown to decrease after the Gelasian. Correlations to onshore findings, suggest that the continental margin records strain localization on the DSF during the Pliocene-Gelasian. This trend peaked at 1.8 Ma when short wavelength strain ceased along the margin, and differential subsidence commenced basinwards. This is attributed to consequent deepening of the DSF plate boundary.
Chen, Feng; Zhang, Jinwen
2010-11-01
In this study, soy protein concentrate (SPC) was used as a plastic component to blend with poly(butylene adipate-co-terephthalate) (PBAT). Effects of SPC plasticization and blend composition on its deformation during mixing were studied in detail. Influence of using water as the major plasticizer and glycerol as the co-plasticizer on the deformation of the SPC phase during mixing was explored. The effect of shear stress, as affected by SPC loading level, on the phase structure of SPC in the blends was also investigated. Quantitative analysis of the aspect ratio of SPC particles was conducted by using ImageJ software, and an empirical model predicting the formation of percolated structure was applied. The experimental results and the model prediction showed a fairly good agreement. The experimental results and statistic analysis suggest that both SPC loading level and its water content prior to compounding had significant influences on development of the SPC phase structure and were correlated in determining the morphological structures of the resulting blends. Consequently, physical and mechanical properties of the blends greatly depended on the phase morphology and PBAT/SPC ratio of the blends.
Application of an Elastic-Plastic Methodology to Structural Integrity Evaluation,
The elastic plastic fracture mechanics ( EPFM ) technology has advanced to the point where it can be used to make a realistic assessment of the...concepts of EPFM into a structural stability evaluation. The structure is modeled as a cracked test specimen either in series or parallel with a spring
Tectonostratigraphy of the Passive Continental Margin Offshore Indus Pakistan
NASA Astrophysics Data System (ADS)
Aslam, K.; Khan, M.; Liu, Y.; Farid, A.
2017-12-01
The tectonic evolution and structural complexities are poorly understood in the passive continental margin of the Offshore Indus of Pakistan. In the present study, an attempt has been made to interpret the structural trends and seismic stratigraphic framework in relation to the tectonics of the region. Seismic reflection data revealed tectonically controlled, distinct episodes of normal faulting representing rifting at different ages and transpression in the Late Eocene time. This transpression has resulted in the reactivation of the Pre-Cambrian basement structures. The movement of these basement structures has considerably affected the younger sedimentary succession resulting in push up structures resembling anticlines. The structural growth of the push-up structures was computed. The most remarkable tectonic setting in the region is represented by the normal faulting and by the basement uplift which divides the rifting and transpression stages. Ten mappable seismic sequences have been identified on the seismic records. A Jurassic aged paleo-shelf has also been identified on all regional seismic profiles which is indicative of Indian-African Plates separation during the Jurassic time. Furthermore, the backstripping technique was applied which has been proved to be a powerful technique to quantify subsidence/uplift history of rift-type passive continental margins. The back strip curves suggest that transition from an extensional rifted margin to transpression occurred during Eocene time (50-30 Ma). The backstripping curves show uplift had happened in the area. We infer that the uplift has occurred due to the movement of basement structures by the transpression movements of Arabian and Indian Plates. The present study suggests that the structural styles and stratigraphy of the Offshore Indus Pakistan were significantly affected by the tectonic activities during the separation of Gondwanaland in the Mesozoic and northward movement of the Indian Plate, post-rifting, and sedimentations along its western margin during the Middle Cenozoic. The present comprehensive interpretation can help in understanding the structural complexities and stratigraphy associated with tectonics in other parts of the passive continental margins worldwide dominated by rifting and drifting tectonics.
NASA Astrophysics Data System (ADS)
Dubinin, Evgeny; Grokholsky, Andrey; Makushkina, Anna
2016-04-01
Complex process of continental lithosphere breakup is often accompanied by full or semi isolation of small continental blocks from the parent continent such as microcontinents or submerged marginal plateaus. We present different types of continental blocks formed in various geodynamic settings. The process depends on thermo-mechanical properties of rifting. 1) The continental blocks fully isolated from the parent continent. This kind of blocks exist in submerged form (Elan Bank, the Jan-Mayen Ridge, Zenith Plateau, Gulden Draak Knoll, Batavia Knoll) and in non-submerged form in case of large block size. Most of listed submerged blocks are formed in proximity of hot-spot or plume. 2) The continental blocks semi-isolated from the parent continent. Exmouth Plateau, Vøring, Agulhas, Naturaliste are submerged continental plateaus of the indicated category; Sri Lanka, Tasmania, Socotra are islands adjacent to continent here. Nowadays illustration of this setting is the Sinai block located between the two continental rifts. 3) The submerged linear continental blocks formed by the continental rifting along margin (the Lomonosov Ridge). Suggested evolution of this paragraph is the rift propagation along existing transtensional (or another type) transform fault. Future example of this type might be the California Peninsula block, detached from the North American plate by the rifting within San-Andreas fault. 4) The submerged continental blocks formed by extensional processes as the result of asthenosphere flow and shear deformations. Examples are submerged blocks in the central and southern Scotia Sea (Terror Bank, Protector Basin, Discovery Bank, Bruce Bank etc.). 5) The continental blocks formed in the transform fault systems originated in setting of contradict rifts propagation in presence of structure barriers, rifts are shifted by several hundreds kilometers from each other. Examples of this geodynamic setting are Equatorial Atlantic at the initial development stage, and the transitional zone between Mohns and Gakkel Ridges. The research funded by RFBR, project № 15-05-03486.
PLANS: A finite element program for nonlinear analysis of structures. Volume 1: Theoretical manual
NASA Technical Reports Server (NTRS)
Pifko, A.; Levine, H. S.; Armen, H., Jr.
1975-01-01
The PLANS system is described which is a finite element program for nonlinear analysis. The system represents a collection of special purpose computer programs each associated with a distinct physical problem class. Modules of PLANS specifically referenced and described in detail include: (1) REVBY, for the plastic analysis of bodies of revolution; (2) OUT-OF-PLANE, for the plastic analysis of 3-D built-up structures where membrane effects are predominant; (3) BEND, for the plastic analysis of built-up structures where bending and membrane effects are significant; (4) HEX, for the 3-D elastic-plastic analysis of general solids; and (5) OUT-OF-PLANE-MG, for material and geometrically nonlinear analysis of built-up structures. The SATELLITE program for data debugging and plotting of input geometries is also described. The theoretical foundations upon which the analysis is based are presented. Discussed are the form of the governing equations, the methods of solution, plasticity theories available, a general system description and flow of the programs, and the elements available for use.
Moroccan crustal response to continental drift.
Kanes, W H; Saadi, M; Ehrlich, E; Alem, A
1973-06-01
The formation and development of a zone of spreading beneath the continental crust resulted in the breakup of Pangea and formation of the Atlantic Ocean. The crust of Morocco bears an extremely complete record of the crustal response to this episode of mantle dynamics. Structural and related depositional patterns indicate that the African margin had stabilized by the Middle Jurassic as a marine carbonate environment; that it was dominated by tensile stresses in the early Mesozoic, resulting in two fault systems paralleling the Atlantic and Mediterranean margins and a basin and range structural-depositional style; and that it was affected by late Paleozoic metamorphism and intrusion. Mesozoic events record the latter portion of African involvement in the spreading episode; late Paleozoic thermal orogenesis might reflect the earlier events in the initiation of the spreading center and its development beneath significant continental crust. In that case, more than 100 million years were required for mantle dynamics to break up Pangea.
Dhar, Sunil Kumar; Jani, Kunal; Apte, Deepak A.; Shouche, Yogesh S.; Sharma, Avinash
2015-01-01
Marine microbes play a key role and contribute largely to the global biogeochemical cycles. This study aims to explore microbial diversity from one such ecological hotspot, the continental shelf of Agatti Island. Sediment samples from various depths of the continental shelf were analyzed for bacterial diversity using deep sequencing technology along with the culturable approach. Additionally, imputed metagenomic approach was carried out to understand the functional aspects of microbial community especially for microbial genes important in nutrient uptake, survival and biogeochemical cycling in the marine environment. Using culturable approach, 28 bacterial strains representing 9 genera were isolated from various depths of continental shelf. The microbial community structure throughout the samples was dominated by phylum Proteobacteria and harbored various bacterioplanktons as well. Significant differences were observed in bacterial diversity within a short region of the continental shelf (1–40 meters) i.e. between upper continental shelf samples (UCS) with lesser depths (i.e. 1–20 meters) and lower continental shelf samples (LCS) with greater depths (i.e. 25–40 meters). By using imputed metagenomic approach, this study also discusses several adaptive mechanisms which enable microbes to survive in nutritionally deprived conditions, and also help to understand the influence of nutrition availability on bacterial diversity. PMID:26066038
Kumbhare, Shreyas V; Dhotre, Dhiraj P; Dhar, Sunil Kumar; Jani, Kunal; Apte, Deepak A; Shouche, Yogesh S; Sharma, Avinash
2015-01-01
Marine microbes play a key role and contribute largely to the global biogeochemical cycles. This study aims to explore microbial diversity from one such ecological hotspot, the continental shelf of Agatti Island. Sediment samples from various depths of the continental shelf were analyzed for bacterial diversity using deep sequencing technology along with the culturable approach. Additionally, imputed metagenomic approach was carried out to understand the functional aspects of microbial community especially for microbial genes important in nutrient uptake, survival and biogeochemical cycling in the marine environment. Using culturable approach, 28 bacterial strains representing 9 genera were isolated from various depths of continental shelf. The microbial community structure throughout the samples was dominated by phylum Proteobacteria and harbored various bacterioplanktons as well. Significant differences were observed in bacterial diversity within a short region of the continental shelf (1-40 meters) i.e. between upper continental shelf samples (UCS) with lesser depths (i.e. 1-20 meters) and lower continental shelf samples (LCS) with greater depths (i.e. 25-40 meters). By using imputed metagenomic approach, this study also discusses several adaptive mechanisms which enable microbes to survive in nutritionally deprived conditions, and also help to understand the influence of nutrition availability on bacterial diversity.
Geomorphology of the Southern Gulf of California Seafloor
NASA Astrophysics Data System (ADS)
Eakins, B. W.; Lonsdale, P. F.; Fletcher, J. M.; Ledesma, J. V.
2004-12-01
A Spring 2004 multibeam sonar survey defined the seafloor geomorphology of the southern part of Gulf of California and the intersection of the East Pacific Rise with the North American continent. Survey goals included mapping structural patterns formed during the rifting that opened the Gulf and identifying the spatial transition from continental rifting to seafloor spreading. Multibeam sonar imagery, augmented with archival data and a subaerial DEM of Mexico, illuminates the principal features of this boundary zone between obliquely diverging plates: (i) active and inactive oceanic risecrests within young oceanic basins that are rich in evidence for off-axis magmatic eruption and intrusion; (ii) transforms with pull-apart basins and transpressive ridges along shearing continental margins and within oceanic crust; (iii) orphaned blocks of continental crust detached from sheared and rifted continental margins; and (iv) young, still-extending continental margins dissected by submarine canyons that in many cases are deeply drowned river valleys. Many of the canyons are conduits for turbidity currents that feed deep-sea fans on oceanic and subsided continental crust, and channel sediment to spreading axes, thereby modifying the crustal accretion process. We present a series of detailed bathymetric and seafloor reflectivity maps of this MARGINS Rupturing Continental Lithosphere focus site illustrating geomorphologic features of the southern part of the Gulf, from Guaymas Basin to the Maria Magdalena Rise.
Daroles, Laura; Gribaudo, Simona; Doulazmi, Mohamed; Scotto-Lomassese, Sophie; Dubacq, Caroline; Mandairon, Nathalie; Greer, Charles August; Didier, Anne; Trembleau, Alain; Caillé, Isabelle
2016-07-15
In the adult brain, structural plasticity allowing gain or loss of synapses remodels circuits to support learning. In fragile X syndrome, the absence of fragile X mental retardation protein (FMRP) leads to defects in plasticity and learning deficits. FMRP is a master regulator of local translation but its implication in learning-induced structural plasticity is unknown. Using an olfactory learning task requiring adult-born olfactory bulb neurons and cell-specific ablation of FMRP, we investigated whether learning shapes adult-born neuron morphology during their synaptic integration and its dependence on FMRP. We used alpha subunit of the calcium/calmodulin-dependent kinase II (αCaMKII) mutant mice with altered dendritic localization of αCaMKII messenger RNA, as well as a reporter of αCaMKII local translation to investigate the role of this FMRP messenger RNA target in learning-dependent structural plasticity. Learning induces profound changes in dendritic architecture and spine morphology of adult-born neurons that are prevented by ablation of FMRP in adult-born neurons and rescued by an metabotropic glutamate receptor 5 antagonist. Moreover, dendritically translated αCaMKII is necessary for learning and associated structural modifications and learning triggers an FMRP-dependent increase of αCaMKII dendritic translation in adult-born neurons. Our results strongly suggest that FMRP mediates structural plasticity of olfactory bulb adult-born neurons to support olfactory learning through αCaMKII local translation. This reveals a new role for FMRP-regulated dendritic local translation in learning-induced structural plasticity. This might be of clinical relevance for the understanding of critical periods disruption in autism spectrum disorder patients, among which fragile X syndrome is the primary monogenic cause. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Evidence for structural plasticity in humans: comment on Thomas and Baker (2012).
Erickson, Kirk I
2013-06-01
Thomas and Baker (2012) have provided a balanced and critical review of the scientific evidence claiming that training interventions have the capacity to alter the structural morphology of the brain. Here I provide some additional considerations when reading and interpreting both the review and the original empirical articles. Research proposing to examine the capacity for structural brain plasticity needs to contemplate methodological issues and factors that could moderate or mask potentially interesting effects. Overall, although this area of research is in need of circumspection, it also could have transformative implications if structural brain plasticity in humans is possible. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Freire, J.; González-Gurriarán, E.; Olaso, I.
1992-12-01
Geostatistical methodology was used to analyse spatial structure and distribution of the epibenthic crustaceans Munida intermedia and M. sarsi within sets of data which had been collected during three survey cruises carried out on the Galician continental shelf (1983 and 1984). This study investigates the feasibility of using geostatistics for data collected according to traditional methods and of enhancing such methodology. The experimental variograms were calculated (pooled variance minus spatial covariance between samples taken one pair at a time vs. distance) and fitted to a 'spherical' model. The spatial structure model was used to estimate the abundance and distribution of the populations studied using the technique of kriging. The species display spatial structures, which are well marked during high density periods and in some areas (especially northern shelf). Geostatistical analysis allows identification of the density gradients in space as well as the patch grain along the continental shelf of 16-25 km diameter for M. intermedia and 12-20 km for M. sarsi. Patches of both species have a consistent location throughout the different cruises. As in other geographical areas, M. intermedia and M. sarsi usually appear at depths ranging from 200 to 500 m, with the highest densities in the continental shelf area located between Fisterra and Estaca de Bares. Althouh sampling was not originally designed specifically for geostatistics, this assay provides a measurement of spatial covariance, and shows variograms with variable structure depending on population density and geographical area. These ideas are useful in improving the design of future sampling cruises.
Flaw-induced plastic-flow dynamics in bulk metallic glasses under tension
Chen, S. H.; Yue, T. M.; Tsui, C. P.; Chan, K. C.
2016-01-01
Inheriting amorphous atomic structures without crystalline lattices, bulk metallic glasses (BMGs) are known to have superior mechanical properties, such as high strength approaching the ideal value, but are susceptible to catastrophic failures. Understanding the plastic-flow dynamics of BMGs is important for achieving stable plastic flow in order to avoid catastrophic failures, especially under tension, where almost all BMGs demonstrate limited plastic flow with catastrophic failure. Previous findings have shown that the plastic flow of BMGs displays critical dynamics under compression tests, however, the plastic-flow dynamics under tension are still unknown. Here we report that power-law critical dynamics can also be achieved in the plastic flow of tensile BMGs by introducing flaws. Differing from the plastic flow under compression, the flaw-induced plastic flow under tension shows an upward trend in the amplitudes of the load drops with time, resulting in a stable plastic-flow stage with a power-law distribution of the load drop. We found that the flaw-induced plastic flow resulted from the stress gradients around the notch roots, and the stable plastic-flow stage increased with the increase of the stress concentration factor ahead of the notch root. The findings are potentially useful for predicting and avoiding the catastrophic failures in tensile BMGs by tailoring the complex stress fields in practical structural-applications. PMID:27779221
Shrink-induced superhydrophobic and antibacterial surfaces in consumer plastics.
Freschauf, Lauren R; McLane, Jolie; Sharma, Himanshu; Khine, Michelle
2012-01-01
Structurally modified superhydrophobic surfaces have become particularly desirable as stable antibacterial surfaces. Because their self-cleaning and water resistant properties prohibit bacteria growth, structurally modified superhydrophobic surfaces obviate bacterial resistance common with chemical agents, and therefore a robust and stable means to prevent bacteria growth is possible. In this study, we present a rapid fabrication method for creating such superhydrophobic surfaces in consumer hard plastic materials with resulting antibacterial effects. To replace complex fabrication materials and techniques, the initial mold is made with commodity shrink-wrap film and is compatible with large plastic roll-to-roll manufacturing and scale-up techniques. This method involves a purely structural modification free of chemical additives leading to its inherent consistency over time and successive recasting from the same molds. Finally, antibacterial properties are demonstrated in polystyrene (PS), polycarbonate (PC), and polyethylene (PE) by demonstrating the prevention of gram-negative Escherichia coli (E. coli) bacteria growth on our structured plastic surfaces.
NASA Astrophysics Data System (ADS)
Stone, Paul; Stevens, Calvin H.
1988-04-01
Pennsylvanian and Early Permian paleogeographic features in east-central California include a southeast-trending carbonate shelf edge and turbidite basin that we infer paralleled a segment of the western margin of the North American continent. This segment of the continental margin was oblique to an adjoining segment on the north that trended southwestward across Nevada into easternmost California. We propose that the southeast-trending segment of the margin originated by tectonic truncation of the originally longer southwest-trending segment in Early or Middle Pennsylvanian to late Early Permian time, significantly earlier than a previously hypothesized Late Permian or Early Triassic continental truncation event. We interpret the truncating structure to have been a sinistral transform fault zone along which a continental fragment was removed and carried southeastward into the Caborca-Hermosillo region of northern Mexico, where it is now represented by exposures of Late Proterozoic and Paleozoic miogeoclinal rocks.
Structural control of the upper plate on the down-dip segmentation of subduction dynamics
NASA Astrophysics Data System (ADS)
Shi, Q.; Barbot, S.; Karato, S. I.; Shibazaki, B.; Matsuzawa, T.; Tapponnier, P.
2017-12-01
The geodetic and seismic discoveries of slow earthquakes in subduction zones have provided the observational evidence for the existence of the transition between megathrust earthquakes and the creeping behaviors. However, the mechanics behind slow earthquakes, and the period differential motion between the subducting slab and the overlying plate below the seismogenic zone, remain controversial. In Nankai subduction zone, the very-low-frequency earthquakes (VLFE), megathrust earthquakes, long-term slow earthquakes (duration of months or years) and the episodic tremor and slip zone (ETS) are located within the accretionary prism, the continental upper crust, the continental lower crust and the upmost mantle of the overriding plate, respectively. We use the rate-and-state friction law to simulate the periodic occurrence of VLFEs, megathrust earthquakes and the tremors in the ETS zone because of relatively high rock strength within these depth ranges. However, it is not feasible to use frictional instabilities to explain the long-term slow earthquakes in the lower crust where the ductile rock physics plays a significant role in the large-scale deformation. Here, our numerical simulations show that slow earthquakes at the depth of the lower crust may be the results of plastic instabilities in a finite volume of ductile material accompanying by the grain-size evolution. As the thickness of the fault zone increases with depth, deformation becomes distributed and the dynamic equilibrium of grain size, as a competition between thermally activated grain growth and damage-related grain size reduction, results in cycles of strain acceleration and strain deficit. In addition, we took into account the elevated pore pressure in the accretinary prism which is associated with small stress drop and low-frequency content of VLFEs and may contribute to the occurrence of tsunamigenic earthquakes. Hence, in our numerical simulations for the plate boundary system in Nankai, the down-sip segmentation of the subduction dynamic is attributed to the upper plate structure that vary with depth. The high pore pressure, grain-size evolution and alternation of the rock physics may explain the existence and the periodicity of different slow earthquakes from shallow to deep regions in the subduction zone.
Thomas U. Kampe; Brian R. Johnson; Michele Kuester; Michael Keller
2010-01-01
The National Ecological Observatory Network (NEON) is an ecological observation platform for discovering, understanding and forecasting the impacts of climate change, land use change, and invasive species on continental-scale ecology. NEON will operate for 30 years and gather long-term data on ecological response changes and on feedbacks with the geosphere, hydrosphere...
Plastic-aluminum composites in transportation infrastructure.
DOT National Transportation Integrated Search
2017-03-01
This report presents an initial investigation of the mechanics of I-beams developed with plastic-aluminum composite technology. Plastic-aluminum composites in structural beam/frame/truss elements are a relatively new concept that has seen little, if ...
Study on Collision of Ship Side Structure by Simplified Plastic Analysis Method
NASA Astrophysics Data System (ADS)
Sun, C. J.; Zhou, J. H.; Wu, W.
2017-10-01
During its lifetime, a ship may encounter collision or grounding and sustain permanent damage after these types of accidents. Crashworthiness has been based on two kinds of main methods: simplified plastic analysis and numerical simulation. A simplified plastic analysis method is presented in this paper. Numerical methods using the non-linear finite-element software LS-DYNA are conducted to validate the method. The results show that, as for the accuracy of calculation results, the simplified plasticity analysis are in good agreement with the finite element simulation, which reveals that the simplified plasticity analysis method can quickly and accurately estimate the crashworthiness of the side structure during the collision process and can be used as a reliable risk assessment method.
30 CFR 250.903 - What records must I keep?
Code of Federal Regulations, 2010 CFR
2010-07-01
... SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Platforms and Structures General Requirements for... platform safety, structural reliability, or operating capabilities. Items such as steel brackets, deck...
NASA Astrophysics Data System (ADS)
Liu, X.; Currie, C. A.
2017-12-01
The subducted Farallon plate is believed to have evolved to a flat geometry underneath North America plate during Late Cretaceous, triggering Laramide deformation within the continental interior. However, the mechanism that caused the oceanic slab to flatten and the factors that control the flat-slab depth remain uncertain. In this work, we use 2D thermal-mechanical models using the SOPALE code to study the subduction dynamics from 90 Ma to 50 Ma. During this period, an oceanic plateau (Shatsky Conjugate) is inferred to have subducted beneath western North America and interacted with the continental lithosphere, including areas of thicker lithosphere such as the Colorado Plateau and Wyoming Craton. Based on seismic tomography and plate reconstruction data sets, we built a set of models to examine the influence of the structure and rheology of the oceanic and continental plates on slab dynamics. Models include a 600 km wide oceanic plateau consisting of 18 km thick crust and a 36 km thick underlying harzburgite layer, and we ran a series of model experiments to test different continental thicknesses (80 km, 120 km, & 180 km) and continental mantle lithosphere strengths (approximating conditions from wet olivine to dry olivine). Consistent with earlier studies, we find that creation of a long flat slab requires a buoyant oceanic plateau (i.e., non-eclogitized crust) and trenchward motion of the continent. In addition, our models demonstrate the upper plate has an important control on slab dynamics. A flat slab requires either a thin continent or, if the continent is thick, its mantle lithosphere must be relatively weak so that it can be displaced by the flattening slab. The depth of the flat slab is mainly controlled by two factors: (1) the continental thickness and (2) the strength of the continental mantle lithosphere. For the same initial lithosphere thickness (120 km), a shallower flat slab ( 90 km depth) occurs for the weakest mantle lithosphere ( wet olivine) compared to 120 km depth for strong ( dry) mantle lithosphere because the flat slab removes the lowermost weak lithosphere. Moreover, an even deeper slab ( 130 km) can be found underneath the weakest but thicker continental lithosphere (180 km). Future models will focus on how the flat slab may induce hydration and deformation for the overriding continental plate.
NASA Astrophysics Data System (ADS)
Yoshida, Masaki; Santosh, M.
2011-03-01
The periodic assembly and dispersal of supercontinents through the history of the Earth had considerable impact on mantle dynamics and surface processes. Here we synthesize some of the conceptual models on supercontinent amalgamation and disruption and combine it with recent information from numerical studies to provide a unified approach in understanding Wilson Cycle and supercontinent cycle. Plate tectonic models predict that superdownwelling along multiple subduction zones might provide an effective mechanism to pull together dispersed continental fragments into a closely packed assembly. The recycled subducted material that accumulates at the mantle transition zone and sinks down into the core-mantle boundary (CMB) provides the potential fuel for the generation of plumes and superplumes which ultimately fragment the supercontinent. Geological evidence related to the disruption of two major supercontinents (Columbia and Gondwana) attest to the involvement of plumes. The re-assembly of dispersed continental fragments after the breakup of a supercontinent occurs through complex processes involving 'introversion', 'extroversion' or a combination of both, with the closure of the intervening ocean occurring through Pacific-type or Atlantic-type processes. The timescales of the assembly and dispersion of supercontinents have varied through the Earth history, and appear to be closely linked with the processes and duration of superplume genesis. The widely held view that the volume of continental crust has increased over time has been challenged in recent works and current models propose that plate tectonics creates and destroys Earth's continental crust with more crust being destroyed than created. The creation-destruction balance changes over a supercontinent cycle, with a higher crustal growth through magmatic influx during supercontinent break-up as compared to the tectonic erosion and sediment-trapped subduction in convergent margins associated with supercontinent assembly which erodes the continental crust. Ongoing subduction erosion also occurs at the leading edges of dispersing plates, which also contributes to crustal destruction, although this is only a temporary process. The previous numerical studies of mantle convection suggested that there is a significant feedback between mantle convection and continental drift. The process of assembly of supercontinents induces a temperature increase beneath the supercontinent due to the thermal insulating effect. Such thermal insulation leads to a planetary-scale reorganization of mantle flow and results in longest-wavelength thermal heterogeneity in the mantle, i.e., degree-one convection in three-dimensional spherical geometry. The formation of degree-one convection seems to be integral to the emergence of periodic supercontinent cycles. The rifting and breakup of supercontinental assemblies may be caused by either tensional stress due to the thermal insulating effect, or large-scale partial melting resulting from the flow reorganization and consequent temperature increase beneath the supercontinent. Supercontinent breakup has also been correlated with the temperature increase due to upwelling plumes originating from the deeper lower mantle or CMB as a return flow of plate subduction occurring at supercontinental margins. The active mantle plumes from the CMB may disrupt the regularity of supercontinent cycles. Two end-member scenarios can be envisaged for the mantle convection cycle. One is that mantle convection with dispersing continental blocks has a short-wavelength structure, or close to degree-two structure as the present Earth, and when a supercontinent forms, mantle convection evolves into degree-one structure. Another is that mantle convection with dispersing continental blocks has a degree-one structure, and when a supercontinent forms, mantle convection evolves into degree-two structure. In the case of the former model, it would take longer time to form a supercontinent, because continental blocks would be trapped by different downwellings thus inhibiting collision. Although most of the numerical studies have assumed the continent/supercontinent to be rigid or nondeformable body mainly because of numerical limitations as well as a simplification of models, a more recent numerical study allows the modeling of mobile, deformable continents, including oceanic plates, and successfully reproduces continental drift similar to the processes and timescales envisaged in Wilson Cycle.
NASA Astrophysics Data System (ADS)
Yegorova, Tamara; Bakhmutov, Vladimir; Janik, Tomasz; Grad, Marek
2011-01-01
The Antarctic Peninsula (AP) is a composite magmatic arc terrane formed at the Pacific margin of Gondwana. Through the late Mesozoic and Cenozoic subduction has stopped progressively from southwest to northeast as a result of a series of ridge trench collisions. Subduction may be active today in the northern part of the AP adjacent to the South Shetland Islands. The subduction system is confined by the Shackleton and Hero fracture zones. The magmatic arc of the AP continental margin is marked by high-amplitude gravity and magnetic anomaly belts reaching highest amplitudes in the region of the South Shetland Islands and trench. The sources for these anomalies are highly magnetic and dense batholiths of mafic bulk composition, which were intruded in the Cretaceous, due to partial melting of upper-mantle and lower-crustal rocks. 2-D gravity and magnetic models provide new insights into crustal and upper-mantle structure of the active and passive margin segments of the northern AP. Our models incorporate seismic refraction constraints and physical property data. This enables us to better constrain both Moho geometry and petrological interpretations in the crust and upper mantle. Model along the DSS-12 profile crosses the AP margin near the Anvers Island and shows typical features of a passive continental margin. The second model along the DSS-17 profile extends from the Drake Passage through the South Shetland Trench/Islands system and Bransfield Strait to the AP and indicates an active continental margin linked to slow subduction and on-going continental rifting in the backarc region. Continental rifting beneath the Bransfield Strait is associated with an upward of hot upper mantle rocks and with extensive magmatic underplating.
NASA Astrophysics Data System (ADS)
Sato, Takeshi; No, Tetsuo; Miura, Seiichi; Kodaira, Shuichi
2018-02-01
The crustal structure of the Yamato Bank, the central Yamato Basin, and the continental shelf in the southern Japan Sea back-arc basin is obtained based on a seismic survey using ocean bottom seismographs and seismic shot to elucidate the back-arc basin formation processes. The central Yamato Basin can be divided into three domains based on the crustal structure: the deep basin, the seamount, and the transition domains. In the deep basin domain, the crust without the sedimentary layer is about 12-13 km thick. Very few units have P-wave velocity of 5.4-6.0 km/s, which corresponds to the continental upper crust. In the seamount and transition domains, the crust without the sedimentary layer is about 12-16 km thick. The P-wave velocities of the upper and lower crusts differs among the deep basin, the seamount, and the transition domains. These results indicate that the central Yamato Basin displays crustal variability in different domains. The crust of the deep basin domain is oceanic in nature and suggests advanced back-arc basin development. The seamount domain might have been affected by volcanic activity after basin opening. In the transition domain, the crust comprises mixed characters of continental and oceanic crust. This crustal variation might represent the influence of different processes in the central Yamato Basin, suggesting that crustal development was influenced not only by back-arc opening processes but also by later volcanic activity. In the Yamato Bank and continental shelf, the upper crust has thickness of about 17-18 km and P-wave velocities of 3.3-4.1 to 6.6 km/s. The Yamato Bank and the continental shelf suggest a continental crustal character.
Dynamic Re-wiring of Neural Circuits in the Motor Cortex in Mouse Models of Parkinson's Disease
Lalchandani, Rupa R.; Cui, Yuting; Shu, Yu; Xu, Tonghui; Ding, Jun B.
2015-01-01
SUMMARY Dynamic adaptations in synaptic plasticity are critical for learning new motor skills and maintaining memory throughout life, which rapidly decline with Parkinson's disease (PD). Plasticity in the motor cortex is important for acquisition and maintenance of novel motor skills, but how the loss of dopamine in PD leads to disrupted structural and functional plasticity in the motor cortex is not well understood. Here, we utilized mouse models of PD and 2-photon imaging to show that dopamine depletion resulted in structural changes in the motor cortex. We further discovered that dopamine D1 and D2 receptor signaling were linked to selectively and distinctly regulating these aberrant changes in structural and functional plasticity. Our findings suggest that both D1 and D2 receptor signaling regulate motor cortex plasticity, and loss of dopamine results in atypical synaptic adaptations that may contribute to the impairment of motor performance and motor memory observed in PD. PMID:26237365
The superdeep well of the Kola Peninsula
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozlovsky, Y.A.
1986-01-01
The structure of continental crusts is a subject of ever increasing importance in the geological sciences. Over 15 years ago, Soviet scientist began drilling a superdeep well on the Kola Peninsula near Murmansk. The well has reached a depth of 12 km and is thereby the deepest well in the world, yielding a vast amount of information on the structure of the continental crust. The geological, geophysical and technological data from the Kola well were initially published in a monographic account entitled ''Kol'skaja sverchglubokaja''. This English translation makes the results available to non-Soviet scientists as well.
NASA Technical Reports Server (NTRS)
Toksoez, M. N.
1981-01-01
The seismic wave velocity structure in the crust and upper mantle region beneath the Tibetan plateau was studied in detail. Also, a preliminary study of the uppermost mantle P wave velocity beneath Iran and Turkey was carried out, and the results are compared with those for the Tibetan plateau. These two studies compose the bulk of the efforts on the observational aspects of continental collision zones in addition to satellite derived data. On the theoretical aspects the thermal evolution of converging plate boundaries was explored using a finite difference scheme.
Park, Joo Young; Gupta, Clare
2015-05-01
Localism or regionalization has become a popular topic in urban design, but recent critics raise the question of whether the local or regional scale is most desirable for industrial ecosystems. As a way to explore the claim that localized metabolism is more sustainable, this study examines the costs and benefits of two differentially scaled strategies for the management of post-consumer polyethylene terephthalate (PET) bottles originating in the city of Honolulu, Hawai'i: local incineration and trans-continental recycling. We first estimate total environmental impacts of two options using life cycle assessment, and then disaggregate them into local versus non-local impacts to examine the spatial distribution of costs and benefits. We further assess the environmental justification for localized waste management in relation to the broader socio-economic motivations that underlie the way that plastics are managed in Honolulu. In doing so we assess the scale at which waste management is optimized from an environmental standpoint as well as the non-environmental considerations such as security and safety that influence the politics of scale involved in urban metabolic design. By illustrating the trade-offs between a local versus global metabolic pathway for plastic waste, the results from our Honolulu case study are globally relevant for communities interested in sustainable urban design and in particular urban waste management. Copyright © 2015 Elsevier Ltd. All rights reserved.
Raven, Frank; Van der Zee, Eddy A; Meerlo, Peter; Havekes, Robbert
2018-06-01
Dendritic spines are the major sites of synaptic transmission in the central nervous system. Alterations in the strength of synaptic connections directly affect the neuronal communication, which is crucial for brain function as well as the processing and storage of information. Sleep and sleep loss bidirectionally alter structural plasticity, by affecting spine numbers and morphology, which ultimately can affect the functional output of the brain in terms of alertness, cognition, and mood. Experimental data from studies in rodents suggest that sleep deprivation may impact structural plasticity in different ways. One of the current views, referred to as the synaptic homeostasis hypothesis, suggests that wake promotes synaptic potentiation whereas sleep facilitates synaptic downscaling. On the other hand, several studies have now shown that sleep deprivation can reduce spine density and attenuate synaptic efficacy in the hippocampus. These data are the basis for the view that sleep promotes hippocampal structural plasticity critical for memory formation. Altogether, the impact of sleep and sleep loss may vary between regions of the brain. A better understanding of the role that sleep plays in regulating structural plasticity may ultimately lead to novel therapeutic approaches for brain disorders that are accompanied by sleep disturbances and sleep loss. Copyright © 2017 Elsevier Ltd. All rights reserved.
The mantle lithosphere and the Wilson Cycle
NASA Astrophysics Data System (ADS)
Heron, Philip; Pysklywec, Russell; Stephenson, Randell
2017-04-01
In the view of the conventional theory of plate tectonics (e.g., the Wilson Cycle), crustal inheritance is often considered important in tectonic evolution. However, the role of the mantle lithosphere is usually overlooked due to its difficulty to image and uncertainty in rheological makeup. Deep seismic imaging has shown potential scarring in continental mantle lithosphere to be ubiquitous. Recent studies have interpreted mantle lithosphere heterogeneities to be pre-existing structures, and as such linked to the Wilson Cycle and inheritance. In our study, we analyze intraplate deformation driven by mantle lithosphere heterogeneities from ancient Wilson Cycle processes and compare this to crustal inheritance deformation. We present 2-D numerical experiments of continental convergence to generate intraplate deformation, exploring the limits of continental rheology to understand the dominant lithosphere layer across a broad range of geological settings. By implementing a "jelly sandwich" rheology, characteristic of stable continental lithosphere, we find that during compression the strength of the mantle lithosphere is integral in controlling deformation from a structural anomaly. We posit that if the continental mantle is the strongest layer within the lithosphere, then such inheritance may have important implications for the Wilson Cycle. Furthermore, our models show that deformation driven by mantle lithosphere scarring can produce tectonic patterns related to intraplate orogenesis originating from crustal sources, highlighting the need for a more formal discussion of the role of the mantle lithosphere in plate tectonics. We outline the difficulty in unravelling the causes of tectonic deformation, alongside discussing the role of deep lithosphere processes in plate tectonics.
NASA Astrophysics Data System (ADS)
Welford, J. Kim; Dehler, Sonya; Funck, Thomas
2017-04-01
The SIGNAL (Seismic Investigations off Greenland, Newfoundland and Labrador) 2009 cruise was undertaken by the Geological Survey of Canada (GSC) and the Geological Survey of Denmark and Greenland (GEUS), with scientific contributions from Dalhousie University, to collect refraction/wide-angle reflection (RWAR) profiles as part of each country's continental shelf program under UNCLOS (United Nations Convention on the Law of the Sea) Article 76. Line 1 extended from the Bonavista Platform off Newfoundland, across the Orphan Basin, to Orphan Knoll and beyond into oceanic crust. The line followed the same track as an earlier seismic refraction line and ocean-bottom seismometer (OBS) locations were chosen to complement and to extend the original station coverage. The final crustal velocity model across Orphan Basin shows thinned continental crust (15 to 20 km thick) beneath most of the basin with thinner crust (10 km thick) immediately outboard of the Bonavista Platform, interpreted as a failed rift zone. Seaward of the failed rift, the velocity structure of the thinned continental crust is generally uniform over 250 km toward Orphan Knoll. Immediately outboard of Orphan Knoll, the crust thins to 8 km and exhibits a velocity structure consistent with oceanic crust. The results from modelling of the combined refraction/wide-angle reflection dataset support an extension of Canada's continental shelf beyond the seaward limits of the Orphan Basin.
,
1975-01-01
The area designated for possible oil and gas lease sale in Bureau of Land Management memorandum 3310 #43 (722) and referred to therein as part of the United States South Atlantic Outer Continental Shelf (OCS) contains about 98,000 square kilometres of the continental margin seaward of the 3 mile offshore limit and within the 600 metre isobath. The designated area, offshore of North Carolina, South Carolina, Georgia, and Florida, encompasses parts of three physiographic provinces: the Continental Shelf, the Florida-Hatteras Slope, and the Blake Plateau. The structural framework of the U.3. South Atlantic region is dominated by the Southeast Georgia Embayment --an east-plunging depression recessed into the Atlantic Coastal Plain and shelf between Cape Fear, North Carolina and Jacksonville, Florida. The embayment is bounded to the north by the Cape Fear Arch and to southeast by the Peninsular Arch. Refraction data indicate a minor basement(?) ridge beneath the outer shelf between 30? and 32?N at 80?W. Drill hole data also suggest a gentle fold or accretionary structure (reef?) off the east coast of Florida. Several other structural features have been identified by refraction and reflection techniques and drilling. These are the Yamacraw Uplift, Burton High, Stone Arch, and the Suwannee Channel. Gravity and magnetic anomalies within the area probably result from emplacement of magma bodies along linear features representing fundamental crustal boundaries. Of these anomalies, the most prominent, is a segment of the East Coast Magnetic Anomaly which crosses the coast at Brunswick, Georgia. This anomaly has been interpreted as representing an ancient continental boundary where two formerly separate continental plates collided and were welded together. There may be as much as 5,000 m of sedimentary rocks in the Southeast Georgia Embayment out to the 600 m isobath. Basement rocks beneath the Southeast Georgia Embayment are expected to be similar to those exposed in the Appalachian Piedmont province. Triassic deposits are likely to exist beneath the inner Continental Shelf, and probably consist of nonmarine arkosic sandstones, shales, basalt flows, and diabase intrusions deposited in relatively narrow northeast-trending grabens. Jurassic marine carbonates in the Bahamas grade northward to carbonates, shales, sand, and arkose in North Carolina. Salt may be present in the basal Jurassic section in the Southeast Georgia Embayment. Up to 4,000 m of Jurassic-Lower Cretaceous rocks are expected out to the 600 m water depth. Lower Cretaceous rocks in southern Florida are shallow-water marine limestone and dolomites with beds of anhydrite. In coastal North Carolina the Lower Cretaceous is a marine section made up of shales, sand, and sandy limestone. The Upper Cretaceous is composed almost entirely of marine carbonates in southern Florida grading northward to nonmarine to marginal marine, sandstones and shales with minor amounts of carbonates. In general, Upper Cretaceous rocks will probably maintain a fairly constant thickness (600 m) on the Continental Shelf and grade downdip from terrigeneous sands and shales to more marine chalks, limestones, and dolomites. The Cenozoic rocks are predominantly shallow-water marine carbonates in Florida grading northward into a marginal marine to marine clastic facies composed of sands, marls, and limestones. The offshore Cenozoic section is expected to range in thickness from 600 to 1100 m. A reconstruction of the geologic history suggests that the present continental margin is a result of a collision of the North American and African continental plates during late Paleozoic time and later modification during Late Triassic time when the continental plates separated, forming the present Atlantic Ocean. No commercial production of hydrocarbons has been developed on the Atlantic Coastal Plain immediately adjacent to the studied area even though hydrocarbon shows have been encountered in ons
Marine Litter Distribution and Density in European Seas, from the Shelves to Deep Basins
Pham, Christopher K.; Ramirez-Llodra, Eva; Alt, Claudia H. S.; Amaro, Teresa; Bergmann, Melanie; Canals, Miquel; Company, Joan B.; Davies, Jaime; Duineveld, Gerard; Galgani, François; Howell, Kerry L.; Huvenne, Veerle A. I.; Isidro, Eduardo; Jones, Daniel O. B.; Lastras, Galderic; Morato, Telmo; Gomes-Pereira, José Nuno; Purser, Autun; Stewart, Heather; Tojeira, Inês; Tubau, Xavier; Van Rooij, David; Tyler, Paul A.
2014-01-01
Anthropogenic litter is present in all marine habitats, from beaches to the most remote points in the oceans. On the seafloor, marine litter, particularly plastic, can accumulate in high densities with deleterious consequences for its inhabitants. Yet, because of the high cost involved with sampling the seafloor, no large-scale assessment of distribution patterns was available to date. Here, we present data on litter distribution and density collected during 588 video and trawl surveys across 32 sites in European waters. We found litter to be present in the deepest areas and at locations as remote from land as the Charlie-Gibbs Fracture Zone across the Mid-Atlantic Ridge. The highest litter density occurs in submarine canyons, whilst the lowest density can be found on continental shelves and on ocean ridges. Plastic was the most prevalent litter item found on the seafloor. Litter from fishing activities (derelict fishing lines and nets) was particularly common on seamounts, banks, mounds and ocean ridges. Our results highlight the extent of the problem and the need for action to prevent increasing accumulation of litter in marine environments. PMID:24788771
DYCAST: A finite element program for the crash analysis of structures
NASA Technical Reports Server (NTRS)
Pifko, A. B.; Winter, R.; Ogilvie, P.
1987-01-01
DYCAST is a nonlinear structural dynamic finite element computer code developed for crash simulation. The element library contains stringers, beams, membrane skin triangles, plate bending triangles and spring elements. Changing stiffnesses in the structure are accounted for by plasticity and very large deflections. Material nonlinearities are accommodated by one of three options: elastic-perfectly plastic, elastic-linear hardening plastic, or elastic-nonlinear hardening plastic of the Ramberg-Osgood type. Geometric nonlinearities are handled in an updated Lagrangian formulation by reforming the structure into its deformed shape after small time increments while accumulating deformations, strains, and forces. The nonlinearities due to combined loadings are maintained, and stiffness variation due to structural failures are computed. Numerical time integrators available are fixed-step central difference, modified Adams, Newmark-beta, and Wilson-theta. The last three have a variable time step capability, which is controlled internally by a solution convergence error measure. Other features include: multiple time-load history tables to subject the structure to time dependent loading; gravity loading; initial pitch, roll, yaw, and translation of the structural model with respect to the global system; a bandwidth optimizer as a pre-processor; and deformed plots and graphics as post-processors.
Dutta, Amlan; Raychaudhuri, Arup Kumar; Saha-Dasgupta, Tanusri
2016-01-01
We study the thermal stability of hollow copper nanowires using molecular dynamics simulation. We find that the plasticity-mediated structural evolution leads to transformation of the initial hollow structure to a solid wire. The process involves three distinct stages, namely, collapse, recrystallization and slow recovery. We calculate the time scales associated with different stages of the evolution process. Our findings suggest a plasticity-mediated mechanism of collapse and recrystallization. This contradicts the prevailing notion of diffusion driven transport of vacancies from the interior to outer surface being responsible for collapse, which would involve much longer time scales as compared to the plasticity-based mechanism.
NASA Astrophysics Data System (ADS)
Chuvil'deev, V. N.; Kopylov, V. I.; Nokhrin, A. V.; Bakhmet'ev, A. M.; Sandler, N. G.; Kozlova, N. A.; Tryaev, P. V.; Tabachkova, N. Yu.; Mikhailov, A. S.; Ershova, A. V.; Gryaznov, M. Yu.; Chegurov, M. K.; Sysoev, A. N.; Smirnova, E. S.
2017-05-01
The influence of severe plastic deformation on the structural-phase state of grain boundaries in a Ti-4Al-2V (commercial PT3V grade) pseudo-alpha-titanium alloy has been studied. It is established that increase in the strength, plasticity, and corrosion resistance of this alloy is related to the formation of an ultrafine- grained structure. In particular, it is shown that an increase in the resistance to hot-salt intergranular corrosion is due to diffusion-controlled redistribution of aluminum and vanadium atoms at the grain boundaries of titanium formed during thermal severe plastic deformation.
NASA Astrophysics Data System (ADS)
Liu, Shuyong; Jiang, J.; Parr, Nicola
2016-09-01
Water loss in distribution systems is a global problem for the water industry and governments. According to the international water supply association (IWSA), as a result of leaks from distribution pipes, 20% to 30% of water is lost while in transit from treatment plants to consumers. Although governments have tried to push the water industry to reduce the water leaks, a lot of experts have pointed out that a wide use of plastic pipes instead of metal pipes in recent years has caused difficulties in the detection of leaks using current acoustic technology. Leaks from plastic pipes are much quieter than traditional metal pipes and comparing to metal pipes the plastic pipes have very different coupling characteristics with soil, water and surrounding structures, such as other pipes, road surface and building foundations. The dispersion characteristics of wave propagating along buried plastic pipes are investigated in this paper using finite element and boundary element based models. Both empty and water- filled pipes were considered. Influences from nearby pipes and building foundations were carefully studied. The results showed that soil condition and nearby structures have significant influences on the dispersion characteristics of wave propagating along buried plastic pipes.
Martin, Raymond G.
1973-01-01
The objectives of this study were to determine the general configuration of the salt surface beneath the Texas-Louisiana continental slope and to isopach the Mesozoic-Cenozoic sedimentary section lying upon it. The structure contour map discloses that the entire slope province between the shelf edge and Sigsbee Escarpment is underlain by salt structures which interconnect at relatively shallow subbottom depths. Salt structures on the slope south of Louisiana and eastern Texas can be grouped according to structural relief and size which define morphological belts of decreasing deformational maturity in a downslope direction. Off northern Mexico and southernmost Texas, salt structures are anticlinal and their trends suggest a structural relationship with the folds of the Mexican Ridge province to the south. Structural trends in the two slope areas meet in the corner of the northwestern gulf where salt structure may have been influenced by a seaward extension of the San Marcos Arch, or an abrupt change in subsalt structural topography. Sediment thickness above the top of salt on the slope averages about 1,400 m (4,620 ft) which is a smaller average than expected from previous estimates. In some synclinal basins between salt structures, sediments may be as thick as 4,000-5,000 m (12,000-17,000 ft). On the average, sedimentary deposits in basins on the upper slope are thicker than on the lower slope. From the isopach map of sediments above salt it is estimated that the U.S. continental slope off Texas and Louisiana contains a sedimentary volume of about 170,000 km3 (41,000 mi3). The bulk of this volume is situated in synclinal basins between domes and principally in those beneath the upper and middle slope regions.
Controls on continental strain partitioning above an oblique subduction zone, Northern Andes
NASA Astrophysics Data System (ADS)
Schütt, Jorina M.; Whipp, David M., Jr.
2016-04-01
Strain partitioning is a common process at obliquely convergent plate margins dividing oblique convergence into margin-normal slip on the plate-bounding fault and horizontal shearing on a strike-slip system parallel to the subduction margin. In subduction zones, strain partitioning in the upper continental plate is mainly controlled by the shear forces acting on the plate interface and the strength of the continental crust. The plate interface forces are influenced by the subducting plate dip angle and the obliquity angle between the normal to the plate margin and the convergence velocity vector, and the crustal strength of the continent is strongly affected by the presence or absence of a volcanic arc, with the presence of the volcanic arcs being common at steep subduction zones. Along the ˜7000 km western margin of South America the convergence obliquity, subduction dip angles and presence of a volcanic arc all vary, but strain partitioning is only observed along parts of it. This raises the questions, to what extent do subduction zone characteristics control strain partitioning in the overriding continental plate, and which factors have the largest influence? We address these questions using lithospheric-scale 3D numerical geodynamic experiments to investigate the influence of subduction dip angle, convergence obliquity, and weaknesses in the crust owing to the volcanic arc on strain partitioning behavior. We base the model design on the Northern Volcanic Zone of the Andes (5° N - 2° S), characterized by steep subduction (˜ 35°), a convergence obliquity between 31° -45° and extensive arc volcanism, and where strain partitioning is observed. The numerical modelling software (DOUAR) solves the Stokes flow and heat transfer equations for a viscous-plastic creeping flow to calculate velocity fields, thermal evolution, rock uplift and strain rates in a 1600 km x 1600 km box with depth 160 km. Subduction geometry and material properties are based on a simplified, generic subduction zone similar to the northern Andes. The upper surface is initially defined to resemble the Andes, but is free to deform during the experiments. We consider two main model designs, one with and one without a volcanic arc (weak continental zone). A relatively high angle of convergence obliquity is predicted to favor strain partitioning, but preliminary model results show no strain partitioning for a uniform continental crustal strength with a friction angle of Φ = 15° . However, strain partitioning does occur when including a weak zone in the continental crust resulting from arc volcanic activity with Φ = 5° . This results in margin-parallel northeastward translation of a continental sliver at 3.2 cm/year. The presence of the sliver agrees well with observations of a continental sliver identified by GPS measurements in the Northern Volcanic Zone with a translation velocity of about 1 cm/year, though the GPS-derived velocity may not be representative of the long-term rate of translation depending on whether the observation period includes one or more seismic cycles. Regardless, the observed behavior is consistent with the observed earthquake focal mechanisms and GPS measurements, suggesting significant northeastward transport of Andean crust along the margin of the northern Andes.
Effect of the conditions of prepreg preparation on the strength of structural plastics
NASA Astrophysics Data System (ADS)
Zaborskaya, L. V.; Yurkevich, O. R.
1995-05-01
A study is made of the effect of the temperature and duration of heat treatment of polymer composite prepregs on their strength. It is established that heat treatment under conditions ensuring close to maximal adhesive interaction between the components of the prepreg and subsequent shaping makes it possible to more than double the strength of the plastic (Table 1), A new approach is proposed to optimizing the conditions of formation of structural plastics.
Elasto-limited plastic analysis of structures for probabilistic conditions
NASA Astrophysics Data System (ADS)
Movahedi Rad, M.
2018-06-01
With applying plastic analysis and design methods, significant saving in material can be obtained. However, as a result of this benefit excessive plastic deformations and large residual displacements might develop, which in turn might lead to unserviceability and collapse of the structure. In this study, for deterministic problem the residual deformation of structures is limited by considering a constraint on the complementary strain energy of the residual forces. For probabilistic problem the constraint for the complementary strain energy of the residual forces is given randomly and critical stresses updated during the iteration. Limit curves are presented for the plastic limit load factors. The results show that these constraints have significant effects on the load factors. The formulations of the deterministic and probabilistic problems lead to mathematical programming which are solved by the use of nonlinear algorithm.
TEM-nanoindentation studies of semiconducting structures.
Le Bourhis, E; Patriarche, G
2007-01-01
This paper reviews the application of nanoindentation coupled with transmission electron microscopy (TEM) to investigations of the plastic behaviour of semiconducting structures and its implication for device design. Instrumented nanoindentation has been developed to extract the mechanical behaviour of small volumes scaled to those encountered in semiconductor heterostructures. We illustrate that TEM is a powerful complementary tool for the study of local plasticity induced by nanoindentation. TEM-nanoindentation allows for detailed understanding of the plastic deformation in semiconducting structures and opens practical routes for improvement of devices. Performances of heterostructures are deteriously affected by dislocations that relax the lattice mismatched layers. Different ways to obtain compliant substructures are being developed in order to concentrate the plastic relaxation underneath the heterostructure. Such approaches allow for mechanical design of micro- and opto-electronic devices to be considered throughout the fabrication process.
NASA Astrophysics Data System (ADS)
Kaigorodova, L. I.; Rasposienko, D. Yu.; Pushin, V. G.; Pilyugin, V. P.; Smirnov, S. V.
2018-02-01
The structural and phase transformations in the Al-Li-Cu-Mg-Zr-Sc-Zn alloy have been studied by the electron microscopy after the aging for the maximum strength and in the nanostructured state after severe plastic deformation by high-pressure torsion. It has been shown that severe plastic deformation leads to the formation of a nanostructured state in the alloy, the nature of which is determined by the magnitude of deformation and the degree of completeness of the dynamic recrystallization. It has been established that deformation also causes a change in the phase composition of the alloy. The influence of the structural components of the severely deformed alloy on the level of mechanical properties, such as the hardness, plasticity, elastic modulus, and stiffness has been discussed.
NASA Astrophysics Data System (ADS)
Kodaira, S.; Sato, T.; Takahashi, N.; Ito, A.; Kaneda, Y.
2005-12-01
A continental-type middle crust having Vp = 6.1 - 6.3 km/s has been imaged at several oceanic island arcs (e.g. northern Izu, Mariana, Tonga, Kyushu-Palau ridge) since Suyehiro et al. (1996) has found a felsic middle crust in the northern Izu arc. A high velocity lower crust (Vp > 7.3 km/s) underlying the felsic middle crust has been also underlined as a characteristic structure in the northern Izu arc. A bulk composition of the crust in the Izu arc may indicate more mafic than that of a typical continental crust due to a large volume of the high velocity lower crust. Since a crust becomes more mature toward the north along the Izu-Bonin arc, investigating structural variation along the volcanic front has been believed to provide a fundamental knowledge for a crustal evolution process. In 2004 and 2005, Japan Agency for Marine-Earth Science and Technology has conducted two along arc wide-angle seismic surveys from the Sagami-bay to the Kita-Iwo jima, a total profile length of about 1000 km. Although data from the Bonin-part of the profile which were acquired this year has not been processed yet, a result from the Izu-part, from the Sagami-bay to Tori shima, shows significant structural variations along the volcanic front. The crustal thickness are varied with a wavelength of several tens of km, i.e., thickened up to 25-30 km around the volcanoes (the Miyake jama, Hachijo jima, Aoga sima, Sumisu jima), while thinned down to 20 km between them. The fine seismic velocity image obtained by refraction tomography as well as a wide-angle reflection migration shows that the variation of the crustal block having 6.0 - 6.7 km/s, which is a typical continental crustal velocity, is mainly responsible for the observed variation of the crustal thickness. The thickness of the high velocity lower crust is not significantly varied along the arc. Therefore, an average crustal seismic velocity (varied 6.6 to 7.0 km/s) represents a higher velocity that that of a typical continental crust (6. 4 km/s), and a negative correlation between the thickness of the 6.0 - 6.7 km/s block and the average crustal seismic velocity is recognized. In conclusion, the continental-type of the crust efficiently grow at the Quaternary volcanoes along Izu arc, but even at those areas the bulk composition of the entire crustal section shows more mafic than a continental crust due to the uniformly existing high velocity lower crust. A delamination process may be necessary to form a continental crust form the Izu island arc crust
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Crepani, E.; Martini, P. R.
1980-01-01
A methodology is proposed for international geological correlation studies based on LANDSAT-MSS imagery, Bullard's model of continental fit and compatible structural trends between Northeast Brazil and the West African counterpart. Six extensive lineaments in the Brazilian study area are mapped and discussed according to their regional behavior and in relation to the adjacent continental margin. Among the first conclusions, correlations were found between the Sobral Pedro II Lineament and the megafaults that surround the West African craton; and the Pernambuco Lineament with the Ngaurandere Linemanet in Cameroon. Ongoing research to complete the methodological stages includes the mapping of the West African structural framework, reconstruction of the pre-drift puzzle, and an analysis of the counterpart correlations.
Schubert, C D; Leitsch, S; Haertnagl, F; Haas, E M; Giunta, R E
2015-08-01
Despite its recognition as an independent specialty, at German university hospitals the field of plastic surgery is still underrepresented in terms of independent departments with a dedicated research focus. The aim of this study was to analyse the publication performance within the German academic plastic surgery environment and to compare independent departments and dependent, subordinate organisational structures regarding their publication performance. Organisational structures and number of attending doctors in German university hospitals were examined via a website analysis. A pubmed analysis was applied to assess the publication performance (number of publications, cumulative impact factor, impact factor/publication, number of publications/MD, number of publications/unit) between 2009 and 2013. In a journal analysis the distribution of the cumulative impact factor and number of publications in different journals as well as the development of the impact factor in the top journals were analysed. Out of all 35 university hospitals there exist 12 independent departments for plastic surgery and 8 subordinate organisational structures. In 15 university hospitals there were no designated plastic surgery units. The number of attending doctors differed considerably between independent departments (3.6 attending doctors/unit) and subordinate organisational structures (1.1 attending doctors/unit). The majority of publications (89.0%) and of the cumulative impact factor (91.2%) as well as most of the publications/MD (54 publications/year) and publications/unit (61 publications/year) were created within the independent departments. Only in departments top publications with an impact factor > 5 were published. In general a negative trend regarding the number of publications (- 13.4%) and cumulative impact factor (- 28.9%) was observed. 58.4% of all publications were distributed over the top 10 journals. Within the latter the majority of articles were published in English journals (60% of publications, 79.9% of the cumulative impact factor). The average impact factor of the top 10 journals increased by 13.5% from 2009 to 2013. In contrast to subordinate and dependent organisational structures, independent departments of plastic surgery are the key performers within German academic plastic surgery which, however, suffers from a general declining publication performance. Hence, the type of organisational structure has a crucial influence on the research performance. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Heron, Philip J.; Pysklywec, Russell N.
2016-05-01
Continents have a rich tectonic history that have left lasting crustal impressions. In analyzing Central Australian intraplate orogenesis, complex continental features make it difficult to identify the controls of inherited structure. Here the tectonics of two types of inherited structures (e.g., a thermally enhanced or a rheologically strengthened region) are compared in numerical simulations of continental compression with and without "glacial buzzsaw" erosion. We find that although both inherited structures produce deformation in the upper crust that is confined to areas where material contrasts, patterns of deformation in the deep lithosphere differ significantly. Furthermore, our models infer that glacial buzzsaw erosion has little impact at depth. This tectonic isolation of the mantle lithosphere from glacial processes may further assist in the identification of a controlling inherited structure in intraplate orogenesis. Our models are interpreted in the context of Central Australian tectonics (specifically the Petermann and Alice Springs orogenies).
Insights into the crustal structure of the transition between Nares Strait and Baffin Bay
NASA Astrophysics Data System (ADS)
Altenbernd, Tabea; Jokat, Wilfried; Heyde, Ingo; Damm, Volkmar
2016-11-01
The crustal structure and continental margin between southern Nares Strait and northern Baffin Bay were studied based on seismic refraction and gravity data acquired in 2010. We present the resulting P wave velocity, density and geological models of the crustal structure of a profile, which extends from the Greenlandic margin of the Nares Strait into the deep basin of central northern Baffin Bay. For the first time, the crustal structure of the continent-ocean transition of the very northern part of Baffin Bay could be imaged. We divide the profile into three parts: continental, thin oceanic, and transitional crust. On top of the three-layered continental crust, a low-velocity zone characterizes the lowermost layer of the three-layered Thule Supergroup underneath Steensby Basin. The 4.3-6.3 km thick oceanic crust in the southern part of the profile can be divided into a northern and southern section, more or less separated by a fracture zone. The oceanic crust adjacent to the continent-ocean transition is composed of 3 layers and characterized by oceanic layer 3 velocities of 6.7-7.3 km/s. Toward the south only two oceanic crustal layers are necessary to model the travel time curves. Here, the lower oceanic crust has lower seismic velocities (6.4-6.8 km/s) than in the north. Rather low velocities of 7.7 km/s characterize the upper mantle underneath the oceanic crust, which we interpret as an indication for the presence of upper mantle serpentinization. In the continent-ocean transition zone, the velocities are lower than in the adjacent continental and oceanic crustal units. There are no signs for massive magmatism or the existence of a transform margin in our study area.
Three-dimensional elastic-plastic finite-element analysis of fatigue crack propagation
NASA Technical Reports Server (NTRS)
Goglia, G. L.; Chermahini, R. G.
1985-01-01
Fatigue cracks are a major problem in designing structures subjected to cyclic loading. Cracks frequently occur in structures such as aircraft and spacecraft. The inspection intervals of many aircraft structures are based on crack-propagation lives. Therefore, improved prediction of propagation lives under flight-load conditions (variable-amplitude loading) are needed to provide more realistic design criteria for these structures. The main thrust was to develop a three-dimensional, nonlinear, elastic-plastic, finite element program capable of extending a crack and changing boundary conditions for the model under consideration. The finite-element model is composed of 8-noded (linear-strain) isoparametric elements. In the analysis, the material is assumed to be elastic-perfectly plastic. The cycle stress-strain curve for the material is shown Zienkiewicz's initial-stress method, von Mises's yield criterion, and Drucker's normality condition under small-strain assumptions are used to account for plasticity. The three-dimensional analysis is capable of extending the crack and changing boundary conditions under cyclic loading.
Shrink-Induced Superhydrophobic and Antibacterial Surfaces in Consumer Plastics
Freschauf, Lauren R.; McLane, Jolie; Sharma, Himanshu; Khine, Michelle
2012-01-01
Structurally modified superhydrophobic surfaces have become particularly desirable as stable antibacterial surfaces. Because their self-cleaning and water resistant properties prohibit bacteria growth, structurally modified superhydrophobic surfaces obviate bacterial resistance common with chemical agents, and therefore a robust and stable means to prevent bacteria growth is possible. In this study, we present a rapid fabrication method for creating such superhydrophobic surfaces in consumer hard plastic materials with resulting antibacterial effects. To replace complex fabrication materials and techniques, the initial mold is made with commodity shrink-wrap film and is compatible with large plastic roll-to-roll manufacturing and scale-up techniques. This method involves a purely structural modification free of chemical additives leading to its inherent consistency over time and successive recasting from the same molds. Finally, antibacterial properties are demonstrated in polystyrene (PS), polycarbonate (PC), and polyethylene (PE) by demonstrating the prevention of gram-negative Escherichia coli (E. coli) bacteria growth on our structured plastic surfaces. PMID:22916100
NASA Astrophysics Data System (ADS)
Hartl, D. J.; Lagoudas, D. C.
2009-10-01
The new developments summarized in this work represent both theoretical and experimental investigations of the effects of plastic strain generation in shape memory alloys (SMAs). Based on the results of SMA experimental characterization described in the literature and additional testing described in this work, a new 3D constitutive model is proposed. This phenomenological model captures both the conventional shape memory effects of pseudoelasticity and thermal strain recovery, and additionally considers the initiation and evolution of plastic strains. The model is numerically implemented in a finite element framework using a return mapping algorithm to solve the constitutive equations at each material point. This combination of theory and implementation is unique in its ability to capture the simultaneous evolution of recoverable transformation strains and irrecoverable plastic strains. The consideration of isotropic and kinematic plastic hardening allows the derivation of a theoretical framework capturing the interactions between irrecoverable plastic strain and recoverable strain due to martensitic transformation. Further, the numerical integration of the constitutive equations is formulated such that objectivity is maintained for SMA structures undergoing moderate strains and large displacements. The implemented model has been used to perform 3D analysis of SMA structural components under uniaxial and bending loads, including a case of local buckling behavior. Experimentally validated results considering simultaneous transformation and plasticity in a bending member are provided, illustrating the predictive accuracy of the model and its implementation.
1983-10-01
by block number) Naval Ship Structures; Composites . Glass Reinforced Plastics, Filament Winding, Minesweepers. 20. ABSTRACT (Continue on reverse side...associated with this method of manufacturing a ship hull out of Glass Reinforced Plastic (GRP). Winding machine and man- drel concepts were reviewed... machine and mandrel concepts were reviewed, as well as the structural requirements and possible materials. A design of a 1/5th scale (30 ft) model
The role of cyclic plastic zone size on fatigue crack growth behavior in high strength steels
NASA Astrophysics Data System (ADS)
Korda, Akhmad A.; Miyashita, Y.; Mutoh, Y.
2015-09-01
The role of cyclic plastic zone in front of the crack tip was studied in high strength steels. Estimated plastic zone size would be compared with actual observation. Strain controlled fatigue tests of the steels were carried out to obtain cyclic stress-strain curves for plastic zone estimation. Observations of plastic zone were carried out using in situ SEM fatigue crack growth tests under a constant-ΔK. Hard microstructures in structural steels showed to inhibit the extent of plastic deformation around the crack tip. The rate of crack growth can be correlated with the size of plastic zone. The smaller the plastic zone size, the slower the fatigue crack growth.
Continental Basalts and Mantle Xenoliths
NASA Astrophysics Data System (ADS)
Zartman, Robert E.
In this decade of the International Lithosphere Program, much scientific attention is being directed toward the deep continental crust and subadjacent mantle. The petrologic, geochemical, and isotopic signatures of basaltic magmas, which transect much of the lithosphere as they ascend from their site of melting, and of contained cognate and accidental xenoliths, which are found along the path of ascent, give us, perhaps, the best clues to composition and structure in the third dimension. Continental Basalts and Mantle Xenoliths provides an opportunity to sample the British school of thought on subjects such as differences between oceanic and continental basalts, effects of mantle metasomatism, and relationships between events in the subcontinental mantle and those in the overlying crust. This volume is recommended by the publisher as being of interest to senior undergraduates and postgraduate researchers; I would extend that readership to all scientists who seek access to a potpourri of recent findings and current ideas in a rapidly evolving field of research.
Organic matter and the geotechnical properties of submarine sediments
NASA Astrophysics Data System (ADS)
Keller, George H.
1982-09-01
Continental slope deposits off Peru and Oregon where coastal upwelling is a pronounced oceanographic process possess significant concentrations of organic carbon. Geotechnical properties are altered to varying degrees by the organic matter. Organic matter absorbs water and causes clay-size particles to aggregate forming an open fabric. This causes unusually high water contents and plasticity and exceptionally low wet bulk densities. Some of these deposits show notable increases in shear strength, sensitivity and degree of apparent overconsolidation. Owing to the unique geotechnical properties, sediment stability characteristics are considered to be poor in situations of excess pore pressures. Failure appears to take the form of a fluidized flow somewhat similar to the quick clays of Scandinavia.
Geomorphic characterization of the U.S. Atlantic continental margin
Brothers, Daniel S.; ten Brink, Uri S.; Andrews, Brian D.; Chaytor, Jason D.
2013-01-01
The increasing volume of multibeam bathymetry data collected along continental margins is providing new opportunities to study the feedbacks between sedimentary and oceanographic processes and seafloor morphology. Attempts to develop simple guidelines that describe the relationships between form and process often overlook the importance of inherited physiography in slope depositional systems. Here, we use multibeam bathymetry data and seismic reflection profiles spanning the U.S. Atlantic outer continental shelf, slope and rise from Cape Hatteras to New England to quantify the broad-scale, across-margin morphological variation. Morphometric analyses suggest the margin can be divided into four basic categories that roughly align with Quaternary sedimentary provinces. Within each category, Quaternary sedimentary processes exerted heavy modification of submarine canyons, landslide complexes and the broad-scale morphology of the continental rise, but they appear to have preserved much of the pre-Quaternary, across-margin shape of the continental slope. Without detailed constraints on the substrate structure, first-order morphological categorization the U.S. Atlantic margin does not provide a reliable framework for predicting relationships between form and process.
Continents as lithological icebergs: The importance of buoyant lithospheric roots
Abbott, D.H.; Drury, R.; Mooney, W.D.
1997-01-01
An understanding of the formation of new continental crust provides an important guide to locating the oldest terrestrial rocks and minerals. We evaluated the crustal thicknesses of the thinnest stable continental crust and of an unsubductable oceanic plateau and used the resulting data to estimate the amount of mantle melting which produces permanent continental crust. The lithospheric mantle is sufficiently depleted to produce permanent buoyancy (i.e., the crust is unsubductable) at crustal thicknesses greater than 25-27 km. These unsubductable oceanic plateaus and hotspot island chains are important sources of new continental crust. The newest continental crust (e.g., the Ontong Java plateau) has a basaltic composition, not a granitic one. The observed structure and geochemistry of continents are the result of convergent margin magmatism and metamorphism which modify the nascent basaltic crust into a lowermost basaltic layer overlain by a more silicic upper crust. The definition of a continent should imply only that the lithosphere is unsubductable over ??? 0.25 Ga time periods. Therefore, the search for the oldest crustal rocks should include rocks from lower to mid-crustal levels.
NASA Astrophysics Data System (ADS)
Schiffer, C.; Petersen, K. D.
2016-12-01
Rifts often develop along suture zones between previously collided continents, as part of the Wilson cycle. The North Atlantic is such an example, formed where Pangaea broke apart along Caledonian and Variscan sutures. Dipping upper mantle structures in E. Greenland and Scotland, have been interpreted as fossil subduction zones and the seismic signature indicates the presence of eclogite and serpentinite. We speculate that this orogenic material may impose a rheological control upon post-orogenic extension and we use thermo-mechanical modelling to explore such effects. Our model includes the following features: 1) Crustal thickness anomalies, 2) Eclogitised mafic crust emplaced in the mantle lithosphere, and 3) Hydrated mantle peridotite (serpentinite) formed in a pre-rift subduction setting. Our models indicate that the inherited structures control the location and the structural and magmatic evolution of the rift. Rifting of thin initial crust allows for relatively large amounts of serpentinite to be preserved within the uppermost mantle. This facilitates rapid continental breakup and serpentinite exhumation. Magmatism does not occur before continental breakup. Rifts in thicker crust preserve little or no serpentinite and thinning is more focused in the mantle lithosphere, rather than in the crust. Continental breakup is therefore preceded by magmatism. This implies that pre-rift orogenic properties may determine whether magma-poor or magma-rich conjugate margins are formed. Our models show that inherited orogenic eclogite and serpentinite are deformed and partially emplaced either as dipping structures within the lithospheric mantle or at the base of the thinned continental crust. The former is consistent with dipping sub-Moho reflectors often observed in passive margins. The latter provides an alternative interpretation of `lower crustal bodies' which are often regarded as igneous bodies. An additional implication of our models is that serpentinite, often observed seismically or exposed at the sea floor of passive margins, was formed prior to rifting in addition to syn-rift, fault-driven hydrothermal processes. Whether lower crustal and serpentinite bodies are produced previously or during rifting is of relevance for the estimation of thinning-factors of the pre-existing crust.
Introduction to the structures and processes of subduction zones
NASA Astrophysics Data System (ADS)
Zheng, Yong-Fei; Zhao, Zi-Fu
2017-09-01
Subduction zones have been the focus of many studies since the advent of plate tectonics in 1960s. Workings within subduction zones beneath volcanic arcs have been of particular interest because they prime the source of arc magmas. The results from magmatic products have been used to decipher the structures and processes of subduction zones. In doing so, many progresses have been made on modern oceanic subduction zones, but less progresses on ancient oceanic subduction zones. On the other hand, continental subduction zones have been studied since findings of coesite in metamorphic rocks of supracrustal origin in 1980s. It turns out that high-pressure to ultrahigh-pressure metamorphic rocks in collisional orogens provide a direct target to investigate the tectonism of subduction zones, whereas oceanic and continental arc volcanic rocks in accretionary orogens provide an indirect target to investigate the geochemistry of subduction zones. Nevertheless, metamorphic dehydration and partial melting at high-pressure to ultrahigh-pressure conditions are tectonically applicable to subduction zone processes at forearc to subarc depths, and crustal metasomatism is the physicochemical mechanism for geochemical transfer from the slab to the mantle in subduction channels. Taken together, these provide us with an excellent opportunity to find how the metamorphic, metasomatic and magmatic products are a function of the structures and processes in both oceanic and continental subduction zones. Because of the change in the thermal structures of subduction zones, different styles of metamorphism, metasomatism and magmatism are produced at convergent plate margins. In addition, juvenile and ancient crustal rocks have often suffered reworking in episodes independent of either accretionary or collisional orogeny, leading to continental rifting metamorphism and thus rifting orogeny for mountain building in intracontinental settings. This brings complexity to distinguish the syn-subduction processes and products from post-subduction processes and products. Nevertheless, available results indicate that our definition and understanding of subduction zone processes and products can be advanced by the convergence of observations and interpretations from geochemical, geological, geophysical and geodynamic studies of both oceanic and continental subduction zones. Therefore, insights into subduction zones can be provided by intergration of different approaches from different targets in the near future.
Introduction to the structures and processes of subduction zones
NASA Astrophysics Data System (ADS)
Zheng, Yong-Fei; Zhao, Zi-Fu
2017-09-01
Subduction zones have been the focus of many studies since the advent of plate tectonics in 1960s. Workings within subduction zones beneath volcanic arcs have been of particular interest because they prime the source of arc magmas. The results from magmatic products have been used to decipher the structures and processes of subduction zones. In doing so, many progresses have been made on modern oceanic subduction zones, but less progresses on ancient oceanic subduction zones. On the other hand, continental subduction zones have been studied since findings of coesite in metamorphic rocks of supracrustal origin in 1980s. It turns out that high-pressure to ultrahigh-pressure metamorphic rocks in collisional orogens provide a direct target to investigate the tectonism of subduction zones, whereas oceanic and continental arc volcanic rocks in accretionary orogens provide an indirect target to investigate the geochemistry of subduction zones. Nevertheless, metamorphic dehydration and partial melting at high-pressure to ultrahigh-pressure conditions are tectonically applicable to subduction zone processes at forearc to subarc depths, and crustal metasomatism is the physicochemical mechanism for geochemical transfer from the slab to the mantle in subduction channels. Taken together, these provide us with an excellent opportunity to find how the metamorphic, metasomatic and magmatic products are a function of the structures and processes in both oceanic and continental subduction zones. Because of the change in the thermal structures of subduction zones, different styles of metamorphism, metasomatism and magmatism are produced at convergent plate margins. In addition, juvenile and ancient crustal rocks have often suffered reworking in episodes independent of either accretionary or collisional orogeny, leading to continental rifting metamorphism and thus rifting orogeny for mountain building in intracontinental settings. This brings complexity to distinguish the syn-subduction processes and products from post-subduction processes and products. Nevertheless, available results indicate that our definition and understanding of subduction zone processes and products can be advanced by the convergence of observations and interpretations from geochemical, geological, geophysical and geodynamic studies of both oceanic and continental subduction zones. Therefore, insights into subduction zones can be provided by integration of different approaches from different targets in the near future.
2007-01-01
dashed lines correspond to observations and predictions, respectively. 9 Inversion results corresponding to the stations located within the Asir t~er- 17...wave velocity models ............................................................. A-2 A3 Asir terrane S-wave velocity models...island-arc terranes ( Asir , Hijaz and Midyan), and to the east, one terrane of continental affinity (Afif) and one terrane of possible continental
Process combinations for the manufacturing of metal-plastic hybrid parts
NASA Astrophysics Data System (ADS)
Drossel, W.-G.; Lies, C.; Albert, A.; Haase, R.; Müller, R.; Scholz, P.
2016-03-01
The usage of innovative lightweight materials and processing technologies gains importance in manifold industrial scopes. Especially for moving parts and mobility products the weight is decisively. The aerospace and automotive industries use light and high-strength materials to reduce weight and energy consumption and thereby improve the performance of their products. Composites with reinforced plastics are of particular importance. They offer a low density in combination with high specific stiffness and strength. A pure material substitution through reinforced plastics is still not economical. The approach of using hybrid metal-plastic structures with the principle of “using the right material at the right place” is a promising solution for the economical realization of lightweight structures with a high achievement potential. The article shows four innovative manufacturing possibilities for the realization of metal-plastic-hybrid parts.
NASA Astrophysics Data System (ADS)
Tymms, V. J.; Kusznir, N. J.
2004-12-01
The effect of temperature dependent rheology has been examined for a model of continental lithosphere thinning by an upwelling divergent flow field within continental lithosphere and asthenosphere leading to continental breakup and rifted continental margin formation. The model uses a coupled FE fluid flow and thermal solution and is kinematically driven using a half divergence rate Vx and upwelling velocity Vz. Viscosity structure is modified by the evolving temperature field of the model through the temperature dependent Newtonian rheology. Continental lithosphere and asthenosphere material are advected by the fluid-flow field in order to predict crustal and mantle lithosphere thinning leading to rifted continental margin formation. The results of the temperature dependent rheology model are compared with those of a simple isoviscous model. The temperature dependent rheology model predicts continental lithosphere thinning and depth dependent stretching, similar to that predicted by the uniform viscosity model. However compared with the uniform viscosity model the temperature dependent rheology predicts greater amounts of thinning of the continental crust and lithospheric mantle than the isoviscous solutions. An important parameter within the kinematic model of continental lithosphere breakup and rifted continental margin development is the velocity ratio Vz/Vx. For non-volcanic margins, Vz/Vx is thought to be around unity. Applying a velocity ratio Vz/Vx of unity gives a diffuse ocean-continent transition and exhumation of continental lithospheric mantle. For volcanic margins, Vz/Vx is of order 10, falling to unity with a half-life of order 10 Ma, leading to a more sharply defined ocean-continent transition. While Vx during continental breakup may be estimated, Vz can only be inferred. FE fluid flow solutions, in which Vz is not imposed and without an initial buoyancy driven flow component, predict a velocity ratio Vz/Vx of around unity for both temperature dependent rheology and isovisous fluid-flow solutions. The effect of incorporating a lithology dependent continental lithosphere rheology (quartz-feldspar crust, olivine mantle) with temperature dependence is also being investigated. The work forms part of the Integrated Seismic Imaging and Modelling of Margins (iSIMM*) project. This work forms part of the NERC Margins iSIMM project. iSIMM investigators are from Liverpool and Cambridge Universities, Schlumberger Cambridge Research & Badley Geoscience, supported by the NERC, the DTI, Agip UK, BP, Amerada Hess Ltd, Anadarko, Conoco-Phillips, Shell, Statoil and WesternGeco. The iSIMM team comprises NJ Kusznir, RS White, AM Roberts, PAF Christie, R Spitzer, N Hurst, ZC Lunnon, CJ Parkin, AW Roberts, LK Smith, V Tymms & D. Healy.
Self-actuating and self-diagnosing plastically deforming piezo-composite flapping wing MAV
NASA Astrophysics Data System (ADS)
Harish, Ajay B.; Harursampath, Dineshkumar; Mahapatra, D. Roy
2011-04-01
In this work, we propose a constitutive model to describe the behavior of Piezoelectric Fiber Reinforced Composite (PFRC) material consisting of elasto-plastic matrix reinforced by strong elastic piezoelectric fibers. Computational efficiency is achieved using analytical solutions for elastic stifness matrix derived from Variational Asymptotic Methods (VAM). This is extended to provide Structural Health Monitoring (SHM) based on plasticity induced degradation of flapping frequency of PFRC. Overall this work provides an effective mathematical tool that can be used for structural self-health monitoring of plasticity induced flapping degradation of PFRC flapping wing MAVs. The developed tool can be re-calibrated to also provide SHM for other forms of failures like fatigue, matrix cracking etc.
Raychaudhuri, Arup Kumar; Saha-Dasgupta, Tanusri
2016-01-01
Summary We study the thermal stability of hollow copper nanowires using molecular dynamics simulation. We find that the plasticity-mediated structural evolution leads to transformation of the initial hollow structure to a solid wire. The process involves three distinct stages, namely, collapse, recrystallization and slow recovery. We calculate the time scales associated with different stages of the evolution process. Our findings suggest a plasticity-mediated mechanism of collapse and recrystallization. This contradicts the prevailing notion of diffusion driven transport of vacancies from the interior to outer surface being responsible for collapse, which would involve much longer time scales as compared to the plasticity-based mechanism. PMID:26977380
NASA Technical Reports Server (NTRS)
Saether, Erik; Hochhalter, Jacob D.; Glaessgen, Edward H.
2012-01-01
A multiscale modeling methodology that combines the predictive capability of discrete dislocation plasticity and the computational efficiency of continuum crystal plasticity is developed. Single crystal configurations of different grain sizes modeled with periodic boundary conditions are analyzed using discrete dislocation plasticity (DD) to obtain grain size-dependent stress-strain predictions. These relationships are mapped into crystal plasticity parameters to develop a multiscale DD/CP model for continuum level simulations. A polycrystal model of a structurally-graded microstructure is developed, analyzed and used as a benchmark for comparison between the multiscale DD/CP model and the DD predictions. The multiscale DD/CP model follows the DD predictions closely up to an initial peak stress and then follows a strain hardening path that is parallel but somewhat offset from the DD predictions. The difference is believed to be from a combination of the strain rate in the DD simulation and the inability of the DD/CP model to represent non-monotonic material response.
Gravity Maps of Antarctic Lithospheric Structure from Remote-Sensing and Seismic Data
NASA Astrophysics Data System (ADS)
Tenzer, Robert; Chen, Wenjin; Baranov, Alexey; Bagherbandi, Mohammad
2018-02-01
Remote-sensing data from altimetry and gravity satellite missions combined with seismic information have been used to investigate the Earth's interior, particularly focusing on the lithospheric structure. In this study, we use the subglacial bedrock relief BEDMAP2, the global gravitational model GOCO05S, and the ETOPO1 topographic/bathymetric data, together with a newly developed (continental-scale) seismic crustal model for Antarctica to compile the free-air, Bouguer, and mantle gravity maps over this continent and surrounding oceanic areas. We then use these gravity maps to interpret the Antarctic crustal and uppermost mantle structure. We demonstrate that most of the gravity features seen in gravity maps could be explained by known lithospheric structures. The Bouguer gravity map reveals a contrast between the oceanic and continental crust which marks the extension of the Antarctic continental margins. The isostatic signature in this gravity map confirms deep and compact orogenic roots under the Gamburtsev Subglacial Mountains and more complex orogenic structures under Dronning Maud Land in East Antarctica. Whereas the Bouguer gravity map exhibits features which are closely spatially correlated with the crustal thickness, the mantle gravity map reveals mainly the gravitational signature of the uppermost mantle, which is superposed over a weaker (long-wavelength) signature of density heterogeneities distributed deeper in the mantle. In contrast to a relatively complex and segmented uppermost mantle structure of West Antarctica, the mantle gravity map confirmed a more uniform structure of the East Antarctic Craton. The most pronounced features in this gravity map are divergent tectonic margins along mid-oceanic ridges and continental rifts. Gravity lows at these locations indicate that a broad region of the West Antarctic Rift System continuously extends between the Atlantic-Indian and Pacific-Antarctic mid-oceanic ridges and it is possibly formed by two major fault segments. Gravity lows over the Transantarctic Mountains confirms their non-collisional origin. Additionally, more localized gravity lows closely coincide with known locations of hotspots and volcanic regions (Marie Byrd Land, Balleny Islands, Mt. Erebus). Gravity lows also suggest a possible hotspot under the South Orkney Islands. However, this finding has to be further verified.
NASA Astrophysics Data System (ADS)
Marzen, R. E.; Shillington, D. J.; Lizarralde, D.; Harder, S. H.
2016-12-01
The Southeastern United States is an ideal location to study the interactions between continental collision, extensive but short-lived magmatism, and continental rifting. Continental collision during the Alleghenian Orogeny ( 290 Ma) formed the supercontinent Pangea. Extension leading to the breakup of Pangea began 230 Ma, forming the South Georgia Basin and other rift basins. The extensive Central Atlantic Magmatic Province (CAMP) magmatism was emplaced at 200 Ma, and continental separation occurred afterwards. During these processes, part of the African continent was added to North America. Prior work has raised questions including (1) the location and geometry of the suture zone and implications for the style of collision (thin-skinned versus thick-skinned), (2) the role of pre-existing structures on later rifting, and (3) the distribution of magmatism, and possible relationships between magmatism and rifting. To address these questions, we present preliminary velocity models for the 400-km-long refraction seismic line from the SUwanee Suture and GA Rift basin experiment (SUGAR) Line 2. This line is central to CAMP magmatism, and crosses the South Georgia rift basin and two hypothesized locations for the ancient suture zone. The data were collected in August 2015 by a team of over 40 students and scientists. Fifteen shots spaced at 20-40 km were recorded by 1981 Texans spaced at 250 m. We observe refractions from the basin, crust, and upper mantle, and wide-angle reflections from the base of the sediments, within the crust, and from the Moho. Prominent mid crustal reflections may arise from the top of elevated lower crustal velocities and possible lower crustal layering. The starting velocity model and constraints on the upper sedimentary basin velocity structure are obtained through forward modeling, which show basin sediment thickness increasing to the South. We then invert for smooth 2D velocity structure using first arrivals (FAST) and a layered velocity model using refractions and reflections (RAYINVR) to evaluate the crust and upper mantle velocity structure. Model results will be compared to other geological and geophysical data, including the roughly parallel SUGAR Line 1, to examine along-strike changes in rift structure, suture structure, and evidence of magmatism.
2013-09-01
pattern of an alloy, such as steel , reveals, among other properties (ex., phase composition, crystal structure), information about the strain state...This, together with elastic strain / residual stress analysis, would enable better evaluation of the current state of health of steel structures and...plastic strain in a component/structure may better evaluate the current state of health of steel structures and components as they near predetermined
NASA Astrophysics Data System (ADS)
Tian, X.; Choi, E.; Buck, W. R.
2015-12-01
The offset of faults and related topographic relief varies hugely at both continental rifts and mid-ocean ridges (MORs). In some areas fault offset is measured in 10s of meters while in places marked by core complexes it is measured in 10s of kilometers. Variation in the magma supply is thought to control much of these differences. Magma supply is most usefully described by the ratio (M) between rates of lithospheric extension accommodated by magmatic dike intrusion and that occurring via faulting. 2D models with different values of M successfully explain much of the observed cross-sectional structure seen at rifts and ridges. However, magma supply varies along the axis of extension and the interactions between the tectonics and magmatism are inevitably three-dimensional. We investigate the consequences of this along-axis variation in diking in terms of faulting patterns and the associated structures using a 3D parallel geodynamic modeling code, SNAC. Many observed 3D structural features are reproduced: e.g., abyssal hill, oceanic core complex (OCC), inward fault jump, mass wasting, hourglass-shaped median valley, corrugation and mullion structure. An estimated average value of M = 0.65 is suggested as a boundary value for separating abyssal hills and OCCs formation. Previous inconsistency in the M range for OCC formation between 2D model results (M = 0.3˜0.5) and field observations (M < 0.3 or M > 0.5) is reconciled by the along-ridge coupling between different faulting regimes. We also propose asynchronous faulting-induced tensile failure as a new possibility for explaining corrugations seen on the surface of core complexes. For continental rifts, we will describe a suite of 2D and 3D model calculations with a range of initial lithospheric structures and values of M. In one set of the 2D models we limit the extensional tectonic force and show how this affects the maximum topographic relief produced across the rift. We are also interested in comparing models in which the value of M varies as the rift evolves with observations from real rifts and continental margins. Finally, we plan to show how the faulting pattern in 3D can depend on the distribution of dike opening rate along segments for incipient continental rifts.
Kim, J. T.; Hong, S. H.; Park, H. J.; Kim, Y. S.; Suh, J. Y.; Lee, J. K.; Park, J. M.; Maity, T.; Eckert, J.; Kim, K. B.
2017-01-01
In the present study, the microstructural evolution and the modulation of the mechanical properties have been investigated for a Co-Cr-Mo (CCM) ternary eutectic alloy by addition of a small amount of copper (0.5 and 1 at.%). The microstructural observations reveal a distinct dissimilarity in the eutectic structure such as a broken lamellar structure and a well-aligned lamellar structure and an increasing volume fraction of Co lamellae as increasing amount of copper addition. This microstructural evolution leads to improved plasticity from 1% to 10% without the typical tradeoff between the overall strength and compressive plasticity. Moreover, investigation of the fractured samples indicates that the CCMCu alloy exhibits higher plastic deformability and combinatorial mechanisms for improved plastic behavior. The improved plasticity of CCMCu alloys originates from several deformation mechanisms; i) slip, ii) deformation twinning, iii) strain-induced transformation and iv) shear banding. These results reveal that the mechanical properties of eutectic alloys in the Co-Cr-Mo system can be ameliorated by micro-alloying such as Cu addition. PMID:28067248
Ghasemlou, Mehran; Khodaiyan, Faramarz; Oromiehie, Abdulrasoul
2011-11-01
The rheological properties of kefiran film-forming solutions, as well as the structural characterisation of the resulting films, were investigated as a function of various plasticizer types. The behaviours of the storage (G') and loss (G″) moduli as a function of frequency were typical of gel-like material, with the G' higher than the G″. Kefiran-based films, which may find application as edible films, were prepared by a casting and solvent-evaporation method. Possible interaction between the adjacent chains in the kefiran polymer and various plasticizers was proven by Fourier-transform infrared spectroscopy (FT-IR). The crystallinity of plasticized kefiran film was also analysed using X-ray diffraction (XRD); this revealed an amorphous-crystalline structure. These results were explained by the film's microstructure, which was analysed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The present study has helped determine possible interactions of kefiran, plasticizer and water molecules in determining film properties. Copyright © 2011 Elsevier B.V. All rights reserved.
Description of plastic deformation of structural materials in triaxial loading
NASA Astrophysics Data System (ADS)
Lagzdins, A.; Zilaucs, A.
2008-03-01
A model of nonassociated plasticity is put forward for initially isotropic materials deforming with residual changes in volume under the action of triaxial normal stresses. The model is based on novel plastic loading and plastic potential functions, which define closed, convex, every where smooth surfaces in the 6D space of symmetric second-rank stress tensors. By way of example, the plastic deformation of a cylindrical concrete specimen wrapped with a CFRP tape and loaded in axial compression is described.
Mirror trends of plasticity and stability indicators in primate prefrontal cortex.
García-Cabezas, Miguel Á; Joyce, Mary Kate P; John, Yohan J; Zikopoulos, Basilis; Barbas, Helen
2017-10-01
Research on plasticity markers in the cerebral cortex has largely focused on their timing of expression and role in shaping circuits during critical and normal periods. By contrast, little attention has been focused on the spatial dimension of plasticity-stability across cortical areas. The rationale for this analysis is based on the systematic variation in cortical structure that parallels functional specialization and raises the possibility of varying levels of plasticity. Here, we investigated in adult rhesus monkeys the expression of markers related to synaptic plasticity or stability in prefrontal limbic and eulaminate areas that vary in laminar structure. Our findings revealed that limbic areas are impoverished in three markers of stability: intracortical myelin, the lectin Wisteria floribunda agglutinin, which labels perineuronal nets, and parvalbumin, which is expressed in a class of strong inhibitory neurons. By contrast, prefrontal limbic areas were enriched in the enzyme calcium/calmodulin-dependent protein kinase II (CaMKII), known to enhance plasticity. Eulaminate areas have more elaborate laminar architecture than limbic areas and showed the opposite trend: they were enriched in markers of stability and had lower expression of the plasticity-related marker CaMKII. The expression of glial fibrillary acidic protein (GFAP), a marker of activated astrocytes, was also higher in limbic areas, suggesting that cellular stress correlates with the rate of circuit reshaping. Elevated markers of plasticity may endow limbic areas with flexibility necessary for learning and memory within an affective context, but may also render them vulnerable to abnormal structural changes, as seen in neurologic and psychiatric diseases. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Burmeister, Mareike; Eilks, Ingo
2014-01-01
People use many different products made from plastics every day. But conventional plastics such as polyvinyl chloride (PVC) do not always have a good reputation in society at large. Bioplastics such as thermoplastic starch (TPS) promise to be better alternatives but are they really better than conventional plastics? This article presents a new…
Structure and evolution of the eastern Gulf of Aden conjugate margins from seismic reflection data
NASA Astrophysics Data System (ADS)
d'Acremont, Elia; Leroy, Sylvie; Beslier, Marie-Odile; Bellahsen, Nicolas; Fournier, Marc; Robin, Cécile; Maia, Marcia; Gente, Pascal
2005-03-01
The Gulf of Aden is a young and narrow oceanic basin formed in Oligo-Miocene time between the rifted margins of the Arabian and Somalian plates. Its mean orientation, N75°E, strikes obliquely (50°) to the N25°E opening direction. The western conjugate margins are masked by Oligo-Miocene lavas from the Afar Plume. This paper concerns the eastern margins, where the 19-35 Ma breakup structures are well exposed onshore and within the sediment-starved marine shelf. Those passive margins, about 200 km distant, are non-volcanic. Offshore, during the Encens-Sheba cruise we gathered swath bathymetry, single-channel seismic reflection, gravity and magnetism data, in order to compare the structure of the two conjugate margins and to reconstruct the evolution of the thinned continental crust from rifting to the onset of oceanic spreading. Between the Alula-Fartak and Socotra major fracture zones, two accommodation zones trending N25°E separate the margins into three N110°E-trending segments. The margins are asymmetric: offshore, the northern margin is narrower and steeper than the southern one. Including the onshore domain, the southern rifted margin is about twice the breadth of the northern one. We relate this asymmetry to inherited Jurassic/Cretaceous rifts. The rifting obliquity also influenced the syn-rift structural pattern responsible for the normal faults trending from N70°E to N110°E. The N110°E fault pattern could be explained by the decrease of the influence of rift obliquity towards the central rift, and/or by structural inheritance. The transition between the thinned continental crust and the oceanic crust is characterized by a 40 km wide zone. Our data suggest that its basement is made up of thinned continental crust along the southern margin and of thinned continental crust or exhumed mantle, more or less intruded by magmatic rocks, along the northern margin.
The Morpho-Acoustic Structure of Sakarya Canyon, Southwestern Black Sea
NASA Astrophysics Data System (ADS)
Nasıf, Aslıhan; Dondurur, Derman
2017-04-01
In this study, Black Sea outlet of Sakarya River in the western Black Sea continental margin is analyzed using a total of 1400 km multichannel seismics, Chirp sub-bottom profiler and multibeam bathymetric datasets. Three scientific cruises between 2012 and 2016 have been conducted in the area to map and reveal the morphological structure of the Sakarya Canyon along the southwestern Black Sea margin. The Western Black Sea Turkey coastal area is also home to many active canyons. These canyons extend from deep shallow shelf areas of about 100 m to deep water depths of 1800-2000 m. The largest and most active of the Western Black Sea canyons is the Sakarya Canyon, which is located at the exit of the Sakarya River. Research on submarine canyons are important for military submarine operations, positioning of marine engineering structures and understanding the sedimentology, ecological and oceanographic functions of canyons. The canyon systems observed on continental slopes lead to the most convenient sedimentary transportation from the shelf platform. The dataset from study area was analyzed to identify the acoustic structure of Sakarya Canyon, the morphology of which is not widely known. Bathymetric data shows that the canyon consists of two separate canyon heads in the shallow continental shelf to the south, both of which coalesce at 867 m water depth. This meandering canyon then deepens along the continental slope towards to north. Another wide canyon from west, named as Kefken Canyon, then conjoins this main canyon at approximately 1000 m water depths to form the deeper structure of the modern Sakarya Canyon. In the distal parts, canyon gets wider and wider, and its thalweg becomes significantly flat eroded by the present day activity of small scale turbidity channels. Multichannel seismic data indicate that the Sakarya Canyon was formed by the activity of hyperphycnal flows and also clearly show the extensive sediment erosion along the canyon.
Dynamics of subduction, accretion, exhumation and slab roll-back: Mediterranean scenarios
NASA Astrophysics Data System (ADS)
Tirel, C.; Brun, J.; Burov, E. B.; Wortel, M. J.; Lebedev, S.
2010-12-01
A dynamic orogen reveals various tectonic processes brought about by subduction: accretion of oceanic and continental crust, exhumation of UHP-HP rocks, and often, back-arc extension. In the Mediterranean, orogeny is strongly affected by slab retreat, as in the Aegean and Tyrrhenian Seas. In order to examine the different dynamic processes in a self-consistent manner, we perform a parametric study using the fully coupled thermo-mechanical numerical code PARAFLAM. The experiments reproduce a subduction zone in a slab pull mode, with accretion of one (the Tyrrhenian case) and two continental blocks (the Aegean case) that undergo, in sequence, thrusting, burial and exhumation. The modeling shows that despite differences in structure between the two cases, the deformation mechanisms are fundamentally similar and can be described as follows. The accretion of a continental block at the trench beneath the suture zone begins with its burial to UHP-HP conditions and thrusting. Then the continental block is delaminated from its subducting lithosphere. During the subduction-accretion process, the angle of the subducting slab increases due to the buoyancy of the continental block. When the oceanic subduction resumes, the angle of the slab decreases to reach a steady-state position. The Aegean and Tyrrhenian scenarios diverge at this stage, due naturally to the differences of their accretion history. When continental accretion is followed by oceanic subduction only, the continental block that has been accreted and detached stays at close to the trench and does not undergo further deformation, despite the continuing rollback. The extensional deformation is located further within the overriding plate, resulting in continental breakup and the development of an oceanic basin, as in the Tyrrhenian domain. When the continental accretion is followed first by oceanic subduction and then by accretion of another continental block, however, the evolution of the subduction zone is different. The angle of the subducting slab increases again, following the arrival of the second continental block. The first continental block is now disconnected from the trench and is strongly heated by the asthenosphere that rises to just below the Moho. The locus of extension, originally in the overriding plate, moves to the first continental block, resulting in the development of metamorphic core complexes, as in the Aegean domain. Simultaneously, the second continent undergoes burial to UHP-HP conditions, thrusting and exhumation.
Elders, W A; Rex, R W; Robinson, P T; Biehler, S; Meidav, T
1972-10-06
The current excitement among geologists and geophysicists stemming from the "new global tectonics" has led to a widespread, speculative reinterpretation of continental geology. The Gulf of California and its continuation into the Imperial Valley provide an excellent opportunity for studying the border zone between the North American and Pacific plates, and an interface of continental and oceanic tectonics. The Salton trough, the landward extension of the gulf, is a broad structural depression, comparable in size with the deeper marine basins of the southern part of the gulf, but here partially filled with sediments deposited by the Colorado River.
Network, cellular, and molecular mechanisms underlying long-term memory formation.
Carasatorre, Mariana; Ramírez-Amaya, Víctor
2013-01-01
The neural network stores information through activity-dependent synaptic plasticity that occurs in populations of neurons. Persistent forms of synaptic plasticity may account for long-term memory storage, and the most salient forms are the changes in the structure of synapses. The theory proposes that encoding should use a sparse code and evidence suggests that this can be achieved through offline reactivation or by sparse initial recruitment of the network units. This idea implies that in some cases the neurons that underwent structural synaptic plasticity might be a subpopulation of those originally recruited; However, it is not yet clear whether all the neurons recruited during acquisition are the ones that underwent persistent forms of synaptic plasticity and responsible for memory retrieval. To determine which neural units underlie long-term memory storage, we need to characterize which are the persistent forms of synaptic plasticity occurring in these neural ensembles and the best hints so far are the molecular signals underlying structural modifications of the synapses. Structural synaptic plasticity can be achieved by the activity of various signal transduction pathways, including the NMDA-CaMKII and ACh-MAPK. These pathways converge with the Rho family of GTPases and the consequent ERK 1/2 activation, which regulates multiple cellular functions such as protein translation, protein trafficking, and gene transcription. The most detailed explanation may come from models that allow us to determine the contribution of each piece of this fascinating puzzle that is the neuron and the neural network.
Plastic covering on airfoil structure provides smooth uninterrupted surface
NASA Technical Reports Server (NTRS)
Kinzler, J. A.; Fehrenkamp, L. G.; Heffernam, J. T.; Lee, W. S.
1975-01-01
Primed surface is covered with adhesive. Sheet of plastic film is stretched over adhesive and mechanical holder is used to apply tension to ends of sheet to make it conform to surface of airfoil. After adhesive cures, plastic can be trimmed with sharp cutting tool.
Comparison of Pore Fractal Characteristics Between Marine and Continental Shales
NASA Astrophysics Data System (ADS)
Liu, Jun; Yao, Yanbin; Liu, Dameng; Cai, Yidong; Cai, Jianchao
Fractal characterization offers a quantitative evaluation on the heterogeneity of pore structure which greatly affects gas adsorption and transportation in shales. To compare the fractal characteristics between marine and continental shales, nine samples from the Lower Silurian Longmaxi formation in the Sichuan basin and nine from the Middle Jurassic Dameigou formation in the Qaidam basin were collected. Reservoir properties and fractal dimensions were characterized for all the collected samples. In this study, fractal dimensions were originated from the Frenkel-Halsey-Hill (FHH) model with N2 adsorption data. Compared to continental shale, marine shale has greater values of quartz content, porosity, specific surface area and total pore volume but lower level of clay minerals content, permeability, average pore diameter and methane adsorption capacity. The quartz in marine shale is mostly associated with biogenic origin, while that in continental shale is mainly due to terrigenous debris. The N2 adsorption-desorption isotherms exhibit that marine shale has fewer inkbottle-shaped pores but more plate-like and slit-shaped pores than continental shale. Two fractal dimensions (D1 and D2) were obtained at P/Po of 0-0.5 and 0.5-1. The dimension D2 is commonly greater than D1, suggesting that larger pores (diameter >˜ 4nm) have more complex structures than small pores (diameter <˜ 4nm). The fractal dimensions (both D1 and D2) positively correlate to clay minerals content, specific surface area and methane adsorption capacity, but have negative relationships with porosity, permeability and average pore diameter. The fractal dimensions increase proportionally with the increasing quartz content in marine shale but have no obvious correlation with that in continental shale. The dimension D1 is correlative to the TOC content and permeability of marine shale at a similar degree with dimension D2, while the dimension D1 is more sensitive to those of continental shale than dimension D2. Compared with dimension D2, for two shales, dimension D1 is better associated with the content of clay minerals but has worse correlations with the specific surface area and average pore diameter.
Tokiwa, Yutaka; Calabia, Buenaventurada P; Ugwu, Charles U; Aiba, Seiichi
2009-08-26
Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.). In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.
Tokiwa, Yutaka; Calabia, Buenaventurada P.; Ugwu, Charles U.; Aiba, Seiichi
2009-01-01
Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.). In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed. PMID:19865515
Amprazi, Maria; Kotsifaki, Dina; Providaki, Mary; Kapetaniou, Evangelia G.; Fellas, Georgios; Kyriazidis, Ioannis; Pérez, Javier; Kokkinidis, Michael
2014-01-01
The dimeric Repressor of Primer (Rop) protein, a widely used model system for the study of coiled-coil 4-α-helical bundles, is characterized by a remarkable structural plasticity. Loop region mutations lead to a wide range of topologies, folding states, and altered physicochemical properties. A protein-folding study of Rop and several loop variants has identified specific residues and sequences that are linked to the observed structural plasticity. Apart from the native state, native-like and molten-globule states have been identified; these states are sensitive to reducing agents due to the formation of nonnative disulfide bridges. Pro residues in the loop are critical for the establishment of new topologies and molten globule states; their effects, however, can be in part compensated by Gly residues. The extreme plasticity in the assembly of 4-α-helical bundles reflects the capacity of the Rop sequence to combine a specific set of hydrophobic residues into strikingly different hydrophobic cores. These cores include highly hydrated ones that are consistent with the formation of interchain, nonnative disulfide bridges and the establishment of molten globules. Potential applications of this structural plasticity are among others in the engineering of bio-inspired materials. PMID:25024213
Wu, Qian; Sun, Miao; Bernard, Laura P; Zhang, Huaye
2017-09-29
Postsynaptic density 95 (PSD-95) is a major synaptic scaffolding protein that plays a key role in bidirectional synaptic plasticity, which is a process important for learning and memory. It is known that PSD-95 shows increased dynamics upon induction of plasticity. However, the underlying structural and functional changes in PSD-95 that mediate its role in plasticity remain unclear. Here we show that phosphorylation of PSD-95 at Ser-561 in its guanylate kinase (GK) domain, which is mediated by the partitioning-defective 1 (Par1) kinases, regulates a conformational switch and is important for bidirectional plasticity. Using a fluorescence resonance energy transfer (FRET) biosensor, we show that a phosphomimetic mutation of Ser-561 promotes an intramolecular interaction between GK and the nearby Src homology 3 (SH3) domain, leading to a closed conformation, whereas a non-phosphorylatable S561A mutation or inhibition of Par1 kinase activity decreases SH3-GK interaction, causing PSD-95 to adopt an open conformation. In addition, S561A mutation facilitates the interaction between PSD-95 and its binding partners. Fluorescence recovery after photobleaching imaging reveals that the S561A mutant shows increased stability, whereas the phosphomimetic S561D mutation increases PSD-95 dynamics at the synapse. Moreover, molecular replacement of endogenous PSD-95 with the S561A mutant blocks dendritic spine structural plasticity during chemical long-term potentiation and long-term depression. Endogenous Ser-561 phosphorylation is induced by synaptic NMDA receptor activation, and the SH3-GK domains exhibit a Ser-561 phosphorylation-dependent switch to a closed conformation during synaptic plasticity. Our results provide novel mechanistic insight into the regulation of PSD-95 in dendritic spine structural plasticity through phosphorylation-mediated regulation of protein dynamics and conformation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
White, Clayton M.; Sonsthagen, Sarah A.; Sage, George K.; Anderson, Clifford; Talbot, Sandra L.
2013-01-01
The ability to successfully colonize and persist in diverse environments likely requires broad morphological and behavioral plasticity and adaptability, and this may partly explain why the Peregrine Falcon (Falco peregrinus) exhibits a large range of morphological characteristics across their global distribution. Regional and local differences within Peregrine Falcons were sufficiently variable that ∼75 subspecies have been described; many were subsumed, and currently 19 are generally recognized. We used sequence information from the control region of the mitochondrial genome to test for concordance between genetic structure and representatives of 12 current subspecies and from two areas where subspecies distributions overlap. Haplotypes were broadly shared among subspecies, and all geographic locales shared a widely distributed common haplotype (FalconCR2). Haplotypes were distributed in a star-like phylogeny, consistent with rapid expansion of a recently derived species, with observed genetic patterns congruent with incomplete lineage sorting and/or differential rates of evolution on morphology and neutral genetic characters. Hierarchical analyses of molecular variance did not uncover genetic partitioning at the continental level, despite strong population-level structure (FST = 0.228). Similar analyses found weak partitioning, albeit significant, among subspecies (FCT = 0.138). All reconstructions placed the hierofalcons' (Gyrfalcon [F. rusticolus] and Saker Falcon [F. cherrug]) haplotypes in a well-supported clade either basal or unresolved with respect to the Peregrine Falcon. In addition, haplotypes representing Taita Falcon (F. fasciinucha) were placed within the Peregrine Falcon clade.
New Insight Into The Crustal Structure of The Continental Margin Off NW Sabah/borneo
NASA Astrophysics Data System (ADS)
Barckhausen, U.; Franke, D.; Behain, D.; Meyer, H.
The continental margin offshore NW Sabah/Borneo (Malaysia) has been investigated with reflection and refraction seismics, magnetics, and gravity during the recent cruise BGR01-POPSCOMS. A total of 4000 km of geophysical profiles has been acquired, thereof 2900 km with reflection seismics. Like in major parts of the South China Sea, the area seaward of the Sabah Trough consists of extended continental lithosphere. We found evidence that the continental crust also underlies the continental slope land- ward of the Trough, a fact that raises many questions about the tectonic history and development of this margin. The characteristic pattern of rotated fault blocks and half grabens and the carbon- ates which are observed all over the Dangerous Grounds can be traced a long way landward of the Sabah Trough beneath the sedimentary succession of the upper plate. The magnetic anomalies which are dominated by the magnetic signatures of relatively young volcanic features also continue under the continental slope. The sedimentary rocks of the upper plate, in contrast, seem to generate hardly any magnetic anoma- lies. We suspect that the volcanic activity coincided with the collision of Borneo and the Dangerous Grounds in middle or late Miocene time. The emplacement of an al- lochtonous terrane on top of the extended continental lithosphere could be explained by overthrusting as a result of the collision or it could be related to gravity sliding following a broad uplift of NW Borneo at the same time.
Continental transform margins : state of art and future milestones
NASA Astrophysics Data System (ADS)
Basile, Christophe
2010-05-01
Transform faults were defined 45 years ago as ‘a new class of fault' (Wilson, 1965), and transform margins were consequently individualized as a new class of continental margins. While transform margins represent 20 to 25 % of the total length of continent-ocean transitions, they were poorly studied, especially when compared with the amount of data, interpretations, models and conceptual progress accumulated on divergent or convergent continental margins. The best studied examples of transform margins are located in the northern part of Norway, south of South Africa, in the gulf of California and on both sides of the Equatorial Atlantic. Here is located the Côte d'Ivoire - Ghana margin, where the more complete data set was acquired, based on numerous geological and geophysical cruises, including ODP Leg 159. The first models that encompassed the structure and evolution of transform margins were mainly driven by plate kinematic reconstructions, and evidenced the diachronic end of tectonic activity and the non-cylindrical character of these margins, with a decreasing strike-slip deformation from the convex to the concave divergent-transform intersections. Further thermo-mechanical models were more specifically designed to explain the vertical displacements along transform margins, and especially the occurrence of high-standing marginal ridges. These thermo-mechanical models involved either heat transfer from oceanic to continental lithospheres across the transform faults or tectonically- or gravity-driven mass transfer in the upper crust. These models were far from fully fit observations, and were frequently dedicated to specific example, and not easily generalizable. Future work on transform continental margins may be expected to fill some scientific gaps, and the definition of working directions can benefit from the studies dedicated to other types of margins. At regional scale the structural and sedimentological variability of transform continental margins has to be emphasized. There is not only one type of transform margins, but as for divergent margins huge changes from one margin to another in both structure and evolution. Multiple types have to be evidenced together with the various parameters that should control the variability. As for divergent margins, special attention should be paid to conjugated transform margins as a tool to assess symmetrical / asymmetrical processes in the oceanic opening. Attention should also be focused on the three-dimensional structure of the intersections between transform and divergent margins, such as the one where the giant oil field Jubilee was recently discovered. There is almost no 3D data available in these area, and their structures still have to be described. An other key point to develop is the mechanical behavior of the lithosphere in and in the vicinity of transform margins. The classical behaviors (isostasy, elastic flexure) have be tested extensively. The localization of the deformation by the transform fault, and the coupling of continental and oceanic lithosphere across the transform fault have to be adressed to understand the evolution of these margins. Again as for divergent margins, new concepts are needed to explain the variations in the post-rift and post-transform subsidence, that can not always be explained by classical subsidence models. But the most remarkable advance in our understanding of transform margins may be related to the study of interactions between the lithosphere and adjacent envelops : deep interactions with the mantle, as underplating, tectonic erosion, or possible lateral crustal flow ; surficial interactions between structural evolution, erosion and sedimentation processes in transform margins may affect the topography and bathymetry, thus the oceanic circulation with possible effects on regional and global climate.
NASA Astrophysics Data System (ADS)
Budiman, A. S.; Nix, W. D.; Tamura, N.; Valek, B. C.; Gadre, K.; Maiz, J.; Spolenak, R.; Patel, J. R.
2006-06-01
Plastic deformation was observed in damascene Cu interconnect test structures during an in situ electromigration experiment and before the onset of visible microstructural damage (voiding, hillock formation). We show here, using a synchrotron technique of white beam x-ray microdiffraction, that the extent of this electromigration-induced plasticity is dependent on the linewidth. In wide lines, plastic deformation manifests itself as grain bending and the formation of subgrain structures, while only grain rotation is observed in the narrower lines. The deformation geometry leads us to conclude that dislocations introduced by plastic flow lie predominantly in the direction of electron flow and may provide additional easy paths for the transport of point defects. Since these findings occur long before any observable voids or hillocks are formed, they may have direct bearing on the final failure stages of electromigration.
Dislocation dynamics simulations of plasticity at small scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Caizhi
2010-01-01
As metallic structures and devices are being created on a dimension comparable to the length scales of the underlying dislocation microstructures, the mechanical properties of them change drastically. Since such small structures are increasingly common in modern technologies, there is an emergent need to understand the critical roles of elasticity, plasticity, and fracture in small structures. Dislocation dynamics (DD) simulations, in which the dislocations are the simulated entities, offer a way to extend length scales beyond those of atomistic simulations and the results from DD simulations can be directly compared with the micromechanical tests. The primary objective of this researchmore » is to use 3-D DD simulations to study the plastic deformation of nano- and micro-scale materials and understand the correlation between dislocation motion, interactions and the mechanical response. Specifically, to identify what critical events (i.e., dislocation multiplication, cross-slip, storage, nucleation, junction and dipole formation, pinning etc.) determine the deformation response and how these change from bulk behavior as the system decreases in size and correlate and improve our current knowledge of bulk plasticity with the knowledge gained from the direct observations of small-scale plasticity. Our simulation results on single crystal micropillars and polycrystalline thin films can march the experiment results well and capture the essential features in small-scale plasticity. Furthermore, several simple and accurate models have been developed following our simulation results and can reasonably predict the plastic behavior of small scale materials.« less
Weight and structural analysis of four structural concepts for a land mobile satellite system
NASA Technical Reports Server (NTRS)
Ferebee, M. J.; Wright, R. L.; Farmer, J. T.
1982-01-01
The present study is concerned with a Land Mobile Satellite System (LMSS) which can provide mobile communications for commercial and government applications in nonmetropolitan areas of the continental U.S. and Canada as an augmentation to existing and planned terrestrial systems. The satellite system would provide 'narrow band' telecommunications services, thin-route fixed telephone and data services in the 806-890 MHz band, and continuous emergency beacon monitoring in the 406-406.1 MHz band. It is pointed out that a satellite system operating in concert with terrestrial cellular systems could provide truly ubiquitous mobile communications services in the U.S. and Canada. A single shuttle shuttle launch could place the LMSS spacecraft in geosynchronous orbit over the continental U.S. in 1995 with a 10-year lifetime. Attention is given to the structural concepts, a weight analysis, and a structural analysis.
Research on Submarine Pipeline Steel with High Performance
NASA Astrophysics Data System (ADS)
Ren, Yi; Liu, Wenyue; Zhang, Shuai; Wang, Shuang; Gao, Hong
Submarine pipeline steel has largely uniform elongation, low yield ratio and good balance between high strength and high plasticity because of the microstructure with dual phase. In this work, the microstructure and properties of the submarine pipeline steel are studied. The results show that the matrix structure is consisted of ferrite, bainite and martensite -austenite islands. The structure has a tight relationship with the thermal-mechanical controlled process. Fine dual phase shows good plasticity and low yield ratio, which can support the good balance between high strength and high plasticity.
Intravital imaging of dendritic spine plasticity
Sau Wan Lai, Cora
2014-01-01
Abstract Dendritic spines are the postsynaptic part of most excitatory synapses in the mammalian brain. Recent works have suggested that the structural and functional plasticity of dendritic spines have been associated with information coding and memories. Advances in imaging and labeling techniques enable the study of dendritic spine dynamics in vivo. This perspective focuses on intravital imaging studies of dendritic spine plasticity in the neocortex. I will introduce imaging tools for studying spine dynamics and will further review current findings on spine structure and function under various physiological and pathological conditions. PMID:28243511
Association of NOD2 and IL23R with Inflammatory Bowel Disease in Puerto Rico
Ballester, Veroushka; Guo, Xiuqing; Vendrell, Roberto; Haritunians, Talin; Klomhaus, Alexandra M.; Li, Dalin; McGovern, Dermot P. B.; Rotter, Jerome I.; Torres, Esther A.; Taylor, Kent D.
2014-01-01
The Puerto Rico population may be modeled as an admixed population with contributions from three continents: Sub-Saharan Africa, Ancient America, and Europe. Extending the study of the genetics of inflammatory bowel disease (IBD) to an admixed population such as Puerto Rico has the potential to shed light on IBD genes identified in studies of European populations, find new genes contributing to IBD susceptibility, and provide basic information on IBD for the care of US patients of Puerto Rican and Latino descent. In order to study the association between immune-related genes and Crohn’s disease (CD) and ulcerative colitis (UC) in Puerto Rico, we genotyped 1159 Puerto Rican cases, controls, and family members with the ImmunoChip. We also genotyped 832 subjects from the Human Genome Diversity Panel to provide data for estimation of global and local continental ancestry. Association of SNPs was tested by logistic regression corrected for global continental descent and family structure. We observed the association between Crohn’s disease and NOD2 (rs17313265, 0.28 in CD, 0.19 in controls, OR 1.5, p = 9×10−6) and IL23R (rs11209026, 0.026 in CD, 0.0.071 in controls, OR 0.4, p = 3.8×10−4). The haplotype structure of both regions resembled that reported for European populations and “local” continental ancestry of the IL23R gene was almost entirely of European descent. We also observed suggestive evidence for the association of the BAZ1A promoter SNP with CD (rs1200332, 0.45 in CD, 0.35 in controls, OR 1.5, p = 2×10−6). Our estimate of continental ancestry surrounding this SNP suggested an origin in Ancient America for this putative susceptibility region. Our observations underscored the great difference between global continental ancestry and local continental ancestry at the level of the individual gene, particularly for immune-related loci. PMID:25259511
Cochran, James R; Tinto, Kirsty J; Bell, Robin E
2015-05-01
Inversion of NASA Operation IceBridge airborne gravity over the Abbot Ice Shelf in West Antarctica for subice bathymetry defines an extensional terrain made up of east-west trending rift basins formed during the early stages of Antarctica/Zealandia rifting. Extension is minor, as rifting jumped north of Thurston Island early in the rifting process. The Amundsen Sea Embayment continental shelf west of the rifted terrain is underlain by a deeper, more extensive sedimentary basin also formed during rifting between Antarctica and Zealandia. A well-defined boundary zone separates the mildly extended Abbot extensional terrain from the deeper Amundsen Embayment shelf basin. The shelf basin has an extension factor, β , of 1.5-1.7 with 80-100 km of extension occurring across an area now 250 km wide. Following this extension, rifting centered north of the present shelf edge and proceeded to continental rupture. Since then, the Amundsen Embayment continental shelf appears to have been tectonically quiescent and shaped by subsidence, sedimentation, and the advance and retreat of the West Antarctic Ice Sheet. The Bellingshausen Plate was located seaward of the Amundsen Sea margin prior to incorporation into the Antarctic Plate at about 62 Ma. During the latter part of its independent existence, Bellingshausen plate motion had a clockwise rotational component relative to Antarctica producing convergence across the north-south trending Bellingshausen Gravity Anomaly structure at 94°W and compressive deformation on the continental slope between 94°W and 102°W. Farther west, the relative motion was extensional along an east-west trending zone occupied by the Marie Byrd Seamounts. Abbot Ice Shelf is underlain by E-W rift basins created at ∼90 Ma Amundsen shelf shaped by subsidence, sedimentation, and passage of the ice sheet Bellingshausen plate boundary is located near the base of continental slope and rise.
NASA Astrophysics Data System (ADS)
Planert, Lars; Behrmann, Jan; Jokat, Wilfried; Fromm, Tanja; Ryberg, Trond; Weber, Michael; Haberland, Christian
2017-10-01
Voluminous magmatism during the South Atlantic opening has been considered as a classical example for plume related continental breakup. We present a study of the crustal structure around Walvis Ridge, near the intersection with the African margin. Two wide-angle seismic profiles were acquired. One is oriented NNW-SSE, following the continent-ocean transition and crossing Walvis Ridge. A second amphibious profile runs NW-SE from the Angola Basin into continental Namibia. At the continent-ocean boundary (COB) the mafic crust beneath Walvis Ridge is up to 33 km thick, with a pronounced high-velocity lower crustal body. Towards the south there is a smooth transition to 20-25 km thick crust underlying the COB in the Walvis Basin, with a similar velocity structure, indicating a gabbroic lower crust with associated cumulates at the base. The northern boundary of Walvis Ridge towards the Angola Basin shows a sudden change to oceanic crust only 4-6 km thick, coincident with the projection of the Florianopolis Fracture Zone, one of the most prominent tectonic features of the South Atlantic ocean basin. In the amphibious profile the COB is defined by a sharp transition from oceanic to rifted continental crust, with a magmatic overprint landward of the intersection of Walvis Ridge with the Namibian margin. The continental crust beneath the Congo Craton is 40 km thick, shoaling to 35 km further SE. The velocity models show that massive high-velocity gabbroic intrusives are restricted to a narrow zone directly underneath Walvis Ridge and the COB in the south. This distribution of rift-related magmatism is not easily reconciled with models of continental breakup following the establishment of a large, axially symmetric plume in the Earth's mantle. Rift-related lithospheric stretching and associated transform faulting play an overriding role in locating magmatism, dividing the margin in a magma-dominated southern and an essentially amagmatic northern segment.
Cochran, James R; Tinto, Kirsty J; Bell, Robin E
2015-01-01
Inversion of NASA Operation IceBridge airborne gravity over the Abbot Ice Shelf in West Antarctica for subice bathymetry defines an extensional terrain made up of east-west trending rift basins formed during the early stages of Antarctica/Zealandia rifting. Extension is minor, as rifting jumped north of Thurston Island early in the rifting process. The Amundsen Sea Embayment continental shelf west of the rifted terrain is underlain by a deeper, more extensive sedimentary basin also formed during rifting between Antarctica and Zealandia. A well-defined boundary zone separates the mildly extended Abbot extensional terrain from the deeper Amundsen Embayment shelf basin. The shelf basin has an extension factor, β, of 1.5–1.7 with 80–100 km of extension occurring across an area now 250 km wide. Following this extension, rifting centered north of the present shelf edge and proceeded to continental rupture. Since then, the Amundsen Embayment continental shelf appears to have been tectonically quiescent and shaped by subsidence, sedimentation, and the advance and retreat of the West Antarctic Ice Sheet. The Bellingshausen Plate was located seaward of the Amundsen Sea margin prior to incorporation into the Antarctic Plate at about 62 Ma. During the latter part of its independent existence, Bellingshausen plate motion had a clockwise rotational component relative to Antarctica producing convergence across the north-south trending Bellingshausen Gravity Anomaly structure at 94°W and compressive deformation on the continental slope between 94°W and 102°W. Farther west, the relative motion was extensional along an east-west trending zone occupied by the Marie Byrd Seamounts. Key Points: Abbot Ice Shelf is underlain by E-W rift basins created at ∼90 Ma Amundsen shelf shaped by subsidence, sedimentation, and passage of the ice sheet Bellingshausen plate boundary is located near the base of continental slope and rise PMID:26709352
NASA Astrophysics Data System (ADS)
Serebryany, V. N.; D'yakonov, G. S.; Kopylov, V. I.; Salishchev, G. A.; Dobatkin, S. V.
2013-05-01
Equal channel angular pressing (ECAP) in magnesium alloys due to severe plastic shear deformations provides both grain refinement and the slope of the initial basal texture at 40°-50° to the pressing direction. These changes in microstructure and texture contribute to the improvement of low-temperature plasticity of the alloys. Quantitative texture X-ray diffraction analysis and diffraction of backscattered electrons are used to study the main textural and structural factors responsible for enhanced low-temperature plasticity based on the example of magnesium alloy MA2-1hp of the Mg-Al-Zn-Mn system. The possible mechanisms of deformation that lead to this positive effect are discussed.
Visual Cortex Plasticity: A Complex Interplay of Genetic and Environmental Influences
Maya-Vetencourt, José Fernando; Origlia, Nicola
2012-01-01
The central nervous system architecture is highly dynamic and continuously modified by sensory experience through processes of neuronal plasticity. Plasticity is achieved by a complex interplay of environmental influences and physiological mechanisms that ultimately activate intracellular signal transduction pathways regulating gene expression. In addition to the remarkable variety of transcription factors and their combinatorial interaction at specific gene promoters, epigenetic mechanisms that regulate transcription have emerged as conserved processes by which the nervous system accomplishes the induction of plasticity. Experience-dependent changes of DNA methylation patterns and histone posttranslational modifications are, in fact, recruited as targets of plasticity-associated signal transduction mechanisms. Here, we shall concentrate on structural and functional consequences of early sensory deprivation in the visual system and discuss how intracellular signal transduction pathways associated with experience regulate changes of chromatin structure and gene expression patterns that underlie these plastic phenomena. Recent experimental evidence for mechanisms of cross-modal plasticity following congenital or acquired sensory deprivation both in human and animal models will be considered as well. We shall also review different experimental strategies that can be used to achieve the recovery of sensory functions after long-term deprivation in humans. PMID:22852098
NASA Astrophysics Data System (ADS)
Neri Gezatt, Julia; Stephenson, Randell; Macdonald, David
2015-04-01
The transect between the Brazilian cities of Rio de Janeiro and Barbacena (22°54'S, 43°12'W and 21°13'S, 43°46'W, respectively) runs through a segment of a complex range of N-NE/S-SW trending basement units of the Ribeira Belt and southern Sao Francisco Craton, intensely reworked during the Brasiliano-Pan-African orogenic cycle. The ortho- and paragneisses in the area have metamorphic ages between 650 and 540 Ma and are intruded by pre-, syn- and post-tectonic granitic bodies. The transect, perpendicular to the strike direction of the continental margin, crosses the Serra do Mar escarpment, where the sample density is higher in order to better constrain occasional significant age changes. For logistical reasons, the 40 samples collected were processed in two separate batches for apatite fission track (AFT) analysis. The first batch comprised 19 samples, from which 15 produced fission track ages. Analyses were carried out at University College London (UCL), following standard procedures. Preliminary results for the study show AFT ages between 85.9±6.3 and 54.1±4.2 Ma, generally with younger ages close to the coast and progressively older ages towards the continental interior. The highest area sampled, around the city of Teresopolis, ranges from 740 to 1216 m above sea level and shows ages between 85.9±6.3 and 71.3±5.3 Ma. There is no evident lithological or structural distribution control. Medium track length values range from 12.57 to 13.89 µm and distributions are unimodal. Thermal history modelling was done using software QTQt. Individual sample model cooling curves can be divided into two groups: a dominant one, showing a single, slower cooling trend, and a second one with a rapid initial cooling curve, which becomes less steep around 65 Ma. In both groups the maximum paleotemperatures are around 110 Ma. The thermal history model for the first batch of samples is compatible with a single cooling event for the area following continental rifting and formation of the Atlantic Ocean. The preliminary results add to the growing thermochronological data base for the southeastern Brazilian continental margin and to deciphering the complex evolution of the region, as well as to the knowledge about the development and evolution of divergent continental margins in general. In a regional setting, AFT ages from this study, though not broadly variant locally, are distinct from basement rock AFT ages for adjacent areas produced by other authors along the southeastern continental margin. Similar ages are found at the southern Bocaina Plateau, for example, where structural control of age distribution is evident. Such regional thermal age difference has been previously attributed to continental scale structural compartmentalization throughout the continental passive margin, related to Late Cretaceous and Cenozoic reactivation of the E-W fracture zones linked to rifting of the South Atlantic. The present AFT results are compatible with Late Cretaceous reactivation but show no relation with younger events.
ERIC Educational Resources Information Center
Giachero, Marcelo; Calfa, Gaston D.; Molina, Victor A.
2013-01-01
The present research investigated the resulting contextual fear memory and structural plasticity changes in the dorsal hippocampus (DH) following stress and fear conditioning. This combination enhanced fear retention and increased the number of total and mature dendritic spines in DH. Intra-basolateral amygdala (BLA) infusion of midazolam prior to…
A unified approach to the analysis and design of elasto-plastic structures with mechanical contact
NASA Technical Reports Server (NTRS)
Bendsoe, Martin P.; Olhoff, Niels; Taylor, John E.
1990-01-01
With structural design in mind, a new unified variational model has been developed which represents the mechanics of deformation elasto-plasticity with unilateral contact conditions. For a design problem formulated as maximization of the load carrying capacity of a structure under certain constraints, the unified model allows for a simultaneous analysis and design synthesis for a whole range of mechanical behavior.
Crustal structure and inferred extension mode in the northern margin of the South China Sea
NASA Astrophysics Data System (ADS)
Gao, J.; Wu, S.; McIntosh, K. D.; Mi, L.; Spence, G.
2016-12-01
Combining multi-channel seismic reflection and satellite gravity data, this study has investigated the crustal structure and magmatic activities of the northern South China Sea (SCS) margin. Results show that a broad continent-ocean transition zone (COT) with more than 140 km wide is characterized by extensive igneous intrusion/extrusion and hyper-extended continental crust in the northeastern SCS margin, a broader COT with 220-265 km wide is characterized by crustal thinning, rift depression, structural highs with igneous rock and perhaps a volcanic zone or a zone of tilted fault blocks at the distal edge in the mid-northern SCS margin, and a narrow COT with 65 km wide bounded seawards by a volcanic buried seamount is characterized by extremely hyper-extended continental crust in the northwestern SCS margin, where the remnant crust with less than 3 km thick is bounded by basin-bounding faults corresponding to an aborted rift below the Xisha Trough with a sub-parallel fossil ridge in the adjacent Northwest Sub-basin. Results from gravity modeling and seismic refraction data show that a high velocity layer (HVL) is present in the outer shelf and slope below extended continental crust in the eastern portion of the northern SCS margin and is thickest (up to 10 km) in the Dongsha Uplift where the HVL gradually thins to east and west below the lower slope and finally terminates at the Manila Trench and Baiyun sag of the Pearl River Mouth Basin. The magmatic intrusions/extrusions and HVL may be related to partial melting caused by decompression of passive, upwelling asthenosphere which resulted primarily in post-rifting underplating and magmatic emplacement or modification of the crust. The northern SCS margin is closer to those of the magma-poor margins than those of volcanic margins, but the aborted rift near the northwestern continental margin shows that there may be no obvious detachment fault like that in the Iberia-Newfoundland type margin. The symmetric aborted rift, broad hyper-extended continental crust, locally distributed HVL, and hotter mantle materials indicate that continental crust underwent stretching phase (pure-shear deformation), thinning phase and breakup followed by onset of seafloor spreading and the mantle-lithosphere may break up before crustal-necking in the northern South China Sea margin.
Multi-scale characterization of an upcurrent turbiditic pinch-out
NASA Astrophysics Data System (ADS)
Daghdevirenian, L. J. P.; Migeon, S.; Rubino, J. L., Sr.; Raisson, F.
2017-12-01
Continental margins with a steep topographic profile between their continental shelf and the basin exhibit a sudden slope break at the base of their continental slope. This slope break favors strong erosion or a by-pass and a fast accumulation of sediments on the base of the continental slope due to the hydraulic jump phenomena. Such a process is responsible for the construction of thick accumulations of limited extension and generally disconnected from the feeding tributaries. These accumulations usually onlap against the continental slope but their modality of pinch out is still questioned and it is the subject of this work. The Tabernas basin is located in South East of Spain, in the continuity of the Sorbas basin. Recent field works allowed identifying a "sedimentary" onlap associated with a small-scale sandy turbidite system that we discovered near the so-called El Buho area. The superb quality of the outcrops revealed, the presence of three successive onlap structures consisting in each case of a direct contact between fluvial conglomerates / marines conglomerates / marine marls / turbidite sands. Reconstruction of paleo-current direction gives a flow direction around N00, from north to south, suggesting the outcrops are cutting the pinch out of the sandy system in a longitudinal direction. A longitudinal and vertical transition of facies can be thus observed from marines' conglomerates to turbidite sands, respectively over distances of 500 m and 70 m. The complete evolution of facies along the pinch out consists of thick conglomerates in the proximal part to sandy turbidite channels then lobes in the distal part. The three successive onlap structures are located inside the channelize part of the system, just above a slope break structure. The basal units of the pinch out consist of an alternation of conglomerates and sandy bed, while the overlying units exhibits more sandy dominated beds. In order to reconstruct the architecture of the pinch out and to understand its process of formation, a complete photogrammetry acquisition was performed at the scale of the whole area This new dataset together with sedimentological logs and outcrop analysis allowed to model the multiple scale pinch out of a turbidite system against its adjacent continental slope, from the beds and the outcrops to regional scale given by the photogrammetry
Task Analysis - Aircraft Structural Maintenance AFSC 458X2
1989-08-01
GAGES OR METERS 13 10 23 SELECT WEIGHT MEASURING SCALES 15 6 21 RECALL TYPES, PROPERTIES, AND CHARACTERISTICS 8 11 19 OF PLASTICS SELECT COMMON...SURFACES (K0494) 121 00480 SHOT PEEN METAL SURFACES (K0498) 123 00490 BALANCE AIRCRAFT CONTROL SURFACES 125 00500 CLEAN PLASTICS (0275) 127 00510...STORE TRANSPARENT PLASTICS IN PROPER ENVIRONMENT (J0299) 128 00520 POLISH OUT SURFACE SCRATCHES 129 00530 CUT PLASTICS 131 00540 RESEARCH AIRCRAFT
Change in University Governance Structures in Continental Europe
ERIC Educational Resources Information Center
Gornitzka, Åse; Maassen, Peter; de Boer, Harry
2017-01-01
This article discusses changes with respect to university governance structures in six comprehensive universities in Europe. We present an analytical framework on the basis of which we conduct a comparative analysis of the university governance structures along four different dimensions: (a) the internal democratic nature of the governance…
Ali, Murtaza N; Rehman, Ihtesham Ur
2011-11-01
Oesophageal cancer is the ninth leading cause of malignant cancer death and its prognosis remains poor. Dysphagia which is an inability to swallow is a presenting symptom of oesophageal cancer and is indicative of incurability. The goal of this study was to design and manufacture an Auxetic structure film and to configure this film as an Auxetic stent for the palliative treatment of oesophageal cancer, and for the prevention of dysphagia. Polypropylene was used as a material for its flexibility and non-toxicity. The Auxetic (rotating-square geometry) structure was made by laser cutting the polypropylene film. This flat structure was welded together to form a tubular form (stent), by an adjustable temperature control soldering iron station: following this, an annealing process was also carried out to ease any material stresses. Poisson's ratio was estimated and elastic and plastic deformation of the Auxetic structure was evaluated. The elastic and plastic deformation behaviours of the Auxetic polypropylene film were evaluated by applying repetitive uniaxial tensile loads. Observation of the structure showed that it was initially elastically deformed, thereafter plastic deformation occurred. This research discusses a novel way of fabricating an Auxetic structure (rotating-squares connected together through hinges) on Polypropylene films, by estimating the Poisson's ratio and evaluating the plastic deformation relevant to the expansion behaviour of an Auxetic stent within the oesophageal lumen.
Identifying mantle lithosphere inheritance in controlling intraplate orogenesis
NASA Astrophysics Data System (ADS)
Heron, Philip J.; Pysklywec, Russell N.; Stephenson, Randell
2016-09-01
Crustal inheritance is often considered important in the tectonic evolution of the Wilson Cycle. However, the role of the mantle lithosphere is usually overlooked due to its difficulty to image and uncertainty in rheological makeup. Recently, increased resolution in lithosphere imaging has shown potential scarring in continental mantle lithosphere to be ubiquitous. In our study, we analyze intraplate deformation driven by mantle lithosphere heterogeneities from ancient Wilson Cycle processes and compare this to crustal inheritance deformation. We present 2-D numerical experiments of continental convergence to generate intraplate deformation, exploring the limits of continental rheology to understand the dominant lithosphere layer across a broad range of geological settings. By implementing a "jelly sandwich" rheology, common in stable continental lithosphere, we find that during compression the strength of the mantle lithosphere is integral in generating deformation from a structural anomaly. We posit that if the continental mantle is the strongest layer within the lithosphere, then such inheritance may have important implications for the Wilson Cycle. Furthermore, our models show that deformation driven by mantle lithosphere scarring can produce tectonic patterns related to intraplate orogenesis originating from crustal sources, highlighting the need for a more formal discussion of the role of the mantle lithosphere in plate tectonics.
NASA Technical Reports Server (NTRS)
Davis, G. H.
1985-01-01
Metamorphic core complexes and detachment fault terranes in the American Southwest are products of stretching of continental crust in the Tertiary. The physical and geometric properties of the structures, fault rocks, and contact relationships that developed as a consequence of the extension are especially well displayed in southeastern Arizona. The structures and fault rocks, as a system, reflect a ductile-through-brittle continuum of deformation, with individual structures and faults rocks showing remarkably coordinated strain and displacement patterns. Careful mapping and analysis of the structural system has led to the realization that strain and displacement were partitioned across a host of structures, through a spectrum of scales, in rocks of progressively changing rheology. By integrating observations made in different parts of the extensional system, especially at different inferred depth levels, it has been possible to construct a descriptive/kinematic model of the progressive deformation that achieved continental crustal extension in general, and the development of metamorphic core complexes in particular.
Impact of the Extreme Warming of 2012 on Shelfbreak Frontal Structure North of Cape Hatteras
NASA Astrophysics Data System (ADS)
Gawarkiewickz, G.
2014-12-01
Continental shelf circulation north of Cape Hatteras is complex, with southward flowing Middle Atlantic Bight shelf water intersecting the Gulf Stream and subducting offshore into the Gulf Stream. In May, 2012, a cruise was conducted in order to study the shelf circulation and acoustic propagation through fish schools in the area. An important aspect of the study was to use Autonomous Underwater Vehicles to map fish schools with a sidescan sonar. High-resolution hydrographic surveys to map the continental shelf water masses and shelfbreak frontal structure were sampled to relate oceanographic conditions to the fish school distributions. The cold pool water mass over the continental shelf in May 2012 was extremely warm, with temperature anomalies of up to 5 Degrees C relative to observations from the same area in May, 1996. The normal cross-shelf temperature gradients within the shelfbreak front were not present because of the warming. As a result, the shelf density field was much more buoyant than usual, which led to an accelerated shelfbreak jet. Moored velocity measurements at the 60 m isobath recorded alongshelf flow of as much as 0.6 m/s. The anticipated fish species were not observed over the continental shelf. Some comments on the forcing leading to the large scale warming will be presented, along with a brief discussion of the impact of the warming on the marine ecosystem in the northeast U.S.
Taurino, Rosa; Pozzi, Paolo; Zanasi, Tania
2010-12-01
In view of the environmental problem involved in the management of WEEE, and then in the recycling of post-consumer plastic of WEEE there is a pressing need for rapid measurement technologies for simple identification of the various commercial plastic materials and of the several contaminants, to improve the recycling of such wastes. This research is focused on the characterization and recycling of two types of plastics, namely plastic from personal computer (grey plastic) and plastic from television (black plastic). Various analytical techniques were used to monitor the compositions of WEEE. Initially, the chemical structure of each plastic material was identified by Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). Polymeric contaminants of these plastics, in particular brominated flame retardants (BFRs) were detected in grey plastics only using different techniques. These techniques are useful for a rapid, correct and economics identification of a large volumes of WEEE plastics. Copyright © 2010 Elsevier Ltd. All rights reserved.
Are the Most Plastic Species the Most Abundant Ones? An Assessment Using a Fish Assemblage
Vidal, Nicolás; Zaldúa, Natalia; D'Anatro, Alejandro; Naya, Daniel E.
2014-01-01
Few studies have evaluated phenotypic plasticity at the community level, considering, for example, plastic responses in an entire species assemblage. In addition, none of these studies have addressed the relationship between phenotypic plasticity and community structure. Within this context, here we assessed the magnitude of seasonal changes in digestive traits (seasonal flexibility), and of changes during short-term fasting (flexibility during fasting), occurring in an entire fish assemblage, comprising ten species, four trophic levels, and a 37-fold range in body mass. In addition, we analyzed the relationship between estimates of digestive flexibility and three basic assemblage structure attributes, i.e., species trophic position, body size, and relative abundance. We found that: (1) Seasonal digestive flexibility was not related with species trophic position or with body size; (2) Digestive flexibility during fasting tended to be inversely correlated with body size, as expected from scaling relationships; (3) Digestive flexibility, both seasonal and during fasting, was positively correlated with species relative abundance. In conclusion, the present study identified two trends in digestive flexibility in relation to assemblage structure, which represents an encouraging departure point in the search of general patterns in phenotypic plasticity at the local community scale. PMID:24651865
NASA Astrophysics Data System (ADS)
Guillou-Frottier, L.; Burov, E.; Cloetingh, S.
2007-12-01
Plume-Lithosphere Interactions (PLI) in continets have complex topographic and magmatic signatures and are often identified near boundaries between younger plates (e.g., orogenic) and older stable plates (e.g., cratons), which represent important geometrical, thermal and rheological barriers that interact with the emplacement of the plume head (e.g., Archean West Africa, East Africa, Pannonian - Carpathian system). The observable PLI signatures are conditioned by plume dynamics but also by complex rheology and structure of continental lithosphere. We address this problem by considering a new free-surface thermo-mechanical numerical model of PLI with two stratified elasto-viscous-plastic (EVP) continental plates of contrasting age, thickness and structure. The results show that: (1) surface deformation is poly-harmonic and contains smaller wavelengths (50-500 km) than that associated with the plume head (>1000 km). (2) below intra-plate boundaries, plume head flattening is asymmetric, it is blocked from one side by the cold vertical boundary of the older plate, which leads to mechanical decoupling of crust from mantle lithosphere, and to localized faulting at the cratonic margin; (2) the return flow from the plume head results in sub-vertical down-thrusting (delamination) of the lithosphere at the margin, producing sharp vertical cold boundary down to the 400 km depth; (3) plume head flattening and migration towards the younger plate results in concurrent surface extension above the centre of the plume and in compression (pushing), down-thrusting and magmatic events at the cratonic margin (down-thrusting is also produced at the opposite border of the younger plate); these processes may result in continental growth at the "craton side"; (4) topographic signatures of PLI show basin-scale uplifts and subsidences preferentially located at cratonic margins. Negative Rayleigh-Taylor instabilities in the lithosphere above the plume head provide a mechanism for crustal delamination. In case of several cratonic blocks, the combined effect of subsidence and lithospheric thinning at cratons edges, while plume head material is being stocked in between the cratons, favours major magmatic events at cratonic margins. Numerous field evidence (West Africa, Western Australia) underline the trapping effect of cratonic margins for formation of (e.g.) orogenic gold deposits, which require particular extreme P-T conditions. Location of gemstones deposits is also associated with cratonic margins, as demonstrated by the Tanzanian Ruby belt. Their formation depend on particularly fast isothermal deepening processes, which can be reproduced by slab-like instabilities induced by plume head-cratonic margin interaction. On the other hand, absence of magmatic events should not be interpreted as evidence for the absence of plume: at surface, these events may not necessary have unambiguous deep geochemical signatures, as the hot source plume material stalls below Moho and forms a long-lasting (10 to 100 Myr) sub-Moho reservoir. This should induce strong crustal melting that may overprint deeper signatures since crustal melts are generated at much lower temperatures than mantle, and produce light low-viscous rapidly ascending magmas. Drip-like down- sagging of the lithospheric mantle and metamorphic lower crustal material inside the plume head may contaminate the latter and also alter the geochemical signature of related magmas.
NASA Astrophysics Data System (ADS)
Gross, Felix; Krastel, Sebastian; Geersen, Jacob; Behrmann, Jan Hinrich; Ridente, Domenico; Chiocci, Francesco Latino; Bialas, Jörg; Papenberg, Cord; Cukur, Deniz; Urlaub, Morelia; Micallef, Aaron
2016-01-01
Mount Etna is the largest active volcano in Europe. Instability of its eastern flank is well documented onshore, and continuously monitored by geodetic and InSAR measurements. Little is known, however, about the offshore extension of the eastern volcano flank, defining a serious shortcoming in stability models. In order to better constrain the active tectonics of the continental margin offshore the eastern flank of the volcano, we acquired a new high-resolution 2D reflection seismic dataset. The data provide new insights into the heterogeneous geology and tectonics at the continental margin offshore Mt Etna. The submarine realm is characterized by different blocks, which are controlled by local- and regional tectonics. A compressional regime is found at the toe of the continental margin, which is bound to a complex basin system. Both, the clear link between on- and offshore tectonic structures as well as the compressional regime at the easternmost flank edge, indicate a continental margin gravitational collapse as well as spreading to be present at Mt Etna. Moreover, we find evidence for the offshore southern boundary of the moving flank, which is identified as a right lateral oblique fault north of Catania Canyon. Our findings suggest a coupled volcano edifice/continental margin instability at Mt Etna, demonstrating first order linkage between on- and offshore tectonic processes.
Earthquakes, geodesy, and the structure of mountain belts
NASA Astrophysics Data System (ADS)
Allen, Mark; Walters, Richard; Nissen, Ed
2015-04-01
Most terrestrial mountain belts are the topographic expression of thrust faulting and folding, which are how the continents deform in compression. Fold-and-thrust belts are therefore a global phenomenon, in existence since at least the onset of plate tectonics. They are typically described as wedge-shaped zones of deformation, overlying a basal low-angle thrust fault (≤10o dip). Here we use earthquake focal mechanisms and geodetic data from active continental fold-and-thrust belts worldwide, to test these concepts. We find that widespread, seismogenic, low-angle thrusting at the base of a wedge occurs only in the Himalayas, New Guinea, Talesh and far-eastern Zagros, which are plausibly underthrust by strong plates. In other ranges there is no focal mechanism evidence for a basal low-angle thrust, and well-constrained hypocentre depths are typically <20 km. Available geodetic data show that active deformation is focussed on a single, low-angle thrust in the Himalayas and New Guinea, but distributed in other ranges for which there are sufficient observations. We suggest that the more common style of deformation approximates to pure shear, with a brittle lid overlying the rest of the plate, where ductile or plastic deformation predominates. Interpretations of both active and ancient mountain belts will need re-evaluation in the light of these results.
NASA Astrophysics Data System (ADS)
Hara, Hidetoshi; Kurihara, Toshiyuki; Mori, Hiroshi
2013-04-01
We characterize the tectono-stratigraphic architecture and low-grade metamorphism of the accretionary complex preserved in the Kurosegawa belt of the Kitagawa district in eastern Shikoku, Southwest Japan, in order to understand its internal structure, tectono-metamorphic evolution, and assessments of displacement of continental fragments within the complex. We report the first ever documented occurrence of an Early Jurassic radiolarian assemblage within the accretionary complex of the Kurosegawa belt that has been previously classified as the Late Permian accretionary complex, thus providing a revised age interpretation for these rocks. The accretionary complex is subdivided into four distinct tectono-stratigraphic units: Late Permian mélange and phyllite units, and Early Jurassic mélange and sandstone units. The stratigraphy of these four units is structurally repeated due to an E-W striking, steeply dipping regional fault. We characterized low-grade metamorphism of the accretionary complex via illite crystallinity and Raman spectroscopy of carbonaceous material. The estimated pattern of low-grade metamorphism showed pronounced variability within the complex and revealed no discernible spatial trends. The primary thermal structure in these rocks was overprinted by later tectonic events. Based on geological and thermal structure, we conclude that continental fragments within the Kurosegawa belt were structurally translated into both the Late Permian and Early Jurassic accretionary complexes, which comprise a highly deformed zone affected by strike-slip tectonics during the Early Cretaceous. Different models have been proposed to explain the initial structural evolution of the Kurosegawa belt (i.e., micro-continent collision and klippe tectonic models). Even if we presuppose either model, the available geological evidence requires a new interpretation, whereby primary geological structures are overprinted and reconfigured by later tectonic events.
Ferreira, Francisco R M; Nogueira, Maria I; Defelipe, Javier
2014-01-01
In this article we discuss the influence of William James and Charles Darwin on the thoughts of Santiago Ramón y Cajal concerning the structure, plasticity, and evolution of the nervous system at the cellular level. Here we develop Cajal's notion that neuronal theory is a necessary condition to explain the plasticity of neural connections. Although the roots of the term "plasticity" in reference to neuroscience are not completely clear, Cajal was an important figure in the propagation and popularization of its use. It is true that he carried out a large number of studies throughout his career in favor of the neuronal theory, but perhaps one of the most interesting aspects of his studies was his innovative capacity to interpret structure as being the result of evolutionary mechanisms, i.e., natural selection. This capacity would ultimately lead Cajal to the conclusion that, in relation to the histology of the nervous system, such selection occurs in the establishment of connections between cells. The present article is divided into five sections: (1) Learning and general notions of organic plasticity in the 19th century; (2) The idea of "mental" plasticity proposed by James; (3) Neuronal theory and "structural" plasticity: general considerations; (4) Evolutionary factors of the nervous system in Cajal's work; and (5) Final considerations.
NASA Astrophysics Data System (ADS)
Cochran, James R.; Tinto, Kirsty J.; Bell, Robin E.
2015-05-01
Inversion of NASA Operation IceBridge airborne gravity over the Abbot Ice Shelf in West Antarctica for subice bathymetry defines an extensional terrain made up of east-west trending rift basins formed during the early stages of Antarctica/Zealandia rifting. Extension is minor, as rifting jumped north of Thurston Island early in the rifting process. The Amundsen Sea Embayment continental shelf west of the rifted terrain is underlain by a deeper, more extensive sedimentary basin also formed during rifting between Antarctica and Zealandia. A well-defined boundary zone separates the mildly extended Abbot extensional terrain from the deeper Amundsen Embayment shelf basin. The shelf basin has an extension factor, β, of 1.5-1.7 with 80-100 km of extension occurring across an area now 250 km wide. Following this extension, rifting centered north of the present shelf edge and proceeded to continental rupture. Since then, the Amundsen Embayment continental shelf appears to have been tectonically quiescent and shaped by subsidence, sedimentation, and the advance and retreat of the West Antarctic Ice Sheet. The Bellingshausen Plate was located seaward of the Amundsen Sea margin prior to incorporation into the Antarctic Plate at about 62 Ma. During the latter part of its independent existence, Bellingshausen plate motion had a clockwise rotational component relative to Antarctica producing convergence across the north-south trending Bellingshausen Gravity Anomaly structure at 94°W and compressive deformation on the continental slope between 94°W and 102°W. Farther west, the relative motion was extensional along an east-west trending zone occupied by the Marie Byrd Seamounts. The copyright line for this article was changed on 5 JUN 2015 after original online publication.
NASA Astrophysics Data System (ADS)
Moratti, G.; Benvenuti, M.; Santo, A. P.; Laurenzi, M. A.; Braschi, E.; Tommasini, S.
2018-04-01
This study is based upon a stratigraphic and structural revision of a Middle Jurassic-Upper Cretaceous mostly continental succession exposed between Boumalne Dades and Tinghir (Southern Morocco), and aims at reconstructing the relation among sedimentary, tectonic and magmatic processes that affected a portion of the Central High Atlas domains. Basalts interbedded in the continental deposits have been sampled in the two studied sites for petrographic, geochemical and radiogenic isotope analyses. The results of this study provide: (1) a robust support to the local stratigraphic revision and to a regional lithostratigraphic correlation based on new 40Ar-39Ar ages (ca. 120 Ma) of the intervening basalts; (2) clues for reconstructing the relation between magma emplacement in a structural setting characterized by syn-depositional crustal shortening pre-dating the convergent tectonic inversion of the Atlasic rifted basins; (3) a new and intriguing scenario indicating that the Middle Jurassic-Lower Cretaceous basalts of the Central High Atlas could represent the first signal of the present-day Canary Islands mantle plume impinging, flattening, and delaminating the base of the Moroccan continental lithosphere since the Jurassic, and successively dragged passively by the Africa plate motion to NE. The tectono-sedimentary and magmatic events discussed in this paper are preliminarily extended from their local scale into a peculiar geodynamic setting of a continental plate margin flanked by the opening and spreading Central Atlantic and NW Tethys oceans. It is suggested that during the late Mesozoic this setting created an unprecedented condition of intraplate stress for concurrent crustal shortening, related mountain uplift, and thinning of continental lithosphere.
Predicting and testing continental vertical motion histories since the Paleozoic
NASA Astrophysics Data System (ADS)
Zhang, N.; Zhong, S.; Flowers, R. M.
2011-12-01
Dynamic topography at the Earth's surface caused by mantle convection can affect a range of geophysical and geological observations including bathymetry, sea-level change, continental flooding, sedimentation and erosion. These observations provide important constraints on and test of mantle dynamic models. Based on global mantle convection models coupled with the surface plate motion history, we compute dynamic topography and its history for the last 400 Ma associated with Pangea assembly and breakup, with particular focus on continental cratonic regions. We propose that burial-unroofing histories of continental cratons inferred from thermochronology data can be used as a new diagnostic to test dynamic topography and mantle dynamic models. Our models show that there are currently two broad dynamic topography highs in the Pacific and Africa for the present-day Earth that are associated with the broad, warm structures (i.e., superplumes) in the deep mantle, consistent with previous proposals of dynamical support for the Pacific and African superswells. Our models reveal that Pangea assembly and breakup, by affecting subduction and mantle upwelling processes, have significant effects on continental vertical motions. Our models predict that the Slave craton in North America subsides before Pangea assembly at 330 Ma but uplifts significantly from 330 Ma to 240 Ma in response to pre-Pangea subduction and post-assembly mantle warming. The Kaapvaal craton of Africa is predicted to undergo uplift from ~180 Ma to 90 Ma after Pangea breakup, but its dynamic topography remains stable for the last 90 Ma. The predicted histories of elevation change for the Slave and Kaapvaal cratons compare well with the burial-unroofing histories inferred from thermochronology studies, thus supporting our dynamic models including the development of the African superplume mantle structure. The vertical motion histories for other cratons can provide further tests and constraints on our mantle dynamic models.
NASA Astrophysics Data System (ADS)
Bauernhofer, A.; Wallbrecher, E.; Hauzenberger, C.; Fritz, H.; Loizenbauer, J.; Hoinkes, G.; Muhongo, S.; Mathu, E.
2003-04-01
In the Voi Area of Southern Kenya, the granulite facies rocks of the Taita Hills and the Tsavo East National Park (Galana River) can be divided into three structural domains: The Galana-East unit consists of an intercalation of flat lying metapelites and marbles of continental margin origin. These metasediments can be traced further east to the Umba Steppe (Between Mombasa and Tanga). Galana-West consists of a N-S oriented wrench fault zone with vertical foliation planes and horizontal stretching lineation. Numerous shear sense indicators always show sinistral shear sense. Amphibolites of MORB affinity are involved in this wrench fault zone. To the west, this zone is bordered by calc-alkaline metatonalites of the Sagala Hills. The westernmost unit consists of the Taita Hills. They form an imbricated pile of southwestward thrusted nappe sheets containing metapelites, marbles, and ultramafics. The Taita Hills may be explained as part of an accretionary wedge. Southwestward nappe thrusting is also the prominent structure in the Pare and Usambara Mountains of Northern Tanzania. The following model may may explain these observations: The Southern Kenya -- Northern Tanzania section of the Mozambique Belt is the result of continental collision tectonics. Remnants of an island arc and of an accretionary wedge that occur at least in the Voi area may be part of a former subduction zone. An oceanic domain between an eastern passive continental margin and a western terrane, now represented by the Tanzanian granulite belt has been closed incorporating island arc and accretionary wedge material. Oblique convergence of two continental blocks is suggested from wrench tectonics. The age of convergent tectonics is 530 -- 580 Ma, dated by Sm-Nd garnet-whole rock analysis. This is interpreted as the age of peak metamorphism.
Storlazzi, Curt D.; Reid, Jane A.
2010-01-01
Ocean surface waves are the dominant temporally and spatially variable process influencing sea floor sediment resuspension along most continental shelves. Wave-induced sediment mobility on the continental shelf and upper continental slope off central California for different phases of El Niño-Southern Oscillation (ENSO) events was modeled using monthly statistics derived from more than 14 years of concurrent hourly oceanographic and meteorologic data as boundary input for the Delft SWAN wave model, gridded sea floor grain-size data from the usSEABED database, and regional bathymetry. Differences as small as 0.5 m in wave height, 1 s in wave period, and 10° in wave direction, in conjunction with the spatially heterogeneous unconsolidated sea-floor sedimentary cover, result in significant changes in the predicted mobility of continental shelf surficial sediment in the study area. El Niño events result in more frequent mobilization on the inner shelf in the summer and winter than during La Niña events and on the outer shelf and upper slope in the winter months, while La Niña events result in more frequent mobilization on the mid-shelf during spring and summer months than during El Niño events. The timing and patterns of seabed mobility are addressed in context of geologic and biologic processes. By understanding the spatial and temporal variability in the disturbance of the sea floor, scientists can better interpret sedimentary patterns and ecosystem structure, while providing managers and planners an understanding of natural impacts when considering the permitting of offshore activities that disturb the sea floor such as trawling, dredging, and the emplacement of sea-floor engineering structures.
NASA Astrophysics Data System (ADS)
Wang, Sheng-zu; Li, Jian-guo; Zhou, Yong-sheng
2007-12-01
The experimental results of brittle/ductile two-layer analogue models verify that intraplate tectonic deformation in central-eastern Asia is controlled mainly by the netlike plastic-flow (NPF) occurring in the lower lithosphere, including the lower crust and lithospheric mantle. The ductile lower layer in the model, corresponding to the lower lithosphere in the natural prototype, is made of a mixture of gum rosin and turpentine oil and the brittle upper one, to the upper crust, is formed by the consolidation of talc-powder slurry. The NPF hypothesis for continental dynamics can be regarded as a combination and development of two kinds of seemingly mutually exclusive ones, which are based on the theories of slip-line field and viscous (plastic) flow, respectively. In contrast to "homogeneous" viscous (plastic) flow considered usually in fluid mechanics and rheology, NPF is a viscous (plastic) flow accompanied with shear strain localization, forming plastic-flow network in the flow field. Plastic-flow network, being composed of two families of plastic-flow belts intersecting each other with their initial conjugate angles (i.e. the included angles facing the compression direction) equal to 90°, is similar to but different from the traditional slip-line network, which is assumed as a critical state of yield in elastoplastic medium. The experiments show that there are several NPF-controlled tectonic network systems to be developed in the models and two of them correspond to those in central-eastern Asia, which have the Himalayan and Taiwan arcs as their driving boundaries, respectively. The existence of "stable blocks" in the ductile lower layer has promoted some types of tectonic deformation, including the formation of large-scale compressional basins, corresponding to the Tarim, Ordos, Sichuan basins, etc., the development of compression-shear tectonic zones between some of these basins, corresponding to those shown by the Tianshan and Altay mountain ranges, and the uplift of some areas of the "plateau", corresponding to a contribution to the formation of the Qinghai-Tibet plateau. The distributions of maximum compressive stress directions and strains in the ductile lower layer estimated using the "conjugate-angle-bisector" and "conjugate-angle-increment" methods, respectively, are coincident in general tendency and framework with those in the prototype for the major part of the central-eastern Asian continent. It is also inferred that the westward influence of the horizontal compression component of the Pacific plate has reached North China by means of the interaction between adjacent plastic-flow networks although the tectonic network resulting directly from this horizontal compression has not spread westward beyond the Japan Sea.
Tectonic elements of the continental margin of East Antarctica, 38-164ºE
O'Brien, P.E.; Stagg, H.M.J.
2007-01-01
The East Antarctic continental margin from 38–164ºE is divided into western and eastern provinces that developed during the separation of India from Australia–Antarctica (Early Cretaceous) and Australia from Antarctica (Late Cretaceous). In the overlap between these provinces the geology is complex and bears the imprint of both extension/spreading episodes, with an overprinting of volcanism. The main rift-bounding faults appear to approximately coincide with the outer edge of the continental shelf. Inboard of these faults, the sedimentary cover thins above shallowing basement towards the coast where crystalline basement generally crops out. The continental slope and the landward flanks of the ocean basins, are blanketed by up to 9–10 km of mainly post-rift sediments in margin-parallel basins, except in the Bruce Rise area. Beneath this blanket, extensive rift basins are identified off Enderby and Wilkes Land/Terre Adélie; however, their extent and detailed structures are difficult to determine.
The Effect of Different Shape and Perforated rHDPE in Concrete Structures on Flexural Strength
NASA Astrophysics Data System (ADS)
Yuhazri, MY; Hafiz, KM; Myia, YZA; Jia, CP; Sihombing, H.; Sapuan, SM; Badarulzaman, NA
2017-10-01
This research was carried out to develop a reinforcing structure from recycled HDPE plastic lubricant containers to be embedded in concrete structure. Different forms and shapes of recycled HDPE plastic are designed as reinforcement incorporate with cement. In this study, the reinforcing structure was prepared by washing, cutting, dimensioning and joining of the waste HDPE containers (direct technique without treatment on plastic surface). Then, the rHDPE reinforced concrete was produced by casting based on standard of procedure in civil engineering technique. Eight different shapes of rHDPE in concrete structure were used to determine the concrete’s ability in terms of flexural strength. Embedded round shape in solid and perforated of rHDPE in concrete system drastically improved flexural strength at 17.78 % and 13.79 %. The result would seem that the concrete with reinforcing rHDPE structure exhibits a more gradual or flexible properties than concrete beams without reinforcement that has the properties of fragile.
Ren, Jingli; Chen, Cun; Wang, Gang; ...
2017-03-22
This study explores the temporal scaling behavior induced shear-branching structure in response to variant temperatures and strain rates during plastic deformation of Zr-based bulk metallic glass (BMG). The data analysis based on the compression tests suggests that there are two states of shear-branching structures: the fractal structure with a long-range order at an intermediate temperature of 223 K and a larger strain rate of 2.5 × 10 –2 s –1; the disordered structure dominated at other temperature and strain rate. It can be deduced from the percolation theory that the compressive ductility, ec, can reach the maximum value at themore » intermediate temperature. Furthermore, a dynamical model involving temperature is given for depicting the shear-sliding process, reflecting the plastic deformation has fractal structure at the temperature of 223 K and strain rate of 2.5 × 10 –2 s –1.« less
Learning to learn – intrinsic plasticity as a metaplasticity mechanism for memory formation
Sehgal, Megha; Song, Chenghui; Ehlers, Vanessa L.; Moyer, James R.
2013-01-01
“Use it or lose it” is a popular adage often associated with use-dependent enhancement of cognitive abilities. Much research has focused on understanding exactly how the brain changes as a function of experience. Such experience-dependent plasticity involves both structural and functional alterations that contribute to adaptive behaviors, such as learning and memory, as well as maladaptive behaviors, including anxiety disorders, phobias, and posttraumatic stress disorder. With the advancing age of our population, understanding how use-dependent plasticity changes across the lifespan may also help to promote healthy brain aging. A common misconception is that such experience-dependent plasticity (e.g., associative learning) is synonymous with synaptic plasticity. Other forms of plasticity also play a critical role in shaping adaptive changes within the nervous system, including intrinsic plasticity – a change in the intrinsic excitability of a neuron. Intrinsic plasticity can result from a change in the number, distribution or activity of various ion channels located throughout the neuron. Here, we review evidence that intrinsic plasticity is an important and evolutionarily conserved neural correlate of learning. Intrinsic plasticity acts as a metaplasticity mechanism by lowering the threshold for synaptic changes. Thus, learning-related intrinsic changes can facilitate future synaptic plasticity and learning. Such intrinsic changes can impact the allocation of a memory trace within a brain structure, and when compromised, can contribute to cognitive decline during the aging process. This unique role of intrinsic excitability can provide insight into how memories are formed and, more interestingly, how neurons that participate in a memory trace are selected. Most importantly, modulation of intrinsic excitability can allow for regulation of learning ability – this can prevent or provide treatment for cognitive decline not only in patients with clinical disorders but also in the aging population. PMID:23871744
A climate model with cryodynamics and geodynamics
NASA Technical Reports Server (NTRS)
Ghil, M.; Le Treut, H.
1981-01-01
A simplified, zero-dimensional model of the climatic system is presented which attempts to incorporate mechanisms important on the time scale of glaciation cycles: 10,000 to 100,000 years. The ocean-atmosphere radiation balance, continental ice sheet plastic flow, and upper mantle viscous flow are taken into account, with stress on the interaction between the ice sheets and the upper mantle. The model exhibits free, self-sustained oscillations of an amplitude and period comparable to those found in the paleoclimatic record of glaciations, offering mild support for the idea that unforced oscillations can actually exist in the real climatic system itself. The careful study of the interplay between internal mechanisms and external forcing is held to represent an interesting challenge to the theory of ice ages.
NASA Astrophysics Data System (ADS)
Nadutov, V. M.; Vashchuk, D. L.; Karbivskii, V. L.; Volosevich, P. Yu.; Davydenko, O. A.
2018-04-01
The effect of cold plastic deformation by upsetting (e = 1.13) on structure and hybridised bonds of carbon in the fcc Invar Fe-30.9%Ni-1.23% C alloy was studied by means of X-ray phase analysis and X-ray photoelectron spectroscopy. Carbon precipitates along grain boundaries and inside of grains in the alloy after annealing and plastic deformation were revealed. The presence of mainly sp2- and sp3-hybridised C-C bonds attributing to graphite and amorphous carbon as well as the carbon bonds with impurity atoms and metallic Fe and Ni atoms in austenitic phase were revealed in the annealed and deformed alloy. It was shown for the first time that plastic deformation of the alloy results in partial destruction of the graphite crystal structure, increasing the relative part of amorphous carbon, and redistribution of carbon between structural elements as well as in a solid solution of austenitic phase.
NASA Astrophysics Data System (ADS)
Lock, S. S. M.; Lau, K. K.; Lock Sow Mei, Irene; Shariff, A. M.; Yeong, Y. F.; Bustam, A. M.
2017-08-01
A sequence of molecular modelling procedure has been proposed to simulate experimentally validated membrane structure characterizing the effect of CO2 plasticization, whereby it can be subsequently employed to elucidate the depression in glass transition temperature (Tg ). Based on the above motivation, unswollen and swollen Polysulfone membrane structures with different CO2 loadings have been constructed, whereby the accuracy has been validated through good compliance with experimentally measured physical properties. It is found that the presence of CO2 constitutes to enhancement in polymeric chain relaxation, which consequently promotes the enlargement of molecular spacing and causes dilation in the membrane matrix. A series of glass transition temperature treatment has been conducted on the verified molecular structure to elucidate the effect of CO2 loadings to the depression in Tg induced by plasticization. Subsequently, a modified Michealis-Menten (M-M) function has been implemented to quantify the effect of CO2 loading attributed to plasticization towards Tg .
Maya-Vetencourt, José Fernando; Pizzorusso, Tommaso
2013-01-01
Neuronal circuitries in the mammalian visual system change as a function of experience. Sensory experience modifies neuronal networks connectivity via the activation of different physiological processes such as excitatory/inhibitory synaptic transmission, neurotrophins, and signaling of extracellular matrix molecules. Long-lasting phenomena of plasticity occur when intracellular signal transduction pathways promote epigenetic alterations of chromatin structure that regulate the induction of transcription factors that in turn drive the expression of downstream targets, the products of which then work via the activation of structural and functional mechanisms that modify synaptic connectivity. Here, we review recent findings in the field of visual cortical plasticity while focusing on how physiological mechanisms associated with experience promote structural changes that determine functional modifications of neural circuitries in V1. We revise the role of microRNAs as molecular transducers of environmental stimuli and the role of immediate early genes that control gene expression programs underlying plasticity in the developing visual cortex. PMID:25157210
Guart, Albert; Calabuig, Ignacio; Lacorte, Silvia; Borrell, Antonio
2014-02-01
This study was aimed to determine the presence of 69 organic contaminants in 77 representative bottled waters collected from 27 countries all over the world. All water samples were contained in polyethylene terephthalate bottles. Target compounds were (1) environmental contaminants (including 13 polycyclic aromatic hydrocarbons (PAHs), 31 pesticides including organochlorine (OCPs), organophosphorus, and pyrethroids; 7 polychlorinated biphenyls (PCBs); and 7 triazines) and (2) plasticizers (including 6 phthalates and 5 other compounds). Samples were analyzed by stir bar sorptive extraction followed by gas chromatography-tandem mass spectrometry. PAHs, OCPs, PCBs, and triazines, which are indicators of groundwater pollution, were not detected in most of the samples, except for naphthalene (0.005-0.202 μg/L, n = 16). On the other hand, plastic components were detected in 77 % of the samples. Most frequently detected compounds were dimethyl phthalate and benzophenone at concentrations of 0.005-0.125 (n = 41) and 0.014-0.921 (n = 32), respectively. Levels detected are discussed in terms of contamination origin and geographical distribution. Target compounds were detected at low concentrations. Results obtained showed the high quality of bottled water in the different countries around the world.
Atlantic continental margin of the United States
Grow, John A.; Sheridan, Robert E.; Palmer, A.R.
1982-01-01
The objective of this Decade of North American Geology (D-NAG) volume will be to focus on the Mesozoic and Cenozoic evolution of the U.S. Atlantic continental margin, including the onshore coastal plain, related onshore Triassic-Jurassic rift grabens, and the offshore basins and platforms. Following multiple compressional tectonic episodes between Africa and North America during the Paleozoic Era that formed the Appalachian Mountains, the Mesozoic and Cenozoic Eras were dominated by tensional tectonic processes that separated Africa and North America. Extensional rifting during Triassic and Early Jurassic times resulted in numerous tensional grabens both onshore and offshore, which filled with nonmarine continental red beds, lacustrine deposits, and volcanic flows and debris. The final stage of this breakup between Africa and North America occurred beneath the present outer continental shelf and continental slope during Early or Middle Jurassic time when sea-floor spreading began to form new oceanic crust and lithosophere between the two continents as they drifted apart. Postrift subsidence of the marginal basins continued in response to cooling of the lithosphere and sedimentary loading.Geophysical surveys and oil-exploration drilling along the U.S. Atlantic continental margin during the past 5 years are beginning to answer many questions concerning its deep structure and stratigraphy and how it evolved during the rifting and early sea-floor-spreading stages of the separation of this region from Africa. Earlier geophysical studies of the U.S. continental margin used marine refraction and submarine gravity measurements. Single-channel seismic-reflection, marine magnetic, aeromagnetic, and continuous gravity measurements became available during the 1960s.
ERIC Educational Resources Information Center
Erk, Kendra A.; Rhein, Morgan; Krafcik, Matthew J.; Ydstie, Sophie
2015-01-01
An educational activity is described in which the structure and physical properties of disposable plastic cups were directly related to the method of processing. The mechanical properties of specimens cut from the walls of poly(ethylene terephthalate) (PETE) cups, oriented parallel and perpendicular to the thermoforming direction, were measured in…
Anisotropy of machine building materials
NASA Technical Reports Server (NTRS)
Ashkenazi, Y. K.
1981-01-01
The results of experimental studies of the anisotropy of elastic and strength characteristics of various structural materials, including pressure worked metals and alloys, laminated fiberglass plastics, and laminated wood plastics, are correlated and classified. Strength criteria under simple and complex stresses are considered as applied to anisotropic materials. Practical application to determining the strength of machine parts and structural materials is discussed.
ERIC Educational Resources Information Center
Kim, Nam-Gyoon; Park, Jong-Hee
2010-01-01
Recent research has demonstrated that Alzheimer's disease (AD) affects the visual sensory pathways, producing a variety of visual deficits, including the capacity to perceive structure-from-motion (SFM). Because the sensory areas of the adult brain are known to retain a large degree of plasticity, the present study was conducted to explore whether…
Stevens, C.H.; Stone, P.; Miller, J.S.
2005-01-01
Data bearing on interpretations of the Paleozoic and Mesozoic paleogeography of southwestern North America are important for testing the hypothesis that the Paleozoic miogeocline in this region has been tectonically truncated, and if so, for ascertaining the time of the event and the possible role of the Mojave-Sonora megashear. Here, we present an analysis of existing and new data permitting reconstruction of the Paleozoic continental margin of southwestern North America. Significant new and recent information incorporated into this reconstruction includes (1) spatial distribution of Middle to Upper Devonian continental-margin facies belts, (2) positions of other paleogeographically significant sedimentary boundaries on the Paleozoic continental shelf, (3) distribution of Upper Permian through Upper Triassic plutonic rocks, and (4) evidence that the southern Sierra Nevada and western Mojave Desert are underlain by continental crust. After restoring the geology of western Nevada and California along known and inferred strike-slip faults, we find that the Devonian facies belts and pre-Pennsylvanian sedimentary boundaries define an arcuate, generally south-trending continental margin that appears to be truncated on the southwest. A Pennsylvanian basin, a Permian coral belt, and a belt of Upper Permian to Upper Triassic plutons stretching from Sonora, Mexico, into westernmost central Nevada, cut across the older facies belts, suggesting that truncation of the continental margin occurred in the Pennsylvanian. We postulate that the main truncating structure was a left-lateral transform fault zone that extended from the Mojave-Sonora megashear in northwestern Mexico to the Foothills Suture in California. The Caborca block of northwestern Mexico, where Devonian facies belts and pre-Pennsylvanian sedimentary boundaries like those in California have been identified, is interpreted to represent a missing fragment of the continental margin that underwent ???400 km of left-lateral displacement along this fault zone. If this model is correct, the Mojave-Sonora megashear played a direct role in the Pennsylvanian truncation of the continental margin, and any younger displacement on this fault has been relatively small. ?? 2005 Geological Society of America.
NASA Astrophysics Data System (ADS)
Bozhko, S. A.; Betsofen, S. Ya.; Kolobov, Yu. R.; Vershinina, T. N.
2015-03-01
The laws of formation of an ultrafine structure in an Mg-Al-Zn-Mn alloy (MA5 alloy) under severe plastic deformation have been studied during lengthwise section rolling at a strain e = 1.59. The deformation behavior and the physical factors of anisotropy of yield strength during compression tests in various directions with respect to axis of rolling are analyzed. The role of crystallographic texture and twinning processes in the generation of strength processes and the development of plastic deformation of the alloy is analyzed.
Scoffoni, Christine; Kunkle, Justin; Pasquet-Kok, Jessica; Vuong, Christine; Patel, Amish J; Montgomery, Rebecca A; Givnish, Thomas J; Sack, Lawren
2015-07-01
Leaf hydraulic conductance (Kleaf ) quantifies the capacity of a leaf to transport liquid water and is a major constraint on light-saturated stomatal conductance (gs ) and photosynthetic rate (Amax ). Few studies have tested the plasticity of Kleaf and anatomy across growth light environments. These provided conflicting results. The Hawaiian lobeliads are an excellent system to examine plasticity, given the striking diversity in the light regimes they occupy, and their correspondingly wide range of Amax , allowing maximal carbon gain for success in given environments. We measured Kleaf , Amax , gs and leaf anatomical and structural traits, focusing on six species of lobeliads grown in a common garden under two irradiances (300/800 μmol photons m(-2) s(-1) ). We tested hypotheses for light-induced plasticity in each trait based on expectations from optimality. Kleaf , Amax , and gs differed strongly among species. Sun/shade plasticity was observed in Kleaf , Amax, and numerous traits relating to lamina and xylem anatomy, venation, and composition, but gs was not plastic with growth irradiance. Species native to higher irradiance showed greater hydraulic plasticity. Our results demonstrate that a wide set of leaf hydraulic, stomatal, photosynthetic, anatomical, and structural traits tend to shift together during plasticity and adaptation to diverse light regimes, optimizing performance from low to high irradiance. © 2015 The Authors New Phytologist © 2015 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Zhurbas, Nataliya; Kuzmina, Natalia; Lyzhkov, Dmitry; Ostapchuk, Alexey
2017-04-01
In order to give detailed description of the interleaving structure in the Eurasian basin results of observations carried out during NABOS 2008 and Polarstern cruise in 1996 were analyzed. The study was focused on interleaving parameters (structure and vertical scale of intrusions) variability in the upper (150-300 meters) and intermediate (300-700 meters) layers of the ocean. Based on θ,S/θ,σ-diagrams (θ, S and σ are the potential temperature, salinity and potential density, correspondingly) analysis two main results were obtained. First of all it was shown that intrusive layers carried by the mean current along the Eurasian Basin continental margin become deeper relatively isopycnals and thus stimulate ventilation of pycnocline. Second, the area in Eurasian Basin thermocline was found where intrusive layers of large and small scale were absent. This distinctive feature can be explained by intensive mixing between two branches of Atlantic Water, one of which propagates along Eurasian basin continental margin and the other spreads across the basin due to large scale interleaving processes. Among others, one of the possible methods of integral estimation of Atlantic water masses heat and salt contents variations during their expansion along basin continental margin was proposed. Thus it is reasonable to assess variation of square under the θ(S)-diagrams, which illustrate the data obtained from two CTD-stations located on diametrically opposite sides of Eurasian Basin, taking 0.5°C isotherm as a reference value. For verification of the introduced approach the estimates of heat and salt contents variations were made by different methods. Detailed discussion of the results is presented. Work was supported by the Russian Foundation for Basic Research (Grant No 15-05-01479-a).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oyarzabal, F.R.; Jacobson, C.E.; Haxel, G.B.
The Late Cretaceous-early Tertiary Orocopia Schist (OS) of southeasternmost California consists of metamorphosed continental margin sedimentary and basaltic rocks, overlain by an upper plate of continental crust along the Vincent-Chocolate Mountains fault (VCMF). Previous analysis of late folds and shear band in OS and upper plate in the Gavilan Hills and adjacent ares indicated that the direction of transport of the upper plate was northeastward. This has been considered evidence of a SW dipping subduction zone, along which an outboard continental fragment was sutured to North America. Another view is that the VCMF was formed by underplating of the OSmore » in an Andean continental margin, and that the NE-vergent late structures formed during uplift of the OS. The authors' continuing work in the Gavilan Hills confirm the NE sense of vergence but suggests a more complex structural history. The schist is characterized by refolded folds, shear bands, and two penetrative lineations. An older lineation that ranges from N10[degree]E to N30[degree]E is widespread in the area, but is more evident at low structural levels. A second lineation ranges from N40[degree]E to N70[degree]E and is strongly developed in rocks near the VCMF. The complex folding pattern, presence of mylonitic schist, relative thinness of upper-plate mylonite, and possible retrogressive character of the shear bands suggest that the VCMF in the Gavilan Hills area may have been reactivated after original thrusting. The VCMF in the Gavilan Hills is intermediate in character between the probable subduction thrust in the San Gabriel Mountains and the reactivated faults in the Orocopia Mountains and areas surrounding the Gavilan Hills.« less
NASA Astrophysics Data System (ADS)
Kimura, N.; Iwashita, N.; Masuda, T.
2009-04-01
1. Introduction Previous studies have compiled yield-strength profiles of continental lithosphere based on the results of laboratory measurements and numerical calculations; however, yield-strength values remain poorly constrained, especially at depths below the brittle-plastic transition zone. Recent studies by the authors have refined the microboudin technique for estimating palaeostress magnitude in the deep crust (> 10 km depth). This technique has the potential to provide important information on stress levels in the deep continental crust, an environment to which available in situ stress measurements and palaeopiezometric methods cannot be applied. In applying the microboudinage technique, obtaining an estimate of the palaeostress magnitude requires knowledge of the fracture strength of columnar accessory minerals (e.g., tourmaline, amphibole, and epidote) that are subjected to brittle fracturing during plastic deformation of the surrounding matrix minerals. The absolute magnitude of fracture strength is known to show a marked reduction in the case of fatigue fracture. Fatigue fracture falls into two categories: static fatigue and cyclic fatigue. In the field of experimental rock deformation, stress corrosion by water molecules (static fatigue) is commonly invoked as the mechanism of fatigue fracture; however, evidence of both static and cyclic fatigue has been reported from studies of natural geological samples. The present study focused on the fatigue properties of columnar accessory minerals at high temperatures, with the aim of improving the accuracy of estimates of natural palaeostress magnitude at depth in the crust. 2. Constant stress-rate test A constant stress-rate test was performed to determine the influence of static fatigue on the strength of columnar accessory minerals. The test was conducted under three-point bending with a span distance of 10 mm. Temperature conditions and the crosshead speed were set in the ranges of ambient to 600°C, and 0.0005 to 0.2 mm/min, respectively. Pressure and relative humidity were set to room conditions. Tourmaline was chosen for testing (as representative of columnar accessory minerals embedded within metamorphic tectonites) because this is the only mineral for which crystals are available of sufficient size and quality. A total of 120 prism-shaped tourmaline test pieces (dimensions, 2×2×12 mm) were prepared from a single tourmaline block collected from Minas Gerais, Brazil. The flexural strength of tourmaline shows a clear decrease with decreasing crosshead speed at ambient temperature (with n ≈ 15 as the static fatigue parameter); however, this trend weakens with increasing temperature (n > 50); that is, the influence of static fatigue on the strength of tourmaline decreases with increasing temperature. A comparable result has been reported for glass materials because of difficulties in the absorption of moisture on sample surfaces under high-temperature conditions. The fabric pattern of fracture planes developed in tourmaline specimens in the present study, which show rectilinear scratches, arrests, or Wallner lines on smooth surfaces, is similar to that observed for glass materials. 3. Fractography of naturally deformed minerals A ‘striation-like' pattern resulting from cyclic fatigue fracture was observed by scanning electron microscope (SEM) analysis of a natural fracture plane developed within marble-hosted amphibole. The sample was collected from the eastern flank of the Red River shear zone (Luc Yen district), northern Vietnam. The brittle fracturing of amphibole (open fractures were filled by calcite, which deforms plastically) is considered to have occurred at 6 km depth at 25 Ma, based on geological criteria. 4. Order of stress magnitude in continental crust at the depth of the brittle-plastic transition zone Assuming that the fracture behaviour of columnar accessory minerals during the development of microboudinage is independent of the mineral species, the above results raise the possibility that the fracturing of columnar accessory minerals at deep crustal levels is governed by cyclic fatigue, possibly attributed to mechanical degradation rather than stress corrosion associated with water molecules, and that the fracture behaviour of columnar accessory minerals is similar to that of glass materials. Thus, cyclic fatigue studies of glass materials are expected to provide a good reference for approximate estimates of the fatigue limit of columnar accessory minerals. According to the literature, the fatigue limit for many glass materials is approximately 10% of the ultimate tensile strength. Taking into account the influence of fatigue fracture, the obtained magnitudes of palaeodifferential stress at crustal depths of 10-20 km, as estimated using the microboudinage technique, are in the low tens of megapascals (e.g., 10 MPa at 9 km depth, as obtained from metacherts within high-pressure rocks in Japan; 25 MPa at 12 km depth, as obtained from metachert within a metamorphic sole in the UAE; 9 MPa at 18 km depth, as obtained from metachert within high-pressure rocks in China; and 14 MPa at 18 km depth, as obtained from metachert within high-pressure rocks in Turkey). These values are much lower than those obtained from laboratory measurements.
NASA Astrophysics Data System (ADS)
Hooft, E. E. E.; Morgan, J. V.; Nomikou, P.; Toomey, D. R.; Papazachos, C. V.; Warner, M.; Heath, B.; Christopoulou, M. E.; Lampridou, D.; Kementzetzidou, D.
2016-12-01
The goal of the PROTEUS seismic experiment (Plumbing Reservoirs Of The Earth Under Santorini) is to examine the entire crustal magma plumbing system beneath a continental arc volcano and determine the magma geometry and connections throughout the crust. These physical parameters control magma migration, storage, and eruption and inform the question of how physical and chemical processing of magma at arc volcanoes forms the andesitic rock compositions that dominate the lower continental crust. These physical parameters are also important to understand volcanic-tectonic interactions and geohazards. Santorini is ideal for these goals because the continental crust has been thinned by extension and so the deep magmatic system is more accessible, also it is geologically well studied. Since the volcano is a semi-submerged, it was possible to collect a unique 3D marine-land active source seismic dataset. During the PROTEUS experiment in November-December of 2015, we recorded 14,300 marine sound sources from the US R/V Langseth on 89 OBSIP short period ocean bottom seismometers and 60 German and 5 Greek land seismometers. The experiment was designed for high-density spatial sampling of the seismic wavefield to allow us to apply two state-of-the-art 3D inversion methods: travel time tomography and full waveform inversion. A preliminary travel time tomography model of the upper crustal seismic velocity structure of the volcano and surrounding region is presented in an accompanying poster. We also made marine geophysical maps of the seafloor using multi-beam bathymetry and of the gravity and magnetic fields. The new seafloor map reveals the detailed structure of the major fault system between Santorini and Amorgos, of associated landslides, and of newly discovered volcanic features. The PROTEUS project will provide new insights into the structure of the whole crustal magmatic system of a continental arc volcano and its evolution within the surrounding tectonic setting.
PAVEMENTS, *REINFORCED PLASTICS), LANDING FIELDS, SPRAYS, GLASS TEXTILES, LAMINATED PLASTICS, TEST METHODS, FOUNDATIONS(STRUCTURES), SANDWICH CONSTRUCTION, SOILS, FEASIBILITY STUDIES, LOAD DISTRIBUTION
NASA Astrophysics Data System (ADS)
Llana-Fúnez, Sergio; de Paola, Nicola; Pozzi, Giacomo; Lopez-Sanchez, Marco Antonio
2017-04-01
The current level of erosion in NW Iberian peninsula exposes Variscan mid-crustal depths, where widespread deformation during orogenesis produced dominantly ductile structures. It constitutes an adequate window for the observation of structures close to the brittle-plastic transition in the continental crust. The shear zone object of this work is the Malpica-Lamego line (MLL), a major Variscan structure formed in the late stages of the Variscan collision. The MLL is a mostly strike-slip major structure that offsets laterally by several kilometres the assembly of allochthonous complexes, that contain a sub-horizontal suture zone, which are the remnants of the plate duplication during the Variscan convergence. The shear zone is exposed along the northern coast of Galicia (NW Spain). It is characterized by phyllonites and quartz-mylonites in a zone which is tens of meters in thickness. Within the phyllonites, a few seams of cataclastic rocks have been found in bands along the main fabric. Their cohesive character, the parallelism between the different bands, the fact that host rocks maintain mineral assemblage and that no cross-cutting relations in the field were identified, are considered indicative of these brittle structures forming coetaneously with the ductile shearing producing the phyllonites. Samples from the phyllonites, also from quartz-mylonites, were prepared and powdered to characterize friction properties in a rotary shear apparatus at high, seismic velocities (m/s). Preliminary experiments run at room temperature and effective normal stresses between 10 to 25 MPa, show that friction coefficients µ are relatively high and a limited drop in friction coefficient occurs after 10-20 cm of slip, with µ decreasing from 0.7 to 0.5. Fracturing seems coetaneous with dominant ductile shearing within the shear zone, however, given the frictional properties of the phyllonites, it is unlikely that brittle deformation nucleates within these fault rocks. Instead, it seems that faulting originated in other sectors of the fault zone, and then propagated through the studied section.
Searching for Factors Underlying Cerebral Plasticity in the Normal and Injured Brain
ERIC Educational Resources Information Center
Kolb, Bryan; Muhammad, Arif; Gibb, Robbin
2011-01-01
Brain plasticity refers to the capacity of the nervous system to change its structure and ultimately its function over a lifetime. There have been major advances in our understanding of the principles of brain plasticity and behavior in laboratory animals and humans. Over the past decade there have been advances in the application of these…
ERIC Educational Resources Information Center
Jin, Iksung; Kandel, Eric R.; Hawkins, Robert D.
2011-01-01
Whereas short-term plasticity involves covalent modifications that are generally restricted to either presynaptic or postsynaptic structures, long-term plasticity involves the growth of new synapses, which by its nature involves both pre- and postsynaptic alterations. In addition, an intermediate-term stage of plasticity has been identified that…
NASA Astrophysics Data System (ADS)
Rolland, Yann; Loury, Chloé; Guillot, Stéphane; Mikolaichuk, Alexander
2014-05-01
Mechanisms and history of the Late Palaeozoic accretion followed by formation of trunscurrent strike-slip faults were studied in the southern segment of the Central Asian Orogenic Belt (CAOB) within Kyrgyz South Tianshan. 1. South Tianshan Suture: ending accretion process after docking of Tarim craton This study gives insights into the crustal-scale structure and Upper Paleozoic history of this mountain belt, currently intensely reactivated by the India-Asia collision. Structural, petrological and geochronological studies were carried out within South Tianshan suture east of the Talas-Ferghana Fault (TFF). New data highlight a south-dipping structure featured by a HP metamorphic core complex comprised of c. 320 Ma continental and oceanic eclogites exhumed by top-to-North motion. A large massif (10 x 50 km) of continental HP rocks in the Atbashi Range is comprised of hectometric boudins of eclogites embedded in metapelites and gneissesMetamorphic units exhibit blueschist to eclogite facies conditions, with oceanic (MORB) rocks in the blueschist facies representing the accretionary oceanic prism being thrusted by oceanic rocks and a continental unit in the eclogite facies (510 ± 50°C and 24 ± 2 kbar). Evidence for eclogite facies both in metasediments and mafic lithologies and geological structure are in agreement with a previously thinned continental margin. Subduction of this thinned COT (Continent-Ocean Transition) probably occurred by slab pull in a south-dipping subduction zone, while another north-dipping subduction was active below Middle Tianshan. Final stacking of Middle and South Tianshan occurred at 320-310 Ma. These opposite subduction zones are still reflected in the main structures of Tianshan. Reactivation of the South-dipping structures since 30-25 Ma is ascribed to explain the current Tianshan intra-continental subduction from seismology. 2. Talas-Ferghana Fault (TFF) activity & Basin formation After this accretionary episode, the South Tianshan suture was cross-cut by the TFF, which was active in several stages from 320 Ma to present. The main events of basin formation are ascribed to the activity of the dextral TFF (Rolland et al. 2013, JAES). Ar-Ar dating undertaken on syn-kinematic minerals that feature the phases of motion of the TFF show a first stage of activation occurred at 312 ± 4 Ma, followed by a main stage of dextral motion in the Late Permian at 256 - 250 Ma, while late stages of reactivation of TFF is featured by emplacement of 195 ± 3 Ma pegmatitic dykes, formation of transtensional basins during Jurassic, dextral offsets of river valleys and ongoing seismicity. 3. Reactivation of South Tian Shan Suture Most prominent topography in Central Asia corresponds to the former South Tianshan suture which has been reactivated since about 30 Ma, the former Carboniferous thrusts are reactivated in a pop-up structure with top-north and top-south faults bounding the high mountains of Khan Tengri and Pobeda peaks (7440 m a.s.l.).
Plasticity and stability of visual field maps in adult primary visual cortex
Wandell, Brian A.; Smirnakis, Stelios M.
2010-01-01
Preface It is important to understand the balance between cortical plasticity and stability in various systems and spatial scales in the adult brain. We review measurements of adult plasticity in primary visual cortex (V1), a structure that has a key role in distributing visual information. There are claims of plasticity at multiple spatial scales in adult V1, but many inconsistencies in the data raise questions about the extent and nature of such plasticity. Understanding is further limited by a lack of quantitative models to guide the interpretation of the data. These problems limit efforts to translate research findings about adult cortical plasticity into significant clinical, educational and policy applications. PMID:19904279
Studying plastic shear localization in aluminum alloys under dynamic loading
NASA Astrophysics Data System (ADS)
Bilalov, D. A.; Sokovikov, M. A.; Chudinov, V. V.; Oborin, V. A.; Bayandin, Yu. V.; Terekhina, A. I.; Naimark, O. B.
2016-12-01
An experimental and theoretical study of plastic shear localization mechanisms observed under dynamic deformation using the shear-compression scheme on a Hopkinson-Kolsky bar has been carried out using specimens of AMg6 alloy. The mechanisms of plastic shear instability are associated with collective effects in the microshear ensemble in spatially localized areas. The lateral surface of the specimens was photographed in the real-time mode using a CEDIP Silver 450M high-speed infrared camera. The temperature distribution obtained at different times allowed us to trace the evolution of the localization of the plastic strain. Based on the equations that describe the effect of nonequilibrium transitions on the mechanisms of structural relaxation and plastic flow, numerical simulation of plastic shear localization has been performed. A numerical experiment relevant to the specimen-loading scheme was carried out using a system of constitutive equations that reflect the part of the structural relaxation mechanisms caused by the collective behavior of microshears with the autowave modes of the evolution of the localized plastic flow. Upon completion of the experiment, the specimens were subjected to microstructure analysis using a New View-5010 optical microscope-interferometer. After the dynamic deformation, the constancy of the Hurst exponent, which reflects the relationship between the behavior of defects and roughness induced by the defects on the surfaces of the specimens is observed in a wider range of spatial scales. These investigations revealed the distinctive features in the localization of the deformation followed by destruction to the script of the adiabatic shear. These features may be caused by the collective multiscale behavior of defects, which leads to a sharp decrease in the stress-relaxation time and, consequently, a localized plastic flow and generation of fracture nuclei in the form of adiabatic shear. Infrared scanning of the localization zone of the plastic strain in situ and the subsequent study of the defect structure corroborated the hypothesis about the decisive role of non-equilibrium transitions in defect ensembles during the evolution of a localized plastic flow.
NASA Astrophysics Data System (ADS)
Loncke, Lies; Basile, Christophe; Roest, Walter; Graindorge, David; Mercier de Lépinay, Marion; Klinghelhoefer, Frauke; Heuret, Arnauld; Pattier, France; Tallobre, Cedric; Lebrun, Jean-Frédéric; Poetisi, Ewald; Loubrieu, Benoît; Iguanes, Dradem, Margats Scientific Parties, Plus
2017-04-01
Mercier de Lépinay et al. published in 2016 an updated inventory of transform passive margins in the world. This inventory shows that those margins represent 30% of continental passive margins and a cumulative length of 16% of non-convergent margins. It also highlights the fact that many submarine plateaus prolong transform continental margins, systematically at the junction of oceanic domains of different ages. In the world, we identified twenty of those continental submarine plateaus (Falklands, Voring, Demerara, Tasman, etc). Those marginal plateaus systematically experiment two phases of deformation: a first extensional phase and a second transform phase that allows the individualization of those submarine reliefs appearing on bathymetry as seaward continental-like salients. The understanding of the origin, nature, evolution of those marginal plateaus has many scientific and economic issues. The Demerara marginal plateau located off French Guiana and Surinam belongs to this category of submarine provinces. The French part of this plateau has been the locus of a first investigation in 2003 in the framework of the GUYAPLAC cruise dedicated to support French submissions about extension of the limit of the continental shelf beyond 200 nautical miles. This cruise was the starting point of a scientific program dedicated to geological investigations of the Demerara plateau that was sustained by different cruises and collaborations (1) IGUANES (2013) that completed the mapping of this plateau including off Surinam, allowed to better understand the segmentation of the Northern edge of this plateau, and to evidence the combined importance of contourite and mass-wasting processes in the recent sedimentary evolution of this domain, (2) Collaboration with TOTAL (Mercier de Lépinay's PhD thesis) that allowed to better qualify the two main phases of structural evolution of the plateau respectively during Jurassic times for its Western border, Cretaceous times for its Northern and Eastern border (2) DRADEM (2016) (see poster session) that better mapped the continental slope domain of the transform margin north of the Demerara plateau and was dedicated to the dredging of rocks outcropping on the continental slope, suspected to be Cretaceous in age and older, (3) MARGATS (2016) (see poster session) that was dedicated to the better understanding of the internal structure of the plateau and its different margins using multi-channels seismic and refraction methods. The combination of all those experiments allow us to paint an integrated portrait of the Demerara marginal plateau - that may be very useful in understanding the processes involved (1) in the individualization of such plateaus (volcanism, heritages, kinematics, …) (2) in their evolution (subsidence, mass-wasting processes, domains of deep-sea current acceleration). In the future, those scientific advances may allow to better define the natural resources associated with such marginal domains.
Matrix metalloproteinase-9 involvement in the structural plasticity of dendritic spines
Stawarski, Michal; Stefaniuk, Marzena; Wlodarczyk, Jakub
2014-01-01
Dendritic spines are the locus for excitatory synaptic transmission in the brain and thus play a major role in neuronal plasticity. The ability to alter synaptic connections includes volumetric changes in dendritic spines that are driven by scaffolds created by the extracellular matrix (ECM). Here, we review the effects of the proteolytic activity of ECM proteases in physiological and pathological structural plasticity. We use matrix metalloproteinase-9 (MMP-9) as an example of an ECM modifier that has recently emerged as a key molecule in regulating the morphology and dysmorphology of dendritic spines that underlie synaptic plasticity and neurological disorders, respectively. We summarize the influence of MMP-9 on the dynamic remodeling of the ECM via the cleavage of extracellular substrates. We discuss its role in the formation, modification, and maintenance of dendritic spines in learning and memory. Finally, we review research that implicates MMP-9 in aberrant synaptic plasticity and spine dysmorphology in neurological disorders, with a focus on morphological abnormalities of dendritic protrusions that are associated with epilepsy. PMID:25071472
NASA Astrophysics Data System (ADS)
Kuhlmann-Wilsdorf, D.
1999-09-01
The facts regarding “regular” deformation bands (DBs) outlined in Part I of this series of articles are related to the low-energy dislocation structure (LEDS) theory of dislocation-based plasticity. They prompt an expansion of the theory by including the stresses due to strain gradients on account of changing selections of slip systems to the previously known dislocation driving forces. This last and until now neglected driving force is much smaller than the components considered hitherto, principally due to the applied stress and to mutual stress-screening among neighbor dislocations. As a result, it permits a near-proof of the LEDS hypothesis, to wit that among all structures which, in principle, are accessible to the dislocations, that one is realized which has the lowest free energy. Specifically, the temperature rises that would result from annihilating the largest DBs amount to only several millidegrees Centigrade, meaning that they, and by implication the entire dislocation structures, are close to thermodynamical equilibrium. This is in stark contrast to the assumption of the presently widespread self-organizing dislocation structures (SODS) modeling that plastic deformation occurs far from equilibrium and is subject to Prigogine’s thermodynamics of energy-flow-through systems. It also holds out promise for future rapid advances in the construction of constitutive equations, since the LEDS hypothesis is the principal basis of the LEDS theory of plastic deformation and follows directly from the second law of thermodynamics in conjunction with Newton’s third law. By contrast, all other known models of metal plasticity are in conflict with the LEDS hypothesis. In regard to texture modeling, the present analysis shows that Taylor’s criterion of minimum plastic work is incorrect and should be replaced by the criterion of minimum free energy in the stressed state. Last, the LEDS hypothesis is but a special case of the more general low-energy structure (LES) hypothesis, applying to plastic deformation independent of the deformation mechanism. It is thus seen that plastic deformation is one of nature’s means to generate order, as a byproduct of the entropy generation when mechanical work is largely converted into heat.
Colin M. Callahan; Carol A. Rowe; Ronald J. Ryel; John D. Shaw; Michael D. Madritch; Karen E. Mock
2013-01-01
Aspen populations in the south-western portion of the range are consistent with expectations for a historically stable edge, with low within-population diversity, significant geographical population structuring, and little evidence of northward expansion. Structuring within the southwestern cluster may result from distinct gene pools separated during the Pleistocene...
Butz, Markus; Steenbuck, Ines D; van Ooyen, Arjen
2014-01-01
After brain lesions caused by tumors or stroke, or after lasting loss of input (deafferentation), inter- and intra-regional brain networks respond with complex changes in topology. Not only areas directly affected by the lesion but also regions remote from the lesion may alter their connectivity-a phenomenon known as diaschisis. Changes in network topology after brain lesions can lead to cognitive decline and increasing functional disability. However, the principles governing changes in network topology are poorly understood. Here, we investigated whether homeostatic structural plasticity can account for changes in network topology after deafferentation and brain lesions. Homeostatic structural plasticity postulates that neurons aim to maintain a desired level of electrical activity by deleting synapses when neuronal activity is too high and by providing new synaptic contacts when activity is too low. Using our Model of Structural Plasticity, we explored how local changes in connectivity induced by a focal loss of input affected global network topology. In accordance with experimental and clinical data, we found that after partial deafferentation, the network as a whole became more random, although it maintained its small-world topology, while deafferentated neurons increased their betweenness centrality as they rewired and returned to the homeostatic range of activity. Furthermore, deafferentated neurons increased their global but decreased their local efficiency and got longer tailed degree distributions, indicating the emergence of hub neurons. Together, our results suggest that homeostatic structural plasticity may be an important driving force for lesion-induced network reorganization and that the increase in betweenness centrality of deafferentated areas may hold as a biomarker for brain repair.
Significance of Objective Structured Clinical Examinations to Plastic Surgery Residency Training.
Simmons, Brian J; Zoghbi, Yasmina; Askari, Morad; Birnbach, David J; Shekhter, Ilya; Thaller, Seth R
2017-09-01
Objective structured clinical examinations (OSCEs) have proven to be a powerful tool. They possess more than a 30-year track record in assessing the competency of medical students, residents, and fellows. Objective structured clinical examinations have been used successfully in a variety of medical specialties, including surgery. They have recently found their way into the subspecialty of plastic surgery. This article uses a systematic review of the available literature on OSCEs and their recent use in plastic surgery. It incorporates survey results assessing program directors' views on the use of OSCEs. Approximately 40% of programs surveyed use OSCEs to assess the Accreditation Council for Graduate Medical Education core competencies. We found that 40% use OSCEs to evaluate specific plastic surgery milestones. Objective structured clinical examinations are usually performed annually. They cost anywhere between $100 and more than $1000 per resident. Four milestones giving residents the most difficulties on OSCEs were congenital anomalies, noncancer breast surgery, breast reconstruction, and practice-based learning and improvement. It was determined that challenges with milestones were due to lack of adequate general knowledge and surgical ward patient care, as well as deficits in professionalism and system-based problems. Programs were able to remediate weakness found by OSCEs using a variety of methods. Objective structured clinical examinations offer a unique tool to objectively assess the proficiency of residents in key areas of the Accreditation Council for Graduate Medical Education core competencies. In addition, they can be used to assess the specific milestones that plastic surgery residents must meet. This allows programs to identify and improve identified areas of weakness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopmann, Ch.; Weber, M.; Schöngart, M.
Micro structured optical plastics components are intensively used i. e. in consumer electronics, for optical sensors in metrology, innovative LED-lighting or laser technology. Injection moulding has proven to be successful for the large-scale production of those parts. However, the production of those parts still causes difficulties due to challenges in the moulding and demoulding of plastics parts created with laser structured mould inserts. A complete moulding of the structures often leads to increased demoulding forces, which then cause a breaking of the structures and a clogging of the mould. An innovative approach is to combine PVD-coated (physical vapour deposition), lasermore » structured inserts and a variothermal moulding process to create functional mic8iüro structures in a one-step process. Therefore, a PVD-coating is applied after the laser structuring process in order to improve the wear resistance and the anti-adhesive properties against the plastics melt. In a series of moulding trials with polycarbonate (PC) and polymethylmethacrylate (PMMA) using different coated moulds, the mould temperature during injection was varied in the range of the glass transition and the melt temperature of the polymers. Subsequently, the surface topography of the moulded parts is evaluated by digital 3D laser-scanning microscopy. The influence of the moulding parameters and the coating of the mould insert on the moulding accuracy and the demoulding behaviour are being analysed. It is shown that micro structures created by ultra-short pulse laser ablation can be successfully replicated in a variothermal moulding process. Due to the mould coating, significant improvements could be achieved in producing micro structured optical plastics components.« less
NASA Astrophysics Data System (ADS)
Hopmann, Ch.; Schöngart, M.; Weber, M.; Klein, J.
2015-05-01
Thermoplastic materials are more and more used as a light weight replacement for metal, especially in the automotive industry. Since these materials do not provide the mechanical properties, which are required to manufacture supporting elements like an auto body or a cross bearer, plastics are combined with metals in so called hybrid structures. Normally, the plastics components are joined to the metal structures using different technologies like welding or screwing. Very often, the hybrid structures are made of flat metal parts, which are stiffened by a reinforcement structure made of thermoplastic materials. The loads on these structures are very often impulsive, for example in the crash situation of an automobile. Due to the large stiffness variation of metal and thermoplastic materials, complex states of stress and very high local strain rates occur in the contact zone under impact conditions. Since the mechanical behavior of thermoplastic materials is highly dependent on these types of load, the crash failure of metal plastic hybrid parts is very complex. The problem is that the normally used strain rate dependent elastic/plastic material models are not capable to simulate the mechanical behavior of thermoplastic materials depended on the state of stress. As part of a research project, a method to simulate the mechanical behavior of hybrid structures under impact conditions is developed at the IKV. For this purpose, a specimen for the measurement of mechanical properties dependet on the state of stress and a method for the strain rate depended characterization of thermoplastic materials were developed. In the second step impact testing is performed. A hybrid structure made from a metal sheet and a reinforcement structure of a Polybutylenterephthalat Polycarbonate blend is tested under impact conditions. The measured stress and strain rate depended material data are used to simulate the mechanical behavior of the hybrid structure under highly dynamic load with impact velocities up to 5 m/s. The mechanical behavior of the plastics structure is simulated using a quadratic yield surface, which takes the state of stress and the strain rate into account. The FE model is made from mid surface elements to reduce the computing time.
Genetic structure of the fungal grapevine pathogen Eutypa lata from four continents
USDA-ARS?s Scientific Manuscript database
The generalist ascomycete fungus Eutypa lata causes Eutypa dieback of grapevine (Vitis vinifera) worldwide. To decipher the cosmopolitan distribution of this fungus, the population genetic structure of 17 geographic samples was investigated from four continental regions (Australia, California, Europ...
NASA Astrophysics Data System (ADS)
Hopmann, Ch.; Weber, M.; Schöngart, M.; Schäfer, C.; Bobzin, K.; Bagcivan, N.; Brögelmann, T.; Theiß, S.; Münstermann, T.; Steger, M.
2015-05-01
Micro structured optical plastics components are intensively used i. e. in consumer electronics, for optical sensors in metrology, innovative LED-lighting or laser technology. Injection moulding has proven to be successful for the large-scale production of those parts. However, the production of those parts still causes difficulties due to challenges in the moulding and demoulding of plastics parts created with laser structured mould inserts. A complete moulding of the structures often leads to increased demoulding forces, which then cause a breaking of the structures and a clogging of the mould. An innovative approach is to combine PVD-coated (physical vapour deposition), laser structured inserts and a variothermal moulding process to create functional mic8iüro structures in a one-step process. Therefore, a PVD-coating is applied after the laser structuring process in order to improve the wear resistance and the anti-adhesive properties against the plastics melt. In a series of moulding trials with polycarbonate (PC) and polymethylmethacrylate (PMMA) using different coated moulds, the mould temperature during injection was varied in the range of the glass transition and the melt temperature of the polymers. Subsequently, the surface topography of the moulded parts is evaluated by digital 3D laser-scanning microscopy. The influence of the moulding parameters and the coating of the mould insert on the moulding accuracy and the demoulding behaviour are being analysed. It is shown that micro structures created by ultra-short pulse laser ablation can be successfully replicated in a variothermal moulding process. Due to the mould coating, significant improvements could be achieved in producing micro structured optical plastics components.
[Structural plasticity associated with drugs addiction].
Zhu, Jie; Cao, Guo-fen; Dang, Yong-hui; Chen, Teng
2011-12-01
An essential feature of drug addiction is that an individual continues to use drug despite the threat of severely adverse physical or psychosocial consequences. Persistent changes in behavior and psychological function that occur as a function of drugs of abuse are thought to be due to the reorganization of synaptic connections (structural plasticity) in relevant brain circuits (especially the brains reward circuits). In this paper we summarized evidence that, indeed, exposure to amphetamine, cocaine, nicotine or morphine produced persistent changes in the structure of dendrites and dendritic spines on cells in relevant brain regions. We also approached the potential molecular mechanisms of these changes. It is suggested that structural plasticity associated with exposure to drugs of abuse reflects a reorganization of patterns of synaptic connectivity in these neural systems, a reorganization that alters their operation, thus contributing to some of the persistent sequela associated with drug use-including addiction.
Plastic material investment in load-bearing silk attachments in spiders.
Wolff, Jonas O; Jones, Braxton; Herberstein, Marie E
2018-05-17
The nature and size of attachments is a fundamental element of animal constructions. Presumably, these adhesive structures are plastically deployed to balance material investment and attachment strength. Here we studied plasticity in dragline anchorages of the golden orb web spider, Nephila plumipes. Specifically, we predict that spiders adjust the size and structure of dragline anchorages with load, i.e. spider mass. Mass was manipulated by attaching lead pieces to the spider's abdomen resulting in a 50 percent increase in mass. Loaded spiders spun larger but structurally similar thread anchorages than unloaded spiders. Thus, the spinning program that determines the overall anchor structure is highly stereotypic, and flexibility is introduced through varying the anchor size by increasing material investment. Our study showcases substrate attachments as suitable models to investigate the interplay between innate and changeable elements in the economy of building behaviours. Copyright © 2018 Elsevier GmbH. All rights reserved.
Plasticization effect of triacetin on structure and properties of starch ester film.
Zhu, Jie; Li, Xiaoxi; Huang, Chen; Chen, Ling; Li, Lin
2013-05-15
The aim of this work was to evaluate the plasticizing effect of triacetin on the structure and properties of starch ester film and further establish the structure-property relationships. The presence of triacetin resulted in multiple structure changes of the film. The mobility of macromolecular chain was increased to form scattered crystallite during the film formation process. The amorphous region was enlarged to contain more triacetin squeezed from crystalline region. The plasticization of triacetin and restriction of crystallite oppositely influenced the mobility of macromolecular chains in different regions. The thermal stability of triacetin changed along with its fluctuant interaction with macromolecules. Comparatively, the enhanced ether bond and the restriction from crystalline regions on the mobility of the amorphous chain consequently improved the thermal stability of the film matrix. The interaction between triacetin and starch ester was essential to film forming but unexpectedly lowered the triacetin stability. Copyright © 2013 Elsevier Ltd. All rights reserved.
PLANS; a finite element program for nonlinear analysis of structures. Volume 2: User's manual
NASA Technical Reports Server (NTRS)
Pifko, A.; Armen, H., Jr.; Levy, A.; Levine, H.
1977-01-01
The PLANS system, rather than being one comprehensive computer program, is a collection of finite element programs used for the nonlinear analysis of structures. This collection of programs evolved and is based on the organizational philosophy in which classes of analyses are treated individually based on the physical problem class to be analyzed. Each of the independent finite element computer programs of PLANS, with an associated element library, can be individually loaded and used to solve the problem class of interest. A number of programs have been developed for material nonlinear behavior alone and for combined geometric and material nonlinear behavior. The usage, capabilities, and element libraries of the current programs include: (1) plastic analysis of built-up structures where bending and membrane effects are significant, (2) three dimensional elastic-plastic analysis, (3) plastic analysis of bodies of revolution, and (4) material and geometric nonlinear analysis of built-up structures.
ERIC Educational Resources Information Center
Middei, Silvia; Roberto, Anna; Berretta, Nicola; Panico, Maria Beatrice; Lista, Simone; Bernardi, Giorgio; Mercuri, Nicola B.; Ammassari-Teule, Martine; Nistico, Robert
2010-01-01
B6-Tg/Thy1APP23Sdz (APP23) mutant mice exhibit neurohistological hallmarks of Alzheimer's disease but show intact basal hippocampal neurotransmission and synaptic plasticity. Here, we examine whether spatial learning differently modifies the structural and electrophysiological properties of hippocampal synapses in APP23 and wild-type mice. While…
USDA-ARS?s Scientific Manuscript database
Three different commercially available structural plastic media were evaluated in triplicate in moving bed toriod filters under low salinity (11-12 ppt) warm water culture conditions and two different feed loading rates. The culture system consisted of nine separate modules that include a double dra...
ERIC Educational Resources Information Center
Cipolla, Laura; Ferrari, Lia A.
2016-01-01
A hands-on approach to introduce the chemical elements and the atomic structure to elementary/middle school students is described. The proposed classroom activity presents Bohr models of atoms using common and inexpensive materials, such as nested plastic balls, colored modeling clay, and small-sized pasta (or small plastic beads).
Plasticity in single neuron and circuit computations
NASA Astrophysics Data System (ADS)
Destexhe, Alain; Marder, Eve
2004-10-01
Plasticity in neural circuits can result from alterations in synaptic strength or connectivity, as well as from changes in the excitability of the neurons themselves. To better understand the role of plasticity in the brain, we need to establish how brain circuits work and the kinds of computations that different circuit structures achieve. By linking theoretical and experimental studies, we are beginning to reveal the consequences of plasticity mechanisms for network dynamics, in both simple invertebrate circuits and the complex circuits of mammalian cerebral cortex.
NASA Astrophysics Data System (ADS)
Kalberg, Thomas; Gohl, Karsten
2014-07-01
The Amundsen Sea Embayment of West Antarctica represents a key component in the tectonic history of Antarctic-New Zealand continental breakup. The region played a major role in the plate-kinematic development of the southern Pacific from the inferred collision of the Hikurangi Plateau with the Gondwana subduction margin at approximately 110-100 Ma to the evolution of the West Antarctic Rift System. However, little is known about the crustal architecture and the tectonic processes creating the embayment. During two `RV Polarstern' expeditions in 2006 and 2010 a large geophysical data set was collected consisting of seismic-refraction and reflection data, ship-borne gravity and helicopter-borne magnetic measurements. Two P-wave velocity-depth models based on forward traveltime modelling of nine ocean bottom hydrophone recordings provide an insight into the lithospheric structure beneath the Amundsen Sea Embayment. Seismic-reflection data image the sedimentary architecture and the top-of-basement. The seismic data provide constraints for 2-D gravity modelling, which supports and complements P-wave modelling. Our final model shows 10-14-km-thick stretched continental crust at the continental rise that thickens to as much as 28 km beneath the inner shelf. The homogenous crustal architecture of the continental rise, including horst and graben structures are interpreted as indicating that wide-mode rifting affected the entire region. We observe a high-velocity layer of variable thickness beneath the margin and related it, contrary to other `normal volcanic type margins', to a proposed magma flow along the base of the crust from beneath eastern Marie Byrd Land-West Antarctica to the Marie Byrd Seamount province. Furthermore, we discuss the possibility of upper mantle serpentinization by seawater penetration at the Marie Byrd Seamount province. Hints of seaward-dipping reflectors indicate some degree of volcanism in the area after break-up. A set of gravity anomaly data indicate several phases of fully developed and failed rift systems, including a possible branch of the West Antarctic Rift System in the Amundsen Sea Embayment.
NASA Astrophysics Data System (ADS)
Price, A. C.; Weeraratne, D. S.; Kohler, M. D.; Rathnayaka, S.; Escobar, L., Sr.
2015-12-01
The North American and Pacific plate boundary is a unique example of past subduction of an oceanic spreading center which has involved oceanic plate capture and inception of a continental transform boundary that juxtaposes continental and oceanic lithosphere on a single plate. The amphibious ALBACORE seismic project (Asthenospheric and Lithospheric Broadband Architecture from the California Offshore Region Experiment) deployed 34 ocean bottom seismometers (OBS) on 15-35 Ma seafloor and offers a unique opportunity to compare the LAB in continental and oceanic lithosphere in one seismic study. Rayleigh waves were recorded simultaneously by our offshore array and 82 CISN network land stations from 2010-2011. Here we predict phase velocities for a starting shear wave velocity model for each of 5 regions in our study area and compare to observed phase velocities from our array in a least-squares sense that produces the best fit 1-D shear wave velocity structure for each region. Preliminary results for the deep ocean (seafloor 25-32 Ma) indicates high velocities reaching 4.5 km/s at depths of 50 km associated with the lithosphere for seafloor 25-32 Ma. A negative velocity gradient is observed below this which reaches a minimum of 4.0 km/s at 160 km depth. The mid-ocean region (age 13-25 Ma) indicates a slightly lower magnitude and shallower LVZ. The Inner Borderland displays the highest lithospheric velocities offshore reaching 4.8 km/s at 40 km depth indicating underplating. The base of the LVZ in the Borderland increases sharply from 4.0 km/s to 4.5 km/s at 80-150 km depth indicating partial melt and compositional changes. The LVZ displays a very gradual positive velocity gradient in all other regions such as the deep seafloor and continent reaching 4.5 km/s at 300 km depth. The deep ocean, Borderlands, and continental region each have unique lithospheric velocities, LAB depths, and LVZ character that indicate stark differences in mantle structure that occur on a single plate as well as across the continental margin.
NASA Astrophysics Data System (ADS)
Gomez, C. D.; Escobar, L., Sr.; Rathnayaka, S.; Weeraratne, D. S.; Kohler, M. D.
2016-12-01
The California continental margin, a major transform plate boundary in continental North America, is the locus of complex tectonic stress fields that are important in interpreting both remnant and ongoing deformational strain. Ancient subduction of the East Pacific Rise spreading center, the rotation and translation of tectonic blocks and inception of the San Andreas fault all contribute to the dynamic stress fields located both onshore and offshore southern California. Data obtained by the ALBACORE (Asthenospheric and Lithospheric Broadband Architecture from the California Offshore Region Experiment) and the CISN (California Integrated Seismic Network) seismic array are analyzed for azimuthal anisotropy of Rayleigh waves from 80 teleseismic events at periods 16 - 78 s. Here we invert Rayleigh wave data for shear wave velocity structure and three-dimensional seismic anisotropy in the thee regions designated within the continental margin including the continent, seafloor and California Borderlands. Preliminary results show that seismic anisotropy is resolved in multiple layers and can be used to determine the lithosphere-asthenosphere boundary (LAB) in offshore and continental regions. The oldest seafloor in our study at age 25-35 Ma indicates that the anisotropic transition across the LAB occurs at 73 km +/- 25 km with the lithospheric fast direction oriented WNW-ESE, consistent with current Pacific plate motion direction. The continent region west of the San Andreas indicates similar WNW-ESE anisotropy and LAB depth. Regions east of the San Andreas fault indicate NW-SE anisotropy transitioning to a N-S alignment at 80 km depth north of the Garlock fault. The youngest seafloor (15 - 25 Ma) and outer Borderlands indicate a more complex three layer fabric where shallow lithospheric NE-SW fast directions are perpendicular with ancient Farallon subduction arc, a mid-layer with E-W fast directions are perpendicular to remnant fossil fabric, and the deepest layer indicates NW-SE fast directions below the LAB likely controlled by current Pacific plate motion. The inner Borderland indicates two layer anisotropic structure with a shallow NW-SE lithospheric fast direction that changes to NE-SW fast directions below the LAB, possibly consistent with the ancient subduction direction.
Answers from deep inside the Earth; Continental Scientific Drilling at Cajon Pass, California
Russ, D.P.
1989-01-01
Drilling of a 12,000-foot-deep scientific well has been completed at Cajon Pass in southern California to measure crustal properties, to determine crustal structure, and to better understanding the generation of earthquakes along the San Andreas fault. A joint effort of the National Science Foundation (NFS) and the U.S Geological Survey (USGS), the well was begun in November 1986, and is one of the first projects to be undertaken in the new national Continental Scientific Drilling Program. This program aims to enchance our knowledge of the compostiion, sturcture, dynamics, and evolution of the continental crust and of how these factors affect the origin and distribution of mineral and energy resources and natural phenomena such as volcanic eruptions and earthquakes.
NASA Astrophysics Data System (ADS)
Brune, S.
2016-12-01
The Gulf of California formed by oblique divergence across the Pacific-North America plate boundary. This presentation combines numerical forward modeling and plate tectonic reconstructions in order to address 2 important aspects of rift dynamics: (1) Plate motions during continental rifting are decisively controlled by the non-linear decay of rift strength. This conclusion is based on a recent plate-kinematic analysis of post-Pangea rift systems (Central Atlantic, South Atlantic, Iberia/Newfoundland, Australia/Antarctica, North Atlantic, South China Sea). In all cases, continental rifting starts with a slow phase followed by an abrupt acceleration within a few My introducing a fast rift phase. Numerical forward modeling with force boundary conditions shows that the two-phase velocity behavior and the rapid speed-up during rifting are intrinsic features of continental rupture that can be robustly inferred for different crust and mantle rheologies. (2) Rift strength depends on the obliquity of the rift system: the force required to maintain a given rift velocity can be computed from simple analytical and more realistic numerical models alike, and both modeling approaches demonstrate that less force is required to perpetuate oblique extension. The reason is that plastic yielding requires a smaller plate boundary force when extension is oblique to the rift trend. Comparing strike slip and pure extension end-member scenarios, it can be shown that about 50% less force is required to deform the lithosphere under strike-slip. This result implies that rift systems involving significant obliquity are mechanically preferred. These two aspects shed new light on the underlying geodynamic causes of Gulf of California rift history. Continental extension is thought to have started in Late Eocene/Oligocene times as part of the southern Basin and Range Province and evolved in a protracted history at low extension rate (≤15 mm/yr). However, with a direction change in Baja California microplate motion 13-6 My ago, plate divergence drastically increased its obliquity, which reduced the rifts mechanical resistance to extension. This effective loss of rift strength sparked an acceleration of the Gulf of California rift and ultimately enabled today's divergence velocities of more than 45 mm/yr.
NASA Astrophysics Data System (ADS)
Glebovitsky, V. A.; Nikitina, L. P.; Khiltova, V. Ya.; Ovchinnikov, N. O.
2004-05-01
The thermal state of the upper mantle beneath tectonic structures of various ages and types (Archaean cratons, Early Proterozoic accretionary and collisional orogens, and Phanerozoic structures) is characterized by geotherms and by thermal gradients (TG) derived from data on the P- T conditions of mineral equilibria in garnet and garnet-spinel peridotite xenoliths from kimberlites (East Siberia, Northeastern Europe, India, Central Africa, North America, and Canada) and alkali basalts (Southeastern Siberia, Mongolia, southeastern China, southeastern Australia, Central Africa, South America, and the Solomon and Hawaiian islands). The use of the same garnet-orthopyroxene thermobarometer (Theophrastus Contributions to Advanced Studies in Geology. 3: Capricious Earth: Models and Modelling of Geologic Processes and Objects 2000 44) for all xenoliths allowed us to avoid discrepancies in estimation of the P- T conditions, which may be a result of the mismatch between different thermometers and barometers, and to compare the thermal regimes in the mantle in various regions. Thus, it was established that (1) mantle geotherms and geothermal gradients, obtained from the estimation of P- T equilibrium conditions of deep xenoliths, correspond to the age of crust tectonic structures and respectively to the time of lithosphere stabilization; it can be suggested that the ancient structures of the upper mantle were preserved within continental roots; (2) thermal regimes under continental mantle between the Archaean cratons and Palaeoproterozoic belts are different today; (3) the continental mantle under Neoproterozoic and Phanerozoic belts is characterized by significantly higher values of geothermal gradient compared to the mantle under Early Precambrian structures; (4) lithosphere dynamics seems to change at the boundary between Early and Mezo-Neoproterozoic and Precambrian and Phanerozoic.
Using natural laboratories and modeling to decipher lithospheric rheology
NASA Astrophysics Data System (ADS)
Sobolev, Stephan
2013-04-01
Rheology is obviously important for geodynamic modeling but at the same time rheological parameters appear to be least constrained. Laboratory experiments give rather large ranges of rheological parameters and their scaling to nature is not entirely clear. Therefore finding rheological proxies in nature is very important. One way to do that is finding appropriate values of rheological parameter by fitting models to the lithospheric structure in the highly deformed regions where lithospheric structure and geologic evolution is well constrained. Here I will present two examples of such studies at plate boundaries. One case is the Dead Sea Transform (DST) that comprises a boundary between African and Arabian plates. During the last 15- 20 Myr more than 100 km of left lateral transform displacement has been accumulated on the DST and about 10 km thick Dead Sea Basin (DSB) was formed in the central part of the DST. Lithospheric structure and geological evolution of DST and DSB is rather well constrained by a number of interdisciplinary projects including DESERT and DESIRE projects leaded by the GFZ Potsdam. Detailed observations reveal apparently contradictory picture. From one hand widespread igneous activity, especially in the last 5 Myr, thin (60-80 km) lithosphere constrained from seismic data and absence of seismicity below the Moho, seem to be quite natural for this tectonically active plate boundary. However, surface heat flow of less than 50-60mW/m2 and deep seismicity in the lower crust ( deeper than 20 km) reported for this region are apparently inconsistent with the tectonic settings specific for an active continental plate boundary and with the crustal structure of the DSB. To address these inconsistencies which comprise what I call the "DST heat-flow paradox", a 3D numerical thermo-mechanical model was developed operating with non-linear elasto-visco-plastic rheology of the lithosphere. Results of the numerical experiments show that the entire set of observations for the DSB can be explained within the classical pull-apart model assuming that (1) the lithosphere has been thermally eroded at about 20 Ma, just before the active faulting at the DST, and (2) the uppermost mantle in the region have relatively weak rheology consistent with the experimental data for wet olivine or pyroxenite. Another example is modeling of the collision of India and Eurasia in Tibet. Our recent thermo-mechanical model (see abstract by Tympel et al) reproduce well many important features of this orogeny, including observed convergence and distance of underthrusting of Indian lithosphere beneath Tibet, if long-term friction at India-Eurasia interface is about 0.04- 0.05, which is typical for oceanic subduction zones, but is unexpected low for continental setting.
NASA Astrophysics Data System (ADS)
Grevemeyer, Ingo; Ranero, Cesar; Sallares, Valenti; Prada, Manel; Booth-Rea, Guillermo; Gallart, Josep; Zitellini, Nevio
2017-04-01
The Western Mediterranean Sea is a natural laboratory to study the processes of continental extension, rifting and back-arc spreading in a convergent setting caused by rollback of fragmented subducting oceanic slabs during the latest phase of consumption of the Tethys ocean, leading to rapid extension in areas characterized by a constant convergence of the African and European Plates since Cretaceous time. Opening of the Algerian-Balearic Basin was governed by a southward and westward retreating slab 21 to 18 Myr and 18 to15 Myr ago, respectively. Opening of the Tyrrhenian Basin was controlled by the retreating Calabrian slab 6 to 2 Myr ago. Yet, little is known about the structure of the rifted margins, back-arc extension and spreading. Here we present results from three onshore/offshore seismic refraction and wide-angle lines and two offshore lines sampling passive continental margins of southeastern Spain and to the south of the Balearic promontory and the structure of the Tyrrhenian Basin to the north of Sicily. Seismic refraction and wide-angle data were acquired in the Algerian-Balearc Basin during a cruise of the German research vessel Meteor in September of 2006 and in the Tyrrhenian Sea aboard the Spanish research vessel Sarmiento de Gamboa in July of 2015. All profiles sampled both continental crust of the margins surrounding the basins and extend roughly 100 km into the Algerian-Balearic and the Tyrrhenian Basins, yielding constraints on the nature of the crust covering the seafloor in the basins and adjacent margins. Crust in the Algerian-Balearic basin is roughly 5-6 km thick and the seismic velocity structure mimics normal oceanic crust with the exception that lower crustal velocity is <6.8 km/s, clearly slower than lower crust sampled in the Pacific Basin. The seismic Moho in the Algerian-Balearic Basin occurs at 11 km below sea level, reaching >24 km under SE Spain and the Balearic Islands, displaying typical features and structure of continental crust. Offshore Sicily, continental crust reaches 22 km. However, the Tyrrhenian Basin indicates a lithosphere with velocities increasing continuously from 3 km/s to 7.5 km/s, mimicking features attributed to un-roofed and hence serpentinized mantle. Therefore, even though the opening of both basins was controlled by slab rollback, the resulting structures of the basins indicate striking differences. It is interesting to note that the continent/ocean transition zone of the margins did not show any evidence for high velocity lower crustal rocks, in contrast to what has been sampled in Western Pacific arc/back-arc systems.
NASA Astrophysics Data System (ADS)
Corchete, V.
2017-04-01
A 3D imaging of S-velocity for the Arabian Sea crust and upper mantle structure is presented in this paper, determined by means of Rayleigh wave analysis, for depths ranging from zero to 300 km. The crust and upper mantle structure of this region of the earth never has been the subject of a surface wave tomography survey. The Moho map performed in the present study is a new result, in which a crustal thickening beneath the Arabian Fan sediments can be observed. This crustal thickening can be interpreted as a quasi-continental oceanic transitional structure. A crustal thickness of up to 20 km also can be observed for the Murray Ridge system in this Moho map. This crustal thickening can be due to that the Murray Ridge System consists of Indian continental crust. This continental crust is extremely thinned to the southwest of this region, as shown in this Moho map. This area can be interpreted as oceanic in origin. In the depth range from 30 to 60 km, the S-velocity presents its lower values at the Carlsberg Ridge region, because it is the younger region of the study area. In the depth range from 60 to 105 km of depth, the S-velocity pattern is very similar to that shown for the previous depth range, except for the regions in which the asthenosphere is reached, for these regions appear a low S-velocity pattern. The lithosphere-asthenosphere boundary (LAB), or equivalently the lithosphere thickness, determined in the present study is also a new result, in which the lithosphere thickness for the Arabian Fan can be estimated in 60-70 km. The lower lithospheric thickness observed in the LAB map, for the Arabian Fan, shows that this region may be in the transition zone between continental and oceanic structure. Finally, a low-velocity zone (LVZ) has been determined, for the whole study area, located between the LAB and the boundary of the asthenosphere base (or equivalently the lithosphere-asthenosphere system thickness). The asthenosphere-base map calculated in the present study is also a new result.
Academic Status of Plastic Surgery in the United States and the Relevance of Independence.
Liu, P; Singh, M; Eriksson, E
2016-04-01
The basic administrative structures at most academic institutions were implemented more than 50 years ago and have remained largely unchanged. Since the surgical specialties were in nascent stages during that time, they were clubbed together within the department of surgery. There has been extensive growth in the breadth and depth of plastic surgery over the past few decades and current administrative structures might not truly reflect the current standing of plastic surgery. The goal of this article was to review the academic status of Plastic Surgery in the United States and assess the relevance of independence from the department of surgery. A national survey of 94 hospitals with plastic surgery residency training programs in the United States was conducted to investigate the academic status of plastic surgery. 25 out of those 94 programs had department status with their respective hospitals while another 9 programs were actively planning on transitioning to department status. Out of the 25 plastic surgery hospital departments, 17 programs were also University departments. The number of plastic surgery departments has more than doubled over the past 10 years and continues to rise as more plastic surgery divisions seek department status. There are multiple advantages to seeking department status such as financial and administrative autonomy, ability to participate in medical school curricula, easier access to interdepartmental institutes and faculties, parity with other specialties, and increased control of resident education. There has been concerted advocacy for separating from surgery departments and seeking independent departmental status for plastic surgery. However, the transition from a division to department is a slow and demanding process and requires a well-planned strategy. © Georg Thieme Verlag KG Stuttgart · New York.
Growth of the lower continental crust via the relamination of arc magma
NASA Astrophysics Data System (ADS)
He, Yumei; Zheng, Tianyu; Ai, Yinshuang; Hou, Guangbing; Chen, Qi-Fu
2018-01-01
How does continental crust transition from basaltic mantle-derived magmas into an andesitic composition? The relamination hypothesis has been presented as an alternative dynamical mechanism to classical delamination theory to explain new crust generation and has been supported by petrological and geochemical studies as well as by thermomechanical numerical modeling. However, direct evidence of this process from detailed seismic velocity structures is lacking. Here, we imaged the three-dimensional (3D) velocity structures of the crust and uppermost mantle beneath the geologically stable Ordos terrane of the North China Craton (NCC). We identify a region of continental crust that exhibits extreme growth using teleseismic data and an imaging technique that models the Common Conversion Point (CCP) stacking profiles. Our results show an approximately 400 × 400 km2 wide growth zone that underlies the primitive crust at depths of 30-50 km and exhibits a gradual increase of velocity with depth. The upper layer of the growth zone has a shear wave velocity of 3.6-3.9 km/s (Vp = 6.2-6.8 km/s), indicating felsic material, and the lower layer has a shear wave velocity of 4.1-4.3 km/s (Vp = 7.2-7.5 km/s), which corresponds to mafic material. We suggest that this vertical evolution of the layered structure could be created by relamination and that the keel structure formed by relamination may be the root of the supernormal stability of the ancient Ordos terrane.
‘White revolution’ to ‘white pollution’—agricultural plastic film mulch in China
NASA Astrophysics Data System (ADS)
Liu, E. K.; He, W. Q.; Yan, C. R.
2014-09-01
Plastic film mulching has played an important role in Chinese agriculture due to its soil warming and moisture conservation effects. With the help of plastic film mulch technology, grain and cash crop yields have increased by 20-35% and 20-60%, respectively. The area of plastic film coverage in China reached approximately 20 million hectares, and the amount of plastic film used reached 1.25 million tons in 2011. While producing huge benefits, plastic film mulch technology has also brought on a series of pollution hazards. Large amounts of residual plastic film have detrimental effects on soil structure, water and nutrient transport and crop growth, thereby disrupting the agricultural environment and reducing crop production. To control pollution, the Chinese government urgently needs to elevate plastic film standards. Meanwhile, research and development of biodegradable mulch film and multi-functional mulch recovery machinery will help promote effective control and management of residual mulch pollution.
Evading the strength–ductility trade-off dilemma in steel through gradient hierarchical nanotwins
Wei, Yujie; Li, Yongqiang; Zhu, Lianchun; Liu, Yao; Lei, Xianqi; Wang, Gang; Wu, Yanxin; Mi, Zhenli; Liu, Jiabin; Wang, Hongtao; Gao, Huajian
2014-01-01
The strength–ductility trade-off has been a long-standing dilemma in materials science. This has limited the potential of many structural materials, steels in particular. Here we report a way of enhancing the strength of twinning-induced plasticity steel at no ductility trade-off. After applying torsion to cylindrical twinning-induced plasticity steel samples to generate a gradient nanotwinned structure along the radial direction, we find that the yielding strength of the material can be doubled at no reduction in ductility. It is shown that this evasion of strength–ductility trade-off is due to the formation of a gradient hierarchical nanotwinned structure during pre-torsion and subsequent tensile deformation. A series of finite element simulations based on crystal plasticity are performed to understand why the gradient twin structure can cause strengthening and ductility retention, and how sequential torsion and tension lead to the observed hierarchical nanotwinned structure through activation of different twinning systems. PMID:24686581
Computational modeling of neural plasticity for self-organization of neural networks.
Chrol-Cannon, Joseph; Jin, Yaochu
2014-11-01
Self-organization in biological nervous systems during the lifetime is known to largely occur through a process of plasticity that is dependent upon the spike-timing activity in connected neurons. In the field of computational neuroscience, much effort has been dedicated to building up computational models of neural plasticity to replicate experimental data. Most recently, increasing attention has been paid to understanding the role of neural plasticity in functional and structural neural self-organization, as well as its influence on the learning performance of neural networks for accomplishing machine learning tasks such as classification and regression. Although many ideas and hypothesis have been suggested, the relationship between the structure, dynamics and learning performance of neural networks remains elusive. The purpose of this article is to review the most important computational models for neural plasticity and discuss various ideas about neural plasticity's role. Finally, we suggest a few promising research directions, in particular those along the line that combines findings in computational neuroscience and systems biology, and their synergetic roles in understanding learning, memory and cognition, thereby bridging the gap between computational neuroscience, systems biology and computational intelligence. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Babaie, Hassan; Davarpanah, Armita
2016-04-01
We are semantically modeling the structural and dynamic process components of the plastic deformation of minerals and rocks in the Plastic Deformation Ontology (PDO). Applying the Ontology of Physics in Biology, the PDO classifies the spatial entities that participate in the diverse processes of plastic deformation into the Physical_Plastic_Deformation_Entity and Nonphysical_Plastic_Deformation_Entity classes. The Material_Physical_Plastic_Deformation_Entity class includes things such as microstructures, lattice defects, atoms, liquid, and grain boundaries, and the Immaterial_Physical_Plastic_Deformation_Entity class includes vacancies in crystals and voids along mineral grain boundaries. The objects under the many subclasses of these classes (e.g., crystal, lattice defect, layering) have spatial parts that are related to each other through taxonomic (e.g., Line_Defect isA Lattice_Defect), structural (mereological, e.g., Twin_Plane partOf Twin), spatial-topological (e.g., Vacancy adjacentTo Atom, Fluid locatedAlong Grain_Boundary), and domain specific (e.g., displaces, Fluid crystallizes Dissolved_Ion, Void existsAlong Grain_Boundary) relationships. The dynamic aspect of the plastic deformation is modeled under the dynamical Process_Entity class that subsumes classes such as Recrystallization and Pressure_Solution that define the flow of energy amongst the physical entities. The values of the dynamical state properties of the physical entities (e.g., Chemical_Potential, Temperature, Particle_Velocity) change while they take part in the deformational processes such as Diffusion and Dislocation_Glide. The process entities have temporal parts (phases) that are related to each other through temporal relations such as precedes, isSubprocessOf, and overlaps. The properties of the physical entities, defined under the Physical_Property class, change as they participate in the plastic deformational processes. The properties are categorized into dynamical, constitutive, spatial, temporal, statistical, and thermodynamical. The dynamical properties, categorized under the Dynamical_Rate_Property and Dynamical_State_Property classes, subsume different classes of properties (e.g., Fluid_Flow_Rate, Temperature, Chemical_Potential, Displacement, Electrical_Charge) based on the physical domain (e.g., fluid, heat, chemical, solid, electrical). The properties are related to the objects under the Physical_Entity class through diverse object type (e.g., physicalPropertyOf) and data type (e.g., Fluid_Pressure unit 'MPa') properties. The changes of the dynamical properties of the physical entities, described by the empirical laws (equations) modeled by experimental structural geologists, are modeled through the Physical_Property_Dependency class that subsumes the more specialized constitutive, kinetic, and thermodynamic expressions of the relationships among the dynamic properties. Annotation based on the PDO will make it possible to integrate and reuse experimental plastic deformation data, knowledge, and simulation models, and conduct semantic-based search of the source data originating from different rock testing laboratories.
Crustal structure and extension mode in the northwestern margin of the South China Sea
NASA Astrophysics Data System (ADS)
Gao, Jinwei; Wu, Shiguo; McIntosh, Kirk; Mi, Lijun; Liu, Zheng; Spence, George
2016-06-01
Combining multi-channel seismic reflection and gravity modeling, this study has investigated the crustal structure of the northwestern South China Sea margin. These data constrain a hyper-extended crustal area bounded by basin-bounding faults corresponding to an aborted rift below the Xisha Trough with a subparallel fossil ridge in the adjacent Northwest Sub-basin. The thinnest crust is located in the Xisha Trough, where it is remnant lower crust with a thickness of less than 3 km. Gravity modeling also revealed a hyper-extended crust across the Xisha Trough. The postrift magmatism is well developed and more active in the Xisha Trough and farther southeast than on the northwestern continental margin of the South China Sea; and the magmatic intrusion/extrusion was relatively active during the rifting of Xisha Trough and the Northwest Sub-basin. A narrow continent-ocean transition zone with a width of ˜65 km bounded seaward by a volcanic buried seamount is characterized by crustal thinning, rift depression, low gravity anomaly and the termination of the break-up unconformity seismic reflection. The aborted rift near the continental margin means that there may be no obvious detachment fault like that in the Iberia-Newfoundland type margin. The symmetric rift, extreme hyper-extended continental crust and hotter mantle materials indicate that continental crust underwent stretching phase (pure-shear deformation), thinning phase and breakup followed by onset of seafloor spreading and the mantle-lithosphere may break up before crustal-necking in the northwestern South China Sea margin.
NASA Astrophysics Data System (ADS)
Eccles, Jennifer D.; White, Robert S.; Christie, Philip A. F.
2011-07-01
Imaging challenges caused by highly attenuative flood basalt sequences have resulted in the understanding of volcanic rifted continental margins lagging behind that of non-volcanic rifted and convergent margins. Massive volcanism occurred during break-up at 70% of the passive margins bordering the Atlantic Ocean, the causes and dynamics of which are still debated. This paper shows results from traveltime tomography of compressional and converted shear wave arrivals recorded on 170 four-component ocean bottom seismometers along two North Atlantic continental margin profiles. This traveltime tomography was performed using two different approaches. The first, a flexible layer-based parameterisation, enables the quality control of traveltime picks and investigation of the crustal structure. The second, with a regularised grid-based parameterisation, requires correction of converted shear wave traveltimes to effective symmetric raypaths and allows exploration of the model space via Monte Carlo analyses. The velocity models indicate high lower-crustal velocities and sharp transitions in both velocity and Vp/Vs ratios across the continent-ocean transition. The velocities are consistent with established mixing trends between felsic continental crust and high magnesium mafic rock on both margins. Interpretation of the high quality seismic reflection profile on the Faroes margin confirms that this mixing is through crustal intrusion. Converted shear wave data also provide constraints on the sub-basalt lithology on the Faroes margin, which is interpreted as a pre-break-up Mesozoic to Paleocene sedimentary system intruded by sills.
Plastic waste associated with disease on coral reefs.
Lamb, Joleah B; Willis, Bette L; Fiorenza, Evan A; Couch, Courtney S; Howard, Robert; Rader, Douglas N; True, James D; Kelly, Lisa A; Ahmad, Awaludinnoer; Jompa, Jamaluddin; Harvell, C Drew
2018-01-26
Plastic waste can promote microbial colonization by pathogens implicated in outbreaks of disease in the ocean. We assessed the influence of plastic waste on disease risk in 124,000 reef-building corals from 159 reefs in the Asia-Pacific region. The likelihood of disease increases from 4% to 89% when corals are in contact with plastic. Structurally complex corals are eight times more likely to be affected by plastic, suggesting that microhabitats for reef-associated organisms and valuable fisheries will be disproportionately affected. Plastic levels on coral reefs correspond to estimates of terrestrial mismanaged plastic waste entering the ocean. We estimate that 11.1 billion plastic items are entangled on coral reefs across the Asia-Pacific and project this number to increase 40% by 2025. Plastic waste management is critical for reducing diseases that threaten ecosystem health and human livelihoods. Copyright © 2018, The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
[The behavior of fiber-reinforced plastics during laser cutting].
Emmrich, M; Levsen, K; Trasser, F J
1992-06-01
The pattern of the organic emissions, which are produced by processing of fibre reinforced plastics (epoxy resins reinforced by aramid and glass fibres and phenol resins reinforced by aramid fibre) with laser beam was studied and the concentrations of the main components determined. Despite the application of plastic materials with different chemical structures, the observed patterns are very similar. Mainly aromatic hydrocarbons are emitted, especially benzene and toluene, as well as some heteroatom-containing aromatic hydrocarbons (e.g. phenol). By use of oxygen as process gas the emissions during cutting of glass fibre reinforced plastics can be reduced, while they will be constantly high with aramid fibre reinforced plastics.
Numerical models for continental break-up: Implications for the South Atlantic
NASA Astrophysics Data System (ADS)
Beniest, A.; Koptev, A.; Burov, E.
2017-03-01
We propose a mechanism that explains in one unified framework the presence of continental break-up features such as failed rift arms and high-velocity and high-density bodies that occur along the South Atlantic rifted continental margins. We used 2D and 3D numerical models to investigate the impact of thermo-rheological structure of the continental lithosphere and initial plume position on continental rifting and break-up processes. 2D experiments show that break-up can be 1) "central", mantle plume-induced and directly located above the centre of the mantle anomaly, 2) "shifted", mantle plume-induced and 50 to 200 km shifted from the initial plume location or 3) "distant", self-induced due to convection and/or slab-subduction/delamination and 300 to 800 km off-set from the original plume location. With a 3D, perfectly symmetrical and laterally homogeneous setup, the location of continental break-up can be shifted hundreds of kilometres from the initial position of the mantle anomaly. We demonstrate that in case of shifted or distant continental break-up with respect to the original plume location, multiple features can be explained. Its deep-seated source can remain below the continent at one or both sides of the newly-formed ocean. This mantle material, glued underneath the margins at lower crustal levels, resembles the geometry and location of high velocity/high density bodies observed along the South Atlantic conjugate margins. Impingement of vertically up-welled plume material on the base of the lithosphere results in pre-break-up topography variations that are located just above this initial anomaly impingement. This can be interpreted as aborted rift features that are also observed along the rifted margins. When extension continues after continental break-up, high strain rates can relocalize. This relocation has been so far attributed to rift jumps. Most importantly, this study shows that there is not one, single rift mode for plume-induced crustal break-up.
High Resolution Quaternary Seismic Stratigraphy of the New York Bight Continental Shelf
Schwab, William C.; Denny, J.F.; Foster, D.S.; Lotto, L.L.; Allison, M.A.; Uchupi, E.; Swift, B.A.; Danforth, W.W.; Thieler, E.R.; Butman, Bradford
2003-01-01
A principal focus for the U.S. Geological Survey (USGS) Coastal and Marine Geology Program (marine.usgs.gov) is regional reconnaissance mapping of inner-continental shelf areas, with initial emphasis on heavily used areas of the sea floor near major population centers. The objectives are to develop a detailed regional synthesis of the sea-floor geology in order to provide information for a wide range of management decisions and to form a basis for further investigations of marine geological processes. In 1995, the USGS, in cooperation with the U.S. Army Corps of Engineers (USACOE), New York District, began to generate reconnaissance maps of the continental shelf seaward of the New York - New Jersey metropolitan area. This mapping encompassed the New York Bight inner-continental shelf, one of the most heavily trafficked and exploited coastal regions in the United States. Contiguous areas of the Hudson Shelf Valley, the largest physiographic feature on this segment of the continental shelf, also were mapped as part of a USGS study of contaminated sediments (Buchholtz ten Brink and others, 1994; 1996). The goal of the reconnaissance mapping was to provide a regional synthesis of the sea-floor geology in the New York Bight area, including: (a) a description of sea-floor morphology; (b) a map of sea-floor sedimentary lithotypes; (c) the geometry and structure of the Cretaceous strata and Quaternary deposits; and (d) the geologic history of the region. Pursuing the course of this mapping effort, we obtained sidescan-sonar images of 100 % of the sea floor in the study area. Initial interpretations of these sidescan data were presented by Schwab and others, (1997a, 1997b, 2000a). High-resolution seismic-reflection profiles collected along each sidescan-sonar line used multiple acoustic sources (e.g., watergun, CHIRP, Geopulse). Multibeam swath-bathymetry data also were obtained for a portion of the study area (Butman and others, 1998;). In this report, we present a series of structural and sediment isopach maps and interpretations of the Quaternary evolution of the inner-continental shelf off the New York - New Jersey metropolitan area based on subbottom, sidescan-sonar, and multibeam-bathymetric data.
NASA Astrophysics Data System (ADS)
Klingelhoefer, F.; Biari, Y.; Sahabi, M.; Funck, T.; Benabdellouahed, M.; Schnabel, M.; Reichert, C. J.; Gutscher, M. A.; Bronner, A.; Austin, J. A., Jr.
2017-12-01
The structure of conjugate passive margins provides information about rifting styles, the initial phases of the opening of an ocean and the formation of its associated sedimentary basins. The study of the deep structure of conjugate passive continental margins combined with precise plate kinematic reconstructions can provide constraints on the mechanisms of rifting and formation of initial oceanic crust. In this study the Central Atlantic conjugate margins are compared, based on compilation of wide-angle seismic profiles from the NW-Africa Nova Scotian and US passive margins. Plate cinematic reconstructions were used to place the profiles in the position at opening and at the M25 magnetic anomaly. The patterns of volcanism, crustal thickness, geometry, and seismic velocities in the transition zone. suggest symmetric rifting followed by asymmetric oceanic crustal accretion. Conjugate profiles in the southern Central Atlantic image differences in the continental crustal thickness. While profiles on the eastern US margin are characterized by thick layers of magmatic underplating, no such underplate was imaged along the NW-African continental margin. It has been proposed that these volcanic products form part of the CAMP (Central Atlantic Magmatic Province). In the north, two wide-angle seismic profiles acquired in exactly conjugate positions show that the crustal geometry of the unthinned continental crust and the necking zone are nearly symmetric. A region including seismic velocities too high to be explained by either continental or oceanic crust is imaged along the Nova Scotia margin off Eastern Canada, corresponding on the African side to an oceanic crust with slightly elevated velocities. These might result from asymmetric spreading creating seafloor by faulting the existing lithosphere on the Canadian side and the emplacement of magmatic oceanic crust including pockets of serpentinite on the Moroccan margin. A slightly elevated crustal thickness along the African margin can be explained by the influence of the Canary hotspot between 60 and 30 Ma in the study region. After isochron M25, a large-scale plate reorganization may then have led to an increase in spreading velocity and the production of a more typical but thin magmatic crust on both sides.
NASA Astrophysics Data System (ADS)
Chen, J.; Nie, X. A.; Jiang, J. C.; Zhou, Y. H.
2018-01-01
A natural plasticizer cardanol derivatives glycidyl ether (CGE) was synthesized and employed as a plasticizer for the poly(vinyl chloride). The effect of CGE on thermal degradation of PVC films and its plasticizing mechanism were firstly reported. The molecular structure of CGE was characterized with Fourier transform infrared spectroscopy (FTIR). Thermal properties, degradation properties and compatibility of the PVC films were investigated by Differential scanning calorimeter analysis (DSC), Thermogravimetric analysis (TGA) and FTIR, respectively. Compared with the commercial plasticizers dioctylphthalate (DOP), CGE can endow PVC film with a decrease of 4.31 °C in glass transition temperature (Tg), an increase of 24.01 °C and 25.53 °C in 10% weight loss (T 10) and 50% weight loss (T 50) respectively, and a higher activetion energy of thermal degradation (Ea ).
Physics in Plastics Technology.
ERIC Educational Resources Information Center
Thomas, Ken
1980-01-01
Discusses the increasing role of the physicist in plastics technology. Relationships of molecular structure to material behavior, design which is related to the material, and the practical problems of fabricating a material into an article are included. (HM)
[Osseontegration of trial implants of carbon fiber reinforced plastics].
Schreiner, U; Schwarz, M; Scheller, G; Schroeder-Boersch, H; Jani, L
2000-01-01
To what extent are carbon fibre-reinforced plastics (CFRP) suitable as an osseous integration surface for implants? CFRP test implants having a plexus-structured, rhombus-structured, and plexus-structured, hydroxyapatite surface were implanted in the femura of mini-plgs. Exposure time lasted 12 weeks. The implants were subjected to a macroradiological, a histological-histomorphometrical, and a fluorescence-microscopical evaluation. One half of the uncoated, plexus-structured implants were not osteointegrated, the other half displayed an osteointegration rate of 11.8% in the spongy area and 29.8% in the cortex layer. The HA-coated test implants showed an osteointegration of 29.5% in the spongiosa and 56.8% in the cortex layer. The rhombus-structured test implants had an osteointegration of 29.2% (spongiosa) and 46.2% (cortex layer). Compared to the osteointegration of metallic, especially titanium surfaces the CFRP surfaces tested by us fared worse, especially the uncoated, plexus-structured surfaces. For this reason we view very critically the use of carbon-fibre reinforced plastics together with the surfaces tested by us as osteointegrating surfaces.
NASA Astrophysics Data System (ADS)
Ohara, Y.; Yoshida, T.; Nishizawa, A.
2013-12-01
The United Nations Commission on the Limits of the Continental Shelf (CLCS) issued its recommendations on Japan's extended continental shelf in April 2012, confirming Japan's rights over the vast areas within the Philippine Sea and Pacific Plates. Japan submitted information on the limits of its continental shelf beyond the EEZ to the CLCS on November 2008, which was the result of 25 years of nation's continental shelf survey project since 1983, involving all of Japan's agency relevant to geosciences. The huge geological and geophysical data obtained through the project give the scientists unprecedented opportunity to study the geology and tectonics of the Philippine Sea and Pacific Plates. In this contribution, we show such an example from the Philippine Sea Plate, relevant to the global mid-ocean ridge problem. Oceanic core complexes (OCC) are dome-shaped bathymetric highs identified in mid-ocean ridges, interpreted as portions of the lower crust and/or upper mantle denuded via low-angle detachment faulting. OCCs are characterized morphologically by axis-normal striations (corrugations, or mullion structure) on the dome, and exposures of mantle peridotite and/or lower crustal gabbro. A strikingly giant OCC (named 'Godzilla Megamullion') was discovered in the Parece Vela Basin by the continental shelf survey project in 2001. Godzilla Megamullion is morphologically the largest OCC in the world, consisting mainly of fertile mantle peridotite along its entire length of over 125 km. Following its discovery in 2001, several academic cruises investigated the structure in detail, providing numerous important findings relevant to mid-ocean ridge tectono-magmatic processes and Philippine Sea evolution, including the slow- to ultraslow-spreading environment for denudation of the detachment fault (< 2.5 cm/y) and associated decreasing degree of partial melting of the peridotites towards the termination of Godzilla Megamullion. In addition to Godzilla Megamullion, several potential OCCs have been discovered in the Philippine Sea Plate by the continental shelf survey project. These are: (1) the ones in the Shikoku Basin spreading axis at around 24 degrees north, (2) the Chaotic Terrain in the Parece Vela Basin, (3) Chaotic Terrain in the West Philippine Basin, near the CBF Rift (formerly known as the Central Basin Fault), (4) Chaotic Terrain in the Kita-Daito Basin, (5) the one in the Shikoku Basin floor to the east of Kyushu-Palau Ridge at 25 degrees north, (6) the Higashi-Ryusei Spur of the Kyushu-Palau Ridge at 26 degrees north, and (7) the one in the Daito Ridge adjoining to the Kida-Daito Basin. OCCs are commonly developed in slow-spreading ridges, providing excellent opportunities as tectonic windows to study the composition and structure of deep oceanic lithosphere. The OCCs in the Philippine Sea Plate in turn provide the opportunities to study the backarc basin lithosphere as well as the continental lithosphere (at the above examples 6 and 7). Although Godzilla Megamullion has been studied very well, the other OCCs are not well documented yet. The next step is to focus on these interesting targets to understand the lithospheric process in the Philippine Sea Plate.
30 CFR 250.905 - How do I get approval for the installation, modification, or repair of my platform?
Code of Federal Regulations, 2012 CFR
2012-07-01
... CONTINENTAL SHELF Platforms and Structures Platform Approval Program § 250.905 How do I get approval for the...) Application cover letter Proposed structure designation, lease number, area, name, and block number, and the type of facility your facility (e.g., drilling, production, quarters). The structure designation must...
Numerical and Experimental Studies on Impact Loaded Concrete Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saarenheimo, Arja; Hakola, Ilkka; Karna, Tuomo
2006-07-01
An experimental set-up has been constructed for medium scale impact tests. The main objective of this effort is to provide data for the calibration and verification of numerical models of a loading scenario where an aircraft impacts against a nuclear power plant. One goal is to develop and take in use numerical methods for predicting response of reinforced concrete structures to impacts of deformable projectiles that may contain combustible liquid ('fuel'). Loading, structural behaviour, like collapsing mechanism and the damage grade, will be predicted by simple analytical methods and using non-linear FE-method. In the so-called Riera method the behavior ofmore » the missile material is assumed to be rigid plastic or rigid visco-plastic. Using elastic plastic and elastic visco-plastic material models calculations are carried out by ABAQUS/Explicit finite element code, assuming axisymmetric deformation mode for the missile. With both methods, typically, the impact force time history, the velocity of the missile rear end and the missile shortening during the impact were recorded for comparisons. (authors)« less
Kayen, Robert E.
2017-01-01
Gentle sediment-laden slopes are typical of the onshore coastal zone and offshore continental shelf and slope. Coastal sediment are commonly young weakly consolidated materials that are well stratified, have low strength, and can mobilize shear displacements at low levels of stress. Seismically-driven plastic displacements of these sediment pose a hazard to coastal cities, buried onshore utilities, and offshore infrastructure like harbor protection and outfalls. One-dimensional rigid downslope-directed Newmark sliding block analyses have been used to predict earthquake deformations generally on steeper slopes that are modeled as frictional materials. This study probes the effect of multidirectional earthquake motions on inertial displacements of gently sloping ground of the coastal and offshore condition where soft-compliant soil is expected. Toward that objective, this investigation seeks to understand the effect on Newmark-type displacements of [1] multidirectional earthquake shaking and [2] soil compliance. In order to model multidirectional effects, the earthquake motions are rotated into the local slope strike- and dip-components. On gently sloping ground, including the strike component of motion always results in a larger and more accurate shear stress vector. Strike motions are found to contribute to downslope deformations on any declivity. Compliant response of the soil mass also influences the plastic displacements. The magnitude of seismic displacements can be estimated with a simplified model using only the estimated soil yield-acceleration (ky) and the peak ground velocity (Vmax) of the earthquake motions. Compliance effects can be effectively mapped using the concept of Plastic Displacement Response Spectra (PDRS).
NASA Astrophysics Data System (ADS)
Cuthbert, Simon
2017-04-01
The Scandinavian Caledonides (SC) represents a plate collision zone of Himalayan style and scale. Three fundamental characteristics of this orogen are: (1) early foreland-directed, tectonic transport and stacking of nappes; (2) late, wholesale reversal of tectonic transport; (3) ultrahigh pressure metamorphism of felsic crust derived from the underthrusting plate at several levels in the orogenic wedge and below the main thrust surface, indicating subduction of continental crust into the mantle. The significance of this for crustal evolution is the profound remodeling of continental crust, direct geochemical interaction of such crust and the mantle and the opening of accommodation space trapping large volumes of clastic detritus within the orogen. The orogenic wedge of the SC was derived from the upper crust of the Baltica continental margin (a hyper-extended passive margin), plus terranes derived from an assemblage of outboard arcs and intra-oceanic basins and, at the highest structural level, elements of the Laurentian margin. Nappe emplacement was driven by Scandian ( 430Ma) collision of Baltica with Laurentia, but emerging Middle Ordovician ages for diamond-facies metamorphism for the most outboard (or rifted) elements of Baltica suggest prior collision with an arc or microcontinent. Nappes derived from Baltica continental crust were subducted, in some cases to depths sufficient to form diamond. These then detached from the upper part of the down-going plate along major thrust faults, at which time they ceased to descend and possibly rose along the subduction channel. Subduction of the remaining continental margin continued below these nappes, possibly driven by slab-pull of the previously subducted Iapetus oceanic lithosphere and metamorphic densification of subducted felsic continental margin. 3D numerical modelling based upon a Caledonide-like plate scenario shows that if a continental corner or promontory enters the subduction zone, the continental margin descends to greater depths than for a simple orthogonal collision and its modelled thermal evolution is consistent with UHP metamorphic assemblages recorded in the southern part of the SC. Furthermore, a tear initiates at the promontary tip along the ocean-continent junction and propagates rapidly along the orogen. The buoyant upthrust of the subducted margin can then lead to reversal of the motion vector of the entire subducting continent, which withdraws the subducted lithospheric margin out of the subduction channel ("eduction"). Because of the diachroneity of slab failure, the continent also rotates, which causes the eduction vector to change azimuth over time. These model behaviours are consistent with the late orogenic structural evolution of the southern SC. However, during the final exhumation stage the crust may not have acted entirely coherently, as some eduction models propose: There is evidence that some inboard Baltica crust experienced late, shallow subduction before detaching as giant "flakes" that carried the orogenic wedge piggyback, forelandwards. Eduction and flake-tectonics could have operated coevally; the model system does not preclude this. Finally, the traction of a large educting (or extruding) mass of continental margin against the overlying orogenic wedge may have stretched and ruptured the wedge, resulting in opening of the late-orogenic Old Red Sandstone molasse basins.
New Insight Into the Crustal Structure of the Continental Margin offshore NW Sabah/Borneo
NASA Astrophysics Data System (ADS)
Barckhausen, U.; Franke, D.; Behain, D.; Meyer, H.
2002-12-01
The continental margin offshore NW Sabah/Borneo (Malaysia) has been investigated with reflection and refraction seismics, magnetics, and gravity during the recent cruise BGR01-POPSCOMS. A total of 4000 km of geophysical profiles has been acquired, thereof 2900 km with reflection seismics. The focus of investigations was on the deep water areas. The margin looks like a typical accretionary margin and was presumably formed during the subduction of a proto South China Sea. Presently, no horizontal movements between the two plates are being observed. Like in major parts of the South China Sea, the area seaward of the Sabah Trough consists of extended continental lithosphere which is characterised by a pattern of rotated fault blocks and half grabens and a carbonate platform of Early Oligocene to Early Miocene age. We found evidence that the continental crust also underlies the Sabah Trough and the adjacent continental slope, a fact that raises many questions about the tectonic history and development of this margin. The tectonic pattern of the Dangerous Grounds' extended continental crust can be traced a long way landward of the Sabah Trough beneath the sedimentary succession of the upper plate. The magnetic anomalies which are dominated by the magnetic signatures of relatively young volcanic features also continue under the continental slope. The sedimentary rocks of the upper plate, in contrast, seem to generate hardly any magnetic anomalies. Based on the new data we propose the following scenario for the development of the NW Sabah continental margin: Seafloor spreading in the present South China Sea started at about 30 Ma in the Late Oligocene. The spreading process separated the Dangerous Grounds area from the SE Asian continent and ceased in late Early Miocene when the oceanic crust of the proto South China Sea was fully subducted in eastward direction along the Borneo-Palawan Trough. During Lower and/or Middle Miocene, Borneo rotated counterclockwise and was thrusted onto the edge of the rifted continental block of the Dangerous Grounds. The subducted oceanic crust of the proto South China Sea must today be located below the Eastern part of Sabah and not along the present NW Sabah Trough.
Prospects of pyrolysis oil from plastic waste as fuel for diesel engines: A review
NASA Astrophysics Data System (ADS)
Mangesh, V. L.; Padmanabhan, S.; Ganesan, S.; PrabhudevRahul, D.; Reddy, T. Dinesh Kumar
2017-05-01
The purpose ofthis study is to review the existing literature about chemical recycling of plastic waste and its potential as fuel for diesel engines. This is a review covering on the field of converting waste plastics into liquid hydrocarbon fuels for diesel engines. Disposal and recycling of waste plastics have become an incremental problem and environmental threat with increasing demand for plastics. One of the effective measures is by converting waste plastic into combustible hydrocarbon liquid as an alternative fuel for running diesel engines. Continued research efforts have been taken by researchers to convert waste plastic in to combustible pyrolysis oil as alternate fuel for diesel engines. An existing literature focuses on the study of chemical structure of the waste plastic pyrolysis compared with diesel oil. Converting waste plastics into fuel oil by different catalysts in catalytic pyrolysis process also reviewed in this paper. The methodology with subsequent hydro treating and hydrocracking of waste plastic pyrolysis oil can reduce unsaturated hydrocarbon bonds which would improve the combustion performance in diesel engines as an alternate fuel.
30 CFR 285.417 - When may MMS order a suspension?
Code of Federal Regulations, 2010 CFR
2010-07-01
... RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Lease and Grant...; the marine, coastal, or human environment; or sites, structures, or objects of historical or...); property; the marine, coastal, or human environment; or sites, structures, or objects of historical or...
Network evolution induced by asynchronous stimuli through spike-timing-dependent plasticity.
Yuan, Wu-Jie; Zhou, Jian-Fang; Zhou, Changsong
2013-01-01
In sensory neural system, external asynchronous stimuli play an important role in perceptual learning, associative memory and map development. However, the organization of structure and dynamics of neural networks induced by external asynchronous stimuli are not well understood. Spike-timing-dependent plasticity (STDP) is a typical synaptic plasticity that has been extensively found in the sensory systems and that has received much theoretical attention. This synaptic plasticity is highly sensitive to correlations between pre- and postsynaptic firings. Thus, STDP is expected to play an important role in response to external asynchronous stimuli, which can induce segregative pre- and postsynaptic firings. In this paper, we study the impact of external asynchronous stimuli on the organization of structure and dynamics of neural networks through STDP. We construct a two-dimensional spatial neural network model with local connectivity and sparseness, and use external currents to stimulate alternately on different spatial layers. The adopted external currents imposed alternately on spatial layers can be here regarded as external asynchronous stimuli. Through extensive numerical simulations, we focus on the effects of stimulus number and inter-stimulus timing on synaptic connecting weights and the property of propagation dynamics in the resulting network structure. Interestingly, the resulting feedforward structure induced by stimulus-dependent asynchronous firings and its propagation dynamics reflect both the underlying property of STDP. The results imply a possible important role of STDP in generating feedforward structure and collective propagation activity required for experience-dependent map plasticity in developing in vivo sensory pathways and cortices. The relevance of the results to cue-triggered recall of learned temporal sequences, an important cognitive function, is briefly discussed as well. Furthermore, this finding suggests a potential application for examining STDP by measuring neural population activity in a cultured neural network.
PLAN2D - A PROGRAM FOR ELASTO-PLASTIC ANALYSIS OF PLANAR FRAMES
NASA Technical Reports Server (NTRS)
Lawrence, C.
1994-01-01
PLAN2D is a FORTRAN computer program for the plastic analysis of planar rigid frame structures. Given a structure and loading pattern as input, PLAN2D calculates the ultimate load that the structure can sustain before collapse. Element moments and plastic hinge rotations are calculated for the ultimate load. The location of hinges required for a collapse mechanism to form are also determined. The program proceeds in an iterative series of linear elastic analyses. After each iteration the resulting elastic moments in each member are compared to the reserve plastic moment capacity of that member. The member or members that have moments closest to their reserve capacity will determine the minimum load factor and the site where the next hinge is to be inserted. Next, hinges are inserted and the structural stiffness matrix is reformulated. This cycle is repeated until the structure becomes unstable. At this point the ultimate collapse load is calculated by accumulating the minimum load factor from each previous iteration and multiplying them by the original input loads. PLAN2D is based on the program STAN, originally written by Dr. E.L. Wilson at U.C. Berkeley. PLAN2D has several limitations: 1) Although PLAN2D will detect unloading of hinges it does not contain the capability to remove hinges; 2) PLAN2D does not allow the user to input different positive and negative moment capacities and 3) PLAN2D does not consider the interaction between axial and plastic moment capacity. Axial yielding and buckling is ignored as is the reduction in moment capacity due to axial load. PLAN2D is written in FORTRAN and is machine independent. It has been tested on an IBM PC and a DEC MicroVAX. The program was developed in 1988.
ERIC Educational Resources Information Center
Spencer, R. Donald
1984-01-01
Describes an experiment (using plastic bags) designed to give students practical understanding on using statistics to evaluate data and how statistical treatment of experimental results can enhance their value in solving scientific problems. Students also gain insight into the orientation and structure of polymers by examining the plastic bags.…
2014-10-01
offer a practical solution to calculating the grain -scale hetero- geneity present in the deformation field. Consequently, crystal plasticity models...process/performance simulation codes (e.g., crystal plasticity finite element method). 15. SUBJECT TERMS ICME; microstructure informatics; higher...iii) protocols for direct and efficient linking of materials models/databases into process/performance simulation codes (e.g., crystal plasticity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mascle, J.; Blarez, E.
The authors present a marine study of the eastern Ivory Coast-Ghana continental margins which they consider one of the most spectacular extinct transform margins. This margin has been created during Early-Lower Cretaceous time and has not been submitted to any major geodynamic reactivation since its fabric. Based on this example, they propose to consider during the evolution of the transform margin four main and successive stages. Shearing contact is first active between two probably thick continental crusts and then between progressively thinning continental crusts. This leads to the creation of specific geological structures such as pull-apart graben, elongated fault lineaments,more » major fault scarps, shear folds, and marginal ridges. After the final continental breakup, a hot center (the mid-oceanic ridge axis) is progressively drifting along the newly created margin. The contact between two lithospheres of different nature should necessarily induce, by thermal exchanges, vertical crustal readjustments. Finally, the transform margin remains directly adjacent to a hot but cooling oceanic lithosphere; its subsidence behavior should then progressively be comparable to the thermal subsidence of classic rifted margins.« less
A multidisciplinary Earth science research program in China
NASA Astrophysics Data System (ADS)
Dong, Shuwen; Li, Tingdong; Gao, Rui; Hou, Hesheng; Li, Yingkang; Zhang, Shihong; Keller, G. Randy; Liu, Mian
2011-09-01
Because China occupies a large and geologically complex region of central and eastern Asia, the country may hold the keys to resolving many basic problems in the Earth sciences, such as how continental collision with India produced China's interconnected array of large intraplate structures, and what links exist between these structures and natural resources. To learn more, the Chinese government has launched SinoProbe, a major research initiative focusing on multidisciplinary imaging of the three-dimensional (3-D) structure and composition of the Chinese continental lithosphere and its evolution through geologic history. This effort is also motivated by China's need for a comprehensive and systematic evaluation of its natural resources and a better understanding of potential geohazards. SinoProbe is funded by the Chinese Ministry of Finance, managed by the Chinese Ministry of Land and Resources, and organized by the Chinese Academy of Geological Sciences. More than 960 investigators and engineers are currently involved with the program, not counting international collaborators. Most of them are affiliated with the Chinese Academy of Geological Sciences, the Chinese Academy of Sciences, the Ministry of Education (i.e., universities), and the China Earthquake Administration. The initial phase of the program (2008-2012), with funding equivalent to about US$164 million, is testing the feasibility of new technologies in geophysical and geochemical exploration and deep continental drilling by focusing on a series of profiles (Figure 1).
Bacterial Community Profiling of Plastic Litter in the Belgian Part of the North Sea.
De Tender, Caroline A; Devriese, Lisa I; Haegeman, Annelies; Maes, Sara; Ruttink, Tom; Dawyndt, Peter
2015-08-18
Bacterial colonization of marine plastic litter (MPL) is known for over four decades. Still, only a few studies on the plastic colonization process and its influencing factors are reported. In this study, seafloor MPL was sampled at different locations across the Belgian part of the North Sea to study bacterial community structure using 16S metabarcoding. These marine plastic bacterial communities were compared with those of sediment and seawater, and resin pellets sampled on the beach, to investigate the origin and uniqueness of plastic bacterial communities. Plastics display great variation of bacterial community composition, while each showed significant differences from those of sediment and seawater, indicating that plastics represent a distinct environmental niche. Various environmental factors correlate with the diversity of MPL bacterial composition across plastics. In addition, intrinsic plastic-related factors such as pigment content may contribute to the differences in bacterial colonization. Furthermore, the differential abundance of known primary and secondary colonizers across the various plastics may indicate different stages of bacterial colonization, and may confound comparisons of free-floating plastics. Our studies provide insights in the factors that shape plastic bacterial colonization and shed light on the possible role of plastic as transport vehicle for bacteria through the aquatic environment.
Porous media heat transfer for injection molding
Beer, Neil Reginald
2016-05-31
The cooling of injection molded plastic is targeted. Coolant flows into a porous medium disposed within an injection molding component via a porous medium inlet. The porous medium is thermally coupled to a mold cavity configured to receive injected liquid plastic. The porous medium beneficially allows for an increased rate of heat transfer from the injected liquid plastic to the coolant and provides additional structural support over a hollow cooling well. When the temperature of the injected liquid plastic falls below a solidifying temperature threshold, the molded component is ejected and collected.
Structural Transformations in Metallic Materials During Plastic Deformation
NASA Astrophysics Data System (ADS)
Zasimchuk, E.; Turchak, T.; Baskova, A.; Chausov, N.; Hutsaylyuk, V.
2017-03-01
In this paper, the structure formation during the plastic deformation of polycrystalline nickel and aluminum based alloy 2024-T3 is investigated. The possibility of the relaxation and synergetic structure formation is examined. It is shown the deformation softening to be due to the crystallization of the amorphous structure of hydrodynamics flow channels (synergetic structure) HC as micrograins and their subsequent growth. The possible mechanism of micrograins' growth is proposed. The deformation processes change the phase composition of the multiphase alloy 2024-T3. It is shown by the quantitative analysis of the structures which were deformed in different regimes of the alloy samples. A method for increasing of the fatigue life through a dynamic pre-deformation is suggested.
Beach macro-litter monitoring and floating microplastic in a coastal area of Indonesia.
Syakti, Agung Dhamar; Bouhroum, Rafika; Hidayati, Nuning Vita; Koenawan, Chandra Joei; Boulkamh, Abdelaziz; Sulistyo, Isdy; Lebarillier, Stephanie; Akhlus, Syafsir; Doumenq, Pierre; Wong-Wah-Chung, Pascal
2017-09-15
Qualitative analysis of the structures of the polymers composing floating plastic debris was performed using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and the aging of the debris was assessed by measuring carbonyl group formation on the particle surfaces. Plastic material made up >75% of the 2313 items collected during a three-year survey. The size, shape and color of the microplastic were correlated with the polymer structure. The most abundant plastic materials were polypropylene (68%) and low-density polyethylene (11%), and the predominant colors of the plastics were white, blue and green. Cilacap Bay, Indonesia, was contaminated with microplastic at a concentration of 2.5mg·m 3 . The carbonyl index demonstrated that most of the floating microplastic was only slightly degraded. This study highlights the need to raise environmental awareness through citizen science education and adopting good environmental practices. Copyright © 2017 Elsevier Ltd. All rights reserved.
Self-organization in Balanced State Networks by STDP and Homeostatic Plasticity
Effenberger, Felix; Jost, Jürgen; Levina, Anna
2015-01-01
Structural inhomogeneities in synaptic efficacies have a strong impact on population response dynamics of cortical networks and are believed to play an important role in their functioning. However, little is known about how such inhomogeneities could evolve by means of synaptic plasticity. Here we present an adaptive model of a balanced neuronal network that combines two different types of plasticity, STDP and synaptic scaling. The plasticity rules yield both long-tailed distributions of synaptic weights and firing rates. Simultaneously, a highly connected subnetwork of driver neurons with strong synapses emerges. Coincident spiking activity of several driver cells can evoke population bursts and driver cells have similar dynamical properties as leader neurons found experimentally. Our model allows us to observe the delicate interplay between structural and dynamical properties of the emergent inhomogeneities. It is simple, robust to parameter changes and able to explain a multitude of different experimental findings in one basic network. PMID:26335425
NASA Astrophysics Data System (ADS)
Beniest, Anouk; Koptev, Alexander; Leroy, Sylvie; Burov, Evgueni
2017-04-01
We used 2D and 3D numerical models to investigate the impact of a single mantle plume on continental rifting and breakup processes. We varied the thermo-rheological structure of the continental lithosphere, its geometry and the initial plume position. Based on the results of our 2D experiments, three continental break-up modes can be distinguished: A) 'central' continental break-up, the break-up center is located directly above the original mantle anomaly position, B) 'shifted' break-up, the break-up center is 50 to 200 km displaced from the initial plume location and C) 'distant' break-up, due to convection and/or slab-subduction/delamination, the break-up center is considerably shifted (300 to 800 km) from the primary plume position. Our 3D model, with a laterally homogeneous initial setup also results in continental break-up with the axis of continental break-up hundreds of kilometers shifted from the original plume location. The model results show that the classical, 'central' view of mantle plume induced continental break-up is not the only mode of break-up. When considering a diversity of break-up styles, it is possible to explain a variety of observed geophysical and geological features. For example, the mantle material glued to the base of the lithosphere at shallower depths corresponds geometrically and location-wise to high-velocity/high-density bodies observed on seismic data below the thinned continental lithosphere and the transition zone of the South Atlantic domain. During migration, products of partial melting of the mantle material can move vertically to (shallow) lower crustal levels. They might resemble high density bodies observed at lower crustal levels inside continental crust with similar geometries observed with gravity modelling. Also, topographic variation form in the very early stages of rifting on the first impingement of upwelled plume material. These variations remain visible, as the final position of the spreading center is shifted from the point of impingement and can be interpreted as aborted rifts, observed along passive margins. Our modelling demonstrates that both simple and perfectly symmetric preliminary settings as well as complex initial setups can result in a variety of break-up systems.
Emergence of small-world structure in networks of spiking neurons through STDP plasticity.
Basalyga, Gleb; Gleiser, Pablo M; Wennekers, Thomas
2011-01-01
In this work, we use a complex network approach to investigate how a neural network structure changes under synaptic plasticity. In particular, we consider a network of conductance-based, single-compartment integrate-and-fire excitatory and inhibitory neurons. Initially the neurons are connected randomly with uniformly distributed synaptic weights. The weights of excitatory connections can be strengthened or weakened during spiking activity by the mechanism known as spike-timing-dependent plasticity (STDP). We extract a binary directed connection matrix by thresholding the weights of the excitatory connections at every simulation step and calculate its major topological characteristics such as the network clustering coefficient, characteristic path length and small-world index. We numerically demonstrate that, under certain conditions, a nontrivial small-world structure can emerge from a random initial network subject to STDP learning.
Evolution and distribution of the coregonids
Smith, Stanford H.
1957-01-01
Increased knowledge of the morphological and physiological plasticity of the coregonids has minimized the significance of conflicting morphological data that have retarded the development of an evolutionary theory. Of the four phyletic lines recognized through worldwide studies,Coregonus originated in the lake and stream area of northwest Eurasia, Stenodus andProsopium evolved in the rivers of Siberia and northwest America respectively, and Leucichthysbecame differentiated in the lake-studded area of northeast America. Isolation and range extension were facilitated by events of the Pleistocene epoch. Inter-continental exchange most likely took place in the Bering Strait region. Representatives of each group in its area of origin are highly variable. Range extensions of each group are characterized by lesser morphological variability and at the extremes only one or two relatively stable species remain.
Piou, Cyril; Prévost, Etienne
2013-03-01
Facing climate change (CC), species are prone to multiple modifications in their environment that can lead to extinction, migration or adaptation. Identifying the role and interplay of different potential stressors becomes a key question. Anadromous fishes will be exposed to both river and oceanic habitat changes. For Atlantic salmon, the river water temperature, river flow and oceanic growth conditions appear as three main stressing factors. They could act on population dynamics or as selective forces on life-history pathways. Using an individual-based demo-genetic model, we assessed the effects of these factors (1) to compare risks of extinction resulting from CC in river and ocean, and (2) to assess CC effects on life-history pathways including the evolution of underlying genetic control of phenotypic plasticity. We focused on Atlantic salmon populations from Southern Europe for a time horizon of three decades. We showed that CC in river alone should not lead to extinction of Southern European salmon populations. In contrast, the reduced oceanic growth appeared as a significant threat for population persistence. An increase in river flow amplitude increased the risk of local extinction in synergy with the oceanic effects, but river temperature rise reduced this risk. In terms of life-history modifications, the reduced oceanic growth increased the age of return of individuals through plastic and genetic responses. The river temperature rise increased the proportion of sexually mature parr, but the genetic evolution of the maturation threshold lowered the maturation rate of male parr. This was identified as a case of environmentally driven plastic response that masked an underlying evolutionary response of plasticity going in the opposite direction. We concluded that to counteract oceanic effects, river flow management represented the sole potential force to reduce the extinction probability of Atlantic salmon populations in Southern Europe, although this might not impede changes in migration life history. © 2012 Blackwell Publishing Ltd.
What major faults look like, and why this matters for lithospheric dynamics
NASA Astrophysics Data System (ADS)
Fagereng, Ake
2016-04-01
Earthquakes involve seconds to minutes of frictional sliding on a discontinuity, likely of sub-cm thickness, within a damage zone. Earthquakes are separated by an interseismic period of hundreds to thousands of years, during which a number of healing and weakening processes occur within the fault zone. The next earthquake occurs as shear stress exceeds frictional resistance, on the same or a different discontinuity as the previous event, embedded within the fault damage zone. After incremental damage and healing in multiple earthquake cycles, the fault zone rock assemblage evolves to a structure and composition distinctly different from the host rock(s). This presentation presents field geology evidence from a range of settings, to discuss the interplay between the earthquake cycle, long-term deformation, and lithospheric rheology. Classic fault zone models are based on continental transforms, which generally form discrete faults in the upper crust, and wide, anastomosing shear zones in the lower crust. In oceanic crust, transforms are considered frictionally weak, and appear to exploit dyke margins and joint surfaces, but also locally cross-cut these structures in anastomosing networks. In the oceanic lower crust and upper mantle, serpentinisation significantly alters fault structure. In old continental crust, previous deformation events leave a heterogeneous geology affecting active faulting. For example, the amagmatic, southern East African Rift has long been thought to exploit weak Proterozoic 'mobile belts'. However, detailed look at the Bilila-Mtakataka border fault in Malawi indicates that this fault locally exploits weak foliation in existing deformed zones, but also locally forms a new set of anastomosing fault surfaces cross-cutting existing weak foliation. In exhumed lower crust, the Antarctic Maud Belt provides an example of multiple phases of plastic deformation, where the second event is only visible in localised shear zones, likely inherited from the first event. The subduction thrust interface provides an example of fault evolution in underthrust sediments as they deform and dewater. At shallow levels, distributed shear leads to development of scaly cleavage, which in places provides weak, clay surfaces on which earthquakes can propagate to the sea floor. With further deformation, a melange is progressively developed, with increasingly dismembered, sheared lenses of higher viscosity sedimentary rock and slivers of oceanic crust, in a low viscosity, cleaved matrix. The range of examples presented here illustrate how long-term deformation results in weak structures that likely control future deformation. Yet, the rheology of these structures is modulated by strength fluctuations during the earthquake cycle, illustrated by common evidence of episodic fault healing. The take home message from these field studies of fault zones is therefore the heterogeneity of the Earth's crust, the importance of long-term weak zones as a first order control on crustal deformation, and short-term strength fluctuations within these zones as a consequence of, and reason for, the earthquake cycle.
Orlando, Marta; Ravasenga, Tiziana; Petrini, Enrica Maria; Falqui, Andrea; Marotta, Roberto; Barberis, Andrea
2017-10-23
Both excitatory and inhibitory synaptic contacts display activity dependent dynamic changes in their efficacy that are globally termed synaptic plasticity. Although the molecular mechanisms underlying glutamatergic synaptic plasticity have been extensively investigated and described, those responsible for inhibitory synaptic plasticity are only beginning to be unveiled. In this framework, the ultrastructural changes of the inhibitory synapses during plasticity have been poorly investigated. Here we combined confocal fluorescence microscopy (CFM) with high resolution scanning electron microscopy (HRSEM) to characterize the fine structural rearrangements of post-synaptic GABA A Receptors (GABA A Rs) at the nanometric scale during the induction of inhibitory long-term potentiation (iLTP). Additional electron tomography (ET) experiments on immunolabelled hippocampal neurons allowed the visualization of synaptic contacts and confirmed the reorganization of post-synaptic GABA A R clusters in response to chemical iLTP inducing protocol. Altogether, these approaches revealed that, following the induction of inhibitory synaptic potentiation, GABA A R clusters increase in size and number at the post-synaptic membrane with no other major structural changes of the pre- and post-synaptic elements.
Historic surface faulting in continental United States and adjacent parts of Mexico
Bonilla, M.G.
1967-01-01
This report summarizes geometric aspects of approximately 35 instances of historic faulting of the ground surface in the continental United States and adjacent parts of Mexico. This information is of immediate importance in the selection and evaluation of sites for vital structures such as nuclear power plants. The data are presented in a table and graphs which show the quantitative relations between various aspects of the faulting. Certain items in the table that are uncertain, poorly known, or not in the published literature are briefly described in the text.
A review of plastic waste biodegradation.
Zheng, Ying; Yanful, Ernest K; Bassi, Amarjeet S
2005-01-01
With more and more plastics being employed in human lives and increasing pressure being placed on capacities available for plastic waste disposal, the need for biodegradable plastics and biodegradation of plastic wastes has assumed increasing importance in the last few years. This review looks at the technological advancement made in the development of more easily biodegradable plastics and the biodegradation of conventional plastics by microorganisms. Additives, such as pro-oxidants and starch, are applied in synthetic materials to modify and make plastics biodegradable. Recent research has shown that thermoplastics derived from polyolefins, traditionally considered resistant to biodegradation in ambient environment, are biodegraded following photo-degradation and chemical degradation. Thermoset plastics, such as aliphatic polyester and polyester polyurethane, are easily attacked by microorganisms directly because of the potential hydrolytic cleavage of ester or urethane bonds in their structures. Some microorganisms have been isolated to utilize polyurethane as a sole source of carbon and nitrogen source. Aliphatic-aromatic copolyesters have active commercial applications because of their good mechanical properties and biodegradability. Reviewing published and ongoing studies on plastic biodegradation, this paper attempts to make conclusions on potentially viable methods to reduce impacts of plastic waste on the environment.
Structure and development of the southern Moroccan continental shelf
Dillon, William P.
1974-01-01
The structure of the continental shelf off southern Morocco was studied by means of 2,100 km of seismic reflection profiles, magnetic and bathymetric surveys, and dredge samples. The research area lies off four geologic divisions adjacent to the coast: the Atlas Mountains; the Souss Trough; the Anti-Atlas Mountains; and the Aaiun Basin. The continental shelf, along with the western Atlas Mountains, the western Souss Trough, and the entire Aaiun Basin, has subsided along a normal fault-flexure system. This system runs along the shore at the Anti-Atlas Mountains, and cuts off this cratonic block from the shelf subsidence. The shelf is narrow and characterized by out-building off the Anti-Atlas range, whereas it is broader and characterized by upbuilding to the north and south. Deposition was essentially continuous at least from Early Cretaceous through Eocene time. Published work suggests that the last cycle of sedimentation began during Permian rifting. After Eocene time, most sediments carried to the shelf must have bypassed it and gone to construct the slope and rise or to the deep sea. Tertiary orogenies caused extensive folding of Mesozoic and early Tertiary deposits off the Atlas Mountains. ?? 1974.
Knebel, Harley J.
1974-01-01
A deductive approach to the problem of determining the movement and effects of spilled oil over the Outer Continental Shelf requires that the potential paths of oil be determined first, in order that critical subareas may be defined for later studies. The paths of spilled oil, in turn, depend primarily on the temporal and spatial variability of four factors: the thermohaline structure of the waters, the circulation of the water, the winds, and the distribution of suspended matter. A review of the existent data concerning these factors for the Baltimore Canyon Trough area (a relatively well studied segment of the Continental Shelf) reveals that the movement and dispersal of potential oil spills cannot be reliably predicted. Variations in the thermohaline structure of waters and in the distribution of suspended matter are adequately known; the uncertainty is due to insufficient wind and storm statistics and to the lack of quantitative understanding of the relationship between the nontidal drift and its basic driving mechanisms. Similar inadequacies should be anticipated for other potentially leasable areas of the shelf because an understanding of the movement of spilled oil has not been the underlying aim of most previous studies.
Crustal structure of the Murray Ridge, northwest Indian Ocean, from wide-angle seismic data
NASA Astrophysics Data System (ADS)
Minshull, T. A.; Edwards, R. A.; Flueh, E. R.
2015-07-01
The Murray Ridge/Dalrymple Trough system forms the boundary between the Indian and Arabian plates in the northern Arabian Sea. Geodetic constraints from the surrounding continents suggest that this plate boundary is undergoing oblique extension at a rate of a few millimetres per year. We present wide-angle seismic data that constrains the composition of the Ridge and of adjacent lithosphere beneath the Indus Fan. We infer that Murray Ridge, like the adjacent Dalrymple Trough, is underlain by continental crust, while a thin crustal section beneath the Indus Fan represents thinned continental crust or exhumed serpentinized mantle that forms part of a magma-poor rifted margin. Changes in crustal structure across the Murray Ridge and Dalrymple Trough can explain short-wavelength gravity anomalies, but a long-wavelength anomaly must be attributed to deeper density contrasts that may result from a large age contrast across the plate boundary. The origin of this fragment of continental crust remains enigmatic, but the presence of basement fabrics to the south that are roughly parallel to Murray Ridge suggests that it separated from the India/Seychelles/Madagascar block by extension during early breakup of Gondwana.
Mechanical and time-dependent behavior of wood-plastic composites subjected to bending
S. E. Hamel; John Hermanson; S. M. Cramer
2015-01-01
The most popular use of woodâplastic composite (WPC) members in the United States has been as outdoor decking material in residential construction. If the use of these products expands into more structural applications, such as beams and joists, it is imperative that the materialâs mechanical behavior be understood. Since most of the potential structural uses of this...
[Survey of plasticizers in polyvinyl chloride toys].
Abe, Yutaka; Yamaguchi, Miku; Mutsuga, Motoh; Hirahara, Yoshichika; Kawamura, Yoko
2012-01-01
Plasticizers in 101 samples of polyvinyl chloride (PVC) toys on the Japanese market were surveyed. No phthalates were detected in designated toys, though bis(2-ethylhexyl)phthalate, diisononyl phthalate, diisobutyl phthalate, dibutyl phthalate, diisodecyl phthalate and benzyl butyl phthalate were detected in more than half of other toys. 2,2,4-Tributyl-1,3-pentanediol diisobutylate, o-acetyl tributyl citrate, adipates and diacetyl lauroyl glycerol, which are alternative plasticizers to phthalates, were detected. The results of structural analysis confirmed the presence of di(2-ethylhexyl)terephthalate, tributyl citrate, diisononyl 1,2-cyclohexanedicarboxylate and neopentyl glycol esters; these have not previonsly been reported in Japan. There appears to be a shift in plasticizers used for designated toys from phthalates to new plasticizers, and the number of different plasticizers is increasing.
NASA Astrophysics Data System (ADS)
Ruiz, M.; Díaz, J.; Pedreira, D.; Gallart, J.; Pulgar, J. A.
2017-10-01
The structure and geodynamics of the southern margin of the Bay of Biscay have been investigated from a set of 11 multichannel seismic reflection profiles, recorded also at wide angle offsets in an onshore-offshore network of 24 OBS/OBH and 46 land sites. This contribution focuses on the analysis of the wide-angle reflection/refraction data along representative profiles. The results document strong lateral variations of the crustal structure along the margin and provide an extensive test of the crustal models previously proposed for the northern part of the Iberian Peninsula. Offshore, the crust has a typical continental structure in the eastern tip of the bay, which disappears smoothly towards the NW to reach crustal thickness close to 10 km at the edge of the studied area ( 45°N, 6°W). The analysis of the velocity-depth profiles, altogether with additional information provided by the multichannel seismic data and magnetic surveys, led to the conclusion that the crust in this part of the bay should be interpreted as transitional from continental to oceanic. Typical oceanic crust has not been imaged in the investigated area. Onshore, the new results are in good agreement with previous results and document the indentation of the Bay of Biscay crust into the Iberian crust, forcing its subduction to the North. The interpreted profiles show that the extent of the southward indentation is not uniform, with an Alpine root less developed in the central and western sector of the Basque-Cantabrian Basin. N-S to NE-SW transfer structures seem to control those variations in the indentation degree.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gauthier, F.J.; Boudjema, A.; Lounis, R.
1995-08-01
The Ghadames and Illizi basins cover the majority of the eastern Sahara of Algeria. Geologicaly, this part of the Central Saharan platform has been influenced by a series of structural arches and {open_quotes}moles{close_quotes} (continental highs) which controlled sedimentation and structure through geologic time. These features, resulting from and having been affected by nine major tectonic phases ranging from pre-Cambrian to Tertiary, completely bound the Ghadames and Illizi Basins. During the Paleozoic both basins formed one continuous depositional entity with the Ghadames basin being the distal portion of the continental sag basin where facies and thickness variations are observed over largemore » distances. It is during the Mesozoic-Cenozoic that the Ghadames basin starts to evolve differently from the Illizi Basin. Eustatic low-stand periods resulted in continental deposition yielding the major petroleum-bearing reservoir horizons (Cambrian, Ordovician, Siluro-Devonian and Carboniferous). High-stand periods corresponds to the major marine transgressions covering the majority of the Saharan platform. These transgressions deposited the principal source rock intervals of the Silurian and Middle to Upper Devonian. The main reservoirs of the Mesozoic and Cenozoic are Triassic sandstone sequences which are covered by a thick evaporite succession forming a super-seal. Structurally, the principal phases affecting this sequence are the extensional events related to the breakup of Pangea and the Alpine compressional events. The Ghadames and Illizi basins, therefore, have been controlled by a polphase tectonic history influenced by Pan African brittle basement fracturing which resulted in complex structures localized along the major basin bounding trends as well as several subsidiary trends within the basin. These trends, as demonstrated with key seismic data, have been found to contain the majority of hydrocarbons trapped.« less
Filopodia: A Rapid Structural Plasticity Substrate for Fast Learning
Ozcan, Ahmet S.
2017-01-01
Formation of new synapses between neurons is an essential mechanism for learning and encoding memories. The vast majority of excitatory synapses occur on dendritic spines, therefore, the growth dynamics of spines is strongly related to the plasticity timescales. Especially in the early stages of the developing brain, there is an abundant number of long, thin and motile protrusions (i.e., filopodia), which develop in timescales of seconds and minutes. Because of their unique morphology and motility, it has been suggested that filopodia can have a dual role in both spinogenesis and environmental sampling of potential axonal partners. I propose that filopodia can lower the threshold and reduce the time to form new dendritic spines and synapses, providing a substrate for fast learning. Based on this proposition, the functional role of filopodia during brain development is discussed in relation to learning and memory. Specifically, it is hypothesized that the postnatal brain starts with a single-stage memory system with filopodia playing a significant role in rapid structural plasticity along with the stability provided by the mushroom-shaped spines. Following the maturation of the hippocampus, this highly-plastic unitary system transitions to a two-stage memory system, which consists of a plastic temporary store and a long-term stable store. In alignment with these architectural changes, it is posited that after brain maturation, filopodia-based structural plasticity will be preserved in specific areas, which are involved in fast learning (e.g., hippocampus in relation to episodic memory). These propositions aim to introduce a unifying framework for a diversity of phenomena in the brain such as synaptogenesis, pruning and memory consolidation. PMID:28676753
Nava, Nicoletta; Treccani, Giulia; Müller, Heidi Kaastrup; Popoli, Maurizio; Wegener, Gregers; Elfving, Betina
2017-01-01
It is well established that stress plays a major role in the pathogenesis of neuropsychiatric diseases. Stress-induced alteration of synaptic plasticity has been hypothesized to underlie the morphological changes observed by neuroimaging in psychiatric patients in key regions such as hippocampus and prefrontal cortex (PFC). We have recently shown that a single acute stress exposure produces significant short-term alterations of structural plasticity within medial PFC. These alterations were partially prevented by previous treatment with chronic desipramine (DMI). In the present study we evaluated the effects of acute Foot-shock (FS)-stress and pre-treatment with the traditional antidepressant DMI on the gene expression of key regulators of synaptic plasticity and structure. Expression of Homer, Shank, Spinophilin, Densin-180, and the small RhoGTPase related gene Rac1 and downstream target genes, Limk1, Cofilin1 and Rock1 were investigated 1 day (1d), 7 d and 14d after FS-stress exposure. We found that DMI specifically increases the short-term expression of Spinophilin, as well as Homer and Shank family genes, and that both acute stress and DMI exert significant long-term effects on mRNA levels of genes involved in spine plasticity. These findings support the knowledge that acute FS stress and antidepressant treatment induce both rapid and sustained time-dependent alterations in structural components of synaptic plasticity in rodent medial PFC. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.
Villarroya, Olga; Ballestín, Raúl; López-Hidalgo, Rosa; Mulet, Maria; Blasco-Ibáñez, José Miguel; Crespo, Carlos; Nacher, Juan; Gilabert-Juan, Javier; Varea, Emilio
2018-01-01
Down syndrome (DS) is the most common chromosomal aneuploidy. Although trisomy on chromosome 21 can display variable phenotypes, there is a common feature among all DS individuals: the presence of intellectual disability. This condition is partially attributed to abnormalities found in the hippocampus of individuals with DS and in the murine model for DS, Ts65Dn. To check if all hippocampal areas were equally affected in 4-5 month adult Ts65Dn mice, we analysed the morphology of dentate gyrus granule cells and cornu ammonis pyramidal neurons using Sholl method on Golgi-Cox impregnated neurons. Structural plasticity has been analysed using immunohistochemistry for plasticity molecules followed by densitometric analysis (Brain Derived Neurotrophic Factor (BDNF), Polysialylated form of the Neural Cell Adhesion Molecule (PSA-NCAM) and the Growth Associated Protein 43 (GAP43)). We observed an impairment in the dendritic arborisation of granule cells, but not in the pyramidal neurons in the Ts65Dn mice. When we analysed the expression of molecules related to structural plasticity in trisomic mouse hippocampus, we observed a reduction in the expression of BDNF and PSA-NCAM, and an increment in the expression of GAP43. These alterations were restricted to the regions related to dentate granule cells suggesting an interrelation. Therefore the impairment in dendritic arborisation and molecular plasticity is not a general feature of all Down syndrome principal neurons. Pharmacological manipulations of the levels of plasticity molecules could provide a way to restore granule cell morphology and function.
Plasticity - Theory and finite element applications.
NASA Technical Reports Server (NTRS)
Armen, H., Jr.; Levine, H. S.
1972-01-01
A unified presentation is given of the development and distinctions associated with various incremental solution procedures used to solve the equations governing the nonlinear behavior of structures, and this is discussed within the framework of the finite-element method. Although the primary emphasis here is on material nonlinearities, consideration is also given to geometric nonlinearities acting separately or in combination with nonlinear material behavior. The methods discussed here are applicable to a broad spectrum of structures, ranging from simple beams to general three-dimensional bodies. The finite-element analysis methods for material nonlinearity are general in the sense that any of the available plasticity theories can be incorporated to treat strain hardening or ideally plastic behavior.
Cho, Yi-Gil; Kim, Jin-You; Cho, Hoon-Hwe; Cha, Pil-Ryung; Suh, Dong-Woo; Lee, Jae Kon; Han, Heung Nam
2012-01-01
An implicit finite element model was developed to analyze the deformation behavior of low carbon steel during phase transformation. The finite element model was coupled hierarchically with a phase field model that could simulate the kinetics and micro-structural evolution during the austenite-to-ferrite transformation of low carbon steel. Thermo-elastic-plastic constitutive equations for each phase were adopted to confirm the transformation plasticity due to the weaker phase yielding that was proposed by Greenwood and Johnson. From the simulations under various possible plastic properties of each phase, a more quantitative understanding of the origin of transformation plasticity was attempted by a comparison with the experimental observation. PMID:22558295
Embrittlement and Flow Localization in Reactor Structural Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xianglin Wu; Xiao Pan; James Stubbins
2006-10-06
Many reactor components and structural members are made from metal alloys due, in large part, to their strength and ability to resist brittle fracture by plastic deformation. However, brittle fracture can occur when structural material cannot undergo extensive, or even limited, plastic deformation due to irradiation exposure. Certain irradiation conditions lead to the development of a damage microstructure where plastic flow is limited to very small volumes or regions of material, as opposed to the general plastic flow in unexposed materials. This process is referred to as flow localization or plastic instability. The true stress at the onset of neckingmore » is a constant regardless of the irradiation level. It is called 'critical stress' and this critical stress has strong temperature dependence. Interrupted tensile testes of 316L SS have been performed to investigate the microstructure evolution and competing mechanism between mechanic twinning and planar slip which are believed to be the controlling mechanism for flow localization. Deformation twinning is the major contribution of strain hardening and good ductility for low temperatures, and the activation of twinning system is determined by the critical twinning stress. Phases transform and texture analyses are also discussed in this study. Finite element analysis is carried out to complement the microstructural analysis and for the prediction of materaials performance with and without stress concentration and irradiation.« less
1970-10-01
plastic or semi- plastic concrete and place no stress on the restraint provided. If, on the other hand, the ettringite continues to form rapidly for too...yield, I and wp.ter-cement ratio. Such a change in cement content may cause a greater change in expansion caracteristics than the change in...the tendency toward plastic shrinkage is increased. During the w’nter znths most structural concrete installations hare had adequate heating and no
Mutational robustness accelerates the origin of novel RNA phenotypes through phenotypic plasticity.
Wagner, Andreas
2014-02-18
Novel phenotypes can originate either through mutations in existing genotypes or through phenotypic plasticity, the ability of one genotype to form multiple phenotypes. From molecules to organisms, plasticity is a ubiquitous feature of life, and a potential source of exaptations, adaptive traits that originated for nonadaptive reasons. Another ubiquitous feature is robustness to mutations, although it is unknown whether such robustness helps or hinders the origin of new phenotypes through plasticity. RNA is ideal to address this question, because it shows extensive plasticity in its secondary structure phenotypes, a consequence of their continual folding and unfolding, and these phenotypes have important biological functions. Moreover, RNA is to some extent robust to mutations. This robustness structures RNA genotype space into myriad connected networks of genotypes with the same phenotype, and it influences the dynamics of evolving populations on a genotype network. In this study I show that both effects help accelerate the exploration of novel phenotypes through plasticity. My observations are based on many RNA molecules sampled at random from RNA sequence space, and on 30 biological RNA molecules. They are thus not only a generic feature of RNA sequence space but are relevant for the molecular evolution of biological RNA. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Rompothi, Onjira; Pradipasena, Pasawadee; Tananuwong, Kanitha; Somwangthanaroj, Anongnat; Janjarasskul, Theeranun
2017-02-10
This research determined the effects of starch concentration (3.5-5.0%w/w), and plasticizer [glycerol (0-30%w/w) or sorbitol (0-60%w/w)] on properties of mung bean starch (MBS) films. The result showed that increasing plasticizer concentration tended to decrease tensile strength (TS), elastic modulus (EM) and oxygen permeability (OP); but increase elongation (%E), solubility, water vapor permeability (WVP) and seal strength. The extent of those changes also depended on starch concentration. Glycerol provided better plasticizer efficiency than sorbitol. A bimodal melting endotherm of retrograded structure was evident in non-plasticized film. However, only a low temperature endotherm was observed in polyol-plasticized films, indicating a plasticizer-induced structural modification. The developed ductile MBS films, (TS of 7.14±0.95 to 46.30±3.09MPa, %E of 2.46±0.21 to 56.95±4.34% and EM of 16.29±3.40 to 1428.45±148.72MPa) with an OP of 0.2397±0.0365 to 1.1520±0.1782 ccmm/m 2 daykPa and seal strength up to 422.36±7.93N/m, demonstrated in this study indicate the potential for food packaging applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
Oberbeckmann, Sonja; Loeder, Martin G J; Gerdts, Gunnar; Osborn, A Mark
2014-11-01
Plastic pollution is now recognised as a major threat to marine environments and marine biota. Recent research highlights that diverse microbial species are found to colonise plastic surfaces (the plastisphere) within marine waters. Here, we investigate how the structure and diversity of marine plastisphere microbial community vary with respect to season, location and plastic substrate type. We performed a 6-week exposure experiment with polyethylene terephthalate (PET) bottles in the North Sea (UK) as well as sea surface sampling of plastic polymers in Northern European waters. Scanning electron microscopy revealed diverse plastisphere communities comprising prokaryotic and eukaryotic microorganisms. Denaturing gradient gel electrophoresis (DGGE) and sequencing analysis revealed that plastisphere microbial communities on PET fragments varied both with season and location and comprised of bacteria belonging to Bacteroidetes, Proteobacteria, Cyanobacteria and members of the eukaryotes Bacillariophyceae and Phaeophyceae. Polymers sampled from the sea surface mainly comprised polyethylene, polystyrene and polypropylene particles. Variation within plastisphere communities on different polymer types was observed, but communities were primarily dominated by Cyanobacteria. This research reveals that the composition of plastisphere microbial communities in marine waters varies with season, geographical location and plastic substrate type. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Psychedelics Promote Structural and Functional Neural Plasticity.
Ly, Calvin; Greb, Alexandra C; Cameron, Lindsay P; Wong, Jonathan M; Barragan, Eden V; Wilson, Paige C; Burbach, Kyle F; Soltanzadeh Zarandi, Sina; Sood, Alexander; Paddy, Michael R; Duim, Whitney C; Dennis, Megan Y; McAllister, A Kimberley; Ori-McKenney, Kassandra M; Gray, John A; Olson, David E
2018-06-12
Atrophy of neurons in the prefrontal cortex (PFC) plays a key role in the pathophysiology of depression and related disorders. The ability to promote both structural and functional plasticity in the PFC has been hypothesized to underlie the fast-acting antidepressant properties of the dissociative anesthetic ketamine. Here, we report that, like ketamine, serotonergic psychedelics are capable of robustly increasing neuritogenesis and/or spinogenesis both in vitro and in vivo. These changes in neuronal structure are accompanied by increased synapse number and function, as measured by fluorescence microscopy and electrophysiology. The structural changes induced by psychedelics appear to result from stimulation of the TrkB, mTOR, and 5-HT2A signaling pathways and could possibly explain the clinical effectiveness of these compounds. Our results underscore the therapeutic potential of psychedelics and, importantly, identify several lead scaffolds for medicinal chemistry efforts focused on developing plasticity-promoting compounds as safe, effective, and fast-acting treatments for depression and related disorders. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Stochastic metallic-glass cellular structures exhibiting benchmark strength.
Demetriou, Marios D; Veazey, Chris; Harmon, John S; Schramm, Joseph P; Johnson, William L
2008-10-03
By identifying the key characteristic "structural scales" that dictate the resistance of a porous metallic glass against buckling and fracture, stochastic highly porous metallic-glass structures are designed capable of yielding plastically and inheriting the high plastic yield strength of the amorphous metal. The strengths attainable by the present foams appear to equal or exceed those by highly engineered metal foams such as Ti-6Al-4V or ferrous-metal foams at comparable levels of porosity, placing the present metallic-glass foams among the strongest foams known to date.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Tingkun; Gao, Yanfei; Bei, Hongbin
Shear banding dynamics in bulk metallic glasses (BMGs) is manifested by the spatiotemporal evolution of strain fields which in turn depend on structural heterogeneities. The spacing of these heterogeneities, as a characteristic length scale, was determined from the analysis of nanoindentation pop-in tests using a stochastic model. Furthermore, the pre-stress by elastic bending and residual stress by plastic bending of BMG plates were found to dramatically decrease such spacings, thus increasing heterogeneity density and mechanically rejuvenating the glass structure.
Liu, Tingkun; Gao, Yanfei; Bei, Hongbin
2017-07-21
Shear banding dynamics in bulk metallic glasses (BMGs) is manifested by the spatiotemporal evolution of strain fields which in turn depend on structural heterogeneities. The spacing of these heterogeneities, as a characteristic length scale, was determined from the analysis of nanoindentation pop-in tests using a stochastic model. Furthermore, the pre-stress by elastic bending and residual stress by plastic bending of BMG plates were found to dramatically decrease such spacings, thus increasing heterogeneity density and mechanically rejuvenating the glass structure.
Structural defects in natural plastically deformed diamonds: Evidence from EPR spectroscopy
NASA Astrophysics Data System (ADS)
Mineeva, R. M.; Titkov, S. V.; Speransky, A. V.
2009-06-01
Structural defects formed as a result of plastic deformation in natural diamond crystals have been studied by EPR spectroscopy. The spectra of brown, pink-brown, black-brown, pink-purple, and gray plastically deformed diamonds of type Ia from deposits in Yakutia and the Urals were recorded. The results of EPR spectroscopy allowed us to identify various deformation centers in the structure of natural diamonds and to show that nitrogen centers were transformed under epigenetic mechanical loading. Abundant A centers, consisting of two isomorphic nitrogen atoms located in neighboring structural sites, were destroyed as a result of this process to form a series of N1, N4, W7, M2, and M3 nitrogen centers. Such centers are characterized by an anisotropic spatial distribution and a positive charge, related to the mechanism of their formation. In addition, N2 centers (probably, deformation-produced dislocations decorated by nitrogen) were formed in all plastically deformed diamonds and W10 and W35 centers (the models have not been finally ascertained) were formed in some of them. It has been established that diamonds with various types of deformation-induced color contain characteristic associations of these deformation centers. The diversity of associations of deformation centers indicates appreciable variations in conditions of disintegration of deep-seated rocks, transfer of diamonds to the Earth’s surface, and formation of kimberlitic deposits. Depending on the conditions of mechanical loading, the diamond crystals were plastically deformed by either dislocation gliding or mechanical twinning. Characteristic features of plastic deformation by dislocation gliding are the substantial prevalence of the N2 centers over other deformation centers and the occurrence of the high-spin W10 and W35 centers. The attributes of less frequent plastic deformation by mechanical twinning are unusual localization of the M2 centers and, in some cases, the N1 centers in microtwinned lamellae. Numerous data on models of deformation centers in natural diamonds, including the M2 and M3 centers, which were observed in the studied collection for the first time, are discussed.
Crustal Structure and Evidence for a Hales Discontinuity Beneath the Seychelles Microcontinent
NASA Astrophysics Data System (ADS)
Hammond, J.; Kendall, J.; Collier, J.; Rumpker, G.; Pilidou, S.; Stuart, G.
2005-12-01
It is well known that the Seychelles Plateau consists of a sliver of continental crust cast adrift during the formation of the Indian ocean. However the extent of the continental crust beneath the microcontinent and the cause of its isolation is poorly understood. Here we use receiver functions, interstation phase velocities obtained from surface waves, and wide angle reflections from controlled-source seismic data to investigate the lithospheric structure of the region. The H-κ method is used to calculate depths and Poison's ratio at 26 temporary stations distributed across the plateau and Mascarene basin. The Vp/V_s ratios and depths at stations on the plateau are typical of continental crust. To explain the major features of the RFs a simple two layer crust is proposed for the island of Mahé. The islands of Silhouette and Nord display a more complex crust consistent with the islands volcanic history. Praslin and its satellite islands display a simpler crust but display signs of a deeper discontinuity (~40 km) beneath the Moho which is possible evidence for underplating associated with Deccan age volcanism. Bird Island (Moho~18 km) and Desroche (Moho~23 km) show signs of being situated on islands above the transition from continental to oceanic crust. Alphonse, Coetivy and Platte all show receiver functions expected for oceanic crust, with Moho depths ~10 km. Inter-station phase velocity inversions from surface waves support these results with paths sampling the plateau region showing dispersion curves expected for continental crust, and those travelling between stations off the plateau showing evidence for oceanic crust. A deeper arrival is observed on the plateau stations at ~7 s or ~65 km. This feature is also seen in wide-angle controlled source work and the inter-station phase velocity inversions. Candidate interpretion for this Hales discontinuity include a Precambrian suture assoicated with shallow subduction or a shear-zone assoicated with deformation during breakup. Either feature may have influenced plume-related breakup in the region.
Structure of the Cascadia Subduction Zone Imaged Using Surface Wave Tomography
NASA Astrophysics Data System (ADS)
Schaeffer, A. J.; Audet, P.
2017-12-01
Studies of the complete structure of the Cascadia subduction zone from the ridge to the arc have historically been limited by the lack of offshore ocean bottom seismograph (OBS) infrastructure. On land, numerous dense seismic deployments have illuminated detailed structures and dynamics associated with the interaction between the subducting oceanic plate and the overriding continental plate, including cycling of fluids, serpentinization of the overlying forearc mantle wedge, and the location of the upper surface of the Juan de Fuca plate as it subducts beneath the Pacific Northwest. In the last half-decade, the Cascadia Initiative (CI), along with Neptune (ONC) and several other OBS initiatives, have instrumented both the continental shelf and abyssal plains off shore of the Cascadia subduction zone, facilitating the construction of a complete picture of the subduction zone from ridge to trench and volcanic arc. In this study, we present a preliminary azimuthally anisotropic surface-wave phase-velocity based model of the complete system, capturing both the young, unaltered Juan de Fuca plate from the ridge, to its alteration as it enters the subduction zone, in addition to the overlying continent. This model is constructed from a combination of ambient noise cross-correlations and teleseismic two station interferometry, and combines together concurrently running offshore OBS and onshore stations. We furthermore perform a number of representative 1D depth inversions for shear velocity to categorize the pristine oceanic, subducted oceanic, and continental crust and lithospheric structure. In the future the dispersion dataset will be jointly inverted with receiver functions to constrain a 3D shear-velocity model of the complete region.
NASA Astrophysics Data System (ADS)
Rao, G. Srinivasa; Kumar, Manish; Radhakrishna, M.
2018-02-01
The continental breakup history at the northwest continental margin of India remained conjectural due to lack of clearly discernable magnetic anomaly identifications and the presence of several enigmatic structural/basement features whose structure was partly obscured by the Late Cretaceous Deccan magmatic event. In this study, a detailed analysis of the existing seismic and seismological data covering both onshore and offshore areas of the northwest Indian margin along with 3-D/2-D constrained potential field (gravity, magnetic and geoid) modeling has been carried out. The crustal structure and lithosphere-asthenosphere boundary (LAB) delineated across the margin provided valuable insights on the mechanism of continental extension. An analysis of the residual geoid anomaly (degree-10) map and the modeled LAB below Deccan volcanic province (DVP) revealed significant variation in upper mantle characteristics between the northwest (NW) and south central (SC) parts of DVP having thinner lithosphere in the NW part. The depth to LAB ranges 80-130 km at the margin with gradual thinning towards the western offshore having sharp gradient in the south (SC part of DVP) and gentle gradient in the north (NW part of DVP). The Moho configuration obtained from seismically constrained 3-D gravity inversion reveals that Moho depths vary 34-42 km below DVP and gradually thins to 16-20 km in the western offshore. The effective elastic thickness (Te) map computed through 3-D flexural modeling indicates that the Te values are in general lower in the region and range 12-25 km. Such lower Te values could be ascribed to the combined effect of the lithosphere stretching during Gondwana fragmentation in the Mesozoic and subsequent thermal influence of the Reunion plume. Based on the crustal stretching factors (β), Te estimates and the modeled lithosphere geometry at the margin in this study, we propose that the lithosphere below Laxmi-Gop basin region (β > 3.0) had undergone continuous stretching since India-Madagascar rifting ( 88 Ma) /much prior to this event. However, this continuous stretching did not lead to breakup. Due to syn-rift cooling, the developed necking zone (brittle-ductile deformation) got ceased and led to the development of a new necking zone between Seychelles and Laxmi Ridge. Subsequent stretching between Seychelles and the Laxmi Ridge contemporaneous with the Deccan flood basalts eruption led to the seafloor spreading in the Western Basin (anomaly C28n). Thus, the Laxmi Ridge became a continental sliver.
Hansen, V.L.; Dusel-Bacon, C.
1998-01-01
The Yukon-Tanana terrane, the largest tectonostratigraphic terrane in the northern North American Cordillera, is polygenetic and not a single terrane. Lineated and foliated (L-S) tectonites, which characterize the Yukon-Tanana terrane, record multiple deformations and formed at different times. We document the polyphase history recorded by L-S tectonites within the Yukon-Tanana upland, east-central Alaska. These upland tectonites compose a heterogeneous assemblage of deformed igneous and metamorphic rocks that form the Alaskan part of what has been called the Yukon-Tanana composite terrane. We build on previous kinematic data and establish the three-dimensional architecture of the upland tectonites through kinematic and structural analysis of more than 250 oriented samples, including quartz c-axis fabric analysis of 39 samples. Through this study we distinguish allochthonous tectonites from parautochthonous tectonites within the Yukon-Tanana upland. The upland tectonites define a regionally coherent stacking order: from bottom to top, they are lower plate North American parautochthonous attenuated continental margin; continentally derived marginal-basin strata; and upper plate ocean-basin and island-arc rocks, including some continental basement rocks. We delineate three major deformation events in time, space, and structural level across the upland from the United States-Canada border to Fairbanks, Alaska: (1) pre-Early Jurassic (>212 Ma) northeast-directed, apparent margin-normal contraction that affected oceanic rocks; (2) late Early to early Middle Jurassic (>188-185 Ma) northwest-directed, apparent margin-parallel contraction and imbrication that resulted in juxtaposition of the allochthonous tectonites with parautochthonous continental rocks; and (3) Early Cretaceous (135-110 Ma) southeast-directed crustal extension that resulted in exposure of the structurally deepest, parautochthonous continental rocks. The oldest event represents deformation within a west-dipping (present coordinates) Permian-Triassic subduction zone. The second event records Early to Middle Jurassic collision of the arc and subduction complex with North American crust, and the third event reflects mid-Cretaceous southeast-directed crustal extension. Events one and two can be recognized and correlated through southern Yukon, even though this region was affected by mid-Cretaceous dextral shear along steep northwest-striking faults. Our data support a model of crustal assembly originally proposed by D. Tempelman-Kluit in which previously deformed allochthonous rocks were thrust over parautochthonous rocks of the attenuated North American margin in Middle Jurassic time. Approximately 50 m.y. after tectonic accretion, east-central Alaska was dissected by crustal extension, exposing overthrust parautochthonous strata.
Structural Components of Synaptic Plasticity and Memory Consolidation
Bailey, Craig H.; Kandel, Eric R.; Harris, Kristen M.
2015-01-01
Consolidation of implicit memory in the invertebrate Aplysia and explicit memory in the mammalian hippocampus are associated with remodeling and growth of preexisting synapses and the formation of new synapses. Here, we compare and contrast structural components of the synaptic plasticity that underlies these two distinct forms of memory. In both cases, the structural changes involve time-dependent processes. Thus, some modifications are transient and may contribute to early formative stages of long-term memory, whereas others are more stable, longer lasting, and likely to confer persistence to memory storage. In addition, we explore the possibility that trans-synaptic signaling mechanisms governing de novo synapse formation during development can be reused in the adult for the purposes of structural synaptic plasticity and memory storage. Finally, we discuss how these mechanisms set in motion structural rearrangements that prepare a synapse to strengthen the same memory and, perhaps, to allow it to take part in other memories as a basis for understanding how their anatomical representation results in the enhanced expression and storage of memories in the brain. PMID:26134321
Reproductive plasticity in freshwater invader: from long-term sperm storage to parthenogenesis.
Buřič, Miloš; Kouba, Antonín; Kozák, Pavel
2013-01-01
Orconectes limosus, a North American crayfish species, is one of the most important aquatic invaders in European inland waters. Despite more than 120 years occurrence in Europe and intense research, there are still gaps in knowledge of its life history and ecology. Investigation into O. limosus invasive success requires identifying the mechanisms that enabled them to establish dense and widespread populations from small initial numbers without observable limitation by an introduction bottleneck. In part, O. limosus success may lie in its ability to reproduce by facultative parthenogenesis. Moreover, there are possible other mating scenarios, because of two mating seasons (autumn and spring) in O. limosus. This work investigated the effect of four reproductive scenarios (autumn mating only, spring mating only, autumn and spring mating, and without mating) on the reproductive success of O. limosus. Females successfully reproduced in all tested mating regimes using parthenogenesis as well as log term sperm storage. This reproductive plasticity likely facilitates the overwhelming success of O. limosus spread and establishment in new localities. It can explain the spread of O. limosus from the initial introduction of 90 specimens to most of continental Europe and Great Britain. These conclusions imply a serious threat, not only for autochthonous European astacofauna, but for other aquatic organisms as well as entire ecosystems.
Reproductive Plasticity in Freshwater Invader: From Long-Term Sperm Storage to Parthenogenesis
Buřič, Miloš; Kouba, Antonín; Kozák, Pavel
2013-01-01
Orconectes limosus, a North American crayfish species, is one of the most important aquatic invaders in European inland waters. Despite more than 120 years occurrence in Europe and intense research, there are still gaps in knowledge of its life history and ecology. Investigation into O. limosus invasive success requires identifying the mechanisms that enabled them to establish dense and widespread populations from small initial numbers without observable limitation by an introduction bottleneck. In part, O. limosus success may lie in its ability to reproduce by facultative parthenogenesis. Moreover, there are possible other mating scenarios, because of two mating seasons (autumn and spring) in O. limosus. This work investigated the effect of four reproductive scenarios (autumn mating only, spring mating only, autumn and spring mating, and without mating) on the reproductive success of O. limosus. Females successfully reproduced in all tested mating regimes using parthenogenesis as well as log term sperm storage. This reproductive plasticity likely facilitates the overwhelming success of O. limosus spread and establishment in new localities. It can explain the spread of O. limosus from the initial introduction of 90 specimens to most of continental Europe and Great Britain. These conclusions imply a serious threat, not only for autochthonous European astacofauna, but for other aquatic organisms as well as entire ecosystems. PMID:24204886
NASA Astrophysics Data System (ADS)
Harmon, Nicholas; Rychert, Catherine A.
2015-11-01
Continental crust formed billions of years ago but cannot be explained by a simple evolution of primary mantle magmas. A multi-step process is required that likely includes re-melting of wet metamorphosed basalt at high pressures. Such a process could occur at depth in oceanic crust that has been thickened by a large magmatic event. In Central America, variations in geologically inferred, pre-existing oceanic crustal thickness beneath the arc provides an excellent opportunity to study its effect on magma storage, re-melting of meta-basalts, and the potential for creating continental crust. We use surface waves derived from ambient noise tomography to image 6% radially anisotropic structures in the thickened oceanic plateau crust of Costa Rica that likely represent deep crustal melt sills. In Nicaragua, where the arc is forming on thinner oceanic crust, we do not image these deep crustal melt sills. The presence of these deep sills correlates with more felsic arc outputs from the Costa Rican Arc suggesting pre-existing thickened crust accelerates processing of primary basalts to continental compositions. In the Archean, reprocessing thickened oceanic crust by subsequent hydrated hotspot volcanism or subduction zone volcanism may have similarly enhanced formation of early continental crust. This mechanism may have been particularly important if subduction did not initiate until 3 Ga.
NASA Astrophysics Data System (ADS)
Conrad, Georges; Lappartient, Jean-René
The 'Continental Terminal' in the Senegalo-Mauritanian basin is a Cenozoic and detrital formation, presenting signs of an intense ferralitic alteration with formation of ferruginous concretions and crustings, neo-formation of kaolinite and significant silica movements. Sedimentary structures are generally obliterated by alteration in the formation's summit. However, some fossil layers which have undergone epigenesis by geothite make it possible to establish the sea origin of the eocene and miocene deposits in this 'Continental Terminal'. A better idea of Cenozoic transgressions and regressions can be achieved by a reconstitution of fossil river beds through alterations on the edge of the African continent. The new elements in the 'Continental Terminal' and the Senegalo-Mauritanian Cenozoic paleoclimates are: The 'Continental Terminal' clearly represents an alteration fringe developed at the expense of marine formations (Tessier et al. 1975 Actes 9ème Congr. Int. Sédim., Nice, pp. 207-211), but this concept cannot be generalized to all of the coastal Cenozoic or interior Iullemmeden Nigerian basins. The ferrallitic alterations mostly occurred in the Pliocene period after the sinking of the basin, as in the Miocene margino-littoral facies, and are still highly dominant. The ferruginous crusting can be seen in this period and also during the lower Pleistocene, because of the latitudinal migration of the basin northwards starting from the upper Cretaceous period.
NASA Astrophysics Data System (ADS)
Melankholina, E. N.; Sushchevskaya, N. M.
2017-01-01
Comparative tectonic analysis of passive margins of the Atlantic Ocean has been performed. Tectonotypes of both volcanic and nonvolcanic margins are described, and their comparison with other passive Atlantic margins is given. The structural features of margins, peculiarities of magmatism, its sources and reasons for geochemical enrichment of melts are discussed. The important role of melting of the continental lithosphere in the development of magmatism is demonstrated. Enriched EM I and EM II sources are determined for the lower parts of the volcanic section, and a depleted or poorly enriched source is determined for the upper parts of the volcanic section based on isotope data. The conclusions of the paper relate to tectonic settings of the initial occurrence of magmatism and rifting and breakup during the period of opening of the Mesozoic Ocean. It was found out that breakup and magmatism at proximal margins led only to insignificant structural transformations and reduction of the thickness of the ancient continental crust, while very important magmatic events happened later in the distal zone. New growth of magmatic crust at the stage of continental breakup is determined as a typical feature of distal zones of the margins under study. The relationship of development of margins with the impact of deep plumes as the source of magmatic material or a heat source only is discussed. Progradation of the zone of extension and breakup into the areas of cold lithosphere of the Atlantic and the formation of a single tectonomagmatic system of the ocean are under consideration.
NASA Astrophysics Data System (ADS)
Grad, Marek; Mjelde, Rolf; Krysiński, Lech; Czuba, Wojciech; Libak, Audun; Guterch, Aleksander
2015-03-01
As a part of the large international panel "IPY Plate Tectonics and Polar Gateways" within the "4th International Polar Year" framework, extensive geophysical studies were performed in the area of southern Svalbard, between the Mid-Atlantic Ridge and the Barents Sea. Seismic investigations were performed along three refraction and wide-angle reflection seismic lines. Integrated with gravity data the seismic data were used to determine the structure of the oceanic crust, the transition between continent and ocean (COT), and the continental structures down to the lithosphere-asthenosphere system (LAB). We demonstrate how modeling of multiple water waves can be used to determine the sound velocity in oceanic water along a seismic refraction profile. Our 2D seismic and density models documents 4-9 km thick oceanic crust formed at the Knipovich Ridge, a distinct and narrow continent-ocean transition (COT), the Caledonian suture zone between Laurentia and Barentsia, and 30-35 km thick continental crust beneath the Barents Sea. The COT west of southern Spitsbergen expresses significant excess density (more than 0.1 g/cm3 in average), which is characteristic for mafic/ultramafic and high-grade metamorphic rocks. The results of the gravity modeling show relatively weak correlation of the density with seismic velocity in the upper mantle, which suggests that the horizontal differences between oceanic and continental mantle are dominated by mineralogical changes, although a thermal effect is also present. The seismic velocity change with depth suggests lherzolite composition of the uppermost oceanic mantle, and dunite composition beneath the continental crust.
Plastics as structural materials for aircraft
NASA Technical Reports Server (NTRS)
Kline, G M
1937-01-01
The purpose here is to consider the mechanical characteristics of reinforced phenol-formaldehyde resin as related to its use as structural material for aircraft. Data and graphs that have appeared in the literature are reproduced to illustrate the comparative behavior of plastics and materials commonly used in aircraft construction. Materials are characterized as to density, static strength, modulus of elasticity, resistance to long-time loading, strength under repeated impact, energy absorption, corrosion resistance, and ease of fabrication.
Evolution of microstructure and mechanical properties of steel in the course of pressing-drawing
NASA Astrophysics Data System (ADS)
Lezhnev, S. N.; Volokitina, I. E.; Volokitin, A. V.
2017-11-01
The combined continuous pressing-drawing process is proposed after a comprehensive analysis of available plastic structure-forming techniques taking into account the promising trends in their development. This combination of severe plastic deformation in equal-channel step die and drawing allows one to obtain a wire of desired size and shape in the cross section with an ultrafine-grained structure after a few deformation cycles. It also enables initial workpieces of any length to be processed and, therefore, allows one to obtain finished products up to several tens of meters in length. The aim of this study is to investigate the effect of new combined pressing-drawing technique of plastic deformation on the structure and mechanical properties of the steel. These studies have shown that the proposed deformation technique has a significant advantage of the techniques currently used to manufacture a steel wire.
NASA Astrophysics Data System (ADS)
Kalberg, Thomas; Gohl, Karsten
2013-04-01
The Amundsen Sea Embayment of West Antarctica is a centrepiece in understanding the history of the New Zealand - Antarctica breakup. This region plays a key role in plate kinematic reconstruction of the southern Pacific from the collision of the Hikurangi Plateau with the Gondwana subduction margin to the evolution of the West Antarctic Rift System. During two RV Polarstern cruises in 2006 and 2010, a large geophysical dataset was collected consisting of seismic refraction and reflection profiles, shipborne gravity and helicopter magnetic measurements. The data provide constraints on the crustal architecture, the structural evolution and the tectonic block formation during and after the Cretaceous continental breakup. We present two continental rise-to-shelf P-wave velocity models which were derived from forward travel-time modelling of ocean bottom hydrophone recordings which provide an insight into the crustal and upper mantle architecture beneath the Amundsen Sea Embayment for the first time. The sedimentary sequences and the basement were constrained by seismic reflection data. A 2-D density-depth model supports and complements the P-wave modelling. Observed P-wave velocities show 10 to 14 km thick crust of the continental rise and up to 28 km thick crust beneath the middle and inner shelf. The crust of the continental rise is characterized by a small gradient in thickness. Including horst and graben structures this can be associated with wide-mode rifting. A high velocity zone with velocities ranging between 7.1 and 7.6 km/s indicate magmatic underplating of variable thickness along the entire transect. We classify this margin as one of volcanic type rather than magma poor because of the high-velocity zone and seaward dipping reflectors observed from the seismic reflection data. We discuss the possibility of a serpentinized upper mantle caused by seawater penetration at the Marie Byrd Seamounts. The crustal structure, distinct zones in potential field anomalies indicate several phases of fully developed and failed rift systems and a possible branch of the West Antarctic Rift System in the Amundsen Sea Embayment.
Seismic imaging beneath southwest Africa based on finite-frequency body wave tomography
NASA Astrophysics Data System (ADS)
Youssof, Mohammad; Yuan, Xiaohui; Tilmann, Frederik; Heit, Benjamin; Weber, Michael; Jokat, Wilfried; Geissler, Wolfram; Laske, Gabi
2016-04-01
We present a seismic model of southwest Africa from teleseismic tomographic inversion of the P- and S- wave data recorded by an amphibious temporary seismic network. The area of study is located at the intersection of the Walvis Ridge with the continental margin of northern Namibia, and extends into the Congo craton. Utilizing 3D finite-frequency sensitivity kernels, we invert traveltime residuals of the teleseismic body waves to image seismic structures in the upper mantle. To test the robustness of our tomographic imaging, we employed various resolution assessments that allow us to inspect the extent of smearing effects and to evaluate the optimum regularization weights (i.e., damping and smoothness). These tests include applying different (ir)regular parameterizations, classical checkerboard and anomaly tests and squeezing modeling. Furthermore, we performed different kinds of weighing schemes for the traveltime dataset. These schemes account for balancing between the picks data amount with their corresponding events directions. Our assessment procedure involves also a detailed investigation of the effect of the crustal correction on the final velocity image, which strongly influenced the image resolution for the mantle structures. Our model can resolve horizontal structures of 1° x 1° below the array down to 300-350 km depth. The resulting model is mainly dominated by the difference in the oceanic and continental mantle lithosphere beneath the study area, with second-order features related to their respective internal structures. The fast lithospheric keel of the Congo Craton reaches a depth of ~250 km. The orogenic Damara Belt and continental flood basalt areas are characterized by low velocity perturbations down to a depth of ~150 km, indicating a normal fertile mantle. High velocities in the oceanic lithosphere beneath the Walvis Ridge appear to show signatures of chemical depletion. A pronounced anomaly of fast velocity is imaged underneath continental NW Namibia and is separated from the high velocity anomaly of the Congo Craton. We interpret this positive perturbation as depleted mantle materials. The depletion event is most probably related to the emplacement of the Parana-Etendeka flood basalts at about 132 Ma triggered by a mantle plume, which has left traces on the Walvis Ridge as well.
Normal-Faulting in Madagascar: Another Round of Continental Rifting?
NASA Astrophysics Data System (ADS)
Wysession, M. E.; Pratt, M. J.; Tsiriandrimanana, R.; Andriampenomanana Ny Ony, F. S. T.; Nyblade, A.; Durrheim, R. J.; Tilmann, F. J.; Rumpker, G.; Rambolamanana, G.; Aleqabi, G. I.; Shore, P.
2017-12-01
Analyses of seismicity and seismic structure within Madagascar suggest the current occurrence of crustal extension, which may be related to continental rifting associated with a diffuse boundary between the Somalia and Lwandle tectonic plates. Madagascar has participated in two major rifting events as part of the break-up of Gondwana: the break-away of Greater India (Madagascar, India, the Seychelles) away from mainland Africa during the Jurassic and the break-away of India from Madagascar during the Cretaceous. Seismic activity and the structures obtained from it, using data from the 2-year (2011-2013) MACOMO project, suggest that this break-up may not be finished, and that continental rifts may be developing again. There are fairly high levels of intraplate seismicity within Madagascar: over 800 events located during the 22 months of the deployment. For comparison, a 2-year deployment of seismometers within the upper Midwest of the U.S. yielded just 12 intraplate earthquakes. While the Madagascar seismicity occurs across the island, it is strongly concentrated in the central region, where Cenozoic volcanism has occurred through the Holocene, and earthquakes align along N-S-trending lineations associated with N-S-trending pull-apart graben structures. The thickness of the crust is still >40 km in this region, but it is underlain by a large low-velocity structure within the lithosphere and asthenosphere that is observed in our studies of surface-wave, body-wave, and Pn-phase tomography. Normal faulting is not observed everywhere on the island, however; seismicity in the north is largely strike-slip, and seismicity in the south appears to be largely reverse faulting. Several studies have suggested that the diffuse boundary between the Somalia and Lwandle plates runs roughly E-W across Madagascar. Extensional faulting seems to predominate only within central Madagascar, likely associated with the current volcanic activity, which also appears to be associated with the delamination of the northern half of Madagascar's subcrustal lithosphere. If so, it may be that the volcanism, seismicity, and extension are all occurring syntectonically, and that we may be witnessing the development of another continental rift involving Madagascar.
NASA Astrophysics Data System (ADS)
Yang, H.; Sinha, S. K.; Feng, Y.; Jeremic, B.
2016-12-01
The M5.8 earthquake occurred in Pawnee, Oklahoma on September 3rd 2016 is the strongest seismic event recorded in Oklahoma. Soil structure interaction (SSI) played an important role in this tragic event. As a major aspect of SSI analysis, the propagation and dissipation of seismic energy will be studied in depth, with particular focus on the ground motion recorded in this earthquake. Seismic energy propagates from seismic source to the SSI system and is dissipated within and around the SSI system. Energy dissipation with the SSI system is related to inelastic behavior of soil, rock, contact zone (foundation-soil/rock), structural components and energy dissipators. Accurate evaluation of seismic energy can be used to optimize SSI system for safety and economy. The SSI system can be designed so that majority of seismic energy is dissipated within soil and soil-foundation contact zone, away from the structure.Accurate and theoretically sound modeling of propagation and dissipation is essential to use of seismic energy for design and assessment. The rate of plastic work is defined as the product of stress and the rate of plastic strain. On the other hand, plastic dissipation is defined as a form of heat transfer. The difference between these two quantities, which has been neglected in many studies, is a plastic part of the free energy. By considering energy storage and dissipation at both micro (particle) scale and macro (continuum) scale, it can be shown that the plastic free energy is an intrinsic attribute at the continuum scale due to particle rearrangement. Proper application of thermodynamics to finite element simulations, plastic dissipation can be correctly modeled. Examples will be used to illustrate above point on both constitutive, single element and SSI model scales. In addition, propagation of seismic energy, its dissipation (timing and location) will be used to illustrate use in design and assessment.
Violay, M; Heap, M J; Acosta, M; Madonna, C
2017-08-09
Recently, projects have been proposed to engineer deep geothermal reservoirs in the ductile crust. To examine their feasibility, we performed high-temperature (up to 1000 °C), high-pressure (130 MPa) triaxial experiments on granite (initially-intact and shock-cooled samples) in which we measured the evolution of porosity during deformation. Mechanical data and post-mortem microstuctural characterisation (X-ray computed tomography and scanning electron microscopy) indicate that (1) the failure mode was brittle up to 900 °C (shear fracture formation) but ductile at 1000 °C (no strain localisation); (2) only deformation up to 800 °C was dilatant; (3) deformation at 900 °C was brittle but associated with net compaction due to an increase in the efficiency of crystal plastic processes; (4) ductile deformation at 1000 °C was compactant; (5) thermally-shocking the granite did not influence strength or failure mode. Our data show that, while brittle behaviour increases porosity, porosity loss is associated with both ductile behaviour and transitional behaviour as the failure mode evolves from brittle to ductile. Extrapolating our data to geological strain rates suggests that the brittle-ductile transition occurs at a temperature of 400 ± 100 °C, and is associated with the limit of fluid circulation in the deep continental crust.
REVERSING CYCLIC ELASTO-PLASTIC DEMANDS ON STRUCTURES DURING STRONG MOTION EARTHQUAKE EXCITATION.
Perez, V.; Brady, A.G.; Safak, E.
1986-01-01
Using the horizontal components from El Centro 1940, Taft 1952, and 4 accelerograms from the San Fernando earthquake of 2/9/71, the time history of the elasto-plastic displacement response was calculated for oscillators having periods within the range of 1 to 6 s and ductility factors within the range of 3 to 6. The Nth largest peak of the elasto-plastic response (N equals 2,4,8,16), when expressed as a percentage of maximum response (that is, N equals 1), is fairly independent of period within our period range. When considering only plastic peaks occurring, sometimes in a one-directional group of peaks, in the reverse direction from the preceding plastic peak, the amplitude of the Nth reversing plastic peak is similar to the Nth elastic peak, regardless of the ductility factor.
NASA Astrophysics Data System (ADS)
Sun, Ming; Yin, An; Yan, Danping; Ren, Hongyu; Mu, Hongxu; Zhu, Lutao; Qiu, Liang
2018-06-01
Pre-existing weakness due to repeated tectonic, metamorphic, and magmatic events is a fundamental feature of the continental lithosphere on Earth. Because of this, continental deformation results from a combined effect of boundary conditions imposed by plate tectonic processes and heterogeneous and anisotropic mechanical strength inherited from protracted continental evolution. In this study, we assess how this interaction may have controlled the Cenozoic evolution of the eastern Tibetan plateau during the India-Asia collision. Specifically, we use analogue models to evaluate how the pre-Cenozoic structures may have controlled the location, orientation, and kinematics of the northwest-striking Xianshuihe and northeast-striking Longmen Shan fault zones, the two most dominant Cenozoic structures in eastern Tibet. Our best model indicates that the correct location, trend, and kinematics of the two fault systems can only be generated and maintained if the following conditions are met: (1) the northern part of the Songpan-Ganzi terrane in eastern Tibet has a strong basement whereas its southern part has a weak basement, (2) the northern strong basement consists of two pieces bounded by a crustal-scale weak zone that is expressed by the Triassic development of a northwest-trending antiform exposing middle and lower crustal rocks, and (3) the region was under persistent northeast-southwest compression since ∼35 Ma. Our model makes correct prediction on the sequence of deformation in eastern Tibet; the Longmen Shan right-slip transpressional zone was initiated first as an instantaneous response to the northeast-southwest compression, which is followed by the formation of the Xianshuihe fault about a half way after the exertion of northeast-southwest shortening in the model. The success of our model highlights the importance of pre-existing weakness, a key factor that has been largely neglected in the current geodynamic models of continental deformation.
Composite Materials and Sandwich Structures - A Primer
2010-05-01
cooling through a temperature range characteristic of the plastic. In the softened stage the plastic can be formed in a desired shape by molding or...which components are placed in a mold , and the composite is built up and worked by hand. Hybrid- A composite laminate comprised of laminae of two or...ply orientation is symmetrical about the laminate mid- plane. Thermoplastic - A plastic that can be repeatedly softened by heating, and hardened by
Localized coating removal using plastic media blasting
NASA Technical Reports Server (NTRS)
Novak, Howard L.; Wyckoff, Michael G.; Zook, Lee M.
1988-01-01
Steps taken to qualify the use of plastic media blasting for safely and effectively removing paint and other coatings from solid rocket booster aluminum structures are described. As a result of the effort, an improvement was made in the design of surface finishing equipment for processing flight hardware, in addition to a potentially patentable idea on improved plastic media composition. The general arrangement of the blast equipment and the nozzle configuration are presented.
Extracellular matrix control of dendritic spine and synapse structure and plasticity in adulthood
Levy, Aaron D.; Omar, Mitchell H.; Koleske, Anthony J.
2014-01-01
Dendritic spines are the receptive contacts at most excitatory synapses in the central nervous system. Spines are dynamic in the developing brain, changing shape as they mature as well as appearing and disappearing as they make and break connections. Spines become much more stable in adulthood, and spine structure must be actively maintained to support established circuit function. At the same time, adult spines must retain some plasticity so their structure can be modified by activity and experience. As such, the regulation of spine stability and remodeling in the adult animal is critical for normal function, and disruption of these processes is associated with a variety of late onset diseases including schizophrenia and Alzheimer’s disease. The extracellular matrix (ECM), composed of a meshwork of proteins and proteoglycans, is a critical regulator of spine and synapse stability and plasticity. While the role of ECM receptors in spine regulation has been extensively studied, considerably less research has focused directly on the role of specific ECM ligands. Here, we review the evidence for a role of several brain ECM ligands and remodeling proteases in the regulation of dendritic spine and synapse formation, plasticity, and stability in adults. PMID:25368556
The North Sakhalin Neogene total petroleum system of eastern Russia
Lindquist, S.J.
2000-01-01
The North Sakhalin Basin Province of eastern Russia contains one Total Petroleum System (TPS) ? North Sakhalin Neogene ? with more than 6 BBOE known, ultimately recoverable petroleum (61% gas, 36% oil, 3% condensate). Tertiary rocks in the basin were deposited by the prograding paleo-Amur River system. Marine to continental, Middle to Upper Miocene shale to coaly shale source rocks charged marine to continental Middle Miocene to Pliocene sandstone reservoir rocks in Late Miocene to Pliocene time. Fractured, self-sourced, Upper Oligocene to Lower Miocene siliceous shales also produce hydrocarbons. Geologic history is that of a Mesozoic Asian passive continental margin that was transformed into an active accretionary Tertiary margin and Cenozoic fold belt by the collision of India with Eurasia and by the subduction of Pacific Ocean crustal plates under the Asian continent. The area is characterized by extensional, compressional and wrench structural features that comprise most known traps.
Furrowed outcrops of Eocene chalk on the lower continental slop offshore New Jersey
Robb, James M.; Kirby, John R.; Hampson, John C., Jr.; Gibson, Patricia R.; Hecker, Barbara
1983-01-01
A sea bottom of middle Eocene calcareous claystone cut by downslope-trending furrows was observed during an Alvin dive to the mouth of Berkeley Canyon on the continental slope off New Jersey. The furrows are 10 to 50 m apart, 4 to 13 m deep, linear, and nearly parallel in water depths of 2,000 m. They have steep walls and flat floors 3 to 5 m wide, of fine-grained sediment. Mid-range sidescan-sonar images show that similarly furrowed surfaces are found on nearby areas of the lower continental slope, not associated with canyons. The furrows are overlain in places by Pleistocene sediments. Although they show evidence of erosional origin, they do not appear to be related to observed structures, and their straight, parallel pattern is not well understood. A general cover of flocky unconsolidated sediments implies that bottom-current erosion is not active now.
Forbes, Lindsey H.
2018-01-01
The extracellular environment of the central nervous system (CNS) becomes highly structured and organized as the nervous system matures. The extracellular space of the CNS along with its subdomains plays a crucial role in the function and stability of the CNS. In this review, we have focused on two components of the neuronal extracellular environment, which are important in regulating CNS plasticity including the extracellular matrix (ECM) and myelin. The ECM consists of chondroitin sulfate proteoglycans (CSPGs) and tenascins, which are organized into unique structures called perineuronal nets (PNNs). PNNs associate with the neuronal cell body and proximal dendrites of predominantly parvalbumin-positive interneurons, forming a robust lattice-like structure. These developmentally regulated structures are maintained in the adult CNS and enhance synaptic stability. After injury, however, CSPGs and tenascins contribute to the structure of the inhibitory glial scar, which actively prevents axonal regeneration. Myelin sheaths and mature adult oligodendrocytes, despite their important role in signal conduction in mature CNS axons, contribute to the inhibitory environment existing after injury. As such, unlike the peripheral nervous system, the CNS is unable to revert to a “developmental state” to aid neuronal repair. Modulation of these external factors, however, has been shown to promote growth, regeneration, and functional plasticity after injury. This review will highlight some of the factors that contribute to or prevent plasticity, sprouting, and axonal regeneration after spinal cord injury. PMID:29849554
NASA Astrophysics Data System (ADS)
Kazarinov, N. A.; Evstifeev, A. D.; Petrov, Yu. V.; Lashkov, V. A.
2016-05-01
The influence of severe plastic deformation on the material surface is investigated under highspeed erosion conditions. The AD1 aluminum alloy was tested with the structure changed by severe plastic torsional deformation.
Plastic masters-rigid templates for soft lithography.
Desai, Salil P; Freeman, Dennis M; Voldman, Joel
2009-06-07
We demonstrate a simple process for the fabrication of rigid plastic master molds for soft lithography directly from (poly)dimethysiloxane devices. Plastics masters (PMs) provide a cost-effective alternative to silicon-based masters and can be easily replicated without the need for cleanroom facilities. We have successfully demonstrated the use of plastics micromolding to generate both single and dual-layer plastic structures, and have characterized the fidelity of the molding process. Using the PM fabrication technique, world-to-chip connections can be integrated directly into the master enabling devices with robust, well-aligned fluidic ports directly after molding. PMs provide an easy technique for the fabrication of microfluidic devices and a simple route for the scaling-up of fabrication of robust masters for soft lithography.
Evaluation of biodegradable plastics for rubber seedling applications
NASA Astrophysics Data System (ADS)
Mansor, Mohd Khairulniza; Dayang Habibah A. I., H.; Kamal, Mazlina Mustafa
2015-08-01
The main negative consequence of conventional plastics in agriculture is related to handling the wastes plasticand the associated environmental impact. Hence, a study of different types of potentially biodegradable plastics used for nursery applications have been evaluated on its mechanical,water absorption propertiesand Fourier transform infra-red (FTIR) spectroscopy. Supplied samples from different companies were designated as SF, CF and CO. Most of the polybags exhibited mechanical properties quite similar to the conventional plastics (polybag LDPE). CO polybag which is based on PVA however had extensively higher tensile strength and water absorption properties. FTIR study revealed a characteristics absorbance of conventional plastic, SF, CF and CO biodegradable polybag are associated with polyethylene, poly(butylene adipate-co-terephthalate) (PBAT), polyethylene and polyvinyl alcohol (PVA) structures respectively.
Jones, Theresa A.; Liput, Daniel J.; Maresh, Erin L.; Donlan, Nicole; Parikh, Toral J.; Marlowe, Dana
2012-01-01
Abstract Compensatory neural plasticity occurs in both hemispheres following unilateral cortical damage incurred by seizures, stroke, and focal lesions. Plasticity is thought to play a role in recovery of function, and is important for the utility of rehabilitation strategies. Such effects have not been well described in models of traumatic brain injury (TBI). We examined changes in immunoreactivity for neural structural and plasticity-relevant proteins in the area surrounding a controlled cortical impact (CCI) to the forelimb sensorimotor cortex (FL-SMC), and in the contralateral homotopic cortex over time (3–28 days). CCI resulted in considerable motor deficits in the forelimb contralateral to injury, and increased reliance on the ipsilateral forelimb. The density of dendritic processes, visualized with immunostaining for microtubule-associated protein-2 (MAP-2), were bilaterally decreased at all time points. Synaptophysin (SYN) immunoreactivity increased transiently in the injured hemisphere, but this reflected an atypical labeling pattern, and it was unchanged in the contralateral hemisphere compared to uninjured controls. The lack of compensatory neuronal structural plasticity in the contralateral homotopic cortex, despite behavioral asymmetries, is in contrast to previous findings in stroke models. In the cortex surrounding the injury (but not the contralateral cortex), decreases in dendrites were accompanied by neurodegeneration, as indicated by Fluoro-Jade B (FJB) staining, and increased expression of the growth-inhibitory protein Nogo-A. These studies indicate that, following unilateral CCI, the cortex undergoes neuronal structural degradation in both hemispheres out to 28 days post-injury, which may be indicative of compromised compensatory plasticity. This is likely to be an important consideration in designing therapeutic strategies aimed at enhancing plasticity following TBI. PMID:22352953
Jones, Theresa A; Liput, Daniel J; Maresh, Erin L; Donlan, Nicole; Parikh, Toral J; Marlowe, Dana; Kozlowski, Dorothy A
2012-05-01
Compensatory neural plasticity occurs in both hemispheres following unilateral cortical damage incurred by seizures, stroke, and focal lesions. Plasticity is thought to play a role in recovery of function, and is important for the utility of rehabilitation strategies. Such effects have not been well described in models of traumatic brain injury (TBI). We examined changes in immunoreactivity for neural structural and plasticity-relevant proteins in the area surrounding a controlled cortical impact (CCI) to the forelimb sensorimotor cortex (FL-SMC), and in the contralateral homotopic cortex over time (3-28 days). CCI resulted in considerable motor deficits in the forelimb contralateral to injury, and increased reliance on the ipsilateral forelimb. The density of dendritic processes, visualized with immunostaining for microtubule-associated protein-2 (MAP-2), were bilaterally decreased at all time points. Synaptophysin (SYN) immunoreactivity increased transiently in the injured hemisphere, but this reflected an atypical labeling pattern, and it was unchanged in the contralateral hemisphere compared to uninjured controls. The lack of compensatory neuronal structural plasticity in the contralateral homotopic cortex, despite behavioral asymmetries, is in contrast to previous findings in stroke models. In the cortex surrounding the injury (but not the contralateral cortex), decreases in dendrites were accompanied by neurodegeneration, as indicated by Fluoro-Jade B (FJB) staining, and increased expression of the growth-inhibitory protein Nogo-A. These studies indicate that, following unilateral CCI, the cortex undergoes neuronal structural degradation in both hemispheres out to 28 days post-injury, which may be indicative of compromised compensatory plasticity. This is likely to be an important consideration in designing therapeutic strategies aimed at enhancing plasticity following TBI.
3D Numerical Rift Modeling with Application to the East African Rift System
NASA Astrophysics Data System (ADS)
Glerum, A.; Brune, S.; Naliboff, J.
2017-12-01
As key components of plate tectonics, continental rifting and the formation of passive margins have been extensively studied with both analogue models and numerical techniques. Only recently however, technical advances have enabled numerical investigations into rift evolution in three dimensions, as is actually required for including those processes that cause rift-parallel variability, such as structural inheritance and oblique extension (Brune 2016). We use the massively parallel finite element code ASPECT (Kronbichler et al. 2012; Heister et al. 2017) to investigate rift evolution. ASPECT's adaptive mesh refinement enables us to focus resolution on the regions of interest (i.e. the rift center), while leaving other areas such as the asthenospheric mantle at coarse resolution, leading to kilometer-scale local mesh resolution in 3D. Furthermore, we implemented plastic and viscous strain weakening of the nonlinear viscoplastic rheology required to develop asymmetric rift geometries (e.g. Huismans and Beaumont 2003). Additionally created plugins to ASPECT allow us to specify initial temperature and composition conditions based on geophysical data (e.g. LITHO1.0, Pasyanos et al. 2014) or to prescribe more general along-strike variation in the initial strain seeding the rift. Employing the above functionality, we construct regional models of the East African Rift System (EARS), the world's largest currently active rift. As the EARS is characterized by both orthogonal and oblique rift sections, multi-phase extension histories as well as magmatic and a-magmatic branches (e.g. Chorowicz 2005; Ebinger and Scholz 2011), it constitutes an extensive natural laboratory for our research into the 3D nature of continental rifting. References:Brune, S. (2016), in Plate boundaries and natural hazards, AGU Geophysical Monograph 219, J. C. Duarte and W. P. Schellart (Eds.). Chorowicz, J. (2005). J. Afr. Earth Sci., 43, 379-410. Ebinger, C. and Scholz, C. A. (2011), in Tectonics of Sedimentary Basins: Recent Advances, Wiley, C. Busby and A. Azor (Eds.). Heister et al. (2017). Geophys. J. Int., 210, 833-851. Huismans, R. S. and Beaumont, C. (2003). J. Geophys. Res., 108, B10, 2496. Kronbichler et al. (2012). Geophys. J. Int., 191, 12-29. Pasyanos et al. (2014). J. of Geophys. Res., 119, 3, 2153-2173.
Ordovician volcanic and plutonic complexes of the Sakmara allochthon in the southern Urals
NASA Astrophysics Data System (ADS)
Ryazantsev, A. V.; Tolmacheva, T. Yu.
2016-11-01
The Ordovician terrigenous, volcanic-sedimentary and volcanic sequences that formed in rifts of the active continental margin and igneous complexes of intraoceanic suprasubduction settings structurally related to ophiolites are closely spaced in allochthons of the Sakmara Zone in the southern Urals. The stratigraphic relationships of the Ordovician sequences have been established. Their age and facies features have been specified on the basis of biostratigraphic and geochronological data. The gabbro-tonalite-trondhjemite complex and the basalt-andesite-rhyolite sequence with massive sulfide mineralization make up a volcanic-plutonic association. These rock complexes vary in age from Late Ordovician to Early Silurian in certain structural units of the Sakmara Allochthon and to the east in the southern Urals. The proposed geodynamic model for the Ordovician in Paleozoides of the southern Urals reconstructs the active continental margin, whose complexes formed under extension settings, and the intraoceanic suprasubduction structures. The intraoceanic complexes display the evolution of a volcanic arc, back-, or interarc trough.
Dusel-Bacon, C.; Hansen, V.L.; Scala, J.A.
1995-01-01
Ductilely deformed amphibolite facies tectonites comprise two adjacent terranes in east-central Alaska: the northern, structurally higher Taylor Mountain terrane and the southern, structurally lower Lake George subterrane of the Yukon-Tanana terrane. The pressure, temperature, kinematic and age data are interpreted to indicate that the metamorphism of the Taylor Mountain terrane and Lake George subterrane took place during different phases of a latest Palaeozoic through early Mesozoic shortening episode resulting from closure of an ocean basin now represented by klippen of the Seventymile-Slide Mountain terrane. High- to intermediate-pressure metamorphism of the Taylor Mountain terrane took place within a SW-dipping (present-day coordinates) subduction system. High- to intermediate-pressure metamorphism of the Lake George subterrane and the structural contact zone occurred during NW-directed overthrusting of the Taylor Mountain, Seventymile-Slide Mountain and Nisutlin terranes, and imbrication of the continental margin in Jurassic time. -from Authors
30 CFR 250.903 - What records must I keep?
Code of Federal Regulations, 2013 CFR
2013-07-01
... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Platforms and Structures General... steel brackets, deck stiffeners and secondary braces or beams would not generally be considered primary...
30 CFR 250.903 - What records must I keep?
Code of Federal Regulations, 2014 CFR
2014-07-01
... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Platforms and Structures General... steel brackets, deck stiffeners and secondary braces or beams would not generally be considered primary...
30 CFR 250.903 - What records must I keep?
Code of Federal Regulations, 2012 CFR
2012-07-01
... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Platforms and Structures General... steel brackets, deck stiffeners and secondary braces or beams would not generally be considered primary...
NASA Astrophysics Data System (ADS)
Browne, S. E.; Fairhead, J. D.
1983-05-01
A regional compilation of published and unpublished gravity data for Central Africa is presented and reveals the presence of a major rift system, called here, the Central African Rift System. It is proposed that the junction area between the Ngaoundere and Abu Gabra rift arms in Western Sudan forms an incipient intraplate, triple-junction with the as yet unfractured, but domally uplifted and volcanically active, Darfur swell. It is only the Darfur swell that shows any similarities to the uplift and rift history of East Africa. The other two rifts arms are considered to be structurally similar to the early stages of passive margin development and thus reflect more closely the initial processes of continental fragmentation than the structures associated with rifting in East Africa.
The Pongola structure of southeastern Africa - The world's oldest preserved rift?
NASA Technical Reports Server (NTRS)
Burke, K.; Kidd, W. S. F.; Kusky, T. M.
1985-01-01
Rocks of the Pongola Supergroup form an elongate belt in the Archean Kaapvaal Craton of southern Africa. Because these rocks exhibit many features that are characteristic of rocks deposited in continental rifts, including rapid lateral variations in thickness and character of sediments, volcanic rocks that are bimodal in silica content, coarse, basement derived conglomerates and thick sequences of shallow water sedimentary facies associations, it is suggested that the Pongola Supergroup was deposited in such a rift. The age of these rocks (approximately 3.0 Ga) makes the Pongola structure the world's oldest well-preserved rift so far recognized, and comparison of the Pongola Rift with other rifts formed more recently in earth history reveals striking similarities, suggesting that the processes that formed this rift were not significantly different from those that form continental rifts today.
Supercontinent Formation in 3-D Spherical Mantle Convection Models With Multiple Continental Blocks
NASA Astrophysics Data System (ADS)
Zhang, N.; Zhong, S.; McNamara, A.
2007-12-01
Much of the large-scale tectonics on the Earth in the last Ga is predominated by the assembly and breakup of supercontinents Rodinia and Pangea. However, the mechanism that is responsible for supercontinent formation remains poorly understood. Zhong et al [2007] recently showed that mantle convection with moderately strong lithosphere and lower mantle is characterized by a largely degree-1 planform in which one hemisphere is predominated by upwellings while the other by downwellings. They further suggested that the downwellings should attract all the continental blocks to merge in the downwelling hemisphere, thus leading to supercontinent formation there. However, Zhong et al. [2007] did not consider drifting and collision processes of continents. In this study, we explore the supercontinent formation mechanisms by including drifting and collision processes of multiple continental blocks in 3-D spherical mantle convection models. We use thermochemical CitcomS code to model 3-D spherical mantle convection with continental blocks. In our models, particles are used to represent continents and to track their motions. We found that for models with mantle viscosity (i.e., moderately strong lithosphere and lower mantle) that leads to degree-1 convection as reported in Zhong et al. [2007], initially evenly- distributed continental blocks always merge to form a supercontinent on a time-scale of about 6 transit times (i.e., corresponding to about 300 Ma). The hemisphere where a supercontinent is formed is predominated by downwellings as continents merge towards there, while the other hemisphere by upwellings. However, after the supercontinent formation, upwellings are generated beneath the supercontinent. This scenario is qualitatively consistent with what Zhong et al. [2007] proposed. We also found that while some convection models with intrinsically small-scale planforms may also lead to formation of a supercontinent, some other models may fail to produce a supercontinent. For these models with intrinsically small-scale planforms, the merged continental blocks promote long-wavelength mantle structure near the continents. However, in non-continental regions, convective wavelengths remain relatively small. We suggest that time-scales for supercontinent formation and convective wavelengths in non-continental area are important parameters that help constrain mechanisms for supercontinent formation.
The morphology and nature of the East Arctic ocean acoustic basement
NASA Astrophysics Data System (ADS)
Rekant, Pavel
2017-04-01
As the result of the thorough interpretation and cross-correlation of the large seismic dataset (>150000 km and >600 seismic lines), the depth structure map of the acoustic basement was constrained. Tectonic framework, basement surface morphology and linkage of the deep basin structures with shelves ones, was significantly clarified based on the map. It becomes clear that most morphostructures presently located within deep-water basin are tectonically connected with shelf structures. Acoustic basement contains a number of pre-Cambrian, Caledonian and Mesozoic consolidated blocks. The basement heterogeneity is highlighted by faults framework and basement surface morphology differences, as well thickness and stratigraphy of the sediment cover. The deepest basins of the East Arctic - Hanna Trough, North Chukchi and Podvodnikov Basins form a united mega-depression, wedged between pre-Cambrian continental blocks (Chukchi Borderland - Mendeleev Rise - Toll Saddle) from the north and the Caledonian deformation front from the south. The basement age/origin speculations are consistent with paleontological and U-Pb zircon ages from dredged rock samples. Most of morphological boundaries in the modern Arctic differ considerably from the tectonic framework. Only part of the Arctic morphostructures is constrained by tectonic boundaries. They are: eastern slope of the Lomonosov Ridge, continental slope in the Laptev Sea, upper continental slope in the Podvodnikov Basin, southern slope of the North Chukchi Basin and borders of the Chukchi Borderland. The rest significant part of modern morphological boundaries are caused by sedimentation processes.
Local yield stress statistics in model amorphous solids
NASA Astrophysics Data System (ADS)
Barbot, Armand; Lerbinger, Matthias; Hernandez-Garcia, Anier; García-García, Reinaldo; Falk, Michael L.; Vandembroucq, Damien; Patinet, Sylvain
2018-03-01
We develop and extend a method presented by Patinet, Vandembroucq, and Falk [Phys. Rev. Lett. 117, 045501 (2016), 10.1103/PhysRevLett.117.045501] to compute the local yield stresses at the atomic scale in model two-dimensional Lennard-Jones glasses produced via differing quench protocols. This technique allows us to sample the plastic rearrangements in a nonperturbative manner for different loading directions on a well-controlled length scale. Plastic activity upon shearing correlates strongly with the locations of low yield stresses in the quenched states. This correlation is higher in more structurally relaxed systems. The distribution of local yield stresses is also shown to strongly depend on the quench protocol: the more relaxed the glass, the higher the local plastic thresholds. Analysis of the magnitude of local plastic relaxations reveals that stress drops follow exponential distributions, justifying the hypothesis of an average characteristic amplitude often conjectured in mesoscopic or continuum models. The amplitude of the local plastic rearrangements increases on average with the yield stress, regardless of the system preparation. The local yield stress varies with the shear orientation tested and strongly correlates with the plastic rearrangement locations when the system is sheared correspondingly. It is thus argued that plastic rearrangements are the consequence of shear transformation zones encoded in the glass structure that possess weak slip planes along different orientations. Finally, we justify the length scale employed in this work and extract the yield threshold statistics as a function of the size of the probing zones. This method makes it possible to derive physically grounded models of plasticity for amorphous materials by directly revealing the relevant details of the shear transformation zones that mediate this process.
Influence of deformation on structural-phase state of weld material in St3 steel
NASA Astrophysics Data System (ADS)
Smirnov, Alexander; Kozlov, Eduard; Ababkov, Nicolay; Popova, Natalya; Nikonenko, Elena; Ozhiganov, Yevgeniy; Zboykova, Nadezhda; Koneva, Nina
2016-01-01
The structural-phase condition of the weld material subjected to the plastic deformation was investigated using the translucent diffraction electron microscopy method. The investigations were carried out near the joint of the weld and the base metal. The seam was done by the method of manual arc welding without artificial defects. The St3 steel was taken as the welded material. Influence of the plastic deformation on morphology, phase composition, defect structure and its parameters of weld metal was revealed. All investigations were done at the distance of 0.5 mm from the joint of the weld and the base metal at the deformation degrees from 0 to 5% and after destruction of a sample. It was established that deformation of the sample did not lead to qualitative changes in the structure (the structure is still presented by ferrite-pearlite mixture) but changed the quantitative parameters of the structure, namely, with the increase of plastic deformation a part of the pearlite component becomes more and more imperfect. In the beginning it turns into the destroyed pearlite then into ferrite, the volume fraction of pearlite is decreased. The polarization of dislocation structure takes place but it doesn't lead to the internal stresses that can destroy the sample.
NASA Astrophysics Data System (ADS)
Wang, Lai-Guo; Zhang, Wei; Chen, Yan; Cao, Yan-Qiang; Li, Ai-Dong; Wu, Di
2017-01-01
In this work, a kind of new memristor with the simple structure of Pt/HfOx/ZnOx/TiN was fabricated completely via combination of thermal-atomic layer deposition (TALD) and plasma-enhanced ALD (PEALD). The synaptic plasticity and learning behaviors of Pt/HfOx/ZnOx/TiN memristive system have been investigated deeply. Multilevel resistance states are obtained by varying the programming voltage amplitudes during the pulse cycling. The device conductance can be continuously increased or decreased from cycle to cycle with better endurance characteristics up to about 3 × 103 cycles. Several essential synaptic functions are simultaneously achieved in such a single double-layer of HfOx/ZnOx device, including nonlinear transmission properties, such as long-term plasticity (LTP), short-term plasticity (STP), and spike-timing-dependent plasticity. The transformation from STP to LTP induced by repetitive pulse stimulation is confirmed in Pt/HfOx/ZnOx/TiN memristive device. Above all, simple structure of Pt/HfOx/ZnOx/TiN by ALD technique is a kind of promising memristor device for applications in artificial neural network.
NASA Astrophysics Data System (ADS)
Lafourcade, Paul; Denoual, Christophe; Maillet, Jean-Bernard
2017-06-01
TATB crystal structure consists in graphitic-like sheets arranged in the a-b plane where a, b and c define the edge vectors of the unit cell. This type of stacking provides the TATB monocrystal very anisotropic physical, chemical and mechanical properties. In order to explore which mechanisms are involved in TATB plasticity, we use a Molecular Dynamics code in which the overall deformation is prescribed as a function of time, for any deformation path. Furthermore, a computation of the Green-Lagrange strain tensor is proposed, which helps reveal various defects and plasticity mechanisms. Through prescribed large strain of shock-like deformations, a three-dimensional characterization of TATB monocrystal yield stress has been obtained, confirming the very anisotropic behavior of this energetic material. Various plasticity mechanisms are triggered during these simulations, including counter intuitive defects onset such as gliding along transveral planes containing perfect dislocations and twinning. Gliding in the a-b plane occurs systematically and does not lead to significant plastic behavior, in accordance with a previous study on dislocation core structures for this plane, based on a coupling between the Peierls-Nabarro-Galerkin method and Molecular Dynamics simulations.
Creep prediction of a layered fiberglass plastic
NASA Astrophysics Data System (ADS)
Aniskevich, K.; Korsgaard, J.; Mālmeisters, A.; Jansons, J.
1998-05-01
The results of short-term creep tests of a layered glass fiber/polyester resin plastic in tension at angles of 90, 70, and 45° to the direction of the principal fiber orientation are presented. The applicability of the principle of time-temperature analogy for the prediction of long-term creep of the composite and its structural components is revealed. The possibility of evaluating the viscoelastic properties of the composite from the properties of structural components is shown.
USArray Imaging of North American Continental Crust
NASA Astrophysics Data System (ADS)
Ma, Xiaofei
The layered structure and bulk composition of continental crust contains important clues about its history of mountain-building, about its magmatic evolution, and about dynamical processes that continue to happen now. Geophysical and geological features such as gravity anomalies, surface topography, lithospheric strength and the deformation that drives the earthquake cycle are all directly related to deep crustal chemistry and the movement of materials through the crust that alter that chemistry. The North American continental crust records billions of years of history of tectonic and dynamical changes. The western U.S. is currently experiencing a diverse array of dynamical processes including modification by the Yellowstone hotspot, shortening and extension related to Pacific coast subduction and transform boundary shear, and plate interior seismicity driven by flow of the lower crust and upper mantle. The midcontinent and eastern U.S. is mostly stable but records a history of ancient continental collision and rifting. EarthScope's USArray seismic deployment has collected massive amounts of data across the entire United States that illuminates the deep continental crust, lithosphere and deeper mantle. This study uses EarthScope data to investigate the thickness and composition of the continental crust, including properties of its upper and lower layers. One-layer and two-layer models of crustal properties exhibit interesting relationships to the history of North American continental formation and recent tectonic activities that promise to significantly improve our understanding of the deep processes that shape the Earth's surface. Model results show that seismic velocity ratios are unusually low in the lower crust under the western U.S. Cordillera. Further modeling of how chemistry affects the seismic velocity ratio at temperatures and pressures found in the lower crust suggests that low seismic velocity ratios occur when water is mixed into the mineral matrix, and the combination of high temperature and water may point to small amounts of melt in the lower crust of Cordillera.
NASA Astrophysics Data System (ADS)
Zhu, Yunhu; Fu, Jie; Zheng, Chao; Ji, Zhong
2016-12-01
In this study, surface modification of a Zr41.2Ti13.8Cu12.5Ni10Be22.5 (vit1) bulk metallic glass (BMG) has been studied in an effort to improve the mechanical properties by laser shock peening (LSP) treatment. The phase structure, mechanical properties, and microstructural evolution of the as-cast and LSP treated specimens were systematically investigated. It was found that the vit1 BMG still consisted of fully amorphous structure after LSP treatment. Measurements of the heat relaxation indicate that a large amount of free volume is introduced into vit1 BMG during LSP process. LSP treatment causes a decrease of hardness attributable to generation of free volume. The plastic deformation ability of vit1 BMG was investigated under three-point bending conditions. The results demonstrate that the plastic strain of LSP treated specimen is 1.83 times as large as that of the as-cast specimen. The effect of LSP technology on the hardness and plastic deformation ability of vit1 BMG is discussed on the basis of free volume theory. The high dense shear bands on the side surface, the increase of striations and critical shear displacement on the tensile fracture region, and more uniform dimples structure on the compressive fracture region also demonstrate that the plasticity of vit1 BMG can be enhanced by LSP.
The Triassic-Jurassic boundary in eastern North America
NASA Technical Reports Server (NTRS)
Olsen, P. E.; Comet, B.
1988-01-01
Rift basins of the Atlantic passive margin in eastern North America are filled with thousands of meters of continental rocks termed the Newark Supergroup which provide an unprecedented opportunity to examine the fine scale structure of the Triassic-Jurassic mass extinction in continental environments. Time control, vital to the understanding of the mechanisms behind mass extinctions, is provided by lake-level cycles apparently controlled by orbitally induced climate change allowing resolution at the less than 21,000 year level. Correlation with other provinces is provided by a developing high resolution magnetostratigraphy and palynologically-based biostratigraphy. A large number of at least local vertebrate and palynomorph extinctions are concentrated around the boundary with survivors constituting the earliest Jurassic assemblages, apparently without the introduction of new taxa. The palynofloral transition is marked by the dramatic elimination of a relatively high diversity Triassic pollen assemblage with the survivors making up a Jurassic assemblage of very low diversity overwhelmingly dominated by Corollina. Based principally on palynological correlations, the hypothesis that these continental taxonomic transitions were synchronous with the massive Triassic-Jurassic marine extinctions is strongly corroborated. An extremely rapid, perhaps catastrophic, taxonomic turnover at the Triassic-Jurassic boundary, synchronous in continental and marine realms is hypothesized and discussed.
New Insights Into the Origin and Evolution of the Hikurangi Oceanic Plateau
NASA Astrophysics Data System (ADS)
Hoernle, Kaj; Hauff, Folkmar; Werner, Reinhard; Mortimer, Nicholas
2004-10-01
Oceanic plateaus and continental flood basalts, collectively referred to as large igneous provinces (LIPs), represent the most voluminous volcanic events on Earth. In contrast to continental LIPs, relatively little is known about the surface and internal structure, range in age and chemical composition, origin, and evolution of oceanic plateaus, which occur throughout the world's oceans. One of the major goals of the R/V Sonne SO168 ZEALANDIA expedition (deport Wellington, 3 December 2002, return Christchurch, 15 January 2003) was to investigate the Hikurangi oceanic plateau off the east coast of New Zealand.
Continental rifting and the origin of Beta Regio, Venus
NASA Technical Reports Server (NTRS)
Mcgill, G. E.; Steenstrup, S. J.; Barton, C.; Ford, P. G.
1981-01-01
Topographic maps based on Pioneer Venus altimetry suggest that Beta Regio, an elevated feature centered at 27 deg N, 282 deg E, is analogous to domes associated with continental rift systems on earth. This interpretation is consistent with the commonly quoted analogy between the East African rift system and the topography of the region from Beta Regio southward to Phoebe Regio. If Beta Regio is a dome, major structural uplift of the crust of Venus is implied, suggesting a more dynamic upper mantle than would be the case if Beta Regio were simply a large volcanic construct.
SKILLED BIMANUAL TRAINING DRIVES MOTOR CORTEX PLASTICITY IN CHILDREN WITH UNILATERAL CEREBRAL PALSY
Friel, Kathleen M.; Kuo, Hsing-Ching; Fuller, Jason; Ferre, Claudio L.; Brandão, Marina; Carmel, Jason B.; Bleyenheuft, Yannick; Gowatsky, Jaimie L.; Stanford, Arielle D.; Rowny, Stefan B.; Luber, Bruce; Bassi, Bruce; Murphy, David LK; Lisanby, Sarah H.; Gordon, Andrew M.
2015-01-01
Background Intensive bimanual therapy can improve hand function in children with unilateral spastic cerebral palsy (USCP). We compared the effects of structured bimanual skill training vs. unstructured bimanual practice on motor outcomes and motor map plasticity in children with USCP. Objective We hypothesized that structured skill training would produce greater motor map plasticity than unstructured practice. Methods Twenty children with USCP (average age 9,5; 12 males) received therapy in a day-camp-setting, 6 h/day, 5 days/week, for 3 weeks. In structured skill training (n=10), children performed progressively more difficult movements and practiced functional goals. In unstructured practice (n=10), children engaged in bimanual activities but did not practice skillful movements or functional goals. We used the Assisting Hand Assessment (AHA), Jebsen-Taylor test of Hand Function (JTTHF) and Canadian Occupational Performance Measure (COPM) to measure hand function. We used single-pulse transcranial magnetic stimulation (TMS) to map the representation of first dorsal interosseous (FDI) and flexor carpi radialis (FCR) muscles bilaterally. Results Both groups showed significant improvements in bimanual hand use (AHA; p<0.05) and hand dexterity (JTTHF; p<0.001). However, only the structured skill group showed increases in the size of the affected hand motor map and amplitudes of motor evoked potentials (p<0.01). Most children who showed the most functional improvements (COPM) had the largest changes in map size. Conclusions These findings uncover a dichotomy of plasticity: the unstructured practice group improved hand function but did not show changes in motor maps. Skill training is important for driving motor cortex plasticity in children with USCP. PMID:26867559
Visual system plasticity in mammals: the story of monocular enucleation-induced vision loss
Nys, Julie; Scheyltjens, Isabelle; Arckens, Lutgarde
2015-01-01
The groundbreaking work of Hubel and Wiesel in the 1960’s on ocular dominance plasticity instigated many studies of the visual system of mammals, enriching our understanding of how the development of its structure and function depends on high quality visual input through both eyes. These studies have mainly employed lid suturing, dark rearing and eye patching applied to different species to reduce or impair visual input, and have created extensive knowledge on binocular vision. However, not all aspects and types of plasticity in the visual cortex have been covered in full detail. In that regard, a more drastic deprivation method like enucleation, leading to complete vision loss appears useful as it has more widespread effects on the afferent visual pathway and even on non-visual brain regions. One-eyed vision due to monocular enucleation (ME) profoundly affects the contralateral retinorecipient subcortical and cortical structures thereby creating a powerful means to investigate cortical plasticity phenomena in which binocular competition has no vote.In this review, we will present current knowledge about the specific application of ME as an experimental tool to study visual and cross-modal brain plasticity and compare early postnatal stages up into adulthood. The structural and physiological consequences of this type of extensive sensory loss as documented and studied in several animal species and human patients will be discussed. We will summarize how ME studies have been instrumental to our current understanding of the differentiation of sensory systems and how the structure and function of cortical circuits in mammals are shaped in response to such an extensive alteration in experience. In conclusion, we will highlight future perspectives and the clinical relevance of adding ME to the list of more longstanding deprivation models in visual system research. PMID:25972788
NASA Astrophysics Data System (ADS)
Bowden, S.; Wireman, R.
2016-02-01
Bathymetric surveys were conducted on the continental shelf off the southwest coast of County Cork, Ireland by the Marine Institute of Ireland, the Geological Survey of Ireland, and the INFOMAR project. Data were collected from July 2006 through September 2014 using a Kongsberg EM2040 multibeam echosounder aboard the R/Vs Celtic Voyager and Keary, and a Kongsberg EM1002 on the R/V Celtic Explorer. Sonar data were post-processed with CARIS HIPS and SIPS 9.0 to create 2D and 3D bathymetric and backscatter intensity surfaces with a resolution of 1 m. The offshore study site is part of the 286 Ma western Variscian orogenic front and has several massive outcrops, exhibiting 5 to 20 m of near-vertical relief. These outcrops were structurally mapped and relatively aged, and exhibit significant folding, rotation, tilting, and joint systems. Google Earth, ArcGIS, and previous terrestrial studies were used to further analyze how geomorphology is controlled by seafloor composition and structural features. Rock type and age were interpreted by comparing fracture analysis of the joints and fold trends to similar onshore outcrops documented previously, to determine an age of 416-299 Ma for the shelf's outcropping strata and associated structural features. The oldest features observed are regional anticlines and synclines containing Upper Devonian Old Red Sandstone and Lower Carboniferous shales. Within the shale layers are NE-SW plunging parasitic chevron folds. Jointing is observed in both sandstone and shale layers and is superimposed on chevron folding, with cross joints appearing to influence shallow current patterns. Rotation of the regional folds is the youngest structural feature, as both the parasitic folds and joint systems are warped. Our study shows that high resolution sonar is an effective tool for offshore structural mapping and is an important resource for understanding the geomorphology and geologic history of submerged outcrops on continental shelf systems.
NASA Astrophysics Data System (ADS)
Atkins, J. W.; Fahey, R. T.; Gough, C. M.; Hardiman, B. S.
2016-12-01
Ecosystem structure-function relationships represent a long-standing research area for ecosystem science. Relationships between canopy structural complexity (CSC) and net primary productivity (NPP), have been characterized for a limited number of sites, yet whether these relationships are conserved across eco-climatic boundaries remains unknown. We hypothesize an underlying mechanistic basis for global NPP-CSC linkages to include improved resource-use efficiency as CSC increases, examined here by correlating CSC with measures of light-use efficiency and nitrogen-use efficiency. Here we present a broad, continental scale analysis of CSC-NPP linkages. We are using multiple NEON sites coupled with other sites across a diverse array of temperate forest types spanning six eco-climatic domains of the continental United States to examine CSC-NPP relationships. Portable canopy LiDAR (PCL) data were used to calculate a suite of CSC metrics at the plot-level within each site. Ongoing work compares CSC to co-located measurements of wood net primary production estimated from the incremental change in woody biomass calculated using tree allometries. Results to date show CSC is highly variable across forest sites and may provide additional explanatory power for predicting NPP that is independent of other commonly used forest structural attributes such as leaf area index. CSC metrics such as rugosity vary widely across sites—ranging from high values (30 - 35) in complex canopies such as the Great Smoky Mountains to low values in open, savanna systems like North-Central Florida (< 0.5 - 2). NPP, and light- and nitrogen-use calculations are underway and will be paired with site-level CSC, with the expectation that CSC, resource-use efficiency, and NPP are positively correlated. Advancing understanding of how and why CSC affects forest NPP across a broad spatial dimension could transform mechanistic understanding of ecosystem structure-carbon cycling relationships, and greatly improve carbon cycling models and remote sensing applications, while providing a crucial linkage between the two.
46 CFR 160.035-1 - Applicable specifications.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Laminates, Fibrous Glass Reinforced, Marine Structural. MIL-P-19644—Plastic Foam, Molded Polystyrene..., Polyester, Low Pressure Laminating, Fire Retardant. MIL-P-21929—Plastic Material, Cellular Polyurethane, Rigid, Foam-In-Place, Low Density. (3) Federal specifications: TT-P-59—Paint, Ready-Mixed, International...
46 CFR 160.035-1 - Applicable specifications.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Laminates, Fibrous Glass Reinforced, Marine Structural. MIL-P-19644—Plastic Foam, Molded Polystyrene..., Polyester, Low Pressure Laminating, Fire Retardant. MIL-P-21929—Plastic Material, Cellular Polyurethane, Rigid, Foam-In-Place, Low Density. (3) Federal specifications: TT-P-59—Paint, Ready-Mixed, International...
Colour stability of aesthetic brackets: ceramic and plastic.
Filho, Hibernon Lopes; Maia, Lúcio Henrique; Araújo, Marcus V; Eliast, Carlos Nelson; Ruellas, Antônio Carlos O
2013-05-01
The colour stability of aesthetic brackets may differ according to their composition, morphology and surface property, which may consequently influence their aesthetic performance. To assess the colour stability of aesthetic brackets (ceramic and plastic) after simulating aging and staining. Twelve commercially manufactured ceramic brackets and four different plastic brackets were assessed. To determine possible colour change (change of E*(ab)) and the value of the NBS (National Bureau of Standards) unit system, spectrophotometric colour measurements for CIE L*, a* and b* were taken before and after the brackets were aged and stained. Statistical analysis was undertaken using a one-way ANOVA analysis of variance and a Tukey multiple comparison test (alpha = 0.05). The colour change between the various (ceramic and plastic) materials was not significant (p > 0.05), but still varied significantly (p < 0.001) between the brackets of the same composition or crystalline structure and among commercial brands. Colour stability cannot be confirmed simply by knowing the type of material and crystalline composition or structure.
NASA Astrophysics Data System (ADS)
Kuznetsov, G. V.; Rudzinskaya, N. V.
1997-05-01
The stressed state of multilayer low-temperature heat insulation for a cryogenic fuel tank is considered. Account is taken of heat and mass transfer in foam plastic (the main heat insulation material) occurring at cryogenic temperatures. A method is developed for solving a set of differential equations and boundary conditions. Numerical studies of the main features of these processes are performed. It is established that below 200 K the stresses which arise in foam plastic markedly exceed the ultimate strength for this material. Stresses develop as a result of both a reduction in temperature and a drop in pressure in the foam plastic pores connected with material cooling. On the basis of the results obtained it is established that the combination of thermophysical processes which occur in foam plastic during cooling to cryogenic temperatures leads to changes in the stress-strained state of structure, which should be considered in planning aerospace technology.
Gransee, Heather M.; Mantilla, Carlos B.; Sieck, Gary C.
2014-01-01
Muscle plasticity is defined as the ability of a given muscle to alter its structural and functional properties in accordance with the environmental conditions imposed on it. As such, respiratory muscle is in a constant state of remodeling, and the basis of muscle’s plasticity is its ability to change protein expression and resultant protein balance in response to varying environmental conditions. Here, we will describe the changes of respiratory muscle imposed by extrinsic changes in mechanical load, activity, and innervation. Although there is a large body of literature on the structural and functional plasticity of respiratory muscles, we are only beginning to understand the molecular-scale protein changes that contribute to protein balance. We will give an overview of key mechanisms regulating protein synthesis and protein degradation, as well as the complex interactions between them. We suggest future application of a systems biology approach that would develop a mathematical model of protein balance and greatly improve treatments in a variety of clinical settings related to maintaining both muscle mass and optimal contractile function of respiratory muscles. PMID:23798306
Ultrasound Velocity Measurements in High-Chromium Steel Under Plastic Deformation
NASA Astrophysics Data System (ADS)
Lunev, Aleksey; Bochkareva, Anna; Barannikova, Svetlana; Zuev, Lev
2016-04-01
In the present study, the variation of the propagation velocity of ultrasound in the plastic deformation of corrosion-resistant high-chromium steel 40X13 with ferrite-carbide (delivery status), martensitic (quenched) and sorbitol (after high-temperature tempering) structures have beem studied/ It is found that each state shows its view of the loading curve. In the delivery state diagram loading is substantially parabolic throughout, while in the martensitic state contains only linear strain hardening step and in the sorbitol state the plastic flow curve is three-step. The velocity of ultrasonic surface waves (Rayleigh waves) was measured simultaneously with the registration of the loading curve in the investigated steel in tension. It is shown that the dependence of the velocity of ultrasound in active loading is determined by the law of plastic flow, that is, the staging of the corresponding diagram of loading. Structural state of the investigated steel is not only changing the type of the deformation curve under uniaxial tension, but also changes the nature of ultrasound speed of deformation.
Structuring policy problems for plastics, the environment and human health: reflections from the UK
Shaxson, Louise
2009-01-01
How can we strengthen the science–policy interface for plastics, the environment and human health? In a complex policy area with multiple stakeholders, it is important to clarify the nature of the particular plastics-related issue before trying to understand how to reconcile the supply and demand for evidence in policy. This article proposes a simple problem typology to assess the fundamental characteristics of a policy issue and thus identify appropriate processes for science–policy interactions. This is illustrated with two case studies from one UK Government Department, showing how policy and science meet over the environmental problems of plastics waste in the marine environment and on land. A problem-structuring methodology helps us understand why some policy issues can be addressed through relatively linear flows of science from experts to policymakers but why others demand a more reflexive approach to brokering the knowledge between science and policy. Suggestions are given at the end of the article for practical actions that can be taken on both sides. PMID:19528061
Structuring policy problems for plastics, the environment and human health: reflections from the UK.
Shaxson, Louise
2009-07-27
How can we strengthen the science-policy interface for plastics, the environment and human health? In a complex policy area with multiple stakeholders, it is important to clarify the nature of the particular plastics-related issue before trying to understand how to reconcile the supply and demand for evidence in policy. This article proposes a simple problem typology to assess the fundamental characteristics of a policy issue and thus identify appropriate processes for science-policy interactions. This is illustrated with two case studies from one UK Government Department, showing how policy and science meet over the environmental problems of plastics waste in the marine environment and on land. A problem-structuring methodology helps us understand why some policy issues can be addressed through relatively linear flows of science from experts to policymakers but why others demand a more reflexive approach to brokering the knowledge between science and policy. Suggestions are given at the end of the article for practical actions that can be taken on both sides.
Taw, Matthew R.; Yeager, John D.; Hooks, Daniel E.; ...
2017-06-19
Organic molecular crystals are often noncubic and contain significant steric hindrance within their structure to resist dislocation motion. Plastic deformation in these systems can be imparted during processing (tableting and comminution of powders), and the defect density impacts subsequent properties and performance. This paper measured the elastic and plastic properties of representative monoclinic, orthorhombic, and triclinic molecular crystalline structures using nanoindentation of as-grown sub-mm single crystals. The variation in modulus due to in-plane rotational orientation, relative to a Berkovich tip, was approximately equal to the variation of a given crystal at a fixed orientation. The onset of plasticity occurs consistentlymore » at shear stresses between 1 and 5% of the elastic modulus in all three crystal systems, and the hardness to modulus ratio suggests conventional Berkovich tips do not generate fully self-similar plastic zones in these materials. Finally, this provides guidance for mechanical models of tableting, machining, and property assessment of molecular crystals.« less
Late Paleogene rifting along the Malay Peninsula thickened crust
NASA Astrophysics Data System (ADS)
Sautter, Benjamin; Pubellier, Manuel; Jousselin, Pierre; Dattilo, Paolo; Kerdraon, Yannick; Choong, Chee Meng; Menier, David
2017-07-01
Sedimentary basins often develop above internal zones of former orogenic belts. We hereafter consider the Malay Peninsula (Western Sunda) as a crustal high separating two regions of stretched continental crust; the Andaman/Malacca basins in the western side and the Thai/Malay basins in the east. Several stages of rifting have been documented thanks to extensive geophysical exploration. However, little is known on the correlation between offshore rifted basins and the onshore continental core. In this paper, we explore through mapping and seismic data, how these structures reactivate pre-existing Mesozoic basement heterogeneities. The continental core appears to be relatively undeformed after the Triassic Indosinian orogeny. The thick crustal mega-horst is bounded by complex shear zones (Ranong, Klong Marui and Main Range Batholith Fault Zones) initiated during the Late Cretaceous/Early Paleogene during a thick-skin transpressional deformation and later reactivated in the Late Paleogene. The extension is localized on the sides of this crustal backbone along a strip where earlier Late Cretaceous deformation is well expressed. To the west, the continental shelf is underlain by three major crustal steps which correspond to wide crustal-scale tilted blocks bounded by deep rooted counter regional normal faults (Mergui Basin). To the east, some pronounced rift systems are also present, with large tilted blocks (Western Thai, Songkhla and Chumphon basins) which may reflect large crustal boudins. In the central domain, the extension is limited to isolated narrow N-S half grabens developed on a thick continental crust, controlled by shallow rooted normal faults, which develop often at the contact between granitoids and the host-rocks. The outer limits of the areas affected by the crustal boudinage mark the boundary towards the large and deeper Andaman basin in the west and the Malay and Pattani basins in the east. At a regional scale, the rifted basins resemble N-S en-echelon structures along large NW-SE shear bands. The rifting is accommodated by large low angle normal faults (LANF) running along crustal morphostructures such as broad folds and Mesozoic batholiths. The deep Andaman, Malay and Pattani basins seem to sit on weaker crust inherited from Gondwana-derived continental blocks (Burma, Sibumasu, and Indochina). The set of narrow elongated basins in the core of the Region (Khien Sa, Krabi, and Malacca basins) suffered from a relatively lesser extension.
Macroscopic tensile plasticity by scalarizating stress distribution in bulk metallic glass
Gao, Meng; Dong, Jie; Huan, Yong; Wang, Yong Tian; Wang, Wei-Hua
2016-01-01
The macroscopic tensile plasticity of bulk metallic glasses (BMGs) is highly desirable for various engineering applications. However, upon yielding, plastic deformation of BMGs is highly localized into narrow shear bands and then leads to the “work softening” behaviors and subsequently catastrophic fracture, which is the major obstacle for their structural applications. Here we report that macroscopic tensile plasticity in BMG can be obtained by designing surface pore distribution using laser surface texturing. The surface pore array by design creates a complex stress field compared to the uniaxial tensile stress field of conventional glassy specimens, and the stress field scalarization induces the unusual tensile plasticity. By systematically analyzing fracture behaviors and finite element simulation, we show that the stress field scalarization can resist the main shear band propagation and promote the formation of larger plastic zones near the pores, which undertake the homogeneous tensile plasticity. These results might give enlightenment for understanding the deformation mechanism and for further improvement of the mechanical performance of metallic glasses. PMID:26902264
2017-01-01
The sensitivity of ocular dominance to regulation by monocular deprivation is the canonical model of plasticity confined to a critical period. However, we have previously shown that visual deprivation through dark exposure (DE) reactivates critical period plasticity in adults. Previous work assumed that the elimination of visual input was sufficient to enhance plasticity in the adult mouse visual cortex. In contrast, here we show that light reintroduction (LRx) after DE is responsible for the reactivation of plasticity. LRx triggers degradation of the ECM, which is blocked by pharmacological inhibition or genetic ablation of matrix metalloproteinase-9 (MMP-9). LRx induces an increase in MMP-9 activity that is perisynaptic and enriched at thalamo-cortical synapses. The reactivation of plasticity by LRx is absent in Mmp9−/− mice, and is rescued by hyaluronidase, an enzyme that degrades core ECM components. Thus, the LRx-induced increase in MMP-9 removes constraints on structural and functional plasticity in the mature cortex. PMID:28875930
Brain plasticity and motor practice in cognitive aging.
Cai, Liuyang; Chan, John S Y; Yan, Jin H; Peng, Kaiping
2014-01-01
For more than two decades, there have been extensive studies of experience-based neural plasticity exploring effective applications of brain plasticity for cognitive and motor development. Research suggests that human brains continuously undergo structural reorganization and functional changes in response to stimulations or training. From a developmental point of view, the assumption of lifespan brain plasticity has been extended to older adults in terms of the benefits of cognitive training and physical therapy. To summarize recent developments, first, we introduce the concept of neural plasticity from a developmental perspective. Secondly, we note that motor learning often refers to deliberate practice and the resulting performance enhancement and adaptability. We discuss the close interplay between neural plasticity, motor learning and cognitive aging. Thirdly, we review research on motor skill acquisition in older adults with, and without, impairments relative to aging-related cognitive decline. Finally, to enhance future research and application, we highlight the implications of neural plasticity in skills learning and cognitive rehabilitation for the aging population.
Role of the visual experience-dependent nascent proteome in neuronal plasticity
Liu, Han-Hsuan; McClatchy, Daniel B; Schiapparelli, Lucio; Shen, Wanhua; Yates, John R
2018-01-01
Experience-dependent synaptic plasticity refines brain circuits during development. To identify novel protein synthesis-dependent mechanisms contributing to experience-dependent plasticity, we conducted a quantitative proteomic screen of the nascent proteome in response to visual experience in Xenopus optic tectum using bio-orthogonal metabolic labeling (BONCAT). We identified 83 differentially synthesized candidate plasticity proteins (CPPs). The CPPs form strongly interconnected networks and are annotated to a variety of biological functions, including RNA splicing, protein translation, and chromatin remodeling. Functional analysis of select CPPs revealed the requirement for eukaryotic initiation factor three subunit A (eIF3A), fused in sarcoma (FUS), and ribosomal protein s17 (RPS17) in experience-dependent structural plasticity in tectal neurons and behavioral plasticity in tadpoles. These results demonstrate that the nascent proteome is dynamic in response to visual experience and that de novo synthesis of machinery that regulates RNA splicing and protein translation is required for experience-dependent plasticity. PMID:29412139
NASA Astrophysics Data System (ADS)
Theunissen, T.; Huismans, R. S.
2017-12-01
Here we present a new analysis and interpretation of basement topography of the transitional domain from continental to oceanic crust along the conjugate margin sections SCREETCH-1 (Newfoundland) and WE-1/ISE-1 (Galicia Bank). The absence of significant syn-rift magmatism in this area allows using 2-D thermo-mechanical modelling to understand the formation of the distal margin and exhumed mantle. We show that plastic strain weakening of the exhumed mantle is required to explain observations on basement morphology, and detachment faulting. Our models predict that the evolution of detachment faulting within the transitional domain depends on the degree of frictional-plastic strain-weakening and varies from a single unique steady state asymmetric low angle detachment fault for large degree of strain weakening to multiple out-of-sequence forming detachments with or without dip reversal for lower amounts of strain-weakening. The model behaviour is a consequence of the competition between weak frictional-plastic shear zones and the thermally weakened necking domain in the footwall. The forward models reproduce elevations, wavelength of exhumed mantle ridges for a narrow range of rift velocitiesbetween 10 and 15 mm/yr and considering the increasing thermal conductivity of peridotites at shallow depth. This causes an efficient cooling of the footwall that has then enough strength to support high topography. The forward models also predict that the peridotite ridge is the breakaway of a second detachment fault that dates the crustal breakup and that rocks on top of the peridotite ridge have experimented a fast cooling (< 2 Ma). We use predictions from these forward models to discuss time of breakup and the position of the first steady state oceanic ridge at Galicia/Newfounlandconjugate margins.
Sinervo, Barry; Miles, Donald B; Wu, Yayong; Méndez de la Cruz, Fausto R; Kirchoff, Sebastian; Qi, Yin
2018-02-13
Determining the susceptibility of species to changing thermal niches is a major goal for biologists. In this paper we develop an eco-physiological model of extinction risk under climate change premised on behavioral thermoregulation. Our method downscales operative environmental temperatures, which restrict hours of activity of lizards, h r , for present-day climate (1975) and future climate scenarios (2070). We apply our model using occurrence records of 20 Phrynocephalus lizards (or taxa in species complexes) drawn from literature and museum records. Our analysis is phylogenetically informed, because some clades may be more sensitive to rising temperatures. Computed h r limits predict local extirpations among Phrynocephalus lizards at continental scales and delineate upper boundaries of thermal niches as defined by Extreme Value Distributions. Under the 8.5 Representative Concentration Pathway scenario, we predict extirpation of 64% of local populations by 2070 across 20 Phrynocephalus species, and 12 are at high risk of total extinction due to thermal limits being exceeded. In tandem with global strategies of lower CO 2 emissions, we propose regional strategies for establishing new National Parks to protect extinction-prone taxa by preserving high-elevation climate refugia within existing sites of species occurrence. We propose that evolved acclimatization - maternal plasticity - may ameliorate risk, but is poorly studied. Previous studies revealed that adaptive maternal plasticity by thermoregulating gravid females alter progeny thermal preferences by ±1°C. We describe plasticity studies for extinction-prone species that could assess whether they might be buffered from climate warming - a self-rescue. We discuss an epigenetic framework for studying such maternal-effect evolution. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Mecozzi, Mauro; Pietroletti, Marco; Monakhova, Yulia B
2016-05-15
We inserted 190 FTIR spectra of plastic samples in a digital database and submitted it to Independent Component Analysis (ICA) to extract the "pure" plastic polymers present. These identified plastics were polypropylene (PP), high density polyethylene (HDPE), low density polyethylene (LDPE), high density polyethylene terephthalate (HDPET), low density polyethylene terephthalate (LDPET), polystyrene (PS), Nylon (NL), polyethylene oxide (OPE), and Teflon (TEF) and they were used to establish the similarity with unknown plastics using the correlation coefficient (r), and the crosscorrelation function (CC). For samples with r<0.8 we determined the Mahalanobis Distance (MD) as additional tool of identification. For instance, for the four plastic fragments found in the Carretta carretta, one plastic sample was assigned to OPE due to its r=0.87; for all the other three plastic samples, due to the r values ranging between 0.83 and0.70, the support of MD suggested LDPET and OPE as co-polymer constituents. Copyright © 2016 Elsevier Ltd. All rights reserved.
Social networks uncovered: 10 tips every plastic surgeon should know.
Dauwe, Phillip; Heller, Justin B; Unger, Jacob G; Graham, Darrell; Rohrich, Rod J
2012-11-01
Understanding online social networks is of critical importance to the plastic surgeon. With knowledge, it becomes apparent that the numerous networks available are similar in their structure, usage, and function. The key is communication between Internet media such that one maximizes exposure to patients. This article focuses on 2 social networking platforms that we feel provide the most utility to plastic surgeons. Ten tips are provided for incorporation of Facebook and Twitter into your practice.
Pb-, Sr- and Nd-Isotopic systematics and chemical characteristics of cenozoic basalts, Eastern China
Peng, Z.C.; Zartman, R.E.; Futa, K.; Chen, D.G.
1986-01-01
Forty-eight Paleogene, Neogene and Quaternary basaltic rocks from northeastern and east-central China have been analyzed for major-element composition, selected trace-element contents, and Pb, Sr and Nd isotopic systematics. The study area lies entirely within the marginal Pacific tectonic domain. Proceeding east to west from the continental margin to the interior, the basalts reveal an isotopic transition in mantle source material and/or degree of crustal interaction. In the east, many of the rocks are found to merge both chemically and isotopically with those previously reported from the Japanese and Taiwan island-arc terrains. In the west, clear evidence exists for component(s) of Late Archean continental lithosphere to be present in some samples. A major crustal structure, the Tan-Lu fault, marks the approximate boundary between continental margin and interior isotopic behaviors. Although the isotopic signature of the western basalts has characteristics of lower-crustal contamination, a subcrustal lithosphere, i.e. an attached mantle keel, is probably more likely to be the major contributor of their continental "flavor". The transition from continental margin to interior is very pronounced for Pb isotopes, although Sr and Nd isotopes also combine to yield correlated patterns that deviate strikingly from the mid-ocean ridge basalt (MORB) and oceanic-island trends. The most distinctive chemical attribute of this continental lithosphere component is its diminished U Pb as reflected in the Pb isotopic composition when compared to sources of MORB, oceanic-island and island-arc volcanic rocks. Somewhat diminished Sm Nd and elevated Rb Sr, especially in comparison to the depleted asthenospheric mantle, are also apparent from the Nd- and Sr-isotopic ratios. ?? 1986.
NASA Astrophysics Data System (ADS)
Bulois, Cédric; Shannon, Patrick, M.; Manuel, Pubellier; Nicolas, Chamot-Rooke; Louise, Watremez; Jacques, Deverchère
2017-04-01
Mesozoic faulting has been recognised in several Irish sedimentary basins as part of the northward propagation of the Atlantic rift system. However, the contribution of older structural elements remains poorly constrained. The present study documents the succession of extensional phases in the northern part of the Porcupine Basin sensu largo, offshore west of Ireland, in which structural inheritance and fault reactivation is commonly observed. The correlation of 2D and 3D seismic lines with exploration wells enables the precise definition of four overprinted extensional systems that link to specific tectonic stages identified along the Irish margin. The Porcupine Basin opened through a thickened continental crust that evolved during the Palaeozoic with the Caledonian and Variscan orogenic cycles. Extension initiated during the Carboniferous by reactivation of old structures, resulting in the migration of depocentres bounded by E-W, NE-SW and N-S structural trends. Subsequent episodic rifting occurred during several discrete events. The first rift episode, of Late Triassic to Early Jurassic age, is restricted to the North Porcupine Basin and most likely reactivated E-W structures of Caledonian age. Synrift sediments were generally deposited in a littoral setting that progressively deepened through time. The second episode, much more pronounced, occurred during the Upper Jurassic to lowermost Cretaceous (Neocomian). It resulted in shallow to deep marine deposition controlled by structural directions recognised in Caledonian and Variscan terranes. A third rift phase, evidenced by thick clastic deposition, locally occurred during the Aptian and finally died out with the opening of the Bay of Biscay located to the south of the region. A series of extensional megacycles are recognised from seismic unconformities and faulting geometries. Initial extension strongly followed the structural architecture of the continental crust (i.e. ancient folds, thrusts or orogenic fronts). This is interpreted as an effect of orogenic collapse. It was followed by the rifting phase sensu stricto during which the successive extensional megacycles are internally composed of several rift pulses. The first rift pulses are narrow and controlled by numerous faults with deposition in continental conditions. Subsequent deformation progressively passed to more localised normal faulting during which a major deepening occurs in all the rift basins. This results in progressive marine flooding, possible detachment faults and a widening of the rift systems with basinal interconnection. In a more global view, faults stop when abuting either new oceanic basins (e.g. Bay of Biscay) or transversal lineaments (e.g. Caledonian and Variscan trends). Such an evolution implies asymmetry of the overall region and an oceanward propagation of depocentres. Therefore, extension migrates progressively from the initial deformation core by reactivating pre-existing structures and then stops once boundary conditions change.
A collection of European sweet cherry phenology data for assessing climate change
NASA Astrophysics Data System (ADS)
Wenden, Bénédicte; Campoy, José Antonio; Lecourt, Julien; López Ortega, Gregorio; Blanke, Michael; Radičević, Sanja; Schüller, Elisabeth; Spornberger, Andreas; Christen, Danilo; Magein, Hugo; Giovannini, Daniela; Campillo, Carlos; Malchev, Svetoslav; Peris, José Miguel; Meland, Mekjell; Stehr, Rolf; Charlot, Gérard; Quero-García, José
2016-12-01
Professional and scientific networks built around the production of sweet cherry (Prunus avium L.) led to the collection of phenology data for a wide range of cultivars grown in experimental sites characterized by highly contrasted climatic conditions. We present a dataset of flowering and maturity dates, recorded each year for one tree when available, or the average of several trees for each cultivar, over a period of 37 years (1978-2015). Such a dataset is extremely valuable for characterizing the phenological response to climate change, and the plasticity of the different cultivars' behaviour under different environmental conditions. In addition, this dataset will support the development of predictive models for sweet cherry phenology exploitable at the continental scale, and will help anticipate breeding strategies in order to maintain and improve sweet cherry production in Europe.
A collection of European sweet cherry phenology data for assessing climate change.
Wenden, Bénédicte; Campoy, José Antonio; Lecourt, Julien; López Ortega, Gregorio; Blanke, Michael; Radičević, Sanja; Schüller, Elisabeth; Spornberger, Andreas; Christen, Danilo; Magein, Hugo; Giovannini, Daniela; Campillo, Carlos; Malchev, Svetoslav; Peris, José Miguel; Meland, Mekjell; Stehr, Rolf; Charlot, Gérard; Quero-García, José
2016-12-06
Professional and scientific networks built around the production of sweet cherry (Prunus avium L.) led to the collection of phenology data for a wide range of cultivars grown in experimental sites characterized by highly contrasted climatic conditions. We present a dataset of flowering and maturity dates, recorded each year for one tree when available, or the average of several trees for each cultivar, over a period of 37 years (1978-2015). Such a dataset is extremely valuable for characterizing the phenological response to climate change, and the plasticity of the different cultivars' behaviour under different environmental conditions. In addition, this dataset will support the development of predictive models for sweet cherry phenology exploitable at the continental scale, and will help anticipate breeding strategies in order to maintain and improve sweet cherry production in Europe.
A collection of European sweet cherry phenology data for assessing climate change
Wenden, Bénédicte; Campoy, José Antonio; Lecourt, Julien; López Ortega, Gregorio; Blanke, Michael; Radičević, Sanja; Schüller, Elisabeth; Spornberger, Andreas; Christen, Danilo; Magein, Hugo; Giovannini, Daniela; Campillo, Carlos; Malchev, Svetoslav; Peris, José Miguel; Meland, Mekjell; Stehr, Rolf; Charlot, Gérard; Quero-García, José
2016-01-01
Professional and scientific networks built around the production of sweet cherry (Prunus avium L.) led to the collection of phenology data for a wide range of cultivars grown in experimental sites characterized by highly contrasted climatic conditions. We present a dataset of flowering and maturity dates, recorded each year for one tree when available, or the average of several trees for each cultivar, over a period of 37 years (1978–2015). Such a dataset is extremely valuable for characterizing the phenological response to climate change, and the plasticity of the different cultivars’ behaviour under different environmental conditions. In addition, this dataset will support the development of predictive models for sweet cherry phenology exploitable at the continental scale, and will help anticipate breeding strategies in order to maintain and improve sweet cherry production in Europe. PMID:27922629
NASA Astrophysics Data System (ADS)
Peters, Max; Karrech, Ali; Poulet, Thomas; Herwegh, Marco; Regenauer-Lieb, Klaus
2014-05-01
During necking of a mechanically stiffer layer embedded in a weaker matrix, relatively large amounts of strain localize in small areas. As this deformation style appears under distinct geological conditions, necking phenomena, e.g. boudinaged veins, are associated with a variety of deformation modes. So far, there exists rather limited knowledge about the origin of instabilities and their role as precursory structures, i.e. strong localization of elastic energy affecting further plastic deformation (e.g. Regenauer-Lieb & Yuen, 1998; 2004; Karrech et al., 2011a). We applied the finite element solver ABAQUS in order to investigate the 2-D strain distribution in layers including different mechanical material properties during plane strain co-axial deformation. First, linear perturbation analyses were performed in order to evaluate the imperfection sensitivity in the elastic and viscous regimes. We perform a classical modal analysis to determine the natural mode shapes and frequencies of our geological structure during arbitrary vibrations. This analysis aims at detecting the eigenmodes of the geological structure, which are sinusoidal vibrations with geometry specific natural modal shapes and frequencies. The eigenvalues represent the nodal points where the onset of (visco)-elasto-plastic localization can initiate in the structure (Rice, 1977). The eigenmodes, eigenvalues and eigenvectors are highly sensitive to the layer-box' aspect ratio and differences in Young's moduli, or effective viscosity, respectively. Boundary effect-free strain propagation occurs for layer-box aspect ratios smaller than 1:10. Second, these preloading structures were used as seeds for imperfections in elasto-viscoplastic numerical modeling of continuous necking of a coarse-grained mineral layer embedded in a finer-grained matrix (pinch-and-swell type of boudinage), following the thermo-mechanical coupling of grain size evolutions by Herwegh et al. (in press). The evolution of symmetric necks seems to coincide with the transition from dislocation to diffusion creep dominated viscous flow with dramatic grain size reduction and grain growth from swell to neck, respectively, at relatively high extensional strains. Strain propagates from initial stress concentrations in the layer (necks) at an angle of 45° into the matrix, in form of conjugate shear band sets. Preliminary results show that pre-calculated eigenmodes (and corresponding imperfection sizes) amplify these concentrations and lead to a significant reduction of computational time for individual simulations. Moreover, the strain imperfections seeded around the pre-calculated distribution severely change the geometry of necking structures and amount of accommodated plastic strain. We reveal that elastic stress concentrations control localized visco-plastic deformation, which is expressed in the plastic strain energy increase in necking structures. These findings underline the importance of the transient (elasticity and strain hardening) deformation regimes as triggers for plastic deformation and the need for thermodynamics-based (total) energy considerations. REFERENCES Herwegh, M., Poulet, T., Karrech, A. and Regenauer-Lieb, K. (in press). From transient to steady state deformation and grain size: A thermodynamic approach using elasto-visco-plastic numerical modeling. Journal of Geophysical Research. Karrech, A., Regenauer-Lieb, K. and Poulet, T. (2011a). A Damaged visco-plasticity model for pressure and temperature sensitive geomaterials. Journal of Engineering Science 49. Regenauer-Lieb, K., Yuen, D., 1998: Rapid conversion of elastic energy into plastic shear heating during incipient necking of the lithosphere. Geophysical Research Letters, 25. Regenauer-Lieb, K., Yuen, D., 2004. Positive feedback of interacting ductile faults from coupling of equation of state, rheology and thermal-mechanics. Physics of the Earth and Planetary Interiors, 142. Rice, J. R. (1977). The localization of plastic deformation. Theoretical and Applied Mechanics. W. T. Koiter. Amsterdam, North-Holland: 207-220.
Crustal growth in subduction zones
NASA Astrophysics Data System (ADS)
Vogt, Katharina; Castro, Antonio; Gerya, Taras
2015-04-01
There is a broad interest in understanding the physical principles leading to arc magmatisim at active continental margins and different mechanisms have been proposed to account for the composition and evolution of the continental crust. It is widely accepted that water released from the subducting plate lowers the melting temperature of the overlying mantle allowing for "flux melting" of the hydrated mantle. However, relamination of subducted crustal material to the base of the continental crust has been recently suggested to account for the growth and composition of the continental crust. We use petrological-thermo-mechanical models of active subduction zones to demonstrate that subduction of crustal material to sublithospheric depth may result in the formation of a tectonic rock mélange composed of basalt, sediment and hydrated /serpentinized mantle. This rock mélange may evolve into a partially molten diapir at asthenospheric depth and rise through the mantle because of its intrinsic buoyancy prior to emplacement at crustal levels (relamination). This process can be episodic and long-lived, forming successive diapirs that represent multiple magma pulses. Recent laboratory experiments of Castro et al. (2013) have demonstrated that reactions between these crustal components (i.e. basalt and sediment) produce andesitic melt typical for rocks of the continental crust. However, melt derived from a composite diapir will inherit the geochemical characteristics of its source and show distinct temporal variations of radiogenic isotopes based on the proportions of basalt and sediment in the source (Vogt et al., 2013). Hence, partial melting of a composite diapir is expected to produce melt with a constant major element composition, but substantial changes in terms of radiogenic isotopes. However, crustal growth at active continental margins may also involve accretionary processes by which new material is added to the continental crust. Oceanic plateaus and other crustal units may collide with continental margins to form collisional orogens and accreted terranes in places where oceanic lithosphere is recycled back into the mantle. We use thermomechanical-petrological models of an oceanic-continental subduction zone to analyse the dynamics of terrane accretion and its implications to arc magmatisim. It is shown that terrane accretion may result in the rapid growth of continental crust, which is in accordance with geological data on some major segments of the continental crust. Direct consequences of terrane accretion may include slab break off, subduction zone transference, structural reworking, formation of high-pressure terranes and partial melting (Vogt and Gerya., 2014), forming complex suture zones of accreted and partially molten units. Castro, A., Vogt, K., Gerya, T., 2013. Generation of new continental crust by sublithospheric silicic-magma relamination in arcs: A test of Taylor's andesite model. Gondwana Research, 23, 1554-1566. Vogt, K., Castro, A., Gerya, T., 2013. Numerical modeling of geochemical variations caused by crustal relamination. Geochemistry, Geophysics, Geosystems, 14, 470-487. Vogt, K., Gerya, T., 2014. From oceanic plateaus to allochthonous terranes: Numerical Modelling. Gondwana Research, 25, 494-508
NASA Astrophysics Data System (ADS)
Kusznir, Nick; Gozzard, Simon; Alvey, Andy
2016-04-01
The distribution of ocean crust and lithosphere within the South China Sea (SCS) are controversial. Sea-floor spreading re-orientation and ridge jumps during the Oligocene-Miocene formation of the South China Sea led to the present complex distribution of oceanic crust, thinned continental crust, micro-continents and volcanic ridges. We determine Moho depth, crustal thickness and continental lithosphere thinning (1- 1/beta) for the South China Sea using a gravity inversion method which incorporates a lithosphere thermal gravity anomaly correction (Chappell & Kusznir, 2008). The gravity inversion method provides a prediction of ocean-continent transition structure and continent-ocean boundary location which is independent of ocean isochron information. A correction is required for the lithosphere thermal gravity anomaly in order to determine Moho depth accurately from gravity inversion; the elevated lithosphere geotherm of the young oceanic and rifted continental margin lithosphere of the South China Sea produces a large lithosphere thermal gravity anomaly which in places exceeds -150 mGal. The gravity anomaly inversion is carried out in the 3D spectral domain (using Parker 1972) to determine 3D Moho geometry and invokes Smith's uniqueness theorem. The gravity anomaly contribution from sediments assumes a compaction controlled sediment density increase with depth. The gravity inversion includes a parameterization of the decompression melting model of White & McKenzie (1999) to predict volcanic addition generated during continental breakup lithosphere thinning and seafloor spreading. Public domain free air gravity anomaly, bathymetry and sediment thickness data are used in this gravity inversion. Using crustal thickness and continental lithosphere thinning factor maps with superimposed shaded-relief free-air gravity anomaly, we improve the determination of pre-breakup rifted margin conjugacy, rift orientation and sea-floor spreading trajectory. SCS conjugate margins are highly asymmetric and have several striking features such as the Macclesfield Bank, Xisha Trough, Reed Bank and Dangerous Grounds. Thin continental crust is predicted extending westwards from thin oceanic crust north of Macclesfield Bank into the Quiondongnan (QDN) basin and is interpreted as being generated ahead of westward propagating sea-floor spreading most in the Oligocene. Further south, highly thinned continental crust or possibly serpentinised exhumed mantle is predicted in the Phu Khanh Basin. Ahead of the failed propagating tip of seafloor spreading, offshore southern Vietnam, thinned continental crust is predicted for the Cuu Long and Nam Con Son Basins. Crustal thicknesses from gravity inversion confirms that the southern margin of the SCS consists of fragmented blocks of thinned continental crust separated by thinner regions of continental crust that have undergone higher degrees of stretching and thinning. The Reed Bank is predicted to have a crustal thickness of 20 to 25km, similar to that of Macclesfield Bank. The Dangerous Grounds, west of the Reed Bank, are also predicted to consist of continental crust. This region has been thinned to a higher degree than the Reed Bank, with continental crustal thickness ranging between 10 and 20km thick.
Deep drilling in the Chesapeake Bay impact structure - An overview
Gohn, G.S.; Koeberl, C.; Miller, K.G.; Reimold, W.U.
2009-01-01
The late Eocene Chesapeake Bay impact structure lies buried at moderate depths below Chesapeake Bay and surrounding landmasses in southeastern Virginia, USA. Numerous characteristics made this impact structure an inviting target for scientific drilling, including the location of the impact on the Eocene continental shelf, its threelayer target structure, its large size (??85 km diameter), its status as the source of the North American tektite strewn field, its temporal association with other late Eocene terrestrial impacts, its documented effects on the regional groundwater system, and its previously unstudied effects on the deep microbial biosphere. The Chesapeake Bay Impact Structure Deep Drilling Project was designed to drill a deep, continuously cored test hole into the central part of the structure. A project workshop, funding proposals, and the acceptance of those proposals occurred during 2003-2005. Initial drilling funds were provided by the International Continental Scientific Drilling Program (ICDP) and the U.S. Geological Survey (USGS). Supplementary funds were provided by the National Aeronautics and Space Administration (NASA) Science Mission Directorate, ICDP, and USGS. Field operations were conducted at Eyreville Farm, Northampton County, Virginia, by Drilling, Observation, and Sampling of the Earth's Continental Crust (DOSECC) and the project staff during September-December 2005, resulting in two continuously cored, deep holes. The USGS and Rutgers University cored a shallow hole to 140 m in April-May 2006 to complete the recovered section from land surface to 1766 m depth. The recovered section consists of 1322 m of crater materials and 444 m of overlying postimpact Eocene to Pleistocene sediments. The crater section consists of, from base to top: basement-derived blocks of crystalline rocks (215 m); a section of suevite, impact melt rock, lithic impact breccia, and cataclasites (154 m); a thin interval of quartz sand and lithic blocks (26 m); a granite megablock (275 m); and sediment blocks and boulders, polymict, sediment-clast-dominated sedimentary breccias, and a thin upper section of stratified sediments (652 m). The cored postimpact sediments provide insight into the effects of a large continental-margin impact on subsequent coastal-plain sedimentation. This volume contains the first results of multidisciplinary studies of the Eyreville cores and related topics. The volume is divided into these sections: geologic column; borehole geophysical studies; regional geophysical studies; crystalline rocks, impactites, and impact models; sedimentary breccias; postimpact sediments; hydrologic and geothermal studies; and microbiologic studies. ?? 2009 The Geological Society of America.
Liang, Liang; Schwartz, Mark D
2014-10-01
Variation in the timing of plant phenology caused by phenotypic plasticity is a sensitive measure of how organisms respond to weather and climate variability. Although continental-scale gradients in climate and consequential patterns in plant phenology are well recognized, the contribution of underlying genotypic difference to the geography of phenology is less well understood. We hypothesize that different temperate plant genotypes require varying amount of heat energy for resuming annual growth and reproduction as a result of adaptation and other ecological and evolutionary processes along climatic gradients. In particular, at least for some species, the growing degree days (GDD) needed to trigger the same spring phenology events (e.g., budburst and flower bloom) may be less for individuals originated from colder climates than those from warmer climates. This variable intrinsic heat energy requirement in plants can be characterized by the term growth efficiency and is quantitatively reflected in the timing of phenophases-earlier timing indicates higher efficiency (i.e., less heat energy needed to trigger phenophase transitions) and vice versa compared to a standard reference (i.e., either a uniform climate or a uniform genotype). In this study, we tested our hypothesis by comparing variations of budburst and bloom timing of two widely documented plants from the USA National Phenology Network (i.e., red maple-Acer rubrum and forsythia-Forsythia spp.) with cloned indicator plants (lilac-Syringa x chinensis 'Red Rothomagensis') at multiple eastern US sites. Our results indicate that across the accumulated temperature gradient, the two non-clonal plants showed significantly more gradual changes than the cloned plants, manifested by earlier phenology in colder climates and later phenology in warmer climates relative to the baseline clone phenological response. This finding provides initial evidence supporting the growth efficiency hypothesis, and suggests more work is warranted. More studies investigating genotype-determined phenological variations will be useful for better understanding and prediction of the continental-scale patterns of biospheric responses to climate change.
Morin, Xavier; Thuiller, Wilfried
2009-05-01
Obtaining reliable predictions of species range shifts under climate change is a crucial challenge for ecologists and stakeholders. At the continental scale, niche-based models have been widely used in the last 10 years to predict the potential impacts of climate change on species distributions all over the world, although these models do not include any mechanistic relationships. In contrast, species-specific, process-based predictions remain scarce at the continental scale. This is regrettable because to secure relevant and accurate predictions it is always desirable to compare predictions derived from different kinds of models applied independently to the same set of species and using the same raw data. Here we compare predictions of range shifts under climate change scenarios for 2100 derived from niche-based models with those of a process-based model for 15 North American boreal and temperate tree species. A general pattern emerged from our comparisons: niche-based models tend to predict a stronger level of extinction and a greater proportion of colonization than the process-based model. This result likely arises because niche-based models do not take phenotypic plasticity and local adaptation into account. Nevertheless, as the two kinds of models rely on different assumptions, their complementarity is revealed by common findings. Both modeling approaches highlight a major potential limitation on species tracking their climatic niche because of migration constraints and identify similar zones where species extirpation is likely. Such convergent predictions from models built on very different principles provide a useful way to offset uncertainties at the continental scale. This study shows that the use in concert of both approaches with their own caveats and advantages is crucial to obtain more robust results and that comparisons among models are needed in the near future to gain accuracy regarding predictions of range shifts under climate change.
Lithospheric Structure and Seismotectonics of Central East Antarctica
NASA Astrophysics Data System (ADS)
Reading, A. M.
2006-12-01
The lithosphere of central East Antarctica, the sector of the continent between 30°E - 120°E, is investigated using seismic methods including receiver function and shear-wave splitting analysis. Data from the broadband stations of the temporary SSCUA deployment (in the continental interior) are used together with records from the permanent GSN stations (on the coast) to carry out the first studies of crustal depth and structure, and patterns of seismic anisotropy across this region. The depth of the Moho is found to be 42 km (+/- 2 km) beneath Mawson station with similar structures extending southward across the Rayner province as far south as Beaver Lake. The Fisher Terrane is characterised by a crustal shear wavespeed profile showing few discontinuties with the Moho at a similar depth to the Rayner. South of Fisher, the crust becomes much shallower, with the Moho at 32 km depth. This shallow crust extends across the Lambert glacier to the Prydz coast and the Lambert Terrane. The characteristic crustal wavespeed profiles provide baseline structure for mapping the extent of the terrance beneath the Antarctic Ice Sheet in future deployments. Observations of seismic anisotropy are less well- defined but, at a reconnaissance level, show fast directions parallel to the present day coastline. This may be controlled by rift-related influences on the lithosphere associated with the breakup of East Gondwana. The seismicity is confirmed to be extremely low. The only seismogenic forces on the Antarctic plate in this region are acting at the boundary between the continental and oceanic lithosphere west of 50°E and east of 100°E and represent a superposition of tectonic and glaciogenic controls. The Lambert Glacier region shows little or no seismotectonic activity in the continental interior or on the oceanic margin.
Hirata, Daisuke; Mano, Tsutomu; Abramov, Alexei V; Baryshnikov, Gennady F; Kosintsev, Pavel A; Murata, Koichi; Masuda, Ryuichi
2017-01-01
Sex-biased dispersal is widespread among mammals, including the brown bear ( Ursus arctos ). Previous phylogeographic studies of the brown bear based on maternally inherited mitochondrial DNA have shown intraspecific genetic structuring around the northern hemisphere. The brown bears on Hokkaido Island, northern Japan, comprise three distinct maternal lineages that presumably immigrated to the island from the continent in three different periods. Here, we investigate the paternal genetic structure across northeastern Asia and assess the connectivity among and within intraspecific populations in terms of male-mediated gene flow. We analyzed paternally inherited Y-chromosomal DNA sequence data and Y-linked microsatellite data of 124 brown bears from Hokkaido, the southern Kuril Islands (Kunashiri and Etorofu), Sakhalin, and continental Eurasia (Kamchatka Peninsula, Ural Mountains, European Russia, and Tibet). The Hokkaido brown bear population is paternally differentiated from, and lacked recent genetic connectivity with, the continental Eurasian and North American populations. We detected weak spatial genetic structuring of the paternal lineages on Hokkaido, which may have arisen through male-mediated gene flow among natal populations. In addition, our results suggest that the different dispersal patterns between male and female brown bears, combined with the founder effect and subsequent genetic drift, contributed to the makeup of the Etorofu Island population, in which the maternal and paternal lineages show different origins. Brown bears on Hokkaido and the adjacent southern Kuril Islands experienced different maternal and paternal evolutionary histories. Our results indicate that sex-biased dispersal has played a significant role in the evolutionary history of the brown bear in continental populations and in peripheral insular populations, such as on Hokkaido, the southern Kuril Islands, and Sakhalin.
NASA Astrophysics Data System (ADS)
Kirst, Frederik; Leiss, Bernd
2017-01-01
Kinematic analyses of shear zones at Lago di Cignana in the Italian Western Alps were used to constrain the structural evolution of units from the Piemont-Ligurian oceanic realm (Zermatt-Saas and Combin zones) and the Adriatic continental margin (Dent Blanche nappe) during Palaeogene syn- and post-exhumational deformation. Exhumation of Zermatt-Saas (U)HP rocks to approximately lower crustal levels at ca. 39 Ma occurred during normal-sense top-(S)E shearing under epidote-amphibolite-facies conditions. Juxtaposition with the overlying Combin zone along the Combin Fault at mid-crustal levels occurred during greenschist-facies normal-sense top-SE shearing at ca. 38 Ma. The scarcity of top-SE kinematic indicators in the hanging wall of the Combin Fault probably resulted from strain localization along the uppermost Zermatt-Saas zone and obliteration by subsequent deformation. A phase of dominant pure shear deformation around 35 Ma affected units in the direct footwall and hanging wall of the Combin Fault. It is interpreted to reflect NW-SE crustal elongation during updoming of the nappe stack as a result of underthrusting of European continental margin units and the onset of continental collision. This phase was partly accompanied and followed by ductile bulk top-NW shearing, especially at higher structural levels, which transitioned into semi-ductile to brittle normal-sense top-NW deformation due to Vanzone phase folding from ca. 32 Ma onwards. Our structural observations suggest that syn-exhumational deformation is partly preserved within units and shear zones exposed at Lago di Cignana but also that the Combin Fault and Dent Blanche Basal Thrust experienced significant post-exhumational deformation reworking and overprinting earlier structures.
Quantitative estimation of film forming polymer-plasticizer interactions by the Lorentz-Lorenz Law.
Dredán, J; Zelkó, R; Dávid, A Z; Antal, I
2006-03-09
Molar refraction as well as refractive index has many uses. Beyond confirming the identity and purity of a compound, determination of molecular structure and molecular weight, molar refraction is also used in other estimation schemes, such as in critical properties, surface tension, solubility parameter, molecular polarizability, dipole moment, etc. In the present study molar refraction values of polymer dispersions were determined for the quantitative estimation of film forming polymer-plasticizer interactions. Information can be obtained concerning the extent of interaction between the polymer and the plasticizer from the calculation of molar refraction values of film forming polymer dispersions containing plasticizer.
Optical sensors based on plastic fibers.
Bilro, Lúcia; Alberto, Nélia; Pinto, João L; Nogueira, Rogério
2012-01-01
The recent advances of polymer technology allowed the introduction of plastic optical fiber in sensor design. The advantages of optical metrology with plastic optical fiber have attracted the attention of the scientific community, as they allow the development of low-cost or cost competitive systems compared with conventional technologies. In this paper, the current state of the art of plastic optical fiber technology will be reviewed, namely its main characteristics and sensing advantages. Several measurement techniques will be described, with a strong focus on interrogation approaches based on intensity variation in transmission and reflection. The potential applications involving structural health monitoring, medicine, environment and the biological and chemical area are also presented.
24 CFR 3280.608 - Hangers and supports.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Hangers and supports. (a) Strains and stresses. Piping in a plumbing system shall be installed without undue strains and stresses, and provision shall be made for expansion, contraction, and structural..., plastic drainage piping shall be supported at intervals not to exceed 4 feet and plastic water piping...
24 CFR 3280.608 - Hangers and supports.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Hangers and supports. (a) Strains and stresses. Piping in a plumbing system shall be installed without undue strains and stresses, and provision shall be made for expansion, contraction, and structural..., plastic drainage piping shall be supported at intervals not to exceed 4 feet and plastic water piping...
Human Maternal Brain Plasticity: Adaptation to Parenting
ERIC Educational Resources Information Center
Kim, Pilyoung
2016-01-01
New mothers undergo dynamic neural changes that support positive adaptation to parenting and the development of mother-infant relationships. In this article, I review important psychological adaptations that mothers experience during pregnancy and the early postpartum period. I then review evidence of structural and functional plasticity in human…
Probabilistic analysis of structures involving random stress-strain behavior
NASA Technical Reports Server (NTRS)
Millwater, H. R.; Thacker, B. H.; Harren, S. V.
1991-01-01
The present methodology for analysis of structures with random stress strain behavior characterizes the uniaxial stress-strain curve in terms of (1) elastic modulus, (2) engineering stress at initial yield, (3) initial plastic-hardening slope, (4) engineering stress at point of ultimate load, and (5) engineering strain at point of ultimate load. The methodology is incorporated into the Numerical Evaluation of Stochastic Structures Under Stress code for probabilistic structural analysis. The illustrative problem of a thick cylinder under internal pressure, where both the internal pressure and the stress-strain curve are random, is addressed by means of the code. The response value is the cumulative distribution function of the equivalent plastic strain at the inner radius.
Applications of Acupuncture Therapy in Modulating Plasticity of Central Nervous System.
Xiao, Ling-Yong; Wang, Xue-Rui; Yang, Ye; Yang, Jing-Wen; Cao, Yan; Ma, Si-Ming; Li, Tian-Ran; Liu, Cun-Zhi
2017-11-07
Acupuncture is widely applied for treatment of various neurological disorders. This manuscript will review the preclinical evidence of acupuncture in mediating neural plasticity, the mechanisms involved. We searched acupuncture, plasticity, and other potential related words at the following sites: PubMed, EMBASE, Cochrane Library, Chinese National Knowledge Infrastructure (CNKI), and VIP information data base. The following keywords were used: acupuncture, electroacupuncture, plasticity, neural plasticity, neuroplasticity, neurogenesis, neuroblast, stem cell, progenitor cell, BrdU, synapse, synapse structure, synaptogenesis, axon, axon regeneration, synaptic plasticity, LTP, LTD, neurotrophin, neurotrophic factor, BDNF, GDNF, VEGF, bFGF, EGF, NT-3, NT-4, NT-5, p75NTR, neurotransmitter, acetylcholine, norepinephrine, noradrenaline, dopamine, monamine. We assessed the effects of acupuncture on plasticity under pathological conditions in this review. Relevant references were reviewed and presented to reflect the effects of acupuncture on neural plasticity. The acquired literatures mainly focused on neurogenesis, alterations of synapses, neurotrophins (NTs), and neurotranimitters. Acupuncture methods mentioned in this article include manual acupuncture and electroacupuncture. The cumulative evidences demonstrated that acupuncture could induce neural plasticity in rodents exposed to cerebral ischemia. Neural plasticity mediated by acupuncture in other neural disorders, such as Alzheimer's disease, Parkinson's disease, and depression, were also investigated and there is evidence of positive role of acupuncture induced plasticity in these disorders as well. Mediation of neural plasticity by acupuncture is likely associated with its modulation on NTs and neurotransmitters. The exact mechanisms underlying acupuncture's effects on neural plasticity remain to be elucidated. Neural plasticity may be the potential bridge between acupuncture and the treatment of various neurological diseases. © 2017 International Neuromodulation Society.
Leach, Heather; Wise, John C; Isaacs, Rufus
2017-12-01
High tunnels are large protective structures used for season extension of many crops, including raspberries. These structures are often covered in plastic films to reduce and diffuse ultraviolet light transmission for pest and disease control, but this may also affect the photodegradation and efficacy of pesticides applied under these tunnels. We compared the residue levels of ten insecticides under three tunnel plastics with varying levels of UV transmission and open field conditions. Raspberry plants placed in research-scale tunnels were treated with insecticides and residues on fruit and foliage were monitored for one or two weeks in early 2015 and early and late 2016. Plastics that reduce UV transmission resulted in 50% greater residues of some insecticides compared to transparent plastics, and 60% compared to uncovered tunnels. This increased persistence of residues was evident within 1 day and remained consistently higher for up to 14 days. This pattern was demonstrated for multiple insecticides, including bifenthrin, esfenvalerate, imidacloprid, thiamethoxam, and spinosad. In contrast, the insecticide malathion degraded rapidly regardless of the plastic treatment, indicating less sensitivity to photodegradation. Bioassays using insecticide-treated leaves that were under UV-blocking plastic revealed higher mortality of the invasive fruit pest, Drosophila suzukii, compared to leaves that were uncovered. This indicates that the activity of pesticides under high tunnels covered in UV-reducing plastics may be prolonged, allowing for fewer insecticide applications and longer intervals between sprays. This information can be used to help optimize pest control in protected culture berry production. Copyright © 2017 Elsevier Ltd. All rights reserved.
Comparison of Plastic Surgery Residency Training in United States and China.
Zheng, Jianmin; Zhang, Boheng; Yin, Yiqing; Fang, Taolin; Wei, Ning; Lineaweaver, William C; Zhang, Feng
2015-12-01
Residency training is internationally recognized as the only way for the physicians to be qualified to practice independently. China has instituted a new residency training program for the specialty of plastic surgery. Meanwhile, plastic surgery residency training programs in the United States are presently in a transition because of restricted work hours. The purpose of this study is to compare the current characteristics of plastic surgery residency training in 2 countries. Flow path, structure, curriculum, operative experience, research, and evaluation of training in 2 countries were measured. The number of required cases was compared quantitatively whereas other aspects were compared qualitatively. Plastic surgery residency training programs in 2 countries differ regarding specific characteristics. Requirements to become a plastic surgery resident in the United States are more rigorous. Ownership structure of the regulatory agency for residency training in 2 countries is diverse. Training duration in the United States is more flexible. Clinical and research training is more practical and the method of evaluation of residency training is more reasonable in the United States. The job opportunities after residency differ substantially between 2 countries. Not every resident has a chance to be an independent surgeon and would require much more training time in China than it does in the United States. Plastic surgery residency training programs in the United States and China have their unique characteristics. The training programs in the United States are more standardized. Both the United States and China may complement each other to create training programs that will ultimately provide high-quality care for all people.